
E�cient Distributed (n1) Oblivious Transfer

Yael Gertner� Tal Malkiny

MIT Lab of Computer Science

Cambridge, MA 02139

MIT-LCS-TR-714

April, 1997

Abstract

In this paper, we present a new application for
�
n

1

�
oblivious transfer, which is an interactive protocol

between two parties Alice and Bob, where Alice has n secrets and Bob has a query i. At the end of

the protocol Bob has the ith secret and no other information about Alice's other secrets, while Alice

does not get any information about i. This new application is the Secure Database Access problem.

Motivated by this application, we propose an OT scheme which achieves low communication complexity

and information theoretic security.

We use a distributed model for
�
n

1

�
oblivious transfer, where Bob interacts with multiple \Alices". In

this model, we base our scheme on any PIR scheme, which is a scheme where only the privacy of Bob is

considered, and use it to construct an OT scheme, private for both parties, without paying too much in

communication complexity. This results in the �rst sublinear information theoretic scheme for
�
n

1

�
OT.

Further motivated by the application of
�
n

1

�
OT for polynomial n, we raise the issue of repetition

in
�
n

1

�
OT, where both security and e�ciency are important. We show that previous protocols for

�
n

1

�
oblivious transfer fail in this setting.

�yael@theory.lcs.mit.edu
ytal@theory.lcs.mit.edu
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1 Introduction
�
n
1

�
oblivious transfer (OT) is an interactive protocol between two parties Alice and Bob, where Alice has n

secret bits and Bob has a query i. At the end of the protocol Bob has the ith secret and no other information
about Alice's other secrets, while Alice does not get any information about i. Previously, Oblivious Transfer
has been proven to be a very important cryptographic primitive for applications such as secret exchange,
contract signing, and non-interactive zero knowledge proofs for NP, to name a few [17, 12, 15, 8]. Given the
nature of these applications, the

�
n
1

�
oblivious transfer protocol has always been used as a primitive within

a larger two party or multi party computation, where n of a constant size was su�cient.
In this paper, we o�er a new direct application of

�
n
1

�
oblivious transfer in which the number of secrets n

is polynomial. This application is the Secure Database Access problem, which involves a user who queries a
database for the value in some location i, such that the database does not learn anything about the user's
query i, and the user does not learn anything about the database except for the value in a single location i.
This problem is equivalent to the

�
n
1

�
OT problem.

The problem of secure database access, where security of both the user and database is considered, is a
very natural problem, that arises in practice. For example, consider an investor who decides on a stock based
on information he receives from a database containing stock information. In this scenario, it is likely that
the user wishes to keep his choice of stock, or query, secret while the database would like to keep the stock
information private to itself, except for the particular stock that the user has paid for. Clearly, security of
both should be maintained.

Having this application in mind, we are faced with a new problem in
�
n
1

�
OT that non of the existing

implementations address: reducing the cost of communication complexity, or the total amount of bits trans-
ferred between Alice and Bob, as n grows. Moreover, we want to achieve information theoretical security for
both sides. In order to achieve these goals, we use a distributed model for

�
n
1

�
OT, where the user interacts

with multiple secret holders who do not communicate with each other.

Previous Work

A naive solution to the Secure Database Access problem would be to use an already existing
�
n
1

�
OT protocol,

such as [9, 14]. However, these protocols rely on cryptographic assumptions and their communication com-
plexity is at least 
(n; k) where k is a security parameter. In contrast, our goals are to achieves information
theoretic results and a communication complexity which is sublinear in n.

Schemes that reduce the communication complexity were introduced for the Private Information Re-
trieval problem [11, 2], in which the user's query is protected by information theoretic security. This work
achieved sublinear communication complexity by using a multi database model in which a constant number
of databases rather than a single database are used. However, it does not achieve privacy for the database's
information, since the user can get additional information about the database, other than the value in a
single location. Here, we show how data privacy can be added to any PIR protocol without paying too much
in communication complexity.

Another protocol called Instance Hiding [3, 4] allows for information theoretic security for both the user
and the database, in a model where the database size n is exponential, and the number of databases needed
is logarithmic. In contrast, here we consider n to be feasible (following the PIR model [11]), which allows us
to achieve those results for a constant number of databases.

[7, 16] show that any two party protocol can be achieved in the two-prover IP model without cryptographic
assumptions, which implies a distributed model for

�2
1

�
OT achieving information theoretic security. Although

known reductions between
�2
1

�
OT and

�
n
1

�
OT exist ([8, 12]), they cost a high price in communication

complexity, and thus cannot be used to convert the [7]
�
2
1

�
OT protocol into a sublinear

�
n
1

�
OT protocol.

Our Contribution

�We show a direct application for
�
n
1

�
OT { the Secure Database Access problem. This is the �rst application

where n is polynomial. This motivates a new range of problems in
�
n
1

�
OT, such as sublinear communication

complexity, and repetitive OT (see below).
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�We suggest a new model for OT { distributed
�
n
1

�
OT, where n is polynomial, and there are multiple secret

holders. This allows us to achieve the following properties:

� We show an e�cient
�
n
1

�
OT, using sublinear communication complexity. Speci�cally, starting from

any private information retrieval protocol for constant k databases, we show a secure database access
(equivalently,

�
n
1

�
oblivious transfer) protocol for k+ 2 databases (\secret holders"), paying at most a

logarithmic factor in communication complexity.

For example, for k = 2, since currently the best known PIR protocol [2, 11] uses O(n
1

3 ) communication,
our scheme uses O(n1=3 logn) communication. The same scheme can be used to achieve polylogarith-
mic communication complexity for a logarithmic number of databases. If we allow computational
assumptions, our scheme can achieve O(n�) communication complexity for any � > 0, using [10].

� Our scheme achieves an information theoretic OT which is not based on any cryptographic assumptions
(which is impossible in the traditional non-distributed model).

� We also raise the question of repetition in
�
n
1

�
oblivious transfer, namely we consider a scenario where

multiple executions of
�
n
1

�
oblivious transfer are necessary, using the same n secrets. We examine whether

existing implementations for
�
n
1

�
oblivious transfer allow for repetitive use maintaining security and e�ciency.

