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Using Computational Models to Test Syntactic

Learnability

Ethan Gotlieb Wilcox, Richard Futrell and Roger Levy

September 2, 2022

Abstract

We study the learnability of English filler–gap dependencies and the “is-

land” constraints on them by assessing the generalizations made by autore-

gressive (incremental) language models that use deep learning to predict the

next word given preceding context. Using factorial tests inspired by experi-

mental psycholinguistics, we find that models acquire not only the basic con-

tingency between fillers and gaps, but also the unboundedness and hierarchical

constraints implicated in the dependency. We evaluate a model’s acquisition of

island constraints by demonstrating that its expectation for a filler–gap contin-

gency is attenuated within an island environment. Our results provide empir-

ical evidence against the Argument from the Poverty of the Stimulus for this

particular structure.

Keywords: Syntactic Islands, Neural Networks, Learnability, Deep Learning, Filler–
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Gap Dependency

1 Introduction

The English filler–gap dependency is the co-variation between a wh-word or phrase (a

filler) and an empty syntactic position (a gap).1 It is special in that it can span over a po-

tentially unbounded number of nodes in a syntactic tree, yet it is subject to a subtle set

of constraints known as island constraints (Ross, 1967). For example, in the grammatical

sentence in (1-a), the dependency between the filler and the gap spans two sentential em-

beddings. However, a similar sentence, (1-b), is rendered ungrammatical when the gap site

resides within a syntactic ‘island’, in this case a Complex Noun Phrase.

(1) a. I know what the guide said his friend saw the lion devour last night.

b. *I know what the guide saw the lion that devoured last night.

A successful theory of the filler–gap dependency and its associated constraints must deal

with two interrelated facts: First, despite some inter-language variability, the same set of

structures arise as syntactic islands in language after language. Second, despite noisy and

primarily only indirect negative evidence from caregivers, children within an individual

language community tend to coordinate on the same set of islands. This second issue, that

of learnability, will be the main focus of this paper.

There are two approaches around which theories about syntactic islands have developed—

linguistic nativism and empiricism. Nativism refers to the hypothesis that innate, language-
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specific constraints aid the child language-learner by reducing their hypothesis space dur-

ing the acquisition process. Under this approach the ungrammaticality of (1-b) in adult

grammars arises from the fact that learners never hypothesize Complex NPs such as [NP

the lion [CP that ...]] as host sites for gaps when they are learning the syntax of

their language. Historically playing a contrastive role to the nativist theories are a clus-

ter of theories—variously characterized as functionalist or empiricist—which posit that

language structure is an emergent property of language use. Central to this approach is

the hypothesis that some aspects of syntax are acquired due to domain general (i.e. non-

linguistic) cognitive learning abilities (Clark and Lappin, 2010; Yang and Piantadosi, 2022).

Contributions to this debate have been made in a number of ways: There are language

learning experiments in adults and children (Otsu, 1981; Goodluck et al., 1992; Culbertson

et al., 2012); cross linguistic analysis of phenomena (Richards, 2001); analytic arguments

about learnability (Gold, 1967; Chomsky, 1979); corpus analyses (Pullum and Scholz,

2002); and statistical and computational modeling (Perfors et al., 2006; Pearl and Sprouse,

2013a). Here, we gain traction on this question through computational modeling. Our

approach is to study what syntactic generalizations are acquired by state-of-the-art algo-

rithms developed to process natural language text and trained on a childhood’s worth of

data or more. By asking what can be acquired by data-driven learning algorithms without

any obvious domain-specific biases, we map out a lower-bound for learnability and clarify

what (if anything) remains as a good candidate for top-down innate constraints.

Our learning algorithms are all Language Models (LMs), models that define joint prob-

abilities over word sequences (Chen and Goodman, 1999). We present learning outcomes

for a variety of LMs that have two key properties: First, they are domain general (Clark
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and Lappin, 2010) insofar as their architecture does not limit them to learning general-

izations about human languages, and have been successfully deployed to model data as

disparate as handwriting recognition, the stock market (Graves and Schmidhuber, 2009),

roadside signs (Arcos-Garćıa et al., 2018) and the structure of proteins (Rives et al., 2021).

Second, they are weakly biased (Lappin and Shieber, 2007) insofar as their initial states

are chosen at random, their inputs are all vectors of uniform length, and their internal

states consist of large matrices which are capable of approximating arbitrary functions.

In order to demonstrate acquisition of the filler–gap dependency, we present a general

computational method that could be deployed to test the learnability of many syntactic

structures. This method follows the approach of Elman (1990), whose basic insight is to

treat statistical models of language like human subjects in a psycholinguistics study. Fol-

lowing Elman (and more recently Linzen et al. (2016) and Futrell et al. (2018, 2019)), we

inspect the word-by-word predictions of language models in controlled, factorized tests

that are designed to draw out what generalizations they have made about individual struc-

tural phenomena. For this work, we base all of our tests on an experimental design com-

mon in psycholinguistics, where test sentences take on structural properties based on two

‘crossed’ factors, which are inspired by two separate predictions made by the grammar

about the filler–gap dependency. The first prediction stems from the fact that gaps require

fillers to be properly licensed. If we take a sentences such as (2-a) below, which includes

both a filler and a gap, and change the filler into a non-wh complementizer like “that”, the

sentence is rendered ungrammatical, as in (2-b). (In this and subsequent examples the un-

derscores are for presentational purposes only, and are not included in test items.) This

grammaticality contrast holds only if the matrix verb is obligatorily transitive: “I know

4
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that the lion ate yesterday” is grammatical.

(2) a. I know what the lion devoured yesterday .

b. *I know that the lion devoured yesterday .

In order to assess whether the models have learned this first prediction, we inspect the

model’s predictions in the adverbial phrase modifier which occurs after the matrix verb,

such as “yesterday” in (2). If the models have learned that gaps are licensed only in the

presence of an upstream filler, than the transition devoured → yesterday which skips over

an overt NP object should have a higher probability in the context of a filler than in its

absence. That is, “yesterday” should be have a lower probability in (2-b) than in (2-a).

Because this prediction is about the effect of an upstream wh-word when a gap is present,

we call it the wh-effect in a +gap context.

The second prediction made by the grammar is that upstream fillers require down-

stream gaps. If we take the grammatical sentence (3-a) and replace the that-complementizer

with a wh-complementizer as in (3-b), then the rule is violated and the sentence becomes

ungrammatical.

(3) a. I know that the lion devoured the gazelle yesterday.

b. *I know what the lion devoured the gazelle yesterday.

If models have learned that fillers require gaps, then after encountering a filler near the

start of the sentence, models should expect an empty argument structure position down-

stream, and the filled object “the gazelle” should be more surprising in (3-b) than in (3-a).

5
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This effect has been observed in humans and is called the filled-gap effect (Crain and Fodor,

1985; Stowe, 1986). We call this difference the wh-effect in a −gap context.2 In order

to test that the model has learned both of these constraints simultaneously, we combine

these two predictions and look at the interaction between fillers and gaps, a schematic of

which is given in Figure 1. If the correct generalization about filler–gap dependencies has

been made, we predict that there should be interaction between the presence of a filler and

the presence of a gap, whereby target sentence regions (either filled argument structure or

post-gap material) are less surprising when both are present than when just one is present.

So far we have focused on measuring the filler–gap dependency in structural positions

where it is licensed by the grammar. But more important for our theoretical objective is

whether language models learn the restrictions on this dependency, the so-called island

constraints. If models are learning that the co-variation between fillers and gaps does not

hold when gaps are in island positions, then two things should be true: First, when a gap

is inside an island construction, the presence or absence of an upstream filler should have

no effect on its relative likelihood. Second, the presence or absence of an upstream filler

should not affect the relative surprisal of a filled argument structure position located in-

side an island, either. Put another way, the wh-effects exemplified by the contrasts (2)

and (3) should disappear, and we would not expect an interactive relationship between the

presence of a filler and the presence of a gap. In practice, we use two metrics to determine

whether a model is showing sensitivity to island constraints: an absolute metric, that asks

whether wh-effects are at or very close to zero inside island configurations, and a relative

metric, that inspects the three-way interaction between fillers, gaps, and islands to test

whether models are more surprised at gaps inside islands compared to non island-violating
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What (+filler) That (−filler)

. . .

NPdevoured

NP

what

✓

. . .

NPdevoured

NP

that

✗

+gap I know what the lion devoured

yesterday.

*I know that the lion devoured

yesterday.

. . .

NP

the gazelle

devoured

NP

what

✗

. . .

NP

the gazelle

devoured

NP

that

✓

−gap *I know what the lion devoured

the gazelle yesterday.

I know that the lion devoured

the gazelle yesterday.

Figure 1: Schematic demonstrating our 2×2 interaction design for measuring the filler–

gap dependency. The portion of the sentence in which we measure surprisal is underlined.

minimal-pair sentences.

We focus on seven of the most well-studied islands associated with syntactic constraints,

identified either by Ross (1967) or Huang (1982). They are:
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(4) a. Adjunct Islands

*I know what the patron got mad after the librarian placed on the wrong shelf.

b. Complex NP Islands

*I know what the actress bought the painting that depicted yesterday.

c. Adjunct Islands

*I know what the man bought and at the antique shop.

d. Left Branch Islands

*I know how expensive you bought car last week.

e. Sentential Subject Islands

*I know who for the seniors to defeat will be trivial.

f. Subject Islands

*I know who the painting by fetched a high price.

g. Wh Islands

*I know who Alex said whether your friend insulted yesterday.

The rest of the paper will proceed as follows: In Section 2 we outline previous computa-

tional models of syntactic island acquisition. In Section 3 we present the general methods

employed, and introduce our three classes of learning algorithms: Simple n-gram models,

which serve as a baseline, and two machine learning architectures, Recurrent Neural Net-

works and Transformers. In section 4 and 5 we present empirical findings demonstrating

that the models tested can learn many aspects of the filler–gap dependency, including its

hierarchical restrictions, potential unboundedness, as well as many of the related island

constraints. Section 6 discusses implications from our modeling results, including for the
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most influential analytic argument for linguistic nativism, the Argument from the Poverty

of the Stimulus (Chomsky, 1965a). Section 7 concludes.

