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by
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Abstract

The fundamental understanding of living processes is one of the main pillars in modern
medicine and technology. Biological mechanisms are convoluted and stochastic sys-
tems that remain largely misunderstood despite centuries of rigorous scientific work.
In recent years, machine-learning (ML) has resurfaced as a powerful framework to
identify patterns of interest in complex datasets. Yet, the impact of such methods
remains limited in the broad context of life-sciences. This work optimizes the utility
of ML to accelerate research of fundamental biological problems. First, we propose
a paradigm shift from siloed data curation to multi-purpose cohorts at scale, even in
the most restrictive case of human experimentation. The potential of this approach is
revealed through the Brain TreeBank, a multi-modal dataset of naturalistic language
aligned to intracranial neural recordings. The TreeBank provides the resolution and
breadth required to probe the spatio-temporal dynamics of language context depen-
dence and representation in the brain. Second, we argue for the importance of ML
interpretability to accelerate the understanding of biology. We develop an explainable
general-purpose tool for modeling discrete stochastic processes at multiple resolutions
with output certainty estimation. We demonstrate the utility of the method by mod-
eling patterns of somatic mutations across the entire cancer genome and extend it
to map mutation rates in 37 types of cancer. The confidence intervals and increased
sensitivity of the method identify sets of mutations that likely drive cancer growth in
both coding and noncoding regions of the genome. Broadly, this work demonstrates
how computational approaches can overcome unique challenges in biological data and
how biological problems can drive advances of computational methodologies.
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Chapter 1

Introduction

1.1 Machine-learning for biological science

The core theme of this work is the exploration and development of computational

approaches to accelerate life-science research. Computational tools, such as machine

learning (ML), have been rapidly evolving in recent decades with the exponential

growth of computing power [230]. However, other research domains, that can benefit

from such advancements, have yet to leverage the full potential of these technologies

[223, 111, 188]. Specifically, biological sciences, the branch of natural sciences that

deals with the processes, structure, organization, and interactions of living organisms

[181], can gain immensely from methods to augment the logical reasoning of the

practicing scientist.

The fundamental understanding of biological processes is key to progress in our

understanding in healthcare, agriculture, environmental studies and more. Through

the discovery of Penicillin [90] to the engineering of live cells [63] advances in life-

sciences and medical research have nearly doubled the human life span in the past

century [158].

However, biological systems’ hierarchical complexity has no counterpart outside

the realm of biology [266]. Unlike the logical structure of human-made machines,

natural systems are simultaneously convoluted, non-linear, stochastic, and multi-

dimensional [7, 5, 6, 174, 100, 144]. Thus, making them extremely complex to decipher
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and mandating slow progress through experimentation and rigorous reasoning. Un-

raveling this complexity is therefore of the utmost importance for solving life-sciences’

most urgent problems and pushing technology beyond its current limitations.

As datasets grow larger, one approach to unravel this complexity is through the use

of ML frameworks [269], suited to identify meaningful information in large-scale data.

ML methods have proven to be powerful tools in a variety of different domains [45, 95,

44, 202], with super-human performance in a number of seminal cognitive tasks [125,

238, 145, 49]. Specifically, ML methods are uniquely suited to identify subtle recurring

patterns in a plethora of data, often intractable by direct computation or human

reasoning [32]. Additionally, ML approaches do not depend on predefined rules that

tend to be sub-optimal and limit the hypothesis space. More recently, different ML

models have demonstrated impressive results across a variety of biological domains

[58, 153, 102, 127, 160, 134]. However, such examples are the exception that proves

the rule, as many biological datasets tend to contain smaller sample sizes, complex

structures, and more noise with respect to the more classic ML tasks with human-

made datasets [223].

This work will focus on approaches to improve ML methodologies to overcome the

subset of challenges that are abundant in the natural sciences but do not carry the

same weight in the well-defined seminal problems of modern artificial intelligence.

1.2 Machine-learning biology-specific challenges

The innate complexity of natural systems put forth a number of biology-specific

limiting factors for current ML solutions. Some biological and medical domains,

like radiology or pathology, are easier to reduce to computational reasoning due to

their similarity to classical ML problems (e.g. computer vision, natural language

processing, etc.). Others, require only marginal computational assistance to perform

a human supervised task, like robotic surgery or electronic health record analysis,

lowering the performance bar to an attainable threshold. However, the vast majority

of life-science research problems are not reducible to these two sub-classes and are
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therefore hindered by a number of key drawbacks.

The first and foremost challenge in the space is data acquisition. While cheap

and accessible DNA sequencing techniques have revolutionized genomics [233], it is

still an outlier in the space. The study of most biological systems requires real-time

signal recordings that are either resource-consuming or often technically infeasible.

Data restrictions are not only limiting the prospective benefits of ML, but the pace

at which new discoveries can arise. For instance, neuroscience research has long been

striving for bona fide datasets of human neural measurements, paramount to explore

multiple cognitive behaviors and neural diseases [150, 94, 57]. However, the inherent

risks involved have pushed the field to a dismal choice between poor resolution and

highly specific datasets. The former provides low signal-to-noise ratios, increasing

false discovery rates and minimizing the scope of questions to be studied. The latter

produce siloed datasets, confined to narrow research questions, limiting the com-

plexity of studies and preventing reproducibility of results. This work will address

this issue by proposing the alternative approach of hypothesis-free data curation by

exploring the question:

[A] Can multi-purpose datasets at scale accelerate scientific discovery

over complex biological systems?

The second fundamental challenge is the black-box nature of the most commonly

used ML modality – deep learning. Unlike image processing or language understand-

ing tasks, where why and how are nice-to-have features on top of systems’ accuracy,

in biology such questions are arguably the core of the study itself. No new science

can be learned if we cannot query the model for why a prediction was made [108],

and no follow-up decisions can be achieved without an estimate of how confident the

model is in their estimation [147]. Taken together, these questions boil down to the

interpretability of ML models processing and the confidence likelihood of their final

outcome. While some progress has been made in recent years, bioinformatics is still

largely governed by simpler models that fall short of the rapidly evolving state-of-

the-art technologies. This work will demonstrate the importance of incorporating
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interpretability mechanisms by suggesting a modular likelihood estimation and input

space reasoning framework. Through this development, this thesis will explore the

question:

[B] Can improved ML interpretability drive novel discoveries in

well-studied domains?

1.3 Contributions of this research

The first part of this work aims to answer question [A] through two major contri-

butions to the study of neurolinguistics. Both rely on the availability of intracranial

recordings from intractable epilepsy patients (see chapter 2), which provide unparal-

leled temporal and spatial resolutions of neural signal recordings [186]. An invaluable

resource that has been underutilized thus far due to the limited scale and scope of the

data collected from any given patient [220, 82, 205, 113]. This thesis presents the first

large-scale naturalistic language dataset with invasive stereoelectroencephalography

(SEEG) recordings. Specifically, this work:

Introduces the Brain TreeBank – the largest collection of neural

recordings aligned to annotated language.

The Brain TreeBank is a first-of-a-kind dataset, surpassing in scale both its intra

and extra-cranial dataset predecessors. It presents:

• Unprecedented scale: recordings of 236,400 annotated tokens across 10 sub-

jects, 10 times larger compared to other naturalistic language datasets [137,

28, 105] and 100 times larger compared to the more common controlled studies

[80, 79, 260, 82, 23].

• Augmented flexibility: multi-modal audio and visual streams aligned to con-

versational language, parsed in the Universal Dependencies (UD) formalism

[193].
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• Supporting analysis tools: a broad battery of methods to eliminate con-

founds and provide a structured experiment level of control.

(Definitions are provided in chapter 2 for readers unfamiliar with these concepts).

The second contribution to question [A] is utilizing the Brain TreeBank, curated

as a multi-purpose resource for the study of language in the brain, to probe the

neural representation of part of speech (POS). Specifically, this work aims to show the

applicability of large-scale hypothesis-free datasets to complex systems by presenting

new evidence on:

• The difference in neural activation patterns for words with distinct

POS.

• The network of brain regions involved in POS processing.

• The temporal dynamics of the POS processing network.

The second part of this work aims to answer question [B] through the develop-

ment of a novel method for modeling somatic mutation patterns (see chapter 2).

Specifically, this work:

Develops a probabilistic deep-learning approach to model the patterns of

somatic mutations genome-wide in a tissue-specific manner.

This method builds upon a successful history of prior works that modeled patterns

of somatic mutations in specific regions of the genome [151, 169, 71, 187, 161, 236].

This computational contribution is a means to an end. That end is demonstrating

the utility of interpretability and confidence estimation methods, even in the extreme

case of well-studied fields like somatic mutations in cancer. The probabilistic model

uncovers novel understandings in cancer research and highlights the input features

used to infer its outcome. Specifically,

• Somatic mutations outside of protein-coding sequences (noncoding

mutations) can serve as high-impact drivers of cancer.
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• Proteins that frequently drive one type of cancer can act as rare

drivers of numerous other types of cancer.

• Highly localized chromatin markers govern the likelihood of somatic

mutation accumulation.

1.4 Roadmap of thesis

Given the strong biology focus of this thesis, chapter 2 provides a brief primer on

the central concepts used in later chapters. While this background is by no means

comprehensive, it is designed to provide sufficient detail for readers with less biological

familiarity to follow (more or less) in chapters 3-6.

In chapter 3, we present the Aligned Multimodal Movie Treebank (AMMT), an

English language treebank derived from dialog in Hollywood movies which includes

transcriptions of the audio-visual streams with word-level alignment and UD parsing.

This chapter introduces the groundwork and analysis required to build a large-scale

multi-modal treeabank. It presents an overview of the dataset and tools developed

to curate it, as well as a collection of statistics for quality evaluation. The work

presented in this chapter was originally published in

Adam Yaari, Jan DeWitt, Henry Hu, Bennett Stankovits, Sue Felshin,

Yevgeni Berzak, Helena Aparicio, Boris Katz, Ignacio Cases and Andrei

Barbu. The Aligned Multimodal Movie Treebank: An audio, video,

dependency-parse treebank. The Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2022. [4]

In chapter 4, we deploy the AMMT to curate the Brain TreeBank and explore

the POS processing in the human brain. The chapter reinterprets the AMMT in the

context of its alignment to SEEG recordings and thoroughly explains any additional

steps. chapter 4 demonstrates how multi-purpose data at scale can enable the rigor of

a quasi-structured experiment and the variety of outcomes it can produce. This chap-

ter presents in-depth description of the methods used to analyze such an unstructured
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resource and novel insights into the neural representation of a fundamental language

feature.

At the time of writing these lines, this work is yet to be published. It is currently

referenced as:

Adam Yaari, Aaditya Singh, Ignacio Cases, Vighnesh Subramaniam,

Pranav Misra, Joseph Madsen, Sceillig Stone, Gabriel Kreiman, Boris

Katz, and Andrei Barbu. Neural processing of nouns and verbs with

large-scale intracranial recordings from naturalistic language.

In chapter 5, we develop a general method to model discrete stochastic processes

at multiple resolutions in a computationally efficient manner. We demonstrate the

application of this method to model patterns of somatic mutations anywhere in the

genome. This work presents a functionality-enhanced ML model for multiple time-

series biological tasks, with a unique focus on cancer biology. This chapter was

originally published in:

Adam Yaari, Maxwell Sherman, Oliver Priebe, Po-Ru Loh, Boris Katz,

Andrei Barbu, and Bonnie Berger. Multi-resolution modeling of a

discrete stochastic process identifies causes of cancer. International

Conference on Learning Representations, 2021. [270].

In chapter 6, we further extend and apply the method from chapter 5 to identify

mutations genome-wide that may contribute to the etiology of cancer. chapter 6 is

largely an extensive application of the method developed in chapter 5. The work

presented in this chapter was originally published in:

Maxwell Sherman, Adam Yaari, Oliver Priebe, Felix Dietlein, Po-Ru

Loh, and Bonnie Berger. Genome-wide mapping of somatic mutation

rates uncovers drivers of cancer. Nature Biotechnology, 2022. [234]

Extensive additional details on results and methods are provided for the motivated

reader in appendix A, appendix B, appendix C, and appendix D.
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Chapter 2

Background

2.1 Neural language processing

2.1.1 The hierarchy of language

Language has been argued to be the most important evolutionary development for

human survival. It is the primary tool we use for expression and communication. We

use it constantly and effortlessly. However, it is far from a trivial process. Language is

the unique process of transforming a linear input (auditory or visual) into a complex

semantic representation of meaning. While some researchers argued recently that

artificial models can mimic this behavior, the human brain remains the only system

to flexibly produce and comprehensively process language in its broad form [142].

While produced and consumed linearly, the structure of human language is hi-

erarchical by nature. In verbal language processing, an incoming audio stream is

broken down into phonemes, such as consonants and vowels. The phonemes are then

compiled into minimal logical units, called morphemes, that in turn combine into

words, phrases, and whole sentences. There is a plethora of opinions and longstand-

ing debates on the exact logic and set of rules governing this hierarchy. Albeit, the

overall consensus is that language is compositional and therefore, so is its one and

only processing system – the brain [205].

Language composition theories span two main dimensions. The first is syntax vs
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semantics, with the former focusing on grammatical rules and the latter on meaning.

The second is the specific set of rules used to compile units under the syntactic or

semantic assumption. The rules and entities may vary between different languages.

However, they all share a small subset of universal components, common across all

languages. One example for such universals are nouns and verbs. Often overlapping

the semantic sets of objects and actions, nouns and verbs enable unbiased hypothesis

testing of language processing.

2.1.2 Relevant principles of neural processing

To understand the complexity of how the brain receives sensory input, processes

information, produces thought and generates action, one must first understand the

functionality of a single nerve cell. Each neuron is a computation unit able to receive

input from hundreds to hundreds of thousands (1,000 on average) of its neighbors,

aggregate the information and transmit it to multiple of its neighbors (or even itself).

While the synaptic interaction between neurons is chemical, the internal transmission

of a signal across the neuron is electrical and therefore measurable.

The brain is anatomically divided into hemispheres, lobes, regions, and sub-

regions. While some brain functions are loosely associated with certain regions (e.g.

sensory-motor, vision, hearing, and even fear), many brain areas are multi-functional

with most functionalities regarded to be distributed. Furthermore, complex functions

are typically hierarchical across different brain regions, compiling the bigger picture

from smaller pieces of the puzzle. For instance, the visual cortex progresses from

pixels at the first visual processing core (V1) and lines at V2 to objects at V4. It

is now known that the linear hierarchy assumption is an oversimplification of an ex-

tremely complicated system, but for the purpose of this work, it will suffice. The

study of brain systems and their associated regions has enabled novel therapies and

treatments, improved mechanistic understanding of the biological system and even

breakthrough technologies like convolutional neural networks.