Surprisingly, the answer is negative.

Organization

In section 2 we give preliminaries and de�nitions of the already existing and our new model of
�
n
1

�
OT. Then,

in section 3, we present our implementation { the Random Pointer scheme { which guarantees information
theoretic security for both parties while maintaining the communication complexity low. These properties
are proven in section 4. In section 5, we outline possible generalizations. In section 6 we present the new open
problem that deals with repetitive executions of

�
n
1

�
OT, and show how existing

�
n
1

�
OT implementations

are not adequate for this purpose.

2 Preliminaries and De�nitions

2.1 Oblivious Transfer

Oblivious transfer comes in various forms, including \standard" OT,
�
2
1

�
OT, and

�
n
1

�
OT. These variants

are all equivalent, in the sense that reductions among them exist ([8, 12]). In this paper, we are interested
in
�
n
1

�
oblivious transfer, which is de�ned as follows.

�
n
1

�
Oblivious Transfer: This is an interactive protocol between two parties Alice and Bob. In this

protocol, Alice has n secret bits S1; : : : ; Sn, and Bob has a selection index i 2 f1; : : : ; ng. At the end of the
protocol, the following three conditions hold.

1. Bob learns the i'th secret Si.

2. Bob gains no further information about the other secrets Sj for j 6= i.

3. Alice learns nothing about the value of i.

2.2 Distributed
�
n

1

�
Oblivious Transfer

As described above, the model used in the traditional oblivious transfer consists of two parties, Alice and
Bob. Alice has n secret bits and Bob has a query which is an index to one of those secrets. Implementations of
traditional OT were shown using cryptographic assumptions (such as the existence of one way functions [14]),
noisy channels [15, 16], or quantum computation [6]. The need to make some computational assumption is
inherent in this model, because Alice has access to the complete transcript of the communication between
her and Bob, and thus she can, information theoretically, determine exactly what Bob can infer about her

3
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data. Thus, this model does not allow us to implement an information theoretic protocol. We overcome this
inherent problem by moving from the traditional model to a distributed one, as follows.

In the distributed OT model, the secret holder Alice is distributed into multiple holders who do not
communicate with each other. More formally:

�
n
1

�
DistributedObliviousTransfer: This is a protocol between k secret holders (\Alices") A1; : : : ; Ak,

holding n secret bits S1; : : : ; Sn, and one user Bob, holding a selection index i 2 f1; : : : ; ng. The protocol is
run in two stages: the setup stage, and the online stage. After the initial setup stage, no two Aj; Al; j 6= l

are allowed to communicate with each other.
At the end of the protocol, the following three conditions hold.

1. Bob learns the i'th secret Si.

2. Bob gains no further information about the other secrets Sj for j 6= i.

3. 8j; Aj learns nothing about the value of i.

This distributed model allows us to obtain the following properties:

Information theoretic OT Each Alice on her own, without communicating with the other Alices, receives
a view which is completely independent of Bob's query i. Thus, no individual Alice can gain any
information about i.
Note that this is impossible to achieve in the traditional OT model with a single Alice, since in this
case Alice's view is the same as Bob's.

Sublinear communication complexity The total amount of bits exchanged between all the Alices and
Bob for one query is sublinear in n.
All existing protocols in the traditional model fail to achieve this, because, since Bob's query is to
remain secret, they are based on Alice sending to Bob information regarding all her secrets (in a way
that will allow Bob to recover only one of them), and thus existing protocols require communication
complexity which is at least linear in the number of secrets.

Note that by information theoretic OT we do not mean that the parties should be computationally
unlimited in order to correctly execute the protocol, but rather that the security of the protocol is information
theoretical. That is, polynomial computation power su�ces to use the protocol, but even if the other side
has unlimited computational power, she will not be able to extract more information than she was supposed
to.

Within the distributed OT model, we implement a protocol which solves our goals mentioned above.
This protocol uses private information retrieval (PIR) as a subprotocol. Since in this paper we present the
problem in the context of oblivious transfer, where we have a secret holder (Alice) instead of a database as in
the PIR scheme, for clarity we rename the PIR scheme to semi-oblivious transfer. In semi-oblivious transfer,
we let go of the second condition in the de�nition of OT, allowing Bob to possibly get more information
about the secrets other than Si:�

n
1

�
Distributed Semi-Oblivious Transfer: This is a protocol between k secret holders (\Alices")

A1; : : : ; Ak, holding n secret bits S1; : : : ; Sn, and one user Bob, holding a selection index i 2 f1; : : : ; ng. The
protocol is run in two stages: the setup stage, and the online stage. After the initial setup stage, no two
Aj ; Al; j 6= l are allowed to communicate with each other.
At the end of the protocol, the following two conditions hold.

1. Bob learns the i'th secret Si.

2. 8j; Aj learns nothing about the value of i.

These de�nitions may be extended in the natural way to deal with longer secrets, consisting of l bits each.
Notation: The communication complexity required for a

�
n
1

�
semi-oblivious transfer protocol for l-bit

secrets using k secret holders, is denoted by SOTk(l; n).
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2.3 Application: The Secure Database Access Problem

We describe here an application of
�
n
1

�
oblivious transfer { the Secure Database Access problem, which is a

direct application of
�
n
1

�
OT for a polynomial n. In this problem, there is a user who wants to retrieve some

information from a database. We assume the data is a string of n bits, and the user is interested in the i'th
bit. The user wants to keep his interest i secret from the database, and the database does not want to give
any additional information except one bit in a single location. At the end of the protocol, the user will have
the i'th bit, but no other information about any other bit, and the database will have no information about
i.

Clearly, secure database access (where security of both the user and the database is considered) is
equivalent to

�
n
1

�
oblivious transfer, and thus any solution for the latter will automatically translate into a

solution for the former.

3 The Random Pointer Scheme

In this section we present a scheme that achieves sublinear communication complexity and information
theoretic security in the distributed

�
n
1

�
oblivious transfer model. Our scheme uses any semi-oblivious scheme

of k secret holders to obtain a distributed OT scheme with k + 2 secret holders, paying only a logarithmic
factor in communication complexity.

