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1 Introduction 

The construction of control agents functioning in the real world has become a focus of interests of 
many researchers in the AI community in recent years. This line of research was triggered by an 
attempt to benefit from advances and results in fields of data interpretation, diagnosis, planning, 
control and learning, and combine them into more sophisticated systems, capable of solving more 
complex problems. 

What do we expect from a control agent? 
The agent is expected to live in the world. It accomplishes goals and fulfills its intentions by 
observing and actively changing the world. In order to do so it can exploit the combination of 
perceptual, acting and reasoning capabilities. Examples of control agents can include: elevator 
movement control; robot arm controller; autopilot; medical life support device that monitors patient 
status and executes appropriate actions when needed. 

The control agent interacts with the environment via actions and observations. Actions allow the 
agent to change the environment. On the other hand observations allow it to receive and collect the 
information about it. The control agent is designed to achieve some goal. In order to achieve the 
goal it coordinates its perceptual and acting capabilities: actions to change the environment in the 
required direction and observations to check the results of action interventions. 

2 Two basic control agent designs 

In the ideal case the control agent would perform the best possible sequence of actions leading to 
the goal satisfaction. In order to achieve the optimal or close to optimal control sequence the agent 
can be designed to either: 

• follow hard coded and preprogrammed control sequences; 
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• use the agent's model of the world's behavior and the agent's goals and try to figure out 
( compute) the appropriate control autonomously. 

The first design alternative is based on a simple idea of knowing directly what to do or how to 
respond in every situation. The idea, although simple and "unintelligent," can be the basis of a high 
quality control agent. T he major advantage of this approach is that it can usually provide rapid 
control responses and thus may be suitable for various time critical applications. Its disadvantage 
stems from the fact that it relies on the external control plan source, and responsibility for the 
quality of the control is entirely on the shoulders of the control plan provider. This means that 
the external provider (usually human) must do the hardest part and "solve" the problem of how 
to achieve the goal considering every situation and encode this into the control plan . The other 
disadvantage of the approach can be that a control agent has no means to justify selected control 
responses with regard to goals, a feature that may be very important in some application areas. 

The second alternative assumes that control is inferred by the control agent autonomously from the 
description of the environment behavior under different control strategies and goals to be pursued. 
In this case the responsibility for the quality of control is more on the side of the control agent itself 
and is mostly dependent on the design of its inference procedures, although providing wrong models 
can cause suboptimal control with regard to goals as well. The advantage of this approach is that 
t he task of finding and selecting optimal control is performed by the controller autonomously and 
the external provider is required to supply only the appropriate models, a task that is usually far 
simpler than to provide complete control plans. Its obvious disadvantage is that the control response 
must be computed, which usually leads to longer reaction times. 

In my work I will focus mostly on the model based alternative and explore the problem of computing 
control responses from models of the environment and goals. This will include both on-line control 
response computations as well as off-line computations of complete control plans. 

3 Control in stochastic and partially observable domains 

Models of environments and goals can be of different types and complexity. The model of the 
environment can be deterministic or stochastic, described using discrete or continuous states, discrete 
or continuous t ime, described by simple transition relations or by differential equations. The goal 
can be a simple state or it can be defined to vary over time. 

The task of inferring the optimal control from models that are provided is largely dependent on the 
selected modeling framework and its complexity. The relation between the two is proportional: the 
more complex the modeling framework , the more complex is the associated computation of optimal 
control. Therefore with regard to control one must often trade off the benefits and costs of applying 
different models. That is, selecting a simpler model usually leads to simpler computation procedures 
for finding optimal control. On other hand by selecting a simpler model one usually uses a cruder 
approximation to reality, loses required precision and produces suboptimal control. Therefore one 
must carefully consider what features of reality to abstract away and which to consider. 
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3.0.1 Partially observable Markov d ecision processes 

There are many reasonable modeling frameworks one can study with regard to various control 
problems. In my work I explore and study the framework of partially observable Markov deci­
sion processes (POMDP) (see [Astrom 65) [Smallwood, Sondik 73) or [Lovejoy 9la)) that allow one 
to model stochastic environments as well as their partial observability by the control agent. This 
framework has been studied by researchers from different areas, mostly in control theory and oper­
ations research and recently also by researchers in Artificial Intelligence. Within AI the POMDP 
framework is gradually becoming a basic formalism for planning under uncertainty with imperfect 
information. 

