A High Performance Interface
for a 40-bit Machine on the NuBus

by

David C. Douglas

Submitted to the
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
in partial fulfillment of the requirements

for the degrees of

BACHELOR OF SCIENCE
and
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1986
© David C. Douglas 1986

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis Moccument in whole or in part.

Signature of Author __ B
Departmept, of Electric’al Engineering and Computer Science
May 9, 1986

Certified by _

e /'
JThesis Supepvisor: Professor Stephen A. Ward

__Compafly SEpErvsee Steve Krueger

Certified by __

Accepted by _
Arthur C. Smith, Chairman

Committee on Graduate Students

MASS INST, rfCH_
JuL 2 3 1986

tBRAR‘Es

Archives

A High Performance Interface for a 40-bit Machine on
the NuBus
by
David C. Douglas

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 1986, in partial fulfillment for the degrees of Master of Science and

Bachelor of Science in Electrical Engineering.

Abstract

In order to achieve full 32-bit capability, a processor based on a tagged architecture
must support word sizes greater than 32 bits. While it is desirable to maintain
compatibility with existing 32- and 16-bit devices, problems arise in transferring
data from the smaller word size of these devices to the larger word size of the
tagged processor. Many of these problems are avoided if the tagged processor can be
efficiently interfaced to an existing standardized bus. A high speed memory interface
allowing efficient use of a 40-bit processor on the 32-bit NuBus is examined. Two
functional designs are presented and evaluated through simulation and numerical

analysis.

Thesis Supervisor: Stephen A. Ward

Title: Associate Professor, Computer Science

Company Supervisor: Steve Krueger

Title: Senior Member of Technical Staff, Texas Instruments

A cknowledgements

I would like to thank my thesis advisor, Prof. Steve Ward, who taught me
that working with computers and having fun didn’t have to be mutually exclusive
activities, and also for his attention, advice, and help on this work. Also at MIT,
I’d like to thank Sharon Thomas for her help and encouragement. I would like to
thank all of the many people I worked with at Texas Instruments, where the work
for this thesis was conducted. In particular, Steve Krueger, Mike Amundsen, and
Pat Bosshart for being my technical mentors, and Gene Matthews for all of his
support and guidance.

I would like to thank my parents, grandparents, and my brother Pete for their
constant love and encouragement. I would like to thank Pam, who makes all of this

fun, and also all of my great friends and fellow students at MIT who’ve helped me
keep my sanity here.

I would like to dedicate my thesis to the memory of my grandfather, Charles
Wilken, who taught me the value of hard work, and to the memory of Eric Ritland,
Harvard ’86, a close friend who passed away while I was completing the work for

this paper.

Contents

Abstract

1 Introduction
1.1 Notation................
1.2 Overview of Div8Method
1.3 The Separate TagMethod

1.4 Performance Evaluation

2 Range of Applications
2.1 Compatibility with Existing Hardware
22 Virtual Memory Systems
2.2.1 AddressMapping
22.2 Block Transfers
2.2.3 Unmapped Accesses
2.3 Local Cache Memory,
24 Summary ... L

10
11
12
12
13

17
17
18
18
18
19
19
20

3.4 Perfornance of the Div8 Method
35 Summaryof Div3....................

The Separate Tag Method
4.1 Bword Organization _ . .

42 Memory Management

4.4 Performance of the Separate Tag Method
4.5 Summary of the Separate TagMethod

Example Implementations of the Two Methods
51 TheTIExplorer

5.2 Simulation Techniques

5.3 Results from the 32-bit Explorer
5.4 Results from the Div3 Method
5.5 Results from the Separate TagMethod

Summary
6.1 Hardware
6.1.1 TheDiv3Hardware

45
45
48
50
54
55
57
59

61
61
62
63
64

65
65
70
70
71

6.2.3 The Separate TagMethod 85

6.3 Conclusion 87
6.3.1 Why 40 Bitsona32-bitBus? 87

6.3.2 Cost/Perfomance Analysis. 88

A Appendix A: Raw Results 90

List of Figures

1.1

1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Computing the Average Memory Access Time of a General Architec-

bure 14
General Organization of the Virtual Memory Hardware 15
Bword Alignment in a 4-Word Transfer Block 22
Physical Address Formats for Bword Addressing 23
Realignment Buffer | 24
Calculating the NuBus Block Address and Block Offset 28
Example Address Translation for 3 Different Block Sizes 29
Organization of the TLB and Div3ROM 31
Two Cache Addressing Schemes 35
Caching Realignment Buffer 40
Computing the Average Access Time of the Div3 Method 42
Functional Diagram of a General Div3 System 43
Arrangement of the Pointer and TagSpace 46
Realignment Buffer 47
An Example of Automatic Tag Generation Hardware 49
General Virtual Memory System of the Separate Tag Method 51
Format of a Translation Lookaside Buffer Entry 52
Physical Page Generation Using the Output of the TLB 53
Method of Addressing SingleBwords 54
Unmapped Bword Address Generation Using Space Lookup 56

7

4.9 Computing the Average Memory Access Time of a the Separate Tag
Method

4.10 Organization of the Separate Tag Virtual Memory Hardware

5.1 Average Access Time (ns) of the Store-In Policy

List of Tables

3.1
3.2
3.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

Al
A2
A3
A4
A5
A6

Page Sizes in Wordsand Bwords 25
Remainders Stored in the Div6 and Divi2 ROMs 28
Consequences of the Different Transfer Page Handling Schemes 33
Memory Access Times over the NuBus 87
Average Access Time of Explorer using Store-In. 72
Average Access Time of Explorer using Write Through 73
Average Access Time (ns) of the Div3 Method using Store-In 74

Average Access Time (ns) of the Div3 Method using Write-Through 75
Average Access Time (ns) of the Separate Tag Method: Store-In .. 76
Average Access Time (ns) of the Separate Tag Method: Store-In .. 77
Average Access Time (ns) of the Separate Tag Method: Write-Through

78
Average Access Time (ns) of the Separate Tag Method: Write-Through

79

Read Miss Ratios for the Explorer 91
Write Miss Ratios for the Explorer 92
Fetch Miss Ratios for the Explorer 93
Read Miss Ratios for the Div3 Cache 94
Write Miss Ratios for the Div3 Cache 95
Fetch Miss Ratios for the Div3 Cache 96

Chapter 1

Introduction

This paper describes and analyzes the virtual machine changes necessary to
implement a 40-bit processor on the NuBus!. The goals of the designs in this pa-
per are to minimize the average access time of virtual memory requests from the
40-bit processor to existing NuBus devices. Two approaches will be presented and
an example implementation of them on an existing machine will be described. The
first approach is based on storing 3 40-bit words per 4 word block. The second is
based on the storage of 4 40-bit words in 2 4 word block and one extra word. The
rest of this chapter will discuss the notation used in this paper, give an overview of
the two approaches, and discuss how their perrormance will be evaluated. The next
chapter will discuss the range of machine architectures to which these approaches
are applicable. The next two chapters will describe the two approaches in detail,
the following chapter will present an example of the necessary changes and subse-
quent performance of an existing 32-bit machine (the Texas Instruments Explorer
Lisj. Machine?) following a hypothetical upgrade to 40 bits. The final chapter will

summarize the results.

!Nubus is a trademark of Texas Instruments, Inc.

2Explorer is a trademark of Texas Instruments, Inc.

10

1.1 Notation

This paper will use the following notations which are consistent with those
described in the NuBus Specification. Byte will refer to a group of 8 bits, kalf-word
to 16 bits, and word to 32 bits. In this paper, bword will refer to groups of 40
bits, this being short for “big word”. The least significant bit (LSB) of a group will
always refer to bit 0, while the most significant bit (MSB) will refer to bit n — 1 of
a group n bits long. Bit strings will always be listed from the MSB to the LSB, left
to right. The hardware which occupies a NuBus slot will be referred to as a NuBus
module.

In reference to bwords, pointer will designate the lower 4 bytes or 32 bits. The
upper byte will be called the tag. These terms are usually used in reference to
a tagged architecture, and are used throughout this paper in anticipation of the
tagged architecture example in Chapter 5.

In the cache sections, the word block is used for what is referred to as either
a block or a line in cache literature. References to caches as local mean that the
cache is in the same NuBus module as the processor, i.e. a NuBus access is not
necessary in order to obtain data from the cache. The write-back update policy will
be referred to as store-in. All other cache terms try to comply with common usage
(see [Smit82]). Cache performance statistics will be represented as probabilities,
allowing more formal representation and usage. The following conventions will be
used: P(A) will stand for the probability of event 4, P(4 | B) will signify the
probability of event A given event B, and P(A - B) will signify the probability of
both event A and event B.

This paper frequently makes references such as the necessary changes or the
only unit which will change without specifying what the object is changing from
(or sometimes to). It should be assumed that such phrases are refering to the
changes necessary in converting a 32-bit processor to a functionally equxvalent 40-
bit architecture.

Variables in equations will often use the prime mark (/) to indicate that the

value of the variable differs from that of its original use in describing the Explorer

11

performance.

1.2 Overview of Div3 Method

The Div3 Method is based on a transfer unit of 4 words containing three bwords
and an extra byte which can be used to serve a variety of useful purposes. The name
is derived from the fact that a factor of 3 is introduced into the addressing scheme,
causing a divide-by-3 to be done implicitly or explicitly at some point in the virtual
address translation process. The performance of an implementation of this method
will depend heavily on how efficiently this translation is done.

The pertinent design variables in this method include the following: the orga-
nization of the bwords within the 4 word block, the size of the addressable page, the
size of the transfer page, the cache organization, and the method of address trans-
lation. These variables are not independent, with the actual number of efficient,
feasible combinations being quite small. The effects of different designs on per-
formance are reflected in trade-offs between cache access speed, map access speed,
hardware complexity, and transfer efficiency. These effects will be discussed in the
chapter describing the general Div3 Method and will be quantified in the example

in a later chapter.

1.3 The Separate Tag Method

The Separate Tag Method is based on the storage of 4-bword pointer fields
in a 4-word block, and their corresponding tag fields together in 1 word. Physical
and disk address spaces are divided into two subspaces — pointer space and tag
space. These are identified by pointer and tag space base addresses. The offsets of
a pointer block (four poinier words) and its corresponding tag word (four tags) into
their respective address spaces are related by a simple binary operation.

An implementation of this method on a 40-bit machine will be very similar to

the memory interface of a 32-bit version of the same processor. The only major

12

change requires the virtual memory system to perform two complementary opera-
tions, one each in pointer and tag space, for each virtual memory request. Similar

performance estimates will also be made for this method.

Besides the necessary virtual machine changes and their, performance effects,
implementations of the two methods differ in their ability to share memory with
non-40-bit devices. The Separate Tag Method can communicate easily with 8-, 16-,
and 32-bit processors by using pointer space as shared memory. However, in the
Div3 Method, the non-40-bit device would have to be given some knowledge of how
bwords are arranged within the virtual and physical address spaces. This may or
may not be an design consideration, depending on the proposed use of the 40-bit

processor. This topic will be reintroduced later in more detail.

1.4 Performance Evaluation

In using a 40-bit processor on a 32-bit bus, one must pay an unavoidable
performance penalty when accessing data over the bus. This is reflected in an
increase in both the time to access memory from the processor, and in the time to
. process a page fault in a virtual memory implementation. If a cache block size other
than a power of 2 is used, as in the Div3 Method, the hit ratio of a local cache may
also be effected by the change from 32- to 40-bit words. In an attempt to capture
all of these effects in one measurable value, this paper will use the average access
time of virtual memory requests as a basis for evaluating performance.
The average access time of a virtual memory request on a general architecture
can be expressed by the definitions and resuliing equation shown in figure 1.1.
These equations are based on the general virtual memory system shown in figure
1.2. Note that it is assumed that the cache and TLB are accessed in parallel, and
that this is reflected in equation 1.1. Other cache/TLB arrangements can easily be
represented by this equation by chocsing appropriate values for t. and t;,. Note
also that the processing time t,,, overlaps ¢, and twy in equation 1.1. The delay ¢,

will be considered to have a second order effect on the value of t,,; so it has been

i3

P(h.) = probability of a cache hit on a local cache
P(m,) = probability of a miss on a local cache = 1 — P(h.)
t. = access time of a local cache
P(hay | m.) = probability of a hit on the translation lookaside buffer
given a local cache miss

P(mu [m;) = 1-P(hy | m,)

tt;b = access time of the translation lookaside buffer
tmem = access time of block from main memory

bpgf = time to process a page fault on a tlb miss

lavg = average access time of a virtual memory request

tag = P(h,) *t, + P(m,) * [P(htlb | m.) * (tmem + tay) + P(my | m.) tpot) (1.1)

Figure 1.1: Computing the Average Memory Access Time of a General Architecture

included implicitly in that value instead of explicitly.

Each of these terms can be expanded as necessary to reflect a part.cular ar-
chitecture. Such cases would include architectures with a heirarchy of local caches,
multiple actions resulting from a TLB miss, a cache using various update policies,
or a cache which handles instructions separate from data. Other cases involve the
expansion of the t,,; and my,; terms.

The terms P(hy, |) and P(my, | m.) can be simplified in the following

manner:
P(htu ' mc) =1- P(mm I m.,) (12)
P(mu | m,) = Pmaw - mc) (1.3)

P(m,)
This paper will assume that the main memory is sufficiently large compared to the

cache that:
P(mm . mc) = P(mm). (1.4)

Certainly, for any system a sequence of events can be invented in which a data ob ject

is in the cache but the physical Ppage on which it resides has been flushed from main

14

Virtual Address from processor

fm

 m-n P [P

 n Cache Cache

I R R

[32-n [/ m-p [40
Comparator

LZ 40

data to processor on cache hit
32-bit NuBus Address

request initiated on cache miss

Figure 1.2: General Organization of the Virtual Memory Hardware

15

memory. It will be assumed that such occurrences are infrequent enough to have
no statistical impact on the outcome of these equations. paper which justifies this.
Combining equations 1.2, 1.3, and 1.4, it is found that:

P(my)

P(mﬂb I mc) = m9

(1.5)

and
P(maus)
P(m.) ~

Similar substitutions will be used throughout this paper.

Plhay | m.) =1 - (1.6)

Performance comparisons will be made between the two 40-bit methods and a
32-bit processor on the NuBus. The 32-bit machine is included as a basis for com-
parisons, assuming that its perfomance is equivalent to that of a 40-bit -aachine on
a 40-bit bus, both running identical access sequences. Specific changes to equation

1.1 will be discussed at the end of the chapters which describe the methods.

16

Chapter 2

Range of Applications

This chapter discusses the range of 40-bit virtual architectures which are sup-
ported by the designs in this paper. By supporting these architectures, these designs
should have applications to a wide range of 40-bit machines. If a given application
does not require the support of some or any of the features described in this chapter,

aspects of the designs may be simplified of left out altogether.

2.1 Compatibility with Existing Hardware

Except in some multiprocessor applications, the designs in this paper require
no changes to any existing NuBus devices except the 40-bit processor. Unaffected
devices include the NuBus itself, NuBus memory boards, and any other NuBus
based peripheral devices. No changes will be required of other processors unless
they are intended to share memory with the 40-bit processor. The extent of these
changes will depend on the 40-bit method used. All 40-bit processor changes will
be noted in the designs, and some notes on the complexity of these changes will
be added. All changes can be implemented using commercially available parts, and

are easily implemented with semi-custom or custom IC’s.