Unlike sensory systems, language has been associated with an assembly of regions

across the brain. While some are robust and reproducible across studies (e.g. Broca’s

30



and Wernicke’s areas), most are weakly correlated and were found to correspond to

vague components of language processing. For example, the angular gyrus was associ-

ated with sensitivity to argument structure [205]. A better understanding of language

representation and processing dynamics in the brain can reshape our perception of

cognition, help treat communication impairments, resolve centuries-long debates, and

power computational language processing as a whole.

2.1.3 Approaches for real-time brain measurement

Deconvolving functionality from the activity of billions of hyper-connected neurons is

an onerous task that requires precise measurements. Neural measurement tools can be

defined by three distinct features: spatial resolution (number of neurons measured per

sensor), temporal resolution (sensor sampling rate), and coverage (percentage of the

brain simultaneously measured). Existing techniques fall into one of two categories:

intra (inside) or extra (outside) cranial (the scalp) recordings.

Intracranial recordings capture the electrical signaling between neurons at high

spatial and temporal resolutions but are limited in coverage. Most typically, an

electrode will sample every 0.5 seconds at 1-3 millimeter scale. These resolutions

capture local activity (down to a single spike) of hundreds to a few thousands of

neurons. This resolution is currently as good as it gets in human recordings. Some

methods can achieve even a single neuron resolution (e.g. patch-clamp); however,

their restriction to animal studies places them outside the scope of this work. The

most commonly used human intracranial recordings are electrocorticogram (ECOG),

a multi-electrode grid placed on the surface of the dura mater (the covering surface

of the brain beneath the scalp), and streoelectroencephalography (SEEG), multi-

electrode wires inserted into the depth of the brain. This study relies on SEEG

recordings, which simultaneously measure multiple layers of the brain.

Extracranial recording techniques capture either electrical activity (EEG), mag-

netic activity (MEG), or blood-oxygen-level-dependent (BOLD) signals (fMRI). All

three approaches provide full brain coverage but compromise on resolution. EEG

and MEG measure at a milliseconds sampling rate, but with the scalp acting as a
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filter, both must average the activity of millions of neurons at each sensor. fMRI on

the other hand can achieve an order of magnitude better spatial resolution but has a

sampling frequency of seconds due to the nature of the measured BOLD signal.

2.1.4 Universal Dependency language formalism

Universal Dependencies (UD) is an international cooperative project to create tree-

banks of the world’s languages [68]. UD is widely applicable in NLP, primarily in the

study of syntax and grammar. The project’s main aim is to achieve cross-linguistic

consistency of annotation while permitting language-specific extensions when neces-

sary.

UD cohorts are collectively recognized as treebanks. Each treebank consists of

sentences parsed into trees based on the UD scheme. Each tree begins with a root

(typically the main verb), and connects all words of the sentence with dependency

edges, labeled by one of 45 syntactic functions (not including the root). Each word in

the tree has a POS tag and an incoming dependency edge, defining its grammatical

relation and role.

2.2 Genetic Determinants of Cancer

2.2.1 DNA mutations in human genetics

DNA mutations - also known as genetic variants - are classified along several dimen-

sions that will be referenced throughout this thesis. We define these classifications

here. For the sake of disambiguation, the definitions are provided in the context of

human genetics.

First, a mutation can be germline or somatic. A germline mutation is present in the

fertilized zygote from which all cells in the body are derived; thus germline mutations

are present in every cell of the body. The vast majority of germline mutations are

inherited from parents; however, they can also arise spontaneously in sex cells, leading

to a de novo germline mutation in a child that is not present in the germline of either

32



parent. Somatic mutations are those which were not inherited from parental sex cells.

Somatic mutations can arise in any cell at any point from conception to death. They

can be caused by endogenous factors such as DNA replication or exogenous factors

such as UV radiation. Depending on when and where a somatic mutation arises, it can

be present in a single cell, present in a small set of cells, or widely dispersed across

the body [16, 50, 91]. For example, mutations that arise during early embryonic

development will typically be widely dispersed throughout the body; such somatic

mutations are often referred to as "mosaic". Mutations that arise in a post-mitotic

cell such as a neuron will only exist within that cell.

Second, mutations are classified based on the number of base pairs they affect.

Single nucleotide variants (SNVs) change a single base of the DNA to one of the other

three possible bases. Small insertions and deletions (indels) are insertions or deletions

that alter 1-50 bases. Structural variants (SVs) are rearrangements of the DNA that

affect more than 50 bases.

Finally, a note on mutation nomenclature. SNVs and indels will be indicated

by their direct DNA change. For example, an SNV that converts a cytosine to a

thymine will be indicated as C>T. The base expected to be present (cytosine in the

example) is known as the reference allele; the other base (thymine in the example) is

the alternate allele.

2.2.2 High-throughput sequencing for mutation detection

Some of the work in this thesis relies on data from short-read high-throughput se-

quencing to identify somatic mutations. In this type of sequencing, the nucleotide

content of a genome is directly assayed massively in parallel. DNA is extracted from

many cells, sheared into short segments of typically 51-151 bases in length, and then

the sequence of these short segments is directly determined in parallel through a bio-

chemical reaction. Thus the data produced are millions of strings representing the

nucleotide sequence of short segments of DNA from a person’s genome. The original

location of each segment relative to the human reference genome is then inferred in

a process known as alignment, and mutations can be read-off as differences between
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the observed sequences and the human reference genome.

2.2.3 Relevant principles of cancer genetics

In chapter 5 and chapter 6, we dive into the world of cancer genetics. Apart from the

rare cases of an oncoviral spread (where cancer is caused due to a highly specific viral

attack), cancer is a genetically driven disease. The initial set of mutations that drive

the cancer is called driver mutations. It has been estimated that there are 2000-3000

unique locations across the genome that could harbor such mutations [213], either

as germline or somatic drivers. While there are known germline-dominated driver

locations, such as the infamous breast cancer-associated BRCA1 and BRCA2 driver

genes [92], most driver mutations are acquired throughout our lifetime as somatic

DNA alterations.

Somatic mutations naturally accumulate throughout one’s lifetime. Most of these

DNA alterations are corrected by an arsenal of genetic repair mechanisms. However,

errors during replication and repair are inevitable and irreversible once the original

allele template is lost [255]. Initial mutational burdens and defects in DNA repair

mechanisms result in an extremely high somatic mutation rate in tumor cells. Most

of these mutations are harmless "passenger" mutations, with only a small fraction

being true driver events that provide a proliferative advantage to a cell [166, 261],

thus making the task of identifying this limited subset of disease-causing mutations

extremely challenging.

2.2.4 Relevant principles of epigenetics

The nucleus of a human cell contains nearly 2 meters of DNA. In order for it all to

fit and for genes to be accessible for translation, DNA must be carefully packaged.

The set of chemical modifications to DNA and its packaging proteins that enable this

intricate compaction is known as epigenetics. Knowledge of epigenetics plays a major

role in chapter 5 and chapter 6.

DNA winds around proteins called histones, creating a structure known as chro-
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matin. The amino acid residues of histones often carry modifications that are as-

sociated with how tightly the DNA is compacted. For example, tri-methylation of

the 27th lysine of the H3 histone (H3K27me3) is associated with highly compacted

chromatin and limited gene expression. Conversely, tri-methylation of the 4th lysine

of the H3 histone (H3K4me3) is associated with open chromatin and active gene

expression.

Histone marks (also known as chromatin modifications) can be assayed using a

special type of high-throughput sequencing known as Chromatin Immunoprecipita-

tion sequencing (ChIP-seq). ChIP-seq has been applied extensively to characterize

chromatin state across human tissues [218].

35



36



Chapter 3

The Aligned Multimodal Movie

Treebank: an audio, video,

dependency-parse treebank

3.1 Summary

Language is a complex process, involving multiple sensory modalities. However, exist-

ing datasets tend to focus on the direct consumption of language, ignoring additional

inputs that we as humans use to process text and utterances. Specifically, Treebanks

have become a frequent format to study linguistic questions and effects. Treebanks

have traditionally included only text and were derived from written sources such

as newspapers or the web. We introduce the Aligned Multimodal Movie Treebank

(AMMT)†, an English language treebank derived from dialog in Hollywood movies

which includes transcriptions of the audio-visual streams with word-level alignment,

as well as part of speech tags and dependency parses in the Universal Dependencies

(UD) formalism. AMMT consists of 31,264 sentences and 218,090 words, which will

amount to the 3rd largest UD English treebank and the only multimodal treebank

in UD. We find that parsers on this dataset often have difficulty with conversational

speech and that they often rely on punctuation which is often not available from
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speech recognizers. To help with the web-based annotation effort, we also introduce

the Efficient Audio Alignment Annotator (EAAA)‡, a companion tool that enables

annotators to significantly speed up their annotation processes.

3.2 Introduction

Treebanks are fundamental resources in Natural Language Processing [192]. Despite

their central role, most existing treebanks are derived from single-modality texts such

as newspapers, blogs, and other online communities. The vocabulary, syntax, and

statistics of spoken and written language can be quite different from one another

[47]. To complement these datasets and aid the advent of multimodal conversational

agents, we have created a new dataset, the Aligned Multimodal Movie Treebank,

AMMT, the content of which is derived from the language spoken in Hollywood

movies. AMMT is released publicly under an open-source license and will be con-

tributed to the Universal Dependencies (UD) [193] treebanks.

Speech-based treebanks have proven to be a resource of enormous importance to

the NLP research community [8, 194]. We find Treebank-3 of the Penn Treebank

[165], which includes the Penn Treebank Switchboard corpus [104], to be the closest

existing dataset to AMMT. This corpus contains nearly one million transcribed words

from Switchboard annotated with part of speech tags, dysfluencies, and parse trees,

†https://github.com/abarbu/ammt
‡https://github.com/abarbu/audio-annotation

Figure 3-1: An overview of AMMT, our novel multimodal dataset, consisting of transcrip-
tions and parses for 21 movies aligned at the millisecond level. EAAA is a new transcription
and alignment tool introduced below.
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and it also includes alignment between words and audio. However, there are several

key differences between this dataset and our own. AMMT provides alignment to

visual as well as audio data; it is annotated with UD rather than Penn Treebank

dependencies; and conversations are much shorter (Switchboard was designed to have

long 10-minute conversations between strangers on the phone discussing one of a

preselected list of topics). While conversations in AMMT can still be considered

as prepared speech, topics are way less constrained. AMMT also includes many

more speakers and its audio quality allowed us to recover almost all spoken words.

For practical experiments, AMMT is significantly more entertaining for subjects, a

key feature for researchers aiming to study the neuroscience of language via neural

imaging. Finally, with this contribution, AMMT is being made open to the whole

research community.

3.3 Dataset

The AMMT dataset is an English language treebank based on 21 Hollywood movies

that provide transcriptions with word-level alignment to the audio-visual stream, as

well as part of speech tags and dependency parses in the UD formalism. Annotations

for speaker identification will be included at the time of release. Due to copyrighted

source material, AMMT provides multiple 1-second-long audio-visual sample clips

from every movie, and a toolchain allowing users to obtain their own copies and

verify alignment with the dataset.

AMMT consists of 31,264 sentences, 218,090 words, 8,541 lemmas, and 10,805

unique tokens. The counts of POS tags and dependencies are shown in appendix A.

The 21 movies from which the dataset is derived are listed in table A.2 along with

their unique identifiers and relevant statistics.

Movies were chosen to be appropriate for many ages, with the highest rating be-

ing PG-13. They belong to a variety of movie genres (including action, adventure,

animation, comedy, drama, fantasy, family, and sci-fi, according to IMDb’s catego-

rization), and their release dates range from 1995 to the present. They were selected
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Figure 3-2: A screenshot of EAAA, the Efficient Audio Alignment Annotator. EAAA
allows annotators to browse videos, play audio segments, play portions of the audio segments,
edit the transcript, review multiple reference annotations, and annotate and change word
boundaries. EAAA also includes an in-application walkthrough as well as extensive keyboard
shortcuts. The main annotation area shows a spectrogram with annotated words. Words
can be dragged with a mouse and similarly, word boundaries can be adjusted with the
mouse. The audio for individual words can be played by clicking them, while any audio
segment can be played by clicking and dragging the portion that should be played. At the
bottom, in blue, one or more reference annotations are shown which can be toggled on the
fly. Annotators can start with a blank slate or initialize annotations from any reference
annotation. Audio speed can be controlled as necessary.

to have verbose scripts, in the top 50% of randomly sampled movies. Movies that

included extensive singing such as musicals were omitted. Copies of the movies were

obtained and extracted in full including opening and closing credits. Special features

and after-credits scenes were omitted.

3.3.1 Transcription pipeline

The audio track was originally transcribed using the Google Cloud Speech-to-Text

API [107]. It was then corrected by annotators, hired from rev.com and happyscribe.com

depending on the movie, and then further extensively corrected by 7 expert anno-

tators. Transcription followed a set of guidelines to deal with problematic audio

segments and to enforce coherence. Manual transcription was performed simultane-

ously with word-boundary annotation using a new tool developed for this purpose,

EAAA (see section 3.5), which was also subsequently used by annotators to perform
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sentence segmentation and fixing capitalization.

The transcription was verbatim without any corrections for dysfluencies or mis-

takes. Instructions were provided to the annotators to standardize the transcripts

and eliminate problematic audio segments. Foreshortened words (’round vs around)

were transcribed as they were said including the foreshortening. Abbreviations were

always expanded (dr. vs doctor). Cardinal and ordinal numbers were spelled out,

while long numbers were written as spoken including conjunctions such as and (e.g.,

five hundred and five).

Aligned Multimodal Movie Treebank

sentences 31,264
tokens 218,090
lemmas 8,541
types 10,805
num. movies 21

Table 3.1: Basic statistics of the AMMT

Manual transcription was carried out simultaneously with word boundary anno-

tation using a purpose-built tool, EAAA (see section 3.5). EAAA presented annota-

tors with a spectrogram for 4-second segments of a movie, along with the ability to

search, replay and slow down any sub-segment throughout the movie. As the audio

was played, a line marked the location of the audio sample in the spectrogram in

real-time. In some cases, annotators could hear specific words but could not clearly

identify in the spectrogram where those words occurred (e.g. short words like to). An-

notators were instructed to annotate what they heard regardless of the spectrogram,

sometimes leading to such short words having zero-length intervals. Foreign sentences

(e.g., Elvish in the movie The Lord Of The Rings) were marked but not included in

the corpus, although one-off foreign words in English sentences were transcribed. All

cases of singing, unintelligible speech, and multiple speakers overlapping were noted

and eliminated from the dataset. Transcripts are as spoken, without correction, even

when the speaker erred by omitting a word or using a word inappropriately.

