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ABSTRACT

A fully kinetic analysis of the m = 2 tearing mode is performed for a tokamak
plasma including the effects of turbulent electron diffusion and runaway electrons.
Turbulent diffusion is included in the analysis by applying the normal stochastic
approximation (NSA) to the collisionless drift kinetic equation (DKE) for electrons.
A kinetic analysis inherently allows for the choice of various equilibrium electron
velocity distributions, thus enabling a comparison between a drifted Maxwellian and
a runaway-type distribution. This analysis is fully electromagnetic, including the
effects a magnetic fluctuation potential /’i” as well as a finite electrostatic potential

J), and is valid in the low-beta, low-frequency regime. The electron response is
obtained by applying the NSA to the DKE, and the ion response is given by the
linearized Vlasov equation. Ampere’s law and quasineutrality are then used to
derive a set of coupled, self-adjoint equations for the fluctuation potentials ¢ and
Aj. Solutions to this set of equations describe both unstable finite-3 drift waves
when analyzed for high m modes and the tearing mode when analyzed for low m
modes (where m is the poloidal mode number).

In the NSA, the tearing mode is assumed to exist on a background of drift
wave turbulence. The underlying drift waves produce overlapping phase space is-
lands, which lead to stochastic electron orbits. The NSA exploits the properties of
stochastic orbits to replace the nonlinear fluctuation terms in the orbit operator of
the DKE with a radial diffusion operator, —D.8%/3%z, where D, is the electron dif-
fusion coefficient. Results for the tearing mode indicate that stability is obtained for
suffcien tly large values of the diffusion coeffcient. Provided D, ~ 1/n, this implies
that a density threshold must be surpassed before the tearing mode is observed.
Physically, turbulent electron diffusion prohibits the formation of a perturbed par-

allel current within a finite diffusive correlation distance z. ~ D:/ 3 of the rational




surface. This cuts into the available energy driving the tearing mode and reduces
it from A’(0) to a value of A’(z.). Here, A’(z.) is the difference between the log-
arithmic derivative of A} evaluated at a distance z. from the rational surface and
that value at a distance of —z.. Since A’(z) is typically a decreasing function of z,
then stabilization occurs when z, > W, where W is the nonlinear island saturation
width given by A'(W) = 0.

When a runaway-type distribution is used for the equilibrium electron distri-
bution in the place of a drifted Maxwellian, the real frequency of the tearing mode
is shifted to a value above the electron diamagnetic frequency w.. by an amount
bw ~ nyv,. Here, n, is the density and v, the velocity of the fast electron beam
which is used to model the runaway-type current. In addition, a new stabilizing
term appears in the expression for the growth rate proportional to éw. Physically,
this stabilizing term represents the additional energy necessary to maintain the
particle motion at the frequency w.. + éw. Since éw = 0 for a drifted Maxwellian
equilibrium, this implies that stability is greater when a fast electron population is
present. At higher densities, these fast electrons relax back into the bulk population
due to the increased collisionality. Hence, the tearing mode stability is enhanced at
low densities due to the presence of runaway electrons. This runaway stabilization
is a higher order effect, however, and is only important for a tearing mode near
marginal stability.

The inclusion of a finite electrostatic potential gives an additional stabilizing
term to the dispersion relation, which physically represents ion inertial effects. This
ion inertial effect implies that, in the absence of both turbulent diffusion and run-
away electrons, the tearing mode is stabilized for ion betas 3; above some critical
value, 8., where 3. ~ A’(0). Hence, this ion inertial stabilization at high density,
combined with the stabilization by turbulent diffusion and runaway electrons at low
density, implies that it may be possible to operate a tokamak in a plasma regime
which is stable to the m = 2 tearing mode at all densities. For typical Alcator C
parameters, a tearing mode island of width W ~ .1 c¢m is suppressed for D, > 104
cm? /sec and highly MHD unstable profiles providing large A’(0) are stabilized for
B;>10"3 -
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Chapter 1
INTRODUCTION

Tearing modes are a subject of current intérest in plasma physics due to their
role in both space and laboratory plasma behavior. In space plasmas, tearing modes
are an important destabilization mechanism in spontaneous magnetic reconnection
phenomena, such as in the onset of substorms in the Earth’s magnetotail [1,2]. In
laboratory plasmas, such as in a tokamak, tearing modes play an important role in
the onset of major disruptions. It is generally agreed that major disruptions must be
totally suppressed in an actual fusion reactor in order to prohibit excessive damage
to the first wall. Currently, the most widely accepted theoretical model of major
disruptions features low .poloida,l number (low m) tearing modes which saturate to
produce magnetic islands. It is possible for such magnetic islands to overlap and
thus form large stochastic magnetic regions which enhance particle diffusion, and,
in the case of major disruptions, lead to catastrophic plasma confinement loss [3-6].
Hencé, control of such disruptions requires the elimination or, at least, suppression

of these tearing mode islands.

Recent éxperimental results on Alcator C indicate the existence of a density
threshold which must be surpassed before the m = 2 tearing mode is observed [7].
Such an observation is inconsistent with the previous kinetic and resistive magne-
tohydrodynamic (MHD) theories of the tearing mode. Traditionally, the tearing
mode has been analyzed using resistive MHD theory which predicts instability for
A’ > 0, independent of plasma density [3]. Here A’ is the jump in the logarith-
mic radial derivative of the perturbed magnetic potential, fi“, across the rational
surface. This is determined by integrating the ideal MHD equation for the véfctor
potential from the external region inward towards the rational surface. Typi:ally,
experimental profiles indicate A’ > 0, and hence the m = 2 tearing mode should
be observed at all densities according to resistive MHD. Besides resistive MHI, the

tearing mode has also been studied using a kinetic theory based on the collisionless
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drift kinetic equation (DKE)[8,9:. These studies {10-12] have shown that the “col-
lisionless” tearing mode can be stabiliied by‘ suffciently large plasma beta 3 even
though A’ > 0. Here the plasma beta § is defined to be the ratio of the plasma
kinetic pressure to the magnetic pressure. This stabilization at high 3 is the result
of the finite inertia of the ions combined with the fact that the collisionless tearing
mode has a real frequency given by w.., where w., is the electron diamagnetic drift
frequency. This high beta stabilization, however, indicates that the tearing mode
should only be observed at low densities which is contrary to observations on Alca-
tor C. It is the existence of a density threshold before the onset of instability, which
is in qualitative disagreement with the previous theories of the tearing mode, that

has motivated the present work.

In this study, two mechanisms are proposed as possible explanations of the
observed stabilization of the m = 2 tearing mode at low densities. The first is
stabilization by turbulent electron diffusion and the second is stabilization by run-
away electrons. In the calculation of the energy drive (represented by A’) used in
the previous theories of the tearing mode, the positivity of A’ is dependent on the
perturbed parallel current j” becoming singular with odd parity about the ratio-
nal surface. It is the existence of a very large j“ near the rational surface which
gives rise to a positive value of A’. Turbulent electron diffusion, however, prohibits
the formation of a large j” within a finite diffusive correlation distance z. of the
rational surface. As will be shown below, z. ~ Del/ 3 where D, is the turbulent
electron diffusion coefficien t. Hence, if turbulent electron diffusion is included in the
analysis of the tearing mode, then stability may be obtained for suffciently large
D.. Provided D, ~ 1/n, this implies that the tearing mode may be stabilized below

some critical density.

Another important observation in tokamaks at low densities is the existenée of
runaway electrons. At high densities, the equilibrium plasma current is described
by an equilibrium electron velocity distribution in the form 6f a drifted Maxwellian
with a drift speed much smaller than the thermal speed. In other words, the 2qui-

librium current is composed of a small drift of the bulk electron population. At low
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densities, however, the equilibrium current is carried by a small fraction of the elec-
tron population (“runaway” electrons) possessing speeds greater than the thermal
velocity. As the plasma density increases, so does the plasma collisionality, and the
runaway electrons relax back into the bulk distribution. This raises the question of
whether the MHD stability can be enhanced by the presence of a high energy sub-
population carrying the current. The inclusion of a fast population of electrons into
the tearing mode analysis may change the electron response in the region about the
rational surface and provide additional stability. Hence, the shift in the equilibrium
electron distribution from a runaway-type distribution to a drifted Maxwellian as
the density is increased may correspond to a shift from stability to instability for

the m = 2 tearing mode.

This study uses a fully kinetic approach to the tearing mode which includes
the effects of turbulent electron diffusion and treats the tearing mode as an electro-
magnetic fluctuation. A kinetic theory also allows the choice of v;cxrious equilibrium
velocity distributions which give rise to the same equilibrium spatial current distri-
butions. In such a way the effects of a drifted Maxwellian to those of a runaway

distribution can be compared while fixing the equilibrium current distribution.

The eﬁ’écts of turbulent electron diffusion enter the analysis by applying the
normal stochastic approximation (NSA) to the collisionless drift kinetic equation
(DKE) for electrons, as is described below. The end effect of the turbulent electron
diffusion is to stabilize the tearing mode at suffciently large values of the diffusion
coeffcient [13,14]. This implies the existence of a density threshold provided the
electron diffusion coefficient scales inversely with density, D, ~ 1/n. Physically,
electron diffusion prohibits the tearing region from becoming too small, whereas
in resistive MHD the layer thickness is limited only by dissipation, which ajters
the growth rate without affecting stability. Electron diffusion prohibits the fo;ma-
tion of a perturbed parallel current channel narrower than the correlation distance,
z, = (D. /k,’lvve)l/ 3. This flattening of the perturbed current thus cuts inte the

available free energy driving the tearing mode (represented by A’) hence reducing
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the available energy to A’(z.) (as opposed to A’(0) in resistive MHD). Here, A’(z.)
is the difference between the logarithmic derivative of zi“ evaluated at a distance
z, from the rational surface and that value at a distance of —z.. For typical ex-
perimental profiles, A’(z) is a decreasing function of the distarnce from the rational
surface, . The below results for the “magnetic” tearing mode (which neglects the
effects of fhe electrostatic potential 4~S) give a growth rate scaling as v ~ A'(z.)[13].
Hence, stability occurs when z, > W, W being the distance where A'(W) =0. Us-
ing the Alcator C parameters of L,/ L, ~ 20, T ~1keV,a ~ 20 cmand W/a ~ .05
indicates stability is obtained for D, > 10* cm? /sec. This gives a value for the

density threshold on the order of that observed in Alcator C.

By treating the tearing mode as an electromagnetic fluctuation, the effects
of a finite electrostatic potential, ®, are investigated and found to be stabilizing.
Physically, the relevant stabilizing terms involving the electrostatic potential rep-
resent ion inertia. This mechanism is completely independent of electron diffu-
sion. In fact, when the diffusion is neglected, the tearing mode is stabilized when
Bi(rLs/L,)"? 2 A’(0), indicating stability at sufficiently high plasma beta. Here,
7 is the temperature ratio, L is the shear length, L, the density scale length, and
8; is the ratio of ion pressure to magnetic pressure. Using the Alcator C parameters
L,/L, ~ 20, p;/a ~ .002 and A'a ~ 10 indicates stability for 8; > 5 x 1073, A
result identical to this was obtained previously by Basu and Coppi [11]. Physically,
this stabilizing effect represents that portion of the available magnetic energy driv-
ing the tearing mode which must be used to maintain the ion motion. In the kinetic
theory description the tearing mode has a real frequency (w = w..) and large ion
inertia becomes a stabilizing effect. In contrast, for the purely growing modes of the
resistive MHD description, no ionic energy is required by the perturbation itself and
jon inertia does not influence stability but only the magnitude of the growth fate.
In this picture, the tearing mode is actually interpreted as an electron drift wave
under modification of the of the equilibrium, current gradient. This current gradi-
ent introduces an additional energy source which drives the low m “drift—tearing”

modes unstable. Hence, the inclusion of a finite electrostatic potential indicates
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that the tearing mode can be stabilized at sufficiently high densities in addition to

the stability at low densities discussed in the previous paragraph.

' The analysis of the magnetic tearing mode using a drifted Maxwellian for the
equilibrium electron distribution gives a real frequeﬁcy equal to w.. and a growth
rate ¥ ~ A’(z.). When the analysis is repeated using a runaway—-type distribution,
the real frequency of the tearing mode is shifted to a value slightly above w... The
expression for the growth rate then contains a new stabilizing term proportional to
this frequency shift éw = w—w... Physically, this additional stabilization represents
the additional energy required to sustain the particle oscillation at the frequeﬁcy
w.e + éw. This runaway stabilization is a higher order effect and is only important
for a tearing mode near marginal stability; i.e., for a low density case where the

MHD energy drive is nearly cancelled by the ion inertial stabilization.

Chapter 2 discusses the mathematical model used in this treatment of the tear-
ing mode and presents the derivation of a coupled, self-adjoint system of equations
for the fluctuation potentials A~|| and ¢. Section 2.1 deals with the electron response
and the developmént of the normal stochastic approximation (NSA), which enables
the effects of turbulent electron diffusion to be treated in a self-consistent man-
ner {15—18].. The electron response is obtained by applying the NSA to the drift
kinetic equation. In effect, the NSA amounts to a coarse grain averaging over the
micro-scale structure characterizing the stochastic electron orbits. These stochastic
electron orbits are the direct result of the presence of drift wave microturbulence.
The end result is that the nonlinear effects of turbulence are represented by the
appearance of a turbulent diffusion coefficient. In the limit where the electrons ex-
perience stochastic orbits, the NSA is essentially equivalent to the direct-interaction
approximation (DIA) [17]. Section 2.4 discusses the validity of treating the full spa-
tial diffusion operator with an approximate Krook-type diffusion frequency. This
Krook approximation amounts to replacing the diffusion operator, —Da2 /0z2, with
a diffusion frequency, w, = (%(kl’lv”)zD)l/ 3, in the equation for the nonlinear_elec-

tron response [18]. This leads to a much simpler mathematical treatment of the
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diffusion (both analytically and numerically). In physical terms, this model assumes
that the tearing mode exists on a background of drift wave turbulence. The pres-
ence of drift waves lead to stochastic electron orbits and hence turbulent diffusion,

which is treated in the electron response via the NSA.

The ion response is virtually unaffected by turbulent diffusion, and thus the
ions are treated with the linearized Vlasov equation in Sec. 2.2. In Section 2.3,
Ampere’s law and quasineutrality are invoked to give a set of coupled, self-adjoint
equations for the fluctuation potentials, /i” and q~5 This coupled system is fully
kinetic, globally valid over the entire plasma, and reduces to ideal MHD at large
distances from the rational surface. Since this system of equations for d~> and AII
is self-adjoint, a variational principle can be formed. This variational principle is

later used in the calculation of the dispersion relation for the tearing mdde.

Chapter 3 exa.mines}t‘he stabilization of the tearing mode by turbulent electron
diffusion. This is done by analyzing the full set of kinetic equations for q~$ and
fi” using a drifted Maxwellian for the equilibrium.electron distribution. The goal
of Sec. 3.1 is to show what approximations are necessary to obtain the resistive
MHD results for the tearing mode from the above set of coupled equations for
fi” and q; Resistivity is introduced in the Krook approximate model by replacing
w, with a velocity collision frequency, v. After further reducing the coupled set of
equations for “ill and q; in an inner and outer region, a simple variational calculation
is performed which yields the resistive growth rate [3] for the tearing mode. The
important limits taken (unjustifiably from the kinetic point of view) in order to
obtain the resistive MHD results were (a) the asymptotic limit of taking the tearing
layer to be zero and thus obtaining the energy drive term as A’(0) and (b) the limit

of setting the electron diamagnetic frequency to be zero.

Section 3.2 presents a formal analytic proof demonstrating that the teafring
mode is stabilized for sufficiently large values of the diffusion coeffcient, D., for
a system which is resistive MHD unstable, A’(0) > 0. This is done by identifying .

the appropriate terms in the variational integral as the energy drive for the tearing
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mode. In the ideal MHD limit, this drive yields the quantity A’(0). Using the full
kinetic operators, however, the energy drive goes to zero for large values of the diffu-
sion coefficient and stabilization is achieved. Section 3.3 derives a simple dispersion
relation for the magnetic tearing mode in which the effects of the electrostatic po-
tential, 4~3, are neglected. The équation governing fi“ is solved to leading order in
an inner and outer region, and the dispersion relation is determined by applying
matching conditions to the boundaries at £z.. The resulting dispersion relation
indicates the magnetic tearing mode to have a real frequency equal to the electron
diamagnetic frequency, w.., and a linear growth rate proportional to A’(z.) (13].
This result is similar to the collisionless tearing mode as calculated by Laval et al.
8] where they find v ~ A’(0). Numerical calculations indicate A(z) to be a de-
creasing function of z; hence, stability is given by z. > W, where A'(W) = 0. This
condition for stability, A’(z.) = 0, indicates that the magnetic energy involved in
A~|| and j”, outside the tearing region, |z| > z., is zero and thus no free energy is
available to drive the tearing mode. This is analogous to nonlinear estimates of the

magnetic island saturation width, W, given by the value where A’(W) = 0 [4,20].

The goal of Section 3.4 is to determine the dispersion relatioh for the tearing
mode inciuding_ the effects of a finite electrostatic potential. This is done by a
variational calculation. The end result is that the effect of a finite electrostatic
potential; 4~5, produces additional stabilizing terms in the dispersion relation which
are independent of electron turbulent diffusion. This additional stabilization is
due to the inclusion of terms involving the electrostatic potential in the variational
integral which represent parallel and poloidal ion inertia. In the absence of electron
diffusion, the dispersion relation indicates that the tearing mode is stabilized by ion
inertial effects when 8;(7Ls/ Ln)l/ 2 > A'(0), a result identical to that obtaine};i by
Basu and Coppi [11]. The appearance of factor 3; is due to the available free en::rgy
in the outer region scaling as B2 whereas the ion inertial terms scale as nT;. Thus,
in addition to the stabilization at low densities due to turbulent electron diffusion,

the tearing mode is also stabilized at high density due to ion inertial effects.
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Chapter 4 examines the stabilization of the tearing mode by runaway electrons.
Section 4.1 derives the modified set of coupled equations for ¢ and fi” in the case
where the equilibrium electron distribution is a runaway-type distribution. For
simplicity, this distribution is modeled by a low density monoenergetic electron
beam superimposed of the tail of a Maxwellian. To see the effects of the fast beam
electrons, corrections of order Wye/w. must be calculated to the dispersion relation
presented in Chapter 3. Section 4.2 calculates these corrections of order w../w.
for the “regular” tearing mode of Chapter 3, where the equilibrium distribution
is a drifted Maxwellian. Section 4.3 then calculates the dispersion relation for the
runaway tearing mode including terms of order w../w.. These results indicate thaﬁ
the real frequency of the runaway tearing mode is shifted above w.. by éw, where
bw/w.e ~ npvy/(nove). Here np and vy, are the beam density and beam speed; and
no and v, are the bulk density and thermal speed. Consequently, an additional
stabilizing term appears in the expression for the growth rate of the form éw/w,.
This additional stabilization represents the additional energy required to maintain
the particle oscillation at the beam shifted frequency. Hence, enhanced stability
results when the plasma current is carried by a beam of fast electrons as opposed

to a slow drift of the bulk electrons.

The goal of Chapter 5 is to develop a fluid model which is equivalent to the
kinetic theory in the NSA model. By using such an equivalent fluid model, the
physical processes in the tearing mode dynamics can be illuminated more simply
than in the NSA kinetic theory. Section 5.1 presents the derivation of the fluid
model by performing velocity moments of the NSA drift kinetic equation. In the
- Krook approximation, the fluid model demonstrates that the NSA diffuses both the
perturbed density and the perturbed momentum at equal rates. The effective rate
at which this diffusion occurs is w.. Section 5.2 uses this fluid model to examiné the
regular tearing mode and shows that the results are equivalent to those obtained in
Chapter 3 using the kinetic theory. Section 5.3 uses the fluid model to examine the
runaway tearing mode and shows that the results are equivalent to those obtained

in Chapter 3 using the kinetic theory. Section 5.4 presents a simplified fluid theory,
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in which the fluid model is reduced to the “bare basics” necessary to describe
the tearing mode including the stabilization mechanisms of turbulent diffusion and
runaway electrons. This simplified model reduces the mathematical analysis to a

- minimum and, thus, allows the physics to be seen more easily.

Numerical results to the full kinetic description are presented in Chapter 6.
These kinetic equations are solved using two different numerical methods. The
first, and the more exact method, utilizes the initial value code TEDIT [19,21,22]
and solves this problem including the full diffusion operator, —Dd%/dz?, in the
equation for the electron response. The second method uses a shooting code in
solving this problem in the Krook approximation, —D3%/8z% — w.. Both codes
are observed to give the same qualitative results, as predicted by the analytical
discussion in Sec. 2.4. The numerical calculations for the regular tearing mode
agree very well with the analytical expression for the growth rate as given by the
variational calculation in Chapter 3. The numerical results for the runaway tearing
mode are not quite va.s extensive as for the regular tearing mode. However, the basic
qualitative picture déscribed by the analytic theory is supported. In particular, the
| real frequency shift 6w is observed to scale linearly with nyvp, and the stability is
observed to be enhanced over that of the regular tearing mode for a fixed value of

the equilibrium current.

A summary of this study is presented in Chapter 7 and suggestions for future
study are presented in Chapter 8. The remainder of this introductory chapter
presents the background theory of the tearing mode. Section 1.1 introduces the

concept of spontaneous magnetic reconnection. Section 1.2 and Section 1.3 present

the basic theory of the resistive and collisionless tearing modes.

"
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1.1 Spontaneous Magnetic Reconnection

Spontaneous magnetic reconnection [2,9] can be viewed as a process in which
a speciﬁc magnetic field topology relaxes to a structure of lower potential energy.
The tearing mode instability is a mechanism through ;vhich this potential energy is
released during relaxation of the magnetic topology [1]. Such a relaxation, however,
is prohibited in the ideal MHD model due to the “frozen-in law”, which states that
the plasma and magnetic field lines must move together [23]. Thus, some “non-
ideal” form of dissipation is needed in order for magnetic tearing to occur, such
as particle collisions (resistivity), turbulence, or wave-particle resonant damping.
Despite this, ideal MHD is useful in describing the energy drive for the tearing
mode [8,24,25]. This is done by determining if a particular magnetic topology has
sufficient free energy available to render a tearing mode unstable and, hence, allow
magnetic reconnection to occur. Non-ideal effects are only important in a narrow
region in the plasma in which magnetic reconnection first occurs. Although such
dissipation is necessary for the existencé of the tearing mode, the stability of the
tearing mode is determined by the global magnetic structure of the plasma outside
of this narrow region. For example, ideal MHD can be used to determine the
available free energy for various ‘g,loba] magnetic structures such as magnetically
confined laboratory plasmas or the plasma in the Earth’s magnetotail [26]. This

paper will focus on magnetic reconnection in a tokamak plasma.

A tokamak plasma can be idealized as a straight cylinder with an axial, or
toroidal, plasma current and a magnetic field primarily in the toroidal direction
with a somewhat smaller poloidal (azimuthal) component. Such a system exhibits
magnetic shear, that is, the strength of the poloidal magnetic field varies as a
function of plasma radius, whereas the toroidal magnetic field remains constant.
In the ideal MHD description, these magnetic lines trace out concentric cylimfrical
surfaces. Magnetic shear prevents one magnetic surface at a given radius from
slipping pass another surface, hence, dissipation is necessary for these magnetic

surfaces to rearrange themselves. If the current profile within the plasma becomes
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too peaked. thus developing steep gradients, it is possible for there to exist suffcient
free magnetic energy which will, in turn, drive a teaﬁng mode unstable {3]. When
“this occurs', it is possible for the magnetic surfaces to rearrange themselves through
magnetic reconnection. This relaxation leads to the formation of magnetic islands

about the mode rational surfaces [27], as illustrated in Fig. 1.1.

The fundamental physical processes involved in magnetic island formation [27]
are illustrated in Fig. 1.2. Consider introducing a radial magnetic field perturbation

of the form

B,(r,t) = B,(r) exp|i(m8 — nz/R — wt)) (1.1)

near the mode rational surface, r;, where g(r;) = m/n. Here ¢(r) = rBr/RB,,
where By is the poloidal magnetic field, Br is the toroidal magnetic field, and R is
the major radius of the tokamak. In resistive MHD, w = ¢, as will be shown below.
The poloidal field lines now experience a radial undulation. Those lines close enough
to rs are pulled completely through the rational surface to form magnetic island
structures. If B, is allowed to grow in time, then Faraday’s law requires there to
exist an electric field in the axial direction (according to ¥B, = —imE,/ 7). In ideal
MHD this is not allowed, hence, such a perturbation would remain infinitesimal.
However, if a finite resistivity is permitted, then there will exist an axial electric field
which thus enables magnetic reconnection to occur. As the magnetic islands expand
radially, the plasma fluid flows with it and forms vortex-type flow patterns. (See
Fig. 1.2.) These islands would continue to grow until they saturated nonlinearly by

exhausting all the available free magnetic energy.

i
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Figure 1.1

LR

Magnetic flux surface contours showing m = 1, 2 and 3 magnetic islands.
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Figure 1.2

Schematic diagram showing the perturbations produced by the tearing mode;‘_and
the process leading to magnetic island formation.
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It is important to note that a nonzero F. is only needed in a thin layer about
the rational surface in order for the magnetic reconnection process to occur. The
existence of this Eil requires the presence.of dissipation or some other non-ideal
process (such as finite electron inertia). Outside of this thin layer, the plasma
is adequately described by ideal MHD. As mentioned previously, the structure of
the outer ideal MHD region determines the available free energy. This free energy
is then dissipated in the thin non-ideal region about the rational surface where

reconnection occurs.

The available free energy for the tearing mode can be calculated using Ampere’s

law,

VIA + —J =0, (1.2)

where the displacement current has been neglected due to the low frequency of
the tearing mode. For this problem a sheared, slab geometry is chosen with the
equilibrium magnetic field given by B = B(e, + z/L.e,) with b = B/B. Here,
L, = —Rq?%/rq is the shear length, and £ = 0 is chosen to be the position of the
rational surface. Throughout the following, a tilde is used to denote fluctuation
quantities. Here, q~5 and A represent the perturbed electrostatic and vector poten-
tials respectively, E represents the perturbed electric field, and B represents the
perturbed magnetic field, such that B = V x A. Also, the spatial coordinate z will

be normalized in units of the ion gyro radius, p;.

The tearing mode is defined to be a magnetic perturbation arising from a
perturbed parallel vector potential. That is, A= A~“b and B = V x finb. Note
that the perpendicular components of A give rise to parallel components oif B.
These parallel components of B compress the equilibrium magnetic field, and:this
compression requires much more energy than that required to bend the field lines

perpendicularly. Since such compression of the magnetic field lines is stabilizing,

an unstable magnetic perturbation tends to minimize its parallel component.

22




The parallel component of the low-frequency version of Ampere’s law is given

by
2 ~ 471‘ fod
b-V A”b+ —C—J” = 0. . (1.3)
Note that V2(b-A) = b-VZA + A-V?b+2(VA) : (Vb). Recall that this problem
assumes slab geometry with | z |< @ and a/Ls ~ 107!, For this geometry, the
above equation becomes
b-VZAb=V2A4 +L;7?A, + L7 (ALz/L, + A),

where higher order terms in a/L; have been neglected. Notice that A, ~ A“ and

fiy ~ fi”z/Ls. Assuming that fif'//i“ ~ 1/a, then this implies that the last term

in the above equation scales as L;zﬁ”. Hence,
b- V24 b =~ V24,

where terms of order a?/L2 have been neglected.

Thus, in the low—frequency,‘ low-shear limit, the parallel component of Am-

pere’s law is given by
(1.4)

- 47T ~
V2A|| + -—-J” = 0.
c
Multiplying this equation by zi”, integrating over the plasma and performing an

integration by parts gives the integral
(

a -~ ~ 47 ~ ~ ~
5—/ d"[AT|2+P?’°§Aﬁ— TP?Jue[Anl'Au],
—-a

where, by construction, S = 0. Here, j“e[/i“] is a general operator representing the

perturbed parallel current, and +a represents the edge of the plasma. Physically,
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S = 0 represents the conservation of energy across the plasma for the perturba-
tion /i!!. By excluding the narrow region about the singular surface, however, the
~ resulting expression for the integral S can be interpreted as the energy drive for
the tearing mode|[8,13,24]. Physically, the integral over the outer region represents
the free energy released by the perturbation /i”, while the integral over the narrow
region about z = O represents the energy absorbed by the plasma during the tearing

process.

To demonstrate that the integral S represents the energy associated with the
tearing perturbation A”, it is helpful to consider the following heuristic arguments

based on Poynting’s theorem,

~

2+ V-.§=-w

SN

where @ = (B? + E~’2) /8 is the energy associated with the fluctuations B and E;
§ = (E x B)c/4n is the Poynting vector for the fluctuating fields; and w = (J-E)
is the power due to interaction of J and E. Integrating the above expression over

the plasma volume gives

6P=/d3x[§—t (32+E2)§;+(j.ﬁ)] —0o

where it was assumed that § = 0 on the plasma surface. Physically, 6 P represents

conservation of power for the fluctuating fields.

In applying the above expression to the tearing mode perturbation, B =V x
fi”b. Recall that A = fi”b, since perpendicular components of A lead to parallel
components of B which provide strong stabilization from magnetic line compression.
An unstable tearing mode inherently minimizes BII and hence the compressional

stabilization.

To analyze the energy drive for the tearing mode, the above expression for 6 P

is analyzed in the region outside the thin tearing layer at z = 0. In this region,
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ideal MHD is valid which states Eii = 0. Hence, 47) = w‘igf k c. The perpendicular

clectric field is given by E, = —Viqz. Notice
/ d3I (—V_L(;) 'j.L = / ds.’li(; (VJ_ j_L)
== / &*zikypJ)

where V - J = 0 was used. Hence,

[ @b i :/dsx(_’_‘ﬂ,&”j“)‘,
4

and the expression for é P becomes

1 9| - « W~ =~
6P = / d%{g;a [l B [*+|Vy (wAu/knc) lz] - <?A”J”)}

where | B, |?~| V Lz‘in |2. Notice that in the outer region the second term in the

above equation can be neglected due to the smallness of w/kjc.

To find an expression for the energy, the power 6P is integrated over time.

This gives

1 -, 4w o
W = ——/ d3r{| VLA P -ZA .
87 c

Hence, the identification can be made that

g
S = 8n-Lisw
"L,L.

and, thus, S represents the energy associated with the perturbation fi,,. Here, L,
and L, represent the length of the slab of plasma in the y and 2 directionsy and

the factor p? has appeared since z is normalized in units of p; in the expression for
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S. Note, however, that the above heuristic arguments do not co‘rrectly describe the

plasma at £ = 0. In order to do so, the effects of finite E” must be considered.

In order to derive an expression for the energy drive of the tearing mode, it
is necessary to calculate the ideal MHD form for the perturbed parallel current.
To do this, the linear form of the ideal MHD momentum equation is used while
neglecting the plasma pressure (low-3) and inertia (marginal stability). Hence, in

the low-beta limit at marginal stability (a = 0),

The above expression indicates that the perturbed perpendicular current is due
to the particles free streaming along the undulating magnetic field lines. Using

V-J =0 then gives

0
Ji=-775"Ap (1.6)

which is the ideal MHD form for the perturbed parallel current. Here, k) = kl'lx’
where k!,l = ky/Ls. Notice that in the ideal MHD limit f“ is singular at the rational

surface, z = 0.

The energy drive integral, S, is then evaluated by letting “ill satisfy the ideal
MHD form of Ampere’s law,

d? 2 2 4m 4 kyJI,I
= _ e _ T 52 =0. 1.7
dz? yPi c Py ky Bo IMHD (1.7)
This then gives ' ,
Smup = —A} Ag, (1.8)

where limz(,_*o[A”Ah(zo) - A||A|,|(‘xo)]MHD = Aﬁn A{. Here, A} represents the

jump in fifl across the singular surface. If A, > 0, then there exists suffcient free
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" energy in the outer MHD region to drive the tearing mode 128|. Notice that in “pure”
ideal MHD alone, such singular behavior of fi” and jump conditions in /ih are not
allowed to occur in the plasma. Hence, a nonzero Aj is only allowed by assuming
the existence as a non-ideal MHD region in a thin layer about the rational surface
[29]. The above development assumed low shear in the outer region. However, the
above definition of the energy drive A{ as being the jump in Ah across the rational

surface holds even in systems with high shear in the outer region.

In the above calculation of the energy drive, A(, the tearing region in which
dissipative effects are important was assumed to be infinitesimally thin. In a kinetic
_theory treatment, as will be outlined below, the effects of spatial turbulent diffusion
broaden this dissipative layer to a significant width [13,14]. This has the effect of
: cutﬁing into the avail.able energy in the outer MHD region and thus feducing the
energy drive to a value smaller the Aj. In general, it is possible to define the

function

A? A’(.’B) = [A”A{l(:c) - A”Afl(—z)]MHD. (1.9)

I()

For typical tokamak profiles, A’(z) is a monotonically decreasing function of z [30-

- 33]. For simplicity, a linear form for A’ will be used

A'(z) =~ Ao(1l — z/W). (1.10)

Physically, Ap represents the energy drive in the limit of an infinitesimally thin dissi-
pative layer and W represents the width at which a magnetic island will nonlinearly

saturate [20]. -

The expression for the ideal MHD energy drive Spyyp, given by Eq. (1.8),
- implicitly assumes that the non-ideal dissipative layer is infinitesimally thin. How-
ever, if there exists a dissipation- mechanism which produces a layer of finite width,

then this inner non-ideal region must be excluded from the ideal MHD energy in-
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tegral. If this is done, then the expression for the ideal MHD energy drive becomes
Smun ~ A'(z,), where z,, is the width of the dissipation region. For example,
as will be discussed below, the effect of radial turbulent diffusion on the tearing
mode will be to reduce the available energy from Af to A’(z.). Here, z. is the
diffusion correlation distance (and the width of the dissipative layer) whose value
increases with increasing value of the particle diffusion coeffcient D. In general,
if A’(zq) > 0, then there exists suffcient free energy, thus enabling spontaneous

magnetic reconnection to occur.

