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Abstract

Online platforms have fundamentally changed the dynamics of social interactions and informa-
tion transmission. In this thesis, I explore recent trends in social media through models
and experiments of user behavior, platform algorithms and incentives, and policy initiatives.
I focus on the social consequences of new communication technologies, their intended
and unintended societal consequences, and how to steer them in more socially beneficial
directions.

In recent years, social media has become a breeding ground for misinformation, but
the reasons misinformation spreads are still imperfectly understood. First, I discuss the
role of social media in the propagation of misinformation, how latent platform algorithms
may exacerbate its influence, and analyze various policies to correct misinformation spread.
Technological advances stemming from social media have also enabled users to systematically
access a deluge of information; yet, it is unclear to what extent this technology has actually
helped to better inform. In the second part of the thesis, to characterize the landscape of digital
content, I propose a model of content creation and consumption on digital platforms where
users have limited attention, and discuss related experiments on the role of algorithmic ranking
in user engagement. Lastly, we observe that business models of online platforms drive much
of the content creation and algorithmic choices of platforms, and ultimately impact human-
machine interactions. The final part of the thesis discusses the various business models of
media platforms, their implications for consumer welfare, and possible remedies.
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Chapter 1

Introduction

This chapter introduces the main ideas of the thesis as well as provides some essential

background. While the focus of this thesis is on social media, many of the ideas apply more

broadly to online media platforms (especially Chapter 5). In Section 1.1, I briefly describe the

nature of various online media platforms, including both social media and other emerging

media platforms. A main focus is on models and experiments of social media related to the

spread of misinformation (discussed in both Chapters 2 and 3). In Section 1.2, I define what

misinformation is, provide a brief history that predates social media, and give an overview of

how social media has changed the paradigm for why and how misinformation spreads. Lastly,

in Section 1.3, I informally discuss the role of platform incentives and algorithmic choices on

societal outcomes (which are studied throughout in greater detail), and give a short overview

of regulatory solutions that have been discussed recently in the public sphere.

1.1 Online Media Platforms

Online media has transformed many aspects of modern life. The overwhelming majority of

Americans now rely on online platforms for media of all kinds, including traditional entertainment,

such as TV and movies,1 as well as social interaction, which has become increasingly more

virtual with the rise of social media sites such as Facebook and Twitter.2 The foreseen benefits

1Much evidence shows consumers have substituted away from classic cable service in favor of streaming
services such as Netflix, Hulu, and HBO (among many others), see Abreu et al. (2017) and Arditi (2021).

2It has been well-documented (e.g., in Goel and Gupta (2020) and Cinelli et al. (2020)) that the COVID-19
pandemic has also accelerated much of the transition to online social interaction.
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of these platforms are clear. First, they provide less friction in matching content to individual

users and their preferences. Users can quickly and easily access content that might interest

them, which allows for a broader selection of sources tailored to a range of idiosyncratic

interests. Second, there are fewer hurdles to releasing and disseminating content; this includes

potentially fewer barriers to entry for content providers and offers a more transparent channel

for free speech and democratic discourse. Lastly, it also allows platforms to engineer rich

algorithms intended to further facilitate user experiences and optimize personal interactions.

The focus of this thesis is to explore the hidden consequences of these new technologies,

whether these innovations deliver on their perceived benefits, and how they might introduce

negative societal repercussions (either intended or unintended).

1.1.1 Social Media

Figure 1-1. Some of the most popular social media sites (Twitter, Reddit, Facebook), as well as
fringe social media focused around extremist ideas (Parler, Trump Social).

Social media has played an increasingly important role globally in the last several decades,

acting as an integral part of the lives of billions of people worldwide. There are two types of

actors on social media: users and the platform. Users benefit from social media via information

and entertainment. They may learn more about a particular political issue, discover new

vacation spots from a friend who posted photos in Belize, watch an amusing cat video, or

come across a new product being actively advertised. At the core of social media sites are

recommendation algorithms that determine the likelihood of individuals seeing different types

of information, which influences user interaction. Although these algorithms are designed

by platforms with specific objectives, researchers and policymakers have recently started

recognizing that some of their consequences may be socially problematic, including echo

chambers, misinformation spread, and negative effects on the mental health of vulnerable

populations. These pernicious outcomes may be amplified further by the business models of

12



social media companies who are monetized by digital advertising and incentivized to promote

digital addiction (see Allcott et al. (2020) and Allcott et al. (2022)).

In the early 2000s, social media sites like MySpace and Facebook were founded on the

basis of facilitating social interactions and boosting connectivity from all parts of the world.3

Soon after, social media sites also evolved to serve other purposes, such as the quick and

abundant dissemination of news and entertaining content (see Cuthbertson et al. (2015) and

Edosomwan et al. (2011)). In many ways, social media paved the way for easier communication,

more democratic discourse, and an exposure to broader and more diverse viewpoints (see, for

example, Wilson and Stock (2021)).

However, under the surface, the effects of social media are much more subtle. Greater

access to information and the ability to more easily form social connections have also lead

to the formation of one-sided communities that act as echo chambers with little diversity of

opinion (as evidenced by Quattrociocchi et al. (2016), Mosleh et al. (2021b), and Bakshy et al.

(2015)). In fact, self-segregation on social media is one of the leading theories for accentuated

polarization and division in this United States in the last twenty years (according to Sims and

Grant (2021) and Pew Research Center (2014)). Moreover, there is substantial evidence that

social media can have negative effects on the formation of social relationships and has caused

a decline in mental health, especially among adolescents (e.g., see Bashir and Bhat (2017),

Berryman et al. (2018), and Strickland (2014)). Similarly, on a platform where content can be

generated and posted at almost no cost, social media may act as a medium for the propagation

of “news” that contains little to no information, misleading ideas, or outright false claims

(“misinformation”). It has been suggested that viral misinformation can even influence the

actions of those who consume it, potentially to the point of affecting democratic decisions (see

Allcott and Gentzkow (2017)).

These negative societal consequences are in part due to the nature of social media compared

to traditional media. Traditional media typically consists of a handful of news outlets with

established reputability, who publish content for mass consumption.4 These outlets are

incentivized to target different, but coarse sectors of the consumer market (who might have

heterogenous preferences) and maintain a reputation for quality and informativeness. Social

3According to McWilliams (2009), MySpace’s slogan was “a place for friends” and Facebook’s was “to help
connect and share with people in your life”.

4For models of content production (and bias) in traditional media settings, see Gentzkow and Shapiro (2006)
and Allon et al. (2021).
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media fundamentally differs on two dimensions. First, content can be more easily posted

and shared on social media, often with little repercussions for spreading false content or

misinformation. This is largely due to a lack of reputational concerns when (mis)information

can be effortlessly created and disseminated under various aliases.5 Secondly, the abundance

of content on social media allows users to easily self-select into very niche communities that

in general decrease exposure to broader mainstream ideas.

The business model of social media companies does not (by any means) help mitigate these

negative consequences, and may even accentuate them. Social media platforms generate most

of their revenue through digital advertising, which is more valuable the longer users stay on

the platform. Recent empirical work has shown that this can create a perverse incentive for

platforms to get social media users “hooked” on the site (see Allcott et al. (2020) and Allcott

et al. (2022)). Similarly, it has been shown that social media recommendation algorithms

can increase user engagement specifically by pushing sensational content (often likely to

contain misinformation) within ideologically-congruent populations (e.g., as in Vosoughi et al.

(2018) and Levy (2021)). At the same time, the overload of content on social media pushes

the platform toward suggesting catchy content, perhaps with little to no informational value,

because this is most effective for capturing attention. On top of this, because digital advertising

is the main business model for social media platforms, targeting susceptible populations with

manipulative ads can be the most profitable way to attract advertisers and increase revenue.

1.1.2 Other Online Media: WhatsApp, Yelp, YouTube, and TikTok

Figure 1-2. Other media platforms which have recently become popular.

In recent years, online media platforms besides social media have also expanded and

become quite popular. WhatsApp, a common platform used in countries outside of the US,

5For example, a Macedonian teenager spread misinformation during the run-up to the 2016 U.S. presidential
election by designing a website that mimicked the Huffington Post (see Allcott and Gentzkow (2017)), and faced
no fallout from the blatant fabrication of content masquerading as news.
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has allowed people to connect more easily where cell towers are less available. Yelp, among

other sites such as Amazon and Airbnb, have developed platforms for crowdsourced reviews of

restaurants, products, and vacation spots, to name just a few. YouTube has become a dominant

player in streaming online entertainment, along with other services such as Netflix and Hulu.

Most interesting, arguably, are apps such as Snapchat and TikTok, with limitations on how

content can be shared (e.g., 10-second photos for Snapchat or 30-second videos for TikTok)

which have taken off explosively especially among younger demographics.

As mentioned before, while the vast majority of social media sites are monetized fully

through digital advertising, other media platforms have more nuanced business models.

WhapsApp and YouTube both offer freemium services, where a user can pay a subscription fee

to avoid advertisements but can otherwise enjoy the site for free (with ads). Other platforms

such as Yelp (and Google) solicit bids from clients to provide preferential ranking in searches

from its users. Business models of platforms like Amazon and Airbnb, however, rely largely on

selling the products or vacation spots advertised on the site.

Many of the societal concerns about social media extend to this broader setting as well.

WhatsApp had been used a way to spread lies about COVID-19 and other misinformation in

India, where there is less access to formal education and fact-checking resources (Neyazi et al.

(2021), Garimella and Eckles (2020), and Banaji et al. (2019)). Similarly there is both strong

empirical and theoretical evidence that the fake reviews on Yelp can be extensive, and hurt

both consumer welfare and the welfare of restaurants who do not participate in the fraudulent

activity (Luca and Zervas (2016) and Mostagir and Siderius (2022c)). As mentioned before, the

business models of social media and more recent platforms like TikTok or Instagram may even

encourage the platform to create insecurity and depression among its users (Catlett (2022) and

Giordano et al. (2022)).

1.1.3 Thesis Overwiew and Organization

A main goal of this thesis is to develop workable approaches to understand the interplay of

large numbers of stakeholders with different beliefs and interests, which calls for a dynamic

game-theoretic approach. Though challenging, this step is critical for deriving general insights

and new empirical predictions. I develop both new insights and new predictions about the

consequences of content creation, platform recommendation algorithms, and business models
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developed and operated by social media platforms interested in maximizing engagement. With

these predictions in hand, I propose ongoing work to empirically test user behavior under

different algorithms to better calibrate the underlying parameters of our models and identify

the key drivers of online behavior. Leveraging our existing modeling framework that reveals the

tension between users and the platform (and society at large), I also study the consequences

of different policy interventions, including content moderation efforts, information tagging

(e.g., the provenance of different messages), and algorithmic network regulation. Ongoing

work (outside this thesis) hopes to extend the analysis of these policies to metrics other than

misinformation, such as algorithmic fairness in the context of social media.

The basis of many of the predictions is a conceptual framework in which users with

different ideological leanings consume information and communicate with each other. Via

their choice of recommendation algorithm, a social media platform determines the likelihood

of communication between any two pairs of agents (and the likelihood that they will see certain

news items). The platform’s objective is to maximize user engagement, which then enables

more profitable digital ad targeting. The important lesson from this framework is a specific

set of predictions on when platforms will propagate low-reliability content and especially

do so by creating filter bubbles (artificial echo chambers). Such filter bubbles increase the

spread of questionable content among like-minded users, who then end up engaging more

with this content, creating profitable ad targeting opportunities. The resulting pattern of

communication and belief formation may be at odds with various social objectives, especially

because misinformation spreads quite strongly. What can be done in order to align platform

algorithms with social objectives? Some policies look appealing at first, but their effects turn

out to be more complex. For example, tagging a subset of misinformation so that users are

aware when they are engaging with questionable content could be useful, but under certain

circumstances it can also backfire because of an “implied truth effect”: knowing that some

misinformation has been tagged, users are now more optimistic about the quality of the

information they receive, even if it is unreliable (see Pennycook et al. (2018)). One of our

objectives is to experimentally investigate these issues and thus generate insights on better

policy design.

Another major focus of this thesis is in understanding the algorithms on social media and

their impact on user behavior. Toward this goal, I also investigate this issue experimentally
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by designing a new interface where the implications of different recommendation algorithms

can be traced. Participants will be given a feed of news items that they can like or share.

These feeds are sorted by simple ranking algorithms prioritizing articles that cater to user

preferences, articles shared by friends, or both. We will then measure the impact of different

ranking methods on user behavior, such as likes, shares and dwell time, compared to the

baseline of a randomized content feed. This allows us to understand platform incentives for

ranking, observe whether ranking algorithms tend to push more exploitative content, and gain

insights into the role that algorithms play in undesirable social consequences. We also strive to

understand the role that user attention plays in not just platform recommendations, but also

content creation. This offers a novel analysis of competition for user attention. In particular,

in environments with limited attention, different content will have to compete not just for

the monetary resources of users, but even more importantly for their attention. This type of

competition can be a conduit to a race to the bottom. Catchy content that is mostly click-bait

may become more attractive under information overload. This prediction will be investigated

experimentally in our new testbed.

In this thesis, I explore whether the benefits of social media have indeed materialized,

explore the more nuanced impacts of digital media platforms, and consider various regulatory

solutions to correct any potential harms introduced. At the core of these considerations are

the following questions:

1. Does more information mean better information?

2. How do the business models of online platforms shape algorithms and create incentives

to show certain types of content?

3. Can we more closely align platform and user behavior with societal objectives through

regulation of online interactions?

The thesis is organized as follows. Chapters 2 and 3 discuss misinformation on online

platforms and their broader impact on society. Chapter 2 focuses on the useful benchmark

of strategic (Bayesian) agents in a social media environment with a platform who wants to

maximize user engagement (and revenue). Chapter 3 considers alternative models that relax

the strategic nature of social media agents and emphasizes potential behavioral reasons for

the spread of misinformation. Chapter 4 then endogenizes content creation to understand
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incentives for providing content when there is information overload and competition for user

attention. Finally, Chapter 5 shifts the focus to business models of online platforms, specifically

digital advertising, and analyzes the welfare implications for platform users.

1.2 Misinformation in the Digital Era

Misinformation has had a profound impact on recent society. What exactly is misinformation?

In this thesis, we adopt a broad definition that captures many nuances, but with the same basic

concept. Misinformation is content with the potential to deceive. This can, of course, include

disinformation, which is purposefully fabricated content with the intention of misleading. The

story of the Macedonian teenager masquerading as the Huffington Post is one such example

(see Footnote 5), and propaganda spread by a government is another.

There are other forms of misinformation (not intentionally created and spread), typically

dubbed “fake news.” For example, conspiracy theories (e.g., Pizzagate, QAnon, Flat Earth)

may not be spread to deliberately deceive, yet they contain “alternative facts” known to be

false. There are less blatant fake news articles that might even appear on the surface to be true,

but are often called out by independent fact-checkers such as Snopes.6 These would all fall

under the umbrella as misinformation. However, we also define misinformation to include all

types of misleading content, even if the facts are correct but presented in a misleading way.

For instance, a headline that says “3-year old, youngest person to die with COVID-19” may be

technically accurate (indeed the infant had COVID-19), but the child also had a heart condition

largely responsible for their death, and so this would be classified as misinformation under my

definition.

1.2.1 A Brief History of Misinformation

Misinformation is not a new phenomenon. Throughout history, new communication technologies

have come with both positive and negative consequences. On the positive end, they have

helped more easily disseminate profound ideas and inform the broader population. However,

the flip side of the coin is that new technology has simultaneously supplied heretics with a

6At the time of writing this, “Starbucks is Going Cashless in UK, US, and Canada?” was the top false headline
on Snopes, see https://www.snopes.com/fact-check/starbucks-cashless/.
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means for spreading false ideas or “misinformation.” For example, the printing press was

a major development that led to widespread literacy throughout Europe and in many ways

kickstarted the Renaissance. At the same time, it was also used to pass pamphlets during the

French Revolution with blatantly false rumors about Louis XIV’s Cardinal Mazarin’s treason,

often advocating for his execution (see Figure 1-3).

Figure 1-3. Pamphlet circulating during the French Revolution, circa 1693.

The invention of the radio also had undeniable widespread implications for communication,

such as the smooth orchestration of orders during the first and second world wars. However,

during the same era, it was also used widely for communicating propaganda and spreading

xenophobic ideas meant to incite hate and bigotry. In one of the most famous examples, college

students used a radio broadcast in 1938 in an attempt to incite fear about gas explosions that

occurred on Mars (see Figure 1-4).

Figure 1-4. Newspaper reporting misinformation spread over radio, circa 1938.

Our society now faces a new technological advance in communication, social media, and it

is not obvious what to what extend the positive and negative impacts of this technology will

be. In many ways, it is quite similar to previous innovations, and similar limitations on free

19



speech (e.g., libel) need to be imposed on a grander scale to prevent the adoption of false ideas.

However, in other ways, we are entering uncharted waters, with social media fundamentally

impacting the entire landscape of content, including how misinformation spreads and how

their fundamental business model impacts consumer welfare.

1.2.2 Misinformation on Social Media

Social media has become a major source of information for many Americans. Leading up to

the 2016 US presidential election, around 14% of Americans indicated social media as their

primary source of news (Allcott and Gentzkow (2017)), and by 2019, over 70% of Americans

reported receiving at least some of their news from social media (Levy (2021)). At the same

time, there is growing concern about misinformation in social media, including made-up news

stories such as those claiming that there were no mass shootings under Donald Trump or

that Hillary Clinton approved ISIS weapon sales.7 Some recent evidence also suggests that

misinformation on social media has impacted critical decisions such as vaccinations against

COVID-19 (see Pennycook et al. (2018); Pennycook et al. (2020b)).

Although there is yet no consensus on what promotes the spread of falsehoods and misleading

content on social media, two sets of factors have been emphasized. The first is the presence

of echo chambers, which arise when individuals communicate and share content with like-

minded users (Sunstein (2018), Lazer et al. (2018)). Törnberg (2018) and Vicario et al. (2016)

show that echo chambers reinforce existing political viewpoints and tend to propagate misinformation.

Social media, much more than traditional media, allows individual users to choose who and

what they listen to, and thus echo chambers may be an unavoidable side effect. However,

there is also evidence that echo chambers are a result of the “filter bubbles” that platform

algorithms create (see Levy (2021) on Facebook). The second factor conjectured to have fueled

misinformation is the general political polarization in many countries, and especially the

United States,8 and there is some preliminary evidence suggesting that polarization has indeed

contributed to selective exposure to questionable content on social media as well (Guess

et al. (2018)). Despite the importance and salience of these issues, we do not currently have a

7See https://www.snopes.com/fact-check/mass-shootings-under-trump/ and https://www.cnbc.com/
2016/12/30/read-all-about-it-the-biggest-fake-news-stories-of-2016.html, respectively.

8While there has been some debate about whether polarization has been mainly among politicians (see Fiorina
et al. (2008) and Prior (2013)), there is considerable evidence that polarization has also risen among the general
public (see Pew Research Center (2014) and Abramowitz (2010)).
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framework to understand how online interactions impact the spread of misinformation and

what factors shape incentives for sharing low-reliability content.

Unfortunately, misinformation has become an inextricable component of how people

learn about the world and make decisions. Persistent disagreement over objective facts is

becoming increasingly commonplace (Alesina et al., 2020; Bursztyn et al., 2020), leading to the

assertion that we currently live in a post-truth, “alternative facts” world (McIntyre, 2018). This

makes it particularly difficult when society faces a collective action problem whose outcome

depends on a substantial proportion of the population agreeing to take a specific action, e.g.,

vaccination or wearing a mask. Indeed, Loomba et al. (2021) show that in the U.S. and U.K., an

average decline of 6.2 percentage points in the acceptance of the COVID-19 vaccine is directly

attributable to misinformation.

What makes people believe false claims? A growing empirical and experimental literature

argues that it depends on their cognitive sophistication.9 Pennycook and Rand (2019) show

that more sophisticated agents are less likely to fall for misinformation. At the same time,

there is ample evidence that sophisticated agents are more likely to disagree over objective

facts.10 This presents an interesting puzzle: if sophisticated agents are more likely to learn the

truth, then why do we observe more disagreement within that group over what the truth is?

Competing explanations argue that this disagreement arises from political polarization and

partisan bias (e.g., Taber and Lodge (2006); Taber et al. (2009); Kahan et al. (2017)), or can simply

be explained as an outcome of unbiased Bayesian reasoning (e.g., the recent experiments in

Tappin et al. (2020)).

Throughout this thesis, I will provide a framework to better understand these deep questions,

through both models and experiments on social media.

9From Tappin et al. (2020): “indicators of cognitive sophistication [can include] educational attainment,
science literacy, numeracy, specific topic knowledge, and a propensity for analytic thinking.” This is also correlated
with performance on the Cognitive Reflection Test (Pennycook and Rand, 2019). Pennycook et al. (2021b) show
that getting people to think more carefully about the accuracy of the news they read can lead to better discernment
of false information.

10This relationship between increased cognitive sophistication and disagreement is widely documented across
multiple issues; see for example Drummond and Fischhoff (2017); Kahan et al. (2012); Hamilton et al. (2015).
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1.3 Social Media AI and Regulation

At the heart of many of these problems are social media algorithms often driven by financial

objectives. While discussed more in-depth in later chapters, we provide a short summary of the

main platform incentives that drive the key findings of the thesis. We then briefly survey some

of the more recent policy suggestions to better align these incentives with societal objectives.

1.3.1 Platform Incentives and Algorithms

A key difference between traditional social interactions (or traditional media consumption) and

social media interactions (or online media consumption) is the existence of a platform, which

has distinct incentives from its users (or society). Platforms often employ latent algorithms

that better align online interactions with their own objectives, often at the cost of the users’

experience and society at large. In this thesis, we focus on three separate but related platform

incentives:

(i) In Chapters 2 and 3, we consider a social media environment where the platform’s main

objective is to maximize user engagement with the platform, but is indifferent between

whether content contains misinformation or is truthful. This objective is a proxy for

how most social media companies make revenue, through advertising, which is more

profitable the longer users stay on the platform. There is an obvious disconnect between

platform incentives and societal objectives: the platform is likely to design algorithms

that prevent misinformation from being detected and has a higher likelihood to go “viral”.

We study this phenomenon specifically in Section 2.1.

(ii) In Chapter 4, we consider the role of “news feeds” with platform-recommended content.

When users have limited attention and there is competition for content viewership,

the platform may be incentivized to prioritize catchy and stimulating content over

informative articles. This implies that while the platform provides the technological

capacity for more information to appear on the platform, content creators and platforms

alike are encouraged can often tend to push lower quality content.

(iii) In Chapter 5, we turn our attention to one of the central business models of social

media, digital advertising. In particular, we look at the negative welfare implications
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that might arise when platforms specifically target ads at susceptible populations and

leverage different business models (such as freemium) to maximize revenue at the cost of

consumer manipulation.

1.3.2 Algorithmic Solutions

In 1949, the FCC introduced a policy known as the “fairness doctrine” which required news

providers to present both sides of a controversial issue (see Simmons (1976)). This policy

was eliminated in 1987, giving rise to news outlets that were heavily one-sided and paving

the way for partisan talk radio (Clogston (2016)). While one-sided news does not necessarily

contain misinformation, it provides an avenue for presenting content that is skewed toward

one perspective, with misinformation (when it exists) also likely arising from this perspective.

For example, a liberal media outlet that is not required to present diverse content is more likely

to present misinformation in favor of left-wing political candidates. Hence, we assume a policy

that requires “equal coverage” of both sides of a topical issue, and model this as content being

less likely to present strongly misleading information toward one perspective.

A modern-day equivalent of the fairness doctrine is the idea of requiring social media

platforms to provide more diverse news feeds. As seen in Levy (2021), platforms typically try

to increase user engagement by (algorithmically) recommending stories that match users’

profiles, and this can result in “filter bubbles” that limit the scope of counter-attitudinal content

that users see. This has been linked to the propagation of misinformation and its influence on

outcomes such as the 2016 presidential race (see Allcott and Gentzkow (2017)). A proposed

solution is to regulate these algorithms in order to provide more diverse news, for example

by requiring content be shown “uniformly at random” from one’s social network, and not

selectively filtered (e.g., Sunstein (2018); Cen and Shah (2020)). This is similar to an equal-

coverage policy, where users of the social media platform ideally learn from a variety of sources

with different perspectives.

1.3.3 Content Moderation and Censorship

Censorship is one of the oldest policies for controlling access to information. The practice

is controversial because it typically involves a unilateral decision (e.g., by a platform or a
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government) to remove certain information and make it inaccessible. The use of the policy in

modern times is more complicated as platforms try to regulate content by balancing freedom

of expression with reducing harmful speech, e.g., the aforementioned example of Twitter

removing COVID-19 misinformation from the platform.

Other more mild forms of content moderation have been implemented on social media

sites such as Reddit and Twitter. On Reddit, quarantines are often placed on communities

to simply make joining them more difficult and to prevent posts from the page reaching

other more mainstream ones. Similarly, Twitter has implemented policies that rank tweets

or hashtags affiliated with misinformation lower even if the search terms are a strong fit.11

Regulatory solutions of this nature can often strike a nice middle ground between a fully open

platform and one where the platform can simply remove content at will via censorship.

1.3.4 Nudging and Provenance

Figure 1-5. A sample accuracy nudge prompt on a Facebook-like social media platform (from
Pennycook et al. (2021b)).

Nudging has emerged as one of the less-interventionist choices that policymakers have

at their disposal (Thaler and Sunstein, 2009), the idea being that a gentle pointer towards

desired behavior can be enough to influence outcomes in meaningful ways. The policy has

been recently studied in the context of misinformation in field experiments such as Pennycook

et al. (2021b, 2020b). While this has emerged as a popular choice given its uncontroversiality,

11See Hwang and Lee (2021), who study the efficacy of such a policy.
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there are replication studies on accuracy nudging that question the statistical significance of

this policy in reducing the influence of misinformation (Roozenbeek et al., 2021).

Provenance has also been discussed as an easily-implementable, less-invasive policy. The

idea behind provenance is to facilitate users in their fact-checking process by providing them

with more information about the original source of an article or post. For example, provenance

may allow the user to see the chain of shares and easily trace the original context of a quote.

We explore the benefits, and potential drawbacks, of such a policy in the model of Section 2.1.

1.3.5 Performance Targets

We consider a policy where the regulator imposes a performance target — a target that requires

misinformation on the platform to be below a certain level.12 This regulation transfers the

burden of removing violating content (e.g., misinformation or hate speech) to the platform

instead of an overseer (e.g., government agency), and has been proposed by Facebook in their

own white paper (Bickert (2020)) as a preferred solution. A natural, but unrealistic, regulation

is to require social media platforms to set the misinformation target at 0%. As Candogan and

Drakopoulos (2020) identify, this is likely to decrease engagement on the platform . It also

provides a plethora of perverse incentives; for example, it can shift the attention of the platform

toward eradicating misinformation at the cost of neglecting other unmeasured/unregulated

obligations, or it can lead to a narrower definition of what constitutes misinformation and make

reporting it harder. Thus, while decreasing misinformation is beneficial, setting a performance

target too low can have undesired effects. We will consider the problem of setting the optimal

performance target for the platform.

1.3.6 Digital Advertising Tax

As we show in Chapter 5, platform business models that rely on digital advertising can be

especially bad for consumer welfare. One of the most effective solutions we find for curbing

platform incentives to design business models around digital ad targeting is . . . taxing digital

12In particular, Bickert (2020) proposes the following possible regulatory action:

“Governments could also consider requiring companies to hit specific performance targets, such as
decreasing the prevalence of content that violates a site’s hate speech policies.”
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advertising revenue directly. Importantly, we identify some imperfect solutions, that under

some conditions anti-trust interventions that breakup platforms or certain parts of the industry

might improve consumer welfare. But as we discuss in that chapter, directly addressing the

main issue, business model reliance on these targeted ads, can be especially effective.
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Chapter 2

Misinformation: Strategic Models

This chapter focuses on the spread of misinformation in online social media networks. There

are two classes of models I discuss in this thesis. The first class consists of Bayesian models,

where agents make strategic decisions according to Bayesian reasoning and inference. In

Sections 2.1 and 2.2, I propose two related Bayesian models of how misinformation might

spread online, but where user sharing incentives are driven by different forces. To better

understand why users share, I experimentally investigate misinformation sharing behavior in

real social media environments in Section 2.2.4. The second class consists of DeGroot models,

where agents are boundedly rational and act according to a behavioral heuristic. These are

presented in Chapter 3.

2.1 A Model of Online Misinformation

In this section, we present a model based on Acemoglu et al. (2022b) of online content sharing

where agents sequentially observe an article and decide whether to share it with others. This

content may or may not contain misinformation. Agents gain utility from positive social

media interactions but do not want to be called out for propagating misinformation. We

characterize the (Bayesian-Nash) equilibria of this social media game and show sharing exhibits

strategic complementarity. Our first main result establishes that the impact of homophily on

content virality is non-monotone: homophily reduces the broader circulation of an article,

but it creates echo chambers that impose less discipline on the sharing of low-reliability

content. This insight underpins our second main result, which demonstrates that social media
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platforms interested in maximizing engagement tend to design their algorithms to create more

homophilic communication patterns (“filter bubbles”). We show that platform incentives to

amplify misinformation are particularly pronounced for low-reliability content likely to contain

misinformation and when there is greater polarization and more divisive content. Finally, we

discuss various regulatory solutions to such platform-manufactured misinformation.

2.1.1 Introduction

In this section, we develop a parsimonious model of online sharing behavior in the presence

of misinformation, and as a first step, we focus on the behavior of fully Bayesian agents.1 Our

model is inhabited by a set of 𝑁 agents. Each agent has a prior about the state of the world

(“ideological bias”), and is connected to the rest of the users via a network, which is given by

agents’ friends and acquaintances, and is also shaped by the algorithms of the social media

platform. A news article, defined by an underlying type (truthful or containing misinformation),

a message (right-wing or left-wing), and a level of reliability (which determines the likelihood

of misinformation), is then seeded at one of the agents. The message and the level of reliability

of the article are common knowledge, while whether it is truthful or contains misinformation

is unobserved, and agents form beliefs about this component.

Given these beliefs, the agent in question decides whether to ignore, dislike, or share the

news article. If it is shared, the article moves from the agent sequentially to her connections on

social media, who are then faced with the same choices. If the article is ignored or disliked, it

does not get past the agent. We assume that agents receive utility when their shared content is

re-shared and incur a cost when it is disliked. The former aspect captures the role of positive

engagement in social media, while the latter represents the reputation loss from being called

out for sharing content containing misinformation. Agents additionally receive utility from

disliking (or calling out) items that they believe contain misinformation.

We characterize the Bayesian-Nash equilibria of this sequential game and prove that these

equilibria always exist and are in cutoff strategies. In particular, our payoff structure implies

that an individual will share any item that she believes is truthful with a high probability and

1Myopic reactions and biased behavior appear to play some role, for example, via the “confirmation bias”
in social media behavior (see, e.g., Buchanan (2020) and Pennycook and Rand (2019)), but we believe that the
Bayesian benchmark we construct already generates a number of empirically-relevant and rich results. We view
incorporating realistic and relevant behavioral biases as a next step in this research agenda.
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will dislike articles that she believes to contain falsehoods. Items with intermediate beliefs will

be ignored. Beliefs about the truthfulness of articles are formed on the basis of the article’s

reliability and message, and agents’ prior beliefs/ideology. Moreover, we establish that ours is a

game of strategic complements: when others are more likely to share an item, each agent also

becomes more likely to do so. As a result, we show that the set of equilibria forms a lattice, with

well-defined most-sharing and least-sharing equilibria. All else equal, low-reliability articles

are shared less, while articles that are “sensational” (either because they have provocative

content or have broad appeal for other reasons) are shared more.

We present two main results. First, we study the implications of the (social media) network

structure. We establish non-monotone comparative statics with respect to the degree of

homophily (which determines how likely agents are to be connected to others who are

ideologically similar to them). Low levels of homophily ensure that agents are likely to be

exposed to cross-cutting content, including “counter-attitudinal articles” that advocate views

opposed to theirs. This in turn ensures that misinformation is unlikely to survive for very long.

Perhaps paradoxically, for high-reliability articles, an increase in homophily reduces content

virality. This is because greater homophily makes it less likely that an article escapes a given

community, reducing its circulation throughout the network.

More interestingly, when relevant news items have low reliability, homophily increases

virality. This is because, countering the circulation effect, high homophily also creates a

perverse incentive effect: knowing that shared articles will be seen by like-minded individuals,

agents become more likely to share questionable content. Strategic complementarities amplify

this effect, because when others are expected to share, the benefits from sharing are greater

and being called out for spreading misinformation becomes less likely. It is particularly telling

that homophily leads to the viral spread of low-reliability content, which are the ones more

likely to contain misinformation.

We also show that political polarization and politically divisive articles are more likely

to spread virally when they are low-reliability and the level of homophily is already high,

generating an echo chamber-like social media environment. Strategic complementarities tend

to amplify these pernicious effects of political polarization and divisive content as well.

Our second main result turns to social media platforms’ algorithm design choices. We

assume that platforms maximize engagement (in order to increase revenues from advertisements).
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Under this assumption, we establish a striking result: when the relevant articles have low

reliability, social media platforms design algorithms that increase homophily and create

filter bubbles, propagating misinformation. Intuitively, high-reliability content tends to

spread anyway because most users recognize it as such and share it, and low homophily

contributes to its spread by increasing its circulation throughout the network. In contrast,

low-reliability content will be ignored or disliked by agents who disagree with its message

and believe it to contain misinformation. Engagement with low-reliability content can be

boosted if the platform ensures that it remains among users ideologically aligned with its

message, who would be willing to share it with like-minded others without fear of being called

out by users with different ideologies. Hence, creating filter bubbles becomes an attractive

strategy for engagement-maximizing platforms. It is particularly troublesome that such filter

bubbles are created precisely when the relevant content is low-reliability and likely to contain

misinformation.

If platform algorithms are propagating misinformation, can public policy counter and

discourage this type of behavior?2 The answer is yes, but with some caveats. In the last part of

the paper, we discuss four different types of regulatory policies, and in each case, we show how

they may reduce misinformation but also point out the possibility that, if they are not designed

well, they can backfire and exacerbate the problem.

First, we look at potential censorship of articles identified by a regulator as likely containing

misinformation. While censorship can help reduce the viral spread of misinformation, it also

generates an “implied truth” effect (Pennycook et al. (2020a)) that contributes to the viral spread

of questionable content that escapes censorship. Second, we discuss regulations that force

platforms to reveal the provenance of articles, making it easier for users to identify falsehoods

(e.g., claims originating from less reputable sources, such as InfoWars). Though generally

useful and sometimes more powerful than censorship, provenance regulation can also backfire.

This is for a related reason: this policy also creates an implied truth effect because individuals

rely on other users’ verification of the content before them. Third, we discuss “performance

targets”, where the regulator places limits on the amount of misinformation that circulates on

the platform. Such targets tend to better align platform and regulator preferences, but unless

2As of August 2021, federal law protects social media platforms from being held responsible for content posted
by its users (see Section 230 of the Communications Decency Act of 1996, discussed by https://hbr.org/2021/
08/its-time-to-update-section-230).
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they appropriately monitor and penalize platforms for violations, strict targets can exacerbate

the spread of misinformation. Lastly, we show how direct regulation of platform algorithms

can reduce misinformation, but also point out that the non-monotone effects of homophily

imply that such regulations need to be finely calibrated.

Related Literature. Our paper builds on a large body of work on models of misinformation.

In addition to the literature mentioned previously, several other papers in this literature are

related to our findings.

Much previous work has focused on the susceptibility of boundedly-rational agents to

engage with misinformation. In Acemoglu et al. (2010) and Acemoglu et al. (2013), the existence

of persuasive agents can impede information aggregation and enable misinformed beliefs to

survive, and sometimes even become dominant, in the population. In Mostagir et al. (2022)

and Mostagir and Siderius (2022b), a strategic principal who wants to persuade agents of an

incorrect belief can distort the learning process by leveraging social connections and echo

chambers to propagate misinformation. Similarly, models of misinformation “contagion”—

without Bayesian agents or strategic decisions—have been studied in Budak et al. (2011),

Nguyen et al. (2012), and Törnberg (2018). Our contribution relative to this literature is the

possibility that misinformation spreads because of the strategic interactions of Bayesian agents

and is exacerbated by profit-maximizing platform algorithms.

There is a growing literature on information design by platforms, building for the most part

on the concept of Bayesian persuasion (Kamenica and Gentzkow (2011) and Kamenica (2019)).

Candogan and Drakopoulos (2020) study how a platform with private knowledge of content’s

accuracy should optimally signal to rational users whether to engage with it, while Chen and

Papanastasiou (2021) and Keppo et al. (2019) consider more manipulative actions by platforms,

including strategic seeding of information or “cheap talk” signals about quality. Also related

are works on reputation and media bias. Motivated by the 2016 presidential election, Allcott

and Gentzkow (2017) study the incentives of certain outlets to present misleading news, while

Gentzkow and Shapiro (2006), Hsu et al. (2020) and Allon et al. (2021) explore other strategic

reasons for media bias. Our paper contributes to this literature by highlighting the role of

ideological leaning, strategic interactions, ideological homophily, and platform algorithms.

The most closely related work to ours is Papanastasiou (2020) who studies a model where

agents hold heterogenous ideological beliefs and digest (and potentially share) a news article
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sequentially. Our work is different in three important dimensions. First, Papanastasiou (2020)

focuses on costly inspection, which makes sharing decisions strategic substitutes, while

our model generates strategic complementarities, because individuals care about further

shares of the content they share.3 All of our results and formal analysis turn on strategic

complementarities. Second, and relatedly, echo chambers play no role in Papanastasiou

(2020).4 Third, our analysis of engagement-maximization by the platform and its implications

for the spread of low-reliability content has no counterpart in Papanastasiou (2020) or any

other work in this area we are aware of.5

The rest of the paper is organized as follows. The next section introduces our basic

environment and describes the information structure and payoffs. Section 2.1.3 characterizes

the (Bayesian-Nash) equilibria of this model and provides some basic comparative static

results. Section 2.1.4 studies the effects of homophily by focusing on a special class of sharing

networks that correspond to a set of “islands” of like-minded individuals who are less closely

linked to those in other islands. Section 2.1.5 endogenizes the sharing network as a result of the

algorithmic choices of the platform that aims to maximize engagement. Section 2.1.6 discusses

a range of regulations aimed at containing misinformation. Section 2.1.7 concludes, while all

proofs are provided in Appendix B.3.1.

2.1.2 Model

There is an underlying state of the world 𝜃 ∈ {𝐿,𝑅}, for example, corresponding to whether

the left-wing or the right-wing candidate is more qualified for political office. Agents have

heterogeneous prior (ideological) beliefs about 𝜃, and agent 𝑖’s prior that 𝜃 = 𝑅 is denoted by

𝑏𝑖 with an ex ante distribution 𝐻𝑖(·), which may or may not be the same across agents.

Sharing Network. We assume there are 𝑁 agents in the population, who share a news item

according to a sharing network defined by a matrix P of link probabilities, with 𝑝𝑖𝑗 denoting
3Our reading of the evidence is that strategic complementarities are more relevant for social media behavior

than strategic substitutabilities. For example, Eckles et al. (2016) find evidence that feedback or “encouragement”
from peers about Facebook posts have contributed significantly to future behavior and posting. See also Taylor
and Eckles (2018) and Aral and Dhillon (2018).

4As already noted, echo chambers appear central to the spread of misinformation in practice. See, for example,
Lee et al. (2011), Törnberg (2018), Centola (2010), and Centola and Macy (2007)

5Papanastasiou (2020) also discusses platform incentives, but assumes that the platform is interested in limiting
misinformation. Our reading of the evidence in this instance, too, favors our interpretation, where platforms
such as Facebook are (or at the very least used to be before regulatory pressure mounted) fairly indifferent to the
presence of misinformation but strongly prioritize engagement maximization.
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the probability that agent 𝑖 has a link to agent 𝑗. We define agent 𝑖’s neighborhood 𝒩𝑖 as the

set of agents attached to her with an outgoing link, and denote her degree or the size of her

neighborhood by |𝒩𝑖|. The sharing network reflects both an individual’s social circle and the

algorithms the platform uses for promoting shared content. The news item in question could

be a news article or a post by one of the users, and throughout we refer to it as an “article”.

Misinformation and News Generation. Each article has a three-dimensional type (𝑟,𝑚, 𝜈).

Here, 𝑟 ∈ [0, 1] indicates the reliability of the news, and 𝑚 ∈ {𝐿,𝑅} is the message, which

corresponds to the article’s viewpoint, for example, whether it argues for a left-wing or right-

wing idea. Finally, 𝜈 is the article’s veracity, which can either be 𝒯 , to indicate the article is

truthful, or ℳ, to indicate the article contains misinformation.6

We assume that, at the beginning of the game, the type vector (𝑟, 𝜈,𝑚) is drawn according

to the following i.i.d. process:

(i) The article’s reliability 𝑟 ∈ [0, 1] is drawn from a continuous distribution 𝐹 with density 𝑓 .

(ii) The veracity of the article is 𝜈 = 𝒯 (contains truthful content) with probability 𝜑(𝑟) or is

𝜈 = ℳ (contains misinformation) with probability 1−𝜑(𝑟). We assume that 𝜑 is increasing

and differentiable in 𝑟, and satisfies 𝜑(0) = 0 and 𝜑(1) = 1, so that the least reliable article

always contains misinformation, and as the degree of reliability increases, the likelihood

of misinformation monotonically declines and reaches zero.

(iii) If 𝜈 = 𝒯 (the article is truthful), then its message is generated as 𝑚 = 𝜃 with probability

𝑝 > 1/2. Conversely, if 𝜈 = ℳ (the article contains misinformation), then its message is

generated as 𝑚 = 𝜃 with probability 𝑞 ≤ 1/2 and is weakly anti-correlated with the truth.

While 𝑚 and 𝑟 are common knowledge (for example, the message 𝑚 is directly observed

and reliability depends on certain commonly-observed characteristics such as source and

headline), the third dimension, 𝜈, is unknown to all agents. We assume that agents update their

6Our focus in this paper is on misinformation, interpreted as items containing misleading information or
arguments that can influence (a subset of) the public. Articles containing misinformation are in practice much
more numerous than those that can be classified as “fake news”, which explicitly propagate demonstrably false
information (e.g., Egelhofer and Lecheler (2019), Allen et al. (2020), Guess et al. (2019), Grinberg et al. (2019)).
For example, according to this definition a news item that favorably describes a report denying climate change,
without putting this in the context of hundreds of other reports reaching the opposite conclusion or mentioning
the criticisms that it has received from experts, contains misinformation.
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beliefs about 𝜈 using Bayes’ rule given beliefs about the underlying state 𝜃 and the observables

(𝑟,𝑚) of the article.

Social Media Behavior. Time is discrete 𝑡 = 1, 2, . . .. Upon receipt of the article, an agent 𝑖 can

take one of three actions 𝑎𝑖 ∈ {𝒮, ℐ,𝒟}, as described below:

(i) Share (𝒮): The agent decides to share the article and passes it onto others after her.

(ii) Ignore (ℐ): The agent decides to ignore the article and does not engage with it.

(iii) Dislike (𝒟): The agent decides to dislike the article, which means expressing disagreement

or contempt for the content contained in it.

Figure 2-1. Sample Tweet.

The three possible actions are depicted in Figure 2-1 using Twitter as a sample social media

platform. A given user sees the article and decides how to respond to it. She can (i) share it (𝒮),

which actively puts it on other social media news feeds; (ii) ignore it (ℐ), where the user simply

scrolls past the article; or (iii) actively dislike it (𝒟), expressing derision for the content.

At time 𝑡 = 1, we assume that some initial seed agent 𝑖* first engages with the article. If the

article is shared by agent 𝑖, it is passed to all 𝑗 ∈ 𝒩𝑖. In contrast, following ignore or dislike, the

article does not propagate past agent 𝑖.

Payoffs. Let us define shares after 𝑖 as 𝑆𝑖 = |{𝑗 ∈ 𝒩𝑖 : 𝑎𝑗 = 𝒮}| and dislikes after 𝑖 as

𝐷𝑖 = |{𝑗 ∈ 𝒩𝑖 : 𝑎𝑗 = 𝒟}|. Agent 𝑖’s utility can then be written as

𝑈𝑖 =

⎧⎪⎨⎪⎩
0, if 𝑎𝑖 = ℐ
�̃�1𝜈=ℳ − 𝑐, if 𝑎𝑖 = 𝒟
𝑢1𝜈=𝒯 − 𝑐1𝜈=ℳ + 𝜅𝑆𝑖 − 𝑑𝐷𝑖, if 𝑎𝑖 = 𝒮

(2.1)
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where 1 is the indicator function (equal to 1 if true and 0 otherwise). Here, �̃�, 𝑐, 𝑢, 𝑐, 𝜅 and 𝑑 are

strictly positive parameters, which we discuss below.

(i) We normalize payoffs following ignore, ℐ , to 𝑈𝑖 = 0.

(ii) Payoffs from dislike, 𝒟, depend on whether the article contains misinformation. We

assume, in particular, that disliking has a cost of 𝑐 > 0, regardless of whether the article

is truthful (because of, say, the effort required to actively call out misinformation). In

addition, disliking an article containing misinformation has a benefit of �̃� > 𝑐, because

individuals like calling out misleading articles. This formulation implies that disliking is

never preferred to ignoring for an article that is truthful with probability 1, and is always

preferred to ignoring for an article that contains misinformation with probability 1.

(iii) Following a decision to share, 𝒮, an agent receives utility from two sources. First, agents

receive utility from sharing truthful content, but incur a cost from sharing misinformation.

This explains the first component of utility following 𝒮, 𝑈 (1)
𝑖 = 𝑢1𝜈=𝒯 − 𝑐1𝜈=ℳ. Second,

agents enjoy positive feedback from their peers (such as likes, or in our setting re-shares),

but are negatively affected by dislikes. This is captured by the second component of

utility 𝑈 (2)
𝑖 = 𝜅𝑆𝑖 − 𝑑𝐷𝑖.7 In this formulation, the parameter 𝜅 captures the importance of

“popularity” for the agent’s sharing decision, while 𝑑 represents the extent to which she

cares about negative reactions. In Appendix A.1.2 we provide a simple microfoundation

for disutility from negative reactions based on reputational concerns.

Information Structure and Solution Concept. Agents are not aware of, and have uniform

prior over, when the article was first introduced onto social media, the prior sharing process,

and the structure of the social network (though the link matrix P is common knowledge).8

Moreover, while any agent 𝑖 knows the distribution {𝐻𝑖}𝑁𝑖=1 of beliefs in the population, she

does not know any agent 𝑗’s belief (ideology) 𝑏𝑗. We focus on Bayesian-Nash equilibria, and

refer to these as “equilibria” for short.

7Equivalently, the terms 𝜅𝑆𝑖 and 𝑑𝐷𝑖 could be replaced by arbitrary functions 𝜙𝑆(𝜅, 𝑆𝑖) and 𝜙𝐷(𝑑,𝐷𝑖) that
satisfy 𝜙𝑆(0, ·) = 𝜙𝑆(·, 0) = 𝜙𝐷(0, ·) = 𝜙𝐷(·, 0) = 0 and have (weakly) increasing differences. This generalization
captures a broad range of peer feedbacks based on sharing different types of content, beyond the additive
structure we adopted for notational simplicity in the text.

8Hence, agents do not know the exact interactions and sharing patterns outside their neighborhood, which is
consistent with the evidence in Breza et al. (2018). That being said, because the equilibrium sharing process is
Markovian, this assumption can be relaxed by replacing P with the adjacency matrix.
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To eliminate trivial and unrealistic equilibria, we assume that the sensationalism of an

article is upper bounded by �̄� = (𝑐𝑐− 𝑢(�̃�− 𝑐))/(�̃�𝑁). This assumption guarantees that there is

never an equilibrium where every agent always shares all articles. It also eliminates equilibria

where agents may share and dislike, but never ignore.

Discussion—The basic assumptions introduced above are consistent with salient patterns of

behavior and information structure in social media. First, as documented in studies such

as Pennycook et al. (2021b), users want to share content they believe to be truthful and not

contain misinformation. Second, while users derive value from peer encouragement and

re-shares on social media (Eckles et al. (2016)), they also suffer reputational costs when they

get called out for sharing misinformation (see, for example, evidence from Facebook in Altay

et al. (2020)). Finally, social media users often engage in criticisms of available content and

inform others about misinformation (see, for example, Kim et al. (2020) for evidence in the

context of 2018 midterm elections).

2.1.3 Equilibria in General Networks

In this section, we characterize the structure of equilibria for any sharing network structure P

and provide various comparative statics. Without loss of generality (and ease of exposition),

we fix the article’s message as 𝑚 = 𝑅 for the remainder of the paper.9

Cutoff Strategies and Strategic Complementarities

When agent 𝑖 receives an article with reliability 𝑟 and message 𝑚 = 𝑅, she updates her (ex post)

belief, 𝜋𝑖, that the article is truthful according to Bayes’ rule:

𝜋𝑖 =
(𝑝𝑏𝑖 + (1 − 𝑝)(1 − 𝑏𝑖))𝜑(𝑟)

(𝑞𝑏𝑖 + (1 − 𝑞)(1 − 𝑏𝑖))(1 − 𝜑(𝑟)) + (𝑝𝑏𝑖 + (1 − 𝑝)(1 − 𝑏𝑖))𝜑(𝑟)
. (2.2)

Clearly, 𝜋𝑖 is increasing in 𝑏𝑖 since an agent is more likely to believe in an article’s veracity when

its message agrees with her prior. Moreover, 𝜋𝑖 is increasing in 𝑟, as the agent updates more on

the basis of more reliable articles.

9To see that this is without loss of generality, observe that the analysis applies identically with an 𝑚 = 𝐿
message but with complementary priors 𝑏′𝑖 = 1− 𝑏𝑖.
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We can also see that the payoff to sharing (𝒮) increases in 𝜋𝑖, since the first component of

utility, 𝑈 (1)
𝑖 , is increasing in 𝜋𝑖 (as the individual would like to share truthful articles), while 𝑈 (2)

𝑖

is independent of 𝜋𝑖. With a similar reasoning, the payoff to disliking (𝒟) is decreasing in 𝜋𝑖,

whereas the payoff to ignoring (ℐ) is independent of 𝜋𝑖. This monotone behavior of payoffs

will lead to best-response decision rules for agents that take the form of cutoff strategies, as we

explain next.

We say that agent 𝑖 employs a cutoff strategy if there exists 𝑏*𝑖 (𝑟) and 𝑏**𝑖 (𝑟) such that agent 𝑖

chooses 𝒮 when 𝑏𝑖 > 𝑏**𝑖 (𝑟), chooses ℐ when 𝑏*𝑖 (𝑟) < 𝑏𝑖 < 𝑏**𝑖 (𝑟), and chooses 𝒟 when 𝑏𝑖 < 𝑏*𝑖 (𝑟).

Cutoff strategies in our context imply that agents who strongly agree with an article tend to

share it, agents who strongly disagree with it tend to choose dislike, and those with intermediate

beliefs typically ignore the article.

We will see in the next theorem that all equilibria are in cutoff strategies. This means, in

particular, that an equilibrium can be summarized by cutoff vectors (b*,b**) = (𝑏*1, 𝑏
**
1 , . . . , 𝑏

*
𝑁 , 𝑏

**
𝑁 ).

Furthermore, these cutoffs 𝑏*𝑖 (𝑟) and 𝑏**𝑖 (𝑟) will both be decreasing in 𝑟, so that as reliability

increases, an article becomes more likely to be shared and less likely to be disliked.

We can also note that our social media game exhibits strategic complementarities. To see

this, observe that when others share more—meaning that 𝑏**𝑖 (weakly) decreases for all 𝑖—

the second component of utility, 𝑈 (2)
𝑗 , increases for each agent 𝑗, and this raises the overall

utility of sharing and encourages more sharing. Similarly, when others reduce their likelihood

of disliking, meaning that now 𝑏*𝑖 (weakly) decreases for all 𝑖, this reduces the likely cost of

sharing misinformation by mistake, also raising 𝑈 (2)
𝑗 . Strategic complementarities capture

an important dimension of social media interactions—utility feedback from others’ behavior

tends to encourage agents to cohere with those behaviors.

Equilibrium Structure. The next theorem shows that an equilibrium always exists and is

in cutoff strategies. At the same time, strategic complementarities ensure that there is a

well-defined structure to the set of equilibria. To make this more concrete, we say that an

equilibrium (b*,b**) has uniformly more sharing than other (b̂*, b̂**) if b* ⪯ b̂*and b** ⪯ b̂**

(where ⪯ is the component-wise order). This, in particular, means that all the thresholds for

each agent is (weakly) lower in the former equilibrium (recall that lower thresholds mean more

sharing).

Theorem 2.1.1.
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(i) There exists a Bayesian-Nash equilibrium;

(ii) All equilibria are in cutoff strategies;

(iii) The set of cutoffs (b*,b**) forms a lattice, and thus there exists a least-sharing and most-

sharing equilibrium.

The structure of equilibria characterized in Theorem 2.1.1 facilitates our analysis, enabling

us to focus on two sets of thresholds, (b*,b**) , which are themselves monotone in the

reliability of the article in question. Because of strategic complementarities, there can be

multiple equilibria: when others are choosing to share an article with middling reliability,

this further encourages sharing because one’s own post will circulate more, increasing the

utility from sharing. Conversely, if the same article with middling reliability is not shared by

others, the payoff to sharing is reduced, while the cost of being found out to have circulated

misinformation remains constant. This then discourages sharing.

Theorem 2.1.1 also shows that, despite this multiplicity, there are two focal equilibria on

which we can concentrate: the equilibrium with the smallest vector of cutoffs (most-sharing

equilibrium) and the equilibrium with the largest vector of cutoffs (least-sharing equilibrium).

Finally, the theorem’s characterization provides an explicit measure of the amount of

sharing. Recall that agent 𝑖’s prior belief 𝑏𝑖 is drawn ex ante from the distribution 𝐻𝑖. Hence,

in an equilibrium with cutoff 𝑏**𝑖 for agent 𝑖, the ex ante likelihood that this agent will share is

1 −𝐻𝑖(𝑏
**
𝑖 ). Therefore, the most sharing equilibrium, which has the smallest equilibrium 𝑏**𝑖 for

all 𝑖, has the highest likelihood that any agent 𝑖 will share the article in question.

Content Virality and Comparative Statics (for Fixed P)

In this subsection we provide comparative statics for the most and least sharing equilibria as

we change the parameters of the social media game, but holding the sharing network P fixed.

We discuss comparative statics with respect to the network in the next section. Toward this

goal, we define the notion of content virality, which captures the expected spread of an article

in the sharing network.

Content Virality. Formally, we define content virality as follows. We suppose that an article

is seeded at some agent 𝑖* at 𝑡 = 1. We then define S𝑖* as the (random) proportion of the
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population that shares when agent 𝑖* is the seed agent in the most-sharing equilibrium 𝜎. We

say 𝜎1 has more content virality than 𝜎2 if max𝑖* E𝜎1 [S𝑖* ] ≥ max𝑖* E𝜎2 [S𝑖* ]. In words, our notion

of content virality compares the spread of an article provided that it starts from the seed that is

most favorable to its ultimate circulation. The reason we start from the most favorable seed is

that, as we will see in Section 2.1.5, social media platforms have an incentive to implement

sharing algorithms that place articles in such favorable seeds. For future reference, we also

note that content virality is also the same as expected overall engagement with an article,

conditional on favorable seeding.

Quantity of Misinformation, Sensationalism, and Reputation. The next proposition shows

how the quantity of misinformation, sensationalism, and reputational concerns affect content

virality. We define less misinformation as a shift of the function 𝜑 to some 𝜑′ ≥ 𝜑 (pointwise).

The parameter 𝜅 captures how sensational the article is: higher 𝜅 implies that agents receive

greater value from future shares, because these shares are associated with others paying more

attention or perhaps being entertained more by the relevant posts. This greater utility is

independent of the content’s veracity. We think of 𝜅 varying at the level of articles, so that

some articles will be more sensational than others. Finally, the parameter 𝑑 proxies for for the

importance of reputational concerns. Higher 𝑑 means that dislikes are more damaging, which

corresponds to the agent being more concerned about receiving many dislikes. We think of 𝑑

as varying at the level of communities (certain communities of users, for example, academics,

may have more reputational concerns).

Proposition 2.1.1. Less misinformation, higher sensationalism, and weaker reputational concerns

lead to greater content virality.

These results are intuitive and immediate.10 Holding constant the reliability of the article,

less misinformation reduces the cost associated with sharing, triggering more aggressive

sharing by all agents. This prediction is consistent with Pennycook and Rand (2019) who show

low-reliability content (e.g., Breitbart or Infowars) is not typically shared by attentive social

media users, regardless of partisanship. This proposition also clarifies that viral spread of

misinformation is not a mechanical effect in our model: if anything, less reliable articles that

10In fact, the claim in Proposition 2.1.1 can be strengthened to the notion of uniformly more sharing where all
agents in the sharing network share with strictly higher probability, which immediately implies higher content
virality. We focus on content of virality, both because it is simpler and also because the comparative static results
with respect to homophily in the next section do not always lead to uniformly more or less sharing.
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are more likely to contain misinformation are less likely to become viral. We will see that other

aspects of social media interactions, in particular the topology of the sharing network, are

often responsible for viral spread of misinformation.

The comparative static with respect to sensationalism coheres with the patterns documented

in Duffy et al. (2020), suggesting that social media participants often share a story that is “too

good not to share”, and do so even when they realize it is also “too good to be true”. The link

between reputational concerns and misinformation is also consistent with the evidence that in

settings where reputation matters misinformation is less likely (Altay et al. (2020)), and when

such reputational concerns are missing, even calling out individuals sharing misinformation is

fairly ineffective (Mosleh et al. (2021a)).

Finally, this proposition provides a possible pathway for low-reliability content to become

viral. Vosoughi et al. (2018) argued that misinformation spreads farther, faster, deeper and

more broadly than truthful news on social media. This evidence was criticized by Grinberg

et al. (2019) who showed that, once the effects of sensational news items is controlled for,

misinformation does not spread farther (or faster) than truthful content. Proposition 2.1.1

provides a rationalization of these patterns. All else equal, misinformation does not spread

faster than truthful content as in Grinberg et al. (2019). However, because, as observed in

Molina et al. (2021) and Kozyreva et al. (2020), sensational content is often low-reliability, these

two propositions together imply that misinformation may be more likely to become viral.

Whether this happens or not depends on the boost from sensationalism. When this is limited,

low-reliability articles containing misinformation spread less because of concerns of users

that others will call them out for sharing this content. But when this sensationalism boost is

high, misinformation can become viral. Additionally, the strategic complementarity in sharing

decisions implies that sufficiently sensational misinformation can become viral, because once

an individual thinks others are going to share this sensational item, she becomes much more

likely to share herself, even if she has doubts about its veracity.

2.1.4 Island Networks and the Implications of Homophily

In this section, we present comparative static results with respect to the sharing network P.

Throughout this section, we take the sharing network as given, and then return to how it is

shaped by the algorithms of social media platforms in Section 2.1.5.
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The focus on comparative statics with respect to the sharing network necessitates two

modifications from our analysis so far. First, we restrict attention to island networks (or

equivalently, the stochastic block model), which are lower-dimensional than general networks

we have allowed so far. Namely, in an island network, agents are partitioned into 𝑘 blocks of

size 𝑁1, 𝑁2, . . . , 𝑁𝑘, called islands each with some constant (but not necessarily equal) share

of the population 𝑁 . Each agent 𝑖 has a type ℓ𝑖 ∈ {1, . . . , 𝑘} corresponding to which block (or

“island”) she is in. Link probabilities are then given as:

𝑝𝑖𝑗 =

⎧⎪⎨⎪⎩𝑝𝑠, if ℓ𝑖 = ℓ𝑗

𝑝𝑑, if ℓ𝑖 ̸= ℓ𝑗

where 𝑝𝑠 ≥ 𝑝𝑑. Without loss, we assume each of the islands is weakly connected.

Second, we assume the prior distribution for agents on the same island ℓ is the same, and is

denoted by 𝐻ℓ. We also assume that islands are ranked according to their belief distributions.

In particular, each island ℓ has distribution 𝐻ℓ with support on [𝑏(ℓ), 𝑏(ℓ+1)], where 1 ≥ 𝑏(1) >

𝑏(2) > . . . > 𝑏(𝑘) > 𝑏(𝑘+1) ≥ 0.11 This implies that lower-indexed islands have stronger right-wing

beliefs.

An important advantage of island networks, in addition to their lower-dimensional representation,

is that, combined with this ranking assumption, they enable us to model the degree of

homophily—the extent to which an individual interacts with others that have common characteristics

as herself. Common characteristics for us are those that are relevant for prior beliefs, and

therefore, by construction, individuals have more in common with those on the same island as

themselves. As a result, homophily will be higher when most links are within islands and links

between islands are sparse (high 𝑝𝑠 and low 𝑝𝑑).12

More formally, we say that an island network with (𝑝𝑠, 𝑝𝑑) has more homophily than an

island network with (𝑝′𝑠, 𝑝
′
𝑑) if all agents have the same expected degree under both, but where

𝑝𝑠 > 𝑝′𝑠 and 𝑝𝑑 < 𝑝′𝑑.13 From Theorem 2.1.1, we know that the equilibrium is in cutoff strategies

11This assumption is adopted for simplicity. Our results generalize if we instead assume that these distributions
are ranked in terms of first-order stochastic dominance: 𝐻1 ⪰𝐹𝑂𝑆𝐷 𝐻2 ⪰𝐹𝑂𝑆𝐷 · · · ⪰𝐹𝑂𝑆𝐷 𝐻𝑘. However, this
generalization requires considerably more formalism and notation, motivating our focus on disjoint supports.

12The homophilic structure and greater congruence of beliefs within islands are consistent with the evidence
presented in Bakshy et al. (2015): “friend networks” on Facebook are ideologically segregated, with the median
share of friends from the opposing ideology around only 20%. Mosleh et al. (2021b) provides evidence of similar
homophily on Twitter.

13Because network density raises connectivity and can directly increase virality, we hold network density fixed
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of the form (b*,b**) ≡ (𝑏*1, 𝑏
**
1 , . . . , 𝑏

*
𝑁 , 𝑏

**
𝑁 ). However, because there is symmetry within islands,

equilibria now take a simpler, “semi-symmetric” form as shown in the next lemma.

Lemma 2.1.1. All equilibria are semi-symmetric: for every equilibrium, there exist {(𝑏*ℓ , 𝑏
**
ℓ )}𝑘ℓ=1

such that 𝑏*𝑖 = 𝑏*ℓ𝑖 and 𝑏**𝑖 = 𝑏**ℓ𝑖 for all agents 𝑖 in island ℓ.

The simplification established in Lemma 2.1.1 will allow us to work with a lower dimensional

cutoff vector (just two cutoffs for each island).

Comparative Statics: Homophily

The next theorem, characterizing the effects of homophily on the spread of misinformation, is

our first main result:

Theorem 2.1.2. There exist 0 < 𝑟 < 𝑟 < 1 such that:

(a) If 𝑟 < 𝑟, an increase in homophily increases the virality of content.

(b) If 𝑟 > 𝑟, a decrease in homophily increases the virality of content.

Theorem 2.1.2 shows how low-reliability content can spread virally in networks with high

homophily. Intuitively, when content comes from a low-reliability source, only agents who

(strongly) agree with the article’s message share it. However, as homophily increases, users

know that they will mostly share with other like-minded people, who will also be inclined to

share this content. This creates a type of echo chamber: the likelihood of being called out for

spreading misinformation is now lower, making users “less disciplined” or more likely to share

lower-reliability content. Strategic complementarities then extend these incentives throughout

the network. In this way, homophily leads to the viral spread of low-reliability articles that

likely contain misinformation.

However, Theorem 2.1.2 shows that homophily can have non-monotone effects. This is

because greater homophily also keeps an article circulating among the same group of like-

minded users and reduces the likelihood that it will reach other communities. Theorem 2.1.2(a)

establishes that the first effect of homophily, working through incentives to share low-reliability

content, is more powerful than the second, “circulation effect”, when we focus on particularly

in order to isolate the effects from homophily.
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low-reliable content (with 𝑟 < 𝑟). This implies, in particular, that homophily’s impact is to

increase the virality of especially low-quality content, which is of course relevant for public

policy (as we discuss in Section 2.1.6).

The results in Theorem 2.1.2 are in line with recent evidence highlighting the importance of

echo chambers for the spread of misinformation. Törnberg (2018) and Vicario et al. (2016),

among others, show that homophily in sharing behavior propagates ideologically-congruent

ideas, with little incentive to question the veracity of this information, while Quattrociocchi

et al. (2016) document how echo chambers on Facebook fuel conspiracy theories and the

popularization of incorrect scientific ideas, for example, on vaccines. Levy (2021) provides

evidence that “filter bubbles” generated by Facebook’s algorithms are an important source of

propagation of misinformation.

Comparative Statics: Divisive Content and Belief Polarization

Figure 2-2. Two-Island Model.

In this subsection, we provide an additional comparative static with respect to polarization.

For this result, we focus on the case of just two islands, a left-wing and a right-wing one with

prior distributions 𝐻𝐿 and 𝐻𝑅, respectively, as pictured in Figure 2-2. Moreover, we suppose

that there is disjoint support of prior beliefs across communities. Formally, we assume 𝐻𝑅 has

support on [𝑏𝑅, �̄�𝑅] and 𝐻𝐿 has support on [𝑏𝐿, �̄�𝐿], with �̄�𝐿 < 1/2 < 𝑏𝑅.

We say content with parameters (𝑝′, 𝑞′) is more divisive than content with parameters (𝑝, 𝑞) if

𝑝 ≥ 𝑝′ and 𝑞 ≤ 𝑞′. Divisive content has a message that is more tethered to the true state 𝜃 when

it is truthful (and more likely to argue against 𝜃 if it is misinformation). In our case, we think

of state 𝜃 as related to political ideology. Therefore, non-political content, such as wedding

photos or cat videos, has little divisiveness relative to more political ones, such as “Obama

Signs Executive Order Banning The Pledge of Allegiance in Schools Nationwide” (Fourney et al.
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(2017)). Note also that, from equation (2.2), prior beliefs about 𝜃 matter more for updating and

the assessment of an article’s veracity when content is more divisive.

We say 𝐻2 is more polarized than 𝐻1 if it satisfies the following single crossing property:

𝐻−1
2 (𝛼) −𝐻−1

1 (𝛼) is a nondecreasing function in 𝛼, crossing zero at 𝛼* = 1/2 with 𝐻1(1/2) =

𝐻2(1/2) = 1/2. An increase in polarization results in a “stretching” of the belief distribution

around the most moderate user (i.e., 𝑏 = 1/2) while preserving an equal distribution of left-

wing and right-wing agents (meaning that 𝐻(1/2) = 𝐻(1/2) = 1/2, which is applied in the

island model to the average distribution of beliefs, 𝐻 = 1
𝑁

∑︀𝑁
ℓ=1𝑁ℓ𝐻ℓ). The available evidence

indicates that the US public has become more polarized (see Pew Research Center (2014) and

Abramowitz (2010)), and an important question of debate has been whether this polarization

has fueled the spread of misinformation on social media.

The next result studies how political divisiveness and polarization impact social media

behavior and the spread of misinformation, as a function of the homophily in the sharing

network.

Proposition 2.1.2. There exist 𝑟* ∈ (0, 1) and 𝑝* ∈ (0, 1) such that:

(a) If 𝑟 < 𝑟* and 𝑝𝑠/𝑝𝑑 > 𝑝*, then an increase in divisiveness or an increase in polarization leads

to greater content virality.

(b) If 𝑟 > 𝑟* and 𝑝𝑠/𝑝𝑑 < 𝑝*, then a decrease in divisiveness or a decrease in polarization leads

to greater content virality.

Proposition 2.1.2 is complementary to Theorem 2.1.2. When the content in question has

high reliability (𝑟 > 𝑟*) and homophily is limited, more divisive content or greater polarization

tends to reduce content virality, because in a well-connected, non-homophilic network,

controversial articles will solicit a wide range of reactions, disciplining those tempted to

share misinformation. In contrast, when the article in question has low reliability and there

is significant homophily, there are again echo chamber-like effects. More divisive content

generates more divergent behavior from individuals with different ideologies, and greater

polarization means there are sharper differences in terms of these ideologies. As a result,

echo chambers matter especially for divisive content and in the presence of polarization.

Strategic complementarities once again amplify this effect, as users recognize that others in
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their community will tend to share divisive content, and this makes them even more willing to

share.

It is notable that Proposition 2.1.2, like Theorem 2.1.2, implies that greater divisiveness and

polarization increase the virality of especially low-reliability content, which is most likely to

contain misinformation. These two results together thus imply that echo chambers, greater

political polarization and divisive content all exacerbate the circulation of misinformation on

social media.

2.1.5 Platform Design and Filter Bubbles

We now turn to our second main result: how platform behavior affects misinformation.

Consider a collection of social media users with beliefs distributed according to a distribution

𝐻. The platform can identify communities of users according to prior ideological beliefs,

for example, based on content previously shared or affiliations with ideological groups. In

particular, each user is binned into one of 𝑘 communities, with each community ℓ having

a belief distribution 𝐻ℓ with support over [𝑏ℓ, 𝑏ℓ+1], and where 1 ≥ 𝑏(1) > 𝑏(2) > · · · > 𝑏(𝑘) >

𝑏(𝑘+1) ≥ 0 (with at least one left-wing and one right-wing community). The size of these bins

depends on the platform’s microtargeting technology at identifying users’ ideological beliefs

(see, for example, Papakyriakopoulos et al. (2018)). Formally, we let 𝜀 ≡ maxℓ(𝑏ℓ+1−𝑏ℓ), with the

interpretation that lower values of 𝜀 correspond to better platform technology for identifying

ideology.

The platform’s objective is to maximize user engagement, which is equivalent to maximizing

content virality (see the definition of content virality in Section 3.3.4).14 The platform does

not directly care about whether the content users are engaging with is truthful or contains

misinformation.

The platform chooses how content is shared across users. That is, for each article, the

platform not only picks the seed agent at 𝑡 = 1 to whom it recommends this article, but also

14This objective is rooted in the fact that social media sites, like Facebook, primarily rely on advertising revenue,
which becomes more valuable as users increase their activity on the site. For example, 85% of Facebook’s
total revenue in 2011 was from advertising, and from 2017-2019, around 98% was (see Andrews (2012) and
https://www.nasdaq.com/articles/what-facebooks-revenue-breakdown-2019-03-28-0).

Strictly speaking, we are modeling social media platform objectives before the more recent public backlash
over misinformation. If the platform faces potential penalties from public backlash or regulators for spreading
misinformation, its objective function will change, as we explore in greater detail in Section 2.1.6.
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chooses the sharing network—the matrix of link probabilities P.15 The platform’s choice of P

can be interpreted as its “algorithm” to determine how users are exposed to content circulating

in the social media site. This algorithm choice is assumed to be common knowledge.

Optimality of Island Networks and Filter Bubbles

We remind the reader that the island networks of Section 2.1.4 are parameterized by three

components: the within-island link probability (𝑝𝑠), the across-island link probability (𝑝𝑑), and

the number of islands (𝑘). As special cases, we have (i) an island model that has maximal

homophily, where 𝑝𝑠 > 0 but 𝑝𝑑 = 0 (and thus there is extreme ideological segregation on

the network); and (ii) an island model with maximal connectivity, where 𝑝𝑠 = 𝑝𝑑 (and there is

minimal homophily and no segregation by ideology). We next show that although the platform

is allowed to design any sharing network P, its profit-maximizing choice is within the class of

island networks.

Theorem 2.1.3. There exists �̄� > 0 such that if 𝜀 < �̄�, the platform’s profit-maximizing sharing

network is determined by a reliability threshold 𝑟𝑃 ∈ (0, 1) such that:

(i) If 𝑟 < 𝑟𝑃 , the platform’s profit-maximizing sharing network has maximal homophily.

(ii) If 𝑟 > 𝑟𝑃 , the platform’s profit-maximizing sharing network has maximal connectivity.

Part (i) of the theorem shows that when articles are mostly unreliable—and likely to

contain misinformation—the platform creates an extreme filter by designing its algorithms

to achieve a sharing network with the greatest homophily. In contrast, part (ii) demonstrates

that when articles have higher reliability, the platform refrains from introducing algorithmic

homophily. This result highlights an important channel by which misinformation spreads:

it is precisely when articles are likely to contain misinformation that the platform seeks to

maximize engagement by creating (endogenous) echo chambers, or filter bubbles, where these

articles spread virally within like-minded communities. Put differently, with low reliability

content, neither the platform nor the users are disciplined about sharing misinformation, and

so these news items spread virtually uninhibited.

15Facebook’s algorithms may induce different sharing networks depending on features of the article, such as
whether it contains cat videos, wedding photos, or political content. See https://about.fb.com/news/2021/01/
how-does-news-feed-predict-what-you-want-to-see/.

46

https://about.fb.com/news/2021/01/how-does-news-feed-predict-what-you-want-to-see/
https://about.fb.com/news/2021/01/how-does-news-feed-predict-what-you-want-to-see/


We also remark that the threshold 𝑟𝑃 parameterizes the extent of filter bubbles on the

platform. Specifically, the most extreme left-wing agent will be exposed to all 𝑚 = 𝐿 articles,

regardless of their reliability, but only see right-wing articles with reliability 𝑟 ≥ 𝑟𝑃 . Similarly,

the most extreme right-wing agent will see all 𝑚 = 𝑅 articles, but only 𝑚 = 𝐿 articles with

𝑟 ≥ 𝑟𝑃 .

It is further worth noting that this theorem builds on but also significantly strengthens

Theorem 2.1.2. In Theorem 2.1.2, the effects of homophily are non-monotone and are ambiguous

when an article is neither very low reliability nor very high reliability (𝑟 ∈ (𝑟, 𝑟)). In contrast,

Theorem 2.1.3 gives a sharp characterization of the platform’s algorithm: when 𝑟 > 𝑟𝑃 , the

platform goes for maximal connectivity, and when 𝑟 < 𝑟𝑃 , it chooses maximal homophily, and

in this case, misinformation spreads virally precisely because of the echo chambers that the

platform has manufactured. In both cases, the island structure of the network considered in

Section 2.1.4 arises endogenously as the profit-maximizing sharing network for the platform.

In addition, Theorem 2.1.3 shows that when a platform can shape the network topology

through its recommendation algorithm, the echo chamber effect that arises from Theorem 2.1.2(a)

is exactly what fuels misinformation (whereas in Theorem 2.1.2(b), echo chambers were

harmless). This observation generalizes to cases where the platform has less precise microtargeting

technology, albeit in a less sharp way than the result presented in Theorem 2.1.3.16

Remark—In Theorem 2.1.3, we assume the platform can select any network P it desires through

its recommendation algorithm. This is without loss of generality. If we assume the social

network originally begins as an arbitrary island network in Section 2.1.4, and the platform can

hide and amplify content across different links, the same result readily follows.

16When 𝜀 > �̄�, the platform still induces echo chamber-like environments to generate viral spread of low-
reliability content, even if its choice does not take the form of an island network. For instance, if there are only
three communities (with broad ideology spectra), a misinformation right-wing article can still spread virally via
the usage of filter bubbles. However, the platform may now prefer a sharing network that lies outside the class of
island networks considered in Section 2.1.4. Specifically, user engagement may be maximized if the left-wing
community is completely disconnected from all other communities, but the moderate (middle) community has
sparse connections to the right-wing community. This facilitates a strong echo chamber within the right-wing
community but also allows the article to spread to the more moderate community (while receiving no discipline
from the left-wing community).
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Comparative Statics on 𝑟𝑃 : Divisiveness and Polarization

In Theorem 2.1.3, the threshold 𝑟𝑃 fully summarizes the extent to which misinformation will

spread virally on social media.

We next perform comparative statics for this threshold to understand the conditions under

which the platform will create a filter bubble and propagate misinformation.

Proposition 2.1.3. The reliability threshold 𝑟𝑃 increases as message divisiveness and/or belief

polarization increases.

Proposition 2.1.3 mimics the conclusions of Proposition 2.1.2(a). As divisiveness or polarization

increases, content is consumed more aggressively within echo chambers and scrutinized

more aggressively outside of them. Under these conditions, filter bubbles become more

advantageous to the platform, especially when the relevant content has low reliability. This

is because communities with more extreme beliefs now feel more strongly about news in

general, rarely second-guess politically-congruent news, but often doubt and dislike counter-

attitudinal news. As a result, low-reliability content spreads virally inside the platform’s filter

bubbles. In contrast, outside of the filter bubble, this content would have been quickly disliked

and stopped—which is the reason why the platform favors algorithms that induce such filter

bubbles.

Proposition 2.1.3 also provides a possible (albeit of course speculative) interpretation for

why accelerating political polarization and identity politics in the last two decades may have

come with more aggressive filter bubble algorithms from social media sites (Apprich et al.

(2018)). As the recent documentary The Social Dilemma puts it: “The way to think about it is as

2.5 billion Truman Shows. Each person has their own reality with their own facts. Over time you

have the false sense that everyone agrees with you because everyone in your news feed sounds

just like you.” Tellingly in this context, while Facebook cracked down on misinformation prior

to the 2020 election in part due to political pressure, its algorithms have resumed promotion of

misinformation in November and December of 2020: “...the measures [Facebook] could take

to limit harmful content on the platform might also limit its growth: In experiments Facebook

conducted last month, posts users regarded in surveys as ‘bad for the world’ tended to have a

greater reach—and algorithmic changes that reduced the visibility of those posts also reduced

users’ engagement with the platform...”.17

17See Vanity Fair :
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2.1.6 Regulation

Our analysis so far raises the natural question of what types of regulations might counter the

viral spread of misinformation and platform choices leading to excessive ideological homophily.

We now briefly discuss four distinct types of regulations that have been discussed in this context:

(1) censorship or tagging of misinformation; (2) regulations that force platforms to reveal

articles’ provenance; (3) performance targets that require the platform to keep misinformation

below a given threshold; and, (4) network regulations, restricting the extent of ideological

homophily or segregation introduced by platform algorithms intended to maximize engagement.

We consider the effects of these policies when the platform can optimally choose the sharing

network in response to the public policy. For simplicity, we suppose the regulator’s objective is

to decrease the virality of articles containing misinformation on the platform. We say a policy

is more effective than another policy (or no policy) if it reduces the virality of misinformation

(and is most effective if more effective than any other feasible policy). Throughout, we fix the

reliability of the article and assume the most-sharing equilibrium before the regulation involves

some agents sharing and some agents not sharing (i.e., b* ̸= 0 and b** ̸= 1), allowing for the

possibility that regulation might backfire and increase the virality of low-reliability content, or

potentially help by reducing the virality of such content likely to contain misinformation.

Censorship

We first consider a policy where the regulator can censor misinformation that appears on the

platform (also known as “content moderation”).18 Formally, we model this as the regulator

being able to adopt a policy that removes at most 𝛿 ∈ (0, 1) fraction of the content containing

misinformation (with each piece of misinformation removed with probability 𝛿).19 In other

words, the regulator selects 𝛿* ≤ 𝛿, with 𝛿* proportion of misinformation removed at 𝑡 = 0,

before it is observed by any of the users.

https://www.vanityfair.com/news/2020/12/with-the-election-over-facebook-gets-back-to-spreading-misinformation
and also https://www.technologyreview.com/2021/03/11/1020600/facebook-responsible-ai-misinformation/.

18Alternately, it can “tag” the article in question as disputed by outside sources, with analogous implications.
See, for example, Facebook’s policies leading up to the 2020 election on labeling suspected misinformation:
https://about.fb.com/news/2019/10/update-on-election-integrity-efforts/.

19We think of 𝛿 as being a technology parameter related to how effective the regulator is in identifying
misinformation. The assumption that the regulator may make type-I errors but not type-II errors (truthful
articles are never misidentified, but misinformation is identified with some probability less than one) is adopted
for simplicity.
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Proposition 2.1.4. There exist 0 < 𝛿1 < 𝛿2 < 𝛿3 < 1 such that:

(a) If 𝛿 ∈ (0, 𝛿1) ∪ (𝛿3, 1), then 𝛿* = 𝛿 is the most effective policy;

(b) If 𝛿 ∈ (𝛿1, 𝛿2), the most effective policy sets 𝛿* < 𝛿.

To understand this result, note that censorship has a two-pronged effect. On the one

hand, it removes misinformation from circulation and prevents its potential to spread on the

platform. On the other hand, it generates an “implied truth” effect for uncensored articles

(as empirically identified in Pennycook et al. (2020a)). Bayesian users believe, correctly, that

articles are more likely to be truthful when there is censorship of misinformation. In this

case, the platform might naturally expand its recommendation filter bubble to generate more

engagement, increasing the virality of any remaining misinformation. In some cases, this latter

effect may more than offset any gains from the detection and elimination of misinformation.

In part (a), this implied truth effect is not sufficiently powerful, and as a result, both limited

(small 𝛿) and highly effective (large 𝛿) censorship lead to better outcomes. Consequently, the

policymaker should always censor as much as technologically feasible. In the small 𝛿 regime,

the sharing network chosen by the platform remains constant and the censorship helps filter

out a fraction of the misinformation. In the large 𝛿 regime, censorship can remove most of the

misinformation, which is the most effective policy in any sharing network, including the one

selected by the platform. In the intermediate censorship regime, however, more censorship

might exacerbate the spread of misinformation. As we illustrate in the following example,

intermediate censorship may create such a serious backlash that it exacerbates the spread of

misinformation relative to no censorship.

(a) Low censorship. (b) High censorship.

Figure 2-3. Optimal Platform Sharing Networks for Example 2.1.1 under Censorship Policies.
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Example 2.1.1. Let us consider the two-island setup depicted in Figure 2-2 from Section 2.1.4,

where there are 𝑁/2 left-wing agents with belief 𝑏𝐿 = 5/12 and 𝑁/2 right-wing agents with

belief 𝑏𝑅 = 7/12. Let us consider an article with a reliability score indicating it is equally likely

to contain misinformation or to be truthful (𝜑(𝑟) = 1/2), but which is perfectly informative

about the state 𝜃 (𝑝 = 1 and 𝑞 = 0).

We assume that 𝑢 = 𝑐 = 1 and 𝜅 = 1/(2𝑁) so the payoff from sharing for agent 𝑖 is given by

𝑈𝑖 = (2𝜋𝑖 − 1) + (𝑆𝑖 −𝐷𝑖)/(2𝑁), where 𝜋𝑖 is agent 𝑖’s posterior belief that the article is truthful

conditional on reliability and message 𝑚 = 𝑅. At the same time, we assume �̃� = 1 and 𝑐 = 0, so

the payoff from disliking is 1 − 𝜋𝑖 (which by nature of 𝜋𝑖 ≥ 0 is always a better response than

ignoring).

With no censorship policy (𝛿 = 0), the optimal platform sharing network is given by Figure 2-

3a, where the algorithm applies a filter bubble to the right-wing island, shielding the left-

wing island from receiving the content. The article spreads among 𝑁/2 proportion of the

population. Once a censorship policy is adopted, the implied truth effect will replace 𝜑(𝑟) with

�̃�(𝑟) = 𝜑(𝑟)
𝜑(𝑟)+(1−𝛿)(1−𝜑(𝑟)) , leading to a higher value for 𝜋𝑖 on both the left and right-wing islands.

Consider three separate regimes:

1. Limited censorship: With limited censorship (𝛿 < 2/7), the optimal platform sharing

network remains the same as in Figure 2-3a. However, the virality of misinformation

declines to (1 − 𝛿)𝑁/2 < 𝑁/2, and thus overall misinformation is reduced.

2. Intermediate censorship: With a more aggressive censorship policy (2/7 < 𝛿 < 1/2), the

optimal platform sharing network switches to the one shown in Figure 2-3b (maximal

connectivity), but still does not filter out most of the misinformation. The platform

selects a more expansive sharing network because, with censorship, platform users

correctly believe that any given content is less likely to contain misinformation, even

counter-attitudinal messages. The platform responds to this by moving from a maximally

homophilic network to one with maximal connectivity (as per Theorem 2.1.3). The

resulting virality of misinformation then becomes (1 − 𝛿)𝑁 , which is greater than 𝑁/2 for

all 2/7 < 𝛿 < 1/2. In this range, censorship is worse than no censorship policy at all.

3. Highly effective censorship: With a censorship policy that can accurately detect most

misinformation (1/2 < 𝛿 < 1), the policy reduces misinformation, even though the
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platform again adjusts its algorithms in response to censorship in order to increase the

virality of undetected misinformation.

Provenance

Next, we consider a policy that requires the platform to reveal the original context or provenance

of a piece of content. For example, provenance may point the user to a peer-reviewed medical

study or the full discourse from which a quote was pulled. Such a policy allows users to verify

(or “fact-check”) social media content easily and quickly.

We model a provenance policy by allowing users to fact-check the article before making

their share and dislike decisions. We assume that revealing provenance allows each agent to

identify misinformation with (across-user independent) probability 𝜌 ∈ (0, 1); a truthful article

is never misidentified as misinformation. Hence, more effective provenance policies allow a

greater fraction of users to quickly identify misinformation.20

Proposition 2.1.5. There exist 0 < 𝜌1 < 𝜌2 < 𝜌3 ≤ 𝛿3 < 1 such that:

(a) If 𝜌 ∈ (0, 𝜌1) ∪ (𝜌3, 1), then 𝜌* = 𝜌 is the most effective policy;

(b) If 𝜌 ∈ (𝜌1, 𝜌2), then 𝜌* < 𝜌 is the most effective policy.

Moreover, a provenance policy with 𝜌 ∈ (𝛿3, 1) is more effective than a censorship policy with

𝛿 = 𝜌.

The result is similar to Proposition 2.1.4: soft and strong provenance policies are always

effective, but moderate provenance policies can exacerbate the spread of misinformation.21

The proposition also establishes that provenance policies are in some sense more effective

than censorship policies when implemented well. Decentralized fact-checking reduces the

likelihood of type-I errors (misidentifying misinformation as truthful) that can result in large

share cascades similar to those in Example 2.1.1. Because multiple users are independently

20In practice, certain demographic groups, such as users over 65 years old, appear more likely to accept (blatant)
misinformation, perhaps because of poor media interpretation skills (see Grinberg et al. (2019) and Guess et al.
(2019)). Thus, provenance policies which provide a less clear pathway to fact-checking may lead certain social
media users to make type-I errors.

