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Abstract

The Internet has brought a new meaning to the term communities. Geography is no
longer a barrier to international communications. However, the paradigm of meeting
new interesting people remains entrenched in traditional means; meeting new inter-
esting people on the Internet still relies on chance and contacts. This thesis explores
a new approach towards matching users in online communities in an e�ective fashion.

Instead of using the conventional feature-vector scheme to pro�le users, each user
is represented by a personalized concept hierarchy (or an ontology) that is learnt from
the user's behavior in the system. Each concept hierarchy is then interpreted within
the Information Theory framework as a probabilistic decision tree. The matching
algorithm uses the Kullback-Leiber distance as a measure of deviation between two
probabilistic decision trees. Thus, in an online community, where a personalized
concept hierarchy represents each user, the Kullback-Leiber distance imposes a full-
order rank on the level of similarity of all the users with respect to a particular user
in question.

The validity and utility of the proposed scheme of matching users is then applied
in a set of simulations, using the feature-vector-overlap measure as a baseline. The
results of the simulations show that the Kullback-Leiber distance, when used in con-
junction with the concept hierarchy, is more robust to noise and is able to make a
stronger and more distinctive classi�cation of users into similar groups in compar-
ison to the conventional keyword-overlap scheme. A graphical agent system that
relies upon the ontology-based interest matching algorithm, called the Collaborative
Sanctioning Network, is also described in this thesis.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

A community is composed of a group of people with varying degrees of expertise in

which experts attempt to help the novices improve their skills [8]. The structure of

a community usually depends on the speci�city of the interests of the people that

comprises the community. However, in general, a community can be decomposed

taxonomically into areas of interests pursued by members of the community. Within

each area of interests, members can be classi�ed by the level of expertise or depth of

knowledge of that particular area. The divisions between areas of interest are usually

not well-de�ned; areas of interest are related to each other in various ways. As a

result, opinions of an expert (in his or her area of interest) usually matter more to

members whose areas of interest are closely related to that of the expert than to

members whose area of interests are very much di�erent.

In o�ine communities, meeting new members in the community occurs either by

chance or through other contacts the member presently knows. Since the objective of

a member in the community is to locate other members who share similar interest to

interact with, the member must potentially interact with all the members to be able

to deciding on the desired subset of members. Moreover, in the process of �nding

suitable members to interact with, meeting new members is only the �rst step; a long

process of interaction and communication usually ensues in determining compatibility

between members. As such, �nding similar users in an o�ine community is a time

consuming process.
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The following scenario illustrates the problems of o�ine communities,

There has been a disease outbreak in South East Asia. You have been

given the responsibility of assembling a team of suitable medical personnel,

engineers and environmentalists to contain the disease outbreak. The

disease is epidemic in nature and every day, hundreds of people die from

it.

You do not know who is suitable for the task. Criteria for suitability are

complicated, ranging from familarity with South East Asian climate, food

and commonly associated diseases, to experience in working with equip-

ment that the task requires. As such, you approach present individuals

you may know and ask them for their opinions on who they might know

that may be suitable for the task. You proceed to contact these new in-

dividuals and the process goes on until you have found a suÆciently large

group of individuals to interview and �lter to narrow down to a suitable

team.

The process of discovering and interviewing new people is time consuming

and expensive. After a week, you have assembled a team that you think

is suitable for the task. Meanwhile, more people die by the day and your

team has yet to leave for the region.

If there had been a more eÆcient way of locating suitable individuals in the

community dynamically, the time to assembling a team can be reduced and more

lives could have been saved.

The introduction of the Internet in 1994 brought about a change in the traditional

conception of a community. Physical distance is no longer an important constraint in

determining membership of a community. It has also allowed its users to communicate

with one another with minimal cost in time and money. Information ow can take

place easily through synchronous means, such as instant messaging, chatrooms and

telephony, or through asynchronous means, such as email and articles published on

the Web and newsgroups. With the recent poliferation of peer-to-peer networks,

14



such as Napster1 and Freenet2, the Internet has also envolved into a resource-sharing

medium between users.

Online communities also have an important advantage over traditional o�ine com-

munities; the behavior of users can be logged and analyzed to provide additional in-

formation about users that are previously unavailable prior to the Internet. A pro�le

of each user can be built up from his or her online behavior, such as items purchased

over the Internet and access patterns, to determine new content the user might be

interested in. As such, instead of relying on the user to discover new interesting

content, the system can push new information to the user and speed up the match

making process. This is exemplifed by targeted advertisements, personalized content

and shopping recommendations.

Despite the improvements in matching content to users, there has been relatively

little work on matching users to users. Nor is there an equivalent of a search engine

in the space of user-to-user matching. As of the year 2000, there are an estimated

400 million users worldwide. The Internet thus potentially provides each user with

a virtual neighborhood of 400 million neighbors. Although this allows for communi-

cation and collaboration between users of an unprecedented magnitude, there is still

a problem of �nding suitable individuals to communicate with. Analogous to the

problem of information overload, where users have to wade through a sea of content

to locate the relevant information sources, in the context of online communities, users

have to go through a huge list of other users to �nd the subset of similar or relevant

neighbors. This problem is further compounded by the fact that in order to determine

if two individuals are compatible, they must interact over an extended period of time.

Just as information retrieval solutions (such as search engines) are essential to

information systems, there is an obvious need for an analogous software component

in online communities that help a user to locate other compatible users who share

similar interests. By o�-loading the laborious task of locating similar users into

the system, the system can search through its database of users and automate user

1http://www.napster
2http://freenet.sourceforge.net
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discovery and match-making. In the disease outbreak scenario described previously,

the automated user pro�ling and search would have hastened the process of assemling

a team and thus saved many lives.

In addition to automated match-making services, the ability to quantify similar-

ity between users allows other important services to be built upon it. An important

example is Collaborative Sanctioning [12], currently being developed at MIT's Lab-

oratory for Computer Science. Collaborative Sanctioning is a new approach towards

reputation management in online communities. Each user's reputation in a com-

munity is personalized with respect to other users. However, reputation is also a

contextualized quantity. For example, a MIT professor of AI clearly commands a

high reputation in the community of AI researchers. However, within the community

of food connoisseurs, his or her opinions may not be valued highly. The ability to

measure the reliability of the professor's opinions becomes harder in �elds that may be

related to AI in varying degree such as computer science, robotics, networking. How

should the professor's opinions be evaluated in each of these �elds? These questions

are examples of two important questions in reputation management:

� Context - how does reputation of an individual change from one area of interest

to another?

� User - how does reputation of an individual change from the viewpoint of one

individual to another?

Clearly, the �rst step to solving the two problems is the ability to quantify similar-

ity between contexts and between users. The process of matching resources is called

interest matching.

1.1 Previous Work

Works on interest-matching can be classi�ed into two categories:

� Content-to-User

� User-to-User
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1.1.1 Content-to-User Matching

Content-to-User matching focuses on matching self-descriptive documents to users.

Examples of such match-making services are personalized content delivery, search

engines and personalized search engines. The following paragraphs describe examples

of each of these categories of services.

