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Abstract

This thesis deals with the robustness of stability of
distributed, linear-time-invariant (DLTI) feedback control systems.
The main goal is to formulate a practical method for evaluating
feedback designs based on the actual DLTI system characteristics.
-As a result, a design procedure can be developed for DLTI systems to
synthesize feedback controllers that are guaranteed to be
closed-loop stable. We have developed a robustness characterization
for DLTI systems, and have shown that linear quadratic (LQ) optimal
control systems have nice robustness properties and can serve as
good reference designs for the actual implementation of the feedback
controller. We have studied in detail linear hereditary
differential systems and a vibration suppression problem for a
flexible beam. We stress the study of implementable controllers,
which are finite dimensional, in contrast to optimal controllers
that are typically infinite-dimensional. However, one can integrate
our multivariable robustness results with the LQ optimal control to
derive a finite-dimensional suboptimal control law which is
closed~loop stable. We show how this can be done by using
spatially-sampled measurements along the flexible beam. Also we
have demonstrated by using our robustness results that the inherent
damping in the flexible structure plays a vital role in determining
whether a physically realizable closed-loop stabilizing controller,
based on spatially-sampled measurements, can be achieved.
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CHAPTER 1

INTRODUCTION

1.1 An Overview and Motivation

This thesis deals with the robustness of stability of
distributed, linear-time-invariant (DLTI) feedback control systems.
The main goal is to formulate a practical method for evaluating
feedback designs based on the actual DLTI system characteristics.
As a result, a design procedure can be developed for DLTI systems to
synthesize feedback controllers that are guaranteed to be
closed-loop stable.

This research is motivated by the fact that although infinite
dimensional systems are commonly found in practice and it is widely
acknowledged [60] that robustness considerations are of utmost
~ importance in the implementation of feedback compensators for
infinite dimensional systems, a formal treatment of the robustness
issue has not been found in literature. In our research, we have
developed a robustness characterization for DLTI systems, and have
shown that linear quadratic (LQ) optimal control systems have nice
robustness properties and can serve as good reference designs for
the actual implementation of the feedback controller. The
"goodness" of this reference is measured by the robustness of the
optimal system. We stress in this thesis that the optimal

controllers are in general infinite dimensional, and the control
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-designer must achieve a design that is finite dimensional and
physically realizable [1]. We use a flexible beam vibration
suppression example to highlight this discussion.

Often in current control design practice for infinite
dimensional systems, a reduced-order model (e.g. [57], [58]. [59])
is first generated to approximate the system, and the control design
is synthesized using this reduced-order model. These reduced-order
design methods, however, do not always produce feedback control
designs that are robust, i.e., remain stable in the presence of
uncertainties. In fact, the resulting controllers are often
unstable when evaluated with the true infinite dimensional plant.

Another shortcoming of reduced-order design methods is that
they are all problem-dependent. There is no simple a priori rule to
determine which model reduction method will produce the best result,
or what degree of approximation is adequate. In particular, one is
required to perform the model reduction on the open-loop system
(such as selecting open-loop poles), but the validation of the
procedure has to be checked on the resulting closed-loop design
(where the poles have changed). Modeling errors resulting from the
approximation, such as parameter variations, nonlinearities,
neglected disturbances, and control and observation spillovers [2],
[56] can all cause the system to become unstable [3], [4]. If they
do, it becomes necessary to iterate the entire approach. A fresh
approximate model is selected and the complete design and analysis
process is repeated. In addition, the computational requirements

may become stringent when a larger-order model is used.
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It is hoped that by using the optimal control as a reference
design, the control designer can avoid the aforementioned
limitations of the reduced-order design method. That is, they can
start with an infinite-dimensional structural model, develop an
exact optimal solution, which is robust, and use the robustness
properties of the optimal solution to facilitate the actual (finite
dimensional) implementation.

We take a control design approach that has found a great deal
of success in dealing with finite dimensional systems [5], [6].
This approach integrates the multivariable robustness theory with
the LQ control theory. The crucial difference between the finite
dimensional study and ours is that in general one cannot use the
optimal design directly in the infinite dimensional system. Usually
a suboptimal scheme is required for the implementation. This
additional design consideration underscores the importance of a
robustness study for infinite dimensional systems. It motivated us
to investigate the significance of the LQ robustness results in the
synthesis of a closed-loop stable and implementable suboptimal
control design.

LQ optimal control [54], [55] has long been a popular method
with feedback control design engineers due to its conceptual
simplicity and ease of computation. However it was recognized just
over ten years ago that optimal control is merely a convenient tool
to synthesize a design. In order for a control design to be called

truly successful, one must do a commendable job in trading off the
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system design performance, robustness, sensitivity and other system
characteristics. These trade-offs are easier to accomplish in the
frequency domain. In recent years we have witnessed the development
of many practical robustness results for multivariable finite
dimensional systems, including the guaranteed stability margins of
LQ systems [7], [8]., [9]. the introduction of the singular values of
the return difference of a feedback system as a robustness measure
[10]. [5]. and the loop transfer recovery technique [3], [6].
Consequently, a much more unified treatment for multi-input-multi-
output control design methods has been made possible. These methods
generally fall into two categories: (1) the full-state feedback
type [11], [12], [13]; and (2) the observer type, i.e. the
linear—quadratic-guassian/loop-transfer-recovery approach [6]1. [7].
[14]. Although this theory is by no means complete, much success in
actual applications and feasibility studies have been reported [15],
[16], [17], [18].

- We believe that by following a similar development, we have
obtained a framework for dealing with control designs for infinite
dimensional systems that is equally effective as that for finite

dimensional systems.

1.2 A Summary of the Results

Two important examples of infinite dimensional systems are
systems with time delays and large flexible structures. They are

used in this thesis to develop the concepts behind our research. In
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particular, instead of beginning with an abstract framework of

describing infinite dimensional systems using semigroups, we start

by considering a general class of time-delay systems called the
linear hereditary differential system [19]. We show that by using
only elementary complex function theory, a very general
multivariable robustness characterization, using singular values of
the return difference, of this class of time-delay systems can be
obtained. Based on this characterization, we present an extension
of the well known [7] [8] robustness results of finite dimensional

LQ control systems.

It has been shown in one form or another [20], [21]. [7] that
the LQ approach, when applied to finite dimensional systems:

(1) produces a closed-loop system that satisfies an optimal
frequency domain condition which is commonly referred to as the
Kalman frequency domain inequality;

(2) guarantees that the closed-loop control system has at least 60°
phase margins and infinite gain margins simul taneously in all
control input channels when a diagonal control weighting matrix
is used.

The robustness properties in (2) are direct consequences of property

(1). In this thesis, both of these results (1) and (2) are extended

to include all linear hereditary differential systems. The results
are derived directly in the frequency domain.
A natural question to raise here is "how generally can one

extend the results (1) and (2) above?” We provide an answer to this
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question by combining the Yakubovich frequency domain theorem [22],

[23]. [26]. which is the most general (infinite dimensional) version

of the Kalman frequency domain equality known to date, and Desoer

and Wang's generalized Nyquist thoerem [24] to establish that for

linear systems described as a semigroup over a Hilbert space, (1)

and (2) above are true if

(a) the control space is finite dimensional; and

(b) the loop transfer function belongs to a class of transfer
functions which have finitely many poles in the closed
right-half plane (CRHP).

Their result allows us to generalize the singular value
robustness characterization to DLTI systems.

In this thesis we also study the infinite dimensional Lyapunov
control approach. The finite dimensional Lyapunov control was
investigated by Wong [12], and later by Lehtomaki [5]. This kind of
design is a subclass of the LQ systems. It has the additional
“property that‘the optimal control system is guaranteed to have at
least 90° phase margins and 100% gain reduction margins. These
superior stability margins are especially useful because they
provide protection against instability due to actuator failures.

We employ a flexible beam, simply supported at both ends, to
illustrate the use of the Lyapunov control methodology to synthesize
a closed-loop stable control design for the vibration suppression
problem. We demonstrate by using our robustness results that the
inherent damping in the large flexible structure plays a vital role

in determining whether or not a physically realizable closed-loop
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stable suboptimal (finite-dimensional) controller can be achieved by
spatial sampling. Specifically we show that we can design such a
controller if the modes of the structure has a constant damping
ratio. The number of spatial samples required to stabilize the
system increases as this damping ratio decreases. If instead, the
damping coefficient is constant, then a dynamical compensator will
be required in addition to increasing the number of spatial samples
to achieve stability.

Our approach focuses on the loop characteristics. Quite often
researchers (e.g. [27]) in the infinite dimensional system control
area equate the implementability of the controller with whether the
controller can be represented as a compact operator. This is not
adequate because in order to realize the basis for that operator, a
certain basis-building device must be implemented. This device may
be unrealizable. Indeed it may actually be noncausal. For example,
in large flexible structures that use modal feedback control [28]
even though it can be shown that a compact optimal solution (for the
modal basis) exists and the optimal system is closed-loop robust, a
closed-loop stable suboptimal implementation might not be possible

because ideal band-pass filters are not available in practice.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows.
Chapter 2 contains all results on the linear hereditary
differential systems. We present a general robustness

characterization, using singular values for this whole class of
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systems. We show that these systems have a finite number of
open-loop poles in the CRHP. When restricted to the LQ control, the
optimal system satisfies a Kalman frequency domain inequality.
Hence a set of guaranteed stability margins can be readily derived
for the feedback system. All results in this chapter contains the
known [5] finite dimensional system results as a special case.
Unlike the usual abstract treatment for linear hereditary
differential systems (e.g. M2 space and semigroup treatment in [29],
[30]). we are able to obtain all results in this chapter using only
elementary complex function theory.

Chapter 3 contains a generalization of the result in Chapter 2
to include a much wider class of DLTI systems, which have a
finite-dimensional control space and a finite number of closed-loop
poles in the CRHP. These results are obtained by formalizing the
concepts behind the Yakubovich frequency domain theorem and the
Desoer and Wang generalized Nyquist theorem. The Lyapunov control
problem along with the associated robustness properties are
introduced. As an illustration we study the Lyapunov control
problem for the linear hereditary differential system. Also we show
that one can use the Yakubovich theorem to rederive the Kalman
inequality in Chapter 2.

In Chapter 4 we present an extensive discussion on the use of
the Lyapunov control to suppress the vibration of a simply
supported, uniform, flexible beam. Since the optimal solution

requires the use of perfect measurements, all along the beam,
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suboptimal controls using spatial sampling are analyzed. Also we
use this opportunity to study, using classical control arguments,
the importance of inherent damping in a flexible structure. It is
shown that if the inherent damping is sufficiently large., then the
guaranteed stability margins of the optimal system allow us to
synthesize a closed-loop stable suboptimal control.

Chapter 5 contains the conclusions and some suggestions for

future research.
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CHAPTER 2
ROBUSTNESS PROPERTIES OF LINEAR

HEREDITARY DIFFERENTIAL SYSTEMS

2.1 Introduction

In this chapter we study the robustness properties of a class
of time delay systems whose dynamics are described by a linear
hereditary differential equation [19]. We present a
characterization of robustness for this class of systems under
feedback control. Also we demonstrate that an optimal frequency
domain condition of the Kalman inequality type [20], [7] can be
derived for linear quadratic control with infinite horizon [31].
This result provides us with a uniform lower bound on the minimum
singular value of the optimal return difference matrix. This bound
allows us to establish some guaranteed robustness properties for the
optimal system in an efficient manner.

 In their paper, Lehtomaki, Sandell and Athans [7] considered
the LQ controller formulation for finite dimensional linear time
invariant systems, and used the finite dimensional version of the
multivariable Kalman inequality to study the robustness of the LQ
feedback system. All results presented in this chapter contain the
finite dimensional system as a special case.

This chapter is organized as follows. In Section 2.2 we derive

the optimal frequency domain condition for the linear quadratic
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hereditary differential (LQHD) system. The optimal condition yields
an inequality which we refer to as the Kalman frequency domain
inequality (KFDI). In Section 2.3 we characterize the robustness of
linear hereditary differential feedback (LHDF) systems. This
characterization is based on a generalized Nyquist theorem for LHDF
systems. In Section 2.4 we combine the results in Sections 2.2 and
2.3 to show that LQHD systems have good robustness properties. In
particular, these systems have guaranteed 60° phase margins,
infinite gain margins and 50% reduction gain margins simul taneously
in all control channels. Section 2.5 contains a discussion about

the robustness results, highlighted by two numerical examples.

2.2 Linear Quadratic Hereditary Differential Systems and the

Multivariable Kalman Frequency Domain Inequality

We consider a general class of linear hereditary differential
systems. This class of systems includes systems with time delays,
of the retarded type [32]. It is well known that these systems
require an infinite dimensional state space realization, i.e. they
have infinitely many modes. Multiple discrete time delays as well
as distributed time delays are allowed in this formulation.

A number of researchers have investigated the LQ problem for
the linear hereditary differential system. They include
Gibson [30], Delfour and Mitter [19], Delfour, McCalla and
Mitter [31], Kwong and Willsky [33], [39] and Kwong [34].

Vinter [35]. In their research, the optimal control solution as
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well as its closed-loop stability were established. However, none
of these researchers have addressed the robustness problem.

We organize this section as follows. In subsection 2.2.1, we
review the hereditary differential system and the solution to its 1LQ
pfoblem with infinite horizon. In subsection 2.2.2 we state the
Kalman frequency domain inequality for this class of linear
quadratic hereditary differential systems. We present the proof of

this result in subsection 2.2.3.

2.2.1 Linear Quadratic Hereditary Differential System

We define the LQHD system by following [31]. Let N > 1 be an

integer and T > O, and also

Then we consider the following autonomous hereditary differential

system

dx N x(t+9i) , t+9i20
3t (t) = Ax(t) + 2 A, { }

t 1 .

i=1 0 , otherwise
x(t+0) , t+8>0
+ AO(B) { } do (2.1)
-T 0 , otherwise

+ Bu(t)

and
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x(o) = h(o), o € [-7,0], is known, (2.2)

where x(t)eRp. and u(t)eRm, and A, Ai' AO(B) are matrices of
dimension nxn, and B is an nxm matrix; AO(B) is bounded for

Be[-7.0]. Also we assume that the system is stabilizable, i.e.

there exist matrices C0 and CI(B), 6 € [-T, O] such that the control

law

u(t) = Cox(t) + Jo Cl(e)x(t+9)d9
-T

is closed-loop stable.

The quadratic cost criterion is given by
J(u) = Jm [x'(t)Qx(t)+u'(t)Ru(t)]dt (2.3)
0

where the weighting matrices Q and R are symmetric and positive
definite. The system of equations from Eq. (2.1) to (2.3) is called

the LQHD system.

The optimal control for the LQHD system is given in the

feedback compensation form [31] by

u(t) = R B'Kx(t) - JO R™'B'K, (0)x(t+6)d6 (2.4)
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where KO, KI(G) satisfy the following set of equations,

1

A'Ky + KOBR- B'K, + Q + K;(0) + K (0) =0 (2.5)
Ky =Ky >0 (2.6)
N-1
%Kl(e) = [A'—KOBR_IB']KI(B) + z KyA;8(8-6,) + KA (8) + K,(0.0);
i=1
(2.7)
K (-7) = KAy (2.8)

where 6(9—9i) is the Dirac delta function at 9=9i, and
L] ) _1 \
K2(O,9) = Kl(—B—T)AN - J?T Kl(—9+a)BR B Kl(a)da

N-1 { AiKl(e+9i) . —TSB+9i }

i=1 0 , otherwise

N-1 { Kl(—9+ﬁi)Ai B 9(9i }

i=1 0 , otherwise

AL(E)K, (E+8) . E>-6-t
SRR } e

7 0 » otherwise
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K. (E-8)A . E>e-
) Je ( JE-0AL(E) . Eder V. oo

.0 . otherwise
The optimal LQHD system is closed-loop stable [31]. Thus it makes
sense to talk about the robustness of LQHD systems.

Before we turn to give a statement of the optimality condition
in the frequency domain, we remark that by following [31] we have
assumed Q>0 in the system. Partial work in relaxing this assumption
for the LQ problem to the observability condition is given in [34].
 The results in this thesis can be adapted to such cases with only

minimal changes.

2.2.2 Kalman Inequality for LQHD Systems — Statement

The LQHD system is depicted in its feedback form in Figure 2.1.
In the figure, F(s) and H(s) denote the open-loop and feedback
compensator transfer function matrices, respectively. From

Eq. (2.1), one obtains

T s6, -1
F(s) =[sI-A- ) e A - Ay ()T '8 (2.10)

i=1

where

Ay(s) = JO Ay(0)e*%do . (2.11)
=T



X

F(s)

X(s)

H(s)

Figure 2.1

LQHD Feedback System
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Similarly, from Eq. (2.4),

H(s) = R_IB'KO + R_lB'Kl(s) (2.12)

where

K (s) = JO K, (6)e*%as . (2.13)
=T

Therefore, the loop transfer function G(s). with the loop broken at

the control channel, i.e., the point X in Figure 2.1 is

-1 N s, -1
G(s) = H(s)F(s) = R 'B'[Ky + K (s)I[sT - A~ ) e 1A - Ay()17'B.

i=1
(2.14)

Figure 2.2 illustrates the Nyquist Contour Dr of radius r. It
is a closed contour constructed such that it encloses all the
open-loop poles of F(s) in the closed right-half plane. Indentation
of radius 1/r is used to avoid any such pole on the imaginary axis.
We shall see in the next section that F(s) has only finitely many
poles within the Nyquist contour.

Now we can state the Kalman frequency domain inequality (KFDI)



27

A
J."d /Dr

|
s

RADIUS + ﬁ

»Res

-jl’

Figure 2.2 Nyquist Dr Contour



28

‘as the following theorem.

Theorem 2.1

Let
2 = {s e limD_ : Re(s)<0} (2.15)
>0
Then
[1+G(s)T" R[I+G(s)] > R, for all seQ (2.16)

where I+G(s) is the return difference transfer function matrix, and
[I+G(s)]* denotes its complex conjugate transpose, and R is the
control weighting matrix.

Proof of Theorem 2.1 is presented in the next subsection. In

Section 2.4 we shall discuss some consequences of this theorem.

2.2.3 Kalman Inequality for LQHD Systems - Derivation

First let us compute the left-hand-side of Eq. (2.16) using Eq.
(2.14).

[I+G(s) T R[I+G(s)]

R+B'[K,+K, ()14} (s)B (2.17)

-1 x
+ B'A (s)[KO+K1(s)]B

+

B.A—l* % ~1,, -1
(s)[Ky*K{(s)IBR™ B’ [K #K, (s)]A™ " (s)B
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where we have let

N sO,
A(s) = sI-A- ) e 'A-Aq () (2.18)
i=1

Comparing this with Eq. (2.16), we see that it suffices to show
) x
A (s)[Ko+K1(s)]+[KO+K1(s)]A(s)
+ [K0+KT(5)]BR_1B'[KO+K1(s)] >0 (2.19)

For the case in which the Nyquist contour does not coincide
with the imaginary axis, it is somewhat tedious to carry out all the
algebra for the rest of this proof here. Since there is no loss in
the central idea of the proof, for the sake of simplicity, from
hereon, we shall assume that F(s) has no open-loop poles on the
imaginary axis, i.e. Q = imaginary axis. We remark, however, that
the derivation presented here can be adapted to the general case in

a straightforward fashion.