21Soft provenance policies are closely related to accuracy nudging interventions, where users are prompted to
think carefully about the accuracy of content before sharing. These have been empirically shown to have positive
impacts on reducing the spread of misinformation, see Pennycook et al. (2021b) and Pennycook et al. (2020b).
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assessing veracity through the provenance channel, misinformation will tend to be stopped

as it is checked along various paths in the sharing network. Strategic complementarities

further amplify this effect: because users are aware that the provenance policy may allow

others downstream to identify misinformation, they are also more cautious themselves in

sharing low-reliability content. That being said, provenance policies are not always superior to

censorship policies, as illustrated by the following example.

Example 2.1.2. Let us consider the setting of Example 2.1.1, with the slight amendment that

the 𝑁/2 right-wing agents are split into 𝑁/4 extreme right-wing agents (with belief 𝑏𝑅𝑅 = 3/4)

and 𝑁/4 moderate right-wing agents (with belief 𝑏𝑅 = 7/12). It is straightforward to verify that

the profit-maximizing sharing network for the platform with no policy is still the same as in

Example 2.1.1 (Figure 2-4a), and that a censorship policy of 𝛿 = 3/16 has the same effect as

before (in particular, it is more effective than no policy because 𝛿 < 2/7).

Let us now consider a provenance policy with 𝜌 = 3/16 (which in this case is in the range

(𝜌1, 𝜌2)). Here, the following sharing network increases engagement relative to the network in

Figure 2-4a: agent 1 is connected to agent 2, who is connected to a clique of the other 𝑁 − 2

agents, as shown in Figure 2-4b.22 For all agents 𝑖 ∈ {3, . . . , 𝑁}, conditional on the article

reaching them, their belief �̃�(𝑟) about the article’s veracity is greater than under censorship

(with 𝛿 = 3/16), since two independent fact-checks with 𝜌 = 3/16 each have not detected it as

misinformation. As a result, all agents in the clique of Figure 2-4b will blindly share the article,

correctly assuming that it has likely been already fact-checked. Expected user engagement

with misinformation in this case is (1 − 𝜌) + (1 − 𝜌)2 + (1 − 𝜌)3(𝑁 − 2) > 𝑁/2, for 𝜌 = 3/16.

22Notice that this sharing network is not in the class of island networks we have focused on so far. In terms of
Proposition 2.1.5, when 𝜌 ∈ (0, 𝜌1) ∪ (𝜌3, 1), the platform’s choices always lie within the class of island networks,
but not necessarily when we are outside of this range.

(a) No provenance. (b) Intermediate provenance.

Figure 2-4. Optimal Platform Sharing Networks for Example 2.1.2 under Provenance Policies.
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Consequently, the provenance policy with 𝜌 = 3/16 is worse than no policy at all, which is in

turn worse than a censorship policy with 𝛿 = 3/16.

This example illuminates the potential weakness of provenance policies: when imperfectly

implemented, they may be less robust than censorship. Because users presume others before

them have fact-checked, they do not make independent judgments based on the reliability of

the content. This observation is related to the literature on informational cascades and herding

(for example, see Banerjee (1992), Bikhchandani et al. (2021), and Chen and Papanastasiou

(2021)). When provenance policies are enacted, agents may excessively follow the sharing

decisions of those before them instead of making independent inferences about content

veracity before sharing. This “herding” opens the door for share cascades that may increase

the virality of misinformation.

Performance Targets

Another possible regulation, which has recently been proposed by social media platforms (see

Bickert (2020)), is to set performance targets that limit the amount of misinformation. However,

since the monitoring and removal of misinformation is imperfect, a performance target allows

the platform some leeway to have “bad” content on their site while still requiring a degree of

accountability.

While in Sections 2.1.6 and 2.1.6 we considered policies where, respectively, the regulator

and the users were responsible for removing content, a performance target transfers the burden

of content removal to the platform itself. We assume that the platform can discard content

(by not recommending it to any user), and in doing so, forfeits any potential engagement this

content may have with the users.

We assume the regulator sets a performance target of 𝜆, which requires the proportion

of misinformation shares (to total shares) on the platform to fall below 𝜆.23 The regulator

enforces this performance target by auditing the platform and sampling the content to verify

that it meets the required standard. Formally, we assume that the regulator has an auditing

23This metric for performance comes from Facebook’s own statements on platform standards: “Regulators
could say that internet platforms must publish annual data on the ‘prevalence’ of content that violates their
policies, and that companies must make reasonable efforts to ensure that the prevalence of violating content
remains below some standard threshold” (from Bickert (2020)), with the definition of prevalence being: “We care
most about how often content that violates our standards is actually seen relative to the total amount of times any
content is seen on Facebook” (from https://about.fb.com/news/2019/05/measuring-prevalence/).
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technology 𝛼 ∈ (0, 1), which represents the probability of detecting that the platform has

violated its performance target, and if detected, the platform incurs a cost 𝐶 due to regulatory

fines. Moreover, we assume 𝜑(𝑟) < max𝑖* E[S𝑖* ], where the virality is with respect to no policy,

otherwise the platform may be happy to comply with a performance target that removes all

misinformation.

Our next result establishes how stricter performance targets affect the spread of misinformation:

Proposition 2.1.6. There exists a performance target 𝜆* ∈ (0, 1) such that:

(a) If 𝜆 > 𝜆*, a stricter performance target (lower 𝜆) is more effective;

(b) If 𝜆 < 𝜆*, a stricter performance target (lower 𝜆) is less effective than 𝜆*.

This result establishes that when performance targets are lax, making them stricter (reducing

𝜆) always curbs the spread of misinformation. In this region, when held more accountable, the

platform removes some of the misinformation in circulation, foregoing the engagement that

these contents would have generated. As a result, lower targets therefore align regulator and

platform incentives to remove less reliable content.

However, with stricter targets, the incentives of the regulator and platform diverge. In

particular, for targets stricter than 𝜆*, the platform needs to remove more and more content,

with an increasingly larger sacrifice in engagement. In this case, the platform may prefer to

violate the performance target and this implies that the tightening of the performance target

actually backfires.

This analysis also implies that stricter performance targets need to be combined with better

auditing or higher penalties for violation. This simple observation goes against the view that

harsher punishments should be imposed when the platform fails to meet low targets (because

there would be little excuse for violating them), and weaker punishments may be called for

with stricter targets (because the platform may fail to meet them even when it tries). Instead,

our analysis clarifies that stricter penalties may be necessary for stricter performance targets

in order to prevent its incentives diverging from those of the regulator.

Network Regulations

As we saw in Theorem 2.1.3, when unregulated, the platform chooses the island model of

Section 2.1.4 with parameters (𝑝𝑠, 𝑝𝑑). Here, we consider limits on the ideological homophily

55



induced by the platform’s algorithm. Suppose the regulator can choose a homophily standard

𝑝*, based on the ratio between within-island links to across-island links. In other words, this

standard would force the platform to choose 𝑝𝑠/𝑝𝑑 ≤ 𝑝*.

Proposition 2.1.7. There exists 𝛾 < ∞ such that for any 𝑝* ≥ 𝛾, if the regulator imposes a

homophily standard 𝑝*, then (i) the platform chooses the island model with 𝑝𝑠/𝑝𝑑 ≤ 𝑝*; and (ii)

the virality of misinformation is reduced.

The regulator can thus reduce misinformation by imposing a homophily standard on the

sharing network of the platform. This standard prevents the type of extreme homophily we saw

in Theorem 2.1.3(a) and forces the platform to choose an algorithm that shares content across

ideological groups. This policy is related to the “ideological segregation standard” proposed in

Sunstein (2018), which aims to restrict the extent to which content is curated specifically to the

ideology or interests of a specific group of users. Such standards ensure that echo chambers

are broken and users of differing ideology interact more frequently, limiting the spread of

misinformation.

We finally note that the regulation in Proposition 2.1.7 is not always binding for the platform.

As Theorem 2.1.3(b) demonstrated, with highly reliable content, the platform maximizes

engagement by implementing a maximally-connected sharing network, so the homophily

constraint is moot. However, when the article is less reliable, the regulation will bind and

the platform will be forced to maintain a minimum level of connectivity between different

subgroups.

2.1.7 Conclusion

This paper has developed a simple model of the spread of misinformation over social media

platforms. A group of Bayesian agents with heterogeneous priors receive and share news

items (articles) according to a stochastic sharing network, determined by the social media

platform. Articles may be truthful and informative about an underlying state, or may contain

misinformation, making them (weakly) anti-correlated with the underlying state. Upon

receiving an article, an agent can decide to share it with others, ignore it, or actively call

out another agent for propagating misinformation (“dislike”). Misinformation spreads when

agents share articles expecting positive social media feedback and little negative reactions.
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Though simple and parsimonious, the model encapsulates several rich strategic interactions.

Agents receive utility from sharing truthful articles and not misinformation, but also enjoy peer

engagement with shared content. The ideological congruence between an agent and those in

her sharing network, which we capture with the notion of homophily, is critical for sharing

decisions. Because individuals are more likely to dissent against articles that disagree with

their prior beliefs, an agent will be more cautious in sharing articles that disagree with the

views of those in her sharing network.

We provide several comparative static results. Some of those are intuitive, though still

useful for interpreting a range of results in the emerging empirical literature on social media

and misinformation. For example, we find that while misinformation typically spreads less

than truthful content (holding all else constant), more sensational content tends to be shared

more. Moreover, when misinformation is correlated with sensationalism, the rapid spread of

misinformation can be problematic.

Of particular interest are comparative statics with respect to homophily. We show that

when there is a highly-reliable article, an increase in homophily reduces the virality of content.

Because this article is unlikely to contain misinformation, it is of broad appeal to a wide range of

social media users, independent of ideology. An increase in homophily then reduces the extent

to which this article can spread throughout the sharing network. The implications of homophily

for low-reliability articles are very different, however: in a well-connected network, such articles

will be disliked and stopped by users who disagree with their message, and anticipating this

behavior and the loss of reputation they can suffer from spreading misinformation, even those

who agree with their message would not share them widely. In contrast, high homophily

creates echo chambers, where users share low-reliability messages aligned with their beliefs,

because they understand that there are few negative reputational consequences from doing

so. Misinformation contained in low-reliability articles can then spread virally in these echo

chambers.

Our framework enables a tractable study of platform incentives in designing algorithms that

determine who shares with whom. To do this, we assume that the platform aims to maximize

user engagement (which is a good approximation to the objectives of major social media

platforms such as Facebook or Twitter). Our main result is a striking one. When an article is

highly reliable, the platform chooses a sharing network with minimal homophily to maximize
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the spread and appeal of the content throughout the user community. In contrast to this case,

when the relevant articles have lower reliability, the platform chooses a network with maximal

homophily and recommends articles to users with aligned beliefs. These articles then spread

rapidly in the “filter bubble” the platform’s algorithms have created—because now ideologically

like-minded individuals know that they are unlikely to be caught sharing misinformation in

their extreme echo chambers.

We also study regulations aimed at minimizing the spread of misinformation. Content

moderation, for example censoring low-reliability articles, can remove some misinformation.

However, it also creates a Bayesian version of “false sense of security” and make agents more

confident in the quality of remaining items. Similarly, revealing the provenance of a news

item (for example, providing full context for a quote or clearer sources) can be useful, because

this additional information allows users to more easily fact-check the content for veracity.

However, this intervention can backfire, too, because it generates a type of information

cascade: each agent expects others to have fact-checked and becomes more lax in his or

her inspection. Performance standards that require platforms to remove a certain fraction of

posts with misinformation can also backfire, this time because demanding targets can induce

the platform to deviate from the standards, with the hope of not being detected. Finally, we

show that regulation of platform algorithms, for example, in the form of ideological segregation

standards, can be effective, though need to be well calibrated.

Our framework was purposefully chosen to be simple and several generalizations would

be interesting to consider in future work. Most importantly, our assumption that agents are

Bayesian rational should be viewed as a useful benchmark. In our setting, it brought out certain

new strategic forces—highlighting how social media actions exhibit strategic complementarity

and how the degree of homophily alters agents’ strategic behavior. Although various behavioral

biases and psychological factors appear to be important in social media behavior, we believe

that the economic forces we have identified in this paper will continue to apply in the presence

of most of these effects, and our Bayesian benchmark enabled us to isolate these forces in a

transparent manner. Nevertheless, it remains true that misinformation can be more damaging

when agents are boundedly rational, and incorporating such considerations is an important

direction for future research. Interesting questions that emerge in this case relate to whether the

platform, in addition to designing algorithms that create filter bubbles, may choose strategies
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that exploit the cognitive limitations of users.

Other theoretical generalizations that might be interesting to consider include extensions

to repeated interactions with incomplete information, which would enable agents to also

update their beliefs about the ideological position of other agents in their sharing network.

Fully endogenizing reputational concerns, taking into account the network position of agents,

would be another interesting direction for future research. In this case, the existing reputational

capital of an agent will determine how likely she is to risk sharing misinformation. We can also

use this extended setup with repeated interactions to study how agents update their initial

political views. When there is limited misinformation, agents will gradually learn the true state.

In contrast, when there is a significant probability of misinformation, agents will be uncertain

about how to interpret articles that disagree with their priors and this may place an upper

bound on the speed and possibility of learning (see Acemoglu et al. (2016)).

Despite its simplicity, our model makes several new empirical predictions, most notably

related to the non-monotonic effects of homophily and polarization and to platform incentives

and algorithmic decisions. Investigating these predictions empirically as well as generating

new stylized facts about patterns of these information cascades on social media, is another

important area for future research.

2.2 Fighting Fire with Fire: A Model of Misinformation Demand

While social media users are fairly adept at identifying content that contains misinformation,

online users still seem to be willing to share co-partisan misinformation more, as shown in

Figure 2-5. This observation highlights a disconnect between users’ perceptions of truth and

Figure 2-5. Courtesy of Pennycook et al. (2021b).

their incentives to “share” (i.e., spread) this content to other users.
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In Section 2.1, we presented a model of social media users who acted based on social norms

and peer encouragement. As we showed in Section 2.1, sharing behavior exhibited strategic

complementarity, and so echo chambers among co-partisans led to more aggressive sharing

behavior, even for articles containing misinformation. This could explain the divergence

between sharing behavior and truth assessment depicted in Figure 2-5.

However, in this section, we present an alternative model that contrasts with the one of

Section 2.1. In this model, agents are less interested in peer reactions and care more about

influencing others’ beliefs to align with their own. As we will demonstrate below, under this

formulation, agents are more concerned about the sharing behavior of counter-partisans rather

than of co-partisans. This occurs because many more voters will have skewed opinions if the

opposing ideology is more willing to share misinformation, just to make their point.

In this model, agents may express a demand for pro-attitudinal content, even if it is

likely to contain misinformation, because “the ends justify the means” to persuade others

to hold similar beliefs. This gives rise to equilibria where users from both ideologies share

pro-attitudinal misinformation to combat the sharing of misinformation from the opposing

ideology. In these “fight fire with fire” equilibria, content circulating on social media tends

more toward misinformation than truthful content, inhibiting the ability of users to actually

learn the truth from social media content. Policies that lightly nudge users toward considering

truth when sharing can destroy these equilibria and push incentives considerably more toward

the sharing of only truthful content.

2.2.1 Model

Although considerably different forces arise, the model resembles the one of Section 2.1 closely.

There is a true (but unknown) state of the world 𝜃 ∈ {𝐿,𝑅}, indicating whether a left-wing or

right-wing proposal is better. Two pieces of content are generated, each of which has both a

reliability score (i.e., how likely is the headline to contain misinformation) and a message (i.e.,

what does the headline argue for). This content appears on a social media site consisting of 𝑁

agents who decide whether to pass this content onto others (i.e., share it or not). Articles are

either truthful or contain misinformation, with truthful articles being more likely to argue for

the correct state.
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Content. There are two articles 𝐴1 and 𝐴2.24 Both are generated independently according to

the following process:

(i) Reliability: A continuous reliability score (denoted by 𝑟1 and 𝑟2) is drawn on [0, 1] according

to some distribution 𝐹 . This reliability score is perfectly observable.

(ii) Misinformation: The article will either contain misinformation (ℳ) or be truthful (𝒯 ).

The probability that article 𝑗 is truthful is given by 𝜑(𝑟𝑗), where 𝜑 is an increasing function

with 𝜑(0) = 𝑧 and 𝜑(1) = 𝑧 with 𝑧 < 𝑧. Whether a given article contains misinformation is

not observed.

(iii) Message: If article 𝑗 is truthful, then the message (denoted 𝑚𝑖) is generated as 𝜃 with

probability 𝑝 > 1/2 (i.e., it is correlated with the truth). If article 𝑗 contains misinformation,

then the message is generated as 𝜃 with probability 𝑞 ≤ 1/2 (i.e., it is either orthogonal or

anti-correlated with the truth). The message is also perfectly observable.

Agents. Each agent has one of two types 𝜏 ∈ {𝒮,𝒩}; she is either strategic (𝒮) or naive (𝒩 ).

Strategic agents are fully rational (Bayesian) agents whereas naive agents behave mechanically,

as we describe below. The probability agent 𝑖 is naive is 𝛾 ∈ (0, 1), drawn independently from

her prior belief. Agents hold heterogenous prior beliefs about 𝜃. Each agent 𝑖 holds initial belief

𝜋𝑖,0 about 𝜃 = 𝑅, which is drawn from distribution 𝐻𝜏 .25 The game the agent plays involves two

phases: the sharing phase and the voting phase, which occur in that sequence.

Sharing Phase. Time is discrete 𝑡 = 0, 1, 2, . . . in the sharing phase. Each article (𝐴1 and 𝐴2)

starts at a strategic agent26 chosen uniformly at random from the population. When agent 𝑖

receives an article at time 𝑡, she learns from the content presented in the article and then takes

a binary sharing action 𝑦𝑖 ∈ {Share, Ignore}. The action Share leads to another agent in the

population (chosen uniformly at random) receiving the article at 𝑡+ 1 with probability 1 − 𝜀

24Our results generalize to any finite number of articles, but our mechanism requires at least two. With multiple
articles, agents who receive one article must also consider the strategic sharing behavior of agents who might
have received a different article containing different (mis)information.

25We allow the distribution of beliefs to depend on 𝜏 , e.g., to consider cases where the strategic agents are
perhaps more extreme than the naive agents, but our results apply identically if 𝐻𝜏 is independent of 𝜏 .

26This is for simplicity, but also without loss of generality. Because naive agents act mechanically (and always)
elect Share, one can begin the analysis at the first strategic agent who receives the article. (This event occurs with
high probability whenever 𝜀 (defined below) is sufficiently small.)
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for some small 𝜀 > 0, whereas the action Ignore ends the circulation of the article.27

We let 𝜋𝑖,𝑡 denote the belief of agent 𝑖 at time 𝑡. Naive agents are inattentive to misinformation,

so they always elect Share and take all the content seen at face value.28 In particular, when

naive agent 𝑖 receives an article at time 𝑡, she always chooses Share and updates her beliefs

as:29

𝜋𝑖,𝑡+1 |𝑚𝑗 = 𝑅 =
𝑝𝜋𝑖,𝑡

𝑝𝜋𝑖,𝑡 + (1 − 𝑝)(1 − 𝜋𝑖,𝑡)
(2.3)

𝜋𝑖,𝑡+1 |𝑚𝑗 = 𝐿 =
(1 − 𝑝)𝜋𝑖,𝑡

(1 − 𝑝)𝜋𝑖,𝑡 + 𝑝(1 − 𝜋𝑖,𝑡)
(2.4)

Strategic agents choose 𝑦𝑖 and update their belief to 𝜋𝑖,𝑡+1 according to equilibrium play in a

sequential equilibrium.

Voting Phase. Note that both articles stop circulating in finite time almost surely (given that

𝜀 > 0), so all agents have a terminal belief 𝜋*
𝑖 after the sharing phase. After this event, agents

“vote” by taking a binary action 𝑎𝑖 ∈ {𝐿,𝑅} (e.g., voting for the proposal they think is better).

We assume agents get utility 1 for voting for the correct 𝜃 and utility 0 otherwise, so agents

vote for the state more likely to be true according to 𝜋*
𝑖 (i.e., 𝑎𝑖 = 𝐿 if 𝜋*

𝑖 < 1/2 and 𝑎𝑖 = 𝑅 if

𝜋*
𝑖 > 1/2).30

Sharing Payoffs. For simplicity, we normalize the payoff of the Ignore action to 0. The utility

from the Share action consists of three components. The first component of sharing utility is

that agents receive positive utility for sharing truthful content but have an inherent distaste for

sharing misinformation (sharing for truth). Formally, the strategic agent receives 𝐵 > 0 if the

type of the article is 𝒯 and faces a cost 𝐶 > 0 if the type of the article is ℳ.31 We denote this

27This 𝜀 probability guarantees that, for a large population, every agent sees at most one article with high
probability.

28The existence of these naive agents is motivated by empirical work such as Pennycook and Rand (2019).
In Section 3.3.4, we consider accuracy nudging as an intervention to make naive agents more aware of
misinformation in their sharing decisions and belief updating process.

29Note this is the standard Bayesian update for an agent who believes all content is truthful (contains no
misinformation) with probability 1.

30Observe that agent 𝑖’s voting payoff is independent of other agents’ voting actions or sharing actions (including
her own), so one can treat voting actions as a mechanical rule for all (including strategic agents) that solely depend
on 𝜋*

𝑖 .
31In other words, absent of any other sharing incentives, agents get positive utility from sharing truthful content

but negative utility from sharing misinformation. This payoff specification is the same as the one assumed in
Papanastasiou (2020): the “sharing for truth” component of utility requires a strategic agent to evaluate the
likelihood a particular article contains misinformation before sharing it.
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(random) truthful sharing payoff as 𝑉 .

The second component of sharing utility is that the agent wants other agents in the

population to vote similarly to her (sharing for influence).32 Let us denote by 𝜆𝑖 as the fraction

of votes that agree with agent 𝑖 (i.e., 𝜆𝑖 = 1
𝑁

∑︀∞
𝑘=1 1𝑎𝑘=𝑎𝑖). We assume that every agent 𝑖 has a

utility function 𝑈(𝜆𝑖), with 𝑈 monotonically increasing and strictly concave in 𝜆𝑖.

The final component of sharing utility depends on the catchiness of the article, which we

denote by 𝜅. This is an exogenous parameter that captures the desirability of agent 𝑖 to share

the article based solely on how “interesting” the headline is. This can incorporate numerous

other social media sharing incentives, such as the desire for re-tweets and/or re-shares from

other followers. Agent 𝑖’s aggregate utility is composed of all three components and given by

𝑉 + 𝑈(𝜆𝑖) + 𝜅.

2.2.2 Equilibrium Characterization

Basic assumptions. We make three operating assumptions:

(i) Large population: We assume 𝑁 → ∞. This guarantees that each agent updates her belief

at most once, when she receives either article 𝐴1 or 𝐴2 (and does not update at all if she

receives neither). Thus, influence amounts to changing 𝜋𝑖,0 to 𝜋*
𝑖 conditional on observing

an article.

(ii) No perfectly moderate (strategic) agents: Agents are either initially left-leaning or right-

leaning, and not perfectly moderate. Formally, we assume there exists an open interval

𝐼 ≡ (1/2 − 𝛿, 1/2 + 𝛿) for some 𝛿 > 0 where 𝐻𝑠 has no support over 𝐼 (i.e., 𝜋𝑖,0 ∈ 𝐼 occurs

with probability 0).

(iii) Anti-correlation lower bound: The anti-correlation of misinformation is not too large, i.e.,

there exists 𝑞 (which is a decreasing function in 𝛿) such that 𝑞 ∈ (𝑞, 1/2).33 Combined with

32This component of the utility function is closely related to the model of Hsu et al. (2020), where agents
share content to influence others toward their belief. However, the analysis in Hsu et al. (2020) lacks a full
characterization (it largely resorts to limiting cases) and the model has no other sharing incentives (e.g., sharing
for truth), which fails to explain many empirical facts, including viral sharing within echo chambers (see
Quattrociocchi et al. (2016), Törnberg (2018), and Acemoglu et al. (2022b)).

33In practice, this assumption means there are no articles that are so clearly misinformation (and opposing the
truth) that, in fact, they argue for the opposite state to a Bayesian agent. For example, a conspiracy theory such
as Pizzagate in 2015 (see Fisher et al. (2016)) arguing against Hillary Clinton may have been so ludicrous that it
actually bolstered support for Hillary Clinton. Thus, we assume misinformation is mostly just uninformative of
the true state 𝜃 or mildly anti-correlated. (See Footnote 34.)
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assumption (ii), this guarantees that a strategic agent with 𝜋𝑖,0 < 1/2 (resp. 𝜋𝑖,0 > 1/2) will

vote 𝑎𝑖 = 𝐿 (resp. 𝑎𝑖 = 𝑅) conditional on receiving an article advocating for 𝑚𝑖 = 𝐿 (resp.

𝑚𝑖 = 𝑅), regardless of its reliability score.34

In what follows, we conjecture the structure of equilibria.

Definition 2.2.1. A cutoff strategy equilibrium is one where there exists a pair of functions

𝑏*𝐿(𝑟), 𝑏*𝑅(𝑟) such that for article 𝑗:

(i) When 𝑚𝑗 = 𝐿, agents choose Share if 𝜋𝑖,0 < 𝑏*𝐿(𝑟) (and otherwise choose Ignore).

(ii) When 𝑚𝑗 = 𝑅, agents choose Share if 𝜋𝑖,0 > 𝑏*𝑅(𝑟) (and otherwise choose Ignore).

where 𝑏*𝐿(𝑟) is increasing in 𝑟 and 𝑏*𝑅(𝑟) is decreasing in 𝑟.

In other words, Definition 2.2.1 says that for a fixed reliability score, agents are more likely

to share content that agrees with their prior than content that disagrees with it. The following

result shows all equilibria take this form:

Theorem 2.2.1. All equilibria are in cutoff strategies and at least one exists.

Note that Definition 2.2.1 can be also re-written fixing the prior belief 𝜋𝑖,0 and instead

employing cutoffs according to the reliability score of the message. In particular, there exists a

pair of function 𝑟*𝐿(𝜋𝑖,0), 𝑟
*
𝑅(𝜋𝑖,0) such that:

(i) When 𝑚𝑗 = 𝐿, agents choose Share if 𝑟 > 𝑟*𝐿(𝜋𝑖,0) (and otherwise choose Ignore).

(ii) When 𝑚𝑗 = 𝑅, agents choose Share if 𝑟 > 𝑟*𝑅(𝜋𝑖,0) (and otherwise choose Ignore).

Moreover, it can be seen that 𝑟*𝐿(𝜋𝑖,0) < 𝑟*𝑅(𝜋𝑖,0) for all 𝜋𝑖,0 < 1/2 and 𝑟*𝐿(𝜋𝑖,0) > 𝑟*𝑅(𝜋𝑖,0) for all

𝜋𝑖,0 > 1/2. Interpreted differently, there is greater demand for low-reliability content when this

content happens to agree with the agent’s prior beliefs (i.e., pro-attitudinal content) relative to

high-reliability content that happens to disagree (i.e., counter-attitudinal content). For a fixed

prior 𝜋𝑖,0 the interval (𝑟*𝐿(𝜋𝑖,0), 𝑟
*
𝑅(𝜋𝑖,0)) (or (𝑟*𝑅(𝜋𝑖,0), 𝑟

*
𝐿(𝜋𝑖,0)), depending on whether 𝜋𝑖,0 < 𝑏* or

𝜋𝑖,0 > 𝑏*) determines the reliability range where ideologically-congruent content, but content

possibly containing misinformation, is in higher demand than more reliable content, but

which is ideologically opposed.
34To see why this anti-correlation lower bound is necessary, note that a low-reliability article that is almost

perfectly anti-correlated with the state 𝜃 actually argues for not 𝜃, which creates some unnatural incentives. For
example, a left-wing agent may share a ludicrous right-wing article to influence other strategic agents that the
right-wing proposal is ridiculous, convincing them to vote for 𝐿.
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Theorem 2.2.2. There exist extremal equilibria. In other words, for every realization of (𝑟1, 𝑟2),

there are equilibrium cutoffs (�̄�*𝐿, �̄�
*
𝑅) and (𝑏*𝐿, 𝑏

*
𝑅) such that for any other equilibrium cutoffs

(𝑏*𝐿, 𝑏
*
𝑅), we have �̄�*𝐿 > 𝑏*𝐿, �̄�*𝑅 < 𝑏*𝑅, 𝑏*𝐿 < 𝑏*𝐿, and 𝑏*𝑅 > 𝑏*𝑅.

Under (�̄�*𝐿, �̄�
*
𝑅) there is the maximal sharing equilibrium (“fight fire with fire”) and under

(𝑏*𝐿, 𝑏
*
𝑅) there is the minimal sharing equilibrium (“sharing for truth”). In the maximal sharing

equilibrium, there is greater demand for misinformation: for any given message (and reliability),

more agents are willing to share the article despite these agents believing there is a greater

likelihood of it containing misinformation. Put differently, the maximal sharing equilibrium

is the equilibrium where every agent requires a lower reliability to be willing to sharing pro-

attitudinal content.

Proposition 2.2.1. As 𝑈 → 0 almost everywhere, (i.e., only payoff is from sharing truth), then

there is a unique equilibrium.

Multiple equilibria arise due to the strategic incentives to counteract the misinformation

that may appear from the other side. Aggressive sharing for influence from one side creates an

incentive to more aggressively share from the other side in order to offset the change in beliefs.

With sharing for truth only, the best response of each agent does not depend on the actions (or

beliefs) of other agents, and thus the equilibrium characterization is straightforward, following

similarly from the analysis in Papanastasiou (2020).

2.2.3 Comparative Statics

We consider some comparative statics of interest. In this section, we will focus on an extremal

equilibrium, either the “fight fire with fire” equilibrium or the “sharing for truth” equilibrium.

Notationally, we denote this initial extremal equilibrium as (𝑏*𝐿, 𝑏
*
𝑅) and the extremal equilibrium

after the shock as (�̃�*𝐿, �̃�
*
𝑅) and (�̃�*𝐿, �̃�

*
𝑅).

Definition 2.2.2. We say sharing is monotonically increasing following a positive shock (for

some set of parameters) if �̃�*𝐿 > 𝑏*𝐿 and �̃�*𝑅 < 𝑏*𝑅 for all reliability scores (𝑟1, 𝑟2) of the articles.

Definition 2.2.2 defines an “increase in sharing” as leading to more sharing (and less

ignoring) for all types of content. In other words, there is greater demand for misinformation

because (strategic) agents are less tethered to high reliability in their sharing decisions. For
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simplicity in language, we will occasionally say the shock leads to an “increase in sharing”

instead of sharing is monotonically increasing.

Throughout, we will make the following assumption about the initial equilibrium cutoffs in

the most-sharing equilibrium:

Assumption 2.2.1. For strategic agents, the gap 𝛿 around moderate belief 1/2 (from Assumption

(ii) in Section 5.3) is sufficiently large such that any message with maximal reliability does not

change the vote of any strategic agent 𝑖.

In other words, Assumption 2.2.1 posits that strategic agents are sufficiently opinionated

that highly reliable content arguing against their own priors does not move their posterior

beliefs of 𝜃 enough to change their votes. This guarantees that when strategic agents consider

sharing to influence others, they do so to influence naive agents and not other strategic

agents.35 While Assumption 2.2.1 might appear as though it conditions on endogenous

equilibrium outcomes, we note that it does not. With a large population, past sharing behavior

has no bearing on future sharing behavior (i.e., the process is Markovian), so 𝛿 depends only

on primitives and not on equilibrium play itself.36

Next, we consider comparative statics that hold in all contexts when looking at the minimal

and maximal-sharing equilibria. First, we consider both (i) the catchiness of the content and (ii)

likelihood the reliability of content and the quantity of misinformation. Because the amount

of misinformation is an implicit parameter in our model, we define the following:

Definition 2.2.3. We say that there is an decrease in misinformation under (𝐹 , �̃�) relative to

(𝐹, 𝜑) if 𝐹 first-order stochastically dominates 𝐹 and �̃� ≤ 𝜑 pointwise.
35This assumption is made for convenience of the analysis, but the qualitative results do not change if there

is potential to influence other (more moderate) strategic agents. The only difference is that the breakdown by
ideological sharing and broader sharing (as described below) is no longer as easily determined by comparing the
cutoffs to the moderate belief 1/2.

36To see this, observe that for any prior ideological belief 𝜋𝑖,0, the likelihood 𝜓𝑖 of the content containing
misinformation (assessed by agent 𝑖), conditional on message 𝑚 and reliability score 𝑟, is always given by:

𝜓𝑖(𝑟,𝑚) =

{︃
(𝑞𝜋𝑖,0+(1−𝑞)(1−𝜋𝑖,0))𝜑(𝑟)

(𝑞𝜋𝑖,0+(1−𝑞)(1−𝜋𝑖,0))𝜑(𝑟)+(𝑝𝜋𝑖,0+(1−𝑝)(1−𝜋𝑖,0))(1−𝜑(𝑟)) , if 𝑚 = 𝑅
(𝑞(1−𝜋𝑖,0)+(1−𝑞)𝜋𝑖,0)𝜑(𝑟)

(𝑞(1−𝜋𝑖,0)+(1−𝑞)𝜋𝑖,0)𝜑(𝑟)+(𝑝(1−𝜋𝑖,0)+(1−𝑝)𝜋𝑖,0)(1−𝜑(𝑟)) , if 𝑚 = 𝐿

and the posterior belief 𝜋*
𝑖 of the state 𝜃 is given by:

𝜋*
𝑖 (𝜓𝑖(𝑟,𝑚),𝑚) =

{︃
((1−𝜓𝑖)𝑝+𝜓𝑖𝑞)𝜋𝑖,0

((1−𝜓𝑖)𝑝+𝜓𝑖𝑞)𝜋𝑖,0+((1−𝜓𝑖)(1−𝑝)+𝜓𝑖(1−𝑞))(1−𝜋𝑖,0)
, if 𝑚 = 𝑅

((1−𝜓𝑖)(1−𝑝)+𝜓𝑖(1−𝑞))𝜋𝑖,0

((1−𝜓𝑖)(1−𝑝)+𝜓𝑖(1−𝑞))𝜋𝑖,0+((1−𝜓𝑖)𝑝+𝜓𝑖𝑞)(1−𝜋𝑖,0)
if 𝑚 = 𝐿

Thus, determining 𝛿 such that (𝜋*
𝑖 − 1/2)(𝜋𝑖,0 − 1/2) ≥ 0 for all 𝜋𝑖,0 in the support of 𝐻𝑠 is only a function of

primitives. The details of the above calculations are supplied in Appendix ??.
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Note that Definition 2.2.3 states that there is less misinformation present when this content

is both more reliable (𝐹 ⪰𝐹𝑂𝑆𝐷 𝐹 ) and that these reliability scores translate into the same (if

not lower) likelihood of containing misinformation. With this definition in hand, we present

the following comparative static result:

Proposition 2.2.2. An increase in catchiness or a decrease in misinformation leads to an increase

in sharing.

The first part of Proposition 2.2.2 establishes that catchy content is more attractive for

sharing, despite the fact that this catchy content may be against one’s political beliefs (i.e.,

persuade others to vote contrarily). The second part shows that viral sharing is still more typical

in environments where truthful content is more abundant than misinformation. The suggests

that while the “fight fire with fire” equilibrium may exhibit a demand for misinformation to

offset viral misinformation from the opposing ideology, agents are still disciplined by the

quantity of misinformation.

Second, we look at political polarization amongst naive agents in the population. Political

polarization has been steadily rising amongst the American electorate (see, for example,

Abramowitz (2010) and Pew Research Center (2014)). We consider how the polarization of

priors 𝐻, using the definition from Acemoglu et al. (2022b), affects sharing in our model:

Definition 2.2.4. We say �̃� is more polarized than𝐻 if it satisfies the monotone-single crossing

property: �̃�−1(𝛼) −𝐻−1(𝛼) is a nondecreasing function in 𝛼 which crosses (zero) at 𝛼* = 1/2

with 𝐻(1/2) = �̃�(1/2) = 1/2.

Essentially, a polarized society is one where agents become more extreme in their existing

prior ideological beliefs. In the case of more polarization within the naive population (i.e.,

more polarized 𝐻𝑛), we obtain:

Proposition 2.2.3. An increase in polarization of𝐻𝑛 (naive agents) leads to a decrease in sharing.

As stated in Proposition 2.2.3, a decrease in polarization amongst naive agents (who are

susceptible to being persuaded) decreases the appeal of sharing to influence. As more polarized

agents are tethered to their prior belief, sharing provides little influence, as these agents likely

would have voted the same way regardless.

For the remaining comparative statics, we categorize the equilibrium (either minimal or

maximal sharing) as either a broad sharing equilibrium or an ideological sharing equilibrium.
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A broad sharing equilibrium is one that appeals to the larger community (perhaps because the

article has high reliability) in the sense that the sharing cutoff satisfies 𝑏*𝑅 < 1/2 and 𝑏*𝐿 > 1/2.

Conversely, an ideological sharing equilibrium appeals only to one specific ideology, where

𝑏*𝑅 > 1/2 and 𝑏*𝐿 < 1/2.

For both of these categories, we look at both the persuasiveness of the content and the

polarization of beliefs in society. First, we say that content under (𝑝, 𝑞) is more persuasive

than (𝑝, 𝑞) if 𝑝 ≥ 𝑝 and 𝑞 ≤ 𝑞. In other words, the article’s viewpoint takes a more informative

stance on the true state 𝜃. Second, we consider polarization with respect to strategic agents

(i.e., polarization of 𝐻𝑠).

Broad Sharing. With broad sharing, a large proportion of the population is sharing the content,

even if that content is (at least mildly) counter-attitudinal to that agent’s ideological belief. In

this setting, we obtain the following comparative static:

Proposition 2.2.4. An increase in persuasiveness or an increase in polarization of 𝐻𝑠 leads to a

decrease in sharing.

The most natural way to think about broad sharing is in the case of apolitical content (i.e.,

cooking videos or dog photos) or with highly reliable content (i.e., from the CDC). This content

is very likely to be shared amongst a broad audience. However, once it becomes more politically

persuasive (arguing for a certain agenda) or the strategic agents (influencers) become more

ingrained in their views, the less likely it is to get spread. Thus, Proposition 2.2.4 establishes

that politicization of content or polarization of influencers can turn users off viral content that

originally appeals more broadly.

Ideological Sharing. With ideological sharing, where the content is being shared only amongst

those who are in agreement with the content’s message, the comparative statics are reversed,

as we establish in the following:

Proposition 2.2.5. An increase in persuasiveness or an increase in polarization of 𝐻𝑠 leads to

an increase in sharing.

To see the intuition for Proposition 2.2.5, consider a politically-charged piece of news (which

may or may not contain misinformation) that attracts only a small group of ideologically-

congruent users. As its persuasiveness increases, the current cohort of users is more likely
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to share so that the article can more aggressively persuade naive agents to believe their

perspective. Similarly, an increase in the polarization of the influencers has a similar effect:

strategic agents more aggressively share to persuade.

Accuracy Nudging for Naive Agents. First, we consider how the fraction of naive agents in the

population affects the incentives of strategic agents to share political content:

Proposition 2.2.6. Sharing is monotonically increasing in the fraction of naive agents in the

population 𝛾. Moreover, there exists 0 < 𝛾 < 𝛾 < 1 such that if 𝛾 < 𝛾, there is only sharing

for truth (i.e., unique equilibrium of Proposition 2.2.1), and if 𝛾 > 𝛾, there is only sharing for

influence (i.e., multiple lattice-ordered equilibria).

When the fraction of naive agents increases, sharing to influence plays a larger role in the

sharing payoff relative to sharing for truth. When agents receive a piece of pro-attitudinal

content, they value sharing likely truthful content much less than sharing content that will

influence. Because the size of the share cascade is monotonically increasing 𝛾, there is larger

sharing for influence payoff when increasing 𝛾 (with no effect on sharing for truth).

Next, we consider how accuracy nudging as proposed by Pennycook et al. (2021b) can shift

the attention of naive agents toward considering the veracity of the content they see. This

has two effects. First, it makes agents less likely to share content that has low reliability. We

model this as a behavioral sharing rule: the probability that a naive agent shares an article

with reliability 𝑟 is given by an increasing function ℛ. Second, the accuracy nudge may also

make naive agents more cognizant of the presence of misinformation when updating their

belief about 𝜃. In particular, naive agents update their beliefs after seeing article 𝑗 taking into

account the possibility of misinformation:

𝜋*
𝑖 |𝑚𝑗 = 𝑅 =

((1 − 𝜓𝑖)𝑝+ 𝜓𝑖𝑞)𝜋𝑖,0
((1 − 𝜓𝑖)𝑝+ 𝜓𝑖𝑞)𝜋𝑖,0 + ((1 − 𝜓𝑖)(1 − 𝑝) + 𝜓𝑖(1 − 𝑞))(1 − 𝜋𝑖,0)

(2.5)

𝜋*
𝑖 |𝑚𝑗 = 𝐿 =

((1 − 𝜓𝑖)(1 − 𝑝) + 𝜓𝑖(1 − 𝑞))𝜋𝑖,0
((1 − 𝜓𝑖)(1 − 𝑝) + 𝜓𝑖(1 − 𝑞))𝜋𝑖,0 + ((1 − 𝜓𝑖)𝑝+ 𝜓𝑖𝑞)(1 − 𝜋𝑖,0)

(2.6)

where 𝜓𝑖 is the likelihood that agent 𝑖 assigns to the article containing misinformation, given in

Footnote 3 (note we have supressed the dependence of𝜓𝑖 on 𝑟). We assume the accuracy nudge,

which affects both sharing and belief updating behavior, is effective on 𝛽 ≥ 0 proportion of the

naive agents.
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Proposition 2.2.7. Sharing (by strategic agents) is monotonically decreasing in the effectiveness

of the accuracy nudge 𝛽. Moreover, there exists 𝛽* < 1 such that if 𝛽 > 𝛽*, then there is a unique

“sharing for truth” equilibrium that coincides with the one in Proposition 3.1.1.

Proposition 2.2.7 provides the interesting insight that while accuracy nudging helps reduce

the sharing of unreliable content from naive agents, it also does the same for strategic agents.

Because naive agents are more critical in their assessment of content accuracy before sharing,

supplying future agents with likely misinformation (but which is pro-attitudinal) is less effective.

This occurs both because naive agents are less likely to pass the content onto others after them

(via the behavioral sharing rule) and because unreliable content is less likely to sway their

beliefs (by being more cognizant of misinformation). Consequently, strategic agents have

relatively lower demand for misinformation and greater demand for truthful content that

argues for their perspective.

2.2.4 Experimental Design

Pretest. The design first consists of identifying a large set of headlines that are sufficiently

diverse. For this, we ran a pretest that block randomizes questions about a given headline

using a few different variants of the same type of question. We are concerned largely with the

following attributes of an article: reliability, catchiness, persuasiveness, and message. Here are

two such examples of a set of questions for a given headline.

Example 2.2.1. Set of questions per headline #1:

1. Would this headline be more appealing to Republicans or Democrats?

For all of the following questions, please rate the extent to which you agree or disagree

with the following description of the article based on its headline.

2. The article is misleading.

3. The article is credible.

4. You would find this article striking.

5. Other readers would find this article striking.
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6. The headline is unconvincing to Democratic voters.

7. The headline is unconvincing to Republican voters.

8. The headline is unconvincing to moderate voters.

Set of questions per headline #2:

1. Would this headline be more favorable to Democrats or Republicans?

For all of the following questions, please rate the extent to which you agree or disagree

with the following description of the article based on its headline.

2. The article is credible.

3. The article is politically biased.

4. You would find this article striking.

5. Other readers would find this article interesting.

6. The headline is convincing to Democratic voters.

7. The headline is convincing to Republican voters.

8. The headline is unconvincing to moderate voters.

Main Experiment Overview. Our main experiment will involve normative blurbs that present

statistics from a study on the kind of content users share on social media. After this, users

will be prompted to answer various questions about the kind of content they would share. In

particular, we ask each participant if she identifies as a Democrat, Republican, or Independent

and then assign them randomly to one of three treatment groups:

• In-group treatment : The participant is presented with a normative blurb that explains a

study where pro-partisans share more misinformation than counter-partisans.

• Out-group treatment : The participant is presented with a normative blurb that explains a

study where counter-partisans share more misinformation than pro-partisans.

• Control group: The participant is presented with no blurb prior to the survey on sharing

intentions.
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The model of Section 2.1 would point in the direction of the in-group treatment leading to

more sharing, whereas the model presented in this section would push more in favor of the

out-group treatment leading to more sharing.

Defund the Police Survey. There are many empirical and experimental studies that show

Republicans share more misinformation more than Democrats (e.g., Guess et al. (2019)), but

none that we were aware of that show the opposite. This makes applying the in-group treatment

for Democrats (or out-group treatment for Republicans) impossible without deception. To

avoid this, we designed a survey that specifically looks at hypothetical headlines associated with

the Defund the Police movement, which has much larger Democratic support. We included

both a mix of true headlines and false headlines (50% and 50%) as well as a mix of headlines

that supported the movement and was opposed (50% and 50%). Examples of these headlines

are given in Figures 2-6 and 2-7.

Figure 2-6. Sample of truthful headlines.

Figure 2-7. Sample of misinformation headlines.

Main Experiment Flow. After the standard consent and instruction page, each participant will

get randomly assigned to one of three normative blurbs:
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• Republicans share more misinformation: The data from the blurb in Figure 2-8 comes

from Pennycook et al. (2021b) and Guess et al. (2019).

Figure 2-8. Republican normative blurb.

• Democrats share more misinformation: The data from the blurb in Figure 2-9 comes from

Pennycook et al. (2021b) and the Defund the Policy survey data described earlier.

• Control group: The data from the blurb in Figure 2-10 comes from Pennycook et al.

(2021b).

To verify participants internalized the blurb shown, we ask them to take the quiz shown in

Figure 2-11, which returns to the normative blurb until the participant gets the quiz questions

correct. After the quiz, participants will be given a sequence of 10 randomly selected headlines

(the same headlines from the pretest) and asked the following questions (with some variations

similar to the pretest):

1. How likely are you to share this article on social media?
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Figure 2-9. Democrat normative blurb.

2. Would you like to read more about this headline?

3. How likely are you to like or click on this article?

4. Would you bookmark this article if you saw it online?
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Figure 2-10. Control normative blurb.

Figure 2-11. Quiz.
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Chapter 3

Misinformation: Behavioral Models

We next consider the class of behavioral (“DeGroot”) models. While agents’ reasoning abilities

are assumed to be limited in this setting, this set of tractable models provides additional insights

into how misinformation actually shapes social media users’ beliefs about incorrect ideas (e.g.,

that all vaccines are unsafe). Using these models, we can understand the implications for how

strategically injected misinformation (often known as “disinformation”) can impact society,

and specifically how it can negatively affect underprivileged communities with less access to

educational resources, are presented in Sections 3.1 and 3.2. Using a reduced-form version

of both types of models, I compare the influence of misinformation for both sophistication

types of social media agents in Section 3.3, finding that (perhaps surprisingly) sometimes more

sophisticated agents can be more susceptible to mislearning.

3.1 Manipulating with Misinformation

In this section, we present a social learning (DeGroot) model based on Mostagir et al. (2022)

where agents learn about an underlying state of the world from individual observations as well

as from exchanging information with each other. A principal (e.g. a firm or a government)

interferes with the learning process by spreading misinformation (or disinformation) in order

to manipulate the beliefs of the agents. By utilizing the same forces that give rise to the

“wisdom of the crowd” phenomenon, the principal can get the agents to take an action that

is not necessarily optimal for them but is in the principal’s best interest. We characterize the

social norms and network structures that are susceptible to this kind of manipulation, and
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derive conditions under which a social network is impervious and cannot be manipulated. In

the process, we develop a new centrality measure and describe how our model offers insights

into designing networks that are resistant to manipulation.

3.1.1 Introduction

People’s beliefs can directly impact their actions. These beliefs are usually formed through a

combination of individual and social learning, and a large literature details conditions under

which learning aggregates beliefs in a way that leads agents to correctly learn an underlying

state of the world.

An ability to shape beliefs implies an ability to steer agents towards taking specific actions.

In this paper, we consider a social learning environment where agents try to learn an underlying

state in order to make a one-time choice between different actions. Agents receive private

signals about the state and use these signals in addition to the information they obtain from

their neighbors to update their beliefs. A strategic principal is interested in having agents take

a certain action, and can try to influence the beliefs in the network by sending costly (and

misleading) signals to some of the agents. Agents cannot differentiate whether a signal they are

receiving is ‘organic’ or coming from the principal. Social learning therefore provides a positive

externality as agents spread organic news, but also a negative externality as agents unknowingly

spread misinformation from the principal. Some agents are stubborn – they are endowed with

knowledge of the true state and only spread correct information. Being connected to these

agents can therefore offer some protection from the influence of the principal.

We say that an agent is manipulated if her beliefs converge to the true state and she takes

the correct action in the absence of interference from the principal, but chooses the wrong

action due to incorrect beliefs when the principal interferes with the learning process. Our

interest is in characterizing the conditions under which the principal can use social learning to

his advantage in order to manipulate the agents, and in understanding the social norms and

network structures that help or hinder this spread of misinformation in society.

Contribution and Overview of Results. We provide a classification of networks that describes

when manipulation is possible. Agents in our model use DeGroot updating to aggregate the

beliefs of their neighbors with their own signals in a linear fashion. Theorem 3.1.1 provides a
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tight characterization of the beliefs of agents under any interference strategy by the principal,

and Proposition 3.1.2 proves that these beliefs are related to a novel centrality measure that we

call DeGroot centrality. We then show that depending on how agents weigh their own signals,

a substantial fraction of the population can be tricked into believing that the underlying state

is different from the actual state. Theorem 3.1.3 shows that under mild conditions, extreme

societies that are inclined towards herding (agents discount their own signals and put their

faith in what other agents think) or towards individuality and narcissism (agents discount

everything except their own signals) are basically impossible to manipulate. On the other hand,

a moderate society whose members use their own beliefs as well as other agents’ opinions is

the society that is most susceptible to this kind of manipulation.

For these moderate societies, the stubborn agents can help spread the truth about the

underlying state, but their ability to do so is limited by the network structure. We classify

networks into dense and sparse topologies, and show in Theorem 3.1.4 that dense networks

are highly resistant to manipulation: even as the size of the network grows, the presence

of a constant number of stubborn agents anywhere in the network is enough to guarantee

imperviousness. By contrast, sparse networks are more susceptible to manipulation, and both

the number and location of stubborn agents are important for the network to be impervious.

In particular, the number of stubborn agents required may grow with the size of the network.

If there are not enough stubborn agents, or if there is a sufficient number that are not well-

located, then the principal can manipulate almost the entire population by targeting only a

fraction of the agents, i.e., it becomes cheaper and easier for the principal to manipulate.

We use the above results to provide a characterization of manipulation in networks that can

be represented as a combination of sparse and dense networks, and show the existence of a

phase transition in Theorem 3.1.5: as the network gets sufficiently dense, all opportunities for

manipulation suddenly vanish. Proposition 3.1.7 shows that agents being skeptical about their

news source does not necessarily lead to better learning. We then extend our results on several

dimensions in Section 3.1.6 and, for the interested reader, provide a numerical study in the

appendix that examines the concepts in the paper on data from the advice network described

in Jackson et al. (2012).

Related Literature. The agents in our model use DeGroot learning to update their beliefs.

DeGroot learning has been extensively studied in several literatures. For example, Golub and
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Jackson (2010) give conditions under which beliefs converge to the true state of the world.

Jadbabaie et al. (2012) consider agents that update their own information in a Bayesian fashion

and aggregate the information of their neighbors in a DeGroot fashion, and their particular

formulation of DeGroot agents is closely related to the one we consider in this paper. Bohren

and Hauser (2017) examine learning when agents have a misspecified model of the world.

Our model also includes stubborn agents who hold correct beliefs about the state of the

world. Opinion dynamics with stubborn agents have been studied in Acemoglu et al. (2013)

and Yildiz et al. (2013) among others. The primary differences between our work and these

papers is the presence of a strategic principal, which changes the role that these stubborn

agents play. In the cited literature, the presence of stubborn agents leads to divergence of

opinions and generally hinders learning about the true state of the world. In contrast, the

learning difficulty in our model comes from the strategic principal who tries to manipulate

beliefs, and the presence of stubborn agents who know the state is always useful for everyone

in the network. Nevertheless, as we discuss, even with the positive contribution that these

agents provide to the learning process, manipulation might still be unavoidable.

The proliferation of false news on social networks has been the central focus of some recent

work. Candogan and Drakopoulos (2020) and Papanastasiou (2020) examine how (Bayesian)

agents exchange information on a social network and show how misinformation can spread

in these models and what the platform (over which the agents are communicating) can do

about it. The existence of fake news in these models is exogenous, i.e., unlike our model, there

is no principal or news provider that strategically injects misinformation into the network,

and consequently there is no notion of manipulation. The idea that a principal can use

social learning to manipulate agents towards taking a certain action has been studied in the

context of replicator dynamics in Mostagir (2010). Unlike this work, we examine richer learning

dynamics in an environment where some agents consistently spread correct information while

others spread their beliefs without critical reasoning, which as Pennycook and Rand (2019)

show in recent experimental work, might be one of the primary mechanisms through which

misinformation spreads in social networks.
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3.1.2 Model

We consider a directed social network with 𝑛 agents trying to learn a binary state of the world

𝑦 ∈ {𝑆,𝑅} over time. Time is continuous and agents learn over a finite horizon, 𝑡 ∈ [0, 𝑇 ). At

time 𝑡 = 0, the underlying state 𝑦 ∈ {𝑆,𝑅} is drawn, with P(𝑦 = 𝑆) = 𝑞 ∈ (0, 1).

Organic News News is generated according to a Poisson process with parameter 𝜆 > 0 for

each agent 𝑖. We refer to this process as organic news. For simplicity, we assume agents digest

news at the same times 𝜏 = 1, 2, . . ., which correspond to the arrivals of a single Poisson process,

but might correspond to different articles (i.e., different messages) for different agents. For

all 𝜏 ∈ {1, 2, . . .}, the organic news for agent 𝑖 generates a signal 𝑠𝑖,𝜏 ∈ {𝑆,𝑅} according to the

distribution:

P
(︁
𝑠𝑖,𝜏 = 𝑆

⃒⃒⃒
𝑦 = 𝑆

)︁
= P

(︁
𝑠𝑖,𝜏 = 𝑅

⃒⃒⃒
𝑦 = 𝑅

)︁
= 𝑝𝑖 ∈ [1/2, 1) (3.1)

i.e., the signal is correlated with the underlying truth. All organic news’ signals for agent 𝑖 are

independent across time and across other agents. The value of 𝑝𝑖 indicates the richness of

agent 𝑖’s signal, and can be interpreted as her ability to deduce the true state from the facts

presented in the organic news. We allow for the possibility that 𝑝𝑖 = 1/2, so that agent 𝑖 faces

an identification problem and cannot rely on her organic news alone, but instead must rely on

others in order to learn the true state.

Principal In addition to the organic news process, there is a strategic principal who may also

generate news of his own. We assume, without loss of generality, that the true state is 𝑦 = 𝑆 and

the principal wants to convince agents of state 𝑅.1 The principal picks an influence strategy

𝑥𝑖 ∈ {0, 1} for each agent 𝑖 in the network. The principal then generates news of his own, which

is always signal 𝑅, and the influence strategy indicates which agents receive these signals. If

the principal chooses 𝑥𝑖 = 1 for any agent 𝑖, then he (principal) generates news according to an

independent Poisson process with intensity 𝜆* which is received by all agents with 𝑥𝑖 = 1.2 The

principal incurs an upfront investment cost 𝜀 > 0 for each agent with 𝑥𝑖 = 1.

Once again, for simplicity we assume agents digest news at the same rates, so an agent

𝑖 with 𝑥𝑖 = 1 receives organic news at time 𝜏 with probability 𝜆/(𝜆 + 𝜆*) and receives the

principal’s news with probability 𝜆*/(𝜆+ 𝜆*), but is unable to differentiate between the nature

1This is without loss because if the underlying state is indeed 𝑅, then as we establish in Proposition 3.1.1,
agents will learn that state without interference from the principal, and therefore he will elect not to intervene.

2To simplify our setup, we do not allow the principal to send 𝑆 messages, vary his influence strategy, or change
the intensity of his messages over time. We explore how this affects our results in Section 3.1.6.
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of the news. On the other hand, an agent 𝑖with 𝑥𝑖 = 0 always receives organic news. An organic

message always follows the distribution in (3.1), whereas a message from the principal always

gives a signal of 𝑅, i.e., it is misinformation.

The principal can be one of two types. He can either be a strategic type 𝒮 or a truthful type

𝒯 . If the principal’s type is 𝜔 = 𝒯 , we assume he is committed to implementing 𝑥𝑖 = 0 for all

agents; that is, he does not interfere with the learning process. On the other hand, the 𝜔 = 𝒮

type of the principal may play any influence strategy x ≡ {𝑥𝑖}𝑛𝑖=1 over the network.

Agents There are two types of agents in the model. DeGroot agents learn about the state by

combining both (i) what they read in the news and (ii) what their friends believe about the

state. Stubborn agents are endowed with knowledge of the true state 𝑦 at 𝑡 = 0, through being

well-educated or knowledgeable about the subject. Stubborn agents will not change their

beliefs over time. We denote the set of DeGroots as 𝐷 and the set of knowledgeable stubborn

agents as 𝐾. The total population in society is denoted by 𝑛, with 𝑚 denoting the number

of stubborn agents in that society. Unlike stubborn agents, DeGroot agents start with prior 𝑞

about the state 𝑦 at 𝑡 = 0, and must use their own signals combined with social learning to try

and learn the state. Specifically, every DeGroot agent:

(a) uses a simple learning heuristic to update beliefs about the underlying state from other

agents.

(b) believes all signals arrive according to a Poisson process with intensity 𝜆 and all signals are

independent over time with P (𝑠𝑖,𝜏 = 𝑦) = 𝑝𝑖 (i.e., takes the news at face value).

The implicit assumption in the DeGroot learning process is that DeGroots are not aware of a

principal who might be tampering with this process and sending misinformation. DeGroots

absorb all news as if it is coming from organic sources. We relax this in Section 3.1.6, where

agents try to simultaneously learn how trustworthy their news sources are, and can appropriately

discount their own news if they suspect it is interfered with.

Formally, let 𝜋𝑖,𝑡 ∈ ∆({𝑆,𝑅}) represent the belief of agent 𝑖 about the underlying state at

time 𝑡. Given history ℎ𝑖,𝑡 = (𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝜏*) up until time 𝑡 (where 𝜏 * is the last message

received before 𝑡), each agent forms a personal belief about the state according to Bayes’ rule.

Let 𝑧𝑆𝑖,𝑡 and 𝑧𝑅𝑖,𝑡 denote the number of 𝑆 and 𝑅 signals, respectively, that agent 𝑖 received by time
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𝑡 (where 𝑧𝑆𝑖,𝑡 + 𝑧𝑅𝑖,𝑡 = 𝜏 *); then DeGroot agent 𝑖 has direct “personal experience”:

BU(𝑆|ℎ𝑖,𝑡) =
𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞

𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞 + 𝑝
𝑧𝑅𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑆𝑖,𝑡(1 − 𝑞)

and BU(𝑅|ℎ𝑖,𝑡) = 1−BU(𝑆|ℎ𝑖,𝑡). The experience function BU represents the direct contribution

of the observed signals into agent 𝑖’s belief, and is related to the personal Bayesian update in

Jadbabaie et al. (2012). It is the belief any fully Bayesian agent would hold about the state 𝑦 in

isolation and with no knowledge of principal interference.

DeGroot agents also form beliefs by talking to (and exchanging beliefs with) their neighbors

after every unit of time. For all agents 𝑖, there are weights 𝜃𝑖, 𝛼𝑖𝑗 such that agent 𝑖 holds belief

𝜋𝑖,𝑡 for all 𝑡 ∈ {1, 2, . . .}:

𝜋𝑖,𝑡+1 = 𝜃𝑖BU(ℎ𝑖,𝑡+1) +
𝑛∑︁
𝑗=1

𝛼𝑖𝑗𝜋𝑗,𝑡

where 𝜃𝑖 +
∑︀𝑛

𝑗=1 𝛼𝑖𝑗 = 1. As convention, we assume the link 𝑖 → 𝑗 indicates that agent 𝑗 is a

neighbor of 𝑖 (i.e. 𝑖 listens to 𝑗) but not necessarily vice versa. We refer to this as the DeGroot

update (DU) process.

Network Structure Each agent 𝑖 has a neighborhood 𝑁(𝑖) ⊂ {1, . . . , 𝑛} that consists of other

agents she listens to in every period (i.e., her “friends”). Note that because stubborn agents do

not change their beliefs over time, their neighborhoods are immaterial. On the other hand,

each DeGroot agent 𝑖’s neighborhood is specified by her weights (𝜃𝑖, {𝛼𝑖𝑗}𝑛𝑗=1), with larger

weights representing stronger connections. In matrix notation, we can represent the influence

of the social network as:

W =

⎛⎝ 0 0

A𝐷𝐾 A𝐷𝐷

⎞⎠
where A𝐷𝐾 is the DeGroot by stubborn agent weight matrix, given by entries {𝛼𝑖𝑗}𝑖∈𝐷, 𝑗∈𝐾 , and

A𝐷𝐷 is the DeGroot by DeGroot agent weight matrix, given by entries {𝛼𝑖𝑗}𝑖,𝑗∈𝐷. We refer to

this social network as G, and denote the weights 𝑤𝑖𝑗 from matrix W.

It is also sometimes insightful to look at the unweighted representation of G, which we

denote by social network G*. The unweighted social network is a binary relation between pairs

of agents representing whether agent 𝑖 listens to agent 𝑗 at all. By convention, a link 𝑖 → 𝑗

exists in the undirected social network G* if and only if 𝑗 is in 𝑖’s neighborhood, i.e., 𝑗 ∈ 𝑁(𝑖),
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because 𝛼𝑖𝑗 > 0.

Payoffs At time 𝑡 = 𝑇 , each agent chooses an action 𝑎𝑖 ∈ {𝑆,𝑅}. Payoffs for the strategic

principal and agent are given in Table 3.1.3 The first entry in a cell is the principal’s payoff while

the second is the agent’s payoff (so for example, the top-left cell corresponds to the case when

the state is 𝑅 and the agent chooses action 𝑅. This gives the principal a payoff of 1 and the

agent a payoff of (1 + 𝑏)).

We assume that 𝑏 ∈ (−1, 1) so that agent 𝑖 would match her action 𝑎𝑖 with the state 𝑦 if she

knows the state with certainty. Otherwise, the parameter 𝑏 captures any asymmetry in the

payoffs between the two states.4 Recall that, on the other hand, the principal always prefers

that agents take action 𝑅 instead of action 𝑆, and so has an incentive to convince agents of

𝑦 = 𝑅 (when the state is in fact 𝑦 = 𝑆). Let 𝑢𝑖(𝑦, 𝑎𝑖) denote the payoff of agent 𝑖 when the state

is 𝑦 and she takes action 𝑎𝑖; 𝑢
𝑝
𝑖 (𝑎𝑖) is the payoff for the principal at agent 𝑖 (which only depends

on that agent’s action). The total payoff for the principal is given by 𝑢𝑝(a) =
∑︀𝑛

𝑖=1 𝑢
𝑝
𝑖 (𝑎𝑖), which

is the summation of the payoffs from period-𝑇 actions of all 𝑛 agents (where a ≡ {𝑎𝑖}𝑛𝑖=1). We

denote by 𝑐(x) =
∑︀𝑛

𝑖=1 𝜀𝑥𝑖 the cost of the principal for implementing the network influence

strategy x at 𝑡 = 0. The principal has total payoff given by the difference between her future

utility (via the actions of the agents) and the cost of the network influence, 𝑢𝑝(a) − 𝑐(x). Agents

simply choose an action that maximizes their utility 𝑢𝑖(𝑦, 𝑎𝑖) given belief of the state 𝜋𝑖,𝑇 .

Note that the action of the stubborn agent is always 𝑆 and yields her a payoff of 1. On the

other hand, a DeGroot agent will take action 𝑆 if and only if her terminal belief about state 𝑆,

𝜋𝑖,𝑇 (𝑆), exceeds the threshold (1 + 𝑏)/2, because then action 𝑆 gives her more (expected) utility

than action 𝑅. The principal chooses his optimal influence strategy, denoted x*, based on the

expectation of his utility from the actions a that the agents take at time 𝑇 . Observe that the

optimal influence strategy x* may or may not be unique.

3An example to help visualize this payoff table is the following: the states of nature 𝑆 and 𝑅 can be mapped to
whether a particular vaccine is safe (state 𝑆) or risky (state 𝑅). Similarly, an agent’s actions can be thought of as
analogous to “vaccinate” (action 𝑆) and “not vaccinate” (action 𝑅). In this sense, a player wants to match her
action to the state, e.g. taking action 𝑆 when the state is 𝑆 indicates vaccinating when the vaccine is safe.

4For instance, it may be more costly to vaccinate your child if vaccines do have adverse effects than it is to not
vaccinate even if they are safe.
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Agent
R S

State 𝑦
R 1, 1 + 𝑏 0, 0

S 1, 𝑏 0, 1

Table 3.1. Terminal payoffs when the strategic principal wants agents to take action 𝑅. The
parameter 𝑏 is in (−1, 1).

3.1.3 Learning Dynamics and Centrality

In this section, we characterize the learning dynamics and terminal beliefs of agents in the

presence of the principal’s interference. Our key insight is the relationship between the limiting

beliefs of the agents and a novel centrality measure that we call DeGroot centrality. This

measure captures an agent’s susceptibility to misinformation by computing her centrality

amongst other (DeGroot) agents who update their beliefs using possibly misinformative signals

sent by the principal.

Learning

We aim to understand the asymptotic learning dynamics that emerge for a given (arbitrary)

network strategy x* of the principal. We provide a closed-form expression for DeGroot terminal

beliefs as a function of the chosen influence vector x*. These terminal beliefs induce actions for

each DeGroot agent 𝑖 at 𝑇 , which in turn provides an expression for whether agent 𝑖 mislearns

the state under x*.

When the network consists entirely of stubborn agents, the principal is unable to get anyone

to take the incorrect action. On the other hand, when the network consists of all DeGroot

agents, generally it will be possible to convince DeGroot agents of the wrong state, as long as

the influence cost 𝜀 is not too large. The interesting case happens in the mixed environment

where both DeGroot and stubborn agents co-exist. In this setting, there are two opposing

forces: (i) the stubborn agents who know and can communicate the correct state information,

and (ii) the DeGroot agents who may confound the learning process through simple learning

heuristics. Our interest in in whether the principal can effectively utilize the second force to

his benefit, despite the presence of the first.

We make some assumptions about the rate of information arrival, the informativeness of

organic signals, and the network structure:
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Assumption 3.1.1. Each of the following hold:

(i) Amenability to mislearning : For all agents 𝑖, 𝑝𝑖 < 𝜆*+𝜆
2𝜆

.

(ii) Strong connectedness: For every two agents 𝑖, 𝑗 in unweighted social network G*, there

exists both a directed path from 𝑖 to 𝑗 and from 𝑗 to 𝑖.

(iii) Irrelevance of noise: For every DeGroot agent 𝑖, 𝜃𝑖 is positive if and only if 𝑝𝑖 > 1/2.

(iv) Identifiability: There exists some agent 𝑖 where 𝑝𝑖 > 1/2 (i.e., state 𝑅 and state 𝑆 can be

identified by at least one agent from solely organic news).

The first part of the assumption ensures that if agents are left in isolation, and the principal

attempts to corrupt their signals, then it is impossible for agent 𝑖 to uncover the truth simply

from performing Bayesian updating on her own signals (and ignoring others). However, if the

agent utilizes social learning, she may be able to learn the true state. The second part of the

assumption requires that the beliefs of any one agent can reach (or influence) any other agent,

albeit indirectly through others. The third part requires that all agents in the network listen

to the news they receive if and only if their organic news is believed to be meaningful. Lastly,

we assume the organic news contains valuable information for at least one agent, otherwise

learning would be impossible with all DeGroot agents, even without principal interference.

To understand the role of the network structure in the principal’s problem, we need to

characterize asymptotic learning for the DeGroot agents. Let 𝑦′ denote an arbitrary state. We

write ℎ𝑖,𝑡(x*) as the (random) history of news (both organic and inorganic) up until time 𝑡

induced by the principal’s action x* (which, naturally, depends on his type). We first establish

that the personal experience component of all agents converges almost surely for a long

learning horizon:

Lemma 3.1.1. The personal-experience Bayesian update term BU(𝑆|ℎ𝑖,𝑡) converges almost surely

to a constant BU(𝑆|ℎ𝑖,∞(x*)) ∈ {0, 𝑞, 1} as 𝑇 → ∞.

Given Lemma 3.1.1, we observe that in the limiting case (i.e., large 𝑡), the beliefs of the

DeGroot agents approximately follow:

𝜋𝑡+1(𝑦
′) = BU(h∞(x*))(𝑦′) ⊙ 𝜃 + W𝜋𝑡(𝑦

′)
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where the matrixW is the influence matrix from Section 3.1.2, 𝜃 = (1𝐾 , 𝜃𝑚+1, . . . , 𝜃𝑛), ⊙ denotes

the element-by-element product, and BU(h∞(x*))(𝑦′) is the vector of converged personal-

experience beliefs of state 𝑦′, per Lemma 3.1.1 (with the convention that BU(𝑆|ℎ𝑖,∞) = 1 for

all stubborn agents). Given this formulation, we have the following asymptotic result for the

beliefs of DeGroot agents:

Theorem 3.1.1. Under Assumption 3.1.1, the beliefs of the agents about state 𝑦′ converge almost

surely to:

𝜋𝑡(𝑦
′)

a.s.→ (I−W)−1(BU (h∞(x*))(𝑦′) ⊙ 𝜃)

for any principal action x*.

First, we look to characterize beliefs in the baseline case of a truthful principal (i.e., 𝜔 = 𝒯 ),

i.e., x* = 0. We obtain the following result, which is similar to the findings in Jadbabaie et al.

(2012):

Proposition 3.1.1. If Assumption 3.1.1 holds, then all agents learn the true state almost surely

(i.e., 𝜋𝑖,𝑡(𝑆)
𝑎.𝑠.→ 1 for all 𝑖) when the principal is truthful.

Without a strategic principal, learning occurs despite the fact that DeGroot agents are only

updating their beliefs using naive learning heuristics. We now turn our attention to whether it

is possible for (some) agents to mislearn the state when the strategic principal plays x* ̸= 0.

This is the main focus of the remainder of the paper.

Under Assumption 3.1.1, we know by Lemma 3.1.1 that BU(h∞(x*))(𝑅)⊙𝜃 converges almost

surely to the vector: ⎛⎝𝛾 ≡

⎛⎝ 0𝐾

x*
𝐷

⎞⎠⎞⎠⊙ 𝜃

where the subscripts 𝐾 and 𝐷 denote the intervention vector x associated with those types of

agents. In other words, if an agent 𝑖 is DeGroot and receives misinformation signals from the

principal (i.e., 𝑥𝑖 = 1), then we write 𝛾𝑖 = 1 and otherwise we write 𝛾𝑖 = 0. The (limit) beliefs

of stubborn agents are naturally a point-mass on the true state (i.e., zero belief on 𝑦′ = 𝑅).

This allows a succinct representation of the limiting beliefs of the incorrect state 𝑦′ = 𝑅 for all

agents:

𝜋𝑡(x
*) → (I−W)−1(𝛾(x*) ⊙ 𝜃) ≡ 𝜋∞(x*) (3.2)
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Equation (3.2) provides a closed-form expression for the beliefs of the agents in state 𝑅 when 𝑇

is large. We note that this expression depends on the network structure, the a priori knowledge

of the agents about the state (i.e., agent types), the personal-experience weights 𝜃, and the

network action x of the principal (captured through 𝛾). We discuss each of these factors in

more detail below.

1. Personal-Experience Weights: Each agent 𝑖’s personal-experience belief update propagates

to the beliefs of other agents in society precisely through her weight 𝜃𝑖, which factors into

the expression 𝜃 ⊙ 𝛾. In Section 3.1.4, we show the nuances of how increases in 𝜃𝑖 can

either help or hurt the spread of misinformation, as a function of other agents’ 𝜃𝑗 for all

𝑗 ̸= 𝑖.

2. Network Structure: Recall from Section 3.1.2 that W represents the influence matrix. The

term (I−W)−1
𝑖𝑗 represents the entire accumulation of (direct or indirect) influence 𝑗 has

over 𝑖.5 In Section 3.1.5, we focus on how the topology of the social network G shapes

how influence propagates through this term.

3. Agent Types: The type of the agent (i.e., replacing a DeGroot agent with a stubborn one)

has an impact on both (I−W)−1 and 𝜃 ⊙ 𝛾. Through the expression (I−W)−1, one can

see that a DeGroot agent may not take the incorrect actrion herself but still spreads some

of the misinformation she observes from the beliefs of her friends (or in her news). A

stubborn agent on the other hand does not propagate nor succumb to misinformation,

which limits the influence the principal can have in the population.

The set of agents taking the incorrect action is entirely determined by the principal’s

optimal choice of x* and the resulting limiting beliefs 𝜋∞. For some stylized settings, we

can characterize the principal’s optimal strategy x*, as well as the set of agents who will take

the incorrect action because of x*, as a function of these model parameters (see Section 3.1.4

and Section 3.1.5). In Appendix B.1.1, we present the general optimization problem of the

principal for arbitrary network parameters, as well as some technical results of interest. For

an illustration of how these techniques can be visualized in the context of a real-world social

network, we refer the reader to the appendix.

5To see this, note the term (I−W)−1 can be written in expanded form as
∑︀∞
ℓ=0 W

ℓ, where each Wℓ represents
how the beliefs of agent 𝑖 propagate to agent 𝑗 who is ℓ hops away in the social network.
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Manipulation

A main focus of our paper is characterizing the conditions under which an agent chooses

the terminal action that matches the underlying state (and therefore maximizes her ex-post

payoff) given her belief at time 𝑇 . Recall from the previous section that the beliefs of all agents

converge almost surely to some limit belief, based on which she takes her terminal action. To

this end, we define what it means for agent 𝑖 to be manipulated:

Definition 3.1.1 (Manipulation). Let x* be the optimal network influence strategy for the

strategic principal. We say that agent 𝑖 is manipulated under the network influence strategy x

if:

1. Agent 𝑖’s terminal action 𝑎𝑖 does not match the underlying state when the principal’s type

is 𝜔 = 𝒮 and x = x*, almost surely.

2. Agent 𝑖’s’ terminal action 𝑎𝑖 does match the underlying state when the principal’s type is

𝜔 = 𝒯 and x = 0, almost surely.

In other words, manipulation of agent 𝑖 implies that a strategic principal interferes with

the learning process, and this causes the agent to mislearn the true state that she would have

correctly learned in the absence of such interference (by Proposition 3.1.1). Agents whose

beliefs of state 𝑅 converge to a value higher than (1 − 𝑏)/2 are necessarily manipulated.

To be able to speak about the extent of manipulation (i.e., how many agents are manipulated)

when the principal acts optimally, it is important to consider the entire set of optimal strategies

for the principal. Let x*
1 and x*

2 be two optimal strategies for the principal and let 𝑘1 and 𝑘2

denote the corresponding number of manipulated agents at time 𝑇 . We say the principal’s

optimal influence strategies are manipulation-invariant if for all 𝜅 > 0, there exists 𝑇 * such

that for all 𝑇 > 𝑇 *, the manipulation at horizon 𝑇 satisfies:

P(𝑘1,𝑘2)∼(x*
1,x

*
2)

[𝑘1 = 𝑘2] ≥ 1 − 𝜅

for any two optimal strategies x*
1,x

*
2. In other words, manipulation is the same under all

optimal strategies for the principal if these strategies are manipulation-invariant. We can then

state:
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Theorem 3.1.2. There exists a set 𝒫 ⊂ R2
+×(−1, 1) of measure zero,6 such that for all (𝜀, 𝜆, 𝑏) ̸∈ 𝒫 ,

the principal’s optimal strategies are manipulation-invariant.

Manipulation-invariance of the principal’s strategies guarantees that, with high probability,

our welfare analysis (i.e., the number of agents who mislearn the state) does not depend on the

strategy the principal chooses or the realization of the signals or actions during the learning

process, as 𝑇 → ∞. Because of Theorem 3.1.2, we can refer without ambiguity to the “number

of manipulated agents” in the principal’s optimal strategy. Note that it may be possible that

different agents are manipulated under different optimal principal strategies but the total

number of manipulated agents remains unchanged.

DeGroot Centrality

We characterize manipulation in an arbitrary network by developing a centrality measure

called DeGroot centrality, which is closely related to the familiar eigenvector, Katz-Bonacich,

and PageRank centrality measures from the social learning literature. A definition that allows

for a simple visualization of DeGroot centrality is based on weighted walks: fix the weighted

social network G, its matrix representation W, and its unweighted counterpart network G*

(see Section 3.1.2). A walk between agents 𝑖 and 𝑗 is any directed path 𝑊 = 𝑖 → 𝑣1 → 𝑣2 →

. . . → 𝑣𝑘 → 𝑗 such that all links exist in the unweighted social network G*.7 The weight of a

walk 𝑊 is given by:

𝑤𝑊 =
∏︁

(𝑣𝑖→𝑣𝑖+1)∈𝑊

𝑤𝑣𝑖→𝑣𝑖+1

We say that a walk 𝑊 is stubborn-avoiding if none of the agents along the walk are stubborn.

Let 𝒲𝑖𝑗 be the (countable) set of all stubborn-avoiding walks (of any length) between agents 𝑖

and 𝑗.8 Recall the vector 𝛾 from Section 3.3.3; we will refer to this as the influence parameter

6The condition that (𝜀, 𝜆, 𝑏) must lie outside 𝒫 is often referred to as a genericity condition, where we say that
(𝜀, 𝜆, 𝑏) are generic if they satisfy this property. Its purpose is to eliminate knife-edge cases where specifically
chosen parameters may make some agents indifferent between multiple actions, but if perturbed just slightly,
the agent prefers a unique action. Another interpretation of the genericity condition is that provided (𝜀, 𝜆, 𝑏)
are drawn randomly from a smooth distribution over some subset of R2

+ × (−1, 1), then with probability 1 the
principal’s optimal strategies will be manipulation-invariant.

7Note that by “directed path” we allow for the possibility that 𝑣𝑖 = 𝑣𝑗 for 𝑖 ̸= 𝑗 along the walk (i.e., repeated
vertices).

8By convention, any walk containing a stubborn agent will necessarily have weight zero, so taking 𝒲𝑖𝑗 to be
the set of all walks gives identical results, but makes it easier to misapply the result (by including walks that pass
through stubborn agents, and failing to zero the weight of the entire walk).
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for the principal, which directly depends on the choice of interference x*. We now define our

key centrality measure:

Definition 3.1.2. The DeGroot centrality of agent 𝑖 is equal to:

𝒟𝑖(𝛾) =
𝑛∑︁
𝑗=1

⎛⎝𝜃𝑗𝛾𝑗 ∑︁
𝑊∈𝒲𝑖𝑗

𝑤𝑊

⎞⎠
Our centrality measures captures the level of influence that other DeGroot agents have on

agent 𝑖’s own belief. The next proposition shows that this centrality measure, applied to any

agent 𝑖 is exactly equal to that agent’s belief of the incorrect state:

Proposition 3.1.2. The DeGroot centrality of agent 𝑖 is equal to her limiting belief 𝜋𝑖,∞(𝑅) of the

incorrect state 𝑅 when the principal exerts influence 𝛾, i.e., 𝒟(𝛾) = (I−W)−1(𝛾 ⊙ 𝜃).

Proposition 3.1.2 therefore establishes that the DeGroot centrality of agent 𝑖, defined as the

weighted-sum of all stubborn-avoiding walks to other DeGroot agents, corresponds precisely to

her belief in the incorrect state 𝑅, as given by Theorem 3.1.1. Moreover, the DeGroot centrality

of an agent 𝑖 can also be related to the centralities of her neighbors via the following recursive

relationship:

𝒟𝑖(𝛾) = 𝜃𝑖𝛾𝑖 +
𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝒟𝑗(𝛾)

where by definition the DeGroot centrality of a stubborn agent is 0. We provide an example of

how to apply both the weighted-walk and recursive definitions of DeGroot centrality, and their

equivalence to beliefs of the incorrect state in appendix A.

Discussion. As we mentioned before, our definition of centrality shares some similarities with

other measures in the literature. There are three key parts of the DeGroot centrality definition:

(i) longer walks are discounted more than shorter walks (i.e., closer friends have more impact

than those further away), (ii) there is differentiation between agents who are influenced by

the principal (targeted DeGroots) and those who are not (stubborn agents and non-targeted

DeGroots), and (iii) there is a normalization of the weights so that more neighbors means less

influence per neighbor (i.e., the sum of influence weights is always 1). Table 3.2 illustrate which

of these properties are shared in eigenvector, Katz-Bonacich, and PageRank centrality.

91



Centrality Discounted Walks Asymmetric Influence Normalized

Eigenvector 7 7 7

Katz-Bonacich 3 7 7

PageRank 3 7 3

DeGroot 3 3 3

Table 3.2. Comparison of Centrality Measures.

In particular, none of the centrality measures capture property (ii). This property highlights

the fact that the other measures solely describe graph or network properties, whereas DeGroot

centrality captures both network properties and the principal’s strategy: DeGroot agents who

are targeted by the principal contribute towards the centrality of an agent, but those who

are not targeted do not. In that sense, different nodes in the network exert different types of

influence on the centrality measure of other nodes, and that type is in turn dependent on the

targeting strategy. For instance, PageRank centralities do not change if the network remains

the same; on the other hand, if the principal plays some network strategy x1 instead of x2, the

DeGroot centralities will change, even if the underlying network itself does not. Thus, the

defining feature of DeGroot centrality is its ability to not only capture network structure, but

also capture how the strategic provision of information shapes centrality.

Finally, we note that property (i) is also more general in DeGroot centrality than in the

typical Katz-Bonacich or PageRank centrality sense: Because every node represents an agent

with a heterogeneous 𝜃𝑖, the discount (or dampening factor) applied in each step of the walk

is different from one node to the next, and thus provides some additional subtlety which is

explored in Section 3.1.4.

3.1.4 Principal’s Optimal Influence

Throughout Section 3.1.3, we have characterized the learning dynamics of the population,

holding fixed the influence of a possibly strategic principal. A key determinant of manipulation,

however, is how a strategic principal chooses his influence to maximize his own payoff. Holding

the network topology fixed, we consider how changes in the environment affect the principal’s

strategy, agents’ beliefs, and the persistence of manipulation. In the next section (Section 3.1.5),

we study how these elements are affected by the network topology.

We will say that society is impervious to manipulation if no agents are manipulated in
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the principal’s optimal strategy; otherwise it is susceptible.9 Our first comparative static

analyzes the effects from changing cultural norms relating to information assimilation and

social learning. The second demonstrates how influence costs and the relative payoffs from

taking the incorrect vs. correct action shape the principal’s intervention, sometimes in

counterintuitive ways. Underlying both of these is the tension between a principal trying

to spread misinformation, and stubborn agents spreading knowledge of the true state.

Comparative Statics on Personal Experience: Cultural Norms

This section examines the effect that the personal experience term 𝜃 has on manipulation. The

way agents take into account their own experience relative to the opinions of others can vary

substantially. An agent might put little weight on her own experience relative to what she hears

from her friends (because, for example, she believes she is not well-informed about the topic

at hand). Conversely, an agent might weigh her own experience much higher compared to the

information she obtains from her friends, or she can simply weigh her experience similarly to

her friends’ beliefs. As we show, these variations lead to substantial differences when it comes

to manipulation. In what follows, we study what happens for a fixed network structure as the

vector of experience weights 𝜃 changes.

Definition 3.1.3 (Network Preservation). We say (G′,𝜃′) is a network preservation of (G,𝜃) if

𝑤′
𝑖𝑗 = 𝑤𝑖𝑗(1 − 𝜃′𝑖)/(1 − 𝜃𝑖) for all DeGroot agents 𝑖.

A network preservation corresponds to a shifting of weights between an agent’s own

experience and that of her neighbors’ opinions, while preserving the relative proportions of the

network weights. We call this network preservation homogeneous if it is a network preservation

with 𝜃 = 𝜃1 and 𝜃′ = 𝜃′1 (i.e., all agents have the same experience weights before and after).

The homogeneous network preservation corresponds to a unilateral shift in attitudes about

the importance of one’s own perceptions. Most naturally, in a homogeneous network, 𝜃 can be

thought of an attitude parameter tuned to the cultural norms of the population.

For the following result, we fix the homogeneous networkG𝜃 with an arbitrary self-experience

weight 𝜃 = 𝜃1. For simplicity, we make the additional assumptions that in G𝜃: (i) there exists at

9This implies that manipulation is a binary property of the network: it either exists or not. Section 3.1.6 extends
this definition to consider how many agents are manipulated.
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least one stubborn agent in the population, and (ii) there is at least one DeGroot not adjacent

to a stubborn agent:

Theorem 3.1.3. Let G be an arbitrary network with homogenous 𝜃, and let G𝜃′ denote the

network preservation of G where all agents have 𝜃′. There exist cutoffs 0 < 𝜃 < 𝜃* < 𝜃 < 1 such

that:

(a) If 𝜃′ ∈ (0, 𝜃), the network G𝜃′ is impervious for any 𝜀 > 0.

(b) The network G𝜃′ is impervious for 𝜃′ ∈ (𝜃*, 𝜃) only if it is impervious for 𝜃′ ∈ (𝜃*, 1) for any

𝜀 > 0.

(c) If 𝑏 > 1/2,10 there exists 𝜀 > 0 such that when 𝜃′ ∈ (𝜃*, 𝜃) the network G𝜃′ is susceptible, but

when 𝜃 ∈ (𝜃, 1) the network G𝜃′ is impervious.

Theorem 3.1.3 shows that the comparative statics on manipulation are non-monotone in

𝜃. A society that supports an intermediate amount of weight on each agent’s own experience

is the society that is most susceptible to manipulation. While social learning can be both

helpful and detrimental to uncovering truth, it is most harmful (in the presence of strategic

interventions) when used in moderation.

