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Abstract

Squeezing the electromagnetic vacuum is an essential metrological technique used to

reduce quantum noise in applications spanning gravitational wave detection, biological mi-

croscopy, and quantum information science. In circuit quantum electrodynamics, Joseph-

son parametric amplifiers play a crucial role in quantum-limited amplification and squeezed

microwave generation. In this thesis, we develop a dual-pump, broadband Josephson

traveling-wave parametric amplifier (JTWPA) to demonstrate non-degenerate four-wave

mixing using a dual-dispersion-engineered JTWPA and investigate its squeezing perfor-

mance. Furthermore, the thesis extends the existing JTWPA design to a lower frequency

spectrum in the hundreds of MHz regime and demonstrates broadband parametric ampli-

fication with a large gain. Capable of multiplexed readout and improved signal-to-noise

ratio, the new JTWPA can be utilized in a wide range of applications in condensed matter

and astrophysics.
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Chapter 1

Introduction

Our knowledge of the universe comes from observing its cosmic complexities. Gravita-

tional waves are extraordinarily faint signals rippling through the fabric of space and time.

How can we detect them more effectively? Stealth aircraft reshaped warfare strategy in the

late 20th century and remains one of the most advanced military technologies to date. It is

incredibly challenging to detect stealth aircraft using current radar systems. As an potential

enhancement, quantum radar promises to achieve this task and is under active study. What

makes quantum radar superior in microwave sensing? The answer to these questions lies

within the concept of squeezing.

Squeezed states belong to the class of non-classical states that cannot be described by

classical electromagnetism. For example, we can observe less noise in squeezed light than

in the complete absence of light (vacuum)! This paradoxical result is a direct consequence

of the quantum nature of light. Heisenberg’s uncertainty principle establishes the attainable

measurement precision, the “standard quantum limit (SQL),” for isotropically-distributed

vacuum fluctuations in the quadratures of the electromagnetic (EM) field [116, 18, 10].

Squeezing the EM field at a single frequency — single-mode squeezing — decreases the

fluctuations of one quadrature below that of the vacuum at the expense of larger fluctua-

tions in the other quadrature, thereby enabling a phase-sensitive means to beat the SQL.

Squeezing can also generate quantum entanglement between observables at two distinct

frequencies, producing two-mode squeezed states.

Since its first experimental demonstration in 1985 [105], squeezing the EM vacuum
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has become an essential metrological technique to reduce quantum noise in diverse ap-

plications from gravitational wave [108] and dark matter detectors [64] to biological mi-

croscopy [107]. Many precision measurements rely on the interaction between squeezed

light and a physical system. In this regard, superconducting microwave circuits have be-

come one of the most promising platforms for precision sensing applications. First, gen-

erating squeezed microwaves with this platform enables a direct interface with supercon-

ducting qubits. The resulting system is ideal for tests of light-matter physics due to achiev-

able strong coupling between qubits and microwave photons. In contrast to weak optical

nonlinear interactions, superconducting circuits feature strong nonlinearity at microwave

frequencies inherent to the superconducting Josephson effect [23], enabling fast quantum

operations. Josephson junctions are superconducting circuit elements with an inherently

strong inductive nonlinearity with respect to the current traversing them. This is the nonlin-

earity that enables parametric amplification in Josephson parametric amplifiers, commonly

used to generate squeezed microwaves. Compared with photonic crystal waveguides, on-

chip microwave circuits have less-stringent fabrication tolerance to imperfections, such

as surface roughness, that can lead to excessive propagation loss. Moreover, the near-

lossless electromagnetic properties of superconducting materials and their compatibility

with widely-established lithographic fabrication and materials processing technology facil-

itate the realization of various superconducting circuit designs.

The generation and detection of squeezed microwave photons are vital to many appli-

cations in quantum information science and metrology. In the context of circuit quantum

electrodynamical (cQED) systems, squeezed microwaves have been used to suppress such

radiative spontaneous emission from a superconducting qubit [76], to demonstrate non-

classical light-matter interactions such as resonance fluorescence from a qubit [111], and

potentially to improve gate fidelity for superconducting qubits in the field of quantum com-

puting [87]. The unique advantages of superconducting circuits enable the applications

with engineered microwave amplifiers.

The resonator-based Josephson parametric amplifier (JPA) is a conventional approach

to generating squeezed microwave photons. As shown in Fig. 1-1a, signal and pump pho-

tons enter the resonator and bounce around multiple times before leaving the resonator.

29



Figure 1-1. | Josephson traveling-wave parametric amplifier dispersion engineered for a

bichromatic pump. a. Circuit schematic of a conventional JPA, and the crossed box represents the

Josephson junction. The Q-enhancement of the field produces a narrowband frequency response.

b. A repeating section of the dual-pump JTWPA. We can identify the L-C ladder that forms a 50Ω
transmission line from lumped elements and the two phase-matching resonators for dispersion

engineering. c. The JTWPA in the presence of a bichromatic pump transforms the vacuum field at

the input into a squeezed field at the output through non-degenerate four-wave mixing.

JPA squeezers use a narrow-band resonator and its resonant-enhanced circulating field to

increase the interaction between photons and a single or few Josephson junctions. However,

the relatively large circulating field in JPAs strongly drives the non-linearity of individual

junctions, leading to unwanted higher-order nonlinear processes and saturation that impact

squeezing performance [14, 65, 76, 69, 9, 57]. In contrast, a Josephson traveling-wave

parametric amplifier (JTWPA) consists of many Josephson junctions in series (Fig. 1-1b),

effectively distributing the nonlinearity across the entire device. By eliminating the reso-

nant structure, the JTWPA can generate highly squeezed single-mode vacuum states and

broadband two-mode squeezed vacuum states, circumventing the bandwidth limitations of

resonator-based JPAs.

In comparison with previous work on a monochromatically pumped JTWPAs to achieve

broadband amplification [62], we operate the device with a bichromatic pump to produce

phase-sensitive amplification, single-mode squeezing, and two-mode squeezing through a

nonlinear wave mixing process known as non-degenerate four-wave mixing (NDFWM).

This dispersion-engineered JTWPA belongs to a class of amplification with the unique
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characteristic of providing amplification/deamplification to input signals at select phases.

A dual-pump, broadband JTWPA is developed using dispersion engineering to support

NDFWM as shown in Fig. 1-1(c). Our device demonstrates the highest reported phase-

sensitive extinction ratio to date for Josephson-junction-based circuits, which is useful

for qubit readout in quantum computing and phase regeneration in quantum communi-

cations [89].

We also achieve single-mode squeezing with an order-of-magnitude reduction of vac-

uum noise, on par with the best resonator-based squeezers. We furthermore demonstrate

two-mode squeezing with GHz bandwidth at microwave frequencies, almost two-orders-of-

magnitude wider than that of typical resonator-based squeezers. The JTWPA is capable of

creating entangled microwave photon pairs with large frequency separation, enabling new

possibilities for applications including high-fidelity qubit readout, quantum illumination

and teleportation. The broad bandwidth and high degree of squeezing demonstrated in our

device represents a new, resource-efficient (instead of combining individual narrow-band

squeezers [35]) means to generate multimode, non-classical states.

The thesis also discusses boosting the quantum efficiency and extending the operating

frequency range of the JTWPA. Quantum efficiency is largely constrained by the intrin-

sic loss, most of which in the existing niobium-based, tri-layer JTWPAs originates from

defects in the dielectric material [95]. Therefore, various aluminum-based, planar JTW-

PAs are designed and fabricated using a high-Q aluminum process to reduce insertion loss

relative to the niobium tri-layer process. We primarily study the overall improved dielec-

tric loss and broadband amplification in aluminum JTWPAs. The work validates design

and fabrication in the process of reducing intrinsic loss. It also guides future design it-

erations of JTWPAs. Much of the previous amplifier work has focused on the microwave

C-band (4-8 GHz) primarily due to the increasing application of quantum-limited amplifiers

in quantum computing. However, broadband amplifiers play a critical role in signal pro-

cessing outside the C-band. By multiplexing readout and enhancing signal-to-noise ratio,

the amplifiers speed up measurement time and save amplification resources. In this thesis,

we develop JTWPAs in the lower spectrum range from 500 MHz to 900 MHz and demon-

strate first-of-its-kind broadband superconducting traveling-wave amplifiers with large gain
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Figure 1-2. | Low-frequency 700MHz JTWPA. Microscopic view of a 5 mm×5 mm

low-frequency JTWPA chip wire-bonded to a microwave package.

and broadband amplification performance. The amplifiers have significant applicability in

spin qubit readout [48] for example, and other potential usage in condensed matter and

astrophysics [108, 61].

The outline of the thesis is as follows: In Chapter 2, we will introduce concepts of

squeezed states, wave-mixing processes, and the origin of the Josephson nonlinearity in

superconducting circuits. These concepts will be further discussed and linked in Chapter

3 with the introduction of Josephson parametric amplifiers. Chapter 3 explores different

types of Josephson parametric amplifiers and discusses various topics about them, includ-

ing phase modulation, phase matching, and parametric amplification. Chapter 4 gives a

quick overview of superconducting qubits and gates in quantum computing and connects

to some potential applications using squeezed states. Chapter 5 focuses on the experimen-

tal setup and design parameters for different variations of JTWPAs. It also emphasizes

the importance of dispersion engineering, leading to improved performance from the new

JTWPAs. Chapter 6 highlights noise calibration methods used to benchmark the JTWPA

performance. Noise calibration is a critical step in characterizing a squeezer as the system

noise is closely associated with the measurement efficiency of the experimental setup and

directly affects squeezing results. We discuss the practical aspects of their protocols in-

cluding each of their unique advantages and disadvantages. The rest of the chapter presents
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our latest results on operating the JTWPA in non-degenerate four-wave mixing to achieve

broadband amplification and squeezed vacuum states. Finally, Chapter 7 will summarize

our work and discuss the future directions.
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Chapter 2

Background

This chapter introduces the concepts of squeezed light and explores the nonlinear ef-

fects specific to our system — a JTWPA — and their relation to different wave-mixing

processes, including ones detrimental to the coherence of propagating signals. We also

discuss the fundamentals of the Josephson junction, an essential nonlinear element in su-

perconducting circuits, and the SQUID, a magnetic-flux-tunable nonlinear device based on

Josephson junctions. These discussions set up the background for understanding Josephson

parametric amplifiers and squeezed state generation in the next chapter.

2.1 Squeezed Light Generation

In this section, we start with a general discussion on electromagnetic (EM) squeezed

states and introduce common terminology used to describe them quantitatively, empha-

sizing concepts relevant to the experiments. In Chapter 7, we shall demonstrate how to

achieve these states using a JTWPA and its squeezing performance in more detail.

A classical single-mode EM field oscillating sinusoidally at frequency 𝜔 can be de-

scribed with an amplitude and a phase, similar to a simple harmonic oscillator. Its electric

field can be represented as a phasor, an arrow in a complex plane, or phase space repre-

sented by two conjugate variables (such as amplitude and phase or position and momentum)

rotating with an angular velocity 𝜔. In a reference frame co-rotating at the same velocity,

the arrow is stationary in the complex plane used to visualize these EM signals. The static
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quadrature field components are referred to as 𝑋 (position) and 𝑃 (momentum), or alter-

natively 𝐼 (in-phase) and 𝑄 (quadrature). In a classical picture, the harmonic oscillator

state can be depicted as a single point in phase space, as displayed in Fig. 2-1(a). Like the

quantum mechanical version of a simple harmonic oscillator, the EM field is a quantized

system with an equally spaced discrete energy spectrum 𝐸n = ℏ𝜔 (𝑛+ 1/2), where inte-

ger 𝑛 denotes the energy level, and the quantum eigenstates are denoted by |𝑛⟩. Even in

the ground state (𝑛 = 0), there is still a finite amount of zero-point energy such that the

position and the momentum cannot be fully zero (different from a classical system). This

ground state is known as the vacuum state for EM fields. Therefore, this vacuum state can

be depicted in phase-space as an enlarged circular “blob” of fluctuation instead of a point

in the classical phase-space as shown in Fig. 2-1(b). This corresponds to “quantum fluctu-

ations” within the phase-space observables, represented by quadrature operators �̂� and 𝑃 .

The Heisenberg uncertainty principle states

⟨∆�̂�2⟩⟨∆𝑃 2⟩ ≥ 1/4, (2.1)

where ⟨(∆�̂�)2⟩ and ⟨(∆𝑃 )2⟩ are variances for the quadrature operators. The vacuum state

takes on equality in Eq. (2.1) and has the same amount of fluctuation in both quadratures,

⟨∆�̂�2⟩ = ⟨∆𝑃 2⟩ = 1/2. The vacuum state has a mean photon number �̄� = 0 or number

state of |0⟩; despite the void of photons, the zero-point energy in the vacuum state still

contributes a noise of ℏ𝜔/2 — “half of a photon of noise” effectively and referred to as the

“standard quantum limit”.

A coherent state |𝛼⟩ is a specific kind of quantum state that satisfies the Heisenberg

uncertainty principle with equality — the state adds ℏ𝜔/2 of noise and assumes equal

uncertainties (identical to those of a vacuum state) in both �̂� and 𝑃 quadratures. The state

can be understood as a displaced vacuum state with a non-zero mean photon number �̄� and

can be expressed in the number-state basis as

|𝛼⟩ = 𝑒(−
1
2
|α|2)

∞
∑︁

n=0

𝛼n

√
𝑛!
|𝑛⟩. (2.2)
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a b c

Figure 2-1. | Phasor diagrams. a. Illustration of a classical simple harmonic oscillator, whose

state is represented as a single point in the phase space of position X and momentum P . b.

Depiction of a quantum harmonic oscillator and in this case the vacuum state, whose state is no

longer a point due to its probability distribution (quantum fluctuations). c. Drawing of a coherent

state with amplitude of
√
n̄ that corresponds to a mean photon number n̄.

As shown in Fig. 2-1(b) and (c), a coherent state is generated by displacing the vacuum state

by an amplitude |𝛼| =
√
�̄�, given by |𝛼⟩ = �̂�(𝛼)|0⟩. �̂�(𝛼) is the unitary displacement

operator

�̂�(𝛼) = 𝑒αâ
†−α*â, (2.3)

i.e., �̂�†(𝛼) = �̂�(−𝛼) = [�̂�(𝛼)]−1. �̂�† and �̂� are the creation and annihilation operators.

Despite the quantum nature of light, coherent states are generally considered quasi-classical

states and the closest quantum mechanical analogue of a simple harmonic oscillator. This is

especially true as �̄� approaches infinity and the fractional uncertainty (
√
�̄�/�̄�) in the photon

number reduces to zero. In other words, coherent states become relatively more localized

in the phase-space with respect to the fixed quantum fluctuations and approach classical

states as shown in Fig. 2-1(a) in the large �̄� limit with a huge displacement from the origin.

2.1.1 Single-Mode Squeezed Vacuum States

In quantum-limited measurements of conjugate observables such as amplitude and

phase, the precision is constrained by quantum fluctuations of the EM field [116, 18, 10].

The standard quantum limit, set by vacuum fluctuations that cannot be reduced by classical

means, is described by Heisenberg’s uncertainty principle. For a coherent state or vac-

uum state, the noise is equally distributed between the two quadratures, ⟨∆�̂�2⟩ = ⟨∆𝑃 2⟩ =

1/2. To reach higher sensitivities, a single monochromatic mode of squeezed light has the

36



unique property of reduced uncertainty in one of the phase-space variables (�̂� or 𝑃 ) com-

pared to the uncertainty caused by the quantum fluctuations in the vacuum state of light.

It is achieved at the expense of a larger fluctuation in its conjugate observable (𝑃 or �̂�),

provided it respects the uncertainty relation (Eq. (2.1)). In general, we describe that a state

of EM mode exhibits (quadrature) squeezing if the variance of the position or momentum

drops below 1/2. Likewise, the other quadrature with its variance exceeding 1/2 exhibits

anti-squeezing. The ratio between the squeezed/anti-squeezed quadrature variance and the

vacuum variance is defined as squeezing/anti-squeezing factor, 𝑆− and 𝑆+, respectively

𝑆− = ⟨∆�̂�2⟩/⟨∆�̂�2
vacuum⟩, (2.4)

𝑆+ = ⟨∆𝑃 2⟩/⟨∆𝑃 2
vacuum⟩. (2.5)

Here we assume �̂�(𝑃 ) is the squeezing (anti-squeezing) quadrature without loss of gen-

erality. It is conventional for us to express the amount of squeezing/anti-squeezing in the

base-10 logarithmic value of these factors in experiments (Chapter 7). Squeezing purity

can be defined as

𝒫 = 1/
√︀

𝑆−𝑆+. (2.6)

As the name suggests, it characterizes the purity of the squeezed state. The squeezing factor

is equal to the anti-squeezing factor in the ideal case 𝒫 = 1. When there is some loss in

the system, the squeezer will mix in vacuum noise and lead to a mixed squeezed state [96].

This effect is manifested as higher anti-squeezing than the absolute value of the squeezing,

and 𝒫 will drop below unity.

One way to visualize noise distribution of a particular state is to plot its electric field

fluctuations as a function of time, as shown in Fig. 2-2(a). In that plot, the noise distri-

bution for a vacuum state is constant for all time. However, for a squeezed vacuum state,

fluctuations in the time-dependent electric field 𝜀(𝑡) vary from a maximum value (anti-

squeezing) to a minimum value (squeezing), creating a "breathing" mode. A more useful

way to visualize and analyze the states is through the time-invariant phase-space repre-

sentation, in which we can uniquely represent any state of light with a quasi-probability
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Figure 2-2. | Illustration of single-mode squeezed states. a. The picture shows noise in the

time-dependent electric field ε(t) for the vacuum (orange), and single-mode squeezed vacuum

(blue) states. The latter oscillates at twice the signal frequency ωs [71]. b. Phasor representation of

the squeezed vacuum and vacuum noise. c. Gaussian distributions of the squeezed vacuum and

vacuum states in the position and momentum bases.

distribution functions (they do not satisfy all the axioms of probability distributions due to

quantum interference1). More specifically, we can represent the common case of a state

with a Gaussian noise distribution that is squeezed as an ellipse (blue) in phase space,

shown in Fig. 2-2(b); drawing the contour of a Gaussian Wigner function (a specific type

of quasi-probability distribution) at the 1-𝜎 level, where 𝜎 denotes the standard deviation.

For instance, the vacuum state appears as an isotropic circular Gaussian in phase space with

1Unlike a probability distribution, it can take on negative values, and hence, the name quasi-probability

distribution. However, the catch here is that the actual measurement outcome probability is never negative

as one integrates or marginalizes the distribution over the orthogonal axes in phase space. A negative value

from the Wigner function is a signature of quantum interference.
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variance 1/2 in every direction as displayed in Fig. 2-2.

Here let us examine the action of squeezing from a mathematical perspective on ⟨(∆�̂�)2⟩
and ⟨(∆𝑃 )2⟩, two quadratures of the output state from a squeezer. The unitary squeezing

operator 𝑆1(𝜉) is defined as:

|SMSV⟩ = 𝑆1(𝜉)|0⟩ = 𝑒
1
2
(ξ*â2−ξâ†2)|0⟩, (2.7)

for a single-mode squeezed vacuum state |SMSV⟩, where 𝜉 = 𝑟𝑒iϕ is the “squeezing pa-

rameter”, in which 𝑟 is the strength and 𝜙 is the squeezing angle that correspond to the

pump strength and pump phase in the experimental setting, respectively. Similarly, the

two-mode squeezed vacuum state |TMSV⟩ with operator 𝑆2(𝜉) is:

|TMSV⟩ = 𝑆2(𝜉)|0, 0⟩ = 𝑒(ξ
*âsâi−ξâ†sâ

†
i )|0, 0⟩, (2.8)

acting on the two-mode vacuum state |0, 0⟩. We have denoted the two modes by ‘s’ and ‘i’

to refer to the signal and idler modes that we will subsequently discuss. Using an extension

from the Baker-Campbell-Hausdorff (BCH) formula [43], which states

𝑒A𝐵𝑒−A = 𝐵 + [𝐴,𝐵] +
1

2!
[𝐴, [𝐴,𝐵]] + · · · , (2.9)

we change the basis and get

𝑆†
1(𝜉)�̂�𝑆1(𝜉) = �̂� cosh 𝑟 − �̂�†𝑒iφ sinh 𝑟,

𝑆†
1(𝜉)�̂�

†𝑆1(𝜉) = �̂�† cosh 𝑟 − �̂�𝑒−iφ sinh 𝑟,
(2.10)

where 𝑆†
1(𝜉) = 𝑆1(−𝜉).

Now consider the action of the squeezing operator 𝑆1(𝜉) on an arbitrary state |𝜓⟩

|𝜓s⟩ = 𝑆1(𝜉)|𝜓⟩. (2.11)

In the case where |𝜓⟩ = |0⟩ is the vacuum state, |𝜓s⟩ becomes the squeezed vacuum state

|SMSV⟩ as we discussed in Sec. 2.1.4. In order to extract the variance of �̂� and 𝑃 , we
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need to find the expectation values of operator �̂�, �̂�2, etc. As an example,

⟨𝜓s|�̂�|𝜓s⟩ = ⟨𝜓|𝑆†
1(𝜉)�̂�𝑆1(𝜉)|𝜓⟩, (2.12)

⟨𝜓s|�̂�2|𝜓s⟩ = ⟨𝜓|𝑆†
1(𝜉)�̂�𝑆1(𝜉)𝑆

†
1(𝜉)�̂�𝑆1(𝜉)|𝜓⟩. (2.13)

The generic quadrature operator [43] can be expressed as

�̂�(𝜗) =
1√
2

(︀

�̂�𝑒−iϑ + �̂�†𝑒iϑ
)︀

. (2.14)

We can select the two quadrature operators �̂� and 𝑃 with 𝜗 = 0 and 𝜗 = 𝜋/2, respectively,

and get �̂� = 1√
2

(︀

�̂�† + �̂�
)︀

and 𝑃 = i√
2

(︀

�̂�† − �̂�
)︀

. These are convenient definitions for

describing a time-dependent electric field with its field amplitudes oscillating out of phase

with each other by 𝜋/2 and hence are in quadrature. We will discuss this more in Sec. 5.2.1.

Here �̂� and 𝑃 satisfy the commutation relation [�̂�, 𝑃 ] = 𝑖. Using Eq. (2.10)–Eq. (2.13),

the variances of the squeezing quadrature operators are

⟨(∆�̂�)2⟩ = ⟨�̂�2⟩ − ⟨�̂�⟩2 = 1

2

[︀

cosh2 𝑟 + sinh2 𝑟 − 2 sinh 𝑟 cosh 𝑟 cos𝜙
]︀

. (2.15)

⟨(∆𝑃 )2⟩ = ⟨𝑃 2⟩ − ⟨𝑃 ⟩2 = 1

2

[︀

cosh2 𝑟 + sinh2 𝑟 + 2 sinh 𝑟 cosh 𝑟 cos𝜙
]︀

. (2.16)

When 𝜙 = 0, these two equations reduce to

⟨(∆�̂�)2⟩ = 1

2
𝑒−2r. (2.17)

⟨(∆𝑃 )2⟩ = 1

2
𝑒2r, (2.18)

where 𝑟 is the squeezing strength. Again, a cartoon illustration is shown in Fig. 2-2(b). We

will discuss it in more detail towards the end of Sec. 2.1.
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2.1.2 Squeezed Coherent States

We can give a more general description for single-mode squeezed states by applying

displacement operation to Eq. (2.7):

|𝛼, 𝜉⟩ = �̂�(𝛼)𝑆1(𝜉)|0⟩, (2.19)

a combination of displacement and squeezing actions that transforms the vacuum state

into a displaced squeezed vacuum state or squeezed coherent state. Note that the squeezing

operator does not commute with the displacement operator �̂� nor does it commute with the

creation and annihilation operators. Therefore, the order of the operator actions matters.

In the case of the coherent state with 𝜉 = 0, we get back just a coherent state. In the less

trivial case when 𝜉 ̸= 0, we consider the effect of displacement operator on the squeezing

transformation, namely,

�̂�†(𝛼)�̂��̂�(𝛼) = �̂�+ 𝛼

�̂�†(𝛼)�̂�†�̂�(𝛼) = �̂�+ 𝛼,
(2.20)

where we have used the BCH formula (Eq. (2.9)) and in this case𝐴 = 𝛼*�̂�−𝛼�̂�† and𝐵 = �̂�

or �̂�†. The higher-order commutators vanish since [𝐴,𝐵] ∈ C, which commutes with

other operators in the BCH expansion. Using Eq. (2.10) and Eq. (2.20), we get ⟨�̂�⟩ = 𝛼,

which is independent of the squeezing parameter, ⟨�̂�2⟩ = 𝛼2 − sinh 𝑟 cosh 𝑟 and ⟨�̂�†�̂�⟩ =
|𝛼|2 + sinh2 𝑟. We recover a coherent state when 𝑟 = 0 and a squeezed vacuum state when

𝛼 = 0. Furthermore, the variance for the squeezing quadrature operators ⟨(∆�̂�)2⟩ and

⟨(∆𝑃 )2⟩ follow Eq. (2.17) and Eq. (2.18). As shown in Fig. 2-3, the variance along the �̂�

quadrature of the squeezed coherent state is smaller than that of the vacuum (or coherent)

state.
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coherent state

squeezed coherent state

Figure 2-3. | Squeezed coherent state. Phase-space portrait of a coherent state of amplitude

|α| =
√
n̄ and a displaced vacuum state that is the squeezed coherent state.

2.1.3 Two-Mode Squeezed Vacuum States

With the conceptual generalizations of single-mode squeezing, two-mode squeezed

states exhibit correlations between the phase-space observables in the subsystem of two

coupled oscillators. In other words, two-mode squeezed states can be interpreted in the con-

text of “quantum coupling” that is the entanglement. Two-mode squeezed vacuum (TMSV)

is also known as the twin-beam state [60]; photons generated at the respective two modes

can be entangled. As shown in Fig. 2-4 (top row), TMSV does not imply𝑋 or 𝑃 quadrature

squeezing in each of its individual modes because observables in their respective quantum

subspace are uncorrelated (each mode is considered in an “effective” thermal state because

their photon statistics looks identical to that of an actual thermal state [60, 43]). How-

ever, the joint observables (𝑋1 and 𝑋2 or 𝑃1 and 𝑃2) exhibit correlation or anti-correlation

due to quantum entanglement. Historically, Alain Aspect’s experiment in 1982 is consid-

ered to be the first quantum mechanics experiment to demonstrate the violation of Bell’s

inequality, further validating the principle of quantum entanglement. In his experiment,

calcium atoms are excited through two-photon absorption, and at the end, pairs of photons

are emitted in an entangled state and exhibit linear-polarization correlation [4]. Because

of the conservation of momentum, photon pairs are always emitted in opposite directions.

However, the direction of such emission is random in Aspect’s experimental setup. With

optical or microwave waveguides, the direction of photon propagation can be confined to
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one dimension to allow better detection efficiency. Still, the entangled photons must obey

physical conservation laws such as momentum and energy. The TMSV state is the basis of

the famous quantum nonlocality paradox in its original formulation by Einstein, Podolsky,

and Rosen (EPR) [60].

Vacuum

state

Thermal

states

squeezed 

vacuum

Vacuum

states

Squeezing No squeezing

Figure 2-4. | Illustration of two-mode squeezed states. The top row displays the output field at

the two modes. There is no squeezing but uncorrelated noise depicted by enlarged circular blobs.

The bottom row shows two-mode squeezed and vacuum states in the position (left: X1X2) and

momentum (right: P1P2) bases. For the two-mode squeezed state considered in this thesis, the

position observables are correlated conventionally, while the momentum observables are

anti-correlated beyond the standard quantum limit.

Here we want to extract the action of squeezing on the two quadratures of the squeezed

state, similar to the single-mode example. We define the superposition of the quadrature

operators �̂�TM
1 and �̂�TM

2 as the following:

�̂�TM
1 =

1

23/4
(︀

𝑎s
† + 𝑎s + 𝑎i

† + 𝑎i
)︀

, (2.21)

�̂�TM
2 =

𝑖

23/4
(︀

𝑎s
† − 𝑎s + 𝑎i

† − 𝑎i
)︀

. (2.22)
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One can verify that these operators satisfy the same commutation relations as for the single-

mode squeezing, [�̂�TM
1 , �̂�TM

2 ] = 𝑖, given that [�̂�s, �̂�i] = 0.

Applying the same BCH formula, we get similar expressions as for the single-mode

case,

𝑆†
2(𝜉)�̂�s𝑆2(𝜉) = �̂�s cosh 𝑟 − �̂�†i𝑒

iϕ sinh 𝑟 (2.23)

𝑆†
2(𝜉)�̂�i𝑆2(𝜉) = �̂�i cosh 𝑟 − �̂�†s𝑒

iϕ sinh 𝑟. (2.24)

Using these results, we can show that ⟨�̂�TM
1 ⟩ = ⟨�̂�TM

2 ⟩ = 0, and

⟨(∆�̂�TM
1 )2⟩ = 1

2

[︀

cosh2 𝑟 + sinh2 𝑟 − 2 sinh 𝑟 cosh 𝑟 cos𝜙
]︀

. (2.25)

⟨(∆�̂�TM
2 )2⟩ = 1

2

[︀

cosh2 𝑟 + sinh2 𝑟 + 2 sinh 𝑟 cosh 𝑟 cos𝜙
]︀

. (2.26)

When 𝜙 = 0,

⟨(∆�̂�TM
1 )2⟩ = 1

2
𝑒−2r. (2.27)

⟨(∆�̂�TM
2 )2⟩ = 1

2
𝑒2r, (2.28)

These are the same mathematical results, but the interpretation is different since we have a

superposition of modes in the two-mode squeezed vacuum states instead of the individual

mode in the single-mode case.

2.1.4 Effective Squeezing Operators in the JTWPA

In superconducting circuits, the typical scheme for generating squeezed states uses a

parametrically driven nonlinear medium, producing an interaction that is quadratic in the

annihilation and creation operators of the field mode [43]. For example, the Hamiltonian

for the non-degenerate four-wave mixing process in a JTWPA can be expressed as

�̂� = ℏ𝜔s�̂�
†
s�̂�s + ℏ𝜔i�̂�

†
i �̂�i + ℏ𝜔p1�̂�

†
1�̂�1 + ℏ𝜔p2�̂�

†
2�̂�2 + 𝑖ℏ𝜒(3)

(︁

�̂�s�̂�i�̂�
†
1�̂�

†
2 − �̂�†s�̂�

†
i �̂�1�̂�2

)︁

, (2.29)

44



where the first and second terms represent the signal and idler fields with mode operators �̂�s

and �̂�i, while the third and fourth terms denote the two pump fields with mode operators �̂�1

and �̂�2. The last term is the interaction Hamiltonian presuming a 𝜒(3), the leading nonlinear

susceptibility of this system. We will discuss the origin of this interaction in further detail

in the following section. In general, Eq. (2.29) describes the two-mode scenario, and in

the special case when the signal frequency equals the idler frequency, i.e. 𝜔s = 𝜔i, the

Hamiltonian describes single-mode operation. As shown in Fig. 2-5, squeezing always

involves two modes, a “signal” and an “idler”. We note that there are finite bandwidths

associated with measurement in experimental settings. To clarify the terminology used in

the thesis and draw comparison with other previous works, we define “two-mode” as when

the signal and idler are non-degenerate and their mode separation is much larger than the

measurement bandwidth |𝜔s−𝜔i| ≫ 𝐵meas, and “single-mode” as when the signal and idler

are both nominally degenerate and within the measurement bandwidth |𝜔s − 𝜔i| ≤ 𝐵meas.

signal idler

Frequency

signal idler

Frequency

a b

Figure 2-5. | Single-mode vs. two-mode. a. We define “single-mode” when the two modes, signal

and idler, are degenerate. b. When the signal and idler are non-degenerate, we have “two-mode”.

From the last term in Eq. (2.29), one identifies the pair-wise photon creation and anni-

hilation operators that are effectively the same as the squeezing operator 𝑆1(𝜉) and 𝑆2(𝜉).

Intuitively, when 𝜔s = 𝜔i, the output signal and idler can interfere, leading to constructive

or destructive interference depending on their relative phase. This gives rise to phase sen-

sitivity in the parametric amplification process and single-mode squeezing. As discussed

earlier, when the signal and idler are non-degenerate, the nonlinear wave mixing process

produces entangled states that result in two-mode squeezing. In an ideal squeezer that gen-

erates both single-mode and two-mode squeezed vacuum states, the squeezing levels are

the same if the squeezing parameter 𝜉 is the same for both cases.
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Returning to Eq. (2.29), we consider the interaction Hamiltonian

�̂�int = 𝑖ℏ𝜒(3)
(︁

�̂�s�̂�i�̂�
†
1�̂�

†
2 − �̂�†s�̂�

†
i �̂�1�̂�2

)︁

. (2.30)

Transforming to a time-dependent interactive frame with strong, undepleted (i.e. the field

does not decay as it propagates in space) pump fields �̂�1 = 𝛾1𝑒
−iω1t and �̂�2 = 𝛾2𝑒

−iω2t.

�̂�int = 𝑖ℏ𝜒(3)
[︁

�̂�s�̂�i𝛾
*
1𝛾

*
2𝑒

i(ω1+ω2−ωs−ωi)t − �̂�†s�̂�
†
i𝛾1𝛾2𝑒

−i(ω1+ω2−ωs−ωi)t
]︁

. (2.31)

Here we explicitly include the time-dependence for signal and idler mode operators. Under

the nonlinear wave mixing process (𝜔1 + 𝜔2 − 𝜔s − 𝜔i = 0), we have

�̂�int = 𝑖ℏ𝜒(3)
(︁

�̂�s�̂�i𝛾
*
1𝛾

*
2 − �̂�†s�̂�

†
i𝛾1𝛾2

)︁

. (2.32)

Its associated unitary evolution operator is

�̂�int(𝑡, 0) = 𝑒−iĤintt/ℏ = 𝑒χ
(3)(âsâiγ*

1γ
*
2−â†sâ

†
iγ1γ2)t, (2.33)

which has the same form as the squeezing operator 𝑆1,2(𝜉) in Eq. (2.7) and Eq. (2.8).

Comparing the two, we can extract

𝜉 = 𝜒(3)𝛾1𝛾2𝑡 = 𝑟 (2.34)

with 𝜙 = 0. As we can see, the squeezing parameter 𝑟 is only related to the interaction

time 𝑡 (constrained by the coupling between the pump and the signal), nonlinearity 𝜒(3),

and pump strengths 𝛾1,2, properties either intrinsic to the nonlinear medium itself or related

to the external setup and control.

In short, to generate squeezing, we need to create interactions that result in correlations

between photons, either at a single mode or two modes. Moreover, it requires energy

(pump sources) to generate photons. Both indicate that we need a mechanism to create

these photon conversion processes, achievable through a nonlinear medium, upon which

the squeezing performance is highly dependent.
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2.2 Nonlinear Refraction & Phase Modulation

In this section, we will present the concepts of nonlinear optical processes based on

Reference [1]. Consider an ideal linear dielectric medium under an external electric field

E. The induced polarization P is

P = 𝜖0χ̄ · E, (2.35)

where χ̄ is the material susceptibility and is in general a tensor to capture the full extent

of the polarization response to an applied electric field. This is not to be confused with

the polarization (direction) of the electric field. The polarization of the nonlinear medium

(dipole moment per unit volume) P propagates together with the EM field in the form of a

polarization wave. Going beyond linear systems, with larger field magnitude |E|, higher-

order terms in the polarization expression become more important, and in general, can be

expressed as

P = 𝜖0

(︂

χ(1) · E+ χ(2) : EE+ χ(3)...EEE+ · · ·
)︂

, (2.36)

where vertical dots represent tensor multiplication and χ(i) is the 𝑖’th order susceptibility.

