
MIT Open Access Articles

Mixed Autonomous Supervision in Traffic Signal Control

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jayawardana, Vindula, Landler, Anna and Wu, Cathy. 2021. "Mixed Autonomous
Supervision in Traffic Signal Control." 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC).

As Published: 10.1109/ITSC48978.2021.9565053

Publisher: IEEE

Persistent URL: https://hdl.handle.net/1721.1/149995

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/149995
https://creativecommons.org/licenses/by-nc-sa/4.0/

Mixed Autonomous Supervision in Traffic Signal Control

Vindula Jayawardana1, Anna Landler2 and Cathy Wu3

Abstract— Traffic signal control is a critical component for
ensuring smooth traffic flows in city corridors. To this end,
deep reinforcement learning (RL) agents have recently been
proposed. These learned black-box policies may out-perform
manually tuned policies on average, but they remain imperfect
and come at a cost of how easy they are to interpret and
supervise. These challenges hinder their adoption in real-world
systems. To address the first challenge, this paper devises
naturally interpretable decision tree policies that imitate expert
deep neural network policies. To address supervision, we define
a new formalization called Mixed Autonomous Supervision
(MAS), which concerns integrating an imperfect policy into an
existing supervision system. We propose a two-part supervision
model with online automated supervision and offline human
supervision to implement MAS. We present a novel blind spot
detection algorithm for decision tree policies to encourage the
safe transfer of control to an automated fail-safe policy (online
supervision) and an interactive dashboard DTLight for offline
human supervision. We show the decision tree policies are just
as performant as the RL policies, and the proposed supervision
model has a significant benefit in scenarios derived from real
traffic situations.

I. INTRODUCTION

With increasing urbanization, traffic congestion is becom-
ing an increasingly critical problem with many negative
societal externalities, including environmental pollution and
energy consumption, apart from its substantial impact on
GDP [1]. Furthermore, studies show that a significant por-
tion of commute travel time delays is caused at signalized
intersections [2]. Therefore, optimizing traffic control at
signalized intersections can have a significant positive impact
on the prevailing congestion problem. In light of this, traffic
signals are often closely monitored by traffic signal control
engineers to avoid any abrupt disturbances to the traffic flow
within corridors. Such monitoring falls under the broader
task of traffic signal supervision, which includes designing,
deploying, monitoring, and maintaining traffic signals.

Numerous studies have proposed optimized traffic signal
control methods, which are widely used in modern cities [3,
4]. Recently, Deep Reinforcement Learning (DRL) has been
used to control traffic signals due to its ability to directly
learn complex strategies in dynamic environments [1]. How-
ever, such DRL models are inherently black-box and are not
transparent in the way they make decisions. Nevertheless,

*This work was supported by the MIT-IBM Watson AI Lab
1MIT Laboratory for Information & Decision Systems and Department

of Electrical Engineering and Computer Science, Cambridge, MA, 02139,
USA vindula@mit.edu

2MIT Department of Civil and Environmental Engineering, Cambridge,
MA, 02139, USA alandler@mit.edu

3MIT Laboratory for Information & Decision Systems, Department of
Civil and Environmental Engineering and Institute of Data Systems and
Society, Cambridge, MA, 02139, USA cathywu@mit.edu

transparent decision mechanisms can be required by regula-
tions and are essential for the long-term supervision of these
control policies. Hence, the successful real-world adoption of
these black-box models comes at a cost of how much traffic
engineers and other related stakeholders can understand, trust
and supervise their functionality. For this reason, having
interpretable and easy-to-supervise control policies is crucial
for traffic signal control, a direction that has received limited
attention.

Furthermore, it is practically impossible to produce simu-
lation environments that accurately capture the complexities
of the real world [5, 6]. Thus, control policies trained in
simulations may lead to costly failures when deployed in the
real world. For example, RL policies trained in simulation
environments that assume all vehicles can be treated the
same way may fail when faced with vehicles that require
different treatments (e.g., emergency vehicles). Relatedly,
practical limitations in training DRL models even within the
simulation environment can cause policy blind spots.