Riv i

1L
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1.2 Resistive Tearing

As mentioned above, ideal MHD is inadequate to describe magnetic reconnec-
tion. The “frozen-in” law of ideal MHD prohibits magnetic lines and surfaces from
slipping past one another, hence, prohibiting magnetic reconnection [23]. However,
if a form of “non-ideal” dissipation is introduced in a small region about the rational
surface, then it becomes possible for magnetic reconnection to occur. In the resistive
tearing mode, this non-ideal dissipation appears in the form of collisional resistivity.
Traditionally, the resistive tearing mode is described using resistive MHD [3,34]. In
resistive MHD, the ideal Ohm’s law E + (V x B)/c = 0, which describes frozen-in
field lines, is modified to include resistivity, E + (V x B)/c = nJ. This then al-
lows the formation of parallel perturbed electric fields and, hence, allows magnetic
reconnection to occur. Here the resistivity n is a Spitzer-type collisional resistivity
[35], n = (mev./2ne?), where v, is the Braginskii electron collision frequency [36].
In practice, this resistivity is neglected everywhere except in a small resistive layer
within +z¢ of the rational surface. Hence, the resistive MHD model reduces to ideal

MHD outside this resistive layer.

As discussed in Sec. 1.1, ideal MHD is used to describe the energy drive for
the tearing mode in the region outside of the dissipation layer. The ideal MHD
energy drive in the outer region is defined as the negative energy resulting from the

integral

~ 2
—Zo e dA
Souvr = (/ d.'c+/ dI) (d_a:”) 2k2A” - —-—pt J”A” . (1.11)
—a Zo

Here, +a represents the plasma edge, +zo represents the edge of the resistive l;yer,
and z has been normalized in units of the ion gyroradius p;. The first two t;rms
in Soyr represent stabilizing line bending energy, whereas the last term represents
the energy resulting from the interaction of the perturbed parallel current with the

~ magnetic potential. In ideal MHD, j“ is given by Eq. (1.6), as discussed in Sec. 1.1.

29



Equation (1.11) can be evaluated by requiring ‘ili to satisfy the ideal form of

Ampere’s law, given by Eq. (1.7). After integrating by parts, Soyr becomes

SOUT = hm [/i“f‘ih(xo) - /i”/-ih(—zo)]

zy3—0

MHD
= — A% AL, (1.12)

Here, Al represents the jump in fif' across the singular surface in the limit of an
infinitesimally small resistive layer. Physically, A{ represents the free magnetic

energy of the outer region which is available to drive the tearing mode [28].

To determine the dispersion relation and, hence, the growth rate of the resistive
tearing mode, it is necessary to consider the dynamics within the dissipative layer.
Specifically, the energy source in the outer region Soyr must be balanced against
the energy sinks in the inner region, S;ny. In the resistive MHD model, the energy
integral in the inner region, Sy, has two significant contributions. The first is the
kinetic energy associated with the fluid motion of the plasma and the second is the
energy dissipated through existence of a finite resistivity. Hence, a heuristic energy

integral in the inner region can be written as [37]

SIN Zo 1 ~ 5 p? - -
-87 2/ dzx [‘ém,anl - -2—(:—17E”A” . (1.13)

—Zo

The first term in Eq. (1.13) represents the kinetic energy of the fluid motion of the
plasma (finite ion inertia) and the second term represents the energy dissipated into
thermal motion of the plasma through collisional resistivity. The second term results

form the interaction term p?j”fi”/Zc [see Eq. (1.11)], and the relation E'” = n:j“.

In the resistive MHD model, the primary fluid motion of the plasma is the
E x B motion, V = ¢(E x B)/B2. Using the fact that E = —iké + iwfi”b/c,.;.then
Eq. (1.13) can be rewritten as
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S

SINA o ¢im; ' <l~5 22k2|3)2 z.]"!“"2 O S U
[ S _r k ittt Ao . .
87 /_z" dz | 5 g2 dz pikylol” | + e A )AL, (1.14)

The integral Sy is evaluated using a variational technique [37]. To perform
a variational calculation, suitable trial functions for q§ and fi” must be chosen.
This is done by noting that at the boundary 4z the trial functions for ¢ and fill
must match onto the ideal MHD solutions. Numerical solutions of the ideal MHD
Ampere’s law, Eq. (1.7), indicate that for realistic geometries and current profiles
/i“ MHD is a positive, slowly varying fﬁnction near the rational surface. Hence, as
is done in resistive MHD calculations, /i“ is chosen to be a constant in the inner
region. (This corresponds to the “constant ¥” approximation of resisvtive MHD
[3].) Using the fact that in the outer region E’” = 0 implies ¢ = (wfi”/kl'lxc). This
fact along with the observation fi” = A|jo = constant in the inner region implies
that qg must be an odd function about the rational surface. Hence, a suitable trial
function for ¢ is a linear function which satisfies the condition ¢ = (wA)o/ kjzoc)

at £ = £xo. Thus, Sty is evaluated using the following trial functions:

A~|| = A”o = constant

and

wA“o 1
kjpic =0’

(1.15)

é="10o0, where ¢o=
Zg

In the evaluation of Syy, the bouhdary o serves as the variational pa.ra.metexi

Since the trial function for qg is linear in z in the inner region implies that the
second and third terms in Eq. (1.14) can be neglected. Inserting the above. trial

functions into Eq. (1.14) and performing the integrals gives
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i wAjo 1 1 WP?Aﬁo
— = — = W,
. 8T B? iklllpiczol Zo c?n )

2
1 ([ v 1 4p?
=A== | — | 5+ 5tz 1.16
o} 45 (v“‘kl,lpi) 3 ¢in 0 ( )

where v4 = (B?/4mnom,) and w = ¢v. Notice that in the resistive MHD picture,

S]N szin

the tearing mode has zero real frequency [3].

To find the resistive layer width z,, the variation of S;n with respect to z, is

set equal to zero, Sy /6zo = 0. This gives

1/4

3 '7c2r]

o= |——5—57 . (1.17)
[4" ”ﬁkﬁz"f]

Inserting this into Eq. (1.16) then gives

(1.18)

‘ 1/4
SIN I 3 ’75 /
8w

PIN _ 42 212
HOBm 4wvikf|2c6n3

The growth rate for the resistive tearing mode is found by setting the total
energy equal to zero. Hence, setting S = Sour + Sin = 0, using Eq. (1.12) and
Eq. (1.18), gives

1 4 3 ~® i
!

The left hand side represents the free magnetic energy from the outer regionjand
the right hand side represents the energy absorbed in the inner resistive layer. =The
energy absorbed in the inner region has two contributions. The first is the energy
required to sustain the perturbed fluid motion of the ions and the second is the

energy dissipated into the plasma through finite resistivity.
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Solving Eq. (1.19) for the growth rate gives

3 AN\Y® [4n 1/5

Rewriting the above expression in standard notation [27] gives

N\ 2/5
v~ 37075 7% (Ala)Y® (%m%) (1.21)

where 7 = (4ma%/c®n), T4 = a/va, a = plasma minor radius, R = plasma major
radius, m = poloidal mode number and ¢ = plasma safety factor. More accurate
resistive MHD calculations indicate the constant .37 should be replaced by .55 [3,38].
The analytical calculations necessary to obtain the factor .55 are very tedious and

they yield the same parameter scaling as indicated by the above expression.

To summarize, the resistive growth rate is determined by balancing the ideal
MHD energy drive from the outer region, represented by A[, against the energy
~ required by finite ion inertia and finite resistivity in the inner region. In the resistive
MHD model, the tearing mode has zero real frequency and a growth rate given by
Eq. (1.21). Instability occurs provided Al > 0. Recall that in the evaluation of the
outer energy drive Af), the limit of an infinitesimally thin layer width is assumed,
zo — 0. Notice, from Eq. (1.17), that zo ~ ~'/* and, hence, zo — 0 as v — 0.
Likewise, the energy absorbed in the inner region by both finite ion inertia and
resistivity goes to zero with the growth rate, as indicated by Eq. (1.18). The key

dissipation mechanism in this model is, of course, collisional resistivity.

Resistive MHD calculations of the tearing mode have also been performed for
the general toroidal case, including finte-beta effects and incompressibility [32:39}.
These results indicate that stability is obtained when Ay < A.(8). Here A.(B)

increases with 8. However, A, is close to zero except for high values of 3 [32,40].
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1.3 Collisionless Tearing |

In Sec. 1.2, the dissipation mechanism which allowed field line reconnection
to occur was collisional resistivity. It is often the case, however, that the plasma
collision rate is too low to yield large enough linear growth rates corresponding to the
observed time scales on which magnetic reconnection occurs. Such is the case in the
Earth’s magnetotail [41,42]. In such collisionless plasmas, the dominant dissipation
mechanism which allows magnetic reconnection to occur is either that of wave-
particle resonant interaction [43] (Landau damping) or that of some turbulent (ot
anomalous) dissipation [44,45]. In this section, a non-collisional and non-turbulent
plasma is considered, where the dominant dissipation mechanism is that of wave-

particle resonant damping.

To study the basic collisionless tearing mode [1,8,9], a sheared-slab geometry
identical to that in Sec. 1.2 is used. Instead of an MHD fluid treatment as used
in Sec. 1.2, however, a kinetic approach is used here based on the drift kinetic
equation (DKE) [46,47]. To simplify the analysis, only the electron dynamics need
be considered, whereas the ions are assumed to form a stationary background. Also,
only the effects of a perturbed perpendicular magnetic field B, = V/i” x b need be
considered, whereas the effects of a finite electrostatic potential can be neglected,
q~$ = 0. To calculate the dispersion relation for the collision tearing mode, the energy
integral obtained from Ampere’s law, Eq. (1.5), is again utilized. Hence, only the
perturbed parallel electron current need be calculated. This is done by solving the

linearized DKE for the perturbed electron distribution fe and then performing the

‘ appropriate velocity moment.

To begin with, the electron dynamics in the presence of a magnetic field per-

turbation B are described by a DKE of the form

e

—_
Pk
™
N

N

o . e 0 '
(E'F'U”b'V'*‘le 'V_L—;E“-é—{)i) fe—O.
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The perpendicular motion of the guiding centers is given by

Vi, = v — 1.23
1 I B, ( )
which states that the perpendicular motion arises from the guiding centers free

streaming along the undulating field lines B = Bg + B,.

- Letting f. = fe + f,, where f, is the equilibrium electron distribution, then

the linearized equation describing fe is

d B, 3\ -
(at +v||b V) fe - (v” B. -V, - —E” av”) f . (1.24) |

The effects of the equilibrium electric field enter the above equation only through the
current-carrying piece of f,. The equilibrium distribution is chosen to be a drifted
Maxwellian with drift speed vp and thermal speed v, = (2T./m.)!/? satisfying

vp/ve < 1. Hence, f, is given by

| 2
fe= f0+f1—\/—(z P( lzi)“F“B:z—v”fo- (1.25)

As it turns out, the term proportional to E'”(afl /dv)|) on the right hand side
of Eq. (1.24) can be neglected. This is because at large z (outside the dissipation
layer) the plasma is described adequately by ideal MHD which states E” = 0; while
at small z (inside the dissipation layer) the plasma dissipative process of Landau
damping is independent of the plasma equilibrium current. Assuming the Fourier

dependence f, ~ fe(x) expli(kyy + k,z — wt)|, then Eq. (1.24) becomes

Vi (0 s

zeA I

oT )| wfo+ weeln “é— (fo + fl) (1.26)

-—

—i (w ~ kyoy) fe =

~ where w,, = (¢Tky/eBL,) and L;! = —(dInn/dxz).
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The perturbed parallel current is given by taking the first velocity moment of

fe. Using Eq. (1.26) gives

~ e2n /i“ *° 2 3 w - |
Jje = Th /-oo dv [(w —w.e)vf - mw*evn] (vu - H> fo (1.27)

where n = (2J1’,0Ln/enve).

To determine a dispersion relation, the energy integral given by Eq. (1.5) is
used. Again, as in Sec. 1.2, this integral is divided into an inner (dissipative) and
outer (ideal MHD) region. For the collisionless tearing mode, the boundary of the
dissipative layer occurs at |z| = o, where zg is a few times z. = (w/kl'!ve). This is
chosen since Landau damping becomes significant at |z| = z.. To find j” at large
z, |z| > zo, the resonance function can be approximated as (v —w/ky)~ ! = v
In this case, j” becomes in the outer region

[

. kyJio ~
Jjovr = — k”BHO A,z > zo

(1.28)

which, as discussed previously, is the ideal MHD response.

In the inner region, |z| < zo, the leading order contribution is from the imag-
inary piece of the resonance function. Hence, approximating (v — w/ky)™! ~

i7l'5('0” - w/|k”|) gives

T |3

T

€

- . —ein 5« W 2
JjIn = zﬁﬁva” (1 - e) ) y x| < zo. (1.29)

w

exp (—

The dispersion relation is found by setting the total energy equal to zero, § =

Sovur + Sin = 0, where

Zo e - ~ T . ~ =
Sout = (/ dz +/ dx) [Af,2 + szﬁ - TJ”OUTA” (1.30a)

—a )
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Ty 4 . .

Sin :/ d:l:{ I —rk A 'C_WJHINAH . . (1.30b)
-Zo

In the outer ideal MHD region, SpoyT can be evaluated by requiring ;1“ to

satisfy the ideal MHD version of Ampere’s law given by Eq. (1.7). Hence, Sour

can be evaluated approximately to give

SOUT ~ — lim [/i”zih (.‘Do) - /i”/ih(—:l:o)]

33()—'0 MHD

Again, the thickness of the dissipation layer has been neglected to yield the ideal.
'MHD energy Ag.

In the inner dissipative region, Syy is evaluated in the “constant 1" approxi-

mation where /i“ is taken as constant. Using the approximation

/ dz’—fl exp (——I—el )zze/ dyye ¥ = =,
0 x I 0 2

then S;n becomes

2
o ~Wpe (W —wee) o
S[N =~ —22\/7? 62 —’:l,!ve—'AHO, (132)
where the term proportional to kz in Eq. (1.30b) has been neglected.

Setting S = SouT + Sin = 0 gives the dispersion relation

Ay = -2iV/r% “re | kl,“’*e). (1.33)
v

Hence, the collisionless tearing mode has a real frequency w, = w.. and a growth

rate given by

37



k!’lvg c2 ’
= 2 E A .
T g m Wl O (1.34)

which is smaller by a factor of 1/2 than the value of v given by more accurate

calculations [1,8,9].

¢+ The dispersion relation, Eq. (1.33), can be viewed as a balance between the
ideal MHD energy produced in the outer region and the energy dissipative near
the rational surface due to resonant wave-particle interactions. The drift frequency
w.. appearing in the expreséion for the dissipation can be viewed as a Doppler
frequency shift resulting from the perturbed motion of the electron guiding centers
relative to the laboratory frame. Also, notice that in the calculation of the outer
ideal MHD energy, the thickness of the dissipation layer was ignored, as was done
in the resistive MHD calculation. An important difference between the description
of collisionless tearing and resistive tearing is that the collisionless mode has a real

frequency w.., whereas the resistive mode was purely growing, w = 1.

Recall from Sec. 1.2 that the resistive tearing mode can 'be viewed as a balance
between the ideal MHD energy of the outer region and the energy absorbed in
the inner region. The energy absorbed in the inner region went into (1) resistive
dissipative heating and (2) sustaining the ion motion due to their finite inertia.
For the basic collisionless tearing mode represented by Eq. (1.33), however, the
jons were assumed to be stationary and, hence, ion inertial effects were neglected.
If the ion motion was included in the collisionless tearing mode energetics, then
an additional stabilizing term would appear in the dispersion relation representing
the energy necessary to sustain the ion oscillation at frequency w... More accurate
calculations [9,10] indicate that the collisionless tearing mode can then be sta,bigized

provided

g

——
[
w
[4)]

SN
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2
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2L, T;
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where I, is a constant of order unity. Hence, by including the ion dynamics, the

collisionless tearing mode can be stabilized at suffciently high 3;.

'
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Chapter 2
MATHEMATICAL MODEL

In a tokamak plasma, the effects of plasma turbulence play a major role in
determining the overall properties of plasma transport. Thus, it is cleaf that any
correct theory of plasma transport must include turbulence. Likewise, in the study
of plasma instabilities, it is apparent that the eﬂ’ects'of plasma turbulence on the
instability itself may play an important role. In particular, in this study the major

turbulent effect to be considered is that of electron spatial diffusion.

A mathematical model is developed, based on the normal stochastic approx-
imation (NSA), which includes self-consistently the effects of turbulent electron
diffusion [15-18]. The NSA is a theory for the nonlinear, turbulent response in a
system with intrinsic stochasticity and long-lived fluctuations. Intrinsic stochastic-
ity [48-50] implies that a diffusive process arises from the chaotic structure of the
particle orbits resulting from overlapping phase space islands. Hence, it is necessary
for the underlying turbulent fluctuations to be suffciently large as to satisfy the is-
land overlap condition [51]. The assumption of long-lived fluctuations implieé that
a hierarchy of statistical averé.ges can be performed. That is, a microscale average
over the fine-scale structure of the particle orbits can be performed while holding
the statistics of the wave fluctuations fixed. This disparity in scales between the
orbits and the fluctuations arises when the lifetime of the long-scale fluctuations
associated with the waves, 7,¢, is long compared to the Kolmogorov time [52], 7%,
characterizing the rate of the randomization in the particle orbits. Hence, the NSA
assumes 7, > T;. In contrast, theories such as the direction interaction approxi-
mation (DIA) [53-55] are capable of treating a system which is described by oi;ily a
single scale length and, hence, are more likely to be valid in the regime 75 > ra:. In
such a system, the important turbulent phenomenon is the nonlinear interaction of
the waves themselves as opposed to the stochastic behavior of the particle orbits,

as is treated in the NSA.
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In Sec. 2.1, the electron response is derived by applying the NSA to thg drift ki-
netic equation. In the NSA formalism developed here, the tearing mode is assumed
to exist on a background of drift wave turbulence. These turbulent drift waves
produce overlapping islands which in turn lead to stochastic electron orbits. The
NSA makes use of the observation that the turbulent perturbation's to the electron
orbits exhibit pathologically complex, fine-scale structures which are produced from
relatively simple, long-scale wave fluctuations. Since the spatial structure character-
izing the electron orbits is much finer than that characterizing the wave potentials,
it is possible to separate the statistics of the particle orbits from the statistics of the
wave potentials by a coarse-graining procedure. This procedure is a microscale av-
eraging ovef the orbit perturbations which is performed while holding the statistics
of the wave potentials fixed. The NSA assumes that the orbit perturbations can be
treated as a normally distributed random variable with variance (§z2) = 2Dt. The
end result of the NSA is that the nonlinear effects of turbulence are represented
by the appearance of a radial diffusion operator, —D3%/d%z, in the drift kinetic

equation.

The ion response is presented in Sec. 2.2 according to the linearized Vlasov
equation. Note that the effect of turbulent diffusion is to smooth out the structure
of the response functions over the length scale z.. Since the ion response functions
are characterized by a scale length z; satisfying z; > z., the turbulent diffusion has
no appreciable effect on the ion response. In Sec. 2.3, the electron and ion responses
are combined through Ampere’s law and quasineutrality to yield a coupled, self-
adjoint system for the electric and ﬁlagnetic potentials d; and /'i”. Since this system
is self-adjoint, a variational principle is then formulated. Section 2.4 introduces
approximate forms for the resonance operators which appear in the NSA treatr_nent
of the electron response. Also presented is the Krook approximation to the I%SA,

in which the operator —D3?%/3z? is replaced by an effective diffusion frequency w..
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2.1. Electron Response: The Normal Stochastic Approximation

The major goal here is to develop a model which includes the effects of turbulent
electron diffusion in a self-consistent manner. In the NSA formalism, the lifetime
of the long-scale potential fluctuations of the waves, 7,., is assumed to Bg"lOng
compared to the Kolmogorov time, 7¢, characterizing the rate of the randomization
in the particle orbits [52]. The amplitude of the wave fluctuations must be suffi
ciently large such that the pha.se—spaée islands overlap, thus, producing stochastic
particle orbits. For example, in the case of drift waves, the island overlap condition
is satisfied for very small fluctuation amplitudes [16,17]. Hence, it is the drift waves
themselves that produce the stochastic electron behavior and thus lead to turbu-
lent diffusion. Using the NSA, this phenomenon of stochastic electron behavior is
implemented in the stability analysis for the drift wave via a turbulent diffusion co-
effcien t. In particular, one can show that the drift wave is unstable for very small
values of the diffusion coeffrient and then saturates at some finite value. In fact, it
is possible to calculate the saturation value of the diffusion coefficient at which the

drift wave stabilizes [16,19].

In the case of the tearing mode, the tearing mode itself will not (in cases of
interest) produce island overlap and lead to stochastic electron behavior. To cor-
rectly account for turbulent electron behavior in this case, one must consider the
tearing mode as existing among a background of turbulence such as that produced
by finite-beta drift waves. Due to the large discrepancy in the poloidal wave num-
bers, m, of the tearing mode and the drift waves, their respective stability analyses
can be performed largely independently. This discrepancy in the wave numbers also
allows a spatial averaging over the scale length of the drift waves while keeping the
tearing mode potentials fixed. (This averaging is unnecessary if the coarse—grain
averaging of the stochastic particle orbits has been performed.) The major (:ﬂ'ect
of the drift waves on the tearing mode is that the electrons behave stochastically -
due to the presence of drift wave turbulence. This stochastic behavior manifests

itself as a turbulent diffusion coeffient" whose value is independent of the presence
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of the tearing mode. Hence, in the tearing mode analysis. the electron diffusion
coeffcient is treated as an independent external parameter, whose value is to be
specified either by experimental observation or calculated through the use of an

appropriate microturbulence theory for drift waves.

For this problem a sheared, slab geometry is chosen with the equilibrium mag-

netic field given by

z
B=2B <ez+ Eey)

where Lg is the shear length and £ = 0 is chosen to be the position of the rational
surface. Throughout the following, the parallel direction is defined according to the
unit vector b = B/B. The slab coordinates (z,y, z) can be related to the straight

tokamak coordinates (r,0,¢) by the following

z=r—r1,, y=rf0and z= Ro.

Here, r is the plasma minor radius, R is the plasma major radius and r; is the
location of the plasma rational surface which occurs at ¢(rs) = m/n. The safety
factor is given by g(r) = rBs/RBy (where Bg and By are the poloidal and toroidal
magnetic fields). The poloidal mode number m and the toroidal mode number n
are related to the wavenumbers ky, and k. according to ky =m/r and k, = —n /R.

Hence,

k-r=ky+k,z=mbl—né

i

and

3L

nBg /m _
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where ki/l = ky/Ls with Lg = ~Rg?/rq’. Tt will be shown that this model reduces
to ideal MHD away from the rational surface. Because of this reduction to ideal
MHD at large z, the following results for the teraring mode can be generalized quite
easily to more complicated geometries simply by calculating the function A’ for

those geometries [30].

The starting point in this model for determining the electron response shall be

the drift kinetic equation [18,46,47| of the following form:

d c ~ Y|~ e =~ 0

— -V—-—=Vio—— b-V—- —(E-Eqy)-b—|f.= es fe). (2.1
S oy V- 59 (6= 0y ) bV - L(B-Bo) by |fo = Clfur ). (1)
The third term on the left side of the above equation represents the perpendicu-
lar motion of the guiding centers resulting from the E x B drift and the v||l~3_1_/B
free streaming motion. The right side of the above equation represents an appro-

priate velocity space collision operator and Ey denotes the applied electric field.

Throughout the following, a tilde is used to denote fluctuation quantities.

Statistically averaging Eq. (2.1) gives

9 - ¢ (5 % Ao fk.bf
é_if_vl<§(¢‘—c—All)be)_—a—‘l;ﬁ<—"—2E.bf>
e g — FF FF

where f. = f + f, with f = (f.) = equilibrium electron distribution. The second

and third terms on the left represent a turbulent collision operator acting on f

denoted by Cr(f), provided f is a known functional of f.

Setting the fluctuation quantities to zero and assuming B_f/ dt = 0, then the
above equation reduces the the familiar Spitzer problem [35] of solving for f in the

presence of an applied electric field. The effect of Eq on the equilibrium will be the
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production of an equilibrium plasma current. For the case of the tearing mode, the
equilibrium plasma current is included in the equilibrium electron distribution by

writing f = fo + f1, where

Here, f is a drifted Maxwellian and it is assumed vp /v, < 1 where v? = 2T, /m,.
In the above expression, f; denotes the current-carrying piece of the equilibrium

_distribution. The equilibrium current is given by J)o = —evpno.

Subtracting the equilibrium equation, Eq. (2.2), from Eq. (2.1) yields the fluc-

tuation equation

9 ¢ v(6- A ) xb- V- L(Bo+E) b2 |f
S+ V= £9(6= Ay ) bV - Z(Bo+ B) by ]
c ~ ) - - €= J -
= C(f) + Co(f) + C(F, f) = (4. 1) (23)

where Cp( f ) represents the linearized collision operator and where the assumption

has been made that 9f/dt = 0.

Since Eo/Er < 1, where Eg is the “runaway” value of the electric field [56],
and since the equilibrium current is already contained in the f; part of f, the
applied electric field term on the left of Eq. (2.3) is ignored. For simplicity the

collision operators of the right side of Eq. (2.3) are neglected; however, the question

of velocity space collisions will be returned to later.

Using the above approximations, the fluctuation drift kinetic equation is re-
duced to the actual starting equation for this analysis, which is the collisienless

DKE for straight magnetic fields:
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ad c ~ Vv” ~ € ~ a |-
g V- —-vleée- LA b-V- —E-b—o
[at””b VB <¢ c ”) ) m av”]f
— | fv(g- 24 ‘b V4 E b f (2.4)
~ |B T c I m a'v” ) )
This equation is denoted as
D -
'b—tf—So(I).

In light of the above discussion, the leading order effect of the third and fourth
terms involving the fluctuation potentials in the orbit operator defined by D/Dt is
the production of stochastic electron orbits resulting from the underlying drift wave

turbulence.

To solve for the electron response, f , one integrates over the exact perturbed

orbits represented by D/Dt. Thus,

flx,t) = / dr’ Z exp {¢ (mlo(x, 7" —t) — ngo(x, 7 —t)

— 00 k,w

~wr")} So,., (ro(x,7" — 1)) (2.5)

where So,_ is the Fourier decomposition of So(x,t):

So(x,t) = Y _ exp {i(mf — n¢ — wt)} So, ,, (r)

k,w

where k = (m,n) and x = (r,0, ¢).

Fi {0

Strictly speaking, the wave potentials can only be Fourier decomposed into
" modes with a well-defined frequency, w, for times t < 7,., where 7, = the

autocorrelation time [57] for the fluctuation potentials. In general, So,,(z) —

|So,., (r)| exp(—1®kw (0, &,t)), where ®r(0,,t) is the slow variation of the Fourier
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coeffcient Sq,_(r,8,,t). However, for t < 7,4, the variation of exp(—19x(0,9,t))
is much smaller than the variation of exp(i(mf — n¢ — wt)) and, hence, will be
neglected. In the following discussion, the times of interest, ¢, occur on a scale such
that 7x < t < Tac, where 7, = the Kolmogorov [52] time for orbit exponentiation.
Hence, a necessary condition [17] for the validity of the following development is

T K Tge-

In Eq. (2.5) the subscript zero signifies the exact electron orbits. These orbits

obey the equations

3

Co (s
Vige = "EV (¢ -

o
. . € ~ w o~
Vu—’gkn( % Au) (2-6)

where

Vige = fo(x,t)es + réo(x, t)ey

v = (réo(x, t)e, + Rg&o(x,t)ez> - b.

Here, v | 4c and v refer to the velocity of the guiding centers.

The above equations are solved giving the orbits

ro(x,7 —t) =1+ bro(x,7 — t)

bolo,7 = 0) = 0+ 2 (s = 1) + 80,7 — 1) + 601(x,7 1) + 8036,7 1)

do(X,7 —t) = ¢+ %‘(T — 1) + 6¢a(x,7 — ) (27

such that Xo(r —t) = X at 7 =t where 6x(0) = 0. The turbulent perturbatiens to

the orbits are defined as
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—ick t . -
§7o(x,1) = ’;l/ dt'(qﬁ—%'lAH)
. |

—kluy [t
800 (x,t) = — dt'éro(t')
0
c [t 18 /(- vy~
501(X,t) = —B— ; dt,;-a—;(Qb - .CHA”) ) (28)

ok t t' B .
805(x,t) = ie—J/ dt’ dt"<¢—ﬁcf1”)

0 ¢

662(0,1) = = k”/ dt'/ dt”<¢—kucA”>

This analysis is concerned with the effect of spatial diffusion on the tearing mode.
In the above, éro represents spatial diffusion due to random E x B fluctuations
of drift waves. (Similarly with the term 668;). The term 66, reflects the presence
of magnetic shear; that is, radial diffusion leads to poloidal spatial motion in the
presence of shear. The terms 602 and 6¢2 represent velocity turbulent diffusion.

These effects are subdominant by the estimate

((mé0; — nég)%) kfDyy m; (pi )2 -1

m2(562) (Kv)2Dzz ~ me \ L,

and, hénce, these terms are neglected. Keep in mind that the above turbulent orbit

perturbations are due to the presence of a drift wave background.

V

Introducing the transform

LI

. 2mr do 27 d .
frr(ryt) = / / —¢exp{—z n'qS)}f(x,t)

along with the variable transformation 7 =t — 7/, then Eq. (2.5) can be written as
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- oo 2T do 27T do :
frr(ryt) = exp(—iwt) dr ———exp{—z(mﬂ (x,—7) — m'0)
Sewiian [ e [ 5] :

—i(ngo(x, —7) — n'@) + iwr} So,, (ro(x, —7)).

Substituting the characteristic orbits defined by Egs. (2.7) into the above expression

gives

. o 2w d 2w d
frr(ryt) = Zexp(——iwt) / dT/ f / ae _ exp (m —m')8
k,w 0

—i(n —n)0 + i(w ~ kyvy)7 + imé(x, —7) }
x Soy, (r + 67(%, ~7)- @9

The source term is given by

So, (r) = [T kll”ll (qS— i A“>fo+2-§k(q~5 ] /iu) X b-V?-{— %Ek -bb%”‘fl]

where k) = m/Rq—n/R = kz, k| = ky/L; and ky = m/r.

Physically, the applicability of the NSA makes use of the observation that
for suffciently long times, t > 7 (7, = Kolmogorov time for entropy production),
[52] the exact particle orbit perturbations, 60(t), exhibit stochastic behavior. That
is, for t > 7 the orbits 68(x,t) develop pathological spatial structure leading to
sharp spatial gradients. In particular, orbits with neighboring initial data separate
exponentially with time. The NSA makes use of the property that such stochéstic ,
orbits are characterized by an extremely fine spatial structure, much finer than the
spatial structure of the corresponding fluctuation potentials, q; and A“. The wave
lengths characterizing the fluctuations in the orbits 67 and 66 are much shorter:than

those characterizing the potentials q~S and fi“. This allows a hierarchical averaging
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procedure in which “ill and q~5 are approximated as constants in the microscale
statistical average over the fluctuations in 66 and ér. The statistics of the orbits and

the waves then become essentially independent, thus enabling a spatial averaging

" - to be performed on the orbits over a distance in which the wave potentials do not

exhibit random behavior.

The above argument implicitly assumes that 7, < 74, where 7,. = the auto-
correlation time [57] for the fluctuation potential. When this is satisfied, the orbit
functions exhibit random behavior on a time scale (rep;gsented by 7x) much shorter
than the time scale on which the fluctuation potentials randomize (represented by
Tac). A typical estimate for the autocorrelation time gives 75, ~ w.e !, where w., is
on the order of the real frequency. This is implied by experimental observations (58]
in which the frequency spectrum Aw(k) is observed to be of ordeg Aw(k)/w ~ 1. In
the NSA model [17], the electron orbits exhibit diffusive behavior on the time scale
Tk ~ we~ Y, where w.® = ( ,’lve)zD/3. For the m = 2 tearing mode, w./w.. ~ 10,
and hence 7; < 7,.. This procedure of performing a statistical average over the fine
micfoscale of the orbits while holding the statistics of the waves fixed is known as
“coarse graining” [17]. (Note, that since w../w. ~ m!/3, then the criterion 75 < Tac

is satisfied more strongly for the m = 2 tearing mode than it is for drift waves.)

For short times, t < 74, this procedure breaks down. Since 7y is typically small
when compared to the time scales of interest, the small time contribution, ¢ < Tk, tO
the integral in Eq. (2.9) can be neglected for most of the terms in the source function,
So, - It is only for the dominant term in So, , namely (z'e/Te)k”v”q[;, for which the
small time contribution to the overall time integral in Eq. (2.9) is significant and,
hence, must be treated more carefully. Here, kv scales as the transit frequency,
we, and it is the largest order term in Sp,. Physically, for small times ¢t < Tky the

electron orbits are characterized primarily by free streaming, hence, it is only those

terms proportional to kjv| in So, which are significant for ¢t < 7.