The main features of the framework are: 

• the world (environment) is described using a finite number of discrete states, and the control 
agent can actively change them using a finite number of discrete actions; 

• the dynamics of the world is described using stochastic transitions between world states that 
occur in discrete time steps; 

• information about the actual world state is not available to the control agent directly but via 
a discrete set of observations; 

• the quality of control is modeled by means of numerical values representing cost (or reward) 
associated with state transitions; 

• the goal is to optimize the expected costs collected over some time horizon. 

More formally, a partially observable :V.Carkov decision process is defined as (S, A, 0 , T, 0 , C) where: 

• S corresponds to the set of world states; 

• A is a set of actions; 

• 0 is a set of observations; 

• T: S x Ax S--, [O, l] defines the transition probability distribution P(sls' , a) that describes 
the effect of actions on the state of the world; 

• 0 : 0 x S x A --+ [O, l] defines the observation probability distribution P (ols, a) that models 
the effect of actions and states on observations; 

• C correspond to the cost model S x A x S --+ R+ that models payoffs incurred by state 
transitions under specific actions. 

The decision (planning) problem in the context of POMDP requires one to find an action or a 
sequence of actions for one or more perceived (information) states that minimize the expected 
cost incurred over some time horizon. A perceived or information state represents all information 
necessary for finding optimal control and may consist of the history of actions and observations or 
corresponding sufficient statistics. The overall expected cost to be minimized combines contributions 
of one step transition costs from the POMDP model. The most common decision (goal) criteria 
used are: 
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• finite horizon criterion: minimize expected cost for next n steps: 

n 

min E(L ci); 
t = O 

• infinite horizon criteria: 

l. minimize expected discounted cost: 

00 

minE(L A/c1), 

t=O 

where O ~ 1 < 1 is a discount factor 

2. minimize average expected cost per transition: 
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• target state horizon criterion: minimize expected cost to some target state G. 

The focus of my work is the exploration of optimization problems described using two of the above 
additive criteria: n -step-to-go finite horizon and infinite discounted horizon criteria. Typical appli­
cations of the POMDP problem would be robot navigation in noisy environments and management 
of an ill patient in the face of imperfect information about the patient's actual state. 

4 Markov decision process 

The POMDP framework is closely related to the more common and simpler formalism of Markov 
decision processes (11DP) ([Bellman 57], [Howard 60] or [Puterman 94], [Bertsekas 95]). The dis­
tinction between t he two is that POMDP assumes and models partial observability of the controlled 
process while in the :\-1DP framework the state of the system is assumed to be known at any point 
in time. Therefore MDP can be viewed as a special case of POMDP, in which the information state 
corresponds to the world state. 

The perfect observability of MDPs, despite the action outcome uncertainty, makes the problem of 
finding optimal control significantly simpler compared to the partially observable case. The optimal 
control in the MDP case can be found using the following recursive formula: 

v.;(s) 

where V* (.) : S --+ n + is a value function that stands for the minimum expected cost, s is a state 
at n steps to go, p( s, a) is the expected transition cost of a from state s, 1 is the discount factor 
and s' is at n - 1 steps to go. The optimal control for state s and the n-step-to-go problem then 
corresponds to the action that minimizes the value function, i.e.: 

µ~(s) = argminaEAp(s, a)+ 1 L P(s'ls , a)V;_ 1(s1
) 

•'ES 
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where µ : S ---. A. stands for the control function that maps states to actions. 

Similar recursive formulas can be derived for the infinite discounted horizon problem with a station­
ary control policy. The optimal value and control functions are: 

V*(s) minp(s, a)+ 1 L P(s' ls, a)V*(s') 
aEA 

•'ES 

µ*(I)= argminaEAp(s, a)+ Al L P(s'ls, a)V*(s') 
s'ES 

To find the optimal control for n steps to go one can adopt two general strategies: 

• forward method that can be best viewed as an expansion of the decision tree and may be 
suitable for finding a one step control action for a single state; 

• backward method that corresponds to dynamic programming [Bellman 57], [Howard 60] and 
is better when one needs to find the optimal control for all possible states and steps. 

The optimal control decision for the infinite discounted horizon problem with stationary policy and 
single state can be solved, similarly to the finite horizon case, using forward decision tree methods. 
On the other hand optimal control for all possible states can be found via: 

• value iteration [Bellman 57] 

• policy iteration [Howard 60] 

• or linear programming task (see e.g. [Puterman 94), [Bertsekas 95]). 

Variations of basic methods can be found in (Pu term an 94] and (Bertsekas 95]. The important thing, 
from the computational point of view, is that the problem can be formulated as a linear program, 
which implies that it can be solved efficiently in time polynomial in the size of the state and action 
spaces. 