17

2.2 Virtual Memory Systems

All designs in this paper support a general virtual memory system through the
following operations. First, the designs support the dynamic, consistent mapping
of virtual addresses onto locations in physical memory. This occurs at the word
or bword level. Second, the designs support the transfer of sections of memory
between different physical locations or devices, in particular page and disk block
transfers. Finally, the designs support unmapped accesses of any memory location.

The following sections will discuss each of these operations separately.

2.2.1 Address Mapping

The designs all support the dynamic, consistent mapping of virtual addresses
to physical bwords. This means that, even though the physical address of a data
object may change over time, it must always-be accessible by its virtual address.
This operation is among the hardest to meet in implementing a 40-bit machine
on a 32-bit bus. The following points about this operation should be noted. First,
because of the size difference, a virtual address cannot translate into a single physical

-address, and a physical address cannot alone represent a virtual address. Second,
a physical word may contain parts of one or many virtual bwords, or may never
contain any at all. Finally, contiguous, sequential physical words do not necessarily
have to represent sequential virtual addresses, even within a page. The address
mapping operation supported by these designs guarantees that a set of virtual

addresses will always return the same data objects.

2.2.2 Block Transfers

The designs also allow the mapping and transfer of blocks or groups of bwords.
The basic operation of this type is virtual memory paging, although I/O transfer
blocks, and disk block or sector transfers are also supported by this type of oper-
ation. The designs are all compatible with Page mapping support such as TLB’s

and the information necessary to maintain page and block mapping. This includes

18

the possibility that some portions of these data structures are also stored in virtual
memory due to their size. Again, the incompatibility in word sizes presents some
anomalies. First, an integral number of bwords does not necessarily occupy a con-
venient number of words. For this reason, designs may sometimes transfer words
which are never used, but are transfered to simplify the management of blocks of
bwords. Second, because of the problems described in the last section, knowing the
address of a block of bwords does not give one the addresses of the elements of the

block. These problems are dealt with differently by the two methods.

2.2.3 Unmapped Accesses

These designs allow the processor to bypass the TLB and access NuBus loca-
tions, including memory, with physical addresses. These will be called unmapped
accesses throughout this paper. This is necessary in order to support boot strap-
ping operations, I/O, and DMA type operations. Other operations which fall below
the top level of the virtual architecture also may require unmapped accesses. These
include page fault and interrupt handling. Support of this operation requires the
ability to access, without hardware support, a single bword using its virtual ad-
 dress. The designs guarantee the ability to obtain the physical addresses of the
bword parts from the data in the TLB, and to obtain the bword in a maximum of
two NuBus transactions. By obtaining the exact byte and word addresses of the
parts of a bword, the unmapped write of a single bword can be done without doing
a read to maintain the integrity of neighboring bwords. This is also an important

factor in handling mapped writes in most cache organizations.

2.3 Local Cache Memory

Being a crucial part of their efficiency, the designs of this paper fully support lo-
cal cache memories. For speed purposes, the caches in these designs are addressable
with virtual addresses, or in the worst case, virtual addresses which have undergone

a single level of translation. All general cache design parameters are supported, in-

19

cluding address blocks, multiple set sizes, replacement policies, and update policies.
The following paragraphs will discuss a couple of these in detail.

In order to reduce the size of the memory used to store cache tags, it is common
to store a tag for every n words, where 1n is the block size or number of words
transfered into the cache at a time. Notice that in no case is every value of n

possible, but is instead a member of the set of values represented by equation 2.1.
n=cx*2, i€{0,1,2..} (2.1)

In most designs, ¢ has a value of 1. For the designs in this paper, however, bword
storage formats further restrict the possible values of n. For the Div3 Method, ¢
has a value of 3, and for the Separate Tag Method a value of 4.

In implementing update policies, the problem of updating single bwords ap-
pears again. If a write-through or store-and-invalidate update policy is used, then
on every write the corresponding bword in physical memory has to be updated. If
a store-in policy is used, then the dirty words or transfer block must be written out
to physical memory when that block is flushed. In either case, it is undesirable to
have to write out an entire block in order to update one bword in primary memory.
* On the other hand, one would want to write to memory without complex hardware
support. The tradeoffs between these two approaches will be more apparent as the

designs are presented.

2.4 Summary

This chapter has shown the architectural features which are supported by the
designs of this paper. They also represent the areas in which many designs fail
as potential solutions to the problem of a 40-bit machine on the NuBus. As the
two methods are presented, the ways in which these methods handle these problem
areas will be highlighted. At those times, it will be apparent which portions of the
methods have been included to implement these features. These portions of the

methods can then be removed if the feature is not required.

20

Chapter 3

The Div3 Method

The Div3 Method is based on the NuBus biock transfer of 4-word blocks con-
taining 3 bwords. The following sections will describe a series of implementations
of this method which retain the speed advantages of fetching 4-word blocks, while
overcoming the difficulties of operating a virtual memory system in this environ-
ment. The first section will discuss an organization of bwords within the 4-word
block, and will also introduce the hardware necessary for realigning bwords once
they are obtained over the NuBus. The next section will discuss the changes which

“will be necessary to a virtual memory system in order to support the odd block
sized introduced by the factor of 3. Cache organizations in the Div3 Method will
then be discussed followed by a description of the changes which are necessary to

equation 1.1 in order to quantify the performance of the Div3 Method.

3.1 Bword Organization

Figure 3.1 shows the alignment of 3 bwords within the 4-word transfer block
which will be used by the Div3 Method. This arrangement has been selected due
to its logic and time saving effects. The extra byte and a byte from each of the
three bwords occupy the first word. These are followed by the remaining parts of
the 3 bwords, each occupying a word. The byte from each bword which is placed in
the first word of the transfer block can be either the first or last byte of the bword

21

Word 3 Bword 2

Word 2 Bword 1

Word 1 Bword 0

Word 0 Bword 2 Bword 1 Bword 0 | Spare Byte

Byte 3 Byte 2 Byte 1 Byte G

Figure 3.1: Bword Alignment in a 4-Word Transfer Block

without loss of simplicity. Use of any other byte complicates the realignment buffer
— the hardware which reorganizes bwords from their parts. The rest of this paper
will use the case where the high order byte (the tag field) is stored separate from
the low word (pointer field).

When a transfer block is read into the processor from the NuBus, it is desirable
to obtain a bword on every cycle after the first one. In this way data can be read
out of the realignment buffer in parallel with the last words being read in. For many
potential uses of the extra byte in the transfer block it would also be desirable for
it to be read in first. Such uses include error correction, caching information, and
multiprocessing data consistency information. For these reasons, the extra byte and

a byte from each bword have been placed in the first word of the transfer block.

This bword organization also simplifies the addre;sing of single bwords within
the transfer block. No matter what organization is used, at least two memory
accesses are required to access a single bword from the block. Physical bword
addresses are easily changed to forms which allow them to access the bword through
a word access and a byte access, or the whole transfer block through a single block
address. Figure 3.2 shows how this is accomplished. The next section will describe

how virtual addresses are translated into physical addresses of this form.

22

Storage format
and address of tag ,

byte of bword NuBus Block Address |0 o]t b
31 4 3210

Address of pointer

portion of bword l NuBus Block Address lbl bol 0 0]
31 4 3210

Address of block '

and spare byte. | NuBus Block Address o 0 0 o
31 4 3 210

bibo € (1,2,3)

Figure 3.2: Physical Address Forma.ts for Bword Addressing

If memory must be shared with 16- or 32-bit NuBus processor, then the page
should be marked as non-lisp and the tag fields of the three bwords will be left
empty. Optionally, automatic tag generation hardware similar to that described
with the Separate Tag Methcd could be used in support of this type of page. It
should be noted, however, that the other processor must be given knowledge of this

format.

The realignment buffer is designed to allow both single bword and 4-word block
transfers to occur without complex control logic. The functional diagram in figure

3.3 gives an example implementation.

It will be assumed that the cache will be responsible for organizing the bwords
into the transfer block when they are being written over the NuBus. Since the cache
must then have access to the tags all at once, then it will also be advantageous to
also give the processor access to this tag word. This requires little hardware and

may be especially useful for activities such as garbage collection.

23

to processor

e

40-bit register

39

32-bit register

1st word

2

2nd, 3rd, and 4th
words of transfer

fs

|0 = spare byte from NuBus
1 - 3 = parts of bwords

Figure 3.3: Realignment Buffer

24

Number of bits | Number of bwords | Number of words
in offset address addressed necessary for storage
7 128 171
8 256 372
9 512 683
10 1K 1366
11 2K 2731

Table 3.1: Page Sizes in Words and Bwords

3.2 Virtual Memory Management

This section describes how the Div3 Method translates virtual bword addresses
into physical addresses of the storage format shown in figure 3.2. By storing 3
bwords per transfer block, a factor of 3 has been introduced into the mapping of
addresses into physical memory locations. The level of complexity and efficiency of
the Div3 Method is dependent on how this awkward factor is handled by the map-
ping scheme of the virtual memory system. Mapping schemes for address translation

at both the bword and page levels will be examined.

3.2.1 Address Pages

Similar to other virtual memory systems, the Div3 Method uses the low n bits
of the virtual address as the word offset into the page, and the remaining virtual
address bits as the virtual page number. Since the bword offset into the page does
not also represent a physical offset into the page, the offset must also be translated to
reference the correct physical locations. This extra translation is not necessary with
most standard virtual memory systems. Table 3.1 shows the correlation between
the number of offset bits in the virtual address (n), the number of bwords which can
be addressed (2"), and the number of 32-bit words required to hold them (5 * 2").

Pages of these sizes will be called address pages, and will not necessarily be the

25

same size as the pages which are stored in primary and secondary memory, which
will be called transfer pages. These differences, along with the translation of the
page number will be discussed in the next section.

Notice that the Div3 Method uses virtual page sizes which are a power of 2
number of bwords, as opposed to using page sizes which are a power of 2 words
large. If the latter page size were adopted, then the number of bwords in a page
would be an odd number, approximately % the number of words. In this case, the
virtual page number and virtual page offset address fields overlap by 2 bits, causing
the following problems: the virtual page offset is now a function of the virtual page
number, and the virtual page number depends on the two overlap bits. The first
problem exi;ﬁts for the Div3 Method also, but in this case the entire virtual address
is needed to obtain the offset. Since this operation lies in the critical path of the
cache, this added complication will have adverse effects on the access time of the
cache. The second problem causes great difficulty in TLB addressing. It was found
that these difficulties cannot be overcome without substantial hardware support.

Given n bits specifying the bword offset into the address page, and given an
address which specifies the origin of the physical page, the bword offset must be
translated into an offset which points to the correct 4-word transfer block within
the physical page. Equation 3.1 shows the mathematical relationship between the

virtual bword offset and the physical transfer block offset.

1

TransferBlockOf fset = I nteger(Virtual BwordO f fset* VY

)s4xI, I€{1,2,4}
(3.1)
This equation holds for 4- (I = 1), 8- (I = 2), or 16-word (I = 4) NuBus block
transfer sizes. Notice that the Integer function simply returns the integer portion
of its argument.
The following shows how this addressing scheme is implemented for a 4-word,
3-bword transfer block (I = 1).
It is clear from equation 3.1 that a divide by three operation cannot be avoided.
Assuming that n, the number of bits in the virtual bword offset is not excessive,

then the operation can be done by 1 or 2 PALs or ROMs. These would use the

26

virtual bword offset as an address and return an (n — 1)-bit quotient and a 2-bit
remainder, these being the results of dividing the address by 3. The multiply by 4
is done by shifting the quotient left 2 places. The result of this operation represents
the transfer block offset into the physical page.

Another method of doing the divide-by-3 is to notice that the Taylor series

sisi—1+ 3+ This operation can be done by a series of shifts, adds,

expansion of
and subtracts. Unfortunately, using current technologies, this elegant method will

have a propagation delay at least twice that of a fast ROM or PAL.

Since a transfer block offset represents three virtual bwords, the remainder of
the divide-by-3 operation is used to identify one of the 3 bwords in the transfer
block. A remainder of a divide-by-3 normally returns values of 0, 1, or 2. Upon
examining the alignment, of bwords within the transfer block, however, it is clear
that the values of 1, 2, and 3 (remainder+1) would be more useful. If the remainder
is just 2 PAL or ROM location accessed by the bword address offset, then it is a
trivial change to have the PAL or ROM return remainder + 1 instead of remasnder.
If the Taylor expansion method is being used, then the remainder will have to be
incremented following the divide-by-3 operation. This must be done at the end so
that only the remainder is affected by this change. This value then represents the
byte offset into word 0 and the word offset into the transfer block which correspond
to the 5 bytes the addressed bword.

Figure 3.4 gives a functional representation of the translation process which
was described in the last two paragraphs. For simplicity the remainder of the paper
will refer to the hardware which does the divide-by-3 operation as the Div3 ROM.

This scheme can be easily adapted for block sizes of 8 or 16 words. As equation
3.1 indicates, the divide-by-3 is replaced a divide-by-6 for a block size of 8, and a
divide-by-12 for a block size of 16. The multiplication is done by shifting left 3 or
4 bits respectively. Similar arguments about the value of the remainder also apply
to these cases. Table 3.2 shows the remainders which should be output instead of
the actual values, and figure 3.5 shows an example translation of the same addess

for each of the 3 block sizes.

27

NuBus physical

page address Virtual bword offset
n
/28
Div3d ROM
“0”
28-n+1 { { n-1 f2

o

NuBus Block Address

|0 o]t &

31

4 3 210

Figure 3.4: Calculating the NuBus Block Address and Block Offset

Real Divé Divi2 Real Divi2
Remainder | Remainder | Remainder Remainder | Remainder
0 1 1 6 9
1 2 2 7 10
2 3 3 8 11
3 5 5 9 13
4 6 6 10 14
5 7 7 11 15

Table 3.2: Remainders Stored in the Divé and Divi2 ROMs

28

Physical Page Address = F30FF000 (hex)
Virtual Offset = 142 (dec) = SE (hex)

Output of ROM:

RCM | Block Number Offset Physical Biock Address
(dec) | (hex) [(dec) | (hex) (hex)
Div3 47 2F 1 1 F30FF2F0
Div6 23 17 4 4 F30FF2E0
Divi2| 11 B 10 A F30FF2C0
Div12 Divé Div3
12 6 3
11 5 2
* 10 * * 4 % *q
F30FF2F0 * * *
9 3
8 2
7 1
F30FF2E0
6
5
4
F30FF2Do
3
2
1
F30FF2Co

Figure 3.5: Example Address Translation for 3 Different Block Sizes

29

3.2.2 Transfer Pages

This section describes the translation process of virtual page numbers to phys-
ical page addresses, and how the virtual memory system maintains physical pages.
The ideas of this section can easily be generalized to apply to the transfer of blocks
of data between any devices, not just primary and secondary memory. Due to the
odd number of 32-bit words in an address page (recall table 3.1), physical pages
in the Div3 Method are often not of a convenient size for systems which normally
handle blocks of data whose size is a power of 2. This odd page size can complicate
both the physical page number to physical page address translation process, and the
derivation of the physical address from the physical page address and the physical
page offset. Depending on how the virtual memory system is implemented, some
tradeoffs can be made between speed, complexity, and the transfer page size.