In the case of a JTWPA, the medium is centrosymmetric, meaning it is isotropic with spatial

inversion symmetry. Therefore, the second-order susceptibility χ(2) vanishes, leaving χ(3)

the higher-order term in Eq. (2.36). The third-order susceptibility essentially leads to many

nonlinear effects of interest, including four-wave mixing in the parametric amplification

process.

Now let us think about the case when there is more than one wave propagating through

the nonlinear medium. Since microwave waveguide systems generally have a fixed po-

larization, this simplifies the description of wave propagation by grouping all of the χ(3)

elements into one scalar term 𝜒
(3)
xxxx. For example, by the superposition principle, four

waves each oscillating at each frequency 𝜔j can be expressed as

𝐸 =
1

2

4
∑︁

j=1

𝐸j𝑒
ikjz−ωjt + 𝑐.𝑐., (2.37)
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with wavevector 𝑘j = �̃�j𝜔j/𝑐, where �̃�j is the nonlinear refractive index for mode 𝑗. By

substituting this expression into Eq. (2.35) and expanding the sum, one can find terms that

involve the product of three electric fields. The resulting polarization of wave at frequency

𝜔4 can be expressed as

𝑃 (3) =
3𝜖0
4
𝜒(3)
xxxx[|𝐸4|2𝐸4+2(|𝐸1|2+|𝐸2|2+|𝐸3|2)𝐸4+2𝐸1𝐸2𝐸3𝑒

iφ++2𝐸1𝐸2𝐸
*
3𝑒

iφ−+· · · ],
(2.38)

where 𝜑+ = (𝑘1 + 𝑘2 + 𝑘3 − 𝑘4)𝑧 − (𝜔1 + 𝜔2 + 𝜔3 − 𝜔4)𝑡 and 𝜑− = (𝑘1 + 𝑘2 − 𝑘3 −
𝑘4)𝑧 − (𝜔1 + 𝜔2 − 𝜔3 − 𝜔4)𝑡. Again, since the system is centrosymmetric, there are no

second-order nonlinear interactions. Therefore, χ(3) is the leading nonlinear susceptibility

of the system. Moreover, we are only interested in one of the tensor components, as the

JTWPA can be largely approximated as a 1-dimensional nonlinear transmission line with

waves propagating in ±𝑧 and the electric fields oriented in ±�̂�.

a b

Figure 2-6. | Energy-level description. a. Third-harmonic generation when ω1 = ω2 = ω3. b.

Non-degenerate four-wave mixing. When ω3 = ω4, the process is called degenerate four-wave

mixing.

The term proportional to |𝐸4|2𝐸4 can be identified as self-phase modulation (SPM),

and the term proportional to (|𝐸1|2 + |𝐸2|2 + |𝐸3|2)𝐸4 represents cross-phase modulation

(XPM). The field intensity (𝐼 ∼ |𝐸|2) modifies the nonlinear refractive index according

to �̃�(|𝐸|2) = 𝑛 + 𝑛2|𝐸|2; the |𝐸|2 generates an intensity-dependent phase shift, and 𝑛2

is known as the intensity-dependent refractive index. In our example, 𝑛2 = 3
8n
Re(𝜒

(3)
xxxx),
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where 𝑛 is the linear refractive index for the material. When 𝜑± = 0, the third and fourth

terms in the bracket of Eq. (2.38) reduce to (1) third harmonic generation2 when 𝜔1 =

𝜔2 = 𝜔3, where three photons are converted to one photon at frequency 𝜔4 = 𝜔1 + 𝜔2 +

𝜔3, and (2) four-wave mixing, in which case two photons combine to produce two other

photons 𝜔3 + 𝜔4 = 𝜔1 + 𝜔2, respectively. In the special case when the two input modes

coincide in frequency space, the process is typically called degenerate four-wave mixing

(DFWM). When this condition does not hold, it is called non-degenerate four-wave mixing

(NDFWM). The latter process will be discussed in full detail in later chapters.

2.3 Superconducting Nonlinear Elements

2.3.1 Josephson Junction

An essential nonlinearity within superconducting circuits comes from the Josephson

junction, a superconductor-insulator-superconductor (SIS) junction, named after Brian David

Josephson, who predicted the mathematical relationships for the current and voltage across

the junction in 1962 [52]. This section aims to motivate the AC and DC Josephson relations

to demonstrate the nonlinear inductance inherent to a Josephson junction, crucial for many

superconducting circuit devices, including the JTWPA.

A Josephson junction consists of two superconductors separated by a thin insulating

material, as shown in Fig. 2-7. The wavefunction of the superconducting state can be

described as:

Ψj(𝑥, 𝑡) = |Ψj(𝑥, 𝑡)|𝑒iθj(x,t), 𝑗 ∈ {1, 2}, (2.39)

where we define |Ψj(𝑥, 𝑡)|2 as the density of Cooper pairs, and 𝜃j(𝑥, 𝑡) as the phase factor of

the wavefunction [22]. Josephson discovered two important constituent relations between

voltage, current, and phase across the junction, which we will introduce within the context

of identical superconductors separated by an infinitely thin insulator.

The DC Josephson relation describes the relationship between the current 𝐼 and the

2Third harmonic generation is a special case that also involves four photons, while four-wave mixing is a

more general description.
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phase difference across the junction 𝜑. The quantum mechanical expression for the proba-

bility current of Cooper pairs in one dimension with position 𝑥 is given by

𝐼 =
𝑖ℏ(−2𝑒)

4𝑚e

(︂

Ψ*𝜕Ψ

𝜕𝑥
−Ψ

𝜕Ψ*

𝜕𝑥

)︂

, (2.40)

where 𝑚e is the mass of a single electron. As the barrier thickness decreases, the spatial

derivative of the wavefunction at junction should be proportional to the difference between

Ψ1 and Ψ2, while the spatial symmetry requires the wavefunction to take the mean value

Ψ = (Ψ1 +Ψ2) /2, leading Eq. (2.40) to

𝐼 ∝
(︀

𝑒−iθ1 + 𝑒−iθ2
)︀ (︀

𝑒iθ2 − 𝑒iθ1
)︀

2
−
(︀

𝑒iθ1 + 𝑒iθ2
)︀ (︀

𝑒−iθ2 − 𝑒−iθ1
)︀

2
=
(︀

𝑒iφ − 𝑒−iφ
)︀

, (2.41)

where 𝜑 = 𝜃2 − 𝜃1, the phase difference across the junction barrier. After identifying the

proportionality constant in Eq. (2.40) as the junction critical current 𝐼0 — the maximum

supercurrent the barrier can sustain, which is dependent on the barrier and the properties of

the superconductor — we can obtain the current phase relation

𝐼 = 𝐼0 sin𝜑. (2.42)

So far, the derivation assumes no voltage applied to the junction, and Eq. (2.42) suggests a

DC current may tunnel across the Josephson junction in the absence of an external voltage.

This is known as the DC Josephson effect.

Now, in the case when there is external voltage 𝑉 applied across the junction, the total

energy difference between the two regions of superconductors is given by 2𝑒𝑉 , assuming

the Kirchoff’s current rule still applies and the Cooper pair density |Ψ(𝑥, 𝑡)|2 is approx-

imately independent of position 𝑥. As a function of time, an additional phase difference

𝜑 = 2𝑒𝑉 𝑡/ℏ will occur per the time-dependent Schrödinger equation [30]. The time deriva-

tive of this phase difference yields the AC Josephson relation,

𝜕𝜑

𝜕𝑡
=

2𝜋𝑉

Φ0

, (2.43)
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Insulator

Superconductor 2

Superconductor 1

Cooper pair

Cooper pair

Figure 2-7. | Josephson junction. An illustrative drawing of a

superconductor-insulator-superconductor (SIS) Josephson junction, typically made out of

aluminum and aluminum oxide. A single wavefunction can describe Cooper pairs in a

superconductor in the absence of a current. When a thin insulating layer separates two

superconductors, quantum mechanical tunneling can occur for the Cooper pairs.

where Φ0 = ℎ/2𝑒 is the magnetic flux quantum. The AC Josephson relation implies that

a DC voltage across the junction would cause the tunneling of a Cooper pair and emit or

absorb a photon at frequency 𝜔 = 𝑉/Φ0. This is the important result of the AC response,

which allows physicists to experimentally determine this ratio of fundamental constants ℎ

and 𝑒. Combining Eq. (2.43) and Eq. (2.42), one can obtain the Josephson inductance

𝐿j = 𝑉

(︂

𝜕𝐼

𝜕𝑡

)︂−1

=
Φ0

2𝜋𝐼0 cos(𝜑)
=

Φ0

2𝜋
√︀

𝐼20 − 𝐼2
. (2.44)

Clearly, the junction has a nonlinear inductance with respect to the current traveling through

it, which is crucial to the development of superconducting circuit technology.
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2.3.2 DC SQUID

Insulator

Superconductor
0-0.5 0.5-1 1

0

2

a b c

Figure 2-8. | DC SQUID. a. An illustrative drawing of a DC SQUID with two identical Josephson

junctions. An external magnetic flux threads through the loop. b. A circuit representation of the

SQUID with an external magnetic field; red squares with “X”s represent Josephson junctions. c.

Dependence of the critical current of a symmetric, two-junction SQUID on the applied flux.

To construct a tunable Josephson inductance, one can form a superconducting loop with

two Josephson junctions as shown in Fig. 2-8, a configuration called DC Superconducting

Quantum Interference Device, or DC SQUID for short. Despite the terminology involving

“DC” for historical reasons, there is no intrinsic low-frequency limitation to DC SQUIDs

as they often readily exhibit dynamics at tens of GHz. The total current passing through

the SQUID is the sum of currents through each single junction,

𝐼 = 𝐼0,L sin𝜑L + 𝐼0,R sin𝜑R, (2.45)

where 𝐼0,L/R and 𝜑L/R are the critical current and phase drop across the left/right Joseph-

son junction, respectively. If we assume the junctions are identical, the SQUID becomes

symetric with 𝐼0,L = 𝐼0,R = 𝐼0 and Eq. (2.45) can be expressed as

𝐼 = 2𝐼0 cos(𝜑−) sin(𝜑+), (2.46)

where we define 𝜑− = (𝜑L − 𝜑R)/2 and 𝜑+ = (𝜑L + 𝜑R)/2. One can thread an external

magnetic flux Φext through the superconducting junction loop to tune the device. Due to the

magnetic flux quantization in the superconducting circuit loop, the phase difference must
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adhere to the relation

𝜑R − 𝜑L −
2𝜋Φext

Φ0

= 2𝜋𝑛, (2.47)

where 𝑛 is an integer. Choosing 𝑛 = 0, we get 𝜑R = 𝜑L + (2𝜋Φext/Φ0) and substitute it

in Eq. (2.46) to obtain

𝐼(Φext) = 2𝐼0 cos

(︂

𝜋Φext

Φ0

)︂

sin𝜑+, (2.48)

where 𝐼(Φext) is the current through the SQUID as a function of the applied magnetic

flux. Notice its similar expression to the current-phase relation Eq. (2.42) for a single

Josephson junction. Therefore, the SQUID can be regarded as a single Josephson junction

with a tunable critical current 𝐼c(Φext) = 2𝐼0

⃒

⃒

⃒
cos
(︁

πΦext

Φ0

)︁⃒

⃒

⃒
. This relationship is plotted

in Fig. 2-8(c). In the limit where the loop geometric inductance 𝐿g is much smaller than

the individual Josephson inductance 𝐿j , the presence of a magnetic flux inside the SQUID

loop induces a circulating current that reduces the effective critical current of the SQUID.

The effective inductance of the SQUID becomes

𝐿SQUID =
Φ0

4𝜋𝐼0 cos
(︁

πΦext

Φ0

)︁

cos𝜑+

. (2.49)

The inductance can be modulated by varying the externally applied magnetic flux Φext or

by running an oscillating current through the SQUID to cause 𝜑+ to change. These two

cosine factors can be used in flux pumping or current-pumping schemes [30] when oper-

ating SQUID-based Josephson parametric amplifiers. The flux-tunability of the SQUID is

also exploited to construct frequency-tunable transmon qubits in the noise characterization

protocol in Chapter 4.

So far, we have introduced the fundamental concepts behind squeezing, wave-mixing

processes, and Josephson junctions. In Chapter 5, we will piece together these elements

and discuss using Josephson nonlinearity to generate parametric amplification and produce

squeezed states.
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Chapter 3

Qubits and Quantum Control

“Nature isn’t classical, dammit, and if you want to

make a simulation of nature, you’d better make it

quantum mechanical...”

Richard Feynman

3.1 Introduction

The idea of quantum computing was broadly conceived in the 1980s, primarily by

Richard Feynman, a well-known Nobel physicist. The obstacle he faced at the time was to

simulate quantum systems that are very challenging to simulate via classical means with

binary bits such as 0 and 1 — the number of classical bits needed grows exponentially

with the size of the quantum system. Feynman realized that to simulate nature, we need to

use something quantum mechanical. The fundamental building block in this construct is a

qubit, short for a quantum bit. Unlike a classical bit, which takes on binary values of 0 or

1, a qubit is a quantum state |𝜓⟩ in a superposition of both the 0-state |0⟩ and the 1-state

|1⟩, expressed as |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ or represented by the column vector [ ab ]. Here 𝑎 and

𝑏 are quantum amplitudes related to the probability of measuring the qubit in either state.
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Coupling two qubits together allows us to form states such as

|𝜓⟩mn =
1

2
(|0⟩m|0⟩n + |1⟩m|1⟩n) , (3.1)

where subscript 𝑚 and 𝑛 denote two different single qubits. |𝜓⟩mn cannot be expressed by

the product states of individual qubits. In fact, such state is called an entangled state, which

we have also discussed earlier in the context of photons in Chapter 2. A fully-coupled

quantum computer could understand 2N computations, where 𝑁 is the number of qubits

used. This leads to the expansion of information space exponentially — with only𝑁 = 300

qubits, the total number of information bits exceeds the number of particles in the universe.

The goal of quantum computing is to do computations faster than could be done classi-

cally. The power of quantum computers is unparalleled if they can be realized. Some of the

Figure 3-1. | Exemplary qubit platforms. a. Superconducting circuits [3]. b. Quantum

dots [115]. c. Electron/Nucleus spins [98]. d. Trapped ions [27]. e. Neutral atoms [118]. f.

Photonic modes [88].

prominent applications are quantum simulation, optimization, and cryptography. For ex-

ample, 1.2% of the world’s total energy output annually is used to produce fertilizer [119],

and this relies on a process developed in the early 1900s that is extremely energy inten-

sive. However, we know that a tiny anaerobic bacteria in the roots of plants performs this

same process every day at low energy cost using a specific molecule—nitrogenase. This

molecule is beyond the abilities of our largest supercomputers to analyze but would be

55



within reach of a moderate-scale quantum computer. Efficient carbon capture (to combat

global warming) is in the same class of problem. The search for high-temperature super-

conductors is another example.

To date, there are a variety of qubit modalities that large organizations and research

institutes pursue. As shown in Fig. 3-1, a few exemplary qubit platforms are commonly

explored. At the present moment, the field of quantum computing is still in its infancy.

Compared to the early work in the 1930s with classical computing architecture, researchers

are determining the most effective candidate for qubit architecture. The field is still looking

for an equivalent to transistors in a quantum computer. Nevertheless, what is clear is that

because the quantum state is fragile, most of these qubits require a cryogenic or UHV

system to help reduce noise, which we will discuss later.

3.2 Superconducting Qubits

To approximate an artificial atom, we need a qubit 1) with uniquely addressable energy

levels and 2) that is dissipation-less. The former is to encode the logical information (0

or 1) into the physical states and to address them with discrete energy pulses to induce

transitions. The latter is to preserve the quantum information long enough to carry out

computational tasks. In superconducting circuits, we can construct a quantized system

using electrical components like capacitors and nonlinear inductors that typically utilize

Josephson junctions. The qubit will be mainly in its ground state when it is situated at

a physical temperature such that 𝑘B𝑇 ≪ ℏ𝜔, where 𝜔 is at the qubit frequency. One

can control it using an external photon source that drives the transitions between different

energy levels. Over the years, a variety of superconducting qubits have been developed,

including but not limited to the Copper-pair box [13], the persistent-current flux qubit [80,

73], the C-shunt flux qubit [123, 124], and the transmon [55]. We focus on the transmon

for the rest of the thesis.
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Figure 3-2. | An LC oscillator with its quantities and coordinates. Q represents the charge on

the capacitor, L is the inductance in the oscillator with the current I traversing through it.

3.2.1 Quantization of an LC Circuit

An LC oscillator in the ground state (cooled down to a very low temperature) and op-

erated in the lossless regime (no energy dissipation) becomes an ideal quantum system. In

the previous chapter, we have seen the LC oscillator and its circuit schematic in the context

of Josephson parametric amplifiers. As shown in Fig. 3-2, the classical electromagnetic

equation conventionally describes an LC oscillator with voltage and current as the gener-

alized coordinates. In contrast, it is more convenient to adopt the charge on the capacitor

𝑄 and the flux through the inductor as the coordinates in a quantum treatment of the oscil-

lator. The reason is that the number of charge carriers on a metal island or the quanta of

superconducting flux threading through a loop turn out to be good quantum numbers [62].

The total energy of an oscillator can be expressed in a standard way as

𝐸 =
1

2
𝐶𝑉 2 +

1

2
𝐿𝐼2. (3.2)

By converting to flux and charge with the relations Φ = 𝐿𝐼 and 𝑄 = 𝑉 𝐶, the classical

Hamiltonian of the LC oscillator can be written as

𝐻 =
Φ2

2𝐿
+
𝑄2

2𝐶
. (3.3)
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Expressing Hamilton’s equations of motion, we obtain

𝜕𝐻

𝜕Φ
=

Φ

𝐿
= −�̇� (3.4)

𝜕𝐻

𝜕𝑄
=
𝑄

𝐶
= 𝐿𝐼 = Φ̇, (3.5)

from which we can right away identify Φ as a generalized position and 𝑄 as a generalized

momentum, analogous to the classical equation of motion for a particle which has position

and momentum as the generalized coordinates. Converting them to quantum operators Φ̂

and �̂�, we write their commutation relation as

[Φ̂, �̂�] = 𝑖ℏ (3.6)

in analogy to the commutation for a particle which has [�̂�, 𝑃 ] = 𝑖ℏ. Therefore, like the

quantum harmonic oscillator, we introduce the raising and lowering operators defined in

terms of Φ̂ and �̂� as

�̂�† =
1√
2ℏ𝑍

(︁

Φ̂− 𝑖𝑍�̂�
)︁

, (3.7)

�̂� =
1√
2ℏ𝑍

(︁

Φ̂ + 𝑖𝑍�̂�
)︁

, (3.8)

where 𝑍 =
√︀

𝐿/𝐶 is the definition of the oscillator impedance. The quantum LC circuit

follows the dynamics of a quantum harmonic oscillator with raising and lowering operators

�̂�† and �̂� and a Hamiltonian �̂� = ℏ𝜔(�̂�†�̂�+1/2). Here we have the characteristic frequency

𝜔 = 1/
√
𝐿𝐶, and the expected energy of the LC circuit corresponds to the number of pho-

tons at 𝜔 multiplied by the energy per photon, in addition to the zero-point energy ℏ𝜔/2.1

Unfortunately, using a harmonic oscillator system as our qubit would be challenging. This

is because all the energy levels would be evenly spaced, so any radiation that drives the

transition within our quantum mechanical subspace — the ground and first excited states

— would excite the qubit to other levels as shown in Fig. 3-3(a). To store quantum infor-

mation, we need a quantum mechanical system with uneven energy spacing — such as an

1In reality, the physical model involves more degrees of frequency and experiences different sources of

dissipation. A more detailed discussion can be found in references [56].
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a b c

Figure 3-3. | Energy levels of harmonic and anharmonic systems. a. Harmonic oscillator

potential with equal energy level spacing of ℏω. b. Harmonic potential (dashed orange line) with a

softening correction (solid red line), showing reduced energy level spacing by the anharmonicity

parameter α as the energy level increases. c. A rough illustration of the potential of a highly

anharmonic system such as a physical atom. In general, the anharmonicity in an atomic system is

quite significant as the potential is far distinct from that of a harmonic oscillator.

anharmonic oscillator (Fig. 3-3(b)). As introduced in Chapter 2, a Josephson junction is a

nonlinear inductor with its junction energy expressed as

𝑈 = 𝐸J(1− cos𝜑), (3.9)

where 𝐸J = Φ0𝐼0/2𝜋 = ℏ𝐼0/2𝑒 is defined as the characteristic Josephson energy scale,

and 𝜑 is the gauge-invariant phase across the Josephson junction as discussed in Eq. (2.41).

The junction potential energy is a cosine function with a characteristic scale determined by

the junction critical current. 𝜑 is related to the magnetic flux variable Φ as 𝜑 = 2𝜋Φ/Φ0

given by Eq. (2.43). The nonlinear Hamiltonian Eq. (3.3) can be rewritten as

𝐻 =
�̂�2

2𝐶
+ 𝐸J

[︃

1− cos

(︃

2𝜋Φ̂

Φo

)︃]︃

. (3.10)
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Therefore, a Josephson junction embedded inside the LC oscillator is capable of creating

an anharmonic potential for a qubit. This means the energy spectrum of potential is no

longer degenerate. Therefore, we are able to create an addressable qubit by identifying the

two-level quantum subspace labeled as |0⟩ and |1⟩ as shown in Fig. 3-3(b).

3.2.2 Cavity QED

Having constructed a qubit by modeling the two lowest levels of the supercondcut-

ing circuit in the above equation, we can now couple these qubits to a cavity system, a

paradigm of cavity quantum electrodynamics (cavity QED). Cavity QED has been dis-

cussed extensively in the literature, and we follow Ref. [104] for this part of the derivation.

The Hamiltonian 𝐻 = 𝐻q + 𝐻res + 𝐻int for a transmon typically involves three terms: a

qubit

readout resonator

microwave

feed line

Figure 3-4. | Schematic of a cavity QED system. g is the coupling strength between the qubit and

the readout resonator; κ is the coupling between the readout resonator and the microwave feed line.

qubit term, a resonator term, and an interaction term between the two, and can be expressed

as

𝐻 =
ℏ𝜔q

2
�̂�z + ℏ𝜔r

(︂

�̂�†�̂�+
1

2

)︂

+ ℏ𝑔
(︀

�̂�+ �̂�†
)︀

(�̂�+ + �̂�−) , (3.11)

where 𝜔q and 𝜔r denote the qubit and resonator frequencies, and 𝜎+ and 𝜎− are the qubit

raising and lowering operators, respectively given by 𝜎+ = |1⟩⟨0| and 𝜎− = |0⟩⟨1|. Note

that we treat the resonator as a harmonic oscillator for simplicity. In this system, we as-

sume energy conservation, considering the qubit and resonator energies are large compared

to the available thermal energy from the environment. We can make the rotating wave ap-
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proximation of the Hamiltonian and discard terms that do not conserve energy, such as the

term �̂�†𝜎+ because it adds energy to both the qubit and resonator. After the approximation,

Eq. (3.11) becomes

𝐻 =
ℏ𝜔q

2
�̂�z + ℏ𝜔r

(︂

�̂�†�̂�+
1

2

)︂

+ ℏ𝑔
(︀

�̂�†�̂�− + �̂��̂�+
)︀

. (3.12)

Eq. (3.12) is known as the Jaynes-Cummings Hamiltonian, and the interaction term can be

interpreted as the excitation exchange between the atom and the resonator. The simplicity

of this Hamiltonian makes cavity QED systems a popular choice in implementing coherent

control of the quantum degrees of freedom of a qubit.

Dispersive Regime and QND Measurement

Now let’s take a step further and consider the coupling in the dispersive limit, i.e. 𝑔 ≪
∆ ≡ 𝜔q − 𝜔res. In this limit, no energy is exchanged between the qubit and the resonator,

and the eigenstates of the cQED system can be well approximated by the product states

of the qubit and resonator. By performing a perturbation expansion in the small parameter

𝑔/∆, we approximate the Eq. (3.12) in the dispersive limit as

𝐻disp =
ℏ

2

(︂

𝜔q +
𝑔2

∆

)︂

�̂�z + ℏ𝜔r

(︂

�̂�†�̂�+
1

2

)︂

+
ℏ𝑔2

∆
�̂�†�̂��̂�z. (3.13)

The additional term 𝑔2/∆ represents the Lamb shift caused by the qubit and the zero-point

energy of the resonator field. The last term in Eq. (3.13) describes the interaction between

the qubit state and the resonator field. To see the effect of the qubit on the resonator, we

rearrange the terms and express the Hamiltonian as

𝐻disp =
ℏ

2
𝜔q�̂�z + ℏ

(︂

𝜔r +
𝑔2

∆
�̂�z

)︂(︂

�̂�†�̂�+
1

2

)︂

. (3.14)

Here we see the resonator frequency depends on the qubit state �̂�z, and thereby probing

the resonator frequency gives us information on the qubit state. This shift between the

two qubit-state-dependent resonator frequencies, 𝜔r(|0⟩) and 𝜔r(|1⟩) corresponds to the so-

called dispersive shift, denoted by 2𝜒, where 𝜒 = 𝑔2/∆. As we see in Fig. 3-5, one can
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use the dispersive shift to determine the qubit states. In either reflection or transmission

measurement of the resonator phase, it changes rapidly as one goes through the resonance.

The resonator linewidth is denoted by 𝜅 representing the coupling between the resonator to

the microwave feedline as shown in Fig. 3-4. By probing the resonator at 𝜔d — halfway

between 𝜔r(|0⟩) and 𝜔r(|1⟩) indicated by the brown dashed line, one can achieve the max-

imum contrast between the two states with 2𝜒 = 𝜅 [41]. Similarly, the shift can also be

observed in the transmission profile |𝑆21| of the resonances, allowing us to distinguish the

two qubit states.
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Figure 3-5. | cQED readout. a. Qubit-state-dependent phase response θqs of the resonator, when

the qubit is in its ground state |0⟩ (blue) and excited state |1⟩ (red). b. The corresponding

transmission amplitude |S21| c. The complex plane representation of the qubit states. One can

obtain the maximum contrast between the two states by probing/driving the resonator at the middle

of the two resonances at ωd (dashed line in (a) and (b)).

Decoherence Channels

The qubit state can be thus mapped out at any given time by probing the resonator,

allowing us to examine the qubit coherence. It is characterized with metrics such as longi-

tudinal relaxation time 𝑇1 associated with its rate Γ1 ≡ 1/𝑇1 and transverse relaxation time

𝑇2 with its corresponding dephasing rate Γ2 ≡ 1/𝑇2 = Γ1/2 + Γϕ, where Γϕ represents

the pure dephasing rate. The types of relaxation refer to the dynamics of the qubit state

that can be represented on a Bloch sphere — a description of a quantum two-level sys-

tem [56]. The measurements for these quantities are well studied methodologically from

nuclear magnetic resonance and atomic physics and require many repetitions of a given

experiment, referred to as ensemble measurements.
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Figure 3-6. | Qubit coherence measurement protocols for Rabi, Ramsey and T1. Qubit

coherence measurement protocols for Rabi, Ramsey and T1. The top panels show pulse sequences

for the Rabi, Ramsey, and T1 experiments. The purple trace indicates pulses at the qubit frequency

ωq, while the blue trace indicates pulses at the readout frequency ωr. The bottom panels show

typical experimental Rabi, Ramsey, and T1 traces. More specifically, the red lines in (a) and (b)

correspond to a sine wave with an exponentially decaying envelope and a fit to a decay exponential

in (c).

As displayed in Fig. 3-6(a), we typically commence with measuring Rabi oscillations

of the qubit. This is achieved by sending a variable-width pulse at the qubit frequency

𝜔q and measuring the qubit’s state after the pulse. The experiment is repeated several

times for different pulse durations 𝜏 and averaged each time for a given 𝜏 . The result is

a decaying sinusoidal Rabi oscillation, as shown in the picture. The Rabi frequency ΩRabi

depends on the amplitude of the Rabi drive and also on the detuning of the Rabi drive

from the qubit frequency ∆𝜔 as ΩRabi =
√︀

Ω2 + (∆𝜔)2, where Ω is the Rabi frequency at

zero detuning. Rabi measurement gives us several valuable pieces of information. First, it

indicates the qubit frequency location by fixing the Rabi drive amplitude and varying the

drive frequency until the minimum Rabi frequency is observed. Secondly, Rabi oscillations

give us a calibration for the Π pulse — a pulse with duration and amplitude necessary to

a transition between qubit states |0⟩ and |1⟩. The name corresponds to rotating the qubit

state vector on the Bloch sphere by 𝜋 radian. Moreover, the decay of Rabi oscillations is

related to qubit dephasing and, more specifically, to noise-induced variations in the Rabi

frequency. Considering Rabi oscillations as an ensemble measurement, the noise leads to
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different phases at longer pulse duration for individual measurements. Therefore, one can

use the Rabi decay as a probe of the qubit noise. The envelope of the Rabi oscillations

alters from exponential to Gaussian, depending on the noise spectrum [50].

We measure the Ramsey fringes to obtain information about the qubit frequency and its

dephasing time 𝑇2. As shown in Fig. 3-6(b), the protocol involves sending two 𝜋/2 pulses

(thanks to the Rabi measurement) to the qubit with a varying time delay 𝜏 between the

pulses and then measuring the state of the qubit. Similarly, we repeat this measurement for

each time delay and extract the average measured qubit state as a function of time delay 𝜏 .

Oscillations will occur — in this case, called Ramsey fringes — if the qubit drive is detuned

from the unperturbed qubit frequency. The bottom of Fig. 3-6(b) shows a typical Ramsey

fringe, whose decay envelope can be fitted with an exponential 𝑒−Γ2t, with a time constant

given by 𝑇2 = 1/Γ2. Since the Ramsey frequency is equal to the detuning between the

qubit drive and the true qubit frequency, a Ramsey measurement is a precise way to extract

the qubit frequency and even beyond to monitor low-frequency fluctuations (e.g., caused

by flux noise) by continuously measuring Ramsey fringes to extract the qubit frequency

over time. The Ramsey frequency has a linear dependence on drive detuning and, thereby,

gives a more sensitive way to extract the qubit frequency in contrast to Rabi oscillations,

whose frequency has a quadratic detuning dependence.

After calibrating 𝜔q and the 𝜋 pulse with Rabi and Ramsey measurements, we can

characterize the qubit’s longitudinal relaxation time 𝑇1. We prepare the qubit in the excited

state |1⟩ with a 𝜋 pulse, wait for a variable amount of time 𝜏 , and then measure the qubit

state. Again, we perform an ensemble measurement of the experiment as a function of 𝜏 .

As a result, we can observe ensemble decay of the qubit state as shown in Fig. 3-6(c) and

extract the time constant 𝑇1 by fitting the decay with an exponential function 𝑒−Γ1t.

The coherence measurements essentially inform us of the time for the qubit to transform

into a classical bit, serving as a quality check of the quantum mechanical system. On the

other hand, they provide us with information regarding the coupling of the qubit to its

environment and the amount of environmental noise the qubit experiences. Using such

information can turn the qubit into a sensor to characterize, for example, the noise in the

system. We will discuss this more in the upcoming chapter.
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3.2.3 Waveguide Quantum Electrodynamics (wQED)

qubit
microwave

feed line

Figure 3-7. | Waveguide coupled to a qubit. The qubit has a DC SQUID, so its frequency can be

tuned via an external magnetic flux bias. The qubit also couples to a 50Ω microwave feedline.

Unlike cavity QED, waveguide quantum electrodynamics (wQED) deals with a system

where the atoms or qubits couple to a waveguide containing a continuum of propagating

photonic modes that emulates one-dimensional free space. In these systems, atoms can

directly absorb or release their excitations in the waveguide as photons, as shown in Fig. 3-

8(b). Because wQED focuses on emissive phenomena, its architecture is ideal for observing

interference phenomena that involve atom-photon interaction, in addition to quantum com-

munication applications [54]. Our discussion of this topic pivots on the usage of wQED as

a noise calibration source, which we will discuss further in the next chapter.

In systems with a qubit coupled to a waveguide (Fig. 3-8(b)), the qubit will reflect weak

incident coherent tones (�̄� = |𝛼|2 ≪ 1, where |𝛼| is the amplitude of the coherent state)

in the transmission line [54]. In the limit �̄� ≪ 1, the probability of two or more photons

is negligible. The qubit absorbs a single photon from the coherent drive and emits the

photon isotropically in the forward and reverse directions with a 𝜋 phase shift. As a result,

the forward direction destructively interferes with the transmitted driving field, while the

reverse direction constructively interferes with the reflected field. Therefore, under ideal

conditions, all photons are reflected and no photons are transmitted. This perfect destructive

interference is modified by the presence of decoherence, which changes the transmission

coefficient. Each qubit can be treated independently as long as they are far-detuned from

each other, when |𝜔i − 𝜔j| ≫ Γi,i,Γj,j , where 𝜔i is the qubit 𝑖’s frequency, and Γi,i is its

self-decoherence rate due to the transmission line. A vector-network analyzer (VNA) —

an instrument that measures the scattering parameter of electrical networks — can be used

to measure the transmission of coherent signals ⟨𝑉out⟩/⟨𝑉in⟩. The transmission coefficient
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is [72, 54]

𝑡 = 1− 𝜉wΓ1

2Γ2

1− i∆
Γ2

1 +
(︁

∆
Γ2

)︁2

+ Ω2

Γ1Γ2

. (3.15)

Using this equation, we can calibrate the absolute power at the device with independently
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Figure 3-8. | Waveguide coupled to a qubit as a noise power reference. a. A microscopic image

of the wQED device, where three qubits coupled to a meandering transmission line are visible. b.

A schematic illustrating the interference effect between a qubit and a weak coherent tone. Process

A: in the limit n̄ < 1, the qubit absorbs a photon from the coherent driving field. Process B: the

qubit emits the photon isotropically in the forward and reverse directions with a π phase shift. As a

result (A+B), the emission from the qubit causes a destructive interference with the forward

propagating field and results in the reflection of the signal [54]. c. Qubit spectrum measured by

scanning DC magnetic flux bias and measuring its transmission profile at large drive. The noise

temperature characterization is performed at various qubit frequencies between its two sweet spots

(marked between the white dashed lines).

measured parameters: Γ1 is the spontaneous emission rate of the qubit into the transmission

line, Γ2 = Γ1/2 + Γφ is the transverse decoherence of the qubit, and Γφ is the qubit

dephasing rate; Ω is the drive amplitude in the unit of Hz at the input of the qubit. These

are similar to the quantities in cavity QED. Moreover, ∆ is the qubit-drive detuning; 𝜉w is

the ratio of emission to the waveguide compared to all loss channels, and within the SNR

of the data, it is assumed to be unity since the qubit is considered to be strongly coupled to

the waveguide so that the decay into the waveguide dominates all the other decay channels.

Finally, the drive power at the qubit is given by [72]

𝑃 = 𝜋ℏ𝜔iΩ
2/2Γ1, (3.16)

which can be used to plot the transmission coefficient versus power by substituting Ω in the

equation. The power dependence of the transmission calibrates the absolute power at the

qubit, which enables us to further calibrate the noise power.
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3.3 Qubit control

Quantum gates are essential operations to manipulate qubits’ states and implement

quantum algorithms. 𝜋 and 𝜋/2 pulses introduced in the earlier section are examples of

single-qubit quantum gates. Like classical logic gates, the quantum gates can change qubit

states conditionally.