Manipulation becomes impossible when a society is more inclined towards herding (i.e.,

very small 𝜃), as it relies entirely on social learning. If the community has at least one stubborn

agent, then the beliefs of that agent spread throughout the network. This may come at the cost

of agents dismissing accurate information from organic news sources and thus learning more

slowly, but guarantees agents will eventually find the truth. Conversely, social learning plays

little role in a culture that supports strong individuality and narcissism (i.e., very large 𝜃). Thus,

the principal cannot exploit social network effects to propagate his message, i.e., the principal

is no longer able to reach a large population by only targeting a small subset of agents, and

instead has to reach all agents directly (e.g., door-to-door campaigning), which is costly. With

intermediate 𝜃, however, agents both incorporate their own experience and employ social

learning, allowing the principal to leverage social forces to spread his message without getting

completely drowned out by the stubborn agents.

10When 𝑏 is small, the network can exhibit no manipulation for any 𝜃′ or a “phase transition” instead: there
exists 𝜃** such that 𝜃′ < 𝜃** is impervious but 𝜃′ > 𝜃** is susceptible.
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The next result considers heterogeneous settings and stands in contrast to Theorem 3.1.3.

Let us consider a set 𝐷1 of DeGroot agents with 𝜃1 and a set 𝐷2 of DeGroot agents with 𝜃2.

Proposition 3.1.3. Suppose agents in 𝐷1 are strongly connected and there exists at least one

link from 𝐷2 to 𝐷1. For fixed 𝜃2, there exists �̄� such that for all 𝑏 > �̄�, even as 𝜃1 → 0, all DeGroot

agents (including those in 𝐷1) are manipulated for sufficiently small 𝜀. On the other hand, if

𝜃1 = 𝜃2 = 𝜃, for every 𝑏 < 1 there exists �̄� such that for all 𝜃 < �̄�, the network is impervious if there

is at least one stubborn agent in the network, regardless of 𝜀.

In heterogeneous settings (where there might be more than one value of 𝜃 in society), even

if some agents have a small 𝜃 and discount all news from the principal, they can still mislearn

the state if other agents hold high 𝜃. Those agents discounting their own experiences are now

manipulated because they listen mostly to the experiences of others, who may be voicing the

beliefs of stubborn agents, but may also be voicing the misinformation they receive from the

principal.

Network Formation Considerations. The above observations highlight a novel channel for

the formation of social networks as a means for avoiding misinformation. We briefly detour

to consider how agents in a society might choose the weights to assign to their personal

experiences so as to maximize their chances of learning the correct state. Formally, if an agent

learning through DeGroot-style heuristics could choose her 𝜃𝑖, how should she do so?

Note that if other agents are relying strongly on social learning over personal experience

(i.e., low 𝜃𝑗), then agent 𝑖 can benefit by setting 𝜃𝑖 ≈ 0 as well to receive influence from only

those agents who know the truth with certainty. However, as other agents increase their 𝜃𝑗,

agent 𝑖will conform to the beliefs of her immediate peers who, as observed in Proposition 3.1.3,

may or may not be more amenable to misinformation. In a more individualistic culture, if

agent 𝑖 believes she is more discerning of the news relative to her peers, she is better off picking

a larger 𝜃𝑖 herself when the values of 𝜃𝑗 are large.

This defines a coordination game where agents try to arrive at a cultural standard for 𝜃 by

matching others’ choices. When agent 𝑖 does not match this cultural norm, she risks making

a naive decision while ignoring (smart) stubborn agents in the population (picking 𝜃𝑖 high

when others pick low) or risks listening to bad advice when knowing better herself (picking

𝜃𝑖 low when others pick high). Loosely, the equilibria of this game correspond to the entire
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spectrum of homogenous 𝜃. But as we saw in Theorem 3.1.3, some equilibria can be more

socially inefficient than others. For instance, when agents choose an intermediate 𝜃 that splits

learning between personal experience and social forces, manipulation is generally worst for

society.

Influence Costs and Payoff Asymmetry

We conclude this section by considering how manipulation is affected by the cost of sending

misinformation and the payoff asymmetry under the two different actions 𝑆 and 𝑅. Recall that

𝜀 captures the per-agent cost of sending misinformation,11 whereas 𝑏 parametrizes the agent’s

natural affinity toward one action or the other.12 We obtain the following comparative static:

Proposition 3.1.4. When 𝜀 increases, the number of manipulated agents never increases (but

may decrease). Similarly, if the network is susceptible with payoff asymmetry 𝑏, it is still

susceptible when increasing 𝑏.

Perhaps counterintuitively, however, increases in 𝑏 can create incentives for the principal to

target fewer agents and decrease manipulation as a whole, as seen in the following example:

Example 3.1.1 (Targeting “Low Hanging” Fruit). Consider the social network consisting of

three DeGroots and one stubborn agent arranged along a bidirectional line as in Figure 3-1. Let

𝜀 ∈ (1, 3/2) throughout. All DeGroot agents weigh their neighbors and themselves according

to 𝜃𝑖 = 𝛼𝑖𝑗 = 1/(1 + |𝑁(𝑖)|). First, suppose that 𝑏 = 0.3, so the belief cutoff to take action 𝑅 is

given by 𝜋cutoff(𝑅) = 0.35. Then it can be shown that the principal manipulates all three agents

by sending misinformation to agents 1 and 3, which yields payoff 3 − 2𝜀 > 0.13 Now suppose 𝑏

increases to 𝑏 = 0.6, so the belief cutoff to take action 𝑅 is given by only 𝜋cutoff(𝑅) = 0.2. Then,

one can show the principal manipulates only two of the three agents by sending misinformation

to only one agent (for instance, by manipulating agents 1 and 2 through sending signals to agent

1), which yields a payoff of 2 − 𝜀 > 3 − 2𝜀. Thus, while manipulation became “easier” because

the cutoff required to take the wrong action had decreased, the number of manipulated agents

also decreases from 3 to 2.
11More general cost structures are considered in Section 3.1.6.
12For instance, if consuming a risky product provides more disutility than a safe product provides utility, then

𝑏 > 0, indicating that the agent must be (much) more confident in the product’s safety to choose action 𝑆.
13To see this, observe that sending more signals cannot improve the principal’s payoff, and targeting only a

single agent leads to only that agent being manipulated when 𝑏 = 0.3, which is worse than targeting no one since
𝜀 > 1. A more formal proof is given in Appendix B.1.2.
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Figure 3-1. Network for Example 3.1.1 (Solid = DeGroot, Shaded = Stubborn).

3.1.5 Network Topology

We now turn our attention to examine how the topology of the network and the placement

of stubborn agents affect manipulation. We provide a classification of networks into dense

and sparse topologies, and compare these structures in terms of what is required to make

them impervious. The upshot is that a constant number of these stubborn agents located

anywhere in a dense network makes it impervious. Sparse networks on the other hand require

more resources (number of stubborn agents needed) and planning (where to place these

agents). Even when the number of stubborn agents is enough to make the network impervious,

the location of these agents have to be carefully chosen. Further, it is possible that there are

scenarios where the number of stubborn agents required grows with the size of the network,

making imperviousness more difficult to achieve.

Dense Networks

We start by defining what it means for a network to be dense. Recall that 𝒲𝑖𝑗 is the set of

all stubborn-avoiding walks between 𝑖 and 𝑗. To this end, we define the log-diameter of the

network G as:

𝑑G ≡ max
𝑖,𝑗

min
𝑊∈𝒲𝑖𝑗

∑︁
(𝑘→ℓ)∈𝑊

− log(𝑤𝑘ℓ)

where the weights 𝑤𝑖𝑗 are from the matrix-representation W of G (see Section 3.1.2). Using

this, we can define the density of a network as follows:

Definition 3.1.4 (Dense Networks). We say that network G is 𝛿-dense if it has a log-diameter of

at most log(𝑛+ 𝛿).

We can then utilize this definition to give the following result:

Theorem 3.1.4 (Constant Number of Stubborn Agents). For every 𝛿, there exists a universal

constant 𝑚*(𝛿) such that every network G which is 𝛿-dense and contains at least 𝑚*(𝛿) stubborn
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agents is impervious to manipulation.14

Theorem 3.1.4 implies that a vanishingly small fraction of stubborn agents in the population

is all that is required to make the principal unable to manipulate beliefs. Moreover, if the

positions of those stubborn agents were to be chosen by an adversary, manipulation will

still not be possible as long as the network G satisfies the log-diameter condition for every

placement of 𝑚*(𝛿) stubborn agents. Finally, note that the shortest path between agent 𝑖 and

every stubborn agent being less than log(𝑛+ 𝛿) does not automatically imply that agent 𝑖 will

not be manipulated. This needs to hold uniformly across all DeGroot agents, otherwise the

log-diameter condition is not satisfied. Example 4 in Appendix B.3.2 demonstrates how a

DeGroot agent that is directly connected to a stubborn agent can still believe the incorrect

state as a result of her living in a DeGroot bubble where echo chamber effects are rampant.

Theorem 3.1.4 guarantees that if the number of stubborn agents meets the threshold 𝑚*(𝛿)

in a 𝛿-dense network then there will never be manipulation, but this bound may not be tight. In

Appendix B.1.4, we perform a numerical study of how the number of stubborn agents and their

placements might affect manipulation in practice, as compared to the log-diameter bound

provided in Theorem 3.1.4.

We conclude this section by mentioning a few examples of interest where one can easily

apply the result of Theorem 3.1.4, along with one cautionary example where the result cannot

be utilized. These examples are worked out in detail in Appendix B.1.3.

(i) The complete network: The complete network is the most dense network, and is impervious

provided the number of stubborn agents satisfies 𝑚 ≥ (1 + 𝑏)/(1 − 𝑏).

(ii) Influential star network: In the influential star network, most agents listen to a single

(central) agent. This network can be impervious even if the central agent herself is

DeGroot. This occurs because the network is sufficiently dense, as it is possible to get

from one agent to another by passing through that central agent. We can then apply

Theorem 3.1.4 and show that 𝑚 ≥ 2(1 + 𝑏)/(1 − 𝑏) stubborn agents are sufficient for

imperviousness, irrespective of their location.

(iii) Echo chamber network: An echo-chamber network is a network where DeGroot agents

communicate almost-exclusively with other DeGroot agents. For instance, consider two
14For the interested reader, Appendix B.1.1 offers a stronger version of Theorem 3.1.4 that requires satisfying a

weaker notion of local density everywhere in the network.
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cliques of size 𝑛/2, one of all DeGroots and one of all stubborn agents, with a single

connection between them. The unweighted network G* has diameter 3 for all 𝑛, but

admits the same manipulation as in Example B.1.4, despite a linear number of stubborn

agents. It is easy to check the shortest path between most DeGroots and a stubborn agent

is roughly log(𝑛2/2), so does not satisfy the log-diameter condition of Theorem 3.1.4 for

any 𝛿.

Susceptible Networks: An Example

As a prelude to our discussion of sparse networks, we demonstrate the traits that make

such networks susceptible to manipulation by considering the directed ring network as a

prototypical example. We follow this up with a more general characterization in Section 3.1.5.

In an episode of the show Planet Money on NPR, the political consultant David Goldstein

discusses how firms like Cambridge Analytica interfere in elections by targeting agents with

messages in order to push them towards specific actions, and how this strategy can be profitable

even if it fails to sway most agents who receive such messages:15

“You might be immune and the guy next to you might be immune, and the guy next

to that person might be immune, but if I only need to change [the minds of] 3% of

people in order to affect a given result, then I can go 97 people down and not have

an effect but as long as I have an effect on 1, 2, and 3, then I can literally change the

world.”

Goldstein’s quote was made in a different context from the one we consider, but it perfectly

encapsulates the example of the ring network in Figure 3-2. In this example, the principal

targets several agents with misinformation despite knowing that some of these agents will not

be directly affected and will still figure out the correct state of the world. This targeting however

reverberates through the network, and allows the principal to manipulate agents at the end of

the ring without sending them any messages, leading to an overall lower cost of manipulation.

We now discuss this example in detail.

Consider a ring network with homogenous 𝜃𝑖 = 𝜃. Network weights are given by 𝛼𝑖𝑗 = 1 − 𝜃

for 𝑗 = 𝑖 − 1, and 𝛼𝑖𝑗 = 0 for all other 𝑗. Under this assumption, each DeGroot listens to her

15This quote comes at the 16:30 minute mark at https://www.npr.org/2019/05/24/726536757/
episode-915-how-to-meddle-in-an-election
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own news and the opinion of her immediate neighbor, who in turn listens to her immediate

neighbor, etc. Consider the following stubborn agent placements:

1. Continuous chain: Assume the first 𝑚 agents on the ring network are all stubborn (i.e.,

the stubborn agents talk mostly with other stubborn agents), and the remaining agents

are DeGroots.

2. Sprinkled: The stubborn agents are “sprinkled” throughout the network so that the

distance of any DeGroot agent 𝑖 to the nearest stubborn agent is minimized.

Continuous Stubborn Agent Chain. For illustration, consider the case of a continuous

chain of stubborn agents with 𝜃 = 1
𝑛+1

and 𝑚 ≪ 𝑛, so that there are fewer stubborn agents

than DeGroots. Suppose the principal solves an easier influence problem along only a single

dimension: (i) he exerts influence along a continuous arc in the ring, and then does not

exert influence for the remaining agents, and (ii) he wants to induce the maximal number of

manipulated agents. This is not necessarily the principal’s optimal network strategy, but we

use this to show that there is some strategy that beats x = 0, and therefore there must be some

manipulation by Corollary B.1.1. An illustration of this strategy is given in Figure 3-2.

Consider DeGroot agent 𝑖 at location 𝜏 away from the last stubborn agent. We can write her

belief in terms of her DeGroot centrality 𝒟𝑖(𝛾), a function of 𝛾:

𝒟𝑖(𝛾) ∼
𝜏−1∑︁
𝑗=0

𝑛𝑗

(𝑛+ 1)𝑗+1
𝛾𝜏−𝑗

If the principal has chosen 𝛾𝑖 = 1 for all previous agents, then the above reduces to:

𝒟𝑖(𝛾) ∼ 1 −
(︂

𝑛

𝑛+ 1

)︂𝜏
when 𝜏 is sublinear, 𝒟𝑖(𝛾) → 0, whereas when 𝜏 = 𝛼𝑛, we get 𝒟𝑖(𝛾) → 1 − 𝑒−𝛼. Recalling that

agents with 𝒟𝑖(𝛾) > (1 − 𝑏)/2 will choose the incorrect action, we find that all but log
(︀

2
1+𝑏

)︀
proportion of the DeGroot agents are manipulated when 𝑏 ≥ (2 − 𝑒)/𝑒. Therefore, even with a

growing population of stubborn agents, a linear number of DeGroot agents are manipulated.

When stubborn agents form a continuous chain, the network is fundamentally equivalent

to one where the chain is replaced by a single stubborn agent who knows the truth at the end
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Figure 3-2. Beliefs in the Ring Network. A directed arrow from node 𝑖 to node 𝑗 indicates that 𝑖
listens to 𝑗. Shaded nodes represent stubborn agents.

of this chain. The long chain of DeGroot agents who receive misinformation drowns out the

beliefs of the DeGroots at the beginning of the ring.

Sprinkled Stubborn Agents. We now consider the effects of stubborn agent placement by

“sprinkling” them throughout the ring. Unlike with the continuous chain, in this case, we

obtain the following result:

Proposition 3.1.5. There exists a constant 𝑚* such that if there are 𝑚 > 𝑚* sprinkled stubborn

agents in the ring network, it is impervious to manipulation for any 𝑛.

In contrast to Theorem 3.1.4, Proposition 3.1.5 imposes firm restrictions on the placement

of stubborn agents, but similar to that theorem, it shows that only a constant number are

needed. Recall in dense networks, neither the placement nor the number of stubborn agents

have to meet particularly demanding conditions to guarantee imperviousness. However, in

the ring network, placement becomes crucial, despite still only requiring a small fraction of

stubborn agents to avoid manipulation. Although the ring network is sparse, because agents

largely discount their own experiences (𝜃 ∼ 1/𝑛) and echo chambers are limited,16 a few

optimally-placed stubborn agents limit the spread of misinformation.

Recall that because 𝜃 = 1/(𝑛 + 1), as the network gets large, agents mostly dismiss their

16Because opinions only flow in one direction, echo chambers are not too strong. Here, sparsity is the main
driver of manipulation, and thus requires special placement to avoid it. In the case of other sparse networks, such
as the bidirectional ring or cliques of all DeGroots (e.g., Example B.1.4), echo chambers can be much worse and
drive beliefs even farther away from truth.
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own experiences. A more natural assumption is to suppose agents weigh all social influences

equally with their own experience. Formally, we consider the equal-influence weighting given

by:

𝜃𝑖 = 𝛼𝑖𝑗 =
1

1 + |𝑁(𝑖)|
(3.3)

for DeGroots 𝑖 and all 𝑗 ∈ 𝑁(𝑖). While in the complete network this corresponds to setting

𝜃𝑖 = 1/(𝑛 + 1) as before, in the ring this instead admits weighting 𝜃𝑖 = 𝜃 = 𝛼𝑖(𝑖−1) = 1/2. In

contrast to Proposition 3.1.5, when DeGroots listen more to their own news, we obtain a result

in stark contrast to the case of dense networks:

Proposition 3.1.6. Consider the ring network with equal-influence weighting and 𝜀 < 1. Then

there exists a constant 𝑐 > 0,17 such that the network is impervious with 𝑐 · 𝑛 sprinkled stubborn

agents agents, but is susceptible if there are fewer than 𝑐 ·𝑛 stubborn agents or their configuration

is not sprinkled.

In the equal-influence ring network, imperviousness comes with stringent requirements

on both resources (number of stubborn agents) and planning (their placement). First, as the

network grows in size, the number of stubborn agents must also grow in proportion, so that

a constant fraction of the population is still stubborn. Second, the location of the stubborn

agents is paramount to preventing manipulation. We summarize these findings in Table 3.3.

Network Resources Planning # Manipulated (when possible)

Dense Network Θ(1) Anywhere Ω(1)
Ring Network Θ(1) Sprinkled Ω(𝑛)

Equal-Influence Ring Θ(𝑛) Sprinkled Ω(𝑛)

Table 3.3. Properties based on Network Density.

The principal’s ability to manipulate in networks that do not satisfy the log-diameter

condition of Theorem 3.1.4 is not unique to the ring network. In addition to the more general

characterization of sparse networks in the next section, Example B.1.6 in Appendix B.1.3

provides another demonstration of susceptibility on the star network with equal-influence

weighting.

17Here, and throughout the entire paper, by constant we mean 𝑐 ∈ Θ(1), so there exist 𝛽, 𝛽 independent of 𝑛
such that 𝛽 ≤ 𝑐 ≤ 𝛽.
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Figure 3-3. An illustration of Proposition 3.1.5 with “sprinkled” stubborn agents.

Sparse Networks

We now generalize the insights of Section 3.1.5 to a wide array of sparse networks. First, we

consider a continuum of networks that are parametrized by a sparsity parameter 𝜂, and proceed

to give a characterization of manipulation for all 𝜂. Second, we provide a sufficient condition

for imperviousness in symmetric networks. Because symmetric networks may either be dense

(e.g., complete) or sparse (e.g., ring), this result provides a more complete understanding

of imperviousness across different levels of sparsity. Our main findings highlight how the

requirements on resources and planning become more demanding as the network becomes

more sparse, corroborating the results from Section 3.1.5.

Convex Combination of Ring and Complete Networks Let us fix the stubborn and DeGroot

agents in the population and consider two different network structures G𝑐 = (𝜃𝑐,W𝑐) and

G𝑟 = (𝜃𝑟,W𝑟), corresponding to the complete network and the ring network with equal-

influence weighting. By Theorem 3.1.4 and Example B.1.2, we know G𝑐 is impervious to

manipulation with a constant number of stubborn agents (located anywhere). On the other

hand, in G𝑟, an unbounded (in 𝑛) number of agents are manipulated whenever the number of

stubborn agents is sublinear or these agents are not in specific network positions.

Now consider parameter 𝜂 ∈ [0, 1] and define the network G𝜂 as 𝜃𝑖 = 𝜂 · 𝜃𝑐𝑖 + (1 − 𝜂) · 𝜃𝑟𝑖 , and

𝛼𝑖𝑗 = 𝜂 · 𝛼𝑑𝑖𝑗 + (1 − 𝜂) · 𝛼𝑠𝑖𝑗 for all 𝑖, 𝑗. Note that as 𝜂 varies from 0 to 1, the network becomes

more dense and, by construction, the network is susceptible at 𝜂 = 0 but impervious at 𝜂 = 1.

The following result provides the full characterization for intermediate 𝜂:
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Theorem 3.1.5. Suppose there are either 𝑜(𝑛) stubborn agents or that these agents form a

continuous chain in the ring. There exists 𝜂* such that: (i) if 𝜂 < 𝜂*, G𝜂 the number of

manipulated agents grows unboundedly in the size of the network 𝑛, whereas (ii) if 𝜂 > 𝜂*,

G𝜂 is impervious to manipulation.

Theorem 3.1.5 shows that a phase transition exists between dense and sparse networks:

when the network gets sufficiently dense, all opportunities for manipulation suddenly vanish.

Similarly, it shows the results of Section 3.1.5 are fairly robust: qualitative conclusions for the

ring network generalize to sparse networks even as they become slightly more dense.

Symmetric Networks of Degree 𝑘 We now consider symmetric networks, where any two

agents have identical network positions. In particular, for any directed unweighted network

G*, we say G* is symmetric if and only if for every pair of vertices 𝑖, 𝑗, there exists a function

𝑓 : {1, . . . , 𝑛} → {1, . . . , 𝑛} such that 𝑓(𝑖) = 𝑗 and 𝑘 → ℓ exists in G* if and only if 𝑓(𝑘) → 𝑓(ℓ)

exists in G*.18 We say a network G is symmetric if the unweighted analog, G*, is symmetric

and {𝛼𝑖𝑗, 𝜃𝑖} satisfy the equal-influence weighting (Equation 3.3) for all links 𝑖→ 𝑗 that exist in

G* (i.e., 𝑗 ∈ 𝑁(𝑖) whenever 𝑖→ 𝑗 exists in G*, and 𝛼𝑖𝑗 = 0 if 𝑗 ̸∈ 𝑁(𝑖)).

In other words, a symmetric network G is one where all agents are symmetric in the

unweighted sense, and employ equal-influence weighting. When the network is strongly

connected, 𝑘-regularity (i.e., each agent has 𝑘 neighbors) is a necessary (but not sufficient)

condition for symmetry, so in particular we have 𝜃𝑖 = 𝛼𝑖𝑗 = 1/(1 + 𝑘) for all agents 𝑖 whenever

there exists a link 𝑖 → 𝑗. Therefore, symmetric networks can be partitioned into classes of

“degree-𝑘” symmetric networks. We will also say𝐾 is a symmetric placement of stubborn agents

if the induced subgraph G*∖𝐾 is symmetric.

Suppose that a fraction 𝜑 of all the links going into stubborn agents are links between

stubborn and DeGroot agents. Then, within the class of symmetric networks, we obtain the

following characterization:

Theorem 3.1.6. Suppose G is a degree-𝑘 symmetric network with a symmetric placement of

𝑚 = |𝐾| stubborn agents. Then the network is impervious to manipulation if 𝜑𝑘𝑚/(𝑛−𝑚) =

𝜑𝑘|𝐾|/|𝐷| ≥ (1 + 𝑏)/(1 − 𝑏).

Theorem 3.1.6 further demonstrates how sparsity tends to make manipulation easier.

18This is simply the definition of a graph automorphism.
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Here the degree of the agents, 𝑘, functions as a measure of sparsity, and along with the

ratio of stubborn agents to DeGroots in the population, 𝑚/(𝑛−𝑚) = |𝐾|/|𝐷|, determines a

sufficiency condition for imperviousness. Moreover, Theorem 3.1.6 highlights how stubborn

agent placement becomes more demanding with sparsity, on two fronts: first, the placement

must be symmetric, and cannot be arbitrarily chosen, and second, the stubborn agents ought

to be placed in such a way that the links going from these agents to DeGroots (and vice-versa)

are maximized. Both of these requirements become more difficult as the network becomes

sparser.

The bound in Theorem 3.1.6 is in fact tight in many common network topologies. In the

case of the complete network, we have 𝜑𝑘 = |𝐷|, so 𝑚 ≥ (1 + 𝑏)/(1 − 𝑏), which is the exact

bound we saw in Example B.1.2. In this case, any placement of stubborn agents is symmetric

and has the same 𝜑, so the restriction in Theorem 3.1.6 is immaterial. The result is also tight

in the ring network, where 𝑘 = 1, so 𝑚 needs to be linear in 𝑛 to avoid manipulation (as in

Proposition 3.1.6). Here, the symmetric placement is more challenging and requires careful

planning; unsurprisingly, the symmetric placement corresponds precisely to the “sprinkling”

arrangement of Section 3.1.5.

3.1.6 Extensions

In an effort to illustrate how social learning changes in the presence of strategic interventions,

we have presented a parsimonious framework with a number of simplifying assumptions. In

this section, we consider how the results and conclusions change in the face of additional

complications. While these extensions offer further areas of exploration and more detailed

analyses, they also demonstrate how our simplified framework can be applied without much

loss of generality.

Learning the Principal’s Type

In Section 3.1.2, we have assumed that agents share their beliefs about the state with their

neighbors, but not about the type of the principal. We now endow the DeGroot agents with

some degree of skepticism. Agents are aware of the possibility of a strategic principal, and in

addition to learning about the state, they also update their beliefs on whether the news they

receive is organic or strategic. Does this skepticism always decrease manipulation?
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To provide an answer to this, we introduce a coupled belief dynamics process for DeGroot

agent who may be aware of possible misinformation. In addition to sharing beliefs 𝜋𝑖,𝑡 about

the state, we assume agents also share 𝜇𝑖,𝑡, their belief that the principal is truthful instead of

strategic. Every DeGroot agent has prior 𝜇𝑖,0 about whether their news source is entirely organic,

and personal-experience weight �̃�𝑖 about this prior. Moreover, we assume that DeGroot agents

exchange beliefs about the principal’s type according to the influence matrix W̃ (where W̃ is

not restricted to be equal to W).

The coupled dynamics process occurs as follows. Agents endogenously choose how much

weight to put on the belief they form from reading the news. This weight is directly proportional

to how trustworthy they believe the news source is. If an agent believes much of the news

they receive is misinformation sent by the principal, then the agent puts much more weight

on social learning and largely dismisses the news she observes. Thus, instead of putting a

constant weight 𝜃𝑖 on their own news, DeGroot agents put 𝜇𝑖,𝑡𝜃𝑖 weight on their personal news

update. Formally, the belief update process obeys the following law of motion:

𝜇𝑖,𝑡+1 = �̃�𝑖𝜇𝑖,0 +
𝑛∑︁
𝑗=1

�̃�𝑖𝑗𝜇𝑗,𝑡

𝜋𝑖,𝑡+1 = 𝜇𝑖,𝑡𝜃𝑖 · BU(ℎ𝑖,𝑡) +
1 − 𝜃𝑖𝜇𝑖,𝑡

1 − 𝜃𝑖

𝑛∑︁
𝑗=1

𝛼𝑖𝑗𝜋𝑗,𝑡

Note that as 𝜇𝑖,𝑡 → 1, we recover the baseline model from Section 3.1.2, whereas when

𝜇𝑖,𝑡 → 0, agents dismiss their personal experience entirely. With this formulation, the next

result shows how we can reduce this belief process to the baseline model:

Proposition 3.1.7. The coupled-belief dynamics process is equivalent to the baseline model

where agents use personal-experience weights 𝜃′ given by:

𝜃′ = 𝜃 ⊙ (I− W̃)−1(𝜇0 ⊙ �̃�)

and the corresponding network preservation on W.

Proposition 3.1.7 shows how the personal weights of the belief update process can arise

endogenously when agents engage in a coupled belief update that considers the trustworthiness

of their own news. One can apply similar comparative statics as in Section 3.1.4 to understand
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how DeGroot skepticism affects limit beliefs about the state:

(a) Uniformly more skepticism about the veracity of information (i.e., lower 𝜇0) does not

necessarily lead to better outcomes (i.e., less manipulation): 𝜃′ is increasing in �̃�, and by

Theorem 3.1.3(c), it is possible for manipulation to increase when 𝜃 decreases. That being

said, sufficient skepticism across all agents leads to imperviousness by Theorem 3.1.3(a),

when there is at least one stubborn agent in the population.

(b) For the same reason as (a), the baseline model may protect more agents from manipulation

than this revised model where agents take into account the possibility of misinformation.

(c) Extreme skepticism (as opposed to just more skepticism) about the veracity of information

does not necessarily protect a given agent. By Proposition 3.1.3, if other agents are less

skeptical, then this agent can still be manipulated by absorbing misinformation acquired

from social learning.

(d) However, when 𝜀 ≈ 0, additional skepticism about the accuracy of news always improves

the beliefs of DeGroot agents. These can be seen directly through the DeGroot centrality

expression, (I−W)−1(1𝐷 ⊙ 𝜃), and given that (I−W)−1 contains all non-negative entries,

it is monotone in 𝜃.

Alternative Cost Functions

We have assumed throughout that the principal’s cost function follows the form 𝑐(x) =
∑︀𝑛

𝑖=1 𝜀𝑥𝑖.

In particular, we have assumed costs are linear and homogenous across agents. We consider

two variants of this:

1. Non-linear specification: Suppose that 𝑐(x) = 𝐶 (
∑︀𝑛

𝑖=1 𝑥𝑖), but that 𝑐may not scale directly

with 𝑋 ≡
∑︀𝑛

𝑖=1 𝑥𝑖. In particular, there may be concave costs with the intervention: we

assume 𝐶 ′ > 0 but 𝐶 ′′ < 0, with 𝐶 ′(0) > 𝜀 and lim𝑋→∞𝐶 ′(𝑋) = 0. Similarly, there may

be convex costs with the intervention: we assume 𝐶 ′ > 0 and 𝐶 ′′ > 0, with 𝐶 ′(0) < 𝜀 and

lim𝑋→∞𝐶 ′(𝑋) = ∞.

2. Heterogenous costs: Certain agents may be more expensive to target than others, such as

celebrities or those who do not use social media, etc. Thus, we assume there is a vector of

costs 𝜀 = {𝜀𝑖}𝑛𝑖=1 so that 𝑐(x) = 𝜀 ∙ x.
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A number of results are completely unaffected by these changes, for example, Theorem 3.1.4 for

dense networks (Section 3.1.5), the characterization of manipulation in symmetric networks

(Section 3.1.5), and the comparative statics on 𝜃 (Section 3.1.4). This follows from the fact these

sufficiency conditions establish an upper bound on the DeGroot centralities of the agents in

the population, and thus hold independently of the principal’s costs for intervention.

More generally, however, changes in the cost function will change the scope of manipulation

(e.g., in the ring). Letx* be the optimal principal intervention with cost function 𝑐(x) =
∑︀𝑛

𝑖=1 𝜀𝑥𝑖

and 𝑋* =
∑︀𝑛

𝑖=1 𝑥
*
𝑖 . We provide the following comparative result relating these more general

cost functions to the one provided in Section 3.1.2:

Proposition 3.1.8. Let �̄� denote the (unique) crossing point of 𝐶(𝑋) and 𝜀𝑋 . If there is concave

cost and 𝑋* ≥ �̄� then manipulation never decreases; if there is convex cost and 𝑋* ≥ �̄�, then

manipulation never increases, whereas if 0 < 𝑋* < �̄�, the network is always susceptible.

The intuition for the result can be seen in Figure 3-4. When 𝑋* ≥ �̄�, concave costs

encourage the principal to expend more resources at lower marginal cost than in the linear

case, increasing manipulation; on the other hand, convex costs entice the principal to slow her

influence and save on higher marginal costs (similar to Example 3.1.1).

Lastly, we note the optimization problem admitting an exact characterization of the optimal

strategy (given in Appendix B.1.1) can be modified easily to account for heterogeneous 𝜀𝑖

without affecting the nature of the problem. In stylized examples such as the ring, star, or

complete network, the analysis can be applied as is by considering the average costs of sending

signals (i.e., 1
𝑛−𝑚

∑︀𝑛
𝑖=𝑚+1 𝜀𝑖) in place of 𝜀. As such, this generalization does not affect the

qualitative findings of this paper.

Extent of Manipulation

Throughout the paper, we have focused on conditions where manipulation occurs for at

least one agent (or none at all). In many contexts, a more appropriate metric is the number

of manipulated agents, possibly relative to the population size. While we provide some

characterization of the number of manipulated agents throughout (see Table 3.3), we present

here a technical reduction that shows how imperviousness can be easily generalized to this

problem.
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Figure 3-4. Concave vs. Convex Costs.

Definition 3.1.5. We say a network is 𝑘-impervious if there are 𝑘 or fewer manipulated agents.

Similarly, a 𝑘-cut subnetwork of a network G is a network obtained from coalescing a set 𝒦 of

(at most) 𝑘 vertices from the network (i.e., replacing all vertices in 𝒦 by a single vertex 𝑢) and

setting 𝛼𝑖𝑢 =
∑︀

𝑗∈𝒦 𝛼𝑖𝑗 for all agents 𝑖, with 𝜃𝑢 = 1.

With this transformation, we get the following reduction:

Proposition 3.1.9. If there exists a 𝑘-cut subnetwork that is impervious to manipulation (with

the exception of 𝑢) when 𝜀𝑢 = 0 (and 𝜀𝑖 = 𝜀 for all other agents), then the original network is

𝑘-impervious.

Therefore, having a complete understanding of 𝑘-imperviousness in networks reduces

to understanding imperviousness and finding “clever” 𝑘-cuts. As an immediate corollary

to Proposition 3.1.9, we get a log-diameter condition that generalizes Theorem 3.1.4 for 𝑘-

imperviousness:

Corollary 3.1.1. Consider a 𝑘-cut subnetwork with the 𝑘-cut vertex 𝑢 removed.19 If the log-

diameter of this network does not exceed log(𝑛 − 𝑘 + 𝛿), the network is 𝑘-impervious if it has

𝑚 > 𝑚*(𝛿) stubborn agents (where 𝑚*(𝛿) is the same as in Theorem 3.1.4.)

In Example B.1.7 of Appendix B.3.2, we show how in a core-periphery network, Theorem 3.1.4

cannot be applied for any value of 𝛿. Yet, Corollary 3.1.1 establishes the network is 𝑘-impervious

19Note that this network is not a “valid” subnetwork in the sense that some agents have 𝜃𝑖+
∑︀
𝑗 𝛼𝑖𝑗 < 1 after the

removal of 𝑢. However, DeGroot centrality (and log-diameter) are still well-defined provided that sub-stochasticity
is satisfied: 𝜃 +W1 ≤ 1.
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for a small value of 𝑘 agents (agents on the periphery), so a vanishing fraction of agents are

manipulated.

Dynamic Targeting Policies

In Section 3.1.2, we assume the principal chooses to send each agent with 𝑥𝑖 = 1 a signal

of intensity 𝜆*, with message 𝑦, which costs him 𝜀. Here, we relax this specification in the

following ways:

(a) The principal may send different messages (call these messages 𝑦𝑖 ∈ {𝑆,𝑅}) and/or apply

different intensities to different agents, i.e., 𝜆*𝑖 .

(b) The principal may vary its message and/or intensity throughout time, i.e., 𝜆*𝑖 (𝑡), 𝑦𝑖(𝑡).

(c) The principal pays a larger cost for greater intensity messages; that is, the principal pays
1
𝑡

∫︀ 𝑡
0
�̃�(𝜆*𝑖 (𝑡

′)) 𝑑𝑡′, where �̃� is an increasing, convex, and continuous function.

While this relaxation provides many more decision variables for the principal, the outcomes

can be analyzed in nearly the exact same way. The following result makes that clear:

Proposition 3.1.10. Consider the model of Section 3.1.6 with heterogenous (but linear) costs

𝜀𝑗 = �̃�(𝜆(2𝑝𝑗 − 1)) for each agent 𝑗. Every agent manipulated in this model is manipulated when

the principal is allowed to use dynamic targeting policies, and vice-versa.

The result of Proposition 3.1.10 should not be interpreted as dynamic targeting policies not

helping the principal, but rather, that the problem can be analyzed in a static setting using an

alternative cost formulation. In this setting, we see that the principal must pay higher costs

to send signals to agents whose organic signals are more informative, and that those who are

more skilled at interpreting organic news are more difficult to manipulate through their direct

personal experience, unlike in the baseline model.

3.1.7 Conclusion

In this paper, we consider a classic social learning setup when some of the information in the

network is injected by a strategic principal, and we identify conditions that allow this principal

to interfere with the learning process of the agents in order to shape their beliefs. These
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interactions are common in marketing, public health, politics, and many other contexts,20

and we provide a model that allows us to study them in a formal setup. We employ a diverse

population that possess different degrees of knowledge about the state, which we model by

using classical DeGroot agents and knowledgeable stubborn agents. We find that in this setup,

the ability of a self-interested principal to manipulate a population depends on the network

structure and the social norms in the network (as modeled by how much agents are willing

to incorporate their friends’ opinions into their own beliefs). We show that manipulation

or lack thereof can be quite sensitive to these factors. In particular, we develop a centrality

measure that we call DeGroot Centrality, which can be used to quickly identify which agents in

the population are at risk of being manipulated. We demonstrate the use of this measure by

studying manipulation in several common network topologies, and show that sparse topologies

are typically more susceptible than dense ones. We demonstrate how some networks can be

resilient with the presence of a small number of these stubborn agents, whereas others continue

to be susceptible to manipulation unless the number and location of these agents meet certain

demanding criteria.

Our work can be extended on several fronts. We have studied the dynamics of our learning

model in the limit, and characterizing the strategies played by the principal in the short-term is

also an important but challenging problem. Relatedly, when agents have imperfect recall (e.g.

because of costly information acquisition as in Liu (2011) or recency bias, these short-term

dynamics become especially relevant, even when the learning horizon is long. Finally, as

discussed in Section 3.1.4, agents can use their social network as a way to protect themselves

against potential misinformation. Understanding how agents form their social circles to

acquire accurate information is an unexplored avenue for models of social network formation

in the presence of misinformation, and provides yet another area of potential future work.

3.2 Social Inequality and Misinformation

Using the model presented in Section 3.1, we study the spread of misinformation in a social

network characterized by unequal access to learning resources, based on the work of Mostagir

20For example, Allon and Zhang (2017) examine a model where agents learn about service quality from their
experience as well as what they hear from their friends, and ask how the firm should incorporate this learning
process into its decisions about which service levels to offer.
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and Siderius (2022b). Agents use social learning to uncover an unknown state of the world,

and a principal strategically injects misinformation into the network to distort this learning

process. A subset of agents throughout the network is endowed with knowledge of the true

state. This gives rise to a natural definition of inequality: privileged communities have

unrestricted access to these agents while marginalized communities do not. We show that the

role that this inequality plays in the spread of misinformation is highly complex. For instance,

communities who hoard resources and deny them to the larger population can end up exposing

themselves to more misinformation. On the other hand, while more inequality generally leads

to worse outcomes, the prevalence of misinformation in society is non-monotone in the level

of inequality. This implies that policies that decrease inequality without substantially reducing

it can leave society more vulnerable to misinformation.

3.2.1 Demonstration of Main Ideas

This section serves as an overview of the technical results in the paper by presenting three

examples that demonstrate the complex role of inequality in learning and manipulation. The

examples below show that increasing inequality can: 𝑖) have divergent effects on different

communities, hurting one community and making another better off, or 𝑖𝑖) it can hurt the

whole society, or 𝑖𝑖𝑖) it can protect the whole society. This variety of outcomes depends on a

myriad of factors like relative community affluence, relative community sizes, and the cost of

the manipulation technology.

Below, we go through the details of each of these examples.

Inequality Hurts the Most Marginalized

We consider two communities of equal size and explore the degree of manipulation under

different homophily structures. Two of the agents on the first island are knowledgeable,

compared to only one of the agents on the other island. Thus, the former island is the privileged

community and the latter island is the marginalized community. This setup is pictured in

Figure 3-5. In this example, we vary homophily by setting 𝑝𝑑 = 0.2 and increasing 𝑝𝑠 > 𝑝𝑑 (note

that as 𝑝𝑠 increases, homophily increases). We assume that 𝜀 = 0 so that it is costless for the

principal to send misinformation (and therefore will send to everyone).
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Figure 3-5. On the left is the setup of Section 3.2.1, and on the right are the beliefs of the
two communities. As homophily increases (i.e. as 𝑝𝑠 increases), the beliefs of the privileged
community move towards the truth while the marginalized community’s beliefs fall below the
belief threshold given by the dashed line, leading to the agents in that community taking the
incorrect action.

Figure 3-5 shows the beliefs of the agents in both communities. Recall that manipulation

occurs when an agent’s belief falls below a certain threshold 𝜋*. We see that as 𝑝𝑠 increases, the

beliefs of the privileged community move closer to the truth (higher belief) whereas the beliefs

of the marginalized community move farther from the truth (lower belief). In addition, there

exists a corresponding homophily threshold 𝑝𝑠 (approximately 0.4 in this example) whereby

when 𝑝𝑠 < 𝑝𝑠, there is no manipulation, but when 𝑝𝑠 > 𝑝𝑠, the marginalized community

becomes manipulated. An increase in inequality in this example leads to more manipulation in

society. Thus, an increase in inequality makes society worse off as the marginalized community

becomes susceptible to misinformation.

Inequality Hurts Everyone

We now consider three islands: a small privileged community with an eighth of the population,

a small marginalized community with an eighth of the population, and a large community with

the remaining three quarters of the population. Assume that there are three knowledgeable

agents in the privileged community, one knowledgeable agent in the large community, and no

knowledgeable agents in the marginalized community. This setup is depicted in Figure 3-6.

Similar to the previous example, we set 𝜀 = 0, fix 𝑝𝑑 = 0.2, and vary 𝑝𝑠 to change the amount

113



Figure 3-6. On the left is the setup of Section 3.2.1, and on the right are the beliefs of the two
communities. As homophily increases (i.e. as 𝑝𝑠 increases), the beliefs of all communities move
away from the truth and fall below the belief threshold, so that all agents take the incorrect
action. Further increase in homophily restores some of the beliefs in the privileged community,
but does not bring it back to first-best levels.

of homophily in society. The beliefs of the three different communities are shown in Figure 3-6

as a function of 𝑝𝑠. Given the threshold line 𝜋* in the plot, we see that as homophily increases,

the beliefs of all agents in the population move farther away from the truth. Once homophily

hits 𝑝𝑠 = 0.3, two communities are manipulated while the privileged community is still immune.

As homophily increases further to 𝑝𝑠 = 0.5, everyone in the network is manipulated. This is

true even for the privileged community, despite the fact that agents in this community are

forming more direct connections with knowledgeable agents who spread truthful information.

Such a phenomenon occurs because the size disparity between communities leads to all of

them deriving most of their beliefs from the information spreading in the large community,

so when inequality hurts this community, it propagates to those who, on the surface, should

be benefiting from it (as in the previous example). Another way of seeing this is that when

inequality decreases, knowledgeable agents in the privileged community can have their voices

amplified through talking to agents in the large community, who then help spread these beliefs

over the network (including back to DeGroot agents in the privileged community).

While intermediate levels of inequality are bad for all agents, Figure 3-6 shows that an
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increase in homophily beyond a certain point (around 𝑝𝑠 ≈ 0.85) begins to restore the beliefs

of the privileged community, but not to the extent of returning these beliefs to first-best levels.

This is a consequence of the large community suffering with false beliefs and dragging down the

beliefs of those in the privileged community. Thus, once homophily reaches an extreme level,

the misinformation rampant on the large island ceases to spread beyond its own community.

In that sense, extreme homophily is better than intermediate homophily because at least one

of the islands is insulated from the misinformation in the large community.

Inequality Protects Society

We now give an example to show how the spread of misinformation can be shaped by the

interplay between the principal’s strategy and the inequality structure of society. Consider three

communities of the same size. The privileged community has a 3% knowledgeable population,

the “average” community has a 1% knowledgeable population, and the marginalized community

has no knowledgeable agents. Unlike the previous examples, we assume that 𝜀 ∈ (4/5, 1), so

that it is not free for the principal to expend resources in manipulating the beliefs of the agents.

This setup is depicted in Figure 3-7.

Figure 3-8a shows the beliefs (of the correct state) when the principal sends signals to

everyone in the population. Suppose there is no homophily, so that 𝑝𝑠 = 𝑝𝑑 = 0.2, and, as

always, there is a belief cutoff 𝜋* for taking the correct action. Then under this strategy, all

agents are manipulated, and the cost of sending signals is 𝜀 < 1, so this is indeed profitable

and the network is susceptible.21

As homophily increases, the beliefs of the privileged community move closer to the truth

and eventually pass the cutoff, thereby insulating them from the strategy where the principal

exerts maximal influence over the entire population. For instance, when 𝑝𝑠 > 0.3 in Figure 3-8a,

the privileged community takes the correct action even though the other two communities

do not. However, since 𝜀 > 4/5 > 2/3 (the principal is manipulating 2/3 of the population), a

strategy that targets all agents in the population is no longer profitable.

Instead, we investigate whether the principal has a profitable strategy where he incurs less

21Note that it is not immediate that every agent will be manipulated in equilibrium, just that the network is
susceptible (see Mostagir et al. (2022), Corollary 2). However, it can be shown through a more sophisticated
argument that if the principal targets at most 5/6 of the population (regardless of the distribution across islands),
then he manipulates no one. Thus, the optimal strategy for the principal is to target sufficiently many agents to
guarantee that all islands are manipulated.
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Figure 3-7. Example of Section 3.2.1

cost but still manipulates the average and marginalized communities. It is relatively easy to

show that the principal always prefers to decrease his influence on the privileged community,

as he cannot manipulate this community anyway, and, because each community has more

connections within their own island, exerting influence within the average and marginalized

communities distorts beliefs the most within these communities. For a profitable strategy then,

the principal must abandon sending misinformation to 1 − 2
3𝜀

proportion of the population; in

particular, given 𝜀 > 4/5, he must abandon sending misinformation to 1/6 of the population,

or 1/2 of the privileged community. The beliefs of the agents under this strategy are pictured in

Figure 3-8b.

Notice though that under this strategy, when 𝑝𝑠 = 0.3, none of the agents in the average

community are manipulated either, while the agents in the marginalized community are. This

in turn implies that this strategy is unprofitable, as the principal expends 5𝜀𝑛
6
> 2

3
𝑛 but only

receives a benefit of 1
3
𝑛. Instead, the principal must abandon sending misinformation to

1 − 1
3𝜀
> 7/12 proportion of the population. Once again, it can be shown that the principal is

better off targeting the marginalized community directly, before sending misinformation to

the other communities. The principal’s maximal influence, while still being possibly profitable,

comes from sending everyone on the marginalized community misinformation and then

either: (i) not sending signals to the privileged community but sending signals to 1/12 of the

average community, or (ii) not sending signals to the average community but sending signals

to 1/12 of the privileged community. The beliefs under both these strategies are pictured in
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(a) Beliefs when principal targets all agents (b) Beliefs when principal sends fewer signals

Figure 3-8. Beliefs of the communities in Section 3.2.1. The left plot shows beliefs when the
principal targets everyone. The right plot shows beliefs when the principal sends fewer signals
to the privileged island.

Figure 3-9.22

As can be seen, under either of these strategies there is not enough misinformation sent

to distort even the marginalized island’s beliefs. The network is impervious to manipulation

because of this domino effect: as one community becomes more insulated, its beliefs move

closer to the truth and spill over to the next community and the process repeats until all

communities are protected and the principal had no profitable strategy. As such, the presence

of some inequality can end up protecting everyone by discouraging strategic manipulation of

beliefs. We call this phenomenon protection contagion and explore it further in Section 3.2.3.

3.2.2 Inequality and the Spread of Misinformation

In this section, we focus our attention on the case where the cost of sending misinformation, 𝜀,

is close to 0. In such instances, the principal’s optimal strategy is trivial: he sends misinformation

to everyone in the network. This decouples the belief dynamics and inequality structure from

the principal’s strategy and allows us to study these dynamics in isolation. The case where

𝜀≫ 0, and when the principal’s optimal strategy is non-trivial, is the focus of Section 3.2.3.

22Any convex combination of targeting agents in both the average and privileged communities lead to the same
conclusion.
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Figure 3-9. Beliefs of the communities in Section 3.2.1 when the principal attempts to
manipulate only the marginalized community. On the left (right) are the beliefs when
the principal targets a fraction of the average (privileged) community in addition to the
marginalized community. Neither strategy is profitable as no one is manipulated.

Inequality and Network Homophily

We assume there are 𝑘 islands and a society (𝑝𝑠, 𝑝𝑑,m) is specified by three objects:23

1. 𝑝𝑠: the communication within islands (i.e., the within-island link probability).

2. 𝑝𝑑: the communication across islands (i.e., the across-island link probability).

3. m ≡ (𝑚1, . . . ,𝑚𝑘): the vector of knowledgeable agent counts for each island ℓ ∈ {1, . . . , 𝑘}.

We refer to the pair (𝑝𝑠, 𝑝𝑑) as the homophily of the network; these parameters completely

determine the social network structure. We always assume 𝑝𝑠 ≥ 𝑝𝑑. Next we define what it

means for one society to exhibit less inequality than another:

Definition 3.2.1. (Inequality) We say that society (𝑝𝑠, 𝑝𝑑,m) exhibits less inequality than society

(𝑝′𝑠, 𝑝
′
𝑑,m

′) if:

(a) There is more communication across islands; namely, 𝑝𝑑 ≥ 𝑝′𝑑;

(b) There is less communication within islands; namely, 𝑝𝑠 ≤ 𝑝′𝑠;

23We use “communities” and “islands” interchangeably throughout.
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(c) The distribution of knowledgeable agents across groups is more “equally distributed”;

formally, m′/s is a majorization24 of m/s.

with at least one condition strict.

If Society A has less inequality than Society B, this suggests two features. First, any agent in

Society A is more likely to talk to agents outside her own island, relative to the higher inequality

Society B. This is a direct consequence of less homophily. Second, less inequality also implies

less inequality in terms of direct connections to knowledgeable agents: any two agents in

Society A are more likely to have a similar number of (weighted) connections to knowledgeable

agents as compared to Society B. The most equitable distribution of knowledgeable agents

occurs when they are the same constant fraction of the population on every island.

Inequality provides a partial (as opposed to total) ordering on societies. This occurs for the

following reasons. First, if we simultaneously increase homophily and more evenly distribute

knowledgeable agents, then we create more even access to resources but also restrict how

communities share these resources, resulting in an ambiguous inequality comparison. For

example, assuming equal island sizes, a society described by (𝑝𝑠, 𝑝𝑑,𝑚1,𝑚2) = (0.5, 0.5, 3, 0) is

no more or less equitable than a society described by (𝑝′𝑠, 𝑝
′
𝑑,𝑚

′
1,𝑚

′
2) = (0.8, 0.2, 2, 1). Second,

majorization itself defines only a partial order, so it is possible that two knowledgeable

agents distributions m and m′ are not comparable. For instance, assuming equal island

sizes, (𝑚1,𝑚2,𝑚3) = (1, 1, 4) is no more or less equitable than (𝑚′
1,𝑚

′
2,𝑚

′
3) = (0, 3, 3). For this

reason, we use the following definition in order to compare inequality structures:

Definition 3.2.2. We say a society has the most inequality if there exists no other society with

(strictly) more inequality. We say a society has the least inequality if there exists no other

society with (strictly) less inequality. We say a society has intermediate inequality if it is neither

a society with the most or least inequality.

Note that a society with the most inequality necessarily has homophily structure (𝑝𝑠, 𝑝𝑑) =

(1, 0) and a society with the least inequality necessarily has (𝑝𝑠, 𝑝𝑑) = (0.5, 0.5). However, all the

analysis that follows is continuous in 𝑝𝑠 and 𝑝𝑑, and so holds for (non-empty) open intervals

24A majorization x′ of x satisfies (i)
∑︀𝑘
ℓ=1 𝑥ℓ =

∑︀𝑘
ℓ=1 𝑥

′
ℓ and (ii)

∑︀ℓ*

ℓ=1 𝑥ℓ ≥
∑︀ℓ*

ℓ=1 𝑥
′
ℓ for all ℓ* ∈ {1, . . . , 𝑘}, where

the components of x and x′ are sorted in ascending order (see Marshall et al. (2011)). An equivalent condition is
whether one can transform m′ into m via a sequence of “Robin Hood” operations: one can recover m from m′ via
a sequence of transferring knowledgeable agents from islands that have a larger population of such agents to
islands with fewer (see Arnold (1987)).
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around these homophily parameters as well. Finally, we remind the reader that we use the

term marginalized to refer to a community that has a smaller proportion of knowledgeable

agents compared to a privileged community (which has a higher proportion of knowledgeable

agents ).

Misinformation in Equal-Sized Communities

Recall that when 𝜀 ≈ 0, the principal’s strategy is trivial and she exerts maximal influence

on the population, i.e., x = 1. We assume each island has an equal share of the population

𝑠1 = 𝑠2 = · · · = 𝑠𝑘 = 1/𝑘. In the same vein as Section 3.2.1, we show that the intuition of

“increased inequality is bad for learning” is accurate in the special case where a) islands have

equal sizes (as in Golub and Jackson (2012)) and b) the only criterion is whether society as a

whole is impervious (i.e. no agent is manipulated) or not, rather than the number of agents

manipulated.

Theorem 3.2.1. If society (𝑝𝑠, 𝑝𝑑,m) is susceptible to manipulation and has less inequality than

society (𝑝′𝑠, 𝑝
′
𝑑,m

′), then society (𝑝′𝑠, 𝑝
′
𝑑,m

′) is also susceptible to manipulation.

In other words, Theorem 3.2.1 states that there is an inequality threshold25 whereby increasing

inequality eventually flips the network from impervious to susceptible. This result corroborates

the evidence that inequality hurts learning; in particular, inequality always negatively affects

learning in the most marginalized communities. However, Theorem 3.2.1 does not claim

that total manipulation —the number of manipulated agents— is monotone in the degree

of inequality. In particular, once the network becomes susceptible, it may be possible that

increasing inequality leads to a reduction in the extent of manipulation, though it does not

return the network to its first-best state of imperviousness. This property holds generally:

Theorem 3.2.2. For any society with 𝑘 ≥ 3 islands of equal size and 𝑚 total knowledgeable

agents :

(i) For a given 𝑏,𝑚, if there is an impervious network for some inequality structure, the network

with the least inequality is impervious;

25Because there is only a partial ordering of societies, this threshold holds two of three inequality parameters
constant while changing the third one. For example, if the knowledgeable agents distribution is the parameter
being changed, then one can apply the threshold for any partially ordered sequence of distributions.
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(ii) For all 𝑏,𝑚, there always exists a network with intermediate inequality that has (weakly)

more manipulation than some network with more inequality.

(iii) There exist values for 𝑏,𝑚 such that the network of (ii) with intermediate inequality has

strictly more manipulation than some network with more inequality.

Theorem 3.2.2 states that an “intermediate” amount of inequality is worse than an extreme

amount of inequality, which in turn is worse than no inequality at all. While removing all

inequality improves learning, simply reducing inequality in an extremely homophilous society

can actually lead to worse learning and manipulation outcomes.

Underlying the previous result is the fact that social connections have both positive and

negative externalities. On one hand, they serve as a transmission mechanism for spreading

the (correct) beliefs of knowledgeable agents. However, they also allow the principal to spread

misinformation in a more effective way, by using social forces to manipulate other agents

as well. When homophily is extreme, the principal cannot use one community to influence

another. These missing connections can prevent the principal from manipulating certain

communities, who had previously derived their beliefs from more marginalized communities

when homophily was not too extreme. On the other hand, when homophily is quite weak,

access to knowledgeable agents is relatively similar across islands, which allows them to

communicate truth most effectively. It is the intermediate homophily case that often acts as a

perfect breeding ground for manipulating beliefs.

This result provides a sleek connection to models of contagion in financial networks (see

Acemoglu et al. (2015), Babus (2016), Kanak (2017), for example). Similar to the degree of

homophily in our setting, in these models, connections both serve to reduce and exacerbate

the propagation of negative forces. On one hand, when a bank’s linked institutions are in

distress, the bank finds itself less well-capitalized and more likely to default. However, when a

bank faces an idiosyncratic or temporary problem, it can rely on neighboring (safe) institutions

to protect it from insolvency. Hence, the stability of a financial network can be subtle, and the

effect of increased interconnectivity is typically ambiguous, just as with social learning in the

presence of homophily and inequality.
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3.2.3 Strategic Influence and Inequality

The results in Section 3.2.2 are obtained under the assumption that the cost of sending

misinformation is negligible, and therefore the principal targets every agent in the population.

This 𝜀 = 0 case enabled us to measure how misinformation propagates as a function of the

inequality structure in society, without introducing strategic considerations on the part of the

principal.

We now relax this by assuming 𝜀≫ 0, and for simplicity also assume that all communities

are the same size. The latter assumption allows us to isolate the effects of the principal’s strategy

from the population size effects identified in Sections 3.2.1 and 3.2.4. The 𝜀≫ 0 assumption

requires a strategic choice by the principal of who to target, and is of critical importance in

understanding the spread of misinformation in the presence of a strategic actor.

For the interested reader, Appendix B.2.2 expands on Section 3.2.1 and provides a detailed

walkthrough of an example where 𝜀 varies from small to large in a society with two communities,

and shows that some inequality can protect the entire society by initially protecting the

privileged community. Theorem 3.2.3 extends this to an arbitrary number of communities by

showing that such a network where intermediate inequality is best for society always exists

when the principal faces non-negligible signaling costs. This contrasts with Theorem 3.2.2,

where intermediate inequality is not only never optimal, but is always (weakly) worst for society

when signaling costs are low. Finally, we conclude with some numerical experiments that show

how manipulation changes as a function of simultaneously varying the investment cost and

the inequality structure under the principal’s optimal strategy.

Protection Contagion: The Case for Some Inequality

Recall from Section 3.2.1 that when there was no inequality, the principal had a profitable

strategy to target and manipulate everyone. With some inequality, however, the principal

was unable to manipulate one of the more privileged communities, which in turn made his

strategy too expensive. To maintain a profitable strategy, the principal had to reduce his direct

influence on that community in order to save costs, while still trying to retain the same extent

of (indirect) overall influence on the other communities. However, this reduction made the

principal unable to manipulate the next privileged community, which similarly led to him

reducing his direct influence in that community, and so on. We refer to this cascade effect as

122



protection contagion.

This effect is not an artifact of Section 3.2.1, or the example presented in the previous section.

In fact, when the principal has intermediate costs for sending misinformation, protection

contagion can sometimes lead to a complete unraveling of his influence when there is some

inequality in the network. This is summarized in the next result.

Theorem 3.2.3. Suppose there are 𝑘 ≥ 2 islands of equal size. There exists 𝑏* < 𝑏**, 𝜀* < 𝜀**, such

that if 𝑏 ∈ (𝑏*, 𝑏**) and 𝜀 ∈ (𝜀*, 𝜀**), there exists a network with intermediate inequality that is

impervious, despite every network with the most inequality being susceptible, and every network

with the least inequality admitting strictly more manipulation than networks with the most

inequality.

Theorem 3.2.3 describes a range where intermediate inequality is best for protecting

society from the spread of misinformation. Suppose we order the communities based on

their privilege, i.e. the proportion of knowledgeable agents in the population, and protect

the most privileged community from manipulation. This protection forces the principal to

decrease his effort in this community to try and maintain a profitable strategy. By doing so,

the beliefs in that community move closer towards the truth, and because there is still some

communication across communities, this provides a positive externality to the rest of the

network. The principal then is unable to manipulate the next privileged community, and

so stops targeting that community as well, leading to a recursive process that repeats for

all communities, and the principal cannot target anyone while retaining a positive payoff.

However, if inequality becomes extreme, this contagion effect fails to take place: the positive

spillovers from protecting one community are minimal in the face of gross inequality. Extreme

homophily leads to little communication across communities and so protecting one community

still leaves the rest exposed to misinformation.

Note the connection between Theorem 3.2.3, when 𝜀 ≫ 0, and Theorem 3.2.2(a), when

𝜀 ≈ 0. Theorem 3.2.2(a) states that if some inequality model is impervious, then the least

inequality attains imperviousness. This is not the case for 𝜀≫ 0; in particular, Theorem 3.2.3

states that it may be possible for an intermediate inequality model to be the only model that

attains imperviousness.
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Numerical Simulations

We provide results from two numerical simulations that illustrate the non-monotonic behavior

from the previous section on the broader parameter space. Recall that we can increase

the level of inequality by increasing homophily or by having a more uneven distribution

of knowledgeable agents between islands of equal size. We simulate both of these scenarios. In

the first simulation, we vary the extent of homophily through varying 𝑝𝑑 (while holding 𝑝𝑠 fixed).

The second simulation varies the distribution of knowledgeable agents across the islands. In

both cases, we simultaneously vary the cost 𝜀 that the principal faces.

Homophily. We fix 𝑝𝑠 = 0.8 and take 𝑏 = 0, so that an agent takes an action based on the state

she believes is most likely. There is a total population of 1000 agents split equally across two

islands; one island has 80 knowledgeable agents and the other has the remaining 20.

The left heat map in Figure 3-10 shows the results of this simulation. In the range of

𝜀 ∈ (1.1, 1.7), we notice the non-monotonicity described in Theorem 3.2.3 as we increase 𝑝𝑑

(i.e., decrease homophily/inequality). For small values of 𝑝𝑑 (large homophily), half the agents

are manipulated. As we decrease homophily through increasing 𝑝𝑑, we transition to a region

where the network is impervious. Finally, as homophily decreases further, we end up in a

region where all agents in the network are manipulated. This is the same effect seen in the

example of Appendix B.2.2.

Distribution of Knowledgeable Agents. We fix (𝑝𝑠, 𝑝𝑑) = (0.5, 0.2) and take 𝑏 = 0. There is a

total population of 1000 agents, split over two islands of equal size, and we vary the number of

knowledgeable agents, 𝑚1, on the first island from 0 to 100 (with the other island containing

the remainder, 𝑚2 = 100 −𝑚1) .

The results are shown in the right heat map in Figure 3-10. Inequality between islands

is most severe when 𝑚1 = 0 or 𝑚1 = 100, with the least inequality at 𝑚1 = 50. In the range

𝜀 ∈ (0.9, 1.7), we see that the network is impervious provided there is sufficient inequality

in the distribution of knowledgeable agents; otherwise, all agents are manipulated. This

inequality protects one island from manipulation and, through protection contagion, prevents

the principal from having any profitable strategy.
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Figure 3-10. Heat maps showing fraction of agents manipulated as a function of the signaling
cost 𝜀 and 𝑝𝑑 (left figure) or 𝑚1 (right figure). Note that increasing 𝑝𝑑 implies decreasing
homophily/inequality. Light blocks indicate no manipulation, while gray (dark) blocks indicate
half (all) the population is manipulated.

3.2.4 Different Community Sizes and Strong Inequality

Up until now, we have focused on communities that are roughly equal in population and

whereby agents in those communities associate more with those in their own community, but

do not differentiate their social interactions amongst other communities. In this section, we

consider the complexities of having both (i) large or small communities and (ii) inequality

structures that are “strong,” in the sense that there are significant barriers to communication

between certain communities. For the latter, we consider an inequality structure where

agents further differentiate their social interactions by only affiliating with groups who have

characteristics that are close to those of their own community. We call this strong inequality.

We consider how this type of strong inequality affects society at large relative to the weaker

notion of inequality with a flat hierarchy, as we have studied in the previous sections.

Misinformation with Different Community Sizes

We now consider the case when communities are not the same size. We begin with the following

definition:

Definition 3.2.3. We say that an island ℓ is least privileged if (𝑖) its belief of the correct state
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is the least of any island (i.e., 𝜋ℓ ≤ 𝜋ℓ′ for all ℓ′) and (𝑖𝑖) it has the least knowledgeable agent

percentage of the population (i.e., 𝑚ℓ/𝑠ℓ ≤ 𝑚ℓ′/𝑠ℓ′ for all ℓ′).

Observe that condition (𝑖) is also equivalent to island ℓ having the largest DeGroot centrality.

Note that with islands of the same size, condition (𝑖) holds if and only if condition (𝑖𝑖) holds

for island ℓ, so is redundant. However, with islands of different sizes, because influence is

asymmetrical across islands, neither condition implies the other.

As we saw in Section 3.2.1, when communities have different population sizes, the results

of the previous section need not hold. When there is a large community, it is possible that

additional inequality can hurt the entire society. Because most communities draw their beliefs

from the belief of the “masses,” the effect of inequality on the masses determines how society

as a whole is affected by inequality:

Theorem 3.2.4. Suppose there are 𝑘 islands of unequal sizes. Assume the largest island, island

1, is the least privileged. For almost all 𝑏, there exists size threshold 𝑠 such that if 𝑠1 > 𝑠, the

number of manipulated islands is monotonically increasing in inequality, provided that island

1 remains the least privileged.

Theorem 3.2.4 states that if we are to decrease inequality with a large least privileged island,

manipulation can only decrease. Put more simply, if the masses are the least privileged, then

decreasing inequality helps everyone, including very privileged communities. This is because

these communities still form a sizable number of connection with the large island, just by

virtue of the size disparity, and hence draw a large part of their beliefs from there. Indeed, as

inequality decreases, knowledgeable agents in privileged communities can have their voices

amplified through talking to agents in the large community, who then spread these beliefs

over the network (including back to DeGroot agents in the privileged communities). The flip

side of this is that if the masses are the least privileged, increasing inequality helps no one: in

fact, moving resources from the masses to the privileged communities ends up making both

the masses and the privileged communities worse off. Theorem 3.2.4 thus establishes that

inequality benefits society as a whole (in a Pareto sense) if it benefits the large community

that wields heavy influence. Likewise, even the privileged islands should want to move their

resources to reduce inequality.

Note the assumption that island 1 is the least privileged (and remains so after decreasing

inequality) cannot be dispensed with. If island 1 is simply underprivileged, non-monotone
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comparative statics might exist following an increase in inequality. The intuition is as follows.

While this inequality hurts island 1’s access to more privileged communities’ resources, it also

exposes island 1 less to communities which are less affluent than itself and may have more

misinformed beliefs. This effect does not exist, of course, when island 1 starts off as the least

well-off community.

Weak Inequality vs Strong Inequality

We introduce a different stochastic-block model where are communities ordered by similarity,

with agents in neighboring communities more likely to be linked than agents in communities

that are farther apart. This model captures the more hierarchical structure that is sometimes

observed in society. While this is a natural homophily model, we are not aware of any literature

that studies it compared to the much stronger focus on weakly-assortative networks that

we studied up to this point in the paper . In this model, each community ℓ has a vector of

qualities, Λℓ ∈ R𝐿. Qualities can capture different variables like education, profession, income,

etc. Communities are sorted according to their similarity, with the distance metric between

communities ℓ and ℓ′ given by 𝑑(ℓ, ℓ′) = ||Λℓ − Λℓ′||2. For simplicity, we assume that 𝐿 = 1 (the

quality vector is one-dimensional) and thus communities are (strongly) ordered by their Λℓ on

a line topology.

In both the weak and strong inequality models, for any two agents on the same island, there

is a link probability 𝑝𝑠. In the weak inequality model, there is also a link probability 𝑝𝑑 < 𝑝𝑠 for

any two agents on different islands. However, in the strong inequality model, agents do not

form links with agents on islands outside of their neighboring islands. Agents in community ℓ

are linked to agents in community ℓ− 1 or ℓ+ 1 with probability 𝑝𝑑, whereas agents in “farther”

communities are linked with probability 0,26 with the exception of island 1 and island 𝑘, which

are linked to island 2 and island 𝑘 − 1 only, respectively.

Section 3.2.2 and Section 3.2.3 documented the effects of weak inequality on manipulation.

To make the comparison between strong and weak inequality most transparent, we consider

worst-case inequality for weak inequality, i.e., the inequality structure that makes the principal

most easily able to manipulate. Toward this end, the following result establishes a condition

26We can equivalently assume that these link probabilities are positive but decay sufficiently quickly, such as on
the order of exp(−||Λℓ − Λℓ′ ||2). For simplicity of exposition and illustration of the effects of our strong assortative
property, we simply set the link probabilities to 0.
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Figure 3-11. An illustration of Proposition 3.2.1: under weak homophily, a linear number of
knowledgeable agents is enough to prevent manipulation anywhere in the network. This could
include stacking them all on one island.

on the total number of knowledgeable agents in the weak homophily model needed for

imperviousness, independent of their placement across communities:

Proposition 3.2.1. For any (𝑝𝑠, 𝑝𝑑), there exists �̄� such that if 𝜃 < �̄�, there exists a constant 𝑐 < 1

such that if there are 𝑚 = 𝑐𝑛 knowledgeable agents anywhere, then any weak inequality model

(regardless of the number of communities 𝑘) is impervious. Moreover, 𝑐 is increasing in 𝑝𝑠 and

decreasing in 𝑝𝑑.

In other words, there exists a threshold 𝑐 whereby if a proportion 𝑐 of the population is

knowledgeable, the principal will be unable to manipulate anyone, regardless of the depth of

weak inequality present. This includes the most extreme inequality configuration where all the

knowledgeable agents are on one island, and the rest of the 𝑘 − 1 islands are all DeGroot (for

any 𝑘). A visual depiction of Proposition 3.2.1 is given in Figure 3-11. The assumption that 𝜃 is

not too large ensures that agents use social learning as a primary means of learning; clearly

when 𝜃 is too close to 1, the presence of knowledgeable agents is irrelevant because agents

place too much weight on their own (manipulated) news.

Proposition 3.2.1 also sheds some light on whether homophily helps or hurts the worst-

case lower bound. Because 𝑚 is increasing in 𝑝𝑠 and decreasing in 𝑝𝑑, we see the number of

knowledgeable agents needed to apply Proposition 3.2.1 increases as we increase inequality

through the network homophily structure. This result reinforces the general idea that increasing

inequality makes it more challenging for society to avoid manipulation, despite the exceptions
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presented earlier. The intuition is clear: as homophily becomes more severe, configurations

like that of Figure 3-11 do little to help communities with few to no knowledgeable agents.

For illustration, we assume that the first community has 𝑚 knowledgeable agents and

all other communities consist of DeGroot agents. At the end of this section, we discuss the

robustness of the result to other configurations. There are 𝑘 communities which may or may

not be the same size and we fix (𝑝𝑠, 𝑝𝑑). In the strong inequality model we obtain a much

different result from Proposition 3.2.1:

Proposition 3.2.2. For any 𝜃 > 0 and 𝑐 < 1, there exist 𝑘 (independent of 𝑘) and 𝜀 > 0 where all

communities except 𝑘 are manipulated, even with 𝑐𝑛 knowledgeable agents.

Proposition 3.2.2 shows the stark difference between weak and strong inequality. First,

with weak inequality, we can always find a proportion 𝑐 such that 𝑐𝑛 knowledgeable agents

will make the network impervious, even with rampant (weak) inequality. On the other hand,

we can never find such a proportion 𝑐 in the strong inequality model: no constant fraction

guarantees society is safe from manipulation because the influence of knowledgeable agents

is too diluted under strong homophily, as seen in Figure 3-12. Second, the strong inequality

network is not only susceptible, but manipulation is actually ubiquitous in society. Note that

𝑘 does not depend on 𝑘, so when there are several communities, only a vanishing fraction of

them will not be manipulated. Except for a very small set of communities who happen to have

close ties to knowledgeable agents, almost all communities will be negatively impacted by the

existence of strong inequality.

The intuition for the result is as follows. Notice that with strong inequality, as in Figure 3-12,

agents receiving misinformation communicate their beliefs both forwards and backwards,

which leads to more propagation of misinformed beliefs. This creates a strong echo chamber

effect, where the influence from misinformation, as reflected in the agents’ beliefs, gets inflated

because they fail to recognize their own influence on their own neighboring islands’ beliefs. For

agents who are not in communities extremely close to the knowledgeable agents’ community,

this echo chamber is strong enough to completely mask any influence the knowledgeable

agents might have in spreading accurate beliefs. Contrast this with weak inequality in Figure 3-

11, where every community has some direct interaction with knowledgeable agents, even if

those agents do not reside on that community. This not only provides a direct positive influence

on everyone’s beliefs, but also prevents these echo chambers from wielding too much power,
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precisely because other communities are also directly interacting with knowledgeable agents.

Robustness. Finally, we consider how robust these strong inequality results are to the initial

setup. Suppose instead of stacking all of the knowledgeable agents on the first island, we

instead redistribute them in a way that dampens these echo chamber effects. Would this

mitigate the effects of Proposition 3.2.2? An affirmative answer to this question requires this

redistribution to be significant. From Proposition 3.2.2, it is easy to see that any island with a

knowledgeable agent cannot protect more than a constant number of communities on either

side of it. Therefore, the number of knowledgeable agents would need to be dispersed very

evenly across all communities to have any hope of preventing manipulation. For example,

simply moving the knowledgeable agents to a more central community or distributing them

across a couple of islands throughout would have no significant effect, and the conclusion of

Proposition 3.2.2 remains intact. Thus, while agents can be protected in the strong homophily

model, the requirements on the knowledgeable agents distribution are much stricter: nearly

every island has to have some knowledgeable agents of its own, which requires drastically less

inequality.

Second, Mostagir et al. (2022) show that higher density, while not a perfect measure, is often

related to lower manipulation (for instance, see Theorem 4 in Mostagir et al. (2022)). It is clear

that the average degree with strong inequality will be lower than that of weak inequality, so a

natural question is to wonder whether this difference in density is what drives the difference

in manipulation we observe between the two models. For concreteness, assume we have 𝑘

communities of the same size in both the strong (with 𝑝𝑠, 𝑝𝑑) and weak inequality (with 𝑝′𝑠, 𝑝
′
𝑑)

models. In the strong inequality model, we take 𝑝𝑠 = 𝛼𝑝′𝑠 and 𝑝𝑑 = 𝛼𝑝′𝑑, where 𝛼 = 𝑝𝑠+(𝑘−1)𝑝𝑑
𝑝𝑠+2𝑝𝑑

.27

This equalizes the average degree (i.e., connections) of the strong and weak inequality models,

but has no effect on any of the beliefs of the agents (or on their DeGroot centralities).28

Therefore, we see that the differences in density alone cannot explain the differences seen

across the two models.

27For this, we have to naturally assume 𝑝′𝑠 and 𝑝′𝑑 are not too large so that 𝑝𝑑 < 𝑝𝑠 < 1 and this is possible.
Otherwise, there is no way to equalize the average degrees of the two models.

28Technically, this equalizes the average degree for only the islands in the “middle” of the line, but not those on
the ends. However, assuming there are a large number of communities, this difference will be negligible.
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Figure 3-12. An illustration of Proposition 3.2.2: even with many knowledgeable agents, strong
homophily allows the principal to manipulate plenty of agents in the network. In the figure
above, communities which are not “close enough” to the knowledgeable agents will not be very
influenced by their beliefs, so will be manipulated.

3.2.5 Optimal Interventions

We now discuss the role that a social planner has in combating misinformation. We consider

two possible interventions: educational interventions and homophily interventions. In the

former, we assume the planner may improve the sophistication type of a subset of agents,

perhaps through targeted education. In the latter, the planner may decrease the extent of

homophily through efforts to integrate communities (i.e. by increasing 𝑝𝑑). The social planner

wants to enact a policy that protects as many agents as possible from manipulation.

We say a policy is optimal if it minimizes the number of manipulated agents. Similarly, we

say some policy X dominates another policy Y if all agents’ beliefs of the correct state are higher

under X than under Y. While an optimal policy is never dominated, there may be non-optimal

policies that are not dominated, and thus lie at the Pareto frontier of effective interventions.

We can write the beliefs of the agents, 𝜋, as:

𝜋(𝑝𝑠, 𝑝𝑑,m,x) =

(︂
I

1 − 𝜃
−𝐵(𝑝𝑠, 𝑝𝑑,m,x)

)︂−1

𝑎

where𝐵 is a function of (i) the homophily structure (𝑝𝑠, 𝑝𝑑), (ii) the distributionm of knowledgeable

agents across islands m, and (iii) the principal’s strategy x. Recall that the belief (of the correct

state) threshold is given by 1+𝑏
2

and the principal wants to maximize the number of agents

whose beliefs fall below this threshold, less the total cost of manipulation, so as before, the

principal solves:

x*(𝑝𝑠, 𝑝𝑑,m) = arg max
x

𝑛∑︁
𝑖=1

(︀
1𝜋𝑖(𝑝𝑠,𝑝𝑑,m,x)<(1+𝑏)/2 − 𝜀𝑥𝑖

)︀
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Then the planner solves the min-max optimization problem:

min
𝑛∑︁
𝑖=1

1𝜋𝑖(𝑝𝑠,𝑝𝑑,m,x*(𝑝𝑠,𝑝𝑑,m))<(1+𝑏)/2

The combinatorial nature of these problems preclude a general solution. We derive the optimal

policies for some special cases and show the nuances of optimal policies via simulation. For

a number of cases, we prove the optimal policy attempts to minimize inequality. However,

this is not always true: if the planner cannot completely eradicate inequality, then sometimes

measures that only slightly reduce it can be counterproductive.

Educational Interventions

We consider the possibility of endowing some agents in the population with verifiable knowledge

about the true state. We assume that this process is costly and that the planner’s budget

constraint is of the form
∑︀𝑛

𝑖=1 1type(𝑖)=𝐾 ≤𝑀 , where 𝐾 designates a knowledgeable agent and

𝑀 is an integer. Note that the planner will always use the entire budget in an optimal policy.

Intervention with Large Budget and Cheap Signals. First, we derive the optimal policy when

the planner’s budget is sufficiently large and the principal’s cost of sending signals is nearly

free:

Corollary 3.2.1. Suppose that the budget 𝑀 is large enough so that it is possible for the planner

to make the network impervious when 𝜀 is small. Then if all islands are the same size, the

optimal policy is to minimize inequality.

This result is in-line with the conclusion of Theorem 3.2.1, which argues that when imperviousness

is possible, the least inequality is always first-best. As a special case, if 𝑀 is big enough to make

the knowledgeable agents equal on every island, then this is the optimal policy.

Note the assumption that 𝑀 is big enough that imperviousness is attainable for small 𝜀

is necessary. First, if imperviousness is attainable only for a given 𝜀 ≫ 0, then it is possible

that a configuration with some inequality may be optimal, as we show next. This is a direct

consequence of Theorem 3.2.3. Second, if 𝑀 is small and so imperviousness is impossible,

then an optimal policy may involve creating some inequality to protect at least a fraction of the
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population. For instance, placing knowledgeable agents equally may lead to every island being

manipulated, whereas stacking them all on one island would protect at least this island.

Intervention with Costly Signals. We simulate the optimal policy for the planner when the

principal’s signals are costly. Consider Figure 3-13 with budget 𝑀 = 4, 𝑛 = 100, two islands of

equal size, and homophily structure (𝑝𝑠, 𝑝𝑑) = (0.8, 0.2). We investigate whether the optimal

policy can make the network impervious as a function of 𝜀.

As 𝜀 ranges from 0 to 0.5 (small 𝜀 region), there is no distribution of knowledgeable agents

that admits imperviousness. Corollary 3.2.1 allows us to quickly check this by distributing

these agents evenly across the two islands and checking if manipulation exists, which it does.

As 𝜀 becomes slightly higher than 0.5, the most inequitable distribution (4 knowledgeable

agents on one island and 0 on the other) or the most equitable distribution (𝑚1,𝑚2) = (2, 2)

leads to manipulation. On the other hand, an unequal distribution of (𝑚1,𝑚2) = (3, 1)

or (𝑚1,𝑚2) = (1, 3) leads to imperviousness. When 𝜀 continues to increase, only the even

distribution (𝑚1,𝑚2) = (2, 2) makes society susceptible, i.e., (0, 4) and (4, 0) are also impervious,

and splitting the knowledgeable agents equally across both islands is the worst distribution

for society. Of course, eventually, all distributions are impervious when the cost becomes too

prohibitive for the principal to have a profitable strategy. In summary, for the planner, the

most equitable distribution (𝑚1,𝑚2) = (2, 2) is weakly dominated by every other distribution

over the entire cost range of 𝜀.

Therefore, in the case of costly signals for the principal, the planner may want to introduce

some inequality in the knowledgeable agents distribution. This is precisely to generate the

protection contagion effect documented in Theorem 3.2.3.

Intervention with One Large Island. We next consider a setting where there is one large island

and many small islands; without loss, let the large island be island 1:

Corollary 3.2.2. When 𝜀 is small, there exists 𝑠 such that if 𝑠1 > 𝑠, any policy that makes island

1 the least privileged is dominated by a policy with more knowledgeable agents on this island,

provided that such a policy does not already use the entire budget on island 1.

Corollary 3.2.2 complements Theorem 3.2.4: when there is a single large island, a policy

which subjects the masses (on the large island) to inequality is not only sub-optimal, it

actually hurts all agents in society. In particular, if we start with a configuration of many small

133



Figure 3-13. Policies that obtain imperviousness with budget 𝑀 = 4. The number of
knowledgeable agents on the first island is 𝑚1 and 𝜀 is the signaling cost of the principal.
Every highlighted point is a knowledgeable agent placement that leads to imperviousness, e.g.
𝑚1 = 1 and 𝑚2 = 4 − 1 = 3 when 𝜀 = 0.6.

privileged communities and one large under-privileged community, then even the privileged

communities are negatively impacted by taking resources (knowledgeable agents) from the

under-privileged community. Therefore, the social planner and those agents in privileged

communities should (rationally) support expending more resources on the least privileged

community.

Homophily Interventions

We now consider a fixed homophily model with parameters (𝑝𝑠, 𝑝
𝑜
𝑑) and knowledgeable agents

distribution m. We assume the social planner pays a positive, convex cost 𝜑(𝑝𝑑 − 𝑝𝑜𝑑) with

𝜑(0) = 0 to increase (or decrease) connections between islands. As before, we assume the

planner has a budget to spend; that is, the planner must satisfy 𝜑(𝑝𝑑 − 𝑝𝑜𝑑) ≤ 𝐵𝑢𝑑𝑔𝑒𝑡.

For the remainder of this section, we focus on the case where the principal’s signaling cost 𝜀

is small. Similar conclusions to the previous section apply when 𝜀≫ 0. Our first result shows

that an equally-distributed knowledgeable agents policy eliminates the need for a homophily

intervention:

Proposition 3.2.3. If knowledgeable agents are equally distributed (i.e., 𝑚ℓ = 𝑀𝑠ℓ for all ℓ),

then 𝑝𝑑 = 𝑝𝑜𝑑 is an optimal policy.

When knowledgeable agents are distributed proportional to the islands’ populations, the
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beliefs of all agents in society are the same regardless of the homophily parameters. Therefore,

no additional intervention is necessary because access to knowledgeable agents is perfectly

equitable.

Large Budget. We first focus on the case where the planner’s homophily budget is fairly large.

Based on our observations in Theorem 3.2.1 and Theorem 3.2.2 we have:

Proposition 3.2.4. Suppose the budget is greater than 𝜑(𝑝𝑠 − 𝑝𝑜𝑑) and large enough to make the

network impervious. Then if all islands have the same size, 𝑝𝑑 = 𝑝𝑠 is the optimal policy when 𝜀

is sufficiently small.

When homophily can be fully corrected, some intervention is desirable. By Theorem 3.2.2,

we know that if the budget is big enough for the planner to implement 𝑝𝑑 = 𝑝𝑠, this obtains the

first-best outcome. Thus, the optimal policy is always to completely eliminate any homophily

that exists in the network.

Small Budget. When the planner’s budget is limited, implementing 𝑝𝑑 = 𝑝𝑠 may not be feasible.

In this case, it may not be optimal to simply reduce inequality by minimizing (𝑝𝑠 − 𝑝𝑑); as we

saw in Theorem 3.2.2, often some inequality can be worse than extreme inequality. In other

words, a planner who simply helps decrease inequality without eradicating it completely can

do unintended harm. In fact, unlike educational interventions, the planner may not want to

use the entire budget.

We simulate the optimal 𝑝𝑑 with three islands of equal size, 𝑛 = 999, which have 100, 60,

and 10 knowledgeable agents, respectively. We assume the cost function 𝜑(𝛼) = 10𝛼2, 𝑝𝑜𝑑 = 0,

and 𝑝𝑠 = 0.8. Note the principal can set 𝑝𝑑 ≤
√︀
𝐵𝑢𝑑𝑔𝑒𝑡/10 < 0.8 provided that the budget is at

most 5. As in Proposition 3.2.3, we assume the cost of the principal’s signaling technology is

small, i.e., 𝜀 ≈ 0.

In Figure 3-14, we show both the optimal homophily (𝑝𝑑) choice of the planner and the

maximum 𝑝𝑑 attainable by the budget. We see that when the budget is small, the planner prefers

to leave relatively extreme homophily in society as opposed to making the more substantial

correction allowed by the budget. Once the budget exceeds a threshold (around 1.3 in the

figure), however, the planner uses all of it up to remove as much homophily from the network

as possible. Thus, a planner tasked with stopping misinformation through reducing inequality
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Figure 3-14. Optimal (Simulated) 𝑝𝑑 with limited budget. The dotted curve is the level of
homophily achieved by spending the entire budget available, whereas the solid curve is the
optimal level of homophily given that budget. A planner should always ask for a minimum
budget (around 1.3 in the figure) allocation that makes these two curves coincide.

should always ask for a budget allocation that is at least equal to that threshold, in order to

guarantee that this reduction will indeed achieve the desired effect and be beneficial to society.

3.2.6 Conclusion

This paper analyzes the role of inequality in social learning when the information that agents

receive is a mixture of organic news and news originating from a strategic actor. This setup

resembles many scenarios where an information provider may have their own agenda and

exerts costly effort to influence agents to take certain actions. Inequality in society results from

the distribution of knowledgeable agents who know the true state of the world. Privileged

communities have a higher proportion of these agents, and the homophily structure of the

network determines access to these agents across communities.