We establish Eq. (2.19) by deriving the following identities:

Identity 1

sk (s) = K, (0)-K Aye™" - Ji e & K, (0)do (2.20)
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Identity 2

s6 d . -1,.
JO e”” 35 K;(6)de = [A'-K BR'B'IK, (s)

N-1
sBi
+ ) KAe +K A (s)
i=1

+

e_STKi(—s)AN

¥(s)

+

I (s)4Ty(s)

+

El(s)+52(s)

where

¥(s) = Jo %9 Je Ki(—6+a)BR-1B'K1(a)dad9

' sO
AiK1(9+9i)e de

i=

N-1
! s
ry(s) = 2 Jz K, (-6+6,)A %%do
i=1 9§

(2.21)

(2.22)

(2.23)

(2.24)
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E, ( JO JO 6(E)Ki(§+9)d§esed6 (2.25)
—d
Ey(s) = JO JO Ké(f-e)AO(C)dgesedB (2.26)
=T -7
Identity 3
¥(s) + ¥'(-s) = K;(—s)BR_lKl(s) (2.27)
Identity 4
~s0,
I (s)+Ty(-s) = z AK (s)e 1 (2.28)
Identity 5
B (5) + Ey(-s) = Aé(—s)Kl(s) (2.29)

We refer the readers to Appendix A for the proofs of Identities 1-5.

Combining Identities 1-5, we see that
' ' ST ' -sT
sKl(s)+(-s)K1(—s) = K1(0)+K1(0)ANe —ANKOe

- {[A'—KOBR_IB']Kl(s)+Ki(—s)[A—BR_1B'Kb]}
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N-1 N-1

sﬂi , —sGi
- () Ae T+ ) AKe 1)
i=1 i=1

= [Kho(s)+Ap(-5)K,]

+

K, (-s)BR'B'K, (s)

N-1 s6. N-1 s6,

[) AK(s)e '+ > Ki(—s)Aie 14
i=1 i=1

= [Ag(-5)K; ()+K, (~s)A,(5)] (2.30)

/
After some further manipulations, Eq. (2.30) can be rewritten as

A" (-5)[Kg#K, () I+[Kg#K, (=) JA(S)+[K K, (~5) JBR'B* [K 3#K, ()]

L] —1 1] )
= ~A"K K A+K BR™ B 'K, K, (0)K, (0) (2.31a)
But by Eq. (2.5),
L] _1 ) L]
~A'K K A*KBRB'K, - K. (0)K'(0) = Q> 0 (2.31b)

The inequality of Eq. (2.19) is established by combining Eqs.
(2.31a) and (2.31b). Hence Theorem 2.1 is proven.

By following the above proof closely, one can actually give a
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stronger statement than the Kalman Inequality. Specifically, by
combining Eqs. (2.10), (2.14), (2.17), (2.31a) and (2.31b), one

obtains

(I+G(s)) R(I+G(s)) = F'(s)QF(s) + R (2.32)

This identity is called the Kalman equality. By letting R = pI,
where p is a positive number, the singular values of the return
difference can be readily determined without solving the Riccati
equation. This is a very useful fact. In Section 2.5, we use this
result to study two design examples.

We remark that by considering degenerate operators and M2
spaces [29], [35], the LQHD system can be formulated as a semigroup
[30]. This leads to an alternate proof for Theorem 2.1, which we
present in Chapter 3 as a special case of the more general semigroup

formulation for the LQ robustness problem.

2.3 Robustness Characterization of Linear Hereditary Differential

Feedback Systems

In this section we develop a robustness characterization of

LHDF systems by:

(1) showing that the open-loop dynamics of the linear hereditary
differential system have finitely many poles in the closed

right-half complex plane (CRHP), Re s > 0;
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(2) stating a version of the multivariable Nyquist theorem for LHDF
systems;
(3) characterizing the robustness measure by using the singular

values of the return difference and error matrices.

Steps (2) and (3) are a generalization of the robustness
characterization presented by Lehtomaki [5] for finite dimensional
systems.

The robustness characterization is stated in terms of the
nominal and perturbed LHDF systems. The formulation we used is very
general, and includes all the LQHD system that we consider in

Section 2.2.

2.3.1 Nominal and Perturbed LHDF Systems

The nominal LHDF system is depicted in Figure 2.3 where the
loop transfer function matrix is assumed to incorporate both the
open-loop plant dynamics and compensation employed.

Specifically, we assume

G(s) = H(s)F(s) (2.33)

where F(s) is the combined pre-compensator and open—loop plant
transfer function and H(s) represents the post-compensator. It is
further assumed that H(s) is analytic in the CRHP except at a finite

number of isolated points, and F(s) has the following form
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A Sei so -1
F(s) =[sT-A- ) e A, - JO Ay(@)eF 0] B (2.34)
i=1 T

where A, Ai' Ao(a) are matrices of dimension nxn, and B is an nxm
matrix; Ao(a) is bounded for o € [-7, 0]; N is a positive integer
and -1 = BN < ... K< 91 <o.

The perturbed feedback system is depicted in Figure 2-4 where
the loop transfer matrix is assumed to incorporate both the
open-loop plant dynamics and compensation employed. In this case,
however, either or both of the plant and compensator dynamics may be -

perturbed from their nominal values.

Specifically, we assume
G(s) = H(s)F(s) (2.35)

where F(s) is the perturbed pre-compensator and open-loop plant
transfer function and H(s) represents the post-compensator. It is
further assumed that H(s) is analytic in the CRHP except at a finite

number of isolated points, and F(s) has the form

~ N a Sei” N so, --1%
F(s) = [sI - A - 2 e A - JO~ Ay(0)e*ds]™'B (2.36)
-T

~ v ~; ~ ~ ~
where A, Ai' Ao(a) are matrices of dimension nxn, and B is an nxm

~

matrix; Ao(a) is bounded for o e [-T, 0]; N is a positive integer
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~

and -1 = Eﬁ < <e. <o.

Note that both G(s) and G(s) are mxm matrices.

2.3.2 Open-Loop Unstable Poles of LHDF Systems

In this subsection we present a study on the open-loop poles of
the LHDF system in the CRHP. It is shown that for the nomial system
described by Eqs. (2.33) and (2.34), the system has at most a finite
number of open-loop poles in the CRHP.

Various stability tests for time delay systems have been
published in literature. For examples, Lee and Dianat [36] used the
Lyapunov approach. Thowsen [37] presented a Routh-Hurwitz type of
criterion. Tsypkin [38] discussed a graphical method that
determines the critical frequency and critical delay time. None of
these methods, however, deals with distributed time delays. More
importantly, they do not seem to provide a convenient way to count
the number of unstable poles. These two problems are resolved by
using an algebra o studied by a number of researchers, e.g. Desoer
and Vidyasagar [40], Callier and Desoer [41].

Let R and R+ denote the real line and the nonnegative real

line, respectively, and L1 denotes the set

L = {f(-)|f(o):n+ > R, J: [£(t)]|dt < = } (2.38)

The convolution algebra # consists of the elements of the form
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0 t<o0
f(t) = (2.39)

o0
£+ ) Fo(t-t).  t20
i=0

where

(1) £ el
(2) to = 0 and ts >0 fori=1, 2,....

(3) f, eR; and

0

@ ) el <o
i=0

Let f denote the Laplace transform of f(®). Let o be the set
d={E|f e o} (2.40)

Associate with Q the pointwise product. Then Q is a commutative
algebra with the following property (Callier and Desoer [41]): If
E € Q and ; is bounded away from zero at infinity in the CRHP, then
; has a finite number of zeros in the CRHP. The function ? is said
to be bounded away from zero at infinity in the CRHP if and only if
there exist n > O, p > O such that for all |s]| 2 p in the CRHP,
1£(s)| > m.

Now consider G(s) described by Eqs (2.33) and (2.34). Since

det(I + H(s)F(s)) = det(I + F(s)H(s)) (2.41)
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it is easy to see that

$.0(5)
det(I + G(s)) = —— (2.42)
¢oe(s)
where
N
s,
$oo(s) = det(sT - A- ) o ‘A - JO Ay(0)e¥%do)  (2.43)
i=1 T
and
N
Sei so
bp(s) =det(sT - A- )e ‘A - Ay (0)e* do+BH(s))
i=1 T
(2.44)

The following theorem is fundamental to the derivation of a
Nyquist theorem for LHDF systems, because it allows us to count the

number of encirclements.

Theorem 2.2
¢oe(s) as defined by Eq. (2.43) has finitely many zeros in the

CRHP.
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Proof of Theorem 2.2

We consider two cases.

Case 1: Ao(a) = 0 for all o e [-7, 0]. The proof of this case has

been briefly described by Callier and Desoer [41]. It is trivial to

sO.
i
s

see that (;+1) » (s+1) and %E:TT all belong to o, as are their

products. Applying Cramer’s rule shows that ¢oe(s) is a linear

Sei ¢oe(s)
combination of 1, s and e and their products. Therefore ——

(s+1)"

A

e .

Case 2: Ao(a) # 0. Note that JO ao(o)esada, ao(a) bounded, is
-T

equivalent to the Laplace transform of a bounded function with

compact support. Hence it is an element of #f. The product

JO ao(a)esada JO bo(a)esada is also in o because it corresponds to
-T -T

the Laplace transform of the convolution of two functions which both

have a compact support. Finally, multiplication of Jo ao(a)esada

T
sBi

. 1 s e . s s

with Trs * 3¢17 * °F 571 also yields a product that is in «.

Extending this argument as in the previous case, we see that
¢ ,(s) .

_2£__H.e d.

(s+1)

s6,
Now observe that e ' and Jo ao(a)esada are uniformly bounded
-T

for all s e CRHP. Therefore as s tends to «, ¢oe(s) is of the order

$,0(s)
s™. Consequently 2% tends to 1 as |s| tends to ® in the CRHP.
(s+1)

~ 8p(5)
Thus according to the property of «, =
(s+1)

. hence ¢oe(s). has only



a finite number of zeros in the CRHP. (End of Proof).

2.3.3 Multivariable Nyquist Theorem

Because of Theorem 2.2, a version of the multivariable Nyquist
theorem can now be stated in the following form. This version
follows easily from the standard application of the principle of

arguments of complex variable theory, e.g. [42] [43].

Theorem 2.3 (Nyquist Theorem for LHDF Systems)

Suppose that G(s) is defined by Eqs. (2.33) and (2.34). Then
the system of Figure 2.3 is closed-loop stable, (in the sense that

¢p (s) Eq.(2.44) has no zero in the CRHP,) if and only if both the

following conditions are satisfied:

(1) det [T +G(s)] #0 , for all s e 2, where Q is defined by
Eq. (2.15);

(2) det[I + G(s)]lSeQ encircles the origin p times in the
counterclockwise sense, where p denotes the number of zeros of

¢oe(s) (Eq. 2.43) in the CRHP, counting multiplicities.

2.3.4. Robustness Theorems for Hereditary Differential Systems

In this subsection, we develop theorems that guarantee the
stability of the perturbed closed-loop system of Figure 2.4. The
development here closely parallels that in [5]. Theorem 2.3 allows
us to derive a simple test of robustness for linear hereditary
differential systems. As in the well known robustness theorems for

finite dimensional systems by Doyle [10], Lehtomaki, et al. [7].
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Doyle and Stein [3], and Lehtomaki [5], the notion of singular

values of matrices are used to establish these robustness tests.

Let G(s) satisfy Eqs. (2.33) and (2.34), and let G(s) satisfy

Eqs. (2.35) and (2.36).

perturbed system by

Then define the error matrix of the

E(s) = G(s) - G(s)

Also we know that

det (I + G(s)) = =

where

800(5)

¢oe(s) = det (sI - A -

;ce(s) = det (sI - A -

Il N1 22

N
Sei'v v so
2 e Ai - _; Ao(a)e do)

i J?; XO(U)eSUdU+Eﬁ(S))

(2.45)

(2.46)

(2.47)

(2.48)

We can now state the robustness theorem for additive modeling

error as follows.
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Theorem 2.4 (Robustness Theorem for Additive Error):

The perturbed system of Figure 2.4 is closed-loop stable (in
the sense that ¢c£(s) has no zeros in the CRHP) if the following

conditions hold:

(1) a. ¢oe(s) and ¢oe(s) have the same number of zeros in the CRHP; -
b. if ¢oe(jwo) = O, then ¢oe(jwo) = 0;
c. ¢ce(s) has no zeros in the CRHP.

(2) Umin[I + G(s)] > amax[E(s)] for all s e Q.

In the above, ¢oe(s). ¢ce(s). ;oe(s), ;ce(s) are defined by
Egs. (2.43), (2.44), (2.47), (2.48), respectively. The additive
error matrix E(s) is defined by Eq. (2.45). The path Q is defined
by Eq. (2.15). The notations amin[.] and ahax[.] denote the minimum
and maximum singular values of the matrix.

This theorem says that the size of the modeling and
implementation error that a feedback system can tolerate without
becoming unstable is given by the quantity Oin [I+G(s)]. when no
structure of the error is assumed. The proof of this theorem is of
the imbedding type [45].

Proof of Theorem 2.4
Let A € [0,1]. It is well known (e.g. [5] [44]) in singular

value theory that

amin[I + G(s) + AE(s)] > amin[I + G(s)] - Aamax[E(s)] (2.49)
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Therefore condition (2) guarantees that I + G(s) + AE(s) is
nonsingular for all s e Q.
Now suppose that as A is varied continuously from zero to

unity, the number of encirclements of
f(A.s) = det (I + G(s) + AE(s)) (2.50)

around the origin changes. Since f(A,s) is continuous in (A,s) e
[0, 1] x 2, its locus on the path Q forms a closed bounded contour
in the complex plane for any A € [0, 1]. Therefore the only way for
a change in the number of encirclements to occur is for the locus of
f(ko,s) to pass through the origin for some AO e [0, 1]. This is

equivalent to requiring

det(I + G(so) + AOE(SO)) = 0 for some (Ao,so) e [0, 1] x Q.

(2.51)

However we have shown that I + G(s) + AE(s) cannot be singular by
assuming condition (2). Hence we conclude that det(I + E(s)),
corresponding to A = 1, encircles the origin the same number of
times as det(I + G(s)), corresponding to A = O, along the path

s € 2. By applying Theorem 2.3 (Nyquist Theorem), we see that the

perturbed system is closed-loop stable. (End of Proof)
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In his thesis, Lehtomaki [5] presented six different error
models for describing the perturbed system. For each model, a
corresponding robustness theorem similar to Theorem 2.4 was stated
and proved. Due to bur results in subsection 2.3.2, Lehtomaki’s
robustness theorems of the perturbed system can be carried over to
the LQHD case without any modification. Theorem 2.4 is an example
of this generalization. Of the other five models, we shall also
describe the multiplicative error model below. Readers who are
interested to see details on the rest of the error model types are
referred to [5, Ch. 3] for details.

A useful way to describe the perturbed system with respect to

the nominal system is to define a multiplicative factor matrix L(s)

by

G(s) = G(s) L(s) (2.52)

This representation generalizes the gain and phase margin
description of the single-input-single-output case, and is
particularly useful in describing the robustness properties of the
LQHD system that we discuss in the next section. The corresponding
robustness theorem for multiplicative modeling error is the

following.

Theorem 2.5 (Robustness Theorem for Multiplicative Error):

The perturbed system of Figure 2.4 is closed-loop stable if the

following conditions hold:
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(1) a. ¢oe(s) and ¢°e(s) have the same number of zeros in the CRHP;
b. if ¢oe(jwo) = 0, then ¢oe(jmo) = 0;
c. ¢ce(s) has no zeros in the CRHP.

(2) L(s) has no eigenvalue in R ., for all s e Q.

(3) o, [T+G(s)]1>a  [L7'(s) - I] forallsen. (2.53)

In the above ¢Oe(s). ¢ce(s). ¢°e(s), ¢ce(s) are defined by Eqgs.
(2.43), (2.44), (2.47), (2.48), respectively. The multiplicative
error matrix L(s) is defined by Eq. (2.52). The path Q is defined
by Eq. (2.15).

Proof of Theorem 2.5

Let f(A,s): [0,1] x @ » C be the complex—-valued function

defined by
£(N,s) = det(I + G(s)[I + AL I(s) - DT (2.54)
The inverses exist because of condition (2). It is easy to see that

(i)  £(0,s)

det(I + G(s)); (2.55)

(ii)  £(1.s) = det(I + G(s)): (2.56)

(iii) f(A,s) is continuous in [0, 1] x Q.
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Now suppose that as A is varied continuously from zero to
unity, the number of encirclements of f(A,s) around the origin
changes. Since f(A,s) is continuous in (A,s) e [0, 1] x Q, its
locus on the path @ forms a closed bounded contour in the complex
plane for any A € [0, 1]. Therefore the only way for a change in
the number of encirclements to occur is for the locus of f(ko,s) to .

pass through the origin for some AO e [0, 1]. This is equivalent to

requiring

f(ko,so) =0 for some (Ao.so) e [0, 1] x Q. (2.57)

Since

L+G(s) [T (s)-1)17T = [Tea(s)aL L (s)-1)IrIA @ Y (s)-1) T2
(2.58)

Eq. (2.57) is the same as requiring I + G(so) + AO(L_l(s I) be

o)~
singular for some (AO. so) in [0, 1] x Q. However, condition (3)

guarantees that for all |[A] <1, and all s e Q
o [I+G(s) + AL (s) - 1)] >0 (2.59)
contradicting Eq. (2.57). Therefore we conclude that det(I + a(s)),

corresponding to A = 1, encirles the origin the same number of times

as det(I + G(s)), corresponding to A = O, along the path s ¢ Q2. By
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applying Theorem 2.3 (Nyquist theorem), we see that the perturbed

system is closed-loop stable. (End of Proof)

In the next section we show that LQHD systems have many of the
robustness properties which have been known to be enjoyed by finite
dimensional LQ system. These robustness properties are consequences

of Theorem 2.5 and the KFDI derived in Section 2.2.

2.4 Robustness Properties of Linear Quadratic Hereditary

Differential Systems

The KFDI proven in Section 2.2 for LQHD systems is the same as
the KDFI for LQ systems with finite dimensional state
representations [7], [21]. As in the finite dimensional case, the
KFDI has some very important consequences in terms of robustness for
LQHD systems. The purpose of this section is to discuss these
robustness properties of the LQHD system.

For the purposes of investigating the robustness properties of
the LQHD system, depicted in Figure 2.1, it is convenient to
represent the model uncertainties as a multiplicative perturbation
factor, as shown in Figure 2.5. In this configuration, the matrix
L(s) represents the model uncertainties of the system reflected to
the point X in Figure 2.1 where the loop is broken, as a
multiplicative perturbation in the control channel. The matrix G(s)
is the nominal system loop transfer function matrix, given by Eqgs.

(2.33), (2.34). Nominally L(s) is the identity matrix and the LQHD
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Figure 2.5 Multiplicatively Perturbed LQHD System
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system is closed-loop stable. However because of modeling errors
and implementation constraints, the matrix L(s) is subject to
changes from its nominal value. Consequently, the product G(s)L(s)
can be viewed as the actual system loop transfer function matrix.
This closed-loop system is stable if and only if the closed-loop
system of Figure 2.6 is stable. In the figure, R1/2 is a square

root of the control weighting matrix, in the sense that

R =R R (2.60)

With this formulation, we can state some of the robustness

properties of the LQHD system as the following theorem.

Theorem 2.6 (Stability Margin of LOHD Systems)

The multiplicatively perturbed LQHD system in Figure 2.5 is

closed-loop stable, i.e. the polynomial ¢ce(s) (Eq. (2.48)) has no

CRHP zeros, provided that the following conditions are satisfied:

(1) G(s) is specified by Eqs. (2.10) - (2.14), as the closed-loop
solution to the LQHD control problem.

(2) (a) ¢oe(s) and ;oe(s) have the same number of CRHP zeros
(b) if ;oe(jwo) = 0 then ¢_,(ju,) = 0
where ¢oe(s), ;oe(s). are defined in Eqs. (2.43), (2.47),
respectively.

(3) L(s) has no eigenvalue in R, .
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172

171 (s)r"172

(4) amax(R - I) <1 for all s e Q.