5 Computing optimal control for POMDPs 

The best action (or sequence of actions) in the POMDP context is based on the computation of 
the minimum expected cost for an information vector (state) that reflects all relevant information 
about the controlled process at a specific time. The information state can be either complete history 
of observations and actions or corresponding sufficient statistics. This is different from the fully 
observable MDP where information state corresponds directly to the world state. 

For the n-step-to-go problem the minimum expected cost for information state In can be computed 
using the following recursive formulas: 

min L p(s,a)P(slln)+At L P(olln,a)V,;_1(r(In,o,a)) 
aEA 

sES of0.,0 .-, 
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where In is an information vector (state) at n steps to go and r(bn, o, a) is an update function yielding 
the information state at n - 1 steps to go. The optimal control for state In and the n-step-to-go 
problem then corresponds to the action that minimizes the value function, i.e.: 

where µ : I ~ A stands now for the control function that maps information vectors to actions. 

Similar recursive formulas hold for the infinite discounted horizon problem with a stationary control 
policy. The optimal value and control functions are then: 

V*(I) min L p(s,a)P(s11)+-y L P(oll,a)V.(r (I,o,a)) 
aEA 

sES oE0nert 

µ*(I)= argminaEA L P(s, a)P(sll) + -y L P(oll, a)V"(r (I, o, a)) 

5.1 Exact optimization methods 

The optimal control can be computed using the recursive optimization formulas. This may be done 
in a relatively straightforward way for some finite horizon problems with a single initial information 
state and a small number of steps using a forward decision method. However even in this case the 
number of information states one needs to visit grows exponentially with the number of steps to be 
explored and such problems were shown to be PSPACE complete [Papadimitriou, Tsitsiklis 87]. 

A far worse situation emerges when one is required to find the optimal or near optimal control solution 
for all possible information states. The main reason for this is that t he information vector space is of 
infinite size and one must compute value and control functions defined over such space. Although this 
is theoretically possible thanks to the important result proved by Sondik [Smallwood, Sondik 73], 
that the value function for a finite number of steps is piecewise linear and concave, the computational 
complexity of available methods make them suitable only for small problems. 

Methods that compute optimal value functions for a finite horizon problem are based on the dynamic 
programming approach. A step of such an approach computes a set of linear functions defining the 
optimal value function . This can be accomplished either by: 

• generating all possible linear functions first and eliminating redundant ones afterwards, as for 
example in :\iionahan 's method [Monahan 82]; or 

• generating useful linear functions by evaluating and checking a finite number of points of the 
information state space, as in Sondik's method [Smallwood, Sondik 73], Cheng's linear support 
algorithm ([Cheng 88], see also [Cassandra 94]) and the Witness algorithm [Cassandra et.al. 94] 
(Cassandra 94] . 

The major source of inefficiency of all methods is that the number of piecewise linear regions defin­
ing the value function can grow exponentially with the number of steps. Moreover all algorithms 
implementing one step of dynamic programming can be inefficient in computing a useful set of linear 
vectors. In general this problem can be solved efficiently only when RP= NP (Littman et.al. 95c]. 
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Methods developed for the computation of the optimal value function for the finite step problem 
can be reused to compute approximations of the optimal value function for the infinite discounted 
horizon problem. This is because one can implement value iteration method, that is guaranteed to 
converge to optimal value function solution, simply by using updates corresponding to one step of the 
dynamic programming. This is best viewed as the standard value iteration algorithm with parallel 
updates. A slight modification of the update procedure can implement more efficient Gauss-Seidel 
analogue of the value iteration procedure. 

The fact that methods producing complete optimal policies are suitable only for small problems 
naturally leads to the exploration of alternative control optimization solutions. One possible and 
straightforward approach is to implement the controller using a simpler decision making module 
that tries to select an optimal control action for a state. Such a module is then reinvoked at every 
decision step. The control problem that the module solves repeatedly then corresponds to the 
decision problem. Although the problem is in PSPACE, it is often easier and sufficient to solve it 
repeatedly rather than to solve the complete all state problem. -ot much attention has thus far 
been devoted to the exploration of methods addressing this problem. 

5.2 Approximation methods 

The problem of computational efficiency of available optimization methods leads naturally to the 
exploration of various approximation methods and shortcuts that allow one to acquire good solutions 
with less computation . There are many different approaches one can use for this task and they can 
be applied to solve both decision and policy problems. Most of the approximation methods were 
developed by researchers in control theory or operations research over many years of work, and one 
can hardly expect a completely new approach to emerge quickly. Although the basic ideas tend to 
repeat in recent work, there is still a lot of room for various modifications and extensions. 