We show that the role that inequality plays in the spread of misinformation is shaped

by relative community privilege, relative community sizes, and the cost of the principal’s

signaling technology. This leads to a range of outcomes depending on how these factors

interact. For example, when the privileged communities are small in size compared to the

population at large, as is often the case, then an increase in inequality not only makes the large

population worse off, but it also makes the privileged communities themselves more prone to

misinformation, thus it is in the privileged communities’ best interest to encourage allocating
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resources to the larger community. Generally, the spread of misinformation in not monotone

in the level of inequality in the network. Even more so, intermediate levels of inequality can be

worst for society when the signaling costs of the principal is low, but can be best for society

when the principal’s costs are high.

In a similar vein, policies that counteract manipulation depend on the principal’s signaling

costs as well as the social planner’s budget. When signaling costs are low, so that the principal

can target everyone, then the planner’s optimal policies with a large budget involve eradicating

inequality through an equitable placement of knowledgeable agents and/or removing homophily

from the network. When signaling costs are no longer trivial, the planner needs to be more

careful, as inequality extremes might be worse for society than intermediate inequality regimes.

This is a consequence of a protection contagion phenomenon that precludes the principal

from having a profitable manipulation strategy. Generally, the complexity of computing these

optimal strategies provides a wealth of interesting algorithmic challenges that can be explored

further and constitute a promising area for future work.

Finally, our model provides a basic framework to analyze the phenomena described in

the paper in terms of the primitives of the problem represented by the inequality structure,

the planner’s budget, and the strategic injection of misinformation. Given the salience of

these points in modern social learning environments, the model provides a step towards

understanding the complex interactions of these factors, and offers guidelines that can help

inform policies that aim to reduce inequality and protect society from misinformation.

3.3 Contrasting Bayesian and DeGroot Models

One of the most active areas of inquiry into misinformation examines how the cognitive

sophistication of people impacts their ability to fall for misleading content. In this section,

using the simplified setting of Mostagir and Siderius (2022a), we capture sophistication by

studying how misinformation affects the two canonical models of the social learning literature

discussed previously: sophisticated (Bayesian) and naive (DeGroot) learning. We show that

sophisticated agents can be more likely to fall for misinformation. Our model helps explain

several experimental and empirical facts from cognitive science, psychology, and the social

sciences. It also shows that the intuitions developed in a vast social learning literature should be
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approached with caution when making policy decisions in the presence of misinformation. We

conclude by discussing the relationship between misinformation and increased partisanship,

and provide an example of how our model can inform the actions of policymakers trying to

contain the spread of misinformation.

3.3.1 Model

There is a true and unknown state of the world 𝜃 ∈ {𝐿,𝑅} indicating whether a left-leaning or

right-leaning idea is correct. There are 𝑁 agents in the population who are trying to learn 𝜃 to

make an informed binary decision. Agents receive independent information (messages) about

𝜃 and then interact with others to try and learn what the true value of 𝜃 is.

Timing. We present our model using a parsimonious three-period model 𝑡 = 0, 1, 2:

(i) At 𝑡 = 0, agents start out with heterogeneous ideological beliefs. The initial belief, 𝜋𝑖,0, of

each agent 𝑖 is drawn i.i.d. from a continuous distribution 𝐻, corresponding to her belief

in 𝜃 = 𝑅. Agents with beliefs 𝜋𝑖,0 < 1/2 are (initially) left-leaning, while those with beliefs

𝜋𝑖,0 > 1/2 are (initially) right-leaning.

(ii) At 𝑡 = 1, agents receive (independent) messages advocating for either state 𝐿 or state 𝑅.

Formally, each agent 𝑖 receives a single message 𝑚𝑖 ∈ {𝐿,𝑅}.29 Some of the messages

come from organic news, which are correlated with the state; in particular, P[𝑚𝑖 = 𝜃] =

𝑝 > 1/2 for every agent 𝑖. We assume throughout that the population 𝑁 is large (i.e.,

𝑁 → ∞) so that in the presence of organic news only, the truth is discernible with high

probability by aggregating all of the messages.30

The messages that agents receive could also be misinformation that is orthogonal to

the state. Agents cannot discern whether a given message contains misinformation or

not. The probability that a message contains misinformation is 𝑞 < 1/2, i.e., most news

is organic. Agents are aware of the existence of misinformation (they know 𝑞), but do

not know how this misinformation is broken down along the two possible states, i.e.,

they do not know the proportion of misinformation arguing for 𝐿 vs. the proportion of

29Receiving a single message is without loss of generality. Appendix B.4 considers a generalization where agents
get multiple (independent) messages over time, but our results apply identically.

30In Appendix B.5.2, we measure the sensitivity of our results to this assumption via simulations with finite 𝑁
populations.
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misinformation arguing for 𝑅. This follows the empirical observation in van der Linden

et al. (2020) that shows that while people agree about the existence of misinformation and

even its extent, they do not agree on whether this misinformation leans more left or right.

Let 𝑟 denote the proportion of misinformation on the right. We assume that 𝑟 is drawn

from a differentiable distribution 𝑟 ∼ 𝐹 (·) at 𝑡 = 0 and is independent of 𝜃. We assume

that 𝐹 has full support31 on some interval [𝑟, 𝑟] and no support32 outside of this interval.33

Similarly, we assume the distribution of prior beliefs 𝐻 has full support over [𝜋, �̄�] and

no support outside of it. In other words, we assume the supports of all distributions are

convex.

(iii) At 𝑡 = 2, agents observe the broadcasted beliefs of other agents in periods 𝑡 = 0 and 𝑡 = 1

and use these beliefs (as well as their own message) to form a final belief 𝜋𝑖,2 (as described

below). Following this, each agent 𝑖 makes a binary decision 𝑎𝑖 ∈ {𝐿,𝑅} based on which

state she believes is more likely.

We consider two types of populations: Bayesian and DeGroot. Bayesian agents learn about

𝜃 by updating their beliefs in a fully Bayesian way, whereas DeGroots use simple learning

heuristics. We use 1𝜃=𝑅 to denote the indicator function of 𝜃 = 𝑅 (i.e., 1𝜃=𝑅 is equal to 1 when

𝜃 = 𝑅 and 0 when 𝜃 = 𝐿). Recall 𝜋𝑖,0, 𝜋𝑖,1, and 𝜋𝑖,2 are the beliefs of agent 𝑖 at times 𝑡 = 0, 1, and

2, respectively.

(i) Bayesian Society: At 𝑡 = 1, each Bayesian agent forms a posterior update about the state,

𝜋𝑖,1, given the article with message 𝑚𝑖 and knowing content may contain misinformation:

𝜋𝑖,1(𝑚𝑖 = 𝑅) = E[1𝜃=𝑅|𝑚𝑖 = 𝑅] =

∫︁ 1

0

(𝑝(1 − 𝑞) + 𝑞𝑟)𝜋𝑖,0
𝑝(1 − 𝑞)𝜋𝑖,0 + (1 − 𝑝)(1 − 𝑞)(1 − 𝜋𝑖,0) + 𝑞𝑟

𝑓(𝑟) 𝑑𝑟

𝜋𝑖,1(𝑚𝑖 = 𝐿) = E[1𝜃=𝑅|𝑚𝑖 = 𝐿] =

∫︁ 1

0

((1 − 𝑝)(1 − 𝑞) + 𝑞(1 − 𝑟))𝜋𝑖,0
(1 − 𝑝)(1 − 𝑞)𝜋𝑖,0 + 𝑝(1 − 𝑞)(1 − 𝜋𝑖,0) + 𝑞(1 − 𝑟)

𝑓(𝑟) 𝑑𝑟

At time 𝑡 = 2, agents form Bayesian posterior estimates about the state, 𝜋𝑖,2, given their

article with message 𝑚𝑖 and the beliefs of agents in the population {𝜋𝑗,0, 𝜋𝑗,1}𝑗 ̸=𝑖, again,

fully aware that there may be misinformation in the system. This is akin to the updating

31We define full support of a distribution 𝐺 on an interval [𝑎, 𝑏] as having its density 𝑔 satisfy the following
property: there exists 𝜇 > 0 such that 𝑔(𝛼) > 𝜇 for all 𝛼 ∈ [𝑎, 𝑏].

32No support over a set 𝒜 means the distribution 𝐺 draws an element from 𝒜 with probability 0.
33While this does not rule out full support of 𝐹 on [0, 1], this more general assumption allows us to capture the

effect of relatively symmetric vs asymmetric prevalence of misinformation.
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process in Acemoglu et al. (2016), where agents are uncertain about the underlying

message distribution.

(ii) DeGroot Society: DeGroot agents are boundedly rational agents who use a learning

heuristic to learn 𝜃. At 𝑡 = 1, each DeGroot agent updates her belief of the state using

Bayes’ rule taking the news at face value (i.e., assuming there is no misinformation in the

system). This is similar to how these agents update their beliefs in Jadbabaie et al. (2012)):

𝜋𝑖,1(𝑚𝑖 = 𝑅) = E[1𝜃=𝑅|𝑚𝑖 = 𝑅, 𝑞 = 0] =
𝑝𝜋𝑖,0

𝑝𝜋𝑖,0 + (1 − 𝑝)(1 − 𝜋𝑖,0)
(3.4)

𝜋𝑖,1(𝑚𝑖 = 𝐿) = E[1𝜃=𝑅|𝑚𝑖 = 𝐿, 𝑞 = 0] =
(1 − 𝑝)𝜋𝑖,0

(1 − 𝑝)𝜋𝑖,0 + 𝑝(1 − 𝜋𝑖,0)
(3.5)

Based on these observations, each DeGroot takes an average of all the time 𝑡 = 1 beliefs

of the agents in society to form their time 𝑡 = 2 belief, i.e., 𝜋𝑖,2 = 1
𝑁

∑︀𝑁
𝑗=1 𝜋𝑗,1. In other

words, DeGroot agents employ “rule-of-thumb” learning to update their beliefs instead of

forming a Bayesian posterior belief.

Learning. At 𝑡 = 2, agent 𝑖 chooses a binary terminal action 𝑎𝑖 ∈ {𝐿,𝑅} that minimizes her

quadratic loss E[(𝑎𝑖−1𝜃=𝑅)2] given her belief, 𝜋𝑖,2. We follow the standard definition of learning

(e.g., Acemoglu et al. (2011)) and say that society learns if all agents take the correct action

(𝑎𝑖 = 𝜃); otherwise, society mislearns. In Appendix B.5.1, we explore how our results are affected

when characterizing the expected proportion of agents who (mis)learn instead of the classical

“all-or-nothing” measure of (mis)learning.

Remark — While we adopt the three-period learning model to most transparently demonstrate

the main concepts, richer learning dynamics can be supported without compromising any of

the key results. In particular, when agents learn from each others’ beliefs over a social network

(and thus do not observe all beliefs in the population), our findings generalize, provided there

is a longer learning horizon and given some mild assumptions on the network structure. The

details of the reduction from more general networked learning to the three-period model are

supplied in Appendix B.4.
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3.3.2 Illustrative Example

We present an example to show that agents who use simple learning heuristics can learn

better than fully-rational agents in the presence of misinformation. For concreteness, we fix

𝜃 = 𝐿 as the true state (which, by assumption, is unknown to the agents). We also assume

the misinformation ideological split 𝑟 is uniformly distributed on [0, 1], i.e., the split is ex-ante

symmetric for left-leaning and right-leaning misinformation. Agents do not know the exact

value of 𝑟, but they know that it comes from the uniform distribution on (0, 1). We compare the

following two settings:

Setting A: Weak Organic Messages and No Misinformation. Consider the baseline case

studied throughout the social learning literature. There is no misinformation, i.e., 𝑞 = 0,

and 𝑝 = 0.54, so that 54% of organic messages align with 𝜃 = 𝐿. In this setup, organic news is

(weakly) correlated with the truth.

Do agents learn the correct state (almost surely) when the population is large? The short

answer, as already developed in a vast literature, is yes. Both agent types correctly learn that

the true state is 𝐿. This happens regardless of their initial prior beliefs (i.e., even those on the

extreme right still learn that the correct state is 𝐿) and despite the fact that news is weakly

correlated with 𝜃. In this setup, both the Bayesian and DeGroot societies take the correct

action.

Setting B: Misinformation with Stronger Organic Messages. In this setting, misinformation

exists in the system, with 𝑞 = 0.25. On the other hand, organic news is of higher quality, with

𝑝 = 0.6. For this example, assume that 𝑟 = 0.64, i.e., 64% of the misinformation advocates for

𝜃 = 𝑅 and 36% advocates for 𝜃 = 𝐿. This means that among the large collection of messages

{𝑚𝑖}𝑁𝑗=1, roughly 54% correspond to 𝐿 (i.e., 𝑝(1 − 𝑞) + (1 − 𝑟)𝑞) and 46% correspond to 𝑅 (i.e.,

(1 − 𝑝)(1 − 𝑞) + 𝑞𝑟). This distribution is identical to the one in Setting A, under which agents

were able to correctly learn. In Setting B, if agents did not know misinformation exists, learning

will proceed exactly as before and everyone will take the correct action despite the presence of

misinformation. However, agents are now aware that there is misinformation in the system.

Given this, we analyze how each society updates its beliefs.

Bayesian agents: Agents observe the initial beliefs 𝜋𝑗,0. At 𝑡 = 1, each Bayesian agent 𝑖 forms a

posterior belief 𝜋𝑖,1 based on 𝑚𝑖 as mentioned in Section 3.3.1. Observe that 𝜋𝑗,1 > 𝜋𝑗,0 if and
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only if 𝑚𝑖 = 𝑅 and 𝜋𝑗,1 < 𝜋𝑗,0 if and only if 𝑚𝑖 = 𝐿. Thus, by observing beliefs in the second

period, every agent 𝑖 can deduce the messages {𝑚𝑖}𝑁𝑗=1. As noted, When 𝑁 is large, the law of

large numbers guarantees that roughly 54% of the messages that agent 𝑖 observes will favor 𝐿.

Note that there are exactly two realizations of 𝑟 for which 54% of the messages are 𝐿 and

46% are 𝑅. The first is the true realization, where 𝜃 = 𝐿 and 𝑟 = 0.64. The other is where 𝜃 = 𝑅

but 𝑟 = 0.04 (i.e., only 4% of the misinformation is on the right). This situation is depicted in

Figure 3-15. Because 𝑟 is uniformly distributed, both of these scenarios are equally likely. This

implies that 𝜋𝑗,2 = 𝜋𝑗,0 because the messages provide no information about the state 𝜃. In other

words, right-leaning agents spin a narrative that the vast majority of misinformation is on the

left, and cannot use the massive quantity of news to change their views. Similarly, left-leaning

agents do the same, believing (correctly, in their case) that most of the misinformation must

be on the right. The society of Bayesians does not learn and there is persistent disagreement

about 𝜃 in the population.

DeGroot agents: DeGroot agents take messages at face value and use them to update their

beliefs (via Equations (3.4) and (3.5)) using 𝑝 = 0.6. Thus, noting that 54% of messages are 𝐿

and 46% of messages are 𝑅, DeGroot agents hold beliefs 𝜋𝑗,𝑡 for all 𝑡 ≥ 2:

∫︁ 1

0

(︂
.46 · .6𝛼

.6𝛼 + .4(1 − 𝛼)
+ .54 · .4𝛼

.4𝛼 + .6(1 − 𝛼)

)︂
𝑑𝛼 = 0.495 < 1/2

so all agents in society learn the correct state, in contrast to the Bayesians.

Likelihood of Mislearning. We used a specific misinformation split 𝑟 = 0.64 in the above

example for simplicity. Other values of 𝑟 would give rise to different outcomes. Instead of

focusing on a specific realization of 𝑟, we can instead look at the likelihood that society does not

learn when the split 𝑟 is randomly drawn from its true (uniform, in this example) distribution.

How do Bayesian agents perform relative to DeGroot agents on average?

It turns out that in this case, Bayesian agents mislearn twice as much as DeGroots (probability

that Bayesians mislearn is 40% vs. 20% for the DeGroots – see Appendix B.1 for calculations).

We characterize this ratio as a function of the distribution of 𝑟 in Theorem 3.3.2. Generally,

while Bayesian agents thrive in environments where information is organic, they are much

more vulnerable to mislearning and taking the wrong action in the presence of misinformation.
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Figure 3-15. Two narratives that give rise to equivalent observations. In this example, the true
state is 𝐿 and most of the misinformation comes from the right with 𝑟 = 0.64, i.e., the left
narrative is the correct one. However, agents who hold right-leaning beliefs can rationalize
their observations as coming from the right narrative, with the organic information arguing for
𝑅 and most of the misinformation coming from the left, with 𝑟 = 0.04.

3.3.3 Learning in Bayesian vs. DeGroot Societies

In this section, we generalize the previous example and investigate the conditions under

which learning breaks down in each society. We follow this up with two technical results.

Theorem 3.3.1 characterizes when Bayesians learn worse than DeGroots as a function of the

amount of misinformation in the system, and Theorem 3.3.2 quantifies how much worse they

learn as a function of the distribution of that misinformation.

DeGroot (Mis)learning: Propaganda for the Incorrect State

DeGroot agents update their beliefs about the state by averaging the opinions of others.

Because of this simple updating process, they always converge to a (possibly incorrect)

consensus about what the true state is. When there is no misinformation (i.e., 𝑞 = 0), agents will

learn the correct state and choose 𝑎𝑖 = 𝜃 (see Golub and Jackson (2010)). When misinformation

is present, we can provide necessary and sufficient conditions for DeGroot learning in terms of

the ideological split of misinformation 𝑟:

Proposition 3.3.1. When 𝜃 = 𝐿, there exists a threshold 𝑟*𝐷 such that if 𝑟 < 𝑟*𝐷, the DeGroot

society learns and if 𝑟 > 𝑟*𝐷, the DeGroot society mislearns.

Proposition 3.3.1 shows that failure of learning depends on whether propaganda for the

incorrect state is sufficiently high to direct agents away from the belief that the organic news
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argues for. Agents learn as long as this propaganda does not overpower organic news.

Bayesian (Mis)learning: Rationalization and Competing Narratives

Bayesian agents make inferences about the state by observing the distribution of messages

in the population. They then rationalize the values for the misinformation split 𝑟 that gives

rise to this message distribution. We refer to these values as narratives. There can be at most

two narratives: one that corresponds to 𝜃 = 𝐿 and one that corresponds to 𝜃 = 𝑅. Only one

of these narratives is correct, and agents will stick with the narrative that fits their beliefs.34

However, there can also be a single correct narrative, in which case all agents learn the true

state 𝜃. This again depends on the extent of misinformation arguing for the incorrect state:

Proposition 3.3.2. When 𝜃 = 𝐿, there exists a threshold 𝑟*𝐵 such that if 𝑟 < 𝑟*𝐵, a single narrative

exists and the Bayesian society learns.

If 𝑟 > 𝑟*𝐵, then two narratives exist. Figure 3-16 shows this situation for a specific 𝑟 > 𝑟*𝐵

value. Recall that agents do not know 𝑟, but in this example they know that it follows a triangular

distribution. This makes them believe that the more likely narrative is the one corresponding

to 𝑅. In this case, all agents move further to the right (and away from the true state). Note that

unlike the example in Section 3.3.2, where the two competing narratives were equally likely

under the uniform distribution, the triangle distribution makes the incorrect narrative strictly

more likely. Section 3.3.3 shows how to quantify the likelihood of mislearning as a function of

the hazard rate of the distribution of 𝑟.

Low vs High Misinformation Regimes

Next, we present our main theorem, which analyzes the settings under which DeGroot or

Bayesian agents mislearn more often:

Theorem 3.3.1. Suppose 𝐻 is symmetric about 1/2.35 Then there exists a threshold 𝑞* ∈ (0, 1)

such that:
34This is reminiscent of the effect informally described by the Today show co-host Al Roker, commenting on

conflicting results of science experiments: “I think the way to live your life is you find the study that sounds best
to you and you go with that."

35This corresponds to a society where every belief on the left is perfectly mirrored by a belief on the right of the
same extremity. This allows us to analyze both the 𝜃 = 𝐿 and 𝜃 = 𝑅 cases identically and abstracts away from
scenarios where society begins either initially biased toward or away from the correct state, in order to focus on
the underlying learning mechanisms.
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Figure 3-16. Two narratives that justify the same observed message distribution under a specific
misinformation split 𝑟. Agents do not know 𝑟 but they know that it follows a triangular
distribution. This makes them believe that the more likely narrative is the one that corresponds
to the true state being 𝑅. In this case, all agents move further to the right and away from the
correct state.

(a) If 𝑞 < 𝑞*, the Bayesian society mislearns with lower probability than the DeGroot society;

(b) If 𝑞 > 𝑞* and 𝐻 and 𝐹 have full support on [0, 1], the Bayesian society mislearns with strictly

higher probability than the DeGroot society.

Theorem 3.3.1 establishes that when the amount of misinformation is not too large, Bayesian

agents can still learn better than their DeGroot counterparts. This is the classic intuition from

the social learning literature and the one empirically observed in Bronstein et al. (2019); Bago

et al. (2020); Pennycook and Rand (2019). On the other hand, once misinformation becomes

more rampant, DeGroot agents become more adept at aggregating the organic information

compared to the Bayesians, who find themselves in consistent disagreement over what the

truth is, as in the empirical work of Drummond and Fischhoff (2017); Kahan et al. (2012);

Hamilton et al. (2015).

The intuition for Theorem 3.3.1 is as follows. When misinformation is relatively low, the

organic news is enough for Bayesians to infer the true narrative and see the misinformation

as purposefully deceptive. On the other hand, with DeGroot agents, this misinformation still

has a chance of successfully steering the beliefs of the population away from the truth. Once

the amount of misinformation becomes large, a post-truth effect kicks in for the Bayesians:

any reasonable narrative can be told about the source of misinformation, and disagreement
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over the true state ensues. While DeGroots are not guaranteed to learn either, their simple

updating tends to work well when misinformation is not too heavily skewed in one direction

or another. Thus, in more instances, the DeGroot society is able to learn from the organic news

while allowing the misinformation on both sides to nearly “wash out.” We can quantify how

much better the DeGroots do in this case, which is the subject of the next section.

High Misinformation and Mislearning Rates

When 𝑞 > 𝑞*, we observe in Theorem 3.3.1 that DeGroot agents learn more effectively than

Bayesian agents. This section is for readers who are interested in quantifying the extent with

which DeGroots outperform Bayesians. This depends on the misinformation split distribution

𝐹 (·). We formalize this as follows. The exact difference in rates of mislearning between Bayesian

and DeGroots in the high-misinformation regime (i.e., 𝑞 > 𝑞*) is determined by the hazard

rate 𝜆𝐹 (𝛼) of 𝐹 . Recall that the hazard rate is given by 𝜆𝐹 (𝛼) = 𝑓(𝛼)
1−𝐹 (𝛼)

, where 𝑓(·) is the density

of cumulative distribution function 𝐹 . Denote by 𝜇 the the relative frequency of DeGroot to

Bayesian mislearning (which by Theorem 3.3.1 is less than 1), then we can characterize how 𝜇

changes as a function of the strength of organic signals 𝑝 (i.e., whether agents can learn from

strongly informative content):

Theorem 3.3.2. Suppose that 𝐻 and 𝐹 have full support on [0, 1], 𝐻 is symmetric, and 𝑞 > 𝑞* as

in Theorem 3.3.1(b). Consider 𝛼 = 1−2(1−𝑝)(1−𝑞)
2𝑞

and 𝛽 = 𝑝
(︁

1 − 𝑞*

𝑞

)︁
.36 The ratio 𝜇 is increasing

in 𝑝 if 𝜆𝐹 (𝛼) < 2𝜆𝐹 (𝛼 − 𝛽), decreasing in 𝑝 if 𝜆𝐹 (𝛼) > 2𝜆𝐹 (𝛼 − 𝛽), and unchanging if 𝜆𝐹 (𝛼) =

2𝜆𝐹 (𝛼− 𝛽).

Informally, Theorem 3.3.2 states that Bayesians perform comparatively worse than DeGroots

when misinformation is more evenly distributed. The reason is that while Bayesians are

adept at making inferences about the possibility of strongly misleading misinformation,

misinformation that is relatively balanced on both sides permits more rationalization of

narratives and more disagreement. On the other hand, more balanced misinformation is

always better for DeGroot learning because it permits greater likelihood of overall balanced

news and less propaganda for the incorrect state. Appendix B.3 shows how to apply this result

when 𝑟 comes from skewed or unskewed distributions.

36Note that it can be shown 0 ≤ 𝛼− 𝛽 ≤ 𝛼 ≤ 1, so the hazard rates are well-defined everywhere.
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3.3.4 Polarization

Polarization and political partisanship have been steadily increasing (see Abramowitz (2010)

and Pew Research Center (2014) for evidence from the United States). As noted in the introduction,

a substantial literature advocates that increased polarization makes people more likely to

disagree over objective facts because of politically-biased reasoning, whereas new findings

(see Tappin et al. (2020)) suggest that this disagreement can be explained as a byproduct of

sophisticated (Bayesian) reasoning and not partisan bias.

Our model lends support to the latter explanation by showing that disagreement can

naturally arise from Bayesian updating. More generally, Theorem 3.3.3 highlights the fact that

attempts to establish a connection between partisanship and disagreement should take into

account the sophistication level of the agents and the amount of misinformation in the system.

As misinformation becomes more prevalent, increased polarization leads to failure of learning

in Bayesian societies, but leaves DeGroot societies relatively unaffected. Thus, measuring the

effects of polarization on learning and consistent disagreement without incorporating these

elements can lead to seemingly contradictory evidence.

We operationalize polarization as follows: consider some symmetric (about 1/2) belief

distribution 𝐻 (density ℎ) with support [𝜋, �̄�] and a mean-preserving spread of 𝐻 to some �̃�𝛾

(density ℎ𝛾) defined as:

ℎ̃𝛾(𝜋 + (𝜋 − 1/2)𝛾) =
1

1 + 𝛾
ℎ(𝜋)

where 𝛾 ∈ [−1, 𝛾] where 𝛾 = min
{︁

1−�̄�
�̄�−1/2

, 𝜋
1/2−𝜋

}︁
. One can think of 𝛾 as a measure of belief

polarization in society. For larger 𝛾, 𝜋 + (𝜋 − 1/2)𝛾 is closer to 0 when 𝜋 < 1/2 and closer to

1 when 𝜋 > 1/2; thus, the probability of realizing “tail” beliefs grows when 𝛾 increases. (Note

that 1/(1 + 𝛾) is simply a scaling factor to guarantee the
∫︀ 1

0
ℎ̃𝛾(𝜋) 𝑑𝜋 = 1.) A simple example of

increasing polarization for a truncated normal distribution of beliefs is given in Figure 3-17.

Our next result establishes a threshold result for polarization and its consequences to both

Bayesian and DeGroot mislearning:

Theorem 3.3.3. Let 𝐻 be symmetric about 1/2 and 𝑞 > 𝑞*. There exists a threshold 𝛾* such that

if 𝛾 < 𝛾*, the DeGroot society mislearns more often than the Bayesian society, whereas if 𝛾 > 𝛾*,

the DeGroot society mislearns less often than the Bayesian society.

In Bayesian societies, an increase in belief polarization always hurts learning. Mean-
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Figure 3-17. (Color online) Polarization of beliefs captured through parameter 𝛾.

preserving spreads necessarily create more tension in the learning process because agents

cannot agree on what is likely to be the true narrative. The impact is more mild on DeGroot

agents because they communicate and update beliefs by taking averages of their neighbors.

In this case, mean-preserving spreads do not affect their general ability to aggregate organic

information, even when they start from very different initial beliefs.

Remark — Note that when 𝐻 is asymmetric, polarization still always hurts Bayesian societies

(see the proof of Theorem 3.3.3 in Appendix A). However, it is possible that in this case

polarization improves the chances of learning in a DeGroot society (see Appendix B.2 for an

example). This occurs because when society is initially well-informed, additional polarization

pulls initial opinions towards the correct and incorrect states. However, the convexity of

how agents update their beliefs from news (see Equations (3.4) and (3.5)) leads to an overall

movement towards the correct state. This fails in Bayesian societies because of persistent

disagreement about the truth, and further accentuates the result of Theorem 3.3.3 that polarization

is more damaging to a Bayesian society than a DeGroot one.

Targeting Policies. We now consider the problem of a planner who can target a subset of the

population with information arguing for one state over the other. One can think of this policy

as an educational outreach intervention. For example, governments have been ramping up

their efforts to convince citizens to vaccinate against COVID-19, and a part of these efforts is

targeted advertising. The question is which agents should the planner target? For example,

should she target the most polarized agents? We show that the answer, again, crucially depends
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on the level of sophistication of the agents.

Formally, the planner informs a small but positive measure of agents that the correct state

is either 𝐿 or 𝑅. We assume the agents interpret this information in the same way they do

news: combined with the message 𝑚𝑗 that agent 𝑗 receives, she also gets the planner’s message

𝑚𝑝
𝑗 ∈ {𝐿,𝑅} and updates using both messages. The next result describes the planner’s targeting

policy:

Proposition 3.3.3. There exists 1/2 < 𝜋* < 1 such that the targeting policy for DeGroot agents is

to target those agents whose beliefs lie in an open interval containing 𝜋* (and bounded away

from 1). The policy for Bayesians agents is to target those agents whose beliefs are farthest from

the truth, i.e., the extremists.

Proposition 3.3.3 states that in a DeGroot world with 𝜃 = 𝐿, the planner wants to influence

right-leaning moderates, as these are the agents who change their belief most when seeing

message 𝐿. Extremists in this society mostly dismiss messages that don’t agree with their priors,

and the planner has little to gain by targeting them. However, with Bayesian agents, extremists

are exactly the agents that the planner needs to target. While the efficacy of her work is limited,

these are the agents who are most inclined to spin narratives that anchor them to the incorrect

state.

Remark 1 — Proposition 3.3.3 recommends a policy when the planner knows the true state, but

the insights generalize when the planner herself is uncertain about what the state actually is.

In a DeGroot society, the planner tries to make relatively moderate agents (of both ideologies)

more moderate. In Bayesian societies, the planner tries to make the extremists (of both

ideologies) move toward the center. Both of these policies push toward decreasing the polarization

of ideological beliefs (albeit in different ways).

Remark 2 — Under a different learning objective, such as minimizing the proportion of agents

who mislearn the state, the DeGroot policy in Proposition 3.3.3 remains unaffected, but the

Bayesian policy becomes more subtle. In many environments, the regulator should still target

the most polarized Bayesian agents in society, but in some other instances, targeting mostly

moderate Bayesian dissenters can be more effective. The nuances of targeting interventions

under this alternative objective are explored in detail in Appendix B.5.1.
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3.3.5 Final Remarks

As argued recently in Watts et al. (2021), accurate information is very much a prerequisite

for successful democratic discourse. The Internet and social media have made it easier to

disseminate misinformation (Allcott and Gentzkow, 2017), with far-reaching consequences.37

There are ongoing efforts across multiple disciplines to try and uncover the mechanisms by

which misinformation spreads. In this paper, we contribute to these efforts by examining

misinformation through the lens of social learning and focusing on agents’ sophistication

types. While the learning mechanisms of these types have been studied in a broad context,

they have not been analyzed and compared when there is rampant misinformation. We show

a reversal of results and intuitions that hold in many normative learning setups, but not in

the presence of misinformation. We do this through a parsimonious framework whose results

reconcile several empirical studies and whose predictions show the need for researchers and

policymakers to jointly consider sophistication and social learning as integral components in

studying the spread of misinformation.

37Examples range from individual actions along the lines of Pizzagate (Fisher et al., 2016), to belief in the “Death
Panels” of the Affordable Care Act (Watts et al., 2021), to more collective action failures like the spread of measles
in Eastern Europe as a result of Russian disinformation (Broniatowski et al., 2018).
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Chapter 4

Attention Models and Algorithmic Ranking

In this chapter, we address topics related to user attention, content creation (and engagement),

and platform algorithms. In Section 4.1, we provide and analyze a model of content creation

with limited user attention to characterize how users allocate their time to various articles when

there is a deluge of online content. Using this framework, we study the incentives for content

creation in the digital era, when technology makes it increasingly easier to supply content. In

Section 4.2, we experimentally investigate the behavioral decisions users make to click on and

share certain articles. We use this to engineer a design to test some natural platform ranking

algorithms, such as preference-based or friend-based, and gauge user behavior in response

to such changes. In particular, we are interested in how these algorithms might promote

engagement with certain types of content such as misinformation or catchy click-bait.

4.1 Competing for Limited Attention on Social Media

We consider a model of endogenous content creation on a social media platform. Articles

consist of two attributes, catchiness and informativeness, one of which is an easily observed

characteristic and the other which is hidden and may only be learned through sufficient reading.

A representative platform user with limited attention receives utility from both entertainment

and from absorbing information, and endogenously chooses how to allocate her time reading

based on the headlines she observes. We fully characterize the equilibria when there is a single

article, and show there can be multiplicity because of strategic complementarity between the

user (who wants to read informative content) and the provider (who only wants to invest if the

151



content will be read). We generalize this characterization to a monopolist who has access to a

technology that can produce many articles, which admits a much richer set of equilibria. As

the number of articles grows, we find that while the most informative equilibrium supplies

more information, the least informative equilibrium also supplies less information. Once

competition is introduced across content providers (holding the total number of articles fixed),

information provision deteriorates in both the most information rich and least information

rich equilibria, because providers cannibalize each other through catchy content to steal user

attention, but which provides little informational value.

4.1.1 Model

We consider a single consumer who processes content on a social media site with 𝑁 content

providers. There is a multi-dimensional state 𝜃* ≡ {𝜃*1, . . . , 𝜃*𝐾} ∈ R𝐾 , and each component 𝜃*𝑘

of the state vector 𝜃* is drawn i.i.d. from a standard normal distribution. The representative

consumer digests content on social media potentially for both entertainment and to get a

better understanding of the world (a tighter estimate of 𝜃*).

Content provides utility through both direct and indirect channels. Content which is catchy

is more interesting to read, and provides some fixed, direct utility regardless of any other

factors. On the other hand, content that is informative provides indirect utility by allowing the

consumer to form a better estimate of 𝜃*. Each article has a two-dimensional type describing

whether it is (i) catchy or non-catchy and (ii) informative or non-informative. While users can

observe catchiness on the surface, they cannot gauge informativeness directly without reading

the article.

Attention Game. There are three stages to the game. In stage 1, content providers create

content for users to consume. In stage 2, content consumers inspect (or “survey”) the set

of articles available to them based solely on their headlines (and catchiness). In stage 3,

consumers dynamically allocate time to different articles. These stages are detailed next:

(1) Content creation: There are 𝑁 content providers who invest in creating (at most) 𝑀 pieces

of content each in stage 1 (which we call “articles”). First, each provider selects up to 𝑀

topics (not necessarily distinct) to write articles on. Second, each provider decides whether

to invest in the catchiness and / or informativeness of an article. Both such investments
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are costly.

For each article, there is a fixed investment 𝐶 > 0 for each of provider 𝑗’s articles to make

it catchy (𝒞) instead of non-catchy (𝒞∘). For each article 𝑎 written by producer 𝑗, there is

a private investment cost 𝐼𝑗,𝑎 > 0 to produce informative content (ℐ); non-informative

content (ℐ∘) is costless. We assume 𝐼𝑗,𝑎 is drawn from a smooth distribution 𝐹 with full

support over [0, 𝐼] for some 𝐼 > 0. These costs are independent across providers 𝑗 and

articles 𝑎, and privately known by the provider.

If a provider elects to supply informative content on topic 𝑘, it will eventually reveal

information about state 𝜃𝑘 if the consumer reads for long enough. Formally, an informative

article 𝑎 from provider 𝑗 (written on topic 𝑘) will generate a signal 𝑠𝑎 ∼ 𝜃𝑘 + 𝜀𝑗,𝑎, which

arrives at some random time after the consumer has been reading (as described below). It

is assumed 𝜀𝑗,𝑎 is unbiased Gaussian noise with variance 𝜎2 i.i.d. across content providers

and articles. Uninformative content never provides any signal. Content creators receive

a payoff proportional to the time the consumer spends reading their content, less any

investments into catchy or informative content. In other words, provider 𝑗 receives payoff

𝑉𝑗 given by:

𝑉𝑗 =
∑︁
𝑎∈𝒜𝑗

𝑡𝑎 − 𝐶1𝒞(𝑎)=𝒞 − 𝐼𝑗,𝑎1ℐ(𝑎)=ℐ

where 𝒜𝑗 is the set of articles produced by provider 𝑗, 𝑡𝑎 is the time the consumer spends

reading the article, 𝒞(𝑎) is the catchiness type of article 𝑎, and ℐ(𝑎) is the informativeness

of article 𝑎.

(2) Consumer inspection: In stage 2, while the consumer cannot read all articles in detail, she

can garner some information about each based on the article’s “headline”. Formally, we

assume each article has an easily digestible headline indicating (i) the topic 𝑘 of the article

and (ii) whether the article is catchy (𝒞) or non-catchy (𝒞∘). That is, for every article 𝑎, the

catchiness type 𝒞(𝑎) is revealed to the consumer. However, the headline provides no direct

information about whether the article is informative; in other words, ℐ(𝑎) is unobservable

for each article 𝑎.

(3) Consumer reading : In stage 3, we consider a continuous time environment 𝑡 ∈ [0,∞) where

the consumer dynamically chooses which articles to read and for how long.
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Catchy articles offer a bulk utility of 𝜅 from entertainment conditional on the consumer

reading for at least time 𝜏𝐶 > 0. Non-catchy content provides no (direct) utility. The

consumer has an outside option that provides constant utility flow 𝑣 𝑑𝑡 > 0 and can be

collected for every time interval 𝑑𝑡 if she chooses to abstain from reading any content

(where we assume 𝜅 > 𝑣𝜏𝐶).1

Consumers cannot tell which articles are informative solely from the headline. However,

informative articles always generate a reputability signal (after the consumer reads for

awhile) followed by an information signal that gives the consumer valuable information

about state 𝜃𝑘. Uninformative articles never provide any signals. Precisely, an informative

article generates a noiseless binary reputability signal that the article is quality (or not)

after some random time determined by a Poisson clock with parameter 𝜆𝐼 > 0. This is

always followed by an information signal 𝑠𝑎 after additional reading time 𝜏 𝐼 > 0 about

state 𝜃𝑘.2

Because the consumer has limited attention, the reading process eventually terminates.

This is determined by a Poisson clock with parameter 𝜆; we denote 𝑇 as the random time at

which the attention game ends and payoffs are realized. At time 𝑇 , the consumer takes an

action �̂� ∈ arg min𝜃 E[||𝜃 − 𝜃*||22], which provides utility −𝛽||�̂� − 𝜃*||22 for some parameter

𝛽 > 0.

Formally, at time 𝑇 , the representative consumer receives utility:

𝑈 = 𝑣𝑡𝑜 − 𝛽||�̂� − 𝜃*||22 +
𝑁∑︁
𝑗=1

∑︁
𝑎∈𝒜𝑗

𝜅1𝑡𝑎>𝜏𝐶

where 𝑡𝑜 is the time spent on the outside option and 𝑡𝑎 is the time spent on article 𝑎.

Equilibrium Concept. We consider sequential equilibria of the attention game between 𝑁

content providers and a representative consumer. In other words, each supplier trembles

with vanishingly small probability 𝜀 > 0 for both catchiness and informativeness. This refines

1If 𝜅 < 𝑣𝜏𝐶 , the reader finds the outside option more appealing than a catchy article, leading to a less rich
equilibrium structure, but one which still follows easily from our analysis.

2This can be interpreted as a reader who, after investing some initial time reading the article, can discern
whether the article is reputable, but must then read to the end to get the full informational value. The uncertainty
about the arrival of the reputability signal models the consumer’s uncertainty in how much of the article she must
first read before knowing whether continuation is worthwhile or not.
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equilibria in which all provider strategies are to supply one type of headline (either catchy or

non-catchy), and deviations from this leave consumer beliefs entirely unstructured.

Optimal Reading Scheme. We make a few parameter assumptions that are used throughout

the remainder of the paper. First, we assume that 𝛽(𝜆+ 𝜆𝐼)/(1 + 𝜎2) > 𝑣(1 + 𝜏 𝐼). This implies

that a consumer who knows an article contains information should always continue reading

instead of abandoning in favor of her outside option. Second, we assume that 𝜏𝐶 > 𝐶. This

guarantees that a reader will spend enough time on a catchy article (assuming this is her

only option) to make the investment in catchiness profitable for the provider. Under these

assumptions we obtain the general structure of a consumer’s optimal reading scheme:

Lemma 4.1.1. In every equilibrium, the consumer’s reading strategy always takes the following

form. There is an ordered (𝑁𝑀)-tuple of articles (𝑖1, . . . , 𝑖𝑁𝑀) and stopping times (𝜏 (1), . . . , 𝜏 (𝑁𝑀))

such that the consumer reads articles sequentially, stopping after time 𝜏 (𝑖) for article 𝑖 unless a

reputability signal has arrived (in which case she reads for 𝜏 𝐼 longer after this signal).

Lemma 4.1.1 drives provider incentives for supplying different types of content. Consumers

(with limited attention) quickly jump between articles, allocating only a short amount of time

𝜏 (𝑖) to each article 𝑖 before moving onto the next, unless hooked by the information contained.

However, it is not possible for a provider to credibly reveal whether an article contains valuable

information through just its headline. This will be the driving force behind the kind of content

provided in equilibrium.

4.1.2 Monopolist Content Provider with a Single Article

In this section, we consider a monopolist content provider (𝑁 = 1) with a single article (𝑀 = 1).

The consumer can either interact with the article supplied by the monopolist or allocate her

attention elsewhere (i.e., to her outside option). A monopolist producing a single article makes

a single choice among four alternatives: {𝒞, ℐ}, {𝒞, ℐ∘}, {𝒞∘, ℐ}, {𝒞∘, ℐ∘} (i.e., deciding on both

catchiness and informativeness). If the provider invests in catchiness, then he is guaranteed

a reading time of at least min{𝜏𝐶 , 𝑇}. If the provider invests in an informative article, but

which is non-catchy, then the consumer would only read to acquire an information signal.

However, the consumer does not know if the article is informative or not. If the consumer

were to receive a reputability signal (indicating the article is informative), she will continue
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reading until she acquires the full information necessary to update about the state. Thus,

the provider’s investment in informativeness depends on the likelihood that the consumer

will read for some time before making her assessment about the article’s quality, which is

endogenously determined in equilibrium.

Equilibrium Characterization

Our next result characterizes the set of equilibria for a monopolist with a single article.

Theorem 4.1.1. There exist 0 < 𝜏 < 𝜏 <∞ such that:

(a) If 𝜏𝐶 > 𝜏 , there is a unique equilibrium where the provider supplies a catchy article;

(b) If 𝜏 < 𝜏𝐶 < 𝜏 , there exists a unique long-read equilibrium with non-catchy but possibly

informative content. In this equilibrium, the consumer has a high stopping time (𝜏𝐻) and

the provider has a high likelihood of providing informative content (𝑝𝐻);

(c) If 𝜏𝐶 < 𝜏 , there exist two equilibria, the long-read equilibrium and the short-read equilibrium

with non-catchy but possibly informative content. In this equilibrium, the consumer has

a low stopping time (𝜏𝐿) and the provider has a low likelihood of providing informative

content (𝑝𝐿);

where 𝜏𝐿 < 𝜏𝐻 and 𝑝𝐿 < 𝑝𝐻 .

There are three regimes that emerge from Theorem 4.1.1. In regime (a), catchy content

will engage a reader for a long time; in this case, the provider is best off providing catchy

click-bait, which the consumer reads with little anticipation of information. In regime (b),

catchy content provides transient entertainment and consumers tend to move on quickly. In

this case, information is supplied with some high probability 𝑝𝐻 but the content is non-catchy;

the consumer spends a substantial amount of time reading 𝜏𝐻 with the hope that the article

will deliver information. In regime (c), when catchy content does not engage the user for long

at all, multiple equilibria arise. In particular, a second equilibrium emerges in addition to the

equilibrium of (b) where information is supplied with a low probability 𝑝𝐿 and the consumer

reads for a short period 𝜏𝐿. This multiplicity occurs due to strategic complementarity between

the consumer and the provider: consumers prefer to read content likely to be quality for longer,
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and suppliers are more willing to invest in such content if they expect to engage the reader for

longer.

The intuition for Theorem 4.1.1 can be seen in Figure 4-1. We first define ∆(𝜏), which

is a function of an endogenously determined optimal stopping time 𝜏 for the reader. This

corresponds to the added reading time a quality investment expects to receive given the reader

employs a stopping time 𝜏 . Note that ∆ is first increasing in 𝜏 , then is decreasing. Short

attention for non-catchy articles makes it unlikely for the reputability signal to arrive, and

offers little chance that the reader will engage more conditional on a quality investment. On

the other hand, for very long attention spans, the consumer has a higher likelihood of quickly

getting the information from a quality article, reading to completion, and moving on. An

article with no information that strings the reader along for awhile can even be more profitable

than one with information for extremely long attention spans. This effect drives the eventual

decrease in ∆.

Second, we define ℒ(𝐼*), corresponding to the best-response stopping time a reader would

employ if the content provider invests in quality whenever 𝐼 < 𝐼* is realized. Observe that ℒ

is monotonically increasing in 𝐼, because as the prior probability of quality increases, the

consumer is willing to read for longer even in the absence of a reputability signal. The

candidates for mixed equilibria are exactly the stopping times 𝜏 where ∆(𝜏) = ℒ−1(𝜏); that

is, where the additional reading time from the consumer conditional on quality matches the

investment cost to the provider.

Figure 4-1. Regime (a), regime (b), and regime (c), respectively. Stars indicate equilibrium
points and the investment cost threshold 𝐼* such that those providers with 𝐼 < 𝐼* invest in
informativeness and those with 𝐼 > 𝐼* do not.

In regime (a), catchy articles capture the consumer’s attention so much that the provider

can gain more from investing in catchiness than informativeness. In this case, there may be
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still some investments in quality (with probability max{0,∆(𝜏𝐶)}) but the reader’s stopping

time is chosen solely absorb the entertainment. In regime (b), there is no catchiness and a

unique equilibrium with a high stopping time and high likelihood of information; the optimal

stopping time 𝜏 (1) is determined by the higher intersection of ∆ and ℒ−1. The lower intersection

is not an equilibrium in regime (b) because the provider would find it more profitable to get

additional reading time via catchiness than accept the low stopping time. In regime (c), there

are two equilibria, determined by both the low and high intersections of ∆ and ℒ−1.

Comparative Statics

We define the most information rich equilibrium to be the one where the expected improvement

in learning of 𝜃 in equilibrium, given by E𝜃[E[||𝜃||22] − E[||𝜃 − �̂�||22]], is maximal. A sufficient

condition for an equilibrium to be the most information rich is that the probability of investment

in quality is largest and the reader’s stopping time is largest for each article (of any equilibrium).3

In the next result, we provide some straightforward supply-side comparative statics.

Proposition 4.1.1. The environment is more information rich whenever:

(i) Information is more easily produced (i.e., 𝐹 ′ ⪯𝐹𝑂𝑆𝐷 𝐹 );

(ii) Catchy content is more difficult to produce (i.e., 𝐶 ′ > 𝐶).

The comparative statics of Proposition 4.1.1 are expected. On the supply side, whether

the environment admits a more information rich equilibrium depends on whether supplying

information is relatively less expensive than supplying catchy content. In many ways, the

techological innovations of digital media have vastly improved the extent to which information

can be disseminated, providing a possible pathway for more information rich equilibria per

Proposition 4.1.1.

We note, however, that information richness generally admits non-monotone comparative

statics on the demand side. This includes comparative statics with respect to general consumer

attention (𝜆) and the time needed to acquire information (𝜆𝐼 and 𝜏 𝐼). This is due to the non-

monotonicity of ∆ and a free-rider problem with content providers. If the reader is more willing

3This condition is especially useful in the one-article case, because it shows that the high-readership
equilibrium is always the most information rich equilibrium, unless in regime (a) of Theorem 4.1.1, where the
catchy equilibrium is unique. With multiple articles, as we discuss in Section 4.1.3, there may be no equilibrium
that has both the highest investments in quality and highest reading times across all articles.
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to invest time in an article before seeing a reputability signal, that also means the provider can

guarantee a long reading time even if he does not invest in quality. To see this formally, consider

a long-read equilibrium that intersects ∆ on the downslope (as is the case in Figure 4-1). Here,

there are diminishing returns from investing in quality as the reader increases her stopping

time. When, general attention increases (for example), ℒ−1 shifts to the right, and the reader is

willing to spend more time experimenting with a non-catchy article to see if it is quality and

contains information. She thus employs a longer reading time before needing to see any signal

of reputability. However, this creates incentives for providers to supply overall worse quality

content, for instance, via longer meandering articles that are on average less likely to convey

anything of value.

Sometimes, the opposite comparative statics can hold. This can happen, for instance, when

general attention was previously quite short but is now longer. The comparative static will be

reversed when the long-read equilibrium occurs at an intersection point of ∆ on the upslope.

At this intersection, content providers a more likely to invest in quality with a longer reading

time, because it gives them a better chance to get their reputability across. In these cases, the

increase in general attention would also lead a more information rich environment.

4.1.3 Monopolist with Many Articles

We now relax the assumption that the monopolist can only supply a single article, and instead

allow it to supply many (𝑀 ≥ 2). We assume that the number of topics 𝐾 is large so that

𝑀 ≤ 𝐾 and the provider is not forced to produce two pieces of content on the same topic if he

wants to supply all 𝑀 articles.4

An equilibrium in this setting consists of a sequence of optimal stopping times (per

Lemma 4.1.1) for the reader but also probabilities that each of the articles supplied contains

information. We let 𝑝(𝑖) denote the probability that article 𝑖 contains information in equilibrium

and for convention let these probabilities be ranked in descending order.5 Recall that by

Lemma 4.1.1, the consumer employs stopping times {𝜏 (1), 𝜏 (2), . . .} in equilibrium. An equilibrium

can therefore be defined as the vector of tuples ((𝑝(1), 𝜏 (1)), (𝑝(2), 𝜏 (2)), . . . , (𝑝(𝑀), 𝜏 (𝑀))) which

4This is to avoid decreasing marginal value from information signals. For example, an unbiased Gaussian
signal 𝑠1 about 𝜃*𝑘 improves the estimate �̂�𝑘 more than the second signal 𝑠2 does (given 𝑠1 already). This will
naturally change the consumer’s demand for information when there are more articles, which is tangential to the
problem we study.

5This ranking is purely for convention of the analysis and not observable to the consumer.
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more concisely can be written as (𝑝, 𝜏 ). Note, that while there were at most two equilibria with

a single article (per Theorem 4.1.1), there can be many more equilibria for 𝑀 ≥ 2, including

equilibria where strictly less than 𝑀 articles are produced.

Characterization of Information-Rich Equilibria

The following result characterizes the richness of equilibria as a function of 𝑀 .

Theorem 4.1.2. For any 𝑀 ′ < 𝑀 ′′, there exists some 𝜏 *M > 0 such that if 𝜏𝐶 < 𝜏 *M, the

most information-rich equilibrium with 𝑀 ′′ articles is richer than the most information-rich

equilibrium with 𝑀 ′ articles.

Under the condition that readers do not spend too much time on catchy articles (𝜏𝐶 < 𝜏M),

Theorem 4.1.2 establishes that an increase in the monopolist’s technological ability, allowing

it to produce and populate more articles, always results in greater information provision (in

some equilibrium). The intuition is that a monopolist does not want to self-cannibalize by

producing many articles of varying nature (some catchy, some information, possibly some

both or neither) when it is not competing with other content providers for the user’s attention.

Given that the consumer has limited time to read, there is greater likelihood the consumer will

never get an opportunity to process some articles, making the provider’s investment into each

additional article less and less profitable.

We first remark that the condition on 𝜏𝐶 cannot be dispensed with, and in fact 𝜏 *M will

be decreasing as 𝑀 ′ and 𝑀 ′′ increase. The reason stems from the fact that investments in

information, relative to catchiness, decay in value as more articles become available. This

occurs precisely because catchy articles are a fixed time investment for readers, but non-catchy

articles with uncertain informational value admit shorter and shorter stopping times when

more come into existence. This is because with each passing second, the value of a non-catchy

article diminishes as it becomes less likely to be one with information; given that there are

many more such articles at the consumer’s disposable, she is unlikely to spend as much time

reading it. As the reader jumps more quickly between non-catchy articles, this in turn leads to

fewer quality investments from providers, which further reduces stopping times from readers.

Therefore, at some point, providers are better off supplying catchy articles, which stops the

spiral and imposes a lower bound on readership. Whether this leads to more information, in

addition to some catchiness, is generally ambiguous.
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Finally, we note that while Theorem 4.1.2 guarantees that increasing the number of available

articles at least weakly improves information richness, there are many examples where this is

improvement is strict. For instance, when 𝑀 = 2, it will generally be the case that the expected

quality of each of the two articles will be less than the expected quality of the single article

produced in the 𝑀 = 1 setting. However, overall both articles provide a more holistic view of

the state 𝜃 and provide strictly more information compared to the case of only a single article.

Characterization of Information-Poor Equilibria

Our next result shows that while the most information-rich equilibrium is generally richer

with more articles (Theorem 4.1.2), there also exist information-poor equilibria that are poorer

when more articles are able to be produced.

Proposition 4.1.2. There exists𝑀* > 0 and 𝜏 > 0 such that if𝑀 > 𝑀* and 𝜏𝐶 < 𝜏 , all equilibria

with one-article capacity are more information rich than the least information-rich equilibrium

with 𝑀 articles.

Taken together, Theorem 4.1.2 and Proposition 4.1.2 show that more advanced technological

capacity can lead to better or worse information depending on the equilibrium, even when

there is a sole content provider. Similar to the Coase conjecture, a monopolist who can

supply a large number of articles is competing with itself over time for attention. Even if the

articles contain information with high probability, the reader has such a large set of articles to

choose from that she will continually switch attention until an article provides an immediate

reputability signal. This causes all information to unravel in an equilibrium where the full

capacity of 𝑀 articles are produced.

In this information-poor equilibrium, while the content provider would prefer to commit to

producing fewer articles, he cannot credibly do this. In an equilibrium with many non-catchy

articles, it will never be the provider’s best response to supply content that is highly likely to

contain information because it will barely be read. If the provider produces articles on the

basis of which topics are the easiest to convey information, it suffers a credibility problem:

it will always want to masquerade as if it is knowledgeable about all topics, even though

such a realization is highly unlikely. As a consequence, the monopolist’s ability to produce

too many articles in fact inhibits its ability to have any read in any serious capacity in this

information-poor equilibrium.
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4.1.4 Competition across Providers

Finally, we suppose we have 𝑁 content providers who compete for user attention. We fix the

number of articles 𝑀 and divide these up equally among 𝑁 providers.6 This serves to isolate

the main competitive forces of the model instead of simultaneously increasing the amount of

content that could be available. Our main result on competition is given next.

Theorem 4.1.3. There exists 𝜏 *C such that for 𝜏𝐶 < 𝜏 *C:

(a) For every equilibrium with 𝑁 > 1 providers, there is an equilibrium with one provider that

is more information rich.

(b) For every equilibrium with one provider, there is an equilibrium with 𝑁 providers that is less

information rich.7

Theorem 4.1.3 shows that holding the total number of articles fixed, competition typically

makes information provision worse. A key observation lies in thinking about the same number

of catchy and non-catchy articles with their same likelihoods of containing information under

different competition structures. The expected read time will be the same under both, but how

this expected reading time is partitioned across providers (and whether it can be supported in

equilibrium) will depend on the the structure of competition. Let us consider both directions

of the statements in Theorem 4.1.3.

For part (a), take any equilibrium with 𝑁 providers and we will construct an equilibrium

with one provider that is (weakly) more information rich. In the equilibrium with 𝑁 providers,

consider the same collection of articles (with their associated catchiness attributes and likelihoods

to be informative). We consider the strategy profile where the monopolist offers the same

collection of articles, and we look for profitable deviations. If there are none, we have an

equally information rich equilibrium. If there are, it must involve switching articles from

catchy to non-catchy or non-catchy to catchy (or both); otherwise, the deviation involves

higher or lower likelihood of investing in quality, which is unobservable to the consumer, and

thus would have also been a profitable deviation for a provider in the original equilibrium

under competition. Only the net switches from catchy to non-catchy and non-catchy to

6Implicitly, here, we will assume that 𝑀 is a multiple of 𝑁 .
7For future work, the goal is to strengthen this result a little. In particular, I would want to compare any two

𝑁 ̸= 𝑁 ′ instead of comparing to just a monopolist. But this makes the argument more difficult, so due to a lack of
time, I will have to settle for this weaker version.
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catchy matter, because these appear as the same to a consumer. If the number of catchy

articles increases in a profitable deviation, these must get higher expected reading time (to

compensate for the catchiness investment), which means the consumer tends to read them

sooner; however, each additional catchy article will cannibalize the others. This implies that it

must be a profitable deviation in the original equilibrium for some provider to do a uni-lateral

switch to catchy (for a subset of their articles), an obvious contradiction, so the only candidate

for a profitable deviation includes switches from catchy to non-catchy. Using the fact this

deviation is profitable for a monopolist (by assumption), one can construct an equilibrium

with more non-catchy articles but which are more likely to be informative than their catchy

counterparts when 𝜏𝐶 < 𝜏 *𝒞, establishing the part (a) of Theorem 4.1.3.

The argument is similar for part (b); take any equilibrium with a monopolist and we will

construct an equilibrium with 𝑁 content providers that is more information poor. Using the

same key observation as before, we will take the monopolist equilibrium and split up the

articles among the 𝑁 content providers and consider whether this is still an equilibrium. A

profitable deviation must take the form of switching some catchy articles to non-catchy or

vice-versa, for at least one of the 𝑁 content providers. If switching some articles to non-catchy

is profitable for one provider, it must decrease the reading times for other providers (otherwise

it would be a profitable deviation for the monopolist too). Of course, this means catchy articles

have lower expected reading times than non-catchy articles, which is a contradiction (why

invest in catchiness then?), so profitable deviations can only exist by switching non-catchy

articles to catchy ones. As before, this allows one to construct an equilibrium with 𝑁 providers

with more catchy content but which is overall less information rich.

Finally, we remark that competition can be beneficial for larger values of 𝜏𝐶 . In the

archetypal setting of Theorem 4.1.3, catchiness and information are substitutive, so competition

that tends to foster catchiness as a way to attract users is detrimental to information richness.

However, for higher values of 𝜏𝐶 , information and catchiness can act as complementary;

instead, competitors might push each other to simultaneously compete on article appeal

and information. This is perhaps counterintuitive but in the same vein as Proposition 4.1.2:

catchiness can prevent an unraveling of information provision when there are far too many

articles for the limited attention of the consumer, as it requires a certain read time to absorb

the full entertainment value.
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4.2 An Experiment on Algorithmic Ranking: User Behavior,

Platform Incentives, and Policy

“Quantifying the impacts of algorithmic ranking is quite difficult, even with access

to proprietary data. This is not only because of the complexity of these technical

systems, but due to people’s complex and often strategic responses to changes in

algorithms. We lack clear evidence about broader benefits or harms of algorithmic

ranking.”

— Dean Eckles (2021)

Testimony before Senate

In this section, we lay out a proposal and present a set of partial results for an experiment

intended to capture the impacts from algorithmic ranking.8 While an oversimplification of

platform algorithms, the goal of this experiment is to implement intuitive ranking algorithms

on a news feed platform such as Facebook and Twitter, and to assess the impacts on user

engagement. We are especially interested in how participants engage (in the form of “likes” or

“shares”) with content such as misinformation (as discussed in Chapters 2-3) and sensational

or catchy content (as discussed in Section 4.1), and whether they spend more time lingering

on the feed as a result of the ranking algorithm.

4.2.1 Mission Statement

Background and Motivation. In order to boost engagement, platforms develop recommendation

algorithms that strive to maximize the time users spend on their site. We aim to understand

these recommendations and their potential consequences. For a basic illustration, consider

three motivating questions:

1. How do users make decisions about the content they engage with?

2. How do platform recommendations account for the decision making of users in (1) to

make them spend the most time on their platform?

8I would like to especially acknowledge my co-author, Charles Lyu, for helping substantially with drafting this
section of the thesis.
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3. How do users respond to the recommendations of the platform in (2)?

All three questions encompass highly complex ideas and often non-measurable interactions

from both users and platforms, while intertwining with each other. However, they serve

as starting points for our proposal. By experimentally analyzing the impacts of certain

recommendation methods on social media users, particularly users’ engagement patterns

towards these different ranking algorithms, we aim to provide some insights on what could

reasonably happen in real-world setups, especially (1) and (2).

For example, users may engage most with political content that agrees with their ideological

belief (question (1)). Given this behavior, the platform may want to only recommend content

that is ideologically congruent to the users’ political beliefs (question (2)), regardless of whether

this content is reliable (e.g., potentially likely to contain misinformation). This can be bad from

a societal perspective for two reasons. First, it can lead to a one-sided view of the world (an

“echo chamber” of similar content circulating) that neglects a holistic picture of all opinions.

Second, it creates an ideological filter that deprioritizes reputable content to push more

ideologically similar content, leading to overall less accurate content being recommended.

But finally, given the priorities identified by question (2), users may respond in unexpected

ways. For example, users may more aggressively block (or “unfriend”) others of opposing

ideology once algorithmic ranking (AR) is introduced. Does this amplify echo chambers

or dampen them? The simplistic observation is that it should amplify them. AR removes

“friends” outside the ideological echo chamber and makes content more homogenous within

one’s sharing network circle. However, there is a more subtle effect. Because AR avoids

bombardment of ideologically opposed content, it leads to less likely “unfriending” of those

with divergent beliefs. Overall, the impact on diversity and well-roundness of the content that

appears in the news feed is unclear.

Objective and Focal Questions. Here are the two main goals for the experiment with a small

number of details.

• How do different methods of algorithmic ranking affect user engagement of the news

feed, including items with different political leanings?

– Examples of specific questions: How does each ranking method affect the engagement
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of both prioritized and unprioritized content, compared to randomized news feeds?

Does the effect differ for ideologically congruent vs incongruent items? Do recommendations

based on both friendship and preferences have greater impacts than the individual

methods combined?

• How do different methods of algorithmic ranking affect engagement with misinformation?

Admittedly, some or all of these questions may be better examined using other experimental

or empirical methods, instead of our proposed lab experiment with Qualtrics. While we

are indeed looking into possible alternatives, our current impression is that the Qualtrics

experiment is still the best.

4.2.2 Experimental Procedure and Design Choices

Overview. Our main experiment consists of two waves, Wave 1 and Wave 2.

Wave 1 is a small-scale survey aimed at creating artificial social media profiles to be

presented during Wave 2. Each Wave 1 Participant (W1P) contributes to one such profile based

on their demographic information, interests, opinions on sociopolitical issues, interaction

with a randomized news feed, and preferences for advertisements.

Wave 2 is the crux of the study, where we analyze user behavior to answer our focal

questions. Each Wave 2 Participant (W2P) first chooses to follow one or more profiles of

W1Ps as "friends". They will then be presented with two news feeds: a fully randomized feed,

and an algorithmically ranked feed that prioritizes articles based on friend interaction, their

own preferences, or both. Their behavior across the two news feeds will be compared to

examine the impacts of ranking on user engagement.

News Headlines and Pretest. Prior to the two waves, we conducted a pretest to aid in our

selection of news headlines to be displayed in news feeds. The pretest gathers crowdsourced

data on each headline’s topic and characteristics.

Initial Selection of Headlines. We collected 339 news headlines in June 2021 that were used

for the pretest, before selecting 230 of them for the main experiments. These headlines cover

the following topics: Politics, US and local news, World news, Economy and business, Science

and technology, Health and COVID-19, Sport and entertainment. Each headline was given a
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preliminary classification into one of these topics based on our own judgment. Roughly half of

the headlines were political news.

62 headlines contain misinformation. Most of them were from articles that were classified

as false by professional fact checkers, such as Snopes and PolitiFact. This approach closely

follows the guide in Pennycook et al. (2021a). A small number of these headlines were taken

directly from websites with a known history of publishing “fake news” articles, such as the

Gateway Pundit. We chose misinformation articles related to the US politics and COVID-19.

The remaining 277 truthful headlines were collected from the mainstream media in the

United States. A large number of them were from the following outlets: CNN, Fox News, the

New York Times, the Hill, Wall Street Journal, NBC News, Washington Post and the Guardian.

Most truthful news articles were gathered in June 2021, while most misinformation articles

were fact checked between March and June. A notable number of political articles focus on

ongoing events during this time frame, such as Roe v Wade, the January 6 hearings, and school

shootings throughout the United States in May. A breakdown of number of headlines by topic

can be found in Table 4.1.

Pretest Design and Questions. A pretest was conducted on Amazon Mechanical Turk. The

preliminary goal is to gather crowd-sourced assessments of each headline, which have two

main uses: (1) for selection of a balanced subset of news headlines for the main experiments,

and splitting it into two pools; (2) to be used as features for preference-based recommendations.

Each participant is presented with 10 random headlines, and for each headline, they are

asked nine questions from the following categories:

1. How well does this headline fit into each of the seven news topics?

2. How well does this headline score on each of the five news characteristics (detailed

below)?

3. How favorable would this headline be to Democrats and Republicans, respectively

(assuming it is entirely accurate)?

4. If you were to see the above article on social media, how likely would you be to “like” and

share it?
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Questions from categories 2 and 4 use 7-point unipolar scales from “not at all” to “extremely”.

Category 1 uses 5-point unipolar scales, while category 3 uses 7-point bipolar scales from

“extremely unfavorable” to “extremely favorable”. The order of choices for all questions is

randomly flipped for half of the participants. Aside from the headline-specific questions, the

survey also contains three attention check questions, and a number of demographic questions

at the end. Figure 4-2 shows the user interface of the pretest survey.

Figure 4-2. User interface of the pretest survey. More questions on the same headline are
available at the bottom and on a subsequent page.

News charactistics. We consider the following characteristics for each news headline, which

provide quantitative measurements of a news article from different dimensions.

• Veracity: Does this article may contain misinformation or false information? How likely

is this headline true?

• Conflict: Does this headline depict a controversy, conflict or dispute? How controversial

is the event or opinion described in the headline?
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• Human interest: How entertaining or funny is this headline?

• Surprise: How surprising or unexpected is this headline?

• Relevance: How important is this headline? Does it offer relevant and useful information

to readers who are interested in this topic?

The chosen characteristics were derived from literature on journalism studies. We specifically

consider news values that (1) are prevalent among news articles, especially popular ones on

social media; and (2) can possibly demonstrate enough variety among these articles for better

user profiling.

A major motivation for considering several characteristics (instead of just veracity) is to

design a simple preference-based recommendation algorithm that considers these aspects,

along with news topics and political polarity, when suggesting headlines to users. For example,

the algorithm may detect from earlier interactions that a certain user prefer local news that are

favorable to Republicans, controversial, and surprising. The algorithm may then suggest news

articles with one or more of these attributes.

The survey contains three to four questions for each news characteristic with different

phrasing. This is mostly because some characteristics can have slightly different interpretations;

a few questions are also reverse-coded (e.g. how boring instead of how funny) to be more

robust to inattentive survey participants. Each participant is presented with one randomly

chosen question for each news characteristic, and the five chosen questions are also shuffled.

Attention checks. The survey contains three attention check questions: one at the start

of the survey with question “Puppy is to dog as kitten is to”; one after the fifth headline asking

the participant to recall three keywords from any headline they have read so far; and one after

the final headline with question “What is your favorite color?”, but with a prompt that instructs

participants to choose red and green, regardless of their favorite colors. Participants who fail

the first attention check were automatically deemed ineligible and redirected to the end of

the survey. All responses to the other two attention check questions were reviewed manually;

those who did not provide genuine responses were not given compensation for completing the

survey, and their responses were excluded from data analysis.
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Processing of Headlines from Pretest Results

After pretest results were gathered and responses that failed any of the attention checks were

removed, the data was processed via the following steps:

Compute average scores. For each headline, scores for each news topic, each news characteristic,

favorability to each political party, and likelihood of liking and sharing were computed from

average responses of participants who were assigned this headline. Nine headlines were

removed from consideration as they received an insufficient number of responses (11 or fewer).

Reassign topic classifications. Each headline was recategorized into one of the seven news

topics based on user responses. Typically, the topic with the highest average score was chosen

as the new topic label; unless some other topics had a score within 0.2 of the maximum, in

which case a decision was made manually. While most headlines retained their initial topic

classification that we picked, some headlines received a different classification.

Compute political polarity scores. The pretest contains two questions on how favorable

the headline is to Democrats and Republicans respectively. The two distinct favorability scores

can be useful in preference-based recommendations, and they reveal more details than a single

score (for example, some articles may be favorable to Democrats while not necessarily hurting

Republicans, which are different from articles unfavorable to Republicans). Nevertheless,

a single score on political leaning is often more convenient for data processing. Thus, for

headline 𝑖 that belongs to the topics Politics or Local News, we define a polarity score 𝑝𝑖 as the

following:

𝑝𝑖 = 𝑧𝑖,𝑅 − 𝑧𝑖,𝐷,

where 𝑧𝑖,𝑅 =
𝑥𝑖,𝑅 − 𝜇𝑅

𝜎𝑅
,

𝑧𝑖,𝐷 =
𝑥𝑖,𝐷 − 𝜇𝐷

𝜎𝐷
.

Here, 𝑥𝑖,𝑅 is the Republican favorability score of headline 𝑖 (average of all responses); the higher

the 𝑥𝑖,𝑅, the more favorable headline 𝑖 is to Republicans. 𝜇𝑅 and 𝜎𝑅 are the mean and standard

deviation of the 𝑥𝑗,𝑅 scores of all headlines 𝑗 in the same topic as 𝑖, and 𝑧𝑖,𝑅 is the z-score of
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headline 𝑖’s Republican favorability. 𝑥𝑖,𝐷, 𝜇𝐷, 𝜎𝐷 and 𝑧𝑖,𝐷 are defined similarly on Democrat

favorability scores. Therefore, a positive 𝑝𝑖 indicates headline 𝑖 is generally more favorable to

Republicans than Democrats, while a negative 𝑝𝑖 means it is more favorable to Democrats than

Republicans.

The main reason of defining 𝑝𝑖 using z-scores instead of raw scores is to resolve the bias

in pretest responses, as a significantly greater number of survey participants self-identify as

Democrats than all other options (Republican, independent, others).

Note that polarity scores are defined separately on political news and local news, with

slightly different means and standard deviations. This is because the two subsets of headlines

have different underlying distributions: for example, a greater number of local news headlines

are politically neutral compared to political headlines. For the same reason, polarity scores are

not computed for headlines with a final topic classification that is not political or local news,

as most of these headlines are intended to be neutral to both parties.

Subsampling of Headlines for the Main Experiments

After we obtain crowd-sourced measurements of each headline, a final subset of headlines

is selected to be used for the main experiments (Wave 1 and Wave 2). This subset is further

divided into two equal pools: Pool A is used for the random news feed in Wave 1 and the

algorithmically ranked news feed in Wave 2, while Pool B is used for the random news feed in

Wave 2. This decision is elaborated in Section 4.2.2.

Pretest data is important in selection of the two pools to ensure the chosen headlines

are roughly balanced in political polarity on both extremes (i.e. left-leaning headlines favor

Democrats just as much as right-leaning headlines favor Republicans), and that Pools A and B

are similar in both quantities of headlines and average scores of important attributes.

Table 4.1 shows a breakdown of headlines chosen for each pool by topic. Headlines are

chosen by rejection sampling, with the following constraints:

1. For each topic, the two pools should have similar average scores in like intentions, share

intentions, and veracity (perceived by pretest participants). Other news characteristics

should preferably have similar scores, but not as a hard constraint.

2. For the topics Politics and Local News, in addition to constraint (1):
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Topic Politics Local World E&B Tech Health S&E Total
Initial topic 131 48 25 26 32 49 28 339

Misinformation 45 0 0 0 1 15 1 62
Crowd-sourced topic 84 90 26 34 28 41 27 330

Misinformation 22 21 2 2 2 10 1 60
Waves 1 & 2 60 60 20 20 20 30 20 230

Misinformation 14 14 0 0 0 6 0 34
Waves 1 & 2 per pool 30 30 10 10 10 15 10 115

Misinformation per pool 7 7 0 0 0 3 0 17

Table 4.1. Number of pretest headlines for each topic, with our initial manual classification
of topics, final classification from crowd-sourced data, and the subset selected for the main
experiment (Waves 1 & 2). "Crowd-sourced topic" excludes headlines with insufficient pretest
responses. Totals include misinformation headlines. Local = US and Local News; E&B =
Economy and Business; Tech = Science and Technology; S&E = Sports and Entertainment.

• Conditioned on true, fake or all headlines, the two pools should be similar in

veracity, political polarity, and the number of left-leaning, neutral, and right-leaning

headlines.

• Conditioned on true, fake or all headlines, the average polarity of left-leaning

headlines and that of right-leaning headlines should be similar in magnitude.

• Taking any combination of true, fake or all headlines, and left-leaning, neutral or

right-leaning headlines, such headlines in the two pools should still be similar in

veracity and polarity.

3. For the topic Health, in addition to constraint (1), the two pools should also have similar

average veracity scores when conditioned on true headlines or fake headlines.

The additional constraints on political and local news are to ensure balance in true vs

misinformation headlines, and in political polarization of headlines. Since there is also a

large number of COVID-19 misinformation headlines in the dataset, the additional constraints

on misinformation are also applied to health. Categorization of left-leaning, neutral and

right-leaning headlines is done with a threshold on polarity scores.
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Wave 1

Purpose of Wave 1

While results of Wave 1 are not central to answering our focal questions on the effects of

algorithmic ranking, this initial phase is necessary for the following reasons:

• Each response from a Wave 1 Participant (W1P) will be used to create one artificial social

media profile. These profiles will be offered to Wave 2 Participants (W2Ps) to be added

as friends, upon which W2Ps may be recommended news headlines that were liked and

shared by their friends during Wave 1.

• We also use Wave 1 to build a demographic baseline on preferences of difference brands

of certain products, such as shoes, snacks and vacation spots. This is for an ad-based

measure of attention to be deployed in Wave 2.

• Wave 1 also serves as a sanity check on the effectiveness of the experimental platform,

the random news feed and how users interact with it.

Survey Flow

The survey has four main components. The first four are conducted on Qualtrics, after which

participants will be redirected to Yourfeed, an experimental platform for behavioral research

on social media, where they will interact with a random news feed as the final component.

Personal information. Each W1P will first answer some basic questions about their demographics,

hobbies, and political beliefs. Items from all sections may be shown on the “user profiles” that

will be presented during Wave 2.

Essay writing. Each W1P will be instructed to write two essays, one about themselves, and one

on a sociopolitical issue. The prompts will be randomly chosen from a pool of 10 questions, 5

political and 5 apolitical. They are expected to write two to three sentences, with a minimum

of 150 characters, as if they are replying to a new friend.

We will filter out fraudulent and low-quality responses, both manually and by running

plagiarism checks.
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Brand preferences. Each W1P will be presented with several categories of items (shoes, snacks,

vacation spots, etc), and several brand names for each (e.g. Nike, Adidas, Puma). For each

category, they will choose the brand they’re most likely to buy.

This phase is to establish a demographic baseline of preferences, i.e. the proportion of the

general population who would choose each brand. The data will be used for comparisons

during Wave 2 (where W2Ps may be presented with ads) in order to measure attention spent

on the news feed. More details are discussed in Section 4.2.2.

Random news feed. Each W1P is presented with a random scrolling news feed of news

headlines on Yourfeed. A random subset of 50 headlines from Pool A are displayed in uniformly

random order. Participants can like or share any headline, and their dwell time on each

headline is also measured.

The articles that each W1P liked and shared may be displayed to Wave 2 Participants who

choose to add this W1P as a friend.

Questions and Essay Prompts

Questions on personal information:

• Demographics: Participants will be asked about their age, gender, state of residence,

education, income and ethnicity. The first three may be presented in user profiles later.

• Hobbies: Participants will choose at least one from: Games, sports, outdoor recreation,

movies & TV series, art, music, collecting, reading, travelling, social activities, and others.

For each one that they choose, they can optionally elaborate with a list of specific

activities (e.g. basketball, Call of Duty, stamp collection). All hobbies they provided

will be presented in user profiles.

• Political beliefs: Participants will provide their political preference, views on social issues,

and views on economic issues. Their political preference may be presented in user

profiles.

Political essay prompts:
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• Are you satisfied with Biden’s term so far? Why or why not?

• How do you feel about the overturning of Roe v Wade? Do you support abortion rights,

and why or why not?

• Do you support wealth redistribution? Why or why not? What do you think are ideal

approaches to income inequality in the US?

• Which party do you think will win the 2024 Presidential Election? Explain why. You may

also mention any candidates that you think have the highest chance of winning.

• What are your thoughts on the Jan 6 capitol riots and the hearings? How much do you

think Trump was responsible for this, and why or why not?

Apolitical essay prompts:

• What are some things you do that you think nobody else would?

• If you win the $1 billion lottery jackpot, what would you do?

• What were your childhood dreams and wishes? Have you accomplished any of them so

far?

• Name 3 items on your life checklist that you have not yet achieved. How do you plan to

check them off?

• What are the top 5 things that make you happy in life?

Yourfeed Interface and Integration

Yourfeed is an experimental research tool for conducting behavioral research on social media

(see Epstein and Lin (2022) and Epstein et al. (2022)). The platform offers an interface that

resembles a news feed on a social media platform (Figure 4-3), where participants can scroll

through a list of news headlines with thumbnails vertically. Each news item is accompanied

with a "like" and "share" button (and optionally with the number of likes and shares, which we

do not need for our experiment).

There are two reasons why we choose Yourfeed as the platform for all of our news feed

interactions in Waves 1 and 2. The close resemblance of its interface to real social media
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Figure 4-3. User interface of Yourfeed

platforms makes user behavior on the platform better approximations to real-world data,

as compared to traditional approaches using Qualtrics. Indeed, Epstein and Lin (2022) and

Epstein et al. (2022) show there are significant differences in user behavior between studies

conducted on Yourfeed vs Qualtrics, where participants are less likely to like and share articles

on Yourfeed, likely closer to reality. Furthermore, Yourfeed provides measurement of dwell

times, or the duration each participant spends on each news item. This provides a more

complete view of user behavior on social media platforms, in addition to liking and sharing

behavior that were typically the focus of prior studies.

Wave 2

Survey Flow Overview

During the main experiment (Wave 2), participants will form “friendships” among some other

participants (Phase I), interact with a random scrolling news feed (Phase II), and then interact

with an algorithmically sorted news feed that prioritizes articles shared by friends, or articles
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with similar characteristics as the user’s prior selections, or both (Phase III).

Wave 2 Phase I: Friendship Formation

Each Wave 2 Participant (W2P) will first be presented with three apolitical essay prompts and

three political essay prompts, randomly chosen from the pool of five each that were given

to W1Ps. They will be instructed to choose at least two headlines out of the six that they are

interested in, but are free to choose more. There are no restrictions on the prompts they

choose.

We allow W2Ps to choose their own essay prompts, in order to examine if users prefer to

choose their friends based on political alignment more than non-political interests, and if

doing so may amplify the filter bubble effect.

For each chosen prompt, the W2P will then be given the profiles of 8 W1Ps who responded

to that prompt, for a total of 16 or more profiles in random order. Each profile has a fake name

and an avatar, as well as demographic information and hobbies from real Wave 1 responses.

Each profile will be accompanied by the chosen essay prompt, which the W2P can expand to

read the essays. The W2P be told that these are participants who have completed the survey

previously, and that they might be interested in knowing them and adding them as friends.

Figure 4-4 gives a rough sketch of how the W1P profiles are displayed.

Figure 4-4. Sketch of the page on the Wave 2 survey where users can see profiles of W1Ps and
choose to add them as friends

When the W2P expands an essay, they have the option to add that W1P as a friend. They will

need to add at least three W1Ps as friends. Once they finish all friend selections and proceed,
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the W2P needs to pick one of the W1Ps they added, and write a short response to explain their

choice. (Example prompts: Why did you choose this person as a friend? Why do you want to

have lunch with them? How would you respond to what they wrote if you were chatting with

them in real life?)

The W2P will then see the other essay that each W1P friend has written (the prompt that

was not chosen by the W2P). They will give a rating (1 to 5) for each W1P in regards to how their

impression on this W1P has changed, and write a short response to justify their rating for the

particular friend they wrote a paragraph on earlier. All the chosen F1Ps will become “friends”

of the W2P for later phases, regardless of their indications after the second essay.

All written responses from W2Ps will not be used at all, but these exercises aim to improve

W2P’s engagement with the experiment. After the experiment, we will filter out fraudulent and

low-quality responses, both manually and by running plagiarism checks.

Wave 2 Phase II: Random News Feed

Each W2P is presented with a random scrolling news feed of headlines on Yourfeed. A random

subset of 50 headlines from Pool B are displayed in uniformly random order. W2Ps can like

and share any headlines.

The main goal of this phase is to build a preference profile for each W2P based on the types

of articles they liked, shared, and spent more time reading. This will be the primary basis for

preference-based recommendations in Phase III.

Wave 2 Phase III: Ranked News Feed and Treatment Groups

Each W2P is randomly assigned to one of the following four treatment groups. They are

presented with a strategically sorted news feed, showing a subset of 50 headlines from Pool A,

chosen based on the treatment group.

(a) Control group: 50 random articles are chosen and shown in uniformly random order.

(b) Friendship group: Articles that were previously shared or liked by the user’s "W1P friends"

are prioritized.

(c) Preference group: Articles with similar topics, characteristics and political leaning to the

user’s prior selections in Phase II (and their self-reported political position) are prioritized.
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(d) Friendship and preference group: Articles based on both groups (b and (c are recommended

in some combination.

Regardless of the treatment group, all articles shared by W1P friends will be accompanied with

a tag like “Person X shared this”. But groups other than (b and (d will likely get them much later

in the news feed, if at all.

Prioritization of articles. Depending on the treatment group, a list of prioritized articles

from Pool A is generated in a particular order. For group (b, shared articles appear earlier in

this list than liked articles. For group (c, articles are sorted by a similarity score based on news

topics and characteristics, with the most similar article appearing first.

Each W2P is assigned a random variable between 0 and 1, which determines the “degree of

prioritization”, specifically the probability of each item in the feed (50 articles, top to bottom)

being pulled from the list of prioritized articles. For example, if the random variable is 0.7, the

first item in the news feed has 70% chance to be the first article in the priority list, and 30%

chance to be a random article from the entire Pool A. The chosen article will be removed from

the pool and the list. This procedure is repeated until a full list of 50 articles is generated and

presented to the W2P.

Knowledge of news feed being ranked. In each treatment group, half of the participants

are not informed of the feed being algorithmically ranked, and the other half will see a prompt

“Your news feed has been ranked based on your preferences and/or what your friends have

shared”. This also applies to the control group (a, where half of them get a uniform random

feed with no prompts, and half see the prompt but there is actually no ranking in place. We

will mention in the debrief for these participants that their feed was actually fully randomized.

Measuring Attention via Ads

In addition to measuring attention directly using dwell time, we present a novel approach of an

indirect measure via ads in the news feed. Each time a W2P interacts with an article in Phase III,

an ad will show up roughly 2-4 places after this item. The ad will be from a randomly chosen

category of items (shoes, vacation spots etc), but for each category, each W2P will always get a

fixed brand. For example, a W2P may get 3 shoe ads and 2 vacation ads, but all shoe ads will be
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Nike and all vacation ads will be Mexico. Another W2P may get all Adidas ads for shoes and all

Japan ads for vacation.

At the end of Phase III, the W2P will choose the brand they’re most likely to buy for each

category of items. The collective responses of all W2Ps in each experimental group will be used

to compare against the demographic baseline obtained from the Wave 1. Our hypothesis is

that W2Ps will show an increase in preference for the brand that appeared in their ads (e.g. 60%

of W1Ps prefer Nike, but the W2Ps who were recommended Nike show 65% instead).

The increase in preference is a proxy for attention spent on the news articles (and thus

attention to ads), in addition to dwell time measured directly on Yourfeed. While more noisy

than dwell time, this measure of attention aligns well with the goal of profit-maximizing social

media platforms such as Facebook. While time and attention spent on the news feed are

important to them, their ultimate goal is to maximize ad revenue. Here, we’re measuring "ad

revenue" directly, so the results may be more applicable in real life settings.

Use of Two Different Pools of News Headlines

As noted in previous sections, after we selected the set of news headlines to be used in the main

experiments (Waves 1 and 2), we divided them further into two subsets, Pool A and Pool B.

This design decision arose from two needs of our experiment. For one, W2Ps need to interact

with both a random news feed (Wave 2 Phase II) and a ranked news feed (Wave 2 Phase III),

so that we can derive their preferences from Phase II, as well as comparing their behavior in

these phases to study the impacts of ranking algorithms. For another, articles liked and shared

by W1P friends need to be highlighted in the ranked news feed, and prioritized for treatment

groups (b and (d.

The second need means Wave 2 Phase III must use the same pool of news headlines as

Wave 1, while the first need means a different pool must be used for Wave 2 Phase II.9 In

practice, we assign Pool A to Wave 1 and Wave 2 Phase III, and Pool B to Wave 2 Phase II.

We also enforced constraints to ensure the two pools are similar in important attributes, as

discussed in Section 4.2.2, to set up a valid comparison of user behavior towards the two news

feeds.

9While it is possible for both Phases II and III to draw from a single pool of headlines, articles liked and shared
by W1Ps may have already appeared in the random news feed, and thus can’t be shown again in the ranked feed.
This may result in not enough articles to prioritize.
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4.2.3 Existing Results and Conjectures

Pretest

We received 1,161 responses to our pretest survey, and 686 of them were complete and passed

all attention checks. 199 responses were incomplete or completed too late after our data

collection phase was already over. 276 responses failed at least one attention check. A detailed

breakdown of invalid responses is available in Section 4.2.3.

The 686 valid responses gave ratings to 6,809 headlines10. 84 of them were removed after

eliminating headlines with 11 or fewer ratings. This section shows results from the remaining

6,725 headline ratings, unless otherwise stated.

Summary

On average, each headline in the pretest received 20.38 ratings. 12.98 of them were from

participants self-identified as Democrats, 5.61 from Republicans, 1.72 from Independents, and

0.06 from others.

