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Abstract

The Shortest-Remaining-Processing-Time (SRPT) scheduling policy is known to be the op-

timal policy for minimizing mean response time, but it is rarely employed in computing systems

for a number of reasons. These reasons include: lack of knowledge of task size, fear of starvation

of the large tasks, concern over pre-emption overhead, and lack of empirical evidence on the per-

formance bene�ts of switching to SRPT. In this paper we argue that the special characteristics

of Web servers and Web workloads make the usual objections to SRPT less persuasive.

We start by arguing that it is possible for Web servers to extract task sizes for a large

fraction of tasks. We then compare SRPT to an alternative policy { processor sharing (PS) {

which we use as an idealization of typical scheduling policies currently used in Web servers. Our

comparisons are made both analytically (assuming Poisson arrivals and an empirically-derived

�le size distribution) and on trace-driven simulations using logs from operating Web servers.

With respect to performance, we show that at high server utilization, the SRPT policy can

reduce mean waiting time and mean slowdown over PS by well over an order of magnitude.
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With respect to our main concern, starvation, we show that although starvation is in fact a

problem under SRPT for many workloads, in the particular case of Web workloads, starvation

even for the largest one percent of all tasks is far lower under SRPT than under PS. Lastly,

we argue that pre-emption overhead is lower under SRPT than under currently used policies.

Although our model is a simpli�ed model of real Web servers, our results suggest that SRPT is

an attractive alternative to current scheduling policies in Web servers.



1 Introduction

We consider a Web server consisting of a single machine which receives and processes HTTP

requests arriving on-line. We ask the question: In what order should the machine schedule the

HTTP requests so as to maximize performance?

Such Web servers today are typically Unix or Windows NT machines and the scheduling is

performed in the operating system (rather than in the Web server). Under the assumption that

the processes or threads used by the Web server require approximately similar balances of CPU

demand and I/O, the scheduling on these servers is approximately Round-Robin, which we model

in this paper with Processor-Sharing (PS). 2

However, it is well known that the on-line scheduling policy which minimizes mean ow time is

(preemptive) Shortest-Remaining-Processing-Time-First (SRPT) [12]. In fact SRPT is optimal for

any sequence of task arrival times and service demands.

This begs the question: Why isn't SRPT the scheduling policy being used in Web servers?

The immediate answer is that SRPT requires knowledge of each task's service requirement, and

this information is not currently available. However, it is in fact easy to estimate a task's service

requirement: First, observe that the amount of work represented by a Web request is (at least

approximately) proportional to the size of the �le requested. Next, note that in the majority of

cases, �le size (and therefore, task size) can be determined by the server at the time the request

arrives. This is the case when the request is for a static �le, i.e., one that is served without

modi�cation from the �lesystem. Typical studies indicate that over 90-95% of Web requests are

for static �les [1]. In fact this average statistic may reect a situation in which, for many servers,

essentially all requests are for static �les | while the non-static �les are served mainly by a relatively

few servers [13].

Given that the task size (service demand) is known, there are three issues which need to be

addressed in using SRPT:

1. Does the performance gain really justify switching to SRPT?

2. What about starvation of the large tasks? This is the principal objection to using SRPT, and

thus is a primary focus of this paper.

3. Does SRPT cause too many pre-emptions?

The organization of this paper is in two parts. The �rst part of the paper (Sections 2, 3, and 4)

2Processor Sharing is de�ned as Round-Robin in the limit where the quantum size shrinks to zero.
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is purely analytical. In the analytic model we assume that the task size distribution is a particular

hybrid distribution consisting of a body which is lognormal and a tail that declines via a power-

law. This distribution has been shown to be a good model of measured Web �le sizes. It has the

characteristics of having very high variance and a heavy tail. Although our task size distribution is

very realistic, for purposes of analysis we're also forced to assume Poisson arrivals. The second part

of paper (Section 5) uses a trace driven simulation of a Web server which allows us to evaluate the

e�ects of realistic arrival processes. We consider 4 di�erent traces of Web server HTTP requests.

The �rst question above asks whether the performance improvement obtained from using SRPT

justi�es the expense of rewriting the scheduler. We compare the performance of SRPT with that

of PS on two performance metrics: mean ow time (time from task arrival to task departure) and

mean slowdown, where the slowdown of a task is de�ned to be the task's ow time divided by its

size.