To enable supervision of black-box DRL models in traffic
signal control, this work proposes learning decision tree
policies by imitating “expert” DRL models. Using decision
tree policies is beneficial for two reasons: 1) decision trees
are transparent in the way they make decisions, and 2)
the easy-to-modify nature of decision trees facilitates long-
term supervision. Nonetheless, such decision tree policies
are imperfect and unsuitable for direct deployment in safety-
critical settings such as traffic signal control.

This motivates us to consider the setting of Mixed Au-
tonomous Supervision, in which both automated and hu-
man supervision may co-exist. We introduce a two-part
supervision model suitable for MAS, which conducts both
online and offline supervision to leverage complementarity
in supervision, discussed in Section IV. Below we summarize
the contributions of this paper, which to the best of our
knowledge, were not addressed in previous work.

1) We leverage decision tree policies to enable the super-
vision of black-box RL policies in traffic signal control.

2) We formally define Mixed Autonomous Supervision.
3) For online supervision, we design a novel blind spot

detection algorithm to encourage safety by transferring
control to an external supervisory entity.

4) For offline supervision, we introduce DTLight, an
interactive dashboard to gradually and safely increase
the overall system’s performance via manipulation of
decision tree policies.

5) We validate the proposed MAS method in traffic signal
control scenarios derived from real-world situations.

II. BACKGROUND

A. Traffic Signal Control

The conventional methods for controlling signalized in-
tersections can be categorized mainly into two categories.
First, fixed-time signal plans designed using historical data
are used. Such methods are often pre-configured and do not
adapt to the prevailing traffic condition. Second, adaptive
traffic signal control methods which can accommodate dy-
namic fluctuations of the traffic are used. Such methods are
most suitable for intersections facing relatively high random-
ness in observed traffic. Webster, a classic method in the
transportation field, proposes a cycle-based signal plan for
individual intersections based on a given phase sequence [7].
Where sensors are available, Max-Pressure maximizes the
relief of pressure between incoming and outgoing lanes [8].
SOTL develops a cycle-based, dynamic phase length traffic
signal policy with additional demand responsive rules [9].

Recently, reinforcement learning has been used for traffic
signal control. Wei et al. propose IntelliLight [10] which
controls individual intersections using RL agents that do
not consider neighbor information. PressLight [11], which
uses the previous state-of-the-art Max-Pressure method to
formulate the reward function, and CoLight [12], which
employs graph representation learning, are a few other recent
works. However, these policies are often hard to interpret.
Recent attempts have also been made to develop interpretable
traffic signal control policies [13]. However, the lack of focus
on supervision, a practical use case of interpretability, is a
main limitation of such works.

B. Supervision

Supervision is a widely used technique in practice to avoid
any costly mistakes and failures in production. In particular,
systems that have been designed and developed in simulation
environments can benefit more from close supervision to de-
tect and respond to production-level failures. Ramakrishnan
et al. [14] propose how learning about blind spots of agents
and humans can be used to manage hand-off decisions when
humans and agents jointly act in the real world. Similarly,
Wray et al. [15] study Semi-Autonomous Systems (SAS)
within the context of automated planning. It then proposes
a technique for planning in the semi-autonomous driving
domain to transfer control safely and smoothly between an
agent and the human. In this work, we leverage the easy-to-
interpret nature of decision tree policies with traffic signal
control domain knowledge to propose a supervision model
in which both automated and human supervision co-exits.