In general, approximation methods can be divided into two groups (see attached text): 

• approximation of value or control functions; 

• approximation of sufficient information states. 

The main idea behind the first approach is to approximate the value (action-value) or control func­
tions that are defined over the sufficient information vector space with functions V : I -+ n+ or 
µ : I -+ A. These functions are usually computed by exploring only a finite number of information 
vectors (points) of the complete information vector space; they have a finite description and very 
often also a simple form. 

The second approach focuses on the approximation of sufficient information states with feature 
vectors i and assumes that value and/or control functions defined over feature vectors V : I-+ n+ 
and µ : i -+ A are far easier to compute. The approximate value or control function for a specific 
information state is then computed from the associated feature vector. The feature space is usually 
of smaller size and summarizes the important characteristics of the world state with regard to the 
control problem. 

The two approximation approaches are not exclusive and can be combined. This leads to both 
approximation on the level of information state space and on the level of functions defined upon 
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such an approximate space. 

5.2.1 Approximations of value functions 

The most common approximations target value functions. In this case once the approximate value 
function V is computed, the corresponding control can be acquired simply via solving a recursive 
formula; e.g. for the infinite discounted horizon case: 

µ(I) = argminaE.4. I: p(s, a)P(sll) + 1 I: P(olI, a)V(T(I. o, a)) 

There are numerous methods that can be tried to compute value function approximations. The 
basic methods include: 

• MDP approximation; 

• blind policies approximation; 

• point-based approximations: 

l. curve fitting (least square error); 

2. memory based (instance-based) approximations (with point interpolation/extrapolation 
rules); 

• restricted Sondik's method; 

Approximations based on the optimal MDP solution or blind policies are used to compute general 
value function bounds . They are computed with relatively simple procedures that completely ignore 
uncertainty related to imperfect observability and work only with the perfect world states. 

All other value function approximation methods try to account for the imperfect observability by 
using a finite number of points of the infinite information vector space corresponding to sufficient 
statistics and by restricting the associated value function in various ways. Point-based methods 
are based on standard function approximation approaches, that are usually combined with dynamic 
programming or value iteration methods. Methods sample the infinite information state space 
and use acquired samples to either learn parameters of the value function model ( curve fitting) 
[Bertsekas 95] or store and use them directly to derive function values at points not seen before, using 
various interpolation-extrapolation rules (memory-based) [Lovejoy 91a] [Lovejoy 91b] [Lovejoy 93]. 
The restricted Sondik method (see, e.g. , [Lovejoy 91b] [Lovejoy 93]) is similar to exact methods and 
works with linear functions rather than values. However the method does not search for the points 
of the information state space that seed all useful linear functions and uses a set of non-optimized 
points. 

5 .2.2 Approximations of inform ation states 

The complementary class of approximation methods aims to reduce the complexity of the original 
POMDP problem by approximating the sufficient information state space. The reduction is achieved 
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by substituting sufficient information vectors by a feature state space [Bertsekas 95] that is of smaller 
size, summarizes the important characteristics of the information state with regard to control and 
is easier to manipulate and work with . 

The relation between the information and feature vectors is captured by a feature extraction mapping 
:F, that maps information states to feature states, i.e.: 

;: : T, -+ I. 

Then assuming the feature-based value or control function are known: 

µ:F: i-+ A 

one can express approximate value or control functions for information state I as: 

V(I) = v:F(:F(I)) 

µ(I) = µ:F(:F(I)). 

The important property of feature based methods is that the definition of the smaller feature space 
introduces a bias. That allows one to incorporate prior domain knowledge by telling what is relevant 
and needs to be considered and what can be abstracted out. This is unlike previous approximation 
methods that were based on either random sampling of the information vector space or at most 
utilized some very general heuristics. Because of the prior knowledge, the feature based methods are 
suitable especially for problems with large state spaces. The problem of finding a relevant feature 
space automatically from the POMDP problem description has not been addressed by the researchers 
so far and remains an open problem. 

5.2.3 Evaluation of approximation methods 

There is a relatively large number of methods that can be used to compute approximate control. 
Unfortunately there has not been, to our knowledge, a good summary and comparison of properties 
and performance of various approaches made so far. The studies that have been done were, most 
of the time, oriented toward specific methods and evaluation of their performance and did not 
include comparison with other approaches. Although there have been some recent cross evaluation 
studies and comparisons of different methods, as in, e.g., [Littman et. al. 95a] [Parr, Russell 95], 
these were based mostly on exact methods, simple ~DP based approximations and/or gradient 
descent approaches. 