Proof of Theorem 2.6

It is well known that ¢ce(s) (Eq. (2.44)) has no zero in the

CRHP [31]. Note that

det[I + (R"26(s)R/2) (R 2L(5)R71/2)] = det[I + G(s)L(s)]

(2.61)
Hence
) ) 8. ,(s)
det[I + (RYZe(s)R7V2) RV 2L(s)R1/2)] = 0 (2.62)
¢.0(s)
Similarly,
_ ¢ _,(s)
det[I + RV Zg(s)R71/2] = 08 (2.63)
)
Theorem 2.1 (KFDI) impiles that
o [1+R7%G(s)R 21> 1 forall s en (2.64)

Therefore in conjunction with Theorem 2.5, condition (3) guarantees

that ;ce(s) has no zeros in the CRHP. (End of Proof)
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The following are corollaries to Theorem 2.6. Their proofs are
omitted because they are completely identical to the proofs of their
counterparts for finite dimensional systems. For examples

interested readers are referred to [5, Ch. 5].

Corollary 2.7

The multiplicatively perturbed LQHD feedback system is stable
if

o (L7Hs)I) < [cond(R)TV2 | s e n (2.65)

where cond(R) denotes the condition number of the matrix R,

R
cond(R) = Zmax( )

2.66
min( ) ¢ )

defined as the ratio of its maximum singular value to its minimum

singular value.

Corollary 2.8

If R > O is diagonal, then simul taneously in each feedback
loop, the LQHD system has the following guaranteed stability
margins,

1. [1/2, ©] gain margin

2. + 600 phase margin
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In other words, let L(s) be diagonal and let each of these
diagonal elements be either a positive number larger than %, or
complex number of the form eJ¢, - 60° o< 60°. Then the perturbed

system is closed-loop stable.

Corollary 2.9

If R is block diagonal of the form

R = (2.67)

and L(s) consists of crossfeed perturbation of the form

X
L(s) = [I (s)} : (2.68)
0 I

Then the LQHD system is stable if

amax(X(s)) < [E;;;(ﬁ__ , s e (2.69)

amin(RZ)]1/2
D)
Similarly, if L(s) is of the form

I 0

L(s) = , (2.70)
X(s) I

then the LQHD system is stable if
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. (R)
o (X(s)) < ["““—(121)]1/2 . seQ (2.71)
max' 2

a
o

In particular, if R = pI, where p is a positive scalar, then the

LQHD system is stable if
amax(X(s)) <1, se (2.72)

for both types of crossfeed perturbations (Egs. (2.68) and (2.70)).

2.5 Discussion on LOHD Control Designs

In this section, we look at two scalar control examples to
highlight the previous results for LQHD systems, and discuss the
applicability of some of the well-known design techniques for

finite-dimensional systems to the LQHD case.

2.5.1 Examples of LQHD Systems

The first example is a special case which shows that one can
often obtain the same robustness measure as the no time delay case
as long as one has perfect knowledge of the time lag. The second

example compares a suboptimal design with the optimal one.

Example 1:
Consider the following single-input/single-output system in

which there is a time delay T in its actuator dynamics.
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u -ST y
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Figure 2.7 Single-Input/Single-Output LQHD Example

Let the quadratic criterion1 be

J(u) = r [y2(t) + uZ(t)]de (2.73)
0

Then the Kalman equality (Eq. (2.32)) can be used to compute the
magnitude of the optimal return difference, which is given by
2

|

. 2 ac
|1 + g(J"’)l =1+ |(jw+a)(jw+b)

(2.74)

It is interesting to note in this equation that the quantity
|1+g(jw)|. which is the robustness measure formulated in Section
2.3, is independent of T. The reason for this is that if the LQ
system has full knowledge of the time delay elemeﬁ;.'th;n as a

consequence of the full state feedback, the LQ system will

compensate so that the same stability margin is obtained as in the

T = 0 case.

1Strictly speaking, this corresponds to a positive semi-definite Q
matrix which is not considered in this chapter. However, this
limitation is removed in Chapter 3.
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Example 2

This example is drawn from Gibson [30], who has computed the
control gains for the example numerically. We consider the
suboptimal design using those control gains here.

Let the dynamics of the system be
x(t) = x(t) + x(t-1) + u(t) (2.75)

where x(®) and u(e) are scalar functions. Gibson divides the unit
interval into N subintervals in order to approximate the state
x(t+e) over the unit interval as a piecewise constant function.
Gibson then derived an N-th order approximate model for the system.

He solved this system numerically for the control gains k., kl(O) in
u(t) = - k. x(t) - k. (8)x(t+08)de
0 -1 1

The resulting values are given for 8 = 0.0, -0.1, -0.2,...,-1.0, and

N =17, 29, 50, 74, by the following table.
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Table 2.1

N 17 29 50 74
ko 2.8260 2.8190 2.8148 2.8130
e « kl(e) -
0.0 0.6684 0.6547 0.6469 0.6435
-0.1 0.7726 0.7169 0.7179 0.7273
-0.2 0.8467 0.8239 0.8209 0.8258
-0.3 0.9961 0.9508 0.9434 0.9607
-0.4 1.0822 1.1020 1.0895 1.1023
-0.5 1.2811 1.2822 1.2633 1.2694
-0.6 1.5200 1.4963 1.4693 1.4965
-0.7 1.6606 1.7501 1.7125 1.7315
-0.8 1.9802 2.0499 1.9987 2.0480
-0.9 2.3648 2.4033 2.3347 2.3748
-1.0 2.5852 2.6730 2.7284 2.7541

We consider the suboptimal control of the following form,

10 41
u(t) = - kgx(t) - ) k, J Jio x(t+0)do
j=1 " 10

where kj belongs to one of three cases

o -
(1) k= k(- Jifﬁ‘



60

(2) Ej = [k, (- 435) + k, (- 5)172;
(3) k; =k (- {g)-

The return difference for these suboptimal controllers are
plotted in Figure 2.8, for the N = 17 approximation. Also shown is
the optimal return difference which is computed using the Kalman
equality (Eq. (2.32)).

It is clear from these plots that the suboptimal controller (2)
approximates the optimal system very closely. Also by looking at
the plots for N = 50, 74, 23, we see that only insignificant

improvement can be obtained by using those higher order models.

2.5.2 Extensions of LOHD Control Designs

In this thesis we havé not considered the effect of observers
in the controller designer. However, the most important control
design that has evolved from the multivariable robustness study for
finite dimensional systems is probably the linear-quadratic-
gaussian/loop-transfer-recovery approach [3], [6]. This approach
combines an observer (usually the Kalman filter [61]) design for the
system with the asymptotic properties of the LQ regulator [62] to

synthesize controllers which have desirable loop properties. It
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[1+3(jw)l
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Figure 2.8 Return Difference of Optimal and Suboptimal

Controllers for Example 2
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seems to us that this approach is also valid for the LQHD system,
provided that the system is minimum-phase (a requirement of the
finite dimensional case also). A good filter design to use is the
one for LQHD systems by Kwong and Willsky [39].

Since our singular-value formulation for robustness is
identical to the one for finite dimensional systems, all the finite
dimensional results that depend only on the manipulation of the
singular value decomposition are also valid for the LQHD system. In
particular, the design techniques which exploit the structural
information of a system are appropriate for LQHD system designs
also. Examples of these techniques are the celebrated design
analysis method using the error structure by Lehtomaki, et al. [63],
and the design adjustment technique using the control ‘weighting
matrix by Lee, et al. [13], and the localizing robustness analysis
by Lee, et al. [64]. Without being repetitious here, we refer the
interested readers to the last chapter of this thesis for an

elaboration of these techniques.
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CHAPTER 3
ROBUSTNESS PROPERTIES OF DISTRIBUTED,
LINEAR-TIME-INVARIANT SYSTEMS

3.1 Introduction

In Chapter 2 we have developed a multivariable robustness
characterization for LHDF systems, using singular values of the
return difference. Also we have shown that the LQHD control design
(1) produces a closed-loop system that satisfies an optimal

frequency domain condition which is commonly referred to as the

Kalman frequency domain inequality (KFDI);

(2) sguarantees that the closed-loop control system has at least 60°
phase margins and infinite gain margins simul taneously in all
control input channels when a diagonal control weighting matrix
is used.

For systems described by semigroups, the above results are also
valid. Yakubovich [22] [23] proved the result (1) for linear
systems in which both the system and input operators are linear
bounded, and in a separate paper with Likhtarnikov [26], for systems
described by linear unbounded operators.

In order to establish the result (2), we need to extend the
singular-value robustness characterization to the present case. It
appears that the paper by Desoer and Wang [24] contains the most
general Nyquist Theorem available for our purpose. Their result was

derived by using a quotient algebra of transfer functions [41]. We
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use this algebra to describe the nominal and perturbed system. Also
we study the infinite dimensional Lyapunov control design approach.
The finite dimensional Lyapunov control was investigated by Wong
[12]. This kind of design is a subclass of the LQ system. It has
the additional property that the optimal control system is
guaranteed to have at least 90o phase margins and 100% gain
reduction margins.

The rest of this chapter is organized as follows. In Section
3.2, we discuss the Yakubovich Frequency Domain Theorem (YFDT), also
we revisit the LQHD system to show that the YFDT can be used to
derive the KFDI in Chapter 2. In Section 3.3 we develop the
robustness characterization for distributed, linear-time-invariant
(DLTI) systems, described by linear operators with a finite
dimensional control space. The result is then used to derive the
robustness properties of LQ optimal systems. In Section 3.4, we
discuss the Lyapunov control system.

“In Section 3.3 we emphasize that the robustness
characterization is only valid when the control space is finite
dimensional, even though the YFDT applies to the infinite
dimensional case also. This shortcoming is due to the absence of
any Nyquist-type of theorem for infinite dimensional control space.
It is, however, possible to formulate a robustness characterization
based on the singular values of linear operators, for which the
control space is allowed to be infinite dimensional. We present

this result in Appendix B.
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3.2 Yakubovich Frequency Domain Theorem

Yakubovich [22], [23] proved that under certain rather general
assumptions, the KFDI-type of criterion (see Chapter 2) is a
necessary and sufficient condition for the existence of LQ optimal
control for infinite dimensional systems. The necessary part of his
theorem provides a basis for us to study the robustness properties
of LQ systems represented as a semigroup.

Let X and U be two Hilbert spaces. FEach of these spaces has an
inner product. With an abuse of notation, let each inner product be
denoted by (e,®), and the norm associated with the inner product be
denoted by |]|e]].

First we present the results for systems described by bounded
operators. This covers all finite dimensional systems and is
sufficient to treat a number of systems described by linear compact
and integral operators. The results for linear unbounded operators
are given in subsection 3.2.1.

Let Q be a linear bounded, self-adjoint operator on X such that
(x, Qx) > 0 for all x e X (3.1)

Let R be a linear bounded, self-adjoint operator on U such that

for some 6 > O,

(u, Ru) > 6||u||2 for allue U (3.2)
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Definitions: Let A: X > X, B: U > X be linear operators and

I = identity operator in X (or U). The spectrum sp(A) of A is the
set of all complex numbers A such that AI-A does not have a linear
bounded inverse. A is called Hurwitz if sp(A) is disjoint from the
CRHP. The pair A, B is said to be stabilizable if there is a linear
bounded operator H such that A + BH is Hurwitz. Let A*, H denote

the adjoints [46] of A, H, respectively.

Theorem 3.1 (Yakubovich Frequency Domain Theorem (YFDT))

Let A, B be a stabilizable pair of linear bounded operators and
suppose that no point in sp(A) is on the imaginary axis. Then a
necessary and sufficient condition for the existence of a linear

bounded self-adjoint operator K: X » X and an operator H*t X->U

such that
KA+ AK+ Q- HRH® =0 (3.3)
KB - HR = 0 (3.4)

and ||exp[(A - BH*)t]xOII is squared integrable over t,

i.e. e L2((O,w), X), for all Xg € X is
((3oI - &) 'Bu, Q(joI - A) 'Bu) + (u, Ru)

= ((I + G(jw))u, R(I + G(jw))u), for all u e U + jUu, e > 0

(3.5)
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where
. L P -1
G(jw) = H (jouI - A) "B . (3.6)

Eq. (3.5) implies the following domain inequality that corresponds

to the KFDI in Chapter 2,

((I + G(jw))u, R(I + G(jw))u) > (u, Ru)

for all u e U + jU.

In subsection 3.2.1, we state the corresponding theorem for
linear unbounded operators.

The relationship of Theorem 3.1 to the LQ optimal control is as
follows. Let A be the infinitesimal generator of a strongly

continuous semigroup of operators T(t) over X, i.e.

lim ||T(t)x=x|| =0 for all x e X (3.7)

0"

The optimal control problem is defined as [22]:

Find u(e) e L2([0,w); U) to minimize the quadratic cost functional

J(u) = Jz (x(t)., Qx(t))dt + JZ (u(t), Ru(t))dt (3.8)
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where Q and R are defined in Eqs. (3.1) and (3.2), respectively,

subject to the dynamics

&lE) _ ax(t) + Bu(t) : x(0) given (3.9)
x 1/2%
Furtherfmore we assume that A", Q is a stabilizable pair, where
Q1/2 is the square root of Q:
3
2
Q = Q1/2 Q1/

- The optimal control solution is characterized by Theorem 3.2.

Theorem 3.2 (Yakubovich [22])
(1) The solutions K, B to Egs. (3.3)-(3.4) with the property of
exp[(A—BH*)t] X, € L2((O. o}, X) are unique.

(2) The control given by
C(t) = - B(t) (3.10)

is the optimal control solution to Egs. (3.8)-(3.9).

(3) The optimal system is closed-loop exponentially stable.

The optimal control can be represented in feedback form in the
frequency domain by Figure 3.1, where u(s) and x(s) are the Laplace
transforms of u(t) and x(t), respectively. By breaking the loop at

u(s), one sees that the loop transfer function is

G(s) = H'(sI - A)"'B . (3.11)
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Figure 3.1 LQ Feedback System
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Correspondingly the operator-valued function I + G(s) is the return
difference.

Theorems 3.1-3.2 allow one to extend the finite dimensional LQ
robustness theorems [7] [8] [20] to the infinite dimensional case.
This is possible when the dimension of the control space, i.e. U, is
- finite. Section 3.3 deals with this case. A generalized Nyquist
theorem by Desoer and Wang [24] is used to extend the finite
dimensional results.

In order to characterize the robustness of distributed systems,
it is essential that we consider the case in which the operator A is
linear unbounded, since the infinitesimal generator of a semigroup

is generally unbounded.

3.2.1 Evolution Formulation in which A and B are Unbounded

The case in which A and B are unbounded operators is considered
in this subsection. Under a given set of conditions, Likhtarnikov
and Yakubovich [26] showed that the YFDT (Theorem 3.1) is also true
for this case. We discuss their extended result for the necessary
part of Theorem 3.1 here. That result allows us to study the
robustness characterization of LQ optimal systems in which A is
unbounded.

The problem considered in [26] is an evolution problem of the

parabolic type. In subsections 3.2.2 and 3.2.3, we discuss how the
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LQHD system and the distributed system described by a second-order
partial differential equation can be adapted to use this frequency
domain theorem, even though their natural descriptions are not
parabolic.

The result in [26] assumes that the parabolic evolution
equation of the system satisfies a coercive and a regularity
condition. Its assumptions are similar to those in Lions [75, Ch.
3], which contains a detailed study on the optimal control problem.
However, [75] did not consider the case in which B is unbounded.

Let X and U be two Hilbert spaces given as before. Also let V
be a Hilbert space such that V is a dense subspace of X. Let V' be

the dual space of V. Then

vcxcv

Let (0,0)v and ||'||v denote the inner product and its
- corresponding norm on V, and when necessary for the distinction, we
i L] °
will use ( ’.)x’ | ||x for X.
Let £(Y.Z) denote the space of linear continuous operators from

Y to Z.
Let A, B be linear unbounded operators:

Ae LV.V)

B e £(U,V')
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~such that the operator A is an infinitesimal generator of a strongly
continuous semigroup of linear bounded operators in X, which
satisfies the following coercive condition: there exists real

numbers A, a such that a > 0 and

2 2
(vomAv)y + (FAv.v)+ A IVIIL 2 a [Iv]IS

for all veV (3.12)

Then A and B describe an evolution system as follows,

% = Ax(t) + Bu(t) (3.13)

x(0) = Xq: X5 € X,

0
where x(t) e X, u(t) e Uand t > 0, and u(e) e L2([0,m), U).

Other conditions such as the regularity condition for
- sufficient "smoothness” which is required for the synthesis of the
optimal control are described in [26]. As remarked earlier, we do
not elaborate on these conditions here since we are only interested
in the necessary part of the frequency domain theorem in [26].
Instead we simply assume that the optimal control solution exists
and state the frequency domain condition for the case in hand. This

is stated as a continuation of theorem 3.1.
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- Theorem 3.1A (Unbounded Operator Case):

Suppose that no point in sp(A) is on the imaginary axis and
there exists a solution K e ¥(V'.X) N ¢(X,V), self-adjoint in X, for
the equations

KA+ AK+Q - HRH® =0

KB-HR=0

Then Eq. (3.5) holds, i.e.

((joI-A)"'Bu, Q(joI-A)"1Bu) +(u,Ru)

= ((I + G(jw))u, R(I + G(jw))u) for all u e U + jU (3.14a)
vwhere
G(jo) = H(juI - A)"!B

and Q e ¥(V,V') and R e ¥(U, U) are self-adjoint.

If in addition,
(Qx,x)v 20 forall xeV
and for some 6 > O

(Ru,u) > &||u]|? for all u e U
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then

((I + G(jw))u, R(I + G(jo))u) > (u,Ru)

for all u e U + jU (3.14b)

In the next subsection we show that the LQHD system can be
represented in the form of Eq. (3.13), and satisfies Eq. (3.12). In
subsection 3.2.3, we do the same for hyperbolic systems with

sufficient inherent damping.

3.2.2 Semigroup Representation of Linear Hereditary Differential

Systems

Consider the linear hereditary differential system that we

define in Eqs. (2.1) - (2.2). This can be represented in semigroup
form [21] [29] as follows.

Let the space

¥ = " x Ly((0, -7), R7)

Then Egqs. (2.1) - (2.2) can be described equivalently as

L - Az(t) + Bu(t)

z(t) = h; h e D(A)

. . 2 . o .
where A is a closed linear operator on M, with a dense domain in

¥2, defined by
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N
Ah(8) + 2 Ah(8,) + JO A,(8)h(6)de; 6 = 0
i=1 T
(Ah)(6) =
Q%%Ql i 60

and

[

This linear operator A is generally unbounded. In order to use the
result in subsection 3.2.1, we must show that A satisfies Eq.
(3.12).

Since sp(A) lies entirely to the left of the line Re s = B for
some finite B > O in the complex plane [31], A - BI generates a

contraction semigroup. Consequently A - BI is dissipative [55],

i.e.

((A - BI)x,x) + (x, (A - BI)x) = O
Expanding, this is identical to

(Ax.x) + (x.Ax) - 28] |x||% = 0

Therefore Eq. (3.12) is satisfied. Hence Theorem 3.1A is

applicable. We remark that in fact, it is possible to draw the same
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- conclusion for a larger class of linear hereditary differential
systems (Delfour [76]).

We now show that Eq. (3.14) implies the KFDI in Eq. (2.16) for
the LQHD systems. The optimal solution for the semigroup
formulation gives

G(jv) = B (joI - A) 1B

where the operator H* is defined by [31].

s = Kyf(t) + JO K, (8)£(t+8)do
-T

where KO and KI(O) are matrices given by Egs. (2.5) - (2.9).

