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Abstract

Granular materials are ubiquitous in industrial and geophysical scenarios. At a high
computational expense, the discrete element method (DEM) simulates granular ma-
terials with a high accuracy by tracking individual particles. At the other extreme,
empirical formulas based on dimensional analysis and continuum models are conve-
nient to be applied to large scale problems, but calibrations may be needed. In this
thesis, DEM simulations are carried out as virtual experiments to study the particle-
scale physics and then guide the formulation of empirical relations or continuum
models for two applications.

Dynamic similarity, commonly applied in fluid systems, has recently been ex-
tended to locomotion problems in granular media. Our previous research was limited
to locomotors in cohesionless, flat beds of grains under the assumption of a simple
frictional fluid rheology. However, many natural circumstances involve beds that are
sloped or composed of cohesive grains. Expanded scaling relations are derived and
DEM simulations are performed as validation, with inclined beds and cohesive grains
using rotating “wheels” of various shape families, varying size and loading conditions.
The data show a good agreement between scaled tests, suggesting the usage of these
scalings as a potential design tool for off-road vehicles and extra-planetary rovers,
and as an analysis tool for bio-locomotion in soils.

In the bedload sediment transport process, the variability in the relation between
sediment flux and driving factors is not well understood. At a given Shields number,
the observed dimensionless transport rate can vary over a wide range in controlled
systems. A two-way coupled fluid-grain numerical scheme has been validated against
physical experiments of spherical sediment particles. It is used to explore the parame-
ter space controlling sediment transport in simple systems. Examination of fluid-grain
interactions shows fluid torque is non-negligible near the threshold. And the simula-
tions guide the formulation of continuum models for the bedload transport and the
creep flow. Furthermore, a numerical scheme has been developed to simulate the
transport of natural shaped sediment particles. Conglomerated spheres, approximat-
ing the real shapes from CT scanning, are constructed in DEM and coupled with the
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fluid solver. Agreement with the corresponding flume experiments is observed.

Thesis Supervisor: Ken Kamrin
Title: Professor of Mechanical Engineering
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Chapter 1

General introduction

1.1 Background

Granular materials are ubiquitous in daily lief and industrial processes, such as the

transport and storage of food grains and pharmaceutical capsules/tablets. In geo-

physics, the aeolian transport of sand and the sediment transport of gravels on river

beds shape the natural landscapes. Extraplanetary scenarios are also seen, for exam-

ple the Mars rover Spirit has been stuck in sand since 2009. Mathematical description

of the behaviour of granular matters are challenging since they can behave like solid,

fluid and gas, and they can transit from one phase to another in certain conditions.

Sometime multiple phases of the three can co-exist.

A lot of experimental and numerical efforts have been made for better under-

standing of the granular materials. The discrete element method (DEM) [1] simulates

granular materials with a high accuracy by tracking individual particles and going

through the pair-wise interactions with a contact law. DEM simulations can provide

detailed dynamic variables which are not easy to access in physical experiments. As

a consequence, a large number of research have been conducted using DEM (see the

review paper [2] for more details) and it has also been couple with computational

fluid dynamics (CFD) to study multi-phase granular flows (see these two reviews

[3, 4]). One of the problems is that in many applications, the length scale we are

interested in in are much larger than the particle size. The DEM approach may be
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computationally too expensive or even impossible.

At the other extreme of computational cost, continuum models [5, 6, 7] in which

the particle-wise variables are homogenized into continuous fields to be solved, as well

as empirical relations [8, 9], are convenient to be applied to large scale problems, but

calibrations may be needed. In this thesis, DEM based simulations are carried out

as virtual experiments to study the particle-scale physics and then guide the formu-

lation of empirical dimensionless relations or continuum models for two applications:

(1) locomotion problems in granular media, and (2) the bedload sediment transport

process, leading to 3 parts in this thesis.

In the first part of this thesis, DEM simulations of different shaped wheels on

granular beds with modified inter-particle contact laws are used to study dynamic

similarities of the locomotion problems in granular media, guided by dimensional

analysis. Scaling relations for driving performance, namely the power and traveling

velocity, are proposed and validated for wheeled locomotion inclined and cohesive

granular beds.

In the second part of the thesis, DEM is coupled with LBM to simulate the

bedload sediment transport process of round particles with a sub-particle resolution,

for a better understanding of the variability in the relation between sediment flux

and driving factors. After being validated against the corresponding flume tests, the

DEM-LBM simulations are used to explore the parameter space controlling sediment

transport in simple systems. Examination of the accessible variables that are not easy

to be measured in experiments are carried out to guide the formulation of continuum

models for the sediment transport as well as the creep flow beneath the sediment bed

surface.

In the last part of the thesis, based on the shape approximation of natural gravels

using clusters of superimposed spheres, a novel DEM-LBM scheme is developed to

simulate the transport of natural shaped sediment particles. The results are compared

with the corresponding sediment transport of natural gravels.
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1.2 Contributions

The dimensional analysis and the wheel simulations (presented in Chapter 2) were

developed in collaboration between myself, my advisor Ken Kamrin and Stephen

Townsend. The Navier slip boundary condition, the DEM-LBM simulations and the

continuum modeling (presented in Chapter 3) are developed jointly between myself

and Ken Kamrin. The CT scanning, multi-sphere approximation of the natural grav-

els and the flume experiments were carried out by Eric Deal, Santiago J. Benavides,

Matthew Rushlow, my thesis committee member J. Taylor Perron and Jeremy G.

Venditti. With the reconstructed multi-sphere particles, the benchmarks of the par-

ticle properties and DEM-LBM simulations (presented in Chapter 4) were finished

jointly by me and Ken Kamrin. The DEM-LBM code was adapted from Patrick

Mutabaruka’s PhD work with major modifications including the implementation of

Navier slip boundary condition (Chapter 3) and multi-sphere technique (Chapter 4)

as well parallelization and calibration by me.

1.3 Publications

This thesis contains material that was published in the following articles:

1. Qiong Zhang, Stephen Townsend and Ken Kamrin (2020). Expanded scaling

relations for locomotion in sloped or cohesive granular beds. Physical Review

Fluids, 5(11): 114301.

2. Qiong Zhang, Eric Deal, J. Taylor Perron, Jeremy G. Venditti, Santiago J.

Benavides, Matthew Rushlow and Ken Kamrin (2022). Fluid-driven transport

of round sediment particles: From discrete simulations to continuum modeling.

Journal of Geophysical Research: Earth Surface, 127(7): e2021JF006504.
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Chapter 2

Scaling relations for locomotion in

inclined non-cohesive and horizontal

cohesive granular media

This chapter includes results previously published by this author in Zhang et al., 2020

[10].

2.1 Background

Scaling relations for locomotion in flat beds of dry granular material have recently

been proposed by considering dynamic similarity in a presumed continuum represen-

tation [11]. Despite the complexity of granular rheology, including history-dependent

effects [12, 13, 14], anisotropy [15], hysteresis [16], rate-dependent effects [17, 18], non-

local effects [6, 19] and relaxation [20], the proposed scaling relation in [11] is based on

the assumption of a simple rate-independent frictional-plastic rheology. Even though

a simple constitutive model is assumed, the obtained scalings are shown to describe

the features of locomotion in flat, non-cohesive, dry granular beds in a number of

experiments and discrete element method (DEM) simulations. However, terrains in

nature are frequently sloped (e.g. hills, piles, dunes) and the grains may be cohesive,

typically due to moisture or powder-like attraction, giving rise to novel locomotive
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dynamics [21, 22]. How or if scaling relations extend under these circumstances has

remained unclear. Furthermore, since the previous scaling law was shown to be effec-

tive under variations of gravity, if an extended scaling relation could be found, it could

lead to novel protocols for modeling extraplanetary rovers by way of experiments per-

formed on earth that properly scale the gravity and essential frictional/cohesive soil

character of the target environment.

In this chapter, extended scaling relations for basic locomotive observables, such

as power expenditure of the locomotor and its traveling velocity, are proposed for

use in inclined and/or cohesive granular beds. For verification, DEM simulations

are performed using locomotors of various sizes and three different locomotor shapes

(triangle, rectangle and hexagonal) along with a variety of mass loadings, rotation

speeds, and gravities. We show the proposed scalings are satisfied in separate studies

of sloped beds and cohesive grains.

2.2 Dimensional analysis

Our scaling analysis begins by supposing a simple continuum model for the gran-

ular media and analyzing its dimensional consequences. First, the media satisfies

momentum balance

𝜌𝑣̇ = ∇ · 𝜎 + 𝜌𝑏

where 𝑣 is the velocity of a material point, 𝜎 the Cauchy stress tensor, 𝜌 the density

of the material, and 𝑏 the specific body force. We consider a constitutive relation that

assumes wherever the density is below a critical value, 𝜌0, the material is disconnected

and thus stress-free (i.e. 𝜎 = 0 when 𝜌 < 𝜌0). Alternatively, in the dense state, which

is described as when 𝜌 = 𝜌0, we presume a frictional and cohesive rheology, which
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can be concisely summarized with the system of constraints below:

𝜌̇(𝐶2 + 𝑝) = 0 and 𝐶2 + 𝑝 ≥ 0 and 𝜌̇ ≤ 0,

𝑓𝑦 · 𝛾̇ = 0 and 𝑓𝑦 = 𝜏 − 𝜇𝑠𝑝− 𝐶1 ≤ 0 and 𝛾̇ ≥ 0,

where 𝑝 is the pressure, 𝛾̇ the shear rate, 𝜏 the shear stress, and 𝜇𝑠 the material

critical friction coefficient 1. 𝐶1 is the cohesive shear stress that must be overcome in

order to plastically shear the material at zero pressure [23, 24, 25, 26], and −𝐶2 is the

hydrostatic stress necessary to detach the material in uniform expansion. In words,

the first equation above states that material exiting the dense state (𝜌̇ < 0) does so

when its pressure becomes critical (𝑝 = −𝐶2), otherwise material that is below the

expansion criterion (𝑝 > −𝐶2) can only flow incompressibly (𝜌̇ = 0). The second

equation above states that material is either shearing and the stress satisfies 𝑓𝑦 = 0,

or the material is not shearing and the stress is sub-yield, 𝑓𝑦 < 0. For non-cohesive

grains, 𝐶1, 𝐶2 are zero. For cohesive grains, 𝐶1 and 𝐶2 both manifest from the same

microscale source, cohesive bonds at the grain contacts, so we assume both 𝐶1 and 𝐶2

are expressible in terms of a common characteristic cohesion stress, which we denote

heretofore as 𝜎𝑐.

Note that the constitutive equations above are rate independent. The dependence

of shear stress on rate is typically low for granular intrusion problems, even rapid ones,

because high pressure develops against the intruding surface, which counters the large

shear rate in the inertial number definition [17]. For example, when intruders are shot

into granular beds [27], the effect of rate is shown to be rather small (< 10%) in terms

of traveling depth and time. The constitutive model is also free of particle size effects,

which is justifiable as long the length-scale of the locomotor is much larger than the

grain scale [6, 28] including possible grain-size-based cohesion length-scales.

With the constitutive model just described, we next infer scaling relations for

1In 3D there are several choices one could make for the directionality (such as codirectionality
v.s. double-shearing) and the definition of 𝜏 (such as Tresca’s equivalent stress v.s. equivalent shear
stress) and 𝑝 (such as the normal stress on the flow plane v.s. the hydrostatic stress). But for any
choice of the definitions, the same scaling laws come out as long as the model remains isotropic.
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locomotion and check how well they hold against a number of DEM simulations. In

so doing, this study is also a de-facto check on the validity of using the above basic

continuum assumptions for these problems. We perform a dimensional analysis similar

to that by Slonaker er al. [11]. For a wheel having large out-of-plane thickness 𝐷𝑊

and characteristic in-plane length 𝐿, one can non-dimensionalize the driving inputs

and constitutive parameters to express the velocity 𝑉 of the wheel and power 𝑃

expended by the wheel as follows:

[︂
𝑃

𝑀𝑔
√
𝐿𝑔

,
𝑉√
𝐿𝑔

]︂
= Ψ

(︂√︂
𝑔

𝐿
𝑡, 𝑓,

𝑔

𝐿𝜔2
,
𝜌0𝐷𝑊𝐿2

𝑀
,𝜇𝑠, 𝜇𝑤,

𝜌0𝑔𝐿

𝜎𝑐

, 𝜃

)︂
(2.1)

for some two-output scaling function Ψ. Here, 𝑡 is time, the gravitational acceleration

is 𝑔, the inclination of the bed relative to the direction of gravity is 𝜃, the mass of

the wheel is 𝑀 , the rotational speed is 𝜔, the shape of the wheel is represented by a

set 𝑓 , and 𝜇𝑤 is the friction coefficient of the wheel-bed interface. Each set of scaling

tests below utilizes a fixed granular material and fixed wheel roughness so 𝜇𝑠 and 𝜇𝑤

can be absorbed into the undetermined Ψ function.

We study the validity of the above relation by splitting it into two sets of cases,

which we shall analyze separately. We consider wheels traveling on inclined beds of

non-cohesive particles, where the dimensionless number 𝜌0𝑔𝐿
𝜎𝑐

is not involved. Thus

the relation becomes

[︂
𝑃

𝑀𝑔
√
𝐿𝑔

,
𝑉√
𝐿𝑔

]︂
= Ψ̃1

(︂√︂
𝑔

𝐿
𝑡, 𝑓,

𝑔

𝐿𝜔2
,
𝜌0𝐷𝑊𝐿2

𝑀
, 𝜃

)︂
. (2.2)

We also consider the case of wheels traveling on horizontal beds of cohesive granular

media. Here, we can take away 𝜃 and the relation becomes

[︂
𝑃

𝑀𝑔
√
𝐿𝑔

,
𝑉√
𝐿𝑔

]︂
= Ψ̃2

(︂√︂
𝑔

𝐿
𝑡, 𝑓,

𝑔

𝐿𝜔2
,
𝜌0𝐷𝑊𝐿2

𝑀
,
𝜌0𝑔𝐿

𝜎𝑐

)︂
. (2.3)
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Figure 2-1: Example simulation system — case of a rectangular wheel in cohesive
grains pictured. A wheel comprised of rigidly connected yellow inner particles and
blue particles on the edge, is given a fixed rotation speed, which causes it to travel
to the right. The particles in the bed are shown in green while the red particles at
the bottom are fixed. The pictured domain width is about half of that of the whole
simulated domain.

2.3 Numerical experiments

In order to test the proposed scaling relations, traveling wheels of different sizes

and different shapes in different operating conditions are numerically simulated on

horizontal granular beds of cohesive particles as well as inclined granular beds of

non-cohesive particles using the open source software LAMMPS [29]. In all our nu-

merical experiments, the granular beds are made of particles with a mean diameter of

𝑑 =0.635mm and the polydispersity is 20%. The solid density of grains is 2500 kg/m3,

close to the density of quartz. For non-cohesive granular beds, the contact model is

Hooke’s law in both normal and tangential directions, with damping in the normal

direction and a frictional sliding coefficient of 0.4 [30, 31]. The stiffness 𝑘 is set

large enough that the hard particle limit is satisfied anywhere in the bed — that is,

𝑝𝑏𝑑/𝑘 < 10−4 , where 𝑝𝑏 is the pressure in the bed due to the weight and motion of

the material — and the damping corresponds to a restitution coefficient 𝑒 = 0.1. The

same values of the particle parameters have been used in previous studies [32, 11].
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The cohesive particles also have an extra Lennard-Jones Potential to enable medium

range attraction, as used in other researchers’ work on cohesive particles [33, 34]. The

radius at which distance the potential is minimum is set to be 𝑑 and the potential is

calculated within a cutoff of 2.5𝑑. The depth of the potential well is 2× 10−9J. Our

choice to use a fixed granular material for all scaled locomotion tests is for practical

purposes, as it would be difficult in reality to have to “manufacture new sand” in

order to utilize a scaling relation.

Because the scaling purports to apply to arbitrary wheel shapes, we consider three

different shapes in this study: equilateral triangular wheels, rectangular wheels, and

regular hexagonal wheels. All wheels are composed of particles having a uniform

diameter 𝑑0 = 0.8mm rigidly connected to each other. The characteristic in-plane

size 𝐿 of the triangular and hexagonal wheels are represented by the side lengths,

while for the rectangular wheels (aspect ratio 2:1) 𝐿 is represented by the long side

length. The mechanical properties of the outer layers (single or double layers) of the

wheel particles are set to be the same as the particles in the granular bed to maintain

a common wheel-grain and grain-grain contact interaction, while the density of the

inner layers of the wheel particles can be tuned accordingly to scale the mass of the

wheel in the study. The rotational velocity of the wheel is prescribed about the wheel’s

geometric center and the particles constituting the wheel move as a rigid body. When

studying locomotion in a cohesive granular bed, the outer particles of the wheel also

interact with the bed particles via the Lennard-Jones Potential described above.

The numerical experiments are quasi-3D (see FIG. 2-1) in the sense that the simu-

lated domain has a depth of 𝑑0 into the page (𝑦 direction) and periodic boundary con-

ditions are applied in the 𝑦 direction, allowing particles to move out-of-plane. Hence,

the simulation represents a ‘thick’ wheel driving on a granular bed. Periodic boundary

conditions are also applied in the 𝑥 direction (wheel traveling direction). The bottom

of the bed is made of fixed particles, representing a no-slip boundary condition. In

the simulations with horizontal beds, the gravity points vertically downward. Tilted

beds are treated by tilting the gravity vector.
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2.4 Scaling law for wheels on inclined beds of non-

cohesive grains

(a) (b)

(c) (d)

Figure 2-2: For each of (a)-(d), snapshots are shown of rectangular wheels at the
same dimensionless time driving in non-cohesive particle beds at a particular tilt
angle 𝜃. The subfigures correspond to the supposed scale-equivalent test cases A, B,
and C. The value of 𝜃 is (a) 85∘, (b) 95∘, (c) 100∘ and (d) 105∘. The wheels spin
clock-wise and travel to the right.

The numerical simulations of wheels traveling on inclined beds of non-cohesive

particles consist of three groups corresponding to three different shapes: triangle,

rectangle (aspect ratio 2:1), and hexagon. Each group adopts a set of three wheels of

identical shape but different sizes or operating parameters: we denote them A, B and

C, as shown in Table 2.1, where the value of the parameters are shown in Table 2.2

with the wheel particle size 𝑑0 = 0.8mm. The parameters of the wheels are designed

according to Eq.(2.2) such that 𝑔/𝐿𝜔2 and 𝜌0𝐷𝑊𝐿2/𝑀 are fixed across all wheels
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sharing a common shape.

Table 2.1: Parameters of the wheels, in each group of the same shape, tested on
inclined beds of non-cohesive particles at various angles.

Wheel Size 𝑀/𝐷𝑊 𝜔 𝑔
A 𝐿1 𝑀1 𝜔1 𝑔1
B 𝐿1 𝑀1 2 · 𝜔1 4𝑔1
C 𝑘1 · 𝐿1 𝑘2

1 ·𝑀1 𝜔1/
√
𝑘1 𝑔1

Table 2.2: Value of the parameters for different wheel shapes, tested on inclined beds
of non-cohesive particles at varying angles.

Shape 𝐿1/𝑑0 𝑘1 𝑀1(kgm−1) 𝜔1(rps) 𝑔1(m/s2)
Triangle 36 3/2 0.56 1 9.8
Rectangle 36 (length) 3/2 1.09 1 9.8
Hexagonal 18 4/3 0.77 1 9.8

Each set of three wheels are tested with four different angles between the traveling

direction and the gravity: 𝜃 = 85∘ (downhill), 95∘ (uphill when 𝜃 > 90∘), 100∘ and

105∘. Due to the periodic boundary conditions in the traveling direction and the

finite depth of the granular bed, the angles are constrained to a range that permits

the bed to be static in the absence of a wheel, and to ensure that any flows set off

due to impact by the moving wheel do not cause grains to pass through the periodic

boundary and hit the front of the wheel, nor produce divots that expose or come close

to the bottom wall of the bed.

First we present detailed results of the rectangular wheel simulations. Snapshots

of those simulations at a fixed value of 𝑡 are compared in FIG. 2-2. It can be seen

that for each tilt angle 𝜃, the footprint and impression patterns of the three wheel

cases (A,B, and C) are geometrically similar, which is a first indication that the

scaling relations proposed are indeed scaling the relevant physics. More quantita-

tively, the dimensionless power 𝑃 = 𝑃
𝑀𝑔

√
𝐿𝑔

and traveling velocity 𝑉 = 𝑉√
𝐿𝑔

, as a

function of dimensionless time 𝑡 = 𝑡
√︀

𝑔/𝐿 comparisons of the set of three rectangle

wheels on beds of non-cohesive particles, with different angles 𝜃, are shown in FIG.