Designing, deploying, monitoring, and maintaining traffic
signal control policies is a complex and gradual process that,
in a broad sense, falls under the more general task of traffic
signal supervision. Traffic control engineers traditionally per-
form such supervision at signal control centers. However, due
to limited human resources available to monitor and manage
often state-wide signalized intersections, traffic signal super-
vision has become a challenging, yet essential service for
smooth traffic flows within a city. To assist traffic engineers

with the supervision process, systems like Automated Traffic
Signal Performance Measures (ATSPMs) [16] have emerged
as suites of performance measures, data collection, and data
analysis tools. In this work, we are concerned with the type
of supervision required when decision tree policies devised
using imperfect RL policies are deployed in real-world traffic
corridors.

III. PRELIMINARIES

A. Reinforcement Learning

Reinforcement learning is a powerful computational ap-
proach for learning from interaction between an agent and
an environment [17]. An RL environment is commonly
formulated as a five-tuple Markov Decision Process (MDP)
which can be denoted as M = 〈S,A, p, r, γ〉. In such MDP,
S is the set of states, A is the set of possible actions,
p(st+1|st, at) is the transition probability of next state given
current state and action, r(st, at) ∈ R is the reward for
taking action at at state st, and γ ∈ [0, 1] a discounting
factor. RL algorithms will then search for an optimal policy
π∗ : S → A that will maximize the expected cumulative
discounted reward over the MDP.

π∗(s) = argmax
π

E

[∞∑
t=0

γtr(st, at)|s0 = s, π

]
(1)

A common approach to solve such a problem is to estimate
the state-action value Q (s, a).

Q (s, a) = Eπ

[∞∑
t=0

γtr(st, at) | s0 = s, a0 = a, π

]
(2)

In MDPs with large state spaces, function approximation
is used to approximate the state-action values as exact
approaches often are not scalable [18].

B. Viper Algorithm

In our work, we use the Viper algorithm [19] for training
decision tree policies for controlling signalized intersections.
Viper devises shallower decision trees based on the notion
of critical states. A critical state s is such that failing to take
the optimal action at s results in forfeiting all subsequent
rewards. In contrast, non-critical states are the states in
which multiple actions can lead to similar subsequent conse-
quences, and the optimal action choice is not critical for the
model’s performance. Viper assesses the criticality of a state
using importance measure I(·) as given in Equation 3. Fur-
ther, it uses an expert model trained in the same environment
as a teacher model to guide training a student decision tree
model. Algorithm 1 outlines the complete algorithm. It takes
as input a four-tuple (S,A, P,R), a teacher model πE , and
the function I(·). Initially, it uses the teacher model to sample
trajectories from the MDP, whereas the student model itself
is used for sampling trajectories in the subsequent iterations.
The distribution of states obtained after using policy π for
T steps on the given MDP is defined as dπ .

I(s) = max
a∈A

Qπ(s, a)−min
a∈A

Qπ(s, a) (3)

Fig. 1: Schematic overview of the proposed method

The importance measure I(·) is used to weigh the samples
for training the student model. This sampling often leads to
faster learning and shallower decision trees.

Algorithm 1 Viper for producing decision tree policy πT
1: procedure VIPER((S,A, P,R), teacher πE , importance

function I(·), iterations N , number of trajectories M)
2: Initialize dataset D ← ∅
3: Initialize student policy π0

T ← πE
4: for i : 1 to N do
5: M trajectories: Di ← {(s, πE(s)) ∼ dπ

i−1
T }

6: Aggregate: D ← D ∪Di

7: Sample: D̂ ← {(s, a) ∼ p((s, a)) ∝ I(s)I[(s, a) ∈ D]}
8: Train decision tree: πiT ← train tree(D̂)
9: end for

10: return Best policy πT ∈ {π1
T , π

2
T , . . . , π

N
T } selected

via cross-validation

C. Terminology

Below we define some terms used in this paper.
• Control policy: A stationary decision rule used to con-

trol a traffic signal.
• Learned policy: A data-driven control policy.
• Defined policy: A control policy that was designed by

non-learning techniques.
• RL Policy: A learned policy trained using RL.
• Decision tree policy: A learned policy of the form of a

decision tree trained to imitate an RL policy.
• Fail-safe policy: A defined policy designed to be safe

and reasonably performant during execution.