It is a simple algebraic exercise to show that
(joI - A)—lBejmtv = F(jw)ejwtv

Let u = ejwtv, v e U, in Eq. (3.14b). Then

(I + G(io)u = (3% + G(ju)edt)y

where F(s) in defined in Eq. (2.10). Also by using the definition

of H*, we get

G(jm)ejwtv = [KOF(jw)ejwt + JO KI(B)F(jw)ejm(t+e)d9]v
-T
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‘Hence manipulating the above, we obtain

(I +6(30))e?% = (I + 6(ju))edt
where G(s) is defined in Eq. (2.14). Since w and v are
arbitrary, I + G(jw) and I + G(jw) are identical. Therefore the

YFDT in this section implies the KFDI in Chapter 2.

3.2.3 Hyperbolic Systems with Inherent Damping

In this subsection, we consider the class of distributed
control system described by the second-order differential

equation [28]

2
%)- + L %ﬂ + Px(t) = Bou(t). t>0 (3.15)
dt

where x(t) and u(t) belong to the Hilbert spaces X and U,

respectively.

Let P be a self-adjoint linear operator with domain D(P). and
assume that it satisfies the coercive condition: there exists a > 0

that

(Px,x) > a||x||2 for all x e D(P) (3.16a)

In addition assume that P—1 is compact.

Let L be a nonnegative, symmetric linear operator with domain
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- D(L) > D(P), and assume there exists v > O such that

| 1Lx|] < ~||Px]] for all x e D(P) (3.16b)

Rewriting Eq. (3.14) in the form of the parabolic description

of Eq. (3.13), we get

x(t) 0 I x(t) 0

< = + | Juee)
t |dx(t) - | |&x(x) B
dt dt 0

0 I

-P  -L
Eq. (3.12) when extended to the space D(P) x X, from D(P) x D(P).

Then Theorem 3.1A is applicable if A = [ ] satisfies

Gibson [28] proved that A can be extended to D(P) x X and the
extension generates a contraction semigroup of linear bounded

operators on this space; of which the inner product is defined as

X1 )
< ’ > = (le'x2)x + (yl'y2)x
Y1 Y2

and A is dissipative. Therefore [55],
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Consequently for any real a > 0, A = a, the coercive condition in

Eq. (3.12) is satisfied for V = D(P) x D(P) dense in D(P) x X.

3.3 Robustness Characterization for the Case Dim U is Finite

In this section we discuss a version of the multivariable
Nyquist theorem due to Desoer and Wang [24] for a distributed system
which has a finite dimensional control space. We use this theorem
to extend the robustness characterization for LQHD systems in
Chapter 2 to more general distributed systems. Then a robustness

theorem will be stated for the LQ optimal system.

3.3.1 Preliminaries

Callier and Desoer [41] introduced an algebra & of transfer
functions that is suitable for studying distributed, linear
time-invariant systems. The algebra § is formed as a quotient

algebra [72] of two convolution algebras. It allows us to
manipulate distributed systems within the algebra in ways similar to
those for the finite dimensional system within the algebra of proper
rational transfer functions. Desoer and Wang [24] successfully
applied the algebra & to obtain a generalized Nyquist theorem for
distributed systems. The definition of & that we adopt in this
chapter is similar to that in [24].

Let o0 € R, and let #(0) denote the convolution algebra which

consists of elements of the form
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£(t) = o

£ (t) + ) £6(t-t,) . t >0
i=0

where

(2) £,(t) e R;
(2) J:‘lfa(t)|e-°tdt < ®;

3 t.=0and t, >0 for i =1,2,...;
0] i

(4) fi e R; and

o
—ot,

5) ) lfle <o
i=0

f(*) is said to belong to #(o) if and only if there exists o, e R,

1

o, < o such that f(e) e d(al).

1
Let f denote the Laplace transform of f(e). Let d(o) be the

set
d(0) = {E|f e d(0)}
~
and o (o) be the set

4°(0) = {£|f e d(0) N ¥(0))
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where @(a) is the set consisting of all ; such that ; is bounded
away from zero at infinity in the closed right-half complex plane
Re s > o, i.e. there exist n > O, p > 0 such that for all

se {Res>oand |s - o > p}, |;(s)| >n.

Finally let &(o) be the algebra with pointwise product,
B(o) = {f|f = n/d with n e d(0) and 4 ¢ 4"(0)}

and %(o) be the corresponding convolution algebra, i.e.
(o) = {£(*)|f e 8(0))

4(0). d(0). #(0), 4”(0), %(0) and B(0) are abbreviated as . d, d

gm, % and %, respectively.

3.3.2 Nyquist Theorem for Distributed Systems

We consider the feedback system in Figure 3.2, where
G(s) e 3™ (3.17)

Let (N.D) be a right coprime representation of G(s) [41]. [24].
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. 4

Figure 3.2 Nominal Feedback System
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Equivalently,

(1) G(s) = N(s)D"I(s); (3.18)
(2) N(s) e 4™, D(s) e 4™M,
(3) there exist U(s) e 4™™, V(s) e #™™ such that

U(s)N(s) + V(s)D(s) = I: (3.19)
(4) det D(s) is analytic and bounded away from zero at ® in the

CRHP.

Since D(s) e gwmxm C mem' under condition (4) det D(s) has
only a finite number of zeros in the CRHP [41]. Let p denote this
number, counting multiplicities. In addition we assume that
(a) G(s) tends to a constant matrix as |s| » « in the CRHP; (3.20)
(b) G(s) has no zero on the imaginary axis. (3.21)

Under this formulation, one can deduce a Nyquist theorem based

on Desoer and Wang [24] as follows.

Theorem 3.3 (Generalized Nyquist Theorem):

The system of Figure 3.3 is closed-loop stable if and only if
(1) det[I + G(jw)] #0 for all w e R (i.e. v > 0); and

(2) det[I + G(jm)]lweR encircles the origin p times in the
+

counterclockwise sense.



84

3.3.3 Robustness Theorems

We call the feedback system in Figure 3.2 the nominal feedback
system. We define the perturbed feedback system to be the system of
Figure 3.3, obtained by replacing G(s) with G(s) in Figure 3.2.

Similarly to G(s), we assume

(1) G(s) e &™™; (3.22)

(2) E(S) has a right coprime representation (N, D). (3.23)
As in Chapter 2, we define the additive error matrix by
E(s) = G(s) - G(s) (3.24)

For the study of robustness, it is useful to write down the

open— and closed-loop characteristic functions.

@_,(s) = det(D(s)) (3.25)
o_,(s) = det(N(s) + D(s)) (3.26)
$4p(5) = det(D(s)) (3.27)
$p(s) = det(N(s) + D(s)) (3.28)
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Figure 3.3 Perturbed Feedback System
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They are related to the return difference by

d ¢c£(s)
et(I + G(s)) = m (3.29)
[o]
s ,(s)
det(I + G(s) = o2 (3.30)
300(s)

By the coprimeness of N, D (N, D), s is an m-th zero of

‘det(I + G(s)) (det(I + G(s))) if and only if s is an m-th order zero

of ¢ce(s)'(;ce(s)). Also s is an m-th order pole of det(I + G(s))
(det(I + E(s))) if and only if s is an m-th order zero of ¢°e(s)).
Therefore the closed-loop system is stable if and only if ¢ce(s)
(;ce(s)) has no zero in the CRHP.

We can now state the robustness theorem for additive modeling

errors as follows.

Theorem 3.4 (Robustness Theorem for Additive Error):

The perturbed system of Figure 3.3 is closed-loop stable (in

the sense that ¢ce(s) has no zeros in the CRHP) if the following

conditions hold:

(1) a. ¢oe(s) and ¢Oe(s) have the same number of zeros in the CRHP;

b. ¢ce(s) has no zeros in the CRHP.

(2) amin[I + G(jw)] > omax[E(jw)] for all v e R, .
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In the above ¢oe(s), ¢ce(s), ¢oe(s), ¢ce(s) are defined by

Egs. (3.45)-(3.28). The additive error matrix E(s) is defined by
Eq. (3.24). The notations Umin[.] and omax[.] denote the minimum
and maximum singular values of the matrix.

Proof of Theorem 3.4

This proof is very similar to that of Theorem 2.4. Let A e

[0,1]. It is well known (e.g. [5] [44]) in singular value theory
that

Umin[I + G(jow) + AE(jo)] > amin[I + G(jw)] - Aahax[E(jw)]

(3.31)

Therefore condition (2) guarantees that I + G(jw) + AE(jw) is
nonsingular for all w e R+.
Now suppose that as A is varied continuously from zero to

unity, the number of encirclements of
f(A,0) = det (I + G(jw) + AE(jw)) (3.32)

around the origin changes. Since f(A,w) is continuous in (ANw) e
[0, 1] x R, . its locus on the R,_forms a closed bounded contour in
the complex plane for any A e [0, 1]. Therefore the only way for a
change in the number of encirclements to occur is for the locus of
f(ko,w) to pass through the origin for some RO e [0, 1]. This is

equivalent to requiring
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det(I + G(wo) + AOE(MO)) =0 for some (Ro.mo) e [0, 1] x R+

(3.33)

However we have shown that I + G(jw) + AE(jw) cannot be singular by
assuming condition (2). Hence we conclude that det(I + E(jm)),
corresponding to A = 1, encircles the origin the same number of
times as det(I + G(jw)), corresponding to A = O, along the path
we R+. By applying Theorem 3.3 (Nyquist Theorem), we see that the

perturbed system is closed-loop stable. (End of Proof)

Another useful way to describe the perturbed system with

respect to the nominal system is to define a multiplicative factor

matrix L(s) by

G(s) = G(s) L(s) (3.34)

This representation generalizes the gain and phase margin
description of the single-input-single-output case, and is
particularly useful to describe the robustness properties of the LQ
system. The corresponding robustness theorem for multiplicative

modeling error is the following.
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Theorem 3.5 (Robustness Theorem for Multiplicative Error):

The perturbed system of Figure 3.3 is closed-loop stable (in
the sense that ¢c£(s) (Eq. (3.28)) has no zero in the CRHP) if the

following conditions hold:

(1) a. ¢°e(s) and ¢oe(s) have the same number of zeros in the CRHP;
b. ¢ce(s) has no zeros in the CRHP;
where ¢oe' ¢08 and ¢ce are defined in Eqs. (3.25) - (3.27).

(2) L(jv) has no eigenvalue in R, for all we R .

(3) opi I+ G(I0)] >0 [L7'(jw) - I1 forall we R,. (3.35)

in

The proof of this theorem is essentially the same as that of

Theorem 2.5, and is therefore omitted.

3.3.4 Robustness Properties of Distributed LQ Systems

The YFDT presented in Section 3.2 for infinite dimensional 1Q
systems .contains the KFDI for LQHD systems as a special case when
the control space is finite dimensional. Since by using the algebra
é, we were able to characterize the robustness of distributed linear
time-invariant systems in the same way that we characterize the
robustness of LHDF systems, the robustness results for the LQHD
optimal system in Chapter 2 can be extended to include a much wider
class of distributed systems.

For the purposes of investigating the robustness properties of

the LQ system, depicted in Figure 3.1, it is convenient to represent
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the model uncertainties as a multiplicative perturbation factor, as
shown in Figure 3.4. In this configuration, the matrix L(s)
represents the model uncertainties of the system reflected to the
point X in Figure 3.1 where the loop is broken, as a multiplicative
perturbation in the control channel. The matrix G(s) is the nominal
system loop transfer function matrix, given by Eq. (3.11).

Nominally L(s) is the identity matrix and the LQ system is closed
loop stable. However because of modeling errors and implementation
constraints, the matrix L(s) is subject to changes from its nominal
value. Consequently, the product G(s)L(s) can be viewed as the
actual system loop transfer function matrix. This closed-loop
system is stable if and only if the closed-loop system of Figure 3.5
is stable. In the figure, Rl/2 is a square root of the control

weighting matrix, in the sense that

R =R R (3.36)

With this formulation, we can state some of the robustness

properties of the LQ system as the following theorem.

Theorem 3.6 (Stability Margin of Distributed LQ Systems)

The multiplicatively perturbed LQ system in Figure 3.4 is
closed-loop stable, i.e. the characteristic function ¢ce(s) (Eq.
(3.28)) has no CRHP zeros, provided that the following conditions

are satisfied:
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Figure 3.4 Multiplicatively Perturbed Feedback System
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Figure 3.5 Perturbed Feedback System Representation for

the Derivation of LQ Robustness Properties
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G(s) is specified by Eqs. (3.3), (3.4), (3.11), as the
closed-loop solution to the LQ control problem.

¢oe(s) and ;Oe(s) have the same number of CRHP zeros,

where ¢oe(s), ;oe(s), are defined in Eqs. (3.25), (3.27),
respectively, and both ¢oe(s) and ;oe(s) have no zeros on the
imaginary axis.

L(jw) has no eigenvalue in R .

172

o RYALTIGR2 - 1) <1 forall we R, .

max

Proof of Theorem 3.6

By theorem 3.2, ¢ce(s) (Eq. (3.26)) has no zero in the CRHP.

Note that

det[I + (RVZ6(s)R %) (R2L(s)R 1/2)] = det[I + G(s)L(s)]

(3.37)
Hence
172 -1/2,,,1/2 -1/2 ;oe(s)
det[I + (R“G(s)R "“)(R/“L(s)R"4)] = = (3.38)
$.p(s)
Similarly,
¢ ,(s)
det[I + RY2g(s)R1/2] = 2oL ° (3.39)

Fo0(5)
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Theorem (3.1) YFDT impiles that
172 . . -1/2
amax[I + R “G(jw)R ]>1 forall we R, (3.40)

Therefore in conjunction with Theorem 3.5, condition (4) guarantees

that ¢ce(s) has no zeros in the CRHP. (End of Proof)
The following are corollaries of Theorem 3.6. Their proofs are
omitted since they are the same as the standard proofs (e.g. [5]) in

the finite dimensional case.

Corollary 3.7

The multiplicatively perturbed LQ feedback system is stable if
o (L71(30)-1) < [cond(R)TY2 | for all v e R (3.41)
max J : + )

where-cond(R) denotes the condition number of R

_ amax(R)
cond(R) = o . (R) (3.42)
min

defined as the ratio of its maximum singular value to its minimum

singular value.
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Corollary 3.8

If R > 0 is diagonal, then simultaneously in each feedback
loop, the LQHD system has the following guaranteed stability
margins,

1. [1/2, ©] gain margin

2. + 60o phase margin

Remark: Tsitsiklis and Athans [25] have shown that the robustness
properties in this corollary actually hold for nonlinear systems,
under certain assumptions. Their proof is basically an extension of

the one found in Yakubovich [22]. Our formulation in this thesis,

however, provides a more general framework for characterizing

robustness.

Corollary 3.9

If R is block diagonal of the form

R = (3.43)
and L(s) consists of crossfeed perturbation of the form

I X(s)] (3.49)

L(s) = [
0 I
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Then the LQ system is stable if
mln( 2)
(X(Jw)) < [ (R )] , for all w e R (3.45)

Similarly, if L(s) is of the form

I 0

L(s) = . (3.46)
X(s) I

then the LQ system is stable if

(R;)
[G“‘“‘(Rl)]l’2 . for all v e R, (3.47)
2

Ve

0 (X (3))

In particular, if R = pI, where p is a positive scalar, then the LQ

system is stable if

amax(X(jw)) <1, for all we R (3.48)

- for both types of crossfeed perturbations (Egqs. (3.44) and (3.46)).

3.4 Lyapunov Control Systems

Lyapunov control systems form a subclass of LQ control systems,
in which the control gains is computed via the solution of a

Lyapunov equation instead of the Riccati equation. A nice
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introduction to the finite dimensional Lyapunov control system is
presented in Wong [12]. In this section, we discuss the semigroup
description of Lyapunov control systems, and their robustness
properties.

Let A be the infinitesimal generator of a strongly continuous
semigroup of operators over X, and let B be a linear operator.

Suppose A is Hurwitz. Then the Lyapunov controller for the dynamics

() _ ax(t) + Bu(t); x(0) given 3.49)

dt
is given in feedback form by
%

u(t) = - H x(t) (3.50)

where H is the solution to the following set of equations,
*
KA+ AK+Q=0 (3.51)
KB -HR =0 (3.52)

The self-adjoint operators Q and R are defined in Eqs. (3.1) and

(3.2) as in the LQ problem (Egs. (3.8) - (3.10)). Also assume that

™V
A* and Q1/2 are stablizable.



S8

Since A is assumed to be Hurwitz, the solution K to Eq. (3.51)
is at least positive semi-definite. By direct manipulation of Eqs.

(3.51) - (3.52), we get

K(A - BE") + (A - BEYK = -Q - oHRrE™ (3.53)
Thus A - BY" is Hurwitz. In addition, Eq. (3.51) can be written as

KA + A'K + (Q + HRH™) - HRH® = 0 (3.54)
This shows that the Lyapunov control system belongs to the class of
1Q systems.

Yakubovich [23] has a frequency domain theorem which is useful

for studying the robustness of Lyapunov control systems.

Theorem 3.10:

For the existence of K and H satisfying Eq. (3.51) - (3.52), it

is necessary and sufficient that
RG(jw) + G (jw)R > 0 for all w > O (3.55)
where G(jw) is the loop function defined by

G(s) = H¥(sI - A)"1B (3.56)
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- Recall that a perturbed system can be represented

multiplicatively as

G(jv) = G(ju)L(jv) (3.57)

The Lyapunov control system will remain stable as long as the
multiplicative perturbation L(jw) is "passive” [40].
For Theorem 3.11 and its Corollary 3.12, we assume that the

control space U is finite dimensional.

Theorem 3.11:

The perturbed system will remain closed-loop stable as long as
RL(jw) + L"(jw)R > 0 for all © > 0 (3.58)

Proof of Theorem 3.11:

- This proof uses an imbedding argument similar to that for

Theorem 3.4. In this case, we consider the continuous function

f(\,0) = det(I + G(jw)(AL(jw) + (1 - A)I)) (3.59)

where A e [0, 1], and w > 0. We want to show that f(N.w) # 0 for

all A and w. Hence there is no change in encirclements when the

graph f(0,0) is continuously collapsed to that of f(l,0).
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We prove this by contradiction. Let

P(A,0) = AL(jo) + (1 - N)I (3.60)

and suppose that f(ko.wo) = O for some RO' Wg- Then there exists a

nonzero vector u € U such that

[I + G(Jug)P(Ay.0p)Ju = O (3.61)
i.e.

u = = G(Jug)P(Ay.05)u (3.62)
Define

z = P(Ay.0p)u (3.63)

Then Eq. (3.62) becomes

z = - P(RO,QO)G(jwo)z (3.64)
Thus

z*RG(jwo)z + z*C*(jwo)Rz

= - z*c*(juo)[RP(xo,mo) + P*(xo.wo)R]c(juo)z >0 (3.65)
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Since G(jmo)z = u is nonzero,

€
RP(Ny.wg) + P (Ay.04)R < O (3.67)

but this contradicts Eq. (3.58) because of Eq. (3.60).

(End of Proof)

1

As in the LQ case (see Theorem 3.6), by considering R
1 - 1 -1
G(s)R 2 and R 2 L(s)R 2 in place of G(s) and L(s), one can easily

obtain the following Corollary.

Corollary 3.12

If R is diagonal, then the Lyapunov control system has,
simultaneously in all control channels, at least
(1) =+ 90° phase margins,
(2) 100% reduction gain margins, and

(3) =« gain margins.

In Chapter 4, we study a Lyapunov control design for the
vibration suppression of a flexible beam.