Our analytical comparison of SRPT versus PS shows that with respect to mean ow time the

performance of SRPT is signi�cantly better than that of PS at high loads (e.g., mean ow time

under PS is three times that under SRPT at � = 0:9). With respect to mean slowdown, the

advantage of SRPT over PS is even greater; SRPT improves on PS by as much as a factor of 10 at

high load (� = 0:9).

The performance di�erences between SRPT and PS are even more dramatic in trace-based

simulation. In simulation, mean ow time under SRPT improves over that under PS by an order

of magnitude at high load. Furthermore, in simulation mean slowdown is two orders of magnitude

smaller under SRPT than under PS at high load.

The second question above is probably the most cited reason for not using SRPT: starvation

of the large jobs. We use a job's slowdown as the measure of whether the job is being starved.

We consider slowdown as a function of the percentile of the job size distribution (for example,

we examine the slowdown of jobs in the 99th percentile of the job size distribution { only 1% of

all jobs are bigger than this job). Again, we address this question both analytically and using a

trace-driven simulation.

In the analysis section we show that starvation can be a legitimate concern for many task size

distributions; however this is not the case for the kind of task size distributions that characterize

Web requests. In analysis, we �nd that under the analytical model of the Web task size distribution,

the slowdown under SRPT across all job size percentiles is signi�cantly lower than under PS { an

order of magnitude lower under high loads. The slowdown of jobs in all size percentiles remains

close to 1 even under high loads. Thus, starvation is in fact not an issue under the heavy-tailed task
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size distribution which characterizes Web �le sizes. In contrast, we show that starvation of large

jobs can be a problem when using SRPT for less variable task size distributions, and we explain

why this is the case. We also examine starvation in the context of the trace-driven simulation

and again show that slowdown under SRPT across all percentiles is far below that under PS. In

particular, slowdown under PS is two orders of magnitude larger than that under SRPT for all

jobs, except the largest 1% (and still one order of magnitude larger for the largest 1%).

The third question above asks whether SRPT is practical to implement. Our concern is the

number of preemptions required by SRPT, since a preemption takes place in SRPT every time a

shorter job arrives. We address this issue in Section 4 and show that this too is not a problem.

Throughout this paper we assume a very simple model of a Web server { namely a single-resource

machine. In reality most HTTP requests alternately demand service from multiple devices including

disk and the CPU. For ease of analysis, we have compressed these two devices into one with respect

to scheduling. Although our Web server model is a simpli�ed one, we feel that the results in this

paper are dramatic enough to make a case for considering changing the scheduling of Web HTTP

requests to an SRPT-based policy.

2 Performance of SRPT for Web Server Task Sizes

In this section we attempt to evaluate the potential performance improvements that are possible if

SRPT scheduling is used in the context of our model of a Web server.

Our analytical results throughout this paper are based on the following formulas for the mean

ow time for a task of size x, for an M/G/1 queue with load � under SRPT[15] and under PS[12]:

EfFlowtime for a task of size x under SRPTg

= EfWaiting time for task of size xg+EfResidence time of a task of size xg

=
�
R x
0 t2dF (t) + �x2(1� F (x))

2 (1� �
R x
0 tdF (t))2

+

Z x

0

1

(1� (�
R t
0 zdF (z)))

dt

EfFlowtime for a task of size x under PSg =
x

1� �

where F (�) is the cumulative distribution function of the service time distribution and � is the

arrival rate. From the above two formulas, we easily derive all the other metrics of interest in the

paper.
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We adopt the assumption that the amount of work represented by a Web request is proportional

to the size of the �le requested. This is reasonable as a approximation; a more accurate model

including a �xed startup cost for each task would not a�ect our results signi�cantly. As discussed

in Section 1, we assume that �le sizes, and therefore task sizes, can be determined by the Web

server when the task arrives [1].

A number of previous studies have developed empirical models for the distribution of �le sizes

seen on Web servers [2, 7, 4]. An important property of Web �le size distributions is that they

typically exhibit heavy tails. By heavy tails we mean that the tail of the empirical distribution

function declines like a power law. That is, if a random variableX follows a heavy-tailed distribution

then

P [X > x] � x��; 0 < � < 2

where f(x) � a(x) means that limx!1 f(x)=a(x) = c for some positive constant c.

Random variables that follow heavy tailed distributions typically show extremely high variability

in size. This is exhibited as many small observations mixed with a small number of very large

observations. The implication for Web �les is that a small fraction of the largest �les makes up

most of the load on a Web server. We refer to this as the heavy-tailed property of Web task sizes;

it is central to the discussion in this paper.