IV. METHOD

In this section, we elaborate on our method for devis-
ing and supervising decision tree policies for traffic signal
control. The overall schematic overview of the proposed
method is illustrated in Figure 1. We first describe devising
decision tree policies, which will be instrumental for sub-
sequent supervision tasks. Then, we formally define MAS
and the two-part supervision model with online automated
supervision and offline human supervision to implement
MAS. We then describe a blind spot detection algorithm for

implementing online supervision. Lastly, we introduce the
interactive DTLight dashboard for offline supervision.

A. Devising the Decision Tree Policy
To devise a decision tree policy, we employ an RL policy

pre-trained in a traffic control environment as a teacher
model. Then, using the Viper algorithm presented in Algo-
rithm 1, we obtain a decision tree policy that minimizes its
imitation error from the teacher model.

B. Mixed Autonomous Supervision
Definition IV.1 (Mixed Autonomous Supervision (MAS)).
Mixed autonomy describes problems surrounding the gradual
and complex integration of automation and AI into existing
systems [20]. In the context of supervision, MAS involves
integrating automation into existing supervision systems that
were conventionally supervised only by humans. In such
systems, automated and human supervision co-exist.

MAS aims to highlight the complementarity of super-
vision from automation and humans and thereby achieve
the best of both worlds. In particular, synchronous human
supervision at traffic control centers is limited, costly, and
sub-optimal but leverages specialized training and common
sense (including safety) that remain elusive for automated or
manually designed agents. In traffic signal control, another
form of human supervision exists, which takes the form of
existing traffic signal controllers that have been manually
designed and refined over decades. Such control policies are
similarly expected to be safe and inexpensive to deploy but
sub-optimal. On the other hand, automated supervision is
inexpensive and “optimal” on specific, well-defined tasks but
may be unsafe in out-of-distribution settings.

We propose that the three forms of supervision may be
integrated to achieve the best of both worlds: 1) we leverage
the inexpensive manually designed control policies for online
supervision, to ensure the safe utilization of automated
supervision, and 2) we leverage expensive human supervision
periodically (offline supervision) to enable the performance
improvement of the overall system.

C. Online Supervision
Online supervision refers to synchronous supervision re-

quired to monitor when control should be transferred from

the decision tree policy to an external entity, e.g., to ensure
safety. We formalize the online supervision problem by using
the language of Semi-Autonomous Systems (SAS) [15], de-
scribed in Section II-B. Whereas SAS considers human-agent
collaboration, we adapt SAS for the online (autonomous)
supervision context. Formally, we augment the MDP with a
set of control policies.

Definition IV.2 (Online Supervision). Online Supervi-
sion is denoted by an extended Markov Decision Process
〈M, C,S+,A+, p+, r+〉 where,
• M is the underlying MDP of the environment.
• C is a set of control policies.
• S+ is the set S × C : an MDP state s ∈ S of M and

the current control policy c ∈ C.
• A+ is the set A×C : an MDP action a ∈ A ofM and

a desired next control policy c ∈ C.
• p+ is the transition function S+ ×A+ → ∆|S

+| which
consists of control policy state transition function and
transfer-of-control function as defined in Definition IV.3
and in Definition IV.4, respectively. Then, p+ is given
in Definition IV.5.

• r+ is the reward function S+ × C → R.

Definition IV.3 (Control policy state transition function).
Control policy state transition function p defines how a
given control policy c ∈ C will operate in the real world:
p : S ×A → ∆|S|.

Definition IV.4 (Transfer-of-control function). Transfer-of-
control function ψ describes the result of attempting to
transfer the control from one control policy to another control
policy while operating in the real world: ψ : S+×C → ∆|C|.