In case U is infinite dimensional, we can state the following
theorem. Part (1) of this theorem is an extension of the necessary
part of Theorem 3.10. Part (2) provides a test for stability,
similar to the condition in Eq. (3.58), except here one must go

through the test for the whole CRHP.
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Theorem 3.13:

For Lyapunov control systems,
(1) RG(s) + G(s)R >0 for all s e CRHP
(2) The perturbed system will remain stable as long as

RL(s) + L(s)R > O for all s e CRHP

Outline of Proof:

The result (1) can be easily obtained by manipulating Eqs.
(3.51) - (3.52). For (2), we want to show that I + G(s)L(s) is
invertible for all s € CRHP. This can be done by using a
contradiction argument similar to that in Eqs. (3.60) - (3.67), i.e.
by supposing I + G(sO)L(so) is singular for some So € CRHP.

(End of Proof)
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CHAPTER 4
SYNTHESIS OF A ROBUST CONTROLLER FOR

THE SUPPRESSION OF VIBRATION OF A FLEXIBLE BEAM

4.1 Introduction

The robustness characterization that we discussed in Chapters 2
and 3 are useful for the robustness analysis of distributed feedback
systems, regardless of what the control design method is. However,
the guaranteed stability margins for LQ optimal systems that we
derived has one additional important impact. They allow the control
system designer to synthesize closed-loop stable, realizable (finite
dimensional) feedback controllers for infinite dimensional systems
without going through any trial and error iteration in design. As
discussed in Chapter 1, the trial and error iterative process is a
notable shortcoming of design methods which depend on the use of
reduced-order models. In this chapter, we use a flexible beam,
simply supported at both ends, to illustrate a design synthesis
method which leads to a stable closed-loop system when the inherent
damping is sufficiently large.

Also we use this opportunity to study the importance of
inherent damping in large flexible structure. Stein and Greene [1]
showed, by example, that sufficient damping must be present in order
to design stable finite dimensional compensators. Our results
support their findings. We show that if either all the temporal

modes of the flexible structure have the same damping ratio or the
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same damping coefficient, then a stable finite-dimensional

compensator can be implemented by using spatial sampling. In the
latter case, a dynamical compensator is required to attenuate the
high frequency components in addition to the sampled measurements.

We organize this chapter as follows. In Section 4.2 we
describe a uniform slender beam, simply supported at both ends. In
Section 4.3 we describe the system we want to control. A point
actuator is used to control the vibration of the beam and the
damping ratio is assumed to be a constant for all modes. Also we
present an open-loop analysis of the beam. In Section 4.4 we
formulate a Lyapunov control problem for the flexible beam using the
semigroup framework. The closed-loop behavior of the resulting
optimal feedback system is discussed. In Section 4.5 we show that
the continuous distributed measurements required by the Lyapunov
controller can be adequately approximated with finitely many
samples. In Section 4.6 we take a closer look at the relationship
between the size of the structure’s inherent damping and the density
of spatial sampling required to maintain a stable approximation.

In Sections 4.3-4.6, a constant damping ratio is assumed for
all modal deflections. In Section 4.7, we consider instead the case
in which the inherent damping corresponds to a constant damping
coefficient for all modes. In this case, since the open—loop system

frequency response has an envelope of peaks that does not roll off,
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a high frequency attenuator is used, in addition to increasing the

number of spatial samples.

4.2 A Simply Supported Flexible Beam

The dynamics of a flexible beam freely hinged at both ends with
constant density per unit length, denoted by p, and constant
flexural rigidity EI, can be represented by the following system of

partial differential equations [47]

8> 3 at
P y(x.t) + L z=y(x.t) + EI — y(x.t) = w(x)u(x,t)
2 at 4
at Jx
(4.1)
along with the boundary conditions
5> 8>
y(0.t) . y(a.t) = 0: —5 y(0.¢) , ——5 v(a.t) =0 . (4.2)
Ox Jx

The independent variable x is the longitudinal coordinate ranging
from O to a, where a is the length of the beam, and the variable
y(®.®), which depends on x and time t, denotes the vertical
displacement of the beam from its equilibrium position. The
function u(x,t) and the product w(x)u(x,t) represent the control
input and the force, respectively, acting on the beam at x and t.
Figure 4.1 illustrates these arrangements. The control input

function u(e,®) is an element of L2([0,a]x[0.m); R). The function
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u(x,t)

g

O

, — X
Ly(x,t) \/

Figure 4.1 Flexible Beam Example
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w(x) is real and may vanish for some x and is integrable i.e.
w(e) e Ll' The damping term L gz-y(x,t) represents the inherent
energy dissipation [47] [48].

The assumption of an inherent damping term is extremely crucial
to vibration control problems, as evident from the following in

literature.

(1) Gibson [28] showed that positive definiteness of L is a
sufficient condition for his approximate method, based on
optimal control of a sequence of reduced-order modal models, to
converge, and for the limiting control law to be closed-loop
stable.

(2) Gibson [27] showed that open—-loop uniformly exponential
stability is a necessary condition for the existence of a
compact feedback compensator that is closed-loop stable.

(3) Stein and Greene [1] used classical control arguments to

~demonstrate that a practical implementation of a closed-loop
stable finite dimensional feedback compensator is impossible

unless sufficiently large inherent damping is assumed.

In addition, we have discussed in Chapter 3 that it is possible to
use the infinite dimensional robustness theorems when a sufficient

amount of inherent damping is present.
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4.3 Open-Loop Analysis

Beginning in this section we study a simplified model of the
flexible beam. We consider the single actuator case in which a
point actuator is assumed to be situated at the midpoint of the
beam, exerting a force on the beam for all time t 2 0. Also we
assume that the operator L which accounts for the inherent damping
in the beam dynamics is given by
62

.{>0 4.3
2 (4.3)

L=-¢

where ( is a small positive number representing a small constant
damping ratio for the beam's modal responses. In a moment, we will
clarify this in terms of a series of second-order transfer
functions.

In addition, referring to Eqs. (4.1) - (4.2), we let, without

loss of generality,

a=1 (4.4)
p=1 (4.5)
EI = 1 (4.6)

These assumptions simplify the ensuing analysis considerably.
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Rewriting Eqs. (4.1) and (4.2) under the assumptions of
Egs. (4.3) - (4.6), we obtain the following set of equations for the

dynamics of the uniform flexible beam simply supported at both ends.

4 2 2

a a4 d 1
—Z Y(x.t) -0 5 Fry(x.t) + 3 ¥(x.t) = u(t)es(x - 35) (4.7)
Ix Ix at
where 6(x - %) is the spatial Dirac delta function at x = %u The
boundary conditions that govern the dynamics are
y(0,t) =y(1,t) =0 (4.8)
62 62
—5 ¥(0.t) = =5 y(1.t) =0 (4.9)
dx Ix
It is easy to show (Appendix C) that the solution to Egs.
(4.7) - (4.9) is representable in modal form,
o]
y(x.t) = z sin (imq)T, (t) (4.10)
i=1

where the functions sin(imx) and Ti(t) are the so-called mode shapes
and modal deflection of the beam. The modal deflection Ti(t) is

given by the equation
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2
d 2 2d .4 . i
—dtz Ty(t) + Ci%r” G- T (¢) + 4 1r4Ti(t) = 2u(t)sin (—”2') ; (4.11)

i=0,1,...

Observe that because of the boundary conditions in Eqs. (4.8) -
(4.9), the mode shape functions v2 sin (imx), i =1,2,3,..., form a
complete orthonormal basis for the beam shape between x=0 and x=1.

Let a(s), %i(s) denote the Laplace transforms of u(t) and
Ti(t)’ respectively. It is useful to write down the transfer
function from the control of a(s) to each individual ‘modal

deflection Ti(s). This is obtained in a straightforward fashion

from Eq. (4.11).

T, (s) ) 2sin()

- s i=1,2,... (4.12)
u(s) s2+§12w25 + it

By examining this modal deflection transfer function, we see
that the temporal frequency is izﬂz, and the damping ratio is (.
This explains our earlier claim in Eq. (4.3) that { corresponds to a

constant damping ratio for all deflection modes.

Let Ti(t) denote the rate of change of Ti(t), i.e.

'i."i(t) = g—tTi(t) (4.13)
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Then

~

T,(s) 2s sin (1)
= = =1, 2,... (4.14)
u(s) 52 + §i2ﬂ2s + i4w4

A

where f(s) is the Laplace transform of fi(t). This last transfer

function is important here because:

(1) we assume that the available sensors are of the linear-velocity
type;

-(2) it introduces a 90° phase lead which simplifies the control

design task.

Let y(x,t) denote the time-derivative of y(x.t),

y(x.t) = g—t y(x,t) (4.15)

Then

¥(x.t) sin(iw'x)'i‘i(t) (4.16)

[}
N8
—

i
Observe that in Eqs.(4.12) and (4.14), since
: ir .
sin (5—0 =0 for i even (4.17)

the even modes of the beam are not controllable by u(t). However

all modes are stabilizable because of the inherent damping
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mechanism. Any vibration suppression control problem for the system
of Eqs. (4.7) - (4.9) is in effect a control problem for the odd
numbered modes only. This is a consequence of our choice of placing
the actuator at the mid-point of the beam. By placing the actuator
elsewhere, for example at an irrational point, complete

controllability, albeit small for some modes, can be obtained.

4.4 Optimal Lyapunov Control

In this section we derive the optimal Lyapunov control for the
system in Eqs. (4.7) - (4.9). A semigroup formulation is used.

Recall from Chapter 3 that the Lyapunov control system is a
subclass of the LQ control system. The Lyapunov control system has
the additional properties that it is in general easier to compute
and has superior stability margins.

Schaechter [49] considered the LQ formulation for the control
of the flexible beam, and also for the estimation of distributed
parameter systems in [50]. In both cases, the optimal solution
calls for solving a matrix Riccati equation over a ring of
polynomials [72], i.e., the matrices in the equation as well as the
solution contain elements which are polynomials in D, where D
denotes the operator g;. The solution of this Riccati equation,
however, is not easy to obtain [51]. In addition, the exact
solution is generally irrational, i.e. it is not an element of the
quotient field [72] of the ring of polynomials, and hence is often
difficult to characterize. Brockett and Willems [52] considered a

wider class of LQ problems for partial differential equations, in
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their generalized path integral method. Their method also required
the control system designer to deal with irrational functions of D.

We use instead an approach by solving a Lyapunov equation. The
linearity of the Lyapunov equation eliminates the aforementioned
pitfalls associated with solving the Riccati equation. Exact
solutions [73] can be obtained for this Lyapunov formulation. 1In
addition, the Lyapunov control sets up a framework in which one can
study the dependence of stability on the inherent damping.

We rewrite Eq. (4.12) in the following semigroup

representation.
9y
3¢ o 1 y 0
2 | = 4 2 + t
Syl = Let P |a sx - 4| )
2 4 2 at 2
at gx ax
(4.18)
The spectrum of the infinitesimal generator of the semigroup,
0 1
A = 64 62 (4.19)
-3 {3
ax Jx

lies entirely in the open left-half plane, thus permitting the use

of the Lyapunov method.
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For the Lyapunov design, we choose

0 o
Q= [ ] (4.20)
0 2

and

(4.21)

This choice of Q will lead to a control gain that is independent of

the damping ratio. The operator A maps the space §(0,1) x s(0,1) -

into itself, where S(0,1) is the set of smooth functions

f£: [0,1] » R

n
$(0.1) = {£(*)| L£ extsts for all n; £(0) = £(1) = 0
dxc

A<= (0 =% (1) =0 4.22
and £5 (0) =S5 (1) = 0) (4.22)

It is trivial to verify that S(0,1) is a separable Hilbert space to

which we can associate the inner product <e,e)

1
fF,g> = J; f(x)g(x)dx ; f.g e S(0,1) (4.23)
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and with an abuse of notation, the inner product for the space

S(0,1) x S(0,1) is

1
< . > = f + f dx;
1N fo (£, ()8, () + £,()gy(x)]

fl.fz,gl.g2 e 5(0,1) (4.24)

Before turning to the derviation of the optimal controller, we
would like to show that the flexible beam control system belongs to
the class of systems discussed in Section 3.2; hence we can use the
robustness results in Chapter 3 for this application.

Referring to Eqs. (3.15), for the flexible beam,

4
p=9_
ox
2
L=-ga—2
ax

Clearly for all mode shapes sin(imx),

gt 2
<__Z sin(imx), sin(imx)> > sin“(imx)
ax
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and for small (,

8> at gt
<-C ——§-sin(iwx). sin(imx)> < <—fz sin(inx), ——Z-sin(iwx)>
Ix Ix Ix

Therefore Eqs. (3.16a) and (3.16b) are satisifed, and it is
legitimate for us to use the LQ robustness properties to design the
vibration suppression controller.

Let A* be the adjoint operator of A with respect to the inner

product defined by Eq. (4.24), i.e. for all fl,f2.g1.g2 e S(0,1),

< ., A > = <A : > (4.25)

Then by direct comparison of the two sides in Eq. (4.25),

( gt
0 - =3
» dx
AS = 0 (4.26)
d
1 C—z
Ix

We form the following Lyapunov equation.

AK + KA = - Q (4.27)
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where K: §(0,1) x S(0,1) » S(0.1) x S(0,1) is a self-adjoint and
positive definite linear operator. The solution K to this equation

is unique [23] and is given by Eqs. (4.28) - (4.30) below.

K1 0
K = (4.28)
0 K2
64
K1 - K2 —= 0 (4.29)
ox
a2
"K2 —5 = 1 (4.30)
Ox

where K1 and K2 are self-adjoint and positive definite linear
operators on S(0,1). Note that conceptually, K2 can be intepreted
as the double integral operator, which satisfies the appropriate

boundary values.
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The Lyapunov control law constructed by using the weights Q and

R specified by Eqs. (4.20) and (4.21) is given in the feedback form

as

. y(x.t)
u(t)s(x - 2) = - G 4.31
X~-3 g%-(x.t) ( )
where G: S(0,1) x S(0,1) » L1 is the map
G=R1[0 &(x- K
l.e.
G=[0  &(x-3K,] (4.32)
Or simply
u(t) = K, g% 0| (4.33)
X = §'
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The operator K2 can be represented in terms of a Green’'s function

[69] [70] h(x.§),

1
K2f = J‘ h(x,E)f(E)dE ; f e S(0,1) (4.34)
6]
where
h(x,§) =0 at § =0and § =1 (4.35)
and
a2
—s h(x,€) =0 at § =0and § =1 (4.36)
g2

The Green's function is determined in Appendix D. It is given by

h(x,f) = 2 —525 sin(imx) sin(inf) (4.37)
i=1 i“7w

Combining this result with Eqs. (4.31) - (4.34) we can write down

the optimal Lyapunov control law as

1 ®
u(t)o(x - %ﬂ = J; [ 2 _§2§ sin(imx) sin(inf)]

i=1l i™7

. 5(x - 3) & (¢.t)ag (4.38)
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Integrating both sides with respect to x to get rid of the delta

functions, we obtain

1 o]
2 . im .
u(t) = J; [izl =7 sin(z1) sin(ing)] 2L (€. ¢)aE (4.39)

To derive the loop transfer function for this optimal system,

breaking the loop at the control, we note from Eq. (4.16) that

e

m -

(E.t) = 2 sin(krf) T, (t) (4.40)
k=1

Substituting this into Eq. (4.39) we get

u(t) =f1 [2

2, sin(3T) sin(ing)] [kzl sin(kmg)T, (t)1dE

0 i=1 i"7w
(4.41)
Because of orthogonality, this is equivalent to
v 1 Kk,
u(t) = 2 2—2 sin(2—) Tk(t) (4.42)
k=1 k" n

Combining this with Eq. (4.14) we obtain the loop transfer function

for this optimal feedback system.

[o.03
1 2 kw 2s
g(s) = sin®(0)
kzl k212 2 s2 + §k2w2s+ k4v

1 (4.43)
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This loop transfer function has several properties which are
significant for the control design.

According to Chapter 3, g(s) is passive [40] [53], i.e.
g(jw) + g (j0) >0  for all e R, (4.44)

This can be readily verified by inspecting Eq. (4.43), since
sinz(gz) is either O or 1. The passivity guarantees that the
optimal system is closed-loop stable (Willems [53]). In fact one
can characterize the additive stability margin of this Lyapunov

control system as follows.

Lemma 4.1 (Guaranteed Additive Stability Margin for Lyapunov

Control):

Let g(s) be the loop transfer function of a unity feedback

system, and g(s) has no open-loop poles in the CRHP. Then this
system is closed-loop stable if

. ~. . V12,172

le(i0) - g(iw)| < (1 + |g(jw) ) for all v e R, (4.45)

- where g(jw) is the loop transfer function of the optimal Lyapunov

control system.
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Proof of Lemma 4.1

Adding 1 + g(jw)g*(jw) to both sides of Eq. (4.44), we get

(1 + () (1 + g7(30) 2 1 + g(jo)e™(jo) for all v e R,
(4.46)
or simply,
- C 12
[1 + g(j0)|[°> 1+ |g(jo)] for all v e R, (4.47)

Thus ‘if the condition in Eq. (4.45) holds, then by the triangle

inequality, i.e.
t+gl=l1+g+8-¢gl>1+g|-|g-g|
we get
I1+2(0)| >0 for all v e R, (4.48)

Hence the system is closed loop stable by the Nyquist theorem

(Willems [53]). (End of Proof)

Now let us examine the shape of g(s). We show in Appendix E
that at low frequencies, |g(jw)| consists of a series of peaks at

the natural frequencies
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©=k12 ; kodd (4.49)

with

2
(4.50)
§k474

the size of the peak ~

In addition, |g(jw)| has a finite cutoff frequency v, i.e. lg(jw) ]
is less than unity for all v > W At high frequencies, Ig(jw)l
rolls off at the rate of 20 db/decade. This behavior.is shown in

the frequency plot in Figure 4.2.

4.5 Implementation of a Closed-Loop Stable Suboptimal Design

The optimal feedback control law that we derived ‘in Section 4.4 -
cannot be realized exactly in actual practice. It requires
- continuous measurements along the entire length of the beam as
indicated by Eq. (4.33) or complete knowledge of all modes as
indicated by Eq. (4.42). Neither of these is achievable physically.

We consider using a suboptimal control of the form

M
1 . km -
a(e) = ) —'5 sin (31 Th(¢) (4.51)
k=1 k™nr
o) 4 ' oy
where k(t) is an estimate of Tk(t) from the measurements 3¢ (x,t)

at N discrete locations, described below, along the beam. The

estimate Tﬂ(t) is obtained by correlating the measurements with the
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k-th mode shape. In practice, the series summation over k cannot be
computed for infinitely many terms. Therefore, we assume that the
series summation has been truncated to M terms in actual
implementation.

We assume that the beam is divided equally into N parts as

follows.

A point sensor that measures the deflection rate is situated at each

of the marked point. In other words,

z(t) = & ARSI £=0,....N (4.52)

are known at all times.

We construct the correlation estimate

Mt) =2 ) sin (& z,(t) (4.53)

Note that this estimate uses an approximation of

N-1

1

JO sin(kng) 2L (g, t)df 2 ) sin(5D)z,(t) (4.54)
2=0
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in the sense of Riemann integration. A comparison of this with
Eq. (4.39) motivates our attempt of using the suboptimal control in
Egs. (4.51) - (4.53).

We summarize the suboptimal control scheme in Figure 4.3.