Although Web �les typically show heavy tails, the body of the distribution is usually best

described using another distribution. Recent work has found that a hybrid distribution, consisting

of a body following a lognormal distribution and a tail that declines via a power-law, seems to �t

well some Web �le size measurements [4, 3]. As a result we initially show results using such a model

for task sizes, which we call the Empirical model; parameters of the Empirical model are shown in

Table 1.

Distribution PMF Range Parameters

Body Lognormal 1
x�
p
2�
e�(ln x��)2=2�2 0 � x < 9020 � = 7:630; � = 1:001

Tail Bounded Pareto �k�

1�(k=p)�x
���1 9020 � x � 1010 k = 631:44; � = 1:0; p = 1010

Table 1: Empirical Task Size Model

We show the potential bene�ts of the SRPT policy under this task size distribution in Figure 1.

The mean of this distribution is 11108, which is therefore the smallest possible value of mean ow

time. In Figure 1(a) we show mean ow time; Figure 1(b) shows mean slowdown.
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Figure 1: Performance of SRPT and PS for Empirical Task Size Distribution

These �gures demonstrate the impressive performance improvements possible under SRPT

scheduling as compared to PS. While both policies yield mean ow times close to the minimum

possible at low load, at high load the performance of PS degrades severly according to the 1=(1��)

relation. On the other hand, SRPT is remarkably resistant to breakdown at high loads. Even when

load reaches 0.95, mean ow time under SRPT is only about three times its minimum possible

value; in this region, mean ow time under PS is 20 times the same minimum possible value.

Even more striking is the mean slowdown under SPRT as a function of load. Even when load

reaches 0.95, mean slowdown is only 1.1 (as compared to 20 under PS). This indicates that almost

all tasks will have predictable ow time.

In examining the behavior of SRPT under the Empirical model, we �nd that the important

performance e�ects are determined by the tail of the distribution. In fact, for the analysis used in

this paper we can approximate the Empirical distribution with a much simpler one that has the

same tail, but is power-law over its entire range. This is the Bounded Pareto (BP) distribution.

This distribution has probability mass function

p(x) =
�k�

1� (k=p)�
x���1 k � x � p:

The reason that we can approximate the Empirical distribution with the Bounded Pareto is

that the performance e�ects are dominated by the tail of the distribution. This e�ect is shown in

Figure 2. In this �gure, we plot the mean ow time for SRPT under the Empirical distribution

(which has an � value of 1.0) and under BP distributions with � values of 0.9 and 1.1. We do not

plot the BP distributions with � value of 1.0 because its curve is indistinguishable from that of the
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Empirical. This plot shows that over the entire range of system utilizations, the BP distribution is

a good approximation for the Empirical distribution in terms of performance under SRPT.
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Figure 2: Performance of SRPT and PS for Empirical and BP Distributions

Thus, to simplify analysis in the remainder of the paper we use the BP distribution as a

substitute for the Empirical distribution. To allow uniform treatment throughout we adopt the

convention that the distributional mean is set at 3000; this is in approximate agreement with most

empirical measurements. In addition, we �x the upper bound of the distribution at 1010 to reect a

condition of high variance; this value (10 GB) represents the a reasonable estimate of the practical

upper limit for �le sizes in the current Web. Note that recent results show that the performance

of an M=G=1 queue in which service times follow a heavy-tailed distribution is not signi�cantly

a�ected (at practical timescales) when the distribution is truncated at a su�ciently large value [10].

The important free parameter in the BP distribution is �. The particular value of � determines

the weight of the tail. For small values of �, the heavy-tailed property is more pronounced. Em-

pirical measurements of � vary; typical values are in the range 1.0 to 1.5, but values outside this

range are possible as well. Thus it is important to examine the performance of the SRPT policy

over a range of � values.

Plot 3 shows BP for SRPT and PS, over a range of � values. This �gure shows that, surprisingly,

the relative performance of PS vs. SRPT is fairly independent of the particular value of alpha.

Thus we �nd that SRPT is a fairly robust policy that should be successful over a range of �le size

distributions.

However, this does not mean that the value of the � parameter is unimportant. In fact the

particular value of � has a signi�cant impact on the likelihood of starvation, as we show in the next
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Figure 3: Mean Flow Time of SRPT and PS for range of � values in BP Distribution.

section.