NOT

In Out

X

Classical NOT gate Quantum X gate

a b

Figure 3-9. | Comparison between the classical inverter (NOT) gate and the quantum bit flip

(X) gate. a. The classical NOT gate inverts the input state of a classical bit. b. The quantum X gate

flips the amplitudes of the two components of a quantum bit.

3.3.1 Single-Qubit Gates

For example, shown in Fig.3-9 is a comparison of the classical inverter (NOT) gate

and quantum bit flip (X) gate. The classical NOT gate inverts the state of a classical bit.

Analogously, the quantum X gate flips the amplitudes of the two components of a quantum

bit from |𝜓in⟩ = [ ab ] to |𝜓⟩out = [ ba ]. Unlike the classic logic gates, quantum gates can alter

the phase of qubit states. For instance, a Z gate — a single-qubit phase shift gate — rotates

a qubit state about the z-axis by 180∘. During the operation, the qubit acquires a global

phase 𝑒iπ, but there is no change to the probability of measuring a |0⟩ or a |1⟩. The Z gate
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circuit representation is displayed in Fig. 3-10, and its matrix form is:

Z =

⎛

⎝

1 0

0 𝑒iπ

⎞

⎠ (3.17)

Z

Quantum Z gate

Figure 3-10. | Quantum Z gate. The quantum Z gate rotates the qubit state by π radian about

z-axis.

3.3.2 Two-Qubit Gates

Going beyond single-qubit operation, the controlled phase (cPhase) gate is a two-qubit

entangling operation that can take product states of individual qubit states and outputs en-

tangled states. An exemplary two-qubit product state can be expressed as (𝑎1|0⟩+ 𝑏1|1⟩)⊗
(𝑎2|0⟩+𝑏2|1⟩) = 𝑎1𝑎2|00⟩+𝑎1𝑏2|01⟩+𝑏1𝑎1|10⟩+𝑏1𝑏2|11⟩. Depending on the control state,

the gate induces a phase 𝜑 on the state of the target qubit, such as |1⟩ → 𝑒iφ|1⟩. Again, this

is a global phase for the quantum state and does not change the probability of measuring

|1⟩.

CPHASE(𝜑) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒iφ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.18)

Equation 3.18 represents the two-qubit cPhase gate with respect to its computational basis,

and only shifts the phase of the |11⟩ state, i.e., the coefficient 𝑏1𝑏2 → 𝑏1𝑏2𝑒
iφ while all the

other coefficients remain the same. In the special case that 𝜑 = 𝜋, we have the so-called
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CZ gate that with the matrix form of

CZ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.19)

Its quantum circuit representation is shown in Fig. 3-11, where the CZ gate is achieved by

applying a Z-gate to the target qubit if the control qubit is in state |1⟩

Z

Quantum CZ gate

Figure 3-11. | Quantum CZ gate. The CZ gate in this case applies a Z-gate operation to the target

qubit if the control qubit is in state |1⟩.

A quick remark: there are many other types of two-qubit gates and even multiqubit

gates. In this thesis, we will focus on the two-qubit cPhase gate mediated through a com-

mon resonator bus.

To realize the cPhase gate, we need a longitudinal interaction, which is purely diagonal

(e.g., magnetic dipole coupling). A longitudinal interaction can affect the energy level

splitting and generate entangled states without energy exchange. In the next section, we

will discuss how to engineer effective longitudinal coupling using the native transverse

interaction between transmons.

3.3.3 Resonator-Induced Phase Gate

A cPhase gate can be achieved with two qubits coupled to a resonator bus with an

effective ZZ-type longitudinal interaction. Such a gate is known as the Resonator-Induced

Phase gate (RIP gate).
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Figure 3-12. | RIP gate circuit schematic. a. A typical circuit representation of a qubit coupled

to a quarter-wave resonator for dispersive readout measured in a reflection setup. b. Schematic of

the RIP gate with two fixed-frequency qubits coupled to a common quarter-wave resonator bus in a

reflection setup.

This gate was studied recently by IBM [81], and we now summarize their discussion

and experiments before suggesting improvements to the RIP gate in the next section. By

adiabatically applying and removing an off-resonant pulse to the resonator, the resonator

state evolves from its initial vacuum state by following a qubit-state-dependent closed loop

in phase space — this trajectory is sometimes referred to as ‘which-path’ information. After

this joint qubit-resonator evolution, the resonator returns to vacuum state, and the qubits

are left unentangled from the resonator but with an acquired a non-trivial phase, which

corresponds to the global phase we have seen in equation 3.18. A cartoon illustration is

shown in Fig. 3-13.

or

Figure 3-13. | RIP gate phase evolution. The illustration depicts qubit-state dependent

trajectories with the gate resonator under a coherent drive.
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Paik et al. from IBM demonstrated this effect experimentally using a 3D transmon

system, where fixed-frequency transmon qubits were dispersively coupled to a resonator

bus. There were two sets of 4-qubit devices as shown in Fig. 3-14, which were coupled to

a superconducting high-Q aluminum resonator with a decay rate 𝜅/2𝜋 = 7.7 kHz. Qubits

have consistent lifetimes in the tens of microseconds. Paik et al. performed two-qubit

randomized benchmarking between pairs of qubits in a four-qubit device with frequency

differences spanning 0.38 GHz to 1.8 GHz, all with fidelities in the range 0.96-0.98 and

gate times in the range 285 to 760 ns.

Figure 3-14. | IBM RIP gate setup. Figure credit to Ref. [81]. a. Photo of IBM’s

superconducting 4-qubit 3D cQED system with five resonators (four are for individual qubit

dispersive readout, and the common one coupling all the qubits is the gate resonator bus. b. A

close-up picture of a 3D qubit chip. c. Diagram of the 4-qubit 3D cQED system with 5 cavities. d.

Illustration of gate resonator transmission. The microwave drive for the RIP gate (cyan arrow) is

blue-detuned by frequency ∆ from the dressed cavity resonance ωgg...g.

The four-qubit system can be described by a sum of Duffing oscillator Hamiltonians

coupled to the resonator bus, with a microwave drive term for the RIP gate. When the

qubit frequencies are well-separated, the qubit-qubit interactions become diagonal in the

qubit computational basis, with a static component and dynamical interactions activated

by the resonator drive. The qubit interactions can therefore be described in terms of Z

operators. Depending on the Pauli weight p on Z interactions (ZZ, ZZZ or ZZZZ), the
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phase accumulation rates are different and can be expressed as the following:

𝜃ZiZj
= − |𝜖0|2𝜒2

8∆(∆ + 2𝜒)(∆ + 4𝜒)
, (3.20)

𝜃ZaZbZc
= − 3|𝜖0|2𝜒3

16∆(∆ + 𝜒)(∆ + 3𝜒)(∆ + 4𝜒)
, (3.21)

𝜃Z1Z2Z3Z4 = − 3|𝜖0|2𝜒4

8∆(∆ + 𝜒)(∆ + 2𝜒)(∆ + 3𝜒)(∆ + 4𝜒)
, (3.22)

where ∆ is the detuning of the drive frequency to the dressed bus resonator with all qubits

in their ground state. Here we assume each qubit has the same dispersive coupling 𝜒.

As one can see, when the RIP gate drive is activated, all Z interactions are turned on at

the same time automatically, which is converse to the objective of exerting control over

individual qubit-qubit interactions. Fortunately, the phase accumulation rate scales with

(𝜒/∆)p, so the multi-body interaction rate becomes slower as the Pauli weight increases

under the condition 𝜒/∆ < 1. Generally speaking, there are several unique advantages

of the RIP gate. The first is its all-to-all connectivity originating from qubits sharing the

same resonator bus. It has potential application in fault-tolerant error correction using

the gauge color code or digital quantum simulations. Secondly, due to the nature of the

geometric phase, the RIP gate is insensitive to phase fluctuations of the drive as long as

the area enclosed loop remains invariant. Therefore, the gate itself is largely immune to

imperfections and practical limitations within the microwave sources that drive the RIP

gate. Thirdly, frequency crowding is less of an issue by accommodating larger differences

in qubit frequencies compared to other microwave activated gates such as cross-resonance

gate.

There are also noticeable drawbacks to the existing RIP gate scheme. First, the gate

time (>200 ns) is slow in comparison with the cPhase gate implementation using tunable

transmons (<50 ns) [6]. The long gate time is detrimental to the overall gate fidelity as

it determines the number of operations within the qubit coherence limit; the fidelity of a

single qubit gate would also be worse. One remedy to this is to drive the gate stronger or
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decrease the drive-resonator detuning, which is equivalent to increasing 𝜖0 or decreasing ∆

in equations Eq. (3.20) to Eq. (3.22). Both can enhance the gate speed, but gate fidelity will

suffer from worsening measurement-induced dephasing associated with enhanced photon

shot noise in the resonator. It has been proposed to counter this effect by driving the gate

resonator with a squeezed coherent state [87], and it is one of the many applications of

squeezed light in a qubit system, which we will discuss in the final chapter.
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Chapter 4

Experimental Setups and Measurement

Protocols

As we discussed in Chapter 5, measuring quantum mechanical signals requires a se-

ries of amplification stages, and it is paramount to characterize their noise performance as

an integral part of the signal processing. For instance, the measurement efficiency of the

output chain needs to be determined accurately to extract squeezing levels at the output

of the JTWPA. However, the experiments are primarily conducted at milliKelvin temper-

atures in a vacuum, presenting a fundamental challenge for direct access to the cryogenic

setups. Calibrating at room temperature by passing a signal through the entire setup is

insufficient, as the insertion loss for the input and the overall transmission of the output

changes dramatically with temperature. Therefore, it requires an in-situ noise power cal-

ibration device at the mixing chamber. In this chapter, we will discuss a few commonly

used approaches to calibrate the noise such as the AC Stark shift from a cQED qubit [99],

the Y-factor method [38], the shot noise from a voltage-biased tunnel junction [106]. In

addition, we will explore a fourth method using a wQED device to characterize the system

noise temperature [72, 54].
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4.1 Cryogenic setup and control instrumentation

Superconducting quantum experiments must operate at milliKelvin temperatures to re-

duce the thermal photon population at the qubit frequency. The dilution refrigerator is an

essential workhorse in conducting experiments on superconducting circuits. The physical

temperature of the metal needs to drop below its critical temperature 𝑇c for it to transition

into a lossless superconducting state. Heinz London first proposed the concept of a dilution

refrigerator in the early 1950s, which was realized experimentally in 1964 at Leiden Uni-

versity. Over more than five decades, state-of-the-art dilution refrigerators have developed

into commercially available items, capable of reaching below 10 mK with outstanding re-

liability. A dilution refrigerator has different temperature stages set by the physical limits

of different cooling mechanisms. This marvelous cryogenic technology has enabled many

exciting pieces of research, including two Nobel-Prize-winning experiments (the discovery

of superfluidity in 3He in 1971 by Lee, Osheroff, and Richardson, as well as the discov-

ery of fractional quantum hall effect in 1981 by Daniel Tsui, Horst Störmer and Robert

Laughlin).

In the lab, a typical dilution refrigerator can reach a temperature of 20 mK or lower,

which at a frequency of 8 GHz contributes to an average thermal photon number �̄� <

0.0006 [122], limited by the input and output lines, assuming they receive proper attenua-

tion and filtering to reduce thermal photons from the high-temperature environment. Gen-

erally speaking, a superconducting quantum experiment requires carefully designed input

and output control.

There are three common wiring categories inside a dilution refrigerator: DC lines, RF

input lines, and RF output lines (some dilution refrigerators may feature optical fibers, etc.).

For the input, to prevent extrinsic noise contamination, whether it arises from thermal fluc-

tuations or the control instruments, heavy filtering and attenuation are necessary to remove

unwanted noise. Stainless steel cables are typically used as RF input lines to the mix-

ing chamber stage. They provide an electrical connection between different temperature

stages with a low thermal conductivity that helps reduce the thermal load on the cooling

unit of a dilution refrigerator. In table 4.1, we list the major experimental components
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Figure 4-1. | Dilution refrigerator. Different temperature stages and cryogenic wirings are

visible. Image credit: MIT EQuS Group.
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used in the experiment, and Fig. 4-2 shows the overall wiring diagram for the experiments

conducted in a Leiden CF450 dilution refrigerator with a base temperature around 30 mK.

The pumps and probe signal generated by RF sources (Rhode and Schwarz SGS100A) are

combined at room temperature (290 K) and sent via semi-rigid microwave coaxial cable to

the squeezer (SQZ), a Josephson traveling-wave parametric amplifier (JTWPA). The line

is attenuated by 20 dB at the 3 K stage, 10 dB at the still, and 33 dB at the mixing chamber

to ensure proper thermalization of the line and attenuation of thermal photons from higher-

temperature stages. In addition, coaxial cables and other components from the input line

contribute around 8 dB loss. A Cryoperm-10 shield magnetically shields the samples. We

use Radiall single-pole-6-throw (SP6T) microwave switches to transmit the signal from ei-

ther the squeezer, the shot-noise tunnel junction (SNTJ), or the waveguide QED (wQED)

qubit to the measurement chain. The microwave signal at the output of the SP6T switch

propagates through two 50 Ohm-terminated circulators, a combination of a 3 GHz high-

pass and a 12 GHz low-pass filter, and then into a superconducting NbTi coaxial cable that

connects the 30 mK and 3 K stages. The NbTi cable allows high electrical and low ther-

mal conductivity to minimize attenuation and heat transfer between different temperature

stages.

Component Manufacturer Type

Control Chassis Keysight M9019A

AWG Keysight M3202A & 33250A

ADC Keysight M3102A

RF source Rohde & Schwarz SGS100

Refrigerator Leiden CF450

DC Bias Yokogawa GS 200

Table 4.1. Major experimental equipment used in the experiment.

For the output, the signal strength from a device at the mixing chamber1 is often too

small to be measured directly by a room temperature instrument such as a spectrum ana-

lyzer. Hence, the measurement electronics in the dilution refrigerator needs several ampli-

fication stages to bring the signal above the instrumental noise floor; it typically requires a

1Mixing chamber is the temperature stage inside a dilution fridge that is around 20 mK in the setup of this

work. It is where the 3He and 4He mixture undergoes the dilution process.
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high electron mobility transistor (HEMT, e.g., Low Noise Factory LNF-LNC4_8C) ampli-

fier at 3 K to give 35-40 dB gain with a noise temperature around 2 K. Room temperature

amplifiers (e.g., MITEQ, AMP-5D-00101200-23-10P) then boost the signal by another

35 dB. Finally, low-frequency amplifiers amplify the baseband signals after further signal

processing steps (e.g., frequency downconversion, filtering, etc.). In the squeezing experi-

ment, the pump tones are band-pass filtered (and reflected into the 50 Ohm termination of

the room-temperature isolators) before the signal enters the IQ mixer for downconversion

to avoid saturating the setup. In addition, the pump phase drift with 1 GHz clock reference

is negligible compared to the measurement noise in the squeezing quadrature data. We also

preemptively minimize any potential experimental drifts with our interleaved acquisition

method described in Chapter 7.

DC wires come in different forms depending on the usage. For instance, it would

require two pairs of DC wires to accurately measure the resistance of a thermometer (four-

terminal sensing method); superconducting wires with NbTi cladding (usually in the form

of twisted pairs) are frequently used in flux bias of SQUID-based systems such as qubit

or cavity-based Josephson parametric amplifiers. In the thesis work, Fig. 4-2 shows an

example of the DC wiring setup. The frequency of the wQED qubit is controlled with a

global flux line filtered at the 3 K stage, using a DC source (Yokogawa GS200) at room

temperature.

We use an arbitrary waveform generator (AWG Keysight 33250A) to bias the SNTJ.

The AWG sends a low-frequency triangle wave with an amplitude 𝑉bias through a 993 kΩ

resistor at room temperature to current bias the device in the µA range. The current then

passes through a stainless steel thermocoax to attenuate microwave and infrared noise. The

resistance of the SNTJ at base temperature is measured in-situ to allow accurate extraction

of the bias voltage across the junction. Additionally, to ensure no spurious resonance due

to the package design that can affect the noise temperature measurement, 𝑆11 of the SNTJ

is characterized using a vector network analyzer (VNA) as shown in Sec. 4.1. From the

measurement, we observe that SNTJ has its 𝑆11 consistently below -17 dB overall from

4 GHz to 8 GHz, which means< 2% power coming from the SNTJ is reflected. In addition,

𝑆11 of a 50Ω and a circulator are characterized as a comparison.
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Figure 4-2. | Cryogenic setup and wiring diagram. The diagram is color-coded to illustrate

individual functional groups. The blue circuit shows the JTWPA pump sources with additional

components including power combiner, isolator, and bandpass filter. The purple circuit represents

the data acquisition setup that includes a spectrum analyzer and a digitizer with several filters and

amplifiers. The green circuit is the DC biasing of shot-noise tunnel junction (SNTJ) and wQED

qubit in the noise temperature characterization.
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SNTJ Circulator 50Ω

Figure 4-3. | Room temperature return loss. a. S11 of different components measured at room

temperature. b. Device pictures.

80



4.2 System Noise Calibration

4.2.1 cQED AC Stark Shift

To use a cQED qubit as a noise calibration device, let us revisit the dispersive Hamil-

tonian Eq. (3.13) from the perspective of the qubit and examine the effect of resonator

photons on the qubit as

𝐻disp =
ℏ

2

(︂

𝜔q +
2𝑔2

∆
�̂�†�̂�+

𝑔2

∆

)︂

�̂�z + ℏ𝜔r�̂�
†�̂�. (4.1)

Eq. (4.1) shows that the qubit frequency shifts due to the presence of photons in the res-

onator, a phenomenon known as the AC Stark shift. This is the basis for the noise calibra-

tion protocol using a qubit-resonator system.

Populating the resonator with photons shifts the qubit frequency, corresponding to

∆𝜔ac = 2
𝜅2

𝜅2 + 𝜒2
𝜒�̄�, (4.2)

where the number of photons is given by �̄� = �̂�†�̂�. In the case 𝜒 ≪ 𝜅, it can be simplified

to

∆𝜔ac = 2𝜒�̄�. (4.3)

We extract 𝜅 and 𝜒 values from the resonator’s Lorentzian response and from 𝜋 pulse

calibration through Rabi oscillation measurement. The pulse calibration method serves as

a check for more accurate measurement of 𝜒 using a photon-induced dephasing process,

i.e.,

Γφ =
8𝜒2

𝜅
�̄�. (4.4)

This is a simplified result from Ref. [42], where we again assume 𝜒 ≪ 𝜅. The charac-

terization process involves injecting photons during a Ramsey measurement as shown in

Fig. 4-4.
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readout

τ

Figure 4-4. | Photon induced dephasing measurement sequence. Compared with regular

Ramsey measurement (Fig. 3-6(b)), here we insert an additional drive tone at the resonator

frequency with drive amplitude Vdrive in-between the two π/2 pulses.

Figure 4-5. | Measurement of qubit frequency shift and dephasing due to increasing photon

number in the resonator. a. The photon number in the resonator increases as we ramp up the RF

power. We perform Ramsey measurement as a function of time at each given drive power. b. From

the left plot, we can extract Ramsey decay rates and AC Stark shift as a function of RF power.
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From the qubit frequency shift and dephasing measurements, we can extract 𝜒 fairly

accurately by performing a linear fit on both ∆𝜔ac and Γφ. We did not use this method

in the thesis work, and more details can be found in [62]. We can continue to calibrate

the photon number inside the resonator and use it as a calibrated noise source. The exact

protocol will be discussed in Sec. 4.2.4.

In general, the AC Stark shift method has been commonly used in cQED for noise

characterization because it utilizes the same experimental setup — a qubit system followed

by an amplifier in most cases. It does not require additional calibration resources as the

qubit-resonator system acts as the source. However, a shortcoming of this method is the

bandwidth limit. The procedure only works effectively within a narrow range around the

resonator frequency; the resonator will bandpass filter input power, restricting a broadband

application, such as broadband two-mode squeezing characterization.

4.2.2 Y-Factor Method

Y-factor method utilizes the Johnson noise generated from a resistive load at a temper-

ature 𝑇 at thermal equilibrium. Its output noise spectrum to a matched load in a waveguide

is given by

𝑃noise =
ℎ𝑓

2𝐵Y

coth

(︂

ℎ𝑓

2𝑘B𝑇

)︂

, (4.5)

• 𝑓 is the frequency of the measurement.

• 𝐵Y is the measurement bandwidth,

• 𝑇 is the physical temperature,

• 𝑘B is the Boltzmann constant,

• ℎ is the Planck constant.

The Y-factor method uses two 50 Ω matched resistors at different temperature values 𝑇1

and 𝑇2 (𝑇2 > 𝑇1 without loss of generality) to output two different thermal noise powers

𝑃1 and 𝑃2. The effective noise temperature as defined in Chapter 5 of the device under test
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is

𝑇e =
𝑇2 − 𝑌 𝑇1
𝑌 − 1

, (4.6)

where 𝑌 = 𝑃2/𝑃1 is the ratio of the output power measurements. More details of the

derivation can be found in Ref.[86]. This method has been used frequently to characterize

the noise performance in the regime ℎ𝑓 ≫ 𝑘B𝑇 and noise power 𝑃noise = 𝑘B𝐵Y𝑇 varies

with temperature 𝑇 . There are a few drawbacks to this method. First of all, it needs a

microwave switch to change between a high thermal load and a low thermal load. Alterna-

tively, it requires an additional heater to vary the physical temperature of the resistor if one

forgoes the microwave switch. Both of these are additional experimental complexities that

could bring uncertainty to the characterization result. Second, the 1/𝑓 noise in the system

can cause a drift in the overall noise power given that the measurement speed is slower

compared to other aforementioned methods.

4.2.3 Shot-Noise Tunnel Junction (SNTJ)

A shot-noise tunnel junction [106] is a superconductor-insulator-superconductor alu-

minum junction, with the superconducting Al operated in the normal state via the strong

magnetic field from an in-situ neodymium magnet.

With a matched load, the noise power at frequency 𝑓 generated by a voltage-biased

SNTJ at temperature 𝑇 is [106]

𝑁 = 𝐺𝑘B𝐵SNTJ

{︃

𝑇N +
1

2

[︂(︂

𝑒𝑉 + ℎ𝑓

2𝑘B

)︂

coth

(︂

𝑒𝑉 + ℎ𝑓

2𝑘B𝑇

)︂

+

(︂

𝑒𝑉 − ℎ𝑓

2𝑘B

)︂

coth

(︂

𝑒𝑉 − ℎ𝑓

2𝑘B𝑇

)︂

}︃

,

(4.7)

where 𝑉 is the voltage bias across the shot noise tunnel junction,𝐵SNTJ is the measurement

bandwidth for the SNTJ noise measurement, 𝐺 is the system gain, and 𝑇N is the system

noise temperature.

In the limit 𝑒𝑉 ≪ ℎ𝑓 , Eq. (4.7) is dominated by thermal and quantum noise. When

𝑒𝑉 ≫ ℎ𝑓 , the noise is dominated by the Poissonian shot noise of the electron current
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Figure 4-6. | A simplified illustration of shot-noise tunnel junction. The “+” and “-” represent

the gate voltage applied to the junction such that the electrons (red) can tunnel through the thin

Al-oxide barrier.
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Figure 4-7. | “Noise mustache curve” generated from a SNTJ. Experimental data plotted

together with the fit using Eq. (4.7). The x-axis is the voltage across the tunnel junction, and the

y-axis shows the noise power coming out from the SNTJ. We can see the “double-coth” feature

and a flat quantum noise bottom — the reason people jokingly refer to this curve as the “noise

mustache.”
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through the tunnel junction. Dilution refrigerators with a base temperature 20-30 mK are

sufficient to reach the quantum noise floor within the frequency range of interest here — 4-

8 GHz represented by the plateau in the vicinity of 0 V junction voltage as shown in Fig. 4-

7. It is worth noting that using a SNTJ, the data set can be collected in tens of milliseconds,

effectively mitigating drift by 1/𝑓 noise. From the fit, we can extract both the system noise

temperature 𝑇N as well as the temperature of the noise source 𝑇 . We adopt this method in

the experiment for noise calibration as well as the protocol we introduce next.
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4.2.4 wQED System Power Calibration

In Sec. 3.2.3, we introduced the wQED system and its power dependence of the trans-

mitivity. Here we continue to explore its application in noise calibration. From Eq. (3.15),

we have

𝑡 = 1− 𝜉wΓ1

2Γ2

1− i∆
Γ2

1 +
(︁

∆
Γ2

)︁2

+ Ω2

Γ1Γ2

. (4.8)

Note that the transmission coefficient through the qubit is normalized by subtracting the

Figure 4-8. | Transmission scan of a qubit as a function of input power and qubit-probe

detuning. Real and imaginary parts of the experimental data (right) and theory (left) are plotted

together as a comparison.

background (without the qubit resonance, determined by detuning the qubit away). Next,

we perform the same VNA measurement while also sweeping the input power. The input

of a coherent state |𝛼⟩ is mostly reflected at low power (�̄� = |𝛼|2 ≪ 1) due to interference

between the input field and the qubit emission. As we increase the input power, the coherent

state |𝛼⟩ will have more contributions from higher number states |𝑛⟩, where (𝑛 > 1),
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while the qubit can only perfectly reflect up to a single photon. As a result, the resonant

transmission increases and approaches unity at sufficiently high power.

𝑆21 measured by a VNA corresponds to the complex transmission 𝑡 as defined in Eq. (4.8).

Fig. 4-9 compares the real and imaginary parts of the data (points) with the theory (line).

Fitting is performed over the entire 2D scan, as shown in Fig. 4-8. In Fig. 4-9(c), we show

the transmittance |𝑡|2 as a function of power at zero frequency detuning ∆ = 0 from the

resonance. Fitting the entire 2D scan enables us to extract Ω and Γ1. Using Eq. (3.16),

we can extract powers at the qubit given the preset powers at refrigerator input at room

temperature. As a result, this method also gives us the information for the setup input at-

tenuation from the signal source to the qubit. The data shown in Fig. 4-9 are fitted nicely

with Γ1 = 934 kHz± 11 kHz and Γ2 = 755 kHz± 14 kHz. The decay rates of our wQED

qubit are (and are expected to be) relatively large compared with a typical cQED qubit due

to its direct coupling to a 50Ω waveguide.
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Figure 4-9. | Transmission profiles and photon number calibration. Experimental and theory

fits are plotted together. a. & b. Real and imaginary part of the transmission coefficient as a

function of input power. c. Resonant transmittivity as a function of input power. d. System noise

extracted using a spectrum analyzer. The system noise is shown as a raised noise floor from the

vacuum limit.

After calibrating the power at the qubit, we characterize the output noise spectrum

shown in Fig. 4-9(d). The same method was performed in Ref [61]. To calibrate the system

noise level, we first extract the system gain by sending a calibrated input field through the

qubit-waveguide system — 𝑃MXC
OTL — power at the wQED reference plane at the mixing
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chamber (MXC), and measure its output — 𝑃RT
OTL — power at room temperature using a

spectrum analyzer [61]. The system gain 𝐺sys = 𝑃RT
OTL/𝑃

MXC
OTL is then used to obtain the

system noise temperature

𝑇sys = 𝑃RT
noise/𝐺sys𝑘B𝐵, (4.9)

where 𝑃RT
noise is the noise level measured at the spectrum analyzer. At frequency 𝜔 =

6.7GHz × 2𝜋, 𝑃RT
noise = -109.63 dBm, 𝐺sys = 65.06 dB and measurement bandwidth 𝐵 =

100Hz, giving a system noise temperature 𝑇sys = 2.46 K using Eq. (4.9). The corresponding

measurement efficiency 𝜂meas using the definition [63] is given by

𝜂meas =
ℏ𝜔

2𝑘B𝑇sys
, (4.10)

where 𝑘B and ℏ are Boltzmann and reduced Planck constants respectively. In this case, we

have a measurement efficiency 𝜂meas = ℏ𝜔/2𝑘B𝑇sys = 6.53%.

4.2.5 Comparison Between the wQED (primary) and the SNTJ (sec-

ondary) Calibration Methods

We have employed two different methods — the primary wQED qubit power calibra-

tion technique and the secondary SNTJ method — to cross-check the measurement results.

We perform the noise temperature characterization using both methods from 6.5 GHz to

6.9 GHz as shown in Fig. 4-10. Given the identical setup after the SP6T switch, the dif-

ference between the two curves most likely arises from the insertion loss ∆𝐴 imposed by

the additional components required to operate the SNTJ (highlighted in red color in the

figure). Based on this assumption, the overestimated noise temperature can be corrected

by accounting for ∆𝐴 and scaling the noise temperature accordingly. The adjusted results

can be seen from Fig. 4-11. In other words, we calibrate the SNTJ using the wQED. The

latter, in principle, gives a more accurate system noise characterization for the squeezing

measurement without additional circuit components as employed for the former. In this ex-

periment, one drawback of the wQED method is its limited frequency range (6.5-6.9 GHz).

However, it can be readily addressed with different qubit designs to target a particular fre-
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quency band.
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Figure 4-10. | Uncorrected noise temperature characterization and system gain. a. Noise

temperature as a function of frequency from 6.5 GHz to 6.9 GHz measured using the SNTJ and the

wQED device separately. b. System gain measured using the two methods. Due to the finite

difference in their RF transmission ∆A, the extracted system gains are different. In other words,

we are using the wQED (primary) to calibrate the SNTJ and isolator loss (secondary). We use this

to correct the system noise in panel (a) independently.
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Figure 4-11. | SNTJ calibrated using wQED. The SNTJ noise temperature has been corrected

here while the wQED measurement values remain unchanged.

At the time of the experiment, no suitable quantum-limited amplifiers were available

with superior noise performance than the HEMT that can tolerate the output power and the

strong pump tones from the squeezer (JTWPA). The HEMT suffices but requires extensive

averaging and background subtraction for this experiment and most others in the literature

of squeezed microwave generation in superconducting circuits. The overall measurement

efficiency can benefit from an additional quantum-limited amplifier like a JTWPA before

the HEMT, allowing a faster data acquisition rate and better signal-to-noise ratio.
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Chapter 5

Josephson Parametric Amplifiers

This chapter starts with the origin and characteristics of noise in quantum mechanical

systems and the effect of noise propagation in a circuit. The discussion highlights the im-

portance of amplification, including phase-preserving and phase-sensitive amplifiers. We

then explore the mechanism behind parametric amplification, a phenomenon that exists

in both the quantum and classical worlds. We will overview different superconducting

parametric amplification technologies focusing on the Josephson-junction-based paramet-

ric amplifiers and examine both resonant and traveling-wave architectures.

5.1 Noise and the Necessity of Amplification

Manipulating quantum mechanical systems often involves a weak signal at cryogenic

temperatures with only a single to a few photons, while the measurement and data record-

ing of such a signal occurs at room temperature. The presence of thermal noise can eas-

ily drown out the signal, not to mention the non-negligible transmission loss that fur-

ther worsens the signal-to-noise ratio (SNR)1. To put the comparison in perspective, a

typical signal coming out of a resonator in superconducting circuits can be represented

as a Gaussian coherent state as introduced in Chapter 2. Assuming the resonant fre-

quency and its FWHM bandwidth are 6 GHz and 6 MHz, respectively, in addition to a

1The loss of a transmission medium is highly dependent upon its frequency spectrum and specific setup.

For example, loss can be a more pronounced issue in microwave coaxial cables compared to optical fiber due

to the skin effect of the conductor.
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typical intracavity coherent drive field with mean cavity occupation �̄� ∼ 1, the output

power is 𝑃 = ℏ𝜔𝜅�̄� ∼ 1 × 10−16 W = −130 dBm. In contrast, a typical analog mi-

crowave signal entering the measurement apparatus at room temperature is on the order of

10−7 W = −40 dBm. The sheer scale of 9-orders-of-magnitude difference in the signal

power levels accentuates the necessity of amplification to bridge the quantum mechanical

and the classical worlds.

However, there is a price to pay for amplifying the signal: the additional noise as-

sociated with the amplification process. Chapter 2 discussed inherent quantum limit on

measurement. Likewise, amplification is essentially a form of measurement that correlates

the output signal with the input [62]. Through the amplification process, the uncertainty

relation constrains how well the output can be correlated to the input. The manifestation

of the uncertainty relation is characterized as the amplifier noise. In physics, one typically

works with linear amplification2 where the output signal power is linearly related to the

input power by a gain factor the G (or
√
𝐺 in amplitude). It can described as

Figure 5-1. | Input and output of a generic amplifier An amplifier characterized by its power

gain G. The input signal with amplitude Vin(t) gets amplified by
√
G along with the additional

noise ζ(t).

𝑉out(𝑡) =
√
𝐺𝑉in(𝑡) + 𝜁(𝑡), (5.1)

where 𝑉in(𝑡), 𝑉out(𝑡) are the input and output signal amplitudes, respectively, and 𝜁(𝑡) is

the additional uncorrelated noise introduced by the amplifier. Typically, we characterize the

time-varying noise 𝜁(𝑡) in its Fourier domain using the power spectral density 𝑆(𝜔), the

noise intensity as a function of frequency 𝜔. It can be expressed as the Fourier transform

2The terminology can sometimes cause confusion. The linearity refers to the amplifier transfer function,

i.e., the output is proportional to the input by a fixed gain factor. The amplification process is mainly due to

the nonlinearity intrinsic to the amplifier itself. In addition, there does exist nonlinear amplification that can

be useful. Still, it is not commonly used in superconducting circuits. It is more straightforward to treat linear

amplification mathematically [104].
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of the noise signal

𝑆(𝜔) =

∫︁ ∞

−∞
⟨𝜁(𝑡)𝜁(0)⟩𝑒−iωt𝑑𝑡. (5.2)

The 𝑆(𝜔) carries units of 𝑎2/Hz, where 𝑎 is the unit of the fluctuations in current, flux, or

voltage.

All practical devices such as coaxial cables, waveguides, amplifiers, and their associ-

ated connections introduce a finite amount of both resistive and reactive loss between the

input and the output. The passive, resistive loss leads to Johnson-Nyquist noise, named

after the people who discovered and explained it. In thermal equilibrium at temperature 𝑇

with resistance 𝑅, it has a voltage noise spectral density of
√
4𝑘B𝑇𝑅 [V/

√
Hz] and a cur-

rent noise spectral density
√︀

4𝑘B𝑇/𝑅 [A/
√
Hz]. When we multiply these two expressions

and integrate them over a finite bandwidth 𝐵, the overall noise power in the resistor 𝑅 is

given by 𝑃 = 4𝑘B𝑇𝐵. Connecting the noisy resistor with a load resistor 𝑅 gives the max-

imum power transfer. The noise power dissipated in a matched load within the bandwidth

𝐵 is given by

𝑃 =

(︂

𝜁rms

2𝑅

)︂2

𝑅 =
𝜁2rms

4𝑅
= 𝑘B𝑇𝐵, (5.3)

where 𝜁rms is the rms voltage of the time-varying noise 𝜁(𝑡) defined in Eq. (5.1), or equiv-

alently as the power spectral density

𝑆(𝜔) = 𝑘B𝑇. (5.4)

The classical noise occurs due to the thermal fluctuations of charge carriers and displays

a frequency-independent behavior often referred to as “white” noise. Note that the above

linear equations serve as an approximation that does not work well for very high frequen-

cies (so-called ultraviolet catastrophe historically, and Planck’s blackbody radiation law

must be used in this case) or very low temperatures, which we will discuss in a moment.

