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Abstract

We describe a new algorithm for the decoding of Reed Solomon codes. This algo-

rithm was originally described in [12]. While the algorithm presented in this article

is the same, the presentation is somewhat di�erent. In particular we derive more

precise bounds on the performance of the algorithm and show the following: For an

[n; �n; (1��)n]q Reed Solomon code, the algorithm in [12] corrects (�(�)�o(1))n errors

in polynomial time, where

�(�) = 1�
1

1 + ��

�
�k

2
� where �� =

$r
2

�
+

1

4
�

1

2

%
:

We also present the following two (hopefully) useful lower bounds on �(�):
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1 Introduction

For integers n; k and q such that a �nite �eld of size q exists, the Reed Solomon codes are

[n; k; d = n� k] codes over the alphabet F = GF(q) (the Galois �eld of order q). The code

may be obtained by letting a message m = m0 : : :mk�1 denote the coe�cients of a degree

k � 1 polynomial M(x) =
Pk�1

j=0 mjx
j and letting the encoding of m be C(m) = c1 : : : cn

where ci = M(xi) where x1; : : : ; xn are n distinct elements of F . (It is standard to pick

n = q � 1, though not necessary to prove the distance property or for the algorithms we

describe).

In this paper we consider the following bounded distance decoding problem:
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Input: Integers n, k and e; and n pairs f(xi; yi)gni=1, xi; yi 2 F with xi's being distinct1.

Goal: Find all polynomials p1; : : : ; pm of degree k�1 such that for every j 2 [m], pj(xi) 6= yi
for at most e values of i 2 [n].

As can be seen easily, this problem captures the bounded distance decoding problem for Reed

Solomon codes. There is a rich history of work associated with this problem. The classical

work of Berlekamp-Massey (cf. [2, 9]), corrects upto b(d � 1)=2c errors. Sidelnikov [11] and

Dumer [4] have constructed algorithms which correct up to b(d � 1)=2c + c log n errors for

any constant c [4, 11]. We give an algorithm that improves over these results when k=n is

su�ciently small (i.e., less than 1=3). Our algorithm is motivated by an algorithm of Welch

and Berlekamp [14, 3] which corrects b(d � 1)=2c + 1 errors. In this article we describe the

algorithm of Welch and Berlekamp and use it motivate our decoding algorithm. We also

describe a crucial intermediate step from [1] which forms the basis of our algorithm. Our

main result is summarized below and proven in Lemma 9.

Theorem 1 For every �, � The bounded distance decoding problem with parameters n, k =

�n and e = �(�)n can be solved in polynomial time provided

�(�) < 1 � 1

1 + ��
� ��

2
� where �� =

6664
s
2

�
+

1

4
� 1

2

7775 :

2 Decoding with univariate rational functions [14, 3]

The idea of Welch and Berlekamp [14, 3] can be informally described as follows: They

describe how a \rational function" in x can be used to \explain" the \data" f(xi; yi)gni=1.
They then show how to e�ciently �nd a rational function that explains the data and then

show how to use this rational function to �nd the (unique) polynomial p which disagrees

with the data in at most e places. We now describe the algorithms more formally.

Lemma 2 ([14, 3]) Given n points f(xi; yi)gni=1 such that there exists a degree k � 1 poly-

nomial p such that yi 6= p(xi) for at most e values of i, the following hold:

1. There exist polynomials N(x) and D(x) where deg(N) � k � 1 + e, D is monic with

deg(D) = e, such that for every i 2 [n], N(xi) = yiD(xi). (Informally, we could say

that yi equals the rational function N

D
(xi).)

2. Such a pair of polynomials (N;D) can be found in polynomial time.

3. For any such pair of polynomials (N;D), N

D
(�) = p(�), provided e � 1

2
(n� k).

Remark: As a consequence p can be found in polynomial time. We just divide the polyno-

mials N and D to obtain p.

1For our algorithm from [12] we can replace this condition with the weaker one that (xi; yi)'s are distinct.
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Proof: Let E(x) be an \error-locator" polynomial, i.e., E(xi) = 0 if (but not necessarily

only if) yi 6= p(xi). Notice that E has degree at most e and w.l.o.g. we can allow it to

be monic and have degree exactly e. We now notice that the polynomials D(�) = E(�) and
N(�) = p(�)E(�) satisfy the condition N(xi) = yiD(xi) for every i. This proves Part 1.