3 Does SRPT Starve Large Jobs?

A common concern with the SRPT discipline is that, by giving preference to small tasks, large tasks

may starve. The SRPT discipline has in the past been rejected for use in Web servers speci�cally

for this reason [5].

In this section we'll show that while the fear of starvation is well-founded for some task size

distributions (such as the exponential task size distribution), starvation is not a signi�cant concern

when task sizes follow heavy-tailed distributions like those that model Web �le size requests.

As long as the system under study is in steady-state, every task that enters the system eventually

leaves; thus we can use slowdown as a measure of a task's starvation. So to evaluate the potential

for starvation of large tasks we plot the mean slowdown of a task of a given size, as a function of

the task size. Task size is plotted in percentiles of the task size distribution, which allows us to

assess the fraction of largest tasks that will achieve mean slowdown greater than a given threshold

value. All results are analytically-derived for an M=G=1 queue under SRPT.

Figure 4 shows the mean slowdown as a function of task size under the SRPT discipline. The

two curves represent the case of an exponential task size distribution and a Bounded Pareto task

size distribution with � = 1:1. The two distributions have the same mean. Figure 4(a) shows the

situation under low load, � = 0:5, and Figure 4(b) is the same plot for high load, � = 0:9.
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Figure 4: Mean slowdown under SRPT as a function of task size.

Figure 4 shows that large mean slowdowns do not occur at low load in either case. However,

under high load, there can be starvation of tasks, but only for the Exponential distribution. For

example, the largest 5% of tasks under the Exponential distribution all experience mean slowdowns

of 5.6 or more, with a non-negligible fraction of task sizes experiencing mean slowdowns as high as

10 to 11. In contrast, no task size in the BP distribution experiences a mean slowdown of greater

than 1.6. Thus, when the task size distribution has low variability (Exponential), SRPT can tend

to starve a signi�cant fraction of tasks; however when task size distributions show high variability

(BP distribution), SRPT does not lead to starvation.

To understand why SRPT does not tend to starve tasks under the BP distribution, we plot

mean slowdown as a function of task size over a range of BP task size distributions with constant

mean (in this case, 3000) and varying �. This plot is shown in Figure 5. The high � cases represent

low variability, whereas the low � cases represent high variability in the task size distribution.

This �gure shows how the likelihood of starvation under SRPT increases as the variability of

the task size distribution decreases. When � is less than about 1.5, there is very little tendency for

SRPT to starve large tasks (curves for � = 0:5 and � = 0:7 stay so close to 1 as to be invisible on

the plot). Only as � gets close to 2.0 (e.g., 1.7 or 1.9) is there any signi�cant fraction of tasks that

experience high mean slowdowns.

The surprising resistance of the high variance task size distributions to starvation under SRPT

can be understood by considering how work arrives at the server under such distributions. For a

Bounded Pareto distribution with � = 1:1, the largest 1% of all tasks account for more than half
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Figure 5: Mean slowdown under SRPT as a function of task size, varying � of task size distribution.

the total service demand arriving at the server. For comparison, for an Exponential distribution

with the same mean, the largest 1% of all tasks make up only 5% of the total demand. Thus, under

the Bounded Pareto distribution, large tasks (for example, the largest 1%) are interrupted much

less (by less than 50% of the total work arriving) than are the same fraction of tasks under the

Exponential distribution (interrupted by about 95% of the total work arriving).

So far we have shown that starvation under the BP task size distribution is not as severe as it

would be under the exponential task size distribution. However SRPT may still not be a desirable

policy if the Processor-Sharing (PS) discipline shows even lower levels of starvation. Now we show

that when the task size distribution is BP with � = 1:1, starvation under PS is higher than it is

under SRPT, over the entire range of task size percentiles.

Figure 6 plots mean slowdown for PS and SRPT versus percentile of task size under the BP task

size distribution with � = 1:1. Figure 6(a) considers the low-load situation (� = 0:5) and Figure 6(b)

considers the high-load case (� = 0:9). The Figure 6 shows the PS discipline consistently yields

much larger mean slowdowns for tasks of all sizes. For example, in the heavy-load case, the PS

discipline results in mean slowdown of 10 for all task sizes, whereas under the SRPT discipline,

tasks of all sizes experience mean slowdowns under 2.