2 Background: Modeling Syntactic Islands

Island constraints were first introduced by Ross (1967), who analyzed them as a grammat-

ical phenomenon, specifically barriers to syntactic movement (“islands” being places from

which it is difficult to move).3 Although syntactic islands refer to a series of structural po-

sitions that block multiple forms of movement (or, under non-movement approaches, mul-

tiple types of dependencies), our focus here is on the filler–gap dependency, although we

discuss implications for a broader range of dependencies in Section 6.2. Since their identifi-

cation, islands have “been regarded as excellent candidates for innate domain-specific con-

straints [because] they are hard to learn, and they appear to apply in similar ways across

languages.” (Phillips, 2013). Indeed, there are about a dozen different island constraints

in English and they target a seemingly arbitrary set of syntactic structures. Within syn-

tactic theory, many of the most influential proposals for innate, universal constraints have

been developed to explain island effects (Chomsky, 1965b, 1973; Huang, 1982; Chomsky,

1986). For example, Chomsky (2005) outlines five candidate constraints that were, in his

view, the most successful attempts to formulate various aspects of Universal Grammar

from 1955–1977: “the A-over-A Principle, conditions on wh-extraction from wh-phrases

(relatives and interrogatives), simplification of T-markers to base recursion [...] and cyclic-

ity [...], later John Robert Ross’s (1967) classic study of taxonomy of islands...” Of these,

four (all but T-markers) were recruited to explain the distribution of the filler–gap depen-
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dency, a strong indication of its central role in Generative Linguistics.

The filler–gap dependency and its constraints have been studied extensively as a pro-

cessing phenomenon, as well. One key finding, here, is that after processing a filler, com-

prehenders expect to find gaps subsequently and are surprised if they encounter filled ar-

gument structures instead (the so-called “filled gap” effect). The filled-gap effect was ini-

tially identified with increased reading times at NPs and pronouns in English (Crain and

Fodor, 1985; Stowe, 1986), and has since been replicated in experiments using different

modalities and processing measures (Phillips, 2006; Garnsey et al., 1989; Kaan et al., 2000;

Phillips et al., 2005; Traxler and Pickering, 1996), and in different languages (Frazier,

1987; Aoshima et al., 2004; Sekerina, 2003; Schlesewsky et al., 2000). The filled-gap effect

is the inspiration behind our wh-effect in the -gap condition. As far as we are aware,

this paper is the first to propose an analogous effect in +gap conditions, although we do

not test it experimentally with human subjects. A number of studies have investigated

filled-gap effects inside islands, beginning with Stowe (1986) (Experiment 2), who found no

increased reading times for pronouns within Complex NPs. Similar studies have shown

that subject-verb plausibility relations can affect the Filler–Gap dependency, but that

these, too, are attenuated inside island constructions (Traxler and Pickering, 1996; Phillips

and Wagers, 2007) (although see Pickering et al. (1994) and Clifton and Frazier (1989) for

data that complicates this picture).

Because islands have long been considered one prime example of linguistic behavior

that could stem from innate, language-specific constraints, multiple researchers have asked

whether their distribution can be learned by computational models. Below we present an

overview of previous models of island acquisition. While these models represent a useful
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step forward both methodologically and empirically, we argue that no work to-date has

demonstrated that the filler–gap dependency and island constraints can be acquired by

a model that is both domain general and weakly biased (in the sense introduced above).

We start with the model presented in Pearl and Sprouse (2013b). This model identifies

islands by tracking the syntactic container nodes, which are all the phrasal category nodes

that dominate a given gap site. An example of a syntactic parse and its container-node

sequence is given in (5).

(5) [CPWho did [IP she [V P think [CP [IP [NP the gift] [V P was [PP from ]]]]]]]?

start-IP-VP-CP-IP-VP-PP-end

Pearl and Sprouse propose that children keep track of the linear order of container nodes,

and estimate the relative probability of a gap by multiplying the probabilities of individ-

ual trigrams along the container node spine.4 Using this procedure, they estimate these

probabilities for gap sites from a portion of the CHILDES corpus, and demonstrate that

they broadly track human judgements. Pearl and Sprouse argue that the components of

their algorithm are either domain-general but innate (identify trigrams; calculate utter-

ance probability) or domain-specific but learned (parse utterances; use container-node se-

quence).5 Because arguments for linguistic nativism must rely on both domain-specific and

innate constraints, they argue that their model provides evidence for a shift in the learn-

ability status of island constraints.

There has been some debate, however, about whether this model really constitutes a

domain-general learning algorithm (see especially Phillips, 2013). First, the ontological
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status of its output is unclear: By comparing the probabilities assigned to sentences to hu-

man acceptability judgements, Pearl and Sprouse (2013b) imply that the model assigns

a score something akin to grammaticality. However, the relationship between probabil-

ity and grammaticality is not straightforward (Chomsky, 1957) and, as as pointed out in

Phillips (2013), the model will fail to generalize properly to sentences which are grammat-

ical but very unlikely, such as sententially-embedded gap sites of sufficient depth.6 One

additional point of criticism is that the model requires that language learners be able to

parse sentences into Penn-Treebank style parses in order to track container nodes. Their

model, therefore, does not answer the question about whether islands can be learned via

a domain-general algorithm, but rather whether island constraints can be learned by a

parsing algorithm (or an algorithm that employs a parser) without any further domain-

specific stipulations. The result of their study is a resounding yes, but instead of resolv-

ing the learnability status of islands, it shuttles the debate from island constraints to one

particular parse schema, and whether or not it can be learned using only domain-general

assumptions.

Other modeling approaches have used connectionist networks, as we do here. Chowd-

hury and Zamparelli (2018) assess how well the probabilities assigned to strings by a Re-

current Neural Network language model compare to human acceptability judgements, in-

cluding for some island phenomena. Instead of looking at sentence regions, they look at

whole sentence probabilities, comparing target island sentences to non-island control sen-

tences. They demonstrate that models assign less total-sentence probability to sentences

that violate islands, like (6-a) compared to non-question affirmative sentences like (6-b),

suggesting that models might have acquired some sensitivity to islands. However, they
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complicate the story by reporting total-level probability on yes-no question sentences such

as (6-c). Even though these sentences have no wh-movement and cannot violate islands,

the model assigns them probability in between the island-violating sentences and the as-

sertion control sentences. Chowdhury and Zamparelli conclude that the models have not

learned generalized rules, but are sensitive to the “cumulative effect of increasing syntac-

tic complexity, plus position.” A follow-up study (Chowdhury and Zamparelli, 2019) finds

similar apparent island sensitivity in relative clauses, but again complicates the story by

showing similar sensitivity in control conditions, where none would be expected under the

hypothesis that they had learned island constraints.

(6) a. What did you see the lion that caught ? [assertion ]

b. You saw the lion that caught the gazelle. [wh-question ]

c. Did you see the lion that caught the gazelle ? [y/n-question ]

While these results are interesting and demand further investigation, we believe that the

equation of whole-sentence probability and grammaticality has led the authors to too hasty

a conclusion. Just because models show sentence-level probability for yes/no questions

that is closer to island-violating sentences than assertions, does not mean that they have

not made accurate generalizations about syntactic islands. It may be the case that models

have learned the correct generalization for syntactic islands, and a different set of (perhaps

erroneous) generalizations pertaining to polar questions. More fine-grained experimenta-

tion, which we present here, suggests that connectionist models can differentiate between

different types of syntactic complexity and different orderings of tokens, much like human
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sentence processors.

3 Methods

In this section, we will present the paradigm which we will use to assess the learning out-

comes of our models. Because our methodology is inspired by widely-used psycholinguistic

methods, we call this the “psycholinguistics paradigm” for model assessment. Below, we

explain how we deploy it on filler–gap dependency sentences and introduce our five mod-

els.7

3.1 Psycholinguistic Assessment of Language Models

Our learning models are all incremental Language Models, which have been trained to pro-

duce the probability of a token xi given its context x1 . . . xi−1 by providing a distribution

over P (xi | x1 . . . xi−1).
8 In order to uncover the models’ learning outcomes via behav-

ioral analysis, we follow a simple training/testing setup. Language models are trained

on a large corpus, and then tested on a suite of test items designed to test a particular

grammatical phenomenon. Models assign probabilities to each word in the test sentences,

and these probabilities are used to assess whether the model has successfully learned the

phenomenon. Test suite items have three crucial components: First, items in a test suite

items are hand-crafted and carefully controlled to test for the same grammatical phenomenon,

and include different content words, so that model behavior can be abstract away from se-

mantics. Second, instead of looking at whole-sentence probabilities we look at probabilities

of critical regions. Third, we use balanced pairs of grammatical and ungrammatical sen-
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tences, and assess the model’s relative probabilities between grammatical / ungrammatical

conditions critical regions, which itself is the same in both conditions. While some studies

using this methodology have elected to report accuracy scores (i.e. the proportion of the

time the grammatical variant is more probable (Marvin and Linzen, 2018; Hu et al., 2020),

we examine differences in effect sizes between conditions. This means that models’ predic-

tions must not only be in the right direction, but they must be substantially different in

magnitude. That is, a model cannot appear to be ‘right’ if it assigns a probability of .4999

to the ungrammatical continuation and .5001 to the grammatical continuation.

One reason why we believe that the psycholinguistic assessment of grammar presents

a productive step forward for theoretical linguists is that it is a way to assess the gram-

matical generalizations made by contemporary Artificial Neural Network (ANN) models

while avoiding previous debates about what function, if any, relates probability to gram-

maticality. By constructing carefully controlled items, we create tests where certain pat-

terns of probability can only be produced if models have in some sense learned the rele-

vant grammatical generalizations. For a technical explanation of this intuition, as well as

to explain how we measure our target grammatical phenomenon, we turn to the filler–gap

dependency in the next section.

3.2 Measuring the Filler–Gap Dependency

Our goal is to understand the generalization that the models have made about latent struc-

tural properties, namely whether a sentence contains a gap or not. The particular general-

ization of interest is whether or not the model has learned that gaps are grammatical in
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contexts with fillers, and ungrammatical in contexts without fillers (exemplified by the

contrast between (7-a) and (7-b), below); and likewise, that sentences without gaps are

ungrammatical in the presence of fillers (exemplified by the contrast between (7-c) and

(7-d)).

(7) a. I know what the lion devoured yesterday .

b. *I know that the lion devoured yesterday .

c. I know that the lion devoured the gazelle yesterday.

d. *I know what the lion devoured the gazelle yesterday.

If the model is following grammatical generalizations as humans presumably do, then it

should assign higher probability to a word or phrase when that word or phrase is gram-

matically licensed than when it is not. For example, the adverb “yesterday” should be less

surprising in the context of (7-a) where the object of “devoured” may be reasonably ex-

pected to have been extracted, compared with (7-b), where the word “yesterday” seems

to indicate that the mandatory object of “devoured” is missing even though there is no

filler–gap construction to license this.

We can formalize this idea in terms of the ratio of two conditional probabilities: the

conditional probability of a word w+ given a context that licenses a gap, which we notate

as P (w+ | Cwhat), and the probability of that same word w+ given a context that does not

license a gap, notated as P (w+ | Cthat). Here w+ is what we call a gap-requiring word :

its presence is only grammatically possible in this context if there is a filler–gap construc-

tion. In (7-a)–(7-b), the gap-requiring word is “yesterday” which indicates a gap in the the
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object position of “devoured”. Under reasonable conditions,9 the ratio of these two prob-

abilities should be approximately equal to the probability ratio of the filler–gap structure

itself given the two contexts:

P (x+ | Cwhat)

P (x+ | Cthat)
≈ P (w+ | Cwhat)

P (w+ | Cthat)
, (1)

where x+ represents the existence of a filler–gap construction, so that P (x+ | Cwhat) can

be interpreted as the probability assigned by the model to the presence of a filler–gap con-

struction given the preceding context Cwhat.