To account for the short time behavior, ¢ < 74, the dominant drive term .
(ze/ Te)k”v||q§kw when combined with the free streaming orbit operator gives the

adiabatic response. That is,
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‘ . ie .
tkyoy SR = T kv Pk fo
€

gives

rad ed’kw
f’?&) = Te fo’

which is the adiabatic response. In order to preserve this short time behavior in

the NSA, the adiabatic response is extracted from the onset. Inserting

. ed

.= — fo + he 2.
f Tef0+ (2.10)

into the fluctuation DKE, Eq. (2.4), then the nonlinear electron response is given

according to

Jd c ~ U« e d |-
i B v A .V - — —|h, =
EY +’U”b \vJ BV( CA”> x b mE bav” h S(I)
c T
= Ev(¢_ 7”A|,> xb-V(fo+ f1)
e 0 ([~ vy~ e ~ o)
- T, ot (45_ c A“)'f0+ mE'va” fi - (2.11)

where the inherently nonlinear terms in the fluctuation potentials have been ne-
glected in the expression for S(z). Only the nonlinear terms involving the gradients
of 7ze are significant, since orbital stochasticity leads to very large gradients in I~ze
compared to the relatively long wavelengths characterizing the gradients of d;iand
i

Integrating the above equation over the exact orbits gives the following integral

expression for ize, which is the equivalent of Eq. (2.9):
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27 21r
o ( Z/ dT/ d0/ —exp{zm m')0

—i(n—n)¢ +i(w — kjv)r + imbb(x, —71)} (2.12)
X Skw(r + 6r(x, —7))

with the source term

Skw(r) = (gg—* A”)kXb V(fo+ f1)+ -eW(d;— gc—“-fi”) fo

where izk:(r,t) =3, exp(—iw'f)itk'w(f)-

By explicitly separating the adiabatic response from the nonlinear response at
the start, then the largest term in the expression Sy, , proportional to kjjv ~ w; =
the transit frequéncy, has been replaced by a smaller term in S, proportional to
W ~ W.e, Where w,. < w;. The separation fe = (eqS/T) o + he is valid since the
adiabatic response remains virtually unaffected by the nonlinear process of ExB

turbulent diffusion [15,18].

To solve to ﬁk,w, the transform

o0

Skw(r +6r) = / dky exp {ik.(r + 67)} Skuwk,

— 00

is introduced such that

Vi {o

hk, / dk, exp( zlc,r)/ dTZeXp{ (w - k“v” } (2.13)

x {exp {i(m —m )0 - z(n —n')¢ + tk,br(x, —7) + imbh(x, —T)i}>

X Skwk,
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where (Q) = (27) 7% [ do [ dd')Q denotes the angular average.

Consider the quantity

A = (exp {i(m — m')8 — i(n — n")$ + ik, b6r(x, —7) + 1méf(x, —7)})  (2.14)

.Fo'r small 7, 67 /r and 60 < 1, hence Agxr = Okxr. Here, by = 1 for k = k' and zero
otherwise. For large 7/7%, the angular dependence of ér and 66 is the dominant
variation in the integrand, and Axx can be computed as a series of integrals over

small angular intervals. Letting 6; = 275 /M and ¢, = 27¢/N, then

M 27 /M N 2r/N
aw =3 [T [ SEexptitm—m)(0; +0)

0 —27;E=1 0 2m
—i(n — n')(¢e + ¢) + imb0(r,0; + 0,¢¢ + ¢, —7)
- ikrér(ra H] + 9, ¢e + ¢a _T)}

or

M N
Agpr = Z exp {¢(m — m')0,} Zexp {=i(n — n')¢s}
1=1 =1

27 /M do 2n/N d¢ . .
X /(; 5—7; . Z—Wexp{zmée(r,oj +01¢e+¢7—T)

Fikyr(r, 05 + 0,90+ 6, =)} [L+ilm = m)0 + -+ (1 = iln = 06+ -+

The essential feature of stochasticity is that an M and N can be chosen ;uch
that 60 and 8¢ undergo many oscillations with respect to § and ¢ in the p;riod
27/M and 27 /N, but (m — m’')/M and (n — n')/N remain small. Thus, the above
angular integrals approach an average, independent of 8; and ¢,, and the sums give

the Kronecker delta, éxxs. Hence,
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Apw = 6k (exp {imb0(x, —1) + ik, 67(x, —7)}) . (2.15)

For stochastic orbits, M and N increase with 7 such that M, N — oo for large 7 /7%,
making the above expression for Axys asymptotically exact. The important element
allowing the above evaluation of Agk is the disparity between the wavelengths of

the potentials and the spatial scale of the orbit perturbations.

The basic assertion of the NSA states that the microscale ensemble average
Agr — |Akk'|o is equivalent to an average with 60 and é6r taken as normally dis-

tributed random variables. For a normally distributed random variable, o,

(explico) = exp - 5¢* (")

where ¢ = constant. Hence,

[Akkr)g = 6kkr [(exp(imb0 + ik,67))], | - (2.16)
1
- exp'{— 5 (m? [86%] , + 2mk, [6067], + k7 [67%] ) } .

Assuming ér to be a Wiener process [59] with

[51'2]0 = 2Dr,

then

6760), = ——

and

O
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where the term 66; in Eq. (2.7) has been neglected. Note that since Sk, belongs

to the long-scale statistical ensemble, the microscale average acts only on Agyr.

Inserting the above expression for Ak back into the integrand for hiro, gives

the following “coarse-grained” value of hiro:

o0 o0 dr'

. 1
dr exp {z(w — ko) - g(kﬁv”)DTz} /_oo 5—;51%,(7")

e, = |,

[e.e] .
X / dk, exp {ik,(r -r')+ k:rkflv”D‘r2 - k,Z.DT} (2.17)

-0
where the transform
o0 dT’
Skwk, = / o exp(——ik,r')Skw(r')
oo 2T

was used. In the expressions which follow, I~zkw implicitly stands for the coarse-
grained value [izkw]o. Recognizing the last integral in the above expression for izek

as a transform of a Gaussian finally yields:

‘ (o ] o0
he, :/ dr/ dz'G(z,z';v),7)Sk(z') (2.18)
0 — o0

where the kernel G(z,z';v),7) is given by

1 . 1
Glesonn) = Ty [z(w = kjpyz)7 = 3 (Kjoy)* D7
- 4—;—;(:1: -z - kal'|v||72)2]. (%19)

Note that G(z,z';v),7) decays with a characteristic time 7. = [1/3( !'Ive)zD]—l/_3

= w; ! and represents a peaked function of z — z’ with a characteristic width.z. =

wc/kl"ve.
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It also can be shown that the solution for the nonlinear electron response, h,, ,

Eq. (2.18), is equivalent to the solution of the following equation:

9, b-v- DL he = S( : 2.20
ot v|| or2? L .’l:). . ( )

where S(r) is defined in Eq. (2.11). By comparing the above equation to Eq. (2.11),
it is clear that the effect of applying the NSA to the drift kinetic equation is to
convert the terms in the orbit operator [the left hand side of Eq. (2.11)] involving
the fluctuation potentials into a spatial diffusion operator. This is a reflection of the
physical assertion that the major contribution of these terms in the orbit operator

is to produce stochastic orbits leading to turbulent spatial diffusion.

In the case of the tearing mode, the drive term S(z) is given by the fight hand
side of Eq. (2.11). When the source terms, S(z), appear in the combination (¢ —
(v”/c)fi“), then the coupled system obtained from quasineutrality and Ampere’s law
is self-adjoint. The last source term in the above equation destroys this property.
However, for the case of the tearing mode, this term can be dropped to give a self-
adjoint system. This is due to the observation that the coupled equations obtained
from Ampere’s law and quasineutrality reduce to ideal MHD at large z (at large
distances from the rational surface, z = 0), which implies EH = 0 at large z. At
small z (inside the dissipative layer), the dissipative process of electron diffusion is

insensitive to an equilibrium current.

Hence, we have for the nonlinear electron response

[

oo oo I
o= [Car [ asGte o {0 - o) - nns 2] (5- 24, ) S
0 oo Ve ¢ Te

(221)

where
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_ elcyTe I. = —dlnfu

ve Of1/0x —QJ;’]
Wee = s =
c¢BL,

iz = ;)ﬂafo/ax — enve(In fo)"”

Defining the resonant operators

Rp[¢] = /—0; dv) /_0:0 dr’ /000 drG(z,z';v),7) (Z—E)nfo(v”)t/z(z') (2.22)

then the perturbed electron density is given by

ﬁe € 7 . bt . v ~
e = T {qb + t[(w — wie)Ro — weeNy R1]d — i[(w — wee) Ry — wienJRg]—fA“}
(2.23)
and the perturbed parallel electron current is given by
~ —1e?ng ~
J”' = T Ve {[(w - w*e)Rl - w,‘enJRz]gb
. .
(w — wee)Ra — w,eng]?A,,} (2.24)

where the appropriate velocity moments of h. have been performed. Utilizing an
appropriate ion response and applying Ampere’s law and quasineutrality yields a

coupled system for the potentials q; and Aj.
I

Biv i
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2.2. Ion Response

The ion response is assumed to be “classical”; that is, the response is described
by the linearized Vlasov equation. Althqugh the island overlap condition is satisfied
for the ions, the resulting turbulent diffusion has no appreciable effect on the ion
response. The end result of turbulent diffusion is a smoothing of the structure of
the response functions over a scale length z.. Since the ion response is characterized
by a scale length z; satisfying z; > z., the ion response virtually reduces to the
linearized Vlasov response. For slab geometry with a density gradient in the z—
direction, the linearized Vlasov equation is solved by using the standard techniques

[60] to yield, after integrating over perpendicular velocities,

~

~

e .
filoy) = =7 Fiy (vy) + Gi(vy), (2.25)
where
g iefo, (v ik, 1 T ~ Tloy -
givy) = _—O%‘”“)‘(w - w.i)/dkze k“U[__Q..._ + klllk“p? oY )26]

. 1 0 .. P
U=— dr'e k== [d)(z') -

27 J_ o

From this the perturbed density and current can be calculated by taking the

appropriate parallel velocity moments. The perturbed ion density is given by

w-w*g

3>
I
|
Hlo
e N
-
N
Ay
N
IS
I&t
N—
—d
Fiv {0

[FOS‘Z(S“)Q; + (To — FI)P?E%:

w—w*i

vV~
Tog(1 + gZ)—C—A”} (2.26)

and the perturbed parallel ion current is given by
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In the above expressions, Z(¢) is the plasma dispersion [61] function with ¢ =
w/(|kylvi) and T = Tp(b) = In(b) exp(—b) where I,(b) is the modified Bessel

. . _ 2.2
function with b = kyp;'.

In deriving the above expression for the perturbed ion density, Eq. (2.26), the
electric potential, d;(x’ ), was expanded about z’ = z to second order thus yielding
‘the second derivative term in Eq. (2.26). This expansion is only valid when z/z; < 1,
T; = w/kl'lv,-. Hence, in evaluating the above ion Z-functions, the large argument

expansions (for ¢ > 1) should be used.

Vi
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2.3. Coupled Equations

Knowing the perturbed density and current for both the electrons and ions, a

coupled system of equations for qg and /i” can be formed by utilizing quasineutrality
and Ampere’s law.
Quasineutrality states that 7; = f.. Using Egs. (2.23) and (2.26), then this

implies

d ) ) ~
—S‘Z(g')@ + (A + XZ) + (—i(w — w*e)Ro — Ew-enJRquS

Ve

) ) ~
- [—(w - w*e)Rl — Ew*enJRz + Iexz} A“ = 0. (2.28)‘

c
The parallel component of Ampere’s law states szi” + (47r/c)(.I~“e + j”i) = 0.
Utilizing Eqs. (2.24) and (2.27) gives

2 2 2 2
T’UA d 2 ve . ve - e
—2 | — - b+ Hw— we )Ry — —S1w,. R;| A
dc? [d:):2 Ty vy (w e) B2 Tvd el T3 | 4|

) ) Ve ~
— [E(w — w.e)Ry — a—wxenJRz + xexz} —6345 =0. (2.29)

In the above expressions, the following definitions were used:

d=(To-T) (r+ “’we) r=T./T;

!

Fo W
2 _ 10 e
X _d<r+ w)(l-f—gZ)

Vi

g

v} Wse ) 2 2,2
. <r+ )g(1+gZ)I‘0, b= pik,
T‘UA w

o
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where ¢ - w, ((kyjvs), 2o = w/(lkj|ve), and Z = plasma dispersion function. In the
above expressions, R, denote the electron resonance operators and are defined in

Eq. (2.22), and z is normalized in units of the ion gyroradius p;.

" The above system is a kinetic description globally valid over the entire plasma
which reduces to ideal MHD at large distances from the rational surface (large z),
and is self-adjoint. When analyzed for high m modes this system yields unstable
finite-3 drift waves, and when analyzed for low m modes this system yields the

tearing mode.

It is convenient to abbreviate the above systém in the following shorthand

notation:

L1$ + L;A“ =0

szi” + qu; =0 (2.30)

where

?

d _d '
L, = {—§Z—I + A+ X2 + (w - w-e)RO - 1"‘JuenJRl:l

dz” d d d
2 2 2 . 2
vyl d 2 UL . v; .
Ly = ‘ZE‘{ [E.’-E—z - b+ a; + Tviz(w - w*e)Rg - ;'—’U_z-zw*enJR?’:l

) ) v
L,=- [z(w - w*e)Rl - Ew*enJR2 + zeXZ:I _c?'-

—

Since the above system is self-adjoint, a variational principle can be formed.

The variational integral, S, is obtained by

~—~
E\,m
[4%)
ok
p —

a
S = —/ dz [$L§ + Ay Lo Ay + 2814 |,

—a
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:;uch that variation of S with respect to ¢~> and fiH yields the coupled Egs. (2.30).
The variational parameters characterizing suitable trial functions, QET and /i“T, are
thus determined by requiring 6 S = 0. Once these variational parameters have been
determined, the trial functions are again inserted into Eq. (2.31) and the dispersion
relation for these trial functions is determined by setting S = 0. This variational

principle will be utilized later in a calculation of the dispersion relation for the

tearing mode.

[

b
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2.4 Resonance Operators

As a closing comment on the mathematical model, two approximate forms
for the resonant operators R,[¢|, defined by Eq. (2.22), will be presented. Such’
approximate forms of R,[¢] are necessary in order to perform an analytical calcu-
lation of the dispersion relation. The first approximation for R, are interpolation
polynomials which preserve the asymptotic behavior of R,. The second is the so-
called “Krook” approximation in which R, is approximated in terms of the plasma

dispersion function.

In the above fully kinetic analysis, calculation of the nonlinear electron response

led to the resonance operators, R,[¢], as given by Eq. (2.22). In the limit that ¢(z’)
‘is a slowly varying function of z’, that is, if z./z1 < 1, where ;' = |d/dz(In )],
then t(z') can be expanded about z’ = z. To leading order in z./zr the above
resonance operators can be replaced by multiplicative operators of the form R, [¢] ~

I,(z)y(z), where

— 00 ve

I,(z) = /00 dv“.(v“)nfo(v”) /Ooo dr exp [z(w — kjvz)7 — %(k,’lvn)zDrﬂ. (2.32)

The above multiplicative resonance functions can be evaluated asymptotically

to yield the following interpolation functions [19]:
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This above asymptotic behavior can be’ reproduced qualitatively [19] if the ex-
ponential in Eq. (2.33) involving the factor ——1/3(k!’|v“)2Dr3 ~ —w?2r3 is replaced by
the linear factor —.36w.7. Under this approximation, the above resonance functions,
I, (z), can be evaluated exactly in terms of the Z-function. This approximation

will be referred to as the Krook limit.

* il

I.(Z) Krook = / dv)| (Z) fo(v”)/(; dr exp[i(w — kl']v”:c)r — .36u,7]

— o0

() idele)
_./oodv“(;e—) W (234)

where wg = w + 10.36w.. These integrals can be evaluated in terms of the Z-

functions [61].

—ixc
Iy = Z(¢.
0 ooz (§)
nL="20+¢2)
WeZ
_izc
I, = ¢e (14 ¢2)
WeT
_ oz |1,
I; = s [2 +¢2(1+ geZ)J (2.35)

where ¢. = wo/|kjj|ve. Essentially, under the Krook approximation, the turbulent
spatial diffusion operator in Eq. (2.20), —D8?/3z?, is replaced by a Krook-type

diffusion frequency, 0.36w..
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_ Chapter 3
STABILIZATION BY TURBULENT ELECTRON DIFFUSION

This chapter analyzes the tearing mode using the kinetic equations contain-
ing the effects of turbulent electron diffusion which were derived in Ch. 2. In
Sec. 3.1, special limits of the coupled equations governing the potentials q~5 and fiH,
Egs. (2.30), are taken in order to obtain the standard results for the resistive MHD -
tearing mode. This helps illuminate which approximations and conditions resistive
MHD assumes, and points out the physics neglected by such a model. Section 3.2
presents a formal proof demonstrating that the tearing mode is stabilized by suff+
ciently large turbulent electron diffusion. This is done by showing that the energy
drive for the tearing mode goes through zero and becomes stabilizing as the elec-
tron diffusion coeffcient becomes infinite. An approximate dispersion relation for
the tearing mode is calculated in Sec. 3.3. This is done for the “magnetic” tearing
mode described by Lgfi” = 0, where the effects of a finite electrostatic potential %
are neglected. Section 3.4 presents the calculatiop of the dispersion relation for the
electromagnetic tearing mode including the effects of a finite electrostatic potential.

This final dispersion relation is obtained through a variational calculation.

i

b
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3.1 Resistive Tearing Mode Limit

In this section, a special “resistive limit” of Eqgs. (2.30) is taken to show that in
such an appropriate limit the basic results of resiétive MHD (3] can be reproduced
for the tearing mode. As a starting point, the perturbed electron distribution must
" be calculated in this limit. Recall that in the above fully kinetic analysis, calculation
of the nonlinear electron response led to the resonance operators, R,[], as given by
Eq. (2.22). As discussed in Sec. 2.4, in the limit that ¥(z’) is a slowly varying func-
tion of z’, the above resonance operators can be replaced by multiplicative operators
of the form R,{¢| =~ I,(z)¥(z), where I,(z) is given by Eq. (2.32). In the Krook
limit, the asymptotic behavior of the functions I, () can be reproduced qualitatively
[19] if the exponential in Eq. (2.32) involving the factor —1/3(k{v))*Dr® = —wir®
is replaced by the linear factor —.36w.7. Under this approximation, the above res-
onance functions, I,(z), can be evaluated exactly in terms of the plasma dispersion
function as indicated in Egs. (2.34) and (2.35). Essentially, the Krook approxima-
tion replaces the turbulent spatial diffusion operator in Eq. (2.20), —D3%/dz?, by
a Krook type diffusion frequency, 0.36w..

In light of the above discussion, an approximate resistive limit can be obtained
by replacing w. with a collision frequency, v. Thus, the nonlinear electron response
in this simple collisional limit is given by Eq. (2.20) with —D3?/3z* — v. The

inversion of this operator gives

~ 1Sk (z)
h, = . .
ek w — kl"v“:c + 1w (3 1)

Hence, in this resistive limit the above resonance operators, R,, are identical te the
previous Krook approximate resonance functions, I, given by Eq. (2.35), only now

w, is replaced by v, that is, wo = w + tv.

In the resistive MHD problem, it is assumed that a narrow “tearing” region of

width 2z exists about the singular surface. Inside this tearing region the physics
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is dominated by “non-ideal” dissipative effects. In the outer region away from
the rational s{xrface; the physics reduces to ideal MHD. In order to obtain the‘
resistive MHD results, it is appropriate to consider the following scaling such that
w/(kjvr) > 1 in the inner region for both electrons and ions, whereas w/(kjvr) < 1

in the outer region for both electrons and ions.

In the outer region, z > zo, the density fluctuations to leading order in

w/(k|zvr) are

Hence, quasineutrality, 7. = n;, implies that in the outer region EII = 0, which is

the ideal MHD result.

Similarly, in the outer region, z > zo, one find Ampere’s law, reducing in
y g g

leading order to

2_47Tky l'l 3

2 d2
T4 A =0, (3.3)

d62 da:2 y 7 k”BO

which is the equation for marginal stability in ideal MHD. Thus, in this resistive

limit, Eqs. (2.30) reduce to the ideal MHD forms at large z, z > z,. (This is also

the case for the fully kinetic description).

A dispersion relation for the basic resistive tearing mode can be derived by
utilizing the variational integral given above in Eq. (2.31). (This method [37] is
similar to that performed in Sec. 1.2.) In the outer region, the resistive limit gives

the following energy integral: -

b

| o3 [ « ar L kyd) -
= de—4 A7 + (b4 —p2 L) 42 4
Sout [z'>x() zd62 [ ] + ( + c P; k”Bo It (3 )
where the condition E'” = 0 has been imposed as well as requiring fi”(:}:a) =Ga=

plasma edge.

67




Integrating by parts and requiring /i” to satisfy the ideal form of Ampere’s

law, Eq. (3.3), then gives in the asymptotic limit of z;, — 0 -

2

— TVA 42 ! A
Sout = =5 Af, A (3.5)

where limz“__,o[A”Ah (zo) — A”Afl(—xo)] = Aﬁ“A(’) and Aj(zox) = A),. Here, Aj
represents the jump in /i|'| across the singular surface (for nearly constant A or the

“constant ¢” approximation) [3].

Similarly, in the inner region, z < zo, using the ordering w/k”ve,w/k”vt~ > 1

gives the leading order form of the variation integral, Eq. (2.31), as

-~

Zo . ‘02 1
Sin = /—z d:z:[ — 4§74 a;%(w — w*e)ﬁAﬁ (3.6)

where d ~ (I'o —I'1)(7 + w../w). Here the first term in S;, is the leading order con-
tribution from quasineutrality and the second term the leading order contribution

from Ampere’s law.

To evaluate the above integral for S;,, it is necessary to choose suitable trial
functions for q~5 and fi”. As is standard in the basic resistive MHD calculations, fi”
is chosen to be constant across the inner region (the “constant ¢” approximation).
Likewise, qg is chosen to be a linear function of z with odd parity such that EII =0
at £ = +zo. Thus, for the inner region, = < zg, fi” = Ay, and gz = (z/z0) %0, where

do = w/(kl'lzoc)A”o.

Using the above trial functions, the integral over the inner region can be eval-

uated to give

Wi {0

wAR\22 02 o
Sin=— =) =+ -5 (w—w.e)—A2. 3.7
" (kl'|Pw> T de (=) oAl 58.7)

Combining Egs. (3.5) and (3.7) through the relation Sy = S,y + Sin gives the

dispersion relation by setting Sp = O:
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”plca:o +c2w+w 0 (3.8)

c2

To obtain the classical resistive tearing mode growth rate, one sets w., = w.; =

0, w = 7y and assumes v > 4. Thus, the above equation becomes

2

02
VY 27'7 1 vy
—= = - - 3.9
2 "0 k|'|2 2¢2 x% 2y ° (3.9)

which can be interpreted as an energy balance relation. This is the basic dispersion

relation which specifies the resistive MHD growth rate.

It can be shown through simple physical arguments that the term on the left
of Eq. (3.9) involving A{ represents the available magnetic enefgy in the outer
region which thus provides the drive for the tearing mode. (A detailed study of the
magnetic energy drive is given by Adler et al. [28]). The first term on the right
represents the energy absorbed in ion inertia and the second term represents resistive
electron dissipation. Both terms are zero unless the perturbation is growing, v > 0.
Hence Eq. (3.9) signifies a balance between the magnetic energy in the outer region,
which drives the tearing mode, with the ion inertia and electron dissipation in the

inner region.

The variational parameter in Eq. (3.9) is the tearing width, zo. Varying So

with respect to zo then gives

1/4
67V

zo = [ 5 ] . (3.10)

Pi kll -

Inserting this into Eq. (3.9) then gives the growth rate 3] 5

Lt .4 92/5
pikliv

N = .56A05,3/5:3/5 [’—v”s—iJ (3.11)

e =

or in standard resistive MHD notation [27]
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N~ .37T§3/5T;2/5(A{3a)4/5(%nqq—l)ws (3.12)

q
where 7 = 4ma?/(c*n), T4 = a/va, and n = 2m.v/(e®no). This expression for the
gréwth rate is identical to that obtained in Sec. 1.2. More accurate calculations
[27,38] indicate the factor .37 should be replaced by .55. This numerical difference

is a result of the variational approximation method used in the above calculation.

Hence, by implementing the above limit of constant resistivity into the Krook
model for the electron response, the coupled Egs. (2.30) for JS and _/i“ were shown
to contain the fundamental resistive tearing mode in the appropriate limits. It is
important to note that to obtain the above resistive limit the following assumptions

were made:

(a) In the evaluation of Sy, the limit zo — 0 was taken yielding S,y ~ A =

constant, independent of zg.

(b) Finite Larmor radius effects and other “diamagnetic” effects were neglected;

that is, w. = 0.

B (o
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3.2 Proof of Stability for Large Turbulent Diffusion

Recall from the above discussion of the resistive tearing mode that it is the
available magnetic energy of the outer region, represented by Af), which drives the
tearing mode unstable. From this, a general energy drive [62] for the tearing mode

is then defined to be the negative energy from the integral

o ~ ~ 4T 5~ - ~
S = / dz [Ah2 + pﬁk;Aﬁ - Tp?.]”e[A“] “A) (3.13)

—a

where j“e is the full kinetic operator representing the perturbed parallel current

47[' 2 ~ ~ ivz ~
Tpi J”e[A”] = —;‘;)—%'w.gnJR;_’,[A”].

Hence, S < 0 is a necessary condition for instability.

In the resistive MHD limit, Rz = —¢/2kv., and the negative energy drive takes
on the ideal MHD form as indicated by the expression

Sresistive = —AﬁoA6 (3.14)

Hence, in resistive MHD, Aj, represents the available magnetic energy to drive the

tearing mode. Instability is then obtained when A{ > 0.

Notice that in the energy integral given by Eq. (3.13), the first two terms are
stabilizing and it is only the third term involving the perturbed current operator
which can be negative and thus drive the tearing mode unstable. In the resistive
MHD treatment, the perturbed current operator is singular at the rational surface.
In fact, it is this singular behavior which dominates in the integral S and typiéally
causes A} to be positive (and hence S to be negative). However, if one retains
the full kinetic operator for J ||e[/i||] involving the resonance operator Rgixi“], then
this operator is no longer singular at £ = 0. In fact, one can easily show that the

integral
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4w L. - : : :
Sy E/ d.’E—c—p?J“e[A”]AH (3.15)

—a

is bounded for D > 0. This will be demonstrated with the aid of the inequality [63]

/a b dtF(t)

where a < b. Hence, letting co = [47p?viw..n;/(cTv?)|, then

</ | F()

1S,] < cC,/_i dz|Rs [4)] - 4

a .2
< co/ dz |I5(z)| | 4
—a mazx
= ia—c(, A : /00 d'r/oodyy3 exp [—y2 (1 + wsr?’)]
ﬁ “ maz Jp 0 ¢
. 2a ~ |2 1 e -2
= Ze|dy| = a1+
ﬁ maz We Jo
.2
where ‘A”' is the maximum value attained with the plasma. Clearly, the last
mazx

integral is finite and the conclusion is reached that

IS_]I S ch_l/3

where c; is the constant indicated by the previous equation. Hence, |S;| — 0 as
D — oo. Since the energy drive S also contains the line bending stabilization terms,
the conclusion is reached that for some critical diffusion coeffcient, D = D,,; the

energy drive S will be zero and the tearing mode is stabilized.

"
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3.3 Approximate Dispersion Relation

By ignoring the effects of the electrostatic potential, a simple expression for
the growth rate [13] is obtained which shows that the tearing mode stabilizes when
a critical value of the diffusion coeffcient is surpassed. This analysis begins by

returning to the set of coupled equations for /i” and @, given by Egs. (2.30).

For typical Alcator C parameters, one finds that the parameter ¢ = w/we ~
Wee/we ~ 107! is small, and it is possible to scale the above operators as follows:
Ly ~ 1, Ly ~ ¢, L; ~ €. Hence, the contribution of the coupling terms, L., to
the dispersion relation are subdominant by order ¢. As a first approximation, it is

assumed that Eqgs. (2.30) decouple, leaving the equations

Li¢=0, LyA=0. (3.16)

Hence, defining the tearing mode as a primarily magnetic fluctuation reduces the
problem to solving the equation ngi“ = 0, which describes the “magnetic” tearing
mode [13]. (The equatibn L1 = 0 describes the electrostatic drift wave [15].) The
céntribution of the coupling terms as well as the electrostatic terms to the dispersion

relation will be considered later in a variational calculation.

To leadihg order, the magnetic tearing mode is given by szi“ =0 or

d? v2 | v? .
— =} Ct(w — w.e)Ry — —4-tw..nyR3| A = O. 3.17
d=z? + ‘rvf‘z(w Wee) R Tv? 1Weells s | A ( )

The approach will be to simplify and solve the above equation in two regions:
|z| > z. and |z| < z.. The dispersion relation will then be determined by matching

fi“ and fif' at |z| = z.. . -

Vi

Provided that fi” is a suffiiently slowly varying function of z, then the reso-
nance operators in Eq. (3.17) can be replaced by multiplicative functions, as dis-
cussed in Sec. 2.4. That is, if :rc/:cf <. 1 then Rn[/i”] ~ In(:zz)fi“(:c) wheze I,
is given by Egs. (2.33). Noting this, then Eq. (3.17) can be approximated by its
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leading order terms in an outer region, \z| > r., and likewise in an inner region,

|z| < z.. Hence,

[ d2 471- kyJ"‘ ~
F >z |— —b— —pF—=" =0 3.18
or I.’EI ¢ dx2 c K k“Bo A!‘ ( )
[ d? v? 477 -
For |z| < z, 4 + Tve‘iz(w - we):}-c—} A =0. - (3.19)

Notice that in the outer région, |z| > z., Ampere’s law has reduced to the marginal
stability equation of ideal MHD. Formally, the solution to Eq. (3.18) in the outer

region for |z| > z. will be denoted as the ideal MHD solution, Ay p-

Defining

2 2

—vs 47 v 0] .

az = ;z(w — w*e)—"‘ o~ 62 .47——, for w=~ Wae T 27,
TV We VR We

then, in the inner region, |z| < z., one has the solution

Ain =Cre” %" 4+ Coetor,

To determine the dispersion relation, matching conditions are imposed at |z| =

z. requiring A) and Afl to be continuous. That is,

A[N(:tzc) = AMHD(:E.’BC) = Ai(:f::l?c)

A,IN(:th) = A;VIHD(:th) = Ai(:txc).

By requiring A4 (+a) = 0, Eq. (3.18) can be integrated inwards to determine the

ratios

Ay =Ai(xz) = i:}—,j—:%i%
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Using the above four matching conditions. "; and C; can be solved for in terms

of Ay and A_ leading to the dispersion relation

(a+4.)" = (a-a.)
(o = AD)(aZ - AT

exp(4az.) = (3.20)

Typical Alcator C parameters indicate Ay ~ 1072 and z. ~ 10. Assuming the

scaling a®z. ~ AL implies A% /a? ~ 10~ 1. Using this fact, along with the definition

A, (z.) — A_(z.) = A'(z.), the above dispersion relation can be expanded to yield

ve (w—w.e)

2 1.
TVS k”p,ve

A'(ze) = —i (3.21)

This implies that the magnetic tearing mode has a real frequency equal to the

electron diamagnetic frequency, w.., with a growth rate [13] given by

2 2 !
AT ' Y A (xc)
7= vez ||szeA (Ic) = k”’l)e;z;T. (322)

The above expression is essentially the same as that for the collisionless tearing
mode [8] with A} replaced by A’(z.). Hence, instability will occur if A’(z.) > 0.
Note, however, that A’(z.) is now evaluated at a finite distance z. from the rational
surface. Numerical calculations of A’(z.) for cylindrical geometry [30] and typical
Alcator C profiles indicate it to be a primarily linear decreasing function of z,
A'(z) ~ Ao (1 — z/W). Here, W corresponds to the island saturation width [20] of
resistive MHD. Hence, the tearing mode will be stabilized if A’(z.) < 0 or z, > W.
Since . ~ D'/3, this implies that if D ~ 1 /n, then there exists a density threshold

which must be surpassed before instability occurs.

It is also insightful to present a second approximate calculation to obtair_i the
dispersion relation given by Eq. (3.21). This involves the use of the energy int;gral
S given by Eq. (3.13). This integral is divided into an inner region Sy for |z| <
z. and an outer region Soyr for |z| > z.. The perturbed parallel current f“e

is approximated in these two regions in a manner similar to that used to obtain
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Ampere’s law in the inner and outer region as expressed by Egs. (3.18) and (3.19).

This then gives

S / dz | A2 + b2 A% + — Am 2k Jﬁ A? (3 23)
our = p? .
2>z, I fl k||Bo I
and
Zz. 2
_ ",2 ‘Ue -47 .
SiN = /—x,. dz [A” - —Tvi ———wc 1 (w— wee) A”J (3.24)

The integral Soyr can be evaluated by requiring fi“ to satisfy the ideal MHD
form of Ampere’s law, Eq. (3.18). This then gives

Sovur = — [A”Aﬂ (zc) - AI:Af](“zc)] MHD Aqu'(Ic)- (3.25)

The integral S;n is evaluated using the “constant ” approximation which

states that A | is to be taken as a constant in the inner region. This then gives

S0y 2
ivg zc

Sin =~ (w = w.e) A, (3.26)

v we
The dispersion relation is then obtained by setting S = S;x + Sorr = 0. This
gives the dispersion relation obtained above, Eq. (3.21).