As previously mentioned, the transfer page is defined which is transfered be-
tween primary and secondary storage. In most existing machines this is the same
size as the address page, which is obviously optimal as far as memory usage and
transfer efficiency are concerned. If this is not an efficient size for some other reason,
it is possible tc use a transfer page size which is larger than the address page. The
. bytes past the end of the address page will never be accessed, but will be transfered
between primary and secondary memory.

The difference between the address page size and the transfer page size is ac-
cepted as wasted physical storage space. This waste is tolerated if the transfer page
boundaries fall on addresses which simplify the virtual memory system, especially if
much of it needs to be implemented in hardware. This waste will also be tolerated
if the transfer page size is fixed due to block size requirements of secondary storage
devices, or the use of NuBus block transfers for paging.

If transfer pages are of a size which is not a power of 2, then the physical
page address cannot be easily obtained from the physical page number. This is a
problem since many systems use physical page numbers instead of physical page
addresses in managing the pages of physical memory. To resolve this problem,

physical page addresses must be regenerated from physical page numbers on each

30

Virtual Address

fm

m-n | /n
TLB Div3 ROM
2
[<28 fn-1/2

logic to combine page

address and offset

[

NuBus Address
of Transfer Block

Figure 3.6: Organization of the TLB and Div3d ROM

page fault, or the additional information must be maintained when physical pages
become available (virtual pages are flushed), or somewhere in the virtual memory
management tables. In addition, there must be a way to generate physical page

addresses to initialize the virtual memory system.

Figure 3.6 shows the general organization of the TLB and the logic to generate
a physical address of the form shown in figure 3.2. The next few paragraphs will
examine the cases where the transfer page is the same(or nearly the same) size as
the address page, where the transfer page size is fixed to a power of 2 larger than
the address page size, and where the transfer Page size is an integral multiple to a
power of 2 which is less than the address page size. The differences between these

implementations are in the initial values of the physical page addresses and the logic

31

which follows the TLB.

In the first case the transfer page size is the same or nearly the same size as
the address page size. This implies that the physical page address is an odd size
and must be maintained separate of the physical page number, since it would be
complicated to generated on every page fault. The output of the TLB will be a full
28 bits (the bottom 4 bits are 0s for a 4-word block transfer), and the logic which
follows the TLB in figure 3.6 will consist of a 28-bit full adder. By maintaining the
full physical page address any size of transfer page could be used, but a size very
close to the address page size would be the most efficient in physical memory usage.
Therefore, a transfer page size equal to the address page size or the next higher

multiple of 8 or 16 words would most likely be used.

The second case fixes the transfer Ppage size to a power of 2 that is greater than
the address page size. Assuming a page size of 2™, the advantage of this case is
that the physical page address ends in m bits of 0. Since the transfer page size is
larger than the address page size, the output of the Div3 ROM will be m bits or
less. The logic following the TLB then needs to append the physical page address
to the phyical page offset. This requires no additional hardware and results in no
additional delay. It also means that the physical page address and page number are
simply related as in most systems. Consequently, the physical page address need

not be maintained seperate of the physical page number.

While simplifying physical page management and address generation, the sec-
ond case is very inefficient in memory usage. If the transfer page size is 2™ words,
the address page size is at most 2™~! bwords or ’l:—' words. This results in -;- of

physical memory being left unused by the virtual memory system.

The final case is a hybrid version of the other two. It has the efficiency of
memory usage of the first case and the simplicity of physical page management of
the second case. This is achieved by picking a transfer page size which is easy to
multiply the physical page number by. For example, with 256 bwords per page,
the address page size is 342 words. If a transfer page size of 384 words is chosen,

then the physical page address is found by appending the NuBus slot address to the

32

Case | Transfer Page Size | Wasted Memory Remarks
(words) (words/%)
1 342 0/0% Address page size = transfer page size
1 352 10,2.84% Nearest muitiple of 16
2 512 170/33.2% Nearest power of 2
3 384 (256 + 128) 42/10.9% Minimum block size of 128, 3 additions
3 | 352 (256 + 64 + 32) 10/2.84% Minimum block size of 32, 4 additions

Table 3.3: Consequences of the Different Transfer Page Handling Schemes

physical page size multiplied by 384, which can also be more conveniently expressed

as (256 + 128). The physical address is then obtained by the following formula:

NuBusBlockAddr = shi24(NuBusSlotN 0) + shl10(PhysPageN o)
+8hl!9(PhysPageNo) + shi4(PhysPageOf f set).(3.2)

Here, shin(value) indicates that value is shifted left n bits. Note that this generates
_a NuBus byte address, so multiplying by 256 words is the same as multiplying by
1K bytes. This is easily done in hardware by using a series of adders for the logic
following the TLB in figure 3.6. If the adders are pipelined, the delay of 3 or 4
adders will not be much greater than ‘he delay of one.

This final case can be modified in many ways to minimize wasted physical
memory, delay through the adder circuitry, or be made to fit the minimum block
size requirements of the memory system. Table 3.3 shows a few implementations
listed by their case (1, 2, or 3) as presented in the preceding discussion. They all

assume an address page size of 256 bwords or 342 words.

3.3 The Div3 Cache

Along with the address translation, the local cache is the feature upon which

the performance of the Div3 Method depends. Without memory local to the proces-

33

sor, every memory access would require a 4 word transfer to take place. If processor
slot space is critical, then a small cache or buffer should be implemented, hopefully
taking some advantage of the extra bwords which have already been fetched. If
space or cost restrictions of this degree do not exist, then a large cache should be
implemented. The next sections will discuss cache addressing in the Div3 Method,

cache update policies, and small caches and buffers.

3.3.1 Div3 Cache Addressing

This section discusses some of the issues which apply to addressing any cache
used with the Div3 Method. Many of these issues are a result of the fact that
while memory lies in the 32-bit world and the processor in the 40-bit world, the
cache must operate between the two. The bwords are now being stored in 40-bit
locations, but the factor of 3 is still present in the block size, and must be dealt
with accordingly.

Since 3, 6, or 12 bwords at a time are transfered between memory and the
processor, it would seem natural for any cache to have a line or block size equal
to the NuBus transfer block size being used. This reduces the cache addressing
i complexity, allows the cache to store only one tag per block, and uses the minimum
number of locations in storing the fetched block. In order to address words in
groups of three, however, a divide-by-3 scheme must again be used. This is easily
accomplished by using the Div3 ROM. Figure 3.7 shows 2 general cache addressing
schemes which support base-3 block sizes using this ROM or PAL.

In discussing cache addressing schemes, it may not always be possible address
every cache memory location. These discussions will refer to effective cache size,
the size of cache counting only those locations which are used.

The first scheme stores bwords in 40-bit locations. Unfortunately, due to the
fact that the remainder only takes on 3 different values, the effective cache size will
only be % of the cache capacity. Any cache data location whose address ends in
two 0’s will never be used. Note that this problem does not apply to the cache tag

memory since only one entry per block is stored there.

34

Virtual Page Address

Virtual Page Offset

|

Div3 ROM
Virtual Cache ! !
Address l
32 n+l n 210
Scheme 1 Virtual Cache Addr
%33
4 33_, !m
(m/ Cache Data
Cache Tag Bword 2
Bword 1
Bword 0
Never used
Scheme 2 Virtual Cache Addr Data
/33
(33m/ m-2 [2
Cache Tag <
Bword 0 Bword 1 Bword 2

AN

3:1 MUX //———J

Data

Figure 3.7: Two Cache Addressing Schemes

35

The second scheme stores bwords in 120-bit locations, 3 per location. In this
scheme no memory is wasted, but 120-bit locations must be constructed. The
correct bword of the 3 is then selected by the 2 remainder bits. The feasibility of
this scheme depends on the implementation technology. Building this cache out
of 8-bit SRAMS would not be practicle, especially if a set size larger than 1 was
desired. On the other hand, a semicustom integrated circuit implementation of this
cache could be practical.

As can be seen in figure 3.7, there is a cutoff point above which the accessing
characteristics of the cache change. This is due to the incongruity introduced in
the caching system by joining a base-3 address with a base-2 one. The following

equations will be used to define three classes of cache size:

AddressPageSize < NumberO f Sets + BlockSize (3.3)
AddressPageSize > NumberO f Sets * BlockSize (3.4)
AddressPageSize = NumberO f Sets * BlockSize (3.5)

Caches which correspond to equation 3.3 will be known as large caches. Likewise,
caches which correspond to equation 3.4 will be known as small caches. The final
case, corresponding to equation 3.5 constitute a special case and will be considered
separately.

Large caches operate as shown in figure 3.7 without any additional logic. Un-
fortunately, the high 2 bits of the output of the Div3 ROM will only assume values
of 0, 1, and 2. This means that -41- of the usable cache memory will never by used
and the effective cache size is further reduced by a factor of % For a large cache,
this may result in a considerable amount of wasted cache memory. Furthermore,
this memory cannot be easily reclaimed since it is scattered throughout the cache
in chunks of 272

Small caches do not have the memory waste problem of large caches. This is
due to the fact that, except in one specific case, the high 2 bits of the Div3 ROM are
not used in addressing the cache memory, but instead form part of the cache tag.

The exception occurs when the second highest bit of the output of the Divd ROM

36

is being used to address the cache, but the highest one is not. In this configuration,
2 of the address space maps into one half of the cache and the other ! maps into
the other half. This will clearly have a negative effect on cache performance when
compared to a cache of comparable size.

The final case is the special case where the address page size is equal to the size
of each cache bank, n banks making up an n-way set associative cache. Like the
large caches, this size has an effective cache size of % of the usable cache memory
since the high 2 bits of the Divd ROM output are not being used. However, unlike
the large caches, the unused memory is not scattered about in chunks, but is located
all together in the top % of the cache memory. This offers the opportunity for it to
be used by the processor for some other purpose.

If space allows, an extra Div3 ROM can be used for cache addressing. This
ROM would be used for the cache only and would use the correct number of bits
so that the output is used to address the cache and the rest of the virtual address
is used as the tag. This is identical to the case where equation 3.5 was true, but

allows more freedom in picking cache parameters.

3.3.2 Update Policies

The choice of update policy is particularly important to the Div3 Method since
it will determine how many single bword memory accesses will be required. The
choices are either store-and-invalidate, write-through, or store-in (otherwise known
as write-back). There is also the side issue of whether to write single bwords or
whole transfer blocks on writes in the write-through policy and with dirty flushes

in the store-in policy.

Write-Through Update Policy

The write-through policy is often chosen over the faster store-in policy for two
main reasons. First, the cache consistency issues of multiprocessing environments is
avoided since primary memory is constantly up to date. Second, the logic necessary

to implement write-through is small since the additional information of dirty blocks

37

and the logic needed to do dirty fiushes is not needed. Unfortunately, the write-
through cache used with the Div3 Method must pay the penalty of two NuBus

accesses on every write.

Store-and-Invalidate Update Policy

While saving some logic compared to write-through, the store-and-invalidate
policy becomes less efficient as the block size grows. This is due to the fact that
the chance that something else in the block will be accessed while the block is in
the cache is proportional to the block size. Since the Div3 Method cache is based
on transfer blocks of 3, 6, or 12 bwords, the store-and-invalidate cache will not be
very efficient. Instead, the write-through policy, requiring comparable hardware

support, should be used instead.

Store-In Update Policy

Store-in has two big advantages over the other two update policies. First, the
average access time is lower since the processor does not need to do the write to
“memory over the NuBus on write misses. Second, bus traffic is reduced for the same
reason. The major disadvantage of this policy is the cache consistency problem.
Whether this problem will prevent the store-in policy from being used will depend
on the environment that the 40-bit machine is to be used in. Another disadvantage
is the additional logic needed to maintain dirty bits for, and potentially flush each
bword or block.

If cache consistency does present a problem, then either a method to cure
the problem must be implemented, or store-in is abandoned as a potential update
policy. There are many proposed solutions to the cache consistency problem, and
those will not be covered here. Many of these solutions, however, rely on status
information about the block in memory. The extra byte in the transfer block could
be used as a location with which to pass status information about the block from

processor to processor.

38

Bword or Transfer Block Writes?

In using the any of these policies, the choice of whether to write the whole
block or just the dirty bword should depend on how single bword accesses are being
handled. If the logic for single bword accesses already exists for unmapped memory
accesses and the write-through or store-and-invalidate policy is used, then single
bword writes should be used. If this logic does not exist or store-in is being used
it may be far less complex to write the entire block back to memory. This has the
advantage of having to initiate only one NuBus transaction, while the single bword
write will require a word access and a byte access. Additionally, using store-in,

more than one bword per block may be dirty and need to be written back anyway.

3.3.3 Small Caches and Buffers

This section will discuss small caches or buffers which can be used when a larger
cache is not practicle. For small caches, such as one that would be implemented on
a processor chip, a fully-associative cache organization yields the best performance
results (this is true for all size caches, but large fully associative caches are usually
" not practicle to implement). Fortunately, VLSI design supports fast, parallel search
over many elements making an efficient fully-associative organization possible. If
the Div3 ROM is included on the processor chip along with the cache, then one tag
can be stored per 3 bword block, and the parallel search will be 1 3 as extensive, If
the Div3 ROM is off-chip, then a tag will have to be stored for each bword.

A small cache such as this could also be used with a larger off-chip cache.
Access times on-chip will be better than those off-chip, especially since the offset
ROM is avoided, and a small cache is easy an easy thing to implement in any
spare silicon. Unlike other cache organizations, it is not important for the fully-
associative organization to have a size which is a power of two, making xts size very
flexible. Also, if used to complement a larger, off-chip cache, a very small cache
operates best as an instruction-only cache since instructions tend to demonstrate

better locality of reference (see Appendix B for results which show this). In this

39

To Processor

»

18 132
Xtra 0 Bword 0
1 Bword 1
2 Bword 2

'8 [8 [8 /8 /32

From NuBus

Figure 3.8: Caching Realignment Buffer

way the logic associated with update policies can be ommitted, assuming that the

executing instruction set is not self-modifying.

Caches of this type will be very small, and the cost of bringing something into
the cache is compounded by the fact that you must flush something that you will
probably need later. Since the cache is small due to size or iogic restrictions, write-
through should be used since it avoids the extra logic of dirty bits and writing back

to memory when that block is finally cached.

Finally, if it is impossible to implement a local cache, then the bword realign-
ment logic should be turned into a buffer which stores the last transfer block which
was accessed. An example of this is shown in figure 3.8. At least some advantage
could be gotten from having transfered the extra words, but this method should

only be used when no other arrangement is possible.

40

3.4 Performance of the Div3 Method

The performance a 40-bit processor which implements the Div3 Method can be
compared to that of a functionally equivalent 32-bit processor by noting that a 4-,
8-, or 16-word NuBus block transfer is necessary to fill the block of either cache. For
excmple, the Div3 cache has a block size of 3 bwords which are filled by a 4-word
block transfer, while the corresponding 32-bit cache with a block size of 4 words
also requires a 4-word block transfer. In a similar manner, the 6-bword block cache
and the 8-word block cache both use 8-word block transfers, while the 12-bword
block cache and the 16-word block cache both use 16-word block transfers. The
differences in their performance will be reflected in the respective hit ratios which
will differ due to the number of elements per block.

Some additions to equation 1.1 must also be made in order to accurately predict
the performance of the Div3 Method. These are the addition of the access time of
the Div3 ROM to the cache access time and the addition of the logic following the
TLB to the main memory access time.