What this approximate equality means is that the grammatical generalizations that the

network has learned should be reflected in word-level probabilities. Specifically, because

P (x+ | Cwhat) ≫ P (x+ | Cthat) in our materials, the probability ratio for any specific

gap-requiring word in the two contexts should be much larger than one. Indeed, one might

argue that for truly human-like linguistic generalization, we should have P (x+ | Cthat) ≈ 0

so the larger this ratio, the more human-like the model’s behavior.

A simple transformation of this probability ratio of Eq. (1) deepens its interpretability,

namely taking its negative log:

− log2

P (x+ | Cwhat)

P (x+ | Cthat)
≈ − log2

P (w+ | Cwhat)

P (w+ | Cthat)
= − log2 P (w+ | Cwhat) + log2 P (w+ | Cthat).

(2)

A negative log probability is also known as a surprisal value, and lies in the range range

[0,∞). A probability 1 event has zero surprisal; as probability decreases, surprisal in-

creases asymptotically toward infinity as probability approaches zero. Introducing the no-

tation S(y | C) ≡ − log2 P (y | C), we can rewrite the right-hand side of Eq. (2) as simply:
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S(w+ | Cwhat) − S(w+ | Cthat). (3)

The difference in Equation 3 lies in the range (−∞,∞). This value should be negative

for human-like generalization: the gap-requiring word w+ should be low-surprisal in the

context Cwhat reflecting the fact that the negative log transformation is a monotonically

decreasing function.

In fact, we can go further and say that for a well-designed example stimulus where

omitting the phrase in the gap position is ungrammatical without an appropriately posi-

tioned filler in the context, the smaller this value (i.e., the closer to −∞) the more human-

like the generalization, because we should have P (x+ | Cthat) ≈ 0 and P (x+ | Cwhat) > 0.

Conversely, for material w− that indicates there is no gap (such as the gazelle), equiva-

lent logic implies that a positive value for the quantity

S(w− | Cwhat) − S(w− | Cthat). (4)

would be indicative of human-like sensitivity to filler–gap structural relationships, because

we should have P (w−|Cwhat) < P (w−|Cthat) . Here, however, the logic of “the larger the

more human-like” does not go through: there are generally multiple possible locations for

a gap given a filler, so we do not necessarily expect P (w−|Cwhat) ≈ 0 in any particular

position.

In the introduction, we informally introduced the notion of wh-effects, which are

measures of how well models have learned the target structural generalizations. These dif-

ferences in surprisal values in Equations (3) and (4) are the technical definitions of wh-
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effects that will be used throughout the paper. In general, we expect large positive wh-

effects in cases where there is no gap, and large negative wh-effects in cases where there is

a gap.

The formulation in terms of surprisal also offers a link to psycholinguistic theory and

data, where surprisal is well established to influence both reading times and brain responses

(Hale, 2001; Levy, 2008; Smith and Levy, 2013; Frank et al., 2015; Goodkind and Bick-

nell, 2018; Wilcox et al., 2020; Heilbron et al., 2021). Although it is not the focus of the

present contribution, we also believe this link also facilitates direct quantitative compar-

isons of model predictions and human responses, such as those described in van Schijndel

and Linzen (2018) and Wilcox et al. (2021).

To test that models have learned both wh-effects simultaneously, we predict that, for

the full 2 × 2 crossed contrast given in (7) there should be an interaction between the

presence of a filler and the presence of a gap, whereby the models should display super-

additively less surprisal when both are present than when just one is present. To test for

this interaction, we run mixed-effects linear regression models, fit on raw surprisal values

with sum-coded conditions and by-item random slopes (Barr et al., 2013), and look for sig-

nificantly negative interaction terms.10 When presenting materials in this paper, we will

give examples of the +filler/+gap variant, even though all four will have been produced to

measure two wh-effects. For visualizations, we present the two wh-effects described above,

as collapsing across all four conditions may obfuscate important model behavior.
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3.3 Models Tested

We assess three types of model classes: n-grams, Recurrent Neural Networks and Trans-

formers. As argued in Pearl and Sprouse (2013a), for a model to be relevant for debates

about linguistic nativism it must be both domain general and weakly biased ; we discuss

each below: Following Clark and Lappin (2010), we take domain general to mean that

the model’s architecture does not limit it to making generalizations about just human lan-

guage. Although we train and test our models on linguistic data, they are capable of rep-

resenting relationships between arbitrary types of vectorized input, and therefore domain

general learners. Following, Lappin and Shieber (2007), we take weakly biased models to

be “uncomplicated, uniform [and] task-general” while strongly biased models are “highly

articulated, non-uniform and task-specific.” Because our neural networks’ internal states

are randomly initialized, their input data are all treated the same and their representa-

tions consist of large matrices of numbers, we take them as instances of weakly-biased as

opposed to strongly-biased models. Consistent with this view, training and testing these

architectures on synthetic languages has indicated that their inductive bias does not par-

ticularly favor natural language-like generalizations (Ravfogel et al., 2019; White and Cot-

terell, 2021).

n-gram models are statistical models that assign a probability to a string by tak-

ing the product of probabilities of n-token substrings. An n-gram language model has no

“memory” outside of its n-gram window, so models can only represent local dependencies

between words. We use a 5-gram model with Kneser-Ney smoothing trained on the British

National Corpus using the SRILM language modeling toolkit (Stolcke, 2002). We present
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the n-gram model primarily as a baseline.

Artificial Neural Network (ANN) models, or Connectionist Networks, are a class

of learning algorithms that map input into one or many intermediate layers of continuous

valued vector representation. Neural networks of sufficient depth are universal function ap-

proximators, capable of representing arbitrarily complex relationships between input and

output given large enough vector representations (Hornik et al., 1989). They can learn

a class of logical relationships impossible for simpler learning algorithms, such as ‘exclu-

sive or’ (Rumelhart et al., 1986). While ANNs have typically been described as ‘black box’

models, much is now known about their formal representational capabilities, and we touch

on these briefly below.

Recurrent Neural Networks (RNNs) (JRNN, GRNN) are a type of ANN that

was introduced in Elman (1990). RNNs consume multiple fixed-size inputs sequentially,

an architectural choice that permits them to make generalizations about series that may

vary in length, like sentences of human language. Elman (1991) showed that simple recur-

rent networks (SRNs) are able to model linguistic phenomena from data generated by toy

grammar fragments. However, in practice, SRNs have difficulty learning and maintaining

dependencies that involve long linear distances (Rodriguez, 2001).11 More contemporary

Long Short-Term Memory (LSTM) models (Hochreiter and Schmidhuber, 1997) are better

at maintaining dependencies between distant items (Schmidhuber et al., 2002), and may

be particularly suitable for modeling human language because they can implement coun-

ters, which they can deploy to process context free expressions (Weiss et al., 2018). We use

two LSTM models. The first, originally presented as the BIGLSTM+CNN in Jozefowicz

et al. (2016) which we thus refer to here as JRNN, was trained on the training portion of
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the One Billion Word Benchmark of newswire text (Chelba et al., 2014) and has two hid-

den layers with 8192 units each. It uses the output of a character-level Convolutional Neu-

ral Network as input to the LSTM. The second model, originally presented by Gulordava

et al. (2018), which we thus we refer to as GRNN, was selected for its previous success at

learning number dependencies between subjects and verbs, and does not include a CNN

embedding network. It was trained on 90 million tokens of English Wikipedia, and has two

650-unit hidden layers.

Transformers (GPT-2, GPT-3) are a type of neural network that have produced

many of the most recent state-of-the-art performances on Natural Language Processing

tasks. They encode the positional relationships between elements directly into the input

representation itself. Information is propagated through the network via self-attention—

each input token i is connected to every other token at the next layer, with the relative

weights of the connection corresponding to its importance for predicting the token the

next layer up. These models have often have large numbers of parameters (some, in the

hundreds of billions) and must be trained on large datasets. Theoretical results about the

capabilities of transformers paint a mixed picture. Hahn (2020) proves that they are not

able to recognize unbounded hierarchical structure, nor even all of the regular languages.

Although transformers are able to recognize languages up to a bounded depth, this raises

questions about these models’ ability to represent the underlying mathematical formalism

assumed by theoretical linguists (Shieber, 1985). We use two Transformer models: GPT-

2, which was trained on ∼ 8 billion tokens of internet text (Radford et al., 2019),12 and

its successor GPT-3, which was trained on ∼ 114 billion words broken into ∼ 500 billion

subword tokens (Brown et al., 2020).13
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4 Modeling Results: Base Experiments

4.1 Basic Licensing & Flexibility

One unique feature of the filler–gap dependency is that it is highly flexible. Fillers can

license gaps in subject, object and indirect object positions. In order to test these basic

properties we created 63 sentences following the three conditions outlined in Example (8).

Short adverbial phrases were added after the filler which, otherwise, would be adjacent to

the gap site in the subject condition. For this and subsequent experiments we use obliga-

torily transitive verbs and balance filler type (who vs. what) across the items. Bolded text

indicates critical regions.

(8) a. I know who without thinking showed the slides to the guests after lunch. [subject]

b. I know what without thinking the businessman showed to the guests after lunch.

[object]

c. I know who without thinking the businessman showed the slides to after lunch.

[prep. phrase]

We will walk through these results in detail, and present summary figures for the re-

mainder of the experiments. Our models output probabilities, which we turn into sur-

prisal values (negative log probabilities, or equivalently log inverse-probabilities). Fig-

ure 2 shows these raw surprisal values for the JRNN model. Higher values mean the to-

kens are less likely under the language model’s distribution. Average surprisal starts off at

around 10 bits/token in the first region, with surprisal in the +filler condition greater than

in the −filler condition (that is, the purple lines are higher than the green lines). This is
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Figure 2: Filler–Gap Licensing: Mean by-word surprisal by sentence region for the

JRNN model, with critical regions highlighted in teal. In the absence of a gap (left col-

umn) +filler conditions hare more surprising. When gaps are present (right column) this

trend is reversed, corresponding to our predicted interaction. Slight differences in the first

region between tests are due to the different proportion of who and what in the test mate-

rials.
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because ‘that’ is a much more common complementizer than wh-words. The average by-

word surprisal is even higher in the second region (e.g. ‘...without thinking...’), as adver-

bial phrases rarely come before subject position in embedded sentences. For the remainder

of the phrase, we see the following behavior: When gaps are absent (left column) +filler

conditions are higher in filled argument structure positions (e.g. the CEO, the slides, the

guests) than −filler conditions. Crucially, this pattern is reversed when gaps are present.