2-3. The dimensionless power and traveling velocity of the three wheels show strong

agreement, supporting the proposed scaling relation for driving up (or down) inclined
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Figure 2-3: Dimensionless power and traveling velocity comparisons of a set of three
rectangle wheels in beds of non-cohesive particles, with the angle 𝜃 between the
traveling direction and the gravity (a) 𝜃 = 85∘, (b) 𝜃 = 95∘, (c) 𝜃 = 100∘, (d)
𝜃 = 105∘. Blue curves stand for case A, red for case B and yellow for case C.
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terrains. More specifically, within the set of the three wheels, wheels A and C are

under the same magnitude of gravity whereas wheel B is under a different gravity

magnitude. This suggests the potential of the scaling law to be applied to locomotion

in extraplanetary terrains.

The dimensionless power and traveling velocity of the rectangular wheels can be

further averaged in each case and then plotted as a function of inclined angle as

shown in FIG. 2-4, in comparison with the counterparts of different shapes. The

data is averaged over a distance of at least five wheel “diameters" (maximum length

across the wheel) on virgin bed surface in steady state. The scaling relation works well

through different shapes, covering a range of inclination angles from uphill locomotion

to downhill.

We also notice that the smaller triangle wheels (A and B) consume less power than

the prediction (∼ 10% less). This effect may be a result of size effects in granular

flow rheology since the corners of the triangular wheels are sharp, causing penetration

widths that compete with the grain size. The granular bed performs stronger when

the interaction occurs at limited contacts and in thin layers, which makes the smaller

triangular wheels prone to sink slightly less, so that driving over the surface requires

less power. Similar size effects are also observed when we tried “bar wheels" (elongated

rectangles with an aspect ratio of 9:1 with the short edges no longer than 6𝑑0). As the

size of the wheel becomes much larger than the grain size (low aspect ratio rectangles

shown here) and corners less sharp (hexagons), the size effect diminishes and the

scaling law works well. The notion that grain-size effects make ‘smaller act stronger’

in granular media is confirmed by experiments [35, 16, 36] and has been explained

with nonlocal (grain-size-dependent) rheologies [6, 28, 37, 38, 39, 40].

2.5 Scaling laws for cohesive grains

To study the scaling relation on beds of cohesive particles, we have tested a set of

three triangular wheels, three rectangular wheels, as well as three hexagonal wheels

for generality. Dimensionless groups 𝑔/𝐿𝜔2, 𝜌0𝐷𝑊𝐿2/𝑀 and 𝜌0𝑔𝐿/𝜎𝑐 are controlled

26



and the design of the wheels can be found in Table 2.3, where the parameters that are

picked (see Table 2.4) produce reasonable wheel sinkages in the simulated domain.

Table 2.3: Parameters of the wheels, in each group of the same shape, tested on
horizontal beds of cohesive particles.

Wheel Size 𝑀/𝐷𝑊 𝜔 𝑔
Small 𝑘2 · 𝐿2 𝑘2

3 ·𝑀2 𝜔2/𝑘2 𝑔2/𝑘2
Medium 𝐿2 𝑀2 𝜔2 𝑔2
Large 𝑘3 · 𝐿2 𝑘2

3 ·𝑀2 𝜔2/𝑘3 𝑔2/𝑘3

Table 2.4: Value of the parameters for different wheel shapes on beds of cohesive
particles.

Shape 𝐿2/𝑑0 𝑘2 𝑘3 𝑀2(kgm−1) 𝜔2(rps) 𝑔2(m/s2)
Triangle 36 2/3 3/2 0.57 1 9.8
Rectangle 36 (length) 2/3 3/2 0.54 1 9.8
Hexagonal 18 2/3 4/3 0.77 1 9.8

Figure 2-6 shows snapshots of the simulations at the same dimensionless time. The

‘footprint’ patterns left by wheels of the same shape but differing size show geometric

similarity, a signature of the underlying scaling. Indeed, when the dimensionless wheel

shapes are fixed (same 𝑓) and dimensionless groups 𝑔/𝐿𝜔2, 𝜌0𝐷𝑊𝐿2/𝑀, 𝜌0𝑔𝐿/𝜎𝑐 are

controlled to be the same, the power 𝑃 and traveling velocity 𝑉 appear to scale as

in Eq.(2.3), as evidenced in FIG. 2-5. Both the triangular and rectangular wheels

dimensionless power and velocity as functions of dimensionless time match well, re-

spectively. The hexagonal wheels have noisier time-dependent profiles, however the

time averaged values match best among all the tested shapes: 𝑃 within a difference

of 1.0% and 𝑉 within a difference of 6.0% relative error with respect to the mean val-

ues of the time averaged power and velocity, whereas the relative error of power and

velocity are within 2.9% and 8.4% for rectangle wheels, 7.5% and 7.7% for triangle

wheels. The scaling relation seems to be more robust to sharp corners; it appears the

triangular wheels scale better in cohesive versus non-cohesive particles.

Due to the cohesive nature of the particles, the gravity 𝑔 and the characteristic

length 𝐿 produce the dimensionless group 𝜌0𝑔𝐿/𝜎𝑐. Observe that when the granular

material and gravity are fixed, this group can only stay fixed if 𝐿 is unchanged.
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Conversely, a test in one gravity to predict behavior in another comes with a specific

size-scaling rule. For example, to test a Mars rover on Earth in a soil matching the

behavior of Martian soil, the dimensionless group 𝜌0𝑔𝐿/𝜎𝑐 dictates that the size of

the wheel to be tested on the Earth should be scaled to (𝑔earth/𝑔mars)
−1 = 0.38 times

the size of the one intended for Mars. Other testing parameters can be decided by

matching the dimensionless numbers in Eq.(2.3). Besides investigations involving

variations in gravity, the scaling of wheel size in cohesive grains is also possible if

one is able to directly control and vary the granular cohesion stress, 𝜎𝑐, which would

presumably require control over the physical mechanism causing particle attraction.

Lastly, we point out that there are many types of cohesive granular interaction

models (such as capillary models [41, 42], van der Waals interactions [33], the powder

chemistry model [43], the liquid bridging model [44], DLVO theory [45]) and we are

using just one of them: a van der Waals type medium range interaction to account

for the cohesive forces. Though the interactions and flow behaviours of cohesive

granular materials are more complicated than non-cohesive, the chapter presented

here suggests that a simple scaling law exists to predict the driving performance of

wheels on cohesive granular beds, as long as the cohesive length scale is small enough

that a characteristic cohesion strength 𝜎𝑐 is the only relevant variable.

2.6 Concluding remarks

In this chapter, scaling relations for driving performance, namely the power and

traveling velocity, have been proposed for wheeled locomotion on inclined and cohesive

granular beds. For verification, DEM simulations of different shaped wheels have

been performed and the results have confirmed the proposed scaling relations. These

scaling relations shed light on how to design experiments in laboratory scales and/or

in a different gravitational environment by following the dimensionless groups. For

example, consider two driving experiments in the same (non-cohesive) grains having

common wheel shape 𝑓 , where one system has inputs (𝑔, 𝐿,𝑀,𝐷𝑊 , 𝜔, 𝜃) and the

other has (𝑔′, 𝐿′,𝑀 ′, 𝐷′
𝑊 , 𝜔′, 𝜃′) ≡ (𝑞𝑔, 𝑟𝐿, 𝑠𝑀, 𝑠𝑟−2𝐷𝑊 , 𝑞1/2𝑟−1/2𝜔, 𝜃), where 𝑞, 𝑟, 𝑠
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are arbitrary scalars that can be selected by the user. Then, by Eq 2.1, these two

tests have matching dimensionless inputs and ought to obey similitude. If the grains

used in the pair of tests are also cohesive, Eq 2.1 would now require 𝑟 = 1/𝑞 in order

to secure dynamic similarity, thereby removing one free parameter from the design

space for the scaled test. However, if 𝜎𝑐 can be tuned in the locomotion experiments,

then three free parameters reemerge in the cohesive case. Because the scalings were

obtained assuming a local granular rheology, they are more accurate when the grain

size is indeed negligible compared with wheel length-scales, since small-body intrusion

effects may bring out rheologically nonlocal contributions in the granular media. For

example, wheels with very narrow features or wheels that do not protrude into the

bed deeply enough compared to the grain size may not satisfy the scalings as well.
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Figure 2-4: Averaged dimensionless power and traveling velocity comparisons of (a)
triangular wheels, (b) rectangular wheels and (c) hexagonal wheels, at different
inclined angles. Case A represented by blue markers, case B red, and case C black.
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Figure 2-5: Dimensionless power and traveling velocity comparisons of (a) a set of
three triangle wheels, (b) a set of rectangle wheels and (c) a set of hexagonal wheels
on horizontal beds of cohesive particles. Blue curves stand for Small wheels, red
curves for Medium wheels and yellow curves for Large wheels.
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(a)

(b)

(c)

Figure 2-6: Snapshots at the same 𝑡 of the differently shaped/sized wheels in
horizontal cohesive particle beds: (a) triangular wheels, (b) rectangular wheels, and
(c) hexagonal wheels. All tests use the same DEM grains. Different wheel sizes are
compared in different columns: Small in the first column from the left, Medium in
the second column and Large in the third column. The wheels spin clock-wise and
travel to the right.
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Chapter 3

Fluid-driven transport of round

sediment particles

This chapter includes results previously published by this author in Zhang et al.,

2022 [46]. The movies referred to in the chapter can be accessed in the Supporting

Information section of the publication.

3.1 Background

Fluid-driven sediment transport, in which a flow passing over a loose granular bed

entrains and moves the grains, plays a pivotal role in many natural and engineered

landscapes. Common scenarios that require the calculation of sediment transport

rates include conveyance of sediment through engineered channels, infilling of arti-

ficial reservoirs, dispersal of stored sediment following dam removal, and long-term

sediment transport that shapes natural rivers [47, 48]. Applications like these create

a demand for sediment transport models that can be applied over a wide range of

flow conditions and sediment characteristics.

However, calculation of sediment transport rates over a wide range of conditions is

a challenging task. Sediment transport at the scale of a river channel depends on the

fine-scale interaction of a turbulent flow with many individual sediment grains. More-

over, variations in these fluid-grain interactions through time, or with height above or
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below the sediment bed, can create different regimes of grain motion [49], including

creep of closely packed grains, a rapidly shearing slurry, or a dilute suspension.

Bedload sediment flux, in which grains move by rolling, sliding or hopping along

the bed, is practically described by field-scale sediment transport models which are

typically derived semi-empirically by comparing the bulk characteristics of flows, such

as average bed shear stress, with observations of bulk sediment transport rates from

laboratory flume experiments [8, 50, 51, 52, 9]. Less commonly, field monitoring

studies are used [53, 47]. Some widely used bedload transport relations are listed in

Table 3.1, where the dimensionless sediment transport rate (the Einstein number) is

𝑞* ≡ 𝑞𝑠

⧸︁(︃
𝑑𝑝

√︃
𝜌𝑠 − 𝜌𝑓

𝜌𝑓
𝑔𝑑𝑝

)︃
, (3.1)

with 𝑞𝑠 the sediment volume flux per unit flow width, 𝑑𝑝 the grain diameter, and 𝜌𝑠

and 𝜌𝑓 the sediment and fluid densities. The dimensionless bed shear stress, often

referred to as the Shields number, is

𝜏 * ≡ 𝜏𝑏
⧸︀
[(𝜌𝑠 − 𝜌𝑓 ) 𝑔𝑑𝑝] , (3.2)

with 𝑔 the gravitational acceleration. 𝜏𝑏 is the bed shear stress, which is the driving

factor in the sediment transport process. For example in a infinite wide river with

a bed slope of 𝑆 and a water depth of 𝐻, the bed shear stress can be calculated as

𝜏𝑏 = 𝜌𝑓𝑔𝐻𝑆. Most bedload transport relations have a critical value of the Shields

number 𝜏 *𝑐 at which grains begin to move [54], and most converge to a power law

of 3/2 for 𝜏 * ≫ 𝜏 *𝑐 , but differ if 𝜏 * is close to the threshold of grain motion [55].

Recently, Pähtz and Durán [56] proposed a formula in which 𝑞* scales with 𝜏 * − 𝜏 *𝑐

linearly for 𝜏 * → 𝜏 *𝑐 and quadratically for 𝜏 * ≫ 𝜏 *𝑐 through numerical simulations,

indicating the 3/2 power law may be an approximation between these two ends.

These semi-empirical models have the desirable characteristic that they are easy

to apply in natural and experimental settings, and they are therefore widely used.

However, even under controlled laboratory conditions, empirical bedload transport
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Table 3.1: Widely used bedload transport relations.

Author(s) Dimensionless transport rate 𝑞* Critical Shields # 𝜏*𝑐
Meyer-Peter and Müller [8] 𝑞* = 8(𝜏* − 𝜏*𝑐 )

3/2 𝜏*𝑐 = 0.047

Ashida and Michiue [50] 𝑞* = 17(𝜏* − 𝜏*𝑐 )(
√
𝜏* −

√
𝜏*𝑐 ) 𝜏*𝑐 = 0.05

Engelund and Fredsøe [57] 𝑞* = 18.74(𝜏* − 𝜏*𝑐 )(
√
𝜏* − 0.7

√
𝜏*𝑐 ) 𝜏*𝑐 = 0.05

Fernandez-Luque and Van Beek [51] 𝑞* = 5.7(𝜏* − 𝜏*𝑐 )
3/2 𝜏*𝑐 = 0.037 ∼ 0.0455

Wong [9] 𝑞* = 3.97(𝜏* − 𝜏*𝑐 )
3/2 𝜏*𝑐 = 0.0495

expressions commonly over- or under-predict sediment flux by more than a factor of

two [55]; and larger disagreements in natural settings are common: Reid and Laronne

[58] compiled the data from 6 streams and found that 𝑞* can vary by a factor of 10

across tests with 𝜏 * fixed at 𝜏 * = 0.02 and more than 100 (up to 1000) when 𝜏 * ∼ 0.1.

Correction factors for 𝑞*, 𝜏 * and 𝜏 *𝑐 for steep slopes can be obtained from recent works

[59, 56]. However, the variability is evident even in sediment transport experiments on

gentle slopes, such as Meyer-Peter and Müller [8] in which the slope 𝑆 < 0.02 and the

above slope correction factors are close to 1. What is causing the variation in flux (𝑞*)

for a given Shields number (𝜏 *) on gentle slopes? The empirical transport expressions

are also remarkable for what they do not contain, such as any dependence on sediment

geometric or surface characteristics other than a representative grain diameter. There

are reasons to expect that grain-scale phenomena influence channel-scale sediment

transport, but which grain-scale phenomena do we need to consider?

One way to address this question is to simulate the grain-scale mechanisms that

entrain and transport sediment. Recent computational and methodological advances

have made it feasible to numerically investigate the mutual interactions of many sed-

iment grains and a turbulent flow, allowing for interrogation of transport phenomena

at a level of detail that is difficult to achieve even in well-instrumented experiments.

Simulations in which the sediment particles are treated as discrete elements can be

classified into two types based on the way the fluid-particle interaction is handled:

(1) the fluid grid size is much smaller than the particle size so that the fluid-particle

interaction can be resolved [60]. And (2) the fluid grid size is comparable to or larger

than the particle size and the fluid-particle interaction is modeled by a drag (hydrody-

namic force) law [61, 62], and potentially also a hydrodynamic torque model [63, 64].
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Most of the simulations examining the sensitivity of the transport relation to the

microscopic particle parameters adopt the second type for the higher computational

efficiency; e.g. recent studies [65, 66, 67, 68] have found that the transport relation

is insensitive to the particle surface friction coefficient and the restitution coefficient.

But these simulations do not include the hydrodynamic torque on particles, which

may be important since rolling has lower threshold than sliding in entrainment events

[69]. The lack of fluid-particle angular momentum exchange may cause problems in

the other direction as well: the rotation of a single sediment particle near the bed

surface influences the fluid vortex structure nearby which in return changes the hy-

drodynamic forces [70]. Also, for grains near the bed surface where we would want

the most accuracy, the separation of length scales presumed in a drag model might

not be applicable due to the jump in volume fraction, which could render the drag

model less accurate. These questions matter most for sediment transport close to

𝜏 *𝑐 . Laminar transport simulations [71], which resolve the fluid-particle linear and

angular momentum exchange, have shown that the rolling mode in the incipient mo-

tion requires nonzero surface friction coefficient, but the specific value of the friction

coefficient has only marginal influence. But its effect is still not known in turbulent

sediment transport. These considerations motivate revisiting the parameter space,

especially the microscopic particle parameters (such as the friction coefficient and the

restitution coefficient), using turbulent sediment transport simulations which resolve

the fluid-particle interaction at a sub-grain scale.

However, even if grain-resolving simulations give us all the answers, they are cur-

rently impractical to implement at field scale (i.e. the scale of a river channel). So

one option, as a complementary approach, would be to use them to help parameter-

ize/validate a continuum model that could be scaled up more easily and captures the

rheological behavior of grains and fluid in different regions of the bed and the flow.

As noted previously, a given fluid stress can cause grains at different heights below

or above the sediment bed to move in different granular flow regimes, ranging from

a thick creeping layer to a dense slurry to a dilute suspension. Houssais et al. [49]

analyze the threshold of grain motion from this perspective, and show in a set of
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laboratory experiments that the transition from no motion to bedload transport as

𝜏 * increases is a gradual transition (as opposed the discontinuous transition implic-

itly assumed by equations in Table 3.1) characterized by progressive quickening of

granular creep throughout a layer that extends many grain diameters below the bed

surface. They additionally propose a regime diagram for sediment transport in which

the style of grain motion (creep, bedload, or dilute) depends on the height relative to

the bed surface and the transport stage, 𝜏 */𝜏 *𝑐 . This alternate perspective on sedi-

ment transport implies that it may be possible to improve predictions of sediment flux

by describing these granular regimes with appropriately coupled rheological models

rather than fitting a single function to experimental data over a range of 𝜏 * − 𝜏 *𝑐 .

In this chapter, in order to understand the variability of sediment flux (𝑞*) at a

given Shields number (𝜏 *), we examine three questions: (i) How important is fluid-

particle angular momentum transfer and in which part of the flow and in which

regime of the sediment transport is it important? We fully resolve the grain-scale

spherical particle movement and study the fluid-particle angular momentum exchange

studied in an entrainment event. Then it is quantified as a “rotation stress” whose

profile is examined in different transport stages and further correlated to the transport

relation. Our work here is benchmarked by flume experiments [72, 73] in which grain-

scale motions were tracked. (ii) What is (not) responsible for the variability in the

observed sediment transport relation? We explore the parameter space (macroscopic

river settings such as slope, and most importantly microscopic particle parameters

such as the mean size, surface roughness, and grain contact damping) to see what is

responsible for the variability in the relation between the Einstein number and the

Shields number in turbulent sediment transport. (iii) How can we formulate a useful

model broadly applicable at different scales across the range of bedload sediment

transport behaviors? We use the DEM-LBM simulation data to derive continuum

models of sediment transport that apply to a range of flow conditions and sediment

characteristics. For simplicity, we will limit our investigation to the bedload sediment

transport of mono-disperse particles without considering vegetation [74, 75], external

agitation of the turbulence [76, 77, 78], or channel morphology that is known to
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influence the transport relation, such as bedform patterns [79, 80] or the presence of

large (possibly not fully submerged) boulders [81].