Nonetheless, this is a significant result as it suggests that smaller bandwidth comes with less

noise power. In addition, as temperature 𝑇 decreases, the noise power 𝑃 decreases accord-

ingly. This implies the colder devices and components generate less noise power, which is

a motivation for using a dilution refrigerator to cool them down to a lower temperature.
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As mentioned, the simple relation of the noise spectral density becomes invalid when

quantum mechanical effects take place. Considering the quantum effects by using the

fluctuation-dissipation theorem (FDT), the noise spectral density becomes the following [24]:

𝑆(𝜔) =
ℏ𝜔

2
coth

[︂

ℏ𝜔

2𝑘B𝑇

]︂

. (5.5)

We will not discuss FDT in the thesis, but the theorem quantifies the connection be-

tween fluctuations in a physical system about its equilibrium and susceptibility to exter-

nal perturbations. Further details can be found in Ref.[24]. Here we draw some intuition

from Eq. (5.5) by considering it as a composition of both the classical and quantum parts.

First, Eq. (5.5) can be expressed in exponential form

𝑆(𝜔) =
ℏ𝜔

2

(︂

𝑒ℏω/2kBT + 𝑒−ℏω/2kBT

𝑒ℏω/2kBT − 𝑒−ℏω/2kBT

)︂

(5.6)

=
ℏ𝜔

2

(︂

𝑒ℏω/kBT + 1

𝑒ℏω/kBT − 1

)︂

(5.7)

=
ℏ𝜔

2

(︂

𝑒ℏω/kBT − 1 + 2

𝑒ℏω/kBT − 1

)︂

(5.8)

𝑆(𝜔) = ℏ𝜔

(︂

1

𝑒ℏω/kBT − 1
+

1

2

)︂

. (5.9)

One can recognize the first term in the parenthesis as the photon occupancy �̄� with Bose-

Einstein statistics that describes the classical thermal contribution, while the second term

is the quantum mechanical zero-point energy. If we examine the limits of Eq. (5.9), we

will find the following. First, in the high-temperature, classical limit where ℏ𝜔 ≪ 𝑘B𝑇 ,

𝑒ℏω/kBT − 1 ∼ ℏ𝜔/𝑘B𝑇 . Therefore, 𝑆(𝜔) ≈ 𝑘B𝑇 , reproducing the original classical result

from Eq. (5.4). We verify that Eq. (5.5) gives the same result since coth 𝛽 ≈ 1/𝛽 for small

𝛽. Second, in the low-temperature limit where ℏ𝜔 ≫ 𝑘B𝑇 , the Planck term in Eq. (5.9)

goes to zero, leaving the quantum part ℏ𝜔/2. We can also verify Eq. (5.5) gives

𝑆(𝜔) =
ℏ𝜔

2
, (5.10)

considering lim
β→∞

coth(𝛽) = 1. The low-temperature result can be recognized as the zero-
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point energy of the EM field — there still exist quantum fluctuations even at zero tempera-

ture, which give a lower bound of noise in our qubits and readout experiments at few-tens-

of-milli-Kelvin temperatures.

Speaking of temperature, we can model a noise power𝑁0 over the bandwidth of interest

𝐵 as an equivalent thermal noise source with an effective noise temperature 𝑇e as

𝑇e =
𝑁0

𝑘B𝐵
. (5.11)

For example, in a qubit experiment with readout frequencies of 7 GHz, the effective (noise)

temperature 𝑇e = 𝑆(2𝜋 × 7GHz)/𝑘B = ℏ𝜔/2𝑘B = 168mK, even though the physical

temperature might be near 20 mK. The effective noise temperature must not be confused

with the physical temperature of a system that describes the thermodynamic equilibrium.

At absolute zero temperature, there is no macroscopic thermal energy. The zero-point

energy cannot be used to drive an atomic transition like ordinary EM radiation. Still, it

is responsible for quantum mechanical phenomena such as spontaneous emission and the

Casimir effect.

Noisy

amplifier

Noiseless

amplifier

a b

Figure 5-2. | Equivalent noise temperature of a noisy amplifier. a. An illustrative drawing of a

noisy amplifier. If the source resistor (blue) is at a hypothetical temperature of Ts = 0K, then the

input power to the amplifier would be zero, Nin = 0. The output noise power Nout would be solely

due to the noise generated by the amplifier itself. b. An equivalent model with a noiseless

amplifier. Instead, we assume the takes on an input noise Nin generated by the source resistor at an

effective temperature Te.

Amplifiers have effective noise temperatures associated with them as well that char-

acterize the amount of added noise, even though they do not necessarily represent actual

temperatures (although it can be affected by the physical temperature of the amplifier).

Consider a noisy amplifier as shown in Fig. 5-2(a) with bandwidth 𝐵, gain 𝐺 and matched

to an input resistor at a hypothetical source temperature 𝑇s = 0K. The amplifier adds a
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noise with power 𝑁out. In regards to the overall output noise, it is equivalent to model-

ing the system as driving a noiseless amplifier with the source resistor at an input-referred

temperature

𝑇e =
𝑁out

𝐺𝑘B𝐵
(5.12)

as displayed in Fig. 5-2(b) such that the output noise power remains the same as 𝑁out =

𝐺𝑘B𝑇e𝐵. Hence, we define 𝑇e as the effective input-referred noise temperature of the

amplifier. The definition of 𝑇e also applies to multiple amplifiers. It is often difficult to

quantify the noise performance of different amplifier chains by comparing the total output

noise 𝑁out when their system gain might be different. Referring to the effective noise

temperature allows people to normalize the output noise with respect to the system gain

and scale the added noise back to the input of the system.

In most experimental settings, one would need a series of different amplifiers in the

output path to boost the signal strength to the classical level. At the same time, the noise

is continually getting added to the system and even amplified as it propagates through the

amplification chain. Next, we are going to quantify the overall effective noise temperature

of the cascaded chain of amplifiers — commonly referred to as system noise temperature

𝑇sys. First, consider a microwave amplifier connected to a impedance-matched source with

Figure 5-3. | Noise propagation in a cascade of amplifiers. An illustrative drawing of a chain of

noisy amplifiers.

an effective temperature 𝑇s at the input shown in Fig. 5-3, and the added noise by the first

amplifier 𝑇n1. The noise power at the output is given by

𝑃1,out = 𝐺1𝑘B (𝑇s + 𝑇n1)𝐵. (5.13)

Experimentally, we can determine the amplifier noise temperature 𝑇n1 by measuring the

output noise power 𝑃1,out, the gain 𝐺1 with the understanding of source temperature 𝑇s and
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measurement bandwidth 𝐵. Back to the amplification chain, the first amplifier’s output

now becomes the second’s input. Therefore, adding the noise contribution of the second

amplifier 𝑇n2, we can write down its output noise as

𝑃2,out = 𝐺2 [𝐺1𝑘B (𝑇s + 𝑇n1)𝐵 + 𝑘B𝑇n2𝐵] . (5.14)

Continuing with the third stage of amplification with added noise 𝑇n3, we obtain

𝑃3,out = 𝐺3 (𝐺2 [𝐺1𝑘B (𝑇s + 𝑇n1)𝐵 + 𝑘B𝑇n2𝐵] + 𝑘B𝑇n3𝐵) . (5.15)

This product rule of noise propagation goes on through all the stages. At the output of the

final stage, we would like to refer back to the input of the amplification chain to quote an

effective noise temperature for the whole system:

𝑇sys = 𝑇n1 +
𝑇n2
𝐺1

+
𝑇n3
𝐺1𝐺2

+ · · ·+ 𝑇nk
𝐺1𝐺2 · · ·𝐺k−1

, (5.16)

where 𝐺k, 𝑇nk are the power gain and added noise for the 𝑘-th amplifier, respectively. To

obtain Eq. (5.16), we divide both sides of Eq. (5.15) by 𝐺sys𝑘B𝐵, where the system gain

𝐺sys = 𝐺1𝐺2 · · ·𝐺k, and subtract the original effective source temperature 𝑇s to isolate out

the system noise. Eq. (5.16) is called the Friis formula, named after the Danish-American

electrical engineer Harald T. Friis. A very important observation from the formula is that

for large gain 𝐺k ≫ 1, there is less amplifier noise contribution to the overall system

noise temperature from later stages. In other words, the overall 𝑇sys can be almost solely

dependent upon the first amplifier if its gain is large enough to diminish the rest of the

amplifier noises. To put this in the context of superconducting circuits, state-of-the-art

cryogenic semiconductor microwave amplifiers have noise temperatures around 2 K and a

power gain of 30-40 dB in a logarithmic scale or equivalently, 103−104 in linear units. This

suggests that as long as the next amplifier has a noise temperature 𝑇n ≪ 2000K, the value

of 𝑇sys is primarily set by the cryogenic amplifier. Moreover, if one can make an amplifier

with a noise temperature of 𝑇n ≈ 170mK (around half a photon of noise at 7 GHz) and

a power gain 𝐺 ≥ 20 dB (≥ 100× in linear units), the system noise temperature will
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approach the standard quantum limit, which is half a photon.

This observation is a cornerstone for the amplifier work in this thesis to engineer a

superior amplifier. To a large extent, the Friis formula played an essential role in shaping

the quantum readout schemes in different scientific disciplines and will keep motivating the

development of amplification technologies.

5.2 Quantum Limit on Amplifications

In the previous section, we discussed that quantum mechanics sets a fundamental limit

on the amplification processes, namely the standard quantum limit. The Heisenberg uncer-

tainty principle constrains the measurement precision on non-commuting observables such

as 𝑋 and 𝑃 , manifested as an uncertain “blob” in phase space. As shown in Fig. 5-4, the

amplification process “stretches” the state vector while maintaining its phase but adds ad-

ditional noise (dashed circle) to the noise present at the input state vector. This type of am-

plification is often referred to as phase-preserving amplification (PPA) or phase-insensitive

amplification (PIA). We can heuristically describe PPA as a process that simultaneously

copies and enlarges both quadratures of the input signal. However, the process introduces

additional noise; therefore, amplification never makes a perfect, enlarged copy of the in-

put signal but rather a noisier version. This interpretation [104] suggests a way to amplify

without adding noise if we are only interested in one quadrature — the premise of phase-

sensitive amplification (PSA). In the following two sections, we will examine PPA and PSA

mathematically following the derivation by Caves [19], based on earlier work by Haus and

Mullen [45].

5.2.1 Phase-Preserving Amplifiers

A classical signal 𝐸(𝑡) oscillating at frequency 𝜔 takes the general form

𝐸(𝑡) ∝
(︀

𝑎𝑒−iωt + 𝑎*𝑒iωt
)︀

, (5.17)
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1

1

b

Phase-preserving amplification

Figure 5-4. | Phase-preserving amplification. a. Diagram of an input coherent state vector in the

phase space. The uncertainty “blob” represents vacuum fluctuations, and the dashed circle denotes

the input noise. b. The phase-preserving amplifier with a power gain G amplifies the input state

vector while maintaining its phase. The process also introduces additional noise represented by the

enlarged “blob,” and the red dashed circle representing the output noise.

where 𝑎 and its complex conjugate 𝑎* define the two quadrature components of the signal.

The in-phase component 𝐼 is the real part of 𝑎, Re{𝑎} = (𝑎+ 𝑎*) /2, and the quadrature

component 𝑄 is the imaginary part of 𝑎, Im{𝑎} = (𝑎− 𝑎*) /2𝑖. For a quantum mechanical

signal, the 𝑎 and 𝑎* transform into the annihilation �̂� and creation �̂�† operators for the

EM field. We then consider just one bosonic mode for the input {�̂�in, �̂�†in} and output

{�̂�out, �̂�†out} of the amplifier. The input and output operators obey the bosonic commutation

relations,

[�̂�in, �̂�
†
in] = 1, [�̂�out, �̂�

†
out] = 1. (5.18)

Naively, one would think the action from the amplifier enlarges both quadratures simulta-

neously as

�̂�out =
√
𝐺�̂�in, �̂�

†
out =

√
𝐺�̂�†in. (5.19)

However, the expression violates the commutation relations in Eq. (5.18). Therefore, we

introduce an additional mode ℱ̂ such that

�̂�out =
√
𝐺�̂�in + ℱ̂ , �̂�†out =

√
𝐺�̂�†in + ℱ̂ †. (5.20)
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Physically, the operator ℱ̂ represents the added noise by the amplifier, which originates

from the source to enable the power gain 𝐺 and is uncorrelated with the input signal �̂�.

This implies [ℱ̂ , �̂�] = [ℱ̂ †, �̂�†] = 0, and ⟨ℱ⟩ = ⟨ℱ �̂�in⟩ = ⟨ℱ �̂�†in⟩ = 0 since ℱ is a random

noise. Now by enforcing the commutation relations Eq. (5.18) on the output field �̂�out, we

get

[ℱ̂ , ℱ̂ †] = 1−𝐺. (5.21)

The output noise can be expressed as the mean-square fluctuations (∆�̂�out)
2
,

(∆�̂�out)
2 =

1

2
⟨{�̂�out, �̂�†out}⟩ − ⟨�̂�out⟩⟨�̂�†out⟩. (5.22)

A similar expression can be given for (∆�̂�in). This is a result from Ref. [19], where Caves

uses a series of useful commutation and anti-commutation (denoted with curly brackets {})

relations, in addition to the relations between ℱ̂ and �̂� above. We can express Eq. (5.22) as

(∆�̂�out)
2 = 𝐺(∆�̂�in)

2 +
1

2
⟨{ℱ̂ , ℱ̂ †}⟩. (5.23)

Using the generalized uncertainty principle

⃒

⃒

⃒
∆ℱ̂

⃒

⃒

⃒

2

≥ 1
2

⃒

⃒

⃒
⟨[ℱ̂ , ℱ̂ †]⟩

⃒

⃒

⃒ and the fact that ⟨ℱ̂⟩ =
0, Eq. (5.23) becomes

(∆�̂�out)
2 ≥ 𝐺(∆�̂�in)

2 +
1

2

⃒

⃒

⃒
⟨[ℱ̂ , ℱ̂ †]⟩

⃒

⃒

⃒
(5.24)

≥ 𝐺(∆�̂�in)
2 +

|𝐺− 1|
2

. (5.25)

We can rewrite the inequality as

(∆�̂�out)
2

𝐺
≥ (∆�̂�in)

2 +
1− 1/𝐺

2
, (5.26)

where we divide both sides by 𝐺 and refer to the amplifier input.

• In the limit of no gain (𝐺 = 1), (∆�̂�out)
2 = (∆�̂�in)

2
— no additional noise is introduced

by the amplifier.
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• When taking 𝐺 to the large gain limit such that 𝐺 ≈ 𝐺− 1,

(∆�̂�out)
2

𝐺
≥ (∆�̂�in)

2 +
1

2
. (5.27)

This result signifies that phase-preserving amplification must add at least half a quantum

(or half of a photon) of noise in the large gain limit.

• In the case of greater-than-unity, small gain, the minimum number of added noise quanta

is given by (1− 1/𝐺) /2, which can be arbitrarily small. It might be tempting to ask, is

it possible to evade the SQL by reducing the gain? The answer is no. As we discussed

at the beginning of the chapter, a massive power gap exists for the quantum signal to

make up (with amplifiers) before reaching the classical level for signal processing, or

as Caves puts it, “we can lay our grubby, classical hands on” (Caves, 1982). Using the

Friis formula derived in the previous section, it is a relatively simple task to show that

feeding the input signal first into a low-gain amplifier and then to the following booster

amplifiers produces an asymptotic overall added noise of half a photon. Therefore, high

gain is still necessary for quantum signal amplification, and the SQL always applies as

the signal strength approaches the classical level. Hence, the term “quantum-limited

amplification.”

As we have briefly discussed, the operator ℱ̂ is associated with additional degrees of free-

dom beyond the input and output channels during the amplification process. To examine

the role of this extra degrees of freedom, we first notice the RHS of Eq. (5.21) becomes

negative when 𝐺 > 1. To address this mathematically, one easy solution is to transform ℱ̂
and ℱ̂ † into

ℱ̂ =
√
𝐺− 1𝑑†, ℱ̂ † =

√
𝐺− 1𝑑, (5.28)

where 𝑑 and 𝑑† denote a single additional mode for the amplification process. By introduc-

ing two additional modes instead of one, one can show that the overall added noise is larger

than the minimum half-quantum of noise at high gain [24]. It can be interpreted as a waste

of information, as the extra degrees of freedom are not monitored during the measurement

process, and therefore, the information becomes lost. With the new definition of ℱ̂ , we can
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write the amplifier input-output/scattering relation Eq. (5.20) as

�̂�out =
√
𝐺�̂�in +

√
𝐺− 1𝑑†. (5.29)

5.2.2 Phase-Sensitive Amplifiers

Figure 5-5. | Phase-sensitive amplification. a. Diagram of an input coherent state vector in phase

space. The uncertainty “blob” represents vacuum fluctuations, and the dashed circle denotes the

input noise. b. Phase-sensitive amplification along the X quadrature. The signal amplitude and

fluctuations are increased along the X quadrature and decreased along the P quadrature. c.

Phase-sensitive gain as a function of phase, in which the amplification depends on the relative

phase θ between the pump and the signal, providing either amplification or de-amplification of the

quadrature.

In a phase-preserving amplifier, the signal and idler gains are insensitive to the phase

of the incoming signals, and the amplifier equally amplifies the I and Q components of the

signals. At exact degenerate pumping, 𝜔p = 2𝜔s, the signal and idler frequencies coincide

in frequency, leading to a correlation between their amplified counterparts as well. The

resultant output field becomes sensitive to the relative phase 𝜃 between the incoming signal

and the pump phase as shown in Fig. 5-5(c). As we have seen in the previous section,
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the idler mode can transfer its associated fluctuations to the signal mode from which the

amplifier noise originates. Bringing the signal and idler frequencies together in frequency

means fluctuations in both modes can now interfere. This is the basis for phase-sensitive

amplifiers. The phase sensitivity in the amplification process implies that a fixed phase

relationship exists between the pump and the signal — they interfere constructively (phase-

sensitive amplification) and destructively (phase-sensitive de-amplification). Equivalently

and without loss of generality, there will be an amplified (or anti-squeezing) quadrature

�̂�†out and a de-amplified (or squeezed) quadrature �̂�out,

�̂�†out = 2
√
𝐺�̂�†in, �̂�out =

1

2
√
𝐺
�̂�in, (5.30)

where the factor of 2 comes from the interference between the signal and idler. If the input

mode is a vacuum state, this suggests we can suppress the fluctuation amplitude 2
√
𝐺 times

smaller than the vacuum. While the amplifier treats the two quadratures differently, the

commutation relation can be satisfied without the extra degrees of freedom and added noise

as needed in the phase-preserving amplification. The result suggests noiseless amplification

is possible if we are only interested in measuring one-half of a pair of non-commuting

observables since there is no fundamental limit to how well we can measure it. This is

advantageous for quantum metrology applications, e.g., the qubit state measurement, since

its information can be mapped to a phase shift. One caveat for phase-sensitive amplification

is maintaining phase coherence between the signal and pump sources. We will see how we

can achieve that in an experiment in Chapter 6. From a different perspective, the pump tone

plays the role of a clock in a phase-sensitive amplifier, with the pump phase picking out the

quadrature of the signal to be amplified.

5.3 Parametric Amplification

Time-dependent parameters in a physical system typically result in resonant responses

at specific modulation frequencies. This generic parametric resonance occurs in a sig-

nificant number of both quantum mechanical and classical systems. In the latter case, a
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representative example is a playground swing set. The parents often drive the motion of

a child by pushing them, directly contributing energy to the swing’s motion. Sometimes,

the children swing themselves higher by standing up and bending their knees at the right

moment. Physically, the children modulate their center of mass at twice the swing’s natural

frequency, as shown in Fig. 5-6. This is a mechanical “pumping” action — adding energy

to the swing’s motion and amplifying the initial conditions — a classical illustration of

parametric amplification.

Figure 5-6. | Parametric amplification of pendulum motion by a child standing on a swing.

The amplification is driven by changing the center of mass (star), and thus effective length of the

pendulum at twice the swing’s natural frequency.

Like the swing example where the children need an initial push from the parents or kick

themselves off the ground at their first swing, a classical system must initially be displaced

from the equilibrium state as a condition for parametric amplification. There are many

sources of fluctuations that can break the equilibrium. Still, in principle, classical mechan-

ics allows the oscillator’s position and momentum to become zero simultaneously, which

sharply contrasts with a quantum mechanical oscillator where the uncertainty relation in-

hibits the absence of motion. This suggests vacuum noise that corresponds to the ground

state of the quantized oscillator may be parametrically amplified. Consequently, it may

intensify the overall system noise in quantum readout applications. However, the action

of amplification on quantum fluctuations leads to the squeezing effect, a purely quantum

mechanical manifestation of parametric amplification.

Parametric amplifiers operate by periodically modulating specific parameters of a dy-
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namical system. The modulation tone, or pump, produces amplification of a signal mode

incident on the system at a different frequency rather than directly transferring energy to

the signal. In general, the parametric process involves a pump tone at a frequency 𝜔p that

couples at least two other modes, traditionally called the signal and the idler at frequen-

cies 𝜔s and 𝜔i, respectively. Energy from the pump gets transferred to the signal mode via

the creation of an idler. Parametric amplification is a fundamental wave-mixing process

that typically occurs through either a three-wave-mixing process (TWM) or a four-wave-

mixing process (FWM). The wave-mixing relationship is essentially a statement of energy

conservation. In TWM, the relationship is given by

𝜔p = 𝜔s + 𝜔i, (5.31)

where one pump photon is converted to one signal and one idler photon. In 4WM,

𝜔p1 + 𝜔p2 = 𝜔s + 𝜔i, (5.32)

where two pump photons (same frequency) are converted to one signal and one idler. This

is called the NDFWM process as defined in Sec. 2.2 or DFWM when 𝜔p1 = 𝜔p2. In either

case, if the signal and idler modes are degenerate with 𝜔s = 𝜔i, 𝜔s will be an integer

multiple of 𝜔p, indicating a well-defined phase relationship between the pump and the

signal. Thus, only the in-phase component of the signal concerning the pump will be

amplified. In other words, a degenerate parametric amplifier can support phase-sensitive

amplification. In most of the thesis, I will focus on 4WM processes, as none of the devices

operate in a 3WM model.

5.4 A Brief History of Superconducting Parametric Am-

plifiers

In nonlinear optics, a crystal with a nonlinear index of refraction is used as the amplifier

system, such that a coherent pump tone will periodically modulate the index of refraction.
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When a material with nonlinear polarization is excited with an intense electromagnetic

field, a weak signal field can get amplified via the interaction with the medium. An anal-

ogous device can be realized in an electrical circuit by modulating the impedance. For

microwave parametric amplification, the role of the nonlinear medium can be played by

the nonlinear inductance of a superconducting circuit composed, for example, of Joseph-

son junctions. Josephson amplifiers reaching near quantum-limited performance were first

demonstrated by Bernard Yurke’s work in the late 1980s [126, 125]. The squeezing of

vacuum fluctuations has also been observed [74]. In the early 2000s, many groups started

and continued their research on microwave quantum-limited amplifiers due to a strong in-

terest in cQED devices [114, 11, 116], especially in the field of quantum computing. The

goal of achieving single-shot and high-fidelity qubit readout in cQED motivated the devel-

opment of these superconducting Josephson amplifiers. Josephson bifurcation amplifiers

(JBA) [100, 67] reached an initial breakthrough result by exploiting the bi-stable regime

of an RF-driven Josephson junction. Afterward, Castellanos-Beltran et al. observed am-

plification and quadrature squeezing of an input signal with resonant Josephson parametric

amplifiers [17]. Since then, tremendous progress has been made towards improving the

amplifier bandwidth [77, 94], saturation point [16, 85], circuit schemes [121, 92, 32, 40],

frequency tunability [101] and non-reciprocity [70, 59].

Even with these remarkable improvements, the resonant circuit architecture constrains

the bandwidth for JPAs, significantly hindering broadband applications, such as multi-

plexed readout of many qubits or broadband squeezed microwave photon generation. These

limitations propelled the development of traveling-wave parametric amplifiers (TWPAs),

a more generic category for the Josephson-TWPA (JTWPA) introduced earlier in Chap-

ter 1. Early theoretical and experimental work on TWPAs emerged in the 70s-90s [104]

with technologies such as heterostructure transistors and vacuum tubes. With supercon-

ducting circuits, TWPAs have the advantage of operating over a much larger fractional

bandwidth compared with optical amplifiers with nonlinear optical fibers [1]. Some of the

early superconducting TWPAs demonstrations were realized with modern nano-fabrication

techniques, exploiting nonlinear elements such as kinetic inductance of disordered super-

conductors [47] or Josephson junctions. In 2015, the first demonstration of near quantum-
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Figure 5-7. | Traveling-wave parametric amplifiers with superconducting circuits. a. The

picture shows the kinetic-inductance-based TWPA in the form of a long NbTiN CPW line arranged

in a double spiral. The line is periodically loaded by widening a short section, producing the stop

band and dispersion characteristics [47]. b. Photograph of a Josephson-TWPA consisting of a

chain of Josephson junctions [61].

noise-limited JTWPA was accomplished [61], and it serves as a blueprint for the JTWPA

work in this thesis. On a broader scope, these are crucial experimental hallmarks for ex-

ploring TWPA technology based on the kinetic inductance of superconducting thin films

and Josephson metamaterials.

The signal gain can be enhanced by increasing the interaction time in the nonlinear

medium via two main strategies. The first one, resonant amplification, consists of placing

the nonlinear medium in a cavity; in this way, the interaction time will be as long as the

inverse of the cavity linewidth. This approach, however, puts a constraint on the amplifica-

tion bandwidth, which also depends on the cavity linewidth. The second strategy, traveling

wave amplification, consists in optimizing the gain by increasing the physical length of the

nonlinear medium, removing the constraint on the amplification bandwidth given by the

presence of a cavity. Next, we will mathematically examine the system dynamics of two

types of amplifier.

5.5 Resonant Josephson Parametric Amplifiers

Although various resonant implementations of parametric systems exist, we here fo-

cus on the resonator-based Josephson parametric amplifier (JPA). In realizing a parametric

amplifier using superconducting circuits, we modulate the impedance with a time-varying
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circuit element — a Josephson junction. When the junction is driven with a pump wave

oscillating at 𝜔p, the Josephson inductance 𝐿j varies approximately as 𝐼p(𝑡)
2, the square of

the current traversing through the junction. Since 𝐼p(𝑡)
2 is always positive, the inductance

is effectively modulated at frequency 𝜔p. To realize a JPA (Fig. 5-8), the junction is em-

bedded inside an lumped-element LC resonator that resembles a superconducting transmon

qubit. The JPA is a nonlinear oscillator similar to the transmon except with a much weaker

anharmonicity and effectively behaves as a classical nonlinear oscillator. To tune the reso-

nant frequency of a JPA, we replace the nonlinear inductor with a dc SQUID, which acts

as a single Josephson junction with a flux-tunable critical current (recall Eq. (2.49)). The

small-signal resonant frequency of this circuit is given by

𝜔0 =
1

√︀

𝐿SQUID𝐶
, (5.33)

where 𝐿SQUID is the effective inductance of the SQUID given by Eq. (2.49), namely,

𝐿SQUID = Φ0 [4𝜋𝐼0 cos (𝜋Φext/Φ0) cos𝜑+]
−1

. The inductance can be increased by either

applying a flux through the SQUID loop(s) to induce a circulating current in the SQUID(s)

or driving current across the SQUID(s) directly. Therefore, as shown in Fig. 5-8, the JPA

resonance can be modulated by a flux-pump at 2𝜔0 (orange) or a direct current-pump at 𝜔0

(green), leading to parametric gain and squeezing. Several other pumping schemes exist,

including sideband pumping (or “double-pumping” — a technique we exploit in the dual-

pump JTWPA) [14] and even subharmonic pumping [75]. A resonant geometry is essential

to enhance the coupling between the signal wave and the modulation of the Josephson junc-

tion. Much like a child on a swing pumping their legs to go higher, a small signal amplifies

by parametrically modulating the resonance frequency of the JPA with a pump tone.

We will not give the detailed derivation of JPA dynamics because it is not a major fo-

cus of the thesis, and a more in-depth treatment has been discussed extensively in other

works [15, 33]. Nevertheless, it is crucial to understand the limitations of the resonator-

based JPA and the motivations for developing a traveling-wave approach. Due to the reso-

nant structure, the JPA amplifies signals within a finite frequency bandwidth, 𝐵, about its

resonance frequency. In the linear regime, where no amplification occurs, the bandwidth is
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Flux pump

Figure 5-8. | Circuit diagram for a Josephson parametric amplifier. The nonlinear resonator is

formed with the dc SQUID and shunt capacitor, loaded by a transmission line modeled as a lumped

impedance Z0 and driven by an ideal current source I(t) model for the pump source or a flux pump

oscillating at twice the resonance frequency.

determined by the quality factor of the resonator 𝑄 = 𝜔0𝑍0𝐶, set by the choice of circuit

parameters such as the shunt capacitor 𝐶 and the lumped impedance 𝑍0 of the feedline.

Equivalently, 𝐵 ∼ 𝜔0/𝑄. As the drive power increases toward the critical power of the

JPA ∼ 𝐼20 , the gain increases, and the resonance steepens, effectively decreasing the ampli-

fication bandwidth. This trade-off is known as the gain-bandwidth product, and is loosely

defined as

𝐵
√
𝐺 ∝ 1

𝑄
. (5.34)

Thus, it is possible to increase both the gain and the bandwidth independently by low-

ering the 𝑄. However, we cannot make 𝑄 arbitrarily small, as eventually higher-order

nonlinear processes become dominant and destabilize amplifier operation. Typical gain-

bandwidth products for JPAs are on the order of 100MHz, implying 𝐵 = 10MHz with

20 dB gain [17]. Some devices demonstrate gain-bandwidth products on the order of

1 GHz [77].

The gain-bandwidth product is one of the most challenging design constraints in im-

proving the JPA performance. Moreover, there are further tradeoffs associated with the

saturation point (or input compression power). The nonlinear dynamics of the resonator

limit the input compression power, typically constrained to be 5 − 10% of the critical cur-

rent [104]. Lowering the shunt capacitance 𝐶 is a way to reduce the quality factor𝑄. How-

ever, keeping the JPA resonant frequency invariant requires a fixed ratio of 𝐼0/𝐶. Thus, we

also need to reduce the critical current, which decreases the compression power.

One possible way to avoid this problem is by decreasing the environmental loading

impedance 𝑍0 via an impedance transformer to convert the standard 50Ω environment to
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a smaller value. One such device has been demonstrated with 𝑍0 = 50Ω and achieved a

much larger bandwidth [94, 77], although the small numbers of junctions inside the JPA still

curbs the saturation point. We need to eliminate the resonator and enhance the nonlinear

interaction through a different approach to address the fundamental limitations of the JPA.

5.6 Josephson Traveling-Wave Parametric Amplifiers

With the nonlinear inductor that is the Josephson junction, we can construct a nonlinear

transmission line shown in Fig. 5-9(c) and start deriving the coupled wave equations to

achieve parametric amplification in a traveling-wave amplifier. We will show the overall

gain is dependent not only on the pump strength but also on the phase-matching condition.

More information can be found in Yaakobi’s paper [120]. For the section on parametric

amplification, we shall closely follow the derivation in the paper by O’Brien et al. [78].

5.6.1 Continuum Wave Equation

Let us start our discussion with the most basic model of a lossless distributed transmis-

sion line consisting of linear serial inductance 𝐿 and capacitance to ground 𝐶0 per length 𝑎

along the transmission line as displayed in Fig. 5-9(a). Applying Kirchhoff’s voltage and

current laws, we get a set of coupled partial differential equations — the so-called telegra-

pher’s equations — that describe the voltage 𝑉 (𝑥, 𝑡) and current 𝐼(𝑥, 𝑡) at position 𝑥 and

time 𝑡.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕

𝜕𝑥
𝑉 = −𝐿

𝑎

𝜕

𝜕𝑡
𝐼

𝜕

𝜕𝑥
𝐼 = −𝐶0

𝑎

𝜕

𝜕𝑡
𝑉.

(5.35a)

(5.35b)

Substituting Eq. (5.35b) into Eq. (5.35a) and taking the second derivative with respect to 𝑥,

we get the voltage wave equation

𝑎2
𝜕2

𝜕𝑥2
𝑉 − 𝐿𝐶0

𝜕2

𝜕𝑡2
𝑉 = 0, (5.36)

whose solution describes a forward and a backward voltage traveling wave through the

110



a

b

c

Figure 5-9. | Different transmission line models. a. A linear transmission line model with

inductance L and capacitance C0. b. Linear transmission line model with an additional shunting

capacitance in parallel with the inductance. c. Josephson nonlinear transmission line model. The

"X" symbol denotes a Josephson junction. a denotes the length of a unit cell, and I0 is the critical

current of the Josephson junction.
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transmission line with linear dispersion 𝑘 = ω
√
CoL
a

, i.e., a pulse propagating along this

transmission line retains its shape as a function of time. This is due to the fact the group

delay dispersion is zero — d2𝜔/d𝑘2 = 0 — for a linear-dispersion system, which also

means the group velocity d𝜔/d𝑘 remains constant.

Next, we will consider the model with an additional shunting capacitor 𝐶j in parallel

with the linear inductor 𝐿 as shown in Fig. 5-9(b). The modified coupled partial differential

equations are given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕

𝜕𝑥
𝑉 = −𝐿

𝑎

𝜕

𝜕𝑡
𝐼L

𝜕

𝜕𝑥
𝐼 = −𝐶0

𝑎

𝜕

𝜕𝑡
𝑉

𝜕

𝜕𝑡

(︂

𝐿
𝜕

𝜕𝑡
𝐼L

)︂

=
𝜕

𝜕𝑡

(︂

𝑞j
𝐶j

)︂

=
𝐼j
𝐶j

𝐼j + 𝐼L = 𝐼,

(5.37a)

(5.37b)

(5.37c)

(5.37d)

where Eq. (5.37a) and Eq. (5.37b) are the modified voltage and current relations according

to Kirchhoff’s laws, while we take the first derivative with respect to time of the equal

voltage drop across 𝐿 and 𝐶j (𝑞j — charge on 𝐶j) in Eq. (5.37c), and Eq. (5.37b) reflects

the conservation of current. Solving this set of equations gives us a new voltage wave

equation

𝐶0
𝜕2

𝜕𝑡2
𝑉 − 𝑎2

𝐿

𝜕2

𝜕𝑥2
𝑉 − 𝑎2𝐶j

𝜕4

𝜕𝑥2𝜕𝑡2
𝑉 = 0. (5.38)

The equation has an additional term compared with Eq. (5.36) due to the presence of the

shunting capacitance 𝐶j . Consequently, the dispersion 𝑘 = ω
√
CoL

a
√

1−CjLω2
can no longer

remain linear with frequency because of the additional 𝐶j . However, when 𝜔 ≪ 𝜔J as de-

fined below, the dispersion can be approximated to be linear as 𝐶j𝐿𝜔
2 becomes negligible,

meaning that in the context of a JTWPA, we can still treat the dispersion as linear within

the frequency range of interest (4 - 8 GHz) below the junction plasma frequency (around

30 GHz) — its natural oscillation frequency given by 𝜔J = 1/
√︀

𝐿𝐶j .