The average access time for a general Div3 Method implementation can be
represented by the equation 3.6. It is assumed that the page fault occurrence
(P(map | m.)) will be identical for the two systems, and that the access times
associated with disk (reflected in t,,/) will be similar, although this will may not
be true depending on the size of primary memory and the manner in which page

faults are resolved.

3.5 Summary of Div3

Figure 3.10 shows the layout of a generalized Div3 Method system. The only
hardware additions which have been made are the Div3 ROM and the appropriate
logic following the TLB. The Div3 ROM will divide by 3, 6, or 12, depending on the
desired NuBus transfer and cache block size. This is implemented with 1 or 2 8-bit
PALs or ROMs, or shift and add hardware to implement the Taylor series expansion

of 31. The delay which this logic introduces in cache addressing will depend on the

41

Ph) = probability of a cache hit on a local cache
P(m.) = probabih'tg'; of a miss on a local cache = 1 — P(he)
taivs = access time of DivS8 ROM
td = access time of a local cache = t, + taive
P(hay | m)1 = probability of a hit on the translation lookaside buffer
given a local cache miss
P(mgy [m,)1= 1—P(hy | Re)t

tiog = access time of logic after the TLB

tap! = access time of the TLB = ty, + tiog

tmem = access time of block from main memory

togr = time to process a page fault on a tlb miss

tawg! = average access time of @ virtual memory request

tavg! = P(h)15ty

+P(m,) * [P(hub I m,)l * (tmem + ttlb') + P(mm, I mc)l * tp,f] (3.6)

Figure 3.9: Computing the Average Access Time of the Div3 Method

42

From Processor Processor Data

%40 r
[32-n 'n
[40
Div3 ROM
/' n-1 /' 2
33-m fm
TLB Cache Tags Cache Data
[< 28 {33-m (40
TLB Logic Comparator ;7
(32
Realignment
{40
4
NuBus Address NuBus Data

Figure 3.10: Functional Diagram of a General Div3 System

43

implementation, but could be made as low as 15 ns with currently available devices.
The logic following the TLB will consist of either nothing, a single full adder, or
multiple full adders. These can be implemented with a variety of commercially
available parts with delays as small as 31 ns. The speed of these parts is not as
critical as the Div3 ROM which lies in the critical path far more frequently.

With the exception of unmapped memory accesses, the management of bwords
is totally transparent to the processor. The Div3 Method has been designed to
allow the processor to initiate unmapped accesses with minimal knowledge of the
organiation of bwords in memory. This is done by offering a format for storing
NuBus addresses from which the addresses for both parts of the bword are easily
derived.

The Div3 Method is also attractive because of range of ways in which it can
be implemented. Most notably it has a transfer page size can be selected which is
compatible with the other NuBus devices of the system. An efficient cache design
can also be selected. All cache organizations correspond to a NuBus block transfer
size so that the NuBus is utilized in its most efficient manner and bus traffic is kept

to a minimum.

44

Chapter 4

The Separate Tag Method

The Separate Tag Method is based on the storage of 4 bwords in 5 words. In
this method, as in the Div3 Method, bwords are divided into two parts. The pointer
portion is stored one per word in 4-word blocks, and the tag portion is stored four
per word. All types of physical memory spaces are then divided into two parts, a
pointer space and a tag space. As the names suggest, tags are stored in tag space
and pointers in pointer space. The exact locations of a pointer-tag pair are related
to their respective space base addresses by a simple binary operation. The following
" sections will discuss the organization of bwords in physical memory, the handling
of virtual and unmapped memory requests, and the effects of the method on local
caches. The final section will dizcuss performance evaluation of the Separate Tag
Method. 7

4.1 Bword Organization

Bwords are organized in the two spaces as shown in figure 4.1. As in the Div3
Method, it is desirable to transfer the tag word first, allowing a bword to be obtained
on each additional NuBus transfer. A realignment buffer similar to the one used
in the Div3 Method is necessary to reorganize the 5 words into their appropriate
bwords. This is shown in figure 4.2.

It will be again assumed that the cache will be responsible for reorganizing

45

Ta‘i Space Tag Word
Address = TagBaseAddr + Q1 foet

T aseAddr
aggointer Space

Pointer Block
““Address = PtrBaseAddr + Of fset

4

Pt__rBaseAddr

A Physical Address Space

Figure 4.1: Arrangement of the Pointer and Tag Space

46

to processor

e

40-bit register

39} 0
/8

/

— 4:1 MUX \ |
/8 / g '8 |8 Pointer Block
32-bit register

31 0

Tag Word ‘

[

0 - 3 return the tag of from NuBus
their respective bwords

Figure 4.2: Realignment Buffer

47

blocks going to the NuBus, and it will again be advantageous for the processor to
have access to the tag word without the associated pointers (see section 3.1).

One advantage of the Separate Tag Method over the Div3 Method is that
it allows memory to be easily shared with 8-, 16, and 32-bit processors without
changes to those processors. This can be accomplished in the Separate Tag Method
using either of two ways. First, some or all of the pointer space can be used as
shared memory, requiring only that the base address and range of this space be
made known to the non-40-bit processors. The words in the tag space should be
marked appropriately to indicate that their pointers are in shared memory. This
is necessary because the tag words will not be updated by a non-40-bit processor
which accesses the shared pointer space.

The other way involves setting aside a portion of physical memory as shared
memory, and not maintaining tags for that part of memory. These physical pages
must be marked appropriately in the physical ‘and virtual page information of the
40-bit processor. When a memory request to one of these areas is made, the tag
fetch of the memory access is not done since there is no tag space associated with
the physical address. In its place, a word of tags must be read in from the DProcessor
or from somewhere in the processor’s memory management hardware. Figure 4.3

shows an example implementation of this idea.

4.2 Memory Management

To support the Separate Tag Method, all physical memory spaces (primary and
secondary) which are to be accessed over the NuBus must be divided into a pointer
and tag space. It is possible to divide a device into more than one pointer-tag space
pair. This would be a good idea for large spaces such as a disk in order to maintain
some locality between the two parts of a page. Unless a portion of the memory is
to be set aside for pure 32-bit tra.nsa.ctlons, tag space will occupy ¢ 1 of each physical
memory device with the remaining 5 set aside for pointer space. Both spaces are

defined by a base address and a size, given in words. This section will describe

48

to 40-bit cache or processor

/__ #1MUX N\ Byte Select

4

'8 (8 [s8 [s8

3 2 1 0 4 x 8-bit register

/ 2:1 MUX ¥ Tag generator or Memory

% 32 { 32
From processor From NuBus

or
Special Tag Memory

Figure 4.3: An Example of Automatic Tag Generation Hardware

49

how virtual memory requests and unmapped accesses of bwords are handled in this

method.

4.2.1 Virtual Memory Requests

The virtual memory system of a Separate Tag Method implementation differs
very little from that of a functionally equivalent 32-bit processor. The main differ-
ence is the necessity of the hardware to initiate two physical memory accesses for
each virtual memory request. This is handled by storing the information of more
than one physical location in the TLB, and by maintaining a request queue for the
NuBus. Figure 4.10 shows a functional diagram of the basic memory system of the
Separate Tag Method.

Unlike the Div3 Method, the sizes of all data blocks in the Separate Tag Method
are powers of 2. Assuming a virtual page size of 2' bwords, the size of the pointer
space page will be 2° words and the tag space page % or 2°~2 words. These conve-
nient sizes simplify the handling of pages. First, every location in a page is used, so
no memory is wasted, as in the Div3 Method. Second, the physical page address is
found by adding properly shifted versions of the physical page number to the phys-
ical base addresses of the pointer and tag spaces. This allows the resolution of page
faults to be done with physical page numbers, thereby avoiding the maintenance of
physical page addresses outside the TLB.

It should be noted that secondary memory devices must be able to support
data blocks of size 2°~2. The transfer page flexibility of the Div3 Method is not
possible in this method since the next larger size would be at least twice as big,
resulting in half of tag space being wasted. If the secondary memory devices will
not support this size of data block, then either the Page size must be increased or
the Separate Tag Method cannot be used.

Figure 4.5 shows the layout of the TLB entry for one page. The information
of two NuBus addresses can be stored in one TLB location since both locations
use the same NuBus slot address, and because the TLB entries are assumed to be

40-bits wide. The TLB entry contains the common 8 NuBus slot bits and separate

50

Virtual Address

[m-n [n
TLB
Compute Compute
Ptr Address Tag Address
{32 (32

NuBus Request
Queue

l

To NuBus

Figure 4.4: General Virtual Memory System of the Separate Tag Method

51

SlotNo PtrPageNo TagPageNo Status Bits |
39 32 31 n+12 n+11 2n-10 2n-11 0

n = number of bits in virtual page offset

SlotNo = NuBus address of slot where data resides
PtrPageNo = Slot offset address of pointer space page = (20 - n)-bits
TagPageNo = Slot offset address of tag space page = (22 - n)-bits

Figure 4.5: Format of a Translation Lookaside Buffer Entry

page addresses for the pointer block and the tag word. The virtual page offset is
saved and appended to both physical page addresses. Figure 4.6 shows how NuBus
addresses are generated in this fashion.

Note that this TLB entry organization assumes that it is desirable to fit each
entry in 40 bits. If the number of virtual page offset bits (n) is 8 or less, then the
number of bits left for status information may be very small. This, combined with
the fact that the penalty for a TLB entry size different from 40 bits may be small,
' suggests that a different size may be optimal. Figures 4.5 and 4.6 do, however, show
that the relationship between the two addresses is such that they can be compactly
stored together, in one bword if necessary.

The TLB usually contains some status bits for each entry which give informa-
tion about that particular page in memory. There are two particular status fields
which might be especially useful for the Separate Tag Method. The first would
indicate whether a given page was part of shared memory or not, and give some
indication about the type of sharing that is taking place. The second field indicates
if that page has a corresponding tag space or not. Unlike the last field which was
related to the physical page, this trait is related to the virtual page. If a page has
no tag space, then that half of the access can be ignored, and a set of tags must be
generated elsewhere.

The two least significant bits of the virtual address are used to point to the

52

Output of TLB

ho

'8 [/ 20n { 22-n /2n-10

to processor or

status logi::)
virtual

page offset

0 0
'8 [20n/n {4 (8 [22n/n %2
,{32 132
NuBus Address of NuBus Address of
Pointer Block Tag Word

Figure 4.6: Physical Page Generation Using the Output of the TLB

53

2-bit offset

NuBus Pointer Block Address ,61 bo I 00 |
31 4 3210
NuBus Tag Word Address |61 80| 1o € (0,1,2,3)
31 210

Figure 4.7: Method of Addressing Single Bwords

appropriate word of an accessed block. They can also be used in single bword
operations to point to the two parts of the bword. Figure 4.7 shows how single
bword addresses are generated in this fashion. Note that these bits are always

appended and never cause an addition.

4.2.2 Unmapped Memory Requests

Unmapped memory requests in the Separate Tag Method are complicated by
" the fact that the physical addresses of the two parts of a bword are, in general,
unrelated. If one assumes that the only relation between the two addresses is that
they reside on the same NuBus module, then two bwords are required for physical
address storage. On the other hand, if a more specific relationship is assumed,
then the addresses can be stored in one bword. Finally, if unmapped accesses are
prevalent, then it may be worthwhile to add logic which stores an encoded address
space number, allowing the two physical addresses to be stored in the same bword.
The next paragraphs will examine these three alternatives.

The easiest solution to this problem is to store the addresses to the two parts
of the bword in consecutive bwords. Since the accesses are over the NuBus, they
will take longer than two microinstructions. Therefore, implementing the second
part of the operation explicitly from microcode will show no performance difference

for the processor. This method of storing physical addresses adapts easily to the

54

cases where the pointer and tag portion of the bword are not both needed. Al} of
these cases are handled by just sending one physical address to the NuBus request
queue.

The second solution stores the address in one bword. This will be the tag
address, and its access will be started immediately. While this access is completing,
the pointer block address can be calculated from the tag address, and its address
will be placed on the queue as soon as it is generated. Presumably the relationship
between these two addresses can be made simple enough to be calculated during
the first word access, allowing the second access to start immediately afterward.

The other method takes advantage of the fact that the pointer and tag portion
are offset from their space base addresses by the same number of words or bytes. In
this method, a pointer-tag space number is stored with the two offsets into the two
spaces. The pointer and tag space base addresses are obtained by ROM or register
lookup using the space number. Figure 4.8 shows how the addresses are generated.
This involves either additional hardware or microcode support. This case would
only be used if there were extensive unmapped accesses of both the pointer and tag
sections of a pointer-tag space. While saving register, stack, or memory space by

‘storing both addresses in one bword, the additional logic or microcode support of
this method may outweigh its benefits.

With the NuBus request queue already built into the system, the problems
related to cache update policies and single word accesses are greatly lessened. Since
the cache only deals with virtually addressed bwords, the TLB and queue enable
single bword and block transfers from the cache without additional logic. Other

update policy issues will be dealt with in the next section.

4.3 Caching with the Separate Tag Method

Unlike the Div3 Method, the Separate Tag Method cache lies fully in the 40-bit
addressing world. Therefore, the cache is organized in the traditional manner. This

means that no cache memory is wasted in this method. The only restriction is that

55

Unused Space Number Space Offset
39 m+n m+n-1 m m-] 0

[n

Space
Address
Lookup

{ 30-m { 32-m

Pointer Space Tag Space
Base Address Base Address

NuBus Word Address of Pointer

' Pointer Space Address I Space Offset l 00]

31 m+2 m+i 2 10
NuBus Byte Address of Tag

, Tag Space Address I Space Offset l

31 m m] 0

Figure 4.8: Unmapped Bword Address Generation Using Space Lookup

56

block size must be 4, 8, or 16 bwords. As in the Div3 Method, the cache block size
should correspond to the NuBus transfer block size which is selected. In the case
of the Separate Tag Method, this means that the number of words in the transfer
block which contains the pointer fields should be the same number of bwords in a
cache block.

The Separate Tag cache is compatible with all update policies. Cache consis-
tency problems still apply to the store-in policy, however. Since this is a traditional
cache organization, any cache consistency solution which has been applied to an-
other cache should also be applicable here.

In matters involving the writing or access of single bwords from the cache to
main memory, the situation is a little simpler than in the Div3 Method. This is due
to the fact that a NuBus request queue has already been established in order to
implement the Separate Tag Method, so the hardware for such activity is already
in place. There will be some additional control logic involved with write-throughs
or dirty flushes, but the problem has been reduced to the same state that it would
be in on any 32-bit machine.

The Separate Tag Method cache will not be described in any further detail since
"it resembles a conventional 32-bit cache in all aspects. This fact can be especially
useful if a cache was already designed for a 32-bit version of the 40-bit machine, in

which case it can be stretched to 40 bits and used as designed in the larger machine.

4.4 Performance of the Separate Tag Method

The performance of the Separate Tag Method will depend solely on the hit
ratio of its cache. Due to the nature of its storage format, handling a cache miss
will take twice as long as it would normally since two NuBus accesses must be
initiated. Aside from cache access times, the actual implementation of the Separate
Tag Method will not have as large of an effect on the overall average access time
as the Div3 Method. This is because no hardware has been added to the critical

timing path of cache hits.