3.2 Discrete simulations

A few geoscience-oriented studies have begun to probe the physics of grain-scale

sediment motion through numerical experiments [82, 61, 62, 83]. Schmeeckle [61] pio-

neered this approach in geomorphology by coupling discrete element method (DEM)

simulations of grain motion with large-eddy simulations (LES) of turbulent flow. He

found that coherent flow structures impinging on the bed are a major cause of sedi-

ment entrainment, and he measured a power-law relationship between 𝑞* and 𝜏 * that

is similar to (but somewhat steeper than) the widely used bedload transport expres-

sion [84, 8]. The LES-DEM approach employed by Schmeeckle [61], a variant of the

general CFD-DEM method (CFD: computational fluid dynamics) for the fluid and

particles, does not explicitly model flow around grains or particle-scale pressure varia-

tions (e.g. lubrication forces). Instead, the flow and grains are coupled with spatially

averaged body forces. Nonetheless, his promising results suggest that direct simu-

lations of sediment transport with tighter fluid-grain coupling will yield even more

insight into the controls on bedload flux. In recent years, more researchers have stud-

ied sediment transport problems using similar CFD-DEM simulations. For example,

Hill and Tan [83] studied the influence of the added fine particles on the mobilization

of gravel beds using LES-DEM. Maurin et al. [59] and Pähtz and Durán [56] studied

slope influence in sediment transport and have proposed slope corrections for 𝑞*, 𝜏 *

and 𝜏 *𝑐 for steep slopes. Finn et al. [63] simulated particle dynamics on wavy bottoms.

Most recently, Guan et al. [64] studied Kelvin–Helmholtz vortices’ influence on local

and instantaneous bedload sediment transport with the same numerical method as

Finn et al. [63].

For sub-particle resolution of the fluid-grain interaction, the Lattice Boltzmann

Method (LBM) [85] is able to resolve the fluid-particle interaction at the moving

particle boundaries [86, 60, 87] by treating the fluid material as hypothetical fluid

38



particles marching in space and colliding with the solid particle boundaries. Coupled

DEM-LBM simulations can fully resolve the fluid-particle interaction in sediment

transport problems and offer more understanding about the grain-scale mechanisms.

In the following discussion of the particle-scale simulations, we first introduce

the DEM-LBM numerical method. Second, we present simulations matching the

conditions of flume experiments [72, 73] to provide a relevant many-particle test of

the methodology. Third, we present wide wall-free simulations in order to study the

factors that can potentially cause the variability seen in experimental transport data

on gentle slopes.

3.2.1 Method: DEM-LBM

The translation and rotation of the sediment particles in our DEM-LBM simulations

are integrated from the equations of motion of individual particles using the Velocity

Verlet method [88], which is widely used in DEM simulations of granular materials

and is implemented in common software such as LAMMPS [29] and LIGGGHTS

[89]. The particle-particle interaction is elastic with damping effects in the normal

direction, which can be simulated as a spring-dashpot model, and the interaction is

elastic with friction in the tangential direction.

The DEM algorithm is fully coupled to a LBM solver, which can resolve the trac-

tion over many moving boundaries (grain surfaces in our case). Chen and Doolen

[90] review the history of this numerical method, and Aidun and Clausen [91] review

the application of LBM to complex flows. Inspired by the Boltzmann-Maxwell Equa-

tion, LBM recovers the Navier-Stokes equations [85] by treating the fluid material

as hypothetical fluid packets that collide and stream in a discrete set of directions.

The method is particularly advantageous for solving problems with many moving

boundaries and the simple form makes implementation straightforward.

In a standard LBM algorithm, the domain is discretized into a uniform orthogonal

grid. The fluid material exists in the 3D domain only on the nodes in a certain

discretized dimensionless velocity set {𝑐𝑖}. In this chapter, we choose a discretization

composed of of 19 directions, known as D3Q19, as shown in Figure 3-1(a). The
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Figure 3-1: Lattice Boltzmann Method: (a) The velocity set of D3Q19: 18 velocities
streaming out from the node to the next nearest nodes in the velocity directions and
a rest velocity staying at the original node (b) Particle boundary treatment in LBM,
depending on 𝛿 the distance from the last fluid node to the boundary in terms of
lattice units. 𝑥𝑓 is the fluid node next to a solid node 𝑥𝑠, and 𝑥𝑓𝑓 is the neighbor
fluid node upstream. (c) Related velocities near a stationary wall (the fluid node is
aligned with the wall): the fluid parcel coming in 𝑐𝑖 will be bounced back into the
opposite direction 𝑐𝑖′ at a no-slip wall, and will be reflected specularly into 𝑐𝑖′′ at a
free-slip wall.

fluid material at a point is represented by “fluid parcels" streaming in 18 directions

with magnitudes that move the parcels to the nearest node in the velocity direction

through each LBM timestep (with the 19th parcel just resting at the original node).

Each of the parcels corresponds to a distribution function component 𝑓𝑖 satisfying

Σ18
𝑖=0𝑓𝑖 = 1. In a fluid timestep, as shown in Eq 3.3, the fluid undergoes a collision

(right-hand side) and a streaming operation (left-hand side) sequentially:

𝑓𝑖(𝑥+ 𝑐𝑖, 𝑡+ 1)− 𝑓𝑖(𝑥, 𝑡)⏟  ⏞  
Streaming

=
1

𝜏
[𝑓 𝑒𝑞

𝑖 − 𝑓𝑖]⏟  ⏞  
Collision

, (3.3)

where 𝑥 is the dimensionless position, 𝜏 is the dimensionless relaxation time and 𝑓 𝑒𝑞
𝑖

is the equilibrium distribution function. All the quantities are nondimensionalized

by the grid size 𝑑𝑥, LBM timestep 𝑑𝑡𝑓 , and 𝜌𝑓 . In the collision operation, 𝑓 𝑒𝑞
𝑖 is a

function of the macroscopic fluid velocity and density, and 𝜏 is a function of the local

fluid kinematic viscosity 𝜈 [92]:

𝜏 =
1

2
+

3𝜈

𝑑𝑥2/𝑑𝑡𝑓
. (3.4)
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For turbulent flow, a Large Eddy Simulation (LES) method [92] can model the

subgrid-scale eddies. We use the Smagorinsky turbulent closure [93]:

𝜈 = 𝜈𝑓 + 𝜈𝑡, 𝜈𝑡 = (𝐶𝑠 · 𝑑𝑥)2𝛾̇𝑓 , (3.5)

where 𝜈𝑓 is the kinematic viscosity of the pure fluid, 𝜈𝑡 is the turbulent viscosity, 𝐶𝑠

Smagorinsky constant, and 𝛾̇𝑓 the fluid local shear rate. 𝐶𝑠 is shown to be dependent

on the discretization and geometry [94, 95]. We calibrate 𝐶𝑠 = 0.27 in the flume

geometry (see A for details and for validation of the pure fluid simulations) with grid

size 𝑑𝑥 = 0.5mm. The value of 𝐶𝑠 and the grid spacing are used throughout this

chapter for the simulations in which the fluid is water. Body forces such as gravity

can be taken into account by adding an extra term to the collision step [96]. More

details on how to construct a macroscopic variable such as 𝛾̇𝑓 from the distribution

{𝑓𝑖} can be found in [92].

For a post-collision distribution function component 𝑓 𝑐
𝑖 at the fluid node 𝑥𝑓 next

to a solid node 𝑥𝑠, when the corresponding parcel hits a fixed solid boundary that

sits in the middle of a link, it will bounce back and end up with the opposite direction

𝑓𝑖′(𝑥𝑓 , 𝑡 + 1) = 𝑓 𝑐
𝑖 (𝑥𝑓 , 𝑡), where 𝑓𝑖′ denotes the component in the opposite direction

of 𝑓𝑖. As shown in Figure 3-1(b), when 𝛿 the distance from the last fluid node to the

boundary is not exactly 0.5, the component 𝑓𝑖′(𝑥𝑓 , 𝑡 + 1) can be interpolated [97].

For 0 < 𝛿 < 1
2
, the interpolation happens before the streaming

𝑓𝑖′(𝑥𝑓 , 𝑡+ 1) = 𝑓 𝑐
𝑖 (𝑥𝑓 + (2𝛿 − 1)𝑐𝑖, 𝑡)

= 2𝛿𝑓 𝑐
𝑖 (𝑥𝑓 , 𝑡) + (1− 2𝛿)𝑓 𝑐

𝑖 (𝑥𝑓𝑓 , 𝑡), (3.6)

whereas for 1
2
≤ 𝛿 ≤ 1, interpolation happens after the streaming

𝑓𝑖′(𝑥𝑓 , 𝑡+ 1) =
1

2𝛿
𝑓𝑖′(𝑥𝑓 + (2𝛿 − 1)𝑐𝑖, 𝑡+ 1) +

2𝛿 − 1

2𝛿
𝑓𝑖′(𝑥𝑓𝑓 , 𝑡+ 1)

=
1

2𝛿
𝑓 𝑐
𝑖 (𝑥𝑓 , 𝑡) +

2𝛿 − 1

2𝛿
𝑓 𝑐
𝑖′(𝑥𝑓 , 𝑡), (3.7)
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For moving solid boundaries, the no-slip boundary condition can be modified accord-

ing to the velocity of the particle boundary due to translation and rotation [97]. In

our flume simulations (Section 3.2.3), since the thickness of the boundary layer at the

glass side walls is smaller than (or comparable to) the grid size 𝑑𝑥, we developed a

new boundary technique that accounts for the boundary layer implicitly through a

matched slip boundary condition. See Appendix A for more details. At a free-slip

boundary, the parcel will specularly reflect instead of bounce back [98] as shown in

Figure 3-1(c). As indicated above, all the LBM boundary conditions are processed in

the streaming operation.

Figure 3-2: DEM-LBM coupling scheme.

The DEM-LBM coupling scheme is shown in Figure 3-2. The local parcel mo-

mentum changes can be used to integrate the force and torque on individual particles

exerted by the fluid [99]. In this way, the fluid feels the moving particles through the

moving interfaces, and the particles feel the fluid via the integrated hydrodynamic

forces and torques. These will be used in the DEM scheme to update the linear

and angular acceleration of the particles. Note that the timestep of the DEM 𝑑𝑡

to resolve the elastic interaction of particles [17, 6] is smaller than the timestep of

the LBM 𝑑𝑡𝑓 = 𝑑𝑥/𝑐𝑠, where 𝑐𝑠 is the fluid sound speed. 𝑑𝑡𝑓 is chosen so that the

corresponding sound speed 𝑐𝑠 = 𝑑𝑥/𝑑𝑡𝑓 guarantees that the maximum Mach number
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is below 0.3, in the incompressible limit [100], and the distance a particle travels in

a “free flight" is less than 0.02𝑑𝑥 (mostly < 0.01𝑑𝑥) [60]. In the DEM-LBM simula-

tions presented in this chapter, a LBM step is called every 50 DEM steps to update

the hydrodynamic forces and torque. If the DEM algorithm uses the particle-wise

hydrodynamic forces (and torque) in the current LBM steps to update the particles’

linear and angular acceleration, the interstitial fluid may experience numerical os-

cillations. As a remedy, the particle-wise hydrodynamic forces (and torque) in the

current and the previous LBM steps are averaged when conducting the DEM update.

When a particle is close to another particle or a wall, the algorithm searches for the

upstream fluid information 𝑓 𝑐
𝑖 (𝑥𝑓𝑓 , 𝑡) or even 𝑓 𝑐

𝑖 (𝑥𝑓 , 𝑡) in Eq 3.6 and Eq 3.7 which

may be no longer physically available. Special care must be taken to update the fluid

domain information as well as to calculate the corresponding fluid-solid momentum

exchange. For these near contact scenarios, the needed upstream fluid distribution

function component, 𝑓 𝑐
𝑖 (𝑥𝑓𝑓 , 𝑡) or 𝑓 𝑐

𝑖 (𝑥𝑓 , 𝑡), is evaluated as the (Maxwell) equilibrium

distribution using the grain velocity at the node if the search for the upstream fluid

node goes into a node occupied by another particle. If the search goes out of the wall

of the flume, then it comes back to the domain (see 𝑐𝑖′′ as shown in Figure 3-1(c)).

By refining the resolution of LBM with respect to the particle size 𝑑𝑝, Feng and

Michaelides [101] and Derkse [102] have shown that a resolution of 𝑑𝑥 ≤ 𝑑𝑝/6 or

𝑑𝑥 ≤ 𝑑𝑝/8 is adequate for sufficiently accurate results. Here in this chapter, 𝑑𝑥 ≤∼

𝑑𝑝/10 is kept to guarantee enough accuracy. To run our method, we have extended a

custom-written program described in Mutabaruka et al. [103] and Mutabaruka and

Kamrin [104].

3.2.2 Validation: single sphere settling, bouncing and rotation

The DEM-LBM algorithm is validated at the grain scale in tests of the particle-fluid

linear and angular momentum exchange

As a validation of the DEM-LBM algorithm, single particle tests are performed to

examine the liner and angular momentum exchanges between fluid and solid as well

as the resolved lubrication force between close moving solid boundaries. When an
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Table 3.2: Material properties in the single sphere tests

Settle Bounce Rotate
𝜌𝑓 [kg·m−3] 970 1203 1000
𝜂 [Pa·s] 0.373 0.0502 0.833
𝜌𝑠 [kg·m−3] 1120 7780 2550
𝑑𝑝 [mm] 15 9.5 5.2
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Figure 3-3: Results of the single sphere tests as Validation of DEM-LBM. Sphere
normal trajectory comparisons with experiments for (a) settling and (b) bouncing.

immersed particle impacts a flat surface perpendicularly, the restitution coefficient

depends on the Stokes number on collision 𝑆𝑡𝑖𝑚 = (1/9)(𝜌𝑠𝑑𝑝𝑉𝑖𝑚/𝜂), where 𝑉𝑖𝑚 is

the impact velocity [105]. Particularly, as shown by Ten Cate et al. [106], when

𝑆𝑡𝑖𝑚 is small, the sphere settles on the surface gently without bouncing back. The

bounce starts and the restitution coefficient increases as 𝑆𝑡𝑖𝑚 increases above 10, and

it approaches the dry value as 𝑆𝑡𝑖𝑚 increases even further above 400 [107]. Herein we

set up DEM-LBM simulations corresponding to the experiments in which 𝑆𝑡𝑖𝑚 = 0.19

and 𝑆𝑡𝑖𝑚 = 65, representing the settling and moderate bouncing regimes respectively.

The sphere is initially stationary and then released to descend under gravity before

impacting the bottom wall. The material properties are listed in Table 3.2.

In Figure 3-3 (a), the sphere is slightly denser than the surrounding viscous fluid

and settles gently at the bottom. The match of the terminal velocity (slopes of the

trajectories, within 5% relative error) which is reached long before landing, suggests

that the linear momentum exchange between fluid and solid is correct. The veloc-
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Figure 3-4: Fluid torque exerted on a rotating sphere over a large span of rotational
velocity.

ity of the simulated sphere decreases slowly when it is approaching the bottom in

agreement with the experiment, showing the hydrodynamic lubrication force is re-

solved correctly when solid boundaries are getting close. In Figure 3-3 (b), the sphere

bounces multiple times and the simulation can match the first three collisions. Cap-

turing the above two impact problems shows the DEM-LBM algorithm is capable of

simulating the immersed particle interaction problems accurately, no matter whether

they are moving fast or slowly relative the the others.

Besides the linear momentum exchange, we also need to examine how accurate

the angular momentum is resolved because torque transfer can be evident due to

the shear flow near the bed surface in sediment transport problems. Simulations in

which an immersed single sphere is rotating at a fixed position are tested with the

rotational velocity Ω varied by 1000 times. The fluid torque experienced by the sphere

is compared with the analytical solution of the Stoke’s flow solution 𝑇 = 8𝜋𝜂Ω𝑅3
𝑝 as

shown in Figure 3-4. The relative error for all the tested rotational speeds is always

smaller than 11%.
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Figure 3-5: Setup of the sediment transport tests in the narrow flume. (a) Experi-
mental setup [73, 72]. (b) The simulated domain corresponds to the videoed zone in
the experiment as shown in the red box.

3.2.3 Comparison with laboratory flume experiments

Deal et al. [72] and Benavides et al. [73] conducted bedload sediment transport

experiments with glass spheres in a narrow flume, and recorded high-speed videos

of the grains, allowing for precise tracking. This provides abundant details of the

particle motion. We performed corresponding DEM-LBM simulations as validation

specifically to test the accuracy of our method in sediment transport problems. We

begin by comparing the time-averaged sediment transport rates as a first verification

of our simulations, and then do a more detailed comparison of the time-averaged

velocity profiles and particle velocity fluctuation profiles.

The schematic diagram of the flume experimental setup of Deal et al. [72] and

Benavides et al. [73] is shown in Figure 3-5 (a). In each experiment, mono-disperse

glass spheres and water are fed into the inclined flume from the upstream end at a

given combination of volume flux rates. After the initial period of sphere deposition,

the granular bed builds up and steady state is reached. Then the slope of the free

water surface 𝑆 as well as the water depth are measured, and the particle motion is

recorded by the high-speed cameras in the middle section of the flume. The flume is

10.2mm, slightly wider than two particle diameters (𝑑𝑝 = 4.95mm). The density of

the spheres is 𝜌𝑠 = 2550 kg/m3. The elastic constants for the normal and tangential

contacts are set to be 20 000Nm−1 and 5714Nm−1, respectively, guaranteeing the

spheres are in hard limit. The friction coefficients of sphere-sphere and sphere-sidewall
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contacts are measured to be 0.50 and 0.45 respectively. The dry restitution coefficient

of the particles is 0.93. The sensitivity of the results to the choice of the particle

surface parameters is low.

DEM-LBM simulations are set up with the same flume geometry and material

properties. The simulated domain, as shown in 3-5 (b), has a length 𝐿 = 24𝑑𝑝 and

height 30𝑑𝑝. When all the spheres are deposited (in total 969 particles), the thickness

of the bed is 18𝑑𝑝. The thickness of the bed reduces to 15𝑑𝑝 for the largest Shields

number tested, as some of the spheres are entrained by the fluid. The LBM lattice

has homogeneous grid size 𝑑𝑥 = 0.5mm. The first and last nodes across the flume

align with the side walls, and the simulated flume width is adjusted slightly to have

𝑊 = 10.5mm. The top of the simulated domain uses a free-slip (zero gradient)

boundary condition. Note that in this narrow flume configuration, the fluid velocity

far above the granular bed surface approaches a constant value due to sidewall shear.

The bottom uses a no-slip boundary condition and the two sides perpendicular to

the flow direction use periodic boundary conditions. For the two side walls of the

flume, since the thickness of the boundary layer is smaller than the grid size 𝑑𝑥, no-

slip boundary conditions with LES is not enough to resolve the near-wall flow field

correctly. Instead, we developed a new boundary technique: assuming the second

layer of nodes from the wall are out of the boundary layer, we extrapolate the law-

of-the-wall flow relationship to the wall, and treat this value as a slip velocity at the

wall, which we implement in DEM-LBM using Navier-type boundary conditions used

in other studies [108, 109, see Appendix A for more details]. The gravity 𝑔 = 9.8m/s2

is applied at an angle of slope 𝑆 with respect to the vertical axis of the simulated

domain. The flow is driven by the tilted “horizontal" gravity component.

For the calculation of 𝜏 *, the bed shear stress 𝜏𝑏 is calculated as 𝜏𝑏 = 𝜌𝑓𝑔𝑆
𝐻𝑊

2𝐻+𝑊
,

where 𝐻 is the water depth measured down to the bed surface and 𝑊 is the flume

width. Mindful of the lengthy compute times for each simulation, we chose to perform

simulations at 5 different slopes, corresponding to 𝜏 * = 0.023, 0.028, 0.047, 0.063 and

0.068, which covers the experimental range. For the calculation of 𝑞*, the sediment

volume flux per unit width 𝑞𝑠 is counted in the whole domain as 𝑞𝑠 = Σ𝑖
𝜋
6
𝑑3𝑝𝑉𝑖,𝑥/𝐿𝑊 ,
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Figure 3-6: Dimensionless sediment transport rate 𝑞* from DEM-LBM simulations.
(a) Comparison with the 𝑞* vs 𝜏 * relation from experiments. The critical Shields
number in the flume experiments is found to be 0.026 ± 0.002 [73]. At the lowest
Shields number 𝜏 * = 0.023, the results show strong intermittency near 𝜏 *𝑐 . The
standard initialization gives 𝑞* = 0 (shown as 0.002 on the log scale), while the other
four cases initialized with the steady flow fields of higher 𝜏 * give different 𝑞* values.
Time series of 𝑞* at (b) 𝜏 * = 0.047 (movie08 [46]), (c) 𝜏 * = 0.028 (movie06 and 07
[46]) and (d) 𝜏 * = 0.023 (showing 3 out of the 5 initializations, movie01, 02 and 05
[46]) are shown in thin curves. The thick dashed lines show the mean of the last 10s.
The colors distinguish the initializations: blue–standard, red & green–steady flow of
𝜏 * = 0.068 and 𝜏 * = 0.063 respectively.