3.1 Overview

We start by recalling that sublinear information-theoretical schemes for semi-oblivious transfer exist in a
distributed model (using any private information retrieval scheme, such as [2, 11]). However, those schemes
are only concerned with Bob's privacy, and not Alice's. That is, Bob can get more information about the
secrets, in addition to just Si. Thus, in order to achieve privacy for both parties, we must prevent Bob from
getting this extra information.

We achieve this using the following idea: There are k+2 secret holders: A1; : : : ; Ak; R1; R2. Those secret
holders are not allowed to communicate amongst themselves. R1 and R2 each consist of a random string
with an equal number of zeros and ones. A1; : : : ; Ak contain the original data and a copy of R1 and R2.
During the �nal stage of the protocol Bob asks R1 and R2 for their values at indices j and l, R1(j) and R2(l),
respectively (where j and l are pointers to R's contents that Bob obtained by communicating with the Ais).
Using the values of those pointers Bob can compute the value of his query

R1(j) �R2(l) = Si (1)

The values of these pointers are chosen by A in such a way that a pair of pointers only gives information
about at most one secret bit.

The rest of the interaction between Bob and A1; : : : ; Ak serves the purpose of allowing Bob to obtain an
appropriate pair of indices (j; l) that satisfy (1), without revealing any information about his selection index
i. This is done by running a distributed semi-oblivious transfer subprotocol in which A1; : : : ; Ak use n pairs
of the form (j1; l1); (j2; l2); : : : ; (jn; ln) for the n secrets, and i as the selection index of Bob.

Using this general paradigm, we need to carefully adjust the details of the protocol so that it indeed
implements sublinear, information theoretical, distributed

�
n
1

�
oblivious transfer.

In order for Bob to receive the correct secret Si in (1), the pairs used as secrets in the subprotocol must
satisfy

R1(jr)�R2(lr) = Sr 8r 2 f1; : : : ; ng (2)

These secrets cannot be chosen deterministically, because (ji; li) will be sent to R1 and R2 respectively
in the clear by Bob, so it should not reveal any information about his interest i. Thus, A1; : : : ; Ak need to
share some randomness (in our case, they share a few random permutations on n bits).

Before turning to describing the details of the protocol, let us summarize the intuition behind this idea.
Since the subprotocol that we want to use (semi-oblivious transfer) leaks excess information about A's
secrets, we run the subprotocol with secrets that will not contain any useful information for Bob. In our
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case, these are the pairs of locations of the form (jr ; lr), which can be viewed as \pointers" to more useful
information. These locations without the actual content of R1; R2 in these locations, give no information
about the original secrets S1; : : : ; Sn. However, these locations together with the content of R1; R2 in these
locations, give the original secrets, as implied by (2). Since Bob is allowed to get only one value from each of
R1 and R2, we can prove that he does not get any information about the secrets, except for a single secret
Si. In addition, privacy of Bob is still maintained, because he talks to A1; :::; Ak using SOT, and R1 and R2

each get a uniformly distributed location.

3.2 The Scheme

This protocol is an interaction between Bob, holding a selection index i, and distributed holders A1; : : : ; Ak,
R1; R2, where A1; : : : ; Ak hold n secret bits S1; : : : ; Sn and R1; R2 hold random bits (see below). It uses as
a subprotocol, call it P , a semi-oblivious transfer scheme (equivalently, private information retrieval), for k
distributed holders. P should actually be a semi-oblivious scheme that transfers secrets which are strings,
rather than single bits. This can always be achieved by simply repeating a (single-bit) semi-oblivious scheme
for every bit in the string, or by using a more e�cient scheme, such as the one described in [11]. For e�ciency
reasons, we require the subprotocol to run in time sublinear in n.

Initial Setup for the Secret Holders At this stage we describe what contents each party gets.

� R1 consists of a random string, chosen uniformly from all strings of n bits, with equal number of 0's
and 1's.

� R2 consists of a random string, chosen uniformly from all strings of 2n bits, with equal number of 0's
and 1's.

� A1; : : : ; Ak each have the secrets S1; : : : ; Sn, the contents of R1; R2, and three random permutations
�1; �

0
2; �

1
2 : f1; : : : ; ng ! f1; : : : ; ng. (The subscripts indicate whether the permutation will be used to

�nd a location in R1 or R2, and the superscripts indicate the value of the bit that should be found in
that location).

We stress that R1 and R2 only need to contain a random string, and are not required to know the secrets of
the protocol, or the random permutations which are shared by A1; : : : ; Ak.

After the initial setup stage, once Bob steps into the picture, the secret holders are not allowed to
communicate with each other.

�
n
1

�
Oblivious Transfer Protocol (on-line stage)

� Bob chooses three random shifts s1; s02; s
1
2 2U f1; : : : ; ng and sends them to each of A1; : : : ; Ak.

� A1; : : : ; Ak each compute three new permutations �1; �02; �
1
2, which are �1; �02; �

1
2 shifted by s1; s

0
2; s

1
2

respectively. That is, 8r 2 f1; : : : ; ng; �1(r) = �1(r) + s1 (mod n), and similarly for �02 and �12.

� A1; : : : ; Ak each compute n pairs (j1; l1); (j2; l2); : : : ; (jn; ln) from �1; �
0
2; �

1
2; fS1 : : : ; Sng, and the con-

tent of R1; R2, as follows:

{ jr = �1(r) for r = 1; : : : ; n, hence all the j's are chosen completely randomly.

{ lr 's (r = 1; : : : ; n) are chosen randomly so that the contents in the j locations and the l locations
will xor to the secret bits. To do that, start by letting b = R1(jr)� Sr and m = �b2(r). Note that
in order to satisfy (2) we need to choose lr such that R2(lr) = b. Thus, we let lr = the index of
the m'th b in R2. That is, if b = 0 we choose lr to be the index of the m'th 0 in R2, and similarly
for b = 1. (Note that R2 has 2n bits, consisting of n 0's and n 1's. Thus, for any b 2 f0; 1g and
m 2 f1; : : : ; ng, lr is well de�ned).