This suggests that more evaluation studies, comparing different approaches, need to be conducted. 
The alternative to this will be to prove theoretically some properties that will allow one to differen­
tiate between alternate approaches. Although it is unlikely that one single approximation method 
will turn out to be the best all the time for any problem, it can be the case that some approaches 
are better than others on problems with certain characteristics. The finding of these is an open 
problem. 
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6 Applying the POMDP framework 

POMDP algorithms are usually tested on small problems, many of them toy like and far from real 
world problems. The lack of larger scale real world applications that use the POMDP framework and 
their comparison to other alternative approaches cast doubts on practical usability of the approach. 
This prompts more real world applications that can prove and justify the place of the formalism in 
solving practical problems. 

The application of the framework to real world problems is also closely related to the problem of 
framework expressiveness. This is because any real world problem needs to be expressed in the 
language underlying the formalism and it may lead to the following difficulties: 

• the underlying standard PO:ViDP formalism is too restrictive; 

• the acquisition of appropriate model parameters can be hard. 

The standard POMDP formalism assumes that observations associated with some state are available 
immediately after the exploratory action is performed. This is not always the case; e.g. , in medicine 
where exploratory action and the results of such observation may not be available immediately but 
only after some delay. For example, the results of a blood test may become available only after 
several hours of work in the clinical laboratory. To handle such features of the problem properly, 
it is often necessary to go beyond the standard formalism and consider various modifications and 
extensions. 

The other problem associated with the exploitation of the PO'.\-fDP framework in real world do­
mains is related to the acquisition of the model, especially of model parameters. Model parameters 
correspond to probabilities and costs or rewards associated with transitions or observations. Such 
parameters can often be hard to acquire from a human directly, especially those representing costs 
(or utilities) associated with transitions and reflecting preferences of the designer. Therefore any 
tool facilitating the acquisition of the model or its parameters can be of great help . 

7 Thesis objective 

The objective of my thesis research work is to explore various aspects of the PO:vfDP framework 
and address some of the problems that were outlined above. These include topics such as: 

• extensions and modifications of the standard POMDP framework; 

• design of exact and approximate methods for solving different POMDP planning problems, 
exploration of their properties and their comparison; 

• application of the framework in control and decision making systems in medicine; 

• learning of model parameters or policies from data. 



8 Current status 

In the following I will describe the current status of my research work on the outlined thesis objectives 
and results accomplished so far. Later I will focus on the problems I plan to address in the future. 

8.1 Extending basic POMDP framework 

The standard POMDP model assumes that observations are always conditioned on actions performed 
in the previous step and pertain to the current state of the world. Such a model enjoys some 
nice properties: e.g., the current state is sufficiently represented using the belief space and the 
optimal value function is piecewise linear and concave for a finite n-step horizon. However the 
conditioning model defining dependencies between observations, states and actions need not be 
sufficient and appropriate for all domains. Therefore one part of my work has been devoted to the 
exploration of alternative models defining the relation between model components. Using the notion 
of sufficient information vector we showed that one can fully represent the perceived state POMDP 
with backward triggered observations as well as a richer model combining forward (standard) and 
backward triggered observations using belief vectors. Moreover it was shown that the value function 
is piecewise linear and concave whenever the sufficient information vector corresponds to a belief 
state, thus extending the result of Smallwood and Sondik to all such models. This effectively 
makes all algorithms developed for the standard model applicable for the whole class of models after 
appropriate modifications in the belief update procedure. 

There are other extension of the PO::vtDP modeling framework one can consider and incorporate into 
the standard framework . These include various delays in observation and action channels. In general 
the solution formulas for such extensions can be written using sufficient statistics. In my work I 
have shown how one can go about describing the POMDP model where observations are delayed at 
most k time units. unfortunately the nature of sufficient statistics for general delayed models cause 
the solution value function not to have the properties of piecewise linearity and concaveness that a.re 
typical for models with sufficient belief states. This makes it impossible to solve them by computing 
the optimal value function using dynamic programming or value iteration techniques and one needs 
to use either forward decision tree or various value function approximation methods to solve them. 

8.2 POMDP decision tree algorithms 

Most of the attention ofresearchers in the area has been devoted to the problem of finding the optimal 
policy. However in many cases the far simpler decision problem that tries to select a. control response 
from the single initial state can be sufficient for implementing the control agent. Such problems can 
be solved in the forward fashion by a process corresponding to the expansion of the decision tree. 
In our work we have proposed, designed and implemented various incremental algorithms: breadth 
first, randomized heuristic, and linear space for solving such problems. These methods try to reduce 
the growth of the decision tree via pruning based on computed value function bounds. 