48



where 𝑉𝑖,𝑥 is the streamwise velocity of the 𝑖-th particle and 𝐿 is the length of the

simulated domain. The resulting transport relation compared with the experimental

results is shown in Figure 3-6(a). The standard initial condition sets the particles

uniformly distributed in the whole domain with no velocity and stationary fluid. As

each simulation runs, gravity drives the fluid and grains, resulting in the ultimate for-

mation of a particle sediment bed and a transverse fluid flow profile, which transports

the near surface particles. For the low Shields numbers, besides the standard initial

condition just described, we also run tests where the initial particle positions and

initial particle and fluid velocity are assigned from a snapshot taken at the end-phase

of a higher Shields number simulation. The simulations are all carried out for at

least 30s of simulation time and the last 10s of the simulations are taken to calculate

the time averaged values and standard deviation of the integrated flux. The Rouse

number ranges from 11.4 to 20.9, indicating the sediment transport is in the bedload

regime.

Overall, in terms of the 𝑞* vs 𝜏 * transport relation, the DEM-LBM simulations are

consistent with the experiments. At the lowest Shields number simulated, 𝜏 * = 0.023

(𝜏 *𝑐 found to be 0.026 ± 0.002 [73]), we observe strong intermittency (see movie01

[46]). With the standard initialization, the transport of particles eventually ceases,

giving 𝑞* = 0 (marked as 0.002 in Figure 3-6(a) due to semi-log). The additional

data shown at this slope correspond to simulations using different initializations as

described in the prior paragraph. Each of these tests produced low transport rates

at steady state, seemingly not correlated to the flow rate of the initialization. Time

series data of the transport rate for different initializations are shown in Figure 3-6(d).

With the current sampling duration, the standard deviation of 𝑞* at 𝜏 * = 0.023 is

on the same order of magnitude as the time averaged 𝑞*. The fact that the variation

of the sampled 𝑞* is inversely proportional to the sampling duration [110] implies

that reducing the relative uncertainty to 15% of the mean 𝑞* at this lowest transport

stage may require the simulations to be run for an additional 200s, which would be too

costly for us to run. The intermittency observed could arise from internal variability or

potentially from the existence of multiple attractors allowing flowing and non-flowing
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steady solutions to coexist at low slopes. At the second lowest simulated transport

stage, 𝜏 * = 0.028, the intermittency is less obvious and the transport is continuous

as shown in 3-6(c). The standard initialization (movie06 [46]) gives 𝑞* = 0.089 with

standard deviation 0.019 while the case with the fastest initialization (movie07 [46])

gives 𝑞* = 0.077 with standard deviation 0.017. As 𝜏 * increases further from the

critical Shields number, the relative uncertainty of the measured 𝑞* goes down to

16% at 𝜏 * = 0.047 (see 3-6(b)), 11% at 𝜏 * = 0.063 and 9% at 𝜏 * = 0.068.

One may notice that transport is observed for very low 𝜏 * values. On one hand, we

use the hydraulic radius to estimate the bed shear stress which tends to underestimate

the value [111]. On the other hand, a similar low threshold for sediment transport

is also observed in a related experimental setup [112] and it has been shown to not

be a result of the sidewall influence on turbulence [113]. Also as seen in the movies

(Movie01 to Movie05 [46]) of the simulations, the behavior of the particles at the

lowest 𝜏 * values seems to correspond to the Intermittent Bulk Transport regime [68] in

which 𝜏 * is above the rebound threshold but below the impact entrainment threshold,

and the transported particles rebound for a relatively long period on the bed surface

before depositing. Due to the periodic boundary conditions applied in the streamwise

direction, the simulations have a larger auto-correlation. As a result, the simulations

might overpredict 𝑞* when particles are bounding on the bed surface.

Despite the limitation at the low Shields number, the simulations still provide

microscopic details when a particle is solely entrained by the turbulent flow. In the

intermittent flows shown in Figure 3-6(d), the green curve (corresponding to movie05

[46]) indicates that the sediment transport comes to a full stop at around 20s and

then resumes at 21s when a particle on the bed surface is entrained (rolling) by the

turbulent fluid. As shown in Figure 3-7(a,b,c), the entrained particle P0 is sitting

stationary on the bed surface, in contact with particle P1, P2, P3 and the side wall

of the flume before 21s. Under the influence of a turbulent burst, P0 rolls over P1

and P2, losing contact with P3 and the wall.

Using DEM-LBM’s capability of resolving fluid-grain traction, we now detail the

processes taking place during this prototypical near-threshold entrainment event. The
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Figure 3-7: Examination of a near-threshold entrainment event (see movie05 [46]).
(a) 𝑡 = 20.50𝑠, particle P0 (highlighted with red arrow) in contact with neighbors
P1, P2 and P3 and the side wall. (b) 𝑡 = 21.00𝑠, the start of the entrainment of
P0. (c) 𝑡 = 21.06𝑠, particle P0 gets entrained by the fluid, rolling over P1 and P2,
and loses contact with P3 and the wall. Each contour shows the fluid velocity field
on the plane going through the center of P0. The fluid traction over the particle
surface can be treated equivalently as a single force and pure moment (couple) acting
at the center of the particle. The detailed information about particle P0 around the
entrainment event is displayed: (d) hydrodynamic force in the downstream direction,
(e) fluid torque (blue: fluid couple, red: fluid couple + net hydrodynamic force
induced torque), with respect to the hinge connecting the contact points of (P0, P1)
and (P0, P2), compared with the critical torque (green) estimated by product of the
lever arm and
the submerged weight of P0, (f) rotational velocity (axis into the paper) and (g)
downstream velocity.
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fluid traction over the particle surface can be treated equivalently as a single force

and pure moment (couple) acting at the center of P0. Figure 3-7(d) shows the hydro-

dynamic force in the downstream direction. Figure 3-7(e) shows the fluid torque (into

the paper component) with respect to the hinge connecting the contact points of (P0,

P1) and (P0, P2). The torque is evaluated as the integration of the cross products

of the lever arm vector and the hydrodynamic force vector along the surface of the

particle. For reference, the green line shows the “critical" fluid torque to maintain the

particle free of contact with P3 and the side wall, estimated by the product of the

lever arm and the submerged weight. According to Figure 3-7(f,g), when the fluid

torque exceeds the critical value near 20.3s, P0 wiggles but still falls back. The en-

trainment happens at 21s when the fluid torque goes above the critical value and lasts

long enough to transfer enough angular momentum to roll P0 out of the spot, which

may correspond to an angular momentum criterion similar to the impulse criterion

in literature [114]. The fluid torque comes from the fluid traction on the surface of

P0, which is equivalent to a net hydrodynamic force on the center of P0 plus a fluid

couple. The blue curve in Figure 3-7(e) shows the contribution of the fluid couple,

which is about 1/4 of the total fluid torque (shown in red). Equivalently, the fluid

traction can be simplified solely as a net force acting on the point 𝑑𝑝/6 away from

the center on the far side from the hinge. The non-negligible role of the fluid couple

shows that fluid-particle angular momentum transfer plays a role in the entrainment.

Thus, combined fluid-DEM simulation methods that utilize only a fluid-particle drag

force may be missing some relevant physics, at least at the low Shields regime. Other

particles examined on the bed surface have also shown a similar ∼ 1/4 contribution

on the total fluid torque from the net fluid couple. More quantitative examinations

can be found in the next subsection. Besides the entrainment events purely initiated

by the turbulent fluid flow, there are also ones initiated by collisions with hopping

particles. Simulations in Vowinckel et al. [115] have shown that a subsequent sweep

event that is strong enough is needed for the collided particle to be entrained. Similar

results are also seen in our simulations: the fluid torque needs to exceed a certain

critical value to get the particle out of its local pocket after the collision.
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Next, we examine the flow profiles of the particles. To get the flow fields as

functions of the height 𝑧 with respect to the bed surface, we need to homogenize

the flow fields along the flow direction and then average the profiles over time. The

homogenization is carried out in three steps. The first step is to identify the particles

to be used in the homogenization. In the experiments, since the motion of the particles

are recorded by a camera from one side of the flume, which is slightly wider than 2𝑑𝑝,

only one layer of the particles can be recognized in the images. In the post-processing

of the simulations, the particles are projected onto a 2D plane which is discretized

into square pixels of 𝑑𝑝/25 to mimic the images taken in the experiments. In an effort

to match the experimental post-processing method, if more than 60% of the length

of the perimeter is covered by particles in front of it, that particle will be labeled as

invisible. For the particles left, if two projected particles are closer than 𝑑𝑝/6, only the

front one is visible. The particles labeled as visible will be used in the next steps of

homogenization. In the experiments, due to the refraction, the edges of the particles

in the back may confuse the particle recognition in experiment images in rare cases.

The resultant areal fractions can therefore be slightly different. For the bed surface,

any pixel that is occupied by a particle for half a second is marked as static and

then the position of the bed surface can be decided as the outline of the static pixels,

as the thick black curves show in Figure 3-8. The vertical position 𝑧 of a particle

is defined as the vertical distance between the center of the particle and the bed

surface. The second step is to calculate the areal fraction and particle mean velocity

as functions of 𝑧. The areal fraction profile is calculated as the packing fraction of the

particles labeled as visible. The velocity homogenization is obtained from the linear

momentum of the layer at 𝑧. The third step is to calculate the granular temperature

based on the particle-wise velocity deviation in each snapshots. More details about

the last two steps of the homogenization can be found in Zhang and Kamrin [32].

The images of the particles in experiments are post-processed in the same way after

the particles are recognized. The fluid velocity field is also averaged temporally and

spatially using a similar method to the solid velocity homogenization, based on the

linear momentum of a layer of nodes at a given 𝑧.
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Figure 3-8: Comparisons between the flume experiments and DEM-LBM simulations
at Shields number 𝜏 * = 0.028 (left column), and 𝜏 * = 0.068 (right column). (a)
& (b) Snapshots of the flume experiments, particle in-plane velocity represented by
the arrows. The black curves represent the bed surface. (c) & (d) Snapshots of the
DEM-LBM simulations, particle in-plane velocity represented by the arrows, fluid
field colored by the fluid velocity magnitude on the center-plane of the flume. (e) &
(f) Experiments vs DEM-LBM simulations comparison in terms of the solid phase
profiles as a function of the height from bed surface: areal fraction, particle velocity
and granular temperature.
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The simulated and experimental flow profiles are very similar at a medium Shields

number 𝜏 * = 0.028 and a high Shields number 𝜏 * = 0.068, as shown in Figure 3-8.

The bed structures and the motion of the particles look similar at both Shields num-

bers (see movie06 and movie10 [46]). The velocity profiles match the experiments

and even the granular temperature, which is a higher order variable; granular tem-

perature may be key to understanding sub-surface granular creep [32, 116]. The areal

fraction profiles differ slightly, but are still similar to the experiment results. One

reason may be that the particle recognition technique used in the experiments is not

easy to replicate in the simulation post-processing, e.g., due to the refraction effects.

Fortunately as long as enough particles are sampled for a given height, this difference

theoretically does not change the averaged particle velocity or granular temperature;

see Figure 3-8 (e) & (f). With the results described above, the simulations are deemed

to provide a useful description of observed sediment transport processes, and we pro-

ceed to perform numerical experiments to study sediment transport problems from

bulk to grain-scale.

3.2.4 Wide wall-free cases

We conduct a parameter study using the simulations to see what properties affect

the transport rate. Namely, how much do certain details about the grains, such as

particle surface friction and damping coefficient, matter versus geometric properties

such as fluid depth, slope and average grain size? Wide wall-free (WWF) simulations

(inspired by wide rivers, without the physical side walls like in the flumes), as shown

in Figure 3-9(a), are a simple and useful geometry to use toward this end. The wide

wall-free simulations also produce 1D solution fields and serve as benchmark cases to

test the continuum modeling in Section 3.3.

What are the independent variables that can influence the transport rate in sed-

iment transport problems? Putting the grain shape and size distribution aside, the

variables are the gravity 𝑔, fluid density 𝜌𝑓 , fluid viscosity 𝜂, slope 𝑆, water depth

𝐻, particle density 𝜌𝑠, particle diameter 𝑑𝑝, particle surface friction coefficient 𝜇𝑝,

particle damping coefficient 𝑔𝑝 and particle stiffness 𝑘𝑝, which means the sediment
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Table 3.3: Non-dimensionalization of the dependent and independent variables in
sediment transport problems (Var: variables, Dim: dimensions, DN: dimensionless
numbers)

Var 𝑞𝑠 𝐻 𝑆 𝜌𝑓 𝜂 𝑔 𝜌𝑠 𝑑𝑝 𝜇𝑝 𝑔𝑝 𝑘𝑝
Dim L2

T L - M
L3

M
LT

L
T2

M
L3 L - M

T
M
T2

DN 𝑞𝑠
𝜌𝑓
𝜂

𝐻
(︀𝜌2𝑓𝑔

𝜂2

)︀ 1
3 𝑆 1 1 1 𝜌𝑠

𝜌𝑓
𝑑𝑝
(︀𝜌2𝑓𝑔

𝜂2

)︀ 1
3 𝜇𝑝

𝑔𝑝
𝜂

(︀𝑔𝜌2𝑓
𝜂2

)︀ 1
3 𝑘𝑝

𝜂

(︀𝜌𝑓
𝜂𝑔

)︀ 1
3

Symbol Π0 Π1 Π2 - - - Π3 Π4 Π5 Π6 Π7

transport rate 𝑞𝑠 can be estimated by a ten-input function Ψ0 as shown below:

𝑞𝑠 = Ψ0

(︀
𝐻,𝑆, 𝜌𝑓 , 𝜂, 𝑔, 𝜌𝑠, 𝑑𝑝, 𝜇𝑝, 𝑔𝑝, 𝑘𝑝

)︀
. (3.8)

The dependent (1) and independent (10) variables in Eq 3.8 can be non-dimensionalized

by 𝜌𝑓 , 𝜂 and 𝑔 using the below relations:

[M] =
𝜂2

𝜌𝑓𝑔
, [L] =

(︃
𝜂2

𝜌2𝑓𝑔

)︃1/3

, [T] =
(︂

𝜂

𝜌𝑓𝑔2

)︂1/3

. (3.9)

Since there are three dimensions involved in these 11 variables, the variables can

be nondimensionlized into 8 dimensionless groups, as shown in Table 3.3, and the

transport relation can be expressed as:

Π0 = Ψ1

(︀
Π1,Π2,Π3,Π4,Π5,Π6,Π7

)︀
. (3.10)

We are free to operate on these dimensionless groups so that some of them become

existing widely used dimensionless numbers: Π0 can be modified into the Einstein

number 𝑞* = Π0

Π
3/2
4 (Π3−1)1/2

, Π1 into the Shields number 𝜏 * = Π1Π2

Π4(Π3−1)
, and Π4 into the

Galileo number 𝐺𝑎 =

√
𝑔𝑑3𝑝

𝜂/𝜌𝑓
= Π

3/2
4 . Also, since Π2 = 𝑆, Π3 = 𝜌𝑠

𝜌𝑓
and Π5 = 𝜇𝑝 are

simple enough, we just use the original variables:

𝑞* = Ψ2

(︀
𝜏 *, 𝑆,

𝜌𝑠
𝜌𝑓

, 𝐺𝑎, 𝜇𝑝,Π6,Π7

)︀
. (3.11)

For sediment transport on Earth’s surface, 𝜌𝑓 and 𝜂 are given as the values for
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water and 𝑔 = 9.81m/s2. We limit our discussion to the transport of silica-based

media like sand (𝜌𝑠/𝜌𝑓 is fixed). For river bed sediment transport problems, the sand

particles are in the hard limit (the particle deformation is negligible), which means

Π7 → ∞, and thus it does not influence the transport rate. Then we have reduced

the input set to five variables:

𝑞* = Ψ̃
(︀
𝜏 *;𝑆,𝐺𝑎, 𝜇𝑝,Π6

)︀
. (3.12)

Considering the empirical transport relation 𝑞* vs 𝜏 *, 𝑞* can be seen as a function of

𝜏 * parameterized by 𝑆, 𝐺𝑎, 𝜇𝑝 and Π6 (dimensionless particle damping coefficient).

Besides the dimensionless groups above, previous researchers consider dimension-

less numbers that are not included in Table 3.3. Here we comment on how these

numbers are related to our dimensionless groups or why some of them are not in-

cluded in this study. One dimensionless group commonly found in literature is the

settling Reynolds number [55] 𝑅𝑒𝑠 =
𝜌𝑓𝑤𝑠𝑑𝑝

𝜂
with the characteristic settling velocity

𝑤𝑠 =
√︀

𝑔𝑑𝑝(𝜌𝑠 − 𝜌𝑓 )/𝜌𝑓 , which can be written as 𝑅𝑒𝑠 = 𝐺𝑎
√
Π3 − 1. The particle

Reynolds number [55] can be written as 𝑅𝑒𝑝 =
𝜌𝑓
√

𝜏𝑏/𝜌𝑓𝑑𝑝

𝜂
= 𝐺𝑎

√︀
(Π3 − 1)𝜏 *. The

Rouse number [117] can be written as 𝑅𝑜 = 𝑤𝑠

𝜅
√

𝜏𝑏/𝜌𝑓
= 1

𝜅
√
𝜏*

, where 𝜅 = 0.41 is the

Von Kármán constant. Some papers [118, 119] also use the dimensionless saltation

length and saltation height, but these are actually outputs in our study and as such

arise from the choice of input parameters above. Wong and Parker [84] use the di-

mensionless Chezy resistance coefficient to account for the influence of the channel

sidewalls, which is not necessary in this dimensional analysis for the case of wide

rivers.

A new set of DEM-LBM simulations are performed without sidewalls to study the

influence of the five dimensionless numbers on the sediment transport relation. The

geometry of the simulated domain is shown in Figure 3-9(a), compared with the clas-

sical 3/2 power law. The granular bed is 24𝑑𝑝 long and 8𝑑𝑝 wide. The height of the

granular bed when all the particles have settled is 10𝑑𝑝 (in total 2884 particles). The

domain height is set according to the water depth 𝐻. Periodic boundary conditions
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Table 3.4: Parameters of the wide wall-free simulations. (The base parameters are
red.)

Group 𝑆 𝑑𝑝(mm) 𝐺𝑎 𝜇𝑝 𝑔𝑝(m/s) Π6

WWF1 0.016 5 1378 0.5 0.09 4.2E3
WWF2 0.010 5 1378 0.5 0.09 4.2E3
WWF3 0.030 5 1378 0.5 0.09 4.2E3
WWF4 0.016 8 2789 0.5 0.09 4.2E3
WWF5 0.016 5 1378 0.1 0.09 4.2E3
WWF6 0.016 5 1378 0.5 2.11 9.8E4

are adopted at the four side boundaries. For fluid, the top boundary is a free slip

boundary condition whereas the bottom is a no-slip boundary condition. The gravity

is tilted by a slope 𝑆. The domain is still discretized with the grid size 𝑑𝑥 = 0.5mm

for LBM. Simulations are performed at gentle slopes 𝑆 = 0.010, 0.016, 0.030 with

monodisperse particles whose density is 𝜌𝑠 = 2550 kg/m3. The simulations are in

the bedload transport regime, with Rouse number ∼ 17.4 − 30.0. Corresponding to

the dimensionless groups, the simulation parameters are designed to vary the dimen-

sionless numbers one by one (as shown in Table 3.4) so that we can identify their

influence on the 𝑞* vs 𝜏 * relation. The bed shear stress in this geometry can be

calculated as 𝜏𝑏 = 𝜌𝑓𝑔𝐻𝑆. Water depth 𝐻 is varied to set the Shields number 𝜏 *

to values ranging from 0.046 to 0.141. Each simulation is performed for 30s and the

results of the last 10s are averaged, as shown in Figure 3-9. The averaged solid phase

shear stress matches the equilibrium solution, suggesting the steady state has been

reached. WWF1 is the reference group using the exact same particles as the flume

tests. WWF2 and WWF3 change the macroscopic geometrical parameter 𝑆. WWF4,

WWF5 and WWF6 vary the microscopic particle parameters: particle size 𝑑𝑝 (corre-

sponding to 𝐺𝑎), 𝜇𝑝, and the damping coefficient 𝑔𝑝 (corresponding to Π6). The value

in WWF6 𝑔𝑝 = 2.11 m/s corresponds to a dry restitution coefficient of 𝑒 =0.10 while

𝑔𝑝 = 0.09 m/s in the other groups corresponds to 𝑒 =0.93. The integrated transport

relation 𝑞* − 𝜏 * at steady state is shown in Figure 3-9(b) and (c).