The advantage of using the energy integral formulation in the calculation of
the dispersion relation is that it provides a physical interpretation of Eq. (3.21).
Specifically, the disperison relation given by Eq. (3.21) represents a balance be-
tween the ideal MHD energy drive in the outer region [represented by the left side
of Eq. (3.21)] with the energy dissipated in the inner region through turbulent dif-
fusion [represented by the right side of Eq. (3.21)]. Notice that the dissipation is
proportional to (w — w..). Hence, w., can be viewed as a Doppler frequency shift
resulting from the motibn of the electrons relative to the laboratory frame. Phys-
ically, A’(z.) is interpreted as the magnetic energy in the outer region available
to drive the tearing mode. In essence, the turbulent electron diffusion prohibits
the formation of, or flattens, the perturbed parallel current, j”e, within a finite
correlation distance, z., of the rational surface. This has the effect of reducing the

available magnetic energy drive from the value A’(0) to A’(z.).
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3.4 Variational Calculation

A more detailed calculation of the dispersion relation [14] is'now presented in-
cluding the effects of the electrostatic coupling terms. This is done through the use
of a variational principle. The starting point is again Ampere’s law and quasineu-
trality, given by Egs. (2.30). To leading order in w. /w., the effects of the resonant
operators can be neglected in the electrostatic operator, L;, and the coupling op-

erator, L. This gives

d d v
Ly~ |—¢Z(¢)— +A+x*|, L:=~-—z.x*
12| o6 (§)dx+ +x°, TeX

The expansion used to yield the differential operator in the expression for L,
implicitly assumed that |z/z;| < 1, that is, ¢ > 1. Using the above approximations
and expanding the ion Z-functions [61] for large arguments, quasineutrality can
then be written as

d? 1 :c ~ 1z w - w?
—— +A - +-—=—A =0 3.27
dz? ¢ 2 2 ke I (uﬂ) (3.27)
where z; = w/(khp,'vi). Scaling w. /w. ~ €, w/w. ~ 1, 22/z? ~ € and d*/dz® ~ €*;

then, for large z, |z/z.| > 1, quasineutrality implies to leading order,

A~0 - w~w,.,

and to first order in € quasineutrality implies

Wi

— —A~ =0.
¢ k”cA” 0— E”

Thus, in the outer region, the equation for quasineutrality requires w ~ w.. and
reduces to the ideal MHD constraint I:J'” ~ 0. Also at large z, |z/z.| > 1, assuming

E~‘” = 0, Ampere’s law reduces to the ideal MHD equation of marginal stability,
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given by Eq. (3.18). Hence, the coupléd Egs. (2.30) reduce to ideal MHD with the

additional constraint that w ~ w.. in the outer region where |z| > z..

Since the equations governing “ill and q~5 are self-adjoint, a simple variational
integral, Eq. (2.31), is obtained. In this calculation, +a represents the edges of an
intermediate integration region which is assumed to lie in the region where ideal

MHD is approximately valid (that is, a > z.).

~ Integrating by parts, Eq. (2.31) becomes

9 .
TV )
S =10, B4+ Ly - B (3.28)
where
a d(; 2 . FO w W 2
_ ey _ 2 _ 0 *€ t R A
Ly = /_adx ¢z (m) Ag* — — (r+ » )(1+§Z) (¢ kHcA“)
(3.29)
@ dfiu ? v? | v? | 12
La= —ad.’l: dz + (b - ;v—il(w — W.e)R2 + ;v_izw*enJR3> AH (3'30)
Bs = ng;(,‘lz, ~ and fa.= fi“/ih

Here, L 4 represents the contribution of the magnetic terms (involving the electron
response only) with the corresponding boundary terms 4. The contributions of the
electrostatic, coupling and the ion terms are represented by L4 with the boundary
terms (4. The magnetic tearing mode considered above in Sec. 3.3 is accounte;é- for

in the £ 4 and B4 terms. That is,

i

£A - ﬂA = / d:l:A~||L2fi”

—a
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where it has been shown above that L2/i|: 0 yields the basic collisionless magnetic
tearing mode 113]. Hence, L4 and B, represent the contributions to the dispersion
relation which are due to coupling to the electrostatic branch as well as the jon

contributions to the perturbed current.

At the boundary, +a, fi” and q~$ are required to match onto the ideal MHD so-
lution. In particular, at the boundary, EII = 0. Using this condition, the magnitude
of the boundary terms 34 and 34 can be compared. Noting By ~ (w/kflca)2fi|,xih,
then it is easy to show that the contribution of B4 to the dispersion relation is

smaller than that of S4 by w?/w2. Hence, the boundary term B4 can be neglected.

The above variational integral will be performed using two steps. First, the
electrostatic integral will be calculated using a suitable trial function for ¢ while
assuming /i” to be a constant in the ¢ — (w/kjc) /i” term (which is justified by
the fact that AH is nearly constant while q~5 must be linear in z near the rational
surface). One can then solve for q; variationally. After this, the magnetic terms
L 4 — B4 are calculated using a linear trial function for “ill while allowing the limit

of integration, a, to be the variational parameter.

The electrostatic integral, L4, is given by Eq. (3.29). In the above expression,
one must keep in mind that the ion Z-functions are to be expanded for large
arguments. Here, A represents the eigenfrequency and is approximately zero when
w =~ w.. and hence will be neglected. The first term in Eq. (3.29) represents the
E x B ion motion in the poloidal direction whereas the last term represents the ion

motion along the field lines.

A trial function of the following form is chosen:

i e

w T
IAO

b = — . Ay = tant. 3.31
¢ k”c (& 1 i0?) o = constan (3.31)

Here, o is the variational parameter and it is assumed (a/a)? < 1 such that at the

boundary, z = a, one has E'“ ~ 0.
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Inserting the above trial functions in Eq. (3.29) gives

2 - N

w o [ (£ia®? — %) (1 +¢2) a? :
=|—] A3 | dz|¢Z 3
Lo (k’c) 0/ * [g (tia? + z2)4 H— (tio0? + z2)2 (3:32)

I -e

Using the large argument expansions for the Z-functions along with the variable
substitution y = /o and assuming a/a > 1, then the limits of integration can be

extended to infinity to yield

2
w e 1 (0 — y?)? 1 a
o) a2 ay |- - .
Lo (kl’lc) 0 /_oo Y [ ad (1 +y?)* 222 (11 + y?)?

These integrals can be evaluated explicitly (see Ch. 4 for details) to give the expres-

sion
: 2 1
w o
Lo~ — | A2 27(110) | = + = 1. 3.33

The variational parameter is then specified according to 6L4/6a = 0. This gives

a? = /3z,. Inserting this expression for a® back into Eq. (3.33) then gives

1/2 '
Ly —— A2 (3’—")3/2 “ (1+4). (3.34)
V23347 ° \ ¢ kjpic

Note that this expression is independent of a, which serves as the variational pa-

rameter in the calculation of the magnetic integrals.

[

The magnetic contributions to the variational form, S, are now calculated.
The magnetic terms are given by Eq. (3.30) with the boundary term §4. Assuming
z. < |dln A/dz|™!, then one can approximate the resonance operators, R,, by the

multiplicative operators, I, as given in Eq. (2.33). Thus
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a r 1 Az 1
~ [ dz|A®+ (b+ ———e + 2= 4 2
La Ba / [ +( T el (Zjz)? 2x51+1/z(x/xc)2>‘*}

|a

- A4 (3.35)
—a
where
-2 2
—1v 1 v2 w
I'= (W — w. A= -——& "¢ .
v (W= wee), 2 Tvi We Angc

For the trial functions, the following forms are used. In the outer region,
|z| > a, A} is required to be the ideal MHD solution. That is, A = Apmpp for
|z| > a, where Apspp must solve Eq. (3.18). To leading order for small z/z;, where

z;' = |dIn Jy/dz|, Eq. (3.18) can be solved asymptotically [37] to yield

A= ;;HD f+ecyg for z>a (3.36)

AN =f+c_g for z< —a
where

A X2g?

f:1+—231n:c2+ T (lnz?+2b—3)+---

1 A 2 ] Nz 2

f za[ln:c +2]+7[lnx +2b—2]+---
AZ 2

g=~Az+ ; +ooey g A+ Az (3.37)

and it is assumed Az ~ Aa < 1.

Consider the following definition: A’(z) = [A’, (z) — A_(—z)|mHuD- Numerical
calculations [30] for Alcator C parameters indicate A’(z) to be primarily a linear
function of z of the form A’(z) = Ao (1 — z/W). Here, W represents the nonkinear
island saturation width [20]. Hence, by identifying
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Ao
» AW
and by requiring A?aC+ > AZa, then to leading order A’(z) ~ Ay(1 — z/W). For

C. —C_=A¢/); C,+C_= (3.38)

the sake of simplicity in the following calculations, the following approximate forms

are used as definitions:

A2z2
2 -

fl=X ¢ =X+ Xz (3.39)

f=1+Xz, g=Az+

By doing this, then one directly obtains the desired result A’(z) = Ay (1 — z/W).
Strictly speaking, however, the forms of f and g used in Eq. (3.39) are only ap-
proximately valid when Cy > 1. This constraint can be relaxed, however, if the
forms in Eq. (3.39) are taken to define the outer trial functions for |z| > a. In
any event, requiring Apgp > 0 (as is indicated from experimental profiles) im-
plies the restraint AaCy < 1. Utilizing the scaling C+ ~ Ag/(A*W) then requiring
Aprup > 0 implies Aga/(AW) < 1.

The trial function for the inner region is taken to be a slowly varying linear

function of z.

AL =1+1L for 0<z<
Az{ + + Lyz for r<a (3.40)

A_=14+L_z for —a<z<0’

Requiring this trial function to be continuous at the boundary, z = *a, with the

ideal MHD solution then defines L1 to be
A
Li=X+Ci) (11—2-"-').

Using these trial functions, it is now possible to evaluate the magnetic.form

L4 — Ba. The boundary terms are given by
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i

Ba= AA' | =44 A
‘a

I _a +MHD —MHD

A2q? '

= A'(a) +a(L: + L2) + (Ly+Cy — L_C_) (3.42)

where A'(a) = Ao(1 — a/W).

Iﬁ the magnetic variational terms, S4 = L4 — Ba, the variational parameter
is chosen to be the limit of integration, a, which also characterizes the slope of the
trial function. Note that the electrostatic term, L4, was evaluated approximately
to be independent of a. Thus, only the magnetic terms determine the variational

parameter a.

Variation of the magnetic form, S4, with respect to a then gives

04 _ bt ——— 4 22 _ B4
5a [A +< it @z T2 1122 ) ] T LT e
(3.43)

Recall that requiring A4 > 0 leads to the constraint Lia < 1. Also, in the evalua-
tion of the boundary term, it suffices to approximate L. as independent of a; that

is, Ly ~ C4A. Hence, to leading order in L.a,

654 2 2 2r 1 Aot 2Ly + L)
_— = b Y L (A -2 9 .2
a [‘L+ ) T oz T 222 T+ 1/3(a/z.)?

Vi

- [—vﬁ" +(LZ + L2) + A%a(L4Cy — L_C_)] :

The last term in the above equation can be neglected when compared to the fourth
and fifth terms. To leading order it is approximated L. =~ C4\, and, _thus,

Eq. (3.43) becomes
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6S 2
094 _ S0 g 20 1@ - Bo
ba w we 1+ (a/z.)? 21+ 1/2(a/z.)? AW

(3.44)

Assuming w = w.. + 1, then at marginal stability, ' ~ 0. Setting §S4/6a = 0 and

solving for a yields

(1,2 _ Ao/W +2b
.’L‘2 1/2(A0/W)—b
Typlcally, b ~ A? and Ao ~ A. Thus, bW /Ao ~ Aa < 1, and to leading order

a? ~ 212,

To find the dispersion relation, the integral form S,4 is evaluated explicitly.

From Eq. (3.35),

. r
Sa= |a(L% +L%) + 2ba +2— <ta,n i)xc-—a—
Z. \/_:cc

We

+2Az.(Ly + L) (— —V2tan™! \/—:c )]
—[A'(a) = (L2 + L?)a). (3.45)

Approximating Ly + L_ ~ —Aq/AW and using the result a ~ \/2z. along with the
definition A'(v/2z.) = Ap(1 - /2z./W) then gives

Sq~—-A' (ﬁxc> + 2v/2bz, + 2—1:%& (3.46)

2 We

The overall dispersion relation including the electrostatic terms is given by
Eq. (3.28). Using the results of Eqs. (3.34) and (3.46) gives the following dispersion

relation: -




On the right hand side of Eq. (3.47). one can approximate w =~ w.., d >~ 2, and

7 = 1. Recalling the definition of T then the above dispersion relation becomes

K (?x) _ ov/2ba, _12 <%>2 <£’—:> " (‘1 + i)]

(3.48)

We vi

—(w— wee) =

2z, v2

where now z; = Ls/L,. The above expression is valid providing W /Ay < 1 and

Aoa/IW < 1.

Hence, writing w = wg + ¢y with |y/wgr| < 1 then gives the real frequency

m, L, 1/2
S Wee T Wee | — — . 3.49
on=wtu. (2 22) (3.49)

The growth rate is given by

oy = k],|pive {?j‘_

2
2 Ve

1/
A’ (?mc) - 2\/§be} —2 (%) 2:——:} . (3.50)

In the limit bW /Ao < 1, then stability is obtained when v < 0, or

zc>\/§W

1/2
1—%05¢<I§\/i§) } (3.51)
Thus, it is apparent that the coupling to the electrostatic branch, represented by
the second term on the right of Eq. (3.51) is a stabilizing effect. Physically, this
term represents that fraction of the available energy which is necessary to maintain

the ion motion.

i

The first term on the right in the expression for the growth rate, Eq. (3.50),
represents the magnetic energy drive from the ideal MHD region. Recall, A'(z) ~
Ao(1—z/W), where W corresponds to the island saturation width of resistive MHD.
Hence, the tearing mode will be stabilized [13,14] if A’(z;) < 0 or z. > W. Since
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r. ~ D', this implies that if D ~ 1/n, then there exists a density threshold
which musf be surpassed before instability occurs. Physically, A’(z.) is interpreted
as the magnetic energy in the outer region available to drive the tearing mode. .
In essence, the turbulent electron diffusion prohibits the formation of, or flattens,
the perturbed parallel current, j“e, within a finite correlation distance, z., of the
rational surface. This has the effect of reducing the available magnetic energy drive
from the value A’(0) to A’(z.). The second term on the right of Eq. (3.50) represents
line bending in the inner dissipative region and is stabilizing. The last term is
ion inertia stabilization [10,14], and represents that portion of energy necessary. to

sustain the ion oscillation at frequency w...

Riv ¢

g
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Chapter 4
STABILIZATION BY RUNAWAY ELECTRONS

In this chapter, the kinetic theory of the tearing mode is expanded to include
the effects of runaway electrons [56,64]. The point of performing this calculation
with such an electron distribution is to see the effects, if any, which will occur if
the equilibrium current is carried by a small fraction of relatively fast electrons as
opposed to an equilibrium current carried by a small drift of the bulk electron pop-
ulation. Since runaway electrons are only present at low density, they may provide
a low density stabilization mechanism for the tearing mode. The kinetic theory
developed here is identical with that of Ch 3, except now the equilibrium current is
carried by an electron beam of density ny ~ 10~ 3n, and velocity v, ~ 10v, (as com-
pared to the drifted Maxwellian of the previotis chapter). Modeling the equilibrium
 electron distribution with a realistic distribution observed in a runaway discharge
(say, during current drive experiments) becomes too diffcult mathematically. In-
stead, a simple monoenergetic electron beam is used to model this runaway case. If
a significant change in the stability of the tearing mode is observed to occur with
the equilibrium current modeled crudely by an electron beam as done here, then it
may be worthwhile to repeat this calculation using more realistic electron distribu-
tions. The results of this chapter, however, indicate the runaway electrons provide a

stabilizing correction to the particle inertia which is subdominant by order w../w..

In Sec. 4.1 of this chapter, coupled equations for the fluctuation potentials 4~s
and Z“‘ are again derived only now the the equilibrium current is represented by
an electron beam (describing 1;he “runaway” tearing mode) as opposed to a drifted
Maxwellian (describing the “regular” tearing mode). To calculate a dispersion re-
lation, this coupled system is solved using a variational calculation similar to that
used in Sec. 3.4. In order to see effects of the electron beam, it is necessary to
calculate corrections of order w. /w. to the previously calculated dispersion relétion
of Sec. 3.4. Section 4.2 involves calculating the corrections of order w./w. to the
dispersion relation for the “regular” tearing mode (where the current is represented
by a drifted Maxwellian). Section 4.3 then calculates the dispersion relation for the

“runaway” tearing mode including the effects of the electron beam.
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4.1 Coupled Equations

The goal in this section is to derive a coupled set of equations for the fluctuation
potentials ¢~5 and /T”. ‘As discussed in the previous section, the electron response
is given by applying the normal stochastic approximation (NSA) [17] to the drift
kinetic equation (DKE) [44] written for the fluctuations. The ion response is de-
scribed by the linearized Vlasov equation. Once the perturbed density and parallel
current are calculated by taking the appropriate moments of the perturbed distribu-
tion function, quasineutrality and Ampere’s law are used to give a closed, coupled
system for 5 and Z”. This system is self-adjoint, hence, a variational principle can

be utilized to determine the dispersion relation.

The electron response is given by applying the NSA to the fluctuation DKE.
As discussed in the previous section, the perturbed electron response f; is then

described by

~

fe = %fo + he, (4.1)

where the nonlinear electron response k. is given by

fJ 9%\ ~
(5; +ub-V - DEE> he = S(z) (1.2)
with
~ ~ o /~ ~
S(z) = [“;'V (4’— ECI‘IAH) xb-V(fo+ f1) - %5 (¢— %”‘Au) fo] .o

it

The end result of the NSA is to convert the terms proportional to the fluctuation
potentials in the orbit operator acting on %e into the spatial diffusion term ap-
pearing on the left hand side of Eq. (4.2). In physical terms, the NSA amouats to

introducing a spatial diffusion term in the orbit operator in place of the nonlinear
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lermis which, through E - B drift wave turbulence, produces such radial diffusion.
Equation (4.1) states that the adiabatic piece of the electron response is unaffected
by such turbulent diffusion. In the treatment which follows, the diffusion coefft
cient D appearing in Eq. (4.2) is to be treated as an external constant parameter
independent of the tearing mode dynamics, which is to be specified either through
experimental observation or through an appropriate theory of the underlying tur-

bulence.

The equilibrium electron distribution is given by 76 = fo+ f1. Here, fois a
Maxwellian and f; represents the piece of the distribution which caries the equilib-

rium current. The current carrying part f, is given by

ZUHUD

Jo, regular tearing

h

v?
nyb(v) — vy), runaway tearing

where

no e—vﬁ/vz
VTV,

fo=

and v? = 2T, /m, (with v,, v, constant in space). In the regular tearing mode, f;
is the current carrying part of the drifted Maxwellian (where vp /v, ~ 1072). In
the runaway tearing mode, f; represents a monoenergetic beam of electrons with

density ny and speed v,. (Typically, ny/n, ~ 1072 and vy /v, ~ 10.)

In comparing the regular tearing mode to the runaway case, the total equilib-

rium current is to be held fixed:

J“" (a:) = —en,Vp = —enpvp. f-43)

With this constraint, any differences occurring in the dispersion relation between
the runaway and the regular tearing mode will be the result of in which way the

equilibrium velocity distribution represents the equilibrium current (i.e., either by
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a current carried by a few fast electrons, or by a current carried by many slowly

drifting bulk electrons).

Equation (4.2) will be solved for a sheared, élab geometry with linear gradients

assumed for the equilibrium density and current profiles. That is,

Bo = Bo(ez + z/Lsey),

d d
T-Mo = ~no/Lyp and —Jy = —Jj /L.

The origin in = will be chosen such that

k” = kyBy" + ’Csz(, = k”II

where k|’ = k, /L. These slab quantities can be related to tokamak-type quantities
Il y

by identifying

ky = m/r and L, = Rq¢®/rq'

where r and R are the minor and major plasma radius and ¢(r) is the safety factor

profile. Also, throughout the following, a Fourier mode Qi (z, ky, k,, w) is related

to Q(z,y, 2,t) by

Qz,y,2,t) =Y Qi(z)et (kyy + ka2 — wi)

k,w

The solution to Eq. (4.2) for the nonlinear electron response . is given by

oo oo
he :/O dr/— dz'G(z,z';v),7) Sk(z') “(4.4)

T

with the propagator
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G(z,z'wv,7) = (1/V4n D7) exp |i(w — k}'vjz)7
1 .
- g(k“,’U”VDTS —(1/4D7)(z — T — ka“Iv”T2)2j|

and the source term

—1€

T.

Sk(z) = wfo +weeLn (fo + fl)} (¢ - %AIO

where w., = (ck,T./eBLy). In Eq. (4.4) the kernal G(z,z',v),7) is a function
with a characteristic decay time 7, = w; !, where w?® = (k;'v.)?D/3, and with a

characteristic width z. = wc/kn've.

Moments of the perturbed electron distribution, as described by Egs. (4.1) and
(4.4), can be taken to determine the perturbed electron density and current. In

doing so, it is useful to introduce the following resonance operators, R,[¥]:

1 0o 00 0o ’ » n
L [T [T arte o (1) nepue) 0

where 9 represents one of the fluctuation potentials.

For $ and X” suffciently slowly varying in z, then the resonance operators

R, [¢] can be replaced by multiplicative functions I,(z) - ¥(z) by expanding ¥(z’) -

about z’ = z. That is, for z./z7 < 1, where zr = |dIn¢/dz|™!, then to leading

order in z./z7

R, [¢] =~ I.(z)¢(z) "64.6)

where

M

In(z) = -—/ dT/ doy k(v 7) (:—!)nfg(v”)
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with the kernal

(k“l’l)”)2DT3

1
k(v),7) = exp [i(w ~ kyvyz)7 - 3

The perturbed electron density can then be written as

~

Re _ i{; + [i(w = wee)Io = tw.o(ns 1)) 3

- [i(w — wee); — iw.e(nle)"] %Z“}, (4.7)

and the perturbed parallel electron current can be written as

“evon, Te =ejd1 ~e\TlJ 12
x v ~
- {(w — w.e)l2 —W*e(nJIti)']'cﬁAll}' (4.8)
In the above equations
2vp L, .
YD L—In, regular tearing
x v
(”JIn) = nbeLnJ . . (4.9)
— —K,, runaway tearing
no LJ

Here, K, refers to the beam electron resonance functions given by

K,(z) = /000 dr /‘—0; dv) kv, 7) (:—L‘)n 6(v — vb).‘ (:;_:10)

A closed, coupled system for 5 and ,:1'“ can be obtained using quasineutrality
and Ampere’s law. ' The expressions for the perturbed ion density and parallel

current are given by the linearized Vlasov equation and can be found in Sec. 2.2
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Quasineutrality, n, = n;, can be written as

L1$+ L,;g” = 0. ' '(4.11)

Ampere’s law, Vzgn + (41r/c)(.7”” + "fll.-) = 0, can be written as

LA+ L,é =0. (4.12)

The operators Ly, L, and L, are given by

d2 d2 o i ; 1 ,
L, = fZ + (A +x°) + (—i(w —w.e)lo — wae(ﬂJII) (4.13a)
Tv? | d? v2 v? ]
T de? —wee)ls — —Fiw.. ' .
La dc? [d:c2 Tv2 w—w.e)lz vl wae(ns13) (4.13b)
L '“i(‘*’“w )-’—iw (nalz)” + zox?| 2 (4.13¢)
z — d ~e/+1 d xe\NJd2 eX . ) .

* with the following definitions:

d=(To—T1)(r +w.e/w), A= % (1 +7=To (T * Ui:e))

T
2_ 10 *e — '
X =2 (7’+ )(1+§Z), r=T,/T;
2
2 Y Wxe ) .2 _ 212
ot = or (F70) @+ ente, b=plK,

where £ = w/(lky|v:), ze = w/(|kjj|ve), v4 = B?/(4mmin,), and Z = Z(¢) = plasma
dispersion function. In the above expressions, = is normalized in units of the ion

gyroradius p;.

Since the above coupled system given by Eq. (4.11) and Eq. (4.12) is. self-

adjoint, a variational integral can be formed:
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S = —-/ dr [(;ng +- .Z”L2A~” + 2($Lz;4v“] s (4.14)

—a

where ta represents the plasma edge. The above variational form will be used to

calculate the dispersion relation.

At this point it is helpful to present a more useful form for the resonance
functions I,(z) and K, (z). This the so-called “Krook” approximation (see Sec. 2.4)
in which the term — 3 (k) "v|)2 D7 in the expression for x(v)|,7), Eq. (4.6), is replaced
by the linear factor —w.7, where w? = (kjv.)2D/3. This amounts to replacing the
term —DJ?%/dz? in Eq. (4.2) with the equivalent diffusive frequency w.. Under
the Krook approximation, the functions I, () can be evaluated exactly in terms of
the plasma dispersion function, which can then be approximated by interpolation

polynomials preserving the asymptotic behavior at large and small z.

Ih=—2Z / 4.15a)
° WeT (&) We 1 |z| 1T ( %)
1+ — 2 (14 2
VT T, T
1z (1 2zxe)
L= 24 gz)~ | 22\ % (4.150)
c c 1z 21z,
1+ -— (1 ~—)
222 T,
1 )
j —(1+ 2
c 1 2 z,
I = (14 £2) =~ — S . (4.15¢)
¢ ¢ 1+lx <1+2we)
212 I, )
3 2z, C
1z 1 : 4z, 1+ z -
I3 = < 21 Z)] ~ —-— < £ 4.15d
8 we [2 e+ )] We 3z 2iz, ( )
1+ -2 (1
2 c ° zc

1L

where &, = (z. +1z.)/z, T = w/(k”'ve) and z, = wc/(k”'ve).
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Similarly, under the Krook approximation, the beam electron resonance func-

tions are given by

: 1T
vy "1 1-—
Ty
= ) (4.16)
ve) wp T
1+ —
Ty

where the term of order w/wp ~ (w./wc)(ve/vp)%/2 has been neglected.

In Secs. 4.2 and 4.3, the Krook approximate resonance functions, Egs. (4.15)-
(4.16), will be used along with the variational form S, Eq. (4.14), to determine the
dispersion relation for the regular and runaway tearing modes. This is done by
inserting suitable trial functions for ¢ and Z“ into the integral S. The variational
parameters oy, characterizing the trial functions are then determined by setting

6S/6ay, = 0. The dispersion relation is then given by setting S = 0.

Fi ¢
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4.2 Regular Tearing

The goal of this section is to calculate the dispersion relation for the regular
tearing mode. This will be done using a variational calculation similar to that used
in Sec. 3.4, only now the calculation will be presented in greater detail including the
corrections of order w/w. necessary to see the runaway stabilization. The coupled
equations representing quasineutrality and Ampere’s law, Eq. (4.11) and Eq. (4.12),

will be solved Qariational]y using the variational form S, Eq. (4.14).

To begin with, it is necessary to find suitable trial functions for d~> and Z“ which
can be inserted into the variational integral S. The asymptotic behavior of these
trial functions for large z, |z| > z., must be consistent with the asymptotic form of
quasineutrality and Ampere’s law. Recalling that the ion Z-functions which appear
in Eq. (4.11) and Eq. (4.12) are only valid for |z| < z;, then to leading order in

w/we, at large z, z. < |z| < z;, quasineutrality, Eq. (4.11), becomes

2 2 - 2 - ~
__‘L+A_1$___r0_.}¢+(” Io “’)Anzo (4.17)

dz? 2z2T - T, 22T~ Ty ke

where terms of order z./z < z./z. ~ w./w. have been neglected.

Assuming, in the region z. < |z| < z;, that z?/z? ~ ¢, ]5”/3;] ~ €% and

w/w.e ~ 1, then to leading order €°, quasineutrality implies

A=0 or w=~uw,,, (4.18)

where the approximation I'g =~ 1 has been used. To first order in e, quasineutrality

b

implies
~ W o~ ~
¢ — 7—A;=0 or E =0. (4.19)
k”c

Hence, at large z, |z|] > z., quasineutrality reduces to the ideal MHD equation

E” ~ 0 with the constraint w ~ w,,.
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Similarly, in the region z, < |z} < z,. Ampere’s law can be written to leading

order in w/w, as

2 2 e 4 kyJy
v} _é__b_&_l’_t_i_(7+w ) 7"? I, i
de? | dz? 2 Tv5 w k By

1z2 Ty W ~
—— | — ¢ =0, 4.20
+(2$?Fo—rl)k||c¢ ( )
where terms of order z./z < z./z, ~ w./w. have been neglected.

Using the fact that for |z| > z. quasineutrality states EH = 0, then Ampere’s

law reduces at large z to

/
——«| A =0. (4.21)

The above equation is the ideal MHD equation for Z” at marginal stability. (This
will be discussed further in Sec. 5.3.) Hence, the conclusion is reached that at large
z, |z| > z., quasineutrality and Ampere’s law reduce to ideal MHD, Eq. (4.19) and
Eq. (4.21), with the additional constraint w =~ w..

It is further helpful to rewrite the variational form S, Eq. (4.14), in the following

way. After-integrating by parts, z can be written

Tvd
S = :1—6-2—[1:,4 — Bal + [.C¢ — By) (4.22)

where

i

T'UA A

~ \ 2
a dA 2 2
L4 —_—/ dz (_ﬂ) + [b_ ”e2 t(w— wie)lz + —%eé—zw,e (nyl3)™ A”}
(4.2
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~\ 2
d¢ 72 ) :
§Z<E> —Ap* - (1+£2) (q&—E“-c—A“> }

w — uu,e)Ilqﬁ.;lv“——

£¢:/ d.’IJ{

+ {—2(0.} - w‘e)logb +2

d(

+ ';’w*e(nJIl)*$2 - 2wae(nJ12)i$EI|f] } (424)

with the boundary terms

Ba = Z”Zﬂl‘ia and By = £294'|°,

In the above expressions, ta represents an intermediate position in the plasma
(whose value is to be determined variationally) beyond which ideal MHD is approx-
imately valid. That is, for |z] > a > z., the plasma is suffiiently described by ideal
MHD.

The tearing mode is typically described by a slowly varying ‘ZII which is even
(nearly constant) about the rational surface, as indicated by numerical solutions of
the ideal MHD equation for marginal stability, Eq. (4.21). Also, since E” = 0, this
implies that (Z is primarily odd about the rational surface. A suitable trial function
for the electrostatic potential consistent with these observations is

1:3 - za"’:z: ve

OTrial = P0G a0 o= e Ao, (4.25)

where a? is the variational parameter.

For small z, then

hin (o

——l.’l:
¢Tna.l - ¢0— as  —0,

"

and for large z, z2 > a?, then
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~ | w
PTrial = Po— = — Ap
T k”C
which implies E” = 0 for z2 > a? and nearly constant X”,Z” ~ Ap. Hence,

the above trial function is consistent with ideal MHD boundary conditions at +a

provided a? < a? ~ z2, (since ideal MHD is valid for |z| > z.).

In the limit that o® < z2, and since Z” is slowly varying about z = 0, the
above trial function for d~> implies that the limits of integration +a can be extended
to infinity in the evaluation of the integral £4. By doing so, the integral £y will
be independent of the value of a. Provided o < z2, the error in evaluating £, as

independent of a should be at most of order a?/z2.

The trial function for Z“ is chosen to be of the following form:

~ 1+ L,z ,forO0<z<a
| P = { (4'26)

1+L_z ,for-a<z<0’

The value of the trial function for Z” is required to match on to the ideal MHD

solution at +a.

~

A = X” at £ = +a,
Trial MHD

where X”MHD is the solution to Eq. (4.21).

The ideal MHD equation for marginal stability, Eq. (4.21), can be solved asymp-

totically [37] at small z to give the following expression for X”MHD:

Riv (o

—_
>
N
-3

~—

~ | f+Cig forz>0
laemp — f+C_g forz<0’

where
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2,2
‘f:1+~/\2—$ln:z:2+ —I(1n1:2+2b'——3) + ...
A A2
f! = E(ln:c2 +2) + —-2—:6(111:1:2 +2b—2) + ...
222
i (4.28)

2

+o g =X+ A2+

Az +

R

g

which is valid for Az < 1, where A = (v2/7v2)(vpLn/veLy)z.
For the sake of choosing a mathematically simple trial function, the following

definitions for the functions f and g will be used at z = +a:

A2z2

f=1+4+2z,g=Xz+
=X ¢ =X+ A2 (4.29)

The error made in using the above expressions for f and g, Eq. (4.29), instead of

using the more accurate expressions, Eq. (4.28), manifests itself in so far as it being

equivalent to using a more approximate form for the trial function used for ‘ZII'

Setting A, =A at t+a gives the following values for the slope of the
“Trtul ”MHD

trial function for Z”:

Li=A+CiA (1 =+ %‘E) R (4.30)

—

where Z”T",M has the form given in Eq. (4.26).

To find the value of the constants C'. in terms of physical parameters, consider

the following definition:

AL

—~
[
W
[y

N

[ — At =
A (Z) = A”MHD(+Z) - A”MHD(—x).
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" Numerical caléulations for Alcator C profiles indicates A’(z) to be primarily linear

function of z of the form

Al(z) = Ao(1 — z/W). - (4.32)

Here Ao represents the ideal MHD energy available to drive the tearing mode for
an infinitesimally thin dissipative layer and W represents the nonlinear island sat-
uration width. Using the approximate form for the ideal MHD solution, given by
Eq. (4.27) and Eq. (4.29), specifies C. to be

Ci = Co=Ro/X; C +C_ = .

(4.33)

The expressions for f and g assumed that Aa < 1 and requiring .Z“ to be positive (as
observed numerically) requires C1Aa < 1. (Typical experimental profiles indicate

A~Ag~10"2and W ~ a ~ 10.)

Hence, the trial function for Z” is given by Eq. (4.26) with a linear slope given
by Eq. (4.30) and (4.33). The variational pafameter for this trial function is the limit
of integration ta which appears in the integral £ 4 as well as the boundary term (4.
Since L 4 and B4 are independent of $, the variation with respect to the variational
parameters « and a can be performed independently of one another. (Recall that
in the integral (g, Z” was taken as constant and the limits of integration were

extended to infinity thus making L4 independent of the parameter a.)