Definition IV.5 (Online supervision state transition). In the
online supervision problem, given s+ = 〈s, c〉 ∈ S+, a+ =
〈a, c′〉 ∈ A+, and ŝ+ = 〈ŝ, ĉ〉 ∈ S+, online supervision state
transition function is defined as,

p+(s+, a+, ŝ+) =

p(s, a, ŝ) if c = c′ = ĉ

p(s, a, ŝ)ψ(s+, c′, ĉ) c 6= c′

0 otherwise
(4)

In Equation 4, the first case corresponds to the instance
that the current control policy is kept for the next state as
well. In the second case, a new control policy is desired for
operating in the next state. Finally, the third case denotes that
control transfer is impossible without the desire to transfer.

Definition IV.6 (Supervised policy). The supervised policy
is the control policy resulting from online supervision.

In this work, we specialize to deterministic transfer-of-
control function and two control policies (|C| = 2): a
decision tree policy and a fail-safe policy. We leverage
existing traffic signal controllers as our fail-safe policies,
assumed to be suboptimal but safe. In contrast, the decision
tree policy is derived from an RL policy, assumed to be

performant but potentially unsafe. We hypothesize that by
designing an appropriate transfer-of-control function ψ(·), it
is possible to achieve the best of both worlds.

D. Blind spot detection

This section presents a novel blind spot detection algo-
rithm, which serves as the transfer-of-control function ψ(·)
between the fail-safe and decision tree policies. We justify
the choice of the algorithm with intuitive arguments and defer
theoretical analysis to future work.

Assumptions. For ease of discussion, we assume that
the fail-safe policy is also in the form of a decision tree.
Additionally, the action space is discrete, which is typically
satisfied in traffic signal control. Both decision tree and fail-
safe policies use the same input features.

We define a blind spot as a state for which the decision
tree policy may fail to be safe. Intuitively, for any state, if
the two policies disagree on the action to take, a suitable
blind spot detection algorithm should trigger when any of
the following conditions are not met:

1) Decision structure. The decision tree policy should
agree with the general structure of the fail-safe policy,
assumed to encode pertinent decisions regarding safety.

2) High confidence. The RL policy is confident about
what action to take. Intuitively, the decision tree may
override the fail-safe if it has visited the state often.

3) Imitation consistency. The decision tree policy should
agree with the RL policy.

In such cases, it will be safe (though possibly less perfor-
mant) to defer to the fail-safe policy.

Algorithm 2 Decision tree blind spot detection

1: procedure DETECT BLIND SPOTS(Decision tree policy
T , RL policy E, fail-safe policy H , Observation o)

2: Decision tree action aT ← T (o)
3: RL action aE ← E(o)
4: Fail-safe action aH ← H(o)
5: if aT = aH then
6: blind spot ← False
7: else
8: if F ∗o 6= ∅ and F ∗o * FT

∗

o then
9: blind spot ← True

10: else
11: Q← obtain Q values for the o from E
12: if maxaQ(o, a)−minaQ(o, a) ≤ β then
13: blind spot ← True
14: else
15: if aT 6= aE then
16: blind spot ← True
17: return blind spot

Next, we formally elaborate on the blind spot detection al-
gorithm for decision tree policies, presented in Algorithm 2.
We start by obtaining proposed control actions for each
policy (line 2-4). In lines 5-6, we check if the decision tree
control action is different from the fail-safe policy. If so,

Fig. 2: Illustration of three sources of disagreements for identifying decision tree blind spots. a) Coarse-grained decision
regions marked by decision boundaries of the fail-safe policy (each region has an action A, B, C or D); b) Fine-grained
decision regions marked by decision boundaries of the learned decision tree policy; c) Decision structure: observation falls
close to a decision boundary of the fail-safe policy as marked by the shaded circle but not in decision tree policy (red dashed
lines denote the decision boundaries of the fail-safe policy); d) High confidence: decision tree policy is not confident in which
action to be picked for the observation and all actions are equally preferable (arrow color intensity indicates the relative
confidence); e) Imitation consistency: decision tree policy and RL policy disagree on the action (RL policy is presented in
yellow). If any of the above conditions are met, we transfer the control to the fail-safe policy.