� A1; : : : ; Ak and Bob run the subprotocol P with (j1; l1); (j2; l2); : : : ; (jn; ln) as the secrets, and i as the
selection index of Bob. At the end of the subprotocol, Bob has the pair (j; l) = (ji; li).

� Bob sends j to R1, and l to R2.
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� R1 sends Bob the bit R1(j), and R2 sends to Bob R2(l).

� Bob computes the exclusive-or of these two values, yielding Si = R1(j) �R2(l).

The proofs for correctness, security, and e�ciency properties of our protocol are presented in the next
section.

4 Analysis of the Random Pointer Scheme

In this section we analyze the complexity and security of our protocol. In particular, we show that it achieves
sublinear communication complexity, and that it satis�es the de�nition of distributed

�
n
1

�
oblivious transfer,

including correctness and information theoretic security for both parties.
Assumption: In the analysis, we consider any user Bob which may be malicious and deviate from the

protocol. As for the secret holders, we �rst make the usual assumption that they want to send the secret
to Bob, so that they won't send junk instead of the real secrets1 . However, if we limit ourselves to this
assumption only, then if all of A1; : : : ; Ak and one of the Rj collaborate during setup time, and deviate from
the protocol during the online stage, then Rj can get information about Bob's query2.

Thus, we need to make one of the following assumptions, in order to protect the privacy of Bob against the
random holders R1; R2. Either assume that the secret holders are honest but curious, namely they follow
the protocol, but may try to extract as much information as possible about the identity of Bob's query.
Alternatively, we may make the assumption that the random holders (R1; R2) do not know the random
permutations shared by A1; : : : ; Ak. This assumption is satis�ed if we require that R1; R2 do not get any
communication from A1; : : : ; Ak during the setup stage. Under this assumption, all the secret holders may
be malicious, and deviate from the protocol. This assumption is reasonable, since we can think of R1; R2

as auxiliary databases (consisting of a random string), provided by an independent source, such as a special
server for this purpose (and they may be determined in advance, independent of the secrets, or chosen later,
after the secret holders chose their permutations). Note that these random holders do not need to know
anything about the secrets, and no communication from the secret holders to the random holders is required
at any stage of the protocol.

4.1 Correctness and Obliviousness

Notation: Denote our scheme by RP (random pointer scheme). RPP will denote our random pointer
scheme when used with the underlying semi oblivious transfer protocol P .

The following three theorems establish the required properties to prove that our random pointer scheme
satis�es the de�nitions of distributed oblivious transfer. Recall that the de�nition consists of three properties
that must hold at the end of the execution: (1) Bob learns Si for his selection index i (correctness); (2) Bob
gains no further information about the other secrets Sj for j 6= i (privacy of secret holders); and (3) 8j; Aj

learns nothing about the value of i (privacy of recipient).

Correctness

Theorem 1 If P is a semi-oblivious transfer scheme, then RPP is correct, i.e if Bob follows the protocol
with selection index i, the value he obtains at the last step is the secret Si.

Proof: By reduction from the correctness of P , after running P with A1; : : : ; Ak, Bob receives the pair
(j; l) = (ji; li) corresponding to his selection index i. From the way li was constructed, it is a location in
which R2 has the bit b = R1(j) � Si. Thus, R1(j) �R2(l) = Si and Bob receives the correct secret Si. 2

1This is a common assumption in the OT model, and is quite natural, for example if we view the secret holders as a
commercial database which sells data, and charges per query.

2For example, they could agree on a �xed permutations to use, ignoring Bob's shifts, and then when Rj receives the user's
query he knows which location it corresponds to, according to the �xed permutation.
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Privacy of secret holders

Theorem 2 (informal statement) For any strategy Bob' (possibly cheating), if all holders follow the
protocol, Bob' cannot get any information about more than one secret Si of his choice.

To state the theorem formally and prove it, we de�ne the view of Bob' (for any strategy Bob'), and prove
that its distribution is independent of all but one secrets.

Let Bob' be any strategy for the recipient. Bob' runs a semi-oblivious subprotocol P with A1; :::; Ak and
the secrets (j1; l1); : : : ; (jn; ln), at the end of which he receives (ji; li) and possibly additional information
about these secrets which the subprotocol leaks. We assume a worst case in which Bob' receives the full
information about all the secrets, namely he gets (j1; l1); (j2; l2); : : : ; (jn; ln), and we show that even in this
worst case, Bob' cannot obtain any information about the real secrets S1; : : : ; Sn other than a single secret
Si of his choice.

Let V (j; l) = [(j1; l1); : : : ; (jn; ln); R1(j); R2(l)], V (j; l) is the view received by a Bob' who sends queries
j; l to R1; R2 respectively. (This is the assumption mentioned above. In reality, the view of Bob' can be
derived from V (j; l), but is possibly much smaller). Note that an honest Bob should set j = ji; l = li, but
we allow a possibly cheating Bob', who may choose arbitrary j; l.

Consider a partial view V � = [(j1; l1); : : : ; (jn; ln); R1(j)] where the last answer (from R2) is omitted.
Let D be the domain of all possible partial views V �. Thus, jDj = 2n!

�2n
n

�
. We will prove that the partial

view V � is uniformly distributed over D, and from this we will be able to prove that the distribution of the
complete view V depends only on one secret.

In what follows, the notation X � U [D] means that the random variable X is distributed uniformly over
the domain D.

Theorem 2 8j; l, the distribution of V (j; l) may depend on at most one secret. More speci�cally, for any
possible view V (jr ; lr0) 2 D � f0; 1g,

Prob[V (jr ; lr0)] =

8<
:

�
jDj

if R1(jr) �R2(lr0 ) = Sr0

1��
jDj

otherwise

where � = 1 if r = r0, and � = 1
2 �

1
2(n�1) if r 6= r0, and probabilities are taken over the choices of

�1; �
0
2; �

1
2; R1; R2.

Note that from this theorem, if j; l correspond to a pair (jr; lr) (as in the honest Bob case), then the
view provides complete information about Sr (since � = 1, so Sr = R1(jr) � R2(lr)), whereas if j; l do not
correspond to such a pair, only partial information about Sr0 is provided (since there is a positive probability
for both Sr0 = 0 and Sr0 = 1).