Consider the evaluation of the electrostatic and coupling terms represent by

the integral L4, Eq. (4.24), with the boundary term B,4. Near the boundary z = +a

;
1

the ideal constraint E“ ~ 0 holds. Hence,

b

w ~ ~
Aj, A) = constant at z = *a.

¢ = 'k”'a:c

1L

Thus,
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2
~~’~ w_/_l_“_“_ ’ _._1_ :___g_)
¢¢ - (/Cu'C) ( .’B3) - .’E3

and the boundary term can be approximately evaluated to give

By =~ —¢3;23. (4.34)

As will be shown below, the integral L4 is evaluated to give approximately

2 .
Ly~ ¢§,;§-(1 + 7). (4.35)

Hence, the contribution of a finite electrostatic potential to the dispersion relation

is given by

3
£¢—ﬂ¢~_~¢§% [(1+i)+g§], (4.36)

where the last term represents the contribution from the boundary. However, it
has been assumed that a?/a? < 1, thus enabling the limits of integration +a to be
extended to infinity. Thus, in so far as the limits can be extended to infinity, the
boundary term (4 can be neglected. The error in neglecting the boundary term

is of order o®/a®.

As will be shown below, to leading order a? ~ z; and ¢ ~ z..
Neglecting B4 amounts to neglecting a small stabilizing term (of order :1:?/ 2 /z2)

which slightly enhances the particle inertial stabilization as indicated in Eq. (4.36).

Consider the electrostatic variational integral L4 given by Eq. (4.24). L4 can

be rewritten as follows:

Vi (o

ﬁ¢ = £¢(, + £¢,

—_~
[N
w
J

A

1L

where
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a dg 2 2 -
~ ~ W o~ ‘
Ly, = / dr | £Z <E;) - A¢2 -(1+¢2) (GS - m/—lu) (4.38)

—a

and

a

1 ~ ) v Ve
£¢1 = /dr [—E(w —w*e)Io¢2+2E(w —wxe)IlquH‘c—

') o~ ) L~ U,
+ (_iwxe(n,jll) é* — 22(»*3(77.]]2) '(;bAH—c-‘ . (4.39)

L)
Recall that the trial function to be used for 5 in the above integral is given by
Eq. (4.25) and that Z” is to be taken as a constant (since it always appears in

~

combination with ¢)-

In this section, the correction to the leading order result for L4, which is
given in the previous chapter, is to be calculated. Recall that the leading order
value for L4 is determined by the first and third (last) term in the expression for
Lg,- As will be shown below, the next order corrections to L4 are due to the
second (middle) term in L4,, which is proportional to A, and the second term
in L4,. Notice that the first term in L4, is smaller than the A term in L4, by
w/w,, and thus can be neglected. Similarly, the third term in L4, is smaller than
the A term in L4, by w/w. and will also be neglected. As will be shown below,
A~ (W — wie)/wse ~ (npvp/n,ve) and recall ny ~ (nsvs/nove). The fourth term
in £4,, when written for the regular tearing mode, is odd in z and thus wil_I;’not
contribute to the integral. When written for the runaway tearing mode, the fo:uth
termin L4, when compared to the second term in Ly, is smaller by the factor w, /wj,
and thus will be neglected. (As is discussed below, this calculation is performed for

222 = 22, hence, w./wp ~ ve/Vs.)
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Neglecting the above mentioned terms, then the electrostatic integral is reduced

to Ly = L4, + L4, where

—a

Ly, :/ dz {25@ —w,e)h&s}?”% (4.40)
and where Ly, is given by Eq. (4.38).

Recalling that the ion Z-functions must be expanded for z/z; < 1, then Ly,

can be written as

~\ 2 j
Y R I PRI A
£¢‘u - [a dz (dI) ¢ + 21: (¢ k”C ”) . (441)

Using the trial function for (Z given by Eq. (4.25) with ‘ZH = Ao = constant,
and introducing the normalized variable s> = z%/a?, then the terms appearing in

L4 can be written as

dé . :
(—d’) = 4’0( +1)"1[s!? — 615" — 158% + 204s°
a

dr
+15s% — 61s% — 1], (4.42a)
and
3 = B (st 1) 2t st - 57, (4.425)
and | :
2 ¢8 —27 4 -2 4 -2
(¢_ k_,,ZA”> =3 (% +1)7%[—s" + 20s® + 1]. (4.42¢)

Inserting the above expressions in L4,, Eq. (4.41), and expanding the limits of

integration to infinity, which assumes a?/a? < 1, then L4, becomes -

b

1 : : :
L4, = a¢g{ - (17, — 613, — 151¢ + 20018 + 1515 — 6:15 — 1Y)

=

A . 1 .
- — g — 23 - I3] + 522 (—I§ + 2003 + Ig]} .43)

)
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where the following notation is used:

o _ [T _dyy* 1 (T (2T (2- =)

In = /—oo (y*+1)2 2 ( ['(2) ) (4.440)
B %) dyyn B 1 I\(n;}-l)r(‘!_nj—l)

In= /_Oo (yt+1)4 2 ( I'(4) ) ' (4.445)

As indicated above, the integrals I? and I? can be evaluated analytically. Specifi-

cally, the integrals appearing in Eq. (4.43) take on the following values:

3 3
I = g\/§7r, I; = \/_ Iy = 8\/571' I = g\/ﬁﬂ';
5
L= \/— IL = =V, Ik = 4\/§7r, Ik = 4——4\/2_7r,

5 7 15
b b
L= Ve, I = 1 Ve, 1Y, = o V2. (4.45)
Substituting the above values into Eq. (4.43), then L4, can be evaluated to give

£¢(.—Q¢>o (1+ ){£;+@+i}. (4.46)

Consider now the term L4, given by Eq. (4.40). Using the trial function
for ¢ given by Eq. (4.25) and the Krook interpolation polynomial for I; given
by Eq. (4.15b), then by letting the limits of integration go to infinity, L4, becomes

L4, = d%a s - i) (4.47)

c

where A =~ (w — w..)/2w.e, 02 = (1 + 2iz./z.) and where the following integrals

have been defined:
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- C

o dyy™
I = ) .
= 1+ 2y (17 57 - )

with ¢? = 0,02/222. (However, since Ly, is itself a small correction to the dis-
persion relation, the approximation can be made that o, ~ 1, thus neglecting a

further correction of order w. /w. to L4,.) Again, the integrals I can be evaluated

explicitly to give

I; = \/2571'(1 +e) et +1- V2 (4.49a)

\n

L]

I =

(1 +¢h) e — 1+ v2/e). (4.490)

As will be shown below, a? ~ 2z2. Hence the requirement a?/a? < 1 implies

? = o?/2z2 < 1. In this limit, the leading order contributions to I3 and I§ along

with their first derivatives become

N
3
oy

and

V2r V27
2

(el5) ~ , (eI§) ~ 5 (4.50)

where the prime indicates differentiation with respect to ¢ = « / V2z..

Hence, L4 = Ly, + L4, becomes, using Eqgs. (4.46) and (4.47),

Fiv i

z

1 2iA 1 A e
£¢=¢ga{\/—”(1+ )[ZZ+;{%—+;§:’+E[I§_ZI2]}. (4.51)

T

To find the variational parameter ¢, one sets § L4/6c = 0. This gives

106



V2m . 3 24 1 V21 A , )
—8—(1+z) —;——(FT;—? - x2(1+z):0 (4.52)
where the values given in Eq. (4.50) have been used in Eq. (4.51)

The above
expression can be rearranged to read

2i
< 4A12> “~—\%3Ax, 42-1=0 (4.53)

“where the normalization &@* = a*/3z? has been made. (To leading order, &* = 1.)

Typically, A ~ 10°2, z; ~ 10 and z;/z2 ~ 1.

Introducing the small parémeter
€ = Az; ~ 107}, then

:t, a4 22 ~2
1-4—¢€¢}a”*— —=ea“*-1=0. 4.54
( z? ) V3 (4.54)

2 + &2, where 42/62 ~ ¢, then Eq. (4.54) can be solved to leading
order, €°, to give &2 = 1 and to first order in € to give

Letting &% = &

af=¢el2—+—}. 4.55
* (ﬁ ) (4:59)

Hence, 42 can be written to first order in € as

A2 _ a2 A‘z i 1
= =14Az; {2— +— ). 4.56
o Qg + (221 | + Azx; ( .’Z:? + \/§) ( )
Using the values in Eq. (4.50) for ¢? < 1, then L4 can be written as
2 V21 21A  « L 4A ]
= —+ = (1 — 4.57
Lo=&? {(@+'a+$g(+n+xc (#57)

where only the leading order term in ¢ = a/+/2z. < 1 was retained in L,

In the above expression, Eq. (4.57), the two terms proportional to A are the

leading order corrections to the basic dispersion relation for the regular tearing
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mode discussed in the previous section. In these correction terms it is sufficient to
approximate a by its leading order contrlbutlon, a? \/gz, For the remaining
terms in Eq. (4.57), it is necessary to use the first order correction to a given by

Eq. (4.55). Substituting the expressions

~ (V/3z;)~ 3/2< —%o‘zf)

and

into Eq. (4.57) for L4 then gives

Ly= ¢2\/-7r(\/— i)“3/2{ [(1 - ga1> +iAV/3z; +3<1 + ; )] (1+1)
i)

+4A (4.58)

I

Notice, however, that the &% contribution cancels itself out in the above equation

to leave

c

Lo = 32T (s 3/2{[4+m\/§x,~1(1+z‘)+4m/isz}~ (4:59)

Recall from the previous section that stability is determined from the real :part

of Ly4: | . -

Zc

RA{Ly} = ¢2 \[W (V3z;)7%/2 {4 + \f3z,~A<4M - 1)} : (;?1.60)
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Hence, [, represents a stabilizing contribution to the dispersion relation for
R.{Ls} > 0. Recall that the above derivation of Eq. (4.59) assumed ¢? = o?/2z2 =
\/?—n:i/2xf < 1. Hence, the correction term, proportional to A, represents a stabi-

lizing contribution provided

_1_<\/?_’1?i

< 2. 4.61
16 z? (4.61)

Notice that z. = (w./w.)/(me/m;)/?z; and z; = Ls/L,, where typically w./w, =~
10 and L,/L, ~ 16. Hence, z;/z% ~ 1.

As will be shown below, the runaway electrons produce a frequency shift scaling
as éw/w. ~ (npvp/nove) ~ 1072. Hence, the correction term proportional to A

represents an additional stabilization of the order ;A ~ 1071,

Consider now the magnetic terms given by the integral £ 4 with the boundary
term B4. In this part of Ch. 4, Sy = L4 — B4 is evaluated for the regular tearing

mode. The evaluation of S,4 for the runaway tearing mode is presented in Sec. 4.3.

For the regular tearing mode, the variational form for the magnetic terms Su

is given by

a

a dX“ 2 vZ | v: | ~g ~
Sa = dz —d—.’;;— + 16— o2 z(w — w*e)Iz + -1_1)—2?,w*e77.].[3 A” - A”A”

—a A A

—a

(4.62)

where n; = 2(vpL,/veLy) and +a represents an intermediate position in the

plasma beyond which Z” is determined by the ideal MHD equation, Eq. (4.21).

it

In this calculation, +a also serves as the variational parameter.

b

In the Krook approximation, the resonance functions I; and I3 are given by

1 io =
I = 2 1 (4.63a)

we 1+ 30222 /22
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and

=) 20,21 .
_ Ti_ 492/ (4.63b)

Is = —
we 14 20522 /12

where 0, =1+ iz./z. and 05 = 1 + 2iz,/z.. ‘

As discussed above, the following trial function is used:

~ _J1+Liz, z>a
ATrm,l - {1 + L._.'l:,. < —a (4.64)

where

Li=X+CiA(1+Aa/2)

with

Ci+C_=-Ag/X°W;Cy —C_ = A/

and A = (vZ/rv%)z.(vpLy/veLy) for the regular tearing mode. Requiring Agrial

to be positive implies C4Aa < 1. Typically, Ag ~ 1072, W ~ 10 and A ~ 1072,
Consider the boundary term 84 given by

Ba = ZZ;MHD]G ~ A& ypl-a (4.65)

Fin

where

ZTn'az(ia) = XMHD(:ta) =1+ Lia

L

and
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Arvip(£a) = [+ Cag’ ~ A+ CLA(1 £ Aa)
where the functions f and g are given by Eq. (4.29). Hence, 84 can be evaluated

to give

A2a2
2

Ba= Ao<1 - %) +a(LZ +L%) + (LyCyr —L_C_). (4.66)

At this point, it is also helpful to evaluate the variation of 84 with respect to

a, since this needed to find the value of a. Hence, doing this gives

P 2A4
00 29 (12 +12) 420N (LoCy — LG )+

> o (C2 +cC?%). (4.67)

The integrals appearing in the expression for S4 can be evaluated using the

following identities:

dz 1 _, bz
/ m = E tan "; (4.68&)
dzz? z a, _,;bz
/ m = 2’3 - b_3 tan ; (4.68b)

This then gives

012
= da(L? + 12 e bwze 2 -1 ]2
Sa= {a(L+ + L%) + 2ab o2 ., :rcol - Z.tan ( 5 zc)
A /2 . _,( /302 a
+ 2'x—c"(L+ + L_):cc [a - E.’Ec tan ( 2 xc)]} ,BA =

(4.69)

i

R Il
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where 6w = w — w... The correction terms proportional to w./w,. contained in o,

and o are necessary to see the effects of a finite frequency shift w # 0.

At this point, it is useful to expand the above expression for small z./z.. This

is done using the following expansions:

2 _ oy a a 1T a/\/ix
—t 1 —— ) ~v2 [tan" | —— —_JrTe 4.70
01\/02 an <V 2 :zc) f[an <\/§x0>+ z. 1+ a?/2z2 (4.70a)

and

/ 2 ~1f /302 a
— tan —
302 2 z,

~ g[tan;l<\/g£> L iz (% —tan_l<\/g-:—c))]. (4.700)

Vs z.

Inserting the above expansions into Eq. (4.69) for S, gives

T, 1+a2/3

2 w2 6 a ) a/vV3
Sa = {2\/jxcb&— w; _wﬁxe [tan”1< 4 ) + 1Ze __a_[_\/_:_}
3 TUY Wee

2 n 1 A ?:IL'e & —1 A
+2A(L 4 +L_)\/;zc [a— (tan a+ ;c—(l+&2 — tan a))]}

~2
- {Ao<1 - & 355) + %,\%3(L+0+ - L_C)} (4.71)

3w

where the normalized parameter a2 = 3a%/2z2 was introduced.

To find the variational parameter &, which represents the width of the dissipa-

Vi

tion layer, S4 must be varied with respect to &. Using Eq. (4.69) gives

6S4 ob— i v bw z, o1 N A 302 2a%(Ly + L)
03 wee T 1+ 02a%/222  z. 2z, 1+ 309a2/222
a?)?
(CZ + CE)} .

A .
—{—WO+2GA2(L+C+—L_C_)+ 4

e
-
%)
p g
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Notice aA?(L,C, — L_C_) ~ A2a/W and a*A*(C2 + C?) ~ A3a?/W. Hence,
these two terms are smaller than A,/W by at least Aya < 107! and will be ne-
glected. Also the approximation will be made that L, +~ L_ = 2X — Ag/(AW) +
AaAo/2 ~ —Ao/(AW). The leading order contributions retained in the above
approximations are suffcient, since the goal of this calculation is to determine the
correction due to finite w.. /w., and the terms neglected were independent of w.,/w,.
Using the normalized parameter & and neglecting the term b ~ 1074, then Eq. (4.72)

becomes

Z bw Te (23] AO 20’2&2 Ao

va‘w*e;;1+02&2/3 W 1l+o0a2 W

.U
—1

=0 (4.73)

where 65 4/6a has been set to zero to determine a.

Assuming (vZ/7v%)(6w/w.e) ~ Ao/W, then to zeroth order in z./z. Eq. (4.73)
specifies a2 = 1. Letting a2 = a2 + a2, where a2/a% ~ z./z., then to first order in

z./z. Eq. (4.73) becomes,

1 ' —

TVZ Wie ZTc 4 Wz, W

Hence, a? = (222%/3)a? with a2 = a2 + a2, where a2 = 1 and
c 0 1 0

3 vl bw W
Q=2 (145 22 ) (4.74)
z. 4704 wee Do

The above equation for &% represents the correction due to finite w../w. to the

leading order result a2 calculated in the previous section. This result assumes

(vZ/1v2)(6w/wse) ~ Ao/W and Aa,Aoa < zc/z. Typically, Ao ~ A and W ~ a.

Introducing the notation

P

XL

3 v? bw W
G =ado(l+a2/2a2) =1—i-= (1 +3 De ——)
=1+é6a (4.75)
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and using the expansions

1 R
tan ™! (&/\/g) ~ \/§ V/T 6@ and tan"la~ % + éa,
then the expression S4 given in Eq. (4.71) can be written
2v/2 26 2 3
s,,:‘—[zcb e 2 ry/ 2 1+—<6&+z—e)
3 VY 3 4 I,
Ag [2 ba ir. (1 =«
220 o f1ba— (D42 (LT
W 3“[ oa < T xc<2 4))]
2
~ Ao (1 - g%(1 + 5&)) (4.76)

where the approximation L, + L_ ~ —Ag/(AW) has been used and the last term
in Eq. (4.71) has been neglected, which is consistent with the above calculation of

~

a? §+2

Using the definition of §a given in Eq. (4.75) allows the above expression for

~ S4 to be written as

2v/2 w2 bw 2 9 .z v fw W
Sa=""zb- —% P M

16 I, TvA Wee Np

iz, 1 /2 A, 1 /2z,
R e = 477
zCZ\/;zCW A°<1 2 3W) (4.77)

The dispersion relation for the regular tearing mode is found using the total
variational form S = L4 + (1v% /dc?)S4, where the electrostatic term L4 is given
by Eq. (4.59) and where the magnetic term S4 is given by the above expression.

This gives
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S:_i\/&_eﬁ bw (9wl bw Wz
32c¢?|w., 16 702 w., A, z.
Cf22 |2v2 . [2z.A 2
+,\ﬁm ixcb_,\/_ﬁ_o_Ao R W EE
3z.02 | 3 32 W 2Vi3w

' igﬁ(ﬁxi)—l/z [(4 ' i%gziji) (1+2) + 2\/§zij(,d Wgzi)l/z} }

Ve

where dw, = Wyeq; — Wee.

Setting the real part of S equal to zero gives the growth rate for the regular

tearing mode:

4, (1)
2

Wee z. 4

9 2 (m; 3/2 2 bw, 2w T,
—\/ — | — " T —_—— . 4.80
+ 16 3r (me) ﬂz Ti Wie Ao T ( )

In the expression for the real frequency shift éw,/w.., Eq. (4.79), there are

two main contributions. The first, proportional to (m./m;z;)}/2, is the result of a
nonzero electrostatic potential $ and represents a frequency shift due to finite ion
inertia. The second, proportional to (m,A/m;8;W), represents a frequency. shift

resulting from the correction to the dissipative layer width, & = 1 + §a. (The term
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proportional to 6w, w., on the right of Eq. (4.79) can be neglected, since éw/w., is

small.) Typically, 3, ~ m¢/m;, z; = L./L, ~ 10, Ay, ~ 102 and W ~ 10. Hence,

bw m Y2 im. 1A ‘
r:n(—e————) o0 (4.81)
C Wae \/grm,-:z:i
Typically, the first term is 1072 and the second term is 10~2, which agrees with
the numerical results indicating a small positive shift away from w.. or the order
of 1072, However, at certain parameter regimes (at low §; and high Ao) a small

negative frequency shift is observed, which also agrees with the above expression.

In the derivation of the expression for the growth rate, Eq. (4.80), it is impor-

tant to keep in mind that the following assumptions were made:
’ .
Aga (v/3z;)1/? v bwzxz, A,

— <1,— <1, and < — 4.82
AW z. an TV Weez, W (4.82)

as well as the implicit assumption w../w. < 1.

The first term in the expression for the growth rate, proportional to Ag, rep-
resents the ideal MHD energy drive for the tearing mode. Included in this term
is stabilizing effect resulting from a turbulent broadening of the dissipation layer.
Hence, Ap(1 — z./ \/(_SW) represents the magnetic energy outside of the dissipation
layer which is available to drive the tearing mode. Clearly, if z. > /6W, then
insuffcient free energy exists to drive the ‘mode and stabilization occurs. Here,
W represents the width at which the magnetic islands saturate nonlinearly. Since
g, ~ DV3 and if D ~ 1/n, then the condition z. > v6W implies stability at

densities below some critical density.

The second term in the expression for the growth rate, proportional to b = p?k2,
represents the energy required to bend the magnetic field lines within the dissipation

layer. This term is stabilizing, but typically small (z.b6 ~ 1073).

The third term on the right of Eq. (4.80), which is proportional to \V/TiB5 rep-

resents the energy necessary to sustain the particle oscillation at the real frequency
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W= W + dw. This term is the result of including a nonzero electrostatlc potentlal
qﬁ which couples the wave dynamics of the tearing mode to the drlft wave branch.
(The electrostatic drift wave [15] is described by L1é = 0, and the magnetic tearing
mode [13] is described by ng” = 0.) Since this term is proportional to 3;, then
this impliés that the tearing mode can be stabilized at suffciently high densities
(for B; above some critical value). Included in this term is a correction proportional
to 6w/w... This term represents the additional energy required to maintain the ion

oscillation at the shifted frequency w = w.. + éw.

The fourth term in the growth rate expression, which is proportional to
(bwy/w.e)?, is a destabilizing term arising from a nonzero frequency shift éw,.
- This term can be viewed as a correction to the energy drive which results when
the real frequency of the mode is shifted away from w.,. Assuming the scaling
(v3/7v%)(6w/w.e) ~ Ag/W implies that this term scales as and is the order of the
correction term to the ion inertial stabilization (that part of the third term pro-
portional to éw/w..). As was assumed in this calculation, these corrections to the

growth rate are of order w.,/w, ~ 1071,

Rii
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4.3 Runaway Tearing

The goal of this section of Ch. 4 is to calculate the corrections of order Wee/We
to the dispersion relation for the runaway tearing mode in order to analyze the
effects of a finite frequency shift éw = w — w., # 0. This procedure is identical to
that used in Sec. 4.2 where the effects of a finite frequency shift were calculated
for the regular tearing mode. As discussed in Sec. 4.1, the équilibrium current
for the regular tearing mode is modeled by a drifted Maxwellian; whereas a low
density, monoenergetic electron beam on the tail of a Maxwellian is used to model

the equilibrium current in the runaway tearing mode.

The coupled equations describing the fluctuation potentials, L 15 + LIX” =0
and Lg,ZH + ng = 0, are defined in Sec. 4.1 by Egs. (4.13). As in Sec. 4.2, the
variational form S defined by Eq. (4.14) is used to calculate the dispersion relation.
Again, the variational form S is separated into magnetic and electrostatic terms,
S = (rv%/de?)S4 + Sy, where Sy = L4 — B4 and Sy = Ly — B4. The integrals
L4 and L are defined by Eq. (4.23) and Eq. (4.24) along with the boundary terms
Ba and By4. As discussed in Sec. 4.2, the coupled equations describing $ and JZ”
reduced to ideal MHD with the additional constraint w = w., at large z, |z| > z..
This holds for both the regular as well as the runaway tearing mode. Hence, the
trial functions used to model 5 and 2“ in Sec. 4.2 for the regular tearing mode,
given by Eq. (4.25) and Eq. (4.26), are suitable to use here for the runaway tearing

mode.

As discussed in Sec. 4.2, the boundary term B4 can be neglected. The electro-

static integral L4 was calculated in Sec. 4.2 and is given by Eq. (4.59) to be

Ly = g-‘[gf(\/ﬁz,-)-?’/z {[4 +1AV3z) (1 +1) + 4A\/§zi(—‘/—§’ﬁ)—l/i} (1.83)

[+

where it has been assumed that (v/3z;)'/2/z, <-1. This expression for L& was

calculated to be independenfc of the current carrying terms and, hence, it holds for
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both the regular and runaway tearing modes. !Notice that neither vy, or v}, appears

in Eq. (4.83).]

The boundary term (4 for the runaway tearing mode is again identical to that
used in Sec. 4.2 for the regular tearing mode. This is true since B4 depends only
on the trial function and the outer ideal MHD solution for 2”. The expression for

Ba is given by Eq. (4.66), and the expression for §84/6a is given by Eq. (4.67).

'The magnetic integral £ 4 for the runaway tearing mode is given by

~ N\ 2
a dA) w? bw z o, Al—viz/zp] ~
= d _— b— € _e_——_ T A2
La /;a z{( dx ) + [ Tvd W.e 2z 1+ 0422 /222 +Zzb1+x2/z§] I

(4.84)

where Krook approximate forms for the resonance functions I;(z) and K,(z) have

been used used. For the runaway case, A = (vf/rvi)xe(ng,van/noveLJ).

The only difference in £, between the regular and runaway tearing modes is
the last term which is proportional to A. This is the only term which involves the
equilibrium current. As can be seen by comparing Eq. (4.84) with Eq. (4.62), the
term proportional to A for the runaway case has gained a significant imaginary piece
whose counterpart is absent for the regular case. The importance of this imaginary
term will be the production of a significant frequency shift for the runaway tearing
mode which is absent in the regular tearing mode. Combining the imaginary part
of the A term in Eq. (4.84) with the term proportional to 6w /w.. implies that a real

frequency shift will arise of the form

bw Tvi A 2z, _2z.npvy Ly, (4.85)
Wie v2 7. T Ip no Ve Ly )

which, as will be shown below, is the correct form for bw/w,. arising from the

electron beam.
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Using the trial function for ‘Zil given by Eq. (4.64) along with the integral
identities given by Eq. (4.68) allows £ 4 to be written as

v 6 /2 [og
La= {(L(LfL + L%) + 2ab — w;_ d Efol —z.tan"! ( ?_23.)
TUY Wae T¢ 09 2 z,
+i)‘ 2z tan~! % — 2! (Ly + L_) (z2a— z3tan—1 2 (4.86)
- — —2— - - n" — . (4.
Ty ’ Iy Ty * b b Ty

The term proportional to éw/w.. can be expanded for small w., /we by using

Eq. (4.70a). This allows S4 = L4 — 84 to be written as

SA = {Zab-—
T

-2

w bw 4, a ny vy L _
;\/ize — tan™! -2 * tan~!

V4 Wie \/Exc o Ve LJ T

T 6w a/V2z. ., a
Ze A NMa- fhad
+ zxc o 1 az/Zzg} +2X\Li+ L )(a zy tan

—{Ba —a(L2 + L2)}.

The variational parameter a is determined by varying S, with respect to a.

This gives
6S4 w2z [ bw o T np Up Ln' 1
éa TV Tc [ Wee 1 + 0202 /222 Ty no Ve Ly 1+ a?/x}
a?/zr? 684
A )—=rt0 L l2hA (g2 2 . 4.88
+2ML4+ + L )1+a2/z§} {&l (L++L_)} (4.88)

biv {0

The parameter a is then determined by setting 6S4 /6a =0.

Assuming the scaling éw/w.. ~ (nyvsLyn/nov.Ly) and a® ~ z? implies that
the largest terms in Eq. (4.88) are the two terms enclosed by the square braekets.

The remaining terms are smaller by at least Aga/AW. Recall that it is assumed
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Apa/AW < 1 (or Lia < 1) which is necessary to insure that Re{gn} remains
positive. Letting a, signify the leading order contribution to a, then setting the

leading order contribution of 654 /6a to zero implies |

bw 1 2z, np vy Ly, 1
s 22—, (4.89)
Wee 1 + af /222 Ty nove Ly 1+ af/z}
However, the leading order contribution to the real frequency shift, 6w /w.., is deter-
mined by setting the leading order imaginary part of S4, as is given by Eq. (4.87),

equal to zero. This gives the beam frequency shift to be

bw 2_7}&%_122 tan~!(ao/xs)

. 4.90
Wae ne ve Ly tan’l(ao/\/ﬁxc) ( )

Inserting Eq. (4.90) into Eq. (4.91) then gives the following equation to determine

aop.

t- -1 A n ]. - A2
an aoA iy + aoﬂ/zﬂ 0 (4.91)
tan~1(ao/0) 1+ a3

where the normalized parameters @ = a/z; and B = \/ixc/mb have been introduced.

Unfortunately, Eq. (4.91) cannot be solved analytically to yield @, for arbitrary
B. Actually, § = V2(vy Do /v D)/ where Dy represents the spatial diffusion
coeffcient for the bulk electrons and Dz; represents the spatial diffusion coeffcient
for the beam electrons. To get around the problem of not being able to solve
Eq. (4.91) analytically for arbitrary §, the special case where Dy/Dgy = 22/3v, /v,
will be examined. In thié special case [i =1 or zy = v/2z,. When this is i:_rue,
Eq. (4.91) is exactly satisfied for any value of do. Hence, 4o must be deternfined

form the higher order terms remaining in Eq. (4.88) for 65, /ba.

Notice that for z, = v/2z., then the beam frequency shift becomes, according

to Eq. (4.90),
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5wb ny Uy Ln
=V2———. 4.92
bw., \/—no ve Ly ( )

Letting éw; = éw — dwy (as will be shown below, éw;/w., ~ (me/m;z;)'/? and
is the frequency shift by finite ion inertia), then for z, = v/2z. Eq. (4.88) can be

written as

654 w? z, (6w1 1 iTe bw 1 — a2 )

ba 1%z \w. 1+ a2 T, W, (1+ a2)2
A, 242
—2(1- 4.93
T w ( 1+ a2> (4.93)

where @% = a?/z. In writing the above expression, the terms 2b,2a)2(L,C, —
L_C_) and a®?A*(C2% + C?)/4 were neglected (as they were in Sec. 4.2) and the

expansion

o1 1 iz, 1 — a2
- =~ |1+ — <
1+092a2. 1+ a2 z. 1+ a2

was used.

Assuming éwy/éwy ~ z./z. and assuming (vZ/7v%)z./z.(6wr/w.e) < Ao/W,

as was done in Sec. 4.2, then to leading order 6S,4/6a = 0 becomes

A, 2a2
—(1- =0 4.94
w < 1+ a2 (4.94)

where 4% = a2 + 47 and 2/aZ < 1. Hence, Eq. (4.94) specifies a2 = 1.

i

To calculate the next order correction @2, §S4/6a = 0 can be written as

1L

—_
~N

ivezic_i(éw,- 1 iz, fw 1—&8) Ao(l—&g—&%>=0 05)

A ~ + Sxr ~ -~
Tvi Te \Wxe 1+ ag Te Wie (1 + a2)2 W A\1l+ a'g + a’%
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Setting a2 = 1 then gives
02
~2 1V
a] >~ —— — —— —. 4.96
1 TV Tc wee Ay (4.96)

To determine the dispersion relation, the expression for 42 = a2 + a2 is inserted

into the integrated expression for S4. For the case z;, = v/2z., Eq. (4.87) becomes

w~e

{2\/—zcba- we \/_xe [(
—Aob—w@%ﬂ2mﬂ“&—&ﬂ}. (4.97)

Notice the following:

?) a& =1+ 6a, where 6a = a3/2a2
27) 2tan"'a—a~2(tan”'1+6a/2) — (1+6a) =7/2-12~1/2
a 1+ éa 1
111) . — =~ — = -.
1+a2 " 1+4(1+26a) 2

Hence, to first order in &, S4 becomes

v2 6  v? W
sA={z\/§zc — 2ze[(6w— “’b) (z_iv;éﬂ_&>

4 Wee  Wie 4 vy w Ay
1T, bw V2 z, : .
— | -Apll - —— . 4.98
+2:z:cw,‘e] 0( 2 W)} (i )

To find the dispersion relation for the runaway tearing mode, the total varia-
tional form is used, S = (rv%/dc?)Sa + Sy. Using Eq. (4.83) and Eq. (4.98), § can

be written as
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5 - _Z,\/val_ bw  bwy\ (T Tz, vE Sw W
N 2 ¢27°¢ W.e Wee 4 4z T wee A,

LiTe 6w:|+ i Tvd [2\/_$c (1__\/_555)}

2z, V2 z,v? 2w

- )—1/2[(4“?@5—1)(1“)

t 23z, % (\/gzi)l/2} } (4.99)

e Z.

The real frequency shift for the runaway tearing mode is given by setting the

imaginary part of \S equal to zero. This gives

W-e n, ve Ly \/§ \/ngiIE,' 8 w.e

bw, L, 4 1/2 36
LA S e R +—(~—mL—> (1+£ Y. (4.100)

The growth rate of the runaway tearing mode is given by setting the real part

of S equal to zero. This gives

1/2 1/2
7 i TmMe 1 1z 3 2my; ﬂix,‘ff bw
Wee T (Zmi) Biz; {A0<1 \/_W) 2\/§sz (Tme> 2 T.Ww.e
2Bz L V3, bw (V3z,)'/2 1

37 \/ﬁ 2 z, 4

1 (ma)*? 2. (81 zsz (4.101)
4\/51_' v Wxe A,z ’ |

where $w;/w.. = bw, /w.. — bwp/w.e and bwy/w,. = ﬁ(nbvan/noveLJ).

K

The expression for the real frequency shift of the runaway tearing mode,
Eq. (4.100), has two significant contributions. The first is the beam frequency=shift
bwp/w.e = ﬁ(nbvan/noveL,}). This can be viewed as a Doppler frequency shift
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by viewing the beam electrons as a fluid of density n;, moving at speed v, = dwy/ky
relative to the rest frame. This point will be discussed further in the last part of
Ch. 5. The second contribution to the frequency shift is the ion inertial term,
bwy/wee ~ (me/rm;z;)"/%. This term appears in the frequency shift of the regular
tearing mode and is the result of including a non zero electrostatic potential q~5
Physically, this shift arises from the finite inertia of the particles (specifically, the

electrons). Both terms, dw, and 6wy, are positive and typically 6w, > bwy.