PointCast

PointCast [13] is a personalized content delivery service, in which contents that

are classi�ed under categories the user has indicated interests in are pushed

to the user's desktop. The classi�cation of contents and the process of learn-

ing the user's interest are performed manually. The taxonomy of the content

classi�cation is a simple singly-connected tree with minimal breadth and depth.

The process of user pro�ling and interest matching is relatively unsophisticated:

a match occurs when content that are classi�ed under categories that the user

has indicated interests in. As such, instead of a true personalized service, Point-

Cast functions more of a �rst-pass information �lter.

Altavista

Altavista3 is one of the more popular search engines for locating websites that

the user may be interested in. Keywords from the user are marshalled into a

feature vector that represents the user's interest in the search query. The search

engine contains a list of index websites where each website is also represented

by a feature vector, composed from important words used in the website.

The process of matching compares the feature vector of the search query against

the feature vectors of the document. The degree of alignment betwen the two

feature vectors indicate the degree of relevance of the document to the search

query of the user. The search engine then returns the links to the websites

that the matching algorithm has indicated to be highly relevant to the user's

3http://www.altavista.com
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query. This approach of matching content-to-user requires minimal input from

the user; therefore, it has the advantage of simplicity and speed. However, in

representing each website and the query with feature vectors, search engines

ignores conceptual relations between keywords. As a result, search engines fail

to return links to websites that may be highly relevant to a query while written

up in a vocabulary of words that is di�erent from the user's input.

Ontology Based Personalized Search

Because each keyword has a di�erent mearning, depending on the context,

search engines often return results that may be completely irrelevant to the

user's needs. The Ontology Based Personalized Search [14] improves upon com-

merical search engines by including the user's pro�le in the matching process.

The user's pro�le can be learned through explicit feedback about the quality

of websites or observing the user's access patterns when sur�ng the web. The

user's pro�le is also another feature vector, with each keyword representing the

context that has been associated with the user's past search queries. The feature

vector is combined with the search query into a feature vector that represents

the user's needs more accurately.

Although Personalized Search introduces the use of user pro�les, the matching

algortihm remains fundamentally the same as that used in most search engines.

As such, it also su�ers from the inability to capture semantic relations between

keywords.

1.1.2 User-to-User Matching

User-to-user matching focuses on matching up users in a community. By matching

up users, other value-added services can be built upon groups of similar users such as

automated recommendations. Some content, such as music, movies or some document

formats, are diÆcult to analyze and do not allow automatic extraction of representa-

tive keywords. As such, the conventional method that relies on content description

to matching content to user cannot be applied. Instead, content-to-user matching

18



can be built on top of user-to-user matching by assuming that users that are similar

to one another tend to be interested in the same content. The following examples

illustrate present works on matching users to users.

Amazon.com

Amazon.com's Recommendation Service [1] recommends new items to its cus-

tomers by analyzing the customer's purchase history and comparing it to other

customers. It utilizes explicit rating feedback on purchased items from its cus-

tomers so as to �netune the recommendations. The rationale behind the service

is that if two customers have the same preferences in the same area of interests,

it is quite likely that a customer will be interested in the item that the other

customer has rated highly.

GroupLens

GroupLens [16] was a pioneering work in collaborative �ltering and recommen-

dation services.It was conceived as a system that can help netnews readers �nd

articles and increase the chances that they would �nd useful reading. Although

the purpose of GroupLens is to help people make choices based on opinions of

other people, the underlying theme was to be able to predict the interest of a

reader in an article based on the heurisitc that people who agreed (on the quality

of a common news item they have read) will probably agree again.

Amazon.com and GroupLens are two examples of collaborative systems 4 in which

instances are rated and used as a heuristic in predicting future interests of the user.

Although these systems use the notion of similarity implicitly, they are not designed

for matching users to users explicitly. As a result, higher level services (such as

reputation management) cannot be built on top of these systems.

Yenta

Yenta [7] is a system, developed at the MIT Media Lab, that allows automated

generation of clusters of users who are interested in the same topics. Each

4See [2] for more references
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user is represented by a software agent in the virtual community. First contact

between users is modeled by the distributed multi-agent nature of the system.

Yenta is designed to solve the problem of meeting new people in the community

and to improve collaboration between groups of people who are working on

similar areas of interests.

Retsina

Unlike Yenta, Retsina [17] is a general match-making system for software agents.

Agents represent resources in the network; they may represent human users in

the community or resources such as servers and printers. Agents communicate

with each other in a language called LARKS. The semantics of each message is

closely related to agent communication languages such as Knowledge Query and

Manipulation Language (KQML) [6] and Agent Commmunication Language

developed by the Foundation of Intelligent Physical Agents (FIPA-ACL) [3].

When the user of a system desires to locate a resource, he creates a logical

statement that contains keywords that may describe the resource and the system

will automatically match the statement with the resource description it current

knows of. The system will then return the directions to resources that can ful�l

the needs of the user.

Yenta and Retsina are two important projects in the research of matching users

to users. However, their approaches to matching are also based on the feature vec-

tor technique employed in content-to-user matching services. The cosine similarity

equation at the core of these interest matching approaches is

Similarity =

�!
F1 �

�!
F2

j
�!
F1jj

�!
F2j

(1.1)

This equation has remained relatively unchanged since its introduction in Infor-

mation Retrieval [18] in the 1975. Although this equation is the engine behind many

information search solutions, the validity of its application has often been questioned.
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For the equation to be semantically sound, each feature in the feature vector has to

be conceptually disjoint to other features in the vectors. However, most applications

clearly forsake this constraint for simplicity of use.

The cosine similarity algorithm has the advantage of simplicity. However, in

matching users to users, the design concerns are di�erent. There are no semantic tags

attached to each user. Moreover, representing a user with a simple set of keywords

is insuÆcient; it lacks the proper semantics to describe the complex nature of a user.

Feature vectors ignore conceptual relations between keywords. For example, Porshe

and Mercedes are clearly strongly related to each other in many ways. However, in

the feature vector representation, they are assumed to be disjoint concepts. This is

usually not a problem in the space of content-to-user matching, because the document

contains many words. Therefore, it is likely that it contains many keywords that

are related. However, in user-to-user matching, using feature vectors to represent

each user and the cosine similarity as the matching algorithm is clearly lacking and

semantically unsound; it will not be able to match users who have interests in closely

related �elds but are described by di�erent keywords. The cosine similarity is also

highly restrictive and does not scale to other representations of the user, such as

neural networks and semantic nets.

1.2 Thesis Contributions

The objective of this thesis is to propose the use of a personalized concept hierarchy

- or an ontology - to represent each user and a novel interest-matching algorithm

that utilizes the Kullback-Leibler distance and other concepts in Information Theory

to match users in online communities. User representation and pro�ling is properly

de�ned and applied within the framework of ontologies to yield a more adequate form

of user pro�les. The Kullback-Leiber distance is then shown to be a general approach

to matching user pro�les and is independent of the choice of user representation. The

study includes a set of simulation data to determine the e�ectiveness of the proposed

algorithm compared to the traditional means of matching users.
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Chapter 2

Theory

In order to arrive at a meaningful interest matching algorithm, it is important to re-

view some social aspects of online communities and lay down guidelines for performing

interest matching.