In the −gap conditions (right column) the −filler is higher surprisal than the +filler condi-

tion, in the critical regions immediately following a gap site. This reversal corresponds to

the interactive effect we expect to find if models had successfully learned the dependency

between fillers and gaps.

Now, instead of reporting raw surprisal values, we will focus of the difference between

the +filler and −filler conditions (the differences between the purple and green lines in

Figure 2), the so-called wh-effect. We zoom in on this in Figure 3, still for JRNN. Here,

the red lines are the wh-effect in the −gap condition, and the dotted blue lines are the wh-

effect in the +gap condition (the blue line skips over sentence regions that are gapped in

that test). In this figure there are two patterns to note: First, the blue dashed lines are all

negative in the critical region immediately following a gap. This corresponds to the con-

trast in (2), namely that the presence of a gap is less surprising when it is licensed by an

upstream filler. Second, the solid red lines are all positive in the critical regions that cor-

respond to argument structure slots (the CEO, the slides, the guests). This corresponds to

the contrast in (3), namely that filled argument structure positions should be more sur-

prising in the presence of a filler.

For the remainder of this paper, we will zoom in even further, showing just the wh-
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Figure 3: Wh-effect by sentence region:, Blue arrows indicate regions of interest in

each condition. In the −gap conditions, wh-effects are positive in critical regions. In the

+gap conditions, wh-effects are negative. Error bars are 95% confidence intervals across 63

test sentences.
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Figure 4: Basic Licensing: The various experiments are on the x-axis, and the wh-

effect is on the y-axis. Error bars represent 95% confidence intervals. Negative wh-effect

in the +gap condition (blue bars) and a positive wh-effect in the -gap condition (red bars)

shows that all models are learning the basic filler–gap dependency.

effects in the critical regions, which correspond to the differences highlighted by the blue

arrows in Figure 3. These can be seen as bar charts for each of the models tested in Fig-

ure 4, which is the presentational paradigm that will be used from here on out. Roughly

speaking, if the blue bars are well below the zero line and the red bars are well above it,

we can expect a significant interaction from our regression model. As expected, in statis-

tical tests we found a significant interaction term for all four of our neural models (p <

0.001 in all conditions; except for the n-gram model), indicating that they have learned

the basic co-variation between fillers and gaps.

Turning to effect size, in the +gap condition for the subject test, the wh-effect is about

4 bits, which corresponds to ≈25% of the average by-word surprisal in the preceding re-

gion (Region 2, in Figure 2) and ≈40% of the average by-word surprisal in the following
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region (Region 5, or “the slides”, in Figure 2). That is to say, in +gap conditions, the wh-

effect is a large percentage of the average by-word surprisal for a baseline grammatical sen-

tence. However, in the −gap conditions, the wh-effect size is smaller. This pattern is true

generally across all of our tests, and not necessarily unexpected. As mentioned in Section

3.2, the presence of a filler sets up an expectation for a gap, but not in a particular argu-

ment structure position. Therefore, when encountering a filled subject (e.g. “the CEO” in

Figure 2), the sentence is not rendered ungrammatical as a gap could occur in downstream

object or indirect object positions.

Comparing the models’ licensing strength to the distribution of gaps in English written

text suggests that models have made generalizations beyond the statistics encountered in

their training data. An analysis of the Wall Street Journal portion of the Penn Treebank

(Marcus et al., 1993) reveals that in written English text there are about two times the

number of gaps in subject position compared to object position, and two times the num-

ber of gaps in object position compared to prepositional phrases inside the VP.14 But con-

trary to the distribution of gaps in written English, GPT-2, JRNN and GRNN show the

strongest expectation for filler–gap dependencies in object position, with slightly less, but

about equal expectation for filler–gaps in subject and PP conditions. GPT-3’s licensing

pattern more closely matches the distribution of gaps we would expect to find in a large

corpus. These results suggest that, at least for the former models, behavior is a result of

learned generalizations that goes beyond rote recapitulation of training-corpus statistics.
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Figure 5: Sensitivity to syntactic hierarchy. All models show reduction (or inversion) of

wh-effects in the matrix condition.

4.2 Hierarchy

The experiments presented above are compatible with a strictly linear relationship be-

tween fillers and gaps. A model with a simple linear heuristic—“If I see a filler, expect

a gap downstream where an NP is likely to occur”—would perform well. In reality there

are a number of hierarchical constraints implicated in the filler–gap dependency. To a first

approximation these state that the filler must c-command the gap (although the precise

relationship is more complex; see Pollard and Sag, 1994a). Example (9) demonstrates this

relationship with a filler–gap sentence, where the portion of the sentence c-commanded by

the filler who is demarcated with brackets. The sentence (9-b) is ungrammatical because

the gap site is not in this region. (One other difference between these sentences is the dis-

tance between the filler and the gap, an issue we will address in the next section.)

(9) a. The fact that the reporter knows who [the witness surprised with his testimony]
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surprised the jury during the trial. [subject gap]

b. *The fact that the reporter knows who [the witness shocked the jury with his testimony ]

surprised during the trial. [matrix gap]

If models have learned these tree-structural restrictions, we should expect two things:

First, when the filler does not c-command the gap, its presence should not affect the like-

lihood of a gap. That is, the wh-effect in the +gap condition should be close to zero. Sec-

ond, the presence of an upstream filler should not make the filled argument structure po-

sition more or less surprising. That is, the wh-effect in the −gap condition should also

be close to zero. Putting this all together, we predict that if the models are learning the

structural restrictions on the filler–gap dependency, wh-effects should be strong in gram-

matical conditions like (9-a), but close to zero in the ungrammatical conditions like (9-b).

In practice we test this expected reduction in two ways: First, we test the relative reduc-

tion by inspecting the three-way interaction between filler, gaps and structural position,

looking for a significantly positive interaction term which indicates increased surprisal in

the matrix gap condition. Second, we test the absolute reduction by inspecting whether

the 95% confidence intervals (CIs) of the wh-effects in the matrix gap condition cross the

zero line (or if there is an inversion of wh-effects between conditions).

In order to test this prediction we created 45 sentences following the template in (9).

We matched the verbs across the two conditions to control for spurious lexical frequency

effects (i.e. surprised is in both subject and matrix conditions in the example). The results

from this experiment can be seen in Figure 5. All neural models show proper wh-effects

in the subject condition, where the gap is properly licensed. Crucially, many show a re-
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duction of wh-effects in the matrix condition. For our relative metric, we find significant

reduction in wh-effects when the gap is no longer c-commanded by the filler for all neural

models (p < 0.001 for JRNN and GPT-2, and p < 0.05 for GRNN and GPT-3). However,

for GPT-3, this is largely due to reduction in wh-effects in the -gap condition, and behav-

ior in the +gap condition is not consistent with it having learned the correct hierarchical

generalizations. For our absolute metric, we find that the 95% CIs cross zero for GPT-

2 and JRNN (+gap conditions), and GPT-3 and GRNN (-gap conditions). For GRNN,

the 95% CIs do not cross zero, but the effect is in the wrong direction. The n-gram model

show no variation between conditions.

4.3 Unboundedness

One worry is that the previous experiment doesn’t test sensitivity to hierarchy per se, but

merely sensitivity to distance: models demonstrate wh-effects in the subject condition be-

cause the gap site is closer to the filler. The filler–gap dependency, however, is unbounded
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insofar as the location of the filler and the gap can be separated by any number of nodes

in a parse tree, as in (10), where the final sentence may be difficult to process, but (ar-

guably) remains grammatical despite the intervening material. Importantly, the gram-

maticality of sentences like (10-c) demonstrates the types of generalizations that language

learners make about the filler–gap dependency. An analysis of the constituency parses of

the CHILDES Treebank (Pearl and Sprouse, 2019) reveals that of the ∼100,000 sentences

in the dataset, 396 contain 2 layers of sentential embedding, 44 contain 3 layers of senten-

tial embedding and 9 contain 4 layers of sentential embedding.15

(10) a. I know who the countess offended at the ball. [1-layer]

b. I know who the footman believed the countess offended at the ball. [2-layers]

c. I know who the count remembered the lady reported the guard said the czar thought the

footman believed the countess offended at the ball. [5-layers]

In order to test potential unboundedness, and to provide a control for the hierarchy

tests, we created 54 sentences following (10) with between 2 and 5 layers of sentential em-

bedding.16 The results for this experiment can be seen in Figure 6. All of the neural mod-

els demonstrate proper wh-effects for all conditions (p < 0.001 for all models and all layers

of embedding). In order to test whether models show a significant reduction in licensing

between layers, we fit a linear model with number of layers as an additional predictor and

inspect for a significantly positive three-way interaction between the presence of a filler,

the presence of a gap and the number of layers. For GPT-2 and GPT-3, we find that there

is a significant interaction after one additional layer (p < 0.01 for all contrasts); for GRNN
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the reduction is significant after two additional layers (p < 0.001); and for the JRNN the

reduction is significant after three additional layers (p < 0.01), largely driven by reduction

in wh-effects in the +gap conditions. As far as absolute licensing, the CIs cross zero only

three cases—+gap conditions for GPT-2 at 5 layers of embedding and GPT-3 at 4 and 5

layers of embedding.

Next, in order to be sure that the reduction in our Hierarchy experiment is greater

than the reduction observed across multiple layers of embedding, we combine data from

both experiments and fit a regression model with two additional predictors: test type (heirar-

chy vs. unboundedness) and whether the distance between the filler and the gap is prox-

imal or distal (subject and embed2/3 conditions are proximal, whereas matrix and em-

bed4/5 are distal). We treat the filler-to-gap distance as a categorical variable due to the

categorical structure of the hierarchy test suites, essentially asking if the prepositional

phrase and tensed verb that delineate the end of the relative clause in the hierarchy test

is a stronger “blocker” for the filler–gap dependency than a third layer of sentential em-

bedding in the hierarchy test. Here, a negative four-way interaction between filler, gap,

distal and test type provides a ‘yes’ answer: We find significant interactions for JRNN

(p < 0.0.001), GRNN (p < 0.05), GPT-2 (p < 0.05), but not for GPT-3, which gener-

ally shows the weakest results for this test.