The expression for the growth rate of the runaway tearing mode, Eq. (4.101),

was derived after assuming the following:

Aoa 1 (\/51:,')1/2

<1, —2— <1, < =2
AW T, TU:‘; Wee Te w
bwr
— <1 and 7 = V2z.. (4.102)

bwy

The first three inequalities were also assumed in the analysis of the regular tearing
mode whereas the last condition, z; = v/2z., is necessary in order to solve for a2

analytically.

The first term in Eq. (4.101), proportional to Ag, represents the MHD energy
drive produced in the region outside the dissipative layer. Included in this term is
the stabilization which results from turbulent diffusive broadening of the dissipa-
tive layer. The second term, proportional to b, represents the energy required to
bend the magnetic field lines in the dissipative layer and is stabilizing. The fourth
term, proportional to 3;,/z;, represents the energy required to sustain the particle
oscillation at the real frequency w = w,e + éw. Included in this term is a correction
for a finite frequency shift dw. The fifth (last term) in Eq. (4.101), proportion;l to
(6wr/w.e)?, a correction (destabilizing) to the MHD energy drive which resu]t;= due
to the presence of the finite particle inertial frequency shift dw;. These four terms
also appeared in the expression for the growth rate of the regular tearing mode,

Eq. (4.80), and were discussed previously at the end of Sec. 4.2.
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The new term which appears in the growth rate for the runaway tearing mode
is the third term, which is proportional to (z.6w/z.w..). This term results from
the inclusion of the electron beam as the current carrying part of the electron
equilibrium distribution. Physically, this term represents the energy required to
maintain the particle oscillation at the beam shifted frequency éwy/w... This term
scales as and is the same magnitude as the stabilizing correction to the ion inertial

term (the fourth term), also resulting from the frequency shift.

In comparing the above results for the runaway tearing mode to the regular
tearing mode, there exist several important differences indicating enhanced stability
for the runaway tearing mode. First of all, the real frequency shift of the runaway
tearing mode is significantly larger than that of the regular tearing mode. The
expressions for éw/w.. of both the runaway and regular tearing mode, Eq. (4.100)
and Eq. (4.79), contain the particle inertia shift éw;/w.. > 0. The runaway fre-
quency shift has the additional positive term of the beam frequency shift 6w, > éwy;
whereas the regular tearing mode has the additional negative frequency shift which
scales as (m.Ao/m;W ;). This negative shift can, in practice, nearly cancel the

positive shift §w; in the regular tearing mode case.

Comparing the growth rate expressions, Eq. (4.101) and Eq. (4.80), indicates
that both runaway and regular tearing modes contain the additional stabilization
correction term, proportional to éw/w.., contain in the ion inertial term (propor-
tional to B; /+/Zi). The growth rate of the runaway tearing mode, however, contains
the additional stabilization correction term, proportional to (z.6w/z.w..), result-
ing from the beam electrons. Since éw is significantly larger (and positive) for the
runaway tearing mode, the above two observations indicate greater stability for
the runaway case. Notice that the last term in Eq. (4.101) for the runaway case
is a destabilizing correction which is proportional to (6w;/w..)?, independent of
the beam frequency shift, and hence, is essentially the same as the corresponding
term for the regular tearing mode. In short, enhanced stability for the runaway
case results from the appearance of the beam frequency shift fw, > 6wy, vghich
then feeds back into the growth rate through stabilizing corrections proportional to
~ bw/w.e. These stabilizing corrections, however, are subdominant by order w../w.
and, hence, are only important when the leading order terms in the expressign for

the growth rate, Eq. (4.101), nearly cancel.
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~ Chapter 5
FLUID THEORY

In this chapter, a fluid theory is developed which reproduces the basic results
of the previous chapters regarding the effects of turbulent electron diffusion and of
runaway electrons on the tearing mode. The goal is to determine a set of fluid equa-
tions for the study of low-beta, low-frequency electromagnetic fluctuations which
is the equivalent of the NSA kinetic theory of Ch. 2. It should be kept in mind
that the fluid theory presented in this chapter is implicitly developed for the use of
analyzing the stability of fluctuations. This fluid theory is not intended for use in
the study of equilibrium transport in a turbulent system, just as the NSA kinetic
theory of Ch. 2 is implicitly intended for the use of studying the stability of plasma
fluctuations. The fluid model is developed as a set of fluid equations for the full
fluid quantities (equilibrium plus perturbations) only in so far as to enable these
equations to be linearized about the equilibrium to determine a set of equations
for the perturbations. A fluid approach is useful in that it is often an easier model
to interpret physically compared to a detailed kinetic mode (i.n addition to being
mathematically simpler). In particular, it is shown that the NSA kinetic theory
is equivalent to é. fluid model in which both the perturbed density and perturbed

momentum are diffused radially at equal rates.

In Sec. 5.1, these fluid equations are derived by taking the appropriate moments
of the NSA version of the drift kinetic equation. This set of fluid equations is then
used to provide expressions for the perturbed density and the perturbed currents in
terms of the potentials q; and fi”. These expressions can then be combined through
quasineutrality and Ampere’s law to give the fluid theory equivalent of the coiuple
equations for ¢ and fi” given by Egs. (2.30) in Sec. 2.3. This fluid model is sthen
applied to the tearing mode in the presence of turbulent electron diffusion for two
cases: (1) when the equilibrium plasma currént is carried by a slow flow of thebulk

electron fluid (“regular” tearing), and (2) when the equilibrium plasma current is
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carried by a fast flow of a low density electron fluid, which exists in addition to
a stationary bulk electron fluid (“runaway” tearing). The fegular tearing mode is
analyzed in Sec. 5.2 and the runaway tearing mode is analyzed in Sec. 5.3. The
results for the perturbed parallel current and perturbed density as well as the growth
rates for the regular and runaway tearing modes agree extremely well with the
kinetic theory. In Sec. 5.4, the full fluid model is then reduced to the bare basics
necessary to describe the tearing mode including the effects of turbulent diffusion
and runaway electrons. This is done by keeping only the magnetic potential fi”.

The physical interpretation of this “bare basics” model is then discussed in detail.

I

"
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5.1 Fluid Model

The basis for this fluid model will be a drift kinetic equation similar to that
used in the preceding kinetic analysis. This drift kinetic equation has the following

general form.

d ~ q ad
52+v!]b-V+VD_L'V_L+EE”%” f=cC(f) (5.1)

where Vp | Tepresents the motion of the particle’s guiding center due the fluctuating
fields E and B 1, and C(f) represents changes in the particle distribution function
due to transport processes involving both Coulomb collisions and turbulent effects.
The above form of the drift kinetic equation also negl(_acts the slow drift caused by

the curvature of the equilibrium field lines.

For the present problem in which the magnetic fields are straight and for fluc-

tuation frequencies w ~ w.. <K w¢e, the perpendicular guiding center motion is
described by

~

~ ~ B,
Vp, =Vg, +U“B—O (5.2)

where

Yip=-3Véxb and BL=VxAb.

The first term in Eq. (5.2) is the ExB drift, and the second term is the perturbed
perpendicular velocity resulting from the particles free streaming along the total

field lines B, + Bo. .

A detailed form of the collision operator will not be presented; instead;,‘ the

collision operator will be represented symbolically as follows:

c(f) =cE(f) +CT (). (5.3)
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Here, C'X(f) represents a Landau-type Coulomb collision opefator 165 transformed
to guiding center coordinates and C7(f) represenfs the turbulent collision operator.
This fluid theory is concerned only with how the turbulent collision operator enters
into the perturbed fluid equations as a spatial diffusion operator as described by

the NSA kinetic theory in Ch. 2.

The detailed form of the full collision operator, however, is needed if one wishes .
to study the equilibrium transport in a turbulent system [66]. This is a very com-
plicated problem in itself and will not be discussed here. For example, Swartz and

Molvig [67-69] calculated CT(f) for electrostatic drift wave turbulence using the

NSA to be

q? 9 k, 0 |
_.2_ Z (2]6” v” ” + Qy _5;) ReIkw(.’E,’U”)
e kw ce

2
X Skw(2) (an(x)vnaT - é‘) Tes (5-4)

where (1., is the electron cyclotron frequency. Sk, (z) is the spectrum of the poten-

tial fluctuations and the resonance function I, is given by

Ik (z,v)) = /Ooo dr exp { (w — k”( )v”)T - %(kl'lv“)zDrs} ’

where the spatial diffusion coefficient D is a function of the spectrum Sk, (z) and
must be determined self-consistently. In general, the spectrum Sk, (z) is determined

by a nonlinear mode coupling equation [70].

by o

In a fluid model, the precise structure of the collision operator is needed in so
far as enabling one to obtain the appropriate velocity moments of such an operator.
In this model the zeroth moment of the collision operator will be used as well as the

first moment. The zeroth moment and the first moment will be defined as follows:
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Co = /dv”C(f) =ct+cl

C, = m/dv”v”C(f) = CIL + Cir : (5.5)

In the above expressions, the moments of the collision operator were again divided
into two parts, one representing the effects of Coluomb collisions, C¥, and one
representing the effects of turbulence, CT. The final form in which these collision
operators appear in the fluid equations is in the form written for the equilibrium and

the perturbations. The equilibrium forms for the collision operators are denoted as

Co=Co+Cq, Cy=Cyi+Cl

Go=CE+CT,  Gy= Ok 16T,

In the NSA drift kinetic equation for the perturbed electron distribtuion fe,
Eq. (2.20), the perturbed turbulent collision operator appears in the form

9% -

éT = —“hea
D6x2

where f; = (ed’;/Te)fo + I~1,e. (Recall that the adiabatic response was found to be
unaffected by the presense of E x B turbulent diffusion.) Hence, taking the zeroth
and first velocity moments of the above expression indicates C:'g' and C~'1T to be of

the form

i

Vil



where the fluid density and parallel velocity are defined by

no =/dvn7, nV) = /dvnvn7

and

ﬁ=/dv||f~, WVjjo + noVj = /dvnwf

In Eq. (5.6), DT represents the turbulent diffusion coefficient for the diffusion vof
the perturbed density and D7 represents the turbulent diffusion coefficient for the
perturbed moment. In general, DT and DT, need not be equal since D is in general
a function of velocity. However, for the NSA theory of Ch. 2, D was taken as a

constant, hence, DT = DT = D.

Recall that in the NSA kinetic theory presented in Ch. 2, the Krook approx-
_ imation was introduced in order to simplify the mathematical treatment of the
diffusion operators. This amounted to replacing the diffusion operator — D32 /9x?
in Eq. (2.20) with the effective diffusive frequency w, = [(kjjve)2D /3|13, (See
Sec. 2.4.) Hence, the Krook approximation to the NSA is equivalent to the follow-

ing approximate forms for the turbulent collision operators:

(ﬁV”o + noi;'”) s 5.7)

ki

where

T



Again, in general, wl and w? need not be equal. However, the NSA Krook-

approximate kinetic theory speciﬁe§ wl = w!l = w., which physically states that

perturbed density and perturbed momentum are diffused at equal rates.

In order that a collisional limit of the fluid equations may be taken, a Krook

Coulomb collision operator will also be introduced. Hence,

Ct=o0

CT = —nmw (r"zVHO + no‘~/”> , (5.8)

where v is the collision frequency. Recall that the Krook collision operator only
affects momentum transfer. Although the NSA kiﬁetic theory neglects Coulomb
collisions, they will be included in this discussion in order to compare the dissi-
pative effects of turbulent diffusion to the dissipative effects of Coulomb collisions

(resistivity).

To obtain a set of fluid equations, the appropriate parallel velocity moments
of the drift kinetic equation, Eq. (5.1), are performed. The zeroth moment yields
the following form of the continuity equation describing the evolution of the plasma

density:

P n=cl+cT (5.9)

0 [ < B,
—=+V. <V||b+VEl +V||?)

where V5 L = (=¢/ B)Va x b and the following definitions for the fluid variables

have been used: B

i ¢

n:—:/dv”f and nV“ E/dv”v”f.

The first moment of Eq. (5.1) gives the following form for the parallel memen-

tum equation:
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m

9 , > B,
V"{—at + V- <V|lb+vh +VH—B )}n
2 > B
+n{—8—2+ (V“b-i*VE_L +VH?) V} Vi

~

B
==V~ Vi 2P+ quB +Cf +Cf. (5.10)

In deriving the above equation, the following definition was used:

m/dvnvnvnf :m/dvn("n + o) (Vy + ) f
=mV||2/dvnf+ m/dvuﬂlzf
EmVHZn -+ P”.

The above form of the momentum equation, Eq. (5.10), can be put into the
standard form by substituting the continuity equation, Eq. (5.9), into the left hand

side of Eq. (5.10). Then, the momentum equation reads

3 ~ B,
mn|:5¥+ (V||b+VE_L +VH?) -V V”

~

B
=-V P -V,- ?lP“ +qnE + (CL +CT) —mV (Ct +CT). (5.11)

This set of fluid equations Eq. (5.9) and Eq. (5.10), is closed by using the

isothermal equation of state relating the pressure to the density:

P;=Tyn, where T = constant. (5.12)

This isothermal equation of state is a reasonable approximation in a plasma in
which the parallel thermal conductivity is very large. Moreover, the isothermal

response for the perturbations, }3” = nTj, is valid in the case when the electrons
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experience primarily an adiabatic response, f. ~ f, ed,/T,, as is true in the kinetic
theory. Such a response is dominant when the following two terms balance in a

kinetic eQuation:

9

5 1o (5.13)

vb- Ve = ';nq—in

The above relation states that the electrons respond instantaneously to electric field

perturbations along the field lines (i.e. infinite parallel conductivity).

To study the equilibrium version of these fluid equations, it is assumed that
spatial gradients along the field lines are zero. The equilibrium version of the

continuity equation, Eq. (5.9), states

277.02'—6702-—6—1) 9

Bt az p—a—;no (514)

where a typical form of Cy was introduced for the sake of discussion. Here D, is
the particle transport coeffcient. In this form the equilibrium continuity equation
becomes the familiar diffusion equation for the equilibrium density in the presence
of a radial flow given by T'; = —D,(9/ B‘x)no due to transport processes (collisions

and turbulence). For example, classical transport [36] specifies D, ~ p?v.;.
The equilibrium version of the momentum equation, Eq. (5.11), states
7] — _
mno—a—t—V”" = qnoE“o + Cl - mV”“C'o. (5.15)

Note that Eq. (5.14) states (8/8t)no = C,. Substituting this into the above equa-

tion gives the following equilibrium relation: -

i

Vi

ad —
mg(no‘/”") = qnoE““ + Cl. (516)

The leading order form of C'; can be determined in order to allow for a Spitzerztype

resistivity [35]. Assuming the time derivative can be neglected to leading order,
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then by approximating C; ~ —Mmungv)g, the equilibrium version of the momentum

equation states

anEH,, = munoV““'. (5.17)

Equation (5.17) determines the equilibrium current for a given applied parallel

electric field via the plasma resistivity.

To determine the fluctuation equations, the fluid equations are linearized to
first order in the perturbed quantities. It is assumed a perturbed quantity, é, has

the following form.

~

Q = Q(z) exp [i(kyy + kaz — wt)]. |

Linearizing the continuity equation gives the following equation for the perturbed

density in terms of the perturbed parallel velocity:
. . S B, ~
—z(w - k”VH“)n + V. V“b + VEJ_ + V”-—E— n, = Co. (5.18)

Using the expression for Co, Eq. (5.7) gives

‘?i = (wn() - k”‘/”“)-l B

~ ~ B 5
—V - (V”b + VE_L + VH.. —i) n, + iw,ff?no} (5.19)

where w,, = w + 1w].

The linearized momentum equation is given directly from Eq. (5.11) as

‘
1

. > 7 \7 ﬁ‘L . -
—imn,(w — V) k))Vj + mn, (VH +Ve, + V”"TB") (" :

Vi

2
n|— -V 1V
+ mn (at + V“u ) ”u

~

= B ~ N 5
= -—V”P“ -V, —EJ-'—PHO + an”o + qnoE“ + Ch

- mi;“oao - mV'”“é’O :

——
-
o
S

N
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5.17) into the above

Substituting in the equilibrium relations Eq. (5.14) and Eq. (

equation gives

B,
—imn,(w— k“VH )VH + mn, (V” + VE_J_ + V|| —3) VV”
. B, 3 o 3
= — V”P” -V, -E—-P”“ =+ qnoEH + mVV““n + Cy — mV”“Co
a2
3 (5.21)

~ 0
- mVII,.EDpézno

Assuming

0]
D

2 T
32D ag"e| < wn e

implies that the last term in Eq. (5.21) can be neglected. Using the expressions for
C, and Co, Egs. (5.7) and (5.8), along with the isothermal equation of state }~7”

then gives the following expression for the perturbed momentum equation

T,
~ s B iT B
(wmy = Ry V), V) = — (VEL + Vu..-ff) VY, - VL fno + Eu
qS n o T '
— 2V“ w T k“ k“— - zV” k”&umn) (5.22)
where
— w:‘f. 3

Wy, = w + t(wr +v) and bwpmy = wl

fi i

The perturbed continuity and momentum equations, Eq. (5 19) and Eq. (5.22),
These two

give a set of coupled equations for n and V|| in terms of qS and A”

equations can be combined to yield an expression for n in terms of ¢ and Ay,

along with an equation for ‘7” in terms of ¢ and X”. Substituting Eq. (5.22) into
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the perturbed continuity equation gives the following expression for the perturbed

density:

(T . . ~
[(Wmo—’ann,.)(wnu = kyvii,) - (gkn - ”’la.,kll5Wmn)] n
. ~ B T B ~ ed
- znok” [(VE_L + V”_Eﬁ) . VV“" +—V, - —'Lno - -—q—EH + V“ 'wT—QS]
nm m ¢

- z'no(wm‘(, - k”VH,.)

1 ~ ]~3_L 5
—V, |V +V, — —wi Ll
no L ( E) I, B ) Mo n T

The perturbed current can be found using Eq. (5.19) and Eq. (5.22) along with
the definition .7” = q(n01~/|| + AV} ). This gives the expression

T :
[(wmranu,.)(%.. kW) - (gkﬁ - lanH.ﬁwmn)]

v | S

. ~ ﬁ.L T B_L $
— 1NoWn, [(VE.L +V”"—B—) VVH + V¢ ?no— —-—E” + V), w, T}

i T , .
& [kIIVII,.(“’mu — kv + (gkﬁ - ’kan.ﬁwmn)}

~ B 5
X VL.(VELJFV“”?L)% ,{e;? } (5.24)

When combined with quasineutrality and Ampere’s law, Eq. (5.23) and
Eq. (5.24) represent a closed system which can be analyzed to determine the dis-
persion relationship for the tearing mode including the effects of collisions and tur-

bulence. In the following analysis it will be assumed éw,,, = 0 or, in other w'c;Srds,

T

T = wTI. This implies that the underlying kinetic turbulence diffuses pa.rt?icles

w
at the same rate in which it diffuses momentum. This is what is implied in the

kinetic theory of the preceding sections where the turbulence operator appeated as

—D(8?/8z2)h.. Hence, DT = DT = D and wT = w%, = w..
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To make connection with the kinetic theory of the previous sections, V) will be
treated as a constant, as was vp and vp in the kinetic theory. (The perpendicular
gradient of V| can be retained, however, and no significant difference occurs in
the final dispersion relation.) To rewrite Eqs. (5.23) and (5.24) in a more useful
form, \~73l, l~3_L and E“ are rewritten in terms of 25 and Aj and the substitution
Jy, = oV, is made where appropriate. The expressions for the perturbed current.

and density become

and

Jji

q

=T I (30— (1+522)4,) v, w73
T Wn, em | kyc qw I ll.%n

T
+ [ ky® + kv (wm, — kan,.)]

. T
[(wm., = ky\Vy Nwn, — & V) ) — ;kﬁ}

m
we [~ J), Lp ~ ) .wT~]}

X - —2— A+ . 5.26
[k” (¢ qanc LJ I k” ¢ ( )

In the above equations, w. = ck,T/(eBL,), dn,/dz = —n,/L, and dJ”(_/ci:z =
_J”“/LJ.

r i

Equations (5.25) and (5.26) represent a coupled system for é and X” which,
when combined with quasineutrality and Ampere’s law, can be analyzed tozyield

a dispersion relation for the tearing mode. Equations (5.25) and (5.26) hold for
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either electrons or ions, although when written for ions, finite Larmor radius effects
should be included. (The drift kinetic equation used assumed zero Larmor radius.)
The “regular” tearing mode is analyzed by using a single fluid of “bulk” electrons
with V““ = vp, where vp/ve ~ 1072, The “runaway” tearing mode is analyzed
by using a two fluid model for the electrons containing a bulk electron fluid with
V|, =0, and a beam electron fluid with Vi, = v andvno = np, where vy /v, ~ 10

and ny/ng ~ 1073,

fv

b

"
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5.2 Regular Tearing

To examine the “regular” tearing mode, Eqgs. (5.25) and (5.26) for the perturbed
density and perturbed parallel currént will be used in the equation for quasineu-
trality as well as in- Ampere’s law. This gives a set of coupled equations for the
fluctuation potentials 5 and Z“. In the fluid model, the regular tearing mode exists
in a two fluid plasma composed of (1) an electron population drifting with an equi-
librium parallel velocity VII,. = vp, where vp /v, ~ 1072, and (2) an ion population

with no parallel equilibrium flow, V}; = 0.

To find the perturbed electron density, Eq. (5.25), which is written for either
ions or electrons with an arbitrary equilibrium flow, is written for electrons with
V|, = vp. Using the fact that vp/ve ~ 1072 and assuming kVp/w < 1, then to

leading order

2 ~ eno 1 212 wxe ~
{wm“wn, k”] = —T-e— {*Evek” (d’"‘ ‘k‘”—c (1 - ) AH)

- ik”vang-{- (Wm, — kyvp)

ISRV T 7 NS
X [w*e (¢+A,,;£’ZE> +zw3{¢”. (5.27)

Rearranging the above terms gives

:. — { $+ (Wm,,wn.. — zk“) o ["‘wmu (w - “"*e)g

Wi ~
— k”vD (w,‘e + 2iwT )¢ + v2k|| k“c (1 - e) A”

. J”“ n ~
+(wm, — k”‘vD)w*eT—-A” .

Recalling the variational calculation presented in Ch. 4, it is only necessary to

keep the leading order terms in $ and Z“, the rest can be neglected. Hence,
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Ay g (5.29)

The remaining terms which have been neglected in Eq. (5.28) are smaller by either
Wxe/we OF by vp /ve.

Neglecting collisions and letting w?, = wl = w,, then by defining z/z, =

vek”/w,e and z/z. = vek)we, the second term in Eq. (5.29) can be written (using

Win, Wn, =~ —w? + 2iww,)

1 * -~ 2 ) < ~
——vfkﬁ—(:)— (1 _ &) A - Lz (4 2i%e) Ze (1 B W-xe) ve g,
2 kyc w 2z z. ) « w/ ¢ (5.30)
O, — 02K 141 z’ 1 2z, '
m.,wn, 2 € “ + 5;—? + xc

Recall from Sec. 4.1 that the diffusive resonance function, T 1, 1s given approximately

by the following interpolation formula,

_’z.zc

—1 T
L= wxfe(1+£ez):; 1z 21z
c [+ 1+ _2-_ (1 + e)

Hence, using the above approximation, the perturbed electron density becomes

Tie {(Z - i(w — wae)lh %Z”} . (5_.31)

IR

e
No
Thus, to leading order, the fluid theory reproduces the result of kinetic theory for

the perturbed electron density, as used in Ch. 4.

In a similar way, Eq. (5.26) can be used to determine the perturbed parallel

current for the electrons. Using J|, = —en,vp, vp/ve ~ 10~2, gives
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Jj -
) 2 Il ~ @ , 2 w Wae
—<wm"wn" - k”) e T {wn"{ Ve <¢ ke ( w >A”>

——i‘UDW,T;g] + (%vfkﬁ + kHUDwm,.)
wee (~ I, Ln iw?l
Lxe n 4 Zn

g [kn (¢+ enc Ly ”) T ¢]}

Rearranging the above terms gives

jil, 1 o2 -1 en, 1, ~
—< = W, Wn, — k“ T 1| 3% sk (W — wee) + Wm, Vpwie| ¢
) €

+ [Wn,,é‘ve Z(w - w‘e) + ('z'vek” + k”'UDWm,,> k” enc LJ A“ (532)

As in the kinetic theory of Ch. 4, the following terms can be neglected (due to the

smallness of vp/v.) and the perturbed current to leading order becomes

Jj, . en 1 . 5
—_—é— ~ —:—,—‘5 (wm,_wn,_ — 2kll> {—-z-vfk“(w — W.e)@

2 1 e ~
+[%wn,_vf(w—w ) + Lyzgzze . Ln }AH}. (5.33)

Using the approximation, w,, w,, ~ —w?+2iw.w, then the following relations hold:

1z 2ize
—%'vzk“ Ve 5 .:C_c Lt I .
2/4:2 ~ L > o ~ v 1, (5.34a)
Wm,Wn, = [ -z_z (1 + ,ze)
2 zZ T
2 .
v, t T
1, v ( _?ew_<1+_;i> 12
2 n, ¢ ~ c c - e
Wm, Wn, — lvzkz - 1 332 2ize c I2 ( = 4b)
o 27e™| \1 + 52 1+ -
2 b Zc
(w el T ( 2ixe)
1,2 € 2.
svik w* .
2 Ve V|| Wee ~ we 2 ‘:" ¢ ~"1VeWie 3 (5.34c¢)
Wm, Wn, — 2k2 lz 22133 =
o « ” \ 1 + —‘—2 1 +
2 xc ZI¢



where the interpolation functions were used for I,(z) in the Krook limit. [See

Eq. (4.15).]

If the definition ny = 2vpLn/v.Ly is used (J = —en,vp), then Eq. (5.33)
becomes '
J”e e Ve ~ ~
_—e o~ i,—nove {[—(w - w,‘e)lz + w,en_;Ig] —C—A“ + (u) - er)Ilqb} (5.35)
[

which are the leading order terms derived in the previous kinetic theory.

To obtain the ion perturbations, Egs. (5.25) and (5.26) are again used for the
case of fluid ions in which no equilibrium flows are present, V| = 0. As in the
kinetic theory, the ions are assumed to be unaffected by turbulent diffusion. Hence

Wm, = Wy, = w. Eq. (5.25) then gives

1 en lw . 1~
2 2,2~ _ €Mo -e
[w - Evek“] n; = Tz { ((75-— E”—C— ( + 7 o >A||) +ww,e;¢} (5.36)

where 7 = T /T;.

The terms in the above equation can be rearranged to read

~ -1
ni _ € 7 2_1 2.9
EZ‘E{"”(‘” - 34)

x [w (w w*e) 5»—.—v2k” " ( w") A”}} (5.37)

Recall that this fluid theory is based on moments of the drift kinetic e;’;lua-
tion (DKE). The DKE is a good description for electrons, but this description
neglects key finite Larmor radius (FLR) effects [71] when used to study ions. To
correctly account for~ these FLR effects, recall that in the kinetic theory, the eléctro-

static potential a was expanded to second order yielding a second spatial derivative
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of 5 in the calculation of the response. Also recall, that in order for such an ex-

pansion to be valid, it was required that a:/zi < 1. To correctly account for this

Ve ]

1 .
FLR effect, the resonance operator, <w2 — o 2k2) , appearing in the above fluid

equation must be expanded as follows:

_ v2
2 1 9,9 l~~ 1 kH ~
(w —"2“061{7” ¢_ﬁ 1+T ¢
1 122\ ~ d?
- |(135) 8+ i)

Hence, to leading order, including the second derivative of q~3 due to FLR effects,

the ion density perturbation becomes

~ 2 2
n,; € ~ ( w,‘e) 12: ~ ~
SV 1 1+ -2 -
no T,{ o1+ Tw [( +2$f)¢+dm2 ]
122 w Wee\ ~
ST Y (149 )A , 5.38
2 z? k“c( T e “} : ' (5.38)

which is the kinetic theory result. (See Sec. 2.2.)

Similarly, setting V}; = 0 and w, = 0 and expanding Eq. (5.26) for z/z; < 1

gives the following expression for the perturbed ion current:

-7“. en,v; [1 Wee ~ w ~
— —— . 5.39
e T; {21, (1+ Tu)) (¢ k”cA“)} (5-39)

The above expression is the leading order kinetic theory result for z/z; < 1.

To derive a set of closed, coupled equations for 5 and Z”, the above express_,ions
for 7 and jh are used along with quasineutrality and Ampere’s law. Quasineutrality,

n. = n;, becomes, using Egs. (5.31) and (5.38)

V. ~
(w—w.e)l; + xexz} ?CA” =0 (5.40)

Q_| ~,

d? ~
e )|
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where

<l—w‘e), d=<T+O:e) and ‘X2:—x—.

Similarly, Ampere’s law, VZZ” + (47 /c) (.7” +jil.~) = 0, becomes, using
Egs. (5.35) and (5.39)

d2 vz v2- o
: 2,
‘d_ @ —b+ Ol + T‘Uiz(w - wxe).[2 — ;—&—g—zw,en‘]Is]A”
i o~
- E(w —wee)l1 + Iexz} ?ed) =0 (5.41)
where v} = B?/4wmin;, b = k2p? and o? = —(v?/270v%)(7 + w.e/w). In the

above the equations, z has been normalized in units of the ion gyro radius p;.
Equations (5.40) and (5.41) are equivalent to the leading order terms in Egs. (4.11)
and (4.12).

As in the kinetic theory, Egs. (5.40) and (5.41) form a coupled self-adjoint set.
Hence, a variational integral can be formed. This is done by multiplying Eq. (5.40)
by 5 and Eq. (5.41) by ‘ZH and integrating over the plasma. This variational form

becomes

§ =S4+ A5, | (5.42)

d2

where
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and

a ~ 2
dAH ,v2~ . v2 ~
S = d s b - —& - <@ I —£ 4 *e 2
A / T ( . ) + [ va12((.‘) w.e)l2 + - Wwiengls| A

(5.44)

This variational form is identical to that obtained in Ch. 4 using kinetic theory. To
determine the dispersion relation, a procedure identical to that used previously can

be performed. A simpler heuristic procedure, however, will be presented in Sec. 5.4.

Vi

1L
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5.3 Runaway Tearing ‘

Runaway tearing is composed of a three fluid plasma containing 1) bulk elec-
trons with no net flows Il =0, n = n,; 2) beam électrons which carry the current
V”” = v, n = np With vp/ve =~ 10, ny/no ~ 1073; and 3) bulk ions with no net flow
Vi.=0.

To analyze the bulk electrons, Eqs. (5.25) and (5.26) are used with V), =0
and wy,, = wp, = w + tw.. The result is identical to that analyzed previously in

Egs. (5.27)-(5.35), only now V| = J) = 0. Hence, for the bulk electrons

;ie ~ [4 {~ . ve ~ }
— =~ — —t{w —w.)[{—A 5.45
ol =g {F i ean A (5.45)
and
j}y e Ve ~ ~
Ll = v {- (@ -0 ) B2 + (0 - w*e)Iqu} . (5.46)
€ ot Te ¢ ,

To analyze the beam electrons, Egs. (5.25) and (5.26) are analyzed for V) =
Vb, Up/ve ~ 10 a.nd for n = np, np/n, ~ 1073, The equation for the perturbed beam

density becomes

= [(wm., — kyvs)(wn, — kll”b)]-l

e [ Lo _ YW (g W kT
X Teno { 2‘!) k <¢ k“C (1 )A“) zk”vbwnqS

~ J ~ _
+(wm, — k”vb) [ Wie <¢ + A —~ o L_> + zw,{qﬁ] } . (5;.47)

enpc L

Since one is concerned with finding the overall electron perturbed density, 7, =
Te|bulk+7e|beam, the terms proportional to n; in the above equation can be neglected

due to 7y /n, ~ 103, Hence,
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el e [ Ln  wedp ) (5.48)
Mo ibeam Mole \ €¢ Ly (wn, — kjvy)

Using Eq. (5.26) the perturbed beam current is given by

Jile
—€

= [(ny = kjvs) (Wm, = kyvs)]

beam
ENy _ 1 2,2 “"_ w _ Wie ~ . T7
X T, { Wn, [2%1‘7” (¢ _k“c (1 —“—w )A“) Z’l)bwn¢

e [~ ~ J " Wl s
+ [k”vb(wm“ — k”vb)]‘% {((f) + Au-ﬁi) + li—ﬁ(ﬁ} } . (5.49)

Similarly, since the end concern is with the total electron perturbed current, j“‘ =

.7”"|bu1k + .7”A|beam, any terms in the above equation proportional to n; can be

neglected. Hence,

I Lo (Tln vew-edy (5.50)
~€lpeam Te \ €c Ly (wn, — kjve)

To find the total electron perturbations, the result for the bulk electrons and
beam electrons are summed. For the density perturbations, the beam contribu-
tion, Eq. (5.48), is smaller than the bulk contribution by vp/v., and hence can be

neglected [as could the remaining terms in Eq. (5.29)]. Hence, as before

~

n ~ . v, ~
—= ~en,T. {¢ —t(w —wie)]h —c-e-A”} . (5.51)

N,

The total electron perturbed current is given by -

i

¥

Ji e Ve ¥ >

tl% = —inove{—(w - w*e)Ig"ze'A” + (w - w*e)Ild)
twee b Sy Ln 7

Wn, — k”vb Ve enoc Ly g

4] UL
e
N
e
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Note that

vy 1 Jy. L, nyLy '
e — =1— —K,.
Ve Wn, — k“vb enyc Ly

where K is the diffusive resonance function for the beam given by

i vi 1 1-1iz/zy

K= (%)
2= Ve (w+iwb—k”vb)_vgwbl—kxz/xg'

)2D, zp = wb/kl'lvb, and Jj = —enpvp. Thus,

J”‘ 1e vV, ~ ny L, Ve ~ ~
e NoVe {—(w - w*e)Iz -c—eA” - w.;.e;z:EKzfAH + (w— er)11¢} (5.53)

which is the kinetic theory result derived in Ch. 4.
The ion response is identical to that for the regular tearing mode, Egs. (5.38)
and (5.39).
The coupled equations for 5 and Z” obtained through‘quasineutrality and

Ampere’s law for the case of runaway tearing is the same as that for regular tearing

with the replacement

nals — 2 En g,
n, LJ

| R

in Ampere’s law. Hence, quasineutrality is given by

d? ~ ? Ve ~
[—'d}? +A+ xz] ¢ — [E(w —wee)l + zex? —A =0 (5.54)

and Ampere’s law is
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(5.55)

Similarly, the variational principle for this system is given by

Tv2
S = S¢ + d ';SA
where
a ~\ 2
d¢ ~ 1 2 [~ w ~\?2 ) Ve ~ ~
Sy = /dx - (E) A 5;? <¢ - WAIO + ZE(w - w*e)ll—c—¢A||
+ ¢ (5.56)
and
/ i\ : 2 L,
Il Ve ny
S == d I b - *e =<e A
A / z ( dz-) + [ va‘z(w w )12 + —= T’U” 5w - LJK2 T
Za ‘
- A) 4] (5:57)
a

An analysis of the above system was presented in Ch. 4 which yielded the dispersion
relation through a variational calculation. This calculation will not be repeéated
here, but a simpler heuristic derivation of the dispersion relation will be present:ed in

the next section for the magnetic tearing mode (which neglects the S contribution).