57

P(h.) = probability of a cache hit on a local cache
P(m,) = probability of a miss on a local cache =1 — P(k.)
t. = access time of a local cache
P(hus | m:) = probability of a hit on the translation lookaside buffer
given a local cache miss

P(mtu | m,,) = 1- P(hm, I mc)

tay = access time of the translation lookasside buffer
tmem! = access time of block from main memory

tpyy = time to process a page fault on a tlb miss

tavy = average access time of a virtual memory request

lavg = P(hc) *t, + P(mc) * [P(hm, l m,) * (tmml + tm)P(mm I mc) * tp,!] (4.1)

Figure 4.9: Computing the Average Memory Access Time of a the Separate Tag
Method

58

The equations for the performance of the Separate Tag Method are identical
to the 32-bit version, with the exception of the delay to handle a cache miss, i.e.

perform two NuBus accesses instead of one. These are shown in figure 4.9.

4.5 Summary of the Separate Tag Method

Figure 4.10 shows the layout of a general Separate Tag Method implementation.
The only hardware additions are the NuBus request queue, the realignment buffer,
and the optional tag generation and address space registers. These add no additional
delay to the memory system.

Due to the nature of the addressing scheme, the Separate Tag Method makes
full and efficient use of main and cache memories. It also allows a conventional
cache design to be used, making better use of current cache design experience.

The Separate Tag Method provides a format for sharing memory with 8-, 16-,
and 32-bit processors over the NuBus. It also provides a manner for accessing data
in areas which are known to be only 32-bits wide, thus having no corresponding tag
field.

Finally, the performance of the Separate Tag Method is good as long as the
cache is being accessed, but is Ppoor otherwise since 2 separate NuBus accesses must
be made to fill the cache. In this method, as in the Div3 Method, the cache perfor-
mance is the key to the overall system performance. This will be more apparent in

the next chapter.

59

Processor Virtual Address

fm

Processor Data

P

' m-n P /r P
= Cache Cache
/
Tag Data
TLB m-p [
f RAM RAM
{40 [m-p {40
Comparator ‘:7
Compute Tag and
Pointer Addresses
/32 (32
Realignment
NuBus Queue ! en
Buffer
/32 [40
v
NuBus Address NuBus Data

Figure 4.10: Organization of the Separate Tag Virtual Memory Hardware

Chapter 5

Example Implementations of the

Two Methods

This chapter describes hypothetical implementations of the two methods on a
Texas Instruments Explorer Lisp Machine. The Explorer is a NuBus based, 32-bit
architecture. The performance of the Explorer will be simulated in three different
configurations. The first will be the normal Explorer memory configuration with
simulated caches, and the other two will be simulations of the two methods imple-
“mented on the Explorer. The following sections will describe the virtual architecture
of the Explorer, the simulation techniques, an implementation of each method on
the Explorer, and derive some performance figures for the methods using the sim-

ulation results and the equations developed in earlier chapters.

5.1 The TI Explorer

The TI Explorer is a Lisp-based, single-user machine which is a descendant of
the MIT CADR. The Explorer has a fixed word size of 32 bits which are separated
into a 7-bit tag and a 25-bit pointer field. The tagged architecture is one of many
features which is designed to enhance the performance of the Lisp programming
language on the machine. The Explorer processor resides in a multi-slot NuBus

chassis, and is implemented in doublesided, triple-high Eurocard format. Other

61

optional NuBus boards include an Ethernet interface, 1-, 2-, 4-, and 8-megabyte
memory boards, a system interface for terminal and keyboard control, and periph-
eral interface which supports the SCSI (Small Computer Systems Interface) bus
standard. The SCSI bus is used by large volume secondary storage units such as

Winchester disks and mag tape drives.

5.1.1 The Explorer Virtual Machine Implementation

The Explorer processor is a microcoded to implement a virtual machine which
is designed to support the Lisp programming language. Lisp is compiled into
macrocode, an intermediate langauge which is interpreted by the microcoded pro-
cessor. Many macrocode, microcode, and hardware features are included to enhance
the performance of common Lisp operations on the machine. This section will only
discuss the portions of the Explorer which are related to the performance simulation
and the implementation of the two methods. If any more information is required,
the machine is examined in depth in [TI85] and [TI84].

Interrrupts are at the lowest level of the Explorer virtual architecture. Since
they fall below page faults in the system organization, they must be implemented in
" wired memory - virtual memory with is never paged, or through unmapped accesses
using physical addresses.

Above interrupts in the virtual architecture is the virtual memory system.
Anything higher than this in the architecture is free to use virtual addresses. The
implementation of the virtual memory system is discussed in detail in the next
few paragraphs since it is important in understanding of how the methods are
implemented on the hypothetical 40-bit Explorer.

Memory accesses are initiated by the processor by writing to one of two regis-
ters: VMA (virtual memory address), or MD (memory data). These registers are
represented as a number of functional sources, each representing a different type of
memory access. These include mapped and unmapped accesses, reads, writes, and
fetches.

The Explorer uses a number of tables to store virtual memory information.

62

The two-level memory map, or TLB stores the data of the virtual pages which are
in physical memory for convenient access by the processor. Other data necessary
for virtual memory management is stored in the page hash table (PHT), physical
page data table (PPD), and disk page map table (DPMT).

Macrocode instructions are 16-bits wide, and are stored two per word. Since
macrocode handling is above the virtual memory system in the virtual architecture,
macrocode words are in virtual memory and their fetches are monitored explicitly
in microcode to check for page faults. In this manner, the simuli'xtor is able to count
macroinstruction fetches separately from data reads and writes.

Many of the statistics shown in this paper rely on the accessing characteristics
of the Explorer, i.e. the portion of the accesses which are reads, writes, or instruc-
tion fetches. These figures certainly vary over time, but the following values are

representative: reads — 54%, writes — 7%, and instruction fetches — 39%.

5.1.2 The Explorer Virtual Machine Model

The Explorer virtual architecture model which is used in the performance es-
timates of this paper does not exactly emulate the Explorer. This was done in-
N tentionally for four reasons. First, due to some tradeoffs made at design time, the
Explorer does not communicate with its main memory board over the NuBus. In-
stead it used as faster local bus over which it is the sole master. In keeping with the
NuBus philosophy and future Explorer family designs, the local bus is not included
in the model. All inter-board communications will be assumed to take place over
the NuBus.

Second, though fully capable of supporting one, the Explorer lacks a local
cache, a crucial part of the designs presented in this paper. All cache performance
numbers used in this paper have been generated by simulation.

Third, non-NuBus delay or access times do not exactly match those of the
Explorer. Delay times of currently available parts will be used to reflect the perfor-
mance of these designs as if they were being built at the time of the writing of this

paper.

63

Finally, the Explorer uses a 2-level TLB, but access times of a single level TLB
will be used in this machine model. The two level memory map was selected at
design time because of its efficiency of storage, and because no cache exists on the
current Explorer implementation. If the memory map is considerably slower than
the cache, then the machine may be slowed down by the TLB, even during periods
of cache hits. It is desirable for the TLB and cache to have comparable access times,
and a TLB has been selected here which better complements the caches which have

been silhula.ted.

5.1.3 The 40-bit Explorer Virtual Machine Model

The Div3 and Separate Tag methods will be: simulated as they would be im-
plemented on an Explorer. Since there are no 40-bit versions of the Explorer, the
virtual architecture model which has been selected was chosen for its simplicitly
and its ability to be accurately simulated using results from the 32-bit Explorer.

In the 40-bit Explorer model, all bwords will be divided into a 32-bit pointer
and an 8-bit tag. This means that the virtual memory space has been extended from
25 to 32 bits since the pointer contains virtual addresses. Macrocode instructions
" will still be stored two per word, their actual length being undetermined. All virtual
memory tables wil be expanded to 40-bits wide. The larger Explorer will probably
still communicate with most other devices in 32- or 16-bit words, but thesef all
below the level of the virtual memory system, so are of no consequencce here.

It will be assumed that in this configuration, the memory accessing character-
istics of this machine will be identical to those of the 32-bit model described above.
In this way, the use of the simulation results of the the Explorer as applied to this

model will be justified.

5.2 Simulation Techniques

This section describes how the prerformance of the Explorer and the two meth-

ods were estimated. The simulator and its use will be discussed, followed by a

64

description of how the simulation results were evaluated to estimate average access

times for the three configurations.

5.2.1 The Simulator

All Explorer performance statistics presented in this chapter were obtained us-
ing a microcoded cache and memory system simulator on an Explorer (see [Dougsé)
for a detailed description of the simulator). The simulator allows runtime perfor-
mance statistics to be obtained in real time during a natural execution environ-
ment. The output of the simulator has cache performance statistics divided into
reads, writes, and instruction fetches. For simulating the store-in update policy, the
simulator also gives the portion of all accesses which caused a dirty cache block to
be flushed.

All figures represent the execution of the Explorer averaged over approximately
27 million memory accesses. They were obtained while running the Boyer bench-
mark of the Gabriel Benchmark Suite (2 short Al-like program) and the compilation
of a small program, each representing about half of the 27 million accesses. In each
run the machine was configured with one 8-megabyte memory board, and the net-
“work and garbage collector both disabled.

A special version of the microcoded cache simulator was built to simulate the
Div3 Method. This simulator maintained a copy of the contents of the Div3 ROM
in physical memory. This data was accessed exactly as it would be in the Div3
Method, and the cache address is built just as it is described in figure 3.7. In this
way, the simulator was able to accurately reproduce the activity of a Div3 cache
and obtain information describing its performance.

The raw data from the simulator (read, write, and instruction fetch miss ratios)

are included in Appendix A.

5.2.2 Access Time Computation

Performance results of the Explorer and the two methods will be derived from

mathematical expressions based on equations 1.1, 3.6, and 4.1. These equations will

65

be modified to reflect the store-in and write-through update policies for each of the
three different machine configurations. The rest of this section will develop each of
these expressions and give values which will be used for the time delay constants in
them.

All computations in the rest of this paper it will be asumed that no page
faults have occurred, so P(my | m.) will be zero. It is acknowledged that the
methods of this paper might alter this value, affecting the average access time
values. This effect was ignored for the following reasons. First, after the system
had settled down, the programs which were being run for simulation fit easily in the
8-megabyte primary memory which was being used, so page faults were infrequent.
Second, there are many different levels of page faults in the Explorer, each requiring
very different amounts of time to resolve. Page fault resolution also includes disk
wait time, backround writes, and prefetches — figures which are difficult to measure
or estimate. Since the raw cache data was known to be accurate, the uncertainty
of page fault measurement was seen as a distortion of the final results. Finally, the
effects of any differences in paging perfomance are definitely second order effects
when compared to the cache and main memory access characteristics.

A FIFO replacement policy was used for set sizes of 2, 4, and 8. Each set
stores the number of the set member which was last flushed. The next highest
member of the set is chosen next time a cache flush is necessary. In this method, the
replacement information is updated on every flush instead of every access. Note that
for a set size of 2 with this replacement policy, one would expect cache performance

to be comparable to the same size cache with a set size of 1.

Equation 5.1 shows how NuBus memory access times were computed.
tmem(BlockSize) = 200ns + 100ns + 300ns + (BlockSize * 100)ns (5.1)

The 200ns delay is for bus arbitration, the 100ns delay is the address transfer
and setup, and the 300ns delay is the memory board access time. The final delay
is 100ns for the transfer of each word of the block. Table 5.1 shows the values
obtained from using equation 5.1. The values used for the Separate Tag Method

66

32-bit Explorer | Div3 Method SepTag Method

Words | ¢mem || Bwords tmem || Bwords | t,.m
4 1000 3 1000 4 1700
8 1400 6 1400 8 2200
16 2200 12 2200 16 3200

Table 5.1: Memory Access Times over the NuBus

include the arbitration times for both memory accesses, assuming that the processor
is operating in a multiprocessor environment, and that, in general, bus parking will
not be possible. Using Appendix A, the results of this chapter can be recomputed

using different NuBus accessing characteristics.

The Store-In Update Policy

The store-in update policy stores write cache hits in the cache and updates
memory ony when that block of the cache gets flushed. Read and instruction
fetch accesses of the cache are handied normally. Describing the store-in policy
“ma.thematically involves using the diry flush statistic from the simulator. Figure
5.1 shows how equation 1.1 is expanded to calculate the average access time of a
system using the store-in update policy. Note that the no-page-fault assumption

has been made, so P(my;, | m) is zero, and write cache misses are not cached.

The Write-Through Update Policy

The write-through update policy updates main memory on every virtual mem-
ory write and only updates the cache if the write produces a cache hit. Read and
instruction fetch accesses are handled normally. Using the definitions of figure 5.1,
the following expression for the average access time with a write-through cache can

be derived.

tag = [%read * P(hveas) + %fetch * P (Rgeten)] * t.

67

P(Rhyeaa) probability of a cache hit on a data read = 1 —P(myeqq)

P(Ruwrite) = probability of a cache hit on a data write = 1 — P(murite)
P(hgeten) = probability of a hit on a instruction feteh =1 —P(my.4)
%read, Fuwrite, Ffetch = portion of total accesses that were data reads,
writes, and instruction fetches
P(k.) = Tiread * P(hyeas) + Bwrite « Plhyyise) + % fetch + P(Ryeten)
=1-P(m.)
P(hay | m,) = 1-P(ma | k) =1
t. = access time of a local cache
tmem = access time of block from masn memory
te = access tsme of the TLB
tword = access time of one word from main memory
tavg = average access tsme of a virtual memory request
%dirty = fraction of all accesses which cause a dirty page to be flushed

tawg = P(he) *t, + [%read + P(myead) + % fetch * P(mypeen) + %odirty] * (tmem + tus)
+%write * P(myy,) * (tword + tas) 5.2)

Figure 5.1: Average Access Time (ns) of the Store-In Policy

68

+(%read « P(m,eaa) + %fetch * P(mseech)] * (tmem + tas)
+%write * (tyorq + tuy) (5.3)

Again, the no-page-fault assumption is made and write misses are not cached.

The Explorer

Estimating the average access time of the Explroer can be done using equation
5.2 for store-in 2nd 5.3 for write-through. The following values were used for time
delays. The value of ty, was set at 125ns, indicating a single level memory map
implemented in static RAM with additional control logic. The value of t. will be
100ns, again implemented in static RAM. The appropriate value of tp,, can be

found in table 5.1, and the value of twora Will be 700ns as computed by equation 5.1.

The Div3 Method

The version of the Div3 Method which will be simulated uses an address page
size equal to or near the transfer page size. This means that the logic following
the TLB will be a single 32-bit full-adder. Simple changes could be made to the

following equations to allow for the other cases, but they will not be examined here.
" The expression for estimating the average access time of the Div3 Method using
the store-in policy is found by combining equations 3.6 and 5.2. This results in the

following equation:

tawg! = P(R)1 %t
+[%read * P(myeaq)t + % fetch * P(myeten)! + %dirtyl] * (tmem +)
+%write * P(muwrite) * (taword + tas!) (5.4)
Equations 3.6 and 5.3 are combined to give an expression which estimates the
performance of the Div3 Mehod with a write-through update policy:
tavg! = [%read * P(hyeas)! + % fetch + P(hyseten)t] * tos
+[%read * P(m,eqa)! + %Bfetch * P(mpech)l] * (tmem + tu!)
+Rwrite * (tzword + tuy!) (5.5)

69

The following additional time delays are used by the Div3 Method. Since the
Div3 Method uses bwords, all single bword accesses require two NuBus accesses —
one word and one byte transfer. This is represented by a value of tawora Which is
1400ns. The value of ¢,/ is broken up into ¢y, which remains 125ns and ti0y Which
whill be 70ns, representing a 32-bit full-adder. The value of tmem! can be obtained
from table 5.1.