After transcription and word boundary alignment, the text was segmented into
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Metric Precision Recall F1 Score AligndAcc

Words 100.00 100.00 100.00 N/A
UPOS 99.53 99.53 99.53 99.53
UAS 98.95 98.95 98.95 98.95
LAS 98.31 98.31 98.31 98.31
CLAS 97.75 97.71 97.73 97.71
MLAS 96.74 96.70 96.72 96.70

Table 3.2: Inter-annotator agreement bound of AMMT syntactic annotations.

sentences. Annotators marked the end of each sentence manually and fixed capital-

ization (of both proper nouns and sentences as needed). Throughout this process,

some critical punctuation was introduced as annotators saw fit.

3.3.2 Dependency parsing pipeline, annotation and validating

annotator performance

We parsed all transcriptions with Stanza [206] using the standard English model.

The AMMT dataset was entirely annotated by an in-house expert annotator over

the course of a year. Edge cases were discussed with other three team members with

a strong background in linguistics and Universal Dependencies in particular. In this

period of time, the expert annotator performed a total of three sequential passes over

the full dataset with the idea of promoting internal consistency.

Separately, after this annotation process concluded, a subset of AMMT consist-

ing of 300 sentences of length 5 through 20 uniformly sampled across movies were

reannotated by an expert annotator. This expert annotator has a strong background

in linguistics and did not contribute to the dataset otherwise. The length of these

sentences was selected to avoid the effect of very short or very long sentences (see

table 3.2).

The inter-annotator agreement of the annotations was 99.53% on correct POS

tagging, 98.95% on correctly placing dependencies (UAS), and 98.31% on correctly

identifying the type of a dependency relation. Morphology-aware labeled attachment

(MLAS) score ties together POS and LAS into a single number, 96.72%, which mea-
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sures the inter-annotator agreement of the annotations [243].

Note that the inter-annotator score presented in table 3.2 is thus a measure, for

this particular subset of the dataset, of the disagreement between the original expert

annotator and the external expert annotator. As such it should only be considered

as a bound on the actual disagreement between the two annotators.

We found word-boundary inter-annotator agreement to be remarkably high, with

less than 15ms on average for all words in a single movie, Lord Of The Rings, anno-

tated by 5 annotators.

3.3.3 Performance of existing parsers

We compared our annotations against those produced by Stanza [206] in fig. 3-3.

Stanza was the original parser used to initialize the treebank before extensive human

correction. This likely biases the results toward Stanza in subtle ways [27] which we

do not investigate here beyond section 3.3.2.

Note that performance on short sentences, fewer than 3 words, and long sentences,

with more than 20 words, is far worse than average-case performance (see fig. A-1 for

the distribution of sentences in AMMT). This trend is not observed in other corpora

such as the English Web Treebank (EWT) [237], where performance increases for

short sentences (although these are very infrequent) while the performance drop for

long sentences is half or less than that seen in AMMT. While the distributions of

POS in both corpora are slightly different (cf. appendix A), the performance drop

for short sentences appears to be driven by POS tag errors, see the relative drop in

POS accuracy between fig. 3-3(a,b,c) — perhaps such sentences require more context

to be correctly interpreted. The performance drop for long sentences appears to be

driven by incorrectly identified relationships, see the relative drop in UAS between

fig. 3-3(a,b,c).
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Metric Precision Recall F1 Score AligndAcc

Words 99.51 99.75 99.63 N/A
UPOS 97.64 97.88 97.76 98.13
UAS 88.02 88.24 88.13 88.46
LAS 85.68 85.89 85.78 86.10
CLAS 83.40 83.01 83.20 83.29
MLAS 81.38 80.99 81.18 81.27

(a) All sentences

Metric Precision Recall F1 Score AligndAcc

Words 99.45 99.53 99.49 N/A
UPOS 91.49 91.56 91.53 92.00
UAS 91.31 91.38 91.35 91.82
LAS 88.76 88.83 88.80 89.25
CLAS 86.49 86.06 86.28 86.71
MLAS 75.87 75.50 75.68 76.06

(b) Short sentences, fewer than 3 words

Metric Precision Recall F1 Score AligndAcc

Words 99.52 99.78 99.65 N/A
UPOS 98.44 98.70 98.57 98.92
UAS 80.47 80.68 80.57 80.86
LAS 78.78 79.00 78.89 79.17
CLAS 76.32 76.06 76.19 76.28
MLAS 74.02 73.77 73.90 73.98

(c) Long sentences, more than 20 words

Figure 3-3: (a) The overall accuracy of Stanza on AMMT. Performance drops significantly
for (b) short sentences which are common in speech as well as for (c) long sentences.

3.4 Multimodal feature analysis

Exploring the utility of the corpus as a multimodal resource for grounded language

and vision tasks, we quantified the co-occurrence of nouns and their corresponding

objects (i.e. objects that are verbally mentioned as they appear on screen). As an

approximation, we considered the 80 object classes of the Microsoft COCO dataset

[157]. We extracted all nouns corresponding to a COCO class (580 nouns across all

movies) and manually reviewed the middle frame of a word utterance. We find an

average of 36.5% noun-object agreement rate (212 co-occurring objects) across all

movies (𝜇 = 23.7%, 𝜎 ≈ 17.5% per movie); see fig. 3-4.

Considering noun-object agreements across both object classes and movie types
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reveals variable distributions. Some nouns are highly likely to appear on screen

as their corresponding noun is uttered, like Person (94.4%), types of vehicles (Car:

59.7%, Bicycle: 68.3%), and animals (Giraffe: 100%, Cow: 100%), while others have

not co-occurred once despite being uttered multiple times. Moreover, unambiguous

nouns (e.g. Laptop: 50%, TV: 42.8%, Toilet: 33.3%) tend to have significantly

higher agreement rates than words with multiple POS (e.g. Bear: 2.5%, Orange: 0%,

Remote: 0%). Some movie categories are also more likely to have a high noun-object

agreement, such as movies aimed at a younger audience (educational and animation

genres), perhaps to enable language learning through multimodality. For example

Cars-2 and Sesame Street present 79.2% and 74.3% agreement rates respectively,

while The Lord Of The Rings 1 and 2, and Avengers Infinity War score only 17.6%,

14.2%, and 5.9% respectively; see fig. A-2.

3.5 Tools

To efficiently annotate the alignment between word onsets and offsets and the audio

stream, we created a new tool, the Efficient Audio Alignment Annotator (EAAA).

EAAA enables annotators to start with a rough transcript and approximate align-

ment between words and the audio track. Annotators can simultaneously correct the

transcript while annotating new words. An overview of the EAAA interface is shown

in fig. 3-2. Tools such as Praat [35] also allow for annotating audio corpora with word

boundaries. Unlike Praat, EAAA is web-based making it easier for annotators to use.

Data such as spectrograms and wave files seen by annotators are pre-processed on the

server side, making browsing and accessing movies with EAAA near real-time. Since

EAAA is a single-purpose tool meant for transcription and fine-grained alignment,

it provides custom features that significantly speed up the annotation process like

keyboard shortcuts, the ability to handle audio files of any length, and a streamlined

interface. EAAA also handles multiple concurrent annotators, sharing and comparing

multiple annotations directly.

EAAA pre-processes movie files into 4-second segments that overlap by 2 seconds
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Figure 3-4: COCO classes noun-object agreement across the corpus (sorted by agreement
rate). All nouns corresponding to one of the 80 COCO classes (orange) vs their corresponding
objects in the video during the noun utterance (blue). Objects were manually detected in
the middle frame of a word utterance.

and computes spectrograms for each segment with Librosa [171]. Storage is provided

by a local Redis database which is not exposed to the web. In addition, EAAA

includes a telemetry server that collects comprehensive information during the anno-

tation process including every transcript change, keyboard shortcut used, and mouse

press.
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3.6 Conclusion

AMMT and EAAA are open source and AMMT will be contributed to the UD tree-

banks. In addition to verbatim transcriptions and a treebank, AMMT provides a

toolchain to enable access and alignment to the source video and audio. Most datasets

for evaluating and training parsers are focused on written rather than spoken lan-

guage. With the rise of conversational agents, AMMT can serve as a more predictive

benchmark in this domain.

At present, no end-to-end systems – from video-and-audio to parses – exist, even

if humans often use visual information to disambiguate and contextualize auditory

information. In the next chapter, we will show how AMMT will support further work

on the neuroscience of language.
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Chapter 4

Neural processing of nouns and verbs

with large-scale intracranial

recordings from naturalistic language

4.1 Summary

The understanding of language structure and its representation in the brain remains a

major challenge with substantial implications for neuroscience, linguistics, and artifi-

cial intelligence. The considerable impediments of coarse signal recording resolution,

limited data, and confounding features have thus far hindered this area of study. By

resolving these constraints, we enable probing the neural spatiotemporal dynamics of

nouns and verbs as a proxy for part-of-speech (POS) processing at an unprecedented

level of detail. We identify a tightly-connected network of brain areas that respond

selectively to nouns and verbs. The network is organized as two semi-overlapping

components and clustered around a main processing core. We find that this core

anticipates the POS of an upcoming word prior to word onset, takes on most of

the computational burden in determining the lexical category during utterance, and

transmits the information to auxiliary regions. Finally, we demonstrate the critical

nature of context, which differentially changes the neural activity and latency evoked
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by nouns and verbs.

4.2 Introduction

The neural representation and dynamics involved in even the most fundamental lan-

guage processing tasks are still largely unknown despite the mounting evidence linking

brain domains to language-related phenomena, such as compositionality [22, 33, 225,

264], semantic categories [180, 126, 277], and surprisal [41, 40, 105, 43, 29]. A partic-

ularly interesting case is understanding how the brain ascertains the part of speech

(POS) of words. Grammatical classes are of particular importance for their fundamen-

tal role in linguistics and natural language processing (NLP). Indeed, the two word

classes, nouns and verbs, are widely recognized to be among the few linguistic uni-

versals [60, 205]. To date, our understanding of the spatio-temporal course of part of

speech processing in the brain is limited by 1) experiments which have coarse spatial

resolution such as Magnetoencephalography (MEG) [53] and Electroencephalogra-

phy (EEG) [112], or coarse temporal resolution, as in functional magnetic resonance

imaging (fMRI) [221, 183, 177, 25, 81, 77]; 2) the insufficient amount of naturalistic

full-sentence language data used [220, 82], required to engage the full capacity of the

language system and free of laboratory-constructed task artifacts [113, 205, 38, 34];

and 3) a plethora of correlated confounding factors [12] which are difficult to dis-

entangle without large-scale data. Previous attempts to understand neural activity

evoked by part of speech [78, 251, 232, 53, 1, 178, 207, 129] have yet to overcome all

three limitations synchronously, greatly limiting our understanding of the language

system’s internal structure and dynamics.

To overcome these three hurdles, we leverage the AMMT to create the first

large-scale naturalistic language dataset with invasive stereoelectroencephalography

(SEEG) neural recordings of 236,400 annotated tokens across 10 subjects – the Brain

TreeBank. Powered by our rigorous annotation process, described in chapter 3, this

large collection of high-resolution neural recordings aligned with linguistic annota-

tions scales up data per subject by over a factor of 10 compared to other naturalistic
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language datasets [137, 28, 105] and by over a 100 for the more common controlled

studies [80, 79, 260, 82, 23, 39, 207]. We then introduce a broad battery of methods

to eliminate confounds and provide a structured experiment level of control.

The availability of large-scale, high-resolution neural recordings annotated with

linguistic information and an exhaustive list of quantified confounds allow us, for the

first time, to probe POS at an unprecedented level of detail. To this end, we address

the following set of questions (i) how do activation patterns of words with distinct

POS differ? (ii) How does the POS network distribute across the brain? And (iii)

what are the temporal dynamics of the POS processing network?

Our analysis reveals new information on the neural representation and spatiotem-

poral localization of POS processing. First, we show a network of language areas that

respond selectively to nouns and verbs, enabling direct decoding of POS from neural

signals even when their surface forms are identical. Responses are structured hier-

archically, such that areas associated with early language processes show increased

POS sensitivity relative to higher cognitive function areas. Neural activities are also

markedly different: verbs evoke stronger activity and take longer to process than

nouns, with a characteristic dependency on the sentence context in which a word

was uttered. However, a fine-grained analysis reveals a noun-specific cluster in the

inferior frontal lobe (IFL), a previously perceived verb-sensitive region [254]. A high-

precision spatiotemporal SEEG analysis shows that the superior temporal lobe (STL)

has a central role as a processing core recruiting auxiliary support from nearby ar-

eas. The temporal analysis exposes two POS prediction intervals: a primary window

occurring between 150𝑚𝑠 and 500𝑚𝑠 post word onset, and an anticipatory window

where POS is predictable 350𝑚𝑠− 250𝑚𝑠 before the utterance of that word.

4.3 Results

Subjects participating in the experiment (10 subjects, 5 male, 5 female, aged 4-19,

𝜇 = 11.9, 𝜎 ≈ 4.6) were patients under treatment for epilepsy at Boston Children’s

Hospital (BCH), where they had been implanted with intracranial electrodes (total
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1,688; 𝜇 = 169, 𝜎 ≈ 40) to localize seizure foci for potential surgical resection.

We collected SEEG recordings while subjects were watching a total of 28 full-length

Hollywood films (𝜇 = 2.8, 𝜎 ≈ 1.8 per subject) out of a selection of 21 choices.

Figure 4-1: Task schematic, data alignment, and definition of word homonyms.
noun-verb homonym pair in the Brain TreekBank, a novel large-scale dataset of brain activ-
ity, recorded using SEEG as subjects watched Hollywood movies. We show the neural data
extracted from one example electrode corresponding to the presentation of a homonym that
appears as both a noun and a verb. On average, verbs evoke more activity and take longer
to process than nouns.