we must check for a possible blind spot by examining the
above three conditions. In Figure 2, we illustrate the three
conditions by a simplified example in which the state space
consists of only two features, X and Y .

a) Decision structure: To check for consistency in
decision structure, we look at the features used by the fail-
safe policy in its decision criterion for the given observation.
We define a critical feature as a feature input where an ±α
change in input would yield a different decision criterion
for the same observation. Let F ∗o and FT

∗

o be the set of
critical features of observation o for the fail-safe and decision
tree policies, respectively. The critical features F ∗o mark the
decision boundaries of the fail-safe policy around the given
observation and thus can be considered important features
for guaranteeing safety. For the decision tree action to be
considered, F ∗o ⊆ FT

∗

o should be satisfied. That is, if the
fail-safe policy uses a critical feature in its decision criterion,
the decision tree policy should also consider it to be a critical
feature (see Figure 2c in our example), or there may be
an unsafe outcome. In practice, an engineer may choose to
define the critical features F ∗o directly, instead of using the
above heuristic.

b) High confidence: Next, we analyze the confidence of
the decision tree policy in its decision. To do this, we look at
the difference between the maximum and minimum Q values
for the same observation as perceived by the RL policy [19]
(lines 11-13). If the difference is below a defined threshold β,
it can have two meanings. 1) Any action could be considered
as a near-optimal action for the given observation or, 2)
the RL policy is not confident about which action can
produce better outcomes in the future. Although we are
only concerned about the latter, it is safe to classify the
observation as a blind spot. This condition captures learning
limitations faced by the RL policy and thus the decision tree
policy. Such limitations can occur because of issues in state
representations, credit assignment, and architectural and data
limitations, etc. (Figure 2d in our example).

c) Imitation consistency: Finally, due to its relatively
limited capacity, the decision tree policy may not perfectly

imitate the RL policy (Figure 2e in our example), and this
must be flagged as a blind spot (lines 15-16).

E. Offline Supervision

Offline supervision refers to the asynchronous supervision
performed by traffic signal control engineers manually at
control centers. With the online supervision in place, offline
supervision can be performed periodically to review and
incorporate the online supervision suggestions permanently
into the control policy. Such updates to the control policies
require manual human interventions to vet the quality of the
overridden actions. Another practical use case of offline su-
pervision is to respond to community-raised issues. Changes
to the control policies are needed to be made as necessary
in response to the issues raised. We propose an interactive
dashboard DTLight, which offers one viable pathway to
facilitate offline supervision of decision tree policies.

Fig. 3: Schematic view of DTLight architecture

Inspired by Mixture of Experts (MoE) architecture [21],
we design the architecture of DTLight such that each traffic
signal (intersection) is controlled by a meta controller and a
set of expert policies. Each expert is specialized in a defined
part of the state space. Given an observation, the meta con-
troller picks the expert that will be used to obtain the control
action. We represent all experts and the meta controller as
decision tree policies. One expert will always be the decision
tree devised using the RL policy (main expert). The engineers
would gradually create new experts in response to online

supervision logs and community-raised issues. To facilitate
that, DTLight provides user-friendly interfaces for creating
and modifying expert decision tree policies and reviewing
and permanently accommodating online supervision logs.
The schematic overview of the architecture is illustrated
in Figure 3. An example instance of the meta controller
interface of DTLight is shown in Figure 4.

Fig. 4: DTLight meta controller interface

V. EVALUATION

In this section, we experimentally validate our method.
We first show that controlling traffic signals using decision
tree policies devised based on expert RL policies are just as
performant as the experts. Next, we show that the proposed
MAS framework yields overall performance improvement on
a scenario derived from a real traffic situation.