The Separate Tag Method

By combining equation 4.1 with equations 5.2 and 5.3, the following equations
can be obtained to calculate the performance of the Separate Tag Method with the

store-in and write-through update poplicies:

tavy = P(h,)*t.+ [%read P(mye0q) + %fetch * P(myecn)] * (tmem! + tus)
+%write % P(myy.) * t2word + ty) (5.6)

lavg! = [%read * P(hread) + %fetch * P(hﬂgch)] *t,
+[%read * P(mread) + %fetCh * P(mfetch)] * (tmem' + tub)

+%write * (t2word + t“b) (5.7)

No new time delay values are necessary for the Separate Tag Method. The values

for t,n.m! can be found in table 5.1.

5.3 Results from the 32-bit Explorer

Table 5.2 shows the results of the Explorer performance simulations using the
store-in update policy. These were derived from the equations of the last section
and the raw data given in Appendix A. Similar results for the write-through policy

are given in table 5.3.

5.4 Results from the Div3 Method

Table 5.4 contains the results for the Div3 Method with a store-in update policy,

70

and table 5.5 shows the results using the write-through policy. Below each average
access time is a number which shows the percent increase for this method over the
32-bit Explorer results. The comparisons were made between systems which were
using the same total cache size and NuBus block transfer size. For example, an
implementation of the Div3 Method with a cache block size of 3 is compare to a
- 32-bit Explorer cache of block size 4.

9.5 Results from the Separate Tag Method

Tables 5.6 and 5.7 give the results of the Separate Tag Method with the store-
in update policy. Tables 5.8 and 5.9 show the results using the wrlte-through
update policy. They are shown in the same form as the Div3 Method, except
that comparison figures have been given for both the 32-bit Explorer and the Div3
Method.

71

Set Block

Total Cache Size (words)

Size Size 256 512 1K 2K 4K 8K 16K 32K
1 4 393.36 | 336.04 | 266.71 | 231.26 | 200.14 171.18 | 158.77 | 142.17
1 8 471.08 | 391.97 | 305.36 | 246.75 | 208.62 177.02 | 155.69 | 140.49
1 16 | 655.50 | 544.15 | 397.2 | 314.24 | 246.87 212.08 | 170.53 | 146.62
2 4 375.13 | 310.83 | 262.27 | 225.59 | 199.65 177.91 | 159.38 | 141.62
2 423.66 | 342.23 | 281.9 | 239.27 | 211.24 178.54 | 163.01 | 141.54
2 16 | 571.39 | 444.91 | 353.29 | 293.18 | 229.00 194.42 | 168.52 | 147.83
4 4 350.86 | 282.00 | 231.16 | 201.09 | 177.65 163.07 | 148.5 | 131.16
4 8 404.66 | 315.81 | 256.23 | 208.63 | 183.34 161.05 | 146.41 | 132.51
4 16 | 545.03 | 409.12 | 329.22 | 247.13 | 200.97 175.89 [151.20 | 122.3
8 4 351.21 | 274.26 | 233.04 [203.0 | 180.87 164.50 | 145.11 | 130.73
8 8 404.29 | 316.15 | 248.23 | 211.78 | 184.61 163.47 | 146.25 | 130.47
8 16 | 541.32 | 412.81 | 320.71 | 240.56 | 200.15 175.54 | 152.32 | 131.85

Table 5.2: Average Access Time of Explorer using Store-In

72

Set Block Total Cache Size (words)

Size Size | 256 512 1K 2K 4K 8K 16K | 32K
1 4 396.09 | 343.17 | 281.33 | 249.81 | 227.0 202.62 | 191.45 | 179.84
1 8 469.61 | 396.43 | 322.21 | 264.62 | 237.85 209.35 | 191.12 | 179.69
1 16 | 637.34 | 534.71 | 404.32 | 328.34 | 271.75 243.81 | 206.61 | 187.94
2 4 380.93 | 323.19 | 279.47 | 244.19 | 221.28 | 208.71 192.34 | 180.95
2 8 424.83 | 352.49 | 298.5 | 258.85 | 234.38 | 210.11 198.29 | 183.23
2 16 | 558.91 | 445.93 | 364.75 | 306.96 | 250.42 225.83 | 204.91 | 193.79
4 4 358.42 | 299.82 | 252.67 | 227.47 | 207.82 | 196.75 185.3 | 171.94
4 8 407.21 | 328.85 | 276.5 | 235.42 | 214.14 | 196.27 185.29 | 175.02
4 16 | 533.05 | 413.71 | 341.93 | 269.8 | 231.25 211.03 | 191.51 | 177.1
8 4 358.85 | 201.75 | 255.44 | 230.0 | 212.07 | 199.73 184.14 | 173.14
8 8 407.63 | 329.88 | 270.43 | 240.16 | 216.35 | 200.0 187.19 | 175.08
8 16 | 529.29 | 417.63 | 335.75 | 266.07 | 232.19 211.78 | 193.84 | 178.63

Table 5.3: Average Access Time of Explorer using Write Through

73

Set Block

Size Size

256

512

Total Cache Size (bwords)

1K

2K

4K

8K

16K

32K

1 3
vs. Explorer (%)

443.57
12.76

391.11
16.389

334.06
25.255

297.08
28.463

251.66
25.74

222.96
30.248

207.89
30.935

185.67
30.596

1 6
vs. Explorer (%)

531.88
12.90

456.46
16.452

369.16
20.892

314.66
27.522

264.25
26.666

232.18
31.159

206.83
32.849

182.78
30.107

1 12
vs. Explorer (%)

712.18
8.65

580.55
6.6905

452.33
13.879

366.17
16.525

308.55
24.985

238.73
12.565

214.35
25.696

185.95
26.765

2 3
vs. Explorer (%)

430.61
28.426

375.50
33.771

320.69
35.529

285.04
40.84

257.75
44.707

225.54
45.425

209.03
51.27

186.85
51.765

2 6
vs. Explorer (%)

482.08
24.132

415.33
32.187

352.66
37.166

307.19
41.606

267.1
41.384

229.87
47.272

204.45
45.048

182.88
49.030

2 12
vs. Explorer (%)

620.64
16.716

521.14
26.396

4123
27.775

342.0
29.983

286.75
39.241

243.12
42.160

215.17
45.643

186.91
44.753

4 3
vs. Explorer (%)

371.88
5.99

328.18
16.376

291.56
26.134

258.75
28.676

238.39
34.193

215.13
31.922

193.44
30.268

176.97
34.927

4 6
vs. Explorer (%)

418.64
3.45

361.16
14.362

320.31
25.007

265.14
27.085

236.86
29.192

217.57
35.093

193.15
31.925

172.86
30.453

4 12
vs. Explorer (%)

532.35
-2.33

433.20
5.8874

373.87
13.565

303.38
22.76

250.51
24.649

220.98
25.635

198.81
31.409

172.97
30.744

8 3
vs. Explorer (%)

367.52
4.65

314.32
14.607

276.01
18.440

259.37
27.717

240.84
33.156

213.19
29.595

187.44
29.174

172.38
31.857

8 6
vs. Explorer (%)

416.10
2.92

339.31
7.3254

300.68
21.131

265.37
25.307

232.35
25.857

215.23
31.660

187.99
28.539

168.46
29.114

8 12
vs. Explorer (%)

515.10
-4.84

412.28
-0.13

331.87

3.4803

289.96
20.534

248.82
24.314

219.97
25.313

193.09
26.768

169.44
28.510

Table 5.4: Average Access Time (ns) of the Div3 Method using Store-In

74

Set Block

Size Size

256

512

Total Cache Size (bwords)

1K

2K

4K

8K

16K

32K

1 3

V8.

Explorer (%)

495.32
25.05

445.93
29.946

390.55
38.819

354.7
41.987

322.04
41.869

298.4
47.266

285.31
49.023

267.38
48.675

1 6

VvSs.

Explorer (%)

574.44
22.32

503.25
26.944

420.92
30.635

369.41
39.604

335.54
41.073

307.16
46.722

286.15
49.727

267.19
48.696

1 12

vS.

Explorer (%)

738.94
21.94

615.94
15.193

499.70
23.589

418.33
27.405

376.72
38.629

317.5
30.225

297.72
44.095

274.2
45.893

2 3

V8.

Explorer (%)

489.21
28.426

432.34
33.771

378.76
35.529

343.92
40.84

320.21
44.707

303.51
45.425

290.98
51.27

274.62
51.765

2 6

vs.

Explorer (%)

527.35
24.132

465.95
32.187

409.44
37.166

366.55
41.606

331.38
41.384

309.44
47.272

287.61
45.048

273.07
49.030

2 12

V8.

Explorer (%)

652.33
16.716

563.64
26.396

466.05
27.775

398.99
29.983

348.69
39.241

321.04
42.160

298.43
45.643

280.52
44.753

4 3

vs.

Explorer (%)

428.88
19.66

392.3
30.845

357.00
41.29

330.91
45.476

313.34
50.771

294.74
49.803

277.38
49.697

265.16
54.216

4 6

vs.

Explorer (%)

468.76
15.12

419.87
27.679

390.32
41.167

336.52
42.944

311.05
45.251

298.46
52.069

277.32
49.671

264.01
50.845

4 12

V8.

Explorer (%)

569.96
6.92

485.79
17.423

432.79
26.572

3714
37.658

326.72
41.286

304.44
44.268

285.33
48.986

268.02
51.342

8 3

vs.

Explorer (%)

430.00
19.83

384.88
31.92

348.72
36.518

333.22
44.880

318.87
50.358

297.88
49.135

275.28
49.495

265.0
53.057

8 6

V8.

Explorer (%)

471.10
15.57

403.74
22.39

375.64
38.902

337.77
40.641

310.14
43.354

300.11
50.058

277.61
48.306

262.66
50.04

8 12

\4

. Explorer (%)

559.53
5.71

469.49
12.419

401.29

19.520

363.76
36.715

327.40
41.009

306.15
44.557

284.78
46.918

268.34
50.222

Table 5.5: Average Access Time (ns) of the Div3 Method using Write-Through

75

Set Block

Total Cache Size (bwords)

Size Size 256 512 1K 2K 4K 8K 16K 32K
1 4 618.11 | 522.72 | 407.77 | 348.66 | 295.76 247.13 | 226.30 | 198.52
vs. Explorer (%) | 57.14 | 55.552 | 52.892 | 50.766 47.777 | 44.365 | 42.532 | 39.631
vs. Div3 (%) 39.35 | 33.648 | 22.064 | 17.361 | 17.526 10.841 | 8.8571 | 6.9181
1 8 707.96 | 584.52 | 451.18 | 359.50 | 207.95 | 248.6 215.65 | 191.72
vs. Explorer (%) | 50.28 | 49.123 | 47.753 | 45.696 42.823 | 40.432 | 38.511 | 36.470
vs. Div3 (%) 33.11 | 28.056 | 22.219 | 14.251 | 12.756 | 7.0608 4.2626 | 4.8908
1 16 936.57 | 774.81 | 562.16 | 442.22 | 343.04 290.85 | 230.72 | 195.90
vs. Explorer (%) | 42.88 | 42.39 | 41.531 | 40.728 38.955 | 37.139 | 35.297 | 33.540
vs. Div3 (%) 31.51 | 33.460 | 24.282 | 20.770 | 11.178 21.831 | 7.6382 | 5.3515
2 4 588.44 (481.77 | 400.40 | 339.34 | 206.06 258.35 | 227.21 { 197.79
vs. Explorer (%) | 56.865 | 54.995 | 52.667 50.427 | 48.291 | 45.212 | 42.554 | 39.667
vs. Div3 (%) 36.653 | 28.301 | 24.856 | 19.052 | 14.864 14.546 | 8.6966 | 5.8545
2 8 635.26 | 508.32 | 414.83 | 348.23 | 303.93 251.08 | 226.98 | 193.33
vs. Explorer (%) | 49.946 | 48.531 | 47.156 45.539 | 43.879 | 40.627 | 39.246 | 36.589
vs. Div3 (%) 31.774 | 22.388 | 17.629 | 13.359 | 13.791 9.2262 | 11.022 | 5.7135
2 16 816.35 | 632.99 | 499.64 | 411.38 | 318.63 | 265.69 227.62 | 197.87
vs. Explorer (%) | 42.872 | 42.274 | 41.426 | 40.316 39.138 | 36.656 | 35.065 | 33.854
vs. Div3 (%) 31.534 | 21.463 | 21.188 | 20.289 | 11.117 | 9.2841 5.7856 | 5.8666

Table 5.6: Average Access Time (ns) of the Separate Tag Method: Store-In

76

Set Block

Total Cache Size (bwords)

Size Size 256 512 1K 2K 4K 8K 16K 32K
4 4 547.51 | 433.63 | 348.02 | 297.06 | 258.03 233.39 | 208.92 | 180.07
vs. Explorer (%) 56.05 | 53.770 | 50.557 | 47.728 | 45.249 43.121 | 40.691 | 37.292
vs. Div3 (%) 47.23 | 32.132 | 19.363 | 14.806 | 8.2391 | 8.4887 8.0010 | 1.7526
4 8 604.62 | 466.25 | 373.57 | 298.88 | 258.97 223.73 | 200.89 | 179.05
vs. Explorer (%) | 49.41 | 47.637 | 45.796 43.256 | 41.249 | 38.915 | 37.212 | 35.123
vs. Div3 (%) 44.43 | 29.097 | 16.630 | 12.725 | 9.3327 | 2.8292 4.0076 | 3.5802
4 16 776.85 | 580.00 | 463.08 | 344.1 | 275.95 238.61 | 202.84 | 174.87
vs. Explorer (%) | 42.53 | 41.769 | 40.661 | 39.237 37.310 | 35.662 | 34.074 | 32.18
vs. Div3 (%) 45.93 | 33.886 | 23.86 | 13.423 | 10.157 7.9809 | 2.0277 | 1.0985
8 4 548.09 | 419.85 | 350.91 | 300.21 | 263.27 235.6 | 203.16 | 179.22
vs. Explorer (%) | 56.06 | 53.085 | 50.581 | 47.887 45.557 | 43.220 | 40.004 | 37.086
vs. Div3 (%) 49.13 | 33.574 | 27.137 | 15.745 | 9.3139 | 10.513 8.3843 | 3.9661
8 8 604.03 | 466.74 | 360.82 | 303.25 | 260.87 227.31 | 200.39 | 175.65
vs. Explorer (%) | 49.40 | 47.631 | 45.356 43.192 | 41.303 | 39.053 | 37.022 | 34.627
vs. Div3 (%) 45.16 | 37.554 | 19.999 | 14.273 | 12.272 | 5.6151 6.5997 | 4.27
8 16 771.31 | 585.03 | 450.69 | 333.71 | 274.42 | 238.22 204.23 | 173.87
vs. Explorer (%) | 42.49 | 41.717 | 40.527 | 38.724 37.102 | 35.707 | 34.078 | 31.874
vs. Div3 (%) 47.74 | 41.902 | 35.801 | 15.091 | 10.287 | 8.2947 5.7662 | 2.6171