Table 4.2 shows the number of headlines in each topic and each subset of headlines (all

pretest headlines, subset of headlines selected for the main experiments, and each of the

two pools), their average favorability to Democrats and Republicans, and polarity scores for

political and local headlines.11 The crowd-sourced favorability scores show a bias towards

Democrats: the average Democrat favorability score is 4.89, higher than the average Republican

favorability score of 4.71. This is true for each individual news topic, including apolitical topics

such as Science & Technology and Sports & Entertainment. We suspect this is due to the

majority of participants from Mechanical Turk self-identifying as Democrats. As such, our

polarity measure was designed to eliminate the bias.

Table 4.3 shows the averages scores for each news characteristic, like intentions and share

intentions. Note that the topics Politics, Local and Health contain a significant number

of misinformation headlines, which affect their veracity, like and share scores, as pretest

participants indicate they are generally less likely to like or share headlines they consider less

10Although we intended each participant to rate 10 headlines, a small number of them received fewer than 10
distinct headlines due to technical difficulties.

11As mentioned previously, polarity scores are computed separately for political and local headlines, and not
computed for any other topic. The average of 0.00 among the pretest headlines is by design, as polarity scores are
defined using z-scores which have zero bias.
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likely to be true.

Attribute Headlines All Politics Local World E&B Tech Health S&E

# Headlines

Pretest 330 84 90 26 34 28 41 27
Main 230 60 60 20 20 20 30 20

Pool A 115 30 30 10 10 10 15 10
Pool B 115 30 30 10 10 10 15 10

Democrat
Favorability

Pretest 4.89 4.92 4.89 4.86 4.84 4.92 4.88 4.92
Main 4.88 4.92 4.89 4.86 4.70 4.87 4.93 4.92

Pool A 4.92 4.95 4.92 4.84 4.77 4.82 4.94 5.09
Pool B 4.85 4.88 4.86 4.88 4.64 4.91 4.91 4.77

Republican
Favorability

Pretest 4.71 4.74 4.66 4.69 4.75 4.62 4.79 4.66
Main 4.70 4.72 4.70 4.64 4.70 4.59 4.77 4.70

Pool A 4.75 4.75 4.73 4.68 4.69 4.74 4.85 4.86
Pool B 4.65 4.70 4.68 4.60 4.71 4.45 4.70 4.54

Polarity

Pretest N/A 0.00 0.00 N/A N/A N/A N/A N/A
Main N/A -0.01 0.11 N/A N/A N/A N/A N/A

Pool A N/A -0.02 0.11 N/A N/A N/A N/A N/A
Pool B N/A 0.00 0.11 N/A N/A N/A N/A N/A

Table 4.2. Number of headlines and average scores for political attributes. All scores are on a
7-point scale, with minimum 1 and maximum 7. Local = US and Local News; E&B = Economy
and Business; Tech = Science and Technology; S&E = Sports and Entertainment.

Examples of Headlines and Responses

Topic classification. Table 4.4 shows examples of headlines from each of the seven news topics,

as well as headlines whose topic we picked is different the topic with the highest average score

given by pretest participants (thus demonstrating the need for a pretest). Of the 330 headlines,

217 retained their original topic as agreed by participants; 98 had their topics changed12; 15

had participants voted on a most popular topic that was different than we picked, but upon

manual review, we decided to retain the original topic as its score is close to the top pick.

User beliefs on accuracy and veracity. Table 4.5 shows examples of true and misinformation

headlines with some of the highest ans lowest veracity scores from users. This includes

headlines where pretest participants most accurately predicted their veracity, and headlines

where their judgment is the furthest from the truth. It should be noted that while the vast

12A large number of these are misinformation headlines. For convenience, we labeled all of them are political
news as long as they were verified to contain misinformation. However, many of them were more appropriately
labeled as local news or health (COVID-19 misinformation).
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Attribute Headlines All Politics Local World E&B Tech Health S&E

Veracity

Pretest 4.45 4.34 4.45 4.52 4.65 4.60 4.42 4.43
Main 4.49 4.39 4.43 4.56 4.69 4.65 4.50 4.49

Pool A 4.49 4.42 4.41 4.55 4.70 4.66 4.50 4.49
Pool B 4.48 4.36 4.45 4.56 4.69 4.64 4.49 4.48

Conflict

Pretest 4.70 4.92 4.84 4.68 4.33 4.35 4.75 4.29
Main 4.68 4.94 4.85 4.66 4.22 4.33 4.67 4.26

Pool A 4.70 4.95 4.88 4.65 4.24 4.34 4.67 4.28
Pool B 4.67 4.93 4.82 4.66 4.19 4.32 4.68 4.24

Interest

Pretest 4.23 4.17 4.26 4.14 4.24 4.34 4.21 4.23
Main 4.20 4.11 4.26 4.15 4.11 4.37 4.21 4.18

Pool A 4.22 4.18 4.26 4.17 4.08 4.41 4.21 4.23
Pool B 4.17 4.04 4.26 4.14 4.13 4.33 4.21 4.14

Surprise

Pretest 3.99 3.88 4.10 3.91 3.96 4.15 4.01 3.93
Main 3.95 3.81 4.10 3.91 3.85 4.05 3.99 3.93

Pool A 3.93 3.78 4.03 3.93 3.83 4.10 3.98 3.98
Pool B 3.97 3.84 4.16 3.89 3.88 4.00 4.01 3.88

Relevance

Pretest 4.78 4.69 4.84 4.91 4.80 4.76 4.99 4.47
Main 4.80 4.73 4.83 4.92 4.77 4.74 5.01 4.55

Pool A 4.81 4.77 4.84 4.95 4.79 4.74 5.01 4.54
Pool B 4.78 4.69 4.82 4.89 4.74 4.75 5.01 4.56

Like

Pretest 4.29 4.18 4.27 4.33 4.37 4.48 4.28 4.41
Main 4.27 4.16 4.29 4.35 4.16 4.36 4.26 4.48

Pool A 4.27 4.17 4.29 4.35 4.15 4.37 4.25 4.48
Pool B 4.27 4.16 4.28 4.36 4.17 4.36 4.26 4.47

Share

Pretest 4.28 4.14 4.33 4.29 4.32 4.43 4.32 4.31
Main 4.27 4.17 4.35 4.26 4.11 4.33 4.29 4.39

Pool A 4.27 4.18 4.35 4.26 4.12 4.32 4.28 4.39
Pool B 4.27 4.16 4.36 4.26 4.11 4.33 4.30 4.39

Table 4.3. Average scores for apolitical attributes. All scores are on a 7-point scale, with minimum
1 and maximum 7. Local = US and Local News; E&B = Economy and Business; Tech = Science
and Technology; S&E = Sports and Entertainment.

majority of our misinformation headlines were verified false by professional fact checkers,

some of them could be unintentional or a mistake, instead of intentionally spreading "fake

news" for political agenda. This appears to be the case for most misinformation headlines that

participants misjudged as true.

Scores. Table 4.6 shows headlines with the highest and lowest average scores on favorability to

Democrats and Republicans, the five news characteristics (veracity, conflict, interest, surprise,

relevance), and likelihood of liking and sharing the article on social media. Figure 4-5 shows

distributions of pretest user ratings for each topic and each attribute for two headlines.
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Headline Initial topic Final topic

Headlines where participants’ ratings agreed with our manual labels
Fox News Poll: Record-high negative views of
Biden

Politics Politics

U.S. to propose rule to limit nicotine levels in
cigarettes

US & Local
News

US & Local
News

European leaders visit Kyiv for talks on weapons,
EU membership; UK announces new sanctions
on Russia

World News World News

Tesla raises model prices amid global supply-
chain shortage

Economy &
Business

Economy &
Business

Google sidelines engineer who claims its A.I. is
sentient

Science &
Technology

Science &
Technology

Omicron COVID-19 variant gives little immunity
boost to those infected: researchers

Health &
COVID-19

Health &
COVID-19

How a tennis nerd gave Serena and Venus
Williams a new lease on the game

Sports &
Entertainment

Sports &
Entertainment

Headlines whose final classification was changed due to participants’ ratings
First on CNN: Biden administration shipping
44,000 pounds of Nestlé formula Thursday | CNN
Politics

Politics US & Local
News

Virginia parents call out ’political agenda’
as school board approves suspensions for
’misgendering’

Politics US & Local
News

Biden administration eases terrorism-related
restrictions for Afghan evacuees

Politics World News

Inside the South African company making some
of America’s rarest and most beloved cars

World News Economy &
Business

Exercise pill? Researchers identify molecule in
blood produced during workout

Health &
COVID-19

Science &
Technology

Table 4.4. Examples of headlines from each topic, and headlines whose final topic classification
was changed.

Attention Checks on Mechanical Turk

Of the 276 participants that failed at least one attention checks, 120 did not give a correct

response to the initial screener question "Puppy is to dog as kitten is to?", and were therefore

redirected to the end of the study automatically without being given any news headlines. 35

other participants failed a second screener after responding to all 10 headlines; this question

asks "What is your favorite color?", but instructs participants to always choose red and green.

These responses were filtered out manually.

The remaining 121 participants did not provide a proper response to an open-ended
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Headline Actual veracity Veracity score

True headlines that participants deemed as true
Democratic lawmakers call for unisex
bathrooms at the U.S. Capitol

True 5.81

McCaul: US must ’wake up’ and invest in Latin
America to gain competitive edge on China

True 5.57

Tesla raises model prices amid global supply-
chain shortage

True 5.47

FDA advisers vote in favor of authorizing COVID-
19 vaccines for children as young as 6 months

True 5.37

True headlines that participants deemed as false
Tom Brady plans to produce more movies after
retirement: ’I definitely see that as part of my
future’

True 3.07

Lauren Boebert taking legal action over Dem
PAC’s ’false and disgusting claims’ that she was
’paid escort’

True 3.23

COVID vaccines for infants arrive in Florida.
Here’s why doctors are throwing them away

True 3.31

Alaska kids served floor sealant instead of milk
at elementary school summer program

True 3.34

Misinformation headlines that participants deemed as true
Agents denying Trump freakout claim were his
’yes men’: WaPo

Misinformation 5.13

Why did Texas ban certain Instagram filters? Misinformation 4.83
A news outlet asked every Democrat Senator if
they’ll endorse Biden in 2024 - not many said yes

Misinformation 4.75

Texas bill would allow a rapist to sue his victim
for having an abortion

Misinformation 4.73

Misinformation headlines that participants deemed as false
John Stockton claims to have list of hundreds of
vaccinated athletes who have dropped dead on
the field

Misinformation 2.71

President Obama says, "Gotta have them ribs
and p*ssy too!"

Misinformation 2.76

Official study concludes that masks caused more
COVID

Misinformation 3.18

Military arrests Biden’s Sec. of Agriculture Tom
Vilsack

Misinformation 3.20

Table 4.5. Examples of true headlines and misinformation headlines with high and low crowd-
sourced veracity scores. Average veracity score is 4.45.

question. There are two such questions in the survey: an attention check after the fifth

headline that requires participants to recall one of the headlines they have read and enter at
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Headline Score

Most and least favorable to Democrats
Kamala Harris launches new national task force on preventing online
harassment and abuse

6.06

Biden shakes hands with thin air after North Carolina speech 3.69

Most and least favorable to Republicans
A STOLEN ELECTION: State Totals Minus Illegal Ballot Trafficking Numbers
Give President Trump Decisive Victories in AZ, GA, MI, PA, and WI

5.71

Texas bill would allow a rapist to sue his victim for having an abortion 3.41

Most and least likely to be true
Democratic lawmakers call for unisex bathrooms at the U.S. Capitol 5.81
John Stockton claims to have list of hundreds of vaccinated athletes who
have dropped dead on the field

2.71

Most and least controversial or conflicting
Exposed !! Pfizer CEO says it’s their dream to reduce the population by 50
percent in 2023 !!

5.91

When did Tiger Woods have the yips and how did he overcome it? 2.95

Most and least interesting or funny
Delta pilots say they’ve been flying ’record amount of overtime’ amid flight
cancellations

5.44

Tesla raises model prices amid global supply-chain shortage 2.80

Most and least surprising or unexpected
U.S. to propose rule to limit nicotine levels in cigarettes 5.36
GOP Gov. Hutchinson says Trump responsible for Jan. 6 ’politically, morally’
but not criminally

2.79

Most and least relevant
Democratic lawmakers call for unisex bathrooms at the U.S. Capitol 5.90
When did Tiger Woods have the yips and how did he overcome it? 3.10

Most and least likely to be liked
Water-borne infections can lurk in hot tubs, public pools, lakes and oceans
this summer: Here’s what to know

5.52

Bayer Executive Says mRNA Vaccines are Gene Therapy 3.00

Most and least likely to be shared
The Marvel Cinematic Universe timeline on Disney+ 5.53
Biden mumbles as he signs Executive Order ’Advancing LGBTQI+ Equality’
at reception for Pride Month (VIDEO)

2.80

Table 4.6. Examples of headlines with the highest and lowest scores on each attribute

least three keywords, and a final question at the end asking how much time the participant

took to complete the survey.13 Table 4.7 shows some responses from participants who have

passed and failed the first question on recalling headlines.

13We did not keep track of the exact number of participants that failed each question, as there were overlaps.
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(a) Supreme Court tosses Republican effort to
defend Trump-era ’public charge’ immigration
rule

(b) Alaska kids served floor sealant instead of
milk at elementary school summer program

Figure 4-5. Distributions of selected headlines’ user ratings on topics (top) and attributes
(bottom). Dots are averages, and vertical lines are 95% confidence intervals. Blue are
distributions of responses from all users, and other colors are from users grouped by political
leaning.

Accepted responses Rejected responses

fuel price increase political, economy, science
investigaiors, delta pilot, pharmacy its a good work
Suspect, Accidentally, Stolen Make the Headline Unique.
Moderna created the COVID pandemic. one of the headlines you have read so far
Abbot baby formula plant agian stop
production

Flush Left Headline. This is one of the
more modern headline forms in use

CRYPTO COMPANIES, WATER BORNE
INFECTIONS, COVID VACCINES

Political leaning,Veracity.Depictionof
cinflict.

COVID 19 vaccines for kids under 5,
Bill clinton, shopping stores is back and
thriving

They can show how much progress is
being made in economic terms

Table 4.7. Examples of responses to the headline recall attention check question

Wave 2 Hypotheses

While we do not have any results on Waves 1 and 2 yet, here are some hypotheses on what we

might observe from user behavior towards an algorithmically ranked news feed in Wave 2:

• Friendships based on political ideology can intensify recommendation of misinformation

and user engagement with them, but friendships based on other dimensions might
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dampen it (relative to a control group).

• Algorithmic ranking plays an important role in engagement with catchy click-bait content

and misinformation. If this content is de-prioritized on the feed, even if it still exists but

just falls lower on the feed, it will not be actively sought out.

• When algorithms recommend content shared by friends that also align with the user’s own

preferences, they result in greater impacts in user engagement with such recommended

content, compared to the effects of recommendation by either factor alone.

• User engagement is lower beyond the "transition point" from tailored content to random

content, once they notice the algorithm has run out of recommended articles, as compared

to a fully randomized news feed (with no ranking algorithms) at the same location.
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Chapter 5

Online Media and Taxing Digital

Advertising

We present a model of digital advertising where users on a media platform (e.g., YouTube)

consume both entertainment and advertisements (ads), which provide information about

their preferences for a product. The platform chooses a business model that could allow a

firm to advertise its product, and consumers make strategic choices about how much time

to spend on the platform and how much of the product to buy. Our first main result shows

that consumer welfare unambiguously decreases when the platform is monetized by digital

ads, despite the information consumers gain from watching ads. Using this as motivation, we

consider the impact of anti-trust regulation, with firm-level and platform-level competition as

a potential corrective measure. Our second main set of results proves that competition can

further decrease consumer welfare, because it might intensify platform incentives to target

ads at susceptible populations who are most influenced. We conclude by recommending a

solution addressing the heart of the problem, a digital advertising tax, which, if implemented

well, will encourage platforms to switch from ad-based business models to subscription-based

ones.

5.1 Introduction

“Senior members from one of [Chile’s] major political parties attributed their recent

electoral success to their use of Facebook’s targeted political ads . . . [Facebook] is a
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digital mercenary that is always the one with its finger on the trigger.”

— Paul Romer (2021)

In recent years, online platforms have become a dominant forum for entertainment and

social interaction. The average adult spends over three hours a day on social media,1 with

significantly more time spent online through streaming services such as Netflix, YouTube, and

Hulu (Budzinski et al. (2021), Richter (2019), and Twenge et al. (2019)). Possibly accelerated by

the COVID-19 pandemic, there has been a steady transition from traditional media consumption

(e.g., TV, print, or in-person interaction) to online media consumption over the last decade

(see Cinelli et al. (2020) and Sherman and Waterman (2016)). While this transition has come

with clear benefits, there is an ongoing debate about the potentially negative consequences

lurking, including concerns about belief manipulation, mental health degradation, and digital

addiction (respectively, see Marwick and Lewis (2017), Allcott et al. (2020), and Allcott et al.

(2022)).

Business models of online platforms drive much of the content creation and algorithmic

choices of platforms, and ultimately impact human-machine interactions. While some platforms

generate revenue through other sources, a common business model for online media is

digital advertising.2 Unlike standard advertising, where the same product recommendation is

broadcast to a large audience, digital advertising allows ads to be tailored and specifically

targeted in ways that might make them more effective. There is a breadth of empirical

literature documenting the existence and potential impacts of digital ad targeting (Bennett

and Gordon (2020), Deng and Mela (2018), and De Jans et al. (2019)). Yet, we are currently

devoid of a framework for assessing the welfare implications of digital ads and media platform

business models in general. Without this framework, it is difficult to understand whether

digital advertising poses a problem, and if so, what appropriate regulatory solutions could

correct it.

In this paper, we develop a parsimonious model of an online media platform which can

be monetized through advertising, subscriptions, or both. There is a firm with a horizontally-

1See https://www.forbes.com/sites/petersuciu/2021/06/24/americans-spent-more-than-1300-hours-on-social-media/
and https://whatagraph.com/blog/articles/how-much-time-do-people-spend-on-social-media.

2For example, digital advertising made up 98% of Facebook’s revenue from 2017-2019 (see https://
www.nasdaq.com/articles/what-facebooks-revenue-breakdown-2019-03-28-0) and about 85% of YouTube’s
revenue in 2020 (even with a premium ad-free subscription plan offered, see https://spendmenot.com/blog/
youtube-revenue-statistics/).
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differentiated product (some consumers may enjoy it, others may not) and a continuum

of consumers who are (possibly) interested in purchasing the product. A media platform

sits in between the firm and the consumers and provides dual services to its potential users.

First, it offers entertainment through the content it supplies, which provides a known value

to the consumer. Second, it can inject advertisements for the firm’s product, which provide

information to the consumer about whether she should purchase it. The consumer does not

get entertainment value from the ad, but internalizes the informational gain from making a

better-informed purchasing choice.

Ads are targeted at users based on a platform algorithm (e.g., calibrated to past online

behavior such as video clicks and engagement). Each ad gives off either a positive or negative

signal about the product, but users get idiosyncratic ads tailored to them which may result in

different impressions for different users. While a good signal ad indicates higher likelihood of

good quality and a bad signal ad indicates higher likelihood of bad quality, both type-I and

type-II errors are possible.

There are two types of consumers on the platform. The first type of consumer is sophisticated,

and is aware that specific ads are being shown to convince her to purchase the product. She

has a perfectly specified prior about the actual likelihood of good and bad signals from the ads

conditional on her true (but ex ante unknown) preference for the product. The second type of

consumer is naive and unaware of any digital ad targeting. She has a misspecified prior about

the distribution of signals from ads, and generally believes good signals are stronger than they

actually are. This makes advertising particularly effective on naive agents, as it tends to be

more convincing of the firm’s product.

The platform can offer two services to participate in: (1) a free advertising-based plan that

will have occasional ads for the firm’s product, and (2) an ad-free plan that will directly charge

the consumer a subscription fee. We first assume that the platform cannot implement both

simultaneously, and must choose between the two. Our first main result shows consumer

welfare strictly decreases when the platform monetizes according to advertising, because

even though consumers learn about the product (and their preferences), the firm uses the

advertising to raise prices, while the platform spams them with excessively many ads. Consumer

welfare falls even further when the population of sophisticates is too low, because the platform

will further extort naives by increasing the ad intensity without losing their participation. In
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this way, sophisticated agents in the population serve as a positive externality to protect society

and help mitigate the negative welfare implications of digital ads.

Next, we allow the platform to adopt freemium-type pricing models, where both free

advertising-based and ad-free subscription-based plans are available. In this case, consumer

welfare generally degrades even further because a natural separating equilibrium emerges —

digital ads can be used to prey specifically on naives while allowing sophisticates (who are not

heavily influenced anyway) to opt into a subscription-based plan that is user-monetized. This

consumer welfare degradation is increasing in how easily naives are duped by their targeted

ads, but is non-monotone in the overall informativeness of ads. The latter is observed because

ad informativeness may be more or less advantageous to users who can use ads to make better

decisions, or to firms who can use this technology to extract more consumer surplus through

advertising.

These observations encourage us to then turn to potential remedies for combating the

negative welfare impacts of digital advertising. A commonly discussed approach is antitrust

regulation that would break up the firms who advertise on media platforms (and set monopolistic

prices for their products) or to break up the platforms themselves (who have total control

over their means of revenue). We find that under the conditions where consumer welfare is

already low (and the population consists largely of naives), firm-level and competition-level

competition are not just ineffective at correcting the problem, they often exacerbate it. In the

case of firm-level competition, advertising is used to secure a loyal user base and can result

in higher prices compared to monopolistic levels. In turn, this further encourages platforms

to adopt business models that focus on advertising-based revenue streams with an emphasis

on targeting naive users who are more influenced by ads. On the other hand, platform-level

competition hurts naives because subscription price competition makes freemium pricing a

more stable outcome. When multiple platforms compete, there is a temptation to “steal” users

who would prefer subscription, which leads to much more lenient conditions under which the

freemium model (with the lowest welfare) is supported in equilibrium.

We conclude the paper with what we believe to be the most promising solution, a digital

advertising tax. Such a proposal involves taxing platforms directly on the revenue earned from

digital advertising sources, with the goal of pushing them toward other business models such as

subscription. Our final result shows that such a tax can be effective if strongly implemented, but
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that light digital ad taxes can have either no effect or even decrease welfare further. In particular,

light ad tax policies might have the same unintended negative consequences highlighted before,

where it encouraged platforms to switch to a freemium pricing model with the goal of more

aggressively targeting naives. However, stronger ad tax policies (such as a progressive ad tax)

can fully correct platform incentives and push to fully restoring maximal consumer welfare.

Related Literature. Our paper builds on a much broader work centered around advertising,

online platforms, and consumer welfare. Along with the literature mentioned previously,

several other papers are related to our findings.

There is a rich literature dating prior to the digital era that studies traditional advertising

(e.g., see Tirole (1988) and Grossman and Shapiro (1984)). Most closely related to our digital

advertising setup is the work of Meurer and Stahl (1994), building on the seminal paper

of Butters (1977). In their model, advertising is informative about partially substitutable,

horizontally-differentiated products, and consumers use the information in ads to decide

which products to buy. We differ on three important dimensions. First, their model has no

platform, and consumers therefore make no active decisions about whether to engage in ad

viewership or not. Second, digital ads (as opposed to traditional ads) have the potential to

target naive populations, which we model as different from the standard sophisticated agent

benchmark. Our key results turn on this property of the model. Lastly, at the core of our

findings is how the platform’s decision of business model affects consumer welfare, which is

absent in Meurer and Stahl (1994).

More recent work looks at data sharing and the implications for targeted digital advertising.

Acemoglu et al. (2022a) identify a market inefficiency in how users price their data due to data

sharing and leaks between platforms. This leads to lower consumer welfare, and as in our

findings, increasing competition among platforms may fail to remedy the issue. The paper of

Marotta et al. (2021) takes a similar approach in the context of digital advertising, showing that

data sharing can lead to more effective targeting of ads at consumers, resulting in potentially

worse outcomes. In our paper, we abstract away from the precise targeting technology by

adopting naive agents who are overly influenced by tailored ads. This simplification allows

us to effectively study the optimal business model of the platform and its impacts on welfare,

leading to new insights and policies that can redress certain negative platform incentives.

While online media platforms are fairly new, there is also a recent strand of literature that

193



studies platform algorithmic choices and monetization. Sato (2019) find that the optimal

business model of a digital platform is at most a two-item menu, often known as “freemium”,

with a free ad-based plan and a paid-for premium plan with no ads. There are also various

empirical studies demonstrating the profitability and success of freemium business models in

settings such as online streaming and social media gaming (see Montag et al. (2019), Rietveld

(2018), and Holm and Günzel-Jensen (2017)). A central focus of this paper is to study how

platforms choose their “freemium” menu and the implications for consumer welfare.

There are also papers that study how platform incentives and algorithms might otherwise

negatively impact user well-being, such as through promoting misinformation (Acemoglu et al.

(2022b)) or by heightening personal insecurities (Allcott et al. (2020)). These works serve as

complementary to this work, which provides a framework for studying the effects of platform

business models and monetization methods on consumer well-being.

The rest of the paper is organized as follows. The next section introduces our modeling

environment, describes agent payoffs, and defines consumer welfare. Section 5.3 characterizes

the unique (Berk-Nash) equilibrium of the model and provides some comparative statics of

interest. Section 5.4 generalizes the baseline model to allow the platform to adopt richer

(mixed) business models, with subtler implications for consumer welfare. Section 5.5 studies

the effects of introducing firm-level and/or platform-level competition. Section 5.6 concludes

by discussing the proposed solution of a digital ad tax to correct platform incentives that lead

to worse business models for consumers.

5.2 A Model of Content Platforms

Our baseline model consists of three types of agents: a single firm, a single media platform,

and a continuum of consumers. The firm is a monopolist who sells a single product. The

media platform supplies entertainment to its users, but can intermix advertisements (from

now on, simply ads) that market the product by providing information to the consumer about

her preferences (for that product). The consumers are both potential users of the platform and

potential purchasers of the product. In our baseline model, we allow the platform to choose

whether to be monetized entirely by ad revenue or entirely by subscription fees.3

3In Section 5.4, we generalize this model to allow the platform to offer both types of plans (ad-based or
subscription-based). This business model commonly arises in streaming services (e.g., YouTube or Hulu) where
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Consumers. There is a continuum of consumers who each have a two-dimensional type

(𝜏 𝑖, 𝜃𝑖) ∈ {𝑆,𝑁} × {0, 1}. The first dimension of the consumer’s type corresponds to her

sophistication; each consumer 𝑖 is either sophisticated (𝜏 𝑖 = 𝑆) or naive (𝜏 𝑖 = 𝑁 ). Sophisticated

consumers are immune to digital ad targeting but naive consumers are susceptible to them.

Each consumer is sophisticated with probability 𝜆 and naive with probability 1−𝜆 (independent

across consumers). The second dimension of the consumer’s type aligns with an unknown

attribute 𝜃𝑖 of whether she would get positive utility from using the product; each consumer 𝑖

either likes the product (𝜃𝑖 = 1) or does not like the product (𝜃𝑖 = 0), although this attribute is

not known to consumer 𝑖 ex ante. The consumer has ex-ante probability 𝑞 that she will like the

product (independent across consumers).

Each user gets a series of personalized advertisements that provides her with information

about her true preferences. Formally, each ad to user 𝑖 provides a binary signal 𝑠𝑖 ∈ {⊖,⊕}

about the product, which is independent across ads and consumers. The signal distribution

for an ad is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑠𝑖 = ⊕, with probability 𝜑1 if 𝜃𝑖 = 1

𝑠𝑖 = ⊖, with probability 1 − 𝜑1 if 𝜃𝑖 = 1

𝑠𝑖 = ⊕, with probability 𝜑0 if 𝜃𝑖 = 0

𝑠𝑖 = ⊖, with probability 1 − 𝜑0 if 𝜃𝑖 = 0

(5.1)

where we assume that 𝜑1 > 𝜑0. Therefore, a positive signal 𝑠𝑖 = ⊕ provides information to the

consumer that she is more likely to like the product, whereas a negative signal 𝑖 = ⊖ provides

information to the consumer that she is less likely to like the product. This signal distribution of

Equation (5.1) the objective model, where both type-I and type-II errors are possible; that is, an

agent 𝑖 with 𝜃𝑖 = 1 might receive a negative signal 𝑠 = ⊖ or an agent 𝑖 with 𝜃𝑖 = 0 might receive

a positive signal 𝑠 = ⊕. The former could occur if a particular ad is off-putting to a certain

demographic (e.g., an unfunny insurance commercial), whereas the latter might happen if

the ad uses tangential but attractive images to glamorize the product (e.g., soft drinks at the

beach). However, the assumption that 𝜑1 > 𝜑0 implies that ads are at least partially informative

about preference.

there is an ad-free experience at a premium charge to the consumer.

195



Sophisticated agents have a perfectly specified model but naive agents have a misspecified

model. In the naives subjective model, advertising signals are believed to be generated

according to ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑠 = ⊕, with probability 𝜑1 if 𝜃𝑖 = 1

𝑠 = ⊖, with probability 1 − 𝜑1 if 𝜃𝑖 = 1

𝑠 = ⊖, always if 𝜃𝑖 = 0

instead of the objective model of Equation (5.1). In other words, a naive agent 𝑖 believes that

𝑠 = ⊖ for every ad whenever 𝜃𝑖 = 0, so any positive signal 𝑠 = ⊕ suggests to her that she would

indeed like the product. In other words, a naive agent is overly optimistic about any ad that

appeals to her.

We use the notion of Berk-Nash equilibrium (Esponda and Pouzo (2016)) to model agents’

beliefs with misspecified priors. Observe that because the subjective model of sophisticates

is the objective model, a sophisticated agent will have a standard Bayesian belief 𝜋𝑆 about 𝜃𝑖

conditional on seeing 𝑘+ positive ads and 𝑘− negative ads:

𝜋𝑆 =
𝜑
𝑘+
1 (1 − 𝜑1)

𝑘−𝑞

𝜑
𝑘+
1 (1 − 𝜑1)

𝑘−𝑞 + 𝜑
𝑘+
0 (1 − 𝜑0)

𝑘−(1 − 𝑞)

Because the subjective model of naives differs from the objective model, a naive agent’s belief

𝜋𝑖 will be the one that minimizes divergence between her observation of ads (𝑘+, 𝑘−) and

her subjective model. Note, however, that every realization of (𝑘+, 𝑘−) is consistent with her

subjective model and the divergence can be minimized at 0 with the following update:

𝜋𝑁 =
𝜑
𝑘+
1 (1 − 𝜑1)

𝑘−𝑞

𝜑
𝑘+
1 (1 − 𝜑1)

𝑘−𝑞 + 1𝑘+=0(1 − 𝑞)

This pins down the beliefs of both types of agents conditional on observing 𝑘+ positive ads and

𝑘− negative ads.

Firm. There is a monopolist who sells a single product. The firm is allowed to set a unit price

𝑝 for the product, whereby any consumer 𝑖 who purchases 𝑧𝑖 pays price 𝑝𝑧𝑖. The firm can

produce their product at a constant marginal cost 𝑐.

Platform. The platform shows content (e.g., videos) to the users but can determine the ratio of
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ads to total content (entertainment plus ads), 𝛼. Every ad seen by a consumer provides some

information about consumer 𝑖’s type 𝜃𝑖, as described above.

5.2.1 Actions and Timing

Next, we define a strategic game with all three types of agents. The game will consist of five

time periods, denoted 𝑡 = 1, 2, 3, 4, 5, as depicted in Figure 5-1.

Figure 5-1. Timing of the Advertising Model.

(i) At 𝑡 = 1, the platform and the firm negotiate a contract that specifies an ad intensity 𝛼 and

a monetary transfer 𝑚 from the firm to the platform. For simplicity, we assume this takes

the form of a take-it-or-leave-it offer (𝛼,𝑚) from the platform to the firm (that the firm

either accepts or rejects). If the firm rejects the contract (or the platform does not offer

one), the platform can set a subscription fee 𝑃 to charge users who want to participate

directly.

(ii) At 𝑡 = 2, the firm sets its price 𝑝* for its product.

(iii) At 𝑡 = 3, the platform produces content and advertises at rate 𝛼. If the contract is accepted,

each consumer 𝑖 makes a binary decision 𝑥𝑖 ∈ {0, 1} about whether to allocate time 𝑇

(𝑥𝑖 = 1) or no time (𝑥𝑖 = 0) on the platform, given 𝛼.4 If the contract is rejected, each

consumer 𝑖 makes the same binary decision 𝑥𝑖 ∈ {0, 1}, given the subscription fee 𝑃 . A

decision 𝑥𝑖 = 0 to not participate gives user 𝑖 her outside option 𝑣.

(iv) At 𝑡 = 4, the consumer digests the platform content (including any ads). Any consumer

who engages with the platform (𝑥𝑖 = 1) views ⌈𝛼𝑇 ⌉ ads and receives 𝑇 − ⌈𝛼𝑇 ⌉ time of

4For simplicity and ease of exposition, we assume the consumer decides whether to allocate some (exogenously
given) time 𝑇 or allocate no time at all to consuming platform content. We note, however, that our results are not
sensitive to a continuous time allocation decision 𝑥𝑖 ∈ [0, 1] for each consumer.
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entertainment. Any consumer who does not engage with the platform (𝑥𝑖 = 0) views no

content whatsoever (ads or entertainment).

(v) At 𝑡 = 5, each consumer 𝑖 decides how much of the product to purchase, 𝑧𝑖, at the price 𝑝.

5.2.2 Payoffs and Solution Concept

Next, we describe the payoffs that each type of agent receives.

Platform. In our baseline model, the platform can generate revenue by charging the firm for

advertising or by charging users a subscription fee. The platform’s payoff is thus𝑚* if a contract

(𝛼*,𝑚*) is accepted by the firm and otherwise is
∫︀ 1

0
𝑃 *𝑥𝑖 𝑑𝑖 where 𝑃 * is the subscription fee set

by the platform.

Firm. The firm generates a profit by selling its product, but pays the platform for advertising.

That is, the firm receives a payoff
∫︀ 1

0
(𝑝* − 𝑐)𝑧*𝑖 𝑑𝑖−𝑚*, where 𝑧*𝑖 is the consumption decision

of agent 𝑖 and 𝑚* is the agreed upon transfer for an accepted contract (and zero for a rejected

contract).

Consumers. Each consumer 𝑖 receives utility both from product consumption and from

content consumption on the platform. A consumer 𝑖 with type 𝜃𝑖 receives a consumption

utility 𝑈(𝑧𝑖; 𝜃𝑖) = 𝛽𝜃𝑖𝑧𝑖 − 𝑧2𝑖 /2 for purchasing 𝑧𝑖 units of the product, with total payoff given

by 𝑈(𝑧𝑖; 𝜃𝑖) − 𝑝𝑧𝑖. Here, the parameter 𝛽 represents the relative size of the product market

compared to the market for entertainment.5 Each consumer receives a direct utility 𝑇 − ⌈𝛼𝑇 ⌉

from content enjoyment on the platform (if 𝑥𝑖 = 1) and otherwise receives an outside option

𝑣 ≥ 0 from alternative activities (outside the platform).6 We assume 𝑣 < 𝑇 , so an ad-free

platform provides higher utility to the consumer than her outside option.

Solution Concept. Our solution concept is Berk-Nash equilibrium (see Esponda and Pouzo

(2016)) of the aforementioned sequential game, which can be determined via backward

5As we discuss in Section 5.3, 𝛽 roughly captures the ratio of the “willingness-to-pay” of advertisers to the
“willingness-to-pay” of content consumers. Empirical measures of these on various digital platforms have been
studied recently in works such as Berger et al. (2015), Sherman and Waterman (2016), and Flew (2021).

6The outside option 𝑣 can also be used to model content platforms where the ad-based experience is still not
free (e.g., with the streaming service Hulu). If 𝑣′ is the true outside option and 𝑓 is the fee charged for an ad-based
plan, then the model can be applied identically by using outside option 𝑣 ≡ 𝑣′ + 𝑓 .
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induction.7

(a) At 𝑡 = 5, each consumer holds belief 𝜋𝑖 that she values the product (𝜃𝑖 = 1) and selects her

optimal consumption 𝑧*𝑖 to solve𝐶𝑖(𝜋𝑖, 𝑝) ≡ max𝑧𝑖 𝜋𝑖𝑈(𝑧𝑖; 𝜃𝑖 = 1)+(1−𝜋𝑖)𝑈(𝑧𝑖; 𝜃𝑖 = 0)−𝑝𝑧𝑖.

Here, 𝐶𝑖(𝜋𝑖, 𝑝) represents the expected consumption utility given a belief 𝜋𝑖 about 𝜃𝑖 = 1

and a given product price 𝑝.

(b) At 𝑡 = 4, given consumer 𝑖’s choice of participation 𝑥𝑖 and the ad intensity 𝛼, the consumer

forms belief 𝜋𝑖 (determined by her sophistication type 𝜏 𝑖 and unknown preference type 𝜃𝑖).

For 𝑡 ≤ 3, there are two separate subgames. In the advertising subgame, when an

advertising contract is accepted:

(c) At 𝑡 = 3, each consumer solves max𝑥𝑖 𝑥𝑖(E𝜋𝑖
[𝐶𝑖(𝜋𝑖, 𝑝) |𝛼]+𝑇−⌈𝛼𝑇 ⌉)+(1−𝑥𝑖)(𝐶𝑖(𝑞, 𝑝)+𝑣).

That is, the consumer chooses 𝑥𝑖 ∈ {0, 1} (whether to participate or not) based on

the expected consumption utility 𝐶𝑖 and her direct utility from using the platform,

conditional on the ad intensity 𝛼. Let 𝑥*𝑖 (𝛼, 𝑝) denote the platform participation

decision of consumer 𝑖, as a function of the ad intensity 𝛼 and product price 𝑝.

(d) At 𝑡 = 2, given ad intensity 𝛼, the firm sets price 𝑝 by solving Π(𝛼) ≡ max𝑝
∫︀ 1

0
𝑥*𝑖 (𝛼, 𝑝)(𝑝−

𝑐)E𝜋𝑖
[𝑧*𝑖 (𝜋𝑖, 𝑝) |𝛼]+(1−𝑥*𝑖 (𝛼, 𝑝))(𝑝−𝑐)𝑧*𝑖 (𝑞, 𝑝) 𝑑𝑖. Here, Π(𝛼) is the profit the firm receives

from sales of the product, given an advertising intensity 𝛼 on the platform.

(e) At 𝑡 = 1, given a contract (𝛼,𝑚), the firm accepts if and only if Π(𝛼) −𝑚 ≥ max𝑝(𝑝 −

𝑐)𝑧*𝑖 (𝑞, 𝑝) (i.e., the contract yields more profit than under the benchmark of zero advertising).

The platform then selects the contract (𝛼,𝑚) that maximizes𝑚 conditional on acceptance

by the firm.

In the subscription subgame:

(c) At 𝑡 = 3, each consumer solves max𝑥𝑖 𝑥𝑖(𝑇 − 𝑃 ) + (1 − 𝑥𝑖)𝑣.8 Let 𝑥*𝑖 (𝑃 ) denote the

platform participation decision of consumer 𝑖, as a function of the subscription fee 𝑃 .

7As is standard, the equilibrium can be solved by starting at 𝑡 = 5, taking all quantities determined at 𝑡 ≤ 4
as given, and solving for the agents’ best-response actions. From there, one can solve for the best responses in
𝑡 = 4 given the best-response correspondence already pinned down at 𝑡 = 5 and quantities taken as given in 𝑡 ≤ 3.
Repeating this until 𝑡 = 1 gives the unique Berk-Nash equilibrium.

8Observe that consumption utility does not factor into the consumer’s decision in a subscription-based
platform. Because the platform does not provide any information about the product in the form of advertising,
the platform participation decision and the consumption decision are completely uncoupled.
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(d) At 𝑡 = 2, the firm sets price 𝑝 by solving max𝑝(𝑝− 𝑐)𝑧*𝑖 (𝑞, 𝑝).

(e) At 𝑡 = 1, the platform chooses a subscription service with fee𝑃 to maximize
∫︀ 1

0
𝑃𝑥*𝑖 (𝑃 ) 𝑑𝑖.

Finally to determine, which subgame is taken on the equilibrium path, the platform

compares the profits from (e) in the advertising subgame and from (e) in the subscription

subgame and picks the more profitable business model.

5.2.3 Consumer Welfare

We first start with the base case of consumer welfare when no platform exists at all.9 It is

straightforward to see here that optimal consumption satisfies 𝑧*𝑖 (𝑞, 𝑝
*) = 𝛽𝑞 − 𝑝* and the

firm will set a price of 𝑝* = (𝛽𝑞 + 𝑐)/2 in equilibrium. Average consumer welfare is then given

by 𝑈(𝑧*𝑖 (𝑞, 𝑝
*); 𝜃𝑖 = 𝑞) − 𝑝*𝑧*𝑖 (𝑞, 𝑝

*) + 𝑣 = (𝛽𝑞 − 𝑐)2/8 + 𝑣. This welfare is the same for both

sophisticated and naive agents because in the base case, there is no advertising, and both types

of agents take identical actions with identical payoffs.

When there is a media platform that may advertise, we can measure consumer welfare

as follows. First, suppose that (𝛼*,𝑚*) is the contract accepted and 𝑝* is the price chosen by

the firm in equilibrium. We let 𝐹𝑆0, 𝐹𝑆1, 𝐹𝑁0 and 𝐹𝑁1 denote the distributions over 𝜋𝑖 for the

respective types, (𝑆, 0), (𝑆, 1), (𝑁, 0), and (𝑁, 1).10 Note that for 𝜋* and 𝑝* in equilibrium at 𝑡 = 5,

there is a unique optimal consumption choice 𝑧*(𝜋*, 𝑝*) independent of type. Thus, average

9We remark that consumer welfare under a different base case, where the platform exists but must be
monetized through subscriptions, is identical in our model. In this setting, a lack of advertising means the
platform provides no information about the firm’s product, so their welfare in the product market is the same
as without a platform. At the same, the platform will charge a subscription fee that extracts all “entertainment”
surplus from the consumer, so the platform provides no added utility to the consumer, and overall consumer
welfare remains unaffected.

10Formally, these are given by the multinomial distribution:

P𝑆𝜃𝑖

[︃
𝜋𝑖 =

𝜑
𝑘+
1 (1− 𝜑1)

𝑘−𝑞

𝜑
𝑘+
1 (1− 𝜑1)

𝑘−𝑞 + 𝜑
𝑘+
0 (1− 𝜑0)

𝑘−(1− 𝑞)

]︃
=

(︂
𝑘+ + 𝑘−

𝑘

)︂
𝜑
𝑘+
𝜃𝑖

(1− 𝜑𝜃𝑖)
𝑘−

P𝑆𝜃𝑖

[︃
𝜋𝑖 =

𝜑
𝑘+
1 (1− 𝜑1)

𝑘−𝑞

𝜑
𝑘+
1 (1− 𝜑1)

𝑘−𝑞 + 1𝑘+=0(1− 𝑞)

]︃
=

(︂
𝑘+ + 𝑘−

𝑘

)︂
𝜑
𝑘+
𝜃𝑖

(1− 𝜑𝜃𝑖)
𝑘−

for all 0 ≤ 𝑘 ≤ ⌈𝛼𝑇 ⌉, and 0 for all 𝑘 > ⌈𝛼𝑇 ⌉. Here, recall that 𝑘+ are the number of positive signals and
𝑘− = ⌈𝛼𝑇 ⌉ − 𝑘+ negative signals.
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welfare by type (conditional on ad-based platform engagement) is given directly by

𝑊 (𝜏 𝑖, 𝑥𝑖 = 1) = 𝑇 − ⌈𝛼*𝑇 ⌉⏟  ⏞  
Content Consumption Utility

+ 𝑞 E𝜋∼𝐹𝜏𝑖1
[𝑈(𝑧*(𝜋, 𝑝*); 𝜃𝑖 = 1) − 𝑝*𝑧*(𝜋, 𝑝*)]⏟  ⏞  

Product Consumption Utility Conditional on 𝜃𝑖 = 1

+ (1 − 𝑞)E𝜋∼𝐹𝜏𝑖0
[𝑈(𝑧*(𝜋, 𝑝*); 𝜃𝑖 = 0) − 𝑝*𝑧*(𝜋, 𝑝*)]⏟  ⏞  

Product Consumption Utility Conditional on 𝜃𝑖 = 0

.
(5.2)

Second, suppose that the platform offers a subscription price 𝑃 * instead. Then, average welfare

by type (conditional on platform engagement) is

𝑊 (𝜏 𝑖, 𝑥𝑖 = 1) = 𝑇 − 𝑃 *⏟  ⏞  
Content Consumption Utility

+ 𝑞𝑈(𝑧*𝑖 (𝑞, 𝑝
*); 𝜃𝑖 = 1) + (1 − 𝑞)𝑈(𝑧*𝑖 (𝑞, 𝑝

*); 𝜃𝑖 = 0) − 𝑝*𝑧*𝑖 (𝑞, 𝑝
*)⏟  ⏞  

Expected Product Consumption Utility

.

And finally, when the user abstains from participating on the platform, the welfare is given

simply by

𝑊 (𝜏 𝑖, 𝑥𝑖 = 0) = 𝑣⏟ ⏞ 
Outside Option

+ 𝑞𝑈(𝑧*𝑖 (𝑞, 𝑝
*); 𝜃𝑖 = 1) + (1 − 𝑞)𝑈(𝑧*𝑖 (𝑞, 𝑝

*); 𝜃𝑖 = 0) − 𝑝*𝑧*𝑖 (𝑞, 𝑝
*)⏟  ⏞  

Expected Product Consumption Utility

.

(5.3)

Thus, in equilibrium, we can define welfare 𝑊 *(𝑆) = 𝑊 (𝑆, 𝑥*𝑆) and 𝑊 *(𝑁) = 𝑊 (𝑁, 𝑥*𝑁) for

each agent sophistication type (noting of course the platform engagement in equilibrium will

be the same for all agents of the same sophistication type). Finally, we can also define average

consumer welfare of the entire society as �̄� * = 𝜆𝑊 *(𝑆) + (1 − 𝜆)𝑊 *(𝑁).

5.3 Equilibrium Characterization

We next characterize the unique equilibrium of our advertising game and the consumer welfare

from product and content consumption with digital ads. At 𝑡 = 5, one can solve directly to see

that user 𝑖’s optimal consumption is given by 𝑧*𝑖 (𝜋𝑖, 𝑝) = 𝛽𝜋𝑖 − 𝑝* and yields expected utility

𝐶𝑖(𝜋𝑖, 𝑝
*) = (𝛽𝜋𝑖 − 𝑝*)2/2 for the consumer. At 𝑡 = 3, we see that a consumer engages with an
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advertising platform if and only if

𝑞E𝜋𝑖|𝜃𝑖=1[𝐶𝑖(𝜋𝑖, 𝑝
*) |𝛼*] + (1 − 𝑞)E𝜋𝑖|𝜃𝑖=0[𝐶𝑖(𝜋𝑖, 𝑝

*) |𝛼*] − 𝐶𝑖(𝑞, 𝑝
*)⏟  ⏞  

Information Gain

+ 𝑇 − ⌈𝛼*𝑇 ⌉ − 𝑣⏟  ⏞  
Net Platform Enjoyment

≥ 0 .

One can observe the informational gain simplifies to 𝑞E𝜋𝑖|𝜃𝑖=1[(𝛽𝜋𝑖)
2/2 |𝛼*]+(1−𝑞)E𝜋𝑖|𝜃𝑖=0[(𝛽𝜋𝑖)

2/2 |𝛼*]−

(𝛽𝑞)2/2, which depends on 𝛼* and the sophistication type 𝜏 𝑖 of agent 𝑖 (as the subjective

distribution of 𝜋𝑖|𝜃𝑖 depends on 𝜏 𝑖), but not the price 𝑝*. That is, the information gain from

digital ads for any agent 𝑖 depends only on the ad intensity and not the price charged by the

firm. For ease of notation, we denote this informational gain by 𝐼𝜏 (𝛼*) for any user of type

𝜏 ∈ {𝑆,𝑁}. On the other hand, for a subscription platform, the expected consumption utility

is independent of platform participation. Hence, participation is a best response if and only if

𝑇 − 𝑃 * − 𝑣 ≥ 0 for both types of users.

The decision of the consumer to participate on an advertising platform depends on two

factors. First, the consumer internalizes the information gain from using the platform, which

comes in the form of advertisements that inform the consumer about her true type 𝜃𝑖. Second,

the user receives direct utility (in the form of entertainment) from consuming content, which is

compared to her outside option. If the sum of these expressions is non-negative, the consumer

finds platform participation to be a best response.

For 𝑡 = 1 and 𝑡 = 2, we can collapse the decision problem of the platform and firm

because the platform offers a take-it-or-leave-it offer. In particular, the platform will solve a

set of maximization problems with various participation constraints. Let us denote by �̄�𝐹 the
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expected belief under distribution 𝐹 , i.e., �̄�𝐹 = E𝜋∼𝐹 [𝜋]. Then the platform solves

𝒜1 ≡ max
𝛼,𝑝

(𝑝− 𝑐)(𝛽𝑞 − 𝑝) (No user participation)

𝒜2 ≡ max
𝛼,𝑝

𝜆(𝑝− 𝑐)(𝛽𝑞�̄�𝐹𝑆1(𝛼) + 𝛽(1 − 𝑞)�̄�𝐹𝑆0(𝛼) − 𝑝) + (1 − 𝜆)(𝑝− 𝑐)(𝛽𝑞 − 𝑝) (Sophisticates participate)

subject to 𝐼𝑆(𝛼) + 𝑇 − ⌈𝛼𝑇 ⌉ − 𝑣 ≥ 0

𝒜3 ≡ max
𝛼,𝑝

(1 − 𝜆)(𝑝− 𝑐)(𝛽𝑞�̄�𝐹𝑁1(𝛼) + 𝛽(1 − 𝑞)�̄�𝐹𝑁0(𝛼) − 𝑝) + 𝜆(𝑝− 𝑐)(𝛽𝑞 − 𝑝) (Naives participate)

subject to 𝐼𝑁(𝛼) + 𝑇 − ⌈𝛼𝑇 ⌉ − 𝑣 ≥ 0

𝒜4 ≡ max
𝛼,𝑝

(𝑝− 𝑐)(𝜆𝛽𝑞�̄�𝐹𝑆1(𝛼) + 𝜆𝛽(1 − 𝑞)�̄�𝐹𝑆0(𝛼)

+ (1 − 𝜆)𝛽𝑞�̄�𝐹𝑁1(𝛼) + (1 − 𝜆)𝛽(1 − 𝑞)�̄�𝐹𝑁0(𝛼) − 𝑝) (All users participate)

subject to 𝐼𝑆(𝛼) + 𝑇 − ⌈𝛼𝑇 ⌉ − 𝑣 ≥ 0

𝐼𝑁(𝛼) + 𝑇 − ⌈𝛼𝑇 ⌉ − 𝑣 ≥ 0

We can further simplify the platform’s problem by noting that it is without loss to restrict

attention to just 𝒜3 and 𝒜4. First, one can observe that 𝑞�̄�𝐹𝑆1(𝛼) + (1 − 𝑞)�̄�𝐹𝑆0(𝛼) = 𝑞 because

sophisticated agents have a properly specified Bayesian model, and thus, 𝒜1 ≥ 𝒜2. At the

same time �̄�𝐹𝑁1(𝛼) > �̄�𝐹𝑆1(𝛼) and �̄�𝐹𝑁0(𝛼) > �̄�𝐹𝑆0(𝛼), so 𝑞�̄�𝐹𝑁1(𝛼) + (1 − 𝑞)�̄�𝐹𝑁0(𝛼) > 𝑞. We also note

that 𝐼𝑁(𝛼) + 𝑇 − ⌈𝛼𝑇 ⌉ − 𝑣 ≥ 0 can be feasibily satisfied at 𝛼 = 0 (by assumption that 𝑇 > 𝑣),

so it must be that 𝒜3 ≥ 𝒜1 ≥ 𝒜2. That is, conditional on adopting an advertising model, the

platform will advertise to attract both types of users or to attract only naives.

If 𝑇 − 𝑣 > max{𝒜3,𝒜4}, the platform adopts a subscription model instead, with fee 𝑃 * =

𝑇 − 𝑣 (extracting all consumer surplus). Otherwise, the platform adopts an advertising model,

choosing the largest between𝒜3, and𝒜4, with the ad intensity𝛼* that maximizes that respective

expression. In this contract, the platform chooses the transfer 𝑚 that extracts all excess profits

from the firm, which will set 𝑝* as the price that solves the same joint optimization problem.11

11A more realistic model might be one where the firm and platform bargain over a contract and each takes
some positive surplus ala Nash bargaining. Our assumption that the platform has all of the bargaining power
leads to an identical equilibrium with the exception of the split 𝑚 in the contract, which is immaterial to our
consumer welfare analysis.
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5.3.1 Optimal Product Pricing and Ad Intensity

To characterize the solution to the platform’s problem, we leverage the following observation.

Lemma 5.3.1. For any 𝛼, 𝐼𝑁(𝛼) > 𝐼𝑆(𝛼) > 0. Moreover, 𝐼𝑆(𝛼) and 𝐼𝑁(𝛼) are monotonically

increasing in 𝛼.

The intuition for Lemma 5.3.1 is as follows. Because naives mistakenly believe that the

information contained in ads is more valuable than it is, their anticipated gain from participating

and learning about 𝜃𝑖 is higher than that of sophisticates. Consequently, naives are more

tolerant of ads because of the incorrect belief that it will improve their expected utility from

product consumption more than it does. This implies that the platform participation constraint

will always bind for sophisticates before it binds for naives, so whenever sophisticates participate,

so do naives. Formally, it allows the platform to drop the naives’ participation constraint in 𝒜4.

Secondly, one can show that the objectives of 𝒜3 and 𝒜4 are monotonically increasing in

𝛼. This observation and Lemma 5.3.1 allows the platform to first optimize over 𝛼 given the

separate binding participation constraint in each 𝒜3 and 𝒜4 (as a function of price 𝑝), then

secondly optimize over price 𝑝*. Finally, it compares the profits of 𝒜3, 𝒜4, and 𝑇 − 𝑣. This

solution is characterized in the following result.

Proposition 5.3.1. There exists 𝜆* ∈ (0, 1) and 𝛽* ∈ (0, 1) such that:

(a) If 𝛽 < 𝛽*, the platform chooses a subscription model with 𝑃 * = 𝑇 − 𝑣 and the firm sets a

price 𝑝* = 𝑝sub;

(b) If 𝜆 > 𝜆* and 𝛽 > 𝛽*, the platform chooses 𝛼*
𝑆 = sup{𝛼 ∈ [0, 1] : 𝐼𝑆(𝛼) + 𝑇 − ⌈𝛼𝑇 ⌉ − 𝑣 ≥ 0}

and the firm chooses a price 𝑝*𝑆 > 𝑝sub;

(c) If 𝜆 < 𝜆* and 𝛽 > 𝛽*, the platform chooses 𝛼*
𝑁 = sup{𝛼 ∈ [0, 1] : 𝐼𝑁(𝛼) + 𝑇 − ⌈𝛼𝑇 ⌉ − 𝑣 ≥

0} > 𝛼*
𝑆 and the firm chooses a price 𝑝*𝑁 > 𝑝*𝑆.

There are three regimes identified in Proposition 5.3.1. The first is where the product market

is not as sizable as the entertainment market (𝛽 < 𝛽*). In this regime, the platform simply

trades off what it can extract from firms versus what it can extract from content consumers,

and rules in favor of simply charging users for its content. In practice, this does not seem to

be the case for many media platforms (e.g., see Chyi (2005), Vock et al. (2013), and Chyi and
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Ng (2020)). For example, for Facebook to match its advertising revenue via subscription, it

would have to charge a subscription price around $4/month. Recent evidence shows that most

users would not be willing to pay this much, making the advertising model more lucrative for

platforms.12

The other two regimes characterize the optimal advertising scheme given that the value

of advertising to the firm outweighs the user’s willingness-to-pay for entertainment. When

a sizable fraction of the population is sophisticated, the platform does not want to alienate

these consumers by imposing an ad intensity that is too high. Instead, the platform binds the

participation constraint of the sophisticated agents, while naives (who are less bothered by

ads) enjoy positive surplus from using the platform.

However, when sophisticates represent a smaller proportion of the population, the platform

decides to only appeal to naives. In this case, sophisticates do not participate, and the platform

increases its ad intensity to strip all utility of platform consumption from naives. At the same

time, the firm charges a higher price for its product relative to regime (b), given that there is

more advertising and the naive consumers are willing to pay higher prices after viewing more

ads (on average). In this sense, in regime (b), the existence of sophisticates protects the naives

from being extorted by excessive ads and high prices in the product market.

5.3.2 Welfare Analysis

We consider the welfare impacts from a platform monetized by ads or subscriptions relative

to the base case where the platform does not exist at all, as described in Section 5.2.3. The

existence of the platform provides the consumer with potential utility through two channels.

First, it provides the consumer with information about her preference for the product (i.e.,

𝐼𝑆 or 𝐼𝑁 ) which can only be ascertained through viewing digital ads. Second, the platform

provides entertainment, with supplies direct utility. However, the advertising allows the firm to

generate higher profit by increasing its price and targeting those who desire the product more

based on ad viewership.

Using the welfare definition of Section 5.2.3, our next result ranks the welfare of both

sophisticated and naive users under Proposition 5.3.1 relative to the base case of no platform.

As seen in Proposition 5.3.1, regimes (a), (b), and (c) all have different platform choices for 𝛼*

12See https://omarzahran.medium.com/the-case-for-an-ad-free-social-media-subscription-c921eeeaaf7a.
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and different firm choices for 𝑝*, which is the unique equilibrium for the parameter values that

satisfy the conditions of (a), (b), and (c), respectively. Here, we fix the underlyings of the model

but compare welfare for individual agents under each of the (𝛼*, 𝑝*) pairs of (a), (b), (c), and

the base case.

We denote the base case consumer welfare as 𝑊 *
base(𝜏), which is the same for both types

𝜏 ∈ {𝑆,𝑁} and equal to 𝑊 *
(𝑎)(𝜏) (see Footnote 9). In regime (b), we note that 𝑥*𝑖 = 1 for all users,

and so we can use Equation (5.2) to compute welfare𝑊 *
(𝑏)(𝑆) and𝑊 *

(𝑏)(𝑁) for both sophisticates

and naives, respectively. In regime (c), we have 𝑥*𝑖 = 1 for naives but 𝑥*𝑖 = 0 for sophisticates.

Consequently, we can use Equation (5.2), as before, to compute welfare 𝑊 *
(𝑐)(𝑁) for naives, but

need to use Equation (5.3) to compute welfare 𝑊 *
(𝑐)(𝑆) for sophisticates.

Theorem 5.3.1. Consumer welfare for sophisticates and naives satisfies 𝑊 *
base(𝜏) = 𝑊 *

(𝑎)(𝜏) >

𝑊 *
(𝑏)(𝜏) > 𝑊 *

(𝑐)(𝜏) for both 𝜏 ∈ {𝑆,𝑁}.

Our first main result is a striking one. The introduction of a platform, which on the surface

acts as a positive good to the consumers, providing both entertainment and information,

necessarily reduces the consumer welfare of both types of agents. In essence, the additional

value that the platform provides in digital ads (information) and entertaining content (enjoyment

utility) are fully extracted by the firm and the platform, respectively, making them worse off than

under the base case of no platform at all. Stated simply, platforms that use digital advertising

as their main business model unambiguously hurt consumers.

Theorem 5.3.1 also emphasizes the importance of sophisticated consumers in protecting

naive ones, as per Proposition 5.3.1(b). When a platform wants to broadly appeal to all types of

consumers, it is forced to make digital ads less invasive and firms cannot as aggressively prey

on those most influenced by them. As a result, welfare is better for all consumers when 𝜆 > 𝜆*,

and the platform is forced to manage the aggression of its advertising.

Remark — The observed reduction in consumer welfare is not driven by the digital advertising

technology itself, but by how the platform and firm use ads to boost profits at the expense

of consumers. This is not to say that a social planner could not use the digital advertising

technology in the same way to benefit consumers. For example, the social planner might be

able to maximize consumer welfare (even above the base case) by introducing some ads (that

provide information to consumers about the product) while simultaneously keeping product

prices mostly unchanged.
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5.4 Mixed Platform Business Models

Many media platforms are not monetized entirely from one revenue stream. Instead, the

platform may allow the consumer to directly pay for an ad-free experience if she so desires

(subscription) or participate for free but in the presence of ads (ad-based). This is often referred

to as a freemium business model. In this section, we extend our baseline model of Section 5.2 to

allow the platform to offer both subscription-based and ad-based plans that users can choose

from.

5.4.1 Advertising, Subscription, and Freemium Models

We now suppose that in addition to the platform offering an ad contract (𝛼,𝑚) to the firm at

𝑡 = 1, it can also announce a subscription plan at price 𝑃 . Consumers at 𝑡 = 3 now have an

additional option conditional on 𝑥𝑖 = 1: they can elect their plan 𝑦𝑖 ∈ {A,S}, corresponding to

whether to engage with the platform’s content for free, but which contains ads (option A), or to

pay 𝑃 to engage with the platform’s content without ads via subscription (option S), yielding

payoff 𝑇 − 𝑃 to the consumer and 𝑃 to the platform.

This results in one of three considerations for the platform in equilibrium. First, it can

choose a purely advertising-based model, as many social media sites do, with no option to

avoid ads via subscription. If it does this, the platform chooses the ad intensity 𝛼*
𝑆 as in

Proposition 5.3.1(b).13 Second, the platform can choose a purely subscription-based model, as

some streaming services do such as Netflix (as of 2021), where consumers must pay directly to

use the platform. Just as before, the platform will offer a subscription price 𝑃 = 𝑇 − 𝑣, and the

consumer will be equally well off as in the base case where there is no platform whatsoever.

Third, the platform can choose a freemium model, as many platforms do, where users can

decide whether to pay a subscription fee to avoid ads or to enjoy for free but in the presence of

ads. For those that participate in the subscription plan, the same arguments as before show

that the platform will charge a subscription fee 𝑃 = 𝑇 − 𝑣 to extract full entertainment surplus

from the user. On the other hand, the advertising plan will involve more aggressive advertising

intensity 𝛼*
𝑁 of the form in Proposition 5.3.1(c). The reasoning relies on Lemma 5.3.1 and the

13To see this, observe that if the platform were to choose an ad intensity 𝛼*
𝑁 as in Proposition 5.3.1(c) it would

drive sophisticates away. However, the platform can always attract them via a subscription plan with a sufficiently
low fee, so the platform would prefer to adopt the freemium model.
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fact that for advertising platforms, the participation constraint of the sophisticated agents will

bind first. This means in a freemium model, the sophisticates will opt for subscription whereas

the naives will opt for advertising. The participation constraint of the naives will then bind at

exactly 𝛼*
𝑁 as in Proposition 5.3.1(c).

These insights establish that the unique equilibrium is of three possibilities, two potential

pooling equilibria and a potential separating equilibrium. In the two pooling equilibria

(advertising-based and subscription-based), both types adopt the same plan, which is the

unique plan offered by the platform. In the separating equilibrium, however, the platform

offers two plans catered to each type, who self-select into the plan they prefer. Incidentally,

the consumer welfare in the advertising-based plan is exactly the consumer welfare from

Proposition 5.3.1(b), the consumer welfare in the subscription-based plan is exactly the base

case consumer welfare, and the consumer welfare in freemium plan is exactly the consumer

welfare from Proposition 5.3.1(c). As a result, consumer welfare can only decrease when the

platform has the technology to offer a freemium model.

5.4.2 Ad Technology and Optimal Business Models

Our next result studies how the information structure of digital ads (𝜑0 and 𝜑1) affects the

business model chosen by the platform. Recall that 𝜑1 corresponds to the probability user

𝑖 receives a positive signal 𝑠 = ⊕ when indeed 𝜃𝑖 = 1 (i.e., user 𝑖 likes the product). That is,

𝜑1 can be interpreted as a measure of technological effectiveness of ads reaching their target

audience. On the other hand, 𝜑0 corresponds to the probability user 𝑖 receives a positive signal

𝑠 = ⊕ when 𝜃𝑖 = 0 (i.e., user 𝑖 actually does not like the product). In that sense, 𝜑0 measures the

ad technology’s ability to manipulate consumers (in particular, naives, who wrongfully believe

𝜑0 = 0) into believing the product would provide them with positive utility, even when it would

not. Our main characterization of the platform’s optimal business plan is stated next.

Theorem 5.4.1. There exist 0 ≤ 𝜑*
1(𝜑0) ≤ 𝜑**

1 (𝜑0) ≤ 1 such that

(i) If 𝜑1 > 𝜑**
1 (𝜑0), the optimal business model is advertising-based;

(ii) If 𝜑*
1(𝜑0) < 𝜑1 < 𝜑**

1 (𝜑0), the optimal business model is freemium;

(iii) If 𝜑1 < 𝜑*
1(𝜑0), the optimal business model is subscription-based.
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Moreover, 𝜑**
1 (𝜑0) is increasing in 𝜑0 and 𝜑*

1(𝜑0) is decreasing in 𝜑0.

Theorem 5.4.1 provides a full characterization of the optimal platform model as a function

of the digital ad technology. When 𝜑1 is large, there are tremendous informational gains (𝐼𝑆

and 𝐼𝑁 ) for both sophisticates and naives when viewing ads. This means all users are more

tolerant of ads, allowing the platform to advertise more and generate additional profits for

the firm. When 𝜑1 is small, ads are especially obnoxious for both sophisticates and naives,

because they only provide noise. On the other hand, when 𝜑1 is an intermediate range, naives

are more tolerant of ads than sophisticates, and the platform optimally separates them by

offering a freemium model where sophisticates subscribe and naives do not, but are subjected

to watching ads. As we pointed out, this regime is also the worst for consumer welfare.

The size of each of these regions depends on the parameter𝜑0, which captures the advertiser’s

ability to manipulate (naive) users into believing they would like the product, even when they

do not. Recall that naives have a misspecified model that 𝜑0 = 0, and so are particularly

susceptible to manipulation for larger values of 𝜑0. At the extreme where 𝜑0 = 0 (positive

signals ⊕ are never realized when 𝜃𝑖 = 0), the freemium model is never optimal — both

sophisticates and naives have correctly specified models, and there is no need to offer plans

that separate them. At the other extreme, where 𝜑0 = 𝜑1, naives believe ads are informative but

sophisticates do not, and there is maximal separation between the informational gains 𝐼𝑆 and

𝐼𝑁 . As 𝜑0 increases (and the manipulative ad technology develops), the platform moves from

either a purely advertising-based or purely subscription-based platform to one that specifically

targets naive agents with high ad intensities in a freemium-based model.

Recall that �̄� * denotes the average consumer welfare. The welfare implications of Theorem 5.4.1

are nuanced, as demonstrated by our next result.

Proposition 5.4.1.

(a) �̄� * is non-monotone in 𝜑1 for some 𝜑0;

(b) �̄� * is monotonically decreasing in 𝜑0 for all 𝜑1.

Improvements in the informative ad technology (𝜑1) have non-monotonic effects on

consumer welfare. As 𝜑1 increases, there are many forces at play. First, higher values of

𝜑1 correspond to stronger information about user preferences coming from digital ads, which
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potentially helps consumers. However, simultaneously, the platform and firm use this improved

technology to then extract more consumer surplus and reel in naives. As in Theorem 5.3.1,

the firm can increase its price with more effective ads and as evidenced by Theorem 5.4.1,

the platform can change its business model to possibly prey more on these naive consumers.

These rich interactions imply that in general �̄� * will not be increasing or decreasing in the

informativeness of ads.

On the other hand, the technology 𝜑0 used to manipulate those who dislike the product

into believing the opposite can only decrease consumer welfare. The intuition relies on

Theorem 5.4.1, which shows that the platform’s incentives to adopt a freemium model (with a

high ad intensity that targets naives) are increasing in 𝜑0. At the same time, these targeted ads

at naives are more likely to influence and more aggressive purchasing based on ad viewership.

This leads to higher product prices and a decrease in consumer welfare for all types of users.

5.5 Firm-Level and Platform-Level Competition

Up until now, we have assumed there is just a single (monopolistic) firm and single (monopolistic)

platform. In this section, we consider potential anti-trust solutions to remedy the reductions

in welfare caused by advertising platforms. In Section 5.5.1, we study competition at the firm

level where we assume there are multiple firms selling products who compete over advertising

space on a single digital platform. In Section 5.5.2 we investigate competition at the platform

level, where there are multiple platforms that compete for user attention and potentially a

single firm’s advertising business.

5.5.1 Advertising with Firm-Level Competition

There are now two product firms instead of just one.14 Each of the firms has a single product

(product 1 and product 2), and the products are completely differentiated. In particular, we

assume that the user 𝑖 has both 𝜃(1)𝑖 and 𝜃(2)𝑖 and product consumption utility:

𝜃
(1)
𝑖 𝑧

(1)
𝑖 + 𝜃

(2)
𝑖 𝑧

(2)
𝑖 − (𝑧

(1)
𝑖 + 𝑧

(2)
𝑖 )2

2
− 𝑝1𝑧

(1)
𝑖 − 𝑝2𝑧

(2)
𝑖 .

14Our main result of this section, Proposition 5.5.1, is generalizable to 𝑁 firms with 𝑁 independent products,
but for ease of exposition we limit our focus to just 𝑁 = 2.
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As before, 𝜃(1)𝑖 and 𝜃(2)𝑖 both have prior probability 𝑞 of 𝜃(𝑗)𝑖 = 1 and probability 1−𝑞 of 𝜃(𝑗)𝑖 = 0 for

both firms 𝑗 ∈ {1, 2} and are drawn independently. The platform can advertise for both firms

at rates 𝛼(1) and 𝛼(2), with total ad intensity given by 𝛼(1) + 𝛼(2). A given ad endorses product 𝑗

with probability 𝛼(𝑗)/(𝛼(1) + 𝛼(2)), and the platform offers simultaneous contracts (𝛼(1),𝑚(1))

and (𝛼(2),𝑚(2)) to both firms. As before, we assume the probability of each ad appearing is

independent across consumers and across multiple ads seen by the same consumer.

First, we generalize the user’s optimal product consumption decision, taking the digital

advertising on the platform as given. Each user 𝑖 will have an estimate 𝜋(𝑗)
𝑖 , which is her belief

that product 𝑗 has 𝜃(𝑗)𝑖 = 1, given the advertising signals she received on the platform. The

user will then choose 𝑗* ∈ arg max𝑗 𝛽𝜋
(𝑗)
𝑖 − 𝑝(𝑗)* and consume all of product 𝑗* as before, with

𝑧
(𝑗*)*

𝑖 = 𝛽𝜋
(𝑗*)
𝑖 − 𝑝(𝑗

*)* and consume none of the other product (denoted (−𝑗*)), with 𝑧(−𝑗
*)*

𝑖 = 0.

Second, assuming all users participate on the advertising platform, firm 𝑗 will solve a problem

of the form,

max
𝑝(𝑗)

(︀
𝑝(𝑗) − 𝑐

)︀⏟  ⏞  
Profit Margin

·
(︀
𝑍(𝛼(𝑗)) − 𝑝(𝑗)

)︀⏟  ⏞  
Aggregate Consumption

, (5.4)

when there is no competition, and solve a problem of the form,

max
𝑝(𝑗)

(︀
𝑝(𝑗) − 𝑐

)︀⏟  ⏞  
Profit Margin

·
(︀
𝑍(𝛼(𝑗)) − 𝑝(𝑗)

)︀⏟  ⏞  
Aggregate Consumption

·

⎛⎜⎜⎝𝜆P [︁𝜋(𝑗)
𝑆 ≥ 𝜋

(−𝑗)
𝑆 +

(︀
𝑝(−𝑗) − 𝑝(𝑗)

)︀ ⃒⃒⃒
𝛼(−𝑗), 𝛼(𝑗)

]︁
⏟  ⏞  

Probability Product 𝑗 is Preferred for Sophisticates

+(1 − 𝜆)P
[︁
𝜋
(𝑗)
𝑁 ≥ 𝜋

(−𝑗)
𝑁 +

(︀
𝑝(−𝑗) − 𝑝(𝑗)

)︀ ⃒⃒⃒
𝛼(−𝑗), 𝛼(𝑗)

]︁
⏟  ⏞  

Probability Product 𝑗 is Preferred for Naives

⎞⎟⎟⎠ ,

(5.5)

when there is competition (where 𝑍(𝛼(𝑗)) is some function of 𝑗’s advertising intensity, 𝛼(𝑗) but

not (−𝑗)’s advertising intensity, 𝛼(−𝑗)). The following result partially characterizes how this

competition affects average consumer welfare relative to a monopolist seller on the platform:

Proposition 5.5.1. The are cutoffs 0 < 𝜆ℱ < �̄�
ℱ
< 1 and 0 < �̄�

ℱ
0 < 𝜑1 such that

(i) If 𝜆 > �̄�
ℱ and 𝜑0 > �̄�

ℱ
0 , average consumer welfare under platform-level competition is

strictly higher than under a monopolist platform;
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(ii) If 𝜆 < 𝜆ℱ and 𝜑0 > �̄�
ℱ
0 , average consumer welfare under platform-level competition is

weakly lower than under a monopolist platform.

Recall that 𝜆 captures the sophistication level of the population and 𝜑0 captures the

probability of a ⊕ signal when 𝜃𝑖 = 0, which also serves as a proxy for how effective digital ad

targeting is on naives. Simply put, the result of Proposition 5.5.1 states that whether introducing

firm-level competition helps or hurts welfare hinges on the naivety of the platform’s population

to be susceptible to ads. When this susceptibility is insignificant (as in (i)), consumer welfare

improves because of natural competition for advertising and due to price competition across

products. However, introducing a vulnerable population (as in (ii)) leads to different competitive

forces, ones that use advertising as a differentiating factor, and in particular, to manipulate

users into paying higher prices relative to their competitors’.

The intuition for Proposition 5.5.1(i) is straightforward. Most of the population is not

heavily influenced by advertising, so firms have low willingness to pay for these ads, which is

further intensified by competition for advertising spots. In this setting, platforms either switch

to subscription models, or if they still use advertising, it has little influence on purchasing

decisions, as most users purchase on the basis of price. All consumers end up better off with

low advertising levels and lower prices after a second firm enters the market.

However, product competition unfolds quite differently in the setting of Proposition 5.5.1(ii).

The intuition is best seen by considering a single ad shown to each naive agent, which happens

to be either firm 1’s or firm 2’s product (with equal probability). There is a high likelihood the

naive agent is convinced by the ad, and is willing to pay a premium for the product she saw

advertised over her competitor’s. If the agent saw firm 1’s advertisement, firm 1 knows it could

win that agent’s business even if its price was higher than its competitor’s. On the other hand,

if the naive agent saw firm 2’s ad, she would require a discount to purchase firm 1’s product

over firm 2’s. As a consequence, firm 1 should price agents who saw firm 2’s ad out of the

market altogether, which leads both firm 1 and firm 2 to have higher prices than either were a

monopolist. This leads to a reduction in consumer welfare by stronger incentives to adopt the

freemium models of Section 5.4 that prey on the naives in this way.
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5.5.2 Platform-Level Competition

There are now two platforms instead of just one (with a single firm).15 Both platforms simultaneously

set subscription prices 𝑃1 and 𝑃2 and offer contracts to the firm, (𝛼1,𝑚1) and (𝛼2,𝑚2). At 𝑡 = 2,

the firm will choose the better of the two contracts,16 then users will choose how to allocate

their time in 𝑡 = 3,17 with the rest of the game played out in 𝑡 = 4 and 𝑡 = 5 as described in

Section 5.2. Similar to Proposition 5.5.1, we find that:

Proposition 5.5.2. The are cutoffs 0 < 𝜆𝒫 < �̄�
𝒫
< 1 and 0 < �̄�

𝒫
0 < 𝜑1 such that

(i) If 𝜆 > �̄�
𝒫 and 𝜑0 > �̄�

𝒫
0 , average consumer welfare under platform-level competition is

strictly higher than under a monopolist platform;

(ii) If 𝜆 < 𝜆𝒫 and 𝜑0 > �̄�
𝒫
0 , average consumer welfare under platform-level competition is

weakly lower than under a monopolist platform.

Proposition 5.5.2 is the analog to Proposition 5.5.1, although the competitive forces at

play are slightly different, despite yielding similar conclusions. Because the two platforms

are identical (as opposed to firm-level competition with differentiated products), Bertrand

competition effects are much stronger. Platforms cannot extract surplus from firms in equilibrium,

and thus offer contracts with𝑚 = 0 and 𝛼 chosen strategically to best benefit the firm. Similarly,

platform subscribers will look for the cheaper of the two offered plans, so when some users

do subscribe, the subscription fee will always be 𝑃 = 0. This simplification allows us to more

easily to characterize the equilibria.

In regime (i), manipulation via targeted digital advertising is not as possible because the

population is mostly sophisticated. This will naturally result in more subscription-based

users, but the platform-level competition will drive subscriptions prices down and these users

will experience surplus from entertainment. While advertisement-based plans might still be

available for the small fraction of naive users, average consumer welfare will still rise and naives

15Like with firm-level competition (as remarked in Footnote 14), platform-level competition with more than
two platforms does not materially affect our analysis.

16The firm could also technically accept both contracts, but observe this is weakly dominated. If both platforms
offer the same ad intensity 𝛼, the firm should accept the cheaper of the two. If the platforms offer different ad
intensities, say, 𝛼1 < 𝛼2, then all ad-based users will go to platform 1 so it is an equally good response to only
accept firm 1’s contract.

17Also, observe that the user would never prefer to “split” time between the two platforms except in knife-edge
cases where she gets equal utility from allocating her time to both. As a convention, we suppose that if the user is
perfectly indifferent then chooses one platform at random.
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may even be better off. This may seem surprising in juxtaposition with Section 5.4, where

freemium business models were classified as minimizing consumer welfare. However, in the

case of Proposition 5.5.2(i), the freemium business model arises out of competition, and can

overall increase welfare because it lowers subscription fees and simultaneously forces the firm

to set reasonable prices, not exploit naives’ advertising susceptibilities.

In regime (ii), the same freemium business model that comes out of platform competition

leads to reduced average consumer welfare. The reason is that sophisticated users are generally

more inclined to switch to subscription-based plans than naives are. A monopolist platform

which has more power to set the business model could force all users to engage with advertising.

However, with competition from another platform, it can start to offer subscriptions that will

steal market share from the original platform, which will only exploit naives on their platform.

Because this competition is unavoidable, it might as well increase the intensity of advertising

knowing it will drive sophisticates anyway. Overall, in a population largely consisting of naives,

this reduces average consumer welfare.

Propositions 5.5.1 and 5.5.2, taken together, show that anti-trust regulation that involves

breaking up firms or platforms is an imperfect solution to the digital advertising problem at best.

In naive populations, where their welfare is already substantially hurt by the business models

chosen by platforms, competition at both the firm-level and platform-level will exacerbate the

problem.

5.6 Policy: Digital Ad Taxation

Finally, in light of the anti-trust analysis of Section 5.5, we propose a new suggestion, a digital

advertising tax. For this, we suppose that the platform is currently monetized only through

digital advertising in equilibrium (despite being able to offer subscription services or a mixed

freemium model).18 As observed in Section 5.4, this leads to worse consumer welfare than if

the platform were non-existent or offered subscriptions (with no digital ads) to all users, but

leads to better welfare compared to the freemium business model.

In an attempt to correct consumer welfare back to base-case levels, we introduce a digital

18This is the most interesting case to analyze so we focus on it here. But the result of Theorem 5.6.1 immediately
extends to the freemium business model, except where the low tax rate is not effective (there is no middle region).
If the current business model is already subscription, then an ad tax is meaningless.
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ad tax that charges the platform a tax rate 𝜁 on all revenue earned via digital ads.19 In particular,

the transfer to the platform with an accepted contract (𝛼,𝑚) is given by (1 − 𝜁)𝑚, after the tax

is levied. Our next result characterizes the effect of such a taxation policy.

Theorem 5.6.1. There exist 0 < 𝜁 < 𝜁 < 1 such that

(a) If 𝜁 ∈ (0, 𝜁), �̄� * remains unaffected after the taxation policy;

(b) If 𝜁 ∈ (𝜁, 𝜁), �̄� * decreases after the taxation policy;

(c) If 𝜁 ∈ (𝜁, 1), �̄� * increases to base-case welfare after the taxation policy.

Consumer welfare is non-monotone in the level of taxation, and in particular, an ad tax can

be ineffective or even damaging if not implemented with sufficient aggression. The intuition for

Theorem 5.6.1 echoes similar non-monotonicity of Proposition 5.4.1(a). When the ad tax rate

is small, the tax does not adequately deter the platform from generating revenue purely based

on advertising. Once the tax becomes sizable, the platform does not switch to fully relying on

subscription but instead switches to the freemium business model of Theorem 5.4.1(ii). Under

this model, the platform intensifies advertising among a particularly susceptible community,

and simply charges others for subscription. As we have remarked in Section 5.4, this depresses

consumer welfare to its worst levels. However, once the tax rate becomes sufficiently high, the

platform is forced to switch to a purely subscription-based model as in Proposition 5.4.1(iii).

This has the intended consequence of restoring consumer welfare back to base-case levels.

Remark — Theorem 5.6.1 provides a cautionary tale for implementing a digital ad tax to

incentivize the platform to substitute away from ad-based revenue sources. The result also

provides the basis for a progressive ad tax, with a marginal tax rate 𝜁(𝑚) that is increasing in 𝑚

to avoid region (b) in Theorem 5.6.1. Such a progressive tax can be constructed by ensuring

that 1
𝑚𝐹

∫︀ 𝑚𝐹

0
𝜁(𝑚) 𝑑𝑚 ≥ 𝜁,20 but where 𝜁(0) = 0. Such a tax can be more effective at ensuring

that platforms with little revenue (of any kind) are not harshly punished with an aggressive tax

rate 𝜁 > 𝜁.

19Such an advertising tax has been proposed recently by economist and entrepreneur Paul Romer, as way to
shift platform incentives toward subscription-based revenue instead of ad-based revenue (see https://adtax.
paulromer.net/).

20Here, 𝑚𝐹 is the equilibrium transfer from the firm to the platform under the freemium model, which is
independent of the tax conditional on being in regime (b) of Theorem 5.6.1.
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Appendix A

Misinformation: Strategic Models

A.1 A Model of Online Misinformation

A.1.1 Proofs

Auxiliary Lemmas

We define a (mixed-strategy) strategy 𝜎𝑖 for agent 𝑖 to be a map from priors 𝑏𝑖 to elements of

the simplex ∆({𝒟, ℐ,𝒮}). In others words, 𝜎𝑖 specifies for each ideological prior 𝑏𝑖 of agent 𝑖

the probability that she will play each of the three actions, 𝒟, ℐ, and 𝒮. We let 𝜎−𝑖 denote the

(vector of) strategies of all agents other than agent 𝑖.

Lemma A.1.1. Given any set of strategies 𝜎−𝑖, agent 𝑖’s best response is a cutoff strategy with

cutoffs (𝑏*𝑖 , 𝑏
**
𝑖 ) such that if 𝑏𝑖 < 𝑏*𝑖 agent 𝑖 dislikes (𝒟), if 𝑏*𝑖 < 𝑏𝑖 < 𝑏**𝑖 agent 𝑖 ignores (ℐ), and if

𝑏𝑖 > 𝑏*𝑖 agent 𝑖 shares (𝒮).

Proof of Lemma A.1.1. When agent 𝑖 receives an article, she forms (ex-post) belief 𝜋𝑖 about the

article’s veracity which depends only on the observables (𝑟,𝑚). By Bayes’ rule:

𝜋𝑖 ≡ P[𝜈 = 𝒯 |, 𝑟,𝑚 = 𝑅] =
P[𝑚 = 𝑅 | 𝑟, 𝜈 = 𝒯 ]P[𝜈 = 𝒯 | 𝑟]

P[𝑚 = 𝑅 | 𝑟, 𝜈 = ℳ]P[𝜈 = ℳ| 𝑟] + P[𝑚 = 𝑅 | 𝑟, 𝜈 = 𝒯 ]P[𝜈 = 𝒯 | 𝑟]
.
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By the law of total probability, we have:

P[𝑚 = 𝑅 | 𝑟, 𝜈 = 𝒯 ] = P[𝑚 = 𝑅 | 𝜈 = 𝒯 ] = P[𝑚 = 𝑅 | 𝜃 = 𝑅, 𝜈 = 𝒯 ]P[𝜃 = 𝑅]

+P[𝑚 = 𝑅 | 𝜃 = 𝐿, 𝜈 = 𝒯 ]P[𝜃 = 𝐿]

= 𝑝𝑏𝑖 + (1 − 𝑝)(1 − 𝑏𝑖) ;

P[𝑚 = 𝑅 | 𝑟, 𝜈 = ℳ] = P[𝑚 = 𝑅 | 𝜈 = ℳ] = P[𝑚 = 𝑅 | 𝜃 = 𝑅, 𝜈 = ℳ]P[𝜃 = 𝑅]

+P[𝑚 = 𝑅 | 𝜃 = 𝐿, 𝜈 = ℳ]P[𝜃 = 𝐿]

= 𝑞𝑏𝑖 + (1 − 𝑞)(1 − 𝑏𝑖) .

Putting these together we obtain equation (2.2). Moreover, 𝜋𝑖 is monotone in 𝑏𝑖 since

𝜕𝜋𝑖
𝜕𝑏𝑖

=
(1 − 𝜑(𝑟))𝜑(𝑟)(𝑝− 𝑞)

(1 − 𝑏𝑖 + 𝑞(1 − 𝜑(𝑟))(2𝑏𝑖 − 1) − 𝑝(𝜑(𝑟) − 2𝜑(𝑟)𝑏𝑖))2
> 0.