A. Evaluation of decision tree policies

We first evaluate the performance of devised decision tree
policies. We use the Max-Pressure [8] method as a baseline
control policy and DQN [18] for training the expert agent.
We use the Viper algorithm (Section III-B) to devise decision
tree policies using the CART algorithm [22]. We model a 4-
way intersection with left and right turns and four traffic
phases. Each approaching and outgoing road has four lanes.
The four phases include two straight-going phases and two
left-turn phases. A Weibull distribution of shape two was
used to generate vehicle arrivals. Each vehicle has a 25%
chance to turn left or right and a 75% chance to go straight.
The RL policy used as the expert has an input layer of 80
neurons, five hidden layers of 400 neurons each, and an
output layer of 4 neurons representing the four phases as
actions. All simulations are run on SUMO1 traffic simulator.

In Figure 5a, we illustrate the performance of devised
decision tree policies compared to the expert RL policy
and the baseline Max-Pressure policy. In general, we would
expect the decision tree policies to underperform slightly
than the expert model used to train them because of the
limited learning capacities of the decision tree policies.
Surprisingly, in our experiments, decision trees with depths
7 and 8 slightly outperform the expert RL policy used to
train them. We believe this happens because of the better
generalization capability of decision tree policies due to

1https://www.eclipse.org/sumo/

their under-parameterized nature. In Figure 5b, we show the
change of average waiting time of the approaching vehicles
with increasing tree depth. Our decision trees policies with
depths 7 and 8 are just as performant as the RL policy. In
general, we prefer shallower decision trees as they are easier
to interpret. Therefore, for the rest of the experiments, we
choose the decision tree policy with depth 7.

B. Evaluation of online supervision and transfer of control

Next, we show the benefit of online supervision and
transfer of control in scenarios derived from real-world traffic
situations, which may exhibit out-of-distribution environment
dynamics. Specifically, during evaluation time, we consider
a scenario in which emergency vehicles should be given the
right of way. Therefore, the traffic control policy should clear
the traffic to facilitate the emergency vehicle to pass through
the intersection with minimum wait. We modify the Max-
Pressure control policy to accommodate this requirement and
use it as the online fail-safe policy. The training simulations
do not specifically model emergency vehicles, and therefore
the trained RL policy has not learned to treat emergency
vehicles differently. We define real-world traffic signal con-
trol objective as min{wemergency+wnon−emergency} where
wemergency and wnon−emergency are the waiting times of
emergency and non-emergency vehicles, respectively.

We present the performance of the online supervised
policy (Definition IV.6) in comparison to baseline policy in
Figure 5. Figure 5c shows the total waiting time as defined
by the objective above. Our proposed online supervised
policy achieves overall low waiting times by transferring the
control from decision tree policy to fail-safe policy as per
Algorithm 2, shown in Figure 5f. It is also able to outperform
the performance of carefully defined Max-Pressure policy in
terms of waiting time for emergency vehicles as shown in
Figure 5d. Recall that both the RL policy and the decision
tree policy were optimized to minimize the non-emergency
vehicle waiting times and not on the overall objective; thus
they have significantly higher waiting times compared to
the supervised policy. Conversely, our supervised policy
has comparatively high waiting times for non-emergency
vehicles compared to the decision tree policy and the RL
policy (Figure 5e). In summary, our proposed supervised
policy achieves the best of both worlds between the safety
of the fail-safe policy and the performance of the RL policy.

VI. CONCLUSION

In this work, we investigate the use of decision tree
policies trained to imitate reinforcement learning policies
for traffic signal control. We propose Mixed Autonomous
Supervision (MAS) and a two-part supervision model with
online automated supervision and offline human supervision
to implement it. Our results show those decision tree policies
devised based on expert RL policies are just as performant
as the experts and that the proposed MAS framework yields
overall performance improvement.