First we compute the loop transfer function

g(s) = l’i(—)l (4.55)
u{s

We show in Appendix F that

[+1]
g(s) = ) g,(s) (4.56)
i=1
where
~ 2s sin (%I) N
gi(s) =3 5 775 (4.57)

2 2 .
sT + i s +i'nw

and the quantity c? is evaluated in Appendix F. For M sufficiently

large, it is given for i odd by

i-1

o) = -1) 2 ﬁ cosec? 2Ty + o) (4.58)

2=

where O(%) is a number of the order
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Similarly we can decompose the optimal loop transfer function

(Eq. (4.43)) as

g(s) =.§1 g;(s) (4.59)
1=

where

. 2 4w
2s sin (§— 1
g;(s) = (4.60)
1 52 + (i w2s + i4v4 i2ﬂ2

By Lemma 4.1, the additive stability margin of the optimal
system is at least 1. Therefore the suboptimal system is

‘closed-loop stable as long as

lg(jw) - g(jw)| <1 for w e R, (4.61)

In Appendix G, we show that there exists an N large enough such
that the stability condition in Eq. (4.61) is satisfied. In

particular, we show:

(1) The quantity |gi(jm) - gi(jw)| is arbitrarily small for all i
and for all w > O.
(2) Let w = f2w2, and k is the nearest odd integer to f. Then the

summation
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©

) lg,G) - g, (j0)| <0.05 (4.62)
i=1
izk

Remark: The bound in (2) is rather conservative. However, it is
sufficient for our design. We have not pursued removing this
conservatism in this thesis, but we think this bound can be
estimated to within the order of*l.

N

Since

le(10) - gio)| < Iz (0) - g, (o) |

+) g (o) - g, ()| (4.63)
i=1
izk

Eq. (4.61) is satisfied. Consequently the suboptimal system is

closed-loop stable.

4.6 Relétionship between Sample Density and Damping Ratio

Our design procedure in Section 4.5 calls for the determination

of N such that for all i,

2 1 2 im 1 1
W |F cosec (éﬁ) ? + O(IT)I <1 (4.64)



130

We discuss in Appendix G how this can be achieved. A finite number
of constraints are used to determine N that satisfies Eq. (4.64)
which guarantees that the closed-loop system is stable. In

particular, we require

2
2

<2 (4.65)

=2

where 0.95 > 6 > O is chosen by the control designer for bounding
the error term O(%-. This constraint indicates that for our design
procedure, N is at least inversely proportional to . Thus when
gets smaller, the number N that is computed by the procedure gets
larger. Figure 4.4 summarizes our observation, for 6 = %v

We remark that the sample measurements are meaningful only for
N > 2. In other words, even if the damping ratio increases, there
must still be at least one sensor at the mid-point (the other is at
the end-point x = O which does not move) of the beam for feedback
measurements. However, when this stage is reached, the size of the
damping ratio is probably so large that it would have deviated from

the flexible structure assumption, anyway.

Remark: numerical evaluations of the expression inside the absolute

value signs in Eq. (4.64) for some i and N indicate that the error

1 . 1 2 iw 1
term Oi(ﬁ) dominates over the difference zﬁi-cosec (Zﬁ) - ;5;5.

This has not been verified rigorously, however.
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4.7 Closed-Loop Stability of Systems With Constant Inherent

Damping Coefficient

In Sections 4.3 - 4.6 we have shown how one can design a
practical finite dimensional suboptimal closed-loop stable system
for a flexible structure when the inherent damping increases with
each higher mode. In this section we discuss whether the same
procedure can be applied to cases in which the inherent damping
corresponds to a constant damping coefficient for all modal
deflection transfer function.

Let L = m, then the dynamics of the beam (Eq. (4.1) - (4.6))

are

4 2

Q—;-y(x.t) +n g;-y(x.t) + Q—i-y(x.t) = u(t)6(x - %) (4.66)
dx dat
y(0.t) =y(1.t) =0 (4.67)
2 2
a—zy(O.t) = 6—2Y(1.t) =0 (4.68)
ax Ix

The solution to the open-loop system is

y(x.t) = ) sin(kmx)T, (t) (4.69)
k&1
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where Tk(t) is related to u(t) by the modal transfer function

%k(s) _ 2sin(§1)

= (4.70)
u(s) 52 +7ns + k4w4

As can be inferred from this transfer function, the natural
frequency is k2w2 for the k-th deflection mode, and the damping
coefficient is n for all modes. Except for the difference in the
damping coefficient (in the denominator) of the transfer functions,
this open-loop solution is the same as the previous case, where the
damping coefficients are §k2w2.
In what follows, we describe:
(1) how one can derive an optimal control law which is identical in
form to the one used in the previous case;
(2) an attempt to design a suboptimal controller using exactly the
same strategy as described in Section 4.5:
(3) why this suboptimal controller cannot be guaranteed closed-loop
stability no matter how dense one samples the measurements,
unless a dynamical compensator is also used;

(4) an interpretation of the above results.

4.7.1 Optimal and Suboptimal Control Laws

As in the constant damping ratio case, a Lyapunov control
problem can be formulated and solved. The details of these

derivations, however, are not presented because they are almost
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identical to those in Sections 4.4 - 4.5.

Referring back to Section 4.4, the infinitesimal generator of

the semigroup (Eq. 4.19) is now

0 1
A = (4.71)
6x4

and we use, in order to achieve rolloff, an integral operator in the

control ‘weighting operator

0 0
Q = [ ] (4.72)
0 2nK2

where the operator K2 is defined in Eqs. (4.34) and (4.37).
 After some manipulations, one finds that the optimal Lyapunov
feedback control is given in the same manner as the constant damping

ratio case, i.e. Egs. (4.39), (4.42),

1 .
u(t) = Io 2 # sin(%) sin(inf)] %% (E.t)dE (4.73)
i=1

or equivalently,

00

u(t) =) - sin(3T) T, (¢) (4.74)
i=1 i
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The optimal loop transfer function is

[+4]

1 . 2 im 2s

g(s) = 2 2 9 51 ( 2) P) 4 4 (4'75)
i=1 i~w s tns+i'w

(4.73) - (4.75) motivate us to try to construct the

suboptimal control exactly as before (Egs. (4.51) - (4.54)),

M
u(t) =§ 3 sin(3" )TN(t) (4.76)
1"

t) =2 2 sin(5T) & Y (4.77)

The loop transfer function of this suboptimal system is given by

[+ ]
g(s) = ) g,(s) (4.78)
i=1
~ 2s sin(i%) N
g.(s) = C. (4.79)
i s2+ns+i ”4 i
© N-1
N 1 1 .k 2kmw .18
=N ) 23 G0 ) (5P D (4.80)

k=1 ° T 2=0
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This coefficient c? is identical to the one computed for the
constant damping ratio case, in Appendix F. Indeed except for the
change of the damping coefficient, the representation of E(s) here
is the same as the one formulated for the constant damping ratio

case.

4.7.2 Suboptimal Implementation

In this subsection we show that when sampled measurements are
used without any dynamical filtering, the loop frequency response of
the suboptimal system is perturbed by more than the guaranteed

- additive stability margin from the optimal system for some
frequencies. Hence closed-loop stability cannot be guaranteed by
this suboptimal implementation when the inherent damping is -
constant. However, one can remedy this by using a single pole
dynamical compensator to attenuate the high frequency componenents.

Let the loop frequency response of the optimal system be

‘represented by

[+4]
g(s) = ) g,(s) (4.81)
i=1
1 .2 14w 2s
gi(s) = 53 sin (2—) 5 43 (4.82)
i™n S +ns+iw
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Using the computed c? from Appendix F, we obtain

2 [—l— cosec
n 2

4N
Y22 L2 2
g (Ji™77) - g, (§i"r%) =

where 0(%- is a number of the or

der %.

2. 4w

, 1 eve

1 1 .
(ﬁ) - i21r2 + O(ﬁ)]: i odd

(4.83)

At low w = i2v2. this is

approximately the peak value of g(jw) - g(jw), at low frequencies.

Let us assume that N is very large.

integers m,

1 cosec2 (igmuilll ~
4N2 2N ~

1, ~
o) ~ 0

1

——55~0
(2mN+1)2n2

Thus from Eq. (4.83),

~ . 22 . 2 2 .
g2mN+1(J(2mN+1) LS ) - gsz+1(J(2mN+1) m ) ~

1

2
L4

2_
2
i

In general 1 is an extremely small number, and

2
——§-> 1
"

Then for all positive

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)
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unless nn > 253 or approximately 1 > 0.2. Therefore generally
T

speaking the unity guaranteed stability margin of the LQ system is
not sufficient to establish an integer N for sampling such that the
suboptimal control (Eq. (4.76)) is closed-loop stable.

The above conclusion is also true when one considers the
Lyapunov guaranteed stability margin instead of the unity LQ
stability margin, even though the Lyapunov guaranteed stability

margin (Eq. (4.45))

is larger. This is not enough because when i is sufficiently large,

the term —Elzfa‘will no longer be significant. At these high
nimw

frequencies, the guaranteed stability margin is infinitesimally
close to 1.

Figure 4.5 depicts the envelope of the peaks of the suboptimal
loop function E(jw). As can be seen from the figure, the loop
frequency response rolls off initially until the frequency N2ﬂ2 is
reached, and since the sample density is finite, it rises back to
the original peak value at (2N+1)2w2. which is shown in Egs.

(4.83) - (4.87). This phenomenon repeats indefinitely as frequency
moves higher.

The above phenomenon can be explained by looking at the

open-loop frequency response plot of any actuator-sensor pair. For
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example, Figure 4.6 shows the loop function for the sensor colocated
with the actuator. This loop function has a constant envelope of
the peaks. Thus its high (spatial and temporal) frequency
components are aliased to lower spatial frequencies by the
sampling-correlation process, and are then multiplied by the high
gains. appropriate for the lower modes. Consequently we have a
problem with the stability of the closed-loop system.

The reason why this does not create a problem for the constant
damping ratio case can be seen by observing Figure 4.7. It shows
that for the constant damping ratio case, the same actuator-sensor
pair gives rise to a loop function whose envelope of peaks rolls off
indefinitely. Therefore, spatially aliased components have low
amplitudes and do not cause a problem in that case.

The above difficulty with the constant damping coefficient case
can bé overcome by including a low pass temporal filter to attenuate
high frequency components. This corresponds to the suboptimal
implementation configured in Figure 4.8.

Recall that a Lyapunov control design guarantees that the
system has at least 90° phase margins. Thus by using a single-pole
filter, the system is guaranteed to be marginally stable. By
placing the pole of the filter we to the right of W the cutoff

frequency of the inital rolloff of lg(jm)l in Figure 4.5, additional

- ——— e = = wm ae



141

mag
db“ ﬂ,:o'i

20 <4 F

20 4

-60 9

i 10 10? 10° o

Figure 4.6 Loop Function for Colocated Actuator-Sensor Pair,

Constant Damping Coefficient Case



142

ma.g

€=0-01

20t

-201%

_60 +

Figure 4.7 Loop Function for Colocated Actuator-Sensor Pair,

Constant Damping Ratio Case



143

s e TR G < WY T

A
v(s) G(s) y(x,s)
X > beam
Y
" spatial
s S sampler
S twsf
A 2
*N Y(-,S) 5
[ — T () T S L] P
7 sin(7) ist modal correlator < y(=5)
A L] . . . .
-N .
) q ki Tk(S) <
| N sm(;) - k-th modal correlator 2
N .
L sin(4T s M
22 sin\7 M-th modal correlator 2

Figure 4.8 Suboptimal Control Implementation, Constant

Damping Coefficient Case




144

stability margin is obtained. Also one should place ©p sufficiently
to the right of N272 if one desires to retain w, as the cutoff

frequency of the overall system. Summarizing, the dynamical filter

w

has a transfer function of f , where w < w,. < N2w2. This

s+wf c f

suboptimal implementation guarantees that the closed-loop system is
stable when N is large enough. Also at low frequencies, the system -
behaves approximately as the optimal system. The loop function of

this implementation is shown in Figure 4.5 for a comparison with the

one before the filter is inserted in the loop.
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CHAPTER 5
CONCLUSIONS AND SUGGESTIONS

FOR FUTURE RESEARCH

5.1 Conclusions

This thesis has addressed the following issue. Given a
distributed linear-time-invariant system, there are two sources of
errors that can lead to a difference between the actual implemented
control system and the computed nominal control system. The sources
of errors are:

(a) modeling errors of the plant dynamics; and

(b) inexact implementation of the derived, usually infinite
dimensional, controller.

It is imperative that the control system designer knows how much

error the system can tolerate without becoming unstable. This

knowledge will allow him to synthesize feedback controllers that are

implementable and closed-loop stable.

We have studied this problem by looking at the robustness of
stability for distributed, linear-time-invariant, feedback systems.

We have been successful in developing the following results:

(1) A robustness characterization for linear hereditary
differential systems using singular values (Ch. 2). A Nyquist

theorem for this class of systems was also established.



(2)

(3)

(4)

(5)

(6)

(M)

(8)

146

The Kalman frequency domain inequality (and equality) for
linear quadratic hereditary differential systems (Ch. 2).

A set of guaranteed stability margins for the optimal linear
quadratic hereditary differential systems (Ch. 2).

A robustness characterization for distributed,
linear-time-invariant systems (Ch. 3). The number of CRHP
open-loop poles and the dimension of the control space are both
assumed to be finite.

A set of robustness properties for linear quadratic,
distributed, linear-time-invariant systems (Ch. 3).

An analysis of a Lyapunov controller for the vibration
suppression problem of a flexible beam (Ch. 4).

An analysis of the role played by the inherent damping in the
synthesis of an implementable, closed-loop stable controller
(Ch. 4). . Two cases are studied in detail, the first of which

corresponds to a small constant damping ratio for all modes,

and the second, a constant damping coefficient.

Synthesis using sampled measurements along the beam of a
suboptimal closed-loop stable controller when either a constant
inherent damping ratio or damping coefficient is present

(Ch. 4). The robustness properties of the optimal system are

used in the design procedure.

The finite dimensional version of the results in (1) - (5) have

been known for some time. This thesis has extended the finite

dimensional results, while at the same time maintaining their

practical uses in an infinite dimensional context.
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With the advent of techniques for computing the singular value
decomposition of a matrix, e.g. Laub [65], Klema and Laub [66].
singular values have proven themselves to be an extremely valuable
tool for analyzing multi-input-multi-output feedback control
systems. By plotting the singular values of the return difference
over all frequencies, the class of modeling errors that would not
destabilize the control system are exposed.

We exploited the above concepts for distributed, linear-
time-invariant systems, and have come up with results that allow the
control system designer to use the singular value technique almost
in the same way as in the case of finite dimensional systems. The

-modification here is that the plant dynamics are no longer
represented by a rational transfer function, but in most cases,
their representations are programmable into the computer.
Therefore, there is practically no loss in utility of the singular
value analysis in the distributed system case.

‘Invariably literature on the robustness of finite dimensional
systems assumes that since the computed controller is finite
dimensional, it can always be implemented exactly. However, this is
not true for distributed systems.

Generally the controller design approach for the distributed
system fall into one of the following two categories:

(a) Reduced-order model method, and
(B) Infinite dimensional model method, followed by a finite

dimensional approximation of the resulting infinite dimensional

controller.
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Referring back to the two types of errors introduced at the
beginning of this section, the approach (a) induces the (a) type
error, i.e. the modeling error in the plant dynamics, and the
approach (B) induces the (b) type error, i.e. the implementation
error. The methods developed in this thesis are suitable for design
analysis for either of these approaches. The latter approach has
been examined in depth in this thesis using a vibration suppression
problem for an idealized model of a flexible beam. Our analysis
reveals that the inherent damping of the flexible structure
determines the degree of approximation that is required of the
suboptimal implementation in order to maintain closed-loop
stability.

In what follows, we give an account of the results in Chapters

2-4, and then a few suggestions for future research.

5.2 Account of Results in Chapters 2-4

In Chapter 2, we develop a robustness characterization of
linear hereditary differential systems (LHDS), for both additive and
multiplicative perturbations. By showing that LHDS have finitely
many open-loop poles in the CRHP, we are able to state a Nyquist
theorem for LHDS, which provides a basis for robustness
characterization. As in the finite dimensional case, the minimum
singular value of the return difference is used to characterize the
robustness of the system against unstructured error in the system

loop. Because of this formulation, the guaranteed stability margins
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- for the linear quadratic optimal system, termed the linear quadratic
hereditary differential system, are derived directly from the Kalman
frequency domain inequality. We have shown, by directly working
with complex-valued matrix functions in the frequency domain, how
one can derive the Kalman Inequality for LQHD systems.

In Chapter 3 we generalized the results in Chapter 2 to
distributed, linear-time-invariant systems by considering a
formulation using linear operators. This is achieved for the case
of finite-dimensional control space by combinining the Yakubovich
frequency domain theorem and the generalized Nyquist theorem by
Desoer and Wang.

The results that we obtain in Chapters 2-3 contain the finite
dimensional system case as a special case. In particular, we showed
that the guaranteed stability margins of the distributed, LQ optimal
systems are, generally speaking, the same as those of the finite
dimensional LQ systems.

In Chapter 4 we employ a flexible beam, simply supported at
both ends, to illustrate the use of the above robustness results to
synthesize a closed-loop stable control design for the vibration
suppression problem. Lyapunov control is used, which offers the
advantages of being computationally less complex than the general LQ
method with better stability margins. By using a suboptimal scheme
which calls for discrete spatial sampling of the deflection rate

along the beam, we are able to obtain a closed-loop stable finite
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dimensional controller when there is a sufficient amount of inherent
damping. Specifically we show that we can design such a controller
if the modes of the structure has a constant, albeit small, damping
ratio. The fact that the number of spatial samples required to
approximate the controller increases as this damping ratio decreases
is exposed. The case of constant damping coefficient bears similar
results, except that the suboptimal controller contains spatial
sampling as well as a dynamical compensator to attenuate the high

frequency components of the loop response.

5.3 Suggestions for Future Research

We believe that the linear quadratic gaussian (LQG) approach is
a practical method for designing feedback controllers for
distributed systems, provided that the control system designer
understands the fundamental characteristics of the compensated
system. This thesis has laid down the basic groundwork for the
designer to do a credible job. However, there is a whole realm of
other design techniques, which have proven to be successful in
finite dimensional system design, that this thesis has not explored.

We have studied the implication of full-state 1LQ feedback for
distributed system in detail, and have analyzed the use of spatial
sampling to approximate the full-state measurements.

Depending on the application, one or more of the following
techniques may be useful for control designs for distributed

systems. When combined with the results in this thesis, these
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techniques are likely to produce control designs which have
desirable properties. Theoretical treatments as well as
applications of these techniques for distributed systems will allow
us to obtain a unified framework for dealing with infinite

dimensional system design.

(1) loop-transfer-recovery (LTR) technique

The LQG/LTR technique [3], [6] is one of the most popular
methods for designing controllers for multivariable systems. In
Chapter 2, we mentioned that this technique seems to be applicable
to linear hereditary differential systems also. We think by
properly choosing the stochastic filter (observer), the same can be
said of distributed systems in general. Although in theory the
LQG/LTR method is limited in applicability to minimum phase systems,
Athans [6] has reported that desirable results are obtained in
actual applications even when the system is non-minimum phase, and
has recommended the use of this method under all circumstances.
Therefore, we suggest developing this method for infinite
dimensional systems, and carrying out a feasiblity study of this

method on some concrete applications.

(2) Design Synthesis Technique that Utilizes Crossfeed Structure

In multi-input-multi-output systems, it is possible [13] to
adjust the control weighting matrix to trade off the stability

margins against the various crossfeed perturbations among the
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control channels. Lee and Gully [67] have applied this technique to
the control of lateral dynamics of a high performance missile. This
technique is applicable to all distributed, linear-time-invariant

systems without modifications.

(3) Design Analysis technique that Explores Error Structure

Lehtomaki, et al. [63] have shown how one can relax the
conservatism when evaluating the feedback design by taking into
account the structure of the perturbation error. As a result, the
control system designer has more room to trade off the various
system characteristics in his design. This technique is applicable

to distributed systems without modifications.

A notable limitation of our results for distributed system is
that the control space is finite dimensional. This is because all
the known Nyquist-type of criteria have the same limitation.
However, the Yakubovich theorem is valid for infinite dimensional
control spaces also. Perhaps by exploring a function other than
det(®), the robustness results in Chapter 3 (which requires
verification on the Nyquist path only) can be extended to this case
also. Until this suggested research direction is undertaken, one
must contend with results such as that in Appendix B which requires
the control designer to check the invertibility condition over the
whole CRHP, instead of the Nyquist path alone.