Table 5.7: Average Access Time (ns) of the Separate Tag Method: Store-In

(4

Set Block Total Cache Size (bwords)
Size Size 256 512 1K 2K 4K 8K 16K 32K
1 4 631.66 | 543.88 | 441.27 | 389.07 | 351.22 310'.74 292.22 | 272.90
vs. Explorer (%) | 59.48 | 58.49 | 56.850 55.746 | 54.724 | 53.359 | 52.632 | 51.749
vs. Div3 (%) 27.53 | 21.966 | 12.989 | 9.6904 | 9.0612 4.1376 | 2.4216 | 2.0672
1 8 T17.69 | 604.61 | 491.93 | 401.12 | 359.85 315.61 | 287.75 | 269.95
vs. Explorer (%) | 52.83 | 52.514 | 52.673 51.587 | 51.294 | 50.758 | 50.560 | 50.231
vs. Div3 (%) 24.94 | 20.143 | 16.87 | 8.5833 | 7.245 2.7508 | 0.5566 | 1.0327
1 16 925.84 | 778.24 | 590.49 | 481.26 | 399.77 359.66 | 306.23 | 279.33
vs. Explorer (%) | 45.26 | 45.545 | 46.045 46.571 47.111 | 47.521 | 48.214 | 48.625
vs. Div3 (%) 25.29 | 26.349 | 18.17 | 15.043 | 6.1182 13.282 | 2.8590 | 1.8722
2 4 607.57 | 511.8 | 438.86 | 380.35 | 342.27 321.73 | 294.0 | 275.5
vs. Explorer (%) | 59.496 | 58.358 | 57.035 55.762 | 54.678 | 54.155 | 52.851 | 52.247
vs. Div3 (%) 24.193 | 18.380 | 15.868 | 10.595 | 6.8899 6.0026 | 1.0453 | 0.3178
2 8 650.01 | 537.67 | 454.36 | 393.44 | 355.71 317.67 | 299.98 | 276.62
vs. Explorer (%) | 53.005 | 52.534 | 52.217 51.993 | 51.764 | 51.192 | 51.284 | 50.966
vs. Div3 (%) 23.261 | 15.393 | 10.973 | 7.3352 | 7.3421 2.6611 | 4.2987 | 1.2987
2 16 §14.73 | 652.11 | 535.26 | 452.26 | 370.37 335.73 | 305.01 | 291.05
vs. Explorer (%) | 45.772 | 46.235 | 46.748 47.339 | 47.900 | 48.665 | 48.852 | 50.187
vs. Div3 (%) 24.894 | 15.696 | 14.849 | 13.352 | 6.2188 | 4.5759 2.2035 | 3.7534
Table 5.8: Average Access Time (ns) of the Separate Tag Method: Write-Through

78

Set Block Total Cache Size (bwords)
Size Size 256 512 1K 2K 4K 8K 16K 32K
4 4 569.67 | 473.56 | 394.16 | 352.48 | 319.76 301.38 | 282.44 | 260.16
vs. Explorer (%) | 58.94 | 57.950 | 55.997 54.954 | 53.864 | 53.178 | 52.428 | 51.304
vs. Div3 (%) 32.83 | 20.715 | 10.41 | 6.5158 { 2.0518 | 2.2531 1.8241 | -1.8884
4 8 621.99 | 501.06 | 420.17 | 356.73 | 323.95 295.98 | 279.28 | 263.49
vs. Explorer (%) | 52.74 | 52.368 | 51.963 51.528 | 51.277 | 50.803 | 50.728 | 50.547
vs. Div3 (%) 32.69 | 19.336 | 7.6476 | 6.0053 | 4.1485 -0.8326 | 0.7059 | -0.1980
4 16 776.72 | 605.12 | 501.8 | 397.91 | 342.46 313.5 | 285.41 | 264.57
vs. Explorer (%) | 45.71 | 46.267 | 46.754 47.484 | 48.093 | 48.558 | 49.027 | 49.394
vs. Div3 (%) 36.28 | 24.564 | 15.945 | 7.1382 | 4.8178 2.9738 | 0.0279 | -1.2868
8 4 570.83 | 459.4 | 399.18 | 356.98 | 327.23 306.73 | 280.82 | 262.59
vs. Explorer (%) | 59.07 | 57.461 | 56.273 55.211 | 54.301 | 53.571 | 52.503 | 51.665
vs. Div3 (%) 32.75 | 19.361 | 14.471 | 7.1309 | 2.6227 | 2.9739 2.0125 | -0.9098
8 8 623.42 | 503.26 | 411.4 | 364.59 | 327.90 | 302.27 282.84 | 264.08
vs. Explorer (%) | 52.93 | 52.558 | 52.124 51.809 | 51.563 | 51.136 | 51.095 | 50.847
vs. Div3 (%) 32.33 | 24.65 | 9.5187 | 7.9409 | 5.7258 | 0.7183 1.8807 | 0.5378
8 16 772.00 | 611.48 | 493.76 | 393.15 | 344.65 315.28 | 289.49 | 267.54
vs. Explorer (%) | 45.87 | 46.417 | 47.059 47.765 | 48.435 | 48.870 | 49.346 | 49.777
vs. Div3 (%) 37.99 | 30.242 | 23.041 | 8.0820 | 5.2668 | 2.9836 1.6524 | -0.2962
Table 5.9: Average Access Time (ns) of the Separate Tag Method: Write-Through

79

Chapter 6

Summary

This chapter will discuss the Div3 and Separate Tag Methods in the context
of the results of the last chapter and Appendix A. The first section will discuss the
hardware requirements of the two methods, and will be followed by a discussion

of their relative performance. The final section will summarize the findings of the

paper.

| 6.1 Hardware

As seen in chapters 3 and 4, the hardware which is necessary to implement
the Div3 and Separate Tag Methods is minimal, especially in comparison to the
complexity of a modern 32- or 40-bit processor or memory management unit. This
chapter will discuss each of the hardware components separately, concentrating on

their implementation and cost /performance tradeoffs.

6.1.1 The Div3 Hardware

The hardware components of the Div3 Method include the realignment buffer,
the Div3 ROM, the logic following the TLB, and the cache memory with associated

control and tag storage. Each of these will be discussed separately.

80

The Realignment Buffer

In its barest form, the realingment buffer of the Div3 Method consists of one 32-
bit register, one 40-bit register, and one 8-bit 4:1 multiplexor. This would probably
not be practical to implement using discrete parts, but is feasible in a semi-custom
standard cell or gate-array design. The part would require 32 inputs from the
NuBus, 40 outputs to the processor, and control and power. Depending on how
tightly coupled the processor and bus clocks are, the buffer may have some asyn-
chronous qualities which would requre extra buffering of words to the processor or
cache.

It is assumed that buffering and organization of words going from the processor

to the NuBus will be handled by the cache and/or processor.

The Divd ROM

The Div3 ROM can be implemented with either PALs, ROMs, or a combination
of adders and shifters. Since it is in the critical path for minimizing the cache access
time, the divide-by-3 function should be done as quickly as possible, preferably with
only one level of logic. For ROMS and PALs, the other critical parameter is the
" number of addressable locations in each part. With n bits to be divided by 3, each
part should have 2" locations, since this Prevents the necessity of passing carry bits
from one part to the next. The number of output bits for each part only determines
how many parts are needed to execute the function in parallel. For example, with
n =9, there will be 10 output bits. This could be imlemented with three 1K x 4-bit
ROMS, each appropriately programmed.

TLB Address Logic

The logic following the TLB is takes a NuBus address from the TLB and
combines it with the output of the Div3d ROM. Depending on the transfer page size,
the complexity of this logic can range from simply appending the page offset to the
page address to doing one or more full 24-bit additions (the top 8 bits are fixed

by the NuBus slot number, and it will be assumed that no memory overlaps slot

81

spaces). If a single level of addition is to be done, the function can be accomplished
using off-the-shelf parts. If a multilevel shift-and-add function is to be performed,
space and time considerations would suggest the use of a custom or semicustom
part. The inputs can be latched in series since the output of the Div3 ROM should
be available well before the output of the TLB. For speed, the additions should be
highly pipelined.

The Div3 Cache

The complexity of the Div3 Cache will be determined by the update policy,
cache set size, and general block organization (see figure 3.7 for choices of orga-
nization). It is currently common to implement cache memory and management

functions using custom or semicustom designs.

6.1.2 The Separate Tag Method

The hardware required to implement the Separate Tag Method includes the re-
_alignment buffer, NuBus request queue, and possibly special hardware for automatic
tag generation and address space lookup. Special address translation hardware is
not necessary since all addresses are generated by appending the offset to the base
page address. The Separate Tag Method can use less custom hardware than the
Div3 Method since a more conventional cache design can be used, but the extent
of the differences in complexity are highly dependent on the how the methods are

implemented.

Realignment Buffer

The realignment buffer of the Separate Tag Method is very similar to that of
the Div3 Method with the difference in block size of 4 versus 3 bwords being the
only change. The previous discussion of the implementation of the Div3 realignment

buffer also applies here.

82

NuBus Request Queue

Since the control for the request queue will be too complex to implement with
discrete logic, it should be implemented with a custom or semi-custom part. De-
pending on the NuBus controller used for the design, this function may or may not

be already implemented.

Optional Hardware

The optional hardware of the Separate Tag Method includes the automatic tag
generation unit and the address space lookup memory. Both of these are small, reg-
ister based, non-critical pieces of hardware, and can be implemented using virtually
any technology. Unfortunately, both are complicated enough that a semi-custom

part would have to be used in order to conserve slot space.

6.2 Performance

This section will use the results of Chapter 5 and Appendix A to analyze the
performance of the two methods. The first part will examine the Explorer results

“which will be used as a basis for comparison.

6.2.1 The Explorer

The following observations are from the data of Appendix A. They pertain to

the raw data used in both the Explorer and Separate Tag average access times.

e The write miss ratio is considerably higher than both the read and fetch miss
ratios. The read miss ratio is consistently 3 to 4 times higher than the fetch

miss ratio.

e The effect of block size on miss ratio is greater for larger caches. Larger block

sizes consistently yield lower miss ratios.

o Larger set sizes also yield lower miss ratios for all sizes, and again the effect

is greater for larger caches.

83

® The gain in performance when the size of the cache is doubled is greater for
smaller caches. Examining the data, it would appear that an increase in cache

size from 32K to 64K would give a very small perfomance improvement.

The following cache performance characteristics were observed from the average

access time calculations of tables 5.2 and 5.3.

e The performance difference between the store-in and write-through update
policies was greater for larger caches. As miss ratios drop, the cost of doing

extra bus accesses becomes more significant.

® As one would expect, the increase in performace for doubling the total cache
size drops off as the cache size grows, ending at around 10% performance

increase for enlarging from 16K to 32K words.

e Set sizes of 4 or 8 were superior to those of 1 or 2 for all size caches. The

difference, however, decreased for larger caches.

* Block sizes of 4 words yielded better performance for small sizes, although a

block size of 8 gave comparable results for large caches.

Note again that the performance results of the Explorer are identical to those

of the same system implemented in 40-bits and operating on a 40-bit bus.

6.2.2 The Div3 Method

Examining the raw cache results in Appendix A shows that the Div3 cache
behaves nearly identicaily to the corresponding Explorer cache. In this context, the

following points relate to tables 5.4 and 5.5.

® Again, the performance difference between store-in and write-through in-
creased as cache sizes increased, but the performance difference was larger
in the Div3 cache than in the Explorer (approximately 50% versus 30% for a
32K cache).

84

The increase in performance when the cache size is doubled decreases as the
cache size goes up. Again, increasing the performance from 16K to 32K words

gives only a 10% increase in performance.

Set sizes of 4 or 8 were better for all cache sizes except 16K and 32K where

the set size appeared to have little effect on performance.

Block size of 3 was better for smaller caches, but block sizes of 3 and 6 yeilded

similar results for 16K and 32K word caches.

Compared to an Explorer cache using store-in, the Div3 cache using store-in
had average access times about 30% greater for large caches, independent of
other cache parameters. For 256-, 512-, and 1K-word caches, caches with

larger block sizes performed closer to the comparable Explorer cache.

A large cache using write-through accessed memory 506% slower than a com-
parable Explorer cache also using write-through. Again, smaller caches per-
formed better in comparison, and relative performance was, again, a function

of block size for these smaller caches.

To generalize these conclusions, with a medium to high performance cache, the

Div3 Method will operate about 30% slower than an Explorer when using the store-

in update policy, and 50% slower when using write-through. From examining the

results for the 4K through 32K-werd caches, it would appear safe to extrapolate this

result to include caches larger than 32K words. For smaller caches, the higher the

average access time, the better the Div3 Method does in relation to acomparably

equipped Explorer.

6.2.3 The Separate Tag Method

Using the data summarized in the section 6.2.1, the following observations can

be made about the results of tables 5.6, 5.7, 5.8 and 5.9.

85

e The differences between the store-in and write-through update policies were
similar to those for the Div3 Method and Explorer. The magnitude of the

difference increased with cache size, and was close to that of the Div3 Method.

® The increase in performance decreases with larger caches, but not to the extent
of the Explorer or Div3 Method. This can be seen by the steadily decreasing

comparison figures.

e Set sizes of 4 and 8 outperformed the other two over all cache sizes, including

large ones where set size was not a factor in the Div3 Method.

® A block size of 4 words yielded the best performance for caches 2K words and

smaller, but a block size of 8 words dominated in the larger caches.

® Using store-in, the performance of the Separate Tag Method versus the Ex-
plorer ranged from 50% to 30% slower, decreasing with increasing cache size.
Unlike the Div3 Method, however, the gain in relative performance was not

slowing down with increasing cache size.

e Using write-through, the performance of the Separate Tag Method remained
45-50% slower than the Explorer regardless of cache size. This, also, differs
from the Div3 Method.

e Using the store-in policy, the Separate Tag Method does far worse (36%
slower) than the Div3 Method for small caches, but has comparable per-
formance for large caches. Examining the figures shows that the Separate
Tag Method should outperform the Div3 Method for caches larger than those
tested.

e With the write-through policy, the Separate Tag Method again has perfor-
mance comparable to the Div3 Method for large caches, and should outper-

form it for larger ones.

In summary, the Separate Tag Method performs poorly for small caches, but
catches the Div3 Method quickly. If a very large cache is used, especially with the

86

store-in policy, the Separate Tag Method appears to be approaching the perfor-

mance of the Explorer.

6.3 Conclusion

While the previous chapters were general and theoretical, this chapter has tried
to more practical. In keeping with this tone, it is appropriate to discuss the reasons
for implementing a 40-bit processor on a 32-bit bus. The paper will be concluded

by discussing the last two sections in light of these reasons.

6.3.1 Why 40 Bits on a 32-bit Bus?

There are several reasons for wanting to implement a 40-bit processor on a
32-bit bus. These are divided into two main categories: the reasons for wanting to
build a 40-bit processor, and the reasons for putting it on a 32-bit bus. These will

be discussed in the next few paragraphs.

Address Space

Current programming languages and applications are constantly requiring larger
and larger virtual address spaces. This is especially true of object oriented systems
such as Lisp Machines where dynamic memory allocation and long-lived data ob-
jects can use virtual memory alarming rates, especially if programmed inefficiently.
Many of these object oriented systems also have the disadvantage (in the sense of
virtual memory size) of being implemented using tagged architectures which reduce
the number of available address bits. This is the case with the Explorer. By go-
ing to a 40-bit word size, an 8-bit tag can be used while still maintaining a 40-bit

address space.