4.3.1 Brain TreeBank: a large-scale intracranial naturalistic

language dataset

The collected SEEG recordings amount to 55 hours (𝜇 = 5.6ℎ, 𝜎 ≈ 4.2ℎ per subject),

and form the basis for the Brain TreeBank dataset. The dataset contains 35,223

sentences (𝜇 = 3, 522, 𝜎 ≈ 2, 384 per patient), 46,659 types (𝜇 = 4, 666 𝜎 ≈ 3, 209 per

patient), and 236,400 tokens (𝜇 = 23, 640, 𝜎 ≈ 16, 093 per patient) (see fig. 4-1). The

onset and offset of each word for every presented movie were automatically annotated

and then manually corrected via an aligned spectrogram and reduced speed audio

track. The dataset was also automatically parsed for POS and manually corrected

using the Universal Dependencies framework.

Brain TreeBank is to date the only large-scale treebank accompanied by neural

data; it is the largest multi-modal treebank (i.e. containing both video and audio

tracks), and the third largest treebank altogether. The breadth of the dataset facili-

tates the construction of pseudo-controlled experiments such as noun and verb pairs
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that sound and are written exactly the same (noun and verb homonyms, e.g. risk,

love, etc.). We found 4,090 such homonym pairs (𝜇 = 584, 𝜎 ≈ 432 per patient) that

naturally occurred in the corpus (manually validated as homophones). Like AMMT,

Brain TreeBank will be open-sourced (extensive details are provided in Methods sec-

tion 4.5.1).

4.3.2 How POS neural responses differ?

We first separate all nouns and verbs in the dataset into three distinct categories, by

their sentence context, due to potential neural spillover effects from neighboring word

attributes (e.g. surprisal, parse tree complexity, etc.). Each word was assigned to

one of three subsets – sentence onset (beginning), midset (middle), or offset (end) –

manifesting distinguishably different neural representations; see fig. 4-2.a. Addition-

ally, we define electrodes with more than 40𝜇𝑉 min-max range in the average activity

evoked by sentence onsets to be language responsive (115 electrodes overall; 10.66%

of all electrodes) (see Methods Methods section 4.5.4). This is a simple screening step

to denoise language signals independently of POS patterns.

Tracking the evolving activation patterns across sentence progression in language-

responsive electrodes revealed clear neural correlate distinctions between nouns and

verbs, with growing significance, for both average peak time and amplitude (peak

time paired two-tailed t-test: onsets 𝑝 = 1.76 × 10−3, midsets 𝑝 = 1.75 × 10−5,

offsets 𝑝 = 1.95 × 10−8; peak amplitude paired t-test: onsets 𝑝 = 9.05 × 10−11,

midsets 𝑝 = 8.24 × 10−13, offsets 𝑝 = 1.71 × 10−27) (see fig. 4-7). Moreover, the

location of a word in its context sentence appears to modulate underlying key com-

ponents of the POS-induced activations. As previously reported, verbs typically

induce stronger responses [254], but when every subset is considered separately,

we find that nouns at sentence onset produce significantly higher average ampli-

tudes (nouns: 𝜇 = 53.12𝜇𝑉, 𝜎 ≈ 21.07𝜇𝑉 ; verbs: 𝜇 = 39.44𝜇𝑉, 𝜎 ≈ 21.71𝜇𝑉 ).

The trend reverses towards verbs evoking stronger amplitudes at sentence midset

(nouns: 𝜇 = 17𝜇𝑉, 𝜎 ≈ 11.21𝜇𝑉 ; verbs: 𝜇 = 20.48𝜇𝑉, 𝜎 ≈ 11.95𝜇𝑉 ). This differ-

ence further expands at sentence offset (nouns: 𝜇 = 14.53𝜇𝑉, 𝜎 ≈ 9.14𝜇𝑉 ; verbs:
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𝜇 = 27.18𝜇𝑉, 𝜎 ≈ 12.56𝜇𝑉 ). Similarly, verbs induce enhanced latency in aver-

age peak times, with an increasing difference after sentence onset (onset – nouns:

𝜇 = 373.18𝑚𝑠, 𝜎 ≈ 77.93𝑚𝑠, verbs: 𝜇 = 395.9𝑚𝑠, 𝜎 ≈ 93.14𝑚𝑠; midset – nouns:

𝜇 = 235.89𝑚𝑠, 𝜎 ≈ 114.43𝑚𝑠, verbs: 𝜇 = 298.73𝑚𝑠, 𝜎 ≈ 120.76𝑚𝑠; offset – nouns:

𝜇 = 153.84𝑚𝑠, 𝜎 ≈ 150.39𝑚𝑠, verbs: 𝜇 = 255.33𝑚𝑠, 𝜎 ≈ 164.19𝑚𝑠). Crucially, the

observed increased latency comes as a contrast to longer noun utterances as found in

the dataset (nouns: 𝜇 = 411.4𝑚𝑠, 𝜎 ≈ 180.4𝑚𝑠; verbs: 𝜇 = 287.9𝑚𝑠, 𝜎 ≈ 158.2𝑚𝑠).

To further validate the trend of increasing peak property differences (verbs - nouns)

and overcoming potential measurement artifacts, we simulated the peak times and

amplitudes based on the observed mean and variance in every language-responsive

electrode. For every electrode, we computed per time-point (1,024 samples across

0𝑚𝑠− 500𝑚𝑠 post word onset) distribution properties (𝜇± 𝜎), separately for nouns

and verbs. We sampled 10,000 independent signal vectors from the multi-variate

normal distribution and simulated peak differences via a non-parametric kernel dis-

similarity density estimation (KDE) (2.5%-97.5% inter-quantile region) for all three

sentence subset classes (see Methods section 4.5.5). As expected, the difference peak

amplitude distributions shift upwards across sentence progression (onset mean: -

7.89𝜇𝑉 , midset mean: 3.63𝜇𝑉 , offset mean: 6.86𝜇𝑉 ), from a heavy left tail (nouns >

verbs) onset distribution to a right tilting offset distribution (nouns < verbs). All dis-

tributions were found significantly different (T-test onset ̸= midset: 𝑝 = 2.97510−35,

midset ̸= offset: 𝑝 = 5.08510−8, onset ̸= offset: 𝑝 = 5.12110−18). Correspond-

ingly, the peak time distributions recapitulate later peak latency for verbs over nouns,

that significantly increase post sentence onset (onset mean: 15.819𝑚𝑠, midset mean:

74.618𝑚𝑠, offset mean: 75.748𝑚𝑠; T-test onset ̸= midset: 𝑝 = 3.17510−16, onset ̸=

offset: 𝑝 = 3.7710−15); see fig. 4-2b. top and side panels. When comparing the

peak properties differences, we find positive correlations for the midset and offset

subsets (midset – Pearson R=0.386, 𝑝 = 2.08 × 10−5; offsets – Pearson R=0.42,

𝑝 = 3.03× 10−6), but a negative correlation for the onset subset (Pearson R=-0.534,

𝑝 = 7.84× 10−10), an indication that sentence-leading evoked activity is guided by a

nonidentical underlying process (see fig. 4-2b.).
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Figure 4-2: a. Neural responses to individual words depend on the position
within a sentence and not on their part of speech. Data from a single electrode
in one subject from one movie. A representative of the activity seen in language-sensitive
electrodes across subjects. (top) Raster plots to every word in a movie in a window of 500𝑚𝑠
before and 1 second after the onset of the word. (bottom) Average IFP to all nouns (blue)
and all verbs (orange). b. A density plot of the differences in peak time and amplitude for
every language-sensitive electrode across all subjects. Top and right show the marginals for
each axis independently. Verb peaks are delayed and have higher amplitudes on average,
with a strong dependence on sentence context.
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Figure 4-3: Effects of GLM features (captured by T-statistic) on the neural signal peak
amplitude within 0𝑚𝑠 − 500𝑚𝑠 post word onset. Significant electrodes have 𝑝 ≤ 0.05
combined over peak time and amplitude p-values, FDR corrected via 2-stage Benjamini-
Krieger-Yekutieli. a. Effects of audio intensity over signal amplitude computed as audio
stream magnitude. b. Effects of word surprisal over signal amplitude as computed from
the GPT-2 model. c. Effects of POS over signal amplitude, verb sensitivity marked in red,
noun sensitivity marked in blue.
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4.3.3 How is the neural POS network distribute?

When examining POS effects over single electrodes we must control for a wide variety

of confounding factors biasing the results by affecting the neural signal patterns. For

instance, multiple measures of word surprisal have been found to be predictive of

nouns and verbs [12], word length distributions of POS are typically distinguishable

and word index-in-sentence effects peak attribute differences as shown in section 4.3.2.

Additionally, serendipitous confounds could be introduced through the auditory or

visual scenes presented to the subject in our dataset. We curated a list of 33 confound-

ing features from the video, audio and language of every presented trial (see full list on

Extended Figures Extended Figures table 4.1 and additional details on Supplemen-

tary Methods appendix B.1.4). The features were provided as additional regressors to

a generalized linear model (GLM), along with POS label, inferring properties of the

neural activity (peak time and amplitude) (see Methods Methods section 4.5.6). The

GLM analysis enables estimating the POS neural modulations, independent of the

effects of all additional regressors. Considering the GLM’s T-statistics per-electrode

reveals the directionality, power and spatial distribution of the different predictor

effects across the brain. This analysis made no prior assumptions about language

responsiveness and evaluated all recording electrodes.

We first establish that our methodology recapitulates known mechanisms through

audio intensity (average magnitude 0𝑚𝑠 − 500𝑚𝑠 post word onset) effects on the

neural signal. Indeed, out of the 82 intensity significant electrodes (𝑝 ≤ 0.05 FDR

corrected with 2-stage Benjamini-Krieger-Yekutieli over Fisher’s combined peak time

and amplitude two-sided significance), we find substantial bilateral enrichment in

the intensity-encoding sub-region of the auditory cortex [30] (56 electrodes, 68.3%)

and insula (20 electrodes, 24.4%), previously associated with auditory stimuli tuning

and attention [19]. Moreover, as expected we find positive correlations between peak

amplitude and audio intensity levels in 95.3% of significant electrodes (see fig. 4-3a.).

Beyond supporting previously described effects of auditory surface features, the

analysis provides insights into higher cognitive functions, such as word surprisal, an
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established predictor of behavioral measures in language comprehension [242]. We

computed preceding-context-aware word-surprisal estimates via a pretrained GPT-2

model [265]. Surprisal increases neural signal amplitudes in 32 out of 55 surprisal

significant electrodes, amassed across the STL and insula (93% of significant pos-

itively correlated electrodes combined) (see fig. 4-3b.). In addition, results show

previously unreported surprisal-significant but negatively correlated regions (23 elec-

trodes). These IFL, medial frontal lobe (MFL) and medial temporal lobe (MTL)

(accounting for 73.9% of significant negatively correlated electrodes) demonstrate

lower peak amplitudes for words with higher surprisal values.

A GLM-based analysis of the POS processing network finds 72 nouns and verbs

sensitive electrodes across the brain (see fig. 4-3c.). The found electrodes are clus-

tered in major language network areas: STL (38.9%, 28 electrodes), IFL (22.2%,

16 electrodes), insula and central operculum (19.4%, 14 electrodes), MTL (8.3%, 6

electrodes), inferior temporal lobe (ITL) (6.9%, 5 electrodes), and the supramarginal

gyrus (4.2%, 3 electrodes). While higher amplitudes and increased peak latency

are primarily correlated with verbs in the temporal lobe and insula (as shown in

section 4.3.2), a dense cluster of IFL electrodes measure the reverse response, with

stronger peak effects of the noun class. This observation provides a complementary

POS processing view to claims of noun-specific sub-regions during POS production

within the IFL, commonly assumed to be verb-specific [119]. Notably, these results are

lateralization-oblivious since electrode locations were guided by a preceding language

lateralization screening [21], biasing against the canonical left hemisphere language

dominance.

Moreover, a language-specific functional connectivity analysis recovers a dense

POS network (see fig. B-1). We compared the correlation between electrodes during

utterances of nouns and verbs, versus equal scale segments with no recorded speech

(see Methods Methods section 4.5.11). A pair of electrodes is determined connected if

the distribution of correlations during utterances is strictly higher than the no-speech

counterpart distribution (one-sided Mann-Whitney-U, 𝑝 ≤ 0.05 Bonferroni corrected

for the number of un-directed connections). We find the subset of POS-sensitive
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electrodes vastly enriched with inter-connected electrodes (𝑝 = 3.28×10−117, one-sided

Mann-Whitney-U test) (see fig. 4-4a.). A clustering analysis of the connectivity map

across all electrodes reinforces our previous POS region results and finds a strongly

connected network spanning across the STL, medial temporal lobe (MTL), IFL and

insula (see fig. 4-4b.). Interestingly, we find two information flow loops. A bottom

loop that contains the STL, insula, and MTL (number of connections between the

STL and insula: 340, insula and MTL: 221, MTL and STL: 350), and a top loop that

contains the STL, insula and IFL (number of connection between the insula and IFL:

211, IFL and STL: 160). In contrast, the MTL and IFL share only 81 significant

connections. In addition, we find the STL and IFL tightly inter-connected (280 and

202 connections respectively), while the insula has only 138 and the MTL has no

intrinsic connections whatsoever.

Figure 4-4: POS functional connectivity map analysis. a. A box plot comparing the
p-values across the POS-associated network and all other electrodes. p-values represent
the difference significance between the distributions of electrode correlation during POS
utterance and no-speech segments for every pair of electrodes. POS-associated network
connectivity is statistically larger (𝑝 = 5.06 × 10−46, one-sided Mann-Whitney-U test). b.
Cluster analysis of brain areas POS connections. Each heatmap cell counts the number of
un-directed connections between the two labeled areas. Regions were hierarchically clustered
by their Euclidean distance.
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4.3.4 What are the dynamics of POS processing?

We further explore POS processing activity as it propagates across the brain. As

explicit POS neural correlates become indefinable pre and post-word utterance, we

leverage the flexibility of neural networks to decode lexical categories from the raw

signal (0𝑚𝑠 to 500𝑚𝑠 post-word onset). Specifically, we use a convolutional neural

network (CNN) to perform a binary classification task between nouns and verbs (see

Methods section 4.5.7). To further disentangle convoluted features we: 1) introduce a

pseudo-controlled experimental design of homonym noun and verb pairs (see fig. 4-1

and Methods section 4.5.8); 2) compute two per-word dense vector representations

of the auditory and visual scenes to negate complex effects (e.g. auditory envelope,

visual background cues, etc.) (see full list on Extended Figures table 4.1 and addi-

tional details on Supplementary Methods appendix B.1.4); 3) leverage the set of 33

previously described properties utilized in section 4.3.3; and 4) perform a held-out

trial analysis for multi-trial patients (see Methods section 4.5.10).