-
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5.4 Simplified Fluid Theory

In this section, the above fluid model is reduced to a simplified luid theory, re-
taining only the “bare basics” necessary to describe the fundamental tearing mode
physics. In particular, the electrostatic potential (5 is negvlected and only the mag-
netic potential Z” is retained [13]. Since the fluctuations are described by a single
potential, /ZII’ the dispersion relation is determined only through the use of Am-
pere’s law. Hence, the aim is to calculate the perturbed parallel current .7” via
the continuity and momentum equations. Also, to simplify the analysis, it will be
assumed that the ions form a stationary background and, hence, the perturbed par-
allel current is carried solely by the electrons. This amounts to neglecting the ion
inertial stabilization [10,14] discussed above. Hence, the fluid equations need only

be developed for electrons.

In the previous chapters, this mode is termed the magnetic tearing mode. The
magnetic tearing mode neglects the stabilizing effects of particle inertia, which is
valid approximation at low plasma beta (as can be seen from the dispersion relation
of the electromagnetic tearing mode). The point in exploring this simplified model
is that the mathematical analysis can be reduced to a bare minimum and the physics

can be illuminated much more clearly.

The fluid equations for this model are derived in a identical fashion as in the
full fluid model discussed above, only now the electrostatic potential 5 is set to
zero. The starting point is the drift kinetic equation for electrons where the sole

perpendicular guiding center motion is described by vp, = v”ﬁ 1/B,

A~

a B, -
at-l"v”b V+v”-—§- V——EH f=C(f) - (5.58)

where E = Ajjiw/c and C f) is the total collision operator discussed previously.
Il I :

Performing the appropriate parallel velocity moments' of the above equation

yields the continuity equation
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3} B,
Civ- vyt
[at ‘ (” - ”B)

and the momentum equation

Y

9 B,
B,
= —enE“ — V”P“ — V” . ?P“ +C, — mVHCO, (5.60)

where the moments of the collision operator, Cy and C;, were discussed in Sec. 5.1.

Ljnearizing the above equations to first order in the fluctuations yields the
following equations describing the perturbed density # and the perturbed fluid
velocity ‘7”:

. N ~ B
—1 (wn“ — k”V”") n+ V. (V”b + V”“ __._B—J:-) ng =0 (5.61)
and
—imng(wm, — k“V”o)V” = —enoE” — 2k”P” - B VJ_PHO. (5.62)
where w,, = w + twl, Wy, = w+ w? with w? = wl = w,. In deriving the
o n 0 m m n

above expressions, the turbulent collision operators acting on the fluctuations were
replaced by the effective dissipation frequency, w,, as is discussed in the previous
sections. Also, for simplicity, the effects of Coulomb collisions are neglected,jand
it is assumed that the effective dissipation frequencies for density and mome;tum
diffusion are equal, wl = w!l = w,. (The notation wy,, and w,,, is retained, however,

so that comparison to the purely collisional “resistive” limit can be obtained easily.

In the resistive limit, wy,, = w + 1 whereas w,, = w.)
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Equation (5.61) is the typical form of a perturbed continuity equation for a
fluid with equilibrium flow Vijo and perturbed flows 17” andV, = VHOﬁ_L/B. Notice,
however, that the perturbed density is being lost at the rate w. due to turbulent
diffusion. Equation (5.62) is the perturbed parallel momentum equation for a fluid
with equilibrium flow V||; and a perturbed parallel equilibrium field E“. The last
two pressure terms on the right side of Eq. (5.62) represent the parallel component

of the divergence of the perturbed pressure tensor. Notice that in this fluid theory

b- [V . (f’“bb + P]]OAB_Lb + PHObB_L)
—b. [(v : }3“b) b+ (V : PHOBL) b+ (V- Pob) iu]
= VP +bL-V.Pp,

whereb, =B /B. As with Eq. (5.61), the perturbed parallel momentum is being

lost at rate w, by turbulent diffusion.

Equations (5.61) and (5.62) can be combined to give expressmns for n and J”

solely in terms of AH The perturbed density is given by

T L.
[(wm” =k Vio) (wn. = Ky V),) = g’“ﬁ} n

~

.. B, T B
= -1 (wm" — k”V”' ) VJ_ V” ?no - zk”——E’“ — zk”—-——B— -V in,. (5.63)

The perturbed current J = q(nVH + noV”) is given by

T, > jll -
[(wmu—ku"no) (n. = kYY) = kil 5
Wy . T]~3_L
Yn, an 2L von,
=% [zku By~ ik —— w}
B, T 7
— Ly v Bl Vi (e, — RV — —k 5.64
(- { Vi, (@, = k1¥),) = — u} (5.64)
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Rewriting the above equation in terms of EH gives

T ,]J)
|:(U.)m0 - k“‘/||0) (wn" - k”V“.) - Ekﬁjl .

en, [ Twy, ~
= T { e (w—w*e)A”

+ <%’°ﬁ + ki, (wm, = ’ann,,)) E Z,”w ﬁJ An} . (5.65)
Eq. (5.65) describes the perturbed parallel current ‘TH., as a function of Z”. The
above expression includes the effects of turbulent electron diffusion and allows for an
equilibrium fluid flow V), . A closed system for X” is found by combining Eq. (5.65)
with the linearized Ampere’s law. From this a dispersion relation is determined. In
Sec. 5.4.1 the perturbed form of Ampere’s law is presented in an inner and outer
region for the regular tearing mode. This is repeated in Sec. 5.4.2 for the runaway

tearing mode. The dispersion relations for these modes are calculated in Sec. 5.4.3.

5.4.1 Regular Tearing

In the “regular” tearing limit, the equilibrium current is carried by the majority
of the electron population, as in the case of a drifted Maxwellian distribution. In
the fluid picture, the regular tearing mode is described by a single fluid of electrons,
with a fluid velocity V| = vp < v, and with the equilibrium current given by

Jy, = —evpn,. Using the scaling vp < v, then Eq. (5.65) for the perturbed

- current becomes

T ,\J| e [Tw, T, JlLn :
(wm,.wn,, - _kﬁ) ] = '_no{ (w w*e)A” + _k”W*e enc LJA”} ( 66)

To determine the dispersion relation, Eq. (5.66) is used in Ampere’s law. The
resulting equation is then equivalent of the expression ng | = 0, where the operator

L, is discussed in Sec. 2.3. In Sec. 3.4, the dispersion relation was then determined
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variationally according to the relation S4 = 0, where S4 is the variational form for

the magnetic tearing mode.

To avoid doing such a detailed variational calculation, a simpler less rigorous
derivation of the dispersion relation is given here. This is the matching procedure,
also discussed earlier in Sec. 3.3. In this approximation, the plasma is divided into
two regions, |z| < z. and |z| > z.. The perturbed parallel current is approximated
in these two regions and an inner and outer solution for E“ is then calculated via
Ampere’s law. The dispersion relation is then determined by requiring the inner and
outer solution, as well as their first derivative, to match at the boundary, |z| = z.,

where z. = wc/kl’lve.

Assuming |z/z.| < 1 in the inner region and |z/z.| > 1 in the outer region,

then Eq. (5.66) gives the following expressions for ‘TII:

e2n, (W — we) ~

|z| <z, J)j = —mc A | (5.67)
~ 62 w,‘e J” Ln ~
> cs J ~ —_—— e
o[> = = T k” ec Ly |
IchI'l ~

Using Ampere’s law, v‘—’,Z“ + (47r/c)ji, = 0, then gives the following approximate

equations for A in the inner and outer regions:

d? 2 Sy — e ~
gl <z, |4 e ilozwd] g (5.69a)
dz? 104 2(w. — 1w)
d? ar L kyJ | - )
>z, |75 —-b——pP——=| A =0 5.69b

Vi

2
y

gyroradius p;. These equations will be returned to later in Sec. 5.4.3 where the

In the above equations, b = kZp? and z has been normalized in units of the ion

dispersion relation is determined.
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5.4.2 Runaway Tearing

In the “runaway” tearing limit, the equilibrium current is carried by an electron
beam superimposed on Maxwellian bulk electron distribution. The bulk electrons
are characterized by a thermal speed v, and a fluid density and velocity given by

n=mn, and V| = 0. The beam electrons are characterized by n = n; and Vi =w
where n/n, ~ 1073 and v, /v, ~ 10. The total current is to be held constant when
comparing the runaway to the regular tearing mode, Jy = —en,up = —enyvy.
To analyze the runaway tearing mode from the fluid point of view, the plasma is

considered to be composed of two fluids: 1) bulk electrons and 2) beam electrons.

The perturbed parallel current due to the bulk electrons is given by Eq. (5.65)
when Vi, =0, ‘

Ji
—e

T .\ ew,
~ (wm‘_wn“ - ;;kﬁ) . (w—w.e)Ay. (5.70)

bulk

Similarly, the perturbed parallel current due to the beam electrons is given by

Eq. (5.65) when V| = v, and using v?/v? > 1,

S
—€

e kv w.edy, Lp~
~ - —— —— 2 — A4, 5.71
Twn” - k“vb k” ec LJ I ( )

beam

The total perturbed current is given by adding the contribution from the bulk
and beam electrons. In the inner region where |z| < z., z; (Where z, = wp/ k"‘vb,
and wy, = w + tw; for the beam electrons) the perturbed parallel current is given

by

b yoro

- N 2 ~
Jy ~ A= = 7,4
,13,, <z, Il me W, I Tec W Up b LJ I
~ "‘iezno (w - w""e) _ 2wxe Yiz_ E.‘l—l_’i Z”. (:5.72)
mc (wc - zw) Wp VN, L,
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In the above expression, the first term on the right is due to the bulk electrons
and is the >sa,me as the response in the inner region for the regular tearing mode.
The second term on the right is due to the beam electrons and represents a shift
in the real frequency of the mode away from w... In this term, the approximation
Wp, = W + 1wy =~ twp was used, thus neglecting a correction of order w/wp ~
(w/we)(ve/ve)?/® where only corrections of order w/w, ~ z./z. are retained in this

calculation.

In the outer region, |z| > z., only the contribution from the beam electron is
significant (the bulk electrons carry no equilibrium current). Hence, in the outer

region

€ W.e L,
— J, =
Tc k” e LJ
I, A (5.73)

k“BO “. .

|:l:l >z, J“ ~ A“

In the outer region, the perturbed current for the runaway case is the same as with

the regular tearing case.

Using Ampere’s law as well as the above two expressions, equations can be

determined which described XH in the inner and outer regions.

2 w2 [((w—wee) 2wWiezcvymy Ly, ~
s — — _——— Ay =0 (5.7
2l <z [d:z:2 271)% ((wc —1tw) We IpVeno Ly ):l I ( )
d? ar LkyJ) ] .
—_—b - — 2 < =0 5.75

' Again, in the outer region, |z| > z., the response is the same in both the runaway
and regular tearing mode. As will be discussed below, the response in the outer

region is simply the ideal MHD response. In the next section, these equations are

used to determined the dispersion relation.
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5.4.3 Dispersion Relation

The dispefsion relation is determined using the following simplified procedure
[13]. The approximate form of ‘ZH is solved for in-an inner region, |z| < z., in the
lirhit |z| < z¢, and in an outer region |z| > z. in the limit |z| > z.. The inner and
outer solution, as well as their first derivatives, are required to be continuous at
|z| = z.. This simple matching procedure at the boundary at +z. then determines
the dispersion relation. Although this procedure is very approximate, it is at the
same time mathematically simple, and it reproduces the basic dispersion relation
for the magnetic tearing mode (in agreement with the variational calculation of the

earlier section).

In the outer region |z| > z. for either the regular or runaway tearing mode,
‘ZII satisfies the ideal MHD equation for marginal stability, Eq. (5.75). The solution
to this equation is quite complicated, particularly for realistic geometries and equi-

librium current profiles. However, the solution to Eq. (5.75) will be assumed to be

known through computation techniques, and will designated Zﬁv’ HD Actually, it

is not the magnitude of Zﬁ” HD jtself which will be assumed known, but rathgr the

ratio of the first derivative of Xﬁ” HD t6 the magnitude. The following shorthand

notation will be used.

j'i’/
A, = A for z> =z,
|\ MHD
and
Al z
A_= —,;ﬂ' for z< —z, (5.76)
A)lmMHD =

In practice, AL and A_ can be determined from integrating Eq. (5.75) numerically
from the edge of the plasma inward to within a specified distance of the rational

surface.
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In the inner region, Z“ satisfies the following equation:

2 2 _ ~
2] < 2o, [d N X7 ((w w‘ne) _ 5&)b)} A =0 (5.77)

dz?  271vi \ (we —w)  w.

where

“Tpveno, Ly’

2 I Vp Np Ln
by = { 2w runaway case
0, regular case

The solution to this equation is given by

Ay = ¢, e*® +c_e %, for|z| < z, 5.78
I + ‘

where ¢, and c_ are constants of integration and

2 1v? <(w—w-e) 6wb>.

* = T 2r0d \ (we — w)  we

The inner solution along with its first derivative can be matched at +z. to the

outer MHD solution. Matching at = = +z. yields

a(cpet®® — c_e~ %)

A = 5.79
+(xc) c+e°"’" + c_e—oz- ( )
Matching at £ = —z. gives
—az, __ az,
A_(z) = 2Lexe c-e™) (5.80)

cpe %t 4 c_e*%e

Equations (5.79) and (5.80) can be solved to give two equations for the ratio
¢4 /c—. Setting these two equations for c,/c_ equal to one another yields-the

following dispersion relation:

A+ +a —2az, _ A_+ 2az,
—_—e = ——e¢ .
Ay —« A -«

—_
o
Qo
[wry

N—
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- The above expression can be rearranged to read

(1+ %) <1 — %‘—) = (1 - %‘—) (1 - %“i) etoar, (5.82)

Numerical calculations using typical Alcator C profiles indicate AL ~ 1072, As-
suming the scaling z,a? ~ Ay ~ €% and assuming that z.a ~ ¢, then Eq. (5.82)

can be expanded to yield

Al(z.) = Ay(z.) — A_(~z.) = 2z.0>. (5.83)

Using the definition of a? gives the following dispersion relation:

2 e F)
Al(ze) = i—% z, [(1 - ) (1 + W‘e) + “"] . (5.84)
' T’UA Wee We Wie

where the expansion (w, — tw) ™! ~ w;1(1 + tw.e/w.) has been used.

Setting the imaginary part of Eq. (5.84) equal to zero gives the real frequency

of the mode,

Wreal = Wee(l + dwp/w.e). (5.85)

Setting the real part of Eq. (5.84) equal to zero gives the growth rate of the mode,

1/2
0l 1 [ m, L, ., Wye OWp

~ — —A - y 5.86
Wye )61' (Tmi> La (xC) We Wee ( )

where 6wy = 0 for the regular tearing mode and is given by

Fiv (v

éwb 2:l:c Up Ny Ln

—~~
o
00
3

N

Wee TpVeno Ly

I

for the runaway case.
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Numerical calculations for Alcator C parameters indicates A'(z) to be a mono-
tonically decreasing function of z passing through zero at z = W. A convenient

form is to approximate A’(z) as a linear function of z:

Al(z) ~ Ao‘(l - %) . (5.88)

Physically, W represents the width at which a magnetic island saturates nonlinearly
and, consequently, the width outside of which no free magnetic energy remains to

drive the mode.

The physical interpretation of the dispersion relation given by Eq. (5.84) along

with a discussion of the resulting growth rate is given in the following section.
5.4.4 Physical Interpretation

Before discussing the physical interpretation of the dispersion relation itself,
it is useful to examine the nature of the perturbed parallel currents in the inner
and outer regions. In the outer region, f“ was the same for both the runaway and
regular tearing modes. It is easy to show that this is the ideal MHD response at
marginal stability. Specifically, Eq. (5.73) can be derived in the following way. In
general, the divergence of the perturbed current must be zero, as is implied by

VxB= (4m/ c)j in MHD or by quasineutrality in kinetic theory. Hence,
V-@ +J)=0 . . (5.89)
To find J 1 in ideal MHD, the perturbed form of the momentum equation is
used,
70V =J x B +Jo x B~ VP (5.90)

The left hand side of the above equation is zero at marginal stability, and the pres-
sure gradient can be eliminated by taking the curl of Eq. (5.90). The z-companent
of the curl of Eq. (5.90) can be written as

162



0= (By-V)J; + (B-V)J

or

!
A 9 5.91
1= " %Bo (5.91)

which is identical to Eq. (5.73) for the perturbed parallel current in the outer region.

By comparing Eq. (5.91) and Eq. (5.89), then it is clear that the perturbed

perpendicular current in ideal MHD is given by

~

J =Jy —. 5.92

1 . B, (5.92)
Equation (5.92) makes sense with the intuitive picture of ideal MHD which states
that the plasma and field lines move together. Equation (5.92) states that the
perturbed current in ideal MHD which results from the presence of a perturbed
magnetic field is simply due to the equilibrium current flowing along the total

magnetic field, Bg + B 1-

At small z, the perturbed parallel current has two significant components. The
first results from the bulk electrons and the second results from the runaway beam

electrons. In general, the perturbed parallel current can be written as

Jj = a(ro¥) + 7V, ). (5.93)

~

1

For the bulk electrons where n = n, and V| = vp ~ 10~ 2y, (V” = 0 for the
runaway case), the first term of the right dominates (by ve/vp). For the beam
electrons when n = ny ~ 10~3n, and V)., = vs ~ 10v,, the second term on theright

dominates (by vy/ve). Hence, .7“ can be approximate in the inner region as
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Jil = aqn.Y) . (5.94a)

J”' ~ qupT. (5.94b)

Note that in the inner region, the effects of the fluid drift of the bulk electrons (the

equilibrium current) is neglectable for the regular tearing mode.

To calculate j” in the inner region from the bulk electrons for either the regular
or runaway case, the perturbed fluid velocity need only be calculated. For the small
z limit (k) — 0), the perturbed parallel momentum equation, Eq. (5.61), reduces

to the following in the inner region:

~

. ~ ~ B
—imnowm, V) = gn By — - VLR,

= —ingws (1-22) 4,  (5.95)

C w

where w,,, = w + tw,.

The first term on the left (proportional to w) of Eq. (5.95) represents the change
in parallel momentum due to the fluid element oscillating at the real frequency
of the mode (an “inertial” term). The second term on the left (proportional to
w.) represents the loss of parallel momentum due to turbulent radial transport (a
“dissipative” term). The first term on the right represents the force on the fluid
element due fo the presence of a perturbed parallel electric field. The second term
on the right represents the force on the fluid element due to the gradient of: the

perpendicularly convected equilibrium parallel pressure.

Combining Eq. (5.94a) and Eq. (5.95) then give an expression for J~” dae to

the bulk electrons in the inner region, |z| < z.:
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By =2 (1 - w) A

bulk CMe W, w
2 .
€Ny W W« W ~
~i—2— (1— e) <1+—> Aj. (5.96)
cme W w We

The imaginary term (or “dissipative” term) in the above expression is a result
of balancing the dissipative loss of momentum due to turbulent diffusion against
the driv.ing forces due to the electric field and pressure gradient in the momentum
equation, Eq. (5.95). The factor (w—w..) arises from the Doppler shift of 177”’ as seen
by the electron fluid. The real term (or “reactive” term) in the above expression
is a correction term (of order w. /w.) which arises since the electron fluid has finite
inertia and oscillates at the real frequency of the mode, w ~ w.,. This reactive term

results from the inclusion of the inertial term on the left hand side of Eq. (5.95).

To calculate jh in the inner region from the runaway beam electrons, the
perturbed density need only be calculated, as stated in Eq. (5.94b). For the small z
limit (k) — 0), the perturbed density equation, Eq. (5.62), reduces to the following

in the inner region:

~

. B
—in, L+ V V) Eny =0, (5.97)

where wy, = w + twy, and Wi = (k|l'vb)2D/3 is the effective dissipative frequency
for turbulent diffusion of the beam. Since w/wp ~ (w./wc)(ve/vs)?/3, the term
proportional to real frequency, w, can be neglected in the above equation (only

corrections of order w, /w, are retained). Eq. (5.97) becomes -

Riv

. B
wpn =~ -V. V”l_flnb

~
1l

!

|

|

|
=
o
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The above equation represents a balance between the dlssxpatlve loss of density due
to turbulent diffusion with the loss of density due to the parallel flow of density
along the total field line, By + BJ_.

Combining Eq. (5.98) with Eq. (5.94b) gives J~” in the inner region from the

beam electrons:

vb k,
wb B
- (""’2”0) 2e Vb Ln g

mec wp v2n, Ly

1€2n,\ bwp -
_ ( ) bon 3. (5.99)

mec We

~

Ji A

where

The above expression of the beam contribution to the perturbed current is
imaginary, and, hence, dissipative. This term arises from balancing the fluid loss
per unit volume due to turbulent diffusive dissipation with that loss due to fluid

flow along the total magnetic field lines.

In order to give a physical interpretation of the dispersion relation, Eq. (5.84),
it is helpful to consider an alternate heuristic derivation of the dispersion relation
based on an energy integral formed from Ampere’s law. To form this integral, S,

Ampere’s law is multiplied by .Zﬁ and then integrated over the plasma:

a

— [

—Qa

~ 12
dA ~ 47 ~ ~ .
el Y M iy e A (5:100)
" = —Ajdi s :

dz

where an integration of parts has been performed on the second derivative term
and where +a ref)resents the edge of the plasma. It is assumed that Z” and its first

derivative vanish at the plasma edge.

166




The first two terms in the integral S represent the energy required to bend the

equilibrium magnetic field lines. Notice that

B = 1Bl + 1B, = BIA +| !

which is the usual expression for line bending energy in the ideal MHD energy
principle. The last term in the integral S represents the energy contained in the
interaction of the perturbed parallel electric field and current. Recall that the power

dissipated by the interaction of EII and .7” scales as

~ o~ W~
P~ EjJy~ —— A}y
Thus, .Zﬁ .’Iv” /c has the units of energy and represents the time integrated power.

To find the dispersion relation, the integral S is broken into two parts, one for
the outer region, |z| > z., and one for the inner region, |z| < z.. The appropriate
approximate expressions for j]' are then substituted into the integrals in the inner

and outer regions. This gives

S = Sout + Sina
where
di\’ an ,kyJ)|
| 72 T o ™VY, 72
out = d — b — p: .
.S t / I ( dr ) + A” + c P kHBO A” (5 101)
lz|>z. )
and ;:’
di\" w2 ' » | |
Sin = / dz ___U_ — zvez (w - w*e) _ Wh ‘Zﬁ (;102) -
dx 27v2 \ (we — tw) We -

lz|<z,
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where the absolute value signs have been dropped for convenience. Equations
(5.101) and (5.102) are simply the integrals resulting from multiplying by Z” the
approximate versions of Ampere’s law in the inner and outer regions, Equations

(5.74) and (5.75).

To evaluate S,y;, ,Z“ in this outer region is required to satisfy the ideal MHD

~

version of Ampere’s law, Eq. (5.75), and, hence, Aﬁ“t = Zﬁ”’D. Integrating by

parts then gives

a

Sour = A Al +A) A

=8 e Ajlze)  Ap(-=o)
z. 4 Al

—Af A(zc). (5.103)

—a

Here, it is assumed X”(zc) = Z”(——xc) = A - Hence, A'(z.) is interpreted as the
energy drive for the tearing mode resulting from the interaction of E'“ and g“ in

the outer, ideal MHD region.

In the inner region, the “constant ¥” approximation of resistive MHD is used,
which assumes Z“ to be a constant in the inner, “non-ideal” region. Thus, letting

A = 4, gives

.2 _
Sin = —A2 ez, ((w w.‘e) - 6%). , (5.104)

o 792 (we —tw)  we

Again, this term is interpreted as the energy in the inner region resulting from the

interaction of E’“ and .7“.

The actual dispersion relation is determined by setting S = S,u: + S;n = O.

lil”u |

This gives the dispersion relation previously stated by Eq. (5.84):

, L my 1/2 L, w W, bwy =
Al(z,) ~1 Bi— ||1— 1+ + (5.105)
T™m, L, Wie We Wee
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where A'(z,) ~ Ap(1 — z./W).

As mentioned previously, A’(z.) is the ideal MHD energy drive for the tearing
mode in the outer region. (Since Sou: < 0, it is a “negative energy” mode.) The
source of this energy is the third term in Eq. (5.101) involving the equilibrium
current gradient JI’I,,' In the limit of a infinitesimally narrow tearing dissipative
region A’(z) — Ao, which is the energy drive in the resistive MHD limit. Notice
that the ideal perturbed current (the energy drive term) goes as JI’I,,/k” ~ 1/z and,
hence, becomes very large as £ — 0 and dominates the energy integral S,u:. If
the effects of turbulent diffusion are included, however, the dissipative region then
takes an a significant width. With turbulent diffusion, the perturbed current .7” no
longer acts as a source of free energy within z. of the rational surface but, rather,
becomes dissipative in nature. Hence, the ideal MHD energy drive is reduced from
Ag to Ag(l — z./W). In nonlinear vcalculations of the resistive tearing mode, it is
shown that the magnetic islands produce by magnetic tearing saturate at a width
W. Here, A’'(z = W) = 0 and, hence, there no longer exists free magnetic energy
in the outer region (|z| > W), this free energy being necessary to drive the tearing
mode. Hence if z. > W, then A’ < 0 and there is insufficient free energy outside

the dissipation region (|z| > z.), and the mode is stabilized.

The first term on the right of Eq. (5.105), proportional to (w—w..), is imaginary
and, thus, dissipative. This represents the energy dissipated in the inner region due
to the interaction of EII and .7” This dissipation is an irreversible transfer of
energy from the tearing mode field X“ to the bulk electron population in the inner
region. (In contrast, A’ represents a relaxation of the outer magnetic field topology
to a lower energy state due to the presence of Z” .) The second term on the right of
Eq. (5.105), proportional to w, /w,, is real and, hence, reactive. This term represents
the energy necessary to sustain the particle (electron in this model) oscillation éince
the mode has a real frequency and, hence, this is an inertial term. The third term on
the right of Eq. (5.105), proportional to fw,/ Wees is again imaginary and dissipative.
This term represent; the energy withdrawn from the wave field and dissipated into

random energy of the beam electrons in the inner region.
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It is perhaps useful to rewrite the dispersion relation in the following way:

( m; > 1/2 Ls [z(w — W.e — (wa) (w - w*e) Wie
- Bit-

TMe

5.106
Wie Wse We (5 )

bg
<
[y
|
I
SN—"
fl

In this form, it is clear that the dissipation on the right of the above equation is
proportional to (w—w.. —6wp). In general, if the dissipation is calculated in a frame
at rest with the electron fluid, the dissipation is proportional to the frequency of the
mode, w. Hence, the frequency shifts in the factor multiplying the dissipation in the
above expression can be viewed as Doppler frequency shifts due to the electron fluid
moving relative to the laboratory. The first frequency shift, w.., is due to the bulk
electron fluid undergoing a perpendicular motion at the diamagnetic drift speed, V..,
where w.. = kyv... This frequency shift arises from the second term oh the right of
the momentum equation for the bulk electrons in the inner region, Eq. (5.95). This
term describes the force arising from the gradient of the perpendicularly convected
equilibrium pressure due to the presence of B 1. The second frequency shift, fwp,
is due to the beam electron fluid undergoing a perpendicular motion at the beam
drift speed, év,, where 6w, = ky6v,. This term arises from the second term in the
beam continuity equation, Eq. (5.97). This-term describes the beam density loss

due to the beam fluid streaming at v, along the total field lines, By + B 1-

In summary, the real frequency and growth rate of the tearing mode are given

by the following relations:

)
Wreal 2 W (1+ “’") (5.107)
w*e ~
and -
1/2
5y 1 [ m, L, , Wee Owp
~ — —A - : 5.108
wee B <Tmi> L (=) We Wee | .(; )
where
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bwp = 2. — — 2 (5.109)

~ and where éw; = 0 for the case of the regular tearing mode.

The real frequency has two contributions. The first is due to the bulk electron
fluid, w.., and the second is due to the beam electron fluid, éw,. Both frequencies
can be viewed as Doppler shifts arising from the electron fluid undergoing perpen-

dicular oscillations in the presence of the tearing mode magnetic field perturbation.

The growth rate has two significant contributions. The first is proportional
to A’(z.) which represents the free magnetic energy available to drive the tearing
mode, the origin of which lies in the region outside the dissipative layer. The
expression A’(z.) for the energy drive contains the stabilizing term due to the
effect of turbulent electron diffusion prohibiting the formation of the ideal MHD
perturbed current within z. of the rational surface, A’(z.) = Ao(1 — z./W). The
second term in the expression for the growth rate represents a stabilization due to
the finite inertia.of the bulk electron fluid. Since the bulk electrons are oscillating
at w.e + 6wy, which is slightly higher than their “natural” oscillation frequency, w.,,
additional energy is required to maintain this increase in the oscillatory motion.
The shift in frequency w.. + éwp is due to the presence of the beam electron fluid.
Without the beam electrons, w = w,, and no additional energy is required. The

implication of these results regarding present day tokamak experiments is discussed

in Ch. 7.

[

¥
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Chapter 6
NUMERICAL RESULTS

This chapter presents numerical solutions of the eigenmodes and eigenfrequency
for the tearing mode. The equations governing the evolution of perturbed parti-
cle densities, fe and f:-, are solved numerically; and through the aid of Ampere’s
law and quasineutrality the eigenmodes, q~5 and fi”, along with the eigenfrequency,
w, are calculated. Two numerical codes are employed in this calculation of the
eigenfrequency for two different limits. The first method, which is the more exact
method, involves the use of an initial value code, TEDIT (21,22, previously used in
the study of the finite beta drift wave [19] - Specifically, TEDIT solves for the elec-
tron response utilizing the full diffusion operator, D3?/3x2%. The second method
involves a shooting code, inherently simpler than the initial value code, which solves
for the electron response in the Krook approximation: Both codes give qualitatively
similar results [14,19] and support the above analytical expression for the dispersion

relation arrived at through the variational calculation.

The initial value code, TEDIT, follows the time evolution of all the perturbed
quantities. One begins with arbitrary perturbed potentials, q§ and fi”, and distribu-
tion functions, fe and f, Regardless of the initial functions, if a growing (unstable)
eigenmode exists, it will eventually dominate the long time solution. By defini-
tion, an eigenmode exists when all quantities q§, /i”, fe and ﬂ vary as exp(—iwt),
where the eigenfrequency w is constant for all z. The main virtue of this initial
value approach is that it allows for the electron response to be evolved with the
inclusion of a spatial diffusion operator according to Eq. (2.20) of Sec. 2.1. The ion
response evolves according to the linearized Vlasov equation. The time—evolﬁ}-tion
code TEDIT uses an implicit-iterative scheme to advance the electron and io:1 ki-
netic equations in time, with é and fi” being calculated from the quasineutrality

condition and Ampere’s Law. The equations for the electron and ion responses are

advanced in time until
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w(z,t) = i afi“(x’t) |
’ /i“(.’l,‘,t) ot

(6.1)

- becomes independent of both z and ¢, indicating that an eigenmode of frequency
w has been established. For a given set of parameters, TEDIT yields the most

unstable eigenmode.

In the Krook approximation, a shooting code is employed to solve for the eigen-
frequency in the case where the electron response evolves according to Eq. (2.20)
with —D8?/3z? replaced with a Krook type diffusion frequency, w.. As discussed
above in Sec. 2.4, this is analytically shown to be valid when z./z7 < 1, and when
/i” is approximately a constant (an even function) near the rational surface. Un-
der this approximation, a shooting code can be used to directly solve the coupled
equations for ¢ and fiH, given by Egs. (2.30) in Sec. 2.3. In this case, the resonance
operators appearing in L;, Ly and L; can be written in terms of the plasma dis-
persion function as discussed in Sec. 2.4. The above coupled equations can then
be solved using standard shooting methods which is inherently Simpler numerically

than the initial value method used in the time-evolving code TEDIT.