To see Part 2, notice that if we let the unknowns fnjge+k�1j=0 denote the coe�cients of N(�)
and let the unknowns fdjgej=0 denote the coe�cients of D(�), then the constraints N(xi) =

yiD(xi) give linear constraints on the unknowns fnjg's and fdjg's. Also the constraint

deg(D) = e. We do so by setting the linear constraint de = 1. Thus a solution pair (N;D)

can be found e�ciently by solving a linear system.2

Finally notice that there exists a pair (N;D) such that N

D
(�) = p(�), as described in the proof

of Part 1. Thus to prove Part 3, it su�ces to prove that for any pair of solutions (N1;D1)

and (N2;D2), satisfying Nj(xi) = yiDj(xi) every i 2 [n] and j 2 f1; 2g, N1

D1

(�) = N2

D2

(�). To

see this, �rst observe that for every i 2 [n], we have N1(xi)D2(xi)yi = N2(xi)D1(x1)yi).

Futhermore, we can cancel yi from both sides (even if yi = 0, since in such a case we have

N1(xi) = N2(xi) = 0. This yields that for every i, (N1D2)(xi) = (N2D1)(xi). But then both

sides describe polynomials of degree 2e + k � 1 and two sides agree on n points. By the

condition on n, we have that n > 2e+ k � 1 and thus the polynomials on the two sides are

identical, i.e., (N1D2)(�) = (N2D1)(�). This yields the desired conclusion immediately.

3 Decoding with algebraic curves in the plane [1, 12]

A slightly di�erent interpretation of the Welch-Berlekamp algorithm is that it �nds an alge-

braic curve in the plane which \explains" the \data". To be precise, the algorithm �nds a

function Q(x; y), where Q(x; y) = D(x)y � N(x), such that for every i 2 [n], Q(xi; yi) = 0.

While this particular scenario attempts to explain the data by a \linear" polynomial in y

- there is no need to restrict the analysis to this situation. Ar et al. [1] considered such a

generalization. They consider the case where the data is \explained" some algebraic curve

Q of low degree in y (but not necessarily a linear polynomial in y). They show that in such

a case, if there exists a polynomial p such that yi = p(xi) for many values of i (compared

to degx(Q) and degy(Q)) then p can be reconstructed easily. To describe their analysis, the

following de�nition is useful.

De�nition 3 For positive integers wx and wy, the (wx; wy)-weighted degree of a bivariate

polynomial Q(x; y) =
P

i;j qijx
iyj is de�ned to be maxfiwx + jwyjqij 6= 0g.

Lemma 4 ([1]) Given n points f(xi; yi)gni=1 s.t. there exists a bivariate polynomial Q sat-

isfying:

The (1; k � 1) weighted degree of Q is at most D, Q 6� 0 and 8i 2 [n]; Q(xi; yi) = 0. (1)

Then the following hold:

2Actually Berlekamp and Welch [14, 3] give a much more e�cient solution for this task, but we will not
describe their solution here.

3

I 



1. A polynomial Q satisfying equation (1) can be found in polynomial time.

2. If p is a polynomial in x of degree at most k � 1 such that yi 6= p(xi) for at most

e < n � D values of i then for any polynomial Q satisfying (1), it is the case that

(y � p(x)) divides Q(x; y).

Remark: As a consequence, a small set of polynomials which includes p can be found in

polynomial time. We simply factor the polynomial Q obtained in Part 1 above and output

all p such that y� p(x) divides Q. The polynomial Q can be factored in time polynomial in

its degree using the algorithm of Kaltofen [7] or Grigoriev [6] (see also Kaltofen [8]).

Proof: For Part 1, we observe as in the proof of Lemma 2 that for any i, the condition

Q(xi; yi) =
P

jl qjlx
jyl = 0 is a linear constraint on the unknowns qjl. Thus a solution

satisfying (1) can be found in polynomial time, if one exists.

For Part 2, we consider the polynomial g(x)
def
=Q(x; p(x)). Notice that since the (1; k � 1)-

weighted degree of Q is D, the degree of g is also at most D. Notice further that if for

some i 2 [n], yi = p(xi), then g(xi) = Q(xi; p(xi)) = Q(xi; yi) = 0. Thus g is zero on

n�e > D points. Thus g is identically 0. Now consider the polynomial Qx(y)
def
=Q(x; y) (i.e.,

the polynomial Q viewed as a polynomial in y with coe�cients from the ring of polynomials

in x). By the division theorem for polynomials we have that if Qx(�) = 0, then y� � divides

Qx(y). Applying this fact to Qx(p(x)) = Q(x; p(x)) = g(x) = 0 we �nd that y� p(x) divides

Q(x; y).

Notice the close correspondence between Lemmas 2 and 4. The main di�erence between the

two is Part 1 of Lemma 2, the analog of which is missing in Lemma 4. As a result Lemma 4

works conditionally, i.e., only when the \data" is explained by a low-degree algebraic curve.