For each alternative feature (33 scalar features and 2 vector representations) we

first sample a test set with balanced feature distributions between the two classes

and then sample the train and validation sets at random, enabling a true estimate of

the model’s feature-specific biases. The datasets are re-sampled 5 times and models

are re-initialized and trained 5 times per data split (a total of 25 independent models

per feature) to overcome sampling biases (see Methods section 4.5.7). An electrode

is determined confounds-significant only if it performed above chance (𝑝 ≤ 0.05 one-

sided Binomial test) across all 35 confound-balanced experiments (see Methods sec-

tion 4.5.9). The random sampling of the train and validation sets, independent of the

selection of the test set balancing feature, makes it unlikely to rely on alternating con-

founds for different tests. Therefore, the false discovery rate for confounds-significant

electrodes is incredibly slim. A homonym set analysis was performed in a similar

manner, where a held-out set of all homonym pairs was extracted once per subject

and significance was determined via a permutation test (see Methods section 4.5.9).

The homonym analysis finds 89 significant electrodes (𝜇 = 12.7, 𝜎 ≈ 11.7 elec-
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trodes per subject) with respect to the null distribution. Separately, 18 electrodes are

confounds-significant across all 35 tested features with an intersection of 17 electrodes

(see fig. 4-5a.). A region analysis (pixel-wise corrected for multiple comparisons [62];

see Methods section 4.5.9) recapitulates results found in section 4.3.3. The CNN finds

24 region-significant electrodes (in 4 subjects) across the STL (75%, 18 electrodes),

insula (12.5%, 3 electrodes), supramarginal gyrus (8.3%, 2 electrodes), and IFL (4.2%,

1 electrode).

Additionally, for electrodes that were found significant under all conditions, we

use the homonym set to perform the first-ever held-out-trial decoding experiment of a

high-level language feature (see Methods section 4.5.10). Crucially, the held-out-trial

analysis shows the ability to perform inference over data recorded on different days

and generalize across a variety of linguistic distributions (e.g. train over fantasy genre

and predict over a kids animation trial). Interestingly, 16 of the 17 tested electrodes

maintained the same decoding performance, notably reinforcing the robustness of the

signal.

Lastly, we performed a sliding window fine-grained search (100𝑚𝑠 adjacent win-

dows, 50𝑚𝑠 overlap) between 500𝑚𝑠 pre and 600𝑚𝑠 post-word onset. This analysis

goes beyond the static view of active regions during word utterance. POS processing

appears to contain two distinct intervals. The first ranges between 150𝑚𝑠 − 500𝑚𝑠

post word onset and corresponds to the current state of the field [205]. The second, a

more subtle indicator – perhaps driven by linguistic clues like the previous word POS

– is an anticipatory interval ranging between 350𝑚𝑠 − 250𝑚𝑠 pre-word onset (see

fig. 4-5). Specifically, as suggested in section 4.3.3, the lateral aspect of the STG acts

as the main POS processing core by predicting next-word POS, performing analysis

between 150𝑚𝑠 − 300𝑚𝑠, and broadcasting the information to auxiliary POS cores

at the STL, insula and more, after 350𝑚𝑠.
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Figure 4-5: POS CNN dynamic decoding. a. Overlaid static decoding results for all
electrodes across all subjects, projected to an inflated average brain. Electrodes are colored
by significance in the per-electrode permutation test (small red), balanced confounds test
(medium black), and region max-permutations test (big white). All other non-significant
electrodes are colored in blue. b. POS processing temporal progression at 100𝑚𝑠 windows
(50𝑚𝑠 overlap) across all multi-trial subjects. Significant time-region tuples are colored
according to the number of significant electrode hits. Colored cells preceding word onset
(dashed red line) are signs of anticipatory signals. The STG acts as the POS processing
core, broadcasting to additional auxiliary regions.

62



4.4 Discussion

Small and highly controlled datasets of neural recordings produce numerous negative

results in the study of language in the brain. Conversely, NLP has advanced tremen-

dously by scaling datasets and adapting methods to those larger corpora. We import

this methodology – of high spatiotemporal precision at scale through naturalistic lan-

guage – to studying a critical question in the neural processing of language: how the

brain determines the part of speech of words in context.

We uncover differential context-dependent responses to nouns and verbs, where

typically verbs evoke longer and stronger neural activity than nouns. This increased

verb-associated activity is supported by their role in a sentence, often integrating mul-

tiple syntactic arguments, which perhaps require additional neural resources. Context

modulates this response significantly, typically overpowering other effects, as shown

by the radically different attributes of words that appear at the beginning of sen-

tences. This provides an argument for steering away from investigating individual

words or short phrases and towards naturalistic stimuli. Similarly, we find a focal

noun-sensitive sub-region in the IFL, commonly assumed to be verb-specific based

on imaging and impairment analyses [254], highlighting the shortcomings of low-

resolution methodologies. Combined with additional intracranial studies that find

comparable patterns during POS production [119], there is growing evidence for the

necessity of intracranial methods in neurolinguistics due to the complexity of the

language system.

The variety of methods and strict control of confounding features crystallize the

POS processing network, spanning mainly across five brain regions – the STL, MTL,

IFL, insula, and to some extent the supramarginal gyrus. These regions are rediscov-

ered by both the encoding of POS-evoked modulations to the signal properties and

the decoding of POS categories directly from the neural signal. In like manner, on

one hand, a POS functional connectivity analysis finds the uncovered network to be

markedly more inter-connected than its surroundings. On the other, clustering anal-

ysis of the connectivity map recapitulates a robust synchronization, restricted to the
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same group of regions. Therefore, providing evidence that the above network is both

exhaustive and exclusive. The two loops structure of the network (MTL-bottom and

IFL-top), overlapping the STL and insula, along with the high STL and IFL internal

connectivity suggest dependent yet separate POS understanding processes. A main

short-term process that relies on local cues, such as auditory attributes and previ-

ous word lexical category, and an auxiliary long-term process supported by top-down

modulation from the IFL.

Within the POS two-loop network the STG seems to act as the main processing

core. The uniqueness of the core supports the shared POS processing network theory

[254] and its proximity to low-level language areas (e.g. acoustic and phonological

features [176, 240, 115, 114]) suggests POS assignment is a primal task in language

processing. Specifically, the lateral aspect of the STG anticipates POS before word

onset, performs the processing heavy-lifting, and broadcasts the information to auxil-

iary regions. POS predictability is presumably supported by POS of previous words,

however, further validation is required to determine the source of this percussive sig-

nal. The temporal localization analysis only finds noticeable levels of POS activity

in the STL and insula, probably due to the reduced window size, required for the

temporal resolution of this experiment, which considerably diminishes the decoding

power of the model.

In this work, we demonstrate a proof of principle for large-scale uncontrolled lan-

guage datasets. These datasets can be flexibly reduced to highly controlled subsets,

such as the noun-verb homonym set, to be reused for the investigation of additional

linguistic tasks over high-quality intracranial data. We exhibit the applicability of

the dataset by further fortifying previous claims of next-word prediction in language-

specialized areas [231] and providing newly found insights on reversed effects in ex-

ecutive control regions. Specifically, we find multiple electrodes with strong positive

surprisal correlations restricted to the insula and superior temporal lobe. Moreover,

a few significant negatively correlated electrodes in the IFL and MFL allude to a

potential "reset" operation of long-term prediction processes in cases of uncertainty

across high-level language and multiple-purpose mechanisms.
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By reusing uncontrolled data, researchers will be absolved from the need to collect

their own. Thereby accelerating research and improving the reproducibility of results

that will be extracted from the same large cohort.

4.5 Materials and Methods

4.5.1 Dataset construction

Stereoelectroencephalography (SEEG) neural recordings were collected from 10 sub-

jects (5 male, 5 female), aged 4-19 (mean 11.9 𝜎 ≈4.6), under treatment for epilepsy

at Boston Children’s Hospital (BCH); see Supplementary Figures table B.1 for per-

subject statistics. All subjects were implanted with intracranial electrodes to local-

ize seizure foci for potential surgical resection. All experiments were approved by

BCH/Harvard IRB and were carried out with the subjects’ informed consent. Elec-

trode types, numbers, and positions were driven solely by clinical considerations.

4.5.2 Task and stimuli

Stimuli consisted of 21 recent animated/action Hollywood movies; see Supplementary

Figures table B.2 for per-movie statistics. On average, movies were 2.07 hours long

(𝜎 ≈0.68) and contained 1322 sentences (𝜎 ≈303), 8927 tokens (𝜎 ≈2104), 1769

types (𝜎 ≈324), 1358 unique lemmas (𝜎 ≈259), 1219 nouns (𝜎 ≈282), 615 noun

types (𝜎 ≈133), 1334 verbs (𝜎 ≈299), and 504 verb types (𝜎 ≈100). Movies were

extracted from DVDs and are unchanged other than being re-encoded to a fixed

frame rate (23.976 fps). Transcripts and all annotations described in this work will be

made publicly available. Due to copyrights prohibiting the release of the raw stimuli

(movies) source material, multiple audio-visual sample clips and tools allowing users

to verify the alignment of their own movie copies will be publicly provided.

Each subject was given a choice of which movies to watch, viewing an average

of 2.8 movies (𝜎 ≈1.8) corresponding to 5.6 hours (𝜎 ≈4.2). Movies were shown

in full to each subject. Movies were displayed via a custom video player created in
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Matlab 2018b. The player ensured that the presentation was at a fixed frame rate to

keep the audio and video synchronized. The presentation of movies was accompanied

by regular electrical triggers sent to the neural recording system to enable accurate

temporal alignment between the movie and the neural data. A 15.4 inch (resolution

2880×1800) Apple MacBook Pro Retina was placed 60-100cm in front of the subject.

Subjects adjusted the volume and paused/resumed the movie as needed. The movie

was paused by the experimenter any time someone entered the room or when subjects

were distracted and were resumed when subjects could direct their full attention

back to the movie. Subjects could freely change position but were instructed by the

experimenter, who watched the movies with the subjects, to remain focused on the

stimulus or pause the movie. Subjects did not speak during the presentation of the

movie nor did they overhear any other speech other than that found in the movie.

4.5.3 Data acquisition and signal processing

Clinicians implanted subjects with intracranial stereo-electroencephalographic (SEEG)

depth probes containing 6-16 0.8 mm diameter 2 mm long contact electrodes (Ad-

Tech, Racine, WI, USA) recording Intracranial Field Potentials (IFPs) with 1.5 mm

separation. Each subject had multiple (12 to 18) such probes implanted in locations

determined by clinical concerns entirely unrelated to the experiment. Electrodes

placement was informed by a functional analysis [21]. The number of electrodes

per subject ranged between 106 and 246 (𝜇 =167, 𝜎 ≈40) for a total of 1688 total

electrodes; see Supplementary Figures table B.1 for a per-subject breakdown. Data

collected during periods of seizures or immediately following a seizure was discarded.

Data was recorded using XLTEK (Oakville, ON, Canada) and BioLogic (Knoxville,

TN, USA) hardware with a sampling rate of 2048 Hz. For each electrode, a notch filter

was applied at 60 Hz and harmonics. No other processing (downsampling, filtering

specific frequency bands, referencing, etc.) was performed on the neural recordings.

During the movie presentation, triggers were sent to a separate channel on the

neural recording device via a USB connection to a dedicated trigger box (Measurement

Computing USB-1208FS) using the Psychtoolbox 3 Matlab package. Each pulse
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was logged with both its wall-clock timestamp and its movie timestamp. Individual

triggers were sent every 100𝑚𝑠. Specific events (movie start, pause, resume, and

end) were marked by bursts of triggers (10, 8, 9, and 11 respectively) separated by

15ms. All triggers consisted of a 15ms electrical burst at a magnitude of 80mV. An

automated tool found triggers and aligned the movie and neural data.

4.5.4 Word responsive electrode selection

As electrodes are placed according to medical needs, some electrodes may not record

language processing-related activity. To be able to single out the subset of electrodes

that are more likely to register linguistic activity, relevant to some aspects of this

study, we took a straightforward threshold approach, independent from POS process-

ing. We set a 40 𝜇𝑉 min-max range criterion (selecting 115 electrodes overall; 10.66%

of all electrodes) over the average 500𝑚𝑠 electrical signal window of the sentence

onset subset. Corrupted signal electrodes with extensive durations of static signal

recordings were manually removed from consideration prior to any downstream anal-

ysis. Subjects with no word-responsive electrodes were removed from further analysis

(subjects 4, 6, and 7 in Supplementary Figures table B.1).

4.5.5 Mean signal peak analysis

Considering the neural signal recorded by each electrode as the word processing local

representation, we extracted the electrical current registered during the first 500𝑚𝑠

post-word onset for every word in the corpus (see Methods section 4.5.3). We define

the maximum voltage (in micro-volts) measured in this window as a word’s peak am-

plitude and the corresponding time difference from the word’s onset (in milliseconds)

as its peak time. To investigate the dissimilarities and their progression through sen-

tence utterance, we subdivided the data by their POS and location of the word in

its context sentence. Specifically, the nouns and verbs in the dataset were grouped

into words appearing at the beginning (onset), middle (midset), or end (offset) of a

sentence (onsets: 153 (𝜎 ≈ 44) verbs, 72 (𝜎 ≈ 26) nouns; midsets: 1031 (𝜎 ≈ 237)
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verbs, 699 (𝜎 ≈ 191) nouns; offsets: 161 (𝜎 ≈ 45) verbs, 471 (𝜎 ≈ 106) nouns per

movie).

To obtain reliable statistical estimates and overcome artifacts from electrodes that

did not register language-relevant information, for this analysis we only considered

electrodes that were found to be word responsive, as defined in section 4.5.4. We di-

rectly compare the average peak amplitude and time distributions of nouns and verbs

for every subset via a paired t-test (Python SciPy (1.3.0) Stats package ttest_rel

function [256]). Then, to account for stochasticity and measurement artifacts we bal-

ance the number of nouns and verbs for each of the sentence subsets (by selecting a

random subset out of the larger POS set) and compute the distribution (𝜇±Σ) of all

signals recorded per electrode during the utterance of either all nouns or all verbs per

subject. We then sample 10,000 independent signal vectors from the multi-variate

normal distribution (via the Numpy multivariate normal function of the Random

library [118]) defined by the 𝜇 and 𝜎 vectors and extract a distribution of the mean

peak time and amplitude. Each peak property is subtracted (verb - noun) per subset

to estimate the representational difference.