The breadth-first algorithm always expands all nodes on the fringe of the partially constructed 
tree, employing pruning to cut off the suboptimal branches. The heuristic expansion algorithm, 
unlike blind breadth-first expansion, tries to expand those regions of the decision tree that have the 
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largest potential to induce pruning or achieve required solution precision. The heuristic potential is 
measured by a span between the upper and lower bounds of the value function for a specific node. Vile 
have implemented a variant of the heuristic method, called the randomized heuristical method, that 
tries to expand more than one branch of the decision tree in one expansion step. The branches chosen 
for expansion are selected randomly in proportion their heuristic value. Theoretically interesting is 
the linear-space algorithm that exploits active span heuristics and computes bounds in the iterative 
deepening fashion. This algorithm uses space that is linear in the number of observations, actions 
and minimum depth of the decision tree needed to select the optimal action. 

The quality of incremental forward algorithms is strongly dependent on the quality of supplied value 
function bounds. In general, the tighter the bounds the better is the chance to prune suboptimal 
branches. The typical property of incremental algorithms is that they rely on the ability to improve 
bounds via expansion of the partially expanded decision tree. This is crucial as not all value function 
bounds supplied need to induce such improvements for all possible information states. The value 
function approximations that always induce improvement via forward expansion are said to satisfy 
recursive improvement property. In my work I have explored, described and designed various methods 
for computing value function bounds. These in general correspond to various approximation methods 
and range from simple MDP-based bounds suitable for generic POMDP models to more complex 
methods based on, e.g., interpolation-extrapolation rules. 

Simple incremental decision methods assume that bounds used at leaves of the decision tree are 
given at the beginning and that they do not change. However when the decision tree becomes large 
the forward improvement step need not always produce the best choice. This is when the alternative 
strategy aimed to improve initial bounds is present and can lead to better improvement. I have 
proposed a new class of decision methods that combines advantages of both forward and backward 
(bound) improvement steps via a metalevel adaptive decision procedure. 

8.3 POMDP approximation methods 

In my work I have summarized, described and analyzed various approximation methods that can 
be used to solve PO11DP problems. In many cases important properties of these methods or their 
solutions such as convergence of methods and the recursive improvement property were described 
and proved. Some of these are based on previously published proofs; some are new or extended to 
cover generic POMDP models with delays, as for example the proof of convergence of approximate 
value iteration with linear point interpolation rules. 

An important part of my work has concerned the design of various new approximation methods or 
modifications of the old ones. These are mostly based on value function approximations and include: 

• blind policy methods for computing lower bound value functions for generic POMDP problems; 

• approximate dynamic programming and value iteration methods with a simple interpolation 
rule that uses randomized grids and that produces lower bound value functions for the standard 
POMDP model; 

• approximation methods with a simple linear extrapolation rule that computes an upper bound 
of the value function; 

• some least square error methods with forward simulation of the state. 
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I have performed some preliminary experiments with value functions and policies computed by the 
approximate dynamic programming methods with various interpolation-extrapolation rules. The 
test problem chosen and used for testing: "maze20", is a toy problem that belongs to the class of 
robot navigation problems. Results of experiments suggest that the method with the simple inter­
polation rule performs well despite concern about the shape of the value function, and on average 
always outperformed a controller based on the MDP approximation. In the experiment I have also 
tried other efficient local estimation rules ( closest linear combination and closest neighbor). However 
testing for smaller sample sizes, none of these rules achieved the performance of the linear interpola­
tion rule and the results achieved by them were even surpassed by the simple ::i.-fDP-based controller. 
This shows that interpolation-extrapolation rules that are suitable for function approximation may 
not perform well when combined with approximate dynamic programming methods. 

9 Future work 

The objectives of my research work as described above concern exploration of various aspects asso­
ciated with solving control problems and exploitation of the POMDP framework in practical real 
life problems. The main portion of the work has been so far directed towards design and summary 
of various exact and approximation methods and the description of their properties. However these 
methods (especially approximation methods) have not been thoroughly tested and compared with 
regard to the quality of control. This is one topic that I plan to focus on and explore more in my 
future work . The other topics of my future interest include the application of the framework in 
decision making systems in medicine and issues related to learning of POtvIDP models or policies 
from control scenarios. 

9.1 Comparison of different methods 

I have performed only limited experiments with approximation methods based on different interpolation­
extrapolation rules so far . Therefore in the future I plan to do more tests and experiments with 
more approximation methods, for both policy and decision problems, and compare achieved results. 