Finally, consider the nonlinear transmission line model replacing the linear inductance

with a Josephson junction, as shown in Fig. 5-9(c). Because the junction is composed of

two superconducting regions separated by a thin insulator, a more realistic junction model

112



would be a nonlinear inductor 𝐿 shunted by its self-capacitance 𝐶j . More specifically, as

shown in Fig. 5-9(c), 𝐶0 is the capacitance to ground, 𝐿 is the junction inductance, 𝐶j is

the junction capacitance, 𝐼0 is the critical current of the junction, 𝑎 is the unit cell length,

and 𝜑 is the phase across the junction. Based on the previous linear transmission line model

Eq. (5.38) as well as the AC Josephson relation, the nonlinear wave equation describing the

dynamics of JTWPA in terms of phase across the junction 𝜑 is the following

𝐶0
𝜕2𝜑

𝜕𝑡2
− 𝑎2

𝐿

𝜕2𝜑

𝜕𝑥2
− 𝑎2𝐶j

𝜕4𝜑

𝜕𝑥2𝜕𝑡2
=

𝑎4

2𝐼2o𝐿
3

𝜕2𝜑

𝜕𝑥2

(︁𝜕𝜑

𝜕𝑥

)︁2

. (5.39)

The terms on the left-hand side represent the weakly dispersive linear system similar to

Eq. (5.38), and the term on the right-hand side stands for the cubic nonlinearity from the

junction. The equation is expressed in circuit parameters such as 𝐶j and 𝐶0. It can be

shown that the combination of the weak dispersion and the cubic nonlinearity gives rise to

parametric amplification via degenerate four-wave mixing (DFWM).

JTWPA Gain

We now proceed to show that the solution to this equation can be mapped on to the

equations for an optical parametric amplifier that exists prior to a JTWPA. To solve the

nonlinear wave equation, we propose an ansatz that the solutions shall be forward propa-

gating waves in the form of

𝜑 =
1

2

[︀

𝐴p(𝑥)𝑒
i(kpx+ωpt) + 𝐴s(𝑥)𝑒

i(ksx+ωst) + 𝐴i(𝑥)𝑒
i(kix+ωit) + 𝑐.𝑐.

]︀

, (5.40)

where subscripts 𝑖, 𝑠, 𝑝 stands for idler, signal and pump respectively, and 𝐴m is the am-

plitude of the slowly varying amplitude. To clarify the terminology used here: a pump

can be considered as an external energy source to the system, e.g., a laser or a microwave

tone; a signal represents an input we wish to amplify; an idler carries the energy differ-

ence between the absorbed pump and the amplified signal, and it plays an important role in

nonlinear conversion processes such as squeezed light generation.

In order to achieve a solution to the parametric amplification model, we continue to
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solve the nonlinear equation by substituting the expression for 𝜑 into Eq. (5.39) and making

the slowly varying envelope approximation (SVEA) that neglects the second derivatives of

𝐴m, i.e., we assume |∂2Am

∂x2 | ≪ |𝑘m ∂Am

∂x
|. In addition, we will neglect the first derivatives of

𝐴m, i.e., we assume |∂Am

∂x
| ≪ |𝑘m𝐴m|. The wavevector 𝑘m is defined as ωm

√
CoL

a
√

1−CjLω2
m

using

circuit parameters, where m ∈ 𝑝, 𝑠, 𝑖. In the end, we can separate out the terms associated

with pump, signal and idler respectively.

𝜕𝐴p

𝜕𝑥
−

𝑖𝑎4𝑘5p
16𝐶o𝐼2o𝐿

3𝜔2
p

𝐴2
p𝐴

*
p = 0 (5.41)

This is the equation of propagation for the pump. The terms involving amplitudes for the

signal and idler are neglected as they are small compared to the strong pump field. For the

signal and idler, we also ignore terms that are quadratic in the signal and idler amplitudes,

leaving:

𝜕𝐴s

𝜕𝑥
−

𝑖𝑎4𝑘2p𝑘
3
s

8𝐶o𝐼2o𝐿
3𝜔2

s

𝐴p𝐴
*
p𝐴s =

𝑖𝑎4𝑘2p(2𝑘p − 𝑘i)𝑘s𝑘i

16𝐶o𝐼2o𝐿
3𝜔2

s

𝐴2
p𝐴

*
i 𝑒

i∆kLx (5.42)

𝜕𝐴i

𝜕𝑥
−

𝑖𝑎4𝑘2p𝑘
3
i

8𝐶o𝐼2o𝐿
3𝜔3

i

𝐴p𝐴
*
p𝐴i =

𝑖𝑎4(2𝑘p − 𝑘s)𝑘s𝑘i
16𝐶o𝐼2o𝐿

3𝜔3
s

𝐴2
p𝐴

*
s𝑒

i∆kLx, (5.43)

where ∆𝑘L = 2𝑘p − 𝑘s − 𝑘i is the phase mismatch term for DFWM process. Using

Eq. (5.41), we can solve for the pump amplitude assuming no loss and an undepleted pump,

meaning 𝐴p(𝑥)𝐴
*
p(𝑥) = 𝐴2

p,0, where 𝐴p,0 is the pump field amplitude entering the JTWPA

at the beginning of the device.

𝐴p(𝑥) = 𝐴p,0𝑒
i

a4k5pApA
*
p

16CoI
2
oL3ω2

p
x
. (5.44)

If we substitute 𝐴s = 𝑎s𝑒
iαsx, 𝐴i = 𝑎i𝑒

iαix and the above expression of 𝐴p into Eq. (5.42)

and Eq. (5.43), we have the coupled amplitude equations for the signal and idler:

𝜕𝑎s
𝜕𝑥

− 𝑖𝜅s𝑎
*
i 𝑒

i(∆kL+2αp−αs−αi)x = 0, (5.45)
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𝜕𝑎i
𝜕𝑥

− 𝑖𝜅i𝑎
*
s𝑒

i(∆kL+2αp−αs−αi)x = 0, (5.46)

The couplings 𝛼m and 𝜅m between waves are defined as:

𝛼p =
𝜅p𝑘

3
p𝑎

2

𝐿𝐶0𝜔2
p

, 𝜅p =
𝑎2𝑘2p𝐴p,0𝐴

*
p,0

16𝐼20𝐿
2

, (5.47)

𝛼s =
𝜅p𝑘

3
s𝑎

2

𝐿𝐶0𝜔2
s

, 𝜅s =
𝜅p(2𝑘p − 𝑘i)𝑘s𝑘i𝑎

2

𝐿𝐶0𝜔2
s

, (5.48)

𝛼i =
𝜅p𝑘

3
i 𝑎

2

𝐿𝐶0𝜔2
i

, 𝜅i =
𝜅p(2𝑘p − 𝑘s)𝑘s𝑘i𝑎

2

𝐿𝐶0𝜔2
i

. (5.49)

The coupling terms 𝛼p, 𝛼s, 𝛼i are associated with changes of the pump wavevectors, signal,

and idler due to self-phase and cross-phase modulations dependent upon the strength of the

pump field. We will demonstrate this effect experimentally in Chapter 6. These are more

specific descriptions of the nonlinear optical effects in Eq. (2.38) in the context of a JTWPA.

As expected, the strength of the coupling terms depend on the pump amplitude, and they

can alter the phase-matching conditions. Reaching the end of the derivation, the solutions

are analogous to those for an optical parametric amplifier [2]:

𝑎s(𝑥) =
[︁

𝑎s(0)
(︁

cosh(𝑔𝑥)− 𝑖∆𝑘

2𝑔
sinh(𝑔𝑥)

)︁

+
𝑖𝜅s
𝑔
𝑎*i (0) sinh(𝑔𝑥)

]︁

𝑒i∆kx/2 (5.50)

𝑎i(𝑥) =
[︁

𝑎i(0)
(︁

cosh(𝑔𝑥)− 𝑖∆𝑘

2𝑔
sinh(𝑔𝑥)

)︁

+
𝑖𝜅i
𝑔
𝑎*s(0) sinh(𝑔𝑥)

]︁

𝑒i∆kx/2, (5.51)

where the gain coefficient 𝑔 is defined as
√︀

𝜅s𝜅*i − (∆𝑘/2)2, with a phase mismatch of

∆𝑘 = 2𝑘p − 𝑘s − 𝑘i + 2𝛼p − 𝛼s − 𝛼i. (5.52)

As one can notice from the above solutions (Eq. (5.50) and Eq. (5.51)) for signal and

idler amplitudes, if the phase-matching condition is achieved, i.e., ∆𝑘 = 0, the gain be-

comes exponentially dependent on 𝑔, 𝑎s(𝑥) ≈ 𝑎s(0)𝑒
gx/2. Otherwise, the gain is oscilla-

tory and does not build to a large magnitude over the device length. Moreover, as pump
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power is proportional to 𝐴p,0𝐴
*
p,0 (its value at the JTWPA input), so are the 𝜅’s and 𝛼’s

defined from Eq. (5.47) to Eq. (5.49), which scale according to the square of the pump

current 𝐼p. Therefore, the phase matching condition in Eq. (5.52) changes as a function of

pump power, and we will observe this effect experimentally in Chapter 6.

5.6.2 JTWPA Phase-Sensitive Amplification

Parametric amplification can lead to squeezed state generation. More specifically,

phase-sensitive gain is a necessary condition for single-mode squeezing. In this section,

we are going to demonstrate phase-sensitive amplification from the same nonlinear wave

equation Eq. (5.39) under different pump configurations.

Single-Pump Scheme

First of all, let us make a few simplifications. The signal and pump are degenerate in

frequency, therefore, 𝜔 = 𝜔s = 𝜔p, and 𝑘 = 𝑘s = 𝑘p follow. Assuming no idler input, we

propose a modified ansatz of the solutions

𝜑 =
1

2

[︀

𝐴p(𝑥)𝑒
i(kpx+ωpt) + 𝐴s(𝑥)𝑒

i(ksx+ωst) + 𝑐.𝑐.
]︀

. (5.53)

Following the same procedure as illustrated in the previous section, we substitute Eq. (5.53)

into Eq. (5.39) and obtain the same expression as Eq. (5.41) for the propagation of the

pump by making the same slowly-varying wave approximations. This is expected because

nothing on the pump side has been changed. On the other hand, the propagation equation

for the signal is modified:

𝜕𝐴s

𝜕𝑥
+

𝑖𝑎4𝑘5

16𝐶o𝐼2o𝐿
3𝜔2

(︀

−2𝐴p𝐴s𝐴
*
s − 𝐴2

p𝐴
*
s − 𝐴2

s𝐴
*
s − 𝐴*

p𝐴
2
s − 2𝐴p𝐴

*
p𝐴s

)︀

= 0. (5.54)

Since 𝐴s ≪ 𝐴p, the terms that are quadratic in the signal amplitudes are neglected. The

equation reduces to

𝜕𝐴s

𝜕𝑥
− 𝑖2𝛼p𝐴s − 𝑖𝛼p𝐴

*
s𝑒

i2αpx = 0, (5.55)
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in which Eq. (5.44) and the expression for 𝛼p are substituted. Let 𝐴s(𝑥) = 𝑎s(𝑥)𝑒
iαpx, the

equation is further simplified to

𝜕𝑎s
𝜕𝑥

− 𝑖𝛼p𝑎s − 𝑖𝛼p𝑎
*
s = 0. (5.56)

The solution to this ordinary differential equation of the signal amplitude is

𝑎s(𝑥) = 𝐴s,0 cos 𝜃 + 𝑖𝐴s,0(sin 𝜃 + 2𝛼p𝑥 cos 𝜃), (5.57)

where 𝑎s(0) = 𝐴s,0𝑒
iθ, with 𝜃 ≡ 𝜃p,0 − 𝜃s,0 being the phase difference between the signal

and the pump at the input of a JTWPA. The phase-sensitive gain 𝐺PSA is:

𝐺PSA =
𝑎s(𝑥)𝑎

*
s(𝑥)

𝑎s(0)𝑎*s(0)
= 1 + 4𝛼p𝑥 sin 𝜃 cos 𝜃 + 4𝛼2

p𝑥
2 cos2 𝜃. (5.58)

Single pump

Figure 5-10. | Single-pump phase-sensitive amplification. Numerically simulated

phase-sensitive amplification on a log scale of a JTWPA as a function of signal phase relative to

the pump. For simplicity, parameters are set to αp → 0.00056 and x → 3000.

As displayed in Fig. 5-10, the gain changes as a function of the relative phase 𝜃, a

qualitative behavior that gives its name — phase-sensitive amplification. Here we assume

the signal and pump are frequency-degenerate, which is not an ideal choice to operate the
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JTWPA in practice. From Eq. (5.58), we can see the gain scales only quadratically instead

of exponentially, because of phase mismatch due to the self-phase modulation effect caused

by the strong pump. With the signal and pump at the same frequency, it is difficult to use

dispersion engineering to mitigate such effects.

Dual-Pump Scheme

To address the fundamental phase-matching challenge due to the pump self-phase mod-

ulation, as we have seen in the single-pump case, a second pump tone is introduced, with

both detuned from the signal frequency. As a result, it gives more degrees of freedom to

set the phase-matching condition, as we will explore in Chapter 6. Here we will demon-

strate from a mathematical perspective that a dual pump scheme can lead to an exponential

phase-sensitive parametric amplification.

To begin with, a new ansatz of the solutions is:

𝜑 =
1

2

[︀

𝐴p1(𝑥)𝑒
i(kp1x+ωp1t) + 𝐴p2(𝑥)𝑒

i(kp2x+ωp2t) + 𝐴s(𝑥)𝑒
i(ksx+ωst) + 𝑐.𝑐.

]︀

, (5.59)

where we assume no idler, but an additional pump field denoted with subscript 𝑝2. Overall,

the ansatz allows us to neglect the effect of degenerate four-wave mixing due to a single

pump and focus on the dual-pump non-degenerate four-wave mixing instead. Neverthe-

less, the strategy in solving the differential equation does not change, since the nonlinear

wave equation Eq. (5.39) remains the same, but now we have many more terms due to the

additional pump.

After careful examination of different terms, we can group the ones for the signal, and

its equation of propagation becomes:

𝜕𝐴s

𝜕𝑥
− 𝑖𝑎4

8𝐶o𝐼2o𝐿
3𝜔2

s

[︁

𝑘3s
(︀

𝑘2p1𝐴p1𝐴
*
p1 + 𝑘2p2𝐴p2𝐴

*
p2

)︀

𝐴s

+ 𝑘2s𝑘p1𝑘p2𝐴p1𝐴p2 (𝑘p1 + 𝑘p2 − 𝑘s)𝐴
*
s𝑒

i(kp1+kp2−2ks)x
]︁

= 0. (5.60)
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We define

𝛼DP
s =

𝑎4𝑘3s
8𝐶0𝐼20𝐿

3𝜔2
s

(︀

𝑘2p1𝐴p1𝐴
*
p1 + 𝑘2p2𝐴p2𝐴

*
p2

)︀

, (5.61a)

𝜅DP
s =

𝑎4𝑘2s
8𝐶0𝐼20𝐿

3𝜔2
s

𝑘p1𝑘p2𝐴p1,0𝐴p2,0(𝑘p1 + 𝑘p2 − 𝑘s), (5.61b)

where𝐴p1,0,𝐴p2,0 are pump amplitudes at the input of a JTWPA. We then rewrite Eq. (5.60)

as

𝜕𝐴s

𝜕𝑥
− 𝑖𝛼DP

s 𝐴s − 𝑖𝜅DP
s 𝐴*

s𝑒
i(kp1+kp2−2ks+αp1+αp2)x = 0, (5.62)

where 𝛼p1, 𝛼p2 are the respective phase modulation terms caused by pumps, similar to

Eq. (5.47). Again, by making the substitution 𝐴s = 𝑎s𝑒
iαDP

s x, the equation of propagation

is simplified to

𝜕𝑎s
𝜕𝑥

− 𝑖𝜅DP
s 𝑎*s𝑒

i(kp1+kp2−2ks+αp1+αp2−2αDP
s )x = 0. (5.63)

Phase matching ∆𝑘DP = 𝑘p1 + 𝑘p2 − 2𝑘s + 𝛼p1 + 𝛼p2 − 2𝛼DP
s = 0 is achieved through

dispersion engineering, and the solution to the signal propagation equation becomes:

𝑎s(𝑥) = 𝑎s,0

[︁

cos 𝜃 cosh(𝜅DP
s 𝑥)+sin 𝜃 sinh(𝜅DP

s 𝑥)+𝑖
(︀

sin 𝜃 cosh(𝜅DP
s 𝑥) + cos 𝜃 sinh(𝜅DP

s 𝑥)
)︀

]︁

.

(5.64)

The phase-sensitive gain 𝐺DP
PSA becomes:

𝐺DP
PSA =

𝑎s(𝑥)𝑎s(𝑥)
*

𝑎s(0)𝑎s(0)*
= cosh(𝜅DP

s 𝑥) + sin(2𝜃) sinh(𝜅DP
s 𝑥) (5.65)

Notice that the solution Eq. (5.64) now has an exponential dependence on the pump

powers under the perfect phase matching condition. For phase mismatching, the solution

will exhibit an oscillatory behavior, as we witnessed for the single-pump scheme. The

𝜃 ≡ 𝜃p,0 − 𝜃s,0 term is again the relative phase difference between the signal and the two

pumps at the input of the JTWPA assuming no phase difference between the latter. The

phase sensitive gain exhibits a similar trend with respect to the phase difference 𝜃 as shown

in Fig. 5-10. As we can see, the gain is a function of the quadrature phase, which we will
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Dual pump

Figure 5-11. | Dual-pump phase-sensitive amplification. Numerically simulated phase-sensitive

gain on a log scale of a JTWPA as a function of signal phase relative to the pump. For simplicity,

parameters are set to κDP
s → 0.00056 and x → 3000.

demonstrate experimentally in Chapter 6. More importantly, the unique capability of a

phase-sensitive amplifier to amplify one quadrature while de-amplifying the other leads to

anti-squeezing and squeezing as we discussed earlier in Sec. 5.2.2.

So far, we have presented the fundamental concepts behind using nonlinearity to gener-

ate parametric amplification. An important aspect of engineering a nonlinear device like the

JTWPA is phase matching, especially in the presence of strong pump fields. In this chap-

ter, we assumed phase matching without describing how it is experimentally achieved. In

Chapter 6, we shall discuss the experimental realization of dispersion engineering to phase

match different nonlinear processes selectively that will ultimately lead to the generation

of interesting non-classical light — squeezed states.

120



Chapter 6

Development of Josephson Parametric

Amplifiers

Dispersion engineering is a technique to create different desired phase-matching condi-

tions. Phase matching is an essential concept in constructing a nonlinear system, especially

in the presence of strong pump fields that can lead to unwanted nonlinear effects such as

self-phase and cross-phase modulations discussed earlier in Chapter 2. This chapter will

begin by illustrating the resonant phase-matching technique to counter these unwanted non-

linear effects, followed by highlights of two major single-pump JTWPA projects. The last

part of this chapter will introduce non-degenerate four-wave mixing, which is used to gen-

erate phase-sensitive amplification and squeezing in Chapter 7. We will discuss the circuit

design used to engineer the JTWPA dispersion and analyze the corresponding amplifier

performance, including gain profile, bandwidth, 1-dB compression point, phase-sensitive

amplification, etc. These are important metrics of a quantum amplifier that can affect the

squeezing performance.

6.1 Phase Matching in a JTWPA

Let’s first examine the simple case of a nonlinear transmission line consisting of Joseph-

son junctions with a monochromatic pump. Below the plasma frequency (typically around

30 GHz) of the junction, the dispersion relation is approximately linear [78]. Ideally, with-
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a

pump

signal

idler
pump

signal

idler

b

Figure 6-1. | Dispersion engineering illustration. a. Linear dispersion relation. b. Dispersion

modification with phase-matching resonators opens up a stop band at their resonant frequency.

out a power dependence [negligible 𝛼’s in Eq. (5.52)], the phase mismatch condition is

∆𝑘 = 2𝑘p − 𝑘s − 𝑘i, where 𝑘p, 𝑘s and 𝑘i are wavevectors of the pump, signal and idler, re-

spectively. Shown in Fig. 6-1, a single pump tone creates an amplified signal and an idler,

and the process is naturally phase-matched due to the linear dispersion relation. How-

ever, this depiction is only valid at zero pump power, as pump-power-dependent SPM and

XPM processes would modify the phase-matching condition as the 𝛼’s become larger. The

resonant phase-matching technique is introduced to address these additional effects [78].

Fig. 6-2(b) shows the addition of phase-matching resonators, comprising a coupling capac-

itance 𝐶c, resonator capacitance 𝐶r and inductance 𝐿r, the technique creates a dispersion

feature, manifested as resonance at frequency 𝜔r =
√
𝐿r𝐶r in the JTWPA transmission

profile; it alters the original, approximately linear wavevector near the resonance frequency

of the phase-matching resonators as shown in Fig. 6-1(b). Adjusting the pump frequency

around this dispersion feature can offset the additional SPM and XPM terms to the phase

to achieve phase-matching. We will demonstrate the technique can be translated when

adding a secondary pump field and discuss the performance of a dual-dispersion JTWPA

in Sec. 6.4.

A typical way to operate a JTWPA is through a degenerate four-wave mixing (DFWM)

process, which converts two pump photons into a pair of signal and idler photons that

are equally spaced around the pump in frequency, as shown in Fig. 6-2(a). The DFWM

process — 2𝜔p = 𝜔s + 𝜔i — converts two frequency-degenerate pump photons (𝜔p) into

122



a

Signal, Pumps, Idler

50 Ω Single-Pump JTWPA

unit 
cell

PumpSignal Idler

Frequency

b

Figure 6-2. | JTWPA nonlinear wave-mixing process and circuit schematic. a. Degenerate

Four-Wave Mixing (DFWM) process, where a pair of signal and idler photons are created

symmetrically around the pump in frequency. b. Single-pump JTWPA circuit schematic. A

repeating section of the single-pump JTWPA showing the L-C ladder that forms a 50Ω
transmission line from lumped elements and a phase-matching resonator.

an entangled pair of signal (𝜔s) and idler (𝜔i) photons. When 𝜔s ̸= 𝜔p, energy conservation

places the idler photon at a different frequency than the signal photon. This leads to two-

mode squeezed photons and entanglement.

As first introduced in Chapter 5, the single-pump JTWPAs have been commonly de-

ployed as near-quantum-limited amplifiers in the microwave C band (4-8 GHz) [61] and

have been pushing the limit in multiqubit readout in quantum computing.

6.2 Low-Frequency (LF) JTWPA

Broadband amplifiers are essential in signal processing outside the C band in quantum

computing, astrophysics and condensed matter physics. They can greatly reduce mea-

surement time and enhance the signal-to-noise ratio. Several design considerations must

be made before designing a JTWPA in a different frequency spectrum. First, the phase-

matching resonators need to be redesigned to resonate in the hundreds of MHz range.

Their frequency is given by 𝜔LF = 1/
√
𝐿LF𝐶LF. Since 𝜔LF is now ten times smaller

than a typical JTWPA operating at 7 GHz, for instance, the product 𝐿LF𝐶LF needs to in-

crease by a factor 100 to achieve such a goal. Given that the chip layout is confined within
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b

a

c

Ground plane

Center signal trace

Figure 6-3. | Low-frequency JTWPA phase matching resonator layout. The blue region

represents the ground plane, the red trace is the upper niobium plane, and the orange is the

dielectric layer. a. Coupling capacitor Cc. b. Ground plane cutout for the spiral inductor with a

spacing 3 ∼ 5µm to the ground plane. c. Via and underpass routing the circuit line from the top

plane to the bottom.

a 5 mm by 5 mm area, we increase the capacitor pad of the phase-matching resonator and

turn the inductor into a dense spiral shape to increase its geometric inductance. As a side

effect, the self-capacitance of the spiral inductor also increases, leading to a red shift to

its self-resonance condition. This phenomenon happens due to the parasitic capacitance

of a realistic inductor (there is a finite capacitance between the inductor leads and be-

tween the spiral center traces). One can typically model it as a parallel capacitor across

the inductor itself, as shown in Fig. 6-4(a). Sometimes, one includes an additional serial

resistor as the loss channel for the inductor, which we can ignore since the inductor wire is

made out of superconducting niobium. As the frequency increases, the parasitic reactance

𝑋C
parasitic = 1/𝜔𝐶parasitic drops until it equals the inductive reactance 𝑋L

LF = 𝜔𝐿LF, where

𝐶parasitic is the parasitic capacitance of the inductor 𝐿LF. The parallel capacitance and

the inductor form a tuned circuit, leading to the so-called “self-resonance” condition. An

EM simulation is performed to ensure the spiral inductor does not self-resonate within the
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operating frequency band of the LF JTWPA. The simulation result can be seen in Fig. 6-

4(b), where the self-resonant frequency occurs around 40 GHz, well above the operating

frequency band.
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Figure 6-4. | EM simulation of self-resonant frequency of the spiral inductor inside the LF

JTWPA. a. Circuit model for an inductor with the addition of its parasitic capacitance. Here we

are ignoring the internal loss of the inductor. b. EM simulation of self-resonant frequency of the

spiral inductor design (3D current density view — color bar represents current density). Labels 1

and 2 denote the simulation ports.

We adjust the design geometry through a iterative process to target the phase-matching

resonator frequency 𝜔LF at 2𝜋 × 700MHz. Fig. 6-5 displays a transmission profile of a

phase-matching resonator capacitively coupled to a 50Ω coplanar waveguide. Because a

JTWPA’s operability and gain performance depend on the dispersion feature, EM simu-

lation drastically reduces the risk of design mistakes. In practice, the dispersion feature

(Fig. 6-7) yields well and comes out very close to the design. Moreover, the LF JTWPA

has low insertion loss of around -0.7 dB at 700 MHz, which has the potential of being a

quantum-limited amplifier in comparison with the C-band JTWPA (> −3 dB loss in com-

parison). A compatible set of microwave hardware is necessary to characterize and operate

an LF JTWPA, such as its noise temperature. Unfortunately, there were no readily avail-

able off-the-shelf cryogenic isolators that would support the broadband operation of the LF
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Figure 6-5. | Dispersion feature EM simulation. Simulation of a single phase matching

resonator coupled to the a CPW transmission line (3D current density view — color bar represents

current density).

JTWPA at the time of the experiment. Most of the measurement is done with a setup that

involves at least two 20 dB cryogenic attenuators placed before and after the LF JTWPA

to minimize any standing waves due to impedance mismatch. Developing the necessary

microwave components for the LF JTWPA would be a crucial next step.
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Figure 6-6. | Low-frequency HEMT. A sub-gigahertz HEMT shown to the left. Its gain and noise

performance characterized at 4 K are shown to the right.

The LF JTWPA operating principle is similar to the C-band single-pump design [61].

In the end, the JTWPA successfully demonstrates greater than 20 dB parametric ampli-

fication and achieves an overall broadband gain from 500 MHz to 900 MHz (Fig. 6-8).

The performance is many orders of magnitude higher than a resonator-based JPA within

this frequency band [113]. Engineering a first-of-its-kind sub-gigahertz broadband super-
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Figure 6-7. | LF JTWPA transmission. Experimental S21 of an LF JTWPA (pump off)

normalized with respect to a microwave thru line. The plot shows the frequency of the dispersion

feature and the LF JTWPA insertion loss from 500 MHz to 1 GHz.

conducting parametric amplifier enables many exciting quantum metrological applications

below 1 GHz such as cryogenic sensing and spin qubit quantum computing.
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Figure 6-8. | Parametric gain of an LF JTWPA. Experimental on-off parametric gain of an LF

JTWPA displaying broadband gain from 500 MHz to 1 GHz.

6.3 Aluminum (Al) JTWPA

The quantum efficiency (QE) of a JTWPA is greatly affected by the intrinsic loss of the

device and coupling to higher frequency idler modes. Currently, most of the loss comes

from defects in the dielectric material of a niobium-based, tri-layer JTWPA [95]. Theo-

retically, a smaller loss tangent can lead to a higher QE than existing designs. We aim to
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improve QE by switching the fabrication to a planar aluminum process instead of a nio-

bium tri-layer architecture. Note the higher QE is not related to the material property of

aluminum or niobium as both metals become superconducting at the operating temperature

of the JTWPA, but rather their associated fabrication process (planar or 3D) and oxide layer

made of SiO2 or Nb2O5.

Nb

Al
13

Nb
41

Nb

Oxide layer (SiO
2
, Nb

2
O

5
, etc.)

Al

Al

Al AlOxide layer (Al
2
O

3
)

Si substrate

Vacuum

Figure 6-9. | Nb vs. Al JTWPAs. An illustration of Nb-based JTWPA (left) and its parallel-plate

capacitors. The loss tangent associated with this process is characterized by the loss tangent tan δ.

The red arrows portray the electric field in the capacitor. In contrast, the two Al-based JTWPA

(middle: parallel-plate; right: CPW stub) design variants are shown with their respective capacitor

structures.

To this end, we design and fabricate various aluminum-based, planar JTWPAs Fig. 6-9

using a qubit-compatible aluminum process to reduce insertion loss. We work closely with

Kaidong Peng and Prof. Kevin O’Brien, who performed the design and simulation; MIT

Lincoln Lab fabricated and packaged the devices. We primarily study the overall improved

dielectric loss and broadband amplification in Al JTWPAs. There are two variants of the

new Al JTWPAs. The first kind is the coplanar waveguide (CPW) stub design utilizing

CPW stubs as the capacitor to ground (𝐶g) throughout the JTWPA. The second one is the

parallel-plate capacitor (PPC) using aluminum oxide as its dielectric material. The CPW

design helps understand the dielectric loss in the PPC, considering its loss tangent is about

an order of magnitude lower than the latter. This is due to the higher electric participation

ratio (higher concentration of the electric field) inside the aluminum oxide dielectric layer
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Figure 6-10. | Al JTWPA with CPW stub design. a. Microscopic image of the chip wire-bonded

around the edges. b. A zoomed-in view of the JTWPA unit cell. c. GDS design schematic of the

JTWPA unit cell showing various components.

Figure 6-11. | Al JTWPA with parallel-plate design. a. Microscopic image of the chip

wire-bonded around the edges. b. A zoomed-in view of the JTWPA unit cell. c. GDS design

schematic of the JTWPA unit cell showing various components. d. SEM image of the capacitor

arrays inside a phase-matching resonator. e. A zoomed-in view of some individual capacitors in

(d).

in the PPC instead of media such as the vacuum or a pristine Si substrate. As shown

in Fig. 6-10, one drawback of the CPW design is that it occupies a larger footprint, which

limits the device lengths in the current fabrication run, given the chip size. However, this

is not a hard limit as we can enlarge the chip size from 5 by 5 mm to 10 by 10mm or even

larger.

Fig. 6-11 shows the second variant of the Al JTWPA using PPC with a few design

highlights. The primary concern is the uniformity of the oxide layer in the PPC across the
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Figure 6-12. | Al JTWPA with different lengths. a. JTWPA with 300 unit cells. b. JTWPA with

600 unit cells. c. JTWPA with 1200 unit cells.

device and its impact on phase matching. The size of the coupling capacitor (𝐶c) is crucial,

as too small of its value could not compensate for the phase mismatch, while too large of

𝐶c would distort the band structure and reduces gain. Therefore, we design a variety of

𝐶c sizes to compensate for the spread of capacitance up to 5% deviation from its nominal

value.

Figure 6-13. | Transmission profiles of the two Al JTWPA designs. a. S21 of the stub design. b.

S21 of three parallel-plate designs with different number of unit cells.

To optimize the JTWPA gain performance, we vary the device length with a total num-

ber of 300 (300L device), 600 (600L device), and 1200 (1200L device) unit cells (Fig. 6-12)

in addition to a combination of different characteristic impedance and coupling capaci-

tance. The goal is to examine the tradeoff between device length (associated with gain) and

density (related to crosstalk and other unwanted EM interactions).

We characterize and optimize the gain profiles of 300L, 600L, and 1200L devices shown

in Fig. 6-14. The gain profiles demonstrate a maximum parametric amplification over
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Figure 6-14. | Gain profiles of parallel-plate style Al JTWPAs. a. Optimized gain profile for the

300L device with a numerical simulation plotted together. b. Optimized gain profile for the 600L

device with a numerical simulation plotted together. c. Optimized gain profile for a 1200L device

with a numerical simulation plotted together.

20 dB and a broad bandwidth from 4-9 GHz, on par with the Nb version JTWPAs. Their

respective insertion loss is displayed in Fig. 6-13. As we can see, the average loss below

7 GHz for the 600L is less than 2 dB — a significant improvement over the Nb JTWPA,

which typically has more than 4 dB with a similar gain performance.

The work validates design and fabrication in the process of reducing intrinsic loss. It

is an ongoing project at the time of writing this thesis, as we have seen issues such as

unwanted EM coupling between adjacent signal lines, but the preliminary characterization

helps guide future design iterations of Al JTWPAs in resolving these problems.

6.4 Dual-Dispersion JTWPA

Like a centrosymmetric crystal, the JTWPA junction nonlinearity features a spatial-

inversion symmetry (in the absence of a DC current) that results in 𝜒(3)-type nonlinear elec-
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tromagnetic interactions. These support both degenerate-pump four-wave mixing (DFWM)

and non-degenerate-pump four-wave mixing (NDFWM).

However, DFWM has two drawbacks when considering single-mode squeezing, 𝜔s =

𝜔p. First, the signal and idler frequencies coincide with the strong pump, resulting in self-

phase modulation that leads to unwanted phase mismatch, which cannot be compensated

through dispersion engineering [78]. Second, it is challenging to later separate the signal

and idler photons from the “background” pump photons. These issues motivate us to con-

sider a NDFWM process (Fig. 6-15) – 𝜔1+𝜔2 = 𝜔s+𝜔i — that generates both single-mode

and two-mode squeezed states far from the pump frequencies 𝜔1 and 𝜔2. To do this, we

introduce a JTWPA that uses two pumps and dispersion engineering to achieve the desired

NDFWM interaction.

Pump 1 Pump 2Signal Idler

Frequency

Figure 6-15. | Non-degenerate four-wave mixing (NDFWM) process. For NDFWM, the picture

shows the special case when the signal and idler are at the same frequency ωc at the center between

the two pumps. In general, the signal and idler can be detuned from each other.

6.4.1 Chip Design

The dual-pump JTWPA is fabricated in a niobium trilayer process on 200-mm silicon

wafers. This meandering nonlinear transmission line has 3141 Josephson junctions and

shunt capacitors (Fig. 6-16b). These are parallel-plate capacitors with silicon dioxide as

their dielectric material. In addition, the JTWPA features two sets of interleaved phase-

matching resonators, one (purple) at 𝜔r1 = 2𝜋×5.2 GHz and the other (blue) at 𝜔r2 = 2𝜋×
8.2 GHz (Fig. 6-16d). The phase-matching resonators comprise lumped-element parallel-

plate capacitors with niobium pentoxide dielectric and meandering geometric inductors.

132



Figure 6-16. | Josephson traveling wave parametric amplifier dispersion engineered for a

bichromatic pump. a. Multiple JTWPA chips fabricated on an 8-inch silicon wafer using a

niobium trilayer process at MIT Lincoln Laboratory. b. Micrograph of a 5 mm × 5 mm JTWPA

chip. c. Top-view confocal image of arrays of phase-matching resonators, capacitors to ground,

and Josephson junctions (light gray). d. Zoomed-in view of the structure showing the

low-frequency lumped-element phase matching resonator (blue), capacitors to ground Cg (orange),

high-frequency lumped-element phase matching resonator (purple), and Josephson junctions (red).

The color-coded elements correspond to the circuit schematic in panel (e). e. A repeating section

of the dual-pump JTWPA. We can identify the L-C ladder that forms a 50Ω transmission line from

lumped elements and the two phase-matching resonators for dispersion engineering.