2.1 Considerations

In many communities (be it online or o�ine), the concept of similarity between users

is not well-de�ned. To be able to match users, the detailed psychological pro�le and

the history of social activities of each user must be known completely. Although, it

is diÆcult to obtain the former pre-requisite, the Internet has made it easier to track

activities of the user. The problem of pro�ling users is further compounded by the

fact that every user's interests change over time and are dynamic. As such, to match

users, a third party observer has to track the activities of each user and use the data

collected to estimate the user's interests.

It is in everyone's best interest to cooperate and share resources. This allows for

greater progress to be made compared to that by a singular e�ort. As such, users usu-

ally interact with others who engage in similar activities to obtain and/or to provide

assistance with obstacles encountered. This provides a useful social observation that

users who are alike tend to engage in similar activities. The converse of the statement

is not necessarily true; it is not clear that users who engage in similar activities are

23



alike. However, many companies, such as Amazon, accepted the previous statement

as a social heuristic and have used it to great success. The heuristic thus allows the

observer to cluster users into groups. Each group consists of users who tend to engage

in common activities, and therefore may be assumed to share similar interests.

In a computerized environment, where each user is represented by an interest

pro�le and the match making service is an algorithm, the heuristic must be re�ned

into a more precise mathematical statement. In this thesis, an interest pro�le is a

description of the entity's interests. It can be constructed either from explicit feedback

from the user, or implicit observations of the activities of the user (See Chapter 3).

The interest-matching algorithm then uses the interest pro�les to generate a metric

that measures the similarity of the interest pro�les.

The term similarity can be de�ned so that User A is similar to User B if and only

if User A's interests pro�le is able to describe User B accurately. The caveat then

lies in the precise quanti�cation of the term accurately. The similarity measure (or

just similarity), should satisfy the following guidelines:

� The algorithm must be able to rank every user in the community for the level

of similarity with respect to any user.

� For two interests pro�les that are exactly the same, the algorithm should gen-

erate the value that represents the maximum level of similarity.

Based on the discussion to this point, an error function is an ideal candidate for

the interest matching algorithm. However, before selecting an error function, it is

necessary to select an appropriate mathematical representation of an interest pro�le.

2.2 Ontologies as Interest Pro�les

Ontologies have garnered much interest in Arti�cial Intelligence. According to Tom

Gruber, an ontology can be de�ned as \a speci�cation of a conceptualization" [9].

Gruber then continues to explain that
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A

Figure 2-1: A tree representation of a simple ontology

... an ontology is a description (like a formal speci�cation of a pro-

gram) of the concepts and relationships that can exist for an agent or a

community of agents. This de�nition is consistent with the usage of on-

tology as set-of-concept-de�nitions, but more general. And it is certainly

a di�erent sense of the word than its use in philosophy.

What then quali�es as an ontology? Ontologies can be realized in a variety of ways,

ranging from a set of statements about what exists to a graphical representation. In

this thesis, an ontology is simpli�ed into a concept hierarchy, an example of which is

shown in Figure 2-1.

In this thesis, the semantics of the tree representation of an ontology is de�ned as

follows:

� Each node represents a distinct concept

� Each directed edge represents a sub-concept relationship between the parent

(the outgoing node) and the child node (the ingoing node)

25



In Figure 2-1, node A has two child nodes B and C. This means that there is

a concept labelled A and it can be classi�ed into 2 sub-concepts, B and C. For

simplicity, a tree representing an ontology is assumed to be a singly-connected tree

unless stated otherwise. This entails that for each parent node, its child nodes are

mutually exclusive. The child nodes of each parent are also assumed to be exhaustive,

the child nodes form the complete set of sub-concepts of the parent node.

In the tree representation of the ontology, the root node can be regarded as the

simplest classi�ciation of the user's interests - simply labelled Interests. The nodes

in the next level of the tree then represent the �rst broad categorization of the user's

interests. Subsequent levels of the tree describe increasingly �ner categorization of

the interests, right down to the leaf nodes of the tree.

Although the de�nition of an ontology does not limit the representation of the

ontology, a set of keywords, as used in many search engines and other matching

algorithms, does not qualify as an ontology. The at, strutureless nature of a keyword

vector (or feature vector) fails to capture the relations between concepts, which are

represented by keywords in the vector. Therefore, a simple keyword vector is an

inadequate representation of a user.

An ontology can thus be used to specify the user's interests, with the tree-

representation is the realization of that speci�cation. However, to construct an ontol-

ogy for each user is a diÆcult task. Each user may have a di�erent ontological view of

the world; concepts and relations may di�er on an individual basis. However, instead

of generating a new ontology for each user, each user can adopt a standard, prede�ned

ontology in the community sanctioned by the majority of users. Ontologies like the

Yahoo Taxonomy1, Cyc Knowledge Database2,and Open Directory Project3 are built

by a large population of users. Therefore these ontologies are universal within each of

their own domains. Incidentally, most of the ontologies used in industry are already

in a tree representation.

1http://www.yahoo.com
2http://www.cyc.com
3http://www.dmoz.com
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Since each user is to adopt the standard ontology in the community, each ontology

must then be personalized to reect each user's interests and preferences. Since a

user's interests may encompass several areas, each pursued with di�ering degrees of

enthusiasm, the personalized ontology must be able to capture such level of detail.

2.2.1 An Ontology as a Probability Tree

A probability tree is a useful mathematical construct that imposes a hierachical struc-

ture on the outcomes of a random variable. Outcomes (usually related) may be

grouped in clusters and clusters can be recursively included into larger clusters, thus

forming a tree structure. The original random variable is represented by the root

node of the tree. Child nodes of the parent node can be considered as outcomes of a

random variable represented by the parent node. If the child node itself is the root

node of a subtree, it is also a random variable to which the outcomes are its child

nodes. Figure 2-2(a) shows a graphical representation of a random variable in terms

of a shallow tree. Figure 2-2(b) is a reorganization of the same random variable into

clustered outcomes.

As a result of the reorganization, the probability associated with each edge is

changed. In Figure 2-2(a), to represent that each outcome has an associated proba-

biltity that the outcome will be realized, each edge is associated with a probability.

Figure 2-2(b), due to the tree structure, each edge is associated with a conditional

probability in which the probabilty of an outcome (a child node) being realized is

dependent on its associated random variable (its parent node).

Along with the previous treatment of the tree representation of the ontology, the

probability tree paradigm o�ers a way to personalize the standard ontology. The

ontology is a recursive classi�cation of the leaf nodes. The root node represents the

Interests random variable. Performing an experiment to obtain the outcome of the

random variable is equivalent to asking the user, \What is the user's interest?". The

outcomes of the random variable are the leaf nodes of the tree. Each parent-child

node relationship in the ontology can be quanti�ed by assigning probabilities to each

parent-child edge. The probability associated with each outcome is the product of all
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(b) A hierachical rearrangement of outcomes

(a) A graphical representation of a random variable (root node)
and outcomes (child nodes)
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Figure 2-2: A Probability Tree
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A

B C

D E F G

P(C|A) = 0.1

P(G|C) = 0.5P(D|B) = 0.9
P(E|B) = 0.1

P(F|C) = 0.5

P(B|A) = 0.9

Figure 2-3: An Interest Pro�le

the probabilities along a single path leading from the root node to the leaf node.