Given the simulated peak differences, we compute the average non-parametric

kernel dissimilarity density estimation (KDE) and 95% confidence intervals (2.5%-

97.5% inter-quantile region) across the three subsets via the Statsmodels package

KDEUnivariate function (kernel: gaussian, bw: scott, grid size: 512, fft: true) [227].

The KDEs are compared across sentence subsets for both peak time and amplitude

jointly and independently.

4.5.6 Generalized linear model

A GLM was used to study features’ contribution to neural signal properties. Two

GLM variants were used in this work: 1) a simple linear model for subjects that

watched a single movie trial, and 2) a random intercept linear mixed model for sub-

jects that watched multiple movie trials. Both models were estimated via Python’s

Pymer4 package (0.7.0) [130] wrapping the R software Lme4 linear mixed effect model

package [20]. Simple linear models were estimated via the Pymer4 Lm function. Ran-
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dom intercept fixed mean linear mixed models were estimated via Pymer4 Lmer func-

tion, with an independent intercept per trial.

Independent models were estimated per electrode for each subject, pulling together

all nouns and verbs of all movies a subject viewed. In addition to a word POS label

(noun=0, verb=1) all scalar word features, described in Extended Figures table 4.1,

were used as model regressors. Regressors’ mean was subtracted from samples before

analysis. Each set of coefficients served to construct two models, estimating either the

signal peak time or amplitude separately. The significance of coefficients contribution

was determined against each individual variable separately. Words with a peak time

between 0𝑚𝑠 − 50𝑚𝑠 post-word onset were excluded to disregard instances where

signal peaks are governed by previous word response or stochasticity. Electrodes’ two-

sided significance is determined over the FDR 2-stage Benjamini-Krieger-Yekutieli

[24] corrected Fisher’s combined [184] peak time and amplitude p-value.

4.5.7 Convolutional neural network model

A convolutional neural network (CNN) model was used to classify the nouns and

verbs’ lexical categories from the neural signal. Each signal sample of length m had a

corresponding binary noun or verb label. The input provided to the model included

the signal recorded by the desired electrode and its two adjacent neighbors located

on the same SEEG probe, amounting to an input matrix of size 3 × 𝑚. Including

signal from adjacent electrodes allows the model to flexibly optimize the re-referencing

kernel, similarly to fixed methods (e.g., Laplacian re-referencing [154]) which also

rely on adjacent signals. Electrodes at the SEEG probe edges had just one reference

electrode, resulting in a 2×𝑚 input matrix.

The CNN model, designed in Python via the Pytorch (1.5.1) package [198], in-

cluded 11 one-dimensional convolutional layers with skip connections and 2 fully-

connected layers. All convolutional layers had a one-dimensional kernel of size 3,

were batch-normalized, and had ReLU non-linear activation. The network input

layer included 128 channels, and layers 2 and 5 doubled the number of channels to

256 and 512 respectively. In addition, layers 1, 2, 5, 8, and 11 had a stride of length
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2 to reduce input length to 𝑚
32

at the last convolutional layer, with skip connections

transferring information from the output of layers 2, 5, and 8 to the input of layers 5,

8, and 11 respectively. The last two fully-connected layers of the model reduced the

convolutional layers flattened output matrix (of size 512× ⌈𝑚
32
⌉) to feature vectors of

sizes 128 and then 2 for the final binary classification, with no non-linearity function.

The predicted class was chosen to be the label corresponding to the cell with the

higher value in the 2-dimensional output vector.

The model was trained for 10 epochs with Adam optimizer (learning rate: 10−4,

batch size: 32) over a single NVIDIA Titan RTX GPU (Cuda version 11.0). The

data train-validation-test non-overlapping split ratio was 64%-16%-20% for all nu-

merical test set balancing features and an 80%-20% split to train-validation sets after

removing all possible matches for a textual test set balancing feature (see Methods

section 4.5.8). The final model held-out test set accuracy was computed over the

model version with the highest validation set score. The validation set was evaluated

every 20 batches (640 samples) through training to select the top-scoring model ver-

sion. All learning rates, batch size, epoch number, and number of batches between

validations were selected to maximize validation performance via a grid search.

Nouns vs. verbs decoding

As the two largest POS open-class categories, nouns and verbs were selected to be

a proxy for POS processing, providing the best balance between corpus magnitude

and linguistic variety, as well as a highly controlled subset of homonym words (see

Methods section 4.5.8). Due to their distinct linguistic nature, the noun class excluded

proper nouns [72, 189] and the verb class excluded light verbs [46].

To account for the stochasticity of the CNN initialization and optimization process

we retrained the model 5 times per data split and selected the test accuracy of the

model with the best validation performance. To account for the stochasticity of

the data split procedure, for every experiment (i.e. electrode and test set balanced

feature), we defined the final experiment accuracy as the average across 5 independent

data split reruns. Overall, performance for each experiment was based on 25 model
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re-initializations across the 5 data splits.

In this study, we performed two types of decoding analyses, a static input win-

dow during a word utterance and a dynamic sliding window seeking predictive and

lingering POS information. In the static test case, we provided the network with

an extensive time window, capturing the majority of a word utterance (81.4% of

nouns and verbs across all movies; 𝜇 = 357𝑚𝑠, 𝜎 ≈ 185𝑚𝑠) to optimize decoding

accuracy. In these conditions, the window size was set to 500𝑚𝑠 post word onset

(0𝑚𝑠 − 500𝑚𝑠, 𝑚 = 1024 samples in 2048𝐻𝑧 sampling rate). In the dynamic test

condition, we aimed to explore the rapidly evolving neural signal of word processing

and minimize the dependence between adjacent windows. To that effect, the window

size was set to 100𝑚𝑠 (𝑚 = 204 samples) and 20 independent experiments were made

between 500𝑚𝑠 pre-word onset and 600𝑚𝑠 post-word onset. Windows had 50𝑚𝑠

overlap with their adjacent segments. The predicted label for all dynamic window

experiments was the POS of the word beginning at time zero.

4.5.8 Test set construction

In this study we tested our trained models over a wide range of test sets, each one

eliminates the effect of a potential confound by balancing the distribution of the

confounding feature between the noun and verb test set subsets. Notably, in aggre-

gate across all features, this procedure of training a model over uncontrolled train-

validation sets while controlling the feature distributions of the test sets, assures that

a model will provide an unbiased evaluation of the true POS information in the sig-

nal, as it is oblivious of the balanced confound. To construct the confound-balanced

test sets, we considered two feature types: 1) numerical features (e.g. word length

and surprisal estimates), that account for the vast majority of the features; and 2)

identity features (e.g. dependency label and lemma).

Numerical feature distributions were balanced across a test set by randomly sam-

pling 20% of the nouns per movie, and iteratively extracting the verbs with the closest

Euclidean distance in the feature space. The feature space is either scalar discrete,

scalar continuous, or multi-dimensional continuous, depending on the feature type.
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Low-distance noun-verb pairs were prioritized to make the confound distributions of

the noun and verb sets indistinguishable. Class sizes were balanced to obtain 50%

chance level accuracy.

Due to their discrete and un-hierarchical nature, identity features were balanced

based on a Boolean distance metric, where a verb-noun pair could either match or

not. Since the language in the movie data is not optimized for any one task, some

features (e.g. homonym set) were too strict to enable a test set with 20% of all

samples. Therefore, we first extracted all matching pairs and then randomly sampled

the test set out of the matched pairs if set sizes exceeded 20% of the data (otherwise,

all found pairs were used for the test set). If a noun matched more than a single verb,

a verb was randomly sampled out of all matches, and vice versa (homonym test set

average size is 3.23% (𝜎 ≈0.29%)).

If a subject watched more than one movie throughout the experiment, the train,

validation, and test sets were first split per movie and then combined by group to

form a single training dataset. The train, validation, and test sets were sampled to

be mutually exclusive and all extracted test samples were held-out during training

and validation, to be used only once at test time.

4.5.9 Decoding significance assessment

Static homonym set

To assess the statistical significance of the homonym set experiments we used a per-

mutation test analysis per electrode, permuting all train labels and re-training in

every iteration. We first estimated the number of permutations required for conver-

gence over a randomly sampled subset of electrodes across multiple subjects. We

found 120 permutations to be sufficient for the mean performance to remain bounded

by ±0.005 for 10 consecutive iterations. As an additional assurance of convergence,

we doubled the number of permutations to 240 in our analyses.

To account for multiple comparisons when testing for the significance of differ-

ent brain regions we used the pixel-based statistics method [62], taking any sepa-
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rate electrode as an independent "pixel". We used the same random seed across all

240 permutations for all electrodes to create a null region permutation distribution.

Specifically, for each of the 240 permutations we selected the highest accuracy across

all of the electrodes in a given region per subject. An electrode region significance

was determined as the percentile of its computed accuracy against its region’s null

distribution.

Dynamic homonym set

Since computing a full permutation distribution for all electrodes across all timing

experiments is computationally intractable, in this study we pre-selected the subset

of electrodes and corresponding time windows that showed high significance potential

via a one sided binomial test (Python SciPy (1.3.0) Stats package binom_test function

[256]). Comparison of p-values generated by the binomial and permutation tests over

the static homonym set analysis found the first to be stricter in 82.8% of electrodes.

For every time window and every subject with n significant electrodes in a time

interval (according to the binomial test) where 1 < 𝑛 < 10 for the given subject,

we randomly sampled 10− 𝑛 additional electrodes from the subject’s non-significant

electrodes to construct a reliable time window null distribution. We then ran the

permutation analysis as stated above over the pre-selected set of significant and ran-

domly sampled electrode sets. A time window was found significant if it had at least

one-time significant electrode.

Other test sets

Due to the computational intractability of computing a permutation distribution for

each of our confound-balanced test sets, the significance of all non-homonym features

was computed via a one-sided binomial test (Python SciPy (1.3.0) Stats package

binom_test function [256]).
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4.5.10 Held-out trial analysis

Considering only subjects that saw 𝑘 > 3 movies we tested decoding performance

over unseen stimuli in electrodes that were found significant across the homonym pairs

and all confound sets analyses (see Methods section 4.5.8 and Supplementary Methods

appendix B.1.4). In this experiment, a model was trained over the data extracted from

2/3 of the movies (rounded up to full movies, excluding all homonym word pairs) and

tested over the homonym set of the remaining held-out 1/3 (1 movie for the 3 movie

subjects and 2-3 movies for the 7 movie subject) in a k-fold approach. Final accuracy

was computed as the average accuracy across all 3-folds. The significance of electrodes

was determined through an additional permutation test, over 120 permutations. The

accuracy of each permutation was determined as the average of 3 rounds to match

the k-fold methodology.

4.5.11 Functional connectivity analysis

For each electrode, we subtracted the two immediately neighboring electrode IFPs

(single neighbour for electrodes in probe edges) to remove any potential synchroniza-

tion due to the common average reference. Non-overlapping time intervals of 1s (2048

samples) were extracted from nouns and verbs utterances or during segments with no

annotated speech. The IFP for each time interval was normalized per electrode by

subtracting its mean and dividing by the standard deviation.

The extracted language segments are 0𝑚𝑠 − 1000𝑚𝑠 interval post sentence on-

sets with no overlap to other included segments. No-language segments are non-

overlapping 1s intervals extracted from no-speech durations across the movie, exclud-

ing the subtitles. The number of intervals per class was evened out by randomly

downsampling the larger set.

The coherence in the responses of every pair of electrodes x and y at frequency f

for every time interval was calculates using Welch’s method [263]:

𝐶𝑥𝑦𝑓 = |𝑆𝑥𝑦(𝑓)|√︀
𝑆𝑥(𝑓)𝑆𝑦(𝑓)
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Where 𝑆𝑥(𝑓) and 𝑆𝑦(𝑓) are power spectral density estimates of X and Y, and

𝑆𝑥𝑦(𝑓) is the cross-spectral density estimate of x and y. Coherence and spectral

densities were computed with Hann window and 50% overlap (Python Coherence

function of the Scipy Stats library).

Coherence scores were averaged across frequencies for all time intervals and the

distributions of average coherence scores for the language and no-language groups

were compared via a one-sided t-test (Python ttest_ind function of the Scipy Stats

library). A connection between two electrodes was found significant if 𝑝 ≤ 0.05,

Bonferroni corrected for the number of un-directed electrode connections.

4.6 Extended Data Figures

Figure 4-6: CNN (green) and GLM (purple) decoding experiments flow. We hold out
all word pairs that appear as both a noun and a verb, train a CNN to decode the part
of speech from individual electrodes, and test on the held-out homonym set. Conversely,
a GLM predicts either the neural signal peak time or amplitude for all nouns and verbs
given the POS as a predictor. Together these serve as detectors for which brain regions are
sensitive to noun-verb distinctions.