The results of the DEM-LBM simulations from WWF1, WWF2 and WWF3 with

different 𝑆 overlap on top of each other, indicating 𝑆 has little influence on the di-
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Figure 3-9: (a) Geometry and boundary conditions of the wide wall-free (WWF)
simulations (PBC: periodic boundary condition). The simulated domain size is 24𝑑𝑝×
8𝑑𝑝× ∼ 20𝑑𝑝. (b) Sediment transport relation from the wide wall-free simulations
with the macroscopic geometrical parameter 𝑆 varied. (c) Sediment transport relation
from the wide wall-free simulations with the microscopic particle parameters 𝐺𝑎,
𝜇𝑝 and Π6 varied. WWF1 is the control group while the other groups vary the
dimensionless groups in Table 3.4 one by one, as denoted in the legends. The black
curve is 𝑞* = (𝜏 * − 0.033)1.5.
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Figure 3-10: Examination of the rotation stress in wide wall free cases. (a) Flow
profiles (WWF2 at 𝜏 * = 0.085) as a function of the height above the bed surface:
solid shear stress, fluid shear stress, rotation stress and packing fraction. (b) The
maximum rotation stress in different wide wall free groups.

mensionless sediment transport rate on gentle slopes (when 𝜏 * is fixed) and is likely

not responsible for the variation in flux (𝑞*) for a given Shields number (𝜏 *) in ex-

periments [8]. The data sets with varied 𝐺𝑎, 𝜇𝑝 and Π6 also appear very much the

same as the transport relation of WWF1 as shown in Figure 3-9(c), except for some

discrepancy at the smallest Shields number tested 𝜏 * = 0.0471 near the threshold:

smaller 𝜇𝑝 gives slightly larger 𝑞* whereas larger 𝐺𝑎, and Π6 give smaller 𝑞*.

3.2.5 Fluid-grain torque interactions

We can also further examine the fluid-solid angular momentum transfer in the wide

wall free cases. The net fluid couple (when the origin is picked at the center of the

particle) exerted on the 𝑖th particle is 𝑇𝑖 =
∮︀
𝐴𝑖

𝑟𝑟×(𝜎𝑓 ·𝑟)𝑑𝐴, where 𝐴𝑖 is the surface

area of the particle, 𝑟 = 𝑑𝑝/2 is the radius, 𝑟 is the unit normal vector pointing out,

and 𝜎𝑓 is the fluid stress tensor. Following Signorini’s theorem [120], the traction

distribution over a particle’s surface creates the average stress tensor within, and

thus the fluid traction has a contribution to the solid phase stress tensor on the 𝑖th
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particle:

𝜎𝑓
𝑠,𝑖 =

3

4𝜋𝑟3

∮︁
𝐴𝑖

(𝜎𝑓 · 𝑟)⊗ 𝑟𝑟𝑑𝐴. (3.13)

While the stress tensor is generally a symmetric quantity, its various contributions

may not be even if the total stress still is. Here, 𝑇𝑖 is related to the skew part of 𝜎𝑓
𝑠,𝑖 In

this study, we are most interested in the 𝑦 component (into the paper) of the torque:

𝜎𝑓
𝑠,𝑖,𝑥𝑧 − 𝜎𝑓

𝑠,𝑖,𝑧𝑥 = 3𝑇𝑖,𝑦/4𝜋𝑟
3. We call 𝜎𝑓

𝑠,𝑖,𝑥𝑧 − 𝜎𝑓
𝑠,𝑖,𝑧𝑥 the “rotation stress” and calculate

the homogenized profile as a function of 𝑧, as shown in Figure 3-10(a), compared with

the solid total stress, fluid stress and the packing fraction 𝜑. The maximum value of

the rotation stress occurs at the bed surface (as defined in Pähtz and Durán [68]),

corresponding to the intuition that the exposed particles on the sediment bed surface

sustain the largest fluid torque with the “help" (resistance) of the bed particles. So

the rotation stress is not only a measure of the fluid torque exerted on the particles,

but also an indicator of the resistive torque provided by the neighbour particles, which

balance each other on average at steady state. The maximum rotation stress in the

shown case is 0.47Pa, much smaller than the solid shear stress (5.62Pa) at the same

position.

Figure 3-10(b) shows the maximum value of each rotation stress profile across

different wide wall free simulation groups. Each data point comes from the profile

of simulation with a unique set of physical parameters. The values from WWF1,

WWF2 and WWF3 are close to each other, suggesting the slope has minor influence

on the maximum rotation stress. The maximum rotation stress values of WWF4

and WWF6 are slightly higher than those in WWF1, WWF2 and WWF3, while

the values of WWF5 are lower. Looking back at Figure 3-9(c) at the smallest Shields

number 𝜏 * = 0.0471, the 𝑞* values from different groups are inversely correlated to the

corresponding maximum rotation stress in Figure 3-10(b) — WWF5 has the smallest

rotation stress corresponding to the largest 𝑞* while WW4 and WWF6 have larger

rotation stress corresponding to smaller 𝑞* values. Also considering that the values

seem not to be correlated to the Shields number over the tested range 0.0471 ∼ 0.1408
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and mostly a constant in each group, it indicates the torque resistance of the bed is like

a material property of the particles. While the maximum rotation stress can be seen

as a measurement of the bed resistance, on the other hand it is a driving factor for the

particle motion. For the particles on the sediment bed surface, there are two driving

factors countering the resistance from the neighbor particles in contact: collision with

moving particles and fluid interactions (fluid net couples and hydrodynamic forces as

illustrated by Figure 3-7). Since the maximum rotation stress is almost a constant in

the tested Shields number range whereas the hydrodynamic force is correlated to 𝜏 *,

the influence of the maximum rotation stress of the material on 𝑞* is most evident near

the threshold. The maximum rotation stress of WWF5 is slightly below the control

group because the low surface friction coefficient reduces the amount that particle

contacts can resist the couple. In WWF6, the collisions of the particles on the bed

surface dissipates more energy, which in return increases the resistance, giving rise to

higher rotation stress.

3.3 Continuum modeling

While the DEM-LBM simulations in the last section are useful for gaining under-

standing, the drawback from a modeling perspective is obvious: resolving individual

grains and running the LBM with a resolution of one tenth of a particle diameter

makes for a method that is computationally expensive. For example, a half-minute

long wide wall free simulation can take more than a week. These simulations are only

affordable for small scale problems or rheological studies. For large scale problems,

continuum models with proper closures can be applied for reasonable computational

cost.

DEM-LBM simulations do, however, provide a prime tool for developing and ex-

tracting continuum models, offering certain advantages over experiments alone. Some

of the desired experiments would be difficult to conduct in the lab setting and some

of the quantities that are important in developing the continuum model are not easily

accessible from experiments, such as the bulk fields of stress and velocity in the fluid
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and granular phase, as well as granular temperature.

In this section, we present a two-phase continuum model for steady-state be-

havior based on a recent mixture theory framework, turbulent-particle interaction

closures, and known granular rheology principles. It is validated/calibrated directly

from our DEM-LBM simulations. Close comparisons are made between the results

from DEM-LBM simulations and the proposed continuum model in terms of the sed-

iment transport relation and the detailed flow profiles of both fluid and solid phases.

Besides the relatively fast motion of the transported particles and the fluid, the last

subsection will also discuss the modeling of creep beneath the bed surface.

3.3.1 Method

A promising approach for continuum modeling of fluid-grain mixtures is to use a two-

phase mixture theory [121, 122, 123, 7] that contains mass and momentum balances

for both fluid and solid phases, and three closures: constitutive relations for fluid and

solid phase stresses and a drag-law that transfers momentum between solid and fluid

phases. As mentioned at the beginning, since the granular flow in sediment trans-

port problems covers multiple regimes, the granular constitutive relation is crucial to

making accurate predictions.

The framework of the continuum model presented here is based on a recent mixture

model which spans dilute to dense regimes [7], with the addition of a turbulent closure

as well as an enhanced drag law and granular rheology. The solid and fluid phases

of the fully immersed mixture are considered as overlapping continuum bodies with

volume fractions 𝜑 and porosity 𝑛 = 1− 𝜑 respectively. The Cauchy stress tensor of

the mixture is defined as the sum of the phase-wise Cauchy stresses: 𝜎 = 𝜎𝑠 + 𝜎𝑓 .

The fluid and solid phase-wise Cauchy stress can be expressed as

𝜎𝑓 = 𝜏𝑓 − 𝑛 𝑝𝑓 1 (3.14)

𝜎𝑠 = 𝜎̃ − 𝜑 𝑝𝑓 1, (3.15)

where 𝜏𝑓 is the deviatoric part of 𝜎𝑓 , 𝑝𝑓 = −tr(𝜎𝑓 )/3𝑛 is the fluid pore pressure, and
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𝜎̃ is the solid effective stress which drives the granular plastic flow.

The motion of the mixture in steady state is governed by the mass balance equa-

tions

𝑈𝑠 · grad(𝜑𝜌𝑠) + 𝜑 𝜌𝑠 div𝑈𝑠 = 0 (3.16)

𝑈𝑓 · grad(𝑛𝜌𝑓 ) + 𝑛 𝜌𝑓 div𝑈𝑓 = 0 (3.17)

and momentum balance equations

𝜑 𝜌𝑠 𝑈𝑠 · grad(𝑈𝑠 ) = 𝜑 𝜌𝑠 𝑔 − 𝑓𝑑 + div𝜎̃ − 𝜑 grad(𝑝𝑓 ) (3.18)

𝑛 𝜌𝑓 𝑈𝑓 · grad(𝑈𝑓 ) = 𝑛 𝜌𝑓 𝑔 + 𝑓𝑑 + div𝜏𝑓 − 𝑛 grad(𝑝𝑓 ), (3.19)

where 𝑓𝑑 is the drag force density from the solid phase to the fluid phase. The

buoyancy is built in to the grad pressure terms.

Besides the equations of mass and momentum balances, three closures (constitu-

tive laws) are needed to solve the system: granular rheology for 𝜎̃, turbulent closure

for 𝜏𝑓 and inter-phase drag law for 𝑓𝑑.

Granular flow rule

For the steady flow of submerged granular materials, based on suspension rheological

experiments, Boyer et al. [124] proposed a rheology in which the packing fraction

𝜑 and granular stress ratio 𝜇 = 𝜏/𝑝𝑝 are functions of only the dimensionless viscous

number 𝐼𝑣 = 𝜂𝛾̇/𝑝𝑝, where 𝛾̇ is the solid equivalent shear strain rate, granular pres-

sure 𝑝𝑝 = −tr(𝜎̃)/3, and granular shear stress 𝜏 is defined as the magnitude of the

deviotoric part of 𝜎̃. Similarly, in the rheology of dry granular materials, 𝜑 and 𝜇

are solely functions of the inertial number 𝐼 = 𝛾̇𝑑𝑝/
√︀

𝑝𝑝/𝜌𝑠 [5]. Trulsson et al. [125]

proposed a combination of 𝐼𝑣 and 𝐼 to unify the rheology based on 2D simulations,

which covers both the viscous regime proposed for suspensions and the inertial regime

when fluid resistance is minimal. Later, Amarsid et al. [87] modified the combination

as the mixed inertial number 𝐼𝑚 =
√
2𝐼𝑣 + 𝐼2 and expressed 𝜑 and 𝜇 in terms of 𝐼𝑚.
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Recently, inspired by the work of Boyer et al. [124] and Amarsid et al. [87], Baum-

garten and Kamrin [7] proposed a granular flow model that unifies dilute suspension

rheology, dense suspension rheology, and inertial flow rheology.

Starting from the latter model, we analyze and fit the granular material parameters

with additional DEM-LBM tests in simple shear geometries [124] under varied packing

fractions. In the simple shear simulations, there is no gravity and the mixture is

confined between the top and bottom walls which are made of particles. The bottom

wall is fixed whereas the top wall is assigned a constant horizontal shear velocity.

All the side boundaries are periodic. The volume fraction of the particles is varied

test-by-test from 0.03 to 0.6. The particles are exactly the same as the previous wide

wall-free tests and flume tests. Instead of water, a more viscous fluid (𝜂 = 0.417Pa ·s)

is used in the simple shear tests to avoid turbulence for now. In post-processing, 𝜎𝑠

is homogenized from the stress in each particle, which arises from grain-grain contact

forces 𝜎𝑐
𝑠, particle velocity fluctuations 𝜎𝑑𝑣

𝑠 (just like the Reynolds stress in turbulent

fluid mechanics) and fluid-solid interaction 𝜎𝑓
𝑠 . The contributions from contacts and

fluctuations can be calculated according to Da Cruz et al. [17]. Since DEM-LBM

provides the fluid-grain momentum exchange along the grain surfaces, these can be

used to calculate the fluid-force contribution to the particle-wise stress tensor (see Eq

3.13).

Note that the phase-wise total stresses 𝜎𝑓 and 𝜎𝑠 are still symmetric in steady

state even though the part of the solid stress 𝜎𝑓
𝑠 arising from the fluid traction on

the particle surfaces is asymmetric near the bed surface. For the solid phase stress

𝜎𝑠, the contact from neighbor particles is providing resistant torque, which makes

the solid stress component 𝜎𝑐
𝑠 from the particle contact asymmetric so that 𝜎𝑐

𝑠 + 𝜎𝑓
𝑠

is still symmetric. So the defined rotation stress (𝜎𝑓
𝑠,𝑥𝑧 − 𝜎𝑓

𝑠,𝑧𝑥 in the wide wall free

geometry) is not only one of the hydrodynamic driving factors on its own, but also

an indicator of the bed resistant torque since the skew parts of 𝜎𝑐
𝑠 and 𝜎𝑓

𝑠 get the

same magnitude. For the modeling of the stress asymmetry of the fluid traction, a

higher order mixture model which utilizes a“micropolar" form [126, 127] may be used,

which can be a future research direction. The fluid phase homoegnized stress 𝜎𝑓 is
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Figure 3-11: Granular flow rule from simple shear SS simulations: (a) the dependence
of stress ratio 𝜇 on the mixed inertial number 𝐼𝑚, (b) packing fraction 𝜑 as a function
of 𝐼𝑚. Fitted granular flow rule validated with the data from the wide wall free
(WWF) simulations: (c) Scatter plot of 𝜇 versus 𝐼𝑚 , (d) scatter plot of 𝜇 and 𝐼 (dry
rheology). Each data point of DEM-LBM comes from a set of homogenized values at
a elevation in a WWF test (in total 27 included).

symmetric since it is homogenized from a fluid local stress field that is symmetric.

The DEM-LBM simple shear test results are shown in Figure 3-11, leading to an

enhanced granular flow rule as follows:

𝜇 = 𝜇1 +
𝜇2 − 𝜇1

1 + 𝑏/𝐼𝑚
+

5

2

𝜑 𝐼𝑣
𝑎 𝐼𝑚

+
5

2
𝜑 𝐼𝑣, (3.20)

𝜑 =
𝜑𝑚

1 + 𝑎 𝐼𝑚
, (3.21)

where 𝑎 =
√
2/2 is a constant and the material parameters are calibrated as 𝜇1 =

0.37, 𝜇2 = 0.70, 𝜑𝑚 = 0.62, 𝑏 = 5, as shown in Figure 3-11 (a,b). Eq 3.20 gives the

solid phase stress ratio when the material is flowing (𝛾̇ ̸= 0 or 𝐼𝑚, 𝐼𝑣 ̸= 0). When the
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granular material is not flowing, the solid shear stress is limited by the flow criterion:

𝜏 − 𝜇1 𝑝𝑝 < 0.

Maurin et al. [122] have shown that the drag law in bedload transport problems

can be fitted by the 𝜇(𝐼) rheology which is originally for dry granular materials. In

our cases as well, the dry inertial number 𝐼 dominates the mixed inertial number

𝐼𝑚 =
√
2𝐼𝑣 + 𝐼2 with the ratio 𝐼2/2𝐼𝑣 = 𝛾̇𝑑2𝑃/2𝜈 greater than 10 above the bed

surface. We find the last two terms of Eq 3.20 contribute less than 5% to the value

of 𝜇 for 𝜑 > 0.05; these terms serve primarily to recover the suspension effective

viscosity in the dilute limit. As shown in Figure 3-11(c), the 𝐼𝑚 based rheology

predictions for the bedload flow are still consistent with the DEM-LBM results. In

contrast, Figure 3-11(d) shows the 𝜇(𝐼) relation is consistent with the bedload data,

but does not match the rheological simple shear tests when 𝐼2/2𝐼𝑣 is low. In this

two-phase framework, we choose to use the more universal 𝜇(𝐼𝑚) relation because it

can be generalized more easily to suspended load in sediment transport or even other

particle laden flow scenarios, as suggested by Baumgarten and Kamrin [7]. Note that

neither rheology predicts the observed behavior for 𝜇 < 𝜇1 in Figure 3-11(c,d), which

are caused by nonlocal effects, which will be modeled in an upcoming section.

The last term in Eq 3.20 for the solid phase stress was previously attributed

to the fluid shear stress in [7]. We have some freedom in choosing which phase

includes this contribution — the phase-wise stress decomposition is not totally known.

Its placement does not affect the total stress nor the model’s ability to span dilute

suspensions, dense suspensions, and dry granular flows (see Baumgarten and Kamrin

[7] for more details about how these regimes are recovered). That said, it is reasonable

to include as part of the solid stress since it induced by fluid traction on the grains

and Eq 3.20 matches our DEM-LBM data more closely.

Turbulent closures

Turbulence in the fluid produces Reynolds shear stresses and turbulent effects on

particle drift, which can both influence sediment transport. The Reynolds shear

stress can be modeled using mixing length models [128, 129, 130]. Here we use that
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of [130] where the mixing length is fully determined by the local granular packing

fraction 𝜑 without integrating or calculating the distance from the bed surface, which

can be challenging in complex 2D or 3D cases. The turbulent viscosity is modeled as

𝜂𝑡 = 𝑛 𝜌𝑓 𝑙
2
𝑚 ||𝐷0𝑓 ||, (3.22)

with the mixing length formulated as

𝑙𝑚 = 3 𝑑𝑝 (𝜑𝑚 − 𝜑)3. (3.23)

𝜑𝑚 is the random close packing fraction of the particles which is 𝜑𝑚 = 0.62 for

the DEM grains. The deviotoric part of the fluid stress is then calculated as 𝜏𝑓 =

2(𝜂+𝜂𝑡)𝐷0𝑓 . Experiments [131] have shown 𝑙𝑚/𝑑𝑝 ≥ 0.2 is a lower limit of the mixing

length at high packing fraction, where wake effects dominate the vertical mixing of

momentum, so we use 𝑙𝑚/𝑑𝑝 ≥ 0.2 as the lower bound of Eq 3.23.

Due to the velocity fluctuations of the turbulent flow, the particles experience an

additional drift velocity 𝑢𝑑 [132], which is crucial to recover the Rouse profile [133] in

sheet flows Chauchat [123]. Here we formulate the model in a general vectorial form:

𝑢𝑑 = − 𝜂𝑡
𝜌𝑓 Σ𝑠 𝜑

grad𝜑, (3.24)

where Σ𝑠 is the turbulent Schmidt number and has been shown to be a constant above

a certain height from the bed surface in the sheet flow [123]. When implemented into

a two-phase solver, we use Σ𝑠 = 0.3.