Figure 2-3 shows an interest pro�le of a user, which is a superposition of a proba-

bility tree with Figure 2-1. The ontology in Figure 2-1 is assumed to be the standard

ontology of the community to which the user belongs. The semantics of Figure 2-3

is as follows, \Given A, the probability of the user being interested in B is 0.9 and

in C is 0.1. Given B, the probability of the user is interested in D is 0.9 and in E

os 0.1. Given C, it is equally likely that the user is interested in F and G." From

these basic equations depicted in Figure 2-1, other probabilities can be generated by

the following rules:

� The probability from node x to another node y further in the tree is the product

of all the probability edges that lead from node x to node y. For example,

PA;C = PA;B � PB;C = 0:09.

� If there are no edge(s) from node x to node y, Px;y = 0. For example, given the

topic B, there is no way that the user is interested in F , ie. PB;F = 0.

An interest pro�le is thus a singly-connected concept hierarchy with a set of cor-
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responding probabilities associated with each edge in the tree. As such, each user

can thus be said to be represented by a probability distribution that spans the same

domains of interest as other users do. Having de�ned the interest pro�le, the error

function can be de�ned as a function that computes the deviations between probabiliy

distributions.

2.3 Basics of Information Theory

Information Theory is the study of ensemble properties of probabilistic distributions

[5]. In particular, it is used to obtain measures of theoretical eÆciency in extracting

information out of probabilitistic systems and to answer fundamental questions like

\What is the uncertainty of a random variable?". In the previous section, since

each user is represented by a probabilistic distribution over a standard ontology,

information theory can be used to derive ensemble properties of each user.

2.3.1 Entropy

Entropy, H(p), where p is the probability function of a random variable X, is a

measure of the average amount of information required to describe outcomes of X.

It is given by

H(p) = �
NX

i=1

p(X = xi)log(p(X = xi) (2.1)

where xi is one of the N possible outcomes of X. From Equation 2.1, H(p) has a

minimum value of 0 when to every experiment, the outcome is always the same. H(p)

achieves its maximum value of N when there is an equal likelihood to each of the N

possible outcomes occurring. Since H(p) is a measure of uncertainty, a value of 0

represents complete certainty and a value of N represents the maximum uncertainty.

In some situations such as probability trees, there may be bene�ts in organizing

the outcomes of the random variables into groups. The entropy formula can then be
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Figure 2-4: (a) Simple Probability Tree (b) Modi�ed Probability Tree

modi�ed to account for the structure of the random variable. Consider Figure 2-4(a)

and Figure 2-4(b) 4.

Both probability trees represent the same random variable. However, in the mod-

i�ed probability tree, outcomes S1 and S2 is grouped into a subtree. The entropy

formula can be re-written to

H = � [p1logpi + p2logp2 + p3logp3] (2.2)

= � [(p1 + p2)(
p1

p1 + p2
logp1 +

p2

p1 + p2
logp2) + p3logp3] (2.3)

= � [(p1 + p2)log(p1 + p2) + p3logp3] + (p1 + p2)H12 (2.4)

(2.5)

4Adopted from Information Theory for Systems Engineers[11]
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where

H12 = � (
p1

p1 + p2
log

p1

p1 + p2
+

p2

p1 + p2
log

p2

p1 + p2
) (2.6)

Equation 2.5 can be generalized to probability trees of arbitrary depth.

Hy = �
NX

i=1

pxi
log(pxi

) + pxi
Hxi

(2.7)

where y is the root node of the sub-tree, xi is one of the N immediate child node of

the node y and pxi
is the probability of outcome of the probability at y in the subset

of outcomes represented by xi. In summary, the entropy associated with the parent

node (or the root node of the sub-tree) is the entropy of its immediate outcomes (the

child nodes) and the weighted sum of the entropy associated with each child node,

which themselves are root-nodes of their sub-trees beneath them.

This result can be used to measure the uncertainty of an ontology that is repre-

sented in a tree structure as described previously, and therefore the unpredictability

of a user's interests at each moment in time.

2.3.2 Kullback-Leibler Distance

Related to the concept of entropy is Kullback-Leibler distance, or KL distance. KL

distance (also known as relative entropy),D(pjjq), is a measure of the distance between

two distributions.

D(pjjq) =
NX

i=1

pxi
log

pxi

qxi

(2.8)

KL distance, D(pjjq), measures the error in predicting the uncertainty of a ran-

dom variable X when its probability distribution is assumed to be q while the true

distribution of X is p. In other words, if the true distribution p is used, H(p) is the
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uncertainty of X. However, if instead q is assumed, the resulting uncertainty of X is

H(p) +D(pjjq). Note that D(pjjq) does not neccessary equal to D(qjjp) and it does

not obey the triangle inequality of distance. As a result, it is not a true distance

measure. Nonetheless, KL distance has useful properties:

� D(pjjp) = 0

� D(pjjq) > 0 if p 6= q

As such, KL distance is usually used as a measure of the deviation of q(x) from

p(x).

The KL distance is composed of two components,

D(pjjq) = �(
NX

i=1

pxi
log(qxi

)�
NX

i=1

pxi
log(pxi

)) (2.9)

The �rst component is the entropy of the random variable encoded with the

probability distribution q, while the second component is the actual entropy of the

random variable. Since KL distance is the linear superposition of the two components,

the derivation of the recursive equation in Section 2.3.1 can be applied to KL distance.

Equation 2.8 can be rewritten into

Dy = �
NX

i=1

pxi
log

pxi

qxi

+ pxi
Dxi

(2.10)

2.4 KL Distance as a Similarity Measure

The previous sections on ontologies and Information Theory set the tone for the use

of Kullback-Leibler distance as the measure of similarity between users.

Consider the usual representation of a user or search inputs, where each keyword

Fi in the feature vector (f1; f2; f3:::) is a feature the user is interested in. The key-

word matching algorithm uses the degree of overlap of the keywords to represent the
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similarity. The cosine similarity measure (which is essential the inner product of two

keyword vectors) is the extension of the basic keyword overlap to take into account

non-binary weights of keyword vectors.

The keyword vectors can be re-formulated to use KL distance as the matching

algorithm. The feature vector can be recast into a shallow probability tree where

each of the features, Fi is an outcome to the root node that represents the user's

interests (or the search input).

The probability associated with each edge can be regarded as a measure of the

relative importance (or relevance) of the concept represented by each child node to

each user. KL distance can then be found by using equation 2.8, where the user is

represented by the probability distribution p(x) while the other user (or document)

is represented by q(x).

The advantage of using KL distance over keyword overlap become clearer in gen-

eral problems that involves multi-level probability trees. In such problems, the se-

mantics of the keyword overlaps becomes unclear because it does not consider the

relations between concepts. In contrast, KL distance remains obvious; it is simply

the measure of the deviation between the probability distributions.