75



#
Featu

re
C

ategory
T

yp
e

D
escrip

tion

1
M

ax
fram

e
brightness

V
isual

Scalar
T

he
m

axim
albrightness

during
w

ord
utterance

com
puted

as
allpixels

average
H

SV
value

2
M

in
fram

e
brightness

V
isual

Scalar
T

he
m

inim
albrightness

during
w

ord
utterance

com
puted

as
allpixels

average
H

SV
value

3
M

ax
inter-fram

e
difference

V
isual

Scalar
A

scene
cut

proxy
T

he
m

axim
alinter-fram

e
gray-scaled

difference
averaged

over
allpixels

4
M

ax
globalflow

vector
m

agnitude
V

isual
Scalar

A
cam

era
m

otion
proxy

T
he

m
axim

alaverage
dense

opticalflow
vector

m
agnitude

5
M

ax
globalorientation

V
isual

Scalar
A

s
above

averaged
over

orientation
(degrees)

and
selected

by
m

axim
alm

agnitude
6

M
ax

flow
vector

m
agnitude

V
isual

Scalar
A

large
displacem

ent
proxy

T
he

m
axim

alw
ord

utterance
opticalflow

vector
m

agnitude
7

M
ax

flow
vector

orientation
V

isual
Scalar

T
he

orientation
(degrees)

of
the

above
flow

vector
8

M
ax

m
ean

flow
vector

m
agnitude

V
isual

Scalar
T

he
m

axim
alm

ean
m

agnitude
flow

vector
per

fram
e

during
w

ord
utterance

9
M

ax
m

edian
flow

vector
m

agnitude
V

isual
Scalar

T
he

m
axim

alm
edian

m
agnitude

flow
vector

per
fram

e
during

w
ord

utterance
10

M
ax

num
ber

of
faces

V
isual

Scalar
T

he
m

axim
alnum

ber
of

faces
per

fram
e

during
w

ord
utterance

11
R

M
S

(loudness)
A

uditory
Scalar

A
verage

root
m

ean
squared

w
atts

during
the

utterance
12

M
ean

m
agnitude

A
uditory

Scalar
A
verage

audio
m

agnitude
(dB

)
during

w
ord

utterance
13

M
ean

pitch
A

uditory
Scalar

A
verage

pitch
during

w
ord

utterance
14

R
M

S
difference

A
uditory

Scalar
T

he
difference

in
average

R
M

S
of

the
500m

s
w

indow
s

pre
and

post
w

ord
onset

15
M

ean
m

agnitude
difference

A
uditory

Scalar
T

he
difference

in
average

m
agnitude

of
the

500m
s

w
indow

s
pre

and
post

w
ord

onset
16

M
ean

pitch
difference

A
uditory

Scalar
T

he
difference

in
average

pitch
of

the
500m

s
w

indow
s

pre
and

post
w

ord
onset

17
G

P
T

-2
w

ord
surprisal

Surprisal
Scalar

N
egative-log

transform
ed

G
P

T
-2

w
ord

probability
(given

sentence
preceding

context)
18

LST
M

w
ord

surprisal
Surprisal

Scalar
N

egative-log
transform

ed
LST

M
w

ord
probability

(given
sentence

preceding
context)

19
LST

M
context

entropy
Surprisal

Scalar
W

ord
preceding

context
entropy

com
puted

over
the

LST
M

probability
distribution

20
G

P
T

-2
m

ost
likely

surprisal
Surprisal

Scalar
A

context
entropy

com
plem

ent
N

egative-log
transform

ed
G

P
T

-2
m

ost
likely

w
ord

probability
21

LST
M

m
ost

likely
surprisal

Surprisal
Scalar

A
context

entropy
com

plem
ent

N
egative-log

transform
ed

LST
M

m
ost

likely
w

ord
probability

22
N

-gram
w

ord
surprisal

Surprisal
Scalar

N
egative-log

transform
ed

5-gram
w

ord
probability

(given
sentence

preceding
context)

23
W

ord
infrequency

Surprisal
Scalar

A
m

odel-agnostic
surprisalN

egative-log
norm

alized
w

ord
frequency

in
the

B
LLIP

corpus
24

W
ord

tim
e

length
Length

Scalar
W

ord
length

(m
s)

25
W

ord
tim

e
difference

Length
Scalar

D
ifference

betw
een

previous
w

ord
offset

and
current

w
ord

onset
(m

s)
26

N
um

ber
of

phonem
es

Length
Scalar

W
ord

num
ber

of
perceptually

distinct
units

of
sound

(phonem
es)

27
N

um
ber

of
syllables

Length
Scalar

W
ord

num
ber

of
pronunciation

units
having

one
vow

elsound
(syllables)

28
N

um
ber

of
characters

Length
Scalar

W
ord

num
ber

of
characters

29
Sentence

index
in

text
Location

Scalar
T

he
index

of
the

sentence
containing

the
w

ord
in

the
m

ovie
transcript

30
W

ord
index

in
text

Location
Scalar

T
he

index
of

the
current

w
ord

in
the

m
ovie

transcript
31

W
ord

index
in

sentence
Location

Scalar
T

he
w

ord
index

in
its

context
sentence

32
Is

sentence
onset

Location
Scalar

T
rue

if
the

w
ord

is
the

first
w

ord
in

its
context

sentence
and

false
otherw

ise
33

H
ead

index
U

D
Scalar

T
he

index
of

the
w

ord’s
dependency

tree
head

34
V

isualvector
V

isual
V

ector
T

he
m

ean-norm
alized

w
ord

utterance
first

fram
e

R
esN

et-50
feature

vector
(size

2048)
35

A
uditory

vector
A

uditory
V

ector
Log

transform
ed

M
el-spectrogram

flattened
to

a
feature

vector
of

size
6016

(127x47)
36

Form
U

D
String

T
he

w
ord

as
annotated

in
the

transcript
37

Lem
m

a
U

D
String

T
he

stem
of

the
w

ord
38

P
art

of
speech

tag
U

D
String

T
he

w
ord

U
niversalP

art-of-Speech
(U

P
O

S)
tag

39
D

ependency
tag

U
D

String
T

he
head-w

ord
relation

labelin
dependency

tree

T
ab

le
4.1:

A
ll

extracted
w

ord
features.

A
ll

scalar-type
features

w
ere

used
as

regressors
in

the
G

LM
analysis

and
all

scalar
and

vector
features

w
ere

used
as

test
set

balancing
features

in
the

m
ulti-confounds

C
N

N
analysis.

76



Figure 4-7: Nouns and verbs average signal peak attribute comparison across sentence
progression. Peak amplitude (top row) and peak time (bottom row) of the average signal
were computed separately per electrode for nouns (blue) and verbs (orange) at the on-set
(left), mid-set (middle), and off-set (right) of their context sentences. The distributions of
nouns and verbs were computed based on the set of 115 (10.66% of all electrodes) word-
responsive electrodes and compared for every subset via a paired t-test.

Figure 4-8: All electrode locations from the 7 subjects analyzed in this study projected
on the temporal aspects of the average inflated brain. Electrodes located more than 1.5mm
away from predefined gray matter regions were removed from the analysis.
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Chapter 5

Multi-resolution modeling of a

discrete stochastic process identifies

causes of cancer

5.1 Summary

Detection of cancer-causing mutations within the vast and mostly unexplored human

genome is a major challenge. Doing so requires modeling the background mutation

rate, a highly non-stationary stochastic process, across regions of interest varying in

size from one to millions of positions. Here, we present the split-Poisson-Gamma

(SPG) distribution, an extension of the classical Poisson-Gamma formulation, to

model a discrete stochastic process at multiple resolutions. We demonstrate that the

probability model has a closed-form posterior, enabling efficient and accurate linear-

time prediction over any length scale after the parameters of the model have been

inferred a single time. We apply our framework to model mutation rates in tumors and

show that model parameters can be accurately inferred from high-dimensional epi-

genetic data using a convolutional neural network, Gaussian process, and maximum-

likelihood estimation. Our method is both more accurate and more efficient than

existing models over a large range of length scales. We demonstrate the usefulness of
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multi-resolution modeling by detecting genomic elements that drive tumor emergence

and are of vastly differing sizes.

5.2 Introduction

Numerous domains involve modeling highly non-stationary discrete-time and integer-

valued stochastic processes where event counts vary dramatically over time or space.

An important open problem of this nature in biology is understanding the stochastic

process by which mutations arise across the genome. This is central to identifying

mutations that drive cancer emergence [151].

Tumor drivers provide a cellular growth advantage to cells by altering the function

of a genomic element such as a gene or regulatory feature (e.g. promoter). Drivers are

identifiable because they reoccur across tumors, but there are two major challenges to

detecting such recurrence. First, driver mutations are rare and their signal is hidden

by the thousands of passenger mutations that passively and stochastically accumu-

late in tumors [244, 167]. Second, because functional elements vary dramatically in

size (genes: 103-106 bases; regulatory elements: 101-103 bases; and single positions),

driver mutations accumulate across regions that vary by many orders of magnitude.

Accurately predicting the stochastic accumulation of passenger mutations at multi-

ple scales is necessary to reveal the subtle recurrence of driver mutations across the

genome.

In this chapter, we introduce the split-Poisson Gamma (SPG) process, an exten-

sion of the Poisson-Gamma distribution, to efficiently model a non-stationary discrete

stochastic process at numerous length scales. The model first approximates quasi-

stationary regional rate parameters within small windows; it then projects these esti-

mates to arbitrary regions in linear time (10-15 minutes for genome-wide inference).

This approach is in contrast to existing efforts that model fixed regions and require

computationally expensive retraining (e.g. over 5 hours) to predict over multiple

scales of interest [191, 169]. We apply our framework to model cancer-specific muta-

tion patterns (fig. 5-1). We perform data-driven training of our model’s parameters
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and show that it more accurately captures mutation patterns than existing methods

on simulated and real data. We demonstrate the power of our multi-resolution ap-

proach by identifying drivers across functional elements: genes, regulatory features,

and single base mutations. Despite the method having no knowledge of genome struc-

ture, it detects nearly all gene drivers present in over 5% of samples while making no

false discoveries and detects all previously characterized regulatory drivers. Detected

events also include novel candidate drivers, providing promising targets for future

investigation.

Figure 5-1: Non-stationary stochastic process modeling predicts mutation patterns and
identifies cancer-specific driver mutations. Biological processes are shown in blue, data
processing is shown in orange. a. Areas of the genome have varying epigenetic states
(e.g. accessibility for transcription) depending on the tissue type. b. These epigenetic
states set different mutation rates in different tissues. c. Our model takes these epigenetic
tracks as input to estimate the regional mutation density across the genome (95% confidence
interval in orange). d. Regional rate parameters and sequence context are integrated via
the split-Poisson-Gamma (SPG) distribution to provide arbitrary resolution mutation count
estimates. Deviations between the estimated and observed mutation rates identify mutations
that are associated with cancers in different tissues. e. The split-Poisson-Gamma (SPG)
model plate diagram (squares: inferred parameters; grey: observed input data).

5.2.1 Previous work

Numerous methods exist for modeling stationary stochastic processes [159]. Far fewer

exist for non-stationary processes because they are difficult to capture with the co-

variance functions of parametric models [216]. Non-stationary kernels have been

introduced for Gaussian processes [197], but these may not be tractable on large
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datasets due to their computational complexity. More recently, there has been work

developing Poisson-gamma models for dynamical systems [224, 110], but these meth-

ods have focused on learning relationships between count variables, not predicting

counts based on continuous covariates.

In the particular case of modeling mutation patterns across the cancer genome, nu-

merous computational methods exist to model mutation rates within well-understood

genomic contexts such as genes [151, 169, 257, 187, 135]. These models account for

< 4% of the genome [214]. They are not applicable in non-coding regions, where

the majority of mutations occur [103]. A handful of methods to model genome-wide

mutation rates have been introduced [200, 191, 26]. However, they operate on a sin-

gle length-scale or set of regions and require computationally expensive retraining

to predict over each new length-scale. Several methods rely on Poisson or binomial

regression; however, previous work has extensively documented that mutation counts

data are over-dispersed, leading these models to underestimate variance and yield nu-

merous false-positive driver predictions [161, 169, 136]. Negative binomial regression

has recently been used to account for over-dispersion [191] and perform genome-wide

mutation modeling and driver detection. However, resolution was coarse, and it only

found a few, highly recurrent driver mutations.

5.2.2 Our contributions

This work makes three key contributions: 1) we introduce an extension of the Poisson-

Gamma distribution to model non-stationary discrete stochastic processes at any ar-

bitrary length scale without retraining; 2) we apply the framework to capture cancer-

specific mutation rates with unprecedented accuracy, resolution, and efficiency; and

3) we perform a multi-scale search for cancer driver mutations genome-wide, includ-

ing the first-ever base-resolution scan of the whole genome. This search yields several

new candidate driver events in the largely unexplored non-coding genome, which we

are working on validating with experimental collaborators. Crucially, our approach

allows fast, efficient, and accurate searches for driver elements and mutations any-

where in the genome without requiring arduous retraining of a model, a feat which is
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not possible with existing approaches.

5.3 Materials and Methods

5.3.1 Multi-resolution modeling of a non-stationary discrete

stochastic process

We consider a non-stationary discrete stochastic process {𝑀𝑖; 𝑖 = 1, 2, ...} where

𝑀𝑖 is the integer-valued event count at position 𝑖. Associated with each position 𝑖

is a real-valued, L-dimensional feature vector 𝜂𝑖 that determines the instantaneous

event rate 𝜆𝑖 via an unknown function. Thus a region 𝑅 = {𝑖, 𝑖 + 1, ..., 𝑖 +𝑁} of 𝑁

contiguous positions is characterized by an 𝐿 × 𝑁 feature matrix 𝜂𝑅 and an event

count 𝑋𝑅 =
∑︀

𝑖∈𝑅 𝑀𝑖. As training data, 𝜂𝑅, 𝑋𝑅, and 𝑀𝑖 are observed for some set

of regions {𝑅 ∈ 𝒯 }. Then given a set of feature matrices from unobserved regions

{𝜂𝑅; 𝑅 ∈ ℋ}, the challenge is to predict the distribution of event counts over any

arbitrary set 𝐼 of unseen positions that may or may not be contiguous. Real-world

examples include traders in a stock market, packets delivered to routers in a network,

and mutations accumulating at positions in the genome.

The split-Poisson-Gamma process

We assume that the process is near-stationary within a small enough region 𝑅 =

{𝑖, 𝑖 + 1, ..., 𝑖 + 𝑁} and that the 𝐿 × 𝑁 covariate matrix 𝜂𝑅 is observed. Thus the

rate of events 𝜆𝑅 within 𝑅 is approximately constant and associated with 𝜂𝑅, albeit

in an unknown way. A number of events (𝑋𝑅) may occur within 𝑅 dependent on 𝜆𝑅

and are then stochastically distributed to individual positions within 𝑅, implying a

hierarchical factorization of the scalar random variables 𝜆𝑅, 𝑋𝑅, and 𝑀𝑖 (fig. 5-1e)

as

𝑃𝑟(𝑀𝑖 = 𝑘,𝑋𝑅, 𝜆𝑅; 𝜂𝑅) = 𝑃𝑟(𝑀𝑖 = 𝑘|𝑋𝑅; 𝜂𝑅)𝑃𝑟(𝑋𝑅|𝜆𝑅; 𝜂𝑅)𝑃𝑟(𝜆𝑅; 𝜂𝑅). (5.1)
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𝑋𝑅 and 𝜆𝑅 are unknown nuisance variables and are marginalized in general as

𝑃𝑟(𝑀𝑖 = 𝑘|𝜂𝑅) =
∫︁ ∞

0

𝑃𝑟(𝜆𝑅; 𝜂𝑅)
∞∑︁

𝑋𝑅=𝑘

𝑃𝑟(𝑀𝑖 = 𝑘|𝑋𝑅; 𝜂𝑅)𝑃𝑟(𝑋𝑅|𝜆𝑅; 𝜂𝑅)d𝜆𝑅.