Numerical Accuracy

As CAD/CAM tools and other math based programs become commmon com-

puter applications, numerical accuracy and representation of numbers increasing

87

in importance. A 40-bit machine increases the numerical accuracy, especially for
a tagged architecture which is incapable of representing 32-bit constants in a sin-
gle word. This is also important for a tagged architecture if it is intended as a

debugging station for 32-bit machines.

For non-tagged architectures, the 40-bit word is a convenient storage format

for the IEEE 80-bit floating point standard.

Hardware Compatibility

Once a 40-bit processor has been designed, it must communicate with a wide
variety of other devices, including primary and secondary memory, I/O devices,
and communications networks. Traditionally the processor has communicated with
these devices via a bus which was using a standard protocol. Examples include
general bus architectures such as VME bus, Multibus, or NuBus. Many devices
have been designed to communicate specifically one of these buses. Unfortunately
for the designer of the 40-bit processor, none of these devices are specified for 40-bit
data transfer. This problem is the driving force behind the designs of this paper.

3y implementing one of the methods described in this paper, the 40-bit pro-
cessor can be implemented as part of a NuBus-based system architecture and is free
to make use of existing NuBus devises. In this manner, the design and implementa-
tion of such a system would be greatly simplified, and the cost of the overall system

would be reduced.

6.3.2 Cost/Perfomance Analysis

After considering the 40-bit design possibilities, their implementations, their
performance, and the motivation for their existence, the final cost/performance

anaysis is very straightforward. It is based upon the following observations:

1. The motivation for building a 40-bit machine is based either on compatil-

ity /cost, or on performance.

88

2. There appears to be a practical limit in relative performance between a 40-bit
processor on a 32-bit and 40-bit bus. For the case described in this paper, the

performance degradatior: is at least 30%.

The choice of whether to use one of the designs in this paper is clear.

If the motivation for developing a 40-bit machine is cost and compatibility,
then the methods of this paper should be heavily considered. First, the perfor-
mance degradation can be tolerated if performance is not the primary design fac-
tor. Second, the additional cost of implementing one of these methods is small
compared to the cost developing a new 40-bit bus, memory, and peripherals. The
total development time and expense is greatly reduced.

If the motivation for developing a 40-bit machine is performance, then the
methods of this paper are probably not applicable. First, the performance degrada-
tion would probably be prohibitive. Second, a high performance design is usually
started from the bottom up in order to take advantage of the latest technologies
and ideas. In this case, special 40-bit support would probably be developed system
wide.

A final use of these methods is as an intermediate step between a 32-bit and
| a full 40-bit system. One could make a plug-compatible 40-bhit processor to fit into
a 32-bit NuBus based system using one of these methods. Then the other 40-bit
system module and peripherals could be developed while the 40-bit software was
being debugged on the processor. The qualities of these systems which makes this
possible is the fact that the addressing anomalies are transparent above the virtual

machine level, and the relatively low expense of implementing these methods.

89

Appendix A

Tables A.1, A.2, and A.3 give the read, write, and fetch miss ratios (respec-
tively) for the Explorer. Since the block sizes of these results coincided with those
for the Separate Tag Method, this raw data was also used to generate the average
access times for that method. Tables A.4, A.5, and A.6 show the raw read, write,
and fetch data used to generate the results for the Div3 Method.

Set Block Total Cache Size (words)

Size Size 256 512 1K 2K 4K 8K 16K 32K
1 4 0.3113 | 0.2475 | 0.1691 | 0.1272 | 0.0967 0.0856 | 0.0502 | 0.0337
1 8 0.3047 | 0.2332 | 0.1626 | 0.1081 | 0.0821 | 0.0555 0.0357 | 0.0242
1 16 0.3137 | 0.2498 | 0.1646 | 0.1152 | 0.0769 | 0.0627 0.0344 | 0.0218
2 4 0.3045 | 0.2291 | 0.1681 | 0.1209 | 0.0890 | 0.0698 0.0506 | 0.0327
2 8 0.2659 | 0.1987 | 0.1456 | 0.1046 | 0.0792 | 0.054 0.0410 | 0.0257
2 16 0.2686 | 0.1969 | 0.1412 | 0.1032 | 0.0643 | 0.0461 0.0321 | 0.0214
4 4 0.2592 | 0.1860 | 0.1273 | 0.0946 | 0.0686 | 0.0542 0.0396 | 0.0214
4 8 0.2445 | 0.1696 | 0.119 | 0.0781 | 0.0572 | 0.0396 0.0282 | 0.0182
4 16 0.2455 | 0.1691 | 0.1210 | 0.0746 | 0.0490 | 0.0360 0.0225 | 0.0131
8 4 0.2572 | 0.1764 | 0.1302 | 0.0967 | 0.0717 | 0.0560 0.0359 | 0.021
8 8 0.241 | 0.1689 | 0.1109 | 0.0818 | 0.0576 | 0.0415 0.0287 | 0.0167
8 16 0.2417 | 0.1705 | 0.1182 | 0.0712 | 0.0438 | 0.0353 0.0232 | 0.0131

Table A.1: Read Miss Ratios for the Explorer

91

Set Block Total Cache Size (words)

Size Size 256 512 1K 2K 4K 8K 16K 32K
1 4 0.4801 | 0.4525 | 0.4400 | 0.4117 | 0.3221 | 0.2793 0.2621 | 0.2408
1 8 0.4831 | 0.4239 | 0.3959 | 0.3755 | 0.2496 | 0.224 0.218 | 0.1971
1 16 0.4661 | 0.4068 | 0.3584 | 0.3336 | 0.2500 | 0.1713 0.1567 | 0.1368
2 4 0.4814 | 0.4681 | 0.4206 | 0.4063 | 0.3879 0.2762 | 0.2543 | 0.2433
2 8 0.4745 | 0.4278 | 0.4071 | 0.3692 | 0.3229 | 0.2235 0.2118 | 0.1866
2 16 0.4632 | 0.4131 | 0.3587 | 0.2964 | 0.2844 0.1696 | 0.1435 | 0.1334
4 4 0.4544 | 0.4269 | 0.3752 | 0.3038 | 0.2885 | 0.2553 0.2315 | 0.2215
4 8 0.4342 | 0.3750 | 0.3402 | 0.2842 | 0.2438 | 0.208 0.1932 | 0.1743
4 16 0.4221 | 0.3700 | 0.2999 | 0.2667 | 0.2044 | 0.1589 0.144 | 0.1208
8 4 0.4466 | 1.396 | 0.3548 | 0.2981 | 0.2774 | 0.2404 0.2175 | 0.2066
8 8 0.4210 | (.3643 | 0.3149 | 0.2579 | 0.2357 | 0.1972 0.1774 | 0.1592
8 16 0.4046 | 0.3516 | 0.286 | 0.2296 | 0.1866 | 0.1589 0.1373 | 0.1057

Table A.2: Write Miss Ratios for the Explorer

92

Set Block Total Cache Size (words)

Size Size 256 512 1K 2K 4K 8K 16K 32K
1 4 0.1651 | 0.1214 | 0.0758 | 0.054 | 0.0395 0.0224 | 0.0156 | 0.0101
1 8 0.1376 | 0.1052 | 0.0633 | 0.0425 | 0.0308 0.0172 | 0.0113 | 0.0074
1 16 0.1128 | 0.0838 | 0.0540 | 0.0356 | 0.0244 0.0118 | 0.0086 | 0.0054
2 4 0.1333 | 0.092 | 6.0699 0.0457 | 0.0330 | 0.0254 | 0.0158 | 0.0084
2 8 0.1123 | 0.0758 | 0.0507 | 0.0348 | 0.0252 0.0185 | 0.0125 | 0.0071
2 16 0.091 | 0.0594 | 0.0426 | 0.0277 | 0.017 0.0122 | 0.0087 | 0.0058
4 4 0.1399 | 0.0858 | 0.0588 | 0.0397 | 0.0279 0.0202 | 0.0112 | 0.0046
4 8 0.1077 | 0.0696 | 0.0465 | 0.0295 | 0.0199 0.0141 | 0.009 | 0.0040
4 16 0.0894 | 0.058 | 0.0422 | 0.0243 | 0.0156 0.0100 | 0.0067 | 0.0034
8 4 0.1414 | 0.0854 | 0.0580 | 0.0405 | 0.0308 0.0218 | 0.011 | 0.004
8 8 0.1109 | 0.0708 | 0.0446 | 0.0307 | 0.0209 0.0157 | 0.0089 | 0.0038
8 16 0.0892 | 0.0594 | 0.0372 | 0.0234 | 0.0153 0.0104 | 0.0067 | 0.0034

Table A.3: Fetch Miss Ratios for the Explorer

93

Set Block Total Cache Size (words)
Size Size 256 512 1K 2K 4K 8K 16K 32K

1 3 0.3105 | 0.2546 | 0.1907 | 0.1475 | 0.1071 | 0.0776 0.0607 | 0.0377

6 0.3140 | 0.2504 | 0.1752 | 0.1256 | 0.0928 0.0670 | 0.0453 | 0.0273

12 0.318 | 0.2414 | 0.1702 | 0.1158 | 0.0894 | 0.0513 0.0379 | 0.0223

3 0.297 | 0.2437 | 0.1759 | 0.1295 | 0.0981 | 0.0759 0.0597 | 0.0386

6 0.2626 | 0.2161 | 0.1623 | 0.1188 | 0.0852 | 0.0634 0.0436 | 0.0282

12 | 0.2553 | 0.208 | 0.1467 | 0.1032 | 0.0696 0.0506 | 0.0361 | 0.0228

6 0.2079 | 0.1623 | 0.1326 | 0.0892 | 0.0651 | 0.0531 0.034 | 0.0201

12 10.2068 | 0.1524 | 0.1197 | 0.0824 | 0.0538 0.0397 | 0.0279 | 0.0158

3 0.2262 | 0.1760 | 0.13 | 0.1114 | 0.0931 | 0.0666 0.0405 | 0.0252

6 0.2092 | 0.1499 | 0.1163 | 0.0886 | 0.0621 | 0.0522 0.0312 | 0.017

1
1

2

2

2

4 3 0.2287 | 0.1844 | 0.1426 | 0.1115 | 0.0906 | 0.0671 0.0463 | 0.0298
4

4

8

8

8

12 0.1971 | 0.1434 | 0.0985 | 0.0759 | 0.0527 | 0.0387 0.0252 | 0.0147

Table A.4: Read Miss Ratios for the Div3 Cache

94

Set Block Total Cache Size (words)

Size Size 256 512 1K 2K 4K 8K 16K 32K
1 3 0.4872 | 0.4576 | 0.4409 | 0.4196 | 0.3334 0.29 | 0.2775 | 0.256
1 6 0.4814 | 0.4373 | 0.4154 | 0.4014 | 0.2911 0.2582 | 0.2391 | 0.2197
1 12 0.4666 | 0.4144 | 0.3765 | 0.3557 | 0.2656 0.2042 | 0.1794 | 0.1641
2 3 0.4570 | 0.4624 | 0.4506 | 0.4235 | 0.4013 | 0.2872 0.267 | 0.2414
2 6 0.4623 | 0.4426 | 0.4029 | 0.3758 | 0.3408 0.2376 | 0.2194 | 0.2058
2 12 0.4395 | 0.4116 | 0.3655 | 0.3285 | 0.3071 0.1973 | 0.1849 | 0.1632
4 3 0.4339 | 0.3888 | 0.3663 | 0.3163 | 0.2906 | 0.2699 0.2420 | 0.2269
4 6 0.4196 | 0.3775 | 0.3283 | 0.2969 | 0.2755 | 0.2407 0.2237 | 0.1961
4 12 0.3867 | 0.3447 | 0.3061 | 0.268 | 0.2142 | 0.1808 0.1711 | 0.1496
8 3 0.4024 | 0.3386 | 0.3162 | 0.3122 | 0.2742 | 0.247 0.2279 | 0.2124
8 6 0.4020 | 0.3473 | 0.306 | 0.2913 | 0.2545 | 0.2197 0.1969 | 0.1838
8 12 0.3803 | 0.3164 | 0.2509 | 0.2347 | 0.2053 | 0.1777 0.1555 | 0.1280

Table A.5: Write Miss Ratios for the Div3 Cache

95

Set Block Total Cache Size (words)

Size Size 256 512 1K 2K 4K 8K 16K 32K
1 3 0.1786 | 0.1365 | 0.088 | 0.0627 | 0.0445 | 0.0291 0.0186 | 0.0115
1 6 0.1438 | 0.1067 | 0.0698 | 0.0483 | 0.0351 | 0.0208 0.0145 | 0.0085
1 12 0.1193 | 0.0861 | 0.0554 | 0.0372 | 0.0279 | 0.0145 0.0102 | 0.0065
2 3 0.1525 | 0.1068 | 0.0749 | 0.0541 | 0.0409 | 0.0301 0.0188 | 0.0101
2 6 0.12 0.083 | 0.0601 | 0.0418 | 0.0286 | 0.022 | 0.0138 0.0077
2 12 0.1062 | 0.0721 | 0.0473 | 0.0316 | 0.02 | 0.0147 0.0102 | 0.006
4 3 0.1236 | 0.0950 | N.0719 | 0.0495 | 0.0381 | 0.0270 0.0154 | 0.0064
4 6 0.1015 | 0.0797 | 0.0548 | 0.0354 | 0.025 | 0.018 0.011 | 0.0048
4 12 0.0782 | 0.0598 | 0.0450 | 0.0273 | 0.018 | 0.0125 | 0.0083 0.0039
8 3 0.1202 | 0.0825 | 0.0631 | 0.0506 | 0.0412 | 0.0283 | 0.0140 0.0047
8 6 0.0999 | 0.0639 | 0.0476 | 0.0353 | 0.0255 | 0.0185 | 0.01 13 | 0.0041
8 12 0.0779 | 0.0509 | 0.0378 | 0.0263 | 0.0178 | 0.0130 0.0085 | 0.0034

Table A.6: Fetch Miss Ratios for the Div3 Cache

96

Bibliography

[Clar81] Douglas W. Clark, Butler W. Lampson, and Kenneth A. Pier, “The
Memory System of a High-Performance Personal Computer”, Xerox PARC s
Palo Alto, CA., 1981.

[Doug86] David C. Douglas, “Cache Evaluation using a Microcoded Cache Simu-
lator”, unpublished paper, MIT, Cambridge, MA., 1986.

[Hwan79] Kai Hwang, Computer Arithmetic: Principles, Architecture, and Design,
John Wiley & Sons, New York, 1979.

[Smit82] Alan Jay Smith, “Cache Memories”, ACM Computing Surveys, Vol. 14,
No. 3, September, 1982, pp. 473-530.

[Smit85] Allan Jay Smith, “Cache Evaluation and the Impact of Workload Choice”,
Proc. 12’th Ann. Symp. on Computer Architecture, June, 1985, Boston,
MA, pp. 64-73.

[TI85] Ezplorer System Software Design Notes, Texas Instruments, Inc., Dallas,
Tx., 1985.

[TI84] Ezplorer Processor, Texas Instruments, Inc., Dallas, Tx., September,
1984.

[TI83] NuBus Specification, Texas Instruements, Inc., Dallss, Tx., 1983.

97