There are two important types of modeling errors that we have
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not considered in this thesis. Quite often the delay time in a
time-delay systems is not known exactly. It is useful to know how
much error in this delay time can a time-delay system tolerate
without becoming unstable. Also we have not considered nonlinearity
in the system loop. We think both of these error types are
important and more work should be done to expose their impact on the
system stability.

In this research, we have not fully analyzed the impact of
classifying perturbation errors into modeling errors and
implementation errors. For infinite dimensional control designs, it
may be advantageous to distinguish between these two classes of
errors, and analyze each of them separately, as in the localization
theorem in Lee, et al. [64].

Lastly we would like to suggest that the control problem
formulation in Chapter 4 for the flexible beam can be extended to
control problems for flexible structures with multiple components.
The exact Lyapunov solution method by Djaferis and Mitter [73] seems

to be suitable for handling these problems.



154

APPENDIX A

Derivation of Identitites 1 — 5 for LQHD Systems

Derivation of Identity 1:

K,(s) =JO K, (6)e>%do (A.1)

=T

Integrating by parts, we get

K, (s) = L (K (0)KBeT) - -;-JO e®® S K, (0)d0 (A.2)

Derivation of Identity 2:

Substituting Eq. (2.7) into the integral, we readily see that

O soa - -1, 5 =04
o G5 Ky (0090 = [A"-KgBRBIK, (5) + Y KA HKA(S)
i=1

+ JO e>%,(0.0)a0 (A.3)

-T

where K2(0,9) is given in Eq. (2.9), i.e.
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8 8,
JO e® K,(0,6)d6 = J? e’ K, (-6-T)Ad®

-T T

- Jo %9 Je K, (-0+0)BR™'B’K(0)dod®
-T -T
0 , otherwise

N-1 '
Jo <0 z AK (6+6,) . -T <646,
+ e {
-T .
i=1

+

N-1 )
.50 2 ( Ki(-6+6;)A; . 8, <6
0 , otherwise
T i=1

A' C)K, (C+8) ., (>-6-
=T =T

0 , otherwise
K (C-8)A,(C) . L6~
+J0 K JO (! 0 }dC de
-T -T 0 , otherwise
(A.4)

On the right-hand-side of Eq. (A.4), it is easy to see that the lst

term

JTT ek (-0-1)Ad0 = & 7K, (~s)Ay (A.5)
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by a change of variable. The 2nd term is simply ¥(s) as defined in
Eq. (2.21). Fl(s), F2(s), El(s). Ez(s) are obtained from the 3rd -
6th terms, respectively, by applying the appropriate upper and lower

limits to the integrals.

Derivation of Identity 3:

¥(s) = Jo 59 Je K;(-9+0)BR—1B'K1(a)dad9 (A.6)
-T -T

Changing the order of integration gives

¥(s)

Jo JB e K (-6+0) BR'B'K, (0)d8do (A.T)

-T T

By a change of variable v = 8+0, we get

¥(s)

Jo JO e's"xl(w)BR'lB'Kl(a)es°dqda

=T °0

JO [ JO "5, (v)arIBR 'B'K, (0)e>%do (A.8)
-T g

Integrating by parts, using

U = Jj e 5K, (v)dv (A.9)
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and

1

dv = BR™ B'Kl(o)esada

we obtain

¥(s) = [J(_)

|
o

™5k, (v)dv] [J: BR'B'K, (¢)eCaC] 7T

T g

-T

[

-T

e—SUK;(a) Ja BR_IB'KI(E)eSchda (A.10)
0

Evaluating the 1st term on the right-hand-side, we see that it is
the same as Kl(—s)BR_lB'Kl(s). Comparing the 2nd term with Eq.
(A.8), we see that it is actually -¥'(-s). Therefore,

¥(s)+¥' (-s) = K, (-s)BR 'B'K, (s) (A.11)

as claimed.

Derivation of Identity 4:

From Eqs. (2.22) and (2.23), we know that
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N-1

r(s) = ) JO AiK1(9+ei)esed9 (A.12)
. -T-0,
i=1 i
N-1

L] . Se

Iy(-s) = 2 Jz AK, (-6+0,)e> a0 (A.13)

i=1 i

By a change of variable, Eq. (A.12) can be written as
N-1
-sB
_ i, sCor. oTd
r,(s) = ) J?T ALK, (0)e*are (A.14)
i=1

Similarly, Eq. (A.13) can be written as

N-1

r. - 2 JO A.K sCq e A.15
20 = ) | Ax©etace (A.15)
i i

i=1

Adding Eqs. (A.14) and (A.15) produces the desired result.

Derivation of Identity 5:

From Eq. (2.23) we know that

El(s) = JO
-T

JO A (E)K, (£+0)age™ a0 (A.16)

-7-0
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- Changing  the order of integration, we get

E,(s) = JO JO Aé(E)K1(§+6)esed9d§
-t V-1-§

By a change of variable, we obtain

E)(s) = J? J§ A(E)K, (0)e> e acag

T =T

Similarly from Eq. (2.24), we get

1

Ey(-s) = Jo JZ Ag(EXK, (e e agag
=T

Adding Eqs. (A.18) and (A.19) gives

El(s)+Eé(—s) = JO Jo Aé(f)Kl(C)esce_SEdeE
-T

=T

and the claim is immediate.

(A.17)

(A.18)

(A.19)

(A.20)
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APPENDIX B

Robustness Theory for Infinite Dimensional Control Space

The purpose of this appendix is two-fold. First we give a
tutorial on singular values2 of linear bounded operators, which are
useful for characterizing stability margins of infinite dimensional
systems. Second we use this opportunity to show how one can
characterize robustness of unity feedback system in general by
exploring the invertibility condition within the Banach algebra of
linear bounded operators. This result differs from that in Chapter

3 because the control space may be infinite dimensional.

B.1 A Tutorial on Singular Values of Linear Bounded Operators

The definitions and results in this tutorial are largely due to
or are easy consequences of Gohberg and Krein [68]. Also we have
drawn on Ben-Israel and Greville [44] for a lot of the motivation
behind the definitions and interpretations of singular values. We
have limited this tutorial to contain only results that are relevant
to the study of robustness in this appendix.

For the development of singular values, we list the following

definitions and notations.

Singular values are referred to as s—-numbers in [68].
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H = a separable Hilbert space with inner product (e,e)
B(H) = set of all linear bounded operators on H
C(H) = set of all linear compact operators on H
I = identity operator H
For A e B(H),
|]a]] = induced operator norm of A
A*= adjoint operator of A in the sense that
(x,Ax) = (A*x, x) for all x e H
R(A) = range of A

r(A)

dimension of R(A)
Rj(A) = j-th eigenvalue (in nonincreasing order) of A, where A
is compact
(A complex number A is called an eigenvalue of A if (AI-A) ¢ = O has
at least one nonzero solution ¢ ¢ H, i.e. eigenvector)
Let A = A" and (x, Ax) > O for all x ¢ H. Then A1/2 = square

root of A in the sense of

%
A = A1/2 A1/2

B.1.1 Singular Values of Linear Compact Operators

Roughly speaking the set of compact operators is the closest
family to matrices. Since a compact operator on a separable Hilbert
space admits a Schmidt expansion, defining the singular values of a

compact operator is almost as natural as defining its eigenvalues.
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Definition (Singular Values of a Compact Operator):

Let A e C(H). Then the eigenvalues of the operator

D = (A2 (B.1)

are called the singular values of the operator A.
*x . 1/2 | . . .
Note that (A A) is linear compact because A is. Hence its
eigenvalues are denumerable. We shall enumerate the nonzero
singular values, which are all nonnegative, in nonincreasing order,

taking their multiplicities into account. Specifically, let

o5(A) = A(D) i J=L.2.....r(A) = r(D) (B.2)

aj(A) 0 ;: j=r(A) +1,... (B.3)
Much of the significance of singular values is due to the fact

that one can decompose any linear compact operator into a series of

orthogonal parts. The following theorem is due to the well-known

Schmidt expansion of compact operators.

Theorem B.1 (Singular Value Decomposition):

Let A € C(H). Then A admits a Schmidt expansion, i.e. there
exist {¢j}, {¢j}, orthonormal bases for H, such that the operator A

can be represented by
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r(A)

21 o (A) (R )¥;: hel (B.4)
j:

Ah

This representation of A is called the singular value decomposition
(SVD) of A. The series summation converges uniformly in the induced
operator norm. Taking multiplicities into account, the basis
elements ¢j’ wj are unique for j = 1,....r(A), up to a complex
scalar multiple.

Theorem B.2 can serve as an alternative definition of singular

values. We shall write the SVD of A as

r(A)

A = .21 o (A) (+.9,) ¥, (B.5)
J:

Because of the orthogonality of the decomposition, one can prove the
following theorem, which is the main motivation for formulating

stability margin in a singular value context.

Theorem B.2 (Approximation Property of Singular Values):

Let A ¢ C(H). Then for any k = 1,2,...,r(A),...

o (A) = min ||A-Kk|| (B.6)
eFk
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where

Fk = set of all finite dimensional operators

of dimension smaller than k (B.7)

- Moreover the solution Kk to Eq. (B.6) is given by a partial sum in

the SVD of A,

k-1

Ko=) o) (.8 ¥, (8.8)
j=1

Corollary B.2

(2) o (4) = [|a]l (B.9)

(b) Let r(A) =n < ». Then an(A) is nonzero, but an+j(A) is zero,
for j =1,2,.... Suppose r(A + AA) < n-1, where AA e B(H).
Then

[1aal] > o_(4) (B.10)
Moveover, equality in Eq. (B.10) occurs if

M = - o (A) (=9 )W (B.11)

(c) Let A, B e C(H). Then
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ai+j—1(A + B) £ oi(A) + aj(B); i,j=1.2,.... (B.12)

The proof of Theorem B.2 can be found in [68, pp. 28-29].
Corollary B.2 contains easy consequences of this theorem. Corollary
B.2(a) states that the largest singular value of a compact operator
is actually equal to the norm of the operator. Since singular
values are similar to eigenvalues, they are often computationally
more tractable than using notions such as the induced operator norm.
It seems, therefore, that singular values are useful as a measure of
robustness, provided that we can extend Theorems B.1 - B.2 to
include linear bounded operators.

Conceptually the appeal of Theorems B.2 lies in the fact that
it relates the singular values of a compact operator, which is an
algebraic property, to a geometrical propoerty in the space of
linear bounded operators. Loosely speaking, the SVD gives the
shortest distance and directions to the "more singular" operators.

~If H is finite dimensional, the C(H) = B(H) = space of nxn
matrices, where n = dim H. Let A be an nxn matrix. Then A is

invertible if and only if an(A) > 0. By letting i =n, j =1 in Eq.

(B.12) and
A=A+ AA (B.13)
B=-AA (B.14)

where AA is an nxn matrix, one gets
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an(A) < 01(—AA) + an(A + AA) (B.15)

But by the definition of singular values

o (-8A) = o, (8A) (B.16)
Hence if

o,(84) < o (A) (B.17)
then

o (A+ AA) >0 (B.18)

i.e. A + AA is invertible also.
We shall return to discuss this concept when we discuss the

robustness theorems.

B.1.2 Singular Values of Linear Bounded Operators

In general linear compact operators are too restrictive for
modeling distributed dynamical systems. In this section we extend
the notion of singular values of linear operators to include linear
bounded operators. The main difficulty here is that the
"eigenvalues" (more precisely, spectrum) of a bounded operator do

not form a countable set. However this problem can be resolved by
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- decomposing the linear bounded operator into three parts, the first
of which is a linear compact operator.
To give meaning to the singular values of linear bounded

operators, we need the following terminology:

Definition (Spectrum of a linear bounded operator):

Let A ¢ B(H) and

D = (A"n)172 (B.19)
Then

(a) the spectrum sp(A) of A is the set of all complex numbers A
such that AI-A is not invertible in B(H).

(b) a point A of sp(D) is called a point of the condensed spectrum
of D, denoted by sp_(D), if it is either an accumulation point

of sp(D) or an eigenvalue of D of infinite multiplicity.

(c) Let

p = sup sp(D) (B.20)

Case 1: If pu € sp (D), then define

N(D) =i §=1.2. (B.21)

Case 2: If p e sp (D), then it is be an eigenvalue of finite

multiplicity m. Define
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Aj(D) =p; Jj=12,...,m, (B.22)

and the remaining A

I
Apeg (@) = 25(D)) 5§ = 1.2, (B.23)
where
D =D-pP (B.24)

and P is the orthoprojector onto the eigenspace

of the operator D corresonding to the eigenvalue pu.

Definition (c) gives a recursive procedure to arrange the

largest eigenvalues of D, which are nonnegative, in a nonincreasing

order.

By this construction the sequence Aj has a limit, which we

denote by A (D). Clearly,

A, (D) = sup sp_ (D) (B.25)

Now we can formally define the singular values of a linear

bounded operator.
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Definition (Singular Value of Linear Bounded Operators):

Let A € B(H). Then the singular values of A are defined in

nonincreasing order as

aj(A) = AJ(D) i j=1,2,...,@ (B.26)
where Aj(D) is defined in Definition (c) above.

Figure B.1 illustrates the relationship between the spectrum of

D and the singular values of A.

C(4) (orthoprojector representation)

Tinf (4)
o.(4) (compact operator
1 J representation)

ORI A A AAAAAA IR AA A A A R N——F———
0] fea)

The points x and the intervals (/////)

are contained in sp[(A*A)l/z]

Figure B.1 Illustration of Singular Values of Linear

Bounded Operator A

In the figure, we see that in defining the singular values for
the operator A, we have broken A into three parts, the first of
which is a compact operator. Hence the singular values can be

enumerated. The second part is an orthoprojector on a plane which
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separates the eigenspace of the compact part from the "non-compact”
part. For the readers who desire to know this geometrical
interpretaiton more precisely, we refer them to [68, pp. 60-61].
The quantity ainf(A) in the figure will be defined later.

The following theorem provides the motivation behind the

construction of the singular values.

Theorem B.3 (Approximation Property of Singular Values):

Let A e B(H). Then for any k = 1,2,...,r(A),...
o (A) = min | 1A - Kkll (B.27)
Ky eFy

where Fk is defined in Eq. (B.7). Moreover

o (A) = min ||A - K]| (B.28)
KeC(H)

The proof of this theorem is given in [68, pp. 61-62]. This

theorem has an important corollary.

Corollary B.3 (Fundamental Relationship between Singular Values and

Norm):
Let A e B(H). Then
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o,(4) = ||All (B.29)

Proof: F1 = {0} C B(H). Therefore letting k = 1 in Eq. (B.27)

gives Eq. (B.29). (End of Proof)

Referring back to Figure B.1, we define the leftmost point of

the spectrum as

ainf(A) = inf sp(D) (B.30)

We will show that

-1 -1
al(A ) = [ainf(A)] (B.31)
First we establish a lemma.

Lemma B.4:
Let A e B(H) be invertible. Then
(a) 1if A e sp(A), then A_l € sp(A_l) ; (B.32)
(b) if A is a nonzero limit point in sp(A), then A—l is a limit
point in sp(A1). (B.33)
Proof of Lemma B.4:

First we note that the invertibility of A implies O € sp(A).
Hence AI - A is invertible if and only if A" - N"!I is invertible.
Therefore A_l e sp(A—l). (b) follows from (a) because the function

R_l is analytic in the region A # O.



We state Eq. (B.31) formally in a theorem.

Theorem B.5:

Let A e B(H)

ainf(A) =

172

be invertible. Then

[o,(A"H17!

Proof of Theorem B.5:

(B.34)

£
Since sp[(A A)l/z] contains only positive numbers, by Lemma

B.4,

{inf sp[(A"4)}27)7! = sup spL(A*a)”V/

But
-1
al(A ) =

2
because A > A is

W™

and

o (A7)

-1

sup sp[(A’eA)_l/2

]

an involution [46]; i.e.

Aty

o, [(A1) ]

(B.35)

(B.36)

(B.37)

(B.38)
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Thus by the definition of ainf(A) in Eq. (B.30)
[o. ()T =004 (B.39)
inf 1 :
(End of Proof)

This completes our discussion on singular values of linear

bounded operators.

B.3 Generalized Robustness Theorem

In this section we present a small gain theorem for additive
perturbations, and use Theorems B.3 and B.5 to develop a generalized
robustness theorem for feedback systems. We adopt the definition of

feedback systems in Willems [53].

B.3.1 Definitions and Notation

We shall use the following notation in this section:
H = a separable Hilbert space with an inner product (e,e)
F = a separable Hilbert space of functions

f: [0,2) > H, with inner product <e,e>

PT = truncation operator on F defined by

f(t) s t<T
(P £)(¢) = ; f(®) e F
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|
Il

-extended space of F

{f(O)IPTf e F for all 0 < 7 < »}
I = identity operator on Fe(or F)
B(Fé) = set of all linear bounded operators on Fe
B(F) = set of all linear bounded operators on F
Let G e B(Fé) (B(F)). Then
G* = adjoint of G with respect to <e,*>
|IG]| = induced operator norm by <e,e>
Let G be an operator on Fé(F). Then G is called causal if

PGP = PG for all > O, where P_ has been extended to F_. Let
B*(F,) = {G e B(F_)[G is causal)

and
B+(F) = {G e B(F)|G is causal}

With an abuse of notation, given G:Fé - Fe, the restriction of

G to F, G|F, is also denoted by G when no confusion arises.

Definition (Nominal Unity Feedback Control System):

In Figure B.2

y = Ge (B.40)

e = u-y (B.41)
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B.2 Nominal Unity Feedback System
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G: F » F_ is causal (B.42)
e e
The system in Figure B.2 is called the nominal unity feedback

system. It is called linear if G is linear.

Definition (Unity Feedback System subject to Additive Perturbation):

In Figure B.3

y = (G + AG)e (B.43)

e = u-y (B.44)

G: F » F_is causal (B.45)
e e

AG: F_ » F_is causal (B.46)
e e

"~ The system in Figure B.3 is called a unity feedback system subject

to additive perturbation.

Definition (Well-Posedness of Feedback Systems):

Referring to the unity feedback system in Figure B.4, let F: Fé

- Fé be causal. Then the basic feedback equation is

(I + F)e =u (B.47)
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Figure B.3 Unity Feedback System subject to

Additive Perturbation
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+ e y

Figure B.4 Unity Feedback System
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(a) We say that the unity feedback system is well-posed if

(I + F)—lt F - Fe exists and is causal (B.48)

(b) Given that the unity feedback system is well-posed; we say that
the unity feedback system is (finite gain) stable if the
inverse in Eq. (B.48) is bounded when restricted to the space
F, i.e.

(I + F)"}|F is bounded (B.49)

Remarks:

(1) Referring to the definitions of the nominal unity feedback
system, and system subject to additive perturbation, two cases
are of interests:

a) F represents the nominal plant operator, i.e. G: Fée Fe;
b) - F represents the nominal plant operator plus -the
perturbation operator, i.e.
F =G + AG: Fé - Fe . (B.50)
(2) A unity feedback system not satisfying the well-posedness is

ill conditioned. Therefore in the rest of this appendix, when

we speak of a unity feedback system, well-posedness is always

assumed implicitly.
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Suppose that G, AG e B+(Fe), and assuming well-posedness, then

the nominal unity feedback system is stable if and only if
-1 +
(I +G) ~ e B (F) (B.51)

and the unity feedbak system subject to additive perturbation

AG 1is stable if and only if
-1 +
(I + G + AG) e B (F) (B.52)
This is true since a causal operator on F can be extended
uniquely to a causal operator on Fe.
The notion of stability here says that a bounded input produces

bounded output.