There is, however, a slight di�erence in interpretation of the tree structure de-

scribed in Section 2.2 and Section 2.3. In probability trees described in Section 2.3,

the use of multi-level probability trees is arti�cial; the KL distance is the same in a

shallow probability tree and its multi-level form. In the treatment of the ontologies

however, the probabilities assigned at each level in the tree are usually independent

of the probability distributions at other di�erent levels of the tree. The tree structure

of the ontology can be attened into a shallow tree, where the probabiltiy of each

child node can be computed by multiplying all the probabilities in the path from the

root node to same child node in the multi-level representation; the KL distance will

still be the same in both representations.

This appears to be an argument in favor of using keyword overlap rather than

KL distance. Afterall, if the multi-level probability trees can be attened into a 1-

level tree, there can also be an equivalent feature vector. However, it is important
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to keep in mind the implicit structure of the attened tree; the keyword overlap

algorithm ignores such structure in the tree. Therefore, when learning the user's

interest pro�le, there are more advantages to use ontologies than feature vectors.

While the semantics of keyword overlap is only clear in feature vectors (and the

equivalent to the shallow tree), the interpretation of KL distance is the same for any

arbitrary tree structure. I believe that tree-representations of the ontology are richer

and more accurate descriptions of a user's interests, KL distance is therefore more

general than keyword overlaps as a similarity measure.

For a function to qualify as a metric, it needs to satisfy the positivity, symmetry

and triangle inequality requirements. KL distance, however, satis�es the positivity

clause. As such, it is not a metric in its strictest mathematical sense. However, KL

distance remains widely used as a deviation. This is further discussed in Chapter 4.
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Chapter 3

Interest Matching in Online

Communities

3.1 Learning the Interest Pro�le

Before interest matching can be automated, the system must have accurate descrip-

tions of each user. The process of learning the descriptions is generally called user

pro�ling. Within the context of interest matching, user pro�ling is the process of

learning the interest pro�le of each user, or personalizing the standard ontology.

User pro�ling can be a complex process. In order to obtain an accurate repre-

sentation of the user, the system must monitor the user activities in certain ways.

Data mining techniques are then applied on the collected data to extract possible

patterns inherent in user activities. Although this thesis does not focus on pro�ling

users, the process of interest matching will not be complete without introducing ways

of learning the interest pro�le.

Before exploring the usual methods of data collection, it is useful to di�erenti-

ate between a class and an instance. A class represents the area of interest and is

synonomous with a concept. An instance is a realization of a class. For example, in

the Yahoo Ontology, Art History is a class, while websites that are classi�ed in Art

History are instances of the class. In the tree representation of an ontology described

in the previous chapter, each node represents a class. Based on this di�erentation,
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ways of obtaining user data can be classi�ed as follows:

Feedback Forms The structure of the ontology can be exposed to the user. Each

user can then be asked to highlight their areas of interest and post the selections

back to the system. For example, in Figure 2-1, the user can select nodes B

and D, and the personalized ontology represents his or her interests.

Rating Systems Instead of asking each user to select the classes of interests, the

system can ask the user to rate an instance of the class. For example, in the

context of Art History, the user is asked to rate the articles that are under

that genre. For each rating of approval, the weight of the class in the ontology

can be increased to reect increased relative importance. If the user gives a

negative rating, the weight is decreased to reect dislike. In general, if the

user tends to rate instances highly, it is reasonable to assume that the user

would be interested in the class to which the instances belong. This method of

user pro�ling produces a better interest pro�le because the user does not have

conscious control over his or her pro�le. The disadvantage is the time required

to learn the user pro�le.

Access Patterns The two previous methods require explicit feedback from the user.

However, in most cases, it is undesirable to interrupt the user from his activities

to ask for feedback. Sites like Ebay 1 and Amazon, which require user feedback,

face the problem of many users not taking the time to reect his or her opinions

on the item or area. As a result, the process of learning the user's interest

pro�le can be prolonged and become less accurate. Less invasive, or implicit

techniques of user pro�ling have been developed to circumvent this problem

[4]. The system can observe the user's activities and the observations can then

be used to estimate the user's level of interest in instances through the use

of heuristics. For example, in learning a user's interests in various categories

of websites, if the user accesses the same sites regularly and spends a copious

1http://www.ebay.com
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amount of time browsing through the site, the system can safely assume that the

user has a higher relative interest for the category to which the websites belong,

compared to other categories whose the sites are accessed less frequently.

In the latter two methods, there may be a danger in assuming that if the user shows

interests in instances of the class, the user is likely to be interested in that class itself.

After all, there can be a wide variation of quality in the websites that are classi�ed

under Art History. On the other hand, if there are a wide disagreement about the

quality of the instances, it is likely that the class requires further decomposition into

sub-classes to which the instances are to be reclassi�ed. 2

Although one may use a variant of the above methods to gauge user interests, the

resultant interest pro�le learnt is independent of the method of data collection. Since

it is the aim of this thesis to compare pro�les rather than to learn pro�les, unless

stated otherwise, the interest pro�les used in the experiments can be assumed to be

obtained by using feedback forms.

3.2 Sensitivity Analysis

This thesis presents an analysis of a number of simulations exploring the ideas de-

scribed. The goal of the simulations is to test the validity of the ontology-based

approach. A sensitivity analysis is performed to compare the behavior the ontology-

based algorithm with the keyword-overlap algorithm (speci�cally the cosine similarity

algorithm).

The ontology used in the simulations is the concept hierarchy of the CenterWatch

Clinical Trials 3. It is a classi�cation scheme for clinical trials all over the United

States, where each clinical trial classi�ed into various �elds of medical studies.

The ontology is a singly-connected tree with a depth of 3. It contains 6000 nodes,

and each node is assigned a unique id. Each node has an associated weight attribute

that indicates the relative importance of the node with respect to other nodes. Each

2For more examples of user pro�ling, please refer to [15]
3http:www.centerwatch.com
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Figure 3-1: Interests Pro�le of (a) A (b) B (c) C

node starts with a small default value. This ontology is adopted by an imaginary

user of the system. For each user, to simulate interest in a particular area (node), the

weight of the node is raised to a stronger number so that when compared to another

node with the default weight, the simulated user has a 90% chance of picking the

node of interest over the unhighlighted node.

3.2.1 Simple Cases

Consider three users A, B, C in the network that has adopted a common ontology as

shown in Figure 3-1. Each of them has highlighted certain aspects of the ontology that

they are interested in. The probabilities associated with each edge are the weights

assigned to the corresponding child node normalized with respect to the sum of the

weights of all its sibling nodes and itself.
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On �rst look, it is intuitive to say that users A and B are more similar to each

other compared to user C. After all, they only have a slight disagreement over the

subtree node B as to how much they like D and E. User C, however, shows a strong

bias for node C. The ontology-based algorithm takes account of such multi-level

classi�cations and relations between each node. The resultant measures are:

D(AjjB) = 0:033

D(AjjC) = 1:759

The smaller the KL distance, the more similar two users are. Therefore, in com-

paring users A, B and C, the algorithm predicts that user A and user B are more

similar to each other than user C is.

The more interesting problem is to rank the community in terms of similarity with

respect to user C. Which of user A or user B is more similar to user C?

D(CjjA) = 1:759

D(CjjB) = 1:761

The algorithm determines that user A is more similar to user C than user B.