In either case, the last two components of the view contain information about the secret Sr0 , but the
view does not depend on any other secret.

We proceed with a sequence of lemmas that will prove the theorem, by gradually adding components to
the view, while maintaining its independence of all secrets except Sr0 . The �rst three lemmas will establish
the uniform distribution of the V �, and lemma 4 will complete the calculation for the last component in the
view.

Lemma 1 8j; R1(j) � U [f0; 1g] (probability is taken over choice of R1).

Proof: Obvious, since R1 is chosen uniformly from all strings of length n with half 0's and half 1's, and
thus for any particular location j, R1(j) is 0 or 1 with equal probability. 2

Lemma 2 8j; [j1; : : : ; jn jR1(j)] � U [all permutations on f1; : : : ; ng] (probability is taken over choice of
�1).

Proof: Since �1 is a uniformly distributed permutation, so is �1 = �1 + s1, namely (j1; : : : ; jn) =
(�1(1); : : : ; �1(n)) = (�1(1)+ s1; : : : ; �1(n) + s1) is uniformly distributed over all permutations on f1; : : : ; ng
(recall that addition here is modulo n).

This is true independent of R1(j), and thus [j1; : : : ; jn jR1(j)] = [j1; : : : ; jn] is also uniformly distributed.
2

8



Lemma 3 8j; [l1; : : : ; ln jR1(j); j1; : : : ; jn] � U over all sequences of n distinct locations in f1; : : : ; 2ng
(probability is taken over choices of R1; R2; �

0
2; �

1
2).

Proof: Given values R1(j); j1; : : : ; jn, we want to prove that every sequence l1; : : : ; ln is equally likely
(i.e. uniform distribution). Fix an arbitrary R1 with a suitable R1(j). This de�nes a sequence of bits
fbr = R1(r)�Srg

n
r=1. Then, for r 2 f1; : : : ; ng, lr is chosen to be the index of the mr 'th bit with value br in

R2, where mr = �br2 (r). Thus, for any particular sequence l1; : : : ; ln, Prob[l1; : : : ; ln jR1; R1(j); j1; : : : ; jn] =
Prob[8r : R2(r) = br ^ �br2 (r) = mr if lr is the mr 'th bit with value br in R2]. This probability (for
a �xed R1) is taken over R2 and �02; �

1
2. It is not necessary to calculate the exact probability to see that

it is the same for each sequence l1; : : : ; ln, since �02 and �12 are both uniformly distributed permutations
(because �b2 = �b2 + sb2). We have some number k of restrictions on the values of �02 and n � k restrictions
on the values of �12, which yields a certain probability that these restrictions will be satis�ed, regardless of
the actual values l1; : : : ; ln of the restrictions3. Thus for each sequence we have the same probability, and
thus [l1; : : : ; ln jR1; R1(j); j1; : : : ; jn] � U over all sequences of n distinct locations in f1; : : : ; 2ng. (where
probability is taken over the choice of R2; �

0
2; �

1
2). This is true for any �xed R1, and thus it is also true when

R1 is chosen randomly. 2

Lemma 4 8j = jr; l = lr0 ;

P rob[R2(lr0 ) = 0 jR1(jr); j1; : : : ; jn; l1; : : : ; ln] =

8<
:

� if Sr0 = R1[jr]

1� � if Sr0 = R1[jr]

=

8>>>>>><
>>>>>>:

1
2 �

1
2(n�1) if r 6= r0and Sr0 = R1[jr]

1
2 +

1
2(n�1) if r 6= r0and Sr0 = R1[jr]

1 if r = r0and Sr0 = R1[jr]

0 if r = r0and Sr0 = R1[jr]

where � = 1 if r = r0, and � = 1
2 �

1
2(n�1) if r 6= r0. (probability is taken over choices of R1)

Proof: Given R1(jr); j1; : : : ; jn; l1; : : : ; ln, from the way the lr's were chosen, R2(lr0 ) = R1(jr0 ) � Sr0 , and
thus R2(lr0 ) = 0 () R1(jr0 ) = Sr0 . Therefore,

Prob[R2(lr0 ) = 0 jR1(jr); j1; : : : ; jn; l1; : : : ; ln] =
= Prob[R1(jr0 ) = Sr0 jR1(jr); j1; : : : ; jn; l1; : : : ; ln] = Prob[R1(jr0 ) = Sr0 jR1(jr)]

=

8>>>>>>>><
>>>>>>>>:

(n�2

n

2

)

(n�1

n

2

)
if r 6= r0and Sr0 = R1[jr]

( n�2

n

2
�1
)

(n�1

n

2

)
if r 6= r0and Sr0 = R1[jr]

1 if r = r0and Sr0 = R1[jr]

0 if r = r0and Sr0 = R1[jr]

For r = r0 this is obvious. For r 6= r0 this is true because R1 is a random string of length n with n
2 O's and n

2

1's. Given R1[jr], there are
�
n�1
n

2

�
possible strings for R1, each equally probable. Out of those, the number

of possibilities where R1[jr0 ] = Sr0 is
�
n�2
n

2

�
, if Sr0 = R1[jr], and

�
n�2
n

2
�1

�
otherwise.

3For a direct calculation, it is not hard to check that the probability is

�
n
k

�
�
2n
n

� (n� k)!

n!

k!

n!
=

1�
2n
n

�
n!