Our solution complements this by providing a \triviality" result. Namely, we observe that

every set of points lies on a low degree algebraic curve; low enough to make Lemma 4 always

useful! We illustrate this observation by a simple example

Example 5 For any set of points fxi; yigni=1 there exists a non-zero polynomial Q with

degx(Q);degy(Q) � dpne.

Proof: Consider the linear system Q(x; y) =
Pd

p
ne

j=0

Pd
p
ne

l=0 qjlx
j
iy

l
i = 0. For every i this

forms a homogenous linear system. The system has n constraints on (dpn+ 1e)2 � (
p
n+

1)2 � n+ 1 unknowns. By just counting the number of unknowns we know that the system

has a non-zero solution (any homogenous linear system with more variables than unknowns

has a non-zero solution).

Notice that unlike in Part 1 of Lemma 2, we didn't even use the fact that the data has some

agreement with a degree k � 1 polynomial. Thus the example above is a \triviality" result

- it holds for any set of n points. Yet the trivial result can be useful as seen next:
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Example 6 For any set of n distinct points f(xi; yi)gni=1 the following hold:

1. There exists a bivariate polynomial Q satisfying equation (1) with D = k
p
n.

2. Such a polynomial Q can be found in polynomial time.

3. If p is a polynomial in x of degree at most k � 1 such that yi 6= p(xi) for at most

e < n � kdpne values of i then for any polynomial Q satisfying (1) with D = k
p
n, it

is the case that (y � p(x)) divides Q(x; y).

Proof: Part 1 follows from Example 5. Parts 2 and 3 follow from Parts 1 and 2 of Lemma 4

with D = kdpne.

Notice that Example 6 is already correcting more errors than guaranteed by Lemma 2 for

some values of n and k (in particular when k grows as o(
p
n). By some �ne tuning we can

actually get to the point where this algorithm always does at least as well as the Welch-

Berlekamp algorithm and for rate less than 1=3 it starts correcting signi�cantly more error.

The �ne tuning is performed by minimizing the weighted (1; k� 1) degree of the polynomial

Q which is used to explain the data.

Lemma 7 Given n and k, let t be the smallest positive integer satisfying:

(t� 1)

��
t� 1

k � 1

�
+ 1

�
� (k � 1)

2

��
t� 1

k � 1

�
+ 1

���
t� 1

k � 1

��
> n:

Then, for any set of n distinct points f(xi; yi)gni=1 the following hold:

1. There exists a bivariate polynomial Q satisfying:

The (1; k � 1) weighted degree of Q is � t, Q 6� 0 and 8i 2 [n]; Q(xi; yi) = 0. (2)

2. A polynomial Q satisfying (2) can be found in polynomial time.

3. If p is a polynomial in x of degree at most k�1 such that yi 6= p(xi) for at most e < n�t

values of i then for any polynomial Q satisfying (2), it is the case that (y�p(x)) divides

Q(x; y).

Remark: Again as a consequence we can �nd a list of all polynomials p that agree with the

points f(xi; yi)g in n� e points in time polynomial in n.

Proof: A polynomial Q of (1; k � 1)-weighted degree t is allowed to have a non-zero co-

e�cient qjl if j + (k � 1)l � t. Counting the number of such coe�cients we �nd that Q

has

b t�1

k�1
cX

l=0

(t� (k � 1)l + 1) = (t� 1)

��
t� 1

k � 1

�
+ 1

�
� (k � 1)

2

��
t� 1

k � 1

�
+ 1

���
t� 1

k � 1

��

coe�cients. Since this number is strictly greater than n we must have a non-zero solution.

This proves Part 1. Parts 2 and 3 follow directly from Lemma 4.
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4 Some bounds

Let e(k; n) denote the maximum number of errors corrected by the algorithm of Lemma 7

on an [n; k; d]q Reed Solomon code. Let � = k=n denote the rate of a code and let �(�)
4
=

limn!1 e(�n; n)=n denote the asymptotic error-correcting rate of the algorithm. In this

section we derive the exact form of e(k; n) and �(�). We also describe some lower bounds to

both quantities.