Although it is not immediately obvious, the subtree of node B of user C is similar

to user A's interest pro�le. Although the keyword-overlap algorithm should give the

same indication, an ontology o�ers a better insight as to how users are similar (or

dissimilar). It allow an observer to focus on the section of the two interest pro�le

that generates in the increase of the similarity measure.

3.2.2 Mutations

To observe how the ontology-based algorithm is able to cluster users into similar

users compared to the keyword-overlap algorithm, consider two users who have the

exact same interest pro�le with a small subset of nodes of the ontology highlighted

as common interests (10% of the total number of nodes). Each interest pro�le is

allowed to evolve independently by subjecting it to a mutation at every time step.
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Figure 3-2: Mutations at Depth of 2

A mutation is the act of adding or removing interests to a user's pro�le. Adding or

removing interests occur with equal probability of 0.5.

The keyword-overlap algorithm is expected to decrease from 1 in a hyperbolic

manner as it is the simple normalized count of the decreasing coincidental interests.

In Chapter 2, I have argued that a feature vector is essentially a shallow single-level

tree. Therefore, If mutations are constrained to a single level of the tree, the behavior

of the ontology-based algorithm should be similar to the feature-vector algorithm.

Constraining to Single Levels of Mutation

As expected, the general trends of both the ontology-based and feature vector-based

algorithm exhibit similar characteristics when mutations are constained to one level

of the ontology. Unlike the smooth curve of the feature-vector based algorithm, the

graph of the ontology-based algorithm, however, exhibits some randomness about the

general trendline. This is due to the fact that although mutations are constrained
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Figure 3-3: Mutations at Depth of 3

occur at the same level, they can occur in di�erent sub-trees of the ontology.

Figure 3-4(a) shows the part of the ontology before mutation. Figure 3-4(b) and

(c) are di�erent possible scenerios for mutations to occur while being constrained to

the same tree level. In Figure 3-4(b), the mutation occurs in the same subtree as the

original area of interest was. In Figure 3-4(c), the mutation occurs in another subtree

of the ontology at the same level. Based on the description in Chapter 2, the new

ontology in (b) remains more similar to (a) than (c) is to (a). The lack of smoothness

of the curve is a result of these considerations.

Another interesting point in Figure 3-2 in how the rate of change in the ontology-

based algorithm di�ers when mutations are constrained at di�erent levels of the on-

tology. In Figure 3-2(a), where mutations are allowed only at level 2, the rate at

which the two users become dissimilar is considerably faster than in Figure 3-2(c)

where mutations are only allowed in level 3. Note that the feature-vector based al-

gorithm exhibits the same behavior in both constraints. It is a direct consequence

of the tree-based structure of the ontology. From a social standpoint, this is useful

because although two users may di�er in their preferences, the deeper in the ontology
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Figure 3-4: Di�erent Mutations
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Figure 3-5: Graph of Unconstrained Mutations

tree the di�erences occur, the less dissimilar they are. After all, if two users like cars

while one prefers Benz and the other Porsche, even if their interests changes within

the sub-tree with the root node being cars, they are more similar to each other as

compared to another user who prefers food to cars, both being siblings.

Unconstrained Mutations

Figure 3-5 shows the results when the mutations are allows to occur at any point in

the tree. The graph of the ontology-based algorithm shows strong jumps at certain

points of teh curve while the curve of the feature-vector algorithm remains smooth.

The cause of the randomness is similar to the explanation presented in the previous

section on mutations migrating between subtrees. However, in this case, mutations

can migrate between levels of the tree (shown in Figure 3-6). This causes the violent

swings in the curve.

An interesting portion of the ontology-based curve in Figure 3-5 is the region

around the origin, before the sudden increase in the gradient that. Although there

has been some mutations, the resultant mutated interest pro�le remains relatively
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Figure 3-6: Di�erent Mutations
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similar to each other, compared to the later portions of the curve.

The provides a useful heuristic for clustering users in a community. In a large

community, any interest pro�le can occur with an equal probability as any other

ontologies. All the interest pro�les in the community can be ranked in ascending dis-

similarity with respect to a single interest pro�le using the ontology-based algorithm.

The graph of the resultant measures are likely to be similar to Figure 3-5 with violent

upswings at certain points of the curve. All the users ordered before the �rst upswing

can be considered to be the most similar to a particular user in the whole community.

This clearly has signi�cant advantages over the feature-vector approach. Since the

feature-vector approach will result in a smooth graduation from the point of maximal

similarity, it is diÆcult to de�ne a cut o� point between users who are similar and

dissimilar to any particular user.

3.2.3 Noise Tolerance

A useful matching algorithm must be able to tolerate noise in the probabilities of the

interest pro�le. It is likely that the user pro�ling process is not 100% accurate and has

to be re�ned over time. This is especially true in pro�ling the user through ratings

and background observations. Therefore it is desirable to compare the accuracy of

both the ontology-based and feature-vector based algorithms.

Consider the CenterWatch ontology that is a classi�cation of the clinical trials in

the United States. There are three interest pro�les: A, B and C. They have the

same exact weights on each node at time 0. Each node has a default weight of 10.

Interest pro�le A is assumed to be static. Interest pro�le B and C has a randomly

selected subset of nodes whose weights vary according to a Gaussian distribution,

thus simulating noise. The subset is constant over the entire process of simulation.

For B, the distribution of the weights have a mean of 10, while the distribution for

each of the selected weights has a mean of 9. The standard deviation of all the

Gaussian distributions is varied from 0 to a standard deviation of 2, which is twice

the di�erence of the two means.

For ontology-based algorithm, the sum of the weights of all the siblings that
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Figure 3-7: Graph of Errors versus Noise Strength

share that common parent node is normalized to 1 so as to recast the interest pro�le

into a decision tree. For the keyword-vector based algorithm, all the nodes in the

CenterWatch ontology are attened into a keyword vector.

For a series of steps, the standard deviation is increased by a small amount to

reect an increased amount of noise in the system. All the nodes in the selected

subset for B and C are resampled to obtain new weights. The new interest pro�les B

and C are then compared to interest pro�leA using both the ontology-based algorithm

and the keyword-vector algorithm. A mismatch occurs when the algorithm indicates

that C is more similar to A than B is to A. For each step, a number resampling

of the weights of all the nodes is performed to �nd the average number of mismatch

each algorithm is likely to make.

Based on the previous description, it is expected that the matching algorithm

would say that interest pro�le B is more similar to A than C is to A.
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3.3 Interest Matching in Online Communities

Interest matching can be deployed in online communities in a variety of ways. In peer-

to-peer networks, users tend to have resources that similar uses would be interested

in. As such, a challenge in online communities would be to locate similar users in

the shortest amount of time. Interest matching can also be applied as a heuristic to

locate similar individuals.

Consider a community of entities, each containing an interest pro�le. The goal of

each entity is to locate the top two most similar agents to itself in the network. To

model peer-to-peer networks and most o�ine communities, each entity starts o� by

knowing a small number of entities in the community. When simulation proceeds,

each entity proceeds to contact other entities it knows in the network to learn other

agents in the network previously unknown. In the simulation system, each agent is

assigned a small ontology with weights, varying from 1 to 100, randomly assignd to

each node in the ontology. The similarity measure is the KL distance adopted in this

thesis.