In either case, the above numerical codes are used to calculate the eigenfunc-
tions, q~5 and /i”, in an intermediate slab region extending approximately thirty ion
gyroradii on either side of the rational surface at £ = 0. At the edges of this slab
region, (}3 and /i” are required to match onto the ideal MHD solutions which obey
the marginal stability equation, Eq. (3.18), along with 177” = 0. Specifically, the
ratios (fil'l /fil|) mHD are calculated at each edge of the slab region and their values

are chosen such that, to leading order

_ Aj(-a)

A(a) = 0

= Ao (1 - %) és.z)

Here, ta indicates the edges of the intermediate slab region. Hence, the boundary

MHD MHD

conditions are specified by inputting values of Ay and W. Figure 6.1 shows a typical

plot of fin and d; calculated using the above procedure.
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The results from TEDIT and the shooting code agree extremely well, as pre-
viously observed for the case of the finite beta drift wave. Figure 6.2 depicts the
growth rate as a function of the diffusion coeffcient as obtained from the two codes.
Since both codes are observed to give the same qualitative results, the shooting code
is used to generate the numerical data discussed below due to its faster computa-

tional speed compared to that of TEDIT.

A plot of Ag = A’(z = 0) as a function of z. at marginal stability (y = 0) is
shown in Fig. 6.3 for various values of W. These results agree qualitatively with the
analytical formula obtained from the variational calculation which specifies marginal
stability to occur when Eq. (3.51) is satisfied with an equality sign. Solving the

above equation for Ay gives

The plot in Fig. 6.3 of Ay versus z. shows the qualitative behavior indicated in
Eq. (6.3). In particular, note that the slope of the curve increases as the parameter

W is decreased. Also notice that the value of Ag at which z, = 0 is independent of

W.

Figure 6.4 plots a similar graph of Ay as a function of z. at marginal stability
for several values of §;. Figure 6.5 shows the same curve of Ag versus z. for different
values of Ly/L,. Both figures are in qualitative agreement with Eq. (6.3); that is,
an increase in either §; or L,/ L, leads to a simple vertical displacement of the Ag

Versus r, curve.

The variational calculation performed in Sec. 4.4 gave the result of Eq. (3.50).
As is often the case in a variational calculatiéﬁ, one expects the functional dé;'pen-
dence of the result with respect to the various parameters involved to be similar to
that of the exact solution. The numerical coeffcients appearing in the variational
solution, however, are only approximations to those of the exact solution \ghose

values can be made more exact by using trial functions closer to the exact
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Figure 6.3

The amount of diffusion (z.) necessary to obtain marginal stability (v = 0) vs. given
values of free energy (A’(0)) for several values of W, where A’(W) = 0. The dashed
curves are plots of the analytical results indicated by Eq. (6.3).
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Figure 6.4

Fiv i

The amount of diffusion (z.) necessary to obtain marginal stability (v = 0) vs. given
values of free energy (A’(0)) for several values of the plasma ion beta, 3;. The dashed
curves are plots of the analytical results indicated by Eq. (6.3).
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Figure 6.5

The amount of diffusion (z.) necessary to obtain marginal stability (v = 0) vs. given
values of the free energy (A’(0)) for several values of the magnetic shear, L,/L,.

The dashed curves are plots of the analytical results indicated by Eq. (6.3). -
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eigenfunction. In order to reflect this uncertainty in the numerical coefficients of
the variational solution, Eq. (3.50), two adjustment parameters, a; and a3, are

introduced into the above expression for the growth rate as follows:

o2 1/2

N = k—”% {BI;A'(alxc) — oy (% f—:) } . (6.4)
where A’(z) = Ag(1 — z/W). Here, o reflects the uncertainty in the variational
determination of the magnitude of the value of the parameter a (the edge of slab
region about the rational surface) as performed in the calculation of the magnetic
terms, L 4, appearing in Sec. 4.4. Likewise, a reflects the uncertainty in the overall
magnitude of the contribution of the electrostatic terms, L4, to the variational
integral due to such a.pproxifnations as extending the limits of integration to infinity
(see Sec. 4.4). By comparing Eq. (6.4) to the numerical data displayed in Figs. 6.3-
6.5, one can fit this numerical data [14] to a high degree of accuracy by choosing

the values of a; and a2 to be

a; ~4.5 ap ~4/3. (6.5)

Results indicate that «; is a weakly dependent function of the ratio z./W (e
decreases as z./W increases). This reflects the fact that the function A’(z) is not
strictly a decreasing linear function of z, as approximated analytically (A'(z) =
Ao(1 — £/W)); rather, A’(z) is a function whose slope increases (becomes less

negative) as z increases.

Numerical results for the runaway tearing mode are not as extensive as those
presented above for the regular tearing mode. The runaway tearing mode was s‘_;tud-
ied using the shooting code with a monoenergetic beam on the tail of Maxwellian
for the equilibrium electron distribution, as discussed in Ch. 4. Typical plots for

the eigenfunctions J) and fi” are shown in Fig. 6.6 and 6.7, respectively. -
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As discussed in Ch 4, the runaway electrons produce a frequency shift above

W, given by

bwy /3 nyvp Ly,

. 6.6
Wie nov.Ly (6.6)

(For the regular tearing mode, éw ~ 0.) Figure 6.8 is a plot of the freque’ncy shift
ow for both the runaway and regular tearing mode as a function of vy /v.. The total
current was held equal when comparing the regular and runaway modes at the
value J)jo = —enyvp. Figure 6.8 shows that éw for the runaway mode is significantly
greater than éw for the regular mode, which agrees with the basic analytic theory.
Also notice from Fig. 6.8 that the slope of éw/w.. vs. vy/v, is linearly increasing,

which agrees with Eq. (6.6).

The growth rate for the runaway mode is given approximately by

- i TMe 1/2 7L, A/ \/Q:tc
We B 2m,‘ ﬂiLn 2w

' 1/2 N\ 1/2
o g_ﬂ_‘. 7Lg _ [ 2m; ) TLg 6wy (6.7)
37 \V3L, ™, 2L, w.

as discussed in Ch. 4. The third term on the right of the above equation is the result
of including the beam electrons and this term is absent for the regular tearing mode.
Figure 6.9 shows a plot of the growth rate as a function of L,/ L, for the regular and
runaway tearing modes. These results indicate the runaway mode is more stable
than the regular mode. Figure 6.9 also indicates that the runaway tearing mode
is stabilized more rapidly for increasing L;/L,, than is the regular tearing niodé;

which is in qualitative agreement with Eq. (6.7). =

~ In summary, the numerical results for the regular tearing obtained from the
shooting code agree remarkably well with the analytical expression for the geowth

rate, Eq. (6.4), where the parameters o; and a; are given by Eq. (6.5). Numerical
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results for the runaway tearing are less extensive, but qualitatively support the
analytical formulae given by Egs. (6.6) and (6.7). In particular, the frequency shift
for the runaway mode is significantly larger than that for the regular mode, and the

stability of the tearing mode is shown to be enhanced by the fast electrons.
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Figure 6.8 -
The real frequency shift, 6w = w — w.., vs. the beam electron speed, v, for the
regular and runaway tearing modes. The equilibrium current is determined by
Jijo = —enyvy, where the beam density ny is held constant.
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The growth rate v as a function of magnetic shear L,/L,
runaway tearing modes as calculated by the shooting code.
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Chapter 7
SUMMARY

A set of coupled, self-adjoint equations were derived for the pbtentials ¢~$ and
fi“ describing low-beta, low-frequency fluctuations in a tokamak-type plasma with a
sheared, slab geometry. This set of equations is globally valid over the entire plasma,
includes the effects of turbulent electron diffusion, and allows the use of various
current-carrying equilibrium electron distributions. This system describes unstable
finite-@ drift waves when analyzed for high m modes [16,18,19] and describes tearing
modes when analyzed for low m modes [13,14]. By recasting this system into
cylindrical geometry, the stability of the m = 1 mode can be studied. Similarly,
by including toroidal curvature drift effects, the stability of ballooning modes can
bé stﬁdied. The effects of turbulent diffusion and runaway electrons on the m =1
mode and ballooning modes has not yet been determined. The present study has

been concerned solely with the m = 2 (or higher) tearing mode.

The effects 6f turbulent electron diffusion were incorporated into the model by
applying the NSA [17] to the collisionless DKE for electrons. The tearing mode was
implicitly assumed to exist in a plasma containing a background of drift wave tur-
bulence. The presence of these turbulent drift waves produced overlapping phase
space islands which, in turn, led to the production of stochastic electron orbits.
The effect of these stochastic orbits was to produce very fine scale spatial structure
in the perturbed electron distribution function. The NSA procedure amounted to
performing a “coarse-grain” spatial averaging over this fine microscale structure
resulting from stochastic orbits. Essentially, the NSA replaced the nonlinear terms
in the orbit operator of the DKE with a spatial diffusion operator, —D3?/9z2.
This reduced the DKE to a linear equation which can then be solved for the.iper—
turbed electron distribution. The qualitative behavior of the NSA was prese:rved
by replacing the diffusion operator in the DKE with an effective diffusive frequency,
—-D3?/9z% - w, = [(kflve)zD/ii]l/s. This was referred to as the Krook approxi-

mation. This approximation greatly simplified the mathematical treatment.
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The ion response was given acéording to the linearized Vlasov equation.
- Quasineutrality and the perturbed parallel Ampere’s law were used to give a coupled
set of equations for q; and ;1“. Since these equations were se‘lf-adjoint, a variational
‘integral was formed. This variational integral was used in the calculation of the

dispersion relation of the tearing mode.

Moments of the NSA version of the DKE were performed in order to derive a
fluid mode'l which was equivalent to the NSA kinetic theory. This gave a fluid model
in which radial turbulent diffusion of the density appeared in the continuity equation
(zeroth moment) and radial turbulent diffusion of the momentum appeared in the
momentum equation (first moment). Essentially, under the Krook approximation,
the fluid theory (and, hence, the NSA kinetic theory) diffuses both the perturbed
density and the perturbed momentum at equal rates given by the effective diffusion
frequency, w.. This fluid theory gave the same results as the kinetic theory when

the dispersion relations for the tearing mode were calculated.

Both numerical and analytical results indicate the tearing mode to have a real

frequency equal to the electron diamagnetic frequency and a growth rate given by

kipiv? [ 1 Lo\ Y2
: [[Fr7e ' s

S a2y -l ) — o [ 22 . 7.
~ — {ﬂiA (a1z) — a2 (Ln) (7.1)

where a; and a, are numerical constants on the order of unity. Since the real
frequency is given by w, = w.. indicates that the tearing mode is, in fact, an
electron drift wave driven unstable by the equilibrium current gradient. Here, the
first term on the right of Eq. (7.1) is the contribution from the electron magnetic
terms and is similar to the basic collisionless tearing mode (8] result (y ~ A’(0))
modified to include diffusive electron effects. The second term on the right ié_: the
contribution from ion electrostatic terms. Physically, the first term represent; the
free magnetic energy in the outer region (|z| > z.) available to drive the tearing

mode. The second term represents the energy required to maintain the ion metion.

Since this mode now has a finite real frequency, energy is needed to sustain the ion
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| motion, whereas in resistive MHD, the mode is purely growing. At low densities
the first term dorﬁinates, indicating that the tearing mode can be stabilized for
sufficiently large values of the electron diffusion coeffcient. At high densities. the
second term becomes important and consequently the tearing mode can be stabilized

for sufficiently high g;.

Numerical calculations of A’(z) for Alcator C profiles indicate that A'(z) is a
monotonically decreasing function of z with A’(0) > 0. Hence, for low densities,
stability is obtained for ajz. > W, where A’(W) = 0 and e, is a numerical constant.
This stabijlity criterion can be written as D, > 3k|'|ve(W/al)3 with lcl'I = mq'/Rq?,
where the functional dependence of W on the profile quantities must be determined
numerically. This equation indicates that increased turbulent electron diffusion
stabilizes the tearing mode. Consequently, if D, ~ 1/n, then there exists some
critical density below which the tearing mode is stabilized. Theoretically predicted
values of the critical density are in approximate agreement with experimental values;
however, the experimental scaling [7] of n, ~ B? has not been explicitly derived
unless D, ~ B2. (Note that for the parameters @ ~ 20 cm, L,/L, ~ 20, W/a ~ .05

and T, = 1 Kev, then stabilization occurs for D, > 10*cm?/sec.)

A related analysis reported by Meiss et al. [72] also treated the problem of the
effect of electron diffusion on the tearing mode. They arrived at a very different
conclusion, however; namely, that diffusion has virtually no effect on the tearing
mode nor did they find the additional stabilizing term due to ion inertial effects.
The results of the present work for the “magnetic” tearing mod.e (neglecting the
effects of a finite electrostatic potential) differ only by the inclusion of the addi-
tional physical effect of turbulent smearing of the perturbed current which thus
reduces the available energy to the value A’(a;z.). The analysis by Meiss et al.,
by asymptotically matching an inner solution to an ideal MHD solution at l:arge
z, intrinsically contained the full MHD energy, A’(0), and could not conside; this
effect. Besides the difference that Meiss et al. ignored the the stabilizing effect of ion

iner.tia., their results agree with the above results of the “magnetic” tearing mode

except for the phenomena of turbulent smearing of the perturbed current.
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The effects of runaway electrons were introduced into this model by replacing
the drifted Maxwellian electron equilibrium distribution with a runaway-type equi-
librium distribution. For simplicity, the runaway distribution was modelled by a
monoenergetic beam of fast electrons on the tail of a Maxwellian. Analytical results
indicate that the presence of runaway electrons shift the real frequency of the mode

from w.e t0 w.e + 6wy, Where

bwy ﬂﬂﬁﬁ (7.2)
Wee nove Ly )

This frequency shift can be viewed as a Doppler shift of the dissipative response
of the electrons resulting from the motion of the beam electrons relativé to the
laboratory. In turn, this{frequency shift led to the appearance of an additional sta-
bilizing term in the expression of the growth rate. The growth rate is approximately

modified to read

kw2 (1 L, \V? N2 L, 6
o~ P ) LA _ Ls _ Tm; Ls 0wy
=~ — {5iA (a1z) — az (TL,,) Qs < o ) I o | (7.3)

where a3 is a constant of order unity. This stabilizing term resulting from the beam
electrons represents the energy required to maintain the particle oscillation at the
shifted frequency w.. + éwy. The above expression is qualitatively supported by the

numerical calculations.

In -a. tokamak plasma, runaway electrons (or a significant population of fast
electrons) is only observed at low densities. As the density increases, the fast
electron population relaxes back to the bulk population due to the increas_e in
collisionality. Hence, the additional stability provided by the fast electrons is a-low
density phenomenon, and this effect should diminish as the bulk plasma densﬁy is

raised.

The growth rate as expressed by Egs. (7.1) and (7.3) also indicates that athigh

densities, the tearing mode can also be stabilized due to the effects of ion inertia.
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Assuming the effect of electron diffusion and runaway electrons can be ignored, this
stabilization takes the form of specifying a critical ion 3, above which the tearing

mode is stabilized. Setting z. = 0, this critical § is given by

3 L 1/2
Bi > Bi. = ZAO(\@TZE> , A= A'(0). (7.4)

Here, A is normalized in units of the ion gyroradius. (Note that for the parameters

Aga ~ 20, p;/a ~ .002, Ly/L, ~ 20 and 7 ~ 1, then 3. ~ 1072.)

The result of stabilization at ion betas above some critical value, 8. ~
Ao(Ln/Ls)l/z, was calculated previously by Basu and Coppi [11] through a ki-
netic treatment utilizing asymptotic analysis. The work of Basu and Coppi [11]
and of Coppi et al. [10] also modified this result to include the effects of finite
temperature gradients in which they found stabilization to occur when the ion beta
exceeded a critical value ofﬂc o~ Ao(Ln/Ls)*I.. Here I, is a function of the electron
temperature gradient whose magnitude is on the order of unity. This critical ion
beta is much lower than that occurring in the absence of temperature gradients,
indicating that the effects of finite temperature gradients on the m = 2 mode are
strongly stabilizing. A recent analysis by Drake et al. [12] based on the Braginskii
fluid equations [36] including the effects of finite temperature gradients also gave a
result of the form 3. ~ Ay(Ly/Ls)%I. for the onset of stabilization. (Note that for
the parameters Aga =~ 20, p;/a ~ .002, L,/L, ~ 20, then 8, ~ 1074.)

In comparing the above expression for the growth rate for the tearing mode,
Eq. (7.3), to present tokamak experiments, it is important to note the following:
The energy drive for the tearing mode, and hence its stability, is determined largely
by the parameters A{, and W. The actual values of A}, and W are fairly sensjtive
functions of the equilibrium current profile, the magnetic shear and the positi;n of
the rational surface. In general, A increases for more “rounded” current profiles
and decreases as the rational surface moves toward the edge of the plasma [3@-32].

Generally, A’a < 100 and more typically A’a ~ 20-30 [12]. The island saturation
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width W also increases for more “rounded” profiles and the value of W is maximum
in the middle region between r = 0 and r = a [33,34]. Generally, W/a < .5 and more
typically W/a ~ .1 [34]. The stabilization criterion for turbulent electron diffusion

occurs for a;z, > W and is independent of A]. This criterion can be written as

W)"'gggi

D> 3m (——— 71z %W (7.5)

a1a

Using the parameters p;/a ~ .002, a ~ 20 cm, a; = 4, W/a ~ .05, Ls/L,, ~ 20 and
T ~ 1 keV indicates stabilization for D > 10* cm? /sec. This in turn gives values for
the density threshold on order of those observed in Alcator C. Notice thaf the value
of D necessary for stabilization scales as W?2; hence, diffusion can only suppress

“small” islands. Ion inertia provides stabilization for values of 3 given by

1/2
)P (L
B> (8pa)2 ( Ls) |W=0 (7.6)

in the absence of temperature gradients [11]; and for values of 3 given by

Pi Ln 2

including finite temperature gradient effects [12]. For a value of shear given by
L;/L, ~ 20, notice that the § threshold for stability is smaller when finite temper-
ature gradients are included by the factor 1072. Also notice that the 3 threshold is
linearly proportional to Af. Since tearing modes are observed in Alcator C when
B ~5x10"% p;/a ~ .002 and Ls/L, ~ 20 indicates that the equilibrium profiles
must be strongly MHD unstable with Aja ~ 100. To examine the effect of runaway
electrons, notice that stability is obtained, according to Eq. (4.101), for

A\ /2 1/2
Allayze) < azf [1 + o3 (_”ﬁ) (%ﬁ) Wee 5%]

Fi g

—~~

7.7)
az me wC wxe

10

where
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R ﬁ(%:)l/z for VT = 0;
3 (f—)2 for VT # 0.

Recall from Ch. 4 that the effect of runaway electrons is to provide a stabilizing
correction to the particle inertia term, as indicated above. For éw,/w.. ~ 1072,
Wee/we =~ 107! and Lg/L, ~ 20, then the runaway term is a correction of order
W.e/we ~ 107! to the particle inertia stabilization. Hence, the runaway correction
is only significant in a low density discharge when the leading order contribution
from A’(ajz.) nearly cancels the leading order ion inertia term; that is, when
Alloyz,) - oz = 6A’' > 0, where §A’ /A’ ~ w../we. In this case, runaway electrons

will stabilize the mode provided §A’ < (miLs/meLn)l/za;;[i’&wb/wc.

In summary, the tearing mode is stabilized at low densities for suffciently large
values of the turbulent electron diffusion coeffcient, D., and at high densities sta-
bilization is obtained for suffciently large values of 3;. For low (;, in which one
can approximate ¥ ~ A’(a;z.), then stability is obtained when z. > W, where
A'(W) = 0. Provided D, ~ 1/n, this implies that a density threshold must be sur-
passed before the m = 2 tearing mode is observed. Physically, turbulent electron
diffusion prevents a perturbed current from forming within a correlation distance,
z., of the rational surface. Hence, turbulent diffusion cuts into the available mag-
netic driving energy, A’. At high plasma 8, the effects of ion inertia become impor-
tant. At high densities in which the effects of electron diffusion become negligible,
" then this ion inertia effect implies that the tearing mode is again stabilized for j;
above some critical value. In addition, the existence of a fast electron population
at low densities further enhances stability. The fast electrons provide an additional
frequency shift §w, and more energy is required to maintain the particle oscillation.
These results indicate that it may be possible for a tokamak experiment to operate
‘in a parameter regime such that the tearing mode is stabilized at all densities. -El‘his
results from the combined effects of turbulent diffusive stabilization and runaway
electron stabilization at low densities, and ion inertial stabilization at high densities.
Making this work in practice would be an important step toward the elimination of

major disruptions in tokamaks.
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Chapter 8
SUGGESTIONS FOR FUTURE STUDY

8.1 Tokamak Plasma

This study has examined the stability of the m = 2 tearing mode in the slab
geometry equivalent of a tokamak plasma. The results for the effect of turbulent
electron diffusion on the tearing mode are quite complete. A relatively simple
expression for the growth rate was determined from the leading order terms from
the variational calculation of the dispersion relation. This expression for the growth
rate is easily interpreted in physical terms and it has been verified in detail by

numerical calculation. .

The results for the effect of runaway electrons on the tearing mode are not as
clear as those examining the turbulent diffusive stabilization. From an analytical
point .of view", in order to determined an expression for the growth rate including
the effects of the fast electrons, it was necessary to calculate higher order corrective
terms to the basic turbulent diffusive dispersion relation. That is, the effects of the
fast electrons are seen as order w../w. corrections to the dispersion relationship.
Since the growth rate was determined via a variational calculation, there is a greater
amount of uncertainty in the runaway results than there is for the basic turbulent
diffusive growth rate. Hence; it is important to verify the results for the runaway
growth rate expression numerically. This has not yet been done in detail. Thus, the
first step in a future study of the runaway tearing mode is to continue solving the
coupled equations numerically using the shooting code in order to verify the param-
eter scaling appearing in the analytical expression. Once the analytical expre_"é‘sion
has been suitably verified, the effect of runaway electrons on the tearing mode c‘ould
be further improved by using a more realistic runaway distribution (and including
relativistic effects) for the equilibrium than the simple monoenergetic electron beam

used in this study.
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. The m - 2 tearing mode is only one of many low-frequency, low-beta fluctua-
tions that the coupled equations of Ch. 2 for ¢ and fi”, Egs. (2.30), are capable of
describing. Originally, these coupled equations were used to study finite-beta drifted
waves in the absence of an equilibrium current [16,18,19]. By recasting these equa-
tions in cylindrical geometry, it would be quite easy to study the effects of turbulent
diffusion and runaway electrons on the m = 1 internal kink mode. Furthermore, if
the toroidal curvature guiding center drift was included in the model, the effect of
turbulent diffusion and runaway electrons on the stability of the ballooning mode
could be determined. The ideal starting point for a first calculation of these effects
on the m = 1 mode and the ballooning mode would be the fluid model present in
Ch. 5. This would provide the simplest and fastest way of determining an approx-
imate dispersion relation for these instabilities, including the effects of turbulent

diffusion and runaway electrons.

Fiv ¢

I
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8.2. Magnetotail Plasma

The Earth’s magnetotail develops due to the interaction of the magnetic dipole
~field of the Earth with a southward pointing interplanetary magnetic field (IMF)
carried by the solar wind [73|. Since the IMF is southward, an X-point (a null point)
forms in the magnetic field on the dayside of the Earth. Due to the momentum of
the solar wind, the magnetic lines, which have torn to form an X-point, are carried
with thev solar wind to the nightside of the Earth where they for an elongated
magnetotail (see Fig. 8.1). As more and more of the dayside magnetic flux is torn
and wrapped around to the nightside of the Earth, the magnetotail becomes more
elongated and narrower. This process continues until the magnetotail becomes too
“stretched”, thus developing a topology which becomes unstable and subject to
spontaneous reconnection [1,2,26]. Such an elongated and unstable magnetotail
is somewhat similar to an one-dimensional current sheet, the latter being always
unstable to the tearing mode [74]. Figure 8.2 depicts the reconnection process in a

current sheet and in a magnetotail geometry.

The question as to how elongated and how stretched the magnetotail must
become before there exists suffcient free magnetic energy to drive a tearing process
has been studied in detail by Schindler [26]. Consider a coordinate frame such
that the magnetotai‘l'is elongated in the x—direction and whose current flows in the
y—direction as shown in Fig. 8.3. As is discussed above in the case of magnetic
tearing in a tokamak, the bulk of the plasma in the magnetotail can adequately
be described by ideal MHD — it is only in a small region about the neutral sheet
(where B, = 0) where the non-ideal effects of dissipation become important. As
is mentioned previously, the available free energy, which is necessary to drive the
tearing instability, is determined by the global magnetic topology in the regions
away from the neutral sheet. Hence, a particular magnetic structure can be analyzed
using ideal MHD to determine if there exists free energy which is necessary to dr;i.ve a
spontaneous reconnection process. As is pointed out by Schindler [26], hthe existence
of global free magnetic energy is not enough to assure that a reconnection process
will occur-there must also exist a suffciently strong dissipation mechanism within

a finite region about the neutral sheet. The existence of and the exact nature of
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Figure 8.2 -

Basic forms of spontaneous reconnection: (a) the tearing instability in a

plasma
current sheet, (b) generalized tearing in a magnetrotail configuration.
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Figure 8.3

Schematic illustration of the magnetotail. The z-coordinate is positive in the anti-
solar direction.
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this dissipation mechanism, even in magnetic structures which provide global free

magnetic energy, is currently a question of debate [2].

Most studies concerned with the details of the dissipation within the region
about the neutral sheet assume that the global equilibrium has already developed
into a state which provides free magnetic energy [1,62,75-77|. As done in previous
chapters, it is possible to define a quadratic form from Ampere’s law to represent

the energy drive for the reconnection mechanism [8,24,25,62|:

§W = /d%[w/ﬂ? - ‘*Ejfi}, | (8.1)

c

where J is the ideal MHD perturbed current. Here, 6W < 0 indicates that there is
] .
suffcient free energy in the outer region, which is necessary for the existence of the

tearing instability.

A common model often used for the equilibrium which will provide free energy

is given by [1,9]

By, = Botanh(z/A). (8.2).

In ideal MHD, the equilibrium current is given by Jo = Jo(Ao), where By =
V x Apey. The perturbed current given by ideal MHD is simply J= (dJo/dAo)/i,

which for the above equilibrium model is then

47T~_47|'dJ0~_2 2 ~ .
TJ_ . dAoA_ Azsech (z/A)A, (8.3)

~ where the form for the fluctuation potential is assumed to be

A = A(z) exp™ cos (kz)e,. (8.4)

The linearized form of Ampere’s law for A can then be solved [20,77] to give
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A(z) = 5 exp(—k|z|) {1 + (8.5)

tanh(lzl//\)}
p —_ .

kA

Using the above expression, the quadratic form, given by Eq. (8.3), can be
evaluated. One finds that there exists free energy, 6W < 0, provided k%A% < 1.
Hence, the equilibrium given by Eq. (8.2), when analyzed globally using ideal
MHD, will provide free energy to perturbations with sufficiently long wavelengths

in the x—directions along the tail.

Coppi et al. [1] considered such an equilibrium along with a dissipation mecha-
nism in the region about the neutral sheet. They argued that in a thin region about
the neutral sheet, of thickness d = (r, /\)1’/2, where r, is the mean particle Larmor
radius, the plasma particles behave as if they were unmagnetized [1,78]. The parti-
cles in this thin layer then provide collisionless dissipation due to the wave—particle
resonance interaction (Landau damping). Since éW < 0 for k2A% < 1, this mode is
a negative energy mode. Hence, this mode will become unstable in the presence of
positive dissipation provided by Landau damping of particles in the unmagnetized
region near the neutral sheet. Characteristic growth rates [1,76] for this instability

are given by

~y ~ kvn(ry /A2, (8.6)

where vy}, is the particle thermal speed. The mode resulting from electron (ion)

dissipation is referred to as the electron (ion) tearing mode.

This situation changes, however, if the component of the equilibrium magnetic
field normal to the current sheet, By, is considered [62,76]. In this case, the f;'elec-
trons in the thin region about the neutral sheet no longer behave as unmagnezized
particles; rather, they gyrate about this normal field. The primary response of the

electrons is then an adiabatic response, and the dissipative wave—particle interac-

tion is suppressed. The adiabatic response of the electrons adds a large stabilizing
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term to the quadratic form, 6" Coroniti |62] approximated éW, including the
effects of B, # 0, to be

Tk2A2B,

B. (8.7)

§W = c/ dAoifilz[k?,\? “1+

The first two terms in the above expression represent the global ideal MHD energy,
as in Eq. (8.1). The last term represents the energy required to sustain the adiabatic

motion of the electrons and is strongly stabilizing.

- Galeev and Zelenyi [76] have studied in detail the effect of B,, on the electron
response near the neutral sheet. When non-ideal MHD effects are included, the

linearized form of Ampere’s law for the fluctuations can be written as

2

A+ (B 4+ Volz) + Valz,w, k)| A(2) = 0. (8:8).

Here, V; = (47/c)dJy/dAo = —(2/A?)sech®(z/)A) and V; A = (47 /c)J, where J; .
represents the contribution to the perturbed current from particles in the region

near the current sheet.

Equation (8.8) is a Schrodinger equation and describes the behavior of the wave
function, A, in the ;;resence of the potentials V, and V;, with the energy eigenvalue
E = —k?%. Here, V; represents a potential well of width A. When V; = 0, wave
functions can exist within this well and, hence, instability is possible. On the other
hand, the potential resulting from the adiabatic electrons near the neutral sheet,
V1, takes the form of a potential peak or bar}rier centered about the neutral sheet.

The width [76] of this barrier is given by

biv 4

A]‘ = 6]')\ (8.9)

where 6; = (r1;/A)Y/2 or B,/Bo, whichever is larger. (The subscript j refers é&ther

to ions or electrons).
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Provided that the potential barrier, V7, is large enough. it is possible to exclude
the wave function, fi, from existing within the potential well. In this case, the
mode is stabilized. Galeev and Zelenyi [76] conclude that the electron tearing
mode is completely stabilized by the normal magnetic field, whereas the ion tearing
mode may only be destabilized in a certain restricted range of values of the normal

magnetic field.

At present, theoretical studies of reconnection in the magnetotail find that the
tearing mode is stabilized by the effects of the normal field near the neutral sheet.
This may explain the observed “quiet times” during the presence of an elongated
tail structure. It is still a question of debate, however, as to the exact mechanism

triggering the tearing mode instability and the onset of substorms [2].

A possible effect of turbulent electron diffusion on the magnetotail tearing
mode is to provide a destabilization mechanism even if a normal magnetic field
component, B,, is present. As discussed above, the normal field B, introduces a
large stabilizing barrier V; in a narrower region of order A, ~ (rr, A)!/? about the
neutral sheet. Here, r_ is the mean electron Larmor radius and A is the width of -
the current sheet. In the mégnetotail, ry. ~4 km and A ~ 6 x 10® km and, hence,
A, ~ 150 km. By comparison, the diffusion layer from the observed electrostatic
noise is on the order of 3000 km. Turbulent diffusion would prohibit any structure
from forming on any scale length less than this diffusive layer width. Hence, the
potential barrier V; would be eliminated. It is clear that turbulent diffusion may

have a strong effect on the tearing mode in the Earth’s magnetotail.

Nii (1

1
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Appendix A

Nomenclature

plasma edge
magnetic potential

perturbed parallel magnetic potential

2 2
yPi

unit vector along the magnetic field

line bending term, k

magnetic field

perturbed magnetic field

speed of light

various constants, n = 0,1,2---

constant characterizing the ideal MHD form of /i”

jon term in the coupled equations for é and fi“
diffusion coeffrient

electron charge

electric field

perturbed parallel electric field

function characterizing the ideal MHD solution for fi”
particle distribution function of species a

function characterizing the ideal MHD solution for fi”
non-adiabatic ion response

diffusive Green’s function characterizing the electron
response

non-adiabatic electron response

electron resonance function, n =0,1,2---

Ry (0

particle (plasma) current
wavenumber

beam electron resonance function, n =0,1,2---

g

slope of the trial function fi”
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L—h LZ’ L:z:

Lsa Ln’ LJ

electrostatic, magnetic and coupling operators in the

coupled equations for 6 and xi!;

length scales for the shear, equilibrium density and

equilibrium current

magnetic and electric integral forms
poloidal mode number

mass of species a

toroidal mode number

density of species «

parallel pressure

ionic charge

average Larmor radius

electron resonance operators,n =0,1,2---
variational form

source term

fluctuation power spectrum

time

temperature of species

particle velocity

beam velocity

Alfven velocity

drift velocity

thermal velocity of species «

fluid velocity

island saturation width

spatial coordinate

particle resonance point of species a
diffusive correlation distance
plasma disperison function

variational parameter of trial function q~5

205

B

e

AN



nJ

Kn

Tac

©-

€ X B

ion term in coupled equations for q) and ;1”
plasma beta of species «

magnetic and electric boundary terms

growth rate °

normalized growth rate

exponential times modified Bessel functions,
n=0,1,2---

small variation

ideal MHD energy drive

small parameter

argument of plasma dispersion function
plasma resistivity

normalized current gradient parameter
poloidal angle

beam electron resonance kernel

current gradient parameter characterizing the ideal
MHD solutions

eigenvalue drift wave linear dispersion relation
collision frequency

argument of the plasma disperison function
gyroradius of particle «

corrective factor for finite w../w., n =1 and 2
summation |
time variable

autocorrelation time

l

Fiv (o

Kolmogorov time
toroidal angle

perturbed electrostatic potential

ion term in coupled equations for Js and /1“

eigenfrequency -
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diffusive correlation frequency
transit frequency

plasma frequency of species «
drift frequency of species «
cyclotron frequency

parallel component
perpendicular component
gradient operator

microscale ensemble average
angular average of Q

complex conjugate of @

normalized quantity Q

perturbed quantity
equilibrium quantity
electron quantity

ion quantity

expression for Q for z > 0

expression for @ for z < 0
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