Thus we've seen that while starvation appears to be a concern for low-variability task size

distributions like the Exponential, under the BP task size distribution with low �, SRPT is much

more attractive. In addition when the task size distribution is BP, SRPT is more attractive than

PS with respect to starvation.
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Figure 6: Slowdown as a Function of Job Size, Bounded Pareto Distribution (� = 1:1), For SRPT

and PS Policies.

4 Does SRPT cause too many pre-emptions?

Another possible cause for concern with SRPT is the number of pre-emptions it requires, because

a larger task is always pre-empted when a smaller task arrives.

In this section we point out that under typical conditions, SRPT should result in fewer pre-

emptions than Round Robin (a practical implementation of Processor Sharing). We consider a

pre-emption to be either the suspension of one task to run another task, or the entry of a task to

an empty system, or the departure of a task that leaves the system empty. In each of these cases,

signi�cant work must be done by the scheduler to manage task or process contexts.

First, note that under SRPT there are twice as many pre-emptions as there are task arrivals.

To see this, consider that SRPT can be implemented using a sorted list of tasks, with the property

that two tasks never reverse their relative order in the list. The current executing task is always at

the head of the list. When a task arrives it �nds its place in the ordered list based on its remaining

time, possibly displacing the task at the head of the list. Now each task reaches the head of the

list only once. This, along with its departure, are the two pre-emptions it generates.

Second, for the Round-Robin system, we can lower bound the number of pre-emptions by the

total busy time divided by the quantum length. In order for the system's performance under Round-

Robin to approximate that of Processor Sharing, the quantum length should be small relative to

the mean task size. Thus the number of pre-emptions per task will typically be large (and not less

than 2).
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Thus it seems that the SRPT policy should generate much fewer pre-emptions in practice than

the common alternative policy, Round Robin.

5 E�ects of Realistic Arrival Processes

5.1 Why do we need a trace-driven simulation

Up until now, all results have been analytically-derived. To apply analysis, we required the assump-

tion of a Poisson arrival process. We also required the assumption of a closed-form distribution for

the task size distribution, which we derived from empirical data.

However, it is well known that realistic HTTP arrival processes are more bursty (the interarrival

times have a higher coe�cient of variation) than a Poisson process [8, 9]. The primary advantage

of a trace-driven simulation is that it allows us to evaluate the e�ect of this increased bustiness.

A second advantage of the trace-driven simulation is that, although we have so far carefully

modelled task size distribution analytically, the simulation employs actual measured task sizes.

5.2 The trace data

We ran our simulator on 4 di�erent traces, taken from the Internet Tra�c Archives.3

The only part of the trace data that we used in each case was the timestamp of the request and

the size in bytes of the request.

The ClarkNet trace contains two week's worth of HTTP requests to the CLarkNet WWW server,

from August 28, 1995 through September 10, 1997. ClarkNet is a full Internet access provider for

the Metro Baltimore-Washington DC area.4 The trace logs about 1.7 million HTTP requests.

The NASA trace consists of all HTTP requests to the NASA Kennedy Space Center WWW

server in Florida during the months of July and August 1995.5 The trace logs about 1.9 million

HTTP requests.

The EPA trace contains all HTTP requests to the EPA WWW server located at Research

Triangle Park, NC, during August 29, 1995.6 The trace logs about 47,000 HTTP requests.

3http://ita.ee.lbl.gov/traces.html
4The ClarkNet log was collected by Stephen Balbach of ClarkNet, and contributed by Martin Arlitt

(mfa126@cs.usask.ca) and Carey Williamson (carey@cs.usask.ca) of the University of Saskatchewan.
5The log was collected by Jim Dumoulin of the Kennedy Space Center, and contributed by Martin Arlitt and

Carey Williamson of the University of Saskatchewan.

6The logs were collected by Laura Bottomley (laurab@ee.duke.edu) of Duke University.
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The NCSA trace contains HTTP requests made to the NCSA WWW server located at UIUC

in Champaign-Urbana on December 20, 1995. The trace logs about 44,000 HTTP requests.

5.3 The trace-driven simulation

We simulated a single processor with a single resource (CPU). Job interarrival times and service

requirements were taken from the traces. For each trace, we created a version of the trace repre-

senting system utilization ranging from .05 to .95 (.05, .10, .15, .20, etc.). To do this we simply

scaled the interarrival times by the appropriate factor.