When an entity receives a request for new contacts, there are two strategies for

selecting a subset of agents to return,

� random - it selects a random subset of entities to return to the requesting entity

� best - it returns the subset of most similar entities to the the requesting entity

The number of messages passed by each entity before the top two entities indenti-

�ed remain unchanged is used as an estimate of the eÆciency of the strategy adopted;

the smaller the number of messages passed before the top two users stabilize, the bet-

ter the stratregy adopted. Clearly, each user's time-to-stability is di�erent. As such,

the average time-to-stability is computed for all the entities' in the network.

Figure 3-8 shows the graph of the average number of messages before the top two

entities are �nalized versus the number of entities in the network. The trend in both

strategies follows a logarithmic dependence with respect to the number of agents in

the network. Because of the limited number of contacts that an entity knows at each
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Figure 3-8: Graph of Number of Messages versus Number of Agents

moment in time, it essentially traverses the network of entities in a manner akin to

traversing a tree. As shown in the graph, the best strategy clearly reduces the average

number of messages by half when compared to the random strategy.

3.3.1 The Collaborative Sanctioning Network

The simulation system described in the previous section shows that the similarity

can be used as a heurisitic in locating other entities more eÆciently. Preliminary

work in deploying the interest-matching algorithm has taken the form of agents in

the peer-to-peer network. Each agent is a program connected to the network and

is capable of automated discovery of other agents in the network. In addition to

discovery protocol, agents can communicate with other agents in the network via

message passing. In the context of our research, the network of agent is simulated in

a prototype environment called Collaborative Sanctioning Network (or CSNet). In

addition to discovery protocols, each agent also contains an ontology that represents

the user's interest. The program strucure is descibed in Appendix A.
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Figure 3-9: Initial display

Results

Each entity in the network is comprised of the three inter-connecting modules. The

goal of each entity is to �nd out which entities in the network are most similar to

itself. This is achieved by message passing. To observe how the system evolves, a

graphical overlay is written over the network of entities.

Each entity is represented as a dot and placed on the main display as it is created

in the network. The upper left segment shows the interest pro�le of each entity

when selected, while the lower left segment shows which entities in the network it has

contacted and their present ranking with respect to itself. Figure 3-9 is a snapshot

of the image at the time near program initialization.

As an entity starts to contact other entities, it will have a ranking of all the entities

it knows at any moment in time. To accentuate the rankings, each entity will pull the

highest ranked entity (that it knows at that point in time) in the network towards

itself (in terms of the graphical distance). To prevent the eventual collapse of every
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Figure 3-10: Final display

entity to a single point, each entity will also push the lowest ranked agent (that it

knows at that point in time) away from it. The system is allowed to evolve until

the point where the relative positions of each entity remains relatively unchanged.

Figure 3-10 shows a snapshot of the �nal state of the graphical representation of the

entities in the network.

In Figure 3-10, out of the 20 entities in the network, several clusters of entities can

be delimited. Each cluster is the maximum inclusion of the entities that has ranked

another entity in the network as being most similar to itself. Since each entity want

not preclassi�ed, one can interpret each cluster to represent a dynamic context in

which each entity can be classi�ed into. This could allow systems, such as reputation

management and dynamic chatroom, to be built on top of the concept of dyamic

clusters and contexts.

The graphical display introduces a controversy into the interpretation of the clus-

ters and the validity of the relative positions of the clusters. See section 4.2, for

further discussions.
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Chapter 4

Discussions

This chapter focuses on the implications of using the Kullback-Leiber distance as a

similarity measure and further discussions of the experimental results obtained.

4.1 Kullback Leibler distance as a metric

Kullback-Leiber distance is a measure of the deviation between two probabilities

distribution. In this thesis, each user is represented by a probability distrubution

over a random variable. The outcomes to that random variable is the same for each

user. A metric must satisfy the three following properties:

1. positivity: 0 < f(x; y) <1 ; x 6= y and f(x; x) = 0

2. symmetry: f(x; y) = f(y; x)

3. triangular inequality: f(x; y) � f(x; z) + f(z; y)

where f is a function that maps x and y to a metric space.

KL distance satis�es neither the symmetry clause nor the triangular inequality.

As a result, it does not represent a true metric distance between the two distribution.

However, it does satisfy the positivity clause. As a result, in many �elds of application,

it is regarded as a measure of deviation between p and q.

In Section 3.3.1, a graphical representation of the entities is described. The cre-

ation of the clusters raises questions of the validity of the use of KL distance.
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Implications of lack of symmetry to an external observer

Since the distance between users is not symmetrical, a spatial representation of the

distances between the users may not be meaningful. However, it is important to

realize that the approach in this thesis is to adopt the viewpoint of a user. Rankings

are performed with respect to a user. Therefore, the KL distance is only meaningful

with respect to that user. As such, symmetry is not a strict requirement.

In the process of developing this thesis, other approaches had also been considered.

Symmetric KL distance A simple way to circumvent the problem of symmetry is

to use D, where

D = D(pjjq) +D(qjjp)

However, in using the measure, the semantics of the symmetric KL distance

becomes unclear. The symmetry measure is viewed as an accuracy measure of

how well another user's interest pro�le can be used to approximate the user in

question. According to the de�nition of similarity in Chapter 2, similarity is

de�ned to be the resulting error is an interest pro�le belonging to user B is used

to describe user A. The symmetric KL distance includes the deviations from

the perspectives from both users. Although the resulting quantity is symmetric,

it is no longer clear what the quantity actually represents.

Mutual Information Mutual Information is the KL distance between the joint

probability distribution and the product of each of the probability distribu-

tions. The formula is given by

I(x : y) =
X

x

X

y

p(x; y)log
p(x; y)

p(x)p(y)
(4.1)

= D(p(x; y)jjp(x)p(y)) (4.2)
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Mutual Information, I, is a measure of the amount of information in contained in

random variable x about random variable y. It satis�es both the positivity and

symmetry clause of measures. In the context of interest matching, each user

can be modelled as a random variable. p(x) and p(y) are therefore di�erent

probability distributions over the same outcomes. Constructing the probability

distributions can be learnt from the methods of user pro�ling as described in

Chapter 3. p(x; y) is the joint probability distribution of two random variables.

Learning the joint probability distributions of two users requires the system

to track pair-wise user behaviors in the system. For example, for a particular

outcome oi, p(x = oi; y = oi) is the probability that both users shows strong

interest in the particular outcome.

In summary, Mutual Information is a measure of the dependence between the

two random variable. If there is complete independence, that is p(x; y) =

p(x)p(y), the Mutual Information reduces to 0. However, in the application

of interest matching, it appears to be unreasonable to compute dependencies

between users. After all, if users have never interacted with each other before,

there should not be any dependence of interests on other users in the network.

4.2 On the Collabative Sanctioning Network

Figure 3-10 shows a graphical interpretation of the �nal state in the evolution of the

agent network. Each cluster (in the graphical sense) comprises of a group of agents

that are deemed to be similar.

As described in the previous section, KL distance does not qualify as a distance

metric. As such, the interpretation of the cluster in the graphical display would

appear to be ambiguous. If the distance between each node (representing an agent)

is assumed to represent the similarity between the agents, it will not be meaningful

to consider the pixel distance between clusters.