6.4.2 Wavevector

To characterize the phase-matching condition of a nonlinear process, we need to char-

acterize the JTWPA dispersion as a function of frequency. The wavevector of a JTWPA

can be extracted relative to that of a SMA coaxial through-line shown in Fig. 6-17. This

measurement scheme aims to single out only the phase change induced by the JTWPA it-

self. To be more specific, the real part of the wavevector is measured via the phase of the

transmitted field. However, due to the presence of other microwave components, the phase

response incorporates an additional frequency-dependent phase 𝜑0, such that

𝜑JTWPA + 𝜑0 = 𝑘(𝜔)𝐿, (6.1)

where 𝑘 and 𝐿 are the wavevector and length of the device. In contrast, the phase response

from the through-line is:

𝜑thru + 𝜑0 = 𝑘thru𝐿thru (6.2)
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SMA barrel

JTWPA

Input Output

(GHz)

Figure 6-17. | Experimental data and numerical model for the JTWPA wavevector. The

wavevector is experimentally characterized by measuring the phase of the transmission through the

JTWPA when the pumps are turned off. The numerical model is calculated from the dispersion

relation (see Eq. (A.5)) using fitted circuit parameters to match the experimental data.

Crimson-shaded areas are regions where the phase inside the JTWPA cannot be fully resolved

because the phase-matching resonators act as stop-band filters and reflect the probe back; the

transmission is dominated by instrumental noise within the stopband. The inset shows the

measurement schematic using a switch to calibrate the wavevector of a JTWPA.

By subtracting Eq. (6.1) from Eq. (6.2), we can ideally eliminate the offset 𝜑0. Furthermore,

we can back out 𝜑JTWPA (which includes the effects from wirebonds, coplanar waveguide

boards, etc.) given the through-line phase at DC is zero and the phase is approximately

linear in our frequency range of interest [61].
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6.4.3 JTWPA Insertion Loss

Circuit parameters for a dual-dispersion Josephson metamaterial

𝑁(unit cells) 3141
𝐶0 28.616 fF

𝐼c 3.14𝜇A

Phase-matching LC resonator 1

𝜔r1 5.2815× 2𝜋GHz

𝐶r1 6.653 pF

𝐶c1 28.616 fF

Phase-matching LC resonator 2

𝜔r2 8.169× 2𝜋GHz

𝐶r1 2.441 pF

𝐶c1 28.616 fF

Pumps

Ω1 5.2984× 2𝜋GHz

Ω2 8.109× 2𝜋GHz
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Figure 6-18. | JTWPA insertion loss and theory fit.

Utilizing the JTWPA circuit parameters obtained from modeling the measured wavevec-

tor in Fig. 6-17, we fit the measured insertion loss |𝑒ik̃(ω)L| using a single parameter of loss

tangent tan 𝛿 of 4.9× 10−3

𝑘(𝜔) =
𝜔
√︀

𝐿g𝐶g(1− 𝑖 tan 𝛿)√
1− 𝜔2𝐿J𝐶J

𝜉, (6.3)
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where

𝜉 =

[︃

1− 𝐶c1 + 𝐶c2

10𝐶g

+
𝐶c1

10𝐶g

1− 𝜔2𝐿r1𝐶r1(1− 𝑖 tan 𝛿)

1− 𝜔2𝐿r1(𝐶r1 + 𝐶c1)(1− 𝑖 tan 𝛿)

+
𝐶c2

10𝐶g

1− 𝜔2𝐿r2𝐶r2(1− 𝑖 tan 𝛿)

1− 𝜔2𝐿r2(𝐶r2 + 𝐶c2)(1− 𝑖 tan 𝛿)

]︃1/2

,

(6.4)

𝜔 is the frequency, 𝐿J is the junction inductance, and 𝐿r is the phase-matching resonator

inductance. The expression of 𝑘(𝜔) above is obtained from the lossless formula Eq. (A.5)

by replacing every capacitor term 𝐶 → 𝐶(1 − 𝑖 tan 𝛿) to account for the dielectric loss

tangent of the capacitors using a parallel RC model. In addition, the 1/10 factors appearing

in the resonance terms account for the fact that each set of phase-matching resonators is

only inserted once every ten unit cells.

Phase Mismatch for Different Processes

Pumping the JTWPA at two angular frequencies 𝜔1,2 generates parametric amplification

that satisfies the energy conservation relation 𝜔s + 𝜔i = 𝜔1 + 𝜔2 and leads to the desired

single-mode and two-mode squeezing. However, NDFWM also creates unwanted photons

through the frequency conversion process |𝜔s−𝜔i′ | = |𝜔1−𝜔2|, where 𝜔i′ is an extraneous

idler angular frequency. This unwanted by-product does not participate in the desired two-

mode squeezing, but rather, it is effectively noise that undermines squeezing performance.

Fortunately, these unfavorable conversion processes are susceptible to phase mismatch and

can be effectively reduced through dispersion engineering for a wide range of pump powers.

To understand the phase mismatch quantitatively as a function of pump power 𝑃1 and

𝑃2, we define an effective power-dependent phase mismatch for the parametric amplifica-

tion (PA) process,

∆𝑘(𝑃1, 𝑃2) = (2𝑘ωs
− 𝑘Ω1 − 𝑘Ω2) + [2𝑘ωs

(𝑃1)− 𝑘Ω1(𝑃1)− 𝑘Ω2(𝑃1)]

+ [2𝑘ωs
(𝑃2)− 𝑘Ω1(𝑃2)− 𝑘Ω2(𝑃2)] ,

(6.5)

where the quantity in the first parentheses is the “bare” (linear) phase mismatch due to the
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linear dispersion of the JTWPA measured at low probe power (below single-photon level),

the second group of terms in the bracket represents the pump 1 induced Kerr modulation,

and the third set is the pump 2 power induced phase shifts. We need to account for all of

these terms as we operate the device in the dual-pump scheme.
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Degenerate four-wave mixing 1 (DFWM1)

Degenerate four-wave mixing 2 (DFWM2)

Frequency conversion 1 (FC1)

Frequency conversion 2 (FC2)

Parametric amplification (PA)

Figure 6-19. | Phase mismatch for different nonlinear processes. The phase mismatch is

characterized as a function of pump 2 power with a fixed pump 1 power (the same power sweep

performed in the squeezing measurement). The unwanted processes are highly phase-mismatched

compared to the desired parametric amplification process (blue).

Similarly, we consider other two-pump-photon nonlinear processes that could lead to

degradation in squeezing performance [83]. There are four major parasitic processes, and

their corresponding phase mismatch are power-dependent as well and expressed as the

following:

• Degenerate four-wave mixing 1 (DFWM1): ∆𝑘DFWM1(𝑃1, 𝑃2) = 𝑘ωs
(𝑃1, 𝑃2)+𝑘ωi1

(𝑃1, 𝑃2)−
2𝑘Ω1(𝑃1, 𝑃2)

• Degenerate four-wave mixing 2 (DFWM2): ∆𝑘DFWM2(𝑃1, 𝑃2) = 𝑘ωs
(𝑃1, 𝑃2)+𝑘ωi2

(𝑃1, 𝑃2)−
2𝑘Ω2(𝑃1, 𝑃2)

• Frequency conversion 1 (FC1): ∆𝑘FC1(𝑃1, 𝑃2) = 𝑘ωs
(𝑃1, 𝑃2)−𝑘ωi1

(𝑃1, 𝑃2)−𝑘Ω2(𝑃1, 𝑃2)+

𝑘Ω1(𝑃1, 𝑃2)
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• Frequency conversion 2 (FC2): ∆𝑘FC2(𝑃1, 𝑃2) = 𝑘ωs
(𝑃1, 𝑃2)−𝑘ωi2

(𝑃1, 𝑃2)−𝑘Ω1(𝑃1, 𝑃2)+

𝑘Ω2(𝑃1, 𝑃2)

with frequencies:

• Ω1: pump 1 frequency

• Ω2: pump 2 frequency

• 𝜔s = (Ω1 + Ω2)/2

• 𝜔i1 = 2Ω1 − 𝜔s

• 𝜔i2 = 2Ω2 − 𝜔s

Here 𝑘ω represents the measured wavevector that accounts for both the linear dispersion

and the nonlinear phase modulations from the pumps. It is related to a measurement of a

phase ∆𝜑(𝜔) using ∆𝜑(𝜔) ∼ 𝑘(𝜔)×𝐿. We perform a measurement as shown in Fig. 6-19,

demonstrating the effectiveness of our dispersion engineering technique to suppress unde-

sirable processes while achieving a large dual-pump gain. As an example shown in Fig. 6-

20, we suppress (i.e. highly phase-mismatch) the unwanted DFWM processes (DFWM1

and DFWM2), leading to minimum gain. The results are illustrated by the blue and pur-

ple curves, representing the phase-preserving-parametric gain when only a single pump is

turned on. They starkly contrast the broadband gain, as demonstrated in the next section,

with the same pump parameters.
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Figure 6-20. | Single pump gain profiles. Single pump gain and numerical simulations that fit and

predict the gain profiles. The deviation between the model and the experimental data is expected to

be caused by the bandwidth constraint of cryogenic components such as the isolator/circulator.

6.4.4 Gain Profiles

This section will present the experimental and simulated results of JTWPA gain with

monochromatic and bichromatic pumps. The validated simulation is useful when designing

future generations of amplifiers and squeezers and gives a quantitative description of the

gain performance as a function of circuit parameters.

Experimental and Simulated Results of Single-Pump Gain

For this part of the measurement, we use a VNA as the pump. The basic procedure

is to set the probe tone at the frequency of interest, strengthen the probe tone and observe

the self-phase modulation (SPM) of the pump. By fitting the SPM data to the analytical

equations solved in reference [78] as shown in Fig. 6-21, we can obtain a calibration factor

𝛽Ip for the pump power at the device. A shown in Chapter 2, we expect a quadratic relation

between the pump phase and the pump current, which is used as the fit model in the plot.

Moreover, we obtain the pump attenuation from the loss coefficients extraction based

on the experimental data shown in Fig. 6-18. The attenuation is further used in solving the

coupled differential equations for the parametric amplifier, as detailed in reference [78],
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Figure 6-21. | Self-phase modulation data for a single pump at 7.9GHz. The pump phase data

is numerically fit as a function of pump current Ip in units of junction critical current I0. The

discrepancy between the fit and the data near the junction critical current can be observed by the

gain degradation in Fig. 6-22, similar to the behavior reported in reference [62] as well.

with results shown in Fig. 6-22. The normalized gain is characterized at the signal fre-

quency at 7 GHz for all four pump frequencies, and they are chosen without loss of gen-

erality to show the difference in JTWPA behavior. Overall, the experimental data follow

the theoretical predictions (dashed line). The reason behind the less ideal amplification

performance for pump frequencies at 7.4 GHz and 7.5 GHz is likely that the image of the

dispersion feature around 8.169 GHz starts to influence the signal. In other words, we are

pumping the JTWPA in a non-ideal regime for maximum parametric amplification at those

pump frequencies.
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Figure 6-22. | Experimental and theoretical parametric gain with different pump

frequencies. Solid markers represent experimental values while dashed lines represent the

theoretical predictions.

Experimental & Simulated Results of Dual-Pump Gain

The efficiency of parametric amplification is determined by momentum conservation,

i.e., phase matching [61]. To achieve this, we adopt the dispersion-engineering approach

of Ref. [61] and extend it to two phase-matching resonators placed periodically throughout

the amplifier. The resonator frequencies are chosen to be near-resonant with the desired

pump frequencies. The modified admittance of the transmission line about these resonances

leads to a rapid change in phase with frequency. Tuning the pump frequencies across the

resonances thereby enables us to retune the pump phases periodically along the device and

control the degree of phase matching.
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Figure 6-23. | Dual-pump phase-preserving gain. Phase-preserving gain measured using a

microwave vector network analyzer (red line) and a numerical simulation of the gain profile (black

dotted line). The total bandwidth between the two pumps is around 2.5 GHz, and the total 3 dB

bandwidth across the entire gain spectrum is more than 3.5 GHz.
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The precise selection of pump frequencies determines the phase matching condition

and thereby enhances and suppresses different nonlinear processes. We preferentially

phase match the parametric amplification process, 𝜔1 + 𝜔2 = 𝜔s + 𝜔i. This is achieved

if ∆𝑘PA12 ≃ 0, while all other processes are highly phase-mismatched as shown in Fig. 6-19.

Experimentally, we sweep pump powers and frequencies in order to identify pump pa-

rameters that simultaneously maximize the dual-pump gain and minimize the single-pump

gain. As shown in Fig. 6-23, with both pumps on, we obtain more than 20 dB phase-

preserving gain over more than 3.5 GHz total bandwidth – comparable with the single-

pump JTWPA [61] and significantly broader than JPAs [109, 65, 16, 127, 128]. The am-

plification metrics and the flat gain profile between the dispersion features are useful for

applications such as multiqubit readout with frequency-multiplexed resonators.

6.4.5 1-dB Compression Point
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Figure 6-24. | 1-dB compression point. JTWPA gain at 6.37 GHz as a function of incident power.

The yellow crosshair indicates the 1-dB compression point.

The 1-dB compression point (P1dB) refers to the incident signal power level that causes

the amplifier gain to deviate (decrease) by 1 dB from a perfectly linear device. Beyond this

point, the linear amplifier might exhibit nonlinear effects such as frequency conversion to

higher harmonics and signal distortion. Fig. 6-24 is measured at the signal frequency at

6.70 GHz. The input signal power is swept while the pump powers are fixed. We extract a

P1dB value of -98 dBm, on par with the value reported for a single-pump JTWPA [61]. The
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large dynamic range enables the JTWPA to be a bright source of squeezed microwave pho-

tons. This power level is capable of amplifying more than 35000 photons per microsecond

(𝑃1dB/ℏ𝜔) within the microwave C-band (4-8 GHz) and 20 to 30 dB higher compared to a

cavity-based amplifier [32, 9, 127]. JTWPA has the potential to generate bright squeezed

microwaves for quantum teleportation experiments [91] and to enhance resonator-induced

phase gate fidelity [87].

6.4.6 Phase-Sensitive Amplification (PSA)

f = 6.7037 GHz

P
h

a
s
e
 S

e
n

s
it

iv
e
 G

a
in

 (
d

B
)

0 30 60 90 120 150 180

0

-15

15

30

-30

Phase (degree)

Pumps off
Pumps on

56 dB

PSER

Figure 6-25. | Experimental data on phase-sensitive amplification. Experimental

phase-sensitive amplification at ωc = 2π × 6.7037GHz. The phase-sensitive extinction ratio

(PSER) is approximately 56 dB.

The JTWPA can also generate phase-sensitive interactions using a bichromatic pump,

as has been previously shown in JPAs [14]. At the center of the two pump frequencies,

𝜔c = (𝜔1 + 𝜔2)/2, the signal and idler interfere constructively or destructively, depending

on their relative phase, leading to phase sensitive amplification and deamplification. We

characterize such interference by injecting a probe tone at frequency 𝜔c and measuring the

amplifier output as a function of the probe phase 𝜃probe. Fig. 6-25 shows the JTWPA output

phase-sensitive gain with pumps on (orange) normalized to the case with pumps off (gray).

The phase-sensitive extinction ratio (PSER), defined as the difference between the maxi-

mum phase-sensitive amplification and de-amplification, is measured to be 56 dB, which as

143



far as we know, the largest value reported to date with superconducting Josephson-junction

circuits [109, 9, 127]. It is the first experimental demonstration of phase-sensitive ampli-

fication in a JTWPA, with the unique characteristic of providing amplification/deamplifi-

cation to input signals at selective phases. Such a phase-sensitive amplifier is a valuable

piece of readout technology in quantum computing — low-noise or even potentially noise-

less amplification can boost the speed in qubit readout before the quantum state decays

away [117, 29, 28]. Furthermore, phase-sensitive amplifiers can improve receiver sen-

sitivity when using a quadrature phase-shift keying protocol — a modulation technique

that enables faster data rates and longer reach in both space [53] and quantum communi-

cations [103, 110]. The large phase-sensitive gain we have achieved can be utilized for

low-noise or even potentially noiseless amplification for applications such as high-fidelity

qubit readout in quantum computing.
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Chapter 7

Squeezed Microwaves Generation

Generating squeezed microwaves has been of particular interest in research fields such

as dark matter detection and optomechanical superconducting circuits, typically with cavity-

based Josephson parametric amplifiers (JPAs). In comparison with a JTWPA, JPAs have

relatively low insertion loss and can be frequency-tunable. However, they have constrained

squeezing performance due, in part, to higher-order nonlinearities when the system is

strongly-driven [14, 65, 76, 69, 9, 57]. Moreover, their resonant nature limits the instanta-

neous bandwidth of the device and, thus, the bandwidth of two-mode squeezed microwaves.

The technique of impedance engineering can achieve larger bandwidth [94, 77], but the in-

herent dynamic range and bandwidth constraints are still present within cavity-based JPAs.

Several alternative approaches have been developed that address some of these limi-

tations. For example, the impedance engineering of resonator-based JPAs has increased

the bandwidth to the 0.5-0.8 GHz range [94, 77], but these devices still have a dynamic

range limited to -110 to -100 dBm and sub-gigahertz bandwidth. Alternative approaches

using superconducting nonlinear asymmetric inductive elements (SNAILs) for both reso-

nant [102, 40, 101] and traveling-wave [34, 84] parametric amplification feature a higher

dynamic range in the -100 to -90 dBm range. However, both architectures require a mag-

netic field bias, making them subject to magnetic field noise. Furthermore, the resonant ver-

sion remains narrowband, and one traveling-wave approach [84] requires additional shunt

resistors, which introduce dissipation and unwanted noise. To date, both approaches have

been limited to 2-3 dB single-mode and two-mode squeezing.
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High kinetic inductance wiring has been used in place of Josephson junctions to realize

the nonlinearity needed for both resonant [82] and traveling wave parametric amplifica-

tion [66, 12] with higher dynamic range. However, the relatively weak nonlinearity of the

wiring translates to a much larger requisite pump power to operate the devices, and the

traveling wave paramps have larger gain ripple due to impedance variations on the long (up

to 2 m) lines. Furthermore, although a single-mode quadrature noise (variance) reduction

has been demonstrated in narrowband resonant nanowire devices, their degree of squeezing

in dB has yet to be quantified using a calibrated noise source [82].

In this chapter, we demonstrate a broadband single-mode and two-mode microwave

squeezer using a dispersion-engineered, dual-pump Josephson traveling-wave parametric

amplifier (JTWPA). As discussed in Chapter 6, the high saturation power and large band-

width of our dispersion-engineered JTWPA will make it a promising candidate for gen-

erating highly-squeezed single-mode squeezed vacuum as well as broadband two-mode

squeezed vacuum states. This chapter will present the experimental results on squeezed

microwaves generation using a JTWPA and explain the measurement procedure, data ac-

quisition, and analytical methods.

7.1 Single-Mode Squeezed Vacuum

Single-mode squeezed states have a variety of applications. As a quantum engineer, I

focus on exploring the single-mode squeezing performance of a traveling-wave amplifier

compared to a cavity-based squeezer.

7.1.1 Measurement Protocol

We first characterize the single-mode squeezed vacuum of the dual-pump JTWPA. To

do this, we apply vacuum to the JTWPA input using a cold 50Ω resistive load. We mea-

sure and compare the output field of the JTWPA for two cases: 1) the output with both

pumps off – i.e., vacuum, and 2) the output with both pumps on, i.e., squeezed vacuum.

In both cases, the JTWPA output field propagates up the measurement chain to a room-

temperature heterodyne detector comprising an IQ mixer that downconverts the signal into
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its in-phase (I) and quadrature (Q) components at 50 MHz. These two components are then

sampled using a field-programmable gate array (FPGA)-based digitizer with a sampling

rate 500 MS/s. The components are then digitally demodulated to obtain an I-Q pair from

which one can derive the amplitude and phase of the output field.

Figure 7-1. | Output field imaging. a. 2-D histogram of the vacuum state from a JTWPA when

the pumps are off. The legend shows different confidence circles. b. Output field histogram of

squeezed vacuum state with different confidence ellipses. Both histograms comprise 6× 106 data

points.

To acquire I-Q pairs, the pumps – and thus the squeezing – are periodically switched

on and off with a duration of 10 µs each. For each 10 µs acquisition, only the inner 8 µs

is digitally demodulated to eliminate sensitivity to any turn-on and turn-off transients. The

8 µs signal is integrated, corresponding to a measurement bandwidth 𝐵meas ≈ 125 kHz

and yields a single I-Q pair. We interleave the squeezer-on and squeezer-off acquisitions

to reduce sensitivity to experimental drift between the measurements. When the squeezer

is off, we extract an isotropic Gaussian noise distribution for the vacuum state (Fig. 7-1a)

with variance ∆𝑋2
SQZ, off . When the squeezer is on, the squeezed vacuum state exhibits an

elliptical Gaussian noise distribution as shown in Fig. 7-1(b). In total, we acquire 6 million

I-Q pairs to reconstruct each histogram. We then extract the variance along the squeezing

axis ∆𝑋2
SQZ, min and along the anti-squeezing axis ∆𝑋2

SQZ, max. Comparing the values

∆𝑋2
SQZ, min and ∆𝑋2

SQZ, max to the vacuum level ∆𝑋2
SQZ, off along with the measurement

gain and efficiency enables us to determine the degree of squeezing and anti-squeezing,

respectively.
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7.1.2 Output Field Data Analysis

We measure the output fields from the JTWPA using a room-temperature digitizer and

demodulation scheme. An example of such a measurement is shown in Fig. 7-3(a). This

corresponds to pump 1 power 𝑃1 = 1.57 nW and pump 2 power 𝑃2 = 0.665 nW in Fig. 7-

4(d). The measured distributions for squeezing (blue) and vacuum (red) are plotted in-

dependently in the insets, and then also together by subtracting the vacuum distribution

from the squeezing distribution. Although this bias point corresponds to a high-degree

of squeezing, the room-temperature measurement result is somewhat ameliorated due to

several factors [e.g., see probability densities, right-hand side of Fig. 7-3(a)]. The reason

is that we are measuring the quadratures at room temperature, rather than at the JTWPA

output. Our measurement incorporates all of the loss, gain, and added amplifier noise in

the measurement chain from the JTWPA output to the room temperature digitizer, and we

must account for these to obtain the degree of squeezing at the JTWPA output. In addition,

the digitizer measures the distributions in the voltage basis, and while this is sufficient for

relative measurements between squeezing and vacuum, we also convert to the photon basis

to make a standardized assessment in the photon basis.

We use the procedure following Mallet et al. in Ref. [63] to go from the room temper-

ature measurement in the voltage basis to the degree of squeezing at the JTWPA output in

the photon basis. The procedure is summarized in table 7.1 and goes as follows:

• We first determine the vacuum state variance in the photon basis at the output of the

JTWPA to be ∆𝑋2
SQZ, off = 1/2 + �̄�. To begin, the variance of the vacuum state in the

photon basis ∆𝑋2 (input)

SQZ, off at the JTWPA input is 1/2 + �̄�, where �̄� =
∑︀

i �̄�i is the sum of

average residual thermal photons arriving at the JTWPA from different temperature stages

stages 𝑖 in the refrigerator. For each temperature stage 𝑖, the residual photon number is

given by the Bose-Einstein distribution, �̄�i = 𝐴i/(𝑒
ℏω/kBTi − 1), where 𝑇i is the tempera-

ture of stage 𝑖, and the net average photon number is reduced by the collective attenuation

𝐴i from stage 𝑖 to the JTWPA input.

• Next, we determine the measurement efficiency 𝜂meas from the system noise temperature

𝑇sys determined using the noise calibration methods described in more detail in the next
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Quantity Definition Value

∆X2
SQZ, off Vacuum variance, photon basis, stage 1

1

2
+ n̄

Tsys System noise temperature, stage 2 measured quantity (noise tem-

perature calibration)

ηmeas Measurement efficiency, stage 2 ℏω/2kBTsys

α Transfer function, stage 2 ∆x2SQZ, off/∆V 2
SQZ, off

∆V 2
SQZ, min/max Field variance, voltage basis, stage 3 measured quantity

∆x2
SQZ, min/max Field variance, photon basis, stage 2 α ∆V 2

SQZ, min/max

∆X2
SQZ, min/max Field variance, photon basis, stage 1

∆x2SQZ, min/max − (1− ηmeas)/2

ηmeas

Table 7.1. | Definition of quantities used to convert measured fields to squeezed fields at the

JTWPA output. These quantities are used to convert the measured fields in the voltage basis to

the desired squeezing and anti-squeezing fields at the output of the JTWPA in the photon basis.

Stages refer to the modeling of the measurement chain shown in Fig. 7-2.

21 3

Vacuum

Measurement chain

JTWPA output 

reference plane
Measured voltage

Loss model Transfer function

Figure 7-2. | Physical model connecting the field at the JTWPA output to the measured

voltage. Due to non-negligible loss and noise in the microwave setup, the output field measured by

the room-temperature digitizer is different from that at the output of the JTWPA at milliKevin

temperature. Therefore, to infer the squeezing levels at the JTWPA output, we use a model for the

measurement chain from the output of the JTWPA (input of the model with quadrature field

amplitude Xi in the photon basis) to the digitizer (output of the model with quadrature field

amplitude Vi in the voltage basis). The model uses a fictitious beamsplitter that accounts for noise

(loss) in the measurement chain followed by a lossless transfer function that accounts for amplifier

gain and the conversion between the photon basis and the voltage basis. The losses and other

Gaussian noise sources [63] are captured by the beamsplitter with transmissivity η, after which the

quadrature field amplitude in the photon basis is denoted as xi. The transfer function α with a field

conversion factor
√︀

1/α encompasses any linear scaling in the measurement chain, including

amplifier gain (linear) and analog-to-digital conversion process of the digitizer. Green label 1, 2,

and 3 mark the relative position in the model as referenced in our discussion.
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section. The efficiency is primarily affected by the HEMT, which we use as our first-

stage amplifier with a large dynamic range, chosen to prevent gain saturation that would

otherwise affect the measurement outcome. The efficiency is also affected by distributed

loss in the measurement chain between the JTWPA and room-temperature digitizer. For

the case shown in Fig. 7-3 and Fig. 7-12, 𝜂meas = 6.53+0.23
−0.22% at measurement frequency

6.70 GHz. For our specific setup, we estimate an effective temperature 𝑇 < 40mK (or

�̄� < 0.00014) at 6.70 GHz, which has a negligible effect on the output field from the

squeezer [122, 51]. This is further validated by the noise characterization experiment

using a shot noise tunnel junction (SNTJ), where we extract an average temperature 𝑇

= 30.4 mK of the tunnel junction. The JTWPA input vacuum state is nearly ideal, with

only a negligible thermal background, that is, �̄� ≪ 1/2. Therefore, we could safely

take ∆𝑋2 (input)

SQZ, off = �̄� + 1/2 ≈ 1/2. Nonetheless, although negligible, for completeness,

we carry forward the small �̄� to the JTWPA output. We note that this is an overestimate

(worst-case), since the non-equilibrium thermal-photon portion of �̄� – the portion arriving

from higher temperature stages in the refrigerator – is further attenuated by the JTWPA

itself. Therefore �̄�output < �̄�input. Since the JTWPA attenuation changes with the bias

point, we simply use the worst-case estimate �̄�output = �̄�input ≡ �̄�. This means we take

∆𝑋2
SQZ, off ≡ ∆𝑋2 (output)

SQZ, off = ∆𝑋2 (input)

SQZ, off = (1/2 + �̄�). Again, we have confirmed that �̄� at

this level has no discernible impact on our results.

• We next determine the factor 𝛼 that converts between the voltage basis and photon ba-

sis, 𝛼 = ∆𝑥2SQZ, off/∆𝑉
2
SQZ, off = 0.129052 quanta/mV2, obtained from the calculated

value for ∆𝑥2SQZ, off and the measured value of ∆𝑉 2
SQZ, off for the vacuum state in the

voltage basis [63]. This conversion factor enables us to utilize a beamsplitter model as

shown in Fig. 7-2 that accounts for the measurement efficiency, which for the variances

we consider here, leads to:

∆𝑥2i = 𝜂meas∆𝑋
2
i + (1− 𝜂meas)

1

2
, (7.1)

where ∆𝑋2
i is the variance of the 𝑋 quadrature field at the beamsplitter input (i.e., the

JTWPA output, the quantity we want to extract), ∆𝑥2i is the variance of the 𝑥 quadra-
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ture field at the beamsplitter output that accounts for measurement efficiency, the factor

(1/2) is the variance of vacuum introduced by the vacuum port of the beamsplitter, and

𝑖 corresponds to “SQZ, off” (vacuum), “SQZ, min” (squeezing), and “SQZ, max” (anti-

squeezing). The same holds for the 𝑃 quadrature field.

We then use 𝛼 in this equation to calculate the desired quadratures from the measured

voltage variance [63]:

∆𝑥2i = 𝛼∆𝑉 2
i = 𝜂meas∆𝑋

2
i + (1− 𝜂meas)

1

2
(︃

∆𝑉 2
i

∆𝑉 2
SQZ, off

)︃

∆𝑥2SQZ, off = 𝜂meas∆𝑋
2
i + (1− 𝜂meas)

1

2

which takes the decrease (increase) of the squeezed (anti-squeezed) voltage variance rel-

ative to the voltage variance obtained for vacuum, and uses it to scale the variance of

vacuum in the photon basis.

∆𝑥2SQZ, off = 𝜂meas∆𝑋
2
SQZ, off + (1− 𝜂meas)

1

2

= 𝜂meas(
1

2
+ �̄�) + (1− 𝜂meas)

1

2
=

1

2
+ 𝜂meas�̄�

• Finally, we obtain the desired variance at the JTWPA output by inverting Eq. (7.1), which

in turn accounts for the measurement efficiency, leading to the final entry in table 7.1:

∆𝑋2
SQZ, min/max =

∆𝑥2SQZ, min/max − (1− 𝜂meas)
1
2

𝜂meas

. (7.2)

This converts from ∆𝑥2SQZ, min/max to ∆𝑋2
SQZ, min/max, that is, the (anti-)squeezed quadra-

tures at the JTWPA output. The same is done for the 𝑃 quadrature.

Using this procedure, we can convert from the measured distributions in the voltage

basis in Fig. 7-3(a) to distributions in the photon basis Fig. 7-3(b). For the particular bias

point in Fig. 7-3, we provide a few numbers. We process the output field data using the

GaussianMixture module within the sklearn.mixture package in Python to compute the
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output field variance. The extracted variances for vacuum and squeezed states are denoted

∆𝑉 2
SQZ, off and ∆𝑉 2

SQZ, min/max respectively. The corresponding standard deviations for the

squeezed output field distributions shown in Fig. 7-3(a) are 𝜎sqz
min = 1.90805×±4.63×10−4

mV and 𝜎sqz
max = 3.62295 ± 7.64 × 10−4 mV when the squeezer is turned on. When it is

off, the measured minimum and maximum standard deviations of the vacuum are identical

within the fitting error bar 𝜎vac
min = 1.96837±4.65×10−4 mV and 𝜎vac

max = 1.96837±4.04×
10−4 mV, which is expected for vacuum output field. The transfer function 𝛼 is calculated

as the ratio ∆𝑥2SQZ, off/∆𝑉
2
SQZ, off = 0.129052± 5.2× 10−5 quanta/mV2.

Stage Parameter Value Error

3 𝜎off
min 1.96837mV ±4.65× 10−4 mV

3 𝜎off
max 1.96837mV ±4.04× 10−4 mV

3 𝜎sqz
min 1.90805mV ±4.63× 10−4 mV

3 𝜎sqz
max 3.62295mV ±7.64× 10−4 mV

3 ∆𝑉 2
SQZ,min 3.64065mV2 ±1.77× 10−3 mV2

3 ∆𝑉 2
SQZ,max 13.1258mV2 ±5.54× 10−3 mV2

3 ∆𝑉 2
SQZ,off 3.87448mV2 ±1.83× 10−3 mV2

2 ∆𝑥2SQZ, min 0.469833 quanta ±2.28× 10−4 quanta

2 ∆𝑥2SQZ, max 1.69391 quanta ±7.15× 10−4 quanta

2 ∆𝑥2SQZ, off 0.500009 quanta +5× 10−6/− 2× 10−7 quanta

2 𝛼 0.129052 quanta/mV2 ±5.2× 10−5 quanta/mV2

2 𝜂meas(6.70GHz) 6.534 % +0.234 /− 0.218%

1 ∆𝑋2
SQZ, min 0.0383 quanta +0.0160 /− 0.0159 quanta

1 ∆𝑋2
SQZ, max 18.77 quanta ±0.63 quanta

1 ∆𝑋2
SQZ, off 0.50014 quanta +1.3× 10−4/− 1.0× 10−4 quanta

1 dBSQZ -11.16 dB +1.51 /− 2.33 dB

1 dBANTI 15.74 dB +0.14 /− 0.15 dB

Table 7.2. A list of experimental parameter values and errors and their corresponding stage in the

physical model in Fig. 7-2.

Individual parameter errors lead to different variations in the overall squeezing and anti-

squeezing levels. For example, errors in 𝜎off
min, 𝜎off

max, 𝜎sqz
min, 𝜎sqz

max and 𝛼 lead to a maximum of

∼ 0.4 dB change in the squeezing level and ∼ 0.01 dB in the anti-squeezing level. In con-
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Figure 7-3. | Gaussian fits to quadrature data in voltage and photon bases. a. Left: the

histograms display the X and P quadratures for the single-mode squeezed vacuum (blue) and

vacuum (red) states in the digitizer voltage basis (position 3 in Fig. 7-2). Their output fields are

shown individually in the insets. Right: probability density distribution of the X and P quadratures

for the vacuum and squeezed states plotted together with Gaussian fits. b. Histograms and

probability density distribution for the same vacuum and squeezed vacuum states are plotted in

photon basis before the converter but after the beamsplitter (position 2 in Fig. 7-2). c. Histograms

and probability density distribution for the same vacuum and squeezed vacuum states are plotted in

photon basis before the beamsplitter (position 1 in Fig. 7-2). The measurement is taken at the

pump configuration (pump 1 power P1 = 1.57 nW and pump 2 power P2 = 0.665 nW in Fig. 7-6.
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trast, errors in the measurement efficiency 𝜂meas amount to ∼ 2 dB and ∼ 0.15 dB change

in the squeezing and anti-squeezing level, respectively. Fast FPGA demodulation enables

efficient collection of large quadrature datasets and thus results in small variations while

𝜂meas is limited by microwave measurement losses and noises. Therefore, we primarily

consider the errors associated with measurement efficiency 𝜂meas, the most significant error

source, to estimate variations in squeezing and anti-squeezing levels.

For the output fields in Fig. 7-3(b), accounting for measurement efficiency, the squeezed

variance ∆𝑋2
SQZ, min = 0.0383+0.0160

−0.0159 quanta and the anti-squeezing variance ∆𝑋2
SQZ, max =

18.77± 0.63 quanta give −11.16+1.51
−2.33 dB squeezing and 15.74+0.14

−0.16 dB anti-squeezing, rel-

ative to the vacuum state with a variance ∆𝑋2
SQZ, off = 0.5001 quanta. The conversion to

decibels, dBSQZ, is:

dBSQZ = 10 log10
∆X2

SQZ, min

∆X2
SQZ, off

, (7.3)

while the anti-squeezing level dBANTI is

dBANTI = 10 log10
∆X2

SQZ, max

∆X2
SQZ, off

. (7.4)

7.1.3 Optimizing Single-Mode Squeezing

The squeezing process is sensitive to the power of both pumps due to the desired phase-

matching condition for parametric amplification (e.g., ∆𝑘PA ≃ 0 in Eq. (6.5)) and also

residual parasitic processes such as frequency conversion. As displayed in Fig. 7-4(b), we

perform a coarse measurement of the ∆𝑋2
SQZ, min (plotted relative to vacuum) as a func-

tion of pump powers to maximize the degree of squeezing. This enables us to identify

empirically the pump powers 𝑃1 and 𝑃2 that correspond to higher squeezing levels. For six

such near-optimal values, the six different colors in Fig. 7-4(d), we carry out finer scans

of squeezing, anti-squeezing, and parametric gain as a function of 𝑃2 for fixed 𝑃1. Ac-

counting for the measurement efficiency 𝜂meas at the output, we extract a squeezing level

of −11.35+1.57
−2.49 dB and an anti-squeezing level of 15.71+0.14

−0.15 dB at the optimal pump con-

ditions, comparable with the best performance demonstrated by resonator-based squeezers

in superconducting circuits [14, 9, 69, 65, 63, 16, 74, 21, 127].
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Figure 7-4. | Single-mode squeezed vacuum. a. The JTWPA in the presence of a bichromatic

pump transforms the vacuum field at the input into a squeezed field at the output through

non-degenerate four-wave mixing. b. At 6.7037 GHz, measurement of the change in squeezing

variance (relative to vacuum) versus asymmetry in the pump powers P1 and P2. Colored vertical

lines indicate six different values of P1 in units of nW, used in the 1D measurement in panel (d).