Note that 𝑈𝑖(ℐ) and 𝑈𝑖(𝒟) is independent of 𝜎−𝑖, and in particular 𝒟 is a better response to

ℐ if and only if 𝜋𝑖 < (�̃� − 𝑐)/�̃�. Because 𝜋𝑖 is monotone in 𝑏𝑖, this implies there exists some

�̃� where 𝒟 is a better response to ℐ if and only if 𝑏𝑖 < �̃� (where �̃� = 1 if disliking dominates

ignoring and �̃� = 0 if ignoring dominates disliking). Next, recall that the payoff to sharing

is 𝑈𝑖(𝒮) = 𝑈
(1)
𝑖 + 𝑈

(2)
𝑖 , where 𝑈 (1)

𝑖 = 𝑢1𝜈=𝒯 − 𝑐1𝜈=ℳ and 𝑈
(2)
𝑖 = 𝜅𝑆𝑖 − 𝑑𝐷𝑖. Observe that, as

before, 𝑈 (1)
𝑖 is independent of 𝜎−𝑖 and has expected payoff (𝑢+ 𝑐)𝜋𝑖− 𝑐, which is monotonically

increasing in 𝜋𝑖. Moreover, EP,𝜎−𝑖
[𝜅𝑆𝑖 − 𝑑𝐷𝑖] does not depend on 𝑏𝑖. Because 𝜋𝑖 is monotone

in 𝑏𝑖, we see that 𝑈𝑖(𝒮) is increasing in 𝑏𝑖, 𝑈𝑖(ℐ) is constant in 𝑏𝑖 (it is always zero), and 𝑈𝑖(𝒟)

is decreasing in 𝑏𝑖 (it is equal to �̃�(1 − 𝜋𝑖) − 𝑐). This implies that either (i) ignoring dominates

sharing, (ii) sharing dominates ignoring, or (iii) 𝑈𝑖(𝒮) = 0 for some prior 𝑏′:

(i) If ignoring dominates sharing, we set (𝑏*𝑖 , 𝑏
**
𝑖 ) = (�̃�, 1).

(ii) If sharing dominates ignoring, then either sharing dominates disliking (in which case

set (𝑏*𝑖 , 𝑏
*
𝑖 ) = (0, 0)), disliking dominates sharing (in which case we set (𝑏*𝑖 , 𝑏

**
𝑖 ) = (1, 1)), or

there exists some prior 𝑏′′ where 𝑈𝑖(𝒮) = 𝑈𝑖(𝒟) (in which case set (𝑏*𝑖 , 𝑏
**
𝑖 ) = (𝑏′′, 𝑏′′)).

(iii) Otherwise, if �̃� < 𝑏′, set (𝑏*𝑖 , 𝑏
**
𝑖 ) = (�̃�, 𝑏′); however, if �̃� ≥ 𝑏′, then we set (𝑏*𝑖 , 𝑏

**
𝑖 ) = (𝑏′, 𝑏′).

This is of the cutoff form claimed in the lemma.

An immediate consequence of Lemma A.1.1 is that any Bayesian-Nash equilibrium must be

in cutoff strategies for all agents. Hence, we can limit our attention to cutoff strategies (𝑏*𝑖 , 𝑏
**
𝑖 )
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for every agent 𝑖, which can be represented as (b*,b**) in vector notation. This is a partially-

ordered set according to the component-wise order ⪰. Hence, the cutoff space B = [0, 1]2𝑁

forms a complete lattice.1

Next, we define a map 𝜓 : B → B that maps cutoffs (b*,b**) to best-response cutoffs

(b*,𝐵𝑅,b**,𝐵𝑅). This map is well-defined because (i) 𝐻 is a continuous distribution, so we need

not specify the strategies of agents precisely on the cutoffs, and (ii) by Lemma A.1.1, for any set

of strategies 𝜎−𝑖 (including the cutoff strategies given by (b*,b**)), all agents’ best responses

are in cutoff form.

Lemma A.1.2. The map 𝜓 preserves the component-wise order ⪰.

Proof of Lemma A.1.2. Consider some (b̂*, b̂**) ⪰ (b*,b**). Fixing an article with observables

(𝑟,𝑚), 𝑈𝑖(𝒟), 𝑈𝑖(ℐ) and 𝑈
(1)
𝑖 are independent of (b̂*, b̂**) and (b*,b**). However, for 𝑈 (2)

𝑖 we

have:

EP,(b̂*,b̂**)[𝜅𝑆𝑖 − 𝑑𝐷𝑖] =
𝑁∑︁
𝑗=1

𝑝𝑖𝑗

(︁
𝜅P(b̂*,b̂**)[𝑎𝑗 = 𝒮] − 𝑑P(b̂*,b̂**)[𝑎𝑗 = 𝒟]

)︁
=

𝑁∑︁
𝑗=1

𝑝𝑖𝑗

(︁
𝜅P𝐻 [𝑏𝑗 > �̂�**𝑗 ] − 𝑑P𝐻 [𝑏𝑗 < �̂�*𝑗 ]

)︁
≤

𝑁∑︁
𝑗=1

𝑝𝑖𝑗
(︀
𝜅P𝐻 [𝑏𝑗 > 𝑏**𝑗 ] − 𝑑P𝐻 [𝑏𝑗 < 𝑏*𝑗 ]

)︀
= EP,(b̃*,b̃**)[𝜅𝑆𝑖 − 𝑑𝐷𝑖] .

As a result, 𝑈 (b̂*,b̂**)
𝑖 (𝒮) ≤ 𝑈

(b*,b**)
𝑖 (𝒮). As in Lemma A.1.1, we define �̃� as the prior where

𝑈𝑖(𝒟) = 0 if such a �̃� exists, otherwise let �̃� = 0 if ignoring dominates disliking and �̃� = 1 if

disliking dominates ignoring. Observe that �̃� is the same for both (b̂*, b̂**) and (b*,b**). We

have three cases for the best-response cutoffs (b*,𝐵𝑅,b**,𝐵𝑅) given other agents’ cutoffs (b*,b**)

(which we compare to (b̂*,𝐵𝑅, b̂**,𝐵𝑅) given other agents’ cutoffs (b̂*, b̂**)):

(i) Ignoring dominates sharing for agent 𝑖 (for given cutoffs (b*,b**)). Then by virtue

of 𝑈 (b̂*,b̂**)
𝑖 (𝒮) ≤ 𝑈

(b*,b**)
𝑖 (𝒮), ignoring dominates sharing with (b̂*, b̂**) as well. Thus,

(𝑏*,𝐵𝑅𝑖 , 𝑏**,𝐵𝑅𝑖 ) = (�̂�*,𝐵𝑅𝑖 , �̂�**,𝐵𝑅𝑖 ) = (�̃�, 1).

(ii) Sharing dominates ignoring for agent 𝑖 (for given cutoffs (b*,b**)). Then either sharing

dominates disliking (in which case (𝑏*,𝐵𝑅𝑖 , 𝑏**,𝐵𝑅𝑖 ) = (0, 0) ⪯ (�̂�*,𝐵𝑅𝑖 , �̂�**,𝐵𝑅𝑖 ) trivially), or there

exists some prior 𝑏′′ where 𝑈 (b*,b**)
𝑖 (𝒮) = 𝑈𝑖(𝒟) denoted by 𝑏′′ and (𝑏*,𝐵𝑅𝑖 , 𝑏**,𝐵𝑅𝑖 ) = (𝑏′′, 𝑏′′).

1Note that for any collection of cutoffs {(b*,(1),b**,(1)), (b*,(2),b**,(2)), . . . , } in the cutoff space, there is a
greatest lower bound given by the component-wise infimum and a least upper bound given by the component-
wise supremum.
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Moreover, because 𝑈 (b̂*,b̂**)
𝑖 (𝒮) ≤ 𝑈

(b*,b**)
𝑖 (𝒮) = 𝑈𝑖(𝒟) at prior 𝑏′′, for an agent with prior

𝑏′′, playing 𝒟 is a (weakly) better response than sharing when other agents play according

to cutoffs (b̂*, b̂**). By monotonicity of 𝑈𝑖(𝒮) and 𝑈𝑖(𝒟) in prior 𝑏𝑖, this implies that

𝑏**,𝐵𝑅𝑖 ≤ �̂�**,𝐵𝑅𝑖 . If ignoring is never a best response when (b̂*, b̂**), then �̂�*,𝐵𝑅𝑖 = �̂�**,𝐵𝑅𝑖 .

Otherwise, �̂�*,𝐵𝑅𝑖 = �̃� ≥ 𝑏**,𝐵𝑅𝑖 = 𝑏*,𝐵𝑅𝑖 .

(iii) 𝑈 (b*,b**)
𝑖 (𝒮) = 0 for some prior 𝑏′ for agent 𝑖. Then 𝑈

(b̂*,b̂**)
𝑖 (𝒮) ≤ 𝑈

(b*,b**)
𝑖 (𝒮) = 0 implies

that for an agent with prior 𝑏′ playing ℐ is a (weakly) better response than sharing when

other agents play according to (b̂*, b̂**). By monotonicity of 𝑈𝑖(𝒮) in prior 𝑏𝑖, this implies

that 𝑏**,𝐵𝑅𝑖 ≤ �̂�**,𝐵𝑅𝑖 . If �̃� < 𝑏′, then 𝑏*,𝐵𝑅𝑖 = �̂�*,𝐵𝑅𝑖 = �̃�; otherwise, if �̃� ≥ 𝑏′, 𝑏*,𝐵𝑅𝑖 = 𝑏**,𝐵𝑅𝑖 =

𝑏′ ≤ �̂�*,𝐵𝑅𝑖 .

This establishes that (b̂*,𝐵𝑅
𝑖 , b̂**,𝐵𝑅

𝑖 ) ⪰ (b*,𝐵𝑅
𝑖 ,b**,𝐵𝑅

𝑖 ), so the order ⪰ is preserved by 𝜓.

Lemma A.1.3. An increase in polarization of beliefs can be constructed via the following process:

take every belief 𝑏𝑖 and either (i) add some 𝜖𝑖 > 0 to 𝑏𝑖 if 𝑏𝑖 > 1/2, or (ii) subtract some 𝜖𝑖 > 0 to 𝑏𝑖

if 𝑏𝑖 < 1/2.

Proof of Lemma A.1.3. Let𝐻2 be more polarized than𝐻1. For part (i), note that𝐻1(𝑏
1
𝑖 ) = 𝛼 > 1/2,

so by single-crossing at 𝐻−1
1 (1/2) = 𝐻−1

2 (1/2), we know that 𝐻−1
2 (𝛼) −𝐻−1

1 (𝛼) > 0. Thus, for

some 𝑏2𝑖 > 𝑏1𝑖 , we have 𝐻−1
2 (𝛼) = 𝑏2𝑖 , or in other words, 𝐻2(𝑏

2
𝑖 ) = 𝛼. Setting 𝜖𝑖 = 𝑏2𝑖 − 𝑏1𝑖 > 0 in

this fashion for all 𝑏𝑖 > 1/2 accomplishes claim (i). For part (ii), note that 𝐻1(𝑏
1
𝑖 ) = 𝛼 < 1/2,

so by single-crossing at 𝐻−1
1 (1/2) = 𝐻−1

2 (1/2), we know that 𝐻−1
2 (𝛼) −𝐻−1

1 (𝛼) < 0. Thus, for

some 𝑏2𝑖 < 𝑏1𝑖 , we have 𝐻−1
2 (𝛼1) = 𝑏2𝑖 , or in other words, 𝐻2(𝑏

2
𝑖 ) = 𝛼. Setting 𝜖𝑖 = 𝑏1𝑖 − 𝑏2𝑖 > 0 in

this fashion for all 𝑏𝑖 < 1/2 accomplishes claim (ii).

Lemma A.1.4. If 𝜅 ≤ �̄� ≡ (𝑐𝑐− 𝑢(�̃�− 𝑐))/(�̃�𝑁), then for any agent 𝑖:

(i) If 𝑏*𝑖 > 0 and 𝑏**𝑖 < 1, then 𝑏**𝑖 > 𝑏*𝑖 ;

(ii) For all �̄� < 1, there exists 𝑟 > 0 such that agent 𝑖 plays 𝒟 in any equilibrium for an article

with 𝑟 < 𝑟 and on any sharing network P, provided that 𝑏𝑖 < �̄�.

Proof of Lemma A.1.4. For part (i), by way of contradiction suppose that 𝑏*𝑖 = 𝑏**𝑖 . Then for an

agent with prior 𝑏*𝑖 (and corresponding ex-post belief 𝜋*
𝑖 that the article is truthful), it must be

the case that:

�̃�(1 − 𝜋𝑖) − 𝑐 = 𝑢𝜋𝑖 − 𝑐(1 − 𝜋𝑖) + E[𝜅𝑆𝑖 − 𝑑𝐷𝑖] ≥ 0 .
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Re-arranging we get that 𝜋𝑖 = �̃�−𝑐+𝑐−E[𝜅𝑆𝑖−𝑑𝐷𝑖]
�̃�+𝑢+𝑐

. Substituting into the payoff for action 𝒟, we see

that:

𝑈𝑖(𝒟) = �̃�

(︂
𝑢+ 𝑐+ E[𝜅𝑆𝑖 − 𝑑𝐷𝑖]

�̃�+ 𝑢+ 𝑐

)︂
− 𝑐 ≤ �̃�

(︂
𝑢+ 𝑐+ 𝜅𝑁

�̃�+ 𝑢+ 𝑐

)︂
− 𝑐 < �̃�

(︂
𝑢+ 𝑐+ �̄�𝑁

�̃�+ 𝑢+ 𝑐

)︂
− 𝑐 ≤ 0 .

By assumption, 𝑈𝑖(𝒮) = 𝑈𝑖(𝒟) < 0, but since 𝑈𝑖(ℐ) = 0, ignoring is the best response at prior 𝑏*𝑖 ,

which is a contradiction.

For part (ii), notice by equation (2.2), for a fixed 𝑏 < 1, as 𝑟 → 0, 𝜋𝑖 → 0, and therefore:

𝑈𝑖(𝒮) = 𝑢𝜋𝑖 − 𝑐(1 − 𝜋𝑖) + E[𝜅𝑆𝑖 − 𝑑𝐷𝑖] < 𝑢𝜋𝑖 − 𝑐(1 − 𝜋𝑖) + �̄�𝑁 ≤ 𝑢𝜋𝑖 − 𝑐(1 − 𝜋𝑖) +
𝑐

𝑁
𝑁

𝑟→0
= −𝑐+ 𝑐 = 0 .

where the last inequality follows from the observation that:

�̄� ≡ 𝑐𝑐− 𝑢(�̃�− 𝑐)

�̃�𝑁
<

𝑐𝑐

�̃�𝑁
<

𝑐

𝑁
,

because �̃� > 𝑐. Thus, as 𝑟 → 0, ignoring is a better response than sharing. But note that

𝑈𝑖(𝒟) = �̃�(1 − 𝜋𝑖) − 𝑐
𝑟→0
= �̃�− 𝑐 > 0, so as 𝑟 → 0, disliking is a better response than ignoring. As

a result, disliking is a best response for any fixed 𝑏 < 1 as 𝑟 → 0. The claim in (ii) thus follows

from continuity of equation (2.2).

Proofs from Section 3

Proof of Theorem 2.1.1. Claim (ii) follows directly from Lemma A.1.1 and establishes that

the Bayesian-Nash equilibria are the fixed points of the map 𝜓. Clearly the cutoff space B

is convex and compact (it is defined by [0, 1]2𝑁 ). To see that 𝜓 is continuous, notice that

for 𝜓 : (b*,b**) ↦→ (b*,𝐵𝑅,b**,𝐵𝑅), EP,(b*,b**)[𝑈
(2)
𝑖 ] is continuous because 𝐻 is continuous

(and 𝑈𝑖(𝒟), 𝑈𝑖(ℐ), and 𝑈
(1)
𝑖 do not depend on (b*,b**)). Moreover, by the same reasoning

as in Lemma A.1.2, 𝑈P,(b*,b**)
𝑖 (𝒮) and 𝑈

P,(b*,b**)
𝑖 (𝒮) − 𝑈𝑖(𝒟) are monotone and continuous.

Because these expressions are continuous in (b*,b**), the corresponding best-response cutoffs,

(b*,𝐵𝑅,b**,𝐵𝑅) are also continuous in (b*,b**). By Brouwer’s fixed-point theorem, there exists a

Bayesian-Nash equilibrium, proving (i).

Finally, noting that the cutoff space B is a complete lattice and 𝜓 preserves the component-

wise order⪰ (by Lemma A.1.2), Tarski’s fixed-point theorem establishes that the set of equilibrium
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cutoffs forms a lattice (see Tarski (1955)). By definition of a lattice order, there exists a least-

sharing equilibrium (largest b**) and a most-sharing equilibrium (smallest b**).

Proof of Proposition 2.1.1. Recall that 𝜋𝑖 is given by equation (2.2) and provides the (ex-post)

belief of the article’s veracity conditional on observables (𝑟,𝑚). Also observe that:

𝜕𝜋𝑖
𝜕𝑟

=
(1 − 𝑏𝑖 + 𝑝(2𝑏𝑖 − 1))(1 − 𝑏𝑖 + 𝑞(2𝑏𝑖 − 1))

(1 − 𝑏𝑖 + 𝑞(1 − 𝜑(𝑟))(2𝑏𝑖 − 1) − 𝑝(𝜑(𝑟) − 2𝜑(𝑟)𝑏𝑖))2
𝜑′(𝑟) .

Because 𝜑′(𝑟) > 0, it is clear that when 𝑏𝑖 > 1/2, 𝜕𝜋𝑖/𝜕𝑟 > 0. When 𝑏𝑖 < 1/2, 1 − 𝑏𝑖 + 𝑝(2𝑏𝑖 − 1)

is minimized when 𝑝 = 1, in which case it is equal to 𝑏𝑖 ≥ 0 (and with this inequality strict

whenever 𝑝 < 1). Similarly, when 𝑏𝑖 < 1/2, 1 − 𝑏𝑖 + 𝑞(2𝑏𝑖 − 1) is minimized when 𝑞 = 1/2, in

which case it is equal to 1/2 > 0. Thus, 𝜕𝜋𝑖/𝜕𝑟 > 0 for all 𝑏𝑖.

Similarly, when 𝜑′ ≥ 𝜑, a reliability score 𝑟 with misinformation structure 𝜑′ can be

translated into a higher reliability score 𝑟′ ≥ 𝑟 under misinformation structure 𝜑 (because

both 𝜑, 𝜑′ are monotonically increasing). As a consequence, a decrease in misinformation is

isomorphic to greater reliability of the articles. It is thus sufficient to prove the latter leads to

uniformly more sharing in both the least and the most sharing equilibria.

Note that the social media game is supermodular and has increasing differences in reputability.

To see this, note that for all 𝑟′ ≥ 𝑟:

[𝑈𝑖(𝒮, 𝑟′) − 𝑈𝑖(ℐ, 𝑟′)] − [𝑈𝑖(𝒮, 𝑟) − 𝑈𝑖(ℐ, 𝑟)] = 𝑈𝑖(𝒮, 𝑟′) − 𝑈𝑖(𝒮, 𝑟) = 𝑈
(1)
𝑖 (𝑟′) − 𝑈

(1)
𝑖 (𝑟) = (𝑢+ 𝑐)(𝜋𝑖(𝑟

′) − 𝜋𝑖(𝑟)),

which is non-negative via the above observation that 𝜕𝜋𝑖

𝜕𝑟
> 0. Similarly, for all 𝑟′ ≥ 𝑟:

[𝑈𝑖(𝒮, 𝑟′) − 𝑈𝑖(𝒟, 𝑟′)] − [𝑈𝑖(𝒮, 𝑟) − 𝑈𝑖(𝒟, 𝑟)] = [𝑈𝑖(𝒮, 𝑟′) − 𝑈𝑖(𝒮, 𝑟)] + [𝑈𝑖(𝒟, 𝑟′) − 𝑈𝑖(𝒟, 𝑟)]

= (𝑢+ 𝑐)(𝜋𝑖(𝑟
′) − 𝜋𝑖(𝑟)) + �̃�(𝜋𝑖(𝑟

′) − 𝜋𝑖(𝑟)) ,

which is non-negative via the same observation. Finally, for all 𝑟′ ≥ 𝑟:

[𝑈𝑖(ℐ, 𝑟′) − 𝑈𝑖(𝒟, 𝑟′)] − [𝑈𝑖(ℐ, 𝑟) − 𝑈𝑖(𝒟, 𝑟)] = 𝑈𝑖(𝒟, 𝑟′) − 𝑈𝑖(𝒟, 𝑟) = �̃�(𝜋𝑖(𝑟
′) − 𝜋𝑖(𝑟)) ,

which, again, is non-negative. Thus, via Topkis’s monotone comparative statics theorem (see

Topkis (1998)), there is uniformly more sharing.
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Similarly, the social media game is supermodular and has increasing differences in sensationalism

and (the negative of) reputational concerns. To see this, note for all 𝜅′ ≥ 𝜅 and 𝑑′ ≤ 𝑑:

[𝑈𝑖(𝒮, 𝜅′, 𝑑′) − 𝑈𝑖(ℐ, 𝜅′, 𝑑′)] − [𝑈𝑖(𝒮, 𝜅, 𝑑) − 𝑈𝑖(ℐ, 𝜅, 𝑑)] = 𝑈
(2)
𝑖 (𝜅′, 𝑑′) − 𝑈

(2)
𝑖 (𝜅′, 𝑑′) = (𝜅′ − 𝜅)𝑆𝑖 + (𝑑− 𝑑′)𝐷𝑖

which is non-negative. Moreover, note that comparing 𝒮 and 𝒟 is identical to comparing 𝒮 and

ℐ because parameters (𝜅, 𝑑) affect both ℐ and 𝒟 identically (they only factor into the payoff of

action𝒮). For this same reason, we note that [𝑈𝑖(ℐ, 𝜅′, 𝑑′) − 𝑈𝑖(𝒟, 𝜅′, 𝑑′)]−[𝑈𝑖(ℐ, 𝜅, 𝑑) − 𝑈𝑖(𝒟, 𝜅, 𝑑)] =

0. Thus, via Topkis’s theorem, there is uniformly more sharing.

Proofs from Section 4

Proof of Lemma 2.1.1. To obtain a contradiction, suppose that there exists an agent 𝑖 and an

agent 𝑗 with ℓ𝑖 = ℓ𝑗 but either (i) 𝑏*𝑖 ̸= 𝑏*𝑗 or (ii) 𝑏**𝑖 ̸= 𝑏**𝑗 .

Without loss of generality, suppose that 𝑏*𝑖 < 𝑏*𝑗 . By way of contradiction suppose 𝑏**𝑖 > 𝑏*𝑖 ,

and consider priors �̃� ∈ (𝑏*𝑖 ,min{𝑏*𝑗 , 𝑏**𝑖 }) where agent 𝑖 would ignore but agent 𝑗 with that same

prior would dislike. However, both agents with prior �̃� receive payoff �̃�(1 − 𝜋(�̃�)) − 𝑐 from

disliking and payoff of 0 from ignoring. Thus, one of them must not be playing a best response.

This establishes that 𝑏**𝑖 = 𝑏*𝑖 .

Thus, when agents 𝑖 and 𝑗 both have some prior 𝑏′ ∈ (𝑏*𝑖 , 𝑏
*
𝑗), agent 𝑖 shares and agent 𝑗

dislikes. By symmetry of agent 𝑖 and 𝑗’s network positions, it is clear that for agent 𝑖 and agent 𝑗

with prior 𝑏′ that 𝑈𝑗(𝒮) − 𝑈𝑖(𝒮) = 𝑝𝑠(𝜅+ 𝑑). Similarly, 𝑈𝑗(𝒟) − 𝑈𝑖(𝒟) = 0. But in this case,

[𝑈𝑗(𝒮) − 𝑈𝑖(𝒮)] − [𝑈𝑗(𝒟) − 𝑈𝑖(𝒟)] = [𝑈𝑗(𝒮) − 𝑈𝑗(𝒟)] + [𝑈𝑖(𝒟) − 𝑈𝑖(𝒮)] = 𝑝𝑠(𝜅+ 𝑑) > 0 .

This implies that either [𝑈𝑗(𝒮) − 𝑈𝑗(𝒟)] > 0 or [𝑈𝑖(𝒟) − 𝑈𝑖(𝒮)] > 0 (or both). This yields a

contradiction because at prior 𝑏′, it is supposed to be a best response for agent 𝑗 to play 𝒟 and

a best response for agent 𝑖 to play 𝒮. Thus, 𝑏*𝑖 = 𝑏*𝑗 .

Without loss of generality, suppose that 𝑏**𝑖 < 𝑏**𝑗 . If 𝑏**𝑖 ≤ 𝑏*𝑗 , then for priors 𝑏′′ ∈ (𝑏**𝑖 , 𝑏
*
𝑗),

agent 𝑖 shares and agent 𝑗 dislikes. Via the same reasoning as in the previous paragraph, this is

a contradiction, so 𝑏*𝑗 < 𝑏**𝑖 < 𝑏**𝑗 . Let us consider some prior �̂� ∈ (𝑏**𝑖 , 𝑏
**
𝑗 ), where agent 𝑖 shares

and agent 𝑗 ignores. By symmetry of agent 𝑖 and 𝑗’s network positions, it is clear that for agent 𝑖
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and agent 𝑗 with prior �̂� that 𝑈𝑗(𝒮)−𝑈𝑖(𝒮) = 𝑝𝑠𝜅. Similarly, 𝑈𝑗(ℐ)−𝑈𝑖(ℐ) = 0. Then notice that:

[𝑈𝑗(𝒮) − 𝑈𝑖(𝒮)] − [𝑈𝑗(ℐ) − 𝑈𝑖(ℐ)] = [𝑈𝑗(𝒮) − 𝑈𝑗(ℐ)] + [𝑈𝑖(ℐ) − 𝑈𝑖(𝒮)] = 𝑝𝑠𝜅 > 0 .

This implies that either [𝑈𝑗(𝒮) − 𝑈𝑗(ℐ)] > 0 or [𝑈𝑖(ℐ) − 𝑈𝑖(𝒮)] > 0 (or both). However, this is a

contradiction because at prior 𝑏′, it is supposed to be a best response for agent 𝑗 to play ℐ and

a best response for agent 𝑖 to play 𝒮. Thus, 𝑏**𝑖 = 𝑏**𝑗 .

Proof of Theorem 2.1.2. For part (a), let us consider belief 𝑏(2) < 1 and a reliability threshold

𝑟 such that for all P, all agents with 𝑏 < 𝑏(2) choose 𝒟 in every equilibrium (including the

most-sharing equilibrium) whenever the article has reliability 𝑟 < 𝑟. Such an 𝑟 exists by

Lemma A.1.4(ii). Thus, for all 𝑟 < 𝑟, every agent on an island ℓ ≥ 2 dislikes in the most-sharing

equilibrium, regardless of P.

Next, we consider an increase in homophily (while holding expected degree fixed). By our

choice of 𝑟, all agents on islands ℓ ≥ 2 still dislike in the most-sharing equilibrium whenever

𝑟 < 𝑟. We can thus consider the social media game that only involves island 1, treating islands

2 through 𝑘 as automata that always dislike. Before the shift in homophily, consider the

equilibrium cutoffs (𝑏*1, 𝑏
**
1 ) for island 1 in the most-sharing equilibrium (the same for all agents

on island 1, per Lermma 2.1.1) and let B1 denote the modified cutoff space defined by all

cutoffs (�̂�*1, �̂�
**
1 ) ⪯ (𝑏*1, 𝑏

**
1 ). Finally we define a map 𝜙 : B1 → B1 that maps cutoffs in B1, (�̂�*1, �̂�

**
1 ),

to best-response cutoffs (�̂�*,𝐵𝑅1 , �̂�**,𝐵𝑅1 ), given that agents on island 1 play according (�̂�*1, �̂�
**
1 ). By

the arguments in Lemma A.1.2, 𝜙 preserves ⪰ and B1 is a complete sublattice, provided that

the map 𝜙 is well-defined in that it always maps to an element in B1.

To establish this, consider the utility𝑈1(𝒮) of sharing on island 1 with homophily parameters

(𝑝𝑠, 𝑝𝑑), holding fixed the cutoff strategy (�̂�*1, �̂�
**
1 ) and the expected degree of each agent on island

1, 𝜁1. Thus, we can write 𝑝𝑑 = (𝜁 −𝑁1𝑝𝑠)/(𝑁 −𝑁1) and observe then that

𝑈1(𝒮) = 𝑈
(1)
1 + 𝜅𝑁1𝑝𝑠(1 −𝐻(�̂�**1 )) − 𝑑

(︂
𝑁1𝑝𝑠𝐻(�̂�*1) +

𝜁 −𝑁1𝑝𝑠
𝑁 −𝑁1

· (𝑁 −𝑁1)

)︂
,

and in particular, 𝜕𝑈1(𝒮)/𝜕𝑝𝑠 = 𝜅𝑁1(1−𝐻(�̂�**1 ))+𝑑𝑁1(1−𝐻(�̂�*)) > 0. Therefore, if we compare

utility 𝑈 ′
1(𝒮) after the increase in homophily to 𝑈1(𝒮) before the increase in homophily (leaving

(�̂�1, �̂�
**
1 ) fixed), we see that 𝑈 ′

1(𝒮) ≥ 𝑈1(𝒮). Hence, 𝜙 necessarily maps any cutoffs in B1 into B1.
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Applying Again Tarski’s fixed-point theorem, the set of fixed points (and thus Bayesian-Nash

equilibria) form a lattice within the space of cutoffs B1. Moreover, there is a most-sharing

equilibrium in B1, which is also the most-sharing equilibrium in B. We denote this equilibrium

by (𝑏*
′

1 , 𝑏
**′
1 ) and note that (𝑏*

′
1 , 𝑏

**′
1 ) ⪯ (𝑏*1, 𝑏

**
1 ) (because it lies in B1). In particular, this means

𝑏**
′

1 ≤ 𝑏**1 , and more agents share on island 1 in the most-sharing equilibrium following the rise

in homophily.

To measure the change in virality, we first observe that the seed agent 𝑖* (that maximizes

E[S𝑖* ]) is chosen from the agents on island 1. We consider the virality of the article when

agents on island 1 share with probability 1 −𝐻(𝑏**1 ) under the stronger homophily structure

(𝑝′𝑠, 𝑝
′
𝑑) versus (𝑝𝑠, 𝑝𝑑) (and all other agents kill the article). This is sufficient to show that

virality increases following the increase in homophily, because virality with 𝑏**
′

1 < 𝑏**1 (but

the same network P) is strictly higher, given that agents on island 1 share more often, that is,

(1 −𝐻(𝑏**
′
) > 1 −𝐻(𝑏**)).

We consider the diffusion process of an article on the (𝑝′𝑠, 𝑝
′
𝑑) network that starts with an

agent on island 1. Let us define a path of the diffusion process to be a chain 𝑖* → 𝑖1 → 𝑖2 →

. . .→ 𝑖𝑧 representing a sequence of agents who receive the article in this process, with 𝑖* being

the seed agent, 𝑖1 through 𝑖𝑧−1 all being agents who shared it, and agent 𝑖𝑧 being an agent who

either ignored or disliked the article. There may be many such paths for the diffusion of the

article (by assumption, all agents with the possible exception of agent 𝑖𝑧 must be on island 1).

For each path, we define an alternative path (generated randomly) as follows. For any links

to agents other than to agent 𝑖𝑧 (i.e., links within island 1), with probability (𝑝′𝑠 − 𝑝𝑠)/𝑝
′
𝑠, the link

instead goes to one of islands 2, . . . , 𝑘 (chosen in proportion to their population) and otherwise

remains the same. Applying this to all paths, we define an isomorphic diffusion process to one

on a sharing network with weaker homophily parameters (𝑝𝑠, 𝑝𝑑). However, note that the length

of every path cannot increase following this transformation. Because any transition to islands

2, . . . , 𝑘 is necessarily the end of the path, paths can only shorten. Moreover, the number of

paths must weakly decrease. As a result, the fraction of agents who receive the article, S𝑖* , must

be lower, and virality is less under the (𝑝𝑠, 𝑝𝑑) sharing network. This establishes part (a).

For part (b), we first note that there exists 𝑟 such that the most-sharing equilibrium when 𝑟 >

𝑟 is all-share (𝑏**ℓ = 0 for all islands ℓ) regardless of P. Notice that equation (2.2) is minimized

when 𝑏𝑖 = 0, and in particular, for all agents 𝑖 (regardless of their prior) 𝜋𝑖 ≥ (1−𝑝)𝜑(𝑟)
(1−𝑞)(1−𝜑(𝑟))+(1−𝑝)𝜑(𝑟) .
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Then, letting �̄� = max
{︀

𝑐
𝑢+𝑐

, �̃�−𝑐
�̃�

}︀
< 1, we note that whenever 𝑟 ≥ 𝜑−1

(︁
(1−𝑞)�̄�

(𝑝−𝑞)�̄�+(1−𝑝)

)︁
≡ 𝑟 ∈ (0, 1),

𝜋𝑖 ≥ �̄�. Of course, when all other agents (other than 𝑖) share and 𝑟 > 𝑟,𝑈𝑖(𝒮) ≥ 𝑢𝜋𝑖−𝑐(1−𝜋𝑖) ≥ 0

and 𝑈𝑖(𝒟) = �̃�(1 − 𝜋𝑖) − 𝑐 ≤ 0, so 𝑎𝑖 = 𝒮 is a best response for agent 𝑖. Thus, the most-sharing

equilibrium is all-share (because it is an equilibrium and no other strategy profile can have

more sharing).

Observe that when 𝑟 > 𝑟, virality is measured simply by the expected size of the connected

component (formed byP) containing the seed agent 𝑖*. Regardless of the homophily parameters,

the seed agent 𝑖* will be chosen from the largest island (call this island ℓ*). This is immediate

from the fact that all agents share in equilibrium, agents on island ℓ* have the most connections

to any other arbitrary island ℓ′ (in expectation), and are connected to all agents on their own

island.

Lastly, we note that the probability that island ℓ has any connections to island ℓ′ is given

by 𝑝ℓ,ℓ′ = 1 − (1 − 𝑝𝑑)
𝑁ℓ𝑁

′
ℓ before the decrease in homophily and 𝑝′ℓ,ℓ′ = 1 − (1 − 𝑝′𝑑)

𝑁ℓ𝑁
′
ℓ after

the decrease in homophily, with 𝑝′ℓ,ℓ′ > 𝑝ℓ,ℓ′ for all pairs of islands (ℓ, ℓ′) because 𝑝′𝑑 > 𝑝𝑑.

Using the same terminology as in the argument for part (a), we map the diffusion paths of

an article under the less homophilic sharing network with (𝑝′𝑠, 𝑝
′
𝑑). Consider cycles between

islands ℓ* → ℓ1 → ℓ2 . . .→ ℓ𝑧, where ℓ𝑧 is the same island as one of ℓ*, ℓ1, . . . , ℓ𝑧 (in which case,

no additional engagement is obtained thereafter the article returns to island ℓ𝑧). Before the

decrease in homophily (where 𝑝𝑑 < 𝑝′𝑑), we can construct an isomorphic diffusion process

where an article remains within the same island (instead of switching to a different one) with

probability (𝑝′𝑑 − 𝑝𝑑)/𝑝𝑑. By construction of the cycle, whenever such an event occurs, the cycle

becomes complete and the islands reached thereafter in the (𝑝′𝑠, 𝑝
′
𝑑) sharing network are not

(for that given cycle). Measuring across all cycles that occur in the (𝑝′𝑠, 𝑝
′
𝑑) model, (weakly) more

islands are reached than under the more homophilic (𝑝𝑠, 𝑝𝑑) model. Consequently, virality is

higher under the (𝑝′𝑠, 𝑝
′
𝑑) sharing network than with the (𝑝𝑠, 𝑝𝑑) sharing network, which has

more homophily. This establishes part (b).

Proof of Proposition 2.1.2. Let us define 𝑟* as

𝑟* ≡ 𝜑−1

(︂
max

{︂
(1 − 𝑞)(�̃�− 𝑐)

(𝑝− 𝑞)(�̃�− 𝑐) + (1 − 𝑝)�̃�
,

𝑐

𝑢+ 𝑐

}︂)︂
∈ (0, 1) .

For part (a), first consider the case of 𝑟 < 𝑟* and 𝑝𝑑 = 0 (by continuity, the result extends to the
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case of sufficiently large 𝑝𝑠/𝑝𝑑). In the most-sharing equilibrium, the seed agent most conducive

to the article’s spread is on the right-wing island, and given that 𝑝𝑑 = 0, the equilibrium on

the left-wing island is immaterial to its virality. Let us denote the right-wing island cutoffs

by (𝑏*𝑅, 𝑏
**
𝑅 ). Similar to the proof of Theorem 2.1.2(a), we define a cutoff space B𝑅 such that

(�̂�*𝑅, �̂�
**
𝑅 ) ∈ B𝑅 if and only if (�̂�*𝑅, �̂�

**
𝑅 ) ⪯ (𝑏*𝑅, 𝑏

**
𝑅 ). Similarly, we define the map 𝜙 : B𝑅 → B𝑅

which maps an arbitrary cutoff (�̂�*𝑅, �̂�
**
𝑅 ) to best-response cutoffs (�̂�*,𝐵𝑅𝑅 , �̂�**,𝐵𝑅𝑅 ). To show the

map is well-defined, consider 𝑈𝑅(𝒮) before the increase in divisiveness or polarization and

𝑈 ′
𝑅(𝒮) after the increase in divisiveness or polarization. Because the network structure is fixed,

note that 𝑈 (2)
𝑅 (𝒮) = 𝑈

(2)′

𝑅 (𝒮) when the cutoffs (�̂�*𝑅, �̂�
**
𝑅 ) are taken as given, so the difference

𝑈 ′
𝑅(𝒮) − 𝑈𝑅(𝒮) depends only on the difference between 𝑈

(1)
𝑅 (𝒮) and 𝑈

(1)′

𝑅 (𝒮). Specifically,

the difference in share payoff depends only on the change in 𝜋𝑖 following the increase in

divisiveness or polarization. Moreover,

𝜕𝜋𝑖
𝜕𝑝

=
(2𝑏𝑖 − 1)(1 − 𝜑(𝑟))𝜑(𝑟)(1 − 𝑞 − 𝑏𝑖(1 − 2𝑞))

(𝑏𝑖(2𝑝𝜑(𝑟) + 2𝑞(1 − 𝜑(𝑟)) − 1) − 𝑝𝜑(𝑟) − 𝑞(1 − 𝜑(𝑟)) + 1)2
> 0 ;

𝜕𝜋𝑖
𝜕𝑞

=
(2𝑏𝑖 − 1)(1 − 𝜑(𝑟))𝜑(𝑟)(1 − 𝑝+ 𝑏𝑖(2𝑝− 1))

((2𝑏𝑖 − 1)𝜑(𝑟)(𝑝− 𝑞) + 2𝑏𝑖𝑞 − 𝑏𝑖 − 𝑞 + 1)2
> 0 ,

whenever 𝑏𝑖 > 1/2. Likewise, as we showed in Lemma A.1.1, 𝜕𝜋𝑖/𝜕𝑏𝑖 > 0 for all 𝑏𝑖 and greater

polarization increases ideological priors for agents with 𝑏𝑖 > 1/2 (by Lemma A.1.3). By virtue of

𝑏𝑅 > 1/2, we observe that 𝑈 (1)′

𝑅 (𝒮) > 𝑈
(1)
𝑅 (𝒮), and so 𝑈 ′

𝑅(𝒮) > 𝑈𝑅(𝒮). Thus, as in the proof of

Theorem 2.1.2(a), 𝜙 is well-defined. Applying the Tarski fixed-point theorem, we find that the

most-sharing equilibrium leads to more sharing in the right-wing island. Because the network

structure P remains constant and there is a uniform shift in sharing, our weaker notion of

virality also increases.

For part (b), consider 𝑟 ≥ 𝑟*. Note that for 𝑟 ≥ 𝑟*, ignoring is a better response to disliking for

any agent, regardless of prior and sharing is a better response to ignoring for all 𝑏𝑖 > 1/2. The

former follows from noting 𝜋𝑖 ≥ �̃�−𝑐
�̃�

for an agent with prior 𝑏𝑖 = 0 and the latter from noting

𝜋𝑖 ≥ 𝑐
𝑢+𝑐

for agents with 𝑏𝑖 > 1/2 and observing that disliking is a dominated strategy. Therefore,

the right-wing island always shares, whereas the left-wing island has equilibrium cutoffs (0, 𝑏**𝐿 ).

Using the same approach as in part (a), it is enough to show that 𝑈𝐿(𝒮) increases following

a decrease in divisiveness or polarization. Furthermore, for 𝑏𝑖 < 1/2, we see that 𝜕𝜋𝑖/𝜕𝑝 < 0

and 𝜕𝜋𝑖/𝜕𝑞 < 0, and by Lemma A.1.3, decreasing polarization means that all agents on the
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left-wing island also have an increase in 𝑏𝑖. Thus, there is more sharing in the most-sharing

equilibrium following a decrease in divisiveness or polarization. By strategic complementarity,

the right-wing island remains at all-share, and sharing uniformly increases (and so does virality,

naturally).

Proofs from Section 5

Proof of Theorem 2.1.3. Consider the complete sharing network where P = 1𝑁×𝑁 − I. We claim

that if the most-sharing equilibrium involves all agents choosing 𝒮 or ℐ (with probability 1) and

agents never choosing 𝒟 under this configuration, then this is the platform’s profit-maximizing

sharing network. By Lemma 2.1.1, all agents employ the same cutoffs (𝑏*, 𝑏**) = (0, 𝑏**) and

1 −𝐻(𝑏**) determines the proportion who share in the most-sharing equilibrium.

We focus on a modified social media game that only allows agents to ignore or share, which

necessarily increases virality of content for any sharing network P′ but does not increase the

virality for the complete sharing network, by assumption. We show that for any other sharing

network P′, the largest fixed point (the most-sharing equilibrium), must necessarily be above

𝑏**1 (in the order ⪯). To do this, we consider the largest fixed point under P′ (call this b**′),

and use the same mathematical arguments as before, only disregarding the dislike cutoff. Let

B′ be the cutoff space where b̂** satisfies b̂** ⪯ b**′ and let the map 𝜙 : B′ → B′ map fixed

cutoff strategies b̂** to best-response sharing cutoff strategies under the complete sharing

network. It only remains to prove that 𝜙 indeed maps into B′. To do this, let 𝑈 𝑐
𝑗 (𝒮) be the

utility from sharing under the complete network and 𝑈 ′
𝑗(𝒮) as sharing under P′, and note that

𝑈 𝑐
𝑗 (𝒮) − 𝑈 ′

𝑗(𝒮) = 𝜅
∑︀𝑁

�̃�=1(1 − 𝑝′
𝑗�̃�

)(1 −𝐻(�̂�**
�̃�

)) ≥ 0.

Thus, by Tarski’s fixed-point theorem, we once again obtain that 𝑏**1 ⪯ b**′ . Finally, observe

that this necessarily implies that P′ is less viral, because for every prior realization and seed

agent 𝑖*, S𝑖* is larger in the complete network than in any other sharing network, provided

that 𝑏**1 ⪯ b**′ and 𝑏* = 0 (no agent dislikes). By Proposition 2.1.1, (uniformly more) sharing

is monotone in reliability, so there exists some 𝑟𝑃 such that for 𝑟 > 𝑟𝑃 , the complete sharing

network admits only shares and ignores, whereas when 𝑟 < 𝑟𝑃 , agents dislike with positive

probability. When 𝑟 > 𝑟𝑃 , the network takes the form of part (ii) by setting 𝑝𝑠 = 𝑝𝑑 = 1.

Next, we consider the case where 𝑟 < 𝑟𝑃 , and so (𝑏*, 𝑏**) are the cutoffs in the most-sharing

equilibrium with a complete sharing network, but where 𝑏* > 0. First, notice that there must
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exist an open interval where agents with priors 𝑏𝑖 ∈ (0, �̄�) will never share, regardless of the

sharing network P. To see this, suppose that there exists some P′ where all agents either share

or ignore, so the equilibrium cutoffs are determined by b**′ (and b*′ = 0). Using the reasoning

as in the previous paragraph (but extending it to the full cutoff space (𝑏*1, 𝑏**1)), we conclude

that the cutoffs in the most-sharing equilibrium of the complete sharing network must satisfy

(𝑏*1, 𝑏**1) ⪯ (b*′ ,b**′), and in particular, 𝑏*1 ⪯ b*′ = 0. This implies that all agents share or

ignore in the complete network, yielding a contradiction. Therefore, such an interval (0, �̄�) must

exist, and in particular, we choose the largest such �̄� (in the supremum sense) where agents

with priors in (0, �̄�) never share in any sharing network P in the most-sharing equilibrium.

Next, we consider disconnecting (and removing) all agents in any community ℓwith 𝑏(ℓ) < �̄�,

but leaving all other communities connected in a (partial) complete network. We call this

network the active network. We claim that when 𝜀 is sufficiently small, all of the remaining

agents in the active network either share or ignore. By definition, an agent with �̄� would share

under some sharing network P* but any agent with �̄�− 𝜖 would ignore (for arbitrarily small 𝜖)

under P* (and by leveraging Lemma A.1.4(i), not all agents with 𝑏 < �̄� dislike). This implies that

𝑈𝑖(𝒟) < 0 for an agent with prior �̄� (by monotonicity), and thus an agent with this prior either

shares or ignores in the active network. Moreover, for agents with priors in a small half-open

neighborhood around �̄� (i.e., an interval (�̄�− 𝜂, �̄�] for some 𝜂 > 0) ignoring is a better response

to disliking in the active network. Thus, for sufficiently small 𝜀, we obtain a partial complete

network (the active network) with agents who only share and ignore (with probability 1) and

never dislike (with probability 0).

Finally, with these two observations, we claim that the profit-maximizing sharing network

takes the form of part (i). First, consider all communities who participated in the active

network described above (call these the active communities) and suppose that the agents

in communities outside of this active network are non-existent in our model (call these the

inactive communities). When the active communities are arranged in a complete sharing

network, we showed in the previous paragraph that all agents either share or ignore. By the

exact argument in the first two paragraphs then, engagement (and virality) are maximized

(amongst only the active communities) when these communities are arranged in a complete

sharing network. Second, by construction of the active network (and the active communities),

all agents in inactive communities never share under any sharing network P. Therefore,
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removing these agents is without loss to potential virality. Hence, whenever virality is maximized

amongst only agents in active communities, it is also maximized in general.

Lastly, we note that we can form a (partial) complete network among the inactive communities,

but provide no connections to the (partial) complete network of active communities who only

share and ignore (with probability 1). By our previous observations, this is a profit-maximizing

sharing network for the platform. At the same time, it is exactly the form of a two-island model

with (𝑝𝑠, 𝑝𝑑) = (1, 0), which has maximal homophily.

Proof of Proposition 2.1.3. Note by Theorem 2.1.3 that an agent 𝑖 with prior 𝑏𝑖 = 𝑏(𝑘+1) is

indifferent between ignoring and disliking when 𝑟 = 𝑟𝑃 (but strictly prefers to either share

or ignore for all 𝑟 > 𝑟𝑃 ), so 𝑟𝑃 increases if and only if this agent (strictly) prefers to dislike

following a shift in parameters. Because 𝑏(𝑘+1) < 1/2, an increase in polarization means that

agent 𝑖’s prior decreases (see Lemma A.1.3), and given that 𝜕𝜋𝑖/𝜕𝑏𝑖 > 0 (see Lemma A.1.1), 𝜋𝑖

decreases for this agent. As a consequence 𝑈𝑖(𝒟) increases but 𝑈𝑖(ℐ) remains the same, so

agent 𝑖 (strictly) prefers to dislike. Similarly, because 𝜕𝜋𝑖/𝜕𝑝 < 0 and 𝜕𝜋𝑖/𝜕𝑞 < 0 for 𝑏𝑖 < 1/2

(see Proposition 2.1.2), 𝜋𝑖 decreases for this agent (making 𝑎𝑖 = 𝒟 a best response). In both

cases, we see that 𝑟𝑃 increases.

Proofs from Section 6

Proof of Proposition 2.1.4. Consider the profit-maximizing sharing network before any censorship

policy is enacted (𝛿 = 0). By Theorem 2.1.3 and the assumption that b* ̸= 0 and b** ̸= 1, it must

be the case the profit-maximizing sharing network has maximal homophily with two islands,

one with the optimal seed agent (island A) and one without it (island B). By construction of

the profit-maximizing sharing network, no agent on island B would share if connected fully to

island A or under any other sharing network configuration (see the proof of Theorem 2.1.3).

Consider any agent 𝑗 residing on island B. Because the platform approximates the belief

distribution 𝐻 by a generic multinomial distribution,2 it must be the case that 𝑈𝑗(𝒮) <

max{𝑈𝑗(ℐ), 𝑈𝑗(𝒟)} under any sharing network configuration for agent 𝑗. Hence, there exists

some 𝛿 > 0 such that substituting 𝜑(𝑟) with �̃�(𝑟) = 𝜑(𝑟)
𝜑(𝑟)+(1−𝛿)(1−𝜑(𝑟)) for all 𝛿 ∈ (0, 𝛿) leaves the

2Formally, given that the platform has microtargeting technology 𝜀 > 0, the optimally chosen sharing network
(for the platform) with prior distribution 𝐻 is equivalent to the platform’s optimally chosen sharing network for a
multinomial distribution consisting of a number of atoms chosen “generically” (each atom chosen at random
from an interval of size 𝜀) in each of the prior regions [𝑏(𝑘), 𝑏(𝑘+1)], as described in Section 2.1.5.
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profit-maximizing sharing network for the platform unchanged, because the strict inequality

above still holds under any chosen sharing network. At the same time, if 𝐸 ≡ max𝑖* E[S𝑖*|𝜈 =

ℳ] is the engagement with misinformation before the policy, engagement with misinformation

after the policy is (1 − 𝛿)𝐸 < 𝐸. Thus, the policy for 𝛿* ∈ (0, 𝛿) is more effective than 𝛿 = 0, and

in fact higher values of 𝛿* ∈ (0, 𝛿) are more effective.

Next, we note that �̃�(𝑟) = 𝜑(𝑟)
𝜑(𝑟)+(1−𝛿)(1−𝜑(𝑟)) = 1 when 𝛿 = 1. It is immediate then that for

sufficiently high values of 𝛿, the profit-maximizing sharing network has maximal connectivity

and all agents share in equilibrium. Let us consider �̄� which is the largest value (in the

supremum sense) such that the profit-maximizing sharing network does not have maximal

connectivity. Under censorship policy �̄�, the virality of misinformation is at most (1 − �̄�)(𝑁 −

1)/𝑁 , but for any 𝜁 > 0, the censorship policy with �̄� has virality 1− �̄�− 𝜁. Letting 𝜁 < (1− �̄�)/𝑁 ,

we see that a censorship policy with �̄� is more effective than any policy with �̄� + 𝜁.

Finally, let us construct 0 < 𝛿1 < 𝛿2 < 𝛿3 < 1 to conclude. Let us take 𝛿1 to be the largest

value of 𝛿 (in the supremum sense) such that 𝛿* = 𝛿 is the most effective policy for all 𝛿 ∈ (0, 𝛿1).

We know that that such a 𝛿1 exists and is strictly less than 1 by the arguments in the two above

paragraphs. Using a similar argument as in the second paragraph, there always exists an open

interval (𝛿1, 𝛿2) where the 𝛿* = 𝛿1 policy is more effective than any 𝛿* ∈ (𝛿1, 𝛿2), and so in

particular 𝛿* < 𝛿 is optimal. Lastly, we show (i) any censorship policy bounded away from

1 can always be beat by one sufficiently close to 1, and (ii) the one that beats it can beat by

any 𝛿 greater than it. This proves that there exists 𝛿3 whenever 𝛿 ∈ (𝛿3, 1), 𝛿* = 𝛿 is the most

effective policy. For (i) suppose that some policy �̃� achieves misinformation engagement �̃� > 0;

then, because engagement with unidentified misinformation cannot exceed 𝑁 , any policy

𝛿* > (𝑁 − �̃�)/𝑁 is strictly more effective. For (ii) we know there exists some �̂� sufficiently close

to 1 such that profit-maximizing sharing network has maximal connectivity and thus is the

same for all 𝛿* ∈ (�̂�, 1); therefore, the virality of misinformation is (1 − 𝛿*) for all 𝛿* ∈ (�̂�, 1) and

higher values of 𝛿* are always more effective.

Proof of Proposition 2.1.5. We take a similar approach as in the proof of Proposition 2.1.4.

Once again, we consider islands A and B which are guaranteed by Theorem 2.1.3 before any

provenance policy has been enacted (𝜌 = 0) and note that 𝑈𝑗(𝒮) < max{𝑈𝑗(ℐ), 𝑈𝑗(𝒟)} for all

agents 𝑗 on island B regardless of the sharing network chosen. With the introduction of a

provenance policy, however, the profit-maximizing sharing network may not take the form of
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Theorem 2.1.3. Despite this, we can still upper bound the ex-ante likelihood of an article being

truthful by 𝜑(𝑟)
𝜑(𝑟)+(1−𝜌)𝑁 (1−𝜑(𝑟)) , which holds independent of the sharing network chosen. Once

again, for small enough 𝜌 > 0 the strict inequality 𝑈𝑗(𝒮) < max{𝑈𝑗(ℐ), 𝑈𝑗(𝒟)} will still hold in

any sharing network, and the profit-maximizing sharing network will be the same as 𝜌 = 0 for

all 𝜌* ∈ (0, 𝜌). In this region, virality is given by [(1 − 𝜌*) + (1 − 𝜌*)2] 𝛽 where 𝛽 is the fraction of

agents (relative to 𝑁) on island A, which is monotonically decreasing in 𝜌*.

At the same time, we can lower bound the ex-ante likelihood of an article being truthful by
𝜑(𝑟)

𝜑(𝑟)+(1−𝜌)(1−𝜑(𝑟)) , which is equal to 1 when 𝜌 = 1. Thus, note that for sufficiently high values of

𝜌, the profit-maximizing sharing network will fit the form of Theorem 2.1.3 with a maximally

connected network because all agents share in equilibrium achieving maximal virality. Once

again, let us consider �̄� which is the largest value (in the supremum sense) such that the profit-

maximizing sharing network is something other than maximal connectivity. For 𝜌 = �̄�, there

must be at least one agent who would not share under any chosen sharing network. As in

Proposition 2.1.4, for any 𝜁 < (1 − �̄�)/𝑁 , a provenance policy with �̄� is more effective than any

policy with �̄� + 𝜁. The construction of 0 < 𝜌1 < 𝜌2 < 𝜌3 < 1 then follows exactly in the same

way as from the last paragraph in Proposition 2.1.4.

Finally, we show that 𝜌3 ≤ 𝛿3 and in this region the provenance policy is more effective

than censorship. Recall that 𝛿3 was chosen such that it is the minimum value of 𝛿 where the

profit-maximizing sharing network is maximally connected, and for 𝜌 = 𝛿3, it must also be

maximally connected, because the perceived ex-ante likelihood of truth is lower bounded by
𝜑(𝑟)

𝜑(𝑟)+(1−𝜌)(1−𝜑(𝑟)) , which is the ex-ante likelihood of truth for a censorship policy where 𝛿 = 𝜌.

The expected virality in the censorship regime for 𝛿* > 𝛿3 is (1 − 𝛿*), but it is only [(1 − 𝜌*) +

(1 − 𝜌*)2(𝑁 − 1)]/𝑁 < (1 − 𝜌*) when 𝜌* > 𝜌3.

Proof of Proposition 2.1.6. If the platform removes 𝜓 fraction of misinformation, then its

performance metric is given by

(1 − 𝜓)𝐸(𝜓)(1 − 𝜑(𝑟))

(1 − 𝜓)𝐸(𝜓)(1 − 𝜑(𝑟)) + 𝐸(𝜓)𝜑(𝑟)
=

(1 − 𝜓)(1 − 𝜑(𝑟))

(1 − 𝜓)(1 − 𝜑(𝑟)) + 𝜑(𝑟)

where 𝐸(𝜓) is the user engagement when the platform removes 𝜓 fraction of misinformation

and optimally chooses the sharing network, but notice that𝐸(𝜓) does not affect the performance

metric.
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If the platform hits the performance target 𝜆, then it chooses 𝜓 according to 𝜓 = 1−𝜆−𝜑(𝑟)
(1−𝜆)(1−𝜑(𝑟)) .

Observe that 𝜓 is monotonically decreasing in 𝜆, with the strictest target (𝜆 = 0) yielding

𝜓 = 1 and the loosest target (𝜆 = 1 − 𝜑(𝑟)) yielding 𝜓 = 0. The payoff from hitting the

performance target exactly is given by 𝑉 = 𝐸(𝜓)𝜑(𝑟)/(1 − 𝜆) whereas the payoff from not

hitting it is 𝑉 ′ = (1 − 𝛼)𝐸(𝜓*) − 𝛼𝐶, where 𝜓* is the self-imposed target by the platform that

maximizes engagement, i.e., 𝜓* = max𝜓 𝐸(𝜓) < 1 by nature of 𝜑(𝑟) < max𝑖* E[S𝑖* ]. For any

𝜓 < 𝜓*, the platform of course meets the performance target. For any 𝜓 > 𝜓*, we can define

𝐸*(𝜓) = max𝜓′≥𝜓 𝐸(𝜓), which is of course a monotonically decreasing function in 𝜓. Thus,

the platform compares 𝑉 = 𝐸*(𝜓)𝜑(𝑟)/(1 − 𝜆) with a constant 𝑉 ′ = (1 − 𝛼)𝐸(𝜓*) − 𝛼𝐶. Note

that 𝑉 is monotonically increasing in 𝜆: 1/(1 − 𝜆) is increasing in 𝜆, and 𝐸*(𝜓) is decreasing

in 𝜓, and therefore increasing in 𝜆. Thus, there exists some cutoff 𝜆* such that when 𝜆 > 𝜆*,

𝑉 > 𝑉 ′, but when 𝜆 < 𝜆*, 𝑉 < 𝑉 ′. The claim follows by noting that virality of misinformation is

proportional to 𝐸(𝜓) where 𝜓 is chosen by the platform.

Proof of Proposition 2.1.7. The network regulation does not bind for an article with 𝑟 > 𝑟𝑃 , so we

need only consider 𝑟 < 𝑟𝑃 . Take some agent 𝑖 with prior 𝑏𝑖 ∈ (�̄�, �̄�+ 𝜂) in a small neighborhood

𝜂 > 0 of �̄� (where �̄� is the same �̄� constructed in Theorem 2.1.3). Following the same line of

reasoning as in Theorem 2.1.2(a), agents with priors in this interval elect to ignore instead of

share following the network regulation (and when 𝜂 is sufficiently small), and this necessarily

reduces the virality of misinformation, showing (ii). To prove (i), we note that agents in this

neighborhood around �̄� also do not share in the most-sharing equilibrium under any sharing

network P′ (following the network regulation), per the construction of �̄� in Theorem 2.1.3.

Therefore, the platform cannot generate additional engagement by departing from the class of

island models (specifically, two-island models) while maintaining 𝑝𝑠/𝑝𝑑 ≤ 𝑝*.

A.1.2 Endogenous Reputation Loss

In the model of Section 5.2, we assume that each agent cares about getting called out for

sharing potential misinformation, in the form of exogenous punishments for each dislike she

receives. In this section, we show that this formulation can be microfounded by an endogenous

reputational concern.

Suppose that at 𝑡 = 0, every agent is born as either a careless agent or a normal agent. The
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careless type is behavioral and shares every article, whereas a normal user is a fully rational

agent as in Section 5.2. The user is born careless with probability 𝜇 > 0 which is i.i.d. across

all agents and immutable. For each dislike agent 𝑖 receives, there is some probability 𝜁 > 0

that the share by agent 𝑖 receives public scrutiny and it becomes common knowledge to the

population that 𝑖 shared the article. Conditional on such a broadcast, the population updates

its beliefs 𝜇 to �̂�𝑖 about the likelihood that agent 𝑖 is actually the careless type.

We assume each agent 𝑖 intrinsically values 1 − �̂�𝑖, the public belief that she is not a careless

user, for example, because this might affect their other social relations or economic prospects.

We can represent the strength of this concern (relative to other sources of utility) with a

parameter like 𝑑 in Section 5.2. For example, a doctor may place much more weight on

reputation than a social media troll trying to “stir the pot.”

When there is no public broadcast about agent 𝑖, we have �̂�𝑖 ≤ 𝜇𝑖. In contrast, when there is

a broadcast about 𝑖’s share, �̂�𝑖 > 𝜇𝑖, and this increase is larger for articles with lower reliability.

This reasoning therefore introduces an endogenous reputational concern originating from

dislikes that the agent receives. Specifically, it is straightforward to see that the agent’s utility

will now include a term 𝜓𝐷(𝑑,𝐷𝑖) = 𝑑∆�̂�𝑖(1 − (1 − 𝜁)𝐷𝑖), where ∆�̂�𝑖 is the difference between

𝑖’s reputation after a public broadcast of her share and 𝑖’s reputation without a broadcast, and

𝜓𝐷(𝑑,𝐷𝑖) exhibits increasing differences. By the same observation as in footnote 7, all of our

results apply without modification.

A.2 Demand for Misinformation: Fighting Fire with Fire

A.2.1 Proofs
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Appendix B

Misinformation: Behavioral Models

B.1 DeGroot Models I: Manipulating with Misinformation

B.1.1 Technical Details

Local Density. We provide a generalization of Theorem 3.1.4, which is often more useful in

practice, especially when stubborn agents “disconnect” the network (i.e., there exist DeGroots

𝑖, 𝑗 with the only directed walks between them containing stubborn agents). In Example B.1.3

(see Appendix B.3.2), we apply the result to one variant of the star network.

Definition B.1.1. The log-distance between 𝑖 and 𝑗 is:

𝑑𝑖𝑗 = min
𝑊𝑖𝑗∈𝒲𝑖𝑗

∑︁
(𝑖′→𝑗′)∈𝑊𝑖𝑗

− log(𝑤𝑖′𝑗′)

We say that network G is 𝛿-locally dense if there exist subsets 𝐼1, . . . , 𝐼𝑘 of agents in G such that:

(i) ∪𝑘ℓ=1𝐼ℓ = {1, . . . , 𝑛} (i.e., the subsets cover G) and (ii) the log-distance between every two

agents 𝑖, 𝑗 ∈ 𝐼ℓ is at most log(|𝐼ℓ| + 𝛿).

Proposition B.1.1. If the network G is 𝛿-locally dense and contains𝑚*(𝛿) stubborn agents (from

Theorem 3.1.4) in each set 𝐼ℓ, the network is impervious.

It is easy to see Theorem 3.1.4 is a special case of Proposition B.1.1 by taking 𝐼1 = {1, . . . , 𝑛}

and checking the log-distance between every two agents in G (i.e., log-diameter) is at most

log(|𝐼1| + 𝛿) = log(𝑛+ 𝛿).
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Full Characterization of Principal’s Problem. We can write the principal’s problem as the

following integer (binary) program:

Γ* = arg max
𝑛∑︁

𝑖=𝑚+1

𝑟𝑖 − 𝜀𝛾𝑖

s.t. ∀𝑖 : 𝑟𝑖 ≤ 𝒟𝑖(𝛾) + (1 + 𝑏)/2

∀𝑖 : 𝛾𝑖, 𝑟𝑖 ∈ {0, 1}

Theorem B.1.1. Given investment cost 𝜀 > 0 and a solution Γ* to the principal’s problem, a

network is impervious if 0 ∈ Γ*; otherwise it is susceptible.

The principal can choose to either send misinformation (𝛾𝑖 = 1) or not (𝛾𝑖 = 0) for each

agent. The choice of 𝛾 impacts the principal’s payoffs in two ways: (i) a direct, separable cost

𝜀 for each 𝛾𝑖 = 1 and (ii) a network impact captured in the DeGroot centrality (i.e., how the

experiences of DeGroot agents impact the beliefs of others) from the aggregate vector 𝛾. In

Appendix B.1.4, we use this problem to solve explicitly for the optimal strategy in a real-world

social network.

Note that 𝒟𝑖(𝛾) is linear in 𝛾, which makes the problem an integer program (IP) for any

network G. Despite this, such an optimization problem is generally intractable. However, we

can provide sufficient conditions for showing that a network is either impervious or susceptible

to manipulation. These conditions, for most networks in practice, tend to be much more useful

than direct application of this optimization problem. For notation purposes, for a subset

𝒦 ⊂ 𝐷 of DeGroot agents let 1𝒦 denote the vector given by:

[1𝒦]𝑖 =

⎧⎪⎨⎪⎩1, if 𝑖 ∈ 𝒦

0, otherwise

Then we obtain the following corollary to Theorem B.1.1:

Corollary B.1.1. Fix some 𝜀 > 0; then the network is:

(a) Impervious to manipulation if 𝒟𝑖(1𝐷) < (1 − 𝑏)/2 for every DeGroot agent 𝑖, or
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(b) Susceptible to manipulation if there exists a subset 𝒦 ̸= ∅ of DeGroot agents such that:

𝑛∑︁
𝑖=𝑚+1

1𝒟𝑖(1𝒦)>(1−𝑏)/2 > 𝜀|𝒦|

Note that the condition on imperviousness is sufficient but not necessary. It simply states

that if the principal sends signals to all of the DeGroot agents, the influence from the stubborn

agents will still dominate (i.e., ensure DeGroots take the correct action). We see this result

holds regardless of the cost of investment 𝜀; in particular, it becomes a necessary condition

as well when 𝜀→ 0. However, a necessary and sufficient condition for susceptibility is given

by (b). While it is challenging to verify that there exists no subset 𝒦 that is profitable for the

principal to manipulate, it is often easy to simply check that some subset 𝒦 does better than

𝛾 = 0.

B.1.2 Proofs

Section 3

Proof of Lemma 3.1.1. We first prove that BU(𝑆|ℎ𝑖,𝑡) is a martingale. Consider the filtration with

respect to the history ℎ𝑖,𝑡. Then:

E [BU(𝑆|ℎ𝑖,𝑡+1)|ℎ𝑖,𝑡] = E [E [1𝜃=𝑆|ℎ𝑖,𝑡+1] |ℎ𝑖,𝑡]

= E[1𝜃=𝑆|ℎ𝑖,𝑡]

= BU(𝑆|ℎ𝑖,𝑡)

where the second to last inequality follows from the law of iterated expectations. Because the

Bayesian update term is a belief and bounded between 0 and 1, we know by the martingale

convergence theorem that BU(𝑆|ℎ𝑖,𝑡) converges almost surely to a random variable 𝑋 . We next

prove that 𝑋 is a constant almost surely. If 𝑝𝑖 = 1/2, then BU(𝑆|ℎ𝑖,𝑡) = BU(𝑆|ℎ𝑖,0) = 𝑞 for all 𝑡

and so trivially converges to constant 𝑞. Otherwise, we know that if 𝛾𝑖 = 1 then DeGroot agent 𝑖

receives signal 𝑅 with probability 𝜆*

𝜆+𝜆*
+ 𝜆

𝜆+𝜆*
(1 − 𝑝𝑖) > 1/2 by Assumption 3.1.1. We show that

BU(𝑆|ℎ𝑖,𝑡) converges almost surely to 0. Consider the biased random walk 𝑧Δ𝑖,𝑡 = 𝑧𝑅𝑖,𝑡 − 𝑧𝑆𝑖,𝑡. For
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all 𝑡 we can write:

BU(𝑆|ℎ𝑖,𝑡) =
𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞

𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞 + 𝑝
𝑧𝑅𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑆𝑖,𝑡(1 − 𝑞)

=
𝑞

𝑞 +
(︁

𝑝𝑖
1−𝑝𝑖

)︁𝑧Δ𝑖,𝑡
(1 − 𝑞)

𝑎.𝑠.→ 0

because for a biased random walk with the probability of 𝑅 greater than 1/2, we know that

𝑧Δ𝑖,𝑡
𝑎.𝑠.→ ∞, and 𝑝𝑖 > 1/2.

Similarly, if 𝛾𝑖 = 0, then DeGroot agent 𝑖 receives signal 𝑆 with probability 𝑝𝑖 > 1/2. We

show that BU(𝑆|ℎ𝑖,𝑡) converges almost surely to 1. Consider the same biased random walk;

then for all 𝑡 we can write:

BU(𝑆|ℎ𝑖,𝑡) =
𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞

𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞 + 𝑝
𝑧𝑅𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑆𝑖,𝑡(1 − 𝑞)

=
𝑞

𝑞 +
(︁

1−𝑝𝑖
𝑝𝑖

)︁−𝑧Δ𝑖,𝑡
(1 − 𝑞)

𝑎.𝑠.→ 1

because for a biased random walk with the probability of 𝑆 greater than 1/2, we know that

−𝑧Δ𝑖,𝑡
𝑎.𝑠.→ ∞, and 𝑝𝑖 > 1/2.

Lemma B.1.1. The spectral radius of matrix W is strictly less than 1.

Proof. It is equivalent to prove that all the eigenvalues of W lie strictly within the unit circle.

For stubborn agents or DeGroot agents with 𝜃𝑖 = 1, these agents have 𝛼𝑖𝑗 = 0 for all 𝑗, so W𝑖 is

the zero vector. Thus, these agents introduce an additional eigenvalue of 0, which of course lies

within the unit circle, without affecting the rest of the eigenvalues. Therefore, it is without loss

of generality to consider DeGroot agents with 𝜃𝑖 < 1 for all agents 𝑖 (where we assign arbitrary

𝜃 values for those with 𝜃 equal to 1 (as we have already identified this as irrelevant.) Then let us
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define the diagonal matrix:

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
1

1−𝜃1 0 · · · 0

0 1
1−𝜃2 · · · 0

· · · · · · · · · · · ·

0 0 · · · 1
1−𝜃𝑛

⎞⎟⎟⎟⎟⎟⎟⎠
Then we note that QW is row-stochastic, so by the Perron-Frobenius theorem all eigenvalues

lie strictly within the unit circle except for the largest, which is exactly equal to 1. Further,

because there is at least one agent with 𝑝𝑖 > 1/2, by Assumption 3.1.1, this agent is either

stubborn or DeGroot with 𝜃𝑖 > 0, so Q has at least one eigenvalue strictly greater than 1, with

corresponding eigenvector v*. Moreover, none of the eigenvalues of Q are less than or equal to

1.

Consider any arbitrary vector v ∈ R𝑛−𝑚. By Assumption 3.1.1 (strong connectedness), we

know there exists 𝑘 such that QW𝑘v is not a scalar-multiple of v*, and so we obtain the strong

inequality:

||W𝑘v||2 < ||QW𝑘v||2 ≤ ||v||2

Moreover, we obtain the weak inequality on the eigenvalues of W:

||Wv||2 ≤ ||QWv||2 ≤ ||v||2

The weak inequality shows the eigenvalues of W lie (weakly) within the unit circle. Since the

eigenvalues of W𝑘 are 𝑘-powers of the eigenvalues of W, we see by the strong inequality that

no eigenvalue can lie precisely on the unit circle.

Lemma B.1.2. Under Assumption 3.1.1, the beliefs of the agents, 𝜋𝑡, converge almost surely to

some 𝜋∞.

Proof. Fix 𝛿 > 0. Recall that 𝜋𝑡 = 𝜃 ⊙ BU(h𝑡) + W𝜋𝑡−1 for the DeGroot agents and we can treat

stubborn agents as DeGroots with 𝜃𝑖 = 1 and 𝛾𝑖 = 0. Notice by induction one can show that

0 ≤ 𝜋𝑡 ≤ 1 (it is a belief): because 𝜋0 = 𝑞1 and every belief update is a convex combination

of BU(h𝑡), which lies between 0 and 1, and neighboring beliefs in the period 𝑡 − 1, which

by the inductive hypothesis lie between 0 and 1, 𝜋𝑡 must lie between 0 and 1. Moreover, by
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Lemma 3.1.1, BU(h𝑡) converges to a constant vector almost surely. Now let us write:

||𝜋𝑡 − 𝜋𝑡−1||2 = ||𝜃 ⊙ BU(h𝑡) − (I−W)𝜋𝑡−1||2

= ||𝜃 ⊙ BU(h𝑡) − (I−W)(𝜃 ⊙ BU(h𝑡−1) + W𝜋𝑡−2)||2

= ||𝜃 ⊙ BU(h𝑡) − (I−W)(𝜃 ⊙ BU(h𝑡−1) + W(𝜃 ⊙ BU(h𝑡−2) + W𝜋𝑡−3))||2

= ||𝜃 ⊙ BU(h𝑡) − (I−W)(𝜃 ⊙ BU(h𝑡−1)) − (I−W)W(𝜃 ⊙ BU(h𝑡−2)) − (I−W)W2𝜋𝑡−3||2

Repeating this, we see that for any 𝑡 ≥𝑀 − 2:

||𝜋𝑡 − 𝜋𝑡−1||2 =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝜃 ⊙ BU(h𝑡) − 𝜃 ⊙ (I−W)

𝑀∑︁
𝑘=0

(W𝑘BU(h𝑡−𝑘−1)) − (I−W)W𝑀+1𝜋𝑡−𝑀−2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

Because W has a spectral radius which is strictly less than 1 by Lemma B.1.1, we know that

lim𝑘→∞W𝑘 = 0. Moreover, since 𝜋𝑡 is bounded between 0 and 1, we know there exists some

𝑀* such that ||(I−W)W𝑀*+1𝜋𝑡−𝑀*−2||2 ≤ 𝛿
3

and ||𝜃 ⊙W𝑀*+11||2 ≤ 𝛿
3
. Thus, for this value of

𝑀* and any 𝑡 ≥𝑀* − 2:

||𝜋𝑡 − 𝜋𝑡−1||2 ≤

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝜃 ⊙ BU(h𝑡) − 𝜃 ⊙ (I−W)

𝑀*∑︁
𝑘=0

W𝑘BU(h𝑡−𝑘−1)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+
𝛿

3

Because BU(h𝑡) converges to a constant almost surely by Lemma 3.1.1, we know there exists

𝑇 * almost surely such that for all 𝑡 > 𝑇 *, ||𝜃⊙ (I−W)(BU(h𝑡)− BU(h𝑡−𝑘−1))||2 < 𝛿
3(𝑀*+1)

for all

0 ≤ 𝑘 ≤𝑀* by the Cauchy criterion of convergence. Thus, for all 𝑡 > max{𝑀* − 2, 𝑇 *}:

||𝜋𝑡 − 𝜋𝑡−1||2 ≤

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝜃 ⊙ BU(h𝑡) − 𝜃 ⊙ (I−W)

𝑀∑︁
𝑘=0

(W𝑘BU(h𝑡))

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+
2𝛿

3

<
⃒⃒⃒⃒
𝜃 ⊙ BU(h𝑡) − 𝜃 ⊙ (I−W𝑀*+1)BU(h𝑡)

⃒⃒⃒⃒
2

+
2𝛿

3

≤
⃒⃒⃒⃒
𝜃 ⊙W𝑀*+11

⃒⃒⃒⃒
2

+
2𝛿

3

(Note that because the spectral radius of W is less than 1 by Lemma B.1.1,
∑︀𝑀

𝑘=0 W
𝑘 = (I −

W)−1(I−W𝑀+1).) Recall we chose 𝑀* such that the first term in the last expression does not

exceed 𝛿/3. Thus, ||𝜋𝑡 − 𝜋𝑡−1||2 < 𝛿 for all 𝑡 > max{𝑀* − 2, 𝑇 *}, which completes the proof.

Proof of Theorem 3.1.1. By Lemma 3.1.1 and Lemma B.1.2 we know that both BU(h𝑡) and 𝜋𝑡
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converge almost surely to BU(h∞) and 𝜋∞, respecitlvely. Thus, 𝜋∞ must solve the fixed-point

problem:

𝜋∞ = 𝜃 ⊙ BU(h∞) + W𝜋∞

If not, then the difference between the left-hand side and right-hand side is always some

positive amount 𝜂, and so every iteration of belief updating changes the belief by at least 𝜂,

contradicting convergence. By Lemma B.1.1, we know that all eigenvalues of W lie within the

unit circle, so I−W is invertible, and thus we can solve this fixed-point problem explicitly:

𝜋∞ = (I−W)−1(𝜃 ⊙ BU(h∞))

which proves the claim of Proposition 3.1.1.

Proof of Proposition 3.1.1. Whenever 𝑝𝑖 > 1/2, by Lemma 3.1.1, the personal Bayesian

update component (BU) of the DeGroot update converges almost surely to belief 1 on the

true state, so BU𝑖(ℎ𝑖,∞(0))(𝑅|𝑆)
𝑎.𝑠.→ 0. On the other hand, when 𝑝𝑖 = 1/2 we have 𝜃𝑖 = 0 by

Assumption 3.1.1, so BU𝑖(h∞(0))(𝑦′|𝑦) ⊙ 𝜃
𝑎.𝑠.→ 0. This implies that BU(h∞(0))(𝑦′|𝑦) ⊙ 𝜃

𝑎.𝑠.→ 0

trivially. By Proposition 3.1.1, we see that for 𝑅:

𝜋𝑡(𝑅)
𝑎.𝑠.→ (I−W)−1(BU(h∞(0))(𝑅) ⊙ 𝜃)

= (I−W)−10

= 0

Thus, 𝜋𝑡(𝑆)
𝑎.𝑠.→ 1, and agents learn the true state almost surely.

Proof of Theorem 3.1.2. Suppose that agent 𝑖 has belief 𝜋𝑖,𝑇 (𝑅), so agent 𝑖’s best response is

the action 𝑎𝑖 = 𝑅 if 𝜋𝑖(𝑅) > (1 − 𝑏)/2, 𝑎𝑖 = 𝑆 if 𝜋𝑖(𝑆) < (1 − 𝑏)/2, or any strategy in the simplex

∆({𝑆,𝑅}) if 𝜋𝑖(𝑅) = (1 − 𝑏)/2. Therefore, the action of the agents in the terminal stage is

pinned-down as a function of terminal beliefs.

By Lemma B.1.2, as 𝑇 → ∞, the beliefs of all agents converge almost surely to some 𝜋∞,

given a network action x. We can construct a set ℬ which consists of all the values of 𝑏 where

some agent 𝑖 has a limit belief lim𝑡→∞ 𝜋𝑖,𝑡
𝑎.𝑠.→ (1 − 𝑏)/2, for some network action x. Note there is

only one such 𝑏 value per agent, given by 1−2𝜋𝑖,∞. Thus, provided there are finitely many agents
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and finitely many principal influence actions, the set ℬ is finite, so has measure zero, implying

that (−1, 1)∖ℬ has full measure. Moreover, every agent either picks the correct terminal action

or the incorrect terminal action, almost surely, for all 𝑏 ∈ (−1, 1)∖ℬ.

Consider fixing some x and any 𝑏 ∈ (−1, 1)∖ℬ. Given fixed 𝜁, for every 𝜅 > 0, there exists 𝑇 *

such that for all 𝑇 > 𝑇 *, the probability that all beliefs at time 𝑇 are within 𝜁 of their limits is at

least 1 − 𝜅:

P[||𝜋𝑇 − 𝜋∞||∞ < 𝜁] ≥ 1 − 𝜅

by Lemma B.1.2. Since the set of ℬ contains no 𝑏’s with an agent holding 𝜋𝑖,∞ = (1 − 𝑏)/2, we

can pick 𝑇 * large enough and 𝜁 small enough whereby each agent 𝑖 plays a known action 𝑎𝑖

with probability at least 1 − 𝜅 at time 𝑇 . Choosing action x gives the principal a known net

payoff of 𝑘1 − 𝜀||x||1 with probability 1 − 𝜅 (which we deem the “likely payoff”) and some other

payoff with probability 𝜅, where 𝑘1 is the number of manipulated agents under (pure) strategy

x.

Now suppose two network strategies x1,x2 have a different number of manipulated agents,

𝑘1 and 𝑘2, respectively. If x1 and x2 give the same likely payoff, this implies that 𝑘1 − 𝜀||x1||1 =

𝑘2 − 𝜀||x2||1, which implies that:

𝜀 =
𝑘1 − 𝑘2

||x1||1 − ||x2||1

because ||x1||1 ̸= ||x2||1. Noting that both the numerator and denominator are integers, we

see that by taking the generic set of irrational 𝜀, we guarantee that whenever x1 and x2 have a

different number of manipulated agents, the principal has a strictly higher likely payoff under

one. Since we took 𝜅 to be arbitrary, we can choose 𝜅 small (by increasing 𝑇 ) such that the

principal prefers action x1 to x2 if he prefers the likely payoff of x1 to the likely payoff of x2 (as

the expected payoff contribution of any “unlikely” payoff is bounded above by 𝑛 · 𝜅, and 𝜅→ 0).

Thus, for the set of irrational 𝜀 and 𝑏 ∈ (−1, 1)∖ℬ, the principal plays the strategy over network

actions which induces the “likely” outcome of that network action with probability at least

1 − 𝜅. In such a strategy, the number of manipulated agents then must be the same, and the all

of the principal’s optimal strategies are manipulation-invariant.

Proof of Proposition 3.1.2. We prove by induction that Wℓ
𝑖𝑗 represents the sum of weighted

walks of length ℓ between 𝑖 and 𝑗, not passing through a stubborn agent. The base case of ℓ = 0

is clear because every agent has a walk of length 0 to themselves of weight 1, and none others.
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Note that:

Wℓ+1
𝑖𝑗 = [WWℓ]𝑖𝑗 =

𝑛∑︁
𝑘=1

𝑤𝑖𝑘W
ℓ
𝑘𝑗

=
𝑛∑︁
𝑘=1

𝑤𝑖𝑘 · [weight of walks of length ℓ between 𝑘 and 𝑗]

= [weight of walks of length ℓ+ 1 between 𝑖 and 𝑗]

Therefore, the total weight of walks between 𝑖 and 𝑗 (avoiding stubborn agents) is given by∑︀
𝑊∈𝒲𝑖𝑗

𝑤𝑊 =
∑︀∞

ℓ=0 W
ℓ = (I −W)−1 since the spectral radius of W is strictly less than 1, by

Lemma B.1.1. Finally, note that by Proposition 3.1.1:

𝜋𝑖,∞(x*) = (I−W)−1
𝑖 (𝛾(x*) ⊙ 𝜃)

=
𝑛∑︁
𝑗=1

(I−W)−1
𝑖𝑗 𝛾𝑗(x

*)𝜃𝑗

=
𝑛∑︁
𝑗=1

𝛾𝑗(x
*)𝜃𝑗

⎛⎝ ∑︁
𝑊∈𝒲𝑖𝑗

𝑤𝑊

⎞⎠
= 𝒟𝑖(𝛾)

As this holds for every 𝑖, we have 𝒟(𝛾) = (I−W)−1(𝛾 ⊙ 𝜃).

Section 4

Proof of Theorem 3.1.3. For part (a), we note that by Proposition 3.1.1, limiting DeGroot beliefs

of the incorrect state 𝑅 for 𝜃 = 𝜃′1 are given by:

𝜋∞(𝑅) = (I−W−1
𝜃′

)(𝛾 ⊙ 𝜃′)

We first prove that the asymptotic bound for DeGroot beliefs is continuous in 𝜃′ around 𝜃′ = 0.

Clearly the network preservation of W𝜃′ is continuous in 𝜃′, so it is sufficient to prove that as

𝜃′ → 0, I−W𝜃′ is non-singular. To see this, note the eigenvalues of W𝜃′ are uniformly bounded

away from the unit circle as 𝜃′ → 0 (and thus I −W𝜃′ is non-singular as 𝜃′ → 0), so one can

apply the same reasoning as Lemma B.1.1, noting that the existence of at least one stubborn
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agent guarantees W is still substochastic. Thus, provided (I−W𝜃′)
−1 is a continuous operation

at 𝜃′ = 0, we can substitute 𝜃′ = 0 and apply DeGroot centrality with influence vector 𝛾 ≤ 1,

showing that all DeGroot centralities tend to 0, so beliefs of the correct state tend toward 1.

This yields the claim in (a).

Because lim𝜃′→1W𝜃′ = 0, it is obvious that beliefs are continuous at 𝜃′ = 1. Moreover, when

𝜃′ = 1, any DeGroot agent 𝑖 is manipulated if and only if 𝛾𝑖 = 1, which is profitable if and only if

𝜀 < 1. Call the strategy of targeting all DeGroots as 1𝐷, which has a net utility of (1 − 𝜀)(𝑛−𝑚).

If 𝑏 < 1/2, then (c) holds vacuously; to show (b), we just note by continuity that there exists

some 𝜃** such that the network with 𝜃′ ∈ (𝜃**, 1) is either impervious (if 𝜀 < 1) or susceptible (if

𝜀 > 1) independent of 𝜃′. Setting 𝜃* = 𝜃** and 𝜃 = (1 + 𝜃**)/2 gives us (b).

Now consider 𝑏 > 1/2 and let 𝜃* = 1/2. Suppose the principal chooses 1𝐷 with the only

difference being that he does not target the DeGroot agent not adjacent to any stubborn

agents; call this strategy xspec. By just considering first-order walks, we see that the DeGroot

centrality of this agent is at least (1 − 𝜃*)𝜃* = 1/4, so this agent is still manipulated under xspec.

Similarly since all other DeGroot agents are targeted and have 𝜃 = 1/2, these agents are also

manipulated. Therefore the net utility of strategy xspec is (1− 𝜀)(𝑛−𝑚) + 𝜀, which beats 1𝐷. Let

𝜃 be the infimum of all 𝜃 > 1/2 where agent 𝑖 is manipulated if and only if 𝛾𝑖 = 1 for all 𝑖 (call

this proprty Independence); we know such an infimum exists because independence holds at

𝜃′ = 1. We claim that for all 𝜃′ ∈ (𝜃, 1), independence holds. To see this, it is sufficient to show

that if independence holds with some 𝜃′1, then independence holds for any 𝜃′2 > 𝜃′1. By way of

contradiction, consider some the strategy x2 which violates independence with 𝜃2 by targeting

all agents except agent 𝑖* who is manipulated. This implies that for some DeGroot 𝑖*, the sum

of weighted walks to other DeGroots 𝑗 with 𝛾𝑗 = 1 exceeds (1 − 𝑏)/2 with 𝜃2, given that all other

agents receive 𝛾𝑗 = 1 but agent 𝑖 has 𝛾𝑖 = 0. However, the sum of weighted walks with 𝜃1 is

necessarily larger, because 𝛼𝑖𝑗,1 > 𝛼𝑖𝑗,2 for all 𝑖, 𝑗. Thus, x2 violates independence under 𝜃′1, a

contradiction.

By construction, there exists some 𝜀* > 1 − 1/𝑛 such that 𝜃′ ∈ (𝜃*, 𝜃) is susceptible (because

xspec dominates 0) but where x𝐷 is dominated by 0. Also by our previous observation, for

𝜃′ ∈ (𝜃, 1), an agent is manipulated if and only if 𝛾𝑖 = 1, so the network is impervious if and

only if 𝜀 > 1, which holds for 𝜀*. Therefore, these 𝜃*, 𝜃 satisfy (b) and (c).