A simulation consisted of running the entire trace through the processor. Each arrival was

sampled with probability 1/40, so that on average every 40th arrival was sampled, and its ow

time and slowdown were recorded. This data was used to create the mean ow time and slowdown

plots and the percentile plots. We chose not to sample every single arrival since there would be too

strong a corrolation between subsequent arrivals. We acknowledge that there is still a corrolation

even between what every 40th arrival sees, however no trace was long enough to allow us to perform

many independent runs which each converge to steady-state.

5.4 Results

We show full results for one of the traces, NCSA and partial results for all the other traces.

Figure 7 shows the results for the NCSA trace.7 Figure 7(a) shows mean ow time as a function

of server utilization for the case of SRPT scheduling as compared with PS scheduling. Figure 7(b)

is the corresponding �gure for mean slowdown. Figures 7(a) and 7(b) corroborate the general result

of Section 2, namely that the performance of SRPT is far better than the performance of PS on

Web workloads. Observe however that the distinction between SRPT and PS is more exagerated

in the trace-based results than the analytical formulas from Section 2 predicted. For example, at

high load, � = :9, the mean ow time of PS for the trace-based data is a factor of 10 times greater

than the mean ow time for SRPT. Furthermore, the mean slowdown of PS for the trace-based

data is a factor of about 90 times greater than the mean slowdown of SRPT. Contrast this with

the analytical results from Section 2 which, for the case of load � = :9, showed only a factors of 3

improvement with respect to mean ow time and a factor of 10 improvement with respect to mean

slowdown.

7For many of these �gures, we do not show the entire PS curve, since it would have dwarfed the shape of the

SRPT curve. This is true throughout the paper. In the text, we describe the results of the high load case, � = :9,

although they are not always visible on the plots.
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The di�erence between the trace-based results and the analytical results can be explained by

the following observation. A bursty arrival process harms the performance of PS because when

tasks arrive together, they must share the processor longer, thus all slowing each other down. On

the other hand, bursty arrival processes do not seem to harm the performance of SRPT since the

SRPT algorithm will simply schedule the shortest one to run to completion. (This point might be

clearer to understand when comparing PS and FCFS. Simultaneous arrivals have a more adverse

a�ect on PS than they do on FCFS.)

A big advantage of simulation is that we have sample standard deviations. Figures 7(c) and 7(d)

show the standard deviation of the ow time and slowdown. SRPT shows some improvement over

PS with respect to the mean ow time, but the important e�ect is that the standard deviation of

slowdown is 20 times better under high load (� = 0:9). This indicates that the system is performing

much more predictably; when users submit small (large) tasks, the ow time is predictably small

(large).

We next turn to the issue of starvation, discussed in Section 3. Figures 7(e) and 7(f) show

mean ow time and mean slowdown as a function of task size under the heavy load case of � = :9.

Figure 7(f) in particular indicates how SRPT performs as compared with PS with respect to

starvation. The corresponding �gure in the analytical section is Figure 6. Figure 7(f) shows the

mean slowdown in increments of 5% of the task size distribution. Our results show that tasks below

the 95th percentile in size have slowdowns under 2. Looking at the largest 5% of tasks we found

that tasks in the 99 to 100 percentile (the largest 1% of tasks in the trace) had a mean slowdown

of 75, however the tasks in the 98th to 99th percentile had mean slowdown of 8, tasks in the 97th

to 98th percentile had a mean slowdown of 6, and tasks in the 96th to 97th percentile had a mean

slowdown of only 4. These numbers might seem high, however they are far less than the slowdowns

under PS, which averaged around 200 across all task sizes, as shown in Figure 7(f).

Figure 8 shows the performance for the remaining three traces: EPA, NASA and ClarkNet

under the SRPT algorithm and under the PS algorithm. For each trace, we plot the mean ow

time as a function of server utilization, mean slowdown as a function of server utilization and mean

slowdown as a function of task size under the �xed utilization of � = 0:9. For all metrics, the

performance under these three traces, are even more dramatic than under the NCSA trace.
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Figure 7: Performance Metrics for NCSA Trace. (a) Mean Flow Time as a function of server

load; (b) Mean Slowdown as a function of server load; (c) Standard Devaiation of Flow Time as a

function of server load; (d) Standard deviation of slowdown as a function of server load; (e) Mean

ow time as a function of task size, assuming a server load of � = 0:9; (f) Mean slowdown as a

function of task size, assuming a server load of � = 0:9.
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Figure 8: Peformance Metrics: left column: EPA Trace; center column: NASA Trace; right column:

ClarkNet Trace. For each trace we show the mean ow time as a function of server load (top row),

mean slowdown as a function of server load (middle row), and mean slowdown as a function of task

size assuming server load of 0:9 (bottom row.)