Future directions of research include extending the blind
spot detection algorithm to relax the assumptions made, be

(a) Average reward and misclassification
percentage with increasing tree depth

(b) Average waiting time versus tree depth (c) Objective: average waiting time of
emergency and non-emergency vehicles

(d) Average waiting time of emergency
vehicles

(e) Average waiting time of non-
emergency vehicles

(f) Online supervision: transfer of control
percentage

Fig. 5: Performance of the approach with varying tree depths and emergency vehicle percentages.

rigorous in identifying out-of-distribution blind spots and
accommodate continuous actions. Additionally, extending the
proposed method to coordinated traffic signal control is also
a possible future work. Finally, we plan to investigate de-
vising shallower decision trees by leveraging the symmetries
present in the intersection designs.

VII. ACKNOWLEDGEMENT

The authors would like to acknowledge funding support
from the MIT-IBM Watson AI Lab for this work. The
authors would also like to thank the Utah Department of
Transportation for informative discussions and feedback.

REFERENCES

[1] Kok-Lim Alvin Yau, Junaid Qadir, Hooi Ling Khoo, Mee Hong Ling,
and Peter Komisarczuk. A survey on reinforcement learning models
and algorithms for traffic signal control. 2017.

[2] David Levinson. Speed and Delay on Signalized Arterials. Technical
report, 1998.

[3] P. Lowrie. Scats: Sydney co-ordinated adaptive traffic system: a traffic
responsive method of controlling urban traffic. 1990.

[4] P. Hunt, D. Robertson, R. Bretherton, and M. Royle. The scoot on-line
traffic signal optimisation technique. Traffic engineering and control,
23, 1982.

[5] Stephen James et al. Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks. IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[6] Michael Grieves and John Vickers. Digital Twin: Mitigating Unpre-
dictable, Undesirable Emergent Behavior in Complex Systems, pages
85–113. Springer International Publishing, Cham, 2017.

[7] F. Webster. Traffic signal settings. Technical report, Road Research
Technical Paper No 39, Road Research Laboratory, 1958.

[8] Pravin Varaiya. The Max-Pressure Controller for Arbitrary Networks
of Signalized Intersections. Springer New York, 2013.

[9] Carlos Gershenson. Self-organizing traffic lights. 2005.

[10] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. Intellilight:
A reinforcement learning approach for intelligent traffic light control.
KDD ’18, page 2496–2505, 2018.

[11] Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai
Xu, and Zhenhui Li. Presslight: Learning max pressure control to
coordinate traffic signals in arterial network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery
Data Mining, 2019.

[12] Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang,
Chacha Chen, Weinan Zhang, Yanmin Zhu, Kai Xu, and Zhenhui Li.
Colight. Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, Nov 2019.

[13] James Ault, Josiah P. Hanna, and Guni Sharon. Learning an inter-
pretable traffic signal control policy, 2020.

[14] Ramya Ramakrishnan, Ece Kamar, Besmira Nushi, Debadeepta Dey,
Julie Shah, and Eric Horvitz. Overcoming blind spots in the real world:
Leveraging complementary abilities for joint execution. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01), Jul. 2019.

[15] Kyle Hollins Wray, Luis Pineda, and Shlomo Zilberstein. Hierarchical
approach to transfer of control in semi-autonomous systems. In
Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, page 517–523. AAAI Press, 2016.

[16] Federal Highway Administration. Automated traffic signal perfor-
mance measures.

[17] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA, 2018.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, and et al.
Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[19] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable
reinforcement learning via policy extraction. Advances in Neural
Information Processing Systems, pages 2494–2504, 2018.

[20] Cathy Wu. Learning and Optimization for Mixed Autonomy Systems:
A Mobility Context. PhD thesis, 2018.

[21] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E
Hinton. Adaptive mixtures of local experts. Neural computation, 1991.

[22] Wei-Yin Loh. Classification and regression trees. Wiley interdisci-
plinary reviews: data mining and knowledge discovery, 2011.