Given that the operators G and AG are bounded and the nominal

~-unity feedback system is stable, a basic and legitimate question to

ask is:

"What is the region of robustness of stability of the unity

feedback system?" In other words, "what is the range of AG for

which the perturbed system is (guaranteed to be) stable?"

One answer to this question is the following theorem.

Theorem B.6 (Small Gain Theorem for Additive Perturbation):

Consider the feedback system in Figure B.3 (assuming
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well-posedness). Suppose G: Fe - Fé and AG: Fé - Fe are both linear
and causal and the nominal unity feedback system is stable, i.e.

there exists

(1 +6)! e BYF) (B.52)

Then a sufficient condition for the perturbed unity feedback system

in Figure B.3 to be stable, i.e. there exists

(I+G+46)71eB F) (B.53)
is

(1 + &) lagl] < 1 (B.54)

Corollary B.6

~Another sufficient condition is

-1
[l(x+6) |1 |lac]] <1 (B.55)
or
~1,y-1
[{aG]| < [I(x +6) "] (B.56)

Proof:

Since F is a Hilbert space, under the induced operator norm
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B(F) forms a Banach algebra (see e.g. Rudin [46] or Willems [53]).

Moverover B+(F) C B(F) is a subalgebra. Therefore if
(1 + 6y tac]| <1 (B.57)

then I + (I + G)—IAG is invertible in B+(F). Hence I + G + AG is
invertible in B+(F), since the invertible elements of B+(F) forms a
group. Therefore the unity feedback system in Figure B.3 is stable.

The corollary follows since under this norm
-1 -1
[z + 6y a6l < [I(x +6)y 1] |lac]] (B.58)
(End of Proof)

Remarks:
(1) This theorem shows that the region of robustness of stability
can be characterized by the gains, i.e. induced operator norm

of the inverse of I + G and AG.
-1,,-1
Hag]| < |11 +6) "] (B.59)

This equation will form the basis for the development of the
robustness theorem in terms of singular values below.

(2) The requirement that F be a separable Hilbert space can be
relaxed to a Banach space, but the former is needed for the

development of singular values.
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The following robustness characterization in terms of singular

values is a direct consequence of Theorems B.6, B.3 and B.5.

Theorem B.7 (Small Singular Value Theorem for Additive

Perturbation):

Under the conditions of Theorem B.6, a sufficient condition for

the perturbed unity feedback system in Figure B.3 to be stable,is

al(AG) < ainf(I + G) (B.60)

By using the Parseval's theorem, one can easily show that
Theorem B.7 implies the usual finite dimensional robustness
characterization results (Sandell [74], Lehtomaki [5], Doyle [10]).

This completes our discussion on robustness and the singular

values of linear bounded operators.
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APPENDIX C

Modal Expansion of Flexible Beam

First we use the principle of separation of variables to solve

Eqs. (4.7) - (4.9). Let

,t) = X T, (t C.1
y(x.t) k§o LGOT, (6) (c.1)

Then Eq. (4.7) can be written as

E L X, ()T (t) - € C % o0 L1 () X, (x) <1 (0
L tad K o2 k) g Tk 12k
= u(t) 6(x - 3) (C.2)
Now try
iX()+ %X (x) =0 c.3
o2 kU T a0 = (C.3)

Then Eq. (C.2) becomes

o0

2
Y Left (1) + e §- T (0) + S5 T ()] X, (%)
k=0 dt

= u(t) 5(x - 3) (C.4)
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Using the boundary conditions, Eqs. (4.8) - (4.9), in Eq. (C.3), we

get

O = km i k=0,1, 2... (C.5)
and

Xk(x) = sin(kmx) i k=0,1, 2, (C.6)
Since V2 sin(kmx), k = 1, 2,... forms a complete orthonormal basis

for the beam shape between x = O and x = 1, satisfying the boundary
conditions, we conclude that the solution to Eq. (4.7) - (4.9) is

given by

v(x,t) =§ sin(kmx)T, (t) (C.7)
k&1

where Tk(t) is given by Eq. (C.4). This same result can also be
obtained by using the Fourier series expansion.
Now multiplying both sides of Eq. (C.4) by sin(kmx), and

integrating over x, from O to 1, we obtain

2d 2

i (t) + G So T (1) + i? T (t) = 3 u(t) sin(ED) (C.8)
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APPENDIX D

Green’s Function Characterization of K2

The Green’s function in Eq. (4.34) is determined as follows.

Try
h(x.§) = 2 aisin(ivx) sin(iw§) (D.1)
i=0

where ai’s are to be computed. Multiplying both sides by sin(nw§)

and integrating over the interval between £ = O and § = 1, we get

(043

1 1
J h(x,§)sin(nm§)df = I L 2 aisin(iwx)sin(iwf)]sin(nwf)df
0 0 i=0

(D.2)

By using Eq. (4.34) and the orthonormality of the sine functions,

this is reduced to

[\3|=’Q

K2 sin(nmx) = sin(nmx) (D.3)

But

2
Q—E-sin(nﬂx) = - nzvzsin(nwx) (D.4)
Ix
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Therefore,

o 2 2

d . .
K2 5;5 sin(nmx) 5 sin(nmx) (D.5)

But from Eq. (4.30),

2
K2 Q—i-sin(nwx) = - sin(nmx) (D.6)
ox

This implies that the value of a must be

@ =755 : n=1, 2, 3 (D.7)

Since sin(nmx) forms a complete basis for S(0,1) and all the
boundary conditions are satisfied, we conclude that the operator K, -

2
can be characterized in the form of Eq. (4.34), by using

h(x,§) = 2 —525 sin(imx) sin(inf) (D.8)
i=1 i

It is easy to verify that K2 thus defined is positive definite.
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APPENDIX E

Optimal Loop Function Analysis

One can write

o]

g(s) = z g, (s) (E.1)
k=1

where

g(s) = ;25“‘2(15_“) p) 22; 7,
k™ s +{k n stk

) (E.2)

First we examine |g(s)| at s = jk2w2, k =1,2,... Separating gk(s)
from the series, we get

le(s)] < lg ()] + In(s)] (E.3)
where

(4]
1 2 ,mmw 2s
(s) = z L sin? (I (E.4)
hk m2W2 2 52+§k21r2s+k41r4
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Claims:

(1) For k odd,

] E.5
mf;Xlgk(Jw)l lg, (K57 | = o ”4 (E.5)

(2) For k even, gk(jw) is identically zero,

(3) lhk(.ik ) | < 5 (1 + 3 5) (E.6)

™

Proof of Claims:

(1) For k odd, since the function,

(k4 4_ 2 2+§2k4 4 2 4 4

(k'm™)

-2
lg, (jo)|™° =
k 4w

ko [§2k4 4, L 4422

achieves a minimum when the second term in the sum is zero, i.e. at

k w , ng(Jw)I achieves a maximum there also, and

lg, (3K27%) | = 22—
k (k4w4
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(2) This is trivial since sin (%1 = 0 for k even.

(3) Let us split hk(s) into two parts,

k-1
1 .2 mw 2s
pk(s) = 2 —5 5 sin (2—) 5 ) (E.8)
T s +{m 7w s+m’w
m=1
[+
1 .2 mmw 2s
G = ) Szsin® G 555 (E-9)
mk+1 ™ T sT+(m T s+m'w

At s = jkzvz,'taking the magnitude of each term, and using the fact

that sinz(gzj <1,

k-1 5
o ()| ¢ ) 2 k (E.10)
k - m2v4 4 4 2 4 4 1/2
m=1 [(m™-k") +Cmk ]

Droping §m4k4 from the demoninator,

k-1 5

12 2 2 _k

o, )| ¢ ) S 31 (E.11)
m=1

Now observe that by partial fraction expansion,

2
k 1 2 1 1
== (5 + - ) (E.12)
k4-m4 k2 m2 k2-m2 k2+m2

Bwll\b
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Therefore,

I, (3% | <53 } (2

By the use of table for series [71],

k-1 ®

1 1
2 22T 2 § 2.2
m=1 m=k+1

Also,

)

(E.13)

(E.14)

(E.15)
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Thus
2 2 1
P (7Y | < —5 (E.16)
2k
Similarly,
2 2 1 3
g, (3k“7) | < + (E.17)
k 2k2w2 4k4"4
Now since
I ()] < Ip )| + oy (s)] (E.18)
we obtain,
L2 2 1 3
[h, (jk“7°)| < + (E.19)
hk‘ k2w2 4k4w4

establishing claim (3).

Using the above claims,

i 7 k odd
g ()| < L (14 —2 ) + { EKT (E.20)
k 2 2 2 2
k™r 4"
0 k even
For k relatively small, and odd, since C is small,
22,1~ 2
ls (k") | = —23 (E.21)

Ck'mr
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But for k sufficiently large, the term

2 no longer
§k4w4
3

dominates over L (1 + ). Consequently, the values
k2v2 2 2

|g(jk2w2)| are small at high frequencies and rolls off at a rate of

no less than 20 dB/decade.

It is not hard to show, by modifying the above analysis, that

for w = jf2v2. where f > O is not necessarily an integer,

2
. 1 3 2f
|g(J(")| < <2 95 (1+ 2) + 2 1/2 (E'22)

£ ar i cdor okt

where k is the nearest odd integer to f. Therefore, on the whole,
|g(jw)| rolls off at 20 dB/decade at high frequencies, and there

exists a cutoff frequency 0, -
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APPENDIX F

Derviation of Suboptimal Loop Function

Recall from the open-loop analysis that

N8

sin(imx) 'i‘i(t) (F.1)

gy _
at (x:t) = )

1

Hence ze(t). defined in Eq. (4.52), can be written in terms of Ti(t)

as
m .e .
. oilw
z,(t) = izl sin(*z0) T,(t); 2=0, 1,...,N (F.2)
Substituting this into Eq. (4.53) gives
- N

N-1 .
Th(t) = & ) sin(5T) _21 sin(:E0) T, (¢) (F.3)
=0 =

Combining this result with Eq. (4.51), and translating the result in

the frequency domain, we get the suboptimal feedback

o N-1 ® . A
v(s) = 2 ;%—i sin(gI) ﬁ-eio sin(£§£) iZl sin(lﬁzﬁ T(s)

k=1 T =
(F.4)
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where for the moment we assume M = ® in Eq. (4.51). We shall remove

this assumption later.
Using the transfer function Ti(s)/u(s) from Eq. (4.14), we

obtain

Kk

We) o N 2
u(s) kZI k2"2 2

N-1 ir

o . . 2s sin(—3)

ikw ilw 2

x [z sin(——) sin(——) ] (F.5)
N EZO iZI N N 52 + §i2v2s + i4v4

Rearranging the above, we get (replacing the right-hand-side with

2(s)).

~ ® 2s sin(i—g) g oy
8e) =) 353533 () 535D
. s  +C0i™r"s +i'w k™
i=1 k=1
N-1
1 £k . 18
X [N-ez sin(—ﬁI) 51n(lﬁz)]} (F.8)

where the order of the summations over i, k and £ have been changed.
This is possible because the summation over £ is finite, and those

over i and k are easily seen to be uniformly convergent because of

the i4w4 and k2v2 terms in the denominators.
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Let cl: denote the quantity inside the braces in Eq. (F.6).

Then

N-1

o«

N 1 1 .k .8k . ilmw

U (2 2EntD ) D sl e
k=1 k™7 2-0

The quantity cl: can be evaluated in closed form. Interchanging the

summation in Eq. (F.7),

N-1 ©
N 1 . iéw 2 .k . 8kw
i =R 2 sin (—N—) 2 1‘:2—2 s1n(2—) Sln(T) (F.8)
2=0 k=1 T
Using a trigonometrical identity,
N-1 ©
N 1 . ilw 1 1 ¢
¢ =5 z sin (—N—) k_21r2 {cos[kﬂ(§ ~ IT)]
=0 k=1
- cos[kr(L + 73 (F.9)
2 N :

By using the following formula from Gradshteyn and Ryzhik [71],

: 0<x <2 (F.10)

we get
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1 14 1 1 .1 4 1 .1 2.2
) ZreslnGrpl=5-3G+PHr1d+H e
k=1
1 1 .1 14 1 .1 £ 2 N
o L, 6 2 W*IGE-P. <3
2 3 3 coslkr(z - p)] = 2
o Lot e 11 e? N
- 6 2'2 N 4'2 N 2
(F.12)
Therefore,
N-1 g , &< N
N 1 ier, | 2N -2
< =¥ E Sin(T . . (F.13)
=0 5~ 5N .§<e
Let N be even and r is the integer N/2. Then
N-1 r
N 1 . clim 1 . lim
ci =—2N—2 z ESln(T) +N—2 2 eSIH(T)
£=0 2=0
(F.14)
N-1 r

. 2im 1 . lim
tox ) singD - & ) sin(gE
£=0 £=0
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Using tables [71]

N-1

. 8im ._odm . N-1)i i
z 51n(—N—) = s1n(2—) 51n(L2NM) cosec(;N—w)
£=0

This can be reduced to
N-1
. Lim im
z 51n(—N—) = cot(-ﬁ)

=0

Also from tables [71]

N-1 Ncos(2N-1 im)
. 8im sin(iw) 2N
esin(=—) = — - -
N7 4sin?ldTy  2sin2(iT
2= 2N 2N

- This can be reduced to

N-1

. oim N i i
2 es1n(T =§(—1) cot(%)
=0

For the other terms in Eq.(F.14),

r
eim P . . riw iw
2 sin(T) = s1n(2N— i) sing— cosec(ﬁ

2=0

(F.15)

(F.16)

(F.17)

(F.18)

(F.19)
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sin 5% i (r+1) cos 2r1 iw
z 81r 2N 2N
231n( = -
i 2(1w) 9si 2(1w)
£=0 N m

But by construction,

|
]
N|=

Hence Egs. (F.19) - (F.20) can be simplified to, for i odd,

r
2 s1n(l£I) = [cot (%%) + sin(%l)]

=0

and for i odd,

iéw

2 esin(ET) = (-1

2=0

Therefore, for i odd

= (-1) [—li-cosec
4N

1 2, 1w
[4

cosec (ZN) t 5

(2N) N+1

(N+1)]

- axd

(F.20)

(F.21)

(F.22)

(F.23)

(F.24)

Now observe that c? above is obtained by summing over k for

infinitely many terms in Eqgs.

(F.8) - (F.12).

In actual
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implementation, this is not possible, and we can only compute the
series fromk =1 to k = M for some finite M. However, we can
always choose M sufficiently large such that the error introduced by

this truncation is less than —lﬁu for each & in Eq. (F.13).
4N

Therefore, since £ raises from O to N-1, the total truncation error

between the actual and nominal c? in Eq. (F.24) is less than —l.

4N
This gives us Eq. (4.58), in which the symbol 0(%) is used to denote
N+1
N>

It is important to note that in the design procedure, M is

computed only after N has been chosen (Appendix G).
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APPENDIX G

Analysis of Implementation Error

Consider the difference between the corresponding terms

g,(s) - g,(s).

in”(57)
~ 2s . dmy NS5
g;(s) - £;(8) = 55— 3 [sin(53) ¢~ —5—]
sT +C0i"r"s +i'w i
(G.1)
Clearly,
max g, (jo) - g;(J0)| = lg;(40) - g,(J)| ,,  (G.2)
weR w=i"T

+

This is identically equal to zero for i even.
By performing an analysis similar to the one in Appendix E, we

see that at low frequencies, for { very small, Igi(jw) - gi(jw)| is

(o0
much larger than 2 |gn(jm) - gn(jm)l around w = izvz. i.e.
n=1

n#£i

~ o~ S g : 2 2
(o) - 8(j0)| % lg;(j0) - g,(jo)| around o = %2 (¢.3)

but this is not the case at high frequencies.
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Let us examine this more closely. For all i odd,

gy (J0) - g,(G0)| 5 o=—25 | _ (1) 2 I CR)

w=i"7 i : 2 2

Let 6 > O and let NO be chosen such that for N 2 NO

2L (G.5)

Then since
—_ < 1 G.6
2 >N (G.6)

we have

2 N+l (4]
- (—3) « (G.7)
i2w2 2N2 2
So a sufficient condition for |gi(ji2w2) - gi(jizwz)l < 6 is, by

using c? from Eq. (F.24),

2_12 |L2 cosec2(1My _ %| < 4Q for all i odd (G.8)
i 4N 2N i

In what follows, we show that N can be chosen such that Eq. (G.8) is

satisfied.
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It is easy to see that as N tends to ®w, for fixed i,

1 2  im
Fcosec (ﬁ) — 33 (G.9)

i

In particular, we can choose a small number e > O and N1 such that

for N > N1
1 2 7 1 eb
|—2 cosec (ﬁ) - —2| < ) (G.10)
4N T T

. . . 2 iw
Since the maximum of the discrete sequence cosec (2—N-) occurs at

i =1 and
1 2 iw 1 2w
max —5 cosec” (57) = —5 cosec” (&%) (G.11)
i 4N2 2N AN> 2N

We deduce from Eqs. (G.10) and (G.11) that

LZ cosecz(%) < % for all i (G.12)
4N T

Therefore for all i,

1 2 im 1 1+ed6 1
IF cosec (ﬁ) = 2—2| < max (—2. ﬂ) (G.13)
1T ™ 1T

because both terms on the left-hand side are positive. Clearly for

1+e6
5 -
T

all i > 1, the quantity on the right-hand side is
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If i is large enough such that

2 1+e6,1/2

2r” (g5 < i (G.14)
then

1+eb o)

5 ¢ £ (G.15)

Thus according to Eq. (G.13), for these i's,

1 1 2, im 1 o
53 I —g5 cosec (m) - 53 I < g— (G.16)
i“w 4N i~
Let
I = the first integer larger than 2#2 (%%EQ 172 (G.17)

Then what remains for us to do is to make sure that our spatial
sampling is dense enough that Eq. (G.16) is satisfied for i < I

also. Specifically, we want to choose N2 such that for N > N2

1 1 2 ir, 1 6
53 | —gcosec™(zp) - 55 | <3 (G.18)
i 4N i

for all i < I.
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Finally let
N = max(N,, Nl’ N2) (G.19)

where NO’ Nl’ N2 are defined along with the inequalities in Eqs.

(G.7), (G.16) and (G.18), respectively. This N guarantees that
lg(jo) - g(jw)| <6 for all v e R, (G.20)

and the suboptimal system is closed-loop stable.

Next we establish that for small {, e, and 6

(2.4

) lg(30) - 5,50} | < 0.05 (c.21)
i=1

izk

where k is the nearest odd integer to f > 0, and f is related to w

by
0 = £2n2 (G.22)

Note that by Eqs. (4.56) - (4.60),

o2

lg; (J0) - g, (Jw)| = 5 75— (G.23)
' ' [eeti?) sritedy 42

(262
lfiid|2 i
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where
1 2 im 1 1
ei = I E cosec (ﬁ) - ﬂ + OI(N)I (G.24)
i™r
By Egs. (G.13), (G.5), (G.6),
1+e5 | Com°
Ieil C—==+ =a, for all i (G.25)

2 4
T

Since e, 8, and { are usually small numbers, a is very close to 1

5-
4
Also,
2
2f 1 1
= + (G.25)
et 12520 £2442
Clearly
00 [+]
2
1 1 .4
) =< ) T 6 (G.26)
. 7+ i . i
i=1 i=1
izk
and using similar analysis to that in Appendix E, we obtain
> 2
1 w 3
) P <+ 3 (G.27)
i=1
izk
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Therefore, summing Eq. (G.23) over i, and using Egs. (G.24) -
(G.27), we get

[+4]
~o 1 3
) lgGol <A+ 2Ha (G.28)
i 3 2
4
i=1
i=k
For a 2 l§u which is usually the case, the last quantity in Eq.
T

(G.28) is less than 0.05.
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