Drag law

The interphase drag force density 𝑓𝑑 can be modeled using the common drag form

𝑓𝑑 =
18𝜑(1− 𝜑)𝜂

𝑑2𝑝
𝐹 (𝜑,𝑅𝑒𝑑)∆𝑈 . (3.25)
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For turbulent flows, the velocity difference above is modified to account for turbulent

drift as ∆𝑈 = 𝑈𝑠−𝑈𝑓+𝑢𝑑. The function 𝐹 (𝜑,𝑅𝑒𝑑) is the dimensionless drag function

with 𝑅𝑒𝑑 = (1 − 𝜑)𝜌𝑓 ||∆𝑈 ||/𝜂. The Stokes drag law for a single sphere implies

𝐹 (0, 0) = 1. One typical way to determine 𝐹 (𝜑,𝑅𝑒𝑑) is to measure 𝐹 (0, 𝑅𝑒𝑑) with

a single particle and then account for hindrance effects from neighbouring particles,

such as the Schiller [134] model:

𝐹1(𝜑,𝑅𝑒𝑑) = 𝐹 (0, 𝑅𝑒𝑑)(1− 𝜑)−1−ℎExp , (3.26)

where the exponent ℎExp is taken as a constant value of 2 in a recent work on the

continuum modeling of sediment transport [135] and the expression for 𝐹 (0, 𝑅𝑒𝑑) is

evaluated as 1+0.15𝑅𝑒0.687𝑑 for 𝑅𝑒𝑑 ≤ 1000 and 0.44
24

𝑅𝑒𝑑 for 𝑅𝑒𝑑 > 1000. Alternatively,

𝐹 (𝜑,𝑅𝑒𝑑) can also be determined in the Stokes flow limit as 𝐹 (𝜑, 0) and then extended

by adding a term related to 𝑅𝑒𝑑. For example, Beetstra et al. [136] proposed the

expression below from fitting

𝐹2(𝜑,𝑅𝑒𝑑) =
10𝜑

(1−𝜑)2
+ (1− 𝜑)2(1 + 1.5

√
𝜑)

+ 0.413𝑅𝑒𝑑
24(1−𝜑)2

(︂
(1−𝜑)−1+3𝜑(1−𝜑)+8.4𝑅𝑒−0.343

𝑑

1+103𝜑𝑅𝑒
−(1+4𝜑)/2
𝑑

)︂
. (3.27)

The data from DEM-LBM simulations can serve as a tool to test/validate these

two drag laws. The drag force density can be extracted from the net fluid force per

particle in our DEM-LBM wide wall-free simulations, and then homogenized layer-

wise at each 𝑧 and averaged over time to produce 𝐹 . Similarly, 𝜑 and 𝑅𝑒𝑑 can be

homogenized layer-wise. The measured dimensionless drag coefficient is compared

with the predictions of 𝐹1 and 𝐹2 evaluated at the same 𝜑 and 𝑅𝑒𝑑 values, as shown

in Figure 3-12(a). According to Eq 3.25, 𝐹 will be multiplied by 𝜑(1 − 𝜑) when

used to calculate the drag force density 𝑓𝑑, so the comparison of 𝜑(1 − 𝜑)𝐹 is also

included in Figure 3-12(b). 𝐹1 and 𝐹2 tend to underestimate the drag because Eq 3.26

and Eq 3.27 arise from considering a fluid flowing through a fixed, isotropic array of

grains. When it comes to mobile particles in sediment transport problems or fluidized
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Figure 3-12: Comparison of different dimensionless drag coefficient formulas
𝐹1(𝜑,𝑅𝑒𝑑), 𝐹2(𝜑,𝑅𝑒𝑑) and the modified 𝐹2(𝜑,𝑅𝑒𝑑)(1− 𝜑)−1 against the DEM-LBM
results: (e) The dimensionless drag coefficient 𝐹 as a function of 𝜑 and 𝑅𝑒𝑑. (f)
𝐹𝜑(1−𝜑) as a function of 𝜑 and 𝑅𝑒𝑑. The formulas are evaluated at the same 𝜑 and
𝑅𝑒𝑑 values as the DEM-LBM data. 𝐹1 and 𝐹2 tend to underestimate the drag whereas
𝐹2(𝜑,𝑅𝑒𝑑)(1 − 𝜑)−1 gives better fitting. Each data point of DEM-LBM comes from
a set of homogenized values at an elevation in a WWF test (in total 27 included).

granular beds, the actual drag forces are claimed to be higher than this relation due to

granular velocity fluctuations [137, 138], packing heterogeneity [102], and/or packing

anisotropy [139, 140]. We account for this effect as follows. The agreement presented

in the single sphere settling tests, as shown in 3.2.2, indicates that 𝐹1(0, 𝑅𝑒𝑑) should

be recovered in the DEM-LBM simulations. Thus, a simple way to modify the drag

law but keep this limit is to multiply 𝐹1(𝜑,𝑅𝑒𝑑) or 𝐹2(𝜑,𝑅𝑒𝑑) above with a correction

that is a power of (1 − 𝜑) as an hindrance coefficient [141, 142]. We find the error

of the drag law in our system can be reduced by choosing the additional factor to be

(1− 𝜑)−1, i.e.,

𝐹 (𝜑,𝑅𝑒𝑑) = 𝐹2(𝜑,𝑅𝑒𝑑)(1− 𝜑)−1. (3.28)

The proposed formula 𝐹 fits the DEM-LBM results better than the original formula

𝐹2 for fixed grain arrays.
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Figure 3-13: Comparison between DEM-LBM simulations and the continuum model
for the wide wall-free geometry: (a) sediment transport relation, and (b) flow profiles
(WWF2 at 𝜏 * = 0.085) as a function of the height above the bed surface: fluid
velocity, solid velocity and solid packing fraction.

3.3.2 Wide wall-free cases

The continuum model with the calibrated material parameters described above has

been implemented in a 1D two-phase solver to model the wide wall-free cases. The

equations are solved with transient terms and a granular dilation rule [143] using the

finite volume method. When the steady state is reached, the transient terms and

dilation rule vanish so that the solution is not influenced.

The wide wall-free cases are solved with a given slope 𝑆 and varied water depth

𝐻. The transport relation from multiple solutions is shown in Figure 3-13(a). Each

data point represents a single solution for a given 𝐻 or 𝜏 *. The transport relation

from the continuum model matches with that from DEM-LBM simulations, giving a

good fit to the widely used (albeit flawed) 3/2 power law. Figure 3-13(b) shows the

comparison of the flow profiles from continuum modeling and DEM-LBM simulations.

The modeled solid packing fraction profile 𝜑 matches the simulation almost exactly

and the solid velocity profile also matches.

One difference in Figure 3-13(b) is that the solution of the continuum model

predicts 𝑈𝑠 and 𝑈𝑓 to merge into the same profile for 𝜑 < 0.05 by observation while

in DEM-LBM 𝑈𝑠 is always lagging behind 𝑈𝑓 . The reason for this deviation is that in

the DEM-LBM simulations the very top layer of the particles in the dilute suspension
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always come up from the granular flow below and they are always slower than the

local ambient fluid flow (accelerating streamwise all the way up). On the other hand,

there is no such vertical momentum mixing effects (in steady state) in our current

continuum model. Moreover, 𝑢𝑑 predicted by the continuum model is large enough

for the lift force to cancel out the submerged weight of the solid phase, so that the

local un-pressurized solid phase sustains no shear stress and co-moves with the fluid

phase. For the granular material governed by a frictional flow rule, 𝑝𝑝 = 0 means the

material is suspended and free to be sheared. As a result, there is no drag force in

the flow direction (so no velocity lag) for the very dilute layers. For a remedy, there

are two future research directions: (1) enhancing the drift velocity formula so that

the submerged weight does not fully cancel out, or (2) a granular flow rule for the

very dilute regime that considers the vertical mixing of solid phase momentum due to

the granular temperature, packing fraction gradient, velocity gradient, and perhaps

the gradient of the velocity gradient. Another problem is the abrupt transition to the

maximum concentration near bed surface, resulting from the previously mentioned

granular flow rule with a flow criterion given by 𝜇1. The kink corresponds to the

elevation where 𝜇 = 𝜇1, which gives 𝜑 = 𝜑𝑚 and 𝛾̇ = 0 for all the points below it.

Incorporating a nonlocal rheology into the two-phase model may improve the solution

near and below the bed surface. As mentioned previously, the drag force density on

mobile sheared particles is larger than that on fixed randomly packed particles. More

analytical work on this would shed light on the interaction between fluid and solid

phases in such flow problems. Finally, we note that this model, which utilizes a

standard mixture theoretic decomposition of the stress, is not equipped to model the

details of the different stress contributors in each phase beyond the splitting shown

in Eqs 3.14 and 3.15. A higher order mixture model could incorporate a micropolar

form for the different contributions [126, 127] to permit counterbalancing rotation

stresses within each phase to account for the near-bed-surface behavior in Sec 3.2.5,

which can be a future research direction.
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3.3.3 Creep modeling

For the very dense flow region 𝜑 ∼ 𝜑𝑚 under the bed surface, creep flow (exponential

decay of 𝑈𝑠) is also observed in DEM-LBM simulations, which is known to be driven

by nonlocal effects arising from finite grain size [35, 144, 145]. Creep flow is not

contributing much to the 𝑞* − 𝜏 * transport relation for 𝜏 * far from 𝜏 *𝑐 . However, its

effect can matter over the long term, e.g. creep may lead to vertical grain size sorting

in river beds [146], and thus accurate modeling of the creeping flow could be helpful

to predict river bed armouring.

In the creep zone, the velocities of the particles and the fluid, as well as the relative

velocity between the two phases, are so small that the drag forces and lubrication

forces from fluid are tiny. One may wonder, hence, if a rheology for the creep of dry

granular materials will also work here. We consider the Nonlocal Granular Fluidity

model (NGF) [6, 19], which is able to model creep flow in dry granular materials in

many cases. In the NGF constitutive model, a phase field called the fluidity, 𝑔, is

postulated to exist, which satisfies the dynamical partial differential equation:

𝑡0𝑔̇ = 𝐴2𝑑2𝑝∇2𝑔 − (𝜇2 − 𝜇1)

(︂
𝜇1 − 𝜇

𝜇2 − 𝜇

)︂
𝑔 − 𝑏

√︃
𝜌𝑠𝑑2𝑝
𝑝𝑝

𝜇𝑔2 (3.29)

where the nonlocal amplitude 𝐴 = 0.43 is a dimensionless constant given by the

grain geometry and 𝑡0 is a time-scale. The fluidity then directly controls the stress-

flow rheology by the relation 𝛾̇ = 𝑔𝜇. The “unexpected" flow (i.e. creep) of the

solid phase in the region where the load is below the local flow criterion comes from

the diffusion term in Eq 3.29, which is scaled directly by the grain size 𝑑𝑝. Recent

research [32, 116] shows that 𝑔 is very likely to be related to the velocity fluctuations

of the particles. Thus, the physical picture for the creep flow is as follows: the high

granular temperature region of fast flow at the bed surface is a source of 𝑔 that

diffuses downward and “warms up” the cold zone deeper into the bed so that it too

can flow. The NGF model parameters are usually fitted from the inertial flow rule for

dry granular materials mentioned in 3.3.1. Equation (3.18) then closes the system of

equations.
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Figure 3-14: The solid phase velocity profile comparison between a DEM-LBM wide
wall-free simulation (𝑑𝑝=5mm, 𝑆 = 0.016) and the corresponding steady state NGF
solution.

We solve the NGF model in the wide wall-free flow geometry with some aid from

the DEM-LBM results. Since Eq 3.18 needs the fluid forcing, −𝑓𝑑−𝜑 grad(𝑝𝑓 ), which

is not computed from NGF, we simply extract this field directly from the fluid forces in

the corresponding DEM-LBM simulation. The 𝑔 field also needs reasonable boundary

conditions. We set 𝑔 = 0 at the bottom of the bed (𝑧 = −10𝑑𝑝) and set the 𝑔 value

at 𝑧 = −2𝑑𝑝 from DEM-LBM tests (using 𝑔 = 𝛾̇/𝜇) at 𝑧 = −2𝑑𝑝. Then the velocity

of the solid phase can be integrated from the fixed bottom using the solved 𝑔 field.

Figure 3-14 gives the solid phase velocity profile comparison between the DEM-LBM

wide wall-free simulation (𝑑𝑝=5mm, 𝑆 = 0.016) and the corresponding steady state

NGF solution. The NGF result shows an exponential decay with a decay length of

∼ 2.5𝑑𝑝, in agreement with our DEM-LBM results as well as separate experimental

measurements from immersed sediment beds [147] and dry granular beds [148] in

similar geometries. This confirms our expectation that the minimal effect of fluid in

the deeper zones causes the material to creep as a dry media would.

3.4 Discussion

With regard to the motivating questions asked in the introduction, our study provides

the following outlook.
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How important is fluid-particle angular momentum transfer

and in which part of the flow and in which regime of the sedi-

ment transport is it important?

Our simulations resolve the fluid traction over the particle surfaces, leading to a

hydrodynamic net force on the center of each particle along with a fluid net couple.

Examination of particles entrained by fluid on the bed surface in intermittent sediment

transport flume simulations show that nearly 1/4 of the total fluid torque to roll over

neighboring grains comes from the net fluid couple, which is non-negligible especially

near the transport threshold. In each wide wall free simulations, the rotation stress,

which measures the skewness of the fluid-imposed stress contribution in a grain, seems

to be concentrated near the sediment bed surface where it is balanced by the torque

resistance arising from the enduring contact with other bed particles. The maximum

rotation stress seems not correlated to the Shields number (in the tested range from

0.0471 − 0.1408), which can be seen as a material indicator of how much fluid net

couple the sediment bed can sustain (on the other hand, it is part of the hydrodynamic

driving). On the other hand, the fluid net force per grain appears correlated to 𝜏 *. As

a result, the influence of the fluid net couple (or the defined rotation stress) is most

evident for 𝜏 * → 𝜏 *𝑐 and is negligible for 𝜏 * ≫ 𝜏 *𝑐 , which is shown in this study in

terms of the sediment transport relation. This analysis suggests fluid-DEM simulation

methodologies that do not explicitly model the small scale fluid-grain interaction may

need to use a closure for the angular momentum transfer, such as in Finn et al. [63]

and Guan et al. [64], especially when close to the sediment transport threshold.

What is (not) responsible for the variability in the observed

sediment transport relation?

The dimensional analysis and the relevant parameter space exploration with DEM-

LBM simulations lead to several conclusions, though limited to the simplest geometry

(a infinite long and wide straight river) without considering vegetation or external
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agitation. In terms of macroscopic factors, the bed slope has little influence on the

dimensionless sediment transport rate on gentle slopes (when 𝜏 * is fixed) and is likely

not responsible for the variation in flux (𝑞*) for a given Shields number (𝜏 *) in exper-

iments [8]. This is not a surprise, in agreement with recent theoretical works [59, 56]

about the influence of (steep) slopes on the transport relation, which give correction

factors of 𝑞*, 𝜏 * and 𝜏 *𝑐 very close to 1 for gentle slopes ranging from 0.01 to 0.03.

In terms of microscopic particle properties on which this study focuses, tests that

independently varied the mean particle size, surface friction coefficient, and surface

damping coefficient do not appear to produce transport relations that differ much

compared to the reference case at medium to high transport stages. When it is close

to the transport threshold, the 𝑞* values in these different simulation groups seem to

be inversely correlated to the rotation stress which is correlated to the surface friction

coefficient and damping coefficient of the particles.

Following the previous logic regarding the competition between driving factors to

dislodge bed particles (collisions and interactions with fluid) countering the resistance

from the contact interactions, if we look back at the factors we isolated at the be-

ginning of this analysis, the grain shape [149, 150, 151] via its effect on the frictional

resistance and hydrodynamic interaction [152], and size distribution (including effects

such as small particles hiding behind large neighbors), may have contributions to the

variation in the transport relation. From a different perspective, large particles on

river beds also control morphological stability [153, 154], which is possibly another

reason. This agrees with the findings of the companion experimental work [72], in

which the 𝑞* − 𝜏 * relation is parameterized primarily by the repose angle of the sed-

iment particles and the ratio of the effective drag coefficient to the drag coefficient

of the volume-equivalent sphere. Though the particle surface friction coefficient 𝜇𝑝

influences the repose angle, the influence for round particles is very limited when

𝜇𝑝 > 0.05 [155, 156, 31], consistent with the fact that 𝜇𝑝 has a minor influence on the

value of the maximum rotation stress. As a result, 𝜇𝑝 has negligible influence on the

transport of spherical sediment particles, but may potentially have more influence on

the transport of non-spherical particles.
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Besides the microscopic particle properties, other factors that may also play im-

portant roles in the variation of the transport relation include the presence of external

agitation [76, 77, 78] and vegetation [74, 75]. It should also be noted that here we

have only considered the case of simple channel geometry, whereas in actual riverbeds

there are a number of channel morphologic features we have not considered that can

make a difference, including bedforms [157] and the ratio of grain diameter to flow

depth, especially if boulders are present that are not fully submerged [81, 79, 80].

How can we formulate a useful, broadly applicable model at

different scales and regimes in bedload sediment transport?

The two-phase continuum framework shown here can be used to predict the bedload

transport relation with proper closures: a granular flow rule, a turbulent closure, and

a drag law. The transport relation predicted by the model in the wide wall-free cases

matches with that from DEM-LBM simulations, giving the classical power law of 3/2.

The modeled solid packing fraction profile matches the simulation almost exactly and

the solid velocity profile also matches.

For creep flow beneath the bed surface, the success of the NGF model, which

has previously been used for dry media, suggests that the physics of cooperative

grain motion giving rise to creep in fluid-submerged dense packings may be similar

to that in dry packings. In our implementation here, drag forces from the fluid were

homogenized from DEM-LBM simulations and applied to the NGF domain as a body

force and the fluidity value is specified on the top as the boundary condition. Note

that the NGF model does not require 𝜇 > 𝜇1 anywhere for non-zero flow to exist. As

long as there is a finite fluidity boundary condition, flow can happen all beneath 𝜇1.

For example, the presented solution in Section 3.3.3 is obtained by solving the solid

field in the creep zone 𝑧 ≤ −2𝑑𝑝 with 𝜇 < 𝜇1 everywhere. Finite fluidity occurs at

the bed surface even if 𝜇 < 𝜇1 there because the turbulent fluid imparts fluctuations

to the bed surface particles resulting in a fluidity source. This interpretation utilizes

the result in Zhang and Kamrin [32] that shows fluidity is in fact a measure of grain
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fluctuations, so any agency that imparts grain fluctuations can be a source for fluidity

in a granular system. We have inferred the fluidity boundary condition from the

DEM-LBM simulations, but in principle one could identify a model for the fluidity

boundary conditions that depends on the turbulence. In the future we could extend

the granular rheology used in our two-phase mixture model to incorporate NGF in

the creeping regime, so that fluid flow and granular flow fields are simultaneously

computed down to the creeping flow regime. We also acknowledge that creep flows

can happen when 𝜇 is below 𝜇1 everywhere [49, 158], the boundary values may be

what we want to predict instead of an input. See the review paper [159] for more

insights.

The continuum tools we have used make a number of direct ties to the particle-

scale information, which can be exploited to apply the model to other bed materials.

For example some of the parameters in the drag law at the dilute limit can be cali-

brated with single particle settling tests. The critical stress ratio 𝜇1 can be approx-

imated by the static angle of repose of the grains (even if dry). Other parameters

in the granular flow rule can be calibrated with basic flow tests. For example, the

nonlocal amplitude used in the creep flow model can be inferred from the decay length

of the mean particle velocity in wall-bounded chute flows [160, 161] or from annular

Couette flow tests [6, 31].

3.5 Concluding remarks

In this chapter, sub-grain scale resolved DEM-LBM simulations of mono-disperse

spherical sediment particles were performed and the results compared closely with

data from flume experiments. The simulations was shown to match the experiments

in terms of the transport relation and the detailed flow profiles of the granular ma-

terial. With validation in hand, the DEM-LBM tool was then used as the basis for

an in-depth modeling study of sediment transport. Wide wall-free simulations were

performed in order to evaluate the factors that can potentially affect the transport

relation on gentle slopes (0.01 ∼ 0.03). The slope, the mean particle size, the sur-
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face friction coefficient, and the damping coefficient did not appear to influence the

dimensionless transport rate for medium to high Shields number when the Shields

number was fixed, for spherical sediment particles. Instead, the parameters not in-

cluded in the dimensional analysis may be responsible for a substantial fraction of the

variability in the experimental transport relation on gentle slopes, including particle

parameters such as the particle shape and size distribution as well as vegetation, ex-

ternal agitation, bed forms and so on. The particle-resolved simulations also provided

details about the fluid-particle angular momentum exchange. The fluid couple with

respect to the center of the grain, resulting from the fluid traction over the particle

surface, was shown non-negligible for the fluid entrainment near the threshold. The

fluid couple was further quantified as the rotation stress, which was found mostly

concentrated near the bed surface and not correlated to the Shields number. Parti-

cle properties (e.g. surface friction coefficient) changed the observed rotation stress,

which was anti-correlated to 𝑞* near the transport threshold, suggesting fluid-particle

angular momentum transfer may play a role in transport behavior near the threshold.
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Chapter 4

Fluid-driven transport of natural

shaped sediment particles

4.1 Background

The results from the previous chapter have shown that the dimensionless transport

rate of round particles is not influenced by macroscopic factors (the slope or fluid

depth) or microscopic particle properties (mean particle size, particle surface friction

or grain-grain damping) for gentle slopes (0.01 ∼ 0.03) at a medium to high fixed

Shields number. One may wonder how much the factors isolated (the size distribution

and particle shape) in the previous analysis will influence the transport relation. The

size distribution effect has been examined and quantified in multiple works [162, 163,

164]. This chapter mainly discusses the shape effect of the sediment particles.