There are two takeaways from this experiment: These results indicate that models can

thread wh-expectations through complex syntactic environments, providing the controls

needed to conclude that the reduction of wh-effects observed in the hierarchy experiment

are not due merely to distance, but to a restriction based on their structural relation-

ship.17. Second, the fact that models are likely to have seen very few sentences with four
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layers of embedding or more, and yet show significant wh-effects in these conditions indi-

cates that they are making some generalization beyond their training data. Even though

GRNN did show some reduction with additional layers of embedding, RNN models tended

to perform better than Transformers, despite their smaller training vocabularies. This sug-

gests that their architecture makes them better models of human linguistic competence, at

least for this phenomenon.18

5 Island Effects

5.1 Methodology

In this section, we investigate seven of the most studied island phenomena (Ross, 1967;

Huang, 1982). If models are learning that the co-variation between fillers and gaps does

not hold when gaps are in island positions, then two things should be true: First, when a

gap is inside an island construction, the presence or absence of an upstream filler should

have no effect on its relative likelihood. Second, the presence of absence of an upstream

filler should not affect the relative surprisal of a filled argument structure position located

inside an island. To test these predictions we deploy both a relative assessment metric and

an absolute assessment metric. For our relative metric, we inspect the three-way interac-

tion between +/−island, +/−filler and +/−gap looking for a supperadditive increase in

surprisal. For our absolute metric, we inspect whether the 95% confidence intervals for

the across-item wh-licensing cross the zero line in the island conditions (or invert between

island/non-island conditions). This is the same logic that we used to make predictions
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about model acquisition of hierarchical generalizations in Section 4.2, above. Following

the setup in that experiment, here, we contrast the wh-effects in an island condition with a

non-island minimal pair counterpart, typically with gaps in object position.19

There is, however, a potential confound with this approach. It may be the case that

reduced wh-effects are not due to generalizations learned about the filler–gap dependency,

but rather that any information flow is blocked by sufficiently complex material. In that

case, apparent island-like behavior would be an epiphenomenon of a larger inability to

thread information through syntactically complex environments. To account this confound

we employ controls that utilize expectations for gendered pronouns, set up by morpho-

logically gendered nouns, such as baron and baroness. We measure the noun’s masculine

expectation by taking the difference between the masculine pronoun his and the feminine

pronoun her, following (11), below.20 If models have learned the gender dependency, then

we expect a strong masculine expectation when the head noun is morphologically mascu-

line and a strongly negative masculine expectation when the head noun is feminine. We

set up this 2 × 2 interaction to mimic the experimental design of our island tests.

(11) a. The baron said they brushed her hair. [masc, fem]

b. The baron said they brushed his hair. [masc, masc]

c. The baroness said they brushed her hair. [fem, fem]

d. The baroness said they brushed his hair. [fem, masc]

In addition to these basic licensing conditions, we construct examples where the gen-

dered pronoun is inside an island structure, relative to the head noun. Examples for the
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Wh Island and Complex NP Island variants are given in (12), below.

(12) a. The baron/baroness said whether they brushed his/her hair. [Wh Island]

b. The baron/baroness said they liked the attendant who brushed his/her hair. [Com-

plex NP Island]

If models had learned that complex syntactic structures block all information flow,

then we would expect a reduction of gender expectations inside of island configurations.

If, however, the models have learned island constraints as a unique feature of the filler–gap

dependency, then we should expect no reduction of gender expectations in sentences like

(12). We test for significant reduction between the control conditions, like (11) and island

conditions using the same statistical procedures as for the filler–gap sentences. What we

look for in this section, then, is a reduction of wh-effects between island/non-island condi-

tions, but a lack of reduction in gender expectation.

5.2 Island Experiments

Adjunct Islands: Gaps cannot be licensed inside an adjunct clause, as demonstrated by

the contrast between (13-a) vs. (13-b).

(13) a. I know what the librarian placed on the wrong shelf.[control, filler–gap]

b. *I know what the patron got mad after the librarian placed on the wrong shelf. [is-

land, filler–gap]

c. The actress thinks they insulted {his/her} performance [control, gender exp.]

d. The actress got mad after they insulted {his/her} performance. [island, gender
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Figure 7: Adjunct Islands

exp.]

To test for sensitivity to adjunct islands we created 54 items following the template

in (13). The results for this experiment can be seen in Figure 7. For the gender depen-

dency, we see the neural models performing exactly the same in the control conditions as

in the island conditions. Turning to the filler–gap dependency, we find a relative reduction

of wh-licensing interaction between the control and island conditions for all neural models

models (p < 0.001), but not for the n-gram model. In terms of absolute metrics, we find

that wh-effects are not different from zero for three models in the +gap condition (GPT-2,

GRNN and JRNN), but are slightly above zero in the −gap condition for all models.

Complex NP Islands: Gaps are not licensed inside S-nodes that are dominated by a

lexical head noun, as demonstrated by the contrast between (14-c) compared to (14-a).
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Figure 8: Complex NP Islands

(14) a. I know what the actress bought yesterday. [control, filler–gap]

b. *I know what the actress bought the painting that depicted yesterday. [island, filler–

gap, that-comp]

c. *I know what the actress bought the painting which depicted yesterday. [island,

filler–gap, wh-comp]

d. The actress said they saw her {his/her} performance. [control, gender exp.]

e. The actress said they saw the exhibit {that/which} featured {his/her} performance.

[island, gender exp.]

We created items following the examples in (14), with two island conditions: one in

which the complex NP is headed by a wh-complementizer and one in which it is headed

by a that-complementizer. The results from this experiment can be found in Figure 8. We
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Figure 9: Coordination Islands

find a relative reduction in wh-effects for all neural models (p < 0.001 for both that and wh

conditions for JRNN, GPT-2 and GPT-3, p < 0.01 for GRNN). For our absolute metric,

we find that 95% CIs cross zero in the +gap condition for JRNN and GPT2 (wh-comp),

and for JRNN (that-comp). For the −gap condition, 95% CIs cross zero for all models

(wh-comp) and for JRNN (that-comp). We found no reduction in gender expectation be-

tween control and island conditions for any model.

Coordination Islands: The coordination constraint states that a gap cannot occur

in one half of a coordinate structure, as demonstrated by the difference in acceptability

between (15-b)/(15-c) and (15-a), in which the whole object has been gapped. From an in-

cremental model, however we would only expect a reduction in wh-licensing when the gap

is in the second conjunct. This is because when the gap is in the first conjunct the con-

tinuation may end grammatically, such as I know what the man bought and the painting
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later depicted (an example of Across the Board movement). This is not the case when

the gap occurs in the second conjunct, which cannot be rescued through ATB movement

and is rendered ungrammatical at the gap site.

(15) a. I know what the man bought at the antique shop. [control, filler–gap]

b. *I know what the man bought and the painting at the antique shop. [island, filler–

gap]

c. *I know what the man bought the painting and at the antique shop. [island, filler–

gap]

d. The fireman knows they talked about {his/her} performance. [control, gender

exp.]

e. The fireman knows they talked about {his/her} performance and the football game.

[island, gender exp., 1st conj.]

f. The fireman knows they talked about the football game and {his/her} performance.

[island, gender exp., 2nd conj.]

We created experimental items following the examples in (15). In the -gap conditions,

for the control sentences, we sum over a whole conjoined NP (e.g. “the painting and the

chair”). In addition, we add extra material to the beginnings of the control and first con-

junct sentences, to maintain similar linear distance between the filler and the gapsite be-

tween all three tests. Results can be seen in Figure 9. We find a significant reduction in

wh-effects (p < 0.001 for all four neural models), but no such reduction in the gender ex-

pectation. In absolute terms, 95% CIs cross the zero line for all neural models as well. The

effects here were the largest effect sizes out of all the island configurations tested.
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Figure 10: Left Branch Islands

Left Branch Islands: The left-branch constraint states that modifiers which appear

on the left branch under an NP cannot be gapped, accounting for the relative ungrammat-

icality of (17-d) compared to (16-d). We created 20 items following the examples below

and measured the wh-licensing interaction in the post-gap material. Because in the island

case the moved material consists of an adjective phrase like how expensive, we were unable

to create minimal pair gender controls for this island and present this test without them.

As the no-gap variants of these tests are harder to reconstruct than those of the other is-

land experiments we present them below.

(16) a. I know that you bought an expensive a car last week.

b. I know that you bought last week.

c. I know how expensive a car you bought a car last week.

d. I know how expensive a car you bought last week. [whole object]

(17) a. I know that you bought an expensive a car last week.

b. I know that you bought last week.

c. I know how expensive you bought a car last week.
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Figure 11: Sentential Subject Islands

d. *I know how expensive you bought a car last week. [left branch]

The results can be seen in Figure 10. We find that the JRNN, GRNN and GPT-3 mod-

els show a reduction of wh-effects inside the island (p < 0.01 with p < 0.05 for JRNN).

While the effect is in the right direction for GPT2, the interaction is not significant (p =

0.12). In terms of absolute licensing, wh-effects are not different from zero for all models in

the +gap condition, and all below zero in the −gap condition.

Sentential Subject Islands: The sentential subject constraint states that gaps are

not licensed within an S-node that plays the role of a sentential subject. To assess whether

the models had learned this constraint we created items following the variants in (18).

(18) a. I know who the seniors defeated last week. [control, filler–gap]

b. *I know who for the seniors to defeat will be trivial. [island, filler–gap]
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Figure 12: Subject Islands

c. The fireman knows they will save {his/her} friend. [control, gender exp.]

d. The fireman knows for them to save {his/her} friend will be difficult. [island, gender

exp.]

The results for this experiment can be seen in Figure 11. We find a significant reduc-

tion of wh-effects between the island and non-island conditions for JRNN and GPT-3

(p < 0.05) but not for GRNN or GPT-2. In absolute terms, each model shows a non-zero

wh-effect in both +gap and −gap conditions. No model shows reduction in gender expec-

tations inside island configurations.

Subject Islands: Gaps are generally licensed in prepositional phrases, except when

they occur attached to subjects. We created experimental items following the examples in

(19).
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Figure 13: Wh-Island Effects

(19) a. I know what fetched a high price. [control, filler-gap]

b. *I know who the painting by fetched a high price. [island, filler–gap]

c. The actress said they sold the painting by {his/her} friend. [control, gender exp.]

d. The actress said the painting by {his/her} friend sold for a lot of money. [island,

gender exp.]

The results from this experiment can be seen in Figure 12. We find a significant reduc-

tion of wh-effects for JRNN (p < 0.05), GPT-2 and GPT-3 (p < 0.01) but not for GRNN.

The failure of GRNN in this case is because it does not produce robust wh-effects in the

non-island controls, at least relative to the island conditions. In absolute terms, we find

wh-effects that are not different from zero for all models in the −gap island condition, but

are different from zero for all models but GRNN in the +gap island condition.
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Wh-Islands: The wh-constraint states that the filler–gap dependency is blocked by

S-nodes introduced by a wh-complementizer, as demonstrated in the unacceptability of

(20-b) compared to (20-a). We created experimental items following the examples in (20)

and measured their wh-effects.

(20) a. I know who Alex said your friend insulted yesterday.[control, filler–gap]

b. *I know who Alex said whether your friend insulted yesterday. [island, filler–gap]

c. The actress said they insulted {his/her} friends. [control, gender exp.]

d. The actress said whether they insulted {his/her} friends. [island, gender exp.]

The results for this experiment can be seen in Figure 13. We find a relative reduction

in licensing effects for all four neural models (p < 0.001), with no reduction for the n-gram

model. 95% CIs cross zero in the +gap condition for all models, as well as for all models

except JRNN in the −gap condition. We find no difference between the island and non-

island conditions in the gender controls.