Proof of Proposition 3.1.3. We will appeal to the first part of Corollary B.1.1. Let 𝑗*2 ∈ 𝐷2 be the
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agent in 𝐷2 adjacent to an agent 𝑗*1 ∈ 𝐷1. Now consider an arbirary agent 𝑗 ∈ 𝐷1. Since 𝐷1 is

strongly connected, there exists a walk between 𝑗 and 𝑗*1 , which implies there is also a walk

from 𝑗 to 𝑗*2 ; let us denote this walk by 𝑊𝑗𝑗*2
= 𝑗 → 𝑣1 → · · · → 𝑣𝑘 → 𝑗*1 → 𝑗*2 . Suppose 𝜃1 ∈ [0, 𝜃)

for some 𝜃 < 1. Let us write the weight of this walk explicitly as:

𝑤𝑗𝑗*2 = 𝜃2
∏︁

(𝑣𝑖→𝑣𝑖+1)∈𝑊𝑗𝑗*2

(1 − 𝜃1)𝛼𝑣𝑖 𝑣𝑖+1
> 𝐶𝑗𝑗*2 > 0

where the constant 𝐶𝑗𝑗*2 does not depend on 𝜃1, as 𝜃1 < 𝜃. If we take �̄� = 1 − 2 min𝑗∈𝐷1 𝐶𝑗𝑗*2 < 1,

then we see that for all 𝑏 > �̄�, all 𝑗 ∈ 𝐷1 have DeGroot centrality 𝒟𝑗(1𝐷) ≥ 𝑤𝑗𝑗*2 ≥ 𝐶𝑗𝑗*2 ≥ (1−𝑏)/2.

Thus, all agents in 𝐷1 are manipulated when 𝜀 is sufficiently small, regardless of their 𝜃1, and in

particular as 𝜃1 → 0. On the other hand, all agents in 𝐷2 have 𝜃2 ≥ min𝑗∈𝐷1 𝐶𝑗𝑗*2 , so by the same

argument agents in 𝐷2 are manipulated.

The second result is just a rephrasing of Theorem 3.1.3(a).

Proof of Proposition 3.1.4. Let there be 𝑀 manipulated agents under optimal strategy x with

influence cost 𝜀, so the principal has a payoff of𝑀−𝜀||x||1. After we increase 𝜀 to 𝜀′, suppose the

principal manipulates more agents; it necessarily must be the case that ||x′|| > ||x||, otherwise

x is strictly preferred to x′ for any influence cost, so cannot be optimal with 𝜀′. But then, of

course:

𝑀 ′ − 𝜀||x′||1 = 𝑀 ′ − 𝜀′||x′||1 + (𝜀′ − 𝜀)||x′||1

≥𝑀 − 𝜀′||x||1 + (𝜀′ − 𝜀)||x′||1

= 𝑀 − 𝜀||x′||1 + 𝜀′(||x′||1 − ||x||1)

≥𝑀 − 𝜀||x′||1 + 𝜀(||x′||1 − ||x||1)

≥𝑀 − 𝜀||x||1

which contradicts the optimality of x when the influence cost is 𝜀.

Note that the DeGroot centrality of the agents under the same strategy x does not depend

on 𝑏, but the cutoff necessary to take the incorrect action is (1− 𝑏)/2, so is decreasing in 𝑏. Thus,

the number of manipulated agents (for a fixed network strategy), 𝑘, is non-decreasing in 𝑏.

Therefore, if there exists some strategy x where 𝑀 − 𝜀||x||1 > 0, then when 𝑏 increases to 𝑏′, we

know 𝑀 ′ ≥𝑀 , so the same strategy x yields 𝑀 ′ − 𝜀||x||1 > 0. By Corollary B.1.1, the network
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with 𝑏′ > 𝑏 is susceptible.

Proof of Example 3.1.1. First, consider the belief cutoff 𝜋cutoff(𝑅) = 0.35 and where the principal

targets agents 1 and 3. Then beliefs of the incorrect state are given by:

𝜋(𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1/2 0 0

−1/3 1 −1/3 0

0 −1/3 1 −1/3

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎜⎝
1/2

0

1/3

0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0.692

0.385

0.462

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and all three DeGroot agents are manipulated, yielding a payoff of 3 − 2𝜀 > 0. Targeting all

three agents will also lead to these three agents being manipulated, but increases the cost with

no additional benefit. Clearly, if the principal targets no one, then all beliefs of 𝑅 will be 0,

which yields no profit. Thus, the only potential for a better strategy would be if the principal

can manipulate two or more agents by sending signals to only one:

1. Send to agent 1 only: Only agent 1 is manipulated.

𝜋(𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1/2 0 0

−1/3 1 −1/3 0

0 −1/3 1 −1/3

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎜⎝
1/2

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0.615

0.231

0.077

0

⎞⎟⎟⎟⎟⎟⎟⎠

2. Send to agent 2 only: Only agent 2 is manipulated.

𝜋(𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1/2 0 0

−1/3 1 −1/3 0

0 −1/3 1 −1/3

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎜⎝
0

1/3

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0.231

0.462

0.154

0

⎞⎟⎟⎟⎟⎟⎟⎠
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3. Send to agent 3 only: Only agent 3 is manipulated.

𝜋(𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1/2 0 0

−1/3 1 −1/3 0

0 −1/3 1 −1/3

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎜⎝
0

0

1/3

0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0.077

0.154

0.385

0

⎞⎟⎟⎟⎟⎟⎟⎠
Thus, the optimal strategy with 𝜋cutoff = 0.35 is to target agents 1 and 3 and all agents are

manipulated.

Now let us consider the case of 𝜋cutoff = 0.2 (manipulation is easier). Once again consider

the three cases from before. In the cases when only agent 1 is targeted, both agents 1 and 2 are

manipulated; when only agent 2 is targeted, both agents 1 and 2 again end up manipulated;

when agent 3 is targeted, only agent 3 is manipulated. Thus there is a strategy that obtains

a payoff of 2 − 𝜀 > 3 − 2𝜀 > 3 − 3𝜀. Therefore, no strategy that targets more agents (even if

all three agents are manipulated!) beats the strategy of targeting just agent 1 or agent 2. And

as before, targeting no one leads to manipulation and gives a payoff of 0. Thus, the optimal

strategy with 𝜋cutoff = 0.2 is to target just one agent and manipulate only two.

Section 5

Proof of Theorem 3.1.4. This follows immediately from Proposition B.1.1, as noted in Appendix B.1.1,

by taking 𝐼1 = {1, . . . , 𝑛}.

Proof of Proposition 3.1.5. Suppose we sprinkle 𝑚 stubborn agents such that ⌈𝑛/𝑚⌉ is the

farthest distance between any two “adjacent” stubborn agents along the ring. Then for all

DeGroots 𝑖, letting 𝑗*(𝑖) be the nearest stubborn agent (looking backward):

𝒟𝑖(1𝐷) = 1 −
𝑖∏︁

ℓ=𝑗*(𝑖)+1

(︂
1 − 1

𝑛+ 1

)︂

≤ 1 −
(︂

𝑛

𝑛+ 1

)︂⌈𝑛/𝑚⌉

≤ 1 − 𝑒−2/𝑚

For any 𝑏 and 𝛾, we have that 𝒟𝑖(𝛾) ≤ 𝒟𝑖(1𝐷) ≤ (1 − 𝑏)/2 if 𝑚 ≥ 2

log( 2
1+𝑏)

, which as we see does
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not depend on 𝑛. Thus setting the constant 𝑚* = 2

log( 2
1+𝑏)

obtains the claim.

Proof of Proposition 3.1.6. Because 𝜃 is constant in 𝑛, when the principal plays 𝛾 = 1𝐷, the

DeGroot centrality of all agents depends only on their distance from the nearest stubborn

agent 𝑗*(𝑖), and not the population size 𝑛:

𝒟𝑖(1𝐷) = 1 −
𝑖∏︁

ℓ=𝑗*(𝑖)

1

2

= 1 − 1

2𝑑(𝑖,𝑗*(𝑖))

where 𝑑(𝑖, 𝑗*(𝑖)) is the distance between agent 𝑖 and (stubborn) agent 𝑗*(𝑖). Thus, every DeGroot

agent is manipulated if and only if she is (at least) a distance 𝑑* away from her previous

stubborn agent. Because a DeGroot agent is manipulated only if 𝒟𝑖(1𝐷) > (1 − 𝑏)/2, we see

that 𝑑* = 1 + ⌈log2

(︀
1

1+𝑏

)︀
⌉.

Clearly, by setting 𝑐 = 1, the network is impervious with 𝑐 · 𝑛 stubborn agents because all

the agents are stubborn. On the other hand, when 𝑐 = 0 and 𝜀 < 1, the principal makes positive

utility by targeting every agent in the population and manipulating (almost) everyone, so by

Corollary B.1.1, the network is susceptible. Now consider the infimum of all 𝑐 such that the

network with 𝑛 agents remains impervious with some configuration of ⌊𝑐 · 𝑛⌋ stubborn agents.

Call this value 𝑐*, and by the previous two observations, we know that it exists and 𝑐* ∈ (0, 1).

We first show that ⌊𝑐* · 𝑛⌋ stubborn agents makes the network impervious. To do this, we

establish that 𝑐* · 𝑛 is integral. If 𝑐* · 𝑛 is not integral, then the network with 𝑛 agents is still

impervious with ⌊𝑐* · 𝑛⌋ < 𝑐* · 𝑛 agents, so is impervious with 𝑐** · 𝑛 agents where 𝑐** < 𝑐*,

contradicting the definition of 𝑐*. Thus, 𝑐* ·𝑛 is integral. Then, it is easy to see 𝑐 = 𝑐*+𝜖 for small

𝜖 attains the same manipulation as with 𝑐*, so the network is impervious with 𝑐* · 𝑛 stubborn

agents.

By the definition of 𝑐*, any fewer stubborn agents that 𝑐* · 𝑛 must make the network

susceptible. With a non-sprinkled configuration, consider 𝑑sprinkled and 𝑑non, the maximum

distance from a stubborn agent for any DeGroot agent in the sprinkled and non-sprinkled

configurations, respectively. By definition of “sprinkled,” 𝑑sprinkled < 𝑑non. We claim that some

DeGroot agent 𝑖 on the chain between two stubborn agents which attains a distance of 𝑑non

must be manipulated. If not, the network is impervious when all agents are at a distance
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(less than or equal to) 𝑑non from the last stubborn agent, as the principal employs identical

strategies on identical length chains between two stubborn agents, by symmetry. Note that

𝑑sprinkled = ⌈1/𝑐⌉−1 and 𝑑non ≥ 𝑑sprinkled+1. Thus, the network is impervious with 𝑐** ·𝑛 stubborn

agents, where 𝑐** is the largest number such that 𝑐** · 𝑛 is integral and ⌈1/𝑐**⌉ = ⌈1/𝑐*⌉ + 1

(which is guaranteed to exist for large 𝑛). Clearly 𝑐** < 𝑐*, a contradiction of the definition of 𝑐*.

Thus, the non-sprinkled configuration is susceptible.

To see that 𝑐* ∈ Θ(1), note that if 𝑛1 = 𝑘𝑛2 for 𝑘 ∈ N and 𝑐 · 𝑛1 is integral, then the

network with 𝑐 · 𝑛1 stubborn agents is impervious to manipulation if and only if the network

with 𝑐 · 𝑛2 stubborn agents is impervious. This is immediate from the fact that any path of

length 𝑧 between two stubborn agents with 𝑛1 agents in the population along the ring can

be transformed into 𝑘 paths of length 𝑧 between two stubborn with 𝑛2 agents along the ring.

Again, because of symmetry, the principal must employ identical strategies on all 𝑘 copies of

the 𝑧-length path.

Proof of Theorem 3.1.5. We can order the agents by their location on the ring, starting from

some arbitrary agent 1. Fix the principal’s influence vector 𝛾. We can write the DeGroot

centrality of (DeGroot) agent 𝑖 in network G𝜂 as:

𝒟𝑖(𝛾) =

(︂
𝜂

𝑛+ 1
+

1 − 𝜂

2

)︂
𝛾𝑖 +

1 − 𝜂

2
𝒟𝑖−1(𝛾) +

𝑛∑︁
𝑗=1

𝜂

𝑛+ 1
𝒟𝑗(𝛾)

Summing over both sides, we obtain:

𝑛∑︁
𝑖=1

𝒟𝑖(𝛾) =

(︂
𝜂

𝑛+ 1
+

1 − 𝜂

2

)︂
||𝛾||1 +

1 − 𝜂

2

𝑛∑︁
𝑗=1

𝒟𝑗(𝛾) +
𝜂(𝑛−𝑚)

𝑛+ 1

𝑛∑︁
𝑗=1

𝒟𝑗(𝛾)

=
(1 − 𝜂)𝑛+ (1 + 𝜂)

2(𝑛+ 1)
||𝛾||1 +

𝜂(𝑛− 1 − 2𝑚) + (𝑛+ 1)

2(𝑛+ 1)

𝑛∑︁
𝑗=1

𝒟𝑗(𝛾)

This gives us

(𝑛+ 1) − 𝜂(𝑛− 2𝑚− 1)

2(𝑛+ 1)

𝑛∑︁
𝑗=1

𝒟𝑗(𝛾) =
(1 − 𝜂)𝑛+ (1 + 𝜂)

2(𝑛+ 1)
||𝛾||1 =⇒

𝑛∑︁
𝑗=1

𝒟𝑗(𝛾) =
(1 − 𝜂)𝑛+ (1 + 𝜂)

(𝑛+ 1) − 𝜂(𝑛− 2𝑚− 1)
||𝛾||1

Let us call 𝜁(𝛾) ≡ (1−𝜂)𝑛+(1+𝜂)
(𝑛+1)−𝜂(𝑛−2𝑚−1)

||𝛾||1. If stubborn agents form a continuous chain or are there

are only 𝑜(𝑛) many, then there exists a continuous chain in the ring of DeGroots that grows
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unboundedly in 𝑛 (without any stubborn agents agents along the chain). Let agent 𝑖* be the

first DeGroot on such a chain. If the principal targets all agents along this chain, then:

𝒟𝑖*(𝛾) =
𝜂

𝑛+ 1
+

1 − 𝜂

2
+

𝜂

𝑛+ 1
𝜁(𝛾)

𝒟𝑖(𝛾) =
𝜂

𝑛+ 1
+

1 − 𝜂

2
+

1 − 𝜂

2
𝒟𝑖−1(𝛾) +

𝜂

𝑛+ 1
𝜁(𝛾)

Solving the recursion, for an agent at location 𝜏 away from 𝑖*, we see that:

𝒟𝜏 (𝛾) =

(︂
(1 − 𝜂)𝑛+ (1 + 𝜂)

2(𝑛+ 1)
+

𝜂

𝑛+ 1
𝜁(𝛾)

)︂ 𝜏−1∑︁
𝜏 ′=0

(︂
1 − 𝜂

2

)︂𝜏 ′
=

(︂
(1 − 𝜂)𝑛+ (1 + 𝜂)

2(𝑛+ 1)
+

𝜂

𝑛+ 1
𝜁(𝛾)

)︂
1 − ((1 − 𝜂)/2)𝜏

1 − (1 − 𝜂)/2

𝜏→∞→ (1 − 𝜂)𝑛+ (1 + 𝜂)

(𝑛+ 1)(1 + 𝜂)
+

2𝜂

(𝑛+ 1)(1 + 𝜂)
𝜁(𝛾)

It is easy to verify that 𝒟𝜏 (𝛾) is decreasing in 𝜂. When 𝜂 = 0, the principal can obtain a

payoff that grows unboundedly in 𝑛 by manipulating 𝜔(1) agents along this chain of DeGroots,

and no strategy that manipulates only 𝑂(1) agents does better; therefore, 𝜔(1) agents are

manipulated. This reasoning continues to hold as long as 𝒟𝜏 (𝛾) ≥ (1 − 𝑏)/2, and since 𝛾 = 1𝐷

is profitable (given 𝜀 < 1), the condition 𝒟𝜏 (1𝐷) ≥ (1 − 𝑏)/2 is both necessary and sufficient for

imperviousness. Finally, by monotonicity and continuity of 𝒟𝜏 (𝛾), we are guaranteed there

exists 𝜂* such that 𝒟𝜏 (𝛾) > (1 − 𝑏)/2 when 𝜂 < 𝜂* and 𝒟𝜏 (𝛾) < (1 − 𝑏)/2 when 𝜂 > 𝜂*.

Proof of Theorem 3.1.6. Because the stubborn agents are placed symmetrically and the network

is symmetric itself, we know that 𝒟𝑖(𝛾) = 𝒟𝑗(𝛾) for all DeGroots 𝑖, 𝑗 ∈ 𝐷. By definition,

there exists 𝜑𝑘𝑚 DeGroot-stubborn connections in the network. Once again, by symmetry, all

(DeGroot) agents are adjacent to the same number of stubborn agents, 𝑚*. We can compute

𝑚* by computing the average connections to stubborn agents:

𝑚* =
𝜑𝑘𝑚

𝑘(𝑛−𝑚)
= 𝜑

𝑚

𝑛−𝑚
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By the recursive definition of DeGroot centrality, we see that:

𝒟(1𝐷) =
1

1 + 𝑘
+

𝑘

1 + 𝑘
·
(︂

1 − 𝜑
𝑚

𝑛−𝑚

)︂
𝒟(1𝐷)

=
1

1 + 𝑘
+

𝑘

1 + 𝑘

𝑛− (1 + 𝜑)𝑚

𝑛−𝑚
𝒟(1𝐷)

=⇒ 𝒟(1𝐷) =
𝑛−𝑚

(𝜑𝑘 − 1)𝑚+ 𝑛

Simply rearranging with the observation that an agent is manipulated with 𝒟(1𝐷) ≤ (1 − 𝑏)/2,

we see that if the principal plays 1𝐷, there is no manipulation if and only if 𝜑𝑘𝑛/(𝑛 − 𝑚) ≥

(1 + 𝑏)/(1 − 𝑏). Since 𝒟(𝛾) ≤ 𝒟(1𝐷) for all 𝛾, we see the network is impervious when this

inequality holds.

Section 6

Proof of Proposition 3.1.7. Consider the learning dynamics given by 𝜇𝑡+1 = �̃�𝑖 · 𝜇0 + W̃𝜇𝑡. By

the same reasoning as in Theorem 3.1.1, we see that:

𝜇𝑡
𝑎.𝑠.→ (I− W̃)−1(𝜇0 ⊙ �̃�) ≡ 𝜇∞

Thus, as 𝑇 → ∞, it is sufficient to consider the learning dynamics given by:

𝜋𝑡+1 = 𝜇∞ · 𝜃 ⊙ BU𝑖(ℎ𝑖,𝑡+1) + (1− 𝜃 ⊙ 𝜇∞) ⊘ (1− 𝜃) ⊙W𝜋𝑡

where ⊘ is element-wise division. This is equivalent to the original learning dynamics, under a

network preservation (see Definition 3.1.3) with 𝜃′ = 𝜇∞ · 𝜃. Plugging in the expression for 𝜇∞,

combined with the asymptotic beliefs given in Theorem 3.1.1, obtains the result.

Proof of Proposition 3.1.8. Consider the case of concave cost with 𝑋* ≥ �̄�. Let 𝑀*,𝑀** be the

number of manipulated agents in the linear and concave cost cases, respectively, and 𝑋*, 𝑋**

the number of targeted agents in the linear and concave cost cases, respectively. If 𝑀** < 𝑀*

(so 𝑋** < 𝑋*), then consider the payoff in the linear cost case from implementing the concave
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cost strategy:

𝑀** − 𝜀𝑋** = 𝑀* − 𝜀𝑋* + (𝑀** −𝑀*) − 𝜀(𝑋** −𝑋*)

≥𝑀* − 𝜀𝑋* + (𝑀** −𝑀*) − (𝐶(𝑋**) − 𝐶(𝑋*))

≥𝑀* − 𝜀𝑋*

where the first inequality follows from the fact that 𝐶(·) is concave and 𝐶(𝑋*) ≥ 𝐶(�̄�), and

the second follows from the assumptions on 𝑀**,𝑀*. But this contradicts the optimality of

(𝑀*, 𝑋*) in the linear cost case.

Now consider convex costs with �̄�* ≥ �̄� . Let𝑀*,𝑀** be the number of manipulated agents

in the linear and convex cost cases, respectively, and 𝑋*, 𝑋** the number of targeted agents in

the linear and convex cost cases, respectively. If 𝑀** > 𝑀* (so 𝑋** > 𝑋*), then consider the

payoff in the convex cost case from implementing the linear cost strategy:

𝑀* − 𝜀𝑋* = 𝑀** − 𝜀𝑋** + (𝑀* −𝑀**) − (𝐶(𝑋*) − 𝐶(𝑋**))

≥𝑀** − 𝜀𝑋** + (𝑀* −𝑀**) − 𝜀(𝑋* −𝑋**)

≥𝑀** − 𝜀𝑋**

This contradicts the optimality of (𝑀**, 𝑋**) in the convex cost case. Finally, note that in the

convex cost case it is always true that when 𝑋* < �̄� that 𝐶(𝑋*) < 𝜀𝑋*. Therefore, the strategy

in the linear cost case necessarily obtains positive payoff for the principal, which means it

improves on x = 0, and so by Corollary B.1.1 the network is susceptible.

Proof of Proposition 3.1.9. Let𝒟𝑘
𝑖 (𝛾) and𝒟𝑖(𝛾) denote the DeGroot centrality in 𝑘-cut subnetwork

and the original network, respectively, under 𝛾. Suppose we have a 𝑘-cut subnetwork that is

impervious to manipulation, so for any network strategy x, we have that
∑︀

𝑖∈𝐷 1𝒟𝑘(𝛾(x))>(1−𝑏)/2−

𝜀𝑥𝑖 ≤ 0. Because 𝜀𝑢 = 0, it is sufficient to consider strategies x with 𝛾𝑢 = 1, as they dominate

the strategies with 𝛾𝑢 = 0.

Consider the principal applying strategy x in the original network. First, we show the

DeGroot centrality of every agent in the 𝑘-cut subnetwork (𝒟𝑘
𝑖 ) is at least that in the original

network (𝒟𝑖). In the 𝑘-cut subnetwork, since 𝛾𝑢 = 1, we have that 𝒟𝑘
𝑢(𝛾) = 1 which is clearly an

upper bound on all 𝒟𝑣(𝛾) for 𝑣 ∈ 𝒦 in the original network. Consider the recursive definition
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of DeGroot centrality, in both the 𝑘-cut subnetwork and the original network:

𝒟𝑖(𝛾) = 𝜃𝑖𝛾𝑖 +
𝑛∑︁
𝑗=1

𝒟𝑗(𝛾)

𝒟𝑘
𝑖 (𝛾) = 𝜃𝑖𝛾𝑖 +

𝑛−𝑘∑︁
𝑗=1

𝒟𝑘
𝑗 (𝛾) + 𝒟𝑘

𝑢(𝛾)

which admits a unique fixed point. Note the above is an increasing map in {𝒟𝑗(𝛾)}𝑛𝑗=1, and

since 𝛼𝑖𝑢 =
∑︀

𝑗∈𝒦 𝛼𝑖𝑗 with 𝒟𝑘
𝑢(𝛾) ≥ 𝒟𝑢(𝛾), the fixed point {𝒟𝑗(𝛾)}𝑛𝑗=1 in relation to the fixed

point {𝒟𝑘
𝑗 (𝛾)}𝑛−𝑘𝑗=1 ∪ 𝒟𝑘

𝑢(𝛾) must satisfy 𝒟𝑗(𝛾) ≤ 𝒟𝑘
𝑗 (𝛾) for all 𝑗 ∈ {1, . . . , 𝑛− 𝑘}. Therefore, for

all x:

∑︁
𝑖∈𝐷

1𝒟(𝛾(x))>(1−𝑏)/2 − 𝜀𝑥𝑖 ≤
∑︁
𝑖∈𝐷

1𝒟𝑘(𝛾(x))>(1−𝑏)/2 − 𝜀𝑥𝑖 ≤ 0

which means x = 0 is optimal, and there is no manipulation in the original network.

Proof of Corollary 3.1.1. The local density result of Proposition B.1.1 guarantees that the 𝑘-cut

subnetwork is impervious to manipulation (with the exception of vertex 𝑢) when the log-

diameter condition is met. Then applying Proposition 3.1.9 shows that the original network is

𝑘-impervious.

Proof of Proposition 3.1.10. By Lemma 3.1.1, BU𝑖(𝑆|ℎ𝑖,𝑡) converges to 1 if 𝑧𝑆𝑖,𝑡 − 𝑧𝑅𝑖,𝑡 → ∞ (or

𝑧𝑅𝑖,𝑡/𝑧
𝑆
𝑖,𝑡 → 0) and it converges to 0 if 𝑧𝑅𝑖,𝑡 − 𝑧𝑆𝑖,𝑡 → ∞ (or 𝑧𝑆𝑖,𝑡/𝑧

𝑅
𝑖,𝑡 → 0). As the DeGroot agents

update their beliefs mechanically, any strategy where the principal sends mixed messages (i.e.,

𝑦𝑖 ̸= 𝑅) is dominated by one where he sends 𝑦𝑖 = 𝑅. Note that if the principal sends messages

at average intensity 𝜆*𝑖 , then her signal distribution is given by:

P[𝑠𝑖,𝑡 = 𝑅|𝜃 = 𝑆] =
𝜆*𝑖

𝜆+ 𝜆*𝑖
+

𝜆

𝜆+ 𝜆*𝑖
(1 − 𝑝𝑖)

which is greater than 1/2 (so 𝑧𝑆𝑖,𝑡/𝑧
𝑅
𝑖,𝑡 → 0) when 𝜆*𝑖 > 𝜆(2𝑝𝑖−1) and less than 1/2 (so 𝑧𝑅𝑖,𝑡/𝑧

𝑆
𝑖,𝑡 → 0)

when 𝜆*𝑖 < 𝜆(2𝑝𝑖 − 1). Note that since �̃� is continuous, the difference in average cost between

𝜆*𝑖 = 𝜆(2𝑝𝑖 − 1) − 𝛿 and 𝜆*𝑖 = 𝜆(2𝑝𝑖 − 1) + 𝛿 shrinks to 0 when 𝛿 → 0, so the principal maximizes

her payoff by other choosing an average intensity of 𝜆*𝑖 = 𝜆(2𝑝𝑖 − 1) + 𝛿 for vanishing 𝛿 → 0,

or 𝜆*𝑖 = 0. Moreover, since �̃� is convex, the optimal targeting policy that minimizes cost but
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obtains an average targeting intensity 𝜆*𝑖 is the constant function 𝜆*𝑖 (𝑡) = 𝜆*𝑖 . This obtains

exactly an average cost of �̃�(𝜆*𝑖 ).

B.1.3 Worked Examples

Demonstration of DeGroot Centrality

Example B.1.1 (Illustration of DeGroot Centrality). Consider the triangle network in Figure B-

1, with one stubborn agent and two DeGroot agents all talking to each other. Suppose the

DeGroot agents listen to themselves and their friends equally so that 𝜃𝑖 = 𝛼𝑖𝑗 = 1/3 for 𝑗 ̸= 𝑖, as

shown by the solid lines. Using Theorem 3.1.1, we can characterize the limiting beliefs of the

DeGroots about the incorrect state 𝑦′ ̸= 𝑦:

𝜋(𝑦′)
𝑎.𝑠.→

⎛⎜⎜⎜⎝I−

⎛⎜⎜⎜⎝
0 0 0

1/3 0 1/3

1/3 1/3 0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

−1⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0

𝑥2

𝑥3

⎞⎟⎟⎟⎠⊙

⎛⎜⎜⎜⎝
1

1/3

1/3

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0

3
8
𝑥2 + 1

8
𝑥3

1
8
𝑥2 + 3

8
𝑥2

⎞⎟⎟⎟⎠
To measure DeGroot centrality, let us first consider the stubborn-avoiding weighted walks

Figure B-1. Triangle Network (shaded agent = Stubborn; solid agents = DeGroot). Solid lines
represent social network connections while dashed lines represent weighted walks that avoid
stubborn agents.

from a DeGroot agent 𝑖 back to itself. There is a unique such walk of length 2𝑟 for 𝑟 = 0, 1, 2, . . .

from 𝑖 to 𝑖, with weight (1/3)2𝑟 (by simply pinging back and forth between the two DeGroots,

as in the dashed lines). Therefore, the total weight of stubborn-avoiding walks from 𝑖 to 𝑖

is
∑︀∞

𝑟=0(1/3)2𝑟 = 9
8
. Similarly, there is a unique stubborn-avoiding walk of length 2𝑟 + 1 for

𝑟 = 0, 1, 2, . . . from 𝑖 to 𝑗 ̸= 𝑖, with weight (1/3)2𝑟+1. Therefore, the total weight of walks from 𝑖
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to 𝑗 is
∑︀∞

𝑟=0(1/3)2𝑟+1 = 3
8

. Using Definition 3.1.2, we see that for DeGroot 𝑖:

𝒟𝑖(𝛾) =
9

8
𝜃𝑖𝛾𝑖 +

3

8
𝜃𝑗𝛾𝑗

=
3

8
𝑥𝑖 +

1

8
𝑥𝑗

which is equal to her belief of the incorrect state (as anticipated by Proposition 3.1.2). Thus in

the above network, if the principal targets both DeGroots, their common belief in the incorrect

state will be equal to 1/2. Note that we get the same results if we instead use the recursive

definition of DeGroot centrality. When 𝑥2 = 𝑥3 = 𝑥, we obtain by symmetry:

𝒟𝑖(𝛾) =
1

3
· 𝑥+

1

3
· 0 +

1

3
· 𝒟𝑖(𝛾)

=⇒ 2

3
𝒟𝑖(𝛾) =

1

3
𝑥

=⇒ 𝒟𝑖(𝛾) =
1

2
𝑥

which coincides with the previous calculation when 𝑥2 = 𝑥3 = 𝑥 ∈ {0, 1}.

Applications of Theorem 3.1.4

Example B.1.2 (Complete Network). Consider the complete network on 𝑛 vertices. We suppose

that, for simplicity, 𝜃𝑖 = 𝛼𝑖𝑗 = 1/(𝑛+ 1) for all DeGroot agents 𝑖 and agents 𝑗 (of any kind). This

corresponds to each agent weighing each source of opinion (each neighbor, plus their own

news) equally. The log-diameter of this network is exactly log(𝑛+ 1) for any 𝑛 ≥ 2. Therefore,

only a constant number of stubborn agents are needed by Theorem 3.1.4 (applying the result

for 𝛿 = 1), and in particular, one can show that𝑚 ≥ (1 + 𝑏)/(1− 𝑏) are required for the complete

network of size 𝑛.

Example B.1.3 (Influential Star Network). Consider Figure B-2 which shows one type of star

network. We suppose that, for simplicity, 𝜃𝑖 = 1/(𝑛+ 1) for all agents; that is, each agent weighs

its own news as if it were in the complete network. Let agent 1 be the central agent of the star

and agents {2, . . . , 𝑛} be on the periphery. For agent 𝑖 ∈ {2, . . . , 𝑛}, we have 𝛼𝑖1 = 𝑛/(𝑛+ 1) and

𝛼𝑖𝑗 = 0 for all other 𝑗. For agent 1, we have 𝛼1𝑗 = 1/(𝑛+ 1) for all agents 𝑗. In other words, the

central agent is highly influential, as all peripheral agents are influenced much more by this
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Figure B-2. Influential Star Network. A weighted directed arrow from node 𝑖 to node 𝑗 indicates
that 𝑖 puts that much weight on 𝑗’s belief. Shaded node represents stubborn agents.

agent than their own news.

Once again, for any 𝑛 ≥ 2, the log-diameter of the network is at most log(𝑛+ 3); between

any two agents on the periphery, we have log((𝑛 + 1)2/𝑛) = log(𝑛 + 2 + 1/𝑛) ≤ log(𝑛 + 3). In

fact, if the number of stubborn agents satisfies 𝑚 ≥ 2(1 + 𝑏)/(1 − 𝑏), the network is impervious.

This is true even when all of the stubborn agents are on the periphery. So, in a seemingly very

asymmetric network, still only a constant number are needed.

This does not imply, however, that fewer stubborn agents would not be sufficient to make

the network impervious, if placed in better positions. For instance, a single stubborn agent in

the center of the star always makes the network impervious when 𝑛 is large enough. To see this,

we can apply the local density result of Proposition B.1.1,1 by considering subsets 𝐼ℓ = {1, ℓ} for

ℓ = 2, . . . , 𝑛. The log-distance of each 𝐼ℓ is given by log(1+1/𝑛) = log(|𝐼ℓ|+1/𝑛−1) ≤ log(|𝐼ℓ|+1).

Thus, when 𝑏 = 0 and applying the bound in Example B.1.2, we see that if the stubborn agent

is the central agent, the network is impervious (whereas we would require 𝑚 ≥ 2 on the

periphery).

Example B.1.4 (Echo chambers). Consider Figure B-3, with a clique of size 𝑛 − 1 consisting

entirely of DeGroot agents and a single stubborn agent. We assume the clique and the stubborn

agents are joined by just a single (bidirectional) link connecting the stubborn agents with one

DeGroot in the clique, and with no other connections going between the islands. We call this

DeGroot agent the pivotal agent. This defines an undirected social network G*. For simplicity,

let G have the weights given by 𝜃𝑖 = 𝛼𝑖𝑗 = 1/(1 + |𝑁(𝑖)|) whenever 𝑖→ 𝑗 in G*.

1We cannot apply Theorem 3.1.4 here because the stubborn agents disconnects all the DeGroots from each
other, so the log-diameter is +∞.

256



Figure B-3. A clique of DeGroot agents with a single connection to a stubborn agent.

We see that the pivotal agent can reach any other agent with a path of log-weight at most

− log
(︀
1
𝑛

)︀
= log(𝑛) and therefore satisfies the density condition with 𝛿 = 0. Notice, however,

that if the principal targets all agents in the DeGroot clique, then when 𝑛 is large, the pivotal

agent will still have an arbitrarily incorrect belief, i.e., 𝜋𝑖,𝑇 (𝑅) → 1 as 𝑛→ ∞. To see this, note

that as 𝑛 → ∞, almost every walk (of any length) from the pivotal agent ends up at another

DeGroot agent.2 Because DeGroots only talk amongst themselves, there is an echo chamber

whereby the misinformation sent by the principal circulates within the DeGroot island and the

beliefs of the stubborn agents never propagate. Therefore, while the pivotal agent is close to

the stubborn agent, the fact that most of her friends, and friends of friends are not, almost all

of the influence exerted on the pivotal agent comes from others exposed to misinformation.

Compare this to the case where every DeGroot agent is pivotal, which now satisfies the log-

diameter condition for 𝛿 = 1. Even though DeGroot agents are friends almost exclusively with

other DeGroot agents, who receive possible misinformation, Theorem 3.1.4 guarantees the

network is impervious. This is precisely because an echo chamber effect no longer amplifies

incorrect beliefs of the agents, simply because each DeGroot agent is friends with at least one

stubborn agent, limiting the principal’s influence.

Finally, we expand on Example B.1.4 to show how Theorem 3.1.4 applies only to log-

diameter, which may not coincide with the notion of diameter in undirected networks:

Example B.1.5 (Echo chambers, revisited). Consider a variant of the unweighted social network

2To be precise, G has weights that represent a random walk for all DeGroot agents, where the
agent chooses a link uniformly at random. The probability the walk ever reaches a stubborn agent is
1
𝑛

(︂
1 +

(︀
𝑛−1
𝑛

)︀ (︁
1

𝑛−1

)︁∑︀∞
𝑘=0

(︁
𝑛−2
𝑛−1

)︁𝑘)︂
= 1

𝑛

(︁
𝑛2+𝑛−1

𝑛2

)︁
, and as 𝑛→ ∞, tends toward 0.
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G* of the “echo chambers” network from Example B.1.4, but now where there are two cliques

of size 𝑛/2, one clique which is all DeGroot and one clique which is all stubborn, with a single

connection between them. Note that G* has a diameter of 3, since it is possible to get from any

agent in one clique to any other agent in the other clique with a walk that has no more than 3

steps. Because the diameter of the network stays constant with 𝑛, it is natural to classify this as

a “small diameter” network.

Yet, straightforward computation reveals that the log-diameter of G is log
(︁

𝑛4

2(𝑛−1)2

)︁
≈

log(𝑛2/2), which does not satisfy the conditions of Theorem 3.1.4 for any 𝛿. In fact, as we saw

before in Example B.1.4, no constant number of stubborn agents are guaranteed to make this

network impervious. Therefore, having a small diameter in G*, even as 𝑛 grows, does not

necessarily imply the conditions of Theorem 3.1.4 will be satisfied for small log-diameter.

Sparse Networks

Finally, the last sparse example is the balanced star network, where agents are aligned in a

star network but employ equal-influence weighting. We show that despite the seemingly

added symmetry, as compared to Example B.1.3, the network fails to satisfy the log-diameter

condition, and so introduces unique vulnerabilities not present in the asymmetric star network

of Example B.1.3.

Example B.1.6 (Balanced Star Network). Consider the balanced star network of Figure B-4.

Suppose that for agents on the periphery 𝜃𝑖 = 𝛼𝑖1 = 1/2 whereas the core agent 1 updates as

in Example B.1.3, 𝜃1 = 𝛼1𝑗 = 1/(𝑛+ 1). The log-diameter condition is unsatisfied because the

log-diameter grows as ≈ log(2𝑛).

When the central agent is stubborn, then either all of the agents are manipulated (if 𝑏 < 0

and 𝜀 < 1) or none of them are (otherwise), i.e., the network is impervious. If stubborn agents

are only on the periphery, then if 𝑚 ≤ 𝛽𝑛 for all 𝛽 > 0 as 𝑛 grows large (i.e., the number of

peripheral stubborn agents is sublinear), Stubborn agents have a vanishing fraction of influence

in the network. The DeGroot centrality of the core agent converges to 𝒟1(𝛾) = ||𝛾||1/𝑛, whereas

the DeGroot centrality of the peripheral agent 𝑖 converges to 𝒟𝑖(𝛾) = 1
2
𝛾𝑖 + 1

2
||𝛾||1/𝑛. In other

words, for peripheral agents, their belief is half of the average news experience and half of their

own experience, whereas the core agent’s belief is simply an average of all experiences.

Given a sublinear number of stubborn agents, the network is impervious if and only if
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Figure B-4. Balanced Star Network

𝜀 < max{1/(1 − 𝑏), 1} for large 𝑛; otherwise, a linear number of stubborn agents on the

periphery are required to prevent manipulation. If 𝑏 > 0, then the principal targets (1 − 𝑏)

fraction of the population; if 𝑏 < 0, the principal targets all agents in the network, except the

central agent. We note that the principal targets the core agent last, in contrast to the influential

star network of Example B.1.3, where the principal should target this agent first. While the

balanced star network is more symmetric in that no agent has disproportionate influence

on the population, it also prevents the central agent from acting as a spokesperson for the

knowledgable stubborn agents on the periphery.

To conclude, we present an application of the results in Section 3.1.6 which allow us to

characterize when a network is almost impervious but still has a few agents manipulated:

𝑘-imperviousness

Example B.1.7. Consider the (unweighted) core-periphery network G* shown in Figure B-5,

with 𝑛− 𝑘 agents in the core and 𝑘 agents on the periphery who listen to only one agent in the

core (in Figure B-5, 𝑘 = 3). Suppose the weights are given by the equal-influence weighting

scheme. Fixing 𝑘, the log-diameter of the network is bounded below by log(3𝑛) for sufficiently

large 𝑛, which does not satisfy the conditions of Theorem 3.1.4 for any value of 𝛿 as 𝑛 grows.

On the other hand, there is an obvious 𝑘-cut which leaves the complete network as 𝑘-cut

subnetwork (and after removing 𝑢), which has a log-diameter bounded above by log(𝑛 + 1)

(for sufficiently large 𝑛), and therefore is 𝑘-impervious with at least 𝑚*(𝑘 + 1) stubborn agents

located in the core via Example B.1.2 (the complete network is dense) and Corollary 3.1.1

(density condition for 𝑘-impervious).
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Figure B-5. Core-Periphery Network.

B.1.4 Numerical Experiments

The previous examples show how our results can be applied to the network topologies commonly

studied in the literature. In this section, we examine these results in the context of real-world

network data coming from Jackson et al. (2012). The network we consider represents an

advice network in an Indian village, and consists of 144 nodes and 320 edges, where an edge

between nodes 𝑖 and 𝑗 represents undirected communication between these two agents. In

the following we look at different placement of stubborn agents in this network in order to

further demonstrate the concepts introduced throughout the paper.

Similar to the setup we have so far, the principal tries to manipulate a subset of agents in

the population by sending messages to some agents (not necessarily the same set of agents

he is trying to manipulate) in the network. We compute the optimal strategy for the principal

given the network topology (and we assume for simplicity that all weights 𝜃 are fixed at 1
𝑛

). We

start with Figure B-6 as an illustration that shows the network with only a single knowledgeable

stubborn agent. Throughout the figures in this section, green nodes represent stubborn agents,

and nodes represented with an asterisk indicate agents directly targeted by the principal

(according to his optimal strategy). Conversely, DeGroot agents are colored either blue or

red, to indicate whether under the principal’s strategy the agent is manipulated (red) or not

(blue). Thus, a network of all-blue and green agents means that this particular placement of

the stubborn agents results in a network that is impervious to manipulation.
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Throughout we fix 𝜀 = 1/2 (recall 𝜀 is the cost of sending messages to a single agent). For

our first two examples, we consider the game in Table 3.1 and assume that 𝑏 = 0, i.e. that

agents’ terminal actions reflect whichever state they believe is more likely. We focus on two

particular agents, referred to in the data as Agent 70 and Agent 59. In Figure B-6, Agent 70 (with

degree 7 and eigenvector centrality 0.0121) is a stubborn agent whose location results in no

manipulation, because the principal has no profitable strategy with which he can manipulate

even a single member of the population. Naturally, all agents have a DeGroot centrality of 0

when the principal chooses not to exert any influence.

On the other hand, Agent 59 is much more peripheral in the network, with a degree of 2 and

eigenvector centrality of 0.0044. If Agent 59 is the stubborn agent, as is the case in Figure B-7,

then the average DeGroot centrality (and terminal belief under the principal’s optimal strategy)

is �̄� = 0.529 > 𝜋cutoff ≡ 0.5 and manipulation is inevitable and quite severe.

These two cases are summarized in Figure B-8. Each dot in this graph represents the

DeGroot centrality of the corresponding agent in the network under one of the these two

stubborn agent placements, and under a particular strategy for the principal:

1. Optimal influence: corresponds to the DeGroot centrality of the agents when the principal

exerts the influence he would in his optimal strategy.

2. Max influence: corresponds to the DeGroot centrality of the agents when the principal

targets every DeGroot agent, even though such influence may be “overkill” or ineffective.

Agents whose DeGroot centralities are above 𝜋cutoff = 0.5 are manipulated. Yellow dots

correspond to the DeGroot centality of the agents in Figure B-6 (with Agent 70), but when the

principal employs max influence. Notice that all the yellow dots are below the threshold of

𝜋cutoff, and hence no agent is manipulated despite the most intensive efforts of the principal.

Thus, the stubborn agent communicates the truth effectively, and the principal cannot interfere.

On the other hand, if the principal applies the same max-influence strategy to the network in

Figure B-7 (with Agent 59 as the stubborn agent) then, as can be seen from the red dots, every

single DeGroot agent is manipulated since all DeGroot centralities lie above the cutoff.

Most importantly in Figure B-8 however are the purple dots lying just above the dotted

cutoff line, corresponding the principal’s optimal strategy. These dots represent the DeGroot

centralities of the agents in Figure B-7 when the principal applies the optimal targeting strategy
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Figure B-6. Central Stubborn Agent, 𝑏 = 0.
Figure B-7. Peripheral Stubborn Agent, 𝑏 =
0.

depicted in the figure. Note that despite targeting 67 agents (46% of the population) instead

of the entire population, the principal is able to obtain almost the maximum manipulation

possible at a fraction of the cost (expends less than 50% of the cost), with only three agents

(such as Agent 60 in the figure) escaping manipulation (< 2% of the population).

The rest of the figures examine the situation for different values of 𝑏. We have seen that

when 𝑏 is equal to zero, manipulation is very sensitive to the placement of the single stubborn

agent. As 𝑏 becomes lower and the cost of taking the risky action and mismatching the state

increases, manipulation becomes exceedingly difficult. Similarly, as 𝑏 increases, it becomes less

costly for the agents to take the risky action, and hence it becomes easier to manipulate them.

Figure B-9 shows that with 𝑏 = 0.5, two stubborn agents (instead of one) are now required to

prevent manipulation, provided they occupy network positions that again lead to low DeGroot

centralities (across all 𝛾) for the other agents. Similar to the ring network studied earlier,

both the number and location of the stubborn agents matter. Figure B-10 shows that even

with five stubborn agents agents, large-scale manipulation is possible because these agents

occupy less central positions. In the case of the complete network, three stubborn agents are

both necessary and sufficient for imperviousness when 𝑏 = 0.5; in other words, the best-case

placement in this network is better than in the complete network (requires only two stubborn

agents) but the worst-case placement in this network is also worse than the complete network
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Figure B-8. DeGroot Centrality for Single Stubborn Agent, 𝑏 = 0.

(requires at least six stubborn agents).

B.2 DeGroot Models II: Social Inequality and Misinformation

B.2.1 Technical Conditions and Model Details

Appendix B.2.1 provides more technical details about the deterministic model in Mostagir et al.

(2022), while Appendix B.2.1 shows how to adapt that model to random networks with different

communities and different levels of access to resources. Finally, Appendix B.2.1 demonstrates

the main methods used in the proofs of this paper.

News Generation and Belief Evolution

The following model details are from Mostagir et al. (2022) and are presented here for contextualization

of Section 3.3.1.

(a) Organic News: We assume agents receive organic information about the state 𝑦 over time.

News is generated according to a Poisson process with unknown parameter 𝜆𝑖 > 0 for each

agent 𝑖; for simplicity, assume 𝜆𝑖 has atomless support over (𝜆,∞) and 𝜆 > 0. Let us denote
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Figure B-9. Two Well-Placed
Knowledgeable Stubborn Agents, 𝑏 = 0.5.

Figure B-10. Five Poorly-Placed
Knowledgeable Stubborn Agents, 𝑏 = 0.5.

by (𝑡
(𝑖)
1 , 𝑡

(𝑖)
2 , . . .) the times at which news occurs for agent 𝑖. For all 𝜏 ∈ {1, 2, . . .}, the organic

news for agent 𝑖 generates a signal 𝑠
𝑡
(𝑖)
𝜏

∈ {𝑆,𝑅} according to the distribution:

P
(︁
𝑠
𝑡
(𝑖)
𝜏

= 𝑆
⃒⃒⃒
𝑦 = 𝑆

)︁
= P

(︁
𝑠
𝑡
(𝑖)
𝜏

= 𝑅
⃒⃒⃒
𝑦 = 𝑅

)︁
= 𝑝𝑖 ∈ [1/2, 1)

i.e., the signal is correlated with the underlying truth.

(b) News from Principal: In addition to the organic news process, there is a principal who may

also generate news of his own. At 𝑡 = 0, the principal picks an influence state 𝑦 ∈ {𝑆,𝑅}.

The principal then picks an influence strategy 𝑥𝑖 ∈ {0, 1} for each agent 𝑖 in the network.

If the principal chooses 𝑥𝑖 = 1, for any agent 𝑖, then he (the principal) generates news

according to an independent Poisson process with (possibly strategically chosen) intensity

𝜆*𝑖 which is received by all agents where 𝑥𝑖 = 1. We assume the principal commits to

sending signals at this intensity, which may not exceed some threshold �̄�.

(c) News Observations: Agents are unable to distinguish news sent by the principal or that

organically generated. We denote by 𝑡(𝑖)1 , 𝑡
(𝑖)
2 , . . . the arrival of all news, either from organic

sources or from the principal, for agent 𝑖. At each time 𝑡(𝑖)𝜏 , if the news is organic, the agent

gets a signal according to the above distribution, whereas if the news is sent from the

principal, she gets a signal of 𝑦.
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(d) DeGroot Update: DeGroots use a simple learning heuristic to update beliefs about the

underlying state from other agents. We assume every DeGroot agent believes signals

arrive according to a Poisson process and all signals are independent over time with

P
(︁
𝑠
𝑖,𝑡

(𝑖)
𝜏

= 𝑦
)︁

= 𝑝𝑖 (i.e., takes the news at face value). DeGroot agents form their opinions

about the state both through their own experience (i.e., the signals they receive) and the

beliefs of their neighbors. Given history ℎ𝑖,𝑡 = (𝑠
𝑖,𝑡

(𝑖)
1
, 𝑠
𝑖,𝑡

(𝑖)
2
, . . . , 𝑠

𝑖,𝑡
(𝑖)
𝜏𝑖

) up until time 𝑡 with

𝜏 𝑖 = max{𝜏 : 𝑡
(𝑖)
𝜏 ≤ 𝑡}, each agent forms a personal belief about the state according to

Bayes’ rule. Let 𝑧𝑆𝑖,𝑡 and 𝑧𝑅𝑖,𝑡 denote the number of 𝑆 and 𝑅 signals, respectively, that agent 𝑖

received by time 𝑡; then the DeGroot agent has a direct “personal experience”:

BU(𝑆|ℎ𝑖,𝑡) =
𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞

𝑝
𝑧𝑆𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑅𝑖,𝑡𝑞 + 𝑝
𝑧𝑅𝑖,𝑡
𝑖 (1 − 𝑝𝑖)

𝑧𝑆𝑖,𝑡(1 − 𝑞)

As mentioned in Section 3.3.1, each DeGroot 𝑖 then updates her belief for all 𝑘∆ < 𝑡 ≤

(𝑘 + 1)∆ according to:

𝜋𝑖,𝑡 = 𝜃𝑖BU(ℎ𝑖,𝑡) +
𝑛∑︁
𝑖=1

𝛼𝑖𝑗𝜋𝑗,𝑘Δ

for some weights 𝜃𝑖, 𝛼𝑖𝑗 with 𝜃𝑖 +
∑︀𝑛

𝑗=1 𝛼𝑖𝑗 = 1, and ∆ is a time period of short length. Note

for simplicity in this paper we assume 𝜃𝑖 = 𝜃 for all DeGroots 𝑖 and 𝛼𝑖𝑗 = 1−𝜃
|𝑁(𝑖)| for all

𝑗 ∈ 𝑁(𝑖).

(e) DeGroot Centrality Vector: To figure out the limit beliefs of the DeGroot agents when

the principal targets everyone who is not a knowledgeable agent, denote by 𝛾 the vector

in {0, 1}𝑛 that designates which agents are targeted by the principal and let 𝛾𝑖 = 𝑥𝑖 = 1

wherever agent 𝑖 is DeGroot and 𝛾𝑖 = 0 everywhere else. DeGroot centrality, which is

equivalent to the belief in the incorrect state in the limit is then given by 𝒟(𝛾) = (I −

W)−1𝛾 =
∑︀∞

𝑘=0W
𝑘𝛾, where I is the identity and W is the adjacency matrix of weights

given in Mostagir et al. (2022). DeGroot agent 𝑖 is manipulated if her belief in the false state

is above the cutoff, i.e. if 𝒟𝑖(𝛾) > (1 − 𝑏)/2. More detailed methods on the computation of

DeGroot centrality is given in B.2.1.
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Model Adaptation to Stochastic-Block Networks

Using the proof technique in Mostagir and Siderius (2021), the following result establishes that

as long as the population is large enough, it is sufficient to analyze the deterministic analogues

of the random networks introduced in Section 3.3.1:

Theorem B.2.1. For almost all 𝑏,3 as 𝑛 → ∞, the probability that a random network drawn

from the weak or strong inequality models has the same number of manipulated agents as the

expected network converges to 1.4

Theorem B.2.1 offers a technical simplification: instead of analyzing the random networks

drawn according to the weak and strong homophily models, we can treat these networks as

deterministic objects where the weights are chosen proportionally to the probability of link

formation. Moreover, because all of our results are invariant to a doubling of the population as

long as the proportion of knowledgeable and DeGroot agents remains constant on every island,

every example can be extended to the case of 𝑛→ ∞ and Theorem B.2.1 can be applied.

In the original model of Mostagir et al. (2022), the authors derived results for arbitrary

(but deterministic) network structures, where the principal must make (essentially) a binary

decision for each agent whether to send her misinformed signals. In this paper, we instead

adapt this model for random social networks which embed a notion of inequality in the form

of unequal access to educational resources. At the core of the random network process are

“islands” (or communities) where agents within an island have similar resources, but can have

different resources from agents on different islands. Thus, the principal’s optimal strategy

instead is more subtle: he can target a fraction of the population on a given island (a rational

number between 0 and 1). Because of symmetry, the principal does not care which agents on

the island he actually targets, just the total percentage. Recall agents put 𝜃 weight on their own

personal experience. This implies that, in the standard model, there will be two belief types

within a given island, depending on whether the principal targets the agent directly or not.

To avoid this, and to add parsimony to the model, we assume agents will perform the

personal-experience Bayesian update using the “average” news sent to the island. In particular,

if the principal targets 𝜅ℓ fraction of the population on an island, the Bayesian update part of

3Recall that 𝑏 is the parameter in ??. “Almost all” is meant in the measure theoretic sense; the only exceptions
lie on a set of measure 0 in (−1, 1).

4The formal definitions of realized and expected networks can be found in Mostagir and Siderius (2021)
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the belief update converges to 1 − 𝜅ℓ as 𝑇 → ∞. This implies that all agents’ beliefs on the

same island will be the same, and allows us to study manipulation in the context of how certain

communities are affected versus others.

Note this adaptation does not change much from the standard model. For instance, if 𝜃 is

not too large (and agents rely significantly on social learning), then the differences in beliefs of

two agents on the same island will be small in the standard setup. Thus, our results generalize

easily to the case of the standard model as well, where agents are treated as individual binary

decisions for the principal.

Finally, we note that all results implicitly assume that 𝑛 → ∞, because only under these

conditions does Theorem B.2.1 equate the manipulation in random networks with that of

their expected counterparts. Thus, while knowledgeable agent counts are technically discrete

objects, because all of our results are closed under multiplication of the knowledgeable and

DeGroot populations on each island by the same constant, we can think of “knowledgeable

proportions” on each island and need not worry about whether such proportions divide the

population size without remainder.

DeGroot Centrality: General Methods

Note that given a fixed strategy for the principal, the beliefs of (DeGroot) agents within

a given island are the same due to symmetry as 𝑛 → ∞.5 Here, we will introduce the

general methodology for determining whether a population (or community) whose structure is

randomly drawn from either the strong or weak homophily model is susceptible to manipulation.

Let us define some notation:

(i) 𝜅ℓ is the fraction of island ℓ targeted by the principal (note that who he specifically targets

on the island is immaterial);

(ii) 𝒩ℓ is the “neighborhood” of island ℓ; in the weak homophily model it is equal to {ℓ′|ℓ′ ̸= ℓ}

5See Appendix B.2.1.
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whereas in the strong homophily model it is equal to:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{2}, if ℓ = 1

{ℓ− 1, ℓ+ 1}, if ℓ ∈ {2, . . . , 𝑘 − 1}

{ℓ− 1}, if ℓ = 𝑘

One can compute DeGroot centralities by simply counting the weighted walks to misinformed

agents, as in Figure B-11. However, DeGroot centrality computations are easiest when considering

the linear recursive formulation of weighted walks, as in Figure B-12.

This calculation is done in two parts. The first part involves computing weighted walks

to knowledgeable agents from agent 𝑖 living on some island ℓ, which we denote as 𝑤𝐾ℓ . The

second part involves computing weighted walks to DeGroots who do not directly consume

misinformation from the principal, which we denote as 𝑤𝐷ℓ . The belief of the agent on island ℓ

is then given by 𝑤ℓ = 𝑤𝐾ℓ + 𝑤𝐷ℓ .

We can calculate this explicitly as:

𝑤𝐾ℓ
1 − 𝜃

=
𝑝𝑠𝑚ℓ +

∑︀
ℓ′∈𝒩ℓ

𝑝𝑑𝑚ℓ′

𝑝𝑠𝑠ℓ𝑛+
∑︀

ℓ′∈𝒩ℓ
𝑝𝑑𝑠ℓ′𝑛

+(1−𝜃) 𝑝𝑠(𝑠ℓ𝑛−𝑚ℓ)

𝑝𝑠𝑠ℓ𝑛+
∑︀

ℓ′∈𝒩ℓ
𝑝𝑑𝑠ℓ′𝑛

𝑤𝐾ℓ +(1−𝜃)
∑︀

ℓ′∈𝒩ℓ
𝑝𝑑(𝑠ℓ′𝑛−𝑚ℓ′)

𝑝𝑠𝑠ℓ𝑛+
∑︀

ℓ′∈𝒩ℓ
𝑝𝑑𝑠ℓ′𝑛

𝑤𝐾ℓ′

Similarly, we have:

𝑤𝐷ℓ
1 − 𝜃

= 𝜃
1 − 𝜅ℓ
1 − 𝜃

+ 𝜃
𝑝𝑠(1 − 𝜅ℓ)(𝑠ℓ𝑛−𝑚ℓ) +

∑︀
ℓ′∈𝒩ℓ

𝑝𝑑(1 − 𝜅ℓ′)(𝑠ℓ′𝑛−𝑚ℓ′)

𝑝𝑠𝑠ℓ𝑛+
∑︀

ℓ′∈𝒩ℓ
𝑝𝑑𝑠ℓ′𝑛

+(1 − 𝜃)
𝑝𝑠(1 − 𝜅ℓ)(𝑠ℓ𝑛−𝑚ℓ)

𝑝𝑠𝑠ℓ𝑛+
∑︀

ℓ′∈𝒩ℓ
𝑝𝑑𝑠ℓ′𝑛

𝑤𝐷ℓ + (1 − 𝜃)

∑︀
ℓ′∈𝒩ℓ

𝑝𝑑(1 − 𝜅ℓ′)(𝑠ℓ′𝑛−𝑚ℓ′)

𝑝𝑠𝑠ℓ𝑛+
∑︀

ℓ′∈𝒩ℓ
𝑝𝑑𝑠ℓ′𝑛

𝑤𝐷ℓ′

In particular, belief𝑤𝐾ℓ and𝑤𝐷ℓ both admit linear matrix equations with a closed-form solutions:

Iw𝐾

1 − 𝜃
= 𝑎𝐾 + 𝐵𝐾w =⇒ w𝐾 =

(︂
I

1 − 𝜃
−𝐵𝐾

)︂−1

𝑎𝐾

Iw𝐷

1 − 𝜃
= 𝑎𝐷 + 𝐵𝐷w =⇒ w𝐷 =

(︂
I

1 − 𝜃
−𝐵𝐷

)︂−1

𝑎𝐷

where the total belief of the correct state is 𝑤ℓ = 𝑤𝐾ℓ + 𝑤𝐷ℓ , which is the complement of agent 𝑖

on island ℓ’s DeGroot centrality (i.e., 𝒟ℓ = 1 − 𝑤ℓ).
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Figure B-11. An illustration of computing weighted walks to knowledgeable agents. Solid circles
are DeGroot agents and shaded circles are knowledgeable agents. Solid lines represent higher
weights “within-community links" than dashed lines. Consider the top-left agent, and for each
walk, multiply the weights of the links along the walk. The figure on the left shows a first-order
walk, i.e. a walk of length 1, which consists of the link directly connecting that agent to a
knowledgeable agent. The second-order walk displayed on the right consists of walks of length
2, so that there is a link to another DeGroot agent who is linked to a knowledgeable agent, and
the weight of that walk is the product of the two link weights and so on. Total weighted walks is
the sum over all orders (i.e., walk lengths) of walks 1, 2, . . ..

B.2.2 Proofs

Preliminaries The following notation is used throughout the proofs. The vector 𝛾 ∈ {0, 1}𝑛

denotes which agents are targeted by the principal, and the DeGroot Centrality vector resulting

from this targeting is denoted by 𝒟(𝛾). DeGroot agent on island ℓ is manipulated if 𝒟ℓ(𝛾) >

(1− 𝑏)/2. Equivalently, we write 𝜋ℓ or 𝑤ℓ as the belief of an agent on island ℓ (the latter explicitly

referring to walk counting, but is equivalent to 𝜋ℓ).

Section 2

Proof of Theorem B.2.1. The proof uses results from Mostagir and Siderius (2021). The main

result of that paper shows that one can focus on expected instead of random networks if

three assumptions are satisfied. Assumption 1 from the Mostagir and Siderius (2021) holds

because our networks are drawn from an inhomogeneous Erdos-Renyi model. Assumption

2 from that paper is also satisfied because 𝜃 is constant and the homophily models are

connected almost surely. Similarly, the expected degrees and normal society conditions are

satisfied because for the former, the expected degrees grow linearly in 𝑛 for both the weak and
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Figure B-12. An analytic approach to computing walks for the top-left agent (which equals her
belief of the true state). Each agent’s sum of walks equals a weighted-average of her neighbors’
sums of walks.

strong inequality models, and for the latter, 𝜃 is the same for all agents. Therefore, we can

apply Theorem 1 from the note for DeGroot centrality on an arbitrary targeting vector 𝛾, i.e.,

lim𝑛→∞ P
[︁
||�̃�(𝑛)(𝛾) − �̄�(𝑛)(𝛾)||∞ > 𝜖

]︁
= 0. Thus, as 𝑛→ ∞:

lim
𝑛→∞

(︁
P
[︁
�̃�(𝑛)
𝑖 < (1 − 𝑏)/2 < �̄�(𝑛)

𝑖 for some 𝑖
]︁

+ P
[︁
�̄�(𝑛)
𝑖 < (1 − 𝑏)/2 < �̃�(𝑛)

𝑖 for some 𝑖
]︁)︁

= 0

except for countably many 𝑏. Thus, for generic 𝑏, the number of manipulated agents is the

same under both the expected and realized networks in the weak and strong inequality models,

as 𝑛→ ∞.

Section 4

Proof of Theorem 3.2.1. Notice the network is susceptible to manipulation (with high probability)

if there exists an agent 𝑗 with 𝒟𝑗(1𝐷) > (1 − 𝑏)/2; similarly, the network is impervious to

manipulation (with high probability) if for all agents 𝑗, 𝒟𝑗(1𝐷) < (1 − 𝑏)/2. We show that

increasing homophily leads to an increase in the inequality of DeGroot centralities (i.e., 𝒟(1𝐷)).
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We have the system of equations:

1

1 − 𝜃
w =

𝑘

𝑛(𝑝𝑠 + (𝑘 − 1)𝑝𝑑)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠𝑚1 + 𝑝𝑑

∑︀
ℓ̸=1𝑚ℓ

𝑝𝑠𝑚2 + 𝑝𝑑
∑︀

ℓ̸=2𝑚ℓ

· · ·

𝑝𝑠𝑚𝑘 + 𝑝𝑑
∑︀

ℓ̸=𝑘𝑚ℓ

⎞⎟⎟⎟⎟⎟⎟⎠

+
𝑘(1 − 𝜃)

𝑛(𝑝𝑠 + (𝑘 − 1)𝑝𝑑)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑠(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

· · · · · · · · · · · ·

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑠(𝑛/𝑘 −𝑚𝑘)

⎞⎟⎟⎟⎟⎟⎟⎠w

which is equivalent to:

𝑘

(1 − 𝜃)𝑛(𝑝𝑠 + (𝑘 − 1)𝑝𝑑)
w =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠𝑚1 + 𝑝𝑑

∑︀
ℓ̸=1𝑚ℓ

𝑝𝑠𝑚2 + 𝑝𝑑
∑︀

ℓ̸=2𝑚ℓ

· · ·

𝑝𝑠𝑚𝑘 + 𝑝𝑑
∑︀

ℓ̸=𝑘𝑚ℓ

⎞⎟⎟⎟⎟⎟⎟⎠

+ (1 − 𝜃)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑠(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

· · · · · · · · · · · ·

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑠(𝑛/𝑘 −𝑚𝑘)

⎞⎟⎟⎟⎟⎟⎟⎠w

Without loss of generality suppose that island 𝑘 has the least number of knowledgeable agents

of any island. Consider the map 𝑇 given by:

𝑇 : w ↦→

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠𝑚1 + 𝑝𝑑

∑︀
ℓ̸=1𝑚ℓ

𝑝𝑠𝑚2 + 𝑝𝑑
∑︀

ℓ̸=2𝑚ℓ

· · ·

𝑝𝑠𝑚𝑘 + 𝑝𝑑
∑︀

ℓ̸=𝑘𝑚ℓ

⎞⎟⎟⎟⎟⎟⎟⎠+(1−𝜃)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑠(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

· · · · · · · · · · · ·

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑠(𝑛/𝑘 −𝑚𝑘)

⎞⎟⎟⎟⎟⎟⎟⎠w
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We claim that 𝑇 has the property that (𝑤ℓ ≥ 𝑤𝑘) =⇒ 𝑇 (𝑤ℓ) ≥ 𝑇 (𝑤𝑘). Suppose that 𝑤ℓ ≥ 𝑤𝑘,

then:

𝑚ℓ + (1 − 𝜃)𝑤ℓ(𝑛/𝑘 −𝑚ℓ) ≥ 𝑚𝑘 + (1 − 𝜃)𝑤ℓ(𝑛/𝑘 −𝑚𝑘)

≥ 𝑚𝑘 + (1 − 𝜃)𝑤𝑘(𝑛/𝑘 −𝑚𝑘)

which moreover implies that

𝑝𝑠(𝑚ℓ + (1 − 𝜃)𝑤ℓ(𝑛/𝑘 −𝑚ℓ)) + 𝑝𝑑(𝑚𝑘 + (1 − 𝜃)𝑤𝑘(𝑛/𝑘 −𝑚𝑘)) +
∑︁
ℓ′ ̸=ℓ,𝑘

𝑝𝑑(𝑚ℓ′ + (1 − 𝜃)𝑤ℓ′(𝑛/𝑘 −𝑚ℓ′))

≥ 𝑝𝑑(𝑚ℓ + (1 − 𝜃)𝑤ℓ(𝑛/𝑘 −𝑚ℓ)) + 𝑝𝑠(𝑚𝑘 + (1 − 𝜃)𝑤𝑘(𝑛/𝑘 −𝑚𝑘)) +
∑︁
ℓ′ ̸=ℓ,𝑘

𝑝𝑑(𝑚ℓ′ + (1 − 𝜃)𝑤ℓ′(𝑛/𝑘 −𝑚ℓ′))

because 𝑝𝑠 > 𝑝𝑑. Because 𝑝𝑠, 𝑝𝑑, 𝑛 are fixed, this suggests the map 𝑘
(1−𝜃)𝑛(𝑝𝑠+(𝑘−1)𝑝𝑑)

· 𝑇 also has

this property, so any fixed point of 𝑇 must have 𝑤ℓ ≥ 𝑤𝑘 by Brouwer’s fixed point theorem for

all islands ℓ. Since the system is linear and non-singular, there is a unique fixed-point with

𝑤ℓ ≥ 𝑤𝑘. This implies the DeGroot centrality of the island with the least knowledgeable agents

is always maximal and determines whether the network is impervious.

For the remainder of this part of the proof, we define a new operator 𝑇 which maps w,

parametrized by 𝑝𝑠, 𝑝𝑑, and m, respectively. We show the following: (i) 𝑇 |𝑝𝑠 is decreasing in 𝑝𝑠

for 𝑤𝑘, (ii) 𝑇 |𝑝𝑑 is increasing in 𝑝𝑑 for 𝑤𝑘, and (iii) 𝑇 |m subject to
∑︀
𝑚ℓ = 𝑚 is increasing with

every “Robin Hood” operation that puts more knowledgeable agents on island 𝑘 for 𝑤𝑘.6 This

result suffices in order to show that there exists a fixed-point of 𝑇 which obeys the desired

properties of Theorem 3.2.1 (by Brouwer7), and by linearity, this fixed-point is unique.

6Note that other “Robin Hood” operations do not affect 𝑤𝑘, so does not affect the imperviousness of the
network.

7In particular, let (𝑤1, 𝑤2) be the old fixed-point and (𝑤′
1, 𝑤

′
2) the new fixed point. We illustrate for the case of

increasing 𝑝𝑠: all other cases are similar. By increasing 𝑝𝑠, we know that 𝑇 maps all 𝑤1 larger and all 𝑤2 smaller.
Therefore, the convex compact set [𝑤1, 1]× [0, 𝑤2] maps into itself, which implies the new fixed-point (𝑤′

1, 𝑤
′
2) lies

in this set.
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1. Decreasing in 𝑝𝑠: Let us define 𝑇 as:

𝑇 |𝑝𝑠 : w ↦→ 1

𝑝𝑠 + 𝑝𝑑

[︁
⎛⎜⎜⎜⎜⎜⎜⎝

𝑝𝑠𝑚1 + 𝑝𝑑
∑︀

ℓ̸=1𝑚ℓ

𝑝𝑠𝑚2 + 𝑝𝑑
∑︀

ℓ̸=2𝑚ℓ

· · ·

𝑝𝑠𝑚𝑘 + 𝑝𝑑
∑︀

ℓ̸=𝑘𝑚ℓ

⎞⎟⎟⎟⎟⎟⎟⎠

+ (1 − 𝜃)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑠(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

· · · · · · · · · · · ·

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑠(𝑛/𝑘 −𝑚𝑘)

⎞⎟⎟⎟⎟⎟⎟⎠w
]︁

Computing directly:

𝜕𝑇 (𝑤𝑘|𝑝𝑠)
𝜕𝑝𝑠

= 𝑝𝑑
(𝑚𝑘 + (1 − 𝜃)(𝑛/𝑘 −𝑚𝑘)𝑤𝑘) −

∑︀
ℓ ̸=𝑘 (𝑚ℓ + (1 − 𝜃)(𝑛/𝑘 −𝑚ℓ)𝑤ℓ)

(𝑝𝑠 + 𝑝𝑑)2
< 0

where the inequalities follow from the analysis above.

2. Increasing 𝑝𝑑: Let us define 𝑇 in the same way as in (1), except parametrized by 𝑝𝑑. Then

in exactly the same way:

𝜕𝑇 (𝑤𝑘|𝑝𝑑)
𝜕𝑝𝑑

= −𝑝𝑠
𝑝𝑑

𝜕𝑇 (𝑤𝑘|𝑝𝑠)
𝜕𝑝𝑠

> 0

which is the desired result.

3. Majorization: Assume that we remove a knowledgeable agent from island ℓ* and add it

to island 𝑘, with the assumption that 𝑚𝑘 + 1 ≤ 𝑚ℓ* − 1. There are two cases: (i) island 𝑘

still has the fewest knowledgeable agents (and thus the greatest DeGroot centrality), or

(ii) some other island had the exact same number of knowledgeable agents as island 𝑘.

In the latter case, the majorization does not affect whether the network is impervious or
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susceptible. In the former case, define 𝑇 as:

𝑇 |m : w ↦→
[︁
⎛⎜⎜⎜⎜⎜⎜⎝

𝑝𝑠𝑚1 + 𝑝𝑑
∑︀

ℓ̸=1𝑚ℓ

𝑝𝑠𝑚2 + 𝑝𝑑
∑︀

ℓ̸=2𝑚ℓ

· · ·

𝑝𝑠𝑚𝑘 + 𝑝𝑑
∑︀

ℓ̸=𝑘𝑚ℓ

⎞⎟⎟⎟⎟⎟⎟⎠

+ (1 − 𝜃)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝑠(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑠(𝑛/𝑘 −𝑚2) · · · 𝑝𝑑(𝑛/𝑘 −𝑚𝑘)

· · · · · · · · · · · ·

𝑝𝑑(𝑛/𝑘 −𝑚1) 𝑝𝑑(𝑛/𝑘 −𝑚2) · · · 𝑝𝑠(𝑛/𝑘 −𝑚𝑘)

⎞⎟⎟⎟⎟⎟⎟⎠w
]︁

Computing the directional derivative along the gradient u = e𝑘 − eℓ* (where e𝑖 is the

vector of all 0’s except for a 1 in 𝑖th spot):

𝜕𝑇 (𝑤𝑘)|m
𝜕𝑚𝑘

− 𝜕𝑇 (𝑤𝑘)|m
𝜕𝑚ℓ*

= 𝑝𝑑 (1 − (1 − 𝜃)𝑤𝑘) − 𝑝𝑠 (1 − (1 − 𝜃)𝑤ℓ*)

Note that because 𝑤𝑘 ≤ 𝑤ℓ* , (1 − (1 − 𝜃)𝑤𝑘) ≥ (1 − (1 − 𝜃)𝑤ℓ*). Because 𝑝𝑠 > 𝑝𝑑, the above

expression is positive.

Lastly, we need to argue that in the case of islands of equal size, increased DeGroot

centrality inequality (i.e., the island with larger centrality increases its centrality while the

other’s centrality decreases) cannot make the network go from susceptible to impervious. To

check if the network is impervious, all that needs to be checked is max𝑖𝒟𝑖(1𝐷) > (1 − 𝑏)/2.

When inequality of the DeGroot centrality increases, then max𝑖𝒟𝑖(1𝐷) increases, and so the

above inequality is more likely to be satisfied when inequality is increased. Therefore, the

network can go from impervious to susceptible, but not the other direction.

Proof of Theorem 3.2.2. Part (i) is a direct implication of Theorem 3.2.1: it is impossible for an

increase in inequality to make the network switch from susceptible to impervious. Thus, if

some inequality configuration makes the network impervious, it must necessarily be the case

that the network with the least inequality is impervious.

For parts (ii) and (iii), consider the following construction of the inequality structures.

If for all choices of (m, 𝑝𝑑) the DeGroot centralities of all of the islands are monotone in 𝑝𝑠

(either monotonically increasing or decreasing) then choose 𝑝𝑠 sufficiently close to 1 such that
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manipulation is the same under this inequality structure and 𝑝𝑠 = 1 (i.e., extreme homophily).

Such a 𝑝𝑠 < 1 is guaranteed because centralities are continuous in the inequality parameters.

Otherwise, there exists (m, 𝑝𝑑) such that at least one island has non-monotone centrality in 𝑝𝑠.

First, note that all centralities are concave in 𝑝𝑠; this can be seen from considering the map in

the proof of Theorem 3.2.1 for 𝑝𝑠 and noting that:

𝜕2𝑇 (𝑤ℓ|𝑝𝑠)
𝜕𝑝2𝑠

=

(︃
𝑚ℓ + (1 − 𝜃)(𝑛/𝑘 −𝑚ℓ)𝑤ℓ −

∑︁
ℓ̸=𝑘

(𝑚ℓ + (1 − 𝜃)(𝑛/𝑘 −𝑚ℓ)𝑤ℓ)

)︃
· 𝑝2𝑠 − 𝑝2𝑑

(𝑝𝑠 + 𝑝𝑑)4
> 0

because both terms in the above expression are positive. (Recall that 𝑤ℓ is equal to 1 minus

centrality, so convexity of 𝑤ℓ corresponds to concavity of centrality.) Second, note that the

centrality curve of an island with more knowledgeable agents always lies above an island

with fewer (this was shown in Theorem 3.2.1). Suppose some island that exhibits the non-

monotonicity of centrality in 𝑝𝑠; if there are multiple, pick the island whose centrality apex

occurs at the largest value for 𝑝𝑠 (call this is the “special” island); call this value 𝑝*𝑠. If we

choose 𝑏 so that (1 − 𝑏)/2 lies just below the apex of the centrality curve, then this island will

be manipulated for 𝑝*𝑠, but not at 𝑝𝑠 = 1 because the centrality curve for the special island is

concave (and thus is decreasing after 𝑝*𝑠). All islands with more knowledgeable agents than

the special island are protected when there is the most inequality, and all islands with fewer

knowledgeable agents than the special island are manipulated under 𝑝*𝑠. Similarly, every

other island has either: (i) monotonically decreasing centrality, (ii) monotonically increasing

centrality, or (iii) non-monotone centrality. In the case of (i) and (iii), by assumption, the island

cannot be manipulated at 𝑝𝑠 = 1 but is at 𝑝*𝑠. Moreover for islands of type (ii), the centrality

must naturally lie above the centrality curve of the special island, so is manipulated at 𝑝*𝑠. Thus,

this intermediate inequality structure has strictly more manipulation than the most inequality.

It just remains to show that for every 𝑘 ≥ 3, there exists a choice of 𝑚 and distribution m

that has at least one non-monotone centrality curve. For this, we provide an explicit example

for 𝑘 = 3. The parameters are given by 𝜃 = 1/20, 𝑝𝑑 = .2, 𝑚1 = 44, 𝑚2 = 29, 𝑚3 = 0, 𝑛 = 1000,

for three islands. The plot is given in Figure B-13.

To generalize to more communities, simply add a community with all DeGroot agents. This

will make the centrality of the special island increase for intermediate inequality relative to

most inequality because the centrality of the all DeGroot island will exceed that of the special
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Figure B-13. DeGroot centrality for island 2 as a function of 𝑝𝑠.

island. Thus, there will still be manipulation with intermediate inequality, but not with the

most inequality.

Proof of Theorem 3.2.4. As in the proof of Theorem 3.2.1, let us consider each of the inequality

cases separately and define corresponding maps 𝑇 . We show that all beliefs decrease following

an increase in 𝑝𝑠, decrease in 𝑝𝑑, or a reverse “Robin Hood” operation.

1. 𝑝𝑠: Let us define 𝑇 as:

𝑇 |𝑝𝑠 : w ↦→

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝

𝑝𝑠𝑚1+𝑝𝑑
∑︀

ℓ ̸=1𝑚ℓ

𝑝𝑠𝑠1+(1−𝑠1)𝑝𝑑
𝑝𝑠𝑚2+𝑝𝑑

∑︀
ℓ ̸=2𝑚ℓ

𝑝𝑠𝑠2+(1−𝑠2)𝑝𝑑

· · ·
𝑝𝑠𝑚𝑘+𝑝𝑑

∑︀
ℓ ̸=𝑘𝑚ℓ

𝑝𝑠𝑠𝑘+(1−𝑠𝑘)𝑝𝑑

⎞⎟⎟⎟⎟⎟⎟⎠+ (1 − 𝜃)

⎛⎜⎜⎜⎜⎜⎜⎝

𝑝𝑠(𝑠1𝑛−𝑚1)
𝑝𝑠𝑠1+(1−𝑠1)𝑝𝑑

𝑝𝑑(𝑠2𝑛−𝑚2)
𝑝𝑠𝑠1+(1−𝑠1)𝑝𝑑

· · · 𝑝𝑑(𝑠𝑘𝑛−𝑚𝑘)
𝑝𝑠𝑠1+(1−𝑠1)𝑝𝑑

𝑝𝑑(𝑠1𝑛−𝑚1)
𝑝𝑠𝑠2+(1−𝑠2)𝑝𝑑

𝑝𝑠(𝑠2𝑛−𝑚2)
𝑝𝑠𝑠2+(1−𝑠2)𝑝𝑑

· · · 𝑝𝑑(𝑠𝑘𝑛−𝑚𝑘)
𝑝𝑠𝑠2+(1−𝑠2)𝑝𝑑

· · · · · · · · · · · ·
𝑝𝑑(𝑠1𝑛−𝑚1)

𝑝𝑠𝑠𝑘+(1−𝑠𝑘)𝑝𝑑
𝑝𝑑(𝑠2𝑛−𝑚2)

𝑝𝑠𝑠𝑘+(1−𝑠𝑘)𝑝𝑑
· · · 𝑝𝑠(𝑠𝑘𝑛−𝑚𝑘)

𝑝𝑠𝑠𝑘+(1−𝑠𝑘)𝑝𝑑

⎞⎟⎟⎟⎟⎟⎟⎠w

⎤⎥⎥⎥⎥⎥⎥⎦
Computing directly for island 1:

𝜕𝑇 (𝑤1|𝑝𝑠)
𝜕𝑝𝑠

= 𝑝𝑑
(1 − 𝑠1) (𝑚1 + (1 − 𝜃)(𝑛𝑠1 −𝑚1)𝑤1) − 𝑠1

∑︀
ℓ ̸=1 (𝑚ℓ + (1 − 𝜃)(𝑛𝑠ℓ −𝑚ℓ)𝑤ℓ)

(𝑝𝑠𝑠1 + 𝑝𝑑(1 − 𝑠1))2

=
1

(𝑝𝑠𝑠1 + 𝑝𝑑(1 − 𝑠1))2

(︃
𝑚1

𝑠1
+ (1 − 𝜃)(𝑛−𝑚1/𝑠1)𝑤1 −

∑︀
ℓ̸=1𝑚ℓ

1 − 𝑠1
− (1 − 𝜃)

∑︁
ℓ ̸=1

𝑛𝑠ℓ −𝑚ℓ

1 − 𝑠1
𝑤ℓ

)︃
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By assumption, 𝑚1/𝑠1 <
∑︀

ℓ̸=1𝑚ℓ/(1 − 𝑠1) and 𝑤1 ≤ 𝑤ℓ, thus,

𝜕𝑇 (𝑤1|𝑝𝑠)
𝜕𝑝𝑠

<
𝑤1(1 − 𝜃)

(𝑝𝑠𝑠1 + 𝑝𝑑(1 − 𝑠1))2

(︃
𝑛−𝑚1/𝑠1 −

∑︁
ℓ ̸=1

𝑛𝑠ℓ −𝑚ℓ

1 − 𝑠1

)︃

=
𝑤1(1 − 𝜃)

(𝑝𝑠𝑠1 + 𝑝𝑑(1 − 𝑠1))2

(︂
𝑛−𝑚1/𝑠1 − 𝑛+

𝑚−𝑚1

1 − 𝑠1

)︂
=

𝑤1(1 − 𝜃)

(𝑝𝑠𝑠1 + 𝑝𝑑(1 − 𝑠1))2
𝑠1𝑚−𝑚1

𝑠1(1 − 𝑠1)
< 0

Thus, the beliefs of the agents on island 1 decrease following an increase in 𝑝𝑠. Then

observe that for other islands ℓ ̸= 1:

(︂
1

1 − 𝜃
− (1 − 𝜃)

𝑝𝑠(𝑠ℓ𝑛−𝑚ℓ)

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))

)︂
𝑤ℓ =

𝑝𝑠𝑚ℓ + 𝑝𝑑
∑︀

ℓ′ ̸=ℓ𝑚ℓ′

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)

∑︁
ℓ′ ̸=ℓ

𝑝𝑑(𝑠ℓ′𝑛−𝑚ℓ′)

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
𝑤ℓ′

when 𝑠1 is sufficiently close to 1, the above simplifies to:

1

1 − 𝜃
𝑤ℓ =

𝑝𝑑𝑚1

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)

𝑝𝑑(𝑠1𝑛−𝑚1)

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
𝑤1

Both 𝑝𝑑𝑚1

𝑛(𝑝𝑠𝑠ℓ+𝑝𝑑(1−𝑠ℓ))
and 𝑝𝑑(𝑠1𝑛−𝑚1)

𝑛(𝑝𝑠𝑠ℓ+𝑝𝑑(1−𝑠ℓ))
are decreasing in 𝑝𝑠, and we just showed that 𝑤1 is

decreasing in 𝑝𝑠. Thus belief of island ℓ is also decreasing in 𝑝𝑠.

2. 𝑝𝑑: Recall that

𝜕𝑇 (𝑤1|𝑝𝑑)
𝜕𝑝𝑑

= −𝑝𝑠
𝑝𝑑

𝜕𝑇 (𝑤1|𝑝𝑠)
𝜕𝑝𝑠

> 0

And the expression for 𝑤ℓ when 𝑠1 is sufficiently close to 1 is:

1

1 − 𝜃
𝑤ℓ =

𝑝𝑑𝑚1

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)

𝑝𝑑(𝑠1𝑛−𝑚1)

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
𝑤1

Both 𝑝𝑑𝑚1

𝑛(𝑝𝑠𝑠ℓ+𝑝𝑑(1−𝑠ℓ))
and 𝑝𝑑(𝑠1𝑛−𝑚1)

𝑛(𝑝𝑠𝑠ℓ+𝑝𝑑(1−𝑠ℓ))
are increasing in 𝑝𝑑, and we showed prior that 𝑤1 is

increasing in 𝑝𝑑. Thus belief of island ℓ is also increasing in 𝑝𝑑.

3. Majorization: We consider a “Robin Hood” operation that adds a knowledgeable agent to

the large island. Once again we compute the directional derivative along the gradient
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u = e1 − eℓ* for some island ℓ*:

𝜕𝑇 (𝑤1|m)

𝜕𝑚1

− 𝜕𝑇 (𝑤1|m)

𝜕𝑚ℓ*
=
𝑝𝑠(1 − (1 − 𝜃)𝑤1) − 𝑝𝑑(1 − (1 − 𝜃)𝑤ℓ)

𝑝𝑠𝑠1 + (1 − 𝑠1)𝑝𝑑
> 0

because 𝑤1 ≤ 𝑤ℓ and 𝑝𝑠 ≥ 𝑝𝑑. Similarly, when 𝑠1 is sufficiently close to 1:

1

1 − 𝜃
𝑤ℓ =

𝑝𝑑𝑚1

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)

𝑝𝑑(𝑠1𝑛−𝑚1)

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
𝑤1

which is increasing in 𝑚1 given that 𝑤1 is increasing in 𝑚1.

Note that when 𝑠1 is sufficiently large, a reverse “Robin Hood” operation that does not

impact island 1 will have little effect on the beliefs of the islands. Thus, provided that no

island’s centrality lies directly at (1 − 𝑏)/2 (which holds for 𝑏 on a set of full measure), this

operation will have no impact on which agents are manipulated.