The need for experiments and comparison of different methods is also prompted by results acquired 
from my preliminary tests. The preliminary experiments showed that the combination of function 
approximation methods with approximate dynamic programming or value iteration methods may 
not behave very well and can lead to poor control performance. This was shown for example for 
the simple closest neighbor and minimum distance linear interpolation-extrapolation rule. I think 
these results are the consequence of a more general feature of error-accumulation that is caused by 
using functions that can concurrently overestimate and underestimate the real value function and 
thus significantly increase the span between value function values at two points. This in turn can 
cause the selection of bad control responses. T his reasoning is also supported by the fact that value 
functions acquired via a simple interpolation rule or MDP approximations that are guaranteed to 
lower bound the real value function gained better results. When this is true, the application of the 
least square error rule for function approximation can suffer from the same deficiency. 
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9.2 Application of the framework 

I have applied the POMDP framework only to the simple maze navigation problem, mostly for the 
purpose of testing. In the near future I plan to look on more serious applications of the framework 
in real problem domains. Currently I am considering the problem of management of the patient 
with ischemic heart disease (see e.g. (Wong et.al. 90] [Leong 94]) and/or management of the acute 
patient cases in time critical environments like the Emergency Room or Intensive Care Unit. Both of 
these problems require consideration of benefits and costs associated with performing observations 
that in turn can help to treat better the underlying disease process that is not known with certainty. 
In the following, the basic idea about modeling the problem of management of ischemic heart disease 
patients using the POMDP framework will be outlined. 

9 .2.1 Manageme nt of ischemic heart disease 

Three basic components of the POMDP model for the ischemic heart disease (IHD) example, cor­
responding to states, actions and observations are shown below. The state of the patient (internal 
state) in the example is modeled using state variables that represent relevant history information 
(past MI, or a history of correct ive procedures), the current status of coronary arteries, especially 
from the point of narrowing, and current level of ischemia. A special state is associated with death. 

State variables 
death 
history of myocardial infarction (MI): T/F 
history of coronary bypass surgery ( CABG): T /F 
history of angioplasty (PTCA): T / F 
coronary artery disease: 

normal 
mild (no significant stenosis) 
moderate (1 or 2 vessels stenosis > 70%, no left 

main coronary artery - LMCA disease) 
severe (3 vessel stenosis, no LMCA) 
LMCA (stenosis > 50%) 

ischemia (02 supply/demand): 
normal 
mild 
severe 
acute MI 

Actions 
no action 
angiogram investigation 
stress test 
medication treatment 
angioplasty (PTCA) 
coronary bypass surgery (CABG) 
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Observations 
angiogram investigation results 
stress test results: positive/negative 
resting EKG: positive/negative 
chest pain history: 

no chest pain 
typical pain 
atypical pain 

detected-\1:I: T/F 

The set of actions in the model can have exploratory, transitional or cost effects. The exploratory 
effect of actions is based on their ability to induce observations that in turn can be suggestive of some 
internal states. An example is an angiogram investigation or stress test. The transition effect of the 
action is represented by its capability to change the internal state of the patient: e.g. PTCA can 
lead to the reopening of the blood supply in the main vessels. Note also that actions with intended 
exploratory effects can lead to changes in the patient state: e.g. increased incidence of MI due to 
angiogram investigation. The third effect of actions is their cost: the cost measured by the patient's 
suffering, discomfort and/or economic cost associated with the specific action. Actions that have 
only an exploratory effect and are neither associated with a cost nor affect the state transition are 
not explicitly represented in the action set. 

Observations in the example are modeled through a set of observation variables. These are either 
triggered through actions, e.g., angiogram result , or corresponds to unconditional observations. 
Unconditional observations are assumed to be "costless" and available at any time. In our example 
rest EKG results or chest pain history are assumed to be unconditional due to their relatively low 
cost. This is unlike the angiogram result that is obtained through risky and costly investigation. 
In order to focus on the IHD aspect of the disease, we also assume that the acute MI is observed 
through the auxiliary variable MI-detected. 

The transition and observation models are defined by conditional probability distributions and repre­
sent the stochastic nature of the patient's state changes on one side and uncertainty about t he actual 
state on the other. For example the patient with coronary disease can either die, suffer from MI, or 
get the coronary artery repair as a result of PTCA or CABG, with different probabilities associated 
with every outcome. Similarly, typical chest pain can, to various degrees, point to different types of 
ischemia and by inference to coronary artery status. 

The cost model describes payoffs associated with possible transitions: for example cost associated 
with the transition to the dead state, or cost associated with the occurrence of \.fl. The decision 
criteria that try to reduce the expected cost then in fact try to avoid these negative states. 