=
1

(2n)(2n� 1) : : : (2n� n)

which is exactly the probability of uniformly selecting a sequence of n distinct locations in f1; : : : ; 2ng, as needed.
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Now it is easy to verify that
(n�2

n

2

)

(n�1

n

2

)
= 1

2 �
1

2(n�1) and
(n�2

n

2
�1
)

(n�1

n

2

)
= 1

2 +
1

2(n�1) , which completes the proof of

the lemma. 2

Proof of Theorem 2: 8j = jr; l = lr0 ; 8v
� = [(j1; l1); : : : ; (jn; ln); R1(jr)], 8v = [v�; R2(lr0 )];

P rob(v�) = Prob[R1(jr)] �Prob[j1; : : : ; jn jR1(jr)] � Prob[l1; : : : ; ln jR1(jr); j1; : : : ; jn] =
1

jDj

since by lemmas 1,2,3 all three terms in the product are uniformly distributed over their domain of possible
values, and therefore V � is uniformly distributed over its domain D. Now, from lemma 4 we have that

Prob[v j v�] =

8<
:

� if R1[jr]� R2[lr0 ] = Sr0

1� � otherwise

Combining these equations, we get

Prob[v] = Prob[v�] � Prob[v j v�] =

8<
:

�
jDj

if R1(jr) �R2(lr0 ) = Sr0

1��
jDj

otherwise

which completes the proof of the theorem. 2

Privacy of recipient

We prove that the RP scheme is private for Bob, provided that the secret holders follow the protocol (honest
but curious). As explained in the beginning of the section, this assumption can be removed if R1; R2 do not
know the random permutations, and a similar proof will work for that case.

Theorem 3 If P is a semi-oblivious transfer scheme, then RPP is recipient-private, i.e. for any honest-but-
curious strategies A0

1; : : : ; A
0
k; R

0
1; R

0
2, if Bob follows the protocol for a selection index i, no secret holder can

get any information about i.

Proof: For A0
r; 1 � r � k, Bob's communicationwithA0

r is identical to the communication in the underlying
P , and therefore for these holders the theorem follows by reduction from the privacy of recipient for P .
For R0

1, the only communication R0
1 gets is the index j = �1(i) = �1(i) + s1(mod n). Since s1 is a random

shift uniformly distributed in f1; : : : ; ng, j is a uniformly distributed index in f1; : : : ; ng, independent of i.
Thus, R0

1 cannot get any information about i.
For R0

2, the only communication R0
2 gets is the index l, which is the location of the m'th b-bit in R2, where

b = R1(j) � Si, and m = �b2(i) = �b2(i) + sb2(mod n). Since we showed above j is uniformly distributed, and
since R1 has half 0's and half 1's, it follows that R1(j) 2U f0; 1g, and therefore b 2U f0; 1g, independent
of i. m is uniformly distributed in f1; : : : ; ng by randomness of the shift sb2, as above. We showed that b
and m are both distributed independent of i, in fact uniformly, and thus l is also uniformly distributed (in
f1; : : : ; 2ng), independent of i. 2

4.2 Complexity

Space Complexity: R1; R2 require O(n) space, and A1; : : : ; Ak require O(n logn) space. Speci�cally,
R1 is a n-bit string4, R2 is a 2n-bit string, and A1; : : : ; Ak each hold n secret bits, the same n+ 2n bits as
in R1 and R2, and 3 logn! < 3n logn bits for the three permutations, for a total of O(n logn) bits.

Communication Complexity: Recall that SOTk(l; n) denotes the communication complexity required
for a

�
n
1

�
semi-oblivious transfer protocol for l-bit secrets using k secret holders.

4Even a slightly shorter log
�
n
n

2

�
-bit string su�ces, since we need to specify an n-bit string with equal number of 0's and 1's.

A similar observation holds for R2.
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Theorem 4 The random pointer scheme for k + 2 holders uses communication complexity of O(k logn) +
SOTk(2 logn+ 1; n).

Proof: The communication in this scheme consists of 3 logn bits sent by Bob in the �rst step to each of
A1; : : : ; Ak (indicating the three shifts s1; s02; s

1
2), logn + log 2n bits sent by Bob in the last step to R1 and

R2 (indicating the locations j; l respectively), their two answer bits, and the communication required by the
underlying semi-oblivious protocol P for n secrets of length logn + log 2n = 2 logn + 1 each (recall that
the secrets for the underlying subprotocol are of the form (j1; l1); : : : ; (jn; ln) where jr; lr are location into
n-bit and 2n-bit strings). Altogether, this gives (3k + 4) logn + 4 + SOTk(2 logn + 1; n) = O(k logn) +
SOTk(2 logn+ 1; n). 2

Corollary 1 Starting from any semi-oblivious protocol, protecting Bob only, an
�
n
1

�
oblivious transfer pro-

tocol protecting both sides can be constructed, paying a logarithmic factor in communication complexity.

Proof: Clearly, an SOTk(l; n) protocol can be implemented by executing an SOTk(1; n) protocol l times,
considering each bit in the secret separately, one at a time5. Since in theorem 1 the dominating communi-
cation complexity in the random pointer scheme is SOTk(2 logn + 1; n), the corollary follows. 2

We note that when a more e�cient approach for SOTk(l; n) rather than the one bit at a time is pos-
sible, it should be used to obtain further savings in communication. For example, [11] shows that when a
semi-oblivious protocol satis�es a certain additivity condition on the reconstruction function for Bob, then
SOTk(l; n) can be solved within l times the complexity of SOTk(1;

n
l + 1) (see [11] for details).

Using the best upper bounds known to date for semi-oblivious protocols, yields the following.

Corollary 2 The random pointer scheme can be used with known subprotocols to achieve the following
results:

� k+ 2-holders scheme with communication complexity O(n
1

2k�1 logn), for every constant k. (For k = 2

this is O(n
1

3 logn)).

� A scheme for a logarithmic number of holders, with polylogarithmic communication complexity.

� A computational version (relying on the existence of one way functions) for a constant number of
holders, with communication complexity of n�, for every � > 0.

Proof: These results follow directly from combining the previous corollary with the known protocols of
[11] for 2 databases, [2] for any constant number k of databases, [11] for logn + 1 databases, and the [10]
computational protocol for 2 databases. 2

5 Generalizations

The random pointer scheme can be generalized to support more general variants of OT, such as privacy
with respect to coalitions of secret holders, or oblivious transfer of secrets consisting of blocks of bits. In the
following we show how an underlying SOT scheme P supporting the generalized variant, can be extended to
a generalized OT scheme.

5.1 Privacy With Respect to Coalitions

So far we were concerned with the privacy of Bob with respect to each single holder (either an A or an
R), assuming there is no communication between di�erent holders. This protocol can be extended to allow
privacy with respect to coalitions of up to t holders who may communicate with each other. We say that
a distributed

�
n
1

�
oblivious transfer scheme is t-private if no t holders together may obtain from their joint

view any information about Bob's selection index i. Note that 1-private OT means the regular distributed�
n
1

�
oblivious transfer as de�ned before.