5.3 Discussion

Figures 14 and 15 show summary results for our island tests. Figure 14 highlights model

performance on our absolute metric by showing the percent reduction in wh-effects be-

tween island and non-island conditions. Figure 15 highlights model performance on our

relative metric, by reporting significance of the three-way interaction term from our sta-

tistical tests. For both summary figures, we compare model behavior on island tests to
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Figure 14: Summary of results for island tests: Bars with black 95% CIs are wh-

effects for control conditions, bars with red 95% CIs are wh-effects for island conditions.

Color indicates the percent reduction in wh-effect between island/non-island conditions. If

models are learning islands, we expect substantial reduction, and wh-effects that are not

different from zero for islands (i.e. red CIs cross the zero line). To the right of the vertical

blue line, we show effects for argument-structure controls, where we expect no decrease in

wh-effects between conditions.

46

Wilcox, Ethan Gotlieb, Richard Futrell, and Roger Levy. 2022. Using Computational Models to Test Syntactic Learnability. 
Linguistic Inquiry. Advance publication. https://doi.org/10.1162/ling_a_00491 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 © 2022 by the Massachusetts Institute of Technology 

D
ow

nloaded from
 http://direct.m

it.edu/ling/article-pdf/doi/10.1162/ling_a_00491/2051578/ling_a_00491.pdf by M
IT Libraries user on 30 M

arch 2023



Figure 15: Reduction of Island Effects: Each cell corresponds to a statistical test

and shows, for the three-way interaction term, the level of significance achieved (top row),

and the effect size in bits (bottom row). Tests that reach 0.05 confidence threshold are

dark blue. To the right of the vertical blue line are argument structure controls, where we

expect no significant effects.
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behavior on argument structure tests reported in section 4. As with island tests, gaps in

matrix-level object position are controls while gaps in subject position and in preposi-

tional phrases are targets. If models are learning the correct generalizations, we expect

these tests to pattern differently from islands.

Looking first at Figure 14, we find that our absolute criteria for island effects is met

in 42/64 islands (and 1/8 argument structure controls), with some variance between mod-

els, experimental conditions and island structures themselves. At the model level, JRNN

matches expectations in the most cases (its 95% CIs are within zero for 12/16 island tests,

including both +gap and −gap conditions), followed by GRNN (11/16 island conditions),

GPT-2 (10/16), and finally GPT-3 (9/16). Interestingly, by this metric, both of the recur-

rent models outperform the transformers, even though the latter were trained on orders of

magnitude more data. Thus, these results suggest that, within limits, model architecture,

more than training data size, may determine the extent to which the models’ generaliza-

tion behavior is consistent with humans (for similar conclusions in a more controlled set-

ting see Hu et al. (2020)). Turning to experimental conditions, we find that models show

approximate equal sensitivity in the +gap condition (where 22/32 of islands have 95% CIs

within zero) and −gap condition (20/32). However, we do find that models show some re-

duction for argument-structure controls in −gap conditions, which is not evident in +gap

conditions. As far as island-by-island variation, GRNN, GPT-2 and JRNN show human-

like behavior for Adjunct Islands, CNP Islands, Coordination Islands and Wh Islands.

However, there is more variation between models for Left-Branch islands, where models

fail to show the proper licensing behavior in control conditions, as well as Subject Islands

and Sentential Subject Islands.
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Turning to Figure 15, we find statistical evidence for island effects in 28/32 tests across

all models, and in 0/8 argument structure controls. In this case, we find that JRNN and

GPT-2 demonstrate the expected sensitivity to islands for all structures, whereas GRNN

and GPT-3 demonstrated the expected sensitivity for 6/8 structures. Despite cross-model

architectural variation, again we find strongest effects for Coordination, Adjunct and Com-

plex NP islands, with weaker effects for Left-Branch Islands, Subject, and Sentential Sub-

ject islands.21

In summary, we take the results from this section to indicate that general-purpose pat-

tern recognizers can acquire many, although not all, of the island effects from string data

alone, with models showing the expected behavior in 65% of cases for our absolute met-

ric and 88% for our relative metric. These generalizations are possible when the training

data is equivalent to the linguistic experience of an older child (GRNN). The fact that all

models show lower power in the sentential subject and subject experiments, despite their

different architectural arrangements and training regimes, raises the intriguing possibility

that rules governing subject/object asymmetry may prove especially challenging to learn

from data.

6 General Discussion

In this section, we first discuss the issue of how and why the models are learning what

they do, arguing that the similarities in models’ generalizations despite their architectural

differences can be best understood through their objective function, which is to increase

data likelihood. Next, we address four possible concerns about the applicability of our
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modeling results for addressing questions of learnability.22 Finally, we turn to the impli-

cations of the models’ success for one influential argument in favor of linguistic nativism,

the Argument from the Poverty of the Stimulus.

6.1 How Are the Models Learning?

We start with a set of questions adapted from Pearl and Sprouse (2013a) addressing their

own computational model of island acquisition: (1) Why does the system attempt to learn

dependencies between tokens or sequences of tokens? (2) Why does the system attempt to

learn constraints on those dependencies? and (3) Why does the system treat wh-dependencies

as separate from other dependencies, like RC dependencies and binding dependencies?

Before we begin answering these questions, we need to recapitulate three properties

of our models: First, as discussed in Section 3.3, all of our models are weakly-biased and

domain general learners, with no evidence for natural-language like syntactic biases. Sec-

ond, the different neural networks vary widely in their assumptions about how the pieces

of input data are related to each other and how the input data should be represented:

GRNN represents each word as a single token, GPT-2 and GPT-3 break words down into

sub-word units, and JRNN processes each word as a character string using a separate

convolutional neural network component. In terms of the relationship among pieces of

data, the two LSTM models understand the individual token-to-token relationships as

unfolding through incremental state updates, which is intended to model time, whereas

Transformers maintain a fully-connected network of relationships where each token is as-

signed a time ‘index.’ Third, neural networks in general, and our models in particular, are
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well-established to acquire representations that correspond to various levels of linguistic

abstraction (Belinkov et al., 2017; Belinkov and Glass, 2019). LSTM models have been

shown to capture syntactic part of speech (Blevins et al., 2018), and for transformers (in-

cluding GPT-2 models) different attention heads specialize at processing different parts of

speech as well as different dependencies (Vig and Belinkov, 2019).

With these pieces in place, we can turn to the questions posed above, which we address

by articulating the horns of the learnability debate: Because the abstractions on which

these dependencies operate are justified given the models’ inductive bias by the distribu-

tional structure of the data, and with these abstractions available, co-variation between

these categories is learned either because (a) it is favored by the inductive bias, or (b) be-

cause learning these dependencies improves data likelihood. Since we know that no model

architecture tested here has an obvious strongly natural language syntax oriented induc-

tive bias,23 and, despite some differences, we find many similar results with multiple archi-

tectures that make different choices about both input representation and the relationship

between these inputs, the most plausible conclusion is that data likelihood drives learning.

Thus, in response to the first two questions, our hypothesis is that each model learns the

constrained co-variation between fillers and gaps because it is a generalization available

within the hypothesis space determined by the model architecture that that allows it to

successfully shift probability mass away from unlikely sentences and place more weight on

sentences that are more likely to occur.

The response to the third question (“Why does the system treat wh-dependencies as

separate from other dependencies”) is similar. Given previous work demonstrating that

individual featural dependencies are tracked by individual neurons (Lakretz et al., 2019;
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Giulianelli et al., 2018), it is likely that the respective distributions that characterize each

type of dependency are sufficiently distinct that they are represented differently in the net-

work. Given this, the inductive bias either does not favor generalizing constraints from

one dependency to others, or such generalization hurts data likelihood. In sum, the type

of answer we propose for the explaining the success of our models stems from the nature

of their objective function of maximizing data likelihood. If this is correct, then the model

success can be related to the success of other, more transparent models that use data like-

lihood maximization to tackle issues of learnability, such as the model proposed for the

acquisition of subject-auxiliary inversion in Perfors et al. (2006).

6.2 Possible Concerns

The first possible concern has to do with data size: If we assume that a typical child in a

native English environment is exposed to about 30,000 words per day (≈ 11-million words

per year) (Hart and Risley, 1995), then GRNN has a quantity of linguistic experience com-

parable to an 8-year-old. If this rate of exposure persists throughout a typical adult life-

time, then JRNN roughly has a quantity of linguistic experience comparable to that of an

80-year-old, GPT-2 that of 10 human lifetimes, and GPT-3 that of 100 human lifetimes.

Although some of these models are clearly exposed to vastly more linguistic experience

than human children, we believe that their learning outcomes are still relevant to debates

about learnability. First, their behavior may still be relevant in addressing what gram-

matical generalizations are learnable in principle, which can bear on analytic arguments

about learnability. In addition, GRNN’s data size is approximately equal to that of late
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childhood, when we would expect robust acquisition of islands. Crucially, though, these

differences are made moot by our results, which indicate that data size has little effect on

qualitative model success, with our smallest data model performing equivalently to GPT-3,

our largest data model.

The second possible concern is about data genre: All of our models were trained on

newswire or similar adult-directed text, which may differ from child-directed speech in

critical ways, such as average sentence length and size of the lexicon. Commenting on

genre, we would like to point out that it is an open question whether it has a substantial

effect on human language learning outcomes. The manner and rate at which adults speak

to children varies substantially across cultures, and there are some cultures in which chil-

dren are spoken to infrequently yet still learn their native language (Weber et al., 2017;

Cristia et al., 2019).

The third possible concern has to do with the effect of parasitic gaps on the logic we

use to test for island effects. Parasitic gaps (Engdahl, 1983) are instances where gaps in

adjunct islands can exist parasitically on the presence of an upstream host-gap, as in (21),

below.

(21) I know what the spy burned after reading last night.

The concern is that, even if a model has acquired adult-like distribution of gaps, it should,

nonetheless, posit some gaps in adjunct clauses, thus muddying our prediction for the ab-

sence of wh-effects inside islands. While the example of parasitic gaps is extremely inter-

esting, we do not believe that they invalidate our logic. Generally, parasitic gaps need to
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be preceded by a host gap, which do not exist in any of our test items. Thus, in the ab-

sence of upstream host gaps, gaps inside adjuncts are still ungrammatical.24

The last possible concern we would like to address is one of coverage. We have cho-

sen to study models’ generalization of the filler–gap dependency by looking at embed-

ded wh-questions. We have done so to rule out possible confounds associated with other

forms of syntactic movement such as do-support for matrix level questions (“The lion ate

the gazelle yesterday. → What did the lion eat yesterday?”). Just because the models

tested have learned many aspects of the filler–gap dependency in the embedded question

context does not mean they have learned island constraints for other dependencies, such

as relative clauses, root-level questions and topicalization. However, it is possible that the

models might learn a non-unitary representation of the wh-dependency, but learn the cor-

rect constraints on one of its parts (i.e. embedded questions). In this case, model learning

would still provide good empirical evidence that these cosntraints are learnable in prin-

ciple. Additionally, this possible limitation of the current work is alleviated by a recent

study (Ozaki et al., 2022) finding that our models do learn island constraints for other wh-

dependencies, and that these constraints are sometimes even stronger than for embedded

wh-questions, providing additional support for our conclusions.