The sediment particle shape has been long considered to have influences on the

sediment transport relation [165, 166, 167, 168, 169, 151], such as the granular dy-

namics [170] and the threshold of transport [171, 172, 151], but it is rarely quantified

[173]. Recent experiments [72] have shown when parameterized by the repose angle of

the sediment particles and the ratio 𝐶* of the effective drag coefficient 𝐶𝐷 to the drag

coefficient of the volume-equivalent sphere 𝐶𝑜, the dimensionless sediment transport
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relation of particles in different shapes can be collapsed into a single master curve:

𝑞* = 𝛼𝑜

(︂
𝐶*

𝜇* 𝜏
* − 𝜏 *𝑐𝑜

)︂3/2

, (4.1)

where 𝛼𝑜 and 𝜏 *𝑐𝑜 are the transport coefficient and threshold of motion for idealized

spheres independent of grain shape. 𝜇* = (𝜇𝑠 − 𝑆)/(𝜇𝑜 − 𝑆) is the average bulk

friction coefficient 𝜇𝑠 normalized by the bulk friction coefficient of spheres 𝜇𝑜 with

consideration of the bed surface slope 𝑆. In 𝐶* = 𝐶𝐷/𝐶𝑜, 𝐶𝐷 is calculated as the

product of the drag coefficient of the particles settling in still water, 𝐶𝐷𝑠𝑒𝑡𝑡𝑙𝑒
, and

the Corey shape factor 𝑆𝑓 , which accounts for the fact that the orientation of the

settling particle in still water prefers the largest drag while the orientation of the

transported sediment particle is always changing due to rotation. The particle shape

is characterized by three mutually perpendicular lengths (𝑐 ≤ 𝑏 ≤ 𝑎) [174] of the

minimum bounding box [175] and 𝑆𝑓 is defined by the ratio 𝑐/
√
𝑎𝑏 [176]. 𝐶𝐷𝑠𝑒𝑡𝑡𝑙𝑒

=

4
3

𝜌𝑠−𝜌𝑓
𝜌𝑓

𝑔𝑑𝑜
𝑤2

𝑠
is obtained from the settling velocity in still water 𝑤𝑠. 𝑑𝑜 is the diameter

of the volume-equivalent sphere, which is also used in the calculation of 𝑞* and 𝜏 *.

𝐶𝑜 =
4
3

𝜌𝑠−𝜌𝑓
𝜌𝑓

𝑔𝑑𝑜
𝑤2

𝑜
is obtained from the settling velocity of the volume-equivalent sphere

𝑤𝑜, which can be estimated using the empirical equation [177]:

log𝑊* = −3.7671581564 + 1.9294494593 log𝐷* − 0.0981509016(log𝐷*)
2

−0.0057500855(log𝐷*)
3 + 0.0005600075(log𝐷*)

4, (4.2)

where 𝑊* = 𝑤3
𝑜/(𝑅𝑔𝜈), 𝐷* = 𝑅𝑔𝑑3𝑜/𝜈

2 and 𝜈 is the kinematic viscosity of water.

The newly proposed transport relation Eq 4.2 has been tested on 5 different par-

ticle shapes in flume experiments, from spheres to natural shaped particles. Since

the physical experiments can not freely vary the two key factors (repose angle and

drag coefficient) and some variables (such as the stress field and the orientation of the

particles) can not be easily measured in the experiments, one may want to seek the

help of numerical simulations, for example to further check the robustness of Eq 4.2

by independently controlling/varying the factors and to understand the microscopic
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Table 4.1: Recent discrete simulations of the sediment transport of non-spherical
particles.

Numerical studies Solid Fluid Coupling
Schmeeckle, 2014 Spheres LES Empirical drag law
Bravo et al., 2018 Ellipsoids Imposed Analytical drag law
Zhang et al., 2020 Ellipsoids LES Interfaces resolved
Jain et al., 2021 Ellipsoids DNS Interfaces resolved
Sun et al., 2017 Bonded-spheres LES Empirical drag law
Alihosseini & Thamsen, 2018 Multi-spheres RNG 𝑘 − 𝜀 Empirical drag law
Shao et al., 2019 Multi-spheres 𝑘 − 𝜀 Empirical drag law
Fukuda & Fukuoka, 2019 Multi-spheres LES Interfaces resolved
Fukuoka et al., 2014 Multi-spheres LES Interfaces resolved
This work Multi-spheres LES Interfaces resolved

mechanisms.

In terms of the numerical methods, the discrete simulations of the sediment trans-

port of non-spherical particles differ in 2 dimensions: the representation of the parti-

cles and the representation of the fluid. The detailed numerical techniques in recent

studies of the non-spherical sediment transport are listed in Table 4.1.

For the fluid representation, some may simply impose an undisturbed fluid velocity

field, such as Bravo et al., [178]. The fluid phase is mostly solved on meshes using the

finite volume method (FVM) or the finite element method (FEM) with a turbulent

closure (such as large eddy simulations, as know as LES) or with enough resolution

even for the smallest eddies (direct numerical simulation, as know as DNS). The

length-scale the fluid is resolved also decides the way how the fluid-particle interaction

is handled. When the grid size is greater than or comparable to the particle size, the

momentum exchange is estimated using analytical or empirical drag laws based on the

homogenized solid fields (such as packing fraction and velocity). When the grid size is

much smaller than the particle size, the interface can be resolved and the momentum

exchange on individual particles can be integrated more accurately.

The discrete simulations are all based on DEM, in which the particles are individ-

ually tracked. The earliest work [61] uses an empirical drag law for irregular sand par-

ticles, though the solid phase is still represented by spheres. Ellipsoids [178, 179, 151]

are one of the easiest representations of the non-spherical shapes. Besides the single-
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particle representation, the clustered-particle approach is getting popular in recent

years [180]. Sun et al. [181] bond/glue spheres together (no overlaps) to repre-

sent geometrically rough particles, but the shapes are not commonly seen in real

problems due to the large crevasses between the spheres in contact. Another type

of clustered-particle approach – the multi-sphere technique which uses overlapping

spheres to approximate non-spherical shapes was first introduced for dry particle

simulations [182, 183]. It was later adopted in the numerical studies of sediment

transport [184, 185, 186, 187]. It is worth noting that most of the previous numerical

studies use multi-sphere particles of a single shape in each simulation. Only Fukuoka

et al. [186] used different realistic shapes in a single simulation. As more accurate

algorithms to approximate real particles using the multi-sphere method are developed

[188, 189], simulating the sediment transport of realistic natural shaped particles has

been made possible. The literature mentioned above are mainly recent progress. For

earlier research works, please refer to this review paper [190] in 2016.

This chapter is dedicated to study the role of particle shape in bedload sediment

transport processes using fully coupled discrete particle-fluid simulations. Compared

with the previous numerical works, the novelties of this chapter are:

• more accurate shape representations with the most recent multi-sphere approx-

imation algorithm,

• many distinct realistic natural gravel shapes (more than 600 shapes) from CT

scanning in each simulation,

• a close benchmark with the corresponding flume tests.

In terms of the numerical method, this is also the first implementation of DEM-LBM

based multi-sphere simulations.

4.2 Discrete simulations

This section describes the workflow for the numerical study of the bedload sediment

transport of natural shaped particles, from particle shape measurement and approx-

84



imation to the coupled simulations of the multi-sphere particles.

4.2.1 Method: multi-sphere technique

Multi-sphere approximation of the natural gravel shapes

The particle shapes are reconstructed [191] from the CT scanning results of natural

shaped particles in the flume tests [72]. Here we introduce the key information related

to the scope of this chapter. Based on the scanning results, a greedy heuristic algo-

rithm was employed to superimpose the overlapping spheres, which is adapted from

the algorithm proposed by Li et al. [189]. After uniformly discretizing the scanning

result into a bunch of cells, a sphere is inserted inside the shape such that the sphere

encompasses the most number of cells. When a new sphere is required to be inserted,

the sphere that adds the most number of cells into the occupied volume is selected.

This repeats until the desired number of spheres have been inserted for the shape

approximation.

Figure 4-1 (cited from Rushlow’s work [191]) shows the comparison between the

original scanned result and the approximations using different numbers of component

spheres. It seems a cluster of 20 component spheres can capture the shape of the

natural shaped particles fairly well, without creating too much overfitting near the

thin edges. In the following of this chapter, the shape of each natural shaped particle

is approximated using 20 constituent spheres. More detailed descriptions of the CT

scanning, the shape approximation procedures, and the quantification can be found

in Matthew Rushlow’s Bachelor degree thesis [191]. After fitting the shape, one

more step of length-scale re-scaling is carried out to make sure the volume of the

multi-sphere particle matches that of the scanned shape, since the insertion process

under-represents the volume on its own. This additional step is crucial since the

newly proposed transport relation [72] relies on the diameter and settling velocity of

the volume equivalent sphere. Note that the volume of the multi-sphere particle is

decided by counting the number of cells encompassed in the envelope, so the overlaps

are not double counted.
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Figure 4-1: Multi-sphere approximation using different numbers of spheres (green:
the original natural grain from CT scanning; red: the multi-sphere approximation).
(A) A 5 sphere recreation. (B) A 10 sphere recreation. (C) A 20 Sphere recreation.
(D) A 150 Sphere recreation. Figure cited from Matthew Rushlow’s Bachelor degree
thesis [191].

Coupled DEM-LBM scheme

In the previous chapter, being validated against the corresponding flume experiments,

the coupled DEM-LBM scheme has shown the capability of recovering the sub-particle

scale physics in the bedload sediment transport of spherical particles. It is straight-

forward to modify the DEM-LBM coupling scheme of spherical particles in Figure

3-2 for multi-sphere particles as shown in Figure 4-2.

Besides the information stored on fluid nodes and particles, the DEM-LBM scheme

for multi-sphere particles also stores the information on each multi-sphere particle or

shape. The position and velocity of the spheres are used to update the solid domain

felt by the fluid. Then momentum transfer is dealt with in the same way as the
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Figure 4-2: DEM-LBM scheme with multi-sphere particles.

DEM-LBM for spherical particles as long as a moving fluid-solid interface has been

detected. Then, instead of passing the (linear and angular) momentum transfer back

to the spheres, they are integrated on each shape. Similar to the original DEM-LBM

scheme, the hydrodynamic forces (and torque) on each shape in the current and

the previous LBM steps are averaged when conducting the DEM update, to reduce

numerical oscillations. The sphere-sphere contacts are carried out without considering

the interaction of the component spheres in the same shape. By summing these two

contributions of momentum transfer and the buoyancy force, the linear and angular

acceleration of each shape can be decided, which is further used to update the velocity

and rotational velocity of the shape. Then in each rigid body (shape), the constituent

spheres share the same angular velocity as the shape. The velocity of each component

sphere is updated according to the velocity of the shape as well as the cross product

of the angular velocity and the position of the sphere relative to the center of the

shape. Note that the acceleration of each sphere also needs to be obtained, which will

be used for the update of position and velocity in the middle of the time step. Special

care should be taken regarding the linear acceleration originated from the rotation of

the shape, which can be seen as a constraint for the rigid body.
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4.2.2 Benchmarking: repose angle and settling velocity

Before setting up flume simulations for the comparison of the sediment transport

relation with the experiments, the material properties of the natural shaped particles

need to be benchmarked. The natural shaped particles have an average density of

𝜌𝑠 = 2471 kg/m3. The diameter of the volume equivalent sphere is 𝑑𝑜 = 4.1mm.

The average settling velocity is 𝑤𝑠 = 0.286m s−1 whereas the settling velocity of

the volume equivalent sphere is 𝑤𝑜 = 0.436m s−1, corresponding to drag coefficients

𝐶𝐷𝑠𝑒𝑡𝑡𝑙𝑒
= 0.67 and 𝐶𝑜 = 0.42. The repose angle of the dry material is 38∘. For More

details about the measuring methods and other properties, please refer to this paper

[72].

The previous subsection described how the shape and volume of the multi-sphere

particles are matched with the scanned natural shaped particles, which means 𝑑𝑜 and

𝑤𝑜 have also been calibrated. Beside the average size 𝑑𝑜, the Corey shape factor

𝑆𝑓 (relative flatness) should also be benchmarked since it is used in the calculation

of 𝐶𝐷. The 𝑆𝑓 value of the multi-spheres measured to be 0.67 exactly matches that

measure from the scanning results, confirming that multi-sphere approximations using

20 constituent spheres can capture the natural shapes well.

Here we are going to check other important particle properties in Eq 4.1: repose

angle of the dry material and the average settling velocity in still water. The repose

angle test has been carried out using the multi-sphere particles with both the particle-

particle and wall-particle friction coefficients of 0.8, mimicking a rough table. Figure

4-3a shows a snapshot of the pile of multi-sphere particles. We can also get the

radial locations of the constituent spheres and plot them with the vertical positions,

as shown in Figure 4-3b. The repose angle in the simulation is measured as 37∘,

close to the 38∘ repose angle measure in the experiment. After pouring down nearly

1800 particles, the pile ended up with a similar size to the experiments in which a

rim of particles were glued on the table with a diameter of 12cm (see Figure 4-3b,

the 37∘ slope approximately ends at the radius of 6cm). The large repose angle of

the natural shaped particles is due to the particle shape and insensitive the particle
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(a) (b)

Figure 4-3: Repose angle simulation of the multi-sphere particles. In total nearly
1800 particles in 627 distinct shapes (none used more than 3 times). (a) Snapshot of
the simulation result. (b) Radial location of the particles in the pile, with respect to
the center line, plotted with the vertical position. The multi-sphere particles shows
a 37∘ repose angle.

surface friction coefficient.

For DEM-LBM simulations of round particles, Feng and Michaelides [101] and

Derkse [102] have shown that a resolution of 𝑑𝑥 ≤ 𝑑𝑝/6 or 𝑑𝑥 ≤ 𝑑𝑝/8 is adequate

for sufficiently accurate results. In previous chapter, 𝑑𝑥 ≤ 𝑑𝑝/10 is kept to guarantee

enough accuracy. Even though 𝑑𝑥 ≤ 𝑑𝑜/8 is kept with the same choice of 𝑑𝑥 in this

case, the diameter of the smallest constituent sphere is comparable to the grid size

𝑑𝑥 = 0.5mm in LBM (∼ 0.9𝑑𝑥). It is not clear whether the shape is well resolved

on the LBM mesh. Since this is the first implementation of DEM-LBM simulations

of multi-sphere particles, the convergence of resolution needs clarification. Settling

simulations in still water with grid size of 𝑑𝑥, 𝑑𝑥/2 and 𝑑𝑥/5 are set up with the same

set of 34 multi-sphere particles. The number of the tested particles is limited due to

the high computational cost of the simulations with a resolution of 𝑑𝑥/5. The domain

size is 3cm by 3cm by 18cm. The side walls are all periodic and the top and bottom are

fixed boundary conditions. The average settling velocities with different resolutions

is summarized in Table 4.2. The set of 34 particles tested in the simulations is not the

same set of 23 in the experiments, so the average settling velocity of these two sets

may be slightly different. Even so, the results do show convergence as the grid size
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Table 4.2: The average settling velocities on the same set of 34 multi-sphere particles
with different resolutions. The experiments measure 23 natural shaped particles.

𝑑𝑥 𝑑𝑥/2 𝑑𝑥/5 Experiments
Settling velocity [m/s] 0.254 0.276 0.280 0.286

(a) (b) (c)

Figure 4-4: Shrunk particles felt by the fluid with different shrinkage coefficients
𝑆𝐾. (a) 𝑆𝐾 = 0.40, (b) 𝑆𝐾 = 0.55, (c) 𝑆𝐾 = 0.70

decreases from 𝑑𝑥 to 𝑑𝑥/5. When 𝑑𝑥 is halved, the settling velocity increases by 8.8%.

But as the grid size shrinks further for 2.5 times, the settling velocity is only changed

by 1.1% and the value is close to that measured in the experiments (off by 3.5%,

increasing the domain size will make it closer to the experimental measurement). For

these particles, a resolution of 𝑑𝑥/2 ∼ 𝑑𝑜/16 should be adequate.

However, halving the current grid size by a factor of 2 means the number of fluid

nodes in all 3 dimensions will increase by a factor of 2. This will also lead to a halved

fluid timestep, which in return makes the total computational cost on the fluid side

multiplied by a factor of 16. One may wonder if there is an alternative option to

match the settling velocity in still water while keeping the current grid size. The

trick is to shrink the size of the constituent spheres universally on the fluid side.

Figure 4-4 illustrates this idea with 3 different shrinkage coefficients (shrinkage/𝑑𝑥)

𝑆𝐾 =0.40, 0.55 and 0.70. The original multi-sphere shape is represented by the

semi-transparent envelopes. The average settling velocities on the same set of 480

multi-sphere particles with different shrinkage coefficients are list in Table 4.3. As

the shrinkage coefficient increases, the average settling velocity increases as well and
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Table 4.3: The average settling velocities on the same set of 480 multi-sphere particles
with different shrinkage coefficients.

𝑆𝐾 = 0.00 𝑆𝐾 = 0.40 𝑆𝐾 = 0.55 𝑆𝐾 = 0.70
Settling velocity [m/s] 0.246 0.263 0.273 0.286

the rate of the increase goes higher. 𝑆𝐾 = 0.70 gives the same average settling

velocity as that measured in the experiments. Note that 𝑆𝐾 only shrinks the size

of the constituent spheres for the fluid, leaving the solid phase (size, interactions,

etc.) unchanged. One may wonder why the shrinkage trick is able to tune and match

the correct settling velocity. The issue solved here is actually that the crevasses of

the approximated natural shapes are at a sub-grid scale, with a low chance to be

resolved by the fluid grid when the particles are moving. Consequentially, the grid

representation of the fluid mesh artificially makes particles of an awkward shape look

bigger on the fluid side. Shrinking the constituent spheres increases the length scale

of the crevasses to the grid scale so that these features have higher chances to be

resolved on the fluid mesh. This shrinkage trick also provides an opportunity to vary

the drag coefficient independently, without changing any other key factor in Eq 4.1.

4.2.3 Comparison with laboratory flume experiments

Deal et al. [72] and Benavides et al. [73] conducted bedload sediment transport

experiments with natural shaped particles in a narrow flume, and recorded high-

speed videos of the grains. We performed corresponding DEM-LBM simulations as

validations specifically to test the accuracy of the developed multi-sphere simulations

in sediment transport problems. We compare the time-averaged sediment transport

rates as a verification of our simulations, and then vary the drag coefficient of the

multi-sphere particle as a further check of the modified bedload transport relation Eq

4.1.

The the flume experimental setup of Deal et al. [72] and Benavides et al. [73] for

natural shaped particles are the same as that for spheres in the previous chapter as

shown in Figure 3-5 (a). In each experiment, natural shaped particles and water are
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fed into the inclined flume from the upstream end at a given combination of volume

flux rates. After the initial period of sediment deposition, the granular bed builds

up and steady state is reached. Then the slope of the free water surface 𝑆 as well as

the water depth are measured, and the particle motion is recorded by the high-speed

cameras in the middle section of the flume. The flume is 10.2mm wide.

The simulated flume has a length 𝐿 = 0.12m and height 0.15m. The LBM lattice

has homogeneous grid size 𝑑𝑥 = 0.5mm. The first and last nodes across the flume align

with the side walls, and the simulated flume width is adjusted slightly to have 𝑊 =

10.5mm. The top of the simulated domain uses a free-slip (zero gradient) boundary

condition. Note that in this narrow flume configuration, the fluid velocity far above

the granular bed surface approaches a constant value due to sidewall shear. The

bottom uses a no-slip boundary condition and the two sides perpendicular to the flow

direction use periodic boundary conditions. For the two side walls of the flume, see

the Navier-type boundary conditions developed in Appendix A for more details. The

gravity 𝑔 = 9.8m/s2 is applied at an angle of slope 𝑆 with respect to the vertical axis of

the simulated domain. The flow is driven by the tilted “horizontal" gravity component.