5Note that here we need not worry about a cheating Bob who may ask for di�erent bits from di�erent secrets at each
execution, since this is a semi-oblivious protocol, meaning we only care about Bob's privacy, and not Alice's.
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The random pointer scheme as described above achieves only 1-privacy. There are three types of coalitions
that could potentially violate the privacy of Bob, a coalition between the two R's, a coalition between the
Alices, and a coalition between a combination of Alices and R's.

In order to allow for coalitions of size t between the R's we increase the number of R's to be t + 1:
R1; : : : ; Rt corresponding to R1 in the original scheme, and Rt+1 corresponding to R2 in the original scheme.
This way any coalition of up to t random holders from R1; : : : ; Rt+1 is missing at least one random holder,
and thus their view is uniformly distributed.

In order to allow for coalitions of size t between the Alices we use an underlying SOT scheme which is
t-private, such as the one suggested in [11].

In order to allow for coalitions of size t between A's and R's, we can extend the RP scheme to achieve
t-privacy, by using the following idea: instead of having just one level of pointers from Alice to R, we propose
to use t levels of pointers between Alice and R, such that at least t+ 1 holders will have to form a coalition
in order to gain some information about the Bob's query. Thus, if the 1-privacy scheme included k Alices
and 2 R's, we now have a level of k Alices, a level of t+ 1 R's, and between them we use t� 1 intermediate
levels of secret holders called AR, where each level consists of k AR`s. Altogether we use kt + t + 1 holders,
denoted as follows (next to each level of holders we denote the secret string associated with that level).

Holders Secrets

A1
1; : : : ; A1

k; [S1; : : : ; Sn]

AR2
1; : : : ; AR2

k; [~r2 = r21; : : : ; r
2
2n]

...

ARt
1; : : : ; ARt

k; [~rt = rt1; : : : ; r
t
2n]

R1; : : : ; Rt; Rt+1:

S1; : : : ; Sn are the original secrets, and each ~rl is an independent random string of length 2n consisting of
half 0's and half 1's.

We denote the holders in the intermediate levels by AR because their role in the protocol is to play
Alice's role (like in the RP scheme), but their content consists of random bits, and thus they can be viewed
as random holders, and don't need to know the original secrets.

The protocol follows the same idea as the basic RP scheme. Bob starts by running the SOT protocol P
with the �rst level of holders, where the secrets used by the holders are pointers (indices) into the second
level's secret string corresponding to the original secrets. Thus, Bob semi-obliviously receives a pointer i2
into ~r2 that he is now interested in. He runs P again with the second level holders, using i2 as his selection

index, and obtains a new index i3 into ~r3 and so on. After t steps Bob has obtained a private index it into
~rt. He now runs P with the holders at level t, to receive t+ 1 pointers j1; : : : ; jt; jt+1 into R1; : : : ; Rt; Rt+1

respectively. Now he can ask each random holder for the value in the corresponding location, and xor the
values to obtain his answer.

The pointers used by the holders as secrets are obtained in the same manner as in the original scheme,
namely via random permutations that are shared between the holders in each level, and are used to calculate
pointers with a suitable bit value into the next level's string.

In order to make the above idea work, we need to make one additional modi�cation. To see why, note
that in the scheme described above, if one of the holders in level t communicates with one of the random
holders, they can �nd out which bit in ~rt Bob was interested in. This gives away the value of the bit of Bob's
interest (although not its index, since they don't know the mappings from fS1; : : : ; Sng to the string ~rt).

To solve this problem, before running P with a certain level l, Bob �rst sends a random bit bl 2 f0; 1g
to all holders of that level. The holders xor all the secret bits with bl, and proceed as above. At the end of
the protocol, Bob xors b1 � : : :� bt and all the bits he received from R1; : : : ; Rt+1 to obtain his desired bit.

Now, any coalition of up to t holders from di�erent levels cannot contain one holder from each level
and a random holder (since this would consist of t + 1 holders), and thus cannot have all the permutations
connecting the original secrets with the last level secrets and the location Bob has asked from the random
holder, and thus cannot have any information about Bob's original interest.
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5.2 OT of Blocks of Secrets

Another possible generalization, is the transfer of block secrets consisting of l > 1 bits each. Note, that unlike
semi-oblivious transfer, this cannot be done simply by running the original scheme for each bit6. A simple
way to extend the RP scheme to block secrets, is to change R1 and R2 to consist of blocks of length l, so
that Bob receives two indices of blocks in R1 and R2 such that the xor of the two is the secret.

In order for the original protocol and proof to follow through in this setting, R1 should contain n l-bit
blocks, chosen randomly so that each possible block appears the same number of times. R2 should contain
n copies of each possible block, in random order, so it needs to have n2l l-bit blocks.

6 Repetitive
�
n
1

�
Oblivious Transfer

In the context of the Secure Database Access problem, repetitive executions of the Oblivious Transfer protocol
are very desirable. By repetitive executions we mean that the protocol is used multiple times with the same
secrets. In order to allow repetitions, two issues must be examined:

Security: Executing the scheme k times will give Bob information about only k secrets of his choice, but
no more than that, and will give Alice no information at all regarding Bob's choices of secrets. This
extends the traditional de�nition of

�
n
1

�
oblivious transfer which guarantees this for a single execution

(k = 1).

E�ciency: Executing the scheme k times can be done in a reasonable complexity. In particular, we want
to achieve secure repetitive

�
n
1

�
oblivious transfer without recomputing the whole protocol from scratch

with each execution of the protocol.

For simplicity, we present repetitive oblivious transfer with respect to the standard model, with a single
secret holder. It is easy to extend the notion to distributed repetitive oblivious transfer, similarly to our
approach in the previous sections.