The PO\1:DP, like many other frameworks, models continuous time through discretization. In the 
IHD example it is assumed that every action is associated with a fixed duration and that any change 
in state occurs between the discretized time points. The way duration of the transitions is set up for 
the model may in many cases influence the transition probabilities. In the IHD case it is assumed 
that transitions associated with invasive actions occur within minutes or hours, and transitions 
associated with non-invasive actions within months (approx. 3 months). 
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9.3 Learning in partially observable stochast ic cont rol d omains 

In many instances the problem of providing either a control plan or an underlying model of the 
environment and goals can turn out to be a hard task itself. For example the assignment of costs 
or utilities or other parameters of the model is often hard to do consistently by human expert. 
Therefore the important question in this respect is if we can build a good control or decision making 
agent in less painful ways, e.g., directly from observed control scenarios. The problem of learning 
in partially observable and stochastic control domains is both hard and extremely challenging and 
I plan to spend more time investigating it in the future. 

T he basic learning scenario in the control domain is t hat the learner observes sequences of control 
actions, observations and reinforcements. Reinforcements represent either costs or rewards and 
quantify the goodness of the transitions that occurred with regard to the control goal. The learner 
can be either combined with the controller with the capability to perform actions or it may be only 
a passive observer. "Csing active learning can often lead to shorter learning times due to the fact 
that the controller can explore those control sequences it considers more relevant. On the other 
hand passive learning assumes that the learner is given information about a control case without 
any active intervention, which can be crucial in some domains like medicine. 

In general , depending on what we want to learn, we can speak about two main learning approaches 
in control domains : 

• learning of POMDP models 

• learning of control policies 

9 .3.1 Learnin g of the m odel 

T he first approach is trying to learn the model form observed data and reinforcements. Such a 
model is then used to compute the optimal or approximate control in the obvious way. Learning of 
the model can consist of learning of the complete model (both structure and parameters) or learn­
ing of model parameters. The problem of learning of model parameters is far easier and methods 
for learning parameters of probabilistic networks with hidden variables, like EM (Rabin er, J uang 86) 
(Spiegelhalter et.al. 93](Lauritzen 94), Gibbs sampling or gradient descent methods (Russell et.al. 95), 
can be applied. 

The agent with a built-in parameter learning mechanism can be the basis of an adaptive control 
agent that can adapt its behavior with regard to specificities of the control cases that have been 
solved. The adaptation of the model parameters can be important, e.g., when there is a natural 
variation in cases the control agent repeatedly solves and when one can incorporate in the model 
initially only population estimates at best. 

The learning of a complete POMDP model is a far harder task , as one is supposed to go beyond 
learning of parameter values and also derive t he underlying hidden structure. The learning of 
POMDP models has not been explored to a sufficient depth so far . Two approaches published are 
the predictive distinction approach (Chrisman 92) and the uti le distinction approach (McCallum 93]. 
Both of these operate under various simplifying assumptions (restricted value function form) and 
gradually increase the number of states needed to fit the observed control data. 
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9.3 .2 Learning of control policies 

The second approach is based on the assumption that one can build a good controller without 
the detailed underlying model by building control policies directly based on action-observation se­
quences. This is in many respects related to the approach of feature based approximation with trun­
cated histories [Platzman 77] [White, Scherer 94]. The control policies using truncated histories can 
be learned, e.g. , using reinforcement learning techniques (see, e.g., [Watkins 89], [Barto et.al. 91], 
[Hauskrecht 94], [Kaelbling et.al. 96]). The problems with this are that the number of items in the 
history is not known in advance and also that not all observations and actions are equally relevant 
to control. An approach that attempts to dynamically identify the relevant history items to be used 
in the control policy definition was presented in [McCallum 95]. 

10 Schedule of work 

The following summarizes the schedule of work to be done along the outlined research objectives. 

Summer - Fall 1996: 

• testing of various approximation algorithms on a moderate sized ( around 20-30 states) POl'vIDP 
problem/s, most probably related to robot navigation; 

• application of the framework to the medical area, more specifically in the management of 
ischemic heart disease or in a time critical application that requires one to trade off and 
combine diagnostic and treatment steps (like in the ER, ICl or OR environments); 

• start to work on the problem of learning in dynamical and stochastic control domains, look at 
ideas related to learning of POMDP models or control policies from control scenarios ( data) 

Spring 1997 

• proceed with the topic of learning in dynamical and stochastic control domains 

• evaluation of results of various approximation algorithms 

• writing the thesis 

Expected date of submission: May 1997 (August 1997) 
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