However, it is important to consider how each cluster of agents is formed. As

described in Chapter 3, each agent endeavors to discover which other agent in the

55



network is most similar to itself. Having located another agent that is most similar

to the agent in comparison to all the other agent it presently knows, the distance

between the two agents will start to decrease in the graphical display gradually to

a small range of values. A line is also drawn from the agent to the other agent to

represent the similarity (This is more clearly shown in Figure 3-9). In the �nal state,

each cluster is a group of agents where each agent in the group is indicated by one

or more other agent (in the group) to be most similar to itself (themselves). It is

important to note that the graphical display is, by no means, a demonstration of KL

distance as a metric. There is no meaning to the distance between the clusters; it is a

simple by-product to accentuate the distinction between the clusters. Returning to a

graphical metaphor, a cluster of agents are a group of agents that all linked together

by lines. Another agent is considered to be outside the cluster if there is no line

connecting it to another agent in the cluster. Therefore, the graphical display can

regarded as a simple way to conceptualize the resulting network if an agent chooses

to associate itself with its most similar agent in the network.
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Chapter 5

Conclusions and Future Works

This thesis presented a novel approach to interest matching in online communities

that is based on the combined use of an ontological description of each user's interests

and the Kullback-Leibler distance as a similarity measure.

In order to perform interest matching, each user adopts a standard ontology sanc-

tioned by the community. The ontology is then personalized through user pro�ling

techniques. Every edge in the ontology becomes associated with a probability that

captures the likelihood of the user's interest given a context. The personalized on-

tology is also called an interest pro�le. The similarity measure is de�ned to be the

deviation between two interest pro�les and is given by the Kullback-Leibler distance

between them.

By imposing a hierachical classi�cation, the sensivity analysis of the ontology-

based interest matching algorithm displays comparatively more interesting behvavior

in comparisons to the cosine similarity measures. This allows for better classi�cation

of the users in the online community that would not have been possible in the cosine

similarity measure. Moreover, in modelling noise (such as errors in user pro�ling

techniques or interest changes) in the interest pro�les, the ontology-based matching

algorithm has a stronger noise tolerance compared to the cosine similarity measures.

The similarity measure derived in this thesis is shown to be a useful heuristic in

discovering other similar users in the community in an eÆcient manner. Requesting

users presently known to return new contacts most similar to themselves increases
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the probability that a user can locate other users most similar to him or her self.

Future work will focus on extending the theory of the ontology-based interest

matching algorithm. In this thesis, the ontology adopted is assumed to be a singly-

connected tree. This, clearly, is not representative of general ontologies, which are

often represented as polytrees. This brings about multiple dependences in the tree

structure. It is likely that Bayesian Theory would be useful in describing such de-

pendencies. As a side note, present approaches to interest matching and information

retrieval focus upon learning the weights (or probabilities) associated with each con-

cept. It would be interesting to extend user pro�ling techniques to learn the structure

of the ontology for each user. The challenge then lies in matching ontologies with the

same nodes but di�erent structural relations.
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Appendix A

Program Structure

The structure of the Collaborative Sanctioning Network is described in this appendix.

Each agent program can be separated into three distinct modules: Pro�le, ReqHandler

and Scheduler.

A.1 Pro�le

The pro�le module encapsulates information about the user and whom the user knows

in the network. Running the Pro�le module requires two input �les that contain

con�guration information pertaining to the user (personal.xml) and the neighbors

in the network that the user may know (neighbors.xml). The con�guration �les are

described in XML syntax, each accompanied by a corresponding DTD.

The personal.xml �le contains the ID of the user, the NET ADDRESS (itself

broken down into the HOST name and the PORT number) and the EMAIL address

of the user. In addition, it also contains the ontological description of the user's

interest and the last DATE when the ONTOLOGY was modi�ed. The ontology is

also described in XML syntax.

The neighbors.xml �le contains a NEIGHBOR SET, itself containing a collection

of neighbors the user knows. Each NEIGHBOR also contains an ID, NET ADDRESS

and EMAIL of the neighbor. In addition to the administrative information of the

neighbor, each NEIGHBOR also contains a CONTEXT SET, itself containing a col-
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Figure A-1: MDD for ReqHandler module

lection of CONTEXT indicating subsets of the interests the user and the neighbor has

compared each other. Each CONTEXT is a sub-tree of the ONTOLOGY of the user.

Associated with each CONTEXT is a RATING that encapsulates measurements re-

garding the CONTEXT. For the purpose of interest-matching, the RATING contains

a DATE as to when was the last comparison made and MEASURE, which contains

the result of the Interest-Matching algorithm described in this paper. On program

execution, these �les are loaded into Java objects (speci�cally Ego and NeighborDB,

objects representing personal.xml and neighbors.xml respectively) for other modules

in the system. Figure A-1 shows the Module Dependency Diagram (MDD) for the

Pro�le module [10].
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Figure A-2: MDD for ReqHandler module

A.2 ReqHandler

The RequestHandler module (or ReqHandler) consists of a set of handlers to handle

incoming messages the agent may receive during operation. The Figure A-2 shows

the MDD of the ReqHandler module.

Upon starting up the ReqHandler module, the Listener daemon starts listening

to the network at the Port speci�ed by personal.xml (accessed through Ego in the

Pro�le module). Note that implicit in this MDD is that each object may have access

to the Ego and NeighborDB instance during program execution. Upon receiving a

request from the network, the message is passed to the RequestMap, which extracts

the header from the message to determine which type of handler should be created to

handle the message. There is a one-to-one correspondence to the message type and

handler type.

From the Fgure A-2 above, one can observe six di�erent kinds of Handlers in the

system, each corresponding to the six messages existing at the moment this paper is

written. Additional messages and its corresponding handler can be added into the

MDD without disrupting the structure of the MDD. The only contract is that the
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Figure A-3: Activation Diagram for receiving messages
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Handler Name Role
AliveSynHandler 1) adds sender to neighbors known by user

2) replies to sender with IS ALIVE ACK
AliveAckHandler 1) adds sender to neighbors known by user
OntologyMatchRequestHandler 1) performs ontology matching request

2) sends ONT MATCH REPLY to sender with re-

sults

3) adds results to its own neighbor database
OntologyMatchReplyHandler 1) adds results to its own neighbor database
NeighborRequestHandler 1) replies to sender with information regarding neigh-

bor it knows
NeighborReplyHandler 1) adds the new neighbors sent to its own collection

of neighbors

Table A.1: Table of Messages and Message Handlers

new handler must extend the Handler super class. The RequestMap (the handler

factory) must also be modi�ed to include the existence of the new handler. Table A.1

shows the message types and the corresponding handler and its role.

A.3 Scheduler

The ReqHandler module is essentially a set of message handlers. The Scheduler

modules, in comparison, can be regarded as a set of schedules that are started up

during program initiation. The role of each scheduler to start the process of searching

for new contacts or to ask each contact to perform the interest matching algorithm

with respect to itself. It's MDD has the same structure as that of the ReqHandler

module, and is shown in Figure A-4.
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Figure A-4: MDD for the Scheduler Module
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