The power is referred at the input of the squeezer. c. Experimental data of the parametric gain as a

function of P2 with P1 fixed at 1.57 nW (at the input of the squeezer). d. Measurement of

squeezing and anti-squeezing versus P2 with six different P1 configurations (colored data). The

data are presented as mean values of 3 sets of repeated measurement (each with 6× 106 sample

points. Their statistical variation is almost entirely due to the uncertainty in estimating the noise

temperature, which dominates the error bars shown in the plot as an estimation range for the

squeezing/anti-squeezing levels. We confirm there is no squeezing when pumps are turned off. The

squeezing level increases as a function of P2 as gain increases, but eventually degrades as the

pumps become too strong and gain decreases. The shaded regions and trend lines corresponding to

constant-loss and loss-saturation models. The observed squeezing levels are consistent with a

saturated loss of approximately -1 dB at high gain.
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7.1.4 Effects of Microwave Loss on JTWPA Squeezing Performance

We include several numerical simulations of squeezer performance reduction due to

distributed dielectric loss along the JTWPA. The numerical models are developed by our

theory collaborator Arne Grimsmo and described in more detail in appendix A. In essence,

the models attempt to capture the effects of loss saturation in a distributed system like the

JTWPA on its output squeezing levels.

Squeezing performance is sensitive to dissipation (loss), which acts as a noise chan-

nel. Within our JTWPA, loss primarily originates from defects — modelled as two-level

systems (TLSs) — within the plasma-enhanced chemical-vapor-deposited (PE-CVD) SiO2

dielectric used in the parallel-plate shunt capacitors. Previous studies have shown a qual-

ity factor Q ∼ 103 associated with this dielectric in the single-photon regime, observed at

low-power and low-temperature. In this limit, the TLSs readily absorb photons from the

JTWPA and cause relatively high loss.

We observe high levels of squeezing despite the use of such lossy materials in the

JTWPA. We conjecture the reason is due to TLS saturation. At sufficiently high powers

(large photon numbers), the TLSs saturate and the loss is reduced [95]. We can understand

the net impact of TLSs on squeezing performance by considering the JTWPA to be a cas-

cade of individual squeezers. The amount of added squeezing becomes position-dependent

and increases with the increased gain at the output end. The TLSs are also distributed along

the JTWPA, and they become saturated towards the output end due to the larger number of

photons associated with the higher gain. Therefore, the impact of loss on squeezing perfor-

mance is reduced towards the output where the marginal squeezing is the largest [49]. As

a result, we expect loss saturation at large signal gain to improve squeezing performance,

as we observe in our experiment [see Fig. 7-4(d) at higher pump power 𝑃2]. To verify this

conjecture, we independently measure the JTWPA loss as a function of photon number

by varying the JTWPA temperature. The loss at small thermal photon numbers (<50 mK)

is around -5 dB. We have observed that the loss becomes saturated as the temperature in-

creases — it reduces to -1 dB for large photon numbers (>800 mK). Fig. 7-5(a) is a plot of

the empirical characterization of the saturation behavior of our device. The temperature is
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a b

c

0.195 nW

0.391 nW

0.587 nW

Figure 7-5. | JTWPA loss saturation. a. JTWPA insertion loss at 6.7 GHz as a function of

temperature controlled using a heater at the mixing chamber. b. JTWPA insertion loss plotted

versus thermal photon number ns associated with the temperatures Ts, based on Bose-Einstein

statistics ns = 1/(ehf/kBTs − 1). c. The amplification process of the JTWPA produces an effective

thermal state, and its photon number depends on the gain and the position inside the amplifier, as

shown in the simulation plot. Each curve corresponds to a specific pump 2 power. Pump 1 power is

always fixed at 1.57 nW.

controlled by adjusting the current through a heating element on the mixing chamber of the

dilution refrigerator.

Bounding the Squeezing Levels

We start with the basic models. The boundary of the beige region in Fig. 7-6 corre-

sponds to the ideal-case squeezing achievable for a lossless JTWPA. The gray-shaded areas

represent regions of estimation for squeezing and anti-squeezing levels; we define a lower

bound that corresponds to numerical results assuming all of the loss (-5 dB) is at the end

of the device (worst case), while the upper bounds are obtained using Caves and Crouch’s

distributed beamsplitter loss model [20] with -1 dB distributed loss (best case). The black

dashed lines represent the numerical model with a uniformly distributed -5 dB-loss across

the device. These numerical models confine the possible squeezing and anti-squeezing

levels given the loss of the JTWPA.
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Figure 7-6. | Measurement of squeezing and anti-squeezing versus P2 with six different P1

configurations. Single pump gain and numerical simulations that fit and predict the gain profiles.

The deviation between the model and the experimental data is expected to be caused by the

bandwidth constraint of cryogenic components. Pump power P1 corresponds to the output of its

RF source at room temperature.

Estimating the Squeezing Level: Constant Loss Model

Given our knowledge of the JTWPA design and the characterization results, we can

model squeezing levels as a function of pump power. First, two limits are shown as dashed

lines using a constant loss model. For low pump power 𝑃2, our data are closer to the -5 dB

line. At higher powers, where we see maximal squeezing, the data are more consistent

with the -1 dB line corresponding to saturated TLSs. We then use numerical simulations to

calculate the photon number in the JTWPA from its input to its output. The photon number

is converted to loss from the independent loss-temperature measurement, and we plot the

corresponding squeezing due to this distributed loss (solid line). It starts at -5 dB for low

powers and reduces toward -1 dB at high powers due to loss saturation. The high degree

of squeezing observed in this device is consistent with the loss saturation model to within

about 1-2 dB at high powers.

Estimating the Squeezing Level: Loss Saturation Model

We estimate the loss saturation effect on squeezing at intermediate powers using a dis-

tributed loss saturation model plotted as a blue line in Fig. 7-6. In this model, the loss

rate 𝛾(𝑥) at position 𝑥 is determined by an effective temperature 𝑇e extracted from the

instantaneous photon number in the numerical simulation shown in Fig. 7-5(c). 𝛾(𝑥) is
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then taken to be the measured loss rate 𝛾′(𝑇e) at temperature 𝑇e in Fig. 7-5(b). The loss

saturation model gives the lower bound with all the loss towards the end of the device,

while the same model provides the upper bound with a more realistic distributed 5 dB loss

model. Together, they form a refined estimation region displayed in the blue-shade area. At

intermediate pump powers before saturation, there is a discrepancy between the measured

behavior of the squeezing and the numerical simulation. This is likely due to our optimizing

for maximum squeezing at high pump powers. Parasitic processes that are largely absent

at high powers may not be completely suppressed at intermediate powers. More compli-

cated pump dynamics and multimode interactions could mix in vacuum noise, which is not

captured by the input-output model used here (more details can be found in appendix A).

There is ongoing research to understand better and suppress these unwanted modes [83].

7.2 Two-Mode Squeezed Vacuum

7.2.1 Phase calibration

Broadband two-mode squeezing is expected from the JTWPA given its broadband para-

metric amplification. To observe two-mode squeezing, we need to construct collective

quadrature operators of the signal and idler defined as

�̂�± = �̂�s ± 𝑒iφm�̂�i,

𝑃± = 𝑃s ± 𝑒iφm𝑃i,
(7.5)

where �̂�s, 𝑃s and �̂�i, 𝑃i are quadrature components of the signal and the idler; 𝜑m is the

phase difference between the signal and the idler. In the ideal case where the signal and

idler have the same phase, i.e., 𝜑m = 0 and 𝑒iφm = 1, we can find the maximum squeezing.

However, in practice the relative phase might not be zero due to the frequency dependency

of the output line at the individual modes. Therefore, after acquiring the quadrature com-

ponents of the two modes, we sweep 𝜑m, construct new histograms for �̂�± and 𝑃± for each

𝜑m as shown in Fig. 7-7, and extract the variance of the squeezed quadrature in the voltage

basis ∆𝑉 2
±. to find the the minimum variance corresponding to the maximum two-mode
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Figure 7-7. | Two-mode squeezing signal-idler phase calibration at 187 MHz mode

separation. a. Variance of the squeezed quadrature X1X2 or P1P2 as a function of relative phase

φm, which we vary in data analysis. In addition, we display different output field histograms with

different φm. Difference in the output field histograms between vacuum (red) and two-mode

squeezed vacuum (blue). The histograms show the X and P quadratures (equivalently, the in-phase

and quadrature components) of the squeezed and vacuum states. b. Output field histograms for

optimal two-mode squeezing with φm = 0.17 rad(10∘).

For example, at mode separation of 187 MHz, we first set up the dual readout scheme

as shown in Fig. 7-8. We then simultaneously demodulate the output signal at the two

modes 𝜔s/2𝜋 = 6.6102GHz and 𝜔i/2𝜋 = 6.7972GHz. The demodulation frequency

𝜔demod/2𝜋 = 47MHz is the same for both, and we use two frequency-locked signal gener-

ators as local oscillators at frequencies 𝜔LO
s /2𝜋 = 𝜔s/2𝜋 + 𝜔demod/2𝜋 = 6.6572GHz

and 𝜔LO
i /2𝜋 = 𝜔s/2𝜋 + 𝜔demod/2𝜋 = 6.8442GHz, respectively. After the demodu-

lation, we obtain pairs of I-Q data for the two modes. We also correct for the power

difference between the signal and idler mode that could lead to asymmetry in the out-

put field due to any discrepancy such as attenuation between the two RF paths in the

dual readout setup. To compensate for this effect, we measure the ratio 𝜈TMS in vac-

uum state (JTWPA off) variance of the two modes and normalize that of the idler mode
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∆𝑉 2
i,off = 1.424mV2 with respect to that of the signal ∆𝑉 2

s,off = 1.119mV2 — 𝜈TMS =
√︁

∆𝑉 2
s,off/∆𝑉

2
i,off = 0.8865. As a result, we achieve normalized I-Q pairs with variances

∆𝑉 2
s,off = 1.119(3)mV2 and ∆𝑉 2

i,off = 1.118(8)mV2, now with an asymmetry of 0.04%

(∆𝑉 2
s,off/∆𝑉

2
i,off = 1.0004) in vacuum state variance between the two modes; the asym-

metry in the squeezed state variance of normalized data is also negligible at 0.03 % —

∆𝑉 2
+/∆𝑉

2
− = 1.064(7)mV2/1.065(0)mV2 = 0.9997. This procedure accounts for the

frequency dependence of the output line without amplification but does not compensate

for asymmetry in the squeezer when it is turned on, e.g., the small ripples in the gain.

Similar to the single-mode analysis, the variances of output fields are extracted using the

GaussianMixture module within the sklearn.mixture package in Python. The histograms

are plotted in Fig. 7-7 (b). In the same plot, we have also calibrated the relative phase

𝜑m = 0.17 rad(10∘) and achieved a maximum squeezing for this dataset. Fig. 7-7 (b) shows

the signature of two-mode squeezing, in which the individual modes are in a “thermal-like”

state with an increased variance (blue histograms in the 𝑋1𝑃1 and 𝑋2𝑃2 quadrants) while

we have squeezing and anti-squeezing in the collective quadratures (blue histograms in the

𝑋1𝑋2 and 𝑃1𝑃2 quadrants).
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I
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Q
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I
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Q

Rb Clock

RF Output

Figure 7-8. | Dual readout setup schematic diagram for two-mode squeezing data acquisition.

The RF output from the dilution fridge gets divided by a power splitter into two identical branches

of IQ down-conversion circuits, where the signal at the two modes can be simultaneously

demodulated.
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7.2.2 Characterization

Using the same optimized pump configuration for the single-mode squeezing, we gen-

erate and characterize two-mode squeezed vacuum as a function of the frequency separation

𝜔s−𝜔i between the two modes. As shown in Fig. 7-8, we switch to a dual-readout configu-

ration [127] that simultaneously demodulates the signal and idler using two separate FPGA-

based digitizers, circumventing bandwidth limitations of the digitizer and other compo-

nents in the experiment, such as IQ-mixers, low-frequency amplifiers, etc. We directly

measure up to a separation of 373 MHz with the maximum squeezing of −9.54+1.11
−1.63 dB,

an average squeezing of -6.71 dB, and an average anti-squeezing of 16.12 dB, as displayed

in Fig. 7-9(c).

To extract the squeezing level, we collect the joint distribution in the 𝑋1𝑋2 or 𝑃1𝑃2

quadrant (analogous to the single-mode squeezed state statistics) and perform the same

analytical procedure Eq. (7.1) - Eq. (7.4) as detailed in Sec. 7.1.2 using the measured system

noise temperatures (details of system noise characterization can be found in Chapter 4).

The results are shown in Fig. 7-9(c) up to a frequency range ∼ 500MHz, constrained by

the bandwidth of our noise calibration device.

Therefore, we cannot directly calibrate the degree of squeezing beyond this range.

Nonetheless, squeezing is expected to continue beyond 500 MHz [44]. Outside that band-

width, we perform the same two-mode squeezing analysis except without the system noise

temperature and report variance change between the squeezed and vacuum states as 1 −
∆𝑉 2

+/∆𝑉
2
+,off , where 𝑉 2

+,off is the variance for the two-mode vacuum state in the voltage

basis. In the case of no squeezing, we have ∆𝑉 2
+ = ∆𝑉 2

+,off and variance change would

be 0; in the case of squeezing, the squeezing variance drops below that of the vacuum, i.e.,

∆𝑉 2
+ < ∆𝑉 2

+,off , and variance change would be < 1. As shown in Fig. 7-9(d), we charac-

terize the variance change between the squeezed and the vacuum quadratures. Below 373

MHz, the results are consistent with the squeezing measured in Fig. 7-9(c). Above 373

MHz, the JTWPA exhibits a consistently low variance out to 1500 MHz, beyond which we

are again limited for technical reasons, in this case, by the onset of a filter roll-off. Be-

cause the signal and idler photons propagate at different frequencies, frequency-dependent
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Figure 7-9. Broadband two-mode squeezed vacuum. a. Difference in the output field

histograms between vacuum (red) and two-mode squeezed vacuum (blue). The histograms show

the X and P quadratures (equivalently, the in-phase and quadrature components) of the squeezed

and vacuum states with signal and idler 320 MHz detuned from each other and centered at ωc. The

histograms are collected at room temperature. b. Illustration of the frequency spectrum for the

two-mode squeezing process. c. Measurement of two-mode squeezing versus frequency separation

|ωs − ωi|/2π between the signal and the idler. The dashed lines indicate average values for the

measured squeezing/anti-squeezing levels. d. Percent change in variance measured at room

temperature between squeezed vacuum and vacuum for the X1X2 (or P1P2) quadrature as

measured using two digitizers (see text). The beige-colored shading indicates the region where

there is no measureable squeezing. The spike in the blue line plot (squeezing quadrature) around

1500 MHz correspond to the extra mode generated by the JTWPA.
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variations of the loss and nonlinear processes can lead to frequency-dependent two-mode

squeezing performance [49]. However, based on the flat and broadband gain profile ob-

served in our JTWPA, we infer consistent squeezing levels out to 1.5 GHz total signal-to-

idler bandwidth, and net squeezing out to 1.75 GHz total signal-to-idler bandwidth.1 These

results represent almost two-orders-of-magnitude increase in two-mode squeezing band-

width compared to conventional resonator-based squeezers [31, 32, 69, 65, 39, 97].

Further Discussion

7.2.3 Squeezing Purity

(A
n

ti
-)

S
q

u
e

e
z
in

g
 (

d
B

)

-6

-12

0

6

12

18

Squeezing
Anti-squeezing

27 53 80 107 133 160 187 213 240 267 293 320 347 373

P
u

ri
ty

1.0

0.8
Purity

0.6

0.4

0.2

0.0

Figure 7-10. | Squeezing level and purity of two-mode squeezed vacuum state. The top panel

displays the corresponding squeezing purity associated with the squeezing levels shown at the

bottom. Similar to the single-mode squeezing results, the data are presented as mean values of 3

sets of repeated measurement (each with 6× 106 sample points). Their statistical variation is

almost entirely due to the uncertainty in estimating the noise temperature, which dominates the

error bars shown in the plot as an estimation range for the squeezing/anti-squeezing levels.

In both Fig. 7-12(g) and Fig. 7-10, we have shown the purity of the squeezed states as a

1We note that although our noise calibration device was limited to 500 MHz bandwidth, the system noise

temperature likely remains similar outside of this frequency range, as there is no apparent reason why it would

suddenly change value. Therefore, we expect similar reductions in measured variance outside the calibrated

band to correspond to similar levels of inferred squeezing measured within the band. However, since we did

not explicitly calibrate the system noise at those frequencies, we report the measured reduction in variance.
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function of pump power and mode separation, respectively. Following the definition used

in Ref. [25], purity of the squeezed state can be expressed as 𝒫 = 1/
√
𝑆−𝑆+ for a Gaus-

sian state, where 𝑆− and 𝑆+ denote squeezing and anti-squeezing factors. For single-mode

squeezing, we extract the purity around the maximum squeezing level to be 0.605+0.201
−0.100 .

Similarly, for two-mode squeezing, the average purity is 0.379 and a maximum purity of

0.507+0.120
−0.070 at 293 MHz mode separation. The two-mode squeezing is measured under the

same pump configuration for the maximal single-mode squeezing and can be further opti-

mized. In comparison with cavity-based squeezers, the purity values have more room for

improvement. The remarkably high levels of squeezing (as high as -11.3 dB for single-

mode squeezing and -9.5 dB for two-mode squeezing) with only 40%-50% purity suggests

that the JTWPA is capable of achieving even better squeezing performance, e.g., if we re-

duce the internal loss that likely limits the purity in this Nb-based version of the JTWPA. As

discussed in Chapter 6, we are currently developing a new generation of Al-JTWPAs with

a much lower internal loss and further suppression of spurious nonlinear processes [83].

7.2.4 Squeezing Degradation

Fig. 7-12 shows the evolution of squeezing as a function of pump powers for 6 of the

points shown in Fig. 7-4. The vacuum and squeezed states from Fig. 7-3 are the middle

panels (top and bottom) in Fig. 7-12 and correspond approximately to the maximal de-

gree of squeezing observed. The leftmost panel(a) correspond to vacuum states with the

pumps off. Panel(b) shows a moderate degree of squeezing. As mentioned, panel(c) is

from Fig. 7-3. For even higher pump powers, squeezing becomes distorted in panel(d) and

even disappears in panel(f) as the junctions in the JTWPA become overpowered, the gain

starts to saturate and degrade as shown in Fig. 7-11, and higher-order nonlinearities [14]

and even losses manifest. The histograms give a different perspective on squeezing degra-

dation shown in Fig. 7-4 and indicate different higher-order nonlinearities compared to

a JPA that exhibits a distorted output field [14]. After the junctions become saturated,

they can generate excessive noise due to their dynamic resistance. The output field shows

more intense fluctuations from the blue enlarged circular “blob” in panel(e) and more so
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Figure 7-11. | Squeezing and parametric gain as a function of pump power. The top panel

shows the parametric gain as function pump 2 power while fixing the pump 1 power at 1.57 nW.

The gain is measured by normalizing the JTWPA transmission profile when both pumps are on

with respect to that when both pumps are off. The bottom panel shows the squeezing (upper data

trace) and anti-squeezing (lower data trace) as a function of pump powers.
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in panel(f). As the pump power continues to increase, the power dissipation leads to an

increasing quadrature variance as seen in Fig. 7-4, and Fig. 7-12(g) shows more details

towards the high-pump-power region.

Figure 7-12. | Output field imaging of squeezed state evolution as pump power increases. The

top row demonstrates the output fields in voltage basis measured at room temperature, and the

bottom row shows the same state in photon basis at the JTWPA. The histograms show the X and P

quadratures of the squeezed and vacuum states. Panels a - f display the difference in the output

field histograms between vacuum (red) and single-mode squeezed vacuum (blue), which are shown

individually in the insets. The top panel in g shows the purity of the squeezed states as a function

of pump power.

7.2.5 JTWPA Multimode Behavior

Because of its traveling-wave nature, the JTWPA permits a broad frequency spectrum

of modes to propagate and to be converted from/to various modes through the 𝜒(3) non-

linearity. We assume the pumps to be classical and effective delta functions in the fre-
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quency spectrum in the analysis. However, a collection of frequency products of a single or

both pumps exist in reality and can gradually become significant at increased pump power.

Furthermore, depending on the phase mismatch, any two-pump-photon nonlinear process

could, in principle, exert non-negligible and often adverse effects on the signal.

The deviation between the simulation and experimental data on single-mode squeezing

indicates that the multimode behavior cannot be captured by the two-mode input-output

model developed within the scope of the thesis work. This section will demonstrate pre-

liminary experimental observations to illuminate the multimode dynamics within a JTWPA

further.

SA

Signal generator 1

Signal generator 2 Device

Spectrum Analyzer

Figure 7-13. | Simplified measurement schematic to probe the multimode behavior. Two

signal generators send pump tones into the device, of which the output is measured using a

spectrum analyzer.

To understand the multimode behavior and quantify their relative levels at the output,

we performed a spectral analysis of the JTWPA pumped by two frequency-locked signal

generators at 5.2984 GHz and 8.109 GHz, respectively. The simplified experimental setup

for the multimode is illustrated in Fig. 7-13.

Shown in Fig. 7-15, as pump 2 power is increased, we observe a notable increase in

the mode at frequencies 𝑓4 = 5.9447 GHz, which is related to the two pumps by 𝑓4 =

4𝑓p2− 5𝑓p1. This and the other visible modes can be understood as the by-products of both

pumps under strong field dynamics [79]. These modes can only reach the signal of interest

at 𝑓s = (𝑓p1+𝑓p2)/2 through higher-order nonlinear processes that are mediated by the two

major pump tones. Their direct interactions with the signal are thus significantly weaker

and neglected.

Instead, these pump products indirectly affect the squeezing performance; they effec-

tively modulate the spatial profile of the two primary pump tones, as indicated by the cor-
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Figure 7-14. | Power spectrum with dual pumps. The 2D plot displays a normalized power

spectrum with the background (pumps off) subtracted from the data. The X-axis is the frequency

range scanned, and Y-axis represents the pump power value at the signal generator in dBm. The

top two panels correspond to a slice of 2D data at a specific pump power.
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Figure 7-15. | Mode spectrum and associated wave mixing processes. a. A spectrum of modes

shows up after both pumps are turned on. It is the same plot as the top panel in Fig. 7-14, but with

labels for each of the dominant 12 modes (pumps included). b. Degenerate four-wave mixing. c.

Non-degenerate four-wave mixing. d. Second-harmonic generation.
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relations between the measured pump phase data and the increase of their intensities. The

modes correlate to the qualitative change in the measured phase data of the two pumps.

Although too weak to act as a pump to the signal, the pump products are coupled to the

pump tones and lead to an effective modulation. We can account for their effects to a good

approximation by extracting the loaded wave vector and amplitude of the pump tones from

measurements and then applying them in the updated numerical model, explained in ap-

pendix A. It remains an interesting open research topic to simulate the multimode behavior

involving multi-pump photon processes and ways to mitigate or enhance them through dis-

persion engineering, for instance.

There are two major approaches to improving the JTWPA squeezing performance based

on our current architecture. The squeezing level is expected to approach the performance

dominated by loss through Floquet engineering and its potential benefit of suppressing

spurious nonlinear processes such as sideband generation. The squeezing purity will im-

prove in the low-to-mid power region. Moreover, we can further decrease the JTWPA loss

from the dielectrics by using a high-Q fabrication process. In the limit of near-lossless

performance, the maximum squeezing level limit will approach -20 dB — an almost 10 dB

improvement — assuming the device performance is solely constrained by loss at this point.
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Chapter 8

Conclusion and Outlook

This thesis illustrates a new application of dispersion engineering for a JTWPA to

produce broadband amplification. We design and demonstrate a dual-pump Josephson

traveling-wave parametric amplifier that exhibits both phase-preserving and phase-sensitive

amplification and both single-mode and two-mode squeezing. We measured 20 dB para-

metric gain over more than 3.5 GHz total instantaneous bandwidth (1.75 GHz for each the

signal and the idler) with a 1 dB compression point of -98 dBm. This gain performance is

comparable with the single-pump JTWPA, yet it features minimal gain ripple and gain roll-

off within the frequency band of interest. This advance alone holds the promise to improve

the readout of frequency-multiplexed signals [46].

In addition, it is also the first demonstration of phase-sensitive amplification and the

production of squeezed vacuum states in a JTWPA. The favorable performance of this

device enabled us to measure a 56 dB phase-sensitive extinction ratio, useful for qubit

readout in quantum computing and phase regeneration in quantum communications. The

phase-sensitive amplification can be used in near-noiseless amplification, for instance,

qubit readout. Directly embedding a JTWPA within a qubit system using 3D integration

techniques [93] can improve the overall measurement efficiency by mitigating the effects

of off-chip losses. This configuration can minimize backaction to the qubit dispersive mea-

surement by squeezing the quantum noise [29].

This work explores different noise characterization methods using various platforms (a

shot-noise tunnel junction and a qubit-waveguide system) and analyzes their merits and
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drawbacks. The noise calibration is crucial to squeezed states characterization. The mea-

surement protocols and the setup schematics developed comprehensively throughout the

project help with future experiments that require a deeper understanding of measurement

efficiency, particularly on quantum amplifiers and squeezer characterization.

We have observed high squeezing levels, despite dielectric loss from the SiO2 capac-

itors, which we attribute predominantly to distributed TLS saturation in the high-gain re-

gions of our JTWPA. Nonetheless, squeezing performance can be further improved by

introducing a lower-loss capacitor dielectric. Performance can also be improved by ex-

ploring distributed geometries and Floquet-engineered JTWPAs that reduce the impact of

unwanted parasitic processes [83].

We also achieve a single-mode squeezing level of −11.35+1.57
−2.49 dB, and two-mode squeez-

ing levels averaging -6.71 dB with a maximum value of −9.54+1.11
−1.63 dB measured directly

over approximately 400 MHz and extending to over more than 1.5 GHz total bandwidth

(signal to idler frequency separation). The results enable direct applications of the JTWPA

in superconducting circuits, such as suppressing radiative spontaneous emission from a

superconducting qubit [76] and enhancing the search for dark matter axions [5].

The broad bandwidth and high degree of squeezing demonstrated in our device rep-

resent a resource-efficient means to generate multimode, non-classical states of light with

applications spanning qubit-state readout [8, 26], quantum illumination [7, 58], teleporta-

tion [63, 127, 36], and quantum state preparation for continuous-variable quantum com-

puting in the microwave regime [44, 37]. In addition, the technique of using dispersion

engineering to phase match different nonlinear processes can be extended to explore dy-

namics within superconducting Josephson metamaterials with engineered properties not

otherwise found in nature.

In this thesis, we develop sub-gigahertz JTWPAs and demonstrate first-of-its-kind broad-

band superconducting amplifiers with significant gain and broadband amplification perfor-

mance. Moreover, we explore fabricating JTWPAs using a high-Q aluminum process and

achieve promising preliminary results with broadband gain and low insertion loss. This

work will continue here at MIT, and I believe we will see outstanding performance from

aluminum JTWPA in the near future.
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Future Outlook

The end of the thesis does not represent the end of the work but rather a demonstration

of engineering Josephson traveling-wave amplifiers to generate squeezing. As a step for-

ward, the goal is to utilize squeezing to interact with different quantum systems. We will

discuss a few ideas here.

Heisenberg-Limited Readout

qubit

microwave feed line

readout resonator 1 readout resonator 2

Two-mode squeezed state

Figure 8-1. | cQED implementation of Heisenberg-limited readout with two-mode squeezed

states produced by a JTWPA. The qubit is coupled to two resonators with equal and opposite

dispersive shifts. The two-mode squeezed state generated by a JTWPA will shine onto these two

resonator modes to create a QMFS.

Increasing the device length is expected to improve the squeezing and gain further [61].

The performance can also benefit from TLS loss reduction. An interesting direction we

have explored is to design and benchmark aluminum-base JTWPAs with higher-Q than

the niobium process for enhancing both amplification and squeezing performances. So

far, we have reached promising preliminary results, and the project is expected to continue.

Overall, this work demonstrates a scalable dispersion engineering approach to achieve mul-

timode squeezing, which has the potential to generate large cluster states [44], to be utilized

in continuous-variable quantum computing [68], and to assist Heisenberg-limited readout
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of superconducting qubits [26]. As shown in Fig. 8-1, by shining two-mode squeezed mi-

crowave generated by a JTWPA in a two-cavity-plus-qubit system, one can construct a

“quantum-mechanics-free subspace” (QMFS), a subsystem that evades the measurement

backaction of quantum mechanics [112] that can have both quadratures squeezed simulta-

neously, and therefore, achieve Heisenberg-limited SNR scaling.

Qubits Entanglement with Two-Mode Squeezed State

microwave feed line

Two-mode squeezed state

qubit 1 qubit 2

input

output

Figure 8-2. | Entangling qubits via dissipation with two-mode squeezed state. The qubit

system is similar to the OTL device with qubits coupled to a waveguide in reflection mode. A

higher degree of entanglement can be achieved by avoiding vacuum noise into the waveguide; the

two-mode squeezed state is injected through the input.

The work has also inspired us to utilize qubits to detect and measure two-mode squeezed

microwaves. JTWPA can become a source of entanglement for the qubits coupled to a

waveguide [44]. The entanglement can be achieved by addressing a pair of qubits resonant

with each of the squeezed modes in a two-mode squeezed state. Moreover, multiple pairs

of qubits can be entangled simultaneously using a single squeezer, which can benefit from

the broadband squeezing performance we have demonstrated with a JTWPA.

Enhancing RIP Gate Fidelity with Squeezed Coherent State

The RIP gate has an inherent tradeoff between measurement-induced dephasing and

gate time. During the adiabatic gate evolution, photons “encoded” with qubit state (‘which-

path’) information can leak through different channels, such as cavity losses, and cause

dephasing [14]. One remedy is to drive the cavity far detuned (many linewidths) away
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or or

ba

Figure 8-3. | Evolution of qubit-state-dependent resonator field. a. Qubit-state dependent

trajectories of the outgoing resonator field under a coherent-state drive. The states are displayed in

phase space (solid lines) in the rotating frame of the drive. b. Qubit-state dependent trajectories

with squeezed-coherent-state drive.

from its resonance so that it is only virtually populated. The drawback with this remedy is

the prolonged gate time detrimental to achieving high gate fidelity. On the other hand, if we

decrease this drive detuning, so will the gate time, but dephasing will deteriorate further.

Pulse-shaping techniques can be utilized to mitigate this problem partially [15]. Single-

mode squeezing has been proposed to directly address the challenge of improving RIP gate

fidelity by lowering the dephasing rate while shortening the gate time [14]. In the previous

realization of the RIP gate, residual qubit-cavity entanglement creates an unwanted leakage

channel of qubit state information to the environment via cavity photon loss and degrades

gate fidelity [13]. To address this problem, we engineer the light-mediated interaction by

driving the resonator using squeezed coherent state.

Quantum erasure

The benefit of radiating the resonator with squeezed light can be understood as en-

hancing the fluctuation in the appropriate quadrature to erase the “which-path” information

while leaving the area enclosed by the path — accumulated phase unchanged. A cartoon

illustration can be seen in Fig.8-3. Intuitively, measurement-induced dephasing is caused

by the ac-Stark shift from photon shot noise in the resonator. Even when we (as observers)
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b

a

Figure 8-4. | Chip designs. a. 2D chip layout for two-qubit RIP gate. b. 2D chip layout for a

trio-JPA device.

are not actively measuring the quantum system, there is still quantum backaction from the

environment upon the qubits during the phase evolution. In other words, the environment

is “measuring” the quantum system. The enlarged fluctuation in the anti-squeezing quadra-

ture “smears” qubit state trajectories, thereby countering environmental quantum backac-

tion. This technique can erase qubit “which-path” information for different qubit states,

thereby reducing qubit dephasing during the RIP gate operation.

For this project, a preliminary set of qubit chips have been designed, simulated, and

ready for fabrication. The designs are shown in Fig. 8-4. The qubit chip consists of two
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fixed-frequency transmons, both coupled to a quarter-wave resonator for readout and a

Purcell filter to minimize the Purcell decay. The JPAs are preferred in this specific ex-

periment due to their narrow-band output spectrum, which could be beneficial in reducing

the thermal contribution. The chip consists of three lumped-element SQUID-based JPAs.

These would be the legacy device that future students can test and improve. The goal is to

build a multiqubit system with all-to-all connectivity, advantageous and unique for quan-

tum computing and analog quantum simulation purposes. The thesis focuses on amplifi-

cation and squeezed photon generation using Josephson parametric amplifiers. As a major

source of non-classical light, squeezed light plays an important role in light-matter physics.

The JTWPA developed in this thesis demonstrates the versatility of traveling-wave-based

architecture in dispersion engineering and the capability of extending the broadband am-

plification performance beyond the existing frequency spectrum. Furthermore, the design

approach presented is extensible to more complex Josephson metamaterials with the po-

tential to generate different types of non-classical light. The last part of the thesis draws

a blueprint for a specific interaction between squeezed microwave photons and supercon-

ducting qubits. The utilization of squeezing can mitigate errors and protect the fragile

quantum states in the path of achieving a robust quantum computer.

177



Appendix A

Linearized Input-Output Theory for

Squeezing Simulation

The numerical models have been primarily developed by our theory collaborator Arne

Grimsmo, which allow us to simulate the squeezing effect based as illustrated in Chapter 7.

In this appendix, we describe the numerical models of JTWPA squeezing. Note that some

of the notations may appear slightly different.

Following the approach from Ref. [44], we derive a Hamiltonian for the JTWPA in the

continuum limit where the unit cell distance 𝑎 → 0 such that the total length 𝑧 = 𝑁𝑎 is

held constant

�̂� = �̂�0 + �̂�1, (A.1)

where to fourth order in the Josephson junction potential we have

�̂�0 =

∫︁ ∞

0

𝑑𝜔ℏ𝜔�̂�†ω�̂�ω, (A.2)

�̂�1 = − 𝛾

2

∫︁ z

0

𝑑𝑥[𝜕x𝜑(𝑥)]
4. (A.3)

Here �̂�†ω creates a delocalized right-moving photon of energy ℏ𝜔, 𝛾 = 𝑎3𝐸J

(︁

2π
Φ0

)︁4

/12 is

a parameter that describes the strength of the non-linearity, and

𝜑(𝑥) =

∫︁ ∞

0

𝑑𝜔

√︂

ℏ𝑍0

4𝜋𝑘ω𝑣
𝑒ikωx�̂�ω + H.c., (A.4)
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Figure A-1. | Illustration of linear impedance Z(ω) and admittance Y (ω) for an arbitrary

linear transmission line.

is the flux field along the JTWPA. For simplicity, we only consider the right-moving part

of the field, under the assumption the input/output transmission lines are well impedance

matched and that back-scattering is negligible. We have moreover introduced a character-

istic impedance 𝑍0 =
√︀

𝑙/𝑐 and nominal speed of light 𝑣 = 1/
√
𝑙𝑐, with 𝑐 = 𝐶0/𝑎 and

𝑙 = Φ0/(2𝜋𝐼c𝑎), the capacitance to ground and inductance per unit length, respectively.