6 Related Work

Currently, state-of-the-art Web servers do not explicitly make use of a task's size in scheduling

the task. We have restricted our discussion to Web servers consisting of a single host. Such Web

servers are often Unix or Windows NT machines whose scheduling policies can be approximated

by Processor-Sharing (PS), as explained in Section 1.

There are many algorithms in the literature which are designed for the case where the task size

is known. Good overviews of the single-node scheduling problem and its optimal solution are given

in [14], [11], and [6]. Despite the fact that the �le sizes are typically available to the Web server,
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very little work has considered size-based scheduling in the Web.

One paper that does discuss size-based scheduling in the Web is that of Bender, Chakrabarti,

and Muthukrishnan, [5]. This paper raises an important point: in choosing a scheduling policy it

is important to consider not only the scheduling policy's performance, e.g., mean slowdown, but

also whether the policy is fair, i.e. do some tasks starve (have particularly high slowdowns). That

paper considers the metric max slowdown (the maximum slowdown over all tasks) as a measure

of starvation. The paper proposes a new algorithm, Dynamic Earliest Deadline First (DEDF),

designed to perform well on both the mean slowdown and max slowdown metric. The DEDF

algorithm is a theoretical algorithm which cannot be run within any reasonable amount of time (it

requires looking at all previous arrivals), however it has signi�cance in being the �rst algorithm

designed to simultaneously minimize max slowdown and mean slowdown.

The Bender et. al. paper recommends against the use of SRPT, claiming that SRPT leads to

starvation. They point out that there exist worst-case inputs on which SRPT will have unbounded

max slowdown; however we show that this isn't representative of SRPT's performance in practice.

The paper also considers a trace-driven simulation of a Web server and makes the point that DEDF

has a lower starvation level than SRPT. The paper does consider a few heuristics based on DEDF

which are implementable, however, the performance of those more practical algorithms at high load

is about the same as SRPT with respect to max stretch and signi�cantly worse than SRPT with

respect to mean slowdown.

7 Conclusion

This paper proposes the idea of scheduling HTTP requests at a Web server in SRPT order. After

justifying why the sizes (service demands) of the HTTP requests are in fact known in most cases, the

paper goes on to defend SRPT in the area for which it has received the most criticism: starvation

of large tasks. The paper shows that the starvation criticism is justi�ed with respect to many

task size distributions. However, the paper shows that in the case of Web workloads, which have

a heavy-tailed highly-variable task size distribution, starvation is not an issue and in fact is more

than an order of magnitude lower than starvation seen in typical scheduling policies currently used

in Web servers.

All results in this paper are obtained both via analysis and via a trace-driven simulation. The

analysis assumes an empirically-derived workload distribution and Poisson arrivals. The trace-

driven simulation uses 4 di�erent traces of HTTP requests arriving at Web servers. The results
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from the traces are even more dramatic than those from analysis since the bursty arrival process

negatively impacts performance under traditional time-sharing scheduling, however it does not have

much of an e�ect on SRPT.

The results in our paper come with some caveats. First, using processor-sharing as our com-

parison case ignores some subtleties of scheduling in current Web servers. Second, modeling a Web

server as a single resource is a simpli�cation of real servers. For these reasons, the precise values

of our numerical results are not likely to match measurements in practice although we believe that

our overall conclusions will remain valid. In addition, there are issues which will come up in im-

plementation which we have not modelled. In particular, our assumption that the service demand

associated with an HTTP request is proportional to �le size may be a�ected by features of the

server such as caching.

The results of this paper suggest much interesting future research. On the practical level,

the current paper models servers as having a single resource. The next step is proposing minor

modi�cations to SRPT which are designed to run in multi-resource systems. The step after that is

actually implementing these scheduling policies in a Web server. We are currently pusuing these

directions.

On the theoretical level, this paper shows that on Web workloads, SRPT is far superior to PS

both with respect to performance and with respect to starvation. However, there is still some room

for improvement both with respect to mean slowdown and with respect to starvation. This suggests

the question of whether the SRPT policy can be further improved upon on these fronts by some

other practical policy.
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