Section 5

Illustrative Example

Suppose there are two islands of equal size. We assume that 5% of the population is knowledgeable,

and we have a fixed homophily structure of (𝑝𝑠, 𝑝𝑑) = (0.5, 0.2). Moreover, suppose that 𝑏 = 0,

so that agents choose the action corresponding to the state they believe is more likely. We

explore how inequality, in the form of the distribution of knowledgeable agents across the

islands, affects the principal’s strategy as we vary the cost 𝜀:

1. Extreme inequality: Suppose knowledgeable agents constitute 10% of the population of

the first island and the second island has no knowledgeable agents at all. Let 𝜅ℓ denote

the proportion of agents targeted by the principal on island ℓ. Then the fraction (of

the total population) of agents manipulated, along with the proportions of island 1 and

island 2 targeted by the principal (i.e., 𝜅1 and 𝜅2) are given in Figure B-14. With extreme

inequality, the principal “gives up” on the island with more knowledgeable agents, and

sends no misinformation to any agents on this island (𝜅1 = 0). On the other hand, he

sends misinformation to almost all of the second island and manipulates everyone on

that island, until the cost of sending signals exceeds a threshold �̄� > 1.
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Figure B-14. The principal’s optimal strategy for various values of 𝜀 under extreme inequality.
Depending on the curve, (Respective) fraction refers to either the fraction of the entire
population manipulated, or the fraction of a given island that is targeted. For example, when
𝜖 = 0.5, the principal targets no one on the first island and almost everyone on the second
island and ends up manipulating half the population.

2. Intermediate inequality: Now suppose the first island has 7.5% knowledgeable agents

and the second island has only 2.5%. The principal’s strategy and resulting manipulation

are shown in Figure B-15. The principal sends misinformation to everyone on the

second island, but importantly, this alone is not enough to manipulate the agents on

that island: he also has to send misinformation to the first island in order to be able to

manipulate the second island. However, this strategy targets more agents on the whole

than when there is extreme inequality, and thus is more expensive. After a point �̄� < 1,

the principal has no profitable strategy. This network is therefore more resilient than

one with extreme inequality, since the cost range that allows the principal to (profitably)

spread misinformation is smaller.

3. No inequality: Finally, suppose both islands have 5% knowledgeable agents. The plot

of the principal’s strategy and resulting manipulation are shown in Figure B-16. Similar

to the case of extreme inequality, there is a threshold �̄� > 1 such that the principal has

no profitable strategy above that threshold, and so this inequality structure is again less

resilient than the case of intermediate inequality. However, unlike the case of extreme

inequality, the entire population is manipulated before this threshold is met. Thus, for

𝜀 < 1, the absence of inequality leads to maximal manipulation relative to the other
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Figure B-15. The principal’s optimal strategy for various values of 𝜀 under some inequality.
Depending on the curve, (Respective) fraction refers to either the fraction of the entire
population manipulated, or the fraction of a given island that is targeted.

inequality structures.

The computation of the principal’s optimal strategy when there are two islands with the

same population, as in the example above, can be easily generalized via the algorithm presented

next.

Algorithm. Let the marginalized island be the island with fewer knowledgeable agents and the

privileged island be the island with more knowledgeable agents (if the number of knowledgeable

agents is equal, label them arbitrarily). Moreover, let 𝜅𝑚, 𝜅𝑝 be the proportion of agents targeted

on the marginalized and privileged islands, respectively. The principal’s optimal strategy can

be computed as follows:

(i) Consider the strategy where the principal targets all agents.

(a) If neither island is manipulated, the principal’s optimal strategy is x = 0.

(b) If both islands are manipulated, then decrease 𝜅𝑚 until the belief on the marginalized

island matches that of the privileged island or 𝜅𝑚 = 0. Then decrease 𝜅𝑚 and 𝜅𝑝

one-for-one,8 (if 𝜅𝑚 = 0, just decrease 𝜅𝑝), until both (identical) beliefs fall below

the cutoff. (Note that if 𝜅𝑝 = 𝜅𝑚 = 0, no island will be manipulated, so such 𝜅𝑝, 𝜅𝑚

always exist.) Record the payoff 1 − 𝜅𝑝+𝜅𝑚
2

𝜀.

8Formally, “one-for-one” here means decrease them simultaneously so that the beliefs of both island remain
identical as these decrease, which may not necessarily correspond to the same change for 𝜅𝑚 as 𝜅𝑝 to achieve this.
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Figure B-16. The principal’s optimal strategy for various values of 𝜀 under no inequality.
Depending on the curve, (Respective) fraction refers to either the fraction of the entire
population manipulated, or the fraction of a given island that is targeted.

(c) If just the marginalized island is manipulated, decrease 𝜅𝑝 until the marginalized

island’s belief is below 𝜋*. If 𝜅𝑝 = 0 still results in the marginalized island’s manipulation,

begin decreasing 𝜅𝑚 until this island is no longer manipulated. If the payoff of
1
2
− 𝜅𝑝+𝜅𝑚

2
𝜀 > 0, this is the principal’s optimal strategy.

(ii) If case (i)(b) holds, consider the strategy where the principal targets no one and no

island is manipulated. The principal then increases 𝜅𝑚 until the marginalized island is

manipulated; if the marginalized island is not manipulated at 𝜅𝑚 = 1, then the principal

begins increasing 𝜅𝑝 until the marginalized island is manipulated. (If 𝜅𝑝 = 𝜅𝑚 = 1 and the

marginalized island is still not manipulated, then default to case (i)(a).) Record the payoff
1
2
− 𝜅𝑝+𝜅𝑚

2
𝜀.

(iii) Compare the recorded payoffs and the payoff of 0. If the largest payoff is 0, the principal’s

optimal strategy is x = 0. Otherwise, the principal should employ the strategy (either

(i)(b) or (ii)) corresponding to the largest payoff.

Proposition B.2.1. The aforementioned algorithm is correct, i.e., it provides the principal’s

optimal strategy for any 𝜀.

Proof of Proposition B.2.1. The principal first decides the cheapest way to manipulate 0, 1, and

2 islands, respectively, and then compares the payoffs and chooses whichever is maximal. The
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cheapest way to manipulate no islands is x = 0, which is always the recommended outcome of

the algorithm for 0 islands.

To manipulate one island, it is always cheaper to manipulate the marginalized island. Note

𝑤𝐾𝑚 does not depend on 𝜅𝑚 or 𝜅𝑝, and that 𝜕𝑤𝐷𝑚/𝜕𝜅𝑚 > 𝜕𝑤𝐷𝑚/𝜕𝜅𝑝. Thus, the optimal way to

manipulate the marginalized island is to decrease 𝜅𝑝 as much as possible, leaving 𝜅𝑚 = 1, until

the marginalized island is no longer manipulated. If it is still manipulated at 𝜅𝑝 = 0, then the

only more cost effective strategy would be to decrease 𝜅𝑚 until you lose this island. This is

precisely the strategy identified in (i)(c) and (ii). In the case of (i)(c), we know this to be the

optimal strategy if it beats manipulating no one, because it is impossible to manipulate both

islands.

To manipulate two islands, we show that it is always optimal for either: (1) 𝜅𝑚 = 0 and 𝜅𝑝

is chosen smallest to manipulate both islands, or (2) both islands have the same belief at the

optimal strategy (right at the cutoff (1 + 𝑏)/2). Recall that 𝜕𝑤𝐷ℓ /𝜕𝜅ℓ > 𝜕𝑤𝐷ℓ /𝜕𝜅ℓ′ for both islands,

where ℓ′ ̸= ℓ. The privileged island will have beliefs closer to the truth when 𝜅𝑚 = 𝜅𝑝, it must be

the case that 𝜅𝑝 ≥ 𝜅𝑚 in the optimal strategy for 2-island manipulation. Of these strategies, (1)

is clearly then optimal provided that 𝜅𝑚 = 0 does not cause the marginalized island’s belief to

lie above the cutoff (and thus, not manipulate both islands). Otherwise, if some island ℓ’s belief

is strictly above the cutoff, then one can decrease 𝜅ℓ a small amount and increase 𝜅ℓ′ for ℓ′ ̸= ℓ

by a smaller amount, again, because 𝜕𝑤𝐷ℓ /𝜕𝜅ℓ > 𝜕𝑤𝐷ℓ /𝜕𝜅ℓ′ for both islands ℓ. This is cheaper

than the previous strategy, a contradiction. So (2) must be optimal.

Finally, step (iii) checks whether 0-island, 1-island, or 2-island manipulation is the most

profitable.

Proof of Theorem 3.2.3. The beliefs of all agents will be identical in the network with the least

inequality. Let 𝑚(𝑏) be the maximum number of knowledgeable agents such that if these

agents are all distributed evenly across the islands, every agent is manipulated if the principal

targets every DeGroot, which is a function of 𝑏. Moreover, because of symmetry, it is clear

that manipulating every agent or manipulating no agent is the principal’s optimal strategy,

and in particular for 𝜀 < 1, manipulating every agent is a profitable strategy. (Note that this

does not imply that 𝛾 = 1𝐷 is optimal, just that manipulating every agent is optimal.) When

we move to an inequality configuration with the most inequality, there are two cases: (1)

𝑚(𝑏) ≤ 𝑛/𝑘 − 1 or (2) 𝑚(𝑏) ≥ 𝑛/𝑘. In case (1), we stack all of the knowledgeable agents on
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a single island and set 𝑝𝑠 = 1 and 𝑝𝑑 = 0, noting that there is at least one DeGroot on this

island. It is clear that this means the island with all the knowledgeable agents will have a

decrease in their DeGroot centrality, which by definition of 𝑚(𝑏), will protect this island from

manipulation. At the same time, this configuration is still susceptible to manipulation, because

the islands with all DeGroots agents will be manipulated given 𝜀 < 1. In case (2), we make

island 1 contain all knowledgeable agents and one DeGroot, and then distribute the remaining

knowledgeable agents equally amongst the rest of the islands. For sufficiently large 𝑛, this

will always (strictly) decrease the centrality of the one DeGroot agents on the island with

concentrated knowledgeable agents, thereby protecting her from manipulation; at the same

time, the DeGroots on the other islands will continue to be manipulated, as their centrality

does not decrease (and may increase).

Finally, we show there exists a model with intermediate inequality that is impervious

for some open interval of 𝜀 ∈ (𝜀*, 𝜀**) and 𝑏 ∈ (𝑏*, 𝑏**). Once again there are two cases: (1)

𝑚(𝑏) ≤ 𝑛/𝑘 − 1 and (2) 𝑚(𝑏) ≥ 𝑛/𝑘. In the former case, put all of the knowledgeable agents

on island 1 along with one DeGroot, as before. In the latter case, put 𝑛/𝑘 − 1 knowledgeable

agents on island 1 along with one DeGroot, and then distribute the rest of the knowledgeable

agents evenly amongst the remaining islands. If 0 < 𝑝𝑑 < 𝑝𝑠 < 1, then we have a model of

intermediate inequality where the beliefs (of the correct state) of the agents on island 1 exceed

those on the other islands (which are identical because of symmetry).9 Because the beliefs of

the agents on island 1 exceed that of other islands, we know the principal cannot manipulate

the DeGroot on island 1, even if he were to target every DeGroot in the population. Next, we

show that for any 𝛿 < 1, there exists some 𝑝𝑑 and 𝑏 > −1 such that the principal needs to target

at least 𝛿 proportion of the DeGroots on island 1 and at least 𝛿 proportion of the DeGroots on

the rest of the islands.10 We know that 𝜋1 > 𝜋ℓ when the principal targets every DeGroot for all

ℓ ̸= 1 given that 𝑝𝑑 < 𝑝𝑠. Thus, we can always choose 𝑏 such that (1 + 𝑏)/2 is arbitrarily close to

𝜋ℓ but still satisfies 𝜋1 > (1 + 𝑏)/2 > 𝜋ℓ. Given 𝑝𝑑 > 0, any (substantial) deviation from 𝛾 = 1𝐷,

in the ∞-norm, leads to some island ℓ ̸= 1 not being manipulated. Because the principal

should always enact a symmetric strategy with respect to all islands ℓ ̸= 1, we then either have

9This was shown in the proof of Theorem 3.2.1.
10Note that there is technically only one DeGroot on island 1, so targeting 𝛿 proportion of one DeGroot seems

non-sensical. However, Appendix B.2.1 reconciles this: because the analysis is always closed under multiplication
of each island by the same proportion of knowledgeable agents and DeGroots, we can always expand the size of
the DeGroot population such that 𝛿 proportion (assuming 𝛿 ∈ 𝒬) of 𝛿(𝑛/𝑘 −𝑚1) is an integer.
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(i) the network is impervious, or (ii) the principal should send signals to at least 𝛿 proportion of

each island, where 𝛿 can be arbitrarily close to 1. In the latter case, the payoff of the principal

is no more than 𝑛
(︀
𝑘−1
𝑘

)︀
−𝑚(𝑏) − (𝑛 −𝑚(𝑏))𝛿𝜀, again, for 𝛿 arbitrarily close to 1. Thus, there

exists 𝜀 < 1 such that the principal’s payoff from this strategy is negative. Hence, the network is

impervious with a model of intermediate inequality.

Section 6

Proof of Proposition 3.2.1. Suppose there are 𝑛 agents in the network, and there are 𝑚

knowledgeable agents. We denote by 𝑤ℓ→𝑟 the weighted walks from an agent on island ℓ

to any knowledgeable agent on island 𝑟. For ℓ ̸= 𝑟, we can write:

𝑤ℓ→𝑟 ≥ (1 − 𝜃)
𝑝𝑑𝑚𝑟

𝑛(𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)2

(︂
𝑛𝑝𝑠𝑠ℓ𝑤ℓ→𝑟 + 𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)𝑤𝑟→𝑟 + 𝑛𝑝𝑑

∑︀
𝜏 ̸=𝑟,ℓ 𝑠𝜏𝑤𝜏→𝑟

𝑛𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ)

)︂
≥ (1 − 𝜃)

𝑝𝑑𝑚𝑟

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)2

(︂
𝑛𝑝𝑠𝑠ℓ𝑤𝑟 + 𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)(𝑤𝑟 + 𝑤𝑟→𝑟 − 𝑤𝑟) + 𝑛𝑝𝑑(1 − 𝑠ℓ − 𝑠𝑟)𝑤𝑟

𝑛𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ)

)︂
= (1 − 𝜃)

𝑝𝑑𝑚𝑟

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)2

(︂
𝑤𝑟 +

𝑛𝑝𝑑𝑠𝑟(𝑤𝑟→𝑟 − 𝑤𝑟) − 𝑝𝑑𝑚𝑟𝑤𝑟→𝑟

𝑛𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ)

)︂
= (1 − 𝜃)

𝑝𝑑𝑚𝑟

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)2

(︂
𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ − 𝑠𝑟)

𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)
𝑤𝑟 +

𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
𝑤𝑟→𝑟

)︂
≥ (1 − 𝜃)2

𝑝𝑑𝑚𝑟

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
+ (1 − 𝜃)2

(︂
𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ − 𝑠𝑟)

𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)
𝑤𝑟 +

𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)

𝑛(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ))
𝑤𝑟→𝑟

)︂

where 𝑤𝑟 = min𝜏 ̸=𝑟 𝑤𝜏→𝑟. This implies that:

𝑤𝑟 ≥ (1 − 𝜃)2
𝑝𝑑𝑚𝑟 + 𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)𝑤𝑟→𝑟

𝑛𝜃(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) − (1 − 𝜃)𝑝𝑑𝑠𝑟

Similarly,

𝑤𝑟→𝑟 = (1 − 𝜃)
𝑝𝑠𝑚𝑟

𝑛(𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟))
+ (1 − 𝜃)2

𝑝𝑠(𝑛𝑠𝑟 −𝑚𝑟)𝑤
𝑟
𝑟 + 𝑝𝑑

∑︀
𝜏 ̸=𝑟 𝑠𝜏𝑤

𝜏
𝑟

𝑛𝑝𝑠𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟)

≥ (1 − 𝜃)
𝑝𝑠𝑚𝑟

𝑛(𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟))
+ (1 − 𝜃)2

[︂
𝑤𝑟 +

𝑛𝑝𝑠𝑠𝑟(𝑤𝑟→𝑟 − 𝑤𝑟) − 𝑝𝑠𝑚𝑟𝑤𝑟→𝑟

𝑛𝑝𝑠𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟)

]︂
= (1 − 𝜃)

𝑝𝑠𝑚𝑟

𝑛(𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟))
+ (1 − 𝜃)2

[︂
𝑝𝑑(1 − 𝑠𝑟)

𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟)
𝑤𝑟 +

𝑝𝑠(𝑛𝑠𝑟 −𝑚𝑟)

𝑛(𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟))
𝑤𝑟→𝑟

]︂
≥ (1 − 𝜃)2

𝑝𝑠𝑚𝑟

𝑛(𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟))
+ (1 − 𝜃)2

[︂
𝑝𝑑(1 − 𝑠𝑟)

𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟)
𝑤𝑟 +

𝑝𝑠(𝑛𝑠𝑟 −𝑚𝑟)

𝑛(𝑝𝑠𝑠𝑟 + 𝑝𝑑(1 − 𝑠𝑟))
𝑤𝑟→𝑟

]︂
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which moreover implies that

𝑤𝑟→𝑟 ≥ (1 − 𝜃)
𝑝𝑠𝑚𝑟 + (1 − 𝜃)𝑛𝑝𝑑(1 − 𝑠𝑟)𝑤𝑟

𝜃𝑝𝑠𝑛𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟) + (1 − 𝜃)𝑝𝑠𝑚𝑟

Combining these two results we get:

𝑤𝑟 ≥ (1 − 𝜃)2
𝑝𝑑𝑚𝑟 + 𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)(1 − 𝜃)

𝑝𝑠𝑚𝑟+(1−𝜃)𝑛𝑝𝑑(1−𝑠𝑟)𝑤𝑟

𝜃𝑝𝑠𝑛𝑠𝑟+𝑛𝑝𝑑(1−𝑠𝑟)+(1−𝜃)𝑝𝑠𝑚𝑟

𝑛𝜃(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) − (1 − 𝜃)𝑝𝑑𝑠𝑟

=⇒ [𝑛𝜃(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) − (1 − 𝜃)𝑝𝑑𝑠𝑟]𝑤𝑟

≥ (1 − 𝜃)3
𝑝𝑑𝑚𝑟 + 𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)

𝑝𝑠𝑚𝑟+(1−𝜃)𝑛𝑝𝑑(1−𝑠𝑟)𝑤𝑟

𝜃𝑝𝑠𝑛𝑠𝑟+𝑛𝑝𝑑(1−𝑠𝑟)+(1−𝜃)𝑝𝑠𝑚𝑟

𝑛𝜃(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) − (1 − 𝜃)𝑝𝑑𝑠𝑟

=⇒ [𝑛𝜃(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) − (1 − 𝜃)𝑝𝑑𝑠𝑟]𝑤𝑟

≥ (1 − 𝜃)3𝑝𝑑𝑚𝑟 + (1 − 𝜃)3𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)
𝑝𝑠𝑚𝑟

𝜃𝑝𝑠𝑛𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟) + (1 − 𝜃)𝑝𝑠𝑚𝑟

+ (1 − 𝜃)4𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)
𝑛𝑝𝑑(1 − 𝑠𝑟)

𝜃𝑝𝑠𝑛𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟) + (1 − 𝜃)𝑝𝑠𝑚𝑟

𝑤𝑟

Note that:

(︀
[𝑛𝜃(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) − (1 − 𝜃)𝑝𝑑𝑠𝑟] [𝜃𝑝𝑠𝑛𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟) + (1 − 𝜃)𝑝𝑠𝑚𝑟] − (1 − 𝜃)4𝑝2𝑑(𝑛𝑠𝑟 −𝑚𝑟)(1 − 𝑠𝑟)

)︀
𝑤𝑟

≥(1 − 𝜃)3𝑝𝑑𝑚𝑟 [𝜃𝑝𝑠𝑛𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟) + (1 − 𝜃)𝑝𝑠𝑚𝑟] + (1 − 𝜃)3𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)

Therefore, we can write 𝑤𝑟 ≥ 𝑁(𝑛)/𝐷(𝑛), where:

𝑁(𝑛) ≡(1 − 𝜃)3𝑝𝑑𝑚𝑟 [𝜃𝑝𝑠𝑛𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟) + (1 − 𝜃)𝑝𝑠𝑚𝑟] + (1 − 𝜃)3𝑝𝑑(𝑛𝑠𝑟 −𝑚𝑟)

𝐷(𝑛) ≡ [𝑛𝜃(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) − (1 − 𝜃)𝑝𝑑𝑠𝑟] [𝜃𝑝𝑠𝑛𝑠𝑟 + 𝑛𝑝𝑑(1 − 𝑠𝑟) + (1 − 𝜃)𝑝𝑠𝑚𝑟] − (1 − 𝜃)4𝑝2𝑑(𝑛𝑠𝑟 −𝑚𝑟)(1 − 𝑠𝑟)

If there are 𝑚 = 𝑐𝑟𝑛 knowledgeable agents on island 𝑟, as 𝑛→ ∞, we have that:

𝑤𝑟 ≥
(1 − 𝜃)3𝑝𝑑𝑐𝑟

𝜃(𝑝𝑠𝑠+ 𝑝𝑑(1 − 𝑠))

where 𝑠 = max𝜏∈{1,...,𝑘} 𝑠𝜏 . Thus, the network is impervious as long as 𝑤𝑟 > (1 + 𝑏)/2. This

moreover implies the network is impervious if 𝑐𝑟 ≥ 𝜃(𝑝𝑠𝑠+𝑝𝑑(1−𝑠))(1+𝑏)
2(1−𝜃)3𝑝𝑑

for any island 𝑟. By the

pigeonhole principle, there must be an island with at least 𝑐/𝑘 proportion of the population

that is knowledgeable. Thus taking 𝑐 = 𝑘 𝜃(𝑝𝑠𝑠+𝑝𝑑(1−𝑠))(1+𝑏)
2(1−𝜃)3𝑝𝑑

and applying the result for the island
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𝑟 which has the largest proportion of knowledgeable agents, we see the network is impervious

to manipulation. Moreover 𝑐 < 1 provided that 𝜃 is not too large.

Proof of Proposition 3.2.2. For each 𝜃 and 𝑐 we construct a strong inequality model where all

but 𝑘 communities are manipulated. Put all 𝑐𝑛 knowledgeable agents on the first island on the

line topology and let all other islands contain only DeGroots and be the same size as each other.

We assume that the principal attempts to manipulate the last 𝑘 − 𝑘 communities along the

line. We compute 𝒟ℓ(1) for every island by counting knowledgeable walks for every island; we

denote these walks by 𝑤ℓ which is equivalent to 1 −𝒟ℓ(𝛾). For island 2, we have the recursion:

𝑤2 = (1 − 𝜃)
𝑝𝑑𝑠1

𝑝𝑑(𝑠1 + 𝑠3) + 𝑝𝑠𝑠2
+ (1 − 𝜃)2

𝑝𝑠𝑠2𝑤2 + 𝑝𝑑𝑠3𝑤3

𝑝𝑑(𝑠1 + 𝑠3) + 𝑝𝑠𝑠2

=⇒ 𝑤2 = (1 − 𝜃)
𝑝𝑑𝑠1

𝑝𝑑(𝑠1 + 𝑠3) + 𝑝𝑠𝑠2 − (1 − 𝜃)2𝑝𝑠𝑠2
+ (1 − 𝜃)2

𝑝𝑑𝑠3𝑤3

𝑝𝑑(𝑠1 + 𝑠3) + 𝑝𝑠𝑠2 − (1 − 𝜃)2𝑝𝑠𝑠2

For ℓ ≥ 3:

𝑤ℓ = (1 − 𝜃)2
𝑝𝑑(𝑤ℓ−1𝑠ℓ−1 + 𝑤ℓ+1𝑠ℓ+1) + 𝑝𝑠𝑤ℓ𝑠ℓ

𝑝𝑑(𝑠ℓ−1 + 𝑠ℓ+1) + 𝑝𝑠𝑠ℓ

=⇒ 𝑤ℓ = (1 − 𝜃)2
𝑝𝑑(𝑤ℓ−1𝑠ℓ−1 + 𝑤ℓ+1𝑠ℓ+1)

𝑝𝑑(𝑠ℓ−1 + 𝑠ℓ+1) + 𝑝𝑠𝑠ℓ − (1 − 𝜃)2𝑝𝑠𝑠ℓ

with 𝑤1 = 1 because the island consists of all knowledgeable agents. We first show that

limℓ→∞𝑤ℓ must exist. To do this, we show that 𝑤ℓ is monotonically decreasing in ℓ. We know

there is a unique fixed point for w, so if we prove that a decreasing sequence of 𝑤ℓ maps to

another decreasing sequence of 𝑤ℓ, then by Brouwer’s fixed point theorem the unique solution

must be a decreasing in ℓ. Note that:

𝑤ℓ ≤ (1 − 𝜃)2
𝑝𝑑(𝑤ℓ−1𝑠ℓ−1 + 𝑤ℓ𝑠ℓ+1)

𝑝𝑑(𝑠ℓ−1 + 𝑠ℓ+1) + 𝑝𝑠𝑠ℓ − (1 − 𝜃)2𝑝𝑠𝑠ℓ

=⇒
(︂

1 − 𝑝𝑑𝑠ℓ+1

𝑝𝑑(𝑠ℓ−1 + 𝑠ℓ+1) + 𝑝𝑠𝑠ℓ − (1 − 𝜃)2𝑝𝑠𝑠ℓ

)︂
𝑤ℓ ≤ (1 − 𝜃)2

𝑝𝑑𝑤ℓ−1𝑠ℓ−1

𝑝𝑑(𝑠ℓ−1 + 𝑠ℓ+1) + 𝑝𝑠𝑠ℓ − (1 − 𝜃)2𝑝𝑠𝑠ℓ

=⇒𝑤ℓ ≤ (1 − 𝜃)2
𝑝𝑑𝑤ℓ−1𝑠ℓ−1

𝑝𝑑𝑠ℓ−1 + 𝑝𝑠𝑠ℓ − (1 − 𝜃)2𝑝𝑠𝑠ℓ
≤ 𝑤ℓ−1

where the final inequality follows from the fact that 𝛽 𝛼
𝛼+𝛿

< 1 for 𝛼, 𝛽, 𝛿 ∈ (0, 1). Thus, 𝑤ℓ
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converges to some 𝑤∞. Note that 𝑤∞ must satisfy the fixed-point equation:

𝑤∞ = (1 − 𝜃)2
𝑝𝑑(𝑠ℓ−1 + 𝑠ℓ+1)𝑤∞

𝑝𝑑(𝑠ℓ−1 + 𝑠ℓ+1) + 𝑝𝑠𝑠ℓ − (1 − 𝜃)2𝑝𝑠𝑠ℓ

Again, since 𝑝𝑑(𝑠ℓ−1+𝑠ℓ+1)

𝑝𝑑(𝑠ℓ−1+𝑠ℓ+1)+𝑝𝑠𝑠ℓ−(1−𝜃)2𝑝𝑠𝑠ℓ
< 1, clearly 𝑤∞ = 0.

Now, suppose the principal attempts to manipulate 𝑘 − 𝑘 communities at the end of the

line. By our previous result, we know that for every 𝛿 > 0, there exists a sufficiently large 𝑘,

such that 𝑤𝑘+1 < 𝛿. Therefore, for any 𝑏, the principal can manipulate 𝑘 − 𝑘 of the islands at

the end of the line. This yields a payoff of
∑︀𝑘

ℓ=𝑘+1 𝑛𝑠𝑘 − 𝑛𝜀(1 − 𝑠1), which is positive for some

sufficiently small 𝜀 > 0. Thus, the network is susceptible to manipulation and all but 𝑘 islands

are manipulated.

Section 7

Proof of Corollary 3.2.1. By assumption, the budget is large enough to make the network

impervious. Thus, by Theorem 3.2.1, the network is impervious if the current distribution of

knowledgeable agents m is majorized by every other distribuiton (i.e., inequality cannot be

reduced by a more equal redistribution of knowledgeable agents). Minimizing inequality with

an educational intervention accomplishes this.

Proof of Corollary 3.2.2. Leveraging Theorem 3.2.4, we know that decreasing inequality when

the big island is the most underprivileged does not introduce more manipulation, and in fact,

might reduce it. Assuming the policy does not put all of the knowledgeable agents on island 1,

we know such a redistribution is a different feasible policy. In the proof of Theorem 3.2.4, this

is shown to be true because decreasing inequality increases all agents’ beliefs. This is exactly

the definition of a dominant policy.

Proof of Proposition 3.2.3. We show that if the knowledgeable agents are assigned in proportion

to island populations, i.e.,𝑚ℓ = 𝑀 ·𝑠ℓ, then all DeGroot centralities are equal. Then, homophily

has no effect (beliefs are the same on every island), so setting 𝑝𝑑 = 𝑝𝑜𝑑 is optimal, and always
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feasible because it costs nothing. Consider the map 𝑇 :

𝑇 : w ↦→ (1−𝜃)

⎛⎜⎜⎜⎝
𝑝𝑠𝑚1+

∑︀
ℓ̸=1 𝑝𝑑𝑚ℓ

𝑛𝑝𝑠𝑠1+𝑛𝑝𝑑(1−𝑠1)

· · ·
𝑝𝑠𝑚𝑘+

∑︀
ℓ̸=𝑘 𝑝𝑑𝑚ℓ

𝑛𝑝𝑠𝑠𝑘+𝑛𝑝𝑑(1−𝑠𝑘)

⎞⎟⎟⎟⎠+(1−𝜃)2

⎛⎜⎜⎜⎝
𝑝𝑠(𝑛𝑠1−𝑚1)

𝑛𝑝𝑠𝑠1+𝑛𝑝𝑑(1−𝑠1)
𝑝𝑑(𝑛𝑠2−𝑚2)

𝑛𝑝𝑠𝑠1+𝑛𝑝𝑑(1−𝑠1)
· · · 𝑝𝑑(𝑛𝑠𝑘−𝑚𝑘)

𝑛𝑝𝑠𝑠1+𝑛𝑝𝑑(1−𝑠1)

· · · · · · · · · · · ·
𝑝𝑑(𝑛𝑠1−𝑚1)

𝑛𝑝𝑠𝑠𝑘+𝑛𝑝𝑑(1−𝑠𝑘)
𝑝𝑑(𝑛𝑠2−𝑚2)

𝑛𝑝𝑠𝑠𝑘+𝑛𝑝𝑑(1−𝑠𝑘)
· · · 𝑝𝑠(𝑛𝑠𝑘−𝑚𝑘)

𝑛𝑝𝑠𝑠𝑘+𝑛𝑝𝑑(1−𝑠𝑘)

⎞⎟⎟⎟⎠w

Note we will simply plug in w = 𝑤*1 to 𝑇 and show it is a fixed point for some constant 𝑤*. For

island ℓ:

𝑤ℓ = (1 − 𝜃) ·
𝑝𝑠𝑚ℓ +

∑︀
ℓ′ ̸=ℓ 𝑝𝑑𝑚ℓ′ + (1 − 𝜃)𝑝𝑠(𝑛𝑠ℓ −𝑚ℓ)𝑤ℓ + (1 − 𝜃)

∑︀
ℓ′ ̸=ℓ 𝑝𝑑(𝑛𝑠ℓ′ −𝑚ℓ′)𝑤ℓ′

𝑛𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ)

= (1 − 𝜃) ·
𝑝𝑠𝑠ℓ𝑀 +

∑︀
ℓ′ ̸=ℓ 𝑝𝑑𝑠ℓ′𝑀 + (1 − 𝜃)𝑝𝑠(𝑛𝑠ℓ − 𝑠ℓ𝑀)𝑤* + (1 − 𝜃)

∑︀
ℓ′ ̸=ℓ 𝑝𝑑(𝑛𝑠ℓ′ − 𝑠ℓ′𝑀)𝑤*

𝑛𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ)

= (1 − 𝜃) · 𝑀(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)) + (1 − 𝜃)𝑤*(𝑛𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ) −𝑀(𝑝𝑠𝑠ℓ + 𝑝𝑑(1 − 𝑠ℓ)))

𝑛𝑝𝑠𝑠ℓ + 𝑛𝑝𝑑(1 − 𝑠ℓ)

= (1 − 𝜃) · 𝑀 + (1 − 𝜃)𝑤*(𝑛−𝑀)

𝑛

The above expression has no dependence on ℓ. Letting 𝑤* = 𝑀(1−𝜃)
𝑀(1−𝜃)+𝜃𝑛 , we see then that

𝑤ℓ = 𝑤*, which completes the proof. This has no dependence on 𝑝𝑑, so all 𝑝𝑑 are optimal,

including 𝑝𝑜𝑑.

Proof of Proposition 3.2.4. The condition that the budget exceeds 𝜑(𝑝𝑠 − 𝑝𝑜𝑑) is to guarantee that

𝑝𝑑 = 𝑝𝑠 is feasible. By Theorem 3.2.1, given that all islands are the same size, a network with less

inequality cannot transition from impervious to susceptible. Thus, removing all homophily

(i.e., reducing inequality the most through the homophily parameters) must make the network

impervious given this is possible for some homomphily structure. Thus, setting 𝑝𝑠 = 𝑝𝑑 makes

the network impervious which is obviously an optimal policy.

B.3 Contrasting Bayesian and DeGroot Models

B.3.1 Proofs

We first provide two auxillary lemmas that we use in the proofs of our main results.
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Auxiliary Lemmas

Recall that𝐻 is the distribution of prior beliefs in the population and 𝑝 is the strength of organic

news (likelihood a message corresponds to the true state 𝜃). For misinformation, 𝑞 denotes the

amount of misinformation in the system, 𝑟 denotes how much of this misinformation argues

for state 𝑅, and 𝐹 is the distribution of 𝑟.

Lemma B.3.1. Let 𝐻 be symmetric. If 𝜃 = 𝐿, the DeGroot society mislearns if and only if

𝑟 ≥ (1 − 2(1 − 𝑞)(1 − 𝑝))/(2𝑞); if 𝜃 = 𝑅, the DeGroot society mislearns if and only if 𝑟 ≤

(1 − 2(1 − 𝑞)𝑝)/(2𝑞).

Proof of Lemma B.3.1. We prove this for 𝜃 = 𝐿; the case of 𝜃 = 𝑅 is similar. For a fixed realization

𝑟 ∼ 𝐹 (·), every DeGroot agent 𝑖 converges to belief 𝜋∞ about 𝜃 = 𝑅:

𝜋∞ =

∫︁ 1

0

(︂
((1 − 𝑝)(1 − 𝑞) + 𝑞𝑟)

𝑝𝛼

𝑝𝛼 + (1 − 𝑝)(1 − 𝛼)
+ (𝑝(1 − 𝑞) + 𝑞(1 − 𝑟))

(1 − 𝑝)𝛼

(1 − 𝑝)𝛼 + 𝑝(1 − 𝛼)

)︂
ℎ(𝛼) 𝑑𝛼

Via the Leibniz integral rule, we see that:

𝑑𝜋∞

𝑑𝑟
=

∫︁ 1

0

𝜕

𝜕𝑟

(︂
(1 − 𝑝+ 𝑞𝑟)

𝑝𝛼

𝑝𝛼 + (1 − 𝑝)(1 − 𝛼)
+ (𝑝+ 𝑞(1 − 𝑟))

(1 − 𝑝)𝛼

(1 − 𝑝)𝛼 + 𝑝(1 − 𝛼)

)︂
ℎ(𝛼) 𝑑𝛼

= 𝑞

∫︁ 1

0

(︂
𝑝𝛼

𝑝𝛼 + (1 − 𝑝)(1 − 𝛼)
− (1 − 𝑝)𝛼

(1 − 𝑝)𝛼 + 𝑝(1 − 𝛼)

)︂
ℎ(𝛼) 𝑑(𝛼)

= 𝑞

∫︁ 1

0

(1 − 𝛼)𝛼(2𝑝− 1)

(𝑝− 𝛼(2𝑝− 1))((1 − 𝑝) + 𝛼(2𝑝− 1))
ℎ(𝛼) 𝑑𝛼

Note that all expressions are positive because 𝑝 > 1/2. The only non-trivial one to verify is the

first expression in the denominator, which is linear in 𝛼 and thus it is sufficient to verify it is

non-negative for all 𝛼 ∈ {0, 1} to prove it is non-negative for all 𝛼 ∈ [0, 1]. When 𝛼 = 0 it is

equivalent to 𝑝 and when 𝛼 = 1 it is equivalent to 1 − 𝑝.

Thus, 𝑑𝜋∞/𝑑𝑟 > 0 for all 𝑟. Consider the expression for 𝜋∞(𝑟) when 𝑟 = 𝑟 ≡ (1− 2(1− 𝑞)(1−

𝑝))/(2𝑞):

∫︁ 1

0

(︂
((1 − 𝑝)(1 − 𝑞) + 𝑞𝑟)

𝑝𝛼

𝑝𝛼 + (1 − 𝑝)(1 − 𝛼)
+ (𝑝(1 − 𝑞) + 𝑞(1 − 𝑟))

(1 − 𝑝)𝛼

(1 − 𝑝)𝛼 + 𝑝(1 − 𝛼)

)︂
ℎ(𝛼) 𝑑𝛼

=

∫︁ 1/2

0

𝑝𝛼

2(𝑝𝛼 + (1 − 𝑝)(1 − 𝛼))
ℎ(𝛼) 𝑑𝛼 +

∫︁ 1

1/2

(1 − 𝑝)𝛼

2((1 − 𝑝)𝛼 + 𝑝(1 − 𝛼))
ℎ(𝛼) 𝑑𝛼
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For the second integral expression, we make the change of variables 𝛽 ≡ 1 − 𝛼, which yields:

=

∫︁ 1/2

0

𝑝𝛼

2(𝑝𝛼 + (1 − 𝑝)(1 − 𝛼))
ℎ(𝛼) 𝑑𝛼 +

∫︁ 1/2

0

(1 − 𝑝)(1 − 𝛽)

2((1 − 𝑝)(1 − 𝛽) + 𝑝𝛽)
ℎ(1 − 𝛽) 𝑑𝛽

By symmetry of 𝐻, we know that ℎ(1 − 𝛽) = ℎ(𝛽), thus the above expression simplifies to∫︀ 1/2

0
ℎ(𝛼) 𝑑𝛼 = 1/2 because 𝐻 is symmetric and

∫︀ 1

0
ℎ(𝛼) 𝑑𝛼 = 1. Similarly, because 𝑑𝜋∞/𝑑𝑟 > 0,

we know whenever 𝑟 > 𝑟, 𝜋∞(𝑟) > 1/2 and so agents elect action 𝑎𝑖 = 𝑅, and the society

mislearns. Whenever 𝑟 < 𝑟, 𝜋∞(𝑟) < 1/2 and so agents elect action 𝑎𝑖 = 𝐿, and the society does

learn.

Lemma B.3.2. If 𝐻 has full support and 𝜃 = 𝐿, the Bayesian society mislearns if and only if

𝑟 ≥ 𝑟 + (2𝑝−1)(1−𝑞)
𝑞

; if 𝜃 = 𝑅, the Bayesian society mislearns if and only if 𝑟 ≤ 𝑟 − (2𝑝−1)(1−𝑞)
𝑞

.

Proof of Lemma B.3.2. Once again, we prove this 𝜃 = 𝐿 and remark that the case of 𝜃 = 𝑅 is

similar. Unlike Lemma B.3.1, we prove both the “if” and “only if” parts separately:

(i) If part : Suppose 𝑟 ≥ 𝑟+ (2𝑝−1)(1−𝑞)
𝑞

. There is some proportion 𝜌𝐿 of messages that advocate

for 𝐿 and some proportion 𝜌𝑅 = 1 − 𝜌𝐿 of messages that advocate for 𝑅.

When 𝜃 = 𝐿, 𝑝(1 − 𝑞) proportion of the messages are both organic and advocate for 𝐿,

i.e., 𝑚𝑖 = 𝐿, when the population is large. Similarly, 𝑞(1 − 𝑟) proportion of messages are

inorganic (“misinformation”) and advocate for 𝐿 as well. Call this scenario 1.

When 𝜃 = 𝑅, (1 − 𝑝)(1 − 𝑞) proportion of the messages are both organic and advocate for

𝐿, with once again, 𝑞(1 − 𝑟) proportion of messages that are inorganic and advocate for 𝐿

too. Call this scenario 2.

Both scenarios occur with positive probability if there exist some 𝑟1 and 𝑟2, both within

[𝑟, 𝑟], where both scenarios yield the same realized distribution 𝜌𝐿 and 𝜌𝑅. In scenario 1

we admit 𝜌1𝐿 = 𝑝(1− 𝑞) + 𝑞(1− 𝑟1) and in scenario 2 we admit 𝜌2𝐿 = (1−𝑝)(1− 𝑞) + 𝑞(1− 𝑟2).

Because 𝜃 = 𝐿, we know that 𝑟1 = 𝑟 and scenario 1 occurs with positive probability.

To see if scenario 2 occurs with positive probability, one needs to find the existence of

𝑟2 ∈ [0, 1] such that 𝑝(1 − 𝑞) + 𝑞(1 − 𝑟) = (1 − 𝑝)(1 − 𝑞) + 𝑞(1 − 𝑟2). When 𝑟2 = 1 and

since 𝑝(1 − 𝑞) + 𝑞(1 − 𝑟) > (1 − 𝑝)(1 − 𝑞), there exists a value for 𝑟2 where the left-hand

side is greater than the right-hand side. Moreover, the left-hand side is decreasing in
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𝑟2, so verify there exists some 𝑟2 where equality can be obtained, it is sufficient to have

𝑝(1 − 𝑞) + 𝑞(1 − 𝑟) ≤ (1 − 𝑝)(1 − 𝑞) + 𝑞. Rearranging gives the condition in the lemma.

Finally, we note that under this condition, both scenario 1 and scenario 2 occur with

probability 𝜂1, 𝜂2 > 0. The probability that an agent with prior 𝜋𝑖,0 about scenario 2 (i.e.,

𝜃 = 𝑅) is:

𝜋𝑖,2 =
𝜂2𝜋𝑖,0

𝜂2𝜋𝑖,0 + 𝜂1(1 − 𝜋𝑖,0)

Taking 𝜋𝑖,0 sufficiently close to 1 yields 𝜋𝑖,2 > 1/2, and given 𝐻 has full support, implies

some positive fraction of the Bayesian population mislearns, so society fails to learn as

well.

(ii) Only if part : Suppose 𝑟 < 𝑟 + (2𝑝−1)(1−𝑞)
𝑞

. Then by the same argument in the “if” proof,

there exists no value for 𝑟2 such that 𝑝(1− 𝑞) + 𝑞(1− 𝑟) = (1− 𝑝)(1− 𝑞) + 𝑞(1− 𝑟2) because

𝑝(1 − 𝑞) + 𝑞(1 − 𝑟) > (1 − 𝑝)(1 − 𝑞) + 𝑞(1 − 𝑟2) for all 𝑟2 ∈ [𝑟, 𝑟]. Thus, there exists a unique

value for 𝑟 that yields message distribution 𝜌𝐿 (scenario 1) and it necessarily corresponds

to 𝜃 = 𝐿. Note that:

𝜋𝑖,2 =
𝜂2𝜋𝑖,0

𝜂2𝜋𝑖,0 + 𝜂1(1 − 𝜋𝑖,0)
= 0

given that 𝜂1 > 0 and 𝜂2 = 0, and 𝜋𝑖,0 ∈ (0, 1) almost surely. Thus, all of the Bayesian

agents learn the correct state 𝜃 = 𝐿.

Proofs of Section 4

Proof of Proposition 1. We showed in Lemma B.3.1 that 𝑑𝜋∞/𝑑𝑟 > 0 without utilizing the

symmetry assumption on 𝐻. The DeGroot society mislearns if and only if that 𝜋∞(𝑟) > 1/2

when 𝜃 = 𝐿. Thus, there is a unique cutoff 𝑟*𝐷 such that the DeGroot society mislearns if and

only if 𝑟 > 𝑟*𝐷.

Proof of Proposition 2. We showed in Lemma B.3.2 there is a single narrative when 𝑟 < 𝑟*𝐵 ≡

𝑟 + (2𝑝−1)(1−𝑞)
𝑞

, which implies the Bayesian society must learn in this setting, as 𝜋𝑖,2 = 0 when

𝜃 = 𝐿.

Proof of Theorem 1. Note by Lemma B.3.1, the DeGroot society mislearns with positive

probability when 𝑞 > 2𝑝−1
2𝑝

. By the arguments in Lemma B.3.2, given that 𝐻 may or may
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not have full support, a necessary (but not necessarily sufficient) condition for the Bayesian

society to mislearn is that 𝑞 > 2𝑝−1
2𝑝−𝑟 ≥

2𝑝−1
2𝑝

. This establishes part (a) by taking 𝑞* = 2𝑝−1
2𝑝

.

For part (b), when 𝑞 > 𝑞* and 𝐻 and 𝐹 have full support (so 𝑟 = 0), the Bayesian society

mislearns with probability 1−𝐹
(︁

(2𝑝−1)(1−𝑞)
𝑞

)︁
and by Lemma B.3.1 the DeGroot society mislearns

with probability 1 − 𝐹
(︁

1−2(1−𝑞)(1−𝑝))
2𝑞

)︁
. Observe that:

(2𝑝− 1)(1 − 𝑞)

𝑞
− 1 − 2(1 − 𝑞)(1 − 𝑝))

2𝑞
=

2𝑝(1 − 𝑞) − 1

2𝑞

which is a decreasing function in 𝑞 and is exactly equal to 0 when 𝑞 = 𝑞*. Thus, by monotonicity

of 𝐹 , 𝐹
(︁

(2𝑝−1)(1−𝑞)
𝑞

)︁
< 𝐹

(︁
1−2(1−𝑞)(1−𝑝))

2𝑞

)︁
and so 1 − 𝐹

(︁
(2𝑝−1)(1−𝑞)

𝑞

)︁
> 1 − 𝐹

(︁
1−2(1−𝑞)(1−𝑝))

2𝑞

)︁
,

implying the Bayesian society mislearns more often.

Proof of Theorem 2. When 𝜃 = 𝐿, note the ratio of DeGroot mislearning to the ratio of Bayesian

mislearning is given by:

𝜇 =
1 − 𝐹

(︁
1−2(1−𝑞)(1−𝑝)

2𝑞

)︁
1 − 𝐹

(︁
(2𝑝−1)(1−𝑞)

𝑞

)︁
by Lemma B.3.1 and Lemma B.3.2. Differentiating with respect to 𝑝, we get that

𝜕𝜇

𝜕𝑝
=
𝑓
(︁

(2𝑝−1)(1−𝑞)
𝑞

)︁
2(1−𝑞)
𝑞

(︁
1 − 𝐹

(︁
1−2(1−𝑞)(1−𝑝)

2𝑞

)︁)︁
− 𝑓

(︁
1−2(1−𝑞)(1−𝑝)

2𝑞

)︁
1−𝑞
𝑞

(︁
1 − 𝐹

(︁
(2𝑝−1)(1−𝑞)

𝑞

)︁)︁
(︁

1 − 𝐹
(︁

(2𝑝−1)(1−𝑞)
𝑞

)︁)︁2
Note that 𝜕𝜇/𝜕𝑝 > 0 if and only if

2𝑓

(︂
(2𝑝− 1)(1 − 𝑞)

𝑞

)︂(︂
1 − 𝐹

(︂
1 − 2(1 − 𝑞)(1 − 𝑝)

2𝑞

)︂)︂
> 𝑓

(︂
1 − 2(1 − 𝑞)(1 − 𝑝)

2𝑞

)︂(︂
1 − 𝐹

(︂
(2𝑝− 1)(1 − 𝑞)

𝑞

)︂)︂

It is easy to see that 𝑞* = 2𝑝−1
2𝑝

from the proof of Theorem 1, and thus 𝛼 ≡ 1−2(1−𝑝)(1−𝑞)
2𝑞

and

𝛼− 𝛽 = (2𝑝−1)(1−𝑞)
𝑞

(given that 𝛽 ≡ 𝑝
(︁

1 − 𝑞*

𝑞

)︁
). Substituting we have that 𝜕𝜇/𝜕𝑝 > 0 if and only

if

2𝑓(𝛼− 𝛽)(1 − 𝐹 (𝛼)) > 𝑓(𝛼)(1 − 𝐹 (𝛼− 𝛽))

or in other words, 2𝜆𝐹 (𝛼− 𝛽) > 𝜆𝐹 (𝛼), which proves the claim.
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Proofs of Section 5

Proof of Theorem 3. Observe that larger values of 𝛾 decrease the lower support of the distribution

𝐻: if �̄� > 1/2 is the upper support for ℎ, then �̄�𝛾 = �̄� + (�̄� − 1/2)𝛾 is increasing in 𝛾 and when

𝛾 = 0, �̄�𝛾 = �̄�. Moreover, all values of 𝛾 preserve the symmetry of 𝐻.

By Lemma B.3.1, and since 𝐻 is always symmetric, the probability of DeGroot mislearning

does not depend of 𝛾. For Bayesian learning, there is always either one (𝑟 < 𝑟*𝐵) or two

narratives (𝑟 > 𝑟*𝐵). In the former case, Bayesians always learn. In the latter case, let 𝜂𝐿 be the

likelihood of the 𝜃 = 𝐿 narrative and 𝜂𝑅 be the likelihood of the 𝜃 = 𝑅 narrative. Then the

Bayesian society mislearns if and only if:

𝜂𝑅�̄�

𝜂𝑅�̄� + 𝜂𝐿(1 − �̄�)
> 1/2

But note that the left-hand side is increase �̄�, so for every realization of 𝑟, mislearning can only

become “more likely” as �̄� increases.11 Integrating over all of 𝑟 shows that the likelihood of

Bayesian mislearning is increasing in �̄� and, in particular, is increasing in 𝛾.

Next observe that when 𝛾 = −1, the Bayesian society mislearns with lower probability

than the DeGroot society. To show this, note that when 𝛾 = −1, the density ℎ is a Dirac-delta

function at belief 𝜋 = 1/2. Thus, all Bayesian agents initially agree, so there is a homogenous

prior. By the improvement principle (see, for instance, Golub and Sadler (2017)), Bayesian

agents must be able to outperform the DeGroot heuristic.

Finally, when 𝛾 = 𝛾, then 𝐻 has full support on [0, 1], so by Theorem 1(b), we know

the Bayesian society mislearns with higher probability than the DeGroots. By the previous

paragraph, we know that when 𝛾 = −1, then the Bayesian society mislearns. Because the

mislearning probability is increasing in 𝛾 for Bayesians but constant for DeGroots, there must

be a unique single-crossing 𝛾* that determines the phase transition.

Proof of Proposition 3. We prove the two parts of the result, which separate into DeGroot and

Bayesian societies. For both, we fix 𝜃 = 𝐿 for concreteness.

(i) DeGroot society: Because we have fixed 𝜃 = 𝐿, we know that 𝑚𝑝 = 𝐿 for targeted agents.

11“More likely” is a slight abuse of terminology, because for a given realization of 𝑟, the society either learns or
does not almost surely. Formally, we mean that an increase in �̄� can not transition society from mislearning to
learning for this value of 𝑟.
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Thus, there are two cases for 𝜋𝑖,1 for the DeGroot agent that depend on whether (i) agent 𝑖

receives 𝑚𝑖 = 𝑅 and 𝑚𝑝 = 𝐿 or (ii) agent 𝑖 receives both 𝑚𝑖 = 𝐿 and 𝑚𝑝 = 𝐿. The former

case occurs with probability (1 − 𝑝)(1 − 𝑞) + 𝑞𝑟 whereas the latter occurs with probability

𝑝(1 − 𝑞) + 𝑞(1 − 𝑟). In the former, it is easy to verify her belief remains unaffected, i.e.,

𝜋𝑖,1 = 𝜋𝑖,0. In the latter case, applying Bayes’ rule we see:

𝜋𝑖,1 =
(1 − 𝑝)2𝜋𝑖,0

(1 − 𝑝)2𝜋𝑖,0 + (1 − (1 − 𝑝)2)(1 − 𝜋𝑖,0)

Thus, the expected belief update of agent 𝑖 is given by:

E[𝜋𝑖,1|𝜋𝑖,0] = ((1−𝑝)(1−𝑞)+𝑞𝑟)𝜋𝑖,0+(𝑝(1−𝑞)+𝑞(1−𝑟)) (1 − 𝑝)2𝜋𝑖,0
(1 − 𝑝)2𝜋𝑖,0 + (1 − (1 − 𝑝)2)(1 − 𝜋𝑖,0)

Note that the change in belief from targeting, given by ∆ ≡ E[𝜋𝑖,1|𝜋𝑖,0] − 𝜋𝑖,0 is:

𝜕∆

𝜕𝜋𝑖,0
= 𝑝

(︂
(2 − 𝑝)(1 − 𝑝)2(𝑝(1 − 𝑞) + 𝑞(1 − 𝑟))

(𝜋𝑖,0(2𝑝2 − 4𝑝+ 1) + (2 − 𝑝)𝑝)2
− (1 − 𝑞)

)︂
− 𝑞(1 − 𝑟)

When 𝑝 > 1/2, note that 2𝑝2 − 4𝑝 + 1 < 0, so 𝜕∆/𝜕𝜋𝑖,0 is strictly increasing in 𝜋𝑖,0, and

thus ∆ is strictly convex is 𝜋𝑖,0. Moreover, ∆(𝜋𝑖,0 = 0) = 0 and ∆(𝜋𝑖,0 = 1) = 0, so ∆ is

maximized at some unique 𝜋*
𝑖,0 ∈ (0, 1). Note that when 𝜋𝑖,0 = 1/2, then

𝜕∆

𝜕𝜋𝑖,0
(𝜋𝑖,0 = 1/2) = −(1 − 2(2 − 𝑝)𝑝)2(𝑝(1 − 𝑞) + 𝑞(1 − 𝑟)) < 0

Because ∆′′ > 0 everywhere, this implies that ∆′(𝜋*
𝑖,0(𝑟)) = 0 for some 𝜋*

𝑖,0(𝑟) > 1/2, which

might depend on 𝑟.

Consider the set of agents with belief 𝛼 = 𝜋𝑖,0, denoted by 𝒜, who are targeted. Recall that

all DeGroots converge to a consensus belief 𝜋∞:

𝜋∞(𝑟) =

∫︁
𝛼∈𝒜

E[𝜋𝑖,1 |𝛼 , 𝑚𝑝 = 𝐿]ℎ(𝛼) 𝑑𝛼 +

∫︁
𝛼 ̸∈𝒜

E[𝜋𝑖,1 |𝛼 , 𝑚𝑝 = ∅]ℎ(𝛼) 𝑑𝛼

If 𝒜 is restricted to have some small measure 𝜈 (in prior space ℎ), and the objective is to

minimize 𝜋∞ it is clear that the optimal choice of 𝒜 is top pick an open interval around

𝜋*
𝑖,0(𝑟) given that ∆ is continuous in 𝜋𝑖,0.

Finally, note that 𝜋∞(𝑟), under the optimal choice of 𝒜 for each 𝑟, is continuous due to
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Berge’s theorem of the maximum. Finally, because of continuity and the fact 𝜋∞(𝑟) > 1/2

for all 𝑟, we know there exists an interval (𝜋*
0, �̄�

*
0) such that for all 𝑟, 𝜋*

0 lies in this interval,

with 1/2 < 𝜋*
0 < �̄�*

0 < 1. The probability that DeGroot agents mislearn is given by

E𝑟[1𝜋∞(𝑟)>1/2], and because 1𝜋∞(𝑟)>1/2 is monotone in 𝜋∞(𝑟), this implies that the optimal

choice of 𝜋*
0 to maximize this expectation also satisfies 𝜋*

0 > 1/2.

(ii) Bayesian society: We claim that reducing the highest belief 𝜋𝑖,0 is equivalent to decreasing

the likelihood of mislearning. Observe that 𝜋𝑖,2 (which is equal to 𝜋𝑖,𝑇 for large 𝑇 ) is

equivalent to decreasing the likelihood of mislearning for Bayesian agents. To see this,

note that for Bayesian agent 𝑖, 𝜋𝑖,2 is strictly increasing in 𝜋𝑖,0, fixing the messages {𝑚𝑖}𝑁𝑖=1,

which all Bayesians are able to deduce by period 2. Note that if there exists an open

interval (𝜋1, 𝜋2) ⊂ [𝜋, �̄�] such that all agents with 𝜋𝑖,0 ∈ (𝜋1, 𝜋2) mislearn, the Bayesian

society mislearns. By the assumption that [𝜋, �̄�] has full support, targeting some open

interval nearest 𝜋 maximizes the probability of all agents learning when 𝜃 = 𝐿. Thus, the

optimal policy targets an agent who is most extreme near 𝜋.

B.3.2 Supplemental Material

Likelihood of Mislearning

We show that Bayesian agents perform worse than DeGroot agents on average. We adopt the

environment from Setting B in Section 3, but we do not focus on a specific realization of the

misinformation split. Instead, we look at the likelihood that society does not learn when we

draw the split 𝑟 from its true (uniform, in this example) distribution. How do Bayesian agents

perform relative to DeGroot agents on average?

We track the beliefs of both societies:

Bayesian Population. At 𝑡 = 1, each Bayesian agent 𝑖 forms a posterior belief 𝜋𝑖,1 based on 𝑚𝑖

according to Section 2. Once again, we know that 𝜋𝑗,1 > 𝜋𝑗,0 if and only if 𝑚𝑖 = 𝑅 and 𝜋𝑗,1 < 𝜋𝑗,0

if and only if 𝑚𝑖 = 𝐿. So every agent 𝑖 can deduce all of the messages {𝑚𝑗}𝑁𝑗=1 by period 2.

Among the collection of messages {𝑚𝑗}𝑁𝑗=1, if the state is 𝜃 = 𝐿, there are (roughly) 𝑝(1− 𝑞) +

𝑞(1 − 𝑟) proportion of 𝐿 messages and (1 − 𝑝)(1 − 𝑞) + 𝑞𝑟 proportion of 𝑅 messages, whereas if

the state is 𝜃 = 𝑅, there are (1 − 𝑝)(1 − 𝑞) + 𝑞(1 − 𝑟) proportion of 𝐿 messages and 𝑝(1 − 𝑞) + 𝑞𝑟

proportion of 𝑅 messages. The state cannot be pinned down if there exists a value 𝑟′ ∈ [0, 1]
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such that 𝑝(1 − 𝑞) + 𝑞(1 − 𝑟) = (1 − 𝑝)(1 − 𝑞) + 𝑞(1 − 𝑟′); in this case, there exist exactly two

realizations of 𝑟 (the true 𝑟 and another 𝑟′) for which the given distribution of messages can be

explained under two different states, 𝜃 = 𝐿 (correct) and 𝜃 = 𝑅 (incorrect). Moreover, because

𝑟 is uniformly distributed on [0, 1], both of these scenarios are equally likely. This implies that

𝜋𝑗,2 = 𝜋𝑗,0 because the messages provide no information about the state 𝜃; consequently, the

society of Bayesian agents does not learn.

Note that (1 − 𝑝)(1 − 𝑞) + 𝑞(1 − 𝑟′) is maximized when 𝑟′ = 0; thus it is sufficient to consider

for what values of 𝑟 the inequality 𝑝(1− 𝑞) + 𝑞(1− 𝑟) ≤ (1− 𝑝)(1− 𝑞) + 𝑞 holds; this corresponds

to the values of 𝑟 for which there is mislearning. Rearranging, we see that 𝑟 ≥ 1− 1−2𝑝(1−𝑞)
𝑞

= 0.6

when 𝑝 = 0.6 and 𝑞 = 0.25. Hence, the Bayesian society mislearns with probability 40% (given

that 𝑟 is uniformly distributed on [0, 1]) in the setting with 25% misinformation.

DeGroot Population. DeGroot agents update in the same way as before (i.e., via Equations

(1) and (2)) using 𝑝 = 0.6. Thus, noting that 𝑝(1 − 𝑞) + 𝑞(1 − 𝑟) of the messages are 𝐿 and

(1 − 𝑝)(1 − 𝑞) + 𝑞𝑟 of the messages are 𝑅, DeGroot agents hold beliefs 𝜋𝑗,𝑡 for all 𝑡 ≥ 2:

𝜋∞(𝑟) ≡
∫︁ 1

0

(︂
(.4(.75) + .25𝑟) · .6𝛼

.6𝛼 + .4(1 − 𝛼)
+ (.6(.75) + .25(1 − 𝑟)) · .4𝛼

.4𝛼 + .6(1 − 𝛼)

)︂
𝑑𝛼

Note that 𝜋∞(𝑟) is monotonically increasing in 𝑟 and it can be shown that 𝜋∞(𝑟) ≤ 1/2 if and

only if there are less than 50%𝑅messages; thus, 𝜋∞(𝑟) ≤ 1/2 if and only if (1−𝑝)(1−𝑞)+𝑞𝑟 ≤ 1/2,

or in other words, 𝑟 ≤ 1/2−(1−𝑝)(1−𝑞)
𝑞

= 0.8. Thus, since DeGroot agents mislearn the true state

only when 𝑟 ≥ 𝑟*, we see they mislearn 20% of the time, which outperforms the Bayesian

population by a factor of two. Recall that quantifying how much better DeGroots do than

Bayesians in general is formally analyzed in Theorem 2 in the paper.

Polarization

The next example shows that in some cases, mean-preserving spreads (i.e., more polarization)

can improve the learning outcomes of DeGroot agents.

Example B.3.1. Consider a world where 𝜃 = 𝐿 and as in Section 3, the misinformation is

𝑞 = 0.25, so DeGroot societies (as well as Bayesian societies) mislearn with positive probability.

First, suppose 𝐻 is distributed with a small right bias, as demonstrated in Figure B-17a

and Figure B-17b. In the more polarized society of Figure B-17a, many prior opinions start
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off initially quite misinformed, so not much misinformation on the right-side can support

learning (i.e., the realization of 𝑟 must be lower); in particular, 𝑟 ≤ .281 ≡ 𝑟* is required to

support learning. Next, consider a decrease in polarization to the Dirac-delta function on

the average opinion of 𝐻, as shown in Figure B-17b. This increases the threshold of right-

leaning misinformation that can be tolerated for learning to 𝑟* = .319, and the corresponding

probability that learning occurs also increases. Because moderate right-leaning agents are the

most likely to be influenced by organic left-leaning news, less polarization helps the DeGroot

society learn, as is the case with the Bayesians.

(a) Right-leaning but polarized society. (b) Right-leaning but non-polarized society.

Figure B-17. Two right-leaning distributions of prior beliefs (with the same mean belief), one
of which is polarized and the other is not. The less polarized community mislearns less often
because less evidence is needed to convince moderate right-leaning agents of 𝜃 = 𝐿.

Conversely, suppose 𝐻 is distributed with a small left bias, as demonstrated in Figure B-18a

and Figure B-18b, so beliefs tend to support the correct state of the world. When (almost

all) beliefs are concentrated just left of center (Figure B-18b), there is positive probability of

mislearning because there is some chance that right-leaning misinformation dominates and

causes all agents to move closer to right-leaning ideas. However, these effects are mitigated

when polarization increases, and learning occurs with probability 1 when it is sufficiently

high, as shown in Figure B-18a. This is because strong left-leaning believers are not swayed as

much by right-leaning misinformation, but moderate right-leaning agents can be considerably

convinced of left-leaning organic news. Thus, polarization generally helps when then initial

belief distribution is already slanted toward the correct state. This is somewhat surprising
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(a) Left-leaning but polarized society. (b) Left-leaning but non-polarized society.

Figure B-18. Two left-leaning distributions of prior beliefs (with the same mean belief), one
of which is polarized and the other is not. The less polarized community mislearns more
often because they are more susceptible to believing right-leaning ideas when right-leaning
misinformation is more pervasive.

given that additional polarization pushes more agents toward the incorrect belief of the world.

Observe that this stands in contrast to polarization in Bayesian societies: whereas DeGroots

always reach a consensus, and thus polarization can sometimes nudge the entire society

closer to truth (in the aggregate), the ability of Bayesians to spin multiple narrative impedes

consensus in the face of increasing polarization.

Mislearning Rates with High Misinformation

Let 𝑞 > 𝑞*. We denote by 𝜇 the ratio of the probability of DeGroot mislearning to the probability

of Bayesian mislearning. Recall 𝜇 < 1 by Theorem 1 (i.e., the “relative” frequency of DeGroot

to Bayesian mislearning). Low values of 𝜇 indicate DeGroots do much better than Bayesians,

whereas relatively larger values indicate Bayesians close the gap in mislearning more. Next,

we try to reason about the conditions under which 𝜇 is increasing (i.e., Bayesian agents start

picking up an advantage relative to DeGroot agents) or 𝜇 is decreasing (i.e., DeGroots learn

more frequently relative to Bayesians) as a function of the strength of organic signals 𝑝 and

the misinformation in the system 𝑞. For, this we make the following standard definition of the

hazard rate of a distribution:

Definition B.3.1. The hazard rate 𝜆𝐺(𝛼) of a distribution 𝐺 is given by 𝜆𝐺(𝛼) = 𝑔(𝛼)
1−𝐺(𝛼)

where
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𝑔(·) is the density of cumulative distribution function 𝐺.

The hazard rate at point 𝛼* corresponds the likelihood of the realization 𝛼 ∈ (𝛼*, 𝛼* + 𝑑𝛼)

relative to the interval size 𝑑𝛼, conditional on 𝛼 ≥ 𝛼*. Theorem 2 relates the hazard rate at

specific points on the 𝐹 distribution (local properties of 𝐹 ) to the sensitivity of 𝜇 to 𝑝 (global

property of 𝐹 ). To gather some intuition for Theorem 2, let us look at three applications:

(i) Uniform distribution: Recall the uniform distribution we assumed for 𝐹 in Section 3

showed that when 𝑞 = 0.25, DeGroot agents mislearn half as often as the Bayesians did.

How does this depend on 𝑝? The hazard rate is 𝜆𝐹 (𝑟) = 1
1−𝑟 , which is increasing in 𝑟

because the likelihood of falling within an interval of fixed length 𝑑𝑟 is increasing as one

conditions on higher values of 𝑟. Thus, while 𝜆𝐹 (𝛼− 𝛽) < 𝜆𝐹 (𝛼), it is unclear its relation

to 𝜆𝐹 (𝛼)/2. Some basic algebra reveals that 𝜆𝐹 (𝛼 − 𝛽) = 𝜆𝐹 (𝛼)/2 for all values of 𝛼, 𝛽,

so 𝜇 has no dependence on 𝑝. Thus, DeGroot societies always mislearn half as often as

Bayesian ones on the uniform distribution.

(ii) Unskewed misinformation (Figure 2 in the paper): This distribution of 𝐹 is one where

misinformation is likely to evenly balanced between 𝐿 and 𝑅. Instead of computing the

hazard rate for 𝛼 and 𝛼 − 𝛽 explicitly, we will draw inferences by comparing it to the

uniform distribution. When 𝑟 < 1/2, the hazard rate is given by 𝜆𝐹 (𝑟) = 4𝑟
1−2𝑟2

whereas

when 𝑟 > 1/2, the hazard rate is given by 𝜆𝐹 (𝑟) = 4−4𝑟
2−4𝑟+2𝑟2

. It is easy to show the ratio of

the hazard rate of this distribution to the uniform distribution is increasing on 𝑟 < 1/2

and constant on 𝑟 > 1/2. Thus, 2𝜆𝐹 (𝛼 − 𝛽) ≤ 𝜆𝐹 (𝛼) and the ratio 𝜇 is decreasing in 𝑝,

meaning that DeGroots do comparatively better with more precise organic information

in an inverted V-distribution (i.e., the Bayesians are more than twice as likely to mislearn

than the Bayesians). The intuition is simple: more moderate misinformation increases the

likelihood that Bayesian agents can spin a narrative to their liking, whereas for DeGroots

it corresponds to a greater likelihood of having balanced misinformation (that washes

out), allowing the organic news to win out.

(iii) Skewed misinformation (inverse of Figure 2 in the paper): Relative to application (ii), the

opposite effect occurs here. When 𝑟 < 1/2, the hazard rate is decreasing relative to the

uniform distribution; when 𝑟 > 1/2, the hazard rate is again constant. This means the

opposite inequality holds (i.e., 𝜆𝐹 (𝛼) ≤ 2𝜆𝐹 (𝛼 − 𝛽)) and by Theorem 2, the ratio 𝜇 is
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increasing in 𝑝. When the misinformation is more extreme, Bayesians are comparatively

more resilient, and mislearn less than twice as often as their DeGroot counterparts. The

high likelihood of very misleading misinformation is not as well-handled by the DeGroot

agents relative to a Bayesian society. While the Bayesian society can use more extreme

misinformation to dismiss an incorrect narrative, the DeGroot society falls victim to such

misinformation.

Network Learning Dynamics and Multiple Messages

In Section 2, we considered a model of learning where all agents observe the beliefs of all other

agents. However, this is often an unrealistic assumption, and there is a wide array of literature

that considers the subtleties of learning when these observations are incomplete (see Golub

and Sadler (2017) for a survey). The common approach to modeling this incompleteness is to

assume there is a social network with pairwise connections that determines who can observe

(or talk to) whom. In this context, the model in Section 2 assumes a complete social network,

which simplifies the relevant dynamics to two periods.

In this section, we relax this assumption by considering arbitrary network architectures

and the richer learning dynamics that occur over a longer time horizon. Under relatively mild

conditions on the network structure, we show network learning leads to the same outcomes

and insights found in the more parsimonious complete network setting, thereby rendering our

assumption to be largely without loss of generality. We do this by building off of the previous

literature on network learning in both Bayesian and DeGroot populations.

Network Preliminaries. We assume that all agents are arranged in an undirected social

network G. A link 𝑖 ↔ 𝑗 denotes that agent 𝑖 and agent 𝑗 observe (or talk to) each other.

We let 𝒩𝑖 denote the neighborhood of agent 𝑖 (i.e., the set of agents 𝑗 with 𝑖↔ 𝑗). The adjacency

matrix A of G is a binary matrix with [A]𝑖𝑖 = 1 and [A]𝑖𝑗 = 1 if and only if 𝑖↔ 𝑗. Let 𝑑G𝑖 be the

degree of agent 𝑖 in G. We say a network G is 𝑘-regular if all agents have degree 𝑘.

We consider a discrete time model (as before) but with a much longer learning horizon

𝑇 , 𝑡 = 0, 1, 2, . . . , 𝑇 . We let �̃�𝑖,𝑡 denote the belief of agent 𝑖 at time 𝑡 under network learning,

whereas 𝜋𝑖,0, 𝜋𝑖,1, and 𝜋𝑖,2 denote the beliefs of agent 𝑖 at time 0, 1, and 2, respectively, in the

baseline model (i.e., a complete network).
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Bayesian Population. Network learning in settings with fully rational (i.e., Bayesian) agents

has been studied in many contexts, most notably in Acemoglu et al. (2011) and Gale and Kariv

(2003). As is common in many models of Bayesian network learning,12 we assume that the

network G and initial priors 𝜋𝑖,0 are common knowledge.13 Bayesian agents observe the beliefs

of all agents in their neighborhoods for all 𝑡 ≥ 1 (i.e., agent 𝑖 observes at time 𝑡 the beliefs

from 𝑡− 1, {𝜋𝑗,𝑡−1}𝑗∈𝒩𝑖
). Our next result shows that terminal beliefs in network learning indeed

converge to the terminal beliefs of the baseline model:

Claim B.3.1. Suppose G is connected. Then as 𝑇 → ∞, �̃�𝑖,𝑇 → 𝜋𝑖,2.

This claim follows directly from Mueller-Frank (2013). While agents do not hold a common

prior about 𝜃, common knowledge of the heterogenous priors {𝜋𝑗,0}𝑁𝑗=1 allows agents to

recalibrate the (updated) beliefs they see to their own prior. It is clear that the private

information at 𝑡 = 1 (i.e., the messages) are drawn from a finite partition of the 𝜃 state space

(conditional on misinformation split 𝑟). Thus, by Theorem 4 of Mueller-Frank (2013), all

Bayesian agents uncover the private information (i.e., 𝑡 = 1 messages) of all other agents

(including non-neighbors) in the network as 𝑇 → ∞, as is the case at 𝑡 = 2 in the baseline

model.

DeGroot Population. Due to demanding assumptions about the reasoning abilities of Bayesian

agents, “rule-of-thumb” learning has become a popular alternative model. The most common

model is that of Degroot (1974), and later expanded upon in works such as Golub and Jackson

(2010) and DeMarzo et al. (2003). In these models, agents are assumed to update their beliefs

using the simple heuristic of taking linear combinations of their neighbors’ beliefs. Formally,

agent 𝑖 forms belief 𝜋𝑖,𝑡+1 at each time 𝑡 by computing:

𝜋𝑖,𝑡+1 =
1

1 + 𝑑G𝑖

(︃
𝜋𝑖,𝑡 +

∑︁
𝑗∈𝒩𝑖

𝜋𝑗,𝑡

)︃

Our next result provides conditions under which DeGroot learning over the network G leads to

the same terminal beliefs as in our baseline model:

12In addition to Acemoglu et al. (2011) and Gale and Kariv (2003), see Mueller-Frank (2014) and Mossel et al.
(2014).

13An alternative assumption, which does not require strong common knowledge assumptions of non-neighbor
priors or the network structure, is that the size of the smallest neighborhood grows unboundedly as 𝑁 → ∞.
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Claim B.3.2. Suppose G is a connected, 𝑘-regular network. Then as 𝑇 → ∞, �̃�𝑖,𝑇 → 𝜋𝑖,2.

This claim follows directly from Golub and Jackson (2010). First, by Proposition 1 in Golub

and Jackson (2010), observe that consensus is reached (as in the baseline model) because the

normalized adjacency matrix A is irreducible and aperiodic, the former following from the

connectedness assumption and the latter following from a positive diagonal on A. Second,

by Theorem 3 in Golub and Jackson (2010), the consensus belief of the agents as 𝑇 → ∞ is

given by �̃�𝑖,∞ =
∑︀𝑁

𝑗=1 𝑣
G
𝑗 𝜋𝑗,1 for all agents 𝑖, where 𝑣G𝑗 is the (eigenvector) centrality of agent 𝑗

(according to the row-stochastic normalized adjacency matrix A). Because 𝑣G𝑗 = 𝑑G𝑗 /
∑︀𝑁

ℓ=1 𝑑
G
ℓ ,

we obtain by 𝑘-regularity that �̃�𝑖,∞ = 1
𝑁

∑︀𝑁
𝑗=1 𝜋𝑗,1 = 𝜋𝑖,2.

Observe that Claim B.3.2 requires an additional condition not present in Claim B.3.1, which

is that no agent is more “influential” than any other agent in the network G, as measured by

her degree. This is easily satisfied by many network topologies, including several classes of

random networks such as Erdos-Renyi networks (where links between agents occur uniformly

at random).14

Multiple Messages. Let us consider the complete network setting of Section 2 for simplicity,

but note that the reduction from arbitrary network learning discussed previously still applies.

In a Bayesian society with 𝑁 → ∞, by the strong law of large numbers, the first round

of messages reveals the true fraction of 𝑅 messages, 𝜌𝑅, and the true fraction of 𝐿 messages,

𝜌𝐿, almost surely. Obtaining additional messages in subsequent rounds does not alter the

(almost surely) known values of 𝜌𝑅 or 𝜌𝐿, thus, learning is entirely unaffected by more incoming

messages.

In a DeGroot society, after the first round of messages, agents converge to a consensus

about 𝜃 which is a function of 𝜌𝑅 (and 𝜌𝐿) alone. When 𝐻 is symmetric, whether 𝜌𝑅 > 1/2 or

𝜌𝐿 > 1/2 determines if the consensus, call it 𝜋2, lies more toward state 𝑅 (i.e., 𝜋2 > 1/2) or

state 𝐿 (i.e., 𝜋2 < 1/2). By the martingale property of Bayesian updating, it is easy to see that

E[BU(𝜋2) | 𝜌𝑅 > 1/2 ; 𝜋2 > 1/2] > 1/2 and E[BU(𝜋2) | 𝜌𝑅 < 1/2 ; 𝜋2 < 1/2] < 1/2 (where BU is

the Bayesian update for DeGroot agents conditioning on the message, given by Equations (1)

and (2) of the main text). Therefore, one can show by induction that beliefs remain on the same

side of belief 1/2 as they are at 𝑡 = 2 for all 𝑡 ≥ 𝑇 , even with additional messages. Consequently,

14𝑘-regularity will hold approximately for large 𝑁 in dense ER networks; see for instance, Avella-Medina et al.
(2020) and Dasaratha (2020).
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the likelihood of (mis)learning is unaffected by any further stream of messages.

Robustness: Learning Metric and Finite Populations

We conduct two robustness checks on our main learning results. First, we consider how our

results change when looking at the expected fraction of mislearning agents, instead of the

binary metric of whether the entire society learns or not. Second, we test the sensitivity of our

large population assumption (i.e., 𝑁 → ∞) by simulating learning in settings with finite 𝑁 .

Learning Metric

We consider the alternative learning metric of the expected proportion of the population that

mislearns the true state. In particular, we look at (i) the environments where DeGroots or

Bayesians perform better under this metric, and (ii) how the targeting policy changes under

this other learning objective.

DeGroot vs Bayesian. How is learning affected when one evaluates the expected fraction of

mislearning agents? Provided that𝐻 is sufficiently polarized (i.e., there are few moderate left or

right-leaning agents and most agents have relatively strong opinions), the expected fraction of

mislearning Bayesian agents is approximately half of the Bayesian mislearning rate; conversely,

the expected fraction of mislearning DeGroot agents is exactly the mislearning rate. The former

can be seen from Proposition 2: all agents in society learn when there is a single narrative, but

when there are multiple narratives (and 𝐻 is symmetric), only those who have priors that agree

with the truth (i.e., 50%) will take the correct action. The latter can be seen from the fact that

the DeGroot society always comes to consensus, so the two notions of learning coincide.

The comparison between Bayesian and DeGroot societies using this learning metric is

best highlighted using the hazard rate analysis of Section 4.4 and Appendix B.3.2 in the high-

misinformation regime (i.e., 𝑞 > 𝑞*), which depends on the distribution of misinformation

𝐹 :

(i) Uniform distribution: When 𝐹 has a uniform distribution, the Bayesian society mislearns

twice as often as the DeGroot society. Thus, under the new learning metric, the expected

fraction of mislearning agents is the same for both Bayesians and DeGroots.
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(ii) Unskewed distribution: When 𝐹 has an unskewed distribution (i.e., misinformation is

more likely to be evenly split between ideologies), DeGroots perform better than Bayesians

relative to the base case of the uniform distribution. Thus, under the new learning metric,

DeGroots outperform Bayesian agents in the expected fraction of mislearning agents.

(iii) Skewed distribution: When 𝐹 has a more skewed distribution (i.e., misinformation is

more likely to come mostly from one ideology), Bayesians perform better than DeGroots

relative to the base case of the uniform distribution. Thus, under the new learning metric,

Bayesians would outperform DeGroot agents in the expected fraction of mislearning

agents.

These cases make it clear that the main message of our paper —that reasoning abilities have

an ambiguous effect on learning outcomes and that DeGroot agents can outperform Bayesian

agents— is not an artifact of the learning definition but rather a fundamental property of

learning in the presence of misinformation. Under this metric, the outcomes depend on both

the level of misinformation (i.e., whether 𝑞 > 𝑞* or 𝑞 < 𝑞*) and the concavity/convexity of 𝑓 . An

interesting implication of the above metric is that it suggests that DeGroot agents are better

at learning the state when misinformation is likely to come from both sides of the spectrum,

which is likely the case with most controversial political issues. On the other hand, Bayesian

agents can be better at learning the state when misinformation is mostly one-sided, e.g., that it

argues for the earth being flat.

Targeting Policies. We consider a targeting policy where the regulator wants to minimize

the expected proportion of agents who mislearn. As before, we assume 𝑞 > 𝑞* and the true

state is 𝜃 = 𝐿, which is known to the regulator. Because DeGroot agents always converge to a

consensus, the regulator does not change her targeting policy because either all agents learn

or none do; we let 𝜋*
𝐷 denote the belief of the optimal DeGroot target which is the same as 𝜋*

in Proposition 3. However, the policy will change for the Bayesian society in a subtle way. For

the most likely split of misinformation that generates two narratives, the regulator targets the

agent whose posterior belief is barely to the right of belief 1/2. We illustrate how this targeting

policy works in practice for the three settings considered before:

(i) Uniform distribution: For the uniform distribution, when there are two narratives, no

agents change their prior beliefs (and when there is only one, all agents learn anyway).
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Therefore, the optimal targeting policy is to target the most moderate right-leaning agent.

This stands in contraposition to Proposition 3, as the regulator is better off targeting more

moderate Bayesian agents and relatively more extreme DeGroots (i.e., 𝑝*𝐵 < 𝑝*𝐷).

(ii) Unskewed distribution: When 𝐹 follows the inverse-V distribution, there are two cases to

consider. The first case is that the misinformation split 𝑟 = 1/2 admits two narratives; this

occurs when 𝑞 > 2(2𝑝−1)
4𝑝−1

> 𝑞*. In this case, there is some 𝑟* < 1/2 that explains the 𝜃 = 𝑅

narrative; however, this narrative is less compelling than the 𝜃 = 𝐿 narrative (because

𝑓 is largest at 𝑟 = 1/2). Thus, some moderate right-leaning agent with belief 𝜋*
𝐵 > 1/2

will be the optimal target. As 𝑞 increases, the 𝑟* corresponding to the 𝑅 narrative moves

closer to 1/2 and thus becomes more likely. Thus, for low 𝑞, 𝜋*
𝐵 will be close to 1 (target the

extremists, as in Proposition 3) whereas for high 𝑞, 𝜋*
𝐵 will target the most right-leaning

moderates (as in the uniform distribution).

The second case is that the misinformation split 𝑟 = 1/2 admits only one narrative

(𝑞* < 𝑞 < 2(2𝑝−1)
4𝑝−1

). Then there are (barely) two narratives when 𝑟 = 𝑟* satisfies (1 −

𝑝)(1 − 𝑞) + 𝑞𝑟* = 𝑝(1 − 𝑞), or 𝑟* = (2𝑝−1)(1−𝑞)
𝑞

> 1/2, and this is the most likely split of

misinformation conditional on the existence of two narratives. The other narrative (the

𝜃 = 𝑅 narrative) has likelihood almost zero (this narrative occurs at 𝑟 = 0), so only the

most polarized right-leaning agents will prescribe to this narrative over the true narrative

for 𝜃 = 𝐿. Thus, the optimal policy is exactly the same as in Proposition 3: the regulator

should target the most extreme Bayesian agents, which are strictly more extreme than the

optimal DeGroot target.

(iii) Skewed distribution: When𝐹 follows the V-distribution, the most likely split of misinformation

that admits two narratives is 𝑟 = 1 (note that 𝑟 = 0 is also the most likely, but when 𝜃 = 𝐿,

the 𝐿 narrative is unique). There are always two narratives in this case and the 𝜃 = 𝑅

narrative corresponds to 𝑟* = 1−2𝑝(1−𝑞)
𝑞

. When 𝑞 > 2(2𝑝−1)
4𝑝−1

> 𝑞*, 𝑟* > 1/2, so increasing 𝑞

increases 𝑟* and makes the 𝜃 = 𝑅 narrative more likely. Consequently, 𝜋*
𝐵 decreases and

the regulator targets more moderate right-leaning agents. When 𝑞* < 𝑞 < 2(2𝑝−1)
4𝑝−1

, 𝑟* < 1/2,

so increasing 𝑞 increases 𝑟* but makes the 𝜃 = 𝑅 narrative less likely. Consequently, 𝜋*
𝐵

increases and the regulator targets more extreme right-leaning agents. In particular, we

recover the policy of Proposition 3 (target the extremists) when 𝑞 has the intermediate
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value of 2(2𝑝−1)
4𝑝−1

.

Discussion — These cases highlight an interesting feature of the Bayesian targeting policy under

this alternative learning metric: the optimal target depends on the quantity of misinformation

𝑞 and can even be non-monotone in 𝑞.

In case (ii) (as with any concave distribution for 𝐹 ), with relatively low misinformation, the

policy is the same as in Proposition 3: the regulator should target extremists because these are

the most stubborn agents to convince. However, with relatively high misinformation, the policy

changes to focus on more moderate right-leaning agents, because abundant misinformation

will necessarily confound learning for the extremists.

In case (iii) (as with any convex distribution for 𝐹 ), the regulator employs a non-monotone

targeting policy. When misinformation is small or large, both narratives conclude that misinformation

is heavily skewed toward one ideology, which inhibits learning and admits an optimal policy

of targeting moderate right-leaning agents. However, when misinformation is moderate, the

incorrect narrative involves an even split of misinformation, which is unlikely; consequently,

the regulator should target the most difficult agents to convince, the extremists, as in Proposition 3.

Finite Populations

Recall that Theorem 1 shows that when 𝑁 → ∞ and in settings where misinformation is high

(𝑞 > 𝑞*), DeGroot societies outperform Bayesian societies, whereas the converse holds when

misinformation is low (𝑞 < 𝑞*). We consider how robust these findings are to a finite population

of agents.

High Misinformation. When there is high misinformation, DeGroot agents consistently

outperform Bayesian agents for all finite populations, as shown in Figure B-19a. Notably,

Bayesian agents converge to their theoretical long-run mislearning average more quickly than

DeGroot agents.15 With few agents in the population, the small amount of information on

the state 𝜃 allows for more wild narrative telling. We denote this kind of narrative telling as

a noise-based narrative to distinguish it from the more subtle narrative telling identified in

Section 4.2. Noise-based narratives arise from the agents believing that the existing (and

15While both Figure B-19a and Figure B-19b show DeGroots bounded away from their long-run average, one can
verify via simulation that after𝑁 > 10000, DeGroots are within 1% of their𝑁 → ∞ learning rate (i.e., convergence
is slower). The plots are capped at 𝑁 ≤ 150 because of the numerical issues associated with Bayesian learning
when 𝑁 is large but finite.
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limited) content is just by happenstance in opposition to one’s priors, but is not indicative of 𝜃.

Once the population reaches a critical mass, the noise-based narrative dwindles and only the

misinformation narrative spin identified in Section 4.2 persists, keeping Bayesian mislearning

at or above 40%.

Low Misinformation. When there is low misinformation, DeGroot agents can still outperform

Bayesian agents in small populations, as shown in Figure B-19b. This is again related to the

noise-based narrative that Bayesian agents can spin in finite populations. As seen in Figure B-

19b, with an infinite population, the Bayesian society learns almost surely, and so there are

no misinformation narratives (of the form in Section 4.2) that can be told. As the population

increases, the noise-based narratives attenuate and once the population is large enough (e.g.,

𝑁 > 150), the Bayesians begin to outperform the DeGroots, as predicted in Theorem 1 for the

low misinformation regime.
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(a) High misinformation regime (b) Low misinformation regime

Figure B-19. Beliefs in finite populations
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