The dispersion relation for the wavenumber 𝑘ω is given by the series impedance 𝑍(𝜔) and

parallel admittance to ground 𝑌 (𝜔) of each unit cell [78, 44] (see A-1).

𝑘ω𝑎 = −𝑖
√︀

𝑍(𝜔)𝑌 (𝜔). (A.5)

We linearize the problem by assuming a strong right-moving classical pump and replace

�̂�ω → �̂�ω+𝑏(𝜔), with 𝑏(𝜔) the pump amplitude, and neglect terms higher than second order

in �̂�
(†)
ω , as well as the influence of the quantum fields on the pump. Moreover, dropping fast

rotating terms, we have a Hamiltonian

�̂� = �̂�0 + �̂�fc + �̂�sq, (A.6)

where

�̂�fc = − ℏ

2𝜋

∫︁ ∞

0

𝑑𝜔1𝑑𝜔2Φfc(𝜔1, 𝜔2)�̂�
†
ω1
�̂�ω2 + H.c., (A.7)

�̂�sq = − ℏ

4𝜋

∫︁ ∞

0

𝑑𝜔1𝑑𝜔2Φsq(𝜔1, 𝜔2)�̂�
†
ω1
�̂�†ω2

+ H.c. (A.8)

describes frequency conversion and photon pair creation, respectively. For notational con-
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venience, we have defined phase matching functions

Φfc(𝜔1, 𝜔2) =
√︀

𝑘ω1𝑘ω2

∫︁ ∞

0

𝑑Ω1𝑑Ω2 ×
∫︁ z

0

𝑑𝑥𝛽(Ω1)
*𝛽(Ω2)𝑒

i(kω1−kω2+kΩ1
−kΩ2)x

(A.9)

Φsq(𝜔1, 𝜔2) =
√︀

𝑘ω1𝑘ω2

∫︁ ∞

0

𝑑Ω1𝑑Ω2 ×
∫︁ z

0

𝑑𝑥𝛽(Ω1)𝛽(Ω2)𝑒
i(kω1+kω2−kΩ1

−kΩ2)x,

(A.10)

where 𝛽(𝜔) =
√
3𝛾𝑙
√︀

ℏ𝑍0𝑘ω/4𝜋𝑣𝑏(𝜔) is a rescaled pump amplitude with units of inverse

frequency. The pump amplitude can be related to the pump current as [44]

𝛽(𝜔) =
𝐼p(𝜔)

4𝐼c
, (A.11)

where the current is defined as 𝐼p(𝜔) =
√︀

ℏ𝑍0/4𝜋𝑘ω𝑣𝑏(𝜔)/𝑙 and we used that 𝛾𝑙3 =

1/12𝐼c.

Similarly, the classical pump Hamiltonian can be written

𝐻p = 𝐻p0 +𝐻p1 (A.12)

with

𝐻p0 =
16𝜋𝐸J

𝑎

∫︁ ∞

0

𝑑𝜔𝜔

𝑘ω
𝛽(𝜔)*𝛽(𝜔), (A.13)

𝐻p1 =− 4𝐸J

𝑎

∫︁ ∞

0

𝑑𝜔1𝑑𝜔2Φfc(𝜔1, 𝜔2)
√︀

𝑘ω1𝑘ω2

𝛽(𝜔1)
*𝛽(𝜔2) + c.c. (A.14)

To simplify the problem, we consider the steady-state solution by going to an interaction

picture with respect to �̂�0+𝐻p0 and integrating from an initial time 𝑡0 = −∞ to final time

𝑡1 = ∞ [44, 90]. Moreover, we take the pump to be a sum of two delta functions in

frequency 𝛽(𝜔) =
∑︀2

p=1 𝛽p𝛿(𝜔 − Ωp), with 𝛽p a dimensionless pump amplitude.

In the scattering limit, we find position-dependent equations of motion for the pump
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and the quantum fields [44]. Specifically,

𝑑𝛽p
𝑑𝑥

= 𝑖𝑘p
(︀

|𝛽p|2 + 2|𝛽q|2
)︀

𝛽p, (A.15)

with 𝑝 = 1, 2, 𝑞 ̸= 𝑝 𝑘p ≡ 𝑘Ωp
and

𝑑�̂�ω
𝑑𝑥

= 2𝑖
2
∑︁

p=1

𝜆fc
pp(𝜔)𝑒

−i∆kfc
pp(ω)x�̂�ω + 2𝑖

∑︁

p ̸=q

𝜆fc
pq(𝜔)𝑒

−i∆kfc
pq(ω)x�̂�ω+Ωp−Ωq

+ 𝑖

2
∑︁

p,q=1

𝜆sq
pq(𝜔)𝑒

−i∆k
sq
pq(ω)x�̂�†Ωp+Ωq−ω,

(A.16)

where

𝜆fc
pq(𝜔) = 𝛽*

p𝛽q

√︁

𝑘ω𝑘ω+Ωp−Ωq
, (A.17a)

𝜆sq
pq(𝜔) = 𝛽p𝛽q

√︁

𝑘ω𝑘Ωp+Ωq−ω, (A.17b)

∆𝑘fc
pq(𝜔) = − 𝑘ω + 𝑘ω+Ωp−Ωq

− 𝑘p + 𝑘q, (A.17c)

∆𝑘sq
pq(𝜔) = − 𝑘ω − 𝑘Ωp+Ωq−ω + 𝑘p + 𝑘q. (A.17d)

The first term in Eq. (A.16) describes cross-phase modulation, which contributes to

the phase mismatch. It is convenient to transform to a rotating frame with respect to this

process by defining 𝑐ω = �̂�ω𝑒
−2i

∑︀

p |βp|2kωx, such that we have an equation of motion

𝑑𝑐ω
𝑑𝑥

= 2𝑖
∑︁

p ̸=q

𝜆fc
pq(𝜔)𝑒

−i∆̃kfc
pq(ω)x𝑐ω+Ωp−Ωq

+ 𝑖

2
∑︁

p,q=1

𝜆sq
pq(𝜔)𝑒

−i∆̃k
sq
pq(ω)x𝑐†Ωp+Ωq−ω, (A.18)

with a non-linear modification to the phase mismatch

∆̃𝑘fc
pq(𝜔) = − 𝑘ω + 𝑘ω+Ωp−Ωq

− 𝑘p + 𝑘q, (A.19)

∆̃𝑘sq
pq(𝜔) = − 𝑘ω − 𝑘Ωp+Ωq−ω + 𝑘p + 𝑘q, (A.20)
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where

𝑘ω =

(︃

1 + 2
∑︁

p

|𝛽p|2
)︃

𝑘ω, (A.21a)

𝑘p =
(︀

1 + |𝛽p|2 + 2|𝛽q|2
)︀

𝑘p (𝑝 ̸= 𝑞). (A.21b)

Quantum Loss Model

We introduce a phenomenological distributed loss model by adding loss terms to Eq. (A.18)

𝑑𝑐ω
𝑑𝑥

(𝑥) = 2𝑖
∑︁

p ̸=q

𝜆fc
pq(𝜔)𝑒

−i∆̃kfc
pq(ω)x𝑐ω+Ωp−Ωq

(𝑥) + 𝑖

2
∑︁

p,q=1

𝜆sq
pq(𝜔)𝑒

−i∆̃k
sq
pq(ω)x𝑐†Ωp+Ωq−ω(𝑥)

− 𝛾(𝜔)

2
𝑐ω(𝑥) +

√︀

𝛾(𝜔)𝑐in(𝑥),

(A.22)

where the loss rate 𝛾(𝜔) has units of inverse length and 𝑐in(𝑥) describes vacuum input noise

coupled to the JTWPA at each position 𝑥 [20]. Similarly, the pump equation of motion is

modified to

𝑑𝛽p
𝑑𝑥

(𝑥) = 𝑖𝑘p
(︀

|𝛽p(𝑥)|2 + 2|𝛽q(𝑥)|2
)︀

𝛽p(𝑥)−
𝛾p
2
𝛽p(𝑥). (A.23)

The JTWPA output field is found by integrating the spatial differential equations from

𝑥 = 0 to 𝑥 = 𝑧, with 𝑐ω(0) taken to be vacuum input. The pump amplitudes can be solved

independently and substituted into Eq. (A.22). We have the following solution to the pump

equation:

𝛽p(𝑥) = 𝛽p(0)𝑒
− γpx

2
−ikp

{︁

1
γp
[|βp(x)|2−|βp(0)|2]+ 2

γq
[|βq(x)|2−|βq(0)|2]

}︁

. (A.24)

Note that with this solution, we have

|𝛽p(𝑥)|2 = |𝛽p(0)|2𝑒−γpx ⇒ 𝑑|𝛽p(𝑥)|2
𝑑𝑥

= −𝛾p|𝛽p(𝑥)|2, (A.25)

such that we can write

𝛽p(𝑥) = 𝛽p(0)𝑒
− γpx

2
+ikp

{︁

1
γp

(1−e−γpx)|βp(0)|2+ 2
γq
(1−e−γqx)|βq(0)|2

}︁

. (A.26)
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Differentiating Eq. (A.26) gives Eq. (A.23). Note that in the limit 𝛾p → 0 Eq. (A.26) gives

𝛽p(𝑥) = 𝛽p(0)𝑒
ikpx{|βp(0)|2+2|βq(0)|2}. (A.27)

Equation (A.22) can now be solved by inserting the solution for 𝛽p(𝑥) into the coupling

constants 𝜆fc,sq
pq (𝜔) and phase mismatch ∆𝑘fc,sq

pq (𝜔).

Numerical method

To solve for the output fields numerically, we first have to choose a finite set of frequen-

cies

K ≡ {𝜔0, 𝜔1, . . . , 𝜔n}, (A.28)

and set 𝑐ω = 0 for 𝜔 ̸∈ K in Eq. (A.22). For a given “signal” frequency 𝜔0 we construct

the set K in an iterative manner. For the first “level” we add the two frequencies

K0 = {𝜔0,Ω1 + Ω2 − 𝜔0}. (A.29)

Then we construct the next level as follows:

Kl+1 = {Ωp + Ωq − 𝜔l, 𝜔l ± (Ω2 − Ω1) | 𝜔l ∈ Kl, 𝑝, 𝑞 ∈ {1, 2}}, (A.30)

but remove from Kl+1 any 𝜔l < 0, any 𝜔l ≃ Ω1,Ω2 and any 𝜔l already in Kl. Finally,

K = ∪k
l=0Kl up to some truncation 𝑘. The first two levels thus include

K0 = {𝜔0,Ω1 + Ω2 − 𝜔0}, (A.31a)

K1 = {2Ω1 − 𝜔0, 2Ω2 − 𝜔0, 𝜔0 + Ω1 − Ω2, 𝜔0 + Ω2 − Ω1}. (A.31b)

In practice, we have found after extensive numerical testing that including frequencies

beyond the first level K0 does not improve the fit to the experimental squeezing data.

Once a finite set of frequencies has been chosen, we can use Eq. (A.22) to compute

expectation values. For numerical purposes, it is convenient to introduce a matrix-vector
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notation

�⃗� = [𝑐1, . . . , 𝑐n, 𝑐
†
1, . . . , 𝑐

†
n]

T , (A.32)

and write

𝑑

𝑑𝑥
⟨�⃗�⟩ = 𝑖𝐾𝐻 ⟨�⃗�⟩ − Γ

2
⟨�⃗�⟩ , (A.33)

where 𝐾, 𝐻 and Γ are 2𝑛× 2𝑛 matrices, with 𝐾 = diag[𝐼n,−𝐼n],

Γ = diag[𝛾1, . . . , 𝛾n, 𝛾1, . . . , 𝛾n],

and 𝐻 is a Hermitian matrix that can be written in the block form

𝐻 =

⎡

⎢

⎣

Λ1 Λ2

Λ*
2 Λ*

1

⎤

⎥

⎦
, (A.34)

with Λ†
1 = Λ1 Hermitian and ΛT

2 = Λ2 symmetric.

From Eq. (A.33) we can compute the gain using as initial condition

⟨�⃗�(0)⟩ = [𝛼, 0, . . . , 0, 𝛼*, 0, . . . , 0]T ,

and define the gain to be 𝑔 = ⟨𝑐0⟩ /𝛼, and power gain 𝐺 = |𝑔|2.

To compute squeezing, we also need to solve for all second order moments,
⟨

𝑐i𝑐j

⟩

,
⟨

𝑐i𝑐
†
j

⟩

, etc. For this purpose it is convenient to define a “correlation matrix”

𝐶 = [⟨�⃗�i�⃗�j⟩] =

⎡

⎢

⎢

⎣

⟨

𝑐i𝑐j

⟩ ⟨

𝑐i𝑐
†
j

⟩

⟨

𝑐†i𝑐j

⟩ ⟨

𝑐†i𝑐
†
j

⟩

⎤

⎥

⎥

⎦

, (A.35)

where each block is 𝑛×𝑛. An equation of motion can be derived from Eq. (A.24) by using

that

𝑑

𝑑𝑥
⟨𝑐i𝑐j⟩ = ⟨(𝜕x𝑐i)𝑐j⟩+ ⟨𝑐i(𝜕x𝑐j)⟩ , (A.36)
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etc. We find

𝑑

𝑑𝑥
𝐶 = 𝑖𝐾𝐻𝐶 + 𝑖𝐶(𝐾𝐻)T +

⎛

⎜

⎝

0 Γ

0 0

⎞

⎟

⎠
, (A.37)

where we have assumed a vacuum input field 𝑐in(𝑥).

To compute squeezing we first define a “squeezing matrix”

∆𝑌 2
ij(𝜃) =

1

2

⟨

(︁

𝑌 θ
i + 𝑌 θ

j

)︁2
⟩

− 1

4

⟨

𝑌i + 𝑌j

⟩2

=
1

4

∑︁

i′=i,j

j′=i,j

(︀

⟨

𝑐†i′𝑐j′
⟩

+
⟨

𝑐i′𝑐
†
j′

⟩

− 𝑒iθ
⟨

𝑐†i′𝑐
†
j′

⟩

− 𝑒−iθ ⟨𝑐i′𝑐j′⟩
)︀

,
(A.38)

where 𝑌 θ
i = i√

2

(︁

𝑒iθ/2𝑐†i − 𝑒−iθ/2𝑐i

)︁

, and in the second line we have used
⟨

𝑌i + 𝑌j

⟩

= 0

for vacuum input.

The squeezing matrix is here defined such that high squeezing level means that ∆𝑌 2
ij(𝜃)

is small. Squeezing is thus maximized between modes 𝑖 and 𝑗 (𝑖 = 𝑗 for single-mode

squeezing) by choosing 𝜃 such that 𝑒iθ
⟨

𝑐†i𝑐
†
j

⟩

=
⃒

⃒

⃒

⟨

𝑐†i𝑐
†
j

⟩⃒

⃒

⃒
. Note that the 𝜃 that maximizes

squeezing might in general be different for different 𝑖𝑗.

The squeezing in dB is defined as

𝒮ij = 10 log10

(︂

∆𝑌 2
ij

1/2

)︂

, (A.39)

where the 1/2 is the vacuum fluctuations. To compute the squeezing, Eq. (A.37) is inte-

grated numerically with initial condition

𝐶(0) =

⎛

⎜

⎝

0 𝐼n

0 0

⎞

⎟

⎠
, (A.40)

corresponding to vacuum input.
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Calibrating pump power at the device

Matching the numerical results to experimental data requires knowing the dimension-

less pump strength 𝛽p = 𝐼p/4𝐼c at the device for a given input power 𝑃 . One approach to

determine 𝛽p is to measure the power dependent phase shift ∆𝜑p at the pump frequency in

the presence of a single pump. From Eq. (A.24) we have that

|𝛽p(𝑥 = 0)|2 = 1

𝑘p

𝛾p(𝑃 )

1− 𝑒−γp(P )z
∆𝜑p(𝑃 ), (A.41)

where we have included the power dependence of the pump loss rate 𝛾p(𝑃 ). This procedure

is, however, complicated by the fact that we do not observe a linear relationship between

∆𝜑p and 𝑃 in the experiment. This could be, amongst other factors, due to the non-trivial

dependence of the dispersion feature on power: As the pump power increases, the disper-

sion feature is observed to become significantly more narrow in frequency, likely due to

saturation of two-level systems in the LC oscillators.

Nevertheless, we have found reasonable agreement with experiments by assuming a

power dependence of the form

|𝛽p(0)|2 =
1

𝑘p

𝛾p(𝑃 )

1− 𝑒−γp(P )z
× 𝑐p𝑃, (A.42)

where 𝑐p is a power-independent fit parameter. In practice, we first vary 𝑐p to fit the numer-

ical results to the gain curve and subsequently use the same value of 𝑐p to extract squeezing

and anti-squeezing.

Since the gain curve has been fitted, the theory does not directly predict the gain at a

given input power 𝑃 . Nevertheless, it is noteworthy that an excellent fit to the overall shape

of the gain curve can be found using this method, as shown in Fig. 3c in the main text.

Most importantly, this method allows us to predict the squeezing and anti-squeezing at a

given gain.
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Potočnik, Andreas Wallraff, and Christopher Eichler. Rapid high-fidelity

multiplexed readout of superconducting qubits. Phys. Rev. Applied, 10:034040, Sep

2018.

[47] Byeong Ho Eom, Peter K. Day, Henry G. LeDuc, and Jonas Zmuidzinas. A

wideband, low-noise superconducting amplifier with high dynamic range. Nature

Physics, 8(8):623–627, Aug 2012.

[48] J. M. Hornibrook, J. I. Colless, A. C. Mahoney, X. G. Croot, S. Blanvillain, H. Lu,

A. C. Gossard, and D. J. Reilly. Frequency multiplexing for readout of spin qubits.

Applied Physics Letters, 104(10):103108, 2014. doi:10.1063/1.4868107.

[49] M. Houde, L.C.G. Govia, and A.A. Clerk. Loss asymmetries in quantum

traveling-wave parametric amplifiers. Phys. Rev. Applied, 12:034054, Sep 2019.

[50] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello,

A. Shnirman, Y. Makhlin, J. Schriefl, and G. Schön. Decoherence in a

superconducting quantum bit circuit. Phys. Rev. B, 72:134519, Oct 2005.

[51] X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen, D. Hover, J. Miloshi, R. Slattery,

F. Yan, J. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver. Thermal and

residual excited-state population in a 3d transmon qubit. Phys. Rev. Lett.,

114:240501, Jun 2015.

[52] B. D. Josephson. Possible new effects in superconductive tunnelling. Phys. Lett.,

page 79, 1962.

[53] Ravikiran Kakarla, Jochen Schröder, and Peter A. Andrekson. One photon-per-bit

receiver using near-noiseless phase-sensitive amplification. Light: Science &

Applications, 9(1):153, Sep 2020.

191

https://doi.org/10.1063/1.4868107


[54] B. Kannan, D. L. Campbell, F. Vasconcelos, R. Winik, D. K. Kim, M. Kjaergaard,

P. Krantz, A. Melville, B. M. Niedzielski, J. L. Yoder, T. P. Orlando, S. Gustavsson,

and W. D. Oliver. Generating spatially entangled itinerant photons with waveguide

quantum electrodynamics. Science Advances, 6(41), 2020.

[55] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer,

Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf.

Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A,

76:042319, Oct 2007.

[56] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A

quantum engineer’s guide to superconducting qubits. Applied Physics Reviews,

6(2):021318, 2019.

[57] Philip Krantz, Yarema Reshitnyk, Waltraut Wustmann, Jonas Bylander, Simon

Gustavsson, William D Oliver, Timothy Duty, Vitaly Shumeiko, and Per Delsing.

Investigation of nonlinear effects in Josephson parametric oscillators used in circuit

quantum electrodynamics. New Journal of Physics, 15(10):105002, oct 2013.

[58] U. Las Heras, R. Di Candia, K. G. Fedorov, F. Deppe, M. Sanz, and E. Solano.

Quantum illumination reveals phase-shift inducing cloaking. Scientific Reports,

7(1):9333, Aug 2017.

[59] F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel,

and J. Aumentado. Nonreciprocal microwave signal processing with a

field-programmable Josephson amplifier. Phys. Rev. Applied, 7:024028, Feb 2017.

[60] A. I. Lvovsky. Squeezed Light, chapter 5, pages 121–163. John Wiley & Sons, Ltd,

2015.

[61] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang,

W. D. Oliver, and I. Siddiqi. A near–quantum-limited Josephson traveling-wave

parametric amplifier. Science, 350(6258):307–310, 2015.

[62] Christopher S. Macklin. Quantum Feedback and Traveling-wave Parametric

Amplification in Superconducting Circuits. PhD thesis, University of California,

Berkeley, 2015.

[63] F. Mallet, M. A. Castellanos-Beltran, H. S. Ku, S. Glancy, E. Knill, K. D. Irwin,

G. C. Hilton, L. R. Vale, and K. W. Lehnert. Quantum state tomography of an

itinerant squeezed microwave field. Phys. Rev. Lett., 106:220502, Jun 2011.

[64] M. Malnou, D. A. Palken, B. M. Brubaker, Leila R. Vale, Gene C. Hilton, and

K. W. Lehnert. Squeezed vacuum used to accelerate the search for a weak classical

signal. Phys. Rev. X, 9:021023, May 2019.

[65] M. Malnou, D. A. Palken, Leila R. Vale, Gene C. Hilton, and K. W. Lehnert.

Optimal operation of a Josephson parametric amplifier for vacuum squeezing.

Phys. Rev. Applied, 9:044023, Apr 2018.

192



[66] M. Malnou, M.R. Vissers, J.D. Wheeler, J. Aumentado, J. Hubmayr, J.N. Ullom,

and J. Gao. Three-wave mixing kinetic inductance traveling-wave amplifier with

near-quantum-limited noise performance. PRX Quantum, 2:010302, Jan 2021.

[67] V. E. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I. Siddiqi, and M. Devoret.

Microwave bifurcation of a Josephson junction: Embedding-circuit requirements.

Phys. Rev. B, 76:014524, Jul 2007.

[68] Nicolas C. Menicucci, Peter van Loock, Mile Gu, Christian Weedbrook,

Timothy C. Ralph, and Michael A. Nielsen. Universal quantum computation with

continuous-variable cluster states. Phys. Rev. Lett., 97:110501, Sep 2006.

[69] E. P. Menzel, R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein,

A. Baust, E. Hoffmann, D. Ballester, K. Inomata, T. Yamamoto, Y. Nakamura,

E. Solano, A. Marx, and R. Gross. Path entanglement of continuous-variable

quantum microwaves. Phys. Rev. Lett., 109:250502, Dec 2012.

[70] A. Metelmann and A. A. Clerk. Nonreciprocal photon transmission and

amplification via reservoir engineering. Phys. Rev. X, 5:021025, Jun 2015.

[71] Yoshinari Minami. Extraction of thrust from quantum vacuum using squeezed

light. AIP Conference Proceedings, 880:1034–1044, 01 2007.

[72] Mohammad Mirhosseini, Eunjong Kim, Xueyue Zhang, Alp Sipahigil, Paul B.

Dieterle, Andrew J. Keller, Ana Asenjo-Garcia, Darrick E. Chang, and Oskar

Painter. Cavity quantum electrodynamics with atom-like mirrors. Nature,

569(7758):692–697, May 2019.

[73] J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, Caspar H. van der Wal, and Seth

Lloyd. Josephson persistent-current qubit. Science, 285(5430):1036–1039, 1999.

[74] R. Movshovich, B. Yurke, P. G. Kaminsky, A. D. Smith, A. H. Silver, R. W. Simon,

and M. V. Schneider. Observation of zero-point noise squeezing via a

Josephson-parametric amplifier. Phys. Rev. Lett., 65:1419–1422, Sep 1990.

[75] R. Movshovich, B. Yurke, A. D. Smith, and A. H. Silver. Subharmonic pumping of

a Josephson-parametric amplifier and the pitchfork instability. Phys. Rev. Lett.,

67:1411–1414, Sep 1991.

[76] K. W. Murch, S. J. Weber, K. M. Beck, E. Ginossar, and I. Siddiqi. Reduction of

the radiative decay of atomic coherence in squeezed vacuum. Nature, 499:62 – 65,

2013.

[77] J. Y. Mutus, T. C. White, R. Barends, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth,

E. Jeffrey, J. Kelly, A. Megrant, C. Neill, P. J. J. O’Malley, P. Roushan, D. Sank,

A. Vainsencher, J. Wenner, K. M. Sundqvist, A. N. Cleland, and John M. Martinis.

Strong environmental coupling in a Josephson parametric amplifier. Applied

Physics Letters, 104(26):263513, 2014.

193



[78] Kevin O’Brien, Chris Macklin, Irfan Siddiqi, and Xiang Zhang. Resonant phase

matching of Josephson junction traveling wave parametric amplifiers. Phys. Rev.

Lett., 113:157001, Oct 2014.

[79] Kevin Patrick O’Brien. Nonlinear Light-Matter Interactions in Metamaterials.

PhD thesis, UC Berkeley, 2016.

[80] T. P. Orlando, J. E. Mooij, Lin Tian, Caspar H. van der Wal, L. S. Levitov, Seth

Lloyd, and J. J. Mazo. Superconducting persistent-current qubit. Phys. Rev. B,

60:15398–15413, Dec 1999.

[81] Hanhee Paik, A. Mezzacapo, Martin Sandberg, D. T. McClure, B. Abdo, A. D.

Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M.

Gambetta, and Jerry M. Chow. Experimental demonstration of a resonator-induced

phase gate in a multiqubit circuit-qed system. Phys. Rev. Lett., 117:250502, Dec

2016.

[82] Daniel J. Parker, Mykhailo Savytskyi, Wyatt Vine, Arne Laucht, Timothy Duty,

Andrea Morello, Arne L. Grimsmo, and Jarryd J. Pla. Degenerate parametric

amplification via three-wave mixing using kinetic inductance. Phys. Rev. Appl.,

17:034064, Mar 2022.

[83] Kaidong Peng, Mahdi Naghiloo, Jennifer Wang, Gregory D. Cunningham, Yufeng

Ye, and Kevin P. O’Brien. Floquet-mode traveling-wave parametric amplifiers.

PRX Quantum, 3:020306, Apr 2022.

[84] M.R. Perelshtein, K.V. Petrovnin, V. Vesterinen, S. Hamedani Raja, I. Lilja,

M. Will, A. Savin, S. Simbierowicz, R.N. Jabdaraghi, J.S. Lehtinen, L. Grönberg,

J. Hassel, M.P. Prunnila, J. Govenius, G.S. Paraoanu, and P.J. Hakonen. Broadband

continuous-variable entanglement generation using a kerr-free josephson

metamaterial. Phys. Rev. Appl., 18:024063, Aug 2022.

[85] Luca Planat, Rémy Dassonneville, Javier Puertas Martínez, Farshad Foroughi,

Olivier Buisson, Wiebke Hasch-Guichard, Cécile Naud, R. Vijay, Kater Murch, and

Nicolas Roch. Understanding the saturation power of Josephson parametric

amplifiers made from squid arrays. Phys. Rev. Applied, 11:034014, Mar 2019.

[86] David M Pozar. Microwave engineering; 3rd ed. Wiley, Hoboken, NJ, 2005.

[87] Shruti Puri and Alexandre Blais. High-fidelity resonator-induced phase gate with

single-mode squeezing. Phys. Rev. Lett., 116:180501, May 2016.

[88] Xiaogang Qiang. Building quantum computers with photons – silicon chip creates

two-qubit processor, 2018. [Online; accessed Oct 6, 2022]. URL:

https://spectrum.ieee.org/

building-quantum-computers-with-photons.

194

https://spectrum.ieee.org/building-quantum-computers-with-photons
https://spectrum.ieee.org/building-quantum-computers-with-photons


[89] Jack Y. Qiu, Arne Grimsmo, Kaidong Peng, Bharath Kannan, Benjamin Lienhard,

Youngkyu Sung, Philip Krantz, Vladimir Bolkhovsky, Greg Calusine, David Kim,

Alex Melville, Bethany M. Niedzielski, Jonilyn Yoder, Mollie E. Schwartz, Terry P.

Orlando, Irfan Siddiqi, Simon Gustavsson, Kevin P. O’Brien, and William D.

Oliver. Broadband squeezed microwaves and amplification with a Josephson

traveling-wave parametric amplifier. ArXiv e-prints, 2022. arXiv:2201.11261.

[90] Nicolás Quesada and J. E. Sipe. Effects of time ordering in quantum nonlinear

optics. Phys. Rev. A, 90:063840, 2014.

[91] T. C. Ralph and P. K. Lam. Teleportation with bright squeezed light. Phys. Rev.

Lett., 81:5668–5671, Dec 1998.

[92] N. Roch, E. Flurin, F. Nguyen, P. Morfin, P. Campagne-Ibarcq, M. H. Devoret, and

B. Huard. Widely tunable, nondegenerate three-wave mixing microwave device

operating near the quantum limit. Phys. Rev. Lett., 108:147701, Apr 2012.

[93] D. Rosenberg, S. J. Weber, D. Conway, D. W. Yost, J. Mallek, G. Calusine, R. Das,

D. Kim, M. E. Schwartz, W. Woods, J. L. Yoder, and W. D. Oliver. Solid-state

qubits: 3d integration and packaging. IEEE Microwave Magazine, 21(8):72–85,

2020.

[94] Tanay Roy, Suman Kundu, Madhavi Chand, A. M. Vadiraj, A. Ranadive, N. Nehra,

Meghan P. Patankar, J. Aumentado, A. A. Clerk, and R. Vijay. Broadband

parametric amplification with impedance engineering: Beyond the gain-bandwidth

product. Applied Physics Letters, 107(26):262601, 2015.

[95] Jeremy M. Sage, Vladimir Bolkhovsky, William D. Oliver, Benjamin Turek, and

Paul B. Welander. Study of loss in superconducting coplanar waveguide resonators.

Journal of Applied Physics, 109(6):063915, 2011.

[96] Roman Schnabel. Squeezed states of light and their applications in laser

interferometers. Physics Reports, 684:1–51, 2017. Squeezed states of light and

their applications in laser interferometers.

[97] B. H. Schneider, A. Bengtsson, I. M. Svensson, T. Aref, G. Johansson, Jonas

Bylander, and P. Delsing. Observation of broadband entanglement in microwave

radiation from a single time-varying boundary condition. Phys. Rev. Lett.,

124:140503, Apr 2020.

[98] Carsten Schulte. Spin with a new twist, 2014. [Online; accessed Oct 6, 2022].

URL: https:

//www.cam.ac.uk/research/news/spin-with-a-new-twist.

[99] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. M.

Girvin, and R. J. Schoelkopf. ac stark shift and dephasing of a superconducting

qubit strongly coupled to a cavity field. Phys. Rev. Lett., 94:123602, Mar 2005.

195

http://arxiv.org/abs/2201.11261
https://www.cam.ac.uk/research/news/spin-with-a-new-twist
https://www.cam.ac.uk/research/news/spin-with-a-new-twist


[100] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio,

and M. H. Devoret. Rf-driven Josephson bifurcation amplifier for quantum

measurement. Phys. Rev. Lett., 93:207002, Nov 2004.

[101] V. V. Sivak, S. Shankar, G. Liu, J. Aumentado, and M. H. Devoret. Josephson

array-mode parametric amplifier. Phys. Rev. Applied, 13:024014, Feb 2020.

[102] V.V. Sivak, N.E. Frattini, V.R. Joshi, A. Lingenfelter, S. Shankar, and M.H.

Devoret. Kerr-free three-wave mixing in superconducting quantum circuits. Phys.

Rev. Applied, 11:054060, May 2019.

[103] Radan Slavík, Francesca Parmigiani, Joseph Kakande, Carl Lundström, Martin

Sjödin, Peter A. Andrekson, Ruwan Weerasuriya, Stylianos Sygletos, Andrew D.

Ellis, Lars Grüner-Nielsen, Dan Jakobsen, Søren Herstrøm, Richard Phelan, James

O’Gorman, Adonis Bogris, Dimitris Syvridis, Sonali Dasgupta, Periklis

Petropoulos, and David J. Richardson. All-optical phase and amplitude regenerator

for next-generation telecommunications systems. Nature Photonics,

4(10):690–695, Oct 2010.

[104] Daniel H. Slichter. Quantum Jumps and Measurement Backaction in a

Superconducting Qubit. PhD thesis, University of California, Berkeley, 2011.

[105] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley. Observation

of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev.

Lett., 55:2409–2412, Nov 1985.

[106] Lafe Spietz, K. W. Lehnert, I. Siddiqi, and R. J. Schoelkopf. Primary electronic

thermometry using the shot noise of a tunnel junction. Science,

300(5627):1929–1932, 2003.

[107] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, Hans-A. Bachor, and W. P.

Bowen. Biological measurement beyond the quantum limit. Nature Photonics,

pages 229 – 233, 2013.

[108] The LIGO Scientific Collaboration. A gravitational wave observatory operating

beyond the quantum shot-noise limit. Nature Physics, pages 962 – 965, 2011.

[109] E A Tholén, A Ergül, K Stannigel, C Hutter, and D B Haviland. Parametric

amplification with weak-link nonlinearity in superconducting microresonators.

Physica Scripta, T137:014019, dec 2009.

[110] Z. Tong, C. Lundström, P. A. Andrekson, M. Karlsson, and A. Bogris. Ultralow

noise, broadband phase-sensitive optical amplifiers, and their applications. IEEE

Journal of Selected Topics in Quantum Electronics, 18(2):1016–1032, 2012.

[111] D. M. Toyli, A. W. Eddins, S. Boutin, S. Puri, D. Hover, V. Bolkhovsky, W. D.

Oliver, A. Blais, and I. Siddiqi. Resonance fluorescence from an artificial atom in

squeezed vacuum. Phys. Rev. X, 6:031004, Jul 2016.

196



[112] Mankei Tsang and Carlton M. Caves. Evading quantum mechanics: Engineering a

classical subsystem within a quantum environment. Phys. Rev. X, 2:031016, Sep

2012.

[113] Visa Vesterinen, Slawomir Simbierowicz, Robab Najafi Jabdaraghi, Leif Grönberg,

Janne S. Lehtinen, Mika Prunnila, and Joonas Govenius. A sub-ghz

impedance-engineered parametric amplifier for the readout of sensors and quantum

dots. IEEE Transactions on Applied Superconductivity, 32(4):1–6, 2022.

[114] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and

M. H. Devoret. Manipulating the quantum state of an electrical circuit. Science,

296(5569):886–889, 2002.

[115] Benedikt Vogel. Qubits – the building blocks of the quantum computer, 2017.

[Online; accessed Oct 6, 2022]. URL: https:

//www.unibas.ch/en/News-Events/Uni-Nova/Uni-Nova-130/

Uni-Nova-130-Qubits-the-building-blocks-of-the-quantum-computer.

html.

[116] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar,

S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a

superconducting qubit using circuit quantum electrodynamics. Nature,

431(7005):162–167, September 2004.

[117] T. Walter, P. Kurpiers, S. Gasparinetti, P. Magnard, A. Potočnik, Y. Salathé,
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