Inside the flume, there are 1000 multi-sphere particles of 627 distinct shapes (each

shape at most used twice). The elastic constants for the normal and tangential

contacts are set to be 2000Nm−1 and 571.4Nm−1, respectively, guaranteeing the

constituent spheres are in the hard limit. The damping coefficient of the particles

is 0.03 kg s−1. For more descriptions, shape approximation, and the benchmark of

the particle properties with the multi-sphere particles, please refer to the previous

subsection.

For the calculation of 𝜏 *, the bed shear stress 𝜏𝑏 is calculated as 𝜏𝑏 = 𝜌𝑓𝑔𝑆
𝐻𝑊

2𝐻+𝑊
,

where 𝐻 is the water depth measured down to the bed surface and 𝑊 is the flume

width. For the calculation of 𝑞*, the sediment volume flux per unit width 𝑞𝑠 is counted

in the whole domain as 𝑞𝑠 = Σ𝑖𝑉 𝑜𝑙𝑖𝑉𝑖,𝑥/𝐿𝑊 , where 𝑉𝑖,𝑥 and 𝑉 𝑜𝑙𝑖 (real volume of the

solid shape, not influenced by the shi rinkage coefficient 𝑆𝐾) are the streamwise

velocity and the volume of the 𝑖-th particle, respectively.

The first set of 6 DEM-LBM simulations uses the benchmarked multi-sphere par-
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ticles with 𝑆𝐾 = 0.70, having the same average settling velocity as the experiments.

The initial condition sets the particles uniformly distributed in the whole domain

with no velocity and stationary fluid. As each simulation runs, gravity drives the

fluid and grains, resulting in the ultimate formation of a particle sediment bed and

a transverse fluid flow profile, which transports the near-surface particles. The sim-

ulations are all carried out for at least 40s of simulation time and the last 20s of the

simulations are taken to calculate the time averaged values and standard deviation of

the integrated flux. The resulting transport relation compared with the experimental

results is shown in Figure 3-6(a).
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Figure 4-5: Dimensionless sediment transport rate 𝑞* from DEM-LBM simulations
of multi-sphere particles. The particles have a shrinkage coefficient of 𝑆𝐾 = 0.70
(making the drag coefficient same as the experiments). (a) Comparison with the 𝑞*

vs 𝜏 * relation from experiments. The critical Shields number in the flume experiments
is found to be 0.040±0.008 [73]. At the low Shields numbers, the results show strong
intermittency near 𝜏 *𝑐 . (b) Comparison with the modified 𝑞* vs 𝜏 *𝐶*/𝜇* relation from
experiments. The sediment transport relation data of the spherical particles is also
plotted in red for comparison. NG: natural gravel.

Overall, in terms of the 𝑞* vs 𝜏 * transport relation, the DEM-LBM simula-

tions are consistent with the experiments. At the low Shields numbers simulated,

𝜏 * = 0.036 ∼ 0.047 (𝜏 *𝑐 found to be 0.040 ± 0.008 [73]), strong intermittency has

been observed. For the other 3 data points at medium to high transport stages, the

dimensionless transport rate 𝑞* values match well, far below the transport relation
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Figure 4-6: Comparisons between the flume experiments and DEM-LBM simulations
of multi-sphere particles at Shields number 𝜏 * = 0.047 (left column), and 𝜏 * = 0.061
(right column). (a) & (b) Snapshots of the flume experiments. (c) & (d) Snapshots
of the DEM-LBM simulations of the multi-sphere particles, fluid field colored by the
fluid velocity magnitude on the center-plane of the flume.

obtained from glass spheres. Figure 3-6(b) shows the data when the horizontal axis

is modified from 𝜏 * into 𝜏 *𝐶*/𝜇*, following Eq 4.1 as proposed recently in the cor-

responding experiments [72]. The numerical results of the multi-sphere particles and

glass spheres as well as the corresponding experimental results collapse onto the same

master curve. Besides the flux rate of the natural shaped particles, the simulation

results are also similar to the experiments in terms of bed surface structure and the

collective behaviours of the transported particles, as shown in Figure 4-6 at two differ-

ent Shields numbers. With the values of the repose angle of the dry material and the

average settling velocity benchmarked, the the multi-sphere simulations have been

validated against the corresponding flume tests with natural shaped particles.

The newly proposed sediment transport relation Eq 4.1 has taken two factors into

account for the particle shape: the repose angle and the settling velocity. One may

wonder if there is a way to vary one of these two factors independently using the

benchmarked numerical tool for further validation. Recall that changing the shrink-
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age coefficient 𝑆𝐾 only changes the average settling velocity without influencing the

other key factor purely dependent on the DEM: the repose angle of the dry material.

As shown in Table 4.3, tuning 𝑆𝐾 varies the settling velocity (the drag coefficient)

independently, providing an opportunity to vary the drag coefficient independently

and probe the parameter space as a further check of Eq 4.1. Two sets of DEM-LBM

simulations with the same set of 1000 multi-sphere particles but different shrinkage

coefficients 𝑆𝐾 = 0.55 and 𝑆𝐾 = 0.00 have been carried out. The dimensionless

transport relation is plotted in Figure 4-7(a). For the same set of multi-sphere parti-

cles, a larger value of 𝑆𝐾 reduces the area of the cross-sectional area and decreases

the hydrodynamic force, leading to a higher threshold of motion and lower transport

rate in general. Interestingly, the multi-sphere simulations with 𝑆𝐾 = 0.00 gives al-

most the same 𝑞* vs 𝜏 * relation as the glass spheres. The modified sediment transport

relation can also be calculated using the average settling velocities for different 𝑆𝐾

values, as shown in Figure 4-7(b). The collapse of the data points from the same

set of particles with different drag coefficients confirms the robustness of Eq 4.1. It

also relieves the concern that a shrinkage coefficient of 𝑆𝐾 = 0.70 might be too

big a change to the particle shape as shown in Figure 4-4. Even with multi-spheres

with smaller 𝑆𝐾 values, as long as the average settling velocity of the particles are

measured and taken into account, the modified sediment transport relation is able to

collapse the data onto the master curve.

4.3 Concluding remarks

In this chapter, a complete workflow has been developed for the numerical study

of the bedload sediment transport of natural shaped particles, from particle shape

measurement and approximation to the coupled simulations of the non-spherical par-

ticles. Superimposed spheres are used to approximate the shape of natural shaped

particles. The material properties such as the diameter of the volume-equivalent

sphere, the repose angle of the dry material and the average settling velocity have

been benchmarked with the experiments. Sediment transport tests of the multi-sphere

95



0.02 0.04 0.06 0.08 0.1

*

10
-2

10
-1

10
0

q
*

(a)

0.02 0.04 0.06 0.08 0.1

* C*/ *

10
-2

10
-1

10
0

q
*

(b)

Spheres,exp

NG, exp

Spheres,sim

NG, sim, SK=0.70

NG, sim, SK=0.55

NG, sim, SK=0.00

Figure 4-7: Dimensionless sediment transport rate 𝑞* from DEM-LBM simulations
of multi-sphere particles with different drag coefficients (varied through shrinkage
coefficients). (a) Comparison with the 𝑞* vs 𝜏 * relation from experiments. At the low
Shields numbers, the results show strong intermittency near 𝜏 *𝑐 . (b) Comparison with
the modified 𝑞* vs 𝜏 *𝐶*/𝜇* relation from experiments. Different colors distinguish
different shrinkage coefficients (drag coefficients). NG: natural gravel.

particles in the flume have been performed. The results have been compared with

data from flume experiments. The simulations has been shown to match the exper-

iments in terms of the transport relation, bed structure and collective behaviours of

the particles. With validation in hand, the DEM-LBM tool was then used to test the

robustness of the modified sediment transport relation by varying the drag coefficient

while fixing all other grain properties via different shrinkage coefficients.

In terms of the numerical method, sub-grain scale resolved DEM-LBM simulations

of multi-sphere particles has been implemented for the first time. Compared with the

previous numerical works, the novelties of the simulations are:

• more accurate shape representations with the most recent multi-sphere approx-

imation algorithm,

• many distinct realistic natural gravel shapes (627 shapes) from CT scanning in

each simulation,

• a close benchmark with the corresponding flume tests.
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Chapter 5

General conclusion

5.1 Summary of results

In this thesis, DEM simulations have been carried out as virtual experiments to study

the particle-scale physics and then guide the formulation of empirical dimensionless

relations or continuum models for two applications: (1) locomotion problems in gran-

ular media, and (2) the bedload sediment transport process.

In Chapter 2, dynamic similarity in locomotion problems in granular media has

been extended to inclined and cohesive granular beds. Scaling relations for driv-

ing performance, namely the power and traveling velocity, have been proposed for

wheeled locomotion on these beds. For verification, DEM simulations of different

shaped wheels have been performed and the results have confirmed the proposed

scaling relations. These scaling relations shed light on how to design experiments

in laboratory scales and/or in a different gravitational environment by following the

dimensionless groups and serve as a potential design tool for off-road vehicles and

extra-planetary rovers, and as an analysis tool for bio-locomotion in soils.

In chapter 3, fluid-driven transport of round sediment particles has been studied.

Sub-grain scale resolved DEM-LBM simulations of mono-disperse spherical sediment

particles were performed and the results compared closely with data from flume ex-

periments. The simulations were shown to match the experiments in terms of the

transport relation and the detailed flow profiles of the granular material. With val-
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idation in hand, the DEM-LBM tool was then used as the basis for an in-depth

modeling study of sediment transport. Wide wall-free simulations were performed

in order to evaluate the factors that can potentially affect the transport relation on

gentle slopes (0.01 ∼ 0.03). The slope, the mean particle size, the surface friction

coefficient, and the damping coefficient did not appear to influence the dimensionless

transport rate for medium to high Shields number when the Shields number was fixed,

for spherical sediment particles. Instead, the parameters not included in the dimen-

sional analysis may be responsible for a substantial fraction of the variability in the

experimental transport relation on gentle slopes, including particle parameters such

as the particle shape and size distribution as well as vegetation, external agitation,

bed forms and so on. The particle-resolved simulations also provided details about

the fluid-particle angular momentum exchange. The fluid couple with respect to the

center of the grain, resulting from the fluid traction over the particle surface, was

shown non-negligible for the fluid entrainment near the threshold. The fluid couple

was further quantified as the rotation stress, which was found mostly concentrated

near the bed surface and not correlated to the Shields number. Particle properties

(e.g. surface friction coefficient) changed the observed rotation stress, which was

anti-correlated to 𝑞* near the transport threshold, suggesting fluid-particle angular

momentum transfer may play a role in transport behavior near the threshold.

In Chapter 4, a complete workflow has been developed for the numerical study

of the bedload sediment transport of natural shaped particles, from particle shape

measurement and approximation to the coupled simulations of the non-spherical par-

ticles. Superimposed spheres are used to approximate the shape of natural gravels.

The material properties such as the diameter of the volume-equivalent sphere, the

repose angle of the dry material and the average settling velocity have been bench-

marked with the experiments. Sub-grain scale resolved DEM-LBM simulations of

multi-sphere particles has been first time implemented and sediment transport tests

of the multi-sphere particles in the flume have been performed. The results have

been compared with data from flume experiments. The simulations has been shown

to match the experiments in terms of the transport relation, bed structure and col-
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lective behaviours of the particles. With validation in hand, the DEM-LBM tool

was then used to test the robustness of the modified sediment transport relation by

varying the drag coefficient via different shrinkage coefficients.

5.2 Future work

Although significant progress has been made in locomotion problems in granular

media and the bedload sediment transport process, there are several areas where

significant improvements can be made.

• Enhancement of the two-phase continuum model in the dilute limit.

In Chapter 3, the solution of the continuum model predicts 𝑈𝑠 and 𝑈𝑓 to

merge into the same profile for 𝜑 < 0.05 by observation while in DEM-LBM 𝑈𝑠

is always lagging behind 𝑈𝑓 . The reason is that the particle phase pressure 𝑝𝑝

is 0 in the very dilute layers, which means the material is suspended and free

to be sheared for the granular material governed by a frictional flow rule. As

a result, there is no drag force in the flow direction (so no velocity lag) for the

very dilute layers. For a remedy, there are two future research directions: (1)

enhancing the drift velocity formula so that the submerged weight does not fully

cancel out, or (2) a granular flow rule for the very dilute regime that considers

the vertical mixing of solid phase momentum due to the granular temperature,

packing fraction gradient, velocity gradient, and perhaps the gradient of the

velocity gradient.

• Development of higher order mixture model for the stress asymmetry

of the fluid traction.

In Chapter 3, the net angular momentum transfer between the fluid and the

sediment particles (especially near the bed surface) has been quantified as the

asymmetry of the phase-wise stress tensors in both phases, though the total

stress tensor is still symmetric. The presented continuum model, which utilizes

a standard mixture theoretic decomposition of the stress, is not equipped to
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model the details of the different stress contributors in each phase beyond the

splitting shown in Eqs 3.14 and 3.15. A higher order mixture model could

incorporate a micropolar form for the different contributions [126, 127] to permit

counterbalancing rotation stresses within each phase to account for the near-

bed-surface behavior in Sec 3.2.5, which could potentially be further connected

to the bed surface structures such as sorting and armoring.

• Incorporation of the non-local granular flow rule in the two-phase

mixture model.

In Chapter 3, though the sediment transport and the creep flow below the

sediment bed surface have been modeled, two separate models are utilized: the

two-phase mixture model and the non-local granular fluidity model. In the

future we could extend the granular rheology used in our two-phase mixture

model to incorporate NGF in the creeping regime, so that fluid flow and granular

flow fields are simultaneously computed down to the creeping flow regime. We

also acknowledge that creep flows can happen when 𝜇 is below 𝜇1 everywhere

[49, 158], the boundary values may be what we want to predict instead of an

input.

• Physical interpretation of the modified sediment transport relation.

In Chapter 4, the modified sediment transport relations [72] has should its

robustness on predicting the transport rate of sediment particles of different

shapes. However, the physical meaning of this modification 𝜏 *𝐶*/𝜇* in Eq 4.1

to the traditional transport relation is still not fully understood. The validated

DEM-LBM simulation of multi-sphere particles provides a tool to study the

microscopic mechanisms. For example, the hydrodynamic forces and the ori-

entations of the transported particles may be monitored. If a preferred axis of

rotation is found on the moving particles, it may give hints on why the Corey

shape factor (relative flatness) plays an pivotal role in 𝐶* = 𝐶𝐷𝑠𝑒𝑡𝑡𝑙𝑒
𝑆𝑓/𝐶𝑜. Bet-

ter understanding of the microscopic mechanisms can also help improve the

modified transport relation.
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There are many other areas of potential improvement for the methods and models

presented in this thesis. However, these areas here present the most straightforward

improvements that are apparent to this author.
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Appendix A

Wall boundary layer treatment for

flume tests

To ensure the fluid velocity in the DEM-LBM simulations, it is correct is crucial to

recover the transport relation of the sediment particles. In the flume experiments

[72, 73], the flumes are narrow and tall so that the cross-sectional fluid streamwise

velocity far from the granular bed can be approximated by the law of the wall when

fully developed. According to the law of the wall, the velocity near the wall (viscous

sublayer, 𝑦+ < 10.8) is linear to the wall distance 𝑢+ = 𝑦+ with 𝑦+ = 𝑦𝑤𝑢𝜏/𝜈𝑓 , 𝑢𝜏 =√︀
𝜏𝑤/𝜌𝑓 and 𝑢+ = 𝑢/𝑢𝜏 , where 𝑦𝑤 is the distance to the closest wall of the channel

and 𝜏𝑤 is the wall shear stress. Beyond the viscous sublayer, the fluid average velocity

not too close to the walls (𝑦+ ≥ 10.8) can be formulated as 𝑢+ = ln 𝑦+/0.41 + 5.0.

The goal of this appendix is to explain how we can recover the turbulent pure fluid

cross-sectional velocity profile in the channel without having to directly resolve the

boundary layer.

LBM has shown the capability to simulate homogeneous isotropic turbulent flows

accurately [92], either on a high resolution mesh whose grid spacing is no larger

than Kolmogorov length scale 𝛿𝑥𝐾 (as known as Direct Numerical Simulations or

DNS), or a relatively coarse mesh with a turbulent closure (LES). Various papers

on LBM [192, 193, 194] have shown DNS can recover the turbulent fluid velocity

profile in a channel with two parallel walls. However in LBM with LES such as our
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simulations, the thickness of the viscous sublayer of the boundary layer is smaller

than or comparable with the grid spacing 𝑑𝑥, leading to a velocity jump near the

boundaries. LBM based LES with a no-slip boundary condition will underestimate

the fluid velocity in the channel. Here, we present a new boundary technique, relating

the velocity jump across the boundary layer as a slip velocity in a Navier slip boundary

condition formulation.

Uth et al. [108] and Wang et al. [109] have provided the implementation method

of the Navier slip boundary condition in LBM. The slip boundary condition is char-

acterized by a scalar 𝑠𝑠𝑙, the slip length defined as the distance from the wall at which

the linearly extrapolated relative velocity is 0. At the boundary, if 𝑓𝑖 corresponds to

the oblique velocity 𝑐𝑖 going into the wall, the distribution component coming out of

the wall in the opposite direction can be made up as

𝑓𝑖′(𝑥𝑤, 𝑡+ 1) = 𝑟1 𝑓
𝑐
𝑖 (𝑥𝑤, 𝑡) + (1− 𝑟1) 𝑓

𝑐
𝑖′′′(𝑥𝑤, 𝑡) (A.1)

with

𝑟1 =
1

1 + 𝑠𝑠𝑙
𝑑𝑥 (𝜏−1/2)

(A.2)

where 𝑓𝑖′′′ corresponds to the velocity going into the wall in the specular reflection

direction (the opposite direction of 𝑐𝑖′′ , see Figure 3-1 (c)) and the superscript “c"

denotes the post-collision distribution. Substituting Eqn (3.4) and 𝑠𝑠𝑙 = 𝑢𝑠𝑙/𝛾̇𝑓,𝑤 gives

𝑟1 =
1

1 + 𝑢𝑠𝑙

𝛾̇𝑓,𝑤𝜈
𝑑𝑥
3𝑑𝑡𝑓

=
1

1 + 𝑢𝑠𝑙

𝜏𝑤

𝑑𝑥 𝜌𝑓
3 𝑑𝑡𝑓

(A.3)

where 𝑢𝑠𝑙 is the slip velocity and 𝛾̇𝑓,𝑤 the fluid shear rate at the boundary. Since the

node is at the wall, 𝜏𝑤 equals the local shear stress

𝜏𝑤 = ((𝐶𝑠 · 𝑑𝑥)2𝛾̇𝑓,𝑤 + 𝜈𝑓 )𝛾̇𝑓,𝑤 (A.4)

Assuming the second layer of nodes from the wall are right out of the viscous sub-

layer (𝑦+ = 10.8), then the dimensionless velocity there is 10.8. Extrapolating the
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Figure A-1: Turbulent pure fluid velocity across the channel: the law of the wall (solid
blue line) compared with an LBM based large eddy simulation with the proposed
Navier’s slip boundary condition (red crosses), in (a) linear plot, and (b) semi-log
plot. The inclined angle of the flume corresponds to a moderate Shields number
𝜏* = 0.047 in Figure 3-6. Note the channel is as wide as ∼ 2𝑑𝑝.

logarithmic-law to the wall gives the slip velocity as

𝑢𝑠𝑙 = 2.35𝑢𝜏 . (A.5)

Then Eqn (A.1,A.3,A.4,A.5) together give the analytical Navier’s slip boundary con-

dition for turbulent channel flow in LBM based LES.

Figure A-1 shows the comparison between the law of the wall and an LBM based

large eddy simulation with the proposed Navier’s slip boundary condition. The sim-

ulated fluid velocity match the law of the wall very well. This simulation also serves

as a tool to calibrate the value of 𝐶𝑠 = 0.27 with the resolution of 𝑑𝑥 = 0.005m. The

value of 𝐶𝑠 and the grid spacing are used throughout this paper for the simulations

in which the fluid is water. With the help of the proposed boundary condition, the

shown LBM simulation whose resolutions 𝑑𝑥 is equivalent to ∼ 15𝛿𝑥𝐾 , is much faster

than DNS without losing much accuracy on the fluid velocity.
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