6.3 Argument from the Poverty of the Stimulus

We now discuss the implications of our modeling results. The question we wish to gain

traction on is the following: Where on the nativist-to-empiricist spectrum should we place

island constraints? Nativist approaches posit that island constraints are learned by language-
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specific innate constraints, which guide the child’s learning process. Language-specific refers

to abstract rules or operations stated in terms of syntactic (or linguistic) structures, and

are not used in other domains of cognition. These constraints guide the learning process

by eliminating or down-weighting certain structures from the hypothesis space. Innate,

as argued in Mameli and Bateson (2011), is often discussed as a single property, but it is

more properly understood as a cluster (or less charitably a ‘clutter’) of interrelated con-

cepts. Here, we use the term to describe representations that do not need to be learned

and are sufficiently developmentally robust, or canalized. On the opposite end of the spec-

trum, empiricist approaches posit that island constraints are learned by applying domain

general principles—such as pattern prediction—to the problem of efficient communication.

As mentioned in Perfors et al. (2006), empiricist approaches to language learning do not

deny that grammatical representations are present in the learner’s hypothesis space. The

difference is that empiricist approaches posit that these structures are selected with re-

spect to some criteria (they do a good job predicting the data; they are simple) rather

than because they are favored or disfavored a priori.

How can computational modeling provide evidence for or against nativist or empiricist

approaches? To be clear, the performance of a given model does not provide direct evi-

dence for or against the learnability of a particular structure by humans. Given the vast

distance between any computational model available today and the human brain, model

success does not mean that the structure is necessarily learned and model failure does not

mean that the structure is not learnable. Rather, we use computational modeling as an

empirical corollary to analytic arguments about learnability, specifically the Argument

from the Poverty of the Stimulus. Since it was first introduced in Chomsky (1965a), the
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APS has been formulated differently by different people. The version presented here is a

blend of the argument as construed in Clark and Lappin (2010) and Laurence and Mar-

golis (2001). As the APS has typically been treated as an argument advocating linguistic

nativism, it is important to situate it in the discourse of these debates. For this reason, as

advocated in Clark and Lappin (2010) the way we will frame the APS is as a logical argu-

ment about the necessity of language-specific biases.25

Argument from the Poverty of the Stimulus:

1. Learners acquire target language L0 through domain general learning algo-

rithms or through algorithms with a strong language-specific learning bi-

ases.

2. The primary linguistic data are consistent with an infinite number of lin-

guistic generalizations L0, L1, L2, . . . .

3. Language learners consistently acquire the actual generalizations of their

target language, L0.

4. There are no domain-general learning algorithms that favor L0 over

L1, L2, . . . .

5. Therefore, children acquire L through algorithms with a strong language-

specific bias.

This formulation of the APS is useful because it provides a clear role for computational

modeling experiments. If an algorithm with no language specific learning bias is able to

acquire the proper linguistic generalizations, then Premise 4 does not hold and the ar-

gument falls apart. As stated by Lappin and Shieber (2007) in the context of the role of
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connectionist networks in debates about the APS: “[T]o the extent that a given machine

learning experiment is successful in acquiring a particular phenomenon, it shows that the

learning bias that the model embodies is sufficient for acquisition of that phenomenon. If,

further, the bias is relatively weak, containing few assumptions and little task specificity,

the experiment elucidates the key question by showing that arguments against the model

based on its inability to yield the relevant linguistic knowledge are groundless.”

Now, note that the learning algorithm must be domain-general (in our formulation of

the APS) or weakly-biased and not task-specific (in the formulation of Lappin and Shieber,

2007). The two neural architectures we employed—RNNs and Transformers—were selected

precisely for this purpose. Furthermore, based on the experiments presented in Section 4

and Section 5, these models demonstrate behavior that is consistent with learning the ba-

sic dependency between fillers and gaps, their hierarchical restrictions, and some of the

island phenomena (stronger learning outcomes for Coordination, Complex NP, Wh and

Adjunct Islands and weaker learning outcomes for Left Branch, Subject and Sentential

Subject Islands). Therefore, we conclude that their success provides an empirical refuta-

tion of the APS for these structures, and neutralizes it as an argument in favor of linguis-

tic nativism.

Properly understood, our results bear on questions of nativism not as argument, but

as counterargument against the APS. If we remove the APS from the picture, then what

are we left to conclude about the filler–gap dependency and islands? One of the most

striking features of syntactic islands is that they appear in language after language and

in unrelated languages (Richards, 2001) (see also Phillips, 2013, Section 2.1.5, for shorter

overview of crosslinguistic variation). For a brief overview of the various claims made about
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the crosslinguistic distribution of the islands explored here, see Appendix B. If innate,

domain-specific biases must be recruited to explain their distribution in the world’s lan-

guages, then the filler–gap dependency and islands may still stand as good evidence for

the nativist position. However, we want to note that relative success of grammatical, pro-

cessing, and discourse-structural accounts for explaining crosslinguistic variation is still

very much an area of active research. Grammatical accounts, which have traditionally

been linked more strongly to nativist positions, have long sought to ground variation in

other properties of the grammar (Bošković, 2005; Richards, 2001), and contemporary ac-

counts have used this approach successfully, for example, for subject/object asymmetries

(Stepanov, 2007; Nunes and Uriagereka, 2000; Omaki et al., 2020). However, recent em-

pirical work has found that many reported crosslinguistic differences are eliminated when

testing materials are properly controlled (Sprouse et al., 2016; Abeillé et al., 2020). And

discourse structural accounts (Ambridge and Goldberg, 2008; Ambridge et al., 2014), po-

tentially grounded in empiricist assumptions, may capture these data just as successfully.

Given our results, which demonstrate that many of the English islands can be learned by

domain-general, weakly-biased algorithms, and given the rapid advance in machine learn-

ing in the past decade, we suspect that the strongest arguments for or against linguis-

tic nativism will hinge on data about the similarities and differences between languages,

rather than their learnability within a given language.
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7 Conclusion

As mentioned in the introduction, we believe that one key feature of this paper is its method-

ological contributions and hope that the methodology deployed here can be extended be-

yond the case of the filler–gap dependency. The approach taken in this paper involves as-

sessing the capabilities of Artificial Neural Network models by testing them similarly to

how one would test a human subject in a psycholinguistic experiment. Constructing test

suites that mimic online processing experiments in humans makes it possible to test any

model that makes incremental predictions about language, even ones whose internal states

are opaque, such as RNNs and Transformers. Furthermore, this method can be used to

test learning outcomes over a wide array of syntactic structures. Our tests reveal that

these weakly-biased models acquire impressively sophisticated generalizations regarding

the filler–gap dependency and island constraints from even a childhood’s quantity of lin-

guistic input, though in some cases we find acquisition failures. It is our hope that this

method gains traction among psycholinguists studying incremental models of processing,

as well as syntacticians who are more concerned with grammatical representations.
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1This phenomenon has been referred to by multiple names, including wh-dependencies, wh-

movement and the filler—gap dependency. We elect to use the filler—gap terminology because

it is relatively theory-neutral, and it highlights the entities that play the biggest role in our be-

havioral tests, the filler and the gap. ‘Island constraints’ were first articulated from within the-

ories that view the filler—gap dependency as one of syntactic movement, but have since been

used to describe restrictions on the dependency even by those who do not subscribe to the ‘move-

ment’ analysis (Pollard and Sag, 1994b)

2Strictly speaking, this behavioral trace is not necessitated by the grammar, but rather by

grammatical constraints combined with statistical knowledge that an object is likely to be gapped

for an upstream filler for which a gap has not already been encountered. Unlike in the +gap

condition, where the sentence becomes ungrammatical at the word yesterday, in the −gap con-

dition sentence only becomes ungrammatical at the period, when the expectation for gaps set

up by the filler is not discharged. For an incremental statistical processing model, lack of wh-

effects in the −gap condition does not mean that the model has failed to learn the proper gen-

eralization. However, strong wh-effects are evidence that the model has learned the general-

ization that gaps follow fillers and is expecting a gap in that location.

3There are a group of islands that arise due to semantic considerations (e.g. “How many

miles didn’t you run yesterday?”) (Dayal, 2016), which we do not address. Furthermore,
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competing with the grammatical analysis are “reductionist” accounts (Sprouse and Hornstein,

2013) such as the processing account (Hofmeister and Sag, 2010; Hofmeister et al., 2013) and

discourse-structural accounts (Ambridge and Goldberg, 2008; Ambridge et al., 2014). While

these approaches are typically associated with empiricist positions, grammatical and reduc-

tionist accounts could be articulated from both empiricist and nativist perspectives.

4Under their model the relative probability of the gap in (5) is P (Start, IP,VP)×P (IP,VP,CP)×

· · · × P (VP,PP, end).

5See the careful discussion in Section 6 of Pearl and Sprouse (2013a) for a item-by-item anal-

ysis of the components of their model.

6Within their modeling setup, Pearl and Sprouse (2013b) avoid this concern by compar-

ing the log-odds of island violating sentences with minimal-pair counterparts of similar length.

7For a lucid introduction to neural network (a.k.a “deep learning”) models of language, as

well as an insightful overview into the decades-long relationship between generative and com-

putational linguistics, see Pater (2019).

8One possible concern for addressing issues of learnability with language models is that max-

imizing the accuracy of conditional word predictions is a far cry from both parsing and assign-

ing meaning to utterances. We believe the language-modeling objective function is compelling

for three reasons. First, it is clear that humans are sensitive to the statistical regularities of

their language and use them to make incremental predictions during language learning and on-

line comprehension (Levy, 2008; Hale, 2001). Infants as young as eight months old pay atten-

tion to the statistical regularities in short spans of non-linguistic input (Saffran et al., 1996),

and in adults, gaze fixation on a token during reading is correlated to its conditional proba-

bility (Smith and Levy, 2013; Wilcox et al., 2020). Second, selecting models that produce prob-
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abilities over sentence parses or joint distributions over parses and strings would require com-

mitting to some syntactic formalism during training. Because language models are supervised

solely by surface strings, they can be deployed more effectively in studies where it is impor-

tant to remain theoretically neutral. Finally, because a well-tuned language model is in prin-

ciple compatible with multiple structural generalizations, some of them non-hierarchical, lan-

guage modeling offers a more distant form of supervision for syntactic generalization than di-

rect learning of grammatical structures or alternations themselves. Therefore, if models do dis-

play humanlike behavior, this is stronger evidence that the proper structural generalizations

can be learned from the data.