Lemma 8

e(k; n) = n�(k�1)rk;n�
&
2n � (k � 1)rk;n(rk;n + 1)

2(rk;n + 1)

'
�2where rk;n =

6664
s
2(n+ 1)

k � 1
+

1

4
� 1

2

7775 :

Proof: Let t be the smallest integer satisfying

(t� 1)

��
t� 1

k � 1

�
+ 1

�
� (k � 1)

2

��
t� 1

k � 1

�
+ 1

���
t� 1

k � 1

��
> n:

By Lemma 7 e(k; n) = n � t� 1. Let t� 1 = r(k � 1) + s, where r and s are integers and

0 � s < k � 1. Then b t�1
k�1c = r; and r and s satisfy

(r(k � 1) + s)(r + 1)� (k � 1)(r + 1)r

2
> n: (3)

We �rst determine r based on the above. The constraints 0 � s < k � 1 translate into the

constraints:

r(k�1)(r+1)�r(k�1)(r+1)=2 � n+1 and (r+1)(k�1)(r+1)�r(k�1)(r+1)=2 > n+1:

The above, in turn, simplify to

r �
s
2(n+ 1)

k � 1
� 1

4
� 1

2
and r >

s
2(n+ 1)

k � 1
� 1 � 1:

The requirement that r be an integer now allows us to determine r precisely:

r =

6664
s
2(n+ 1)

k � 1
+

1

4
� 1

2

7775 :
The value s can now be determined from (3) and we get:

s =

&
2(n + 1)� r(r + 1)(k � 1)

2(r + 1)

'
:

The lemma follows by setting rk;n = r and t = r(k � 1) + s + 1 and using the fact that

e(k; n) = n� t� 1.

The following lemma simpli�es some of the expressions above by examining the error-

correction rate �(�) as a function of �.
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Figure 1: The new error correction bound �(�) plotted against the rate �. Also described are

the error correction radius of the code and the distance of the code.

Lemma 9

�(�) = 1 � 1

1 + ��
� ��

2
� where �� =

6664
s
2

�
+

1

4
� 1

2

7775 : (4)

�(�) can be lower bounded as follows:

8� 2 [0; 1]; �(�) � 1�
s
2�+

�2

4
+ �=2 (5)

� 1�
p
2� (6)

Remark: The bound (4) is described pictorially in Figure 1. The lower bounds (5) and (6)

are compared against the bound (4) in Figure 2.

Proof: (4) follows from Lemma 8 by letting �� = limn!1 r�n;n and simplifying the quantity

limn!1 e(�n; n)=n.

To prove (5), we �rst show that

1 � 1

1 + ��
� ��

2
� � 1 � 1

1 + �0�
� �0�

2
�; (7)
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Figure 2: Lower bounds on the error-correction rate of our algorithm.

where �0� =
q

2
�
+ 1

4
� 3

2
. Notice that by the de�nition of �0�, we have

�0� � �� � �0� + 1 and
2

�
= (�0� + 2)(�0� + 1):

(7) follows from:

1
1+�0

�

� 1
1+��

+ �0
�

2
�� ��

2
� � 0

( (�� � �0�)
�

1

(1+�0
�
)(1+��)

� �

2

�
� 0

( 1

(1+�0
�
)(1+��)

� �

2
� 0 (Since �� � �0�)

( 1

(1+�0
�
)(1+��)

� 1

(1+�0
�
)(2+�0

�
)

(Since 2

�
= (1 + �0�)(2 + �0�))

( 2 + �0� � 1 + ��:

where the last inequality follows from the properties of �0�.

(5) now follows from the following equalities:

1 � 1

1 +
q

2
�
+ 1

4
� 3

2

�
q

2
�
+ 1

4
� 3

2

2
�

= 1 � 1q
2
�
+ 1

4
� 1

2

�
q

2
�
+ 1

4
� 3

2

2
�
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= 1 �

q
2

�
+ 1

4
+ 1

2

2

�

�

q
2

�
+ 1

4
� 3

2

2
�

= 1 �
s
2� +

�2

4
+
�

2
:

Finally inequality (6) is derived easily as follows:

1 +
�

2
�
s
2� +

�2

4
� 1 �

p
2�

(
s
2� +

�2

4
�

p
2�+

�

2

( 2� +
�2

4
� 2� +

�2

4
+ �

p
2�

5 Conclusions

The algorithm as presented here does generalize naturally to dealing with erasures, for the

simple reason that we made no assumptions about the xi's (we didn't depend on them being

in some speci�c order etc.). However the bounds can not be represented elegantly in any

form - so we do not attempt to do so here. We only point out that since the Welch-Berlekamp

algorithm is a special case of ours, we do at least as well.

There are a number of questions on decoding Reed Solomon codes that remain open. For

instance, is there an algorithm that can decode from more errors (than (d � 1)=2) when

� = k=n > 1=3? A nice target would be a decoding algorithm that works for �(�) � 1�p
�.

In this case we know (cf. [5, 10]) that the number of codewords within a distance of �(�)n

is bounded by a polynomial in n. One does expect that the problem will become harder as

�(�)! 1��. It would be interesting to see if the problem becomes NP-hard as �(�)! 1��.
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