Repetitive Oblivious Transfer: This is a protocol between Alice, who has n secret bits S1; : : : ; Sn,
and Bob who has a selection index i 2 f1; : : : ; ng. We break the protocol into a setup stage, and an on-line
stage. We say that the protocol is secure for k repetitions, if after performing the setup stage once and the
on-line stage k times, with selection indices i1; : : : ; ik respectively, the following three conditions hold.

1. Bob learns the secrets at his selection indices, namely Si1 ; : : : ; Sik .

2. Bob gains no further information about the other secrets Sj , j 62 fi1; : : : ; ikg.

3. Alice learns nothing about the values of i1; : : : ; ik.

Clearly, for the repetitive scenario it is desirable to have as much of the work load as possible done during
the setup stage, so that the on-line stage (which is the one being repeated) is as e�cient as possible.

We inspect existing protocols, and show that they are not secure even for 2 executions, unless all the
setup (such as choosing a one way function, etc) is computed from scratch every time, which makes it too
ine�cient for repetitive applications.

6.1 Open Question

In our scheme, it is clear that if all random strings of the secret holders are chosen independently every time,
then the scheme can be repeated without losing privacy. This may be a reasonable solution for constant
number of repetitions (since several random strings can be generated in advance), or for computational
security (using short pseudo random seeds). However, it is too expensive if we require a large number of
repetitions and insist on information theoretic security.

Other existing schemes also fail to solve this problem, as we show below. Thus, the problem of designing
a repetitive (e�cient)

�
n
1

�
oblivious transfer protocol remains as an important and useful open problem, and

we are currently working towards solutions in this directions.

6If we did this, Bob could ask for l di�erent bits from di�erent blocks, thus obtaining information dependent on more than
one secret.
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6.2 Problems with Repetition for Existing Protocols

It is interesting to �nd out, that existing implementations of
�
n
1

�
oblivious transfer are generally not satis-

factory for applications that require repetitions. In this section we look at some of the existing schemes and
their repetition security.

6.2.1 Oblivious Transfer Based on any One Way Trapdoor Function

A general
�
n
1

�
oblivious transfer protocol based on any one way trapdoor function is described in [14]. In

what follows we provide a brief sketch of the protocol, and show that it is not secure for repetitions.

Sketch of Protocol: Alice and Bob agree on a one way trapdoor function f , and let B be a hard core
predicate for f . Bob sends to Alice n numbers y1; : : : ; yn, where the one at his selection index i is of the
form yi = f(x) for a randomly chosen x, and the other n � 1 numbers are chosen randomly. Alice gets the
list y1; : : : ; yn and sends back S1 � B(f�1(y1)); : : : ; Sn � B(f�1(yn)). Bob is able to �nd Si, which is the
exclusive-or of two values he knows: B(f�1(yi)) = B(x) and B(f�1(yi)) � Si. Bob cannot �nd any other
secret Sj for j 6= i, since it is masked by B(f�1(yj) which Bob has no information about.

Indeed, one application of the scheme gives Bob only one secret. However, applying the same scheme
twice, gives Bob much more information than just 2 secrets (unless the one way function and hard core
predicate are chosen afresh every single time). In fact, in two applications Bob can recover all the secrets,
as follows.

� First iteration of the scheme: Bob sends to Alice

f(x); y2; y3; : : : ; yn

for random x; y2; : : : ; yn

� Bob receives from Alice

z1 = S1 � B(x); z2 = S2 �B(f�1(y2)); : : : ; zn = Sn �B(f�1(yn))

� Bob calculates S1 = z1 � B(x)

� Second iteration of the scheme: Bob sends to Alice

y2; : : : ; yn; y
0

for a random y0

� Bob receives from Alice

w1 = S1 �B(f�1(y2)); : : : ; wn�1 = Sn�1 �B(f�1(yn)); wn = Sn �B(f�1(y0))

� Bob calculates

S2 = z2 � w1 � S1; s1 = z3 � w2 � S2; : : : ; Sn = zn � wn�1 � Sn�1

Bob has all n secrets now.
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6.2.2 Oblivious Transfer Based on Quadratic Residuosity

Brassard Crepeau and Robert [9] suggest a
�
n
1

�
oblivious transfer protocol based on the quadratic residuosity

assumption (QR). This protocol has weaknesses in terms of repetition security, but it is much better than
the previous one in this respect.

Sketch of Protocol: Alice sends to Bob all secrets, encrypted (using QR). Bob selects the encrypted
secret of his choice, and encrypts it again using his own key, and sends to Alice. Alice decrypts the value she
had received, thus removing her encryption from it. The resulting value is sent to Bob, who can now remove
his encryption from it as well, and get his desired secret. This idea as described above does not quite work
yet, since Bob may get some other value (e.g. the xor of two secrets) rather than one of the secrets. To get
around this problem, the protocol is modi�ed such that Bob sends to Alice a value called a ��packet P�,
together with a proof of validity for P�. (see [9] for details).

The same P� may be used for repetitive applications of the scheme, achieving only partial security
(e.g. Alice can tell whether Bob's questions (selection indices) are all di�erent or not). Using a new P� for
every repetition avoids this leakage of information, but considerably increases the on line stage complexity.

6.2.3 Non Interactive Oblivious Transfer

A di�erent avor of oblivious transfer was introduced by Bellare and Micali [5], where the goal is to eliminate
interaction from the oblivious transfer protocol. Their non interactive protocol violates the de�nition of
repetition security, since Bob can hold only one selection index i, and if the protocol is to be repeated, he
will get the secret at the same location every single time.

Sketch of Protocol: This protocol is based on the Di�e-Helman assumption. The idea is that Bob
publishes a set of n public keys, such that he knows the discrete logarithm of exactly one of them (the
protocol provides a way for Alice to make sure Bob cannot know the discrete logarithm of more than one
of his public keys, relying on the Di�e-Hellman assumption). Now, to perform an oblivious transfer Alice
sends the n secrets encrypted with the n public keys, and Bob can decrypt only the one corresponding to
the public key whose discrete log he knows.

Since the selection index of Bob is predetermined from the moment he publishes his public keys, it is
clear that repeating the scheme k times, Bob will always have the same selection index (i.e. i1 = : : : = ik in
our de�nition of repetitive oblivious transfer), and the scheme is not secure for repetitions.
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