9The approximation is exact iff (1) the probability of the gap-requiring word w+ is zero when

no filler–gap construction is present, and (2) the probability of the gap-requiring word is the

same across the two contexts when assuming that a filler–gap construction is present. For the

full technical argument, see Appendix A.

10An example of a basic R command: lmer(surprisal ∼ wh * gap + (gap + wh | item-number))

11In theory, even SRNs can recognize hierarchical languages with reasonable efficiency (He-

witt et al., 2020).

12We used the version of GPT-2 available through the Language Modeling Zoo distribu-

tion (https://cpllab.github.io/lm-zoo/index.html#welcome-to-lm-zoo)

13This is an estimate derived from the ∼ 1, 000, 00words/5.2MB WSJ portion of the Penn

Treebank and the reported size of the GPT models’ training dataset, which was 40GB (GPT-

2) and 570GB (GPT-3).

14We find 21,041 Subject Gaps, 11,657 object gaps and 5,179 PP gaps. Corpus data was col-

lected using Tregex (Levy and Andrew, 2006), with the following commands. For gaps in sub-
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ject position: NP-SBJ < (-NONE- < ( @* ) ). This command searches for an NP subject node

that dominates a trace. For gaps in object position: VBD|VBG|VBN|BVP|VBZ $++ (@NP (< (-NONE-

< @*))). This command searches for NP nodes that dominate a trace and are the immedi-

ate right sister of a V node. For gaps in VP-internal prepositional phrases or indirect objects

(which the PTB parse schema treats as prepositions): @PP <+(!@VP) (@NP < (-NONE- < @*)

). This command searches for a PP node that dominates an NP node, which dominates a trace.

The chain between the PP and NP node must not include a VP node. This was done to ex-

clude gaps that are inside relative clauses whose head is dominated by a preposition.

15Searches were conducted on Tregex (Levy and Andrew, 2006) and commands were formu-

lated using the following pattern, which matches sentences that contain four layers of senten-

tial embedding: S << (S << (S << (S << (S << S))))

16We do not include sentences with a single layer of sentential embedding in these tests, as

sentences would have the same structural configuration as the object tests in Section 4.1.

17For a secondary length control that addresses non-hierarchical interveners see Section 3.2

of Wilcox et al. (2018).

18See also Da Costa and Chaves (2020) who found similar limitations for another Transformer

language model, Transformer-XL (Dai et al., 2019).

19In our hierarchy experiments, we intentionally use the same verb in multiple structural po-

sitions to control for potential frequency confounds. We do the same here, except for Complex

NP and Subject Islands, for matters of coherence in the testing materials. In these cases, we

confirm that the average log frequency of the verbs are not significantly different from each other

via a t-test (p > 0.5 for both tests; frequency data from Franz and Brants (2006)). Tests are

largely adapted from Wilcox et al. (2019a) and Wilcox et al. (2018), although additional items
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have been added.

20Unlike the filler–gap dependencies, these do not constitute grammatical/ungrammatical

contrasts, as her in (11-b) could refer to a sentence-external discourse referent. However, be-

cause we needed to find a dependency that could cover the same distribution as the islands–

i.e. it could extend into relative clauses and across sentential embeddings—grammatically-determined

anaphoric dependencies were not available to us. To counteract the potential confound of ex-

ophoricity, we use verbs that are likely to refer to the sentence’s subject, like brushed in (11);

all of our models demonstrate strong gendered expectations effects.

21This may be due to the type of sentential subject employed in our experimental stimuli.

In the syntactic literature, many examples are given using sentences with that-headed senten-

tial subjects, such as I know who that the count will duel surprised us.. But these sentences

are difficult to translate into our 2×2 testing paradigm because both of the −filler conditions

involve two that-complimentizers in a row, which may be difficult for humans and models to

process. Instead, we constructed we constructed Sentential Subject Island violations using for -

headed sentential subjects, such as I know who for the count to duel will surprise us. Many

islands have graded acceptability (Kush et al., 2013; Chaves, 2020), and it may be the case that

for -headed sentential subject violations are judged as less ungrammatical than their that-headed

counterparts. Further investigation is needed.

22We thank one of our anonymous reviewers for raising the last two.

23There are model architectures that do encode syntax-oriented inductive biases, both ex-

plicitly (Dyer et al., ????) and implicitly (Shen et al., 2018). For performance of these mod-

els on the tests discussed here see Wilcox et al. (2019b) and Hu et al. (2020).

24One possible exception are sentences that involve both topicalization and parasitic gaps
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such as “I know what, without reading , the spy burned .”, however, in written text, the

topic must be introduced with a comma or an m-dash, which are absent in our sentences, rul-

ing them out as a possible confound. One other way to rule out this potential confound would

be to look at the whole post-gap region.

25The APS has been formulated, for example by Pullum and Scholz (2002) and Legate and

Yang (2002) as being about whether the learning algorithm employs data-driven induction or

not. We avoid this term here, as data-driven induction can support either nativist or non-nativist

positions, as introduced above. For example, connectionist networks (McClelland et al., 1987;

Elman, 1990) and unsupervised parsers that assume an underlying Context Free Grammar (Char-

niak, 1996) are both data-driven algorithms, but, if they are to be taken as models of cogni-

tion, make very different commitments about what must be learned.
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A Quantifying grammatical generalization strength

with log-probabilities

If a language model’s word predictions reflect implicit grammar-like structural generaliza-

tions, then its predictions for a word w given a context C can be productively decomposed

as
∑

X P (w|X,C)P (X|C) where X ranges over possible structure-level continuations that

might apply in a context C. Consider two contexts that superficially are only minimally

different, but that should have large differences in the expectation as to whether there will

be a gap, such as “I know {that/what} the lion devoured. . . ”. If we take X to be whether

a gap happens or not, then for a model making human-like generalizations, P (X|Cthat)

and P (X|Cwhat) should be very different. But P (w|X,Cthat) and P (w|X,Cwhat) may be

very similar, reflecting word frequencies, relations with preceding individual words, and so

forth. Let us denote the possible values of X as x+ for presence of a gap and x− for ab-

sence of a gap, and denote by w+ a word that would require a gap, such as yesterday in

the given example. We make explicit the marginalization over possible X explicit and con-

sider the ratio of conditional word probabilities:
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P (w+|Cwhat)

P (w+|Cthat)
=

∑
X P (w|X,Cwhat)P (w+|Cwhat)∑
X P (w+|X,Cthat)P (X|Cthat)

(5)

=
P (w+|x+, Cwhat)P (x+|Cwhat) + P (w+|x−, Cwhat)P (x−|Cwhat)

P (w+|x+, Cwhat)P (x+|Cthat) + P (w+|x−, Cthat)P (x−|Cthat)
. (6)

For a model that has successfully learned human-like generalizations, P (w+|x−, Cwhat) and

P (w+|x−, Cthat) should both be extremely small, because gap-requiring words w+ require

gaps (x+), allowing us to drop the second term of the summands in both the numerator

and denominator:

P (w+|Cwhat)

P (w+|Cthat)
≈ P (w+|x+, Cwhat)P (x+|Cwhat)

P (w+|x+, Cwhat)P (x+|Cthat)
. (7)

Furthermore, we can expect that P (w+|x+, Cthat) ≈ P (w+|x+, Cwhat)—that is, the pres-

ence or absence of a gap is the factor that mediates the probability of gap-requiring words

across these contexts. This allows us to cancel the first remaining terms in the numerator

and denominator, giving us:

P (w+|Cwhat)

P (w+|Cthat)
≈ P (x+|Cwhat)

P (x+|Cthat)
. (8)

We should have P (x+|Cwhat) ≫ P (x+|Cthat) so in turn the probability ratio for any specific

gap-requiring word in the two contexts should be much larger than one. As described in

Section 3.2, one can indeed argue that for truly human-like linguistic generalization in con-

texts where omitting the gapped phrase is ungrammatical without a filler, we should have

P (x+|Cthat) ≈ 0 so the larger the value of this ratio, the more human-like the model’s

behavior. If we take the negative log, we get a difference in surprisals ranging between

(−∞,∞) whose value should be smaller (closer to −∞) for more human-like generaliza-
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tion:

− logP (w+|Cwhat) + logP (w+|Cthat). (9)

Conversely, for material w− that indicates there is no gap (such as the gazelle), equiva-

lent logic implies that a positive value for the quantity

− logP (w−|Cwhat) + logP (w−|Cthat) (10)

would be indicative of human-like sensitivity to filler–gap structural relationships.

These differences of log inverse-probabilities in Equations (9) and (10) are the wh-

effects described in Section 3.2 and used throughout the paper in our tests of neural

language models’ acquisition of human-like filler–gap dependencies.

B Crosslinguistic Distribution of Islands

Table 1 gives a sample of the crosslinguistic variation of islands tested in this paper. This

is not intended to be an exhaustive list, rather to highlight some of the important empir-

ical conclusions from the past 50 years. For the purposes of our argument two things are

important: First, the same islands appear in multiple unrelated languages, and second,

there is variation between languages regarding the status of each island.
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Island Yes Extraction No Extraction

Adjunct Islands Korean, Japanese, Malay-

alam (Yoshida, 2006)

Hungarian, Russian,

Spanish, Basque (Yoshida,

2006) English, Italian, Por-

tuguese, French, German

(Sprouse and Hornstein,

2013)

Complex NP

Islands

Swedish, Danish, Norwe-

gian (Engdahl, 1982; Eng-

dahl et al., 1997), Japanese

(contested) (Kuno, 1973)

Serbo-Croatian, Greek,

English (Bošković, 2015);

Italian, Spanish, Portuguese,

French, German, Russian,

Hungarian Sprouse and

Hornstein (2013)

Coordination

Islands

None (but proposed

whole conjunct extrac-

tion for: Japanese, Korean,

Serbo-Croatian, Russian, Old

English, Latin (Oda, 2017))

All Languages (Bošković,

2020) (extraction out of con-

juncts)

Left Brach Is-

lands

Russian, Polish, Czech

(Corver, 1991)

English, Dutch (Corver,

1991)

Sentential Sub-

ject Islands

Palauan, Malagasy,

Chamorro, Japanese, Akan,

Tuki (Sabel, 2002)

English

Subject Islands Japanese, Navajo, Turk-

ish, Russian (Stepanov,

2007), Hungarian (Kiss,

2013), Palauan (Georgopou-

los, 1991)

Norwegian, Italian

(Sprouse et al., 2016), Eg-

nlish, French (Sprouse and

Hornstein, 2013)

Wh-Islands Italian (Rizzi, 1982),

Spanish, Portuguese (Sprouse

and Hornstein, 2013) Scan-

danavian Langs (Maling,

1978)

English, German, Rus-

sian (Sprouse and Hornstein,

2013)

Table 1: Some Crosslinguistic Variation of Islands
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