(5.2)

Since applications often require many posterior predictions over regions of varying

sizes, we propose a prior parameterization that builds on the success and flexibility

of the classical Poisson-Gamma distribution while ensuring the marginalization has

an easy-to-compute posterior distribution:

𝜆𝑅 ∼ Gamma(𝛼𝑅, 𝜃𝑅) (5.3)

𝑋𝑅 ∼ Poisson(𝜆R) (5.4)

𝑀𝑖 ∼ Binomial(𝑋𝑅, 𝑝𝑖) (5.5)

where 𝛼𝑅 and 𝜃𝑅 are shape and scale parameters dependent on 𝜂𝑅, 𝑝𝑖 is the time-

averaged probability of an event at 𝑖 and 𝑝𝑖 =
𝑝𝑖∑︀

𝑗∈𝑅 𝑝𝑗
, the normalized probability

within 𝑅. A plate diagram of the hierarchical model is presented in fig. 5-1e.

The above formulation provides a simple, closed form solution to eq. (5.2) as a

negative binomial (NB) distribution (See Appendix for details):

𝑃𝑟(𝑀𝑖 = 𝑘|𝛼𝑅, 𝜃𝑅, 𝑝𝑖; 𝜂𝑟) = 𝑁𝐵

(︂
𝑘;𝛼𝑅,

1

1 + 𝜃𝑅 · 𝑝𝑖

)︂
. (5.6)

Eq. 5.5 implicitly assumes that events are distributed independently to units

within 𝑅. Exploiting this assumption, eq. (5.6) immediately generalizes to consider

any set of units 𝐼 ⊆ 𝑅 as

𝑃𝑟

(︃∑︁
𝑖∈𝐼

𝑀𝑖 = 𝑘|𝛼𝑅, 𝜃𝑅, {𝑝𝑖}𝑖∈𝐼 ; 𝜂𝑅

)︃
= 𝑁𝐵

(︂
𝑘;𝛼𝑅,

1

1 + 𝜃𝑅 ·
∑︀

𝑖∈𝐼 𝑝𝑖

)︂
. (5.7)

The above formulation is an extension of the classical Poisson-Gamma distribution

whereby the Poisson is randomly split by a binomial. We term this a split-Poisson-

Gamma (SPG) process. While the derivation of the SPG solution makes simplifying
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assumptions, the benefit is that the parameters 𝛼𝑅 and 𝜃𝑅 need to be estimated only

once for each non-overlapping region 𝑅. Estimates for a region of any other size

can then be computed in constant time from eq. (5.7). If a new region 𝑅′ is larger

than 𝑅, we approximate the gamma distribution in a super-region containing 𝑅′ as

a superposition of the previously inferred parameters of each region of size 𝑅 within

the super-region (see section 5.3.1).

Theoretical underpinnings of parameter inference

Inferring regional rate parameters The statistical power of SPG depends on the

accurate estimation of the regional gamma rate parameters 𝛼𝑅 and 𝜃𝑅. We propose

a variational approach to enable flexible, accurate, and non-linear inference of these

parameters from a set of covariates. Let 𝐺(𝛼, 𝜃) be a gamma distribution. By the

central limit theorem, lim𝛼→∞𝐺(𝛼, 𝜃) = 𝑁(𝜇, 𝜎2) where 𝜇 = 𝛼𝜃 and 𝜎2 = 𝛼𝜃2. We

thus use a Gaussian process (GP) to non-linearly map covariates to regional estimates

for 𝜇𝑅 and 𝜎2
𝑅. The variational estimates for the gamma parameters are then

𝛼𝑅 = 𝜇2
𝑅/𝜎

2
𝑅, 𝜃𝑅 = 𝜇𝑅/𝜎

2
𝑅 (5.8)

For a super-region 𝑅′ = 𝑅𝑖 +𝑅𝑗, 𝜇𝑅′ = 𝜇𝑅𝑖
+ 𝜇𝑅𝑗

and 𝜎2
𝑅′ = 𝜎2

𝑅𝑖
+ 𝜎2

𝑅𝑗
.

A limitation of this approach is that GPs can only operate on vectors of covariates.

Thus a dimensionality reduction method must be applied to the input matrix 𝜂𝑅. In

cases where 𝜂𝑅 includes spatial relationships, a convolutional neural network can be

a powerful approach to dimension-reduction; however, other approaches are feasible

(see section 5.3.2 and section 5.4.1).

Inferring time-averaged event probabilities The time-averaged parameters

{𝑝𝑖; 𝑖 = 1, 2, ...} must also be inferred. Crucially, as seen in eq. (5.5), these pa-

rameters are never used directly; instead, they are always renormalized to sum to

one within a region of interest. Thus, estimates do not need to reflect the absolute

probability of an event at 𝑖 but merely the relative rate of events between positions.
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Indeed, because of the renormalization procedure, the estimates need not even be a

true probability distribution. Estimating 𝑝𝑖 can thus be accomplished by clustering

units with similar relative rates of events. How this clustering should be performed

will depend on the application of interest (see section 5.3.2 for a concrete example).

5.3.2 Fitting parameters to predict cancer mutation patterns

We obtained publicly available mutation counts from four cancer cohorts previously

characterized by the Pan-Cancer Analysis of Whole Genomes Consortium (PCAWG)

[51]: esophageal adenocarcinoma (N = 98 tumors; n ≈ 2.7M mutations), skin melanoma

(N = 70 tumors; n ≈ 7.8M mutations), stomach adenocarcinoma (N = 37 tumors; n

≈ 480k mutations), and liver hepatocellular carcinoma (N = 264 tumors; n ≈ 3.3M

mutations). Crucially, these data contain only the total number of mutations at each

position in the genome. We do not know a priori which mutations are background

mutations and which are driver mutations. We also do not know the true mean and

variance of the underlying mutation rate in any region.

We do know that the mutation rate is highly associated with chemical modifi-

cations of the DNA that set the way it is processed in a cell, collectively termed

the epigenome [226, 200]. We obtained 733 datasets characterizing the patterns of

these chemical modifications in 111 human tissues from Roadmap Epigenomics [218].

These data are the largest compendium of uniformly processed human epigenome se-

quencing currently available. Each track provides the -log10 P-value that a particular

modification is present at each location of the genome in a given tissue type. We ad-

ditionally created two tracks that provide the average nucleotide and GC content in

a region based on the human reference genome GRCh37. See Appendix and supple-

mentary data for additional information on the epigenetic tracks. The input matrix

for each region 𝜂𝑅 thus has 735 rows. We fixed the number of columns to be 100

irrespective of the size of 𝑅, where each column is the mean across 𝑅/100 adjacent

positions.
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Figure 5-2: Data simulation and regional parameters inference accuracy across methods. a.
Simulated data experiment. Data simulation is shown in green, parameter inference is shown
in orange. Simulated 𝜇𝑅 and 𝜎𝑅 are computed as the mean and variance of a sample’s KNN
cluster. The model is trained over randomly sampled event counts; the parameter estimates
�̂�𝑅 and �̂�𝑅 are then compared to their true values. b. Pearson 𝑅2 to the observed mutation
count in the true (unsimulated) data (top) simulated mean (middle) and simulated variance
(bottom) for the CNN+GP parameter estimation strategy (CNN+GP), random forest (RF),
negative binomial regression (NBR) and binomial regression (BR). Results for additional
estimation techniques are in Appendix.

Artificial dataset

In order to evaluate the ability of SPG and other models to estimate the unknown

mean and variance of regional rates, we created simulated datasets with known mean

and variance parameters dependent on the observed input matrix (fig. 5-2a). We

created input matrices of size 735× 100 from the epigenetic tracks (described above)

for non-overlapping regions of 50,000 positions. To define the non-stationary mean

and variance of mutation rate dependent on each region’s input matrix, we reduced

𝜂𝑅 to a feature vector of size 735 by taking the mean across columns and used a

k-nearest-neighbors (KNN) strategy to identify 500 regions with similar epigenetic

feature vectors; we then defined 𝜇𝑅 and 𝜎2
𝑅 for each region as the mean and variance of

the observed event counts across its 500 neighboring regions. The number of observed

events for that region was then randomly drawn from a negative binomial distribution

defined by those parameters (full technical details in Appendix). Models were trained
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on the randomly drawn counts and evaluated on their ability to accurately infer the

true mean and variance. We simulated 50kb regions following previous work [214].

Estimating dynamic regional rates with uncertainty

The input matrices 𝜂𝑅 ∈ R735×100 required significant dimension reduction before

we could employ our GP-based variational strategy to infer SPG regional rate pa-

rameters. Columns encode the high-resolution spatial organization of the epigenome

which have recently been shown to be important determinants of local mutation rate

[106, 9]. Therefore, we hypothesized that a convolutional neural network (CNN)

would provide a powerful approach to produce a low-dimensional embedding that re-

tains information about this local structure; the supervised nature of a CNN further

enables the resulting embedding to be optimized for the cancer of interest, which is

crucial to performance since the epigenetic determinants of mutation rate vary dras-

tically between cancer types [200]. We constructed a 1D CNN model with 4 residual

blocks and 3 fully-connected layers to map mutation-rate-associated local epigenetic

patterns to regional mutation rates. The CNN non-linearly reduces 𝜂𝑅 ∈ R735×100

to a 16-dimensional feature vector in its last feature layer. The CNN was trained to

minimize the mean squared error between observed and predicted mutation counts.

Due to the interchangeable nature of the rows, the 1D kernels allow the network to

identify arbitrary inter-track interactions. The final 16-dimension feature vector was

then passed as input to a sparse GP [250], fit to maximize the likelihood of the ob-

served mutation counts using 2000 inducing points and a radial basis function kernel

(fig. 5-1b). We found that results were robust to the particular choice of kernel and

hyperpriors placed over kernel parameters. While end-to-end training is possible [36],

we did not find it necessary to achieve high accuracy in this particular application.

A CNN is not the only method available to reduce dimensionality prior to GP infer-

ence; we investigated numerous other methods but found the CNN+GP to produce

the most accurate results (see Appendix).
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Estimating time-averaged event probabilities

In the case of cancer mutation patterns, previous work showed that the mutation

rate at any position 𝑖 is heavily influenced by the nucleotide at 𝑖 and the two nu-

cleotides directly adjacent to 𝑖; positions with this same “trinucleotide context” will

have similar mutation patterns [11]. Following previous works [187, 257, 169, 262], we

used trinucleotide context to estimate 𝑝𝑖. Let 𝑛𝑡𝑛′ be the trinucleotide context cen-

tered at position 𝑖. We estimate the probability that 𝑖 is mutated using the ensemble

maximum-likelihood estimate of its cluster

𝑝𝑖 = 𝑝𝑛,𝑡,𝑛′ =
𝑣𝑛,𝑡,𝑛′

𝑁𝑛,𝑡,𝑛′
. (5.9)

where 𝑁𝑛,𝑡,𝑛′ is the number of 𝑛𝑡𝑛′ trinucleotides in the genome and 𝑣𝑛,𝑡,𝑛′ is the

number of times 𝑡 is mutated within 𝑛𝑡𝑛′. This approach alone explains little variance

in sub-megabase regions (see Appendix) because it does not account for regional

mutation rates.

Comparing to benchmark models

We compared SPG to three alternative approaches that have been previously used to

learn both the mean and variance of regional mutation patterns genome-wide. The

alternative models are random forest (RF) regression [200], binomial regression (BR)

[26], and negative binomial regression (NBR) [191, 169]. For the RF, we used the

Jackknife method [258] to estimate the variance; this method requires 𝑂(𝑛) trees

where 𝑛 is the number of samples in the training set. BR and NBR directly specify

the variance as a function of the mean: BR as 𝜎2
𝑅 = 𝜇 − 𝜇2/𝑛 and NBR as 𝜎2

𝑅 =

𝜇𝑅(1 + 𝛽𝜇𝑅), where 𝛽 is an overdispersion parameter. Benchmarking comparisons

were performed on the skin melanoma, esophageal adenocarcinoma, and stomach

adenocarcinoma cohorts.
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Model training

For every region of size 𝑅, epigenetic features were extracted into matrices of size

735 tracks by 100 binned position columns, where each column was the mean across

𝑅/100 adjacent base-pairs. Regions with highly repetitive DNA sequences (<70%

of 36mer sub-sequences being unique) were excluded from the training set to ensure

high data quality as in previous analyses [200]. Before training, high-quality data

regions were strictly split into a train (64%), validation (16%) and test (20%) sets.

Predictions for excluded regions and held-out test sets were obtained after model

training. Genome-wide predictions were generated using 5-fold cross-validation. The

CNN received the full 735×100 matrices as input. Vector-based methods (RF, NBR,

BR) received the 735-dimension vector of epigenetic values averaged across position

columns. Following previous work, we also included the expected number of mutations

based on the trinucleotide composition of a region as an offset term in NBR and BR

when predicting mutation counts [191]. Additional details on training (e.g. number

of epochs) are in Appendix.

5.3.3 Identifying genetic drivers of cancer

Because cancer drivers reoccur across tumors, driver elements (genes, regulatory

structures, and individual base-pairs) will contain an excess of mutations relative

to the expected background mutations. The SPG model provides a simple, efficient,

and accurate method to search for this recurrence. We first estimate the mean and

variance of the background mutation rate using the CNN+GP estimation method.

We then apply eq. (5.7) to search for statistical evidence that the number of observed

mutations, 𝑘, exceeds expectation within every gene, known regulatory structure, and

50 bp window in the genome by changing the set of tested positions 𝐼. For a gene, 𝑘 is

the number of observed missense or nonsense mutations and 𝐼 is the set of all possible

mutations in the gene. For both a regulatory element and a window of fixed size, 𝑘

is the number of mutations observed in the element / window and 𝐼 is the set of all

positions within the element / window. If an element overlaps multiple 10kb regions,
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we merge the mean and variance estimates for overlapped regions as described in sec-

tion 5.3.1. To maintain strict train-test separation, both the rate parameters and 𝑝𝑖

are estimated excluding the element being tested. We controlled the family-wise error

rate at the 𝛼 = 0.05 level using a Bonferroni correction for the total number of tests

in genes, regulatory elements, or 50bp windows. Gene information was obtained from

[169] and regulatory element information from [214]. Driver detection was performed

in all four cancer cohorts.

5.4 Results

5.4.1 Accuracy of regional rate parameter estimation

We first evaluated various methods’ abilities to infer regional rate parameters, con-

sidering both new (CNN+GP) and existing (RF, NBR, BR) methods. We assessed

each method’s ability to learn the expected mutation rate by directly assessing the

amount of variance (Pearson 𝑅2) it explained over observed mutation counts in 50kb

real data windows (fig. 5-2b top), and found the CNN+GP estimation method per-

formed the best, although random forest was a close second (results were similar

when estimating the mean in simulated data; fig. 5-2b middle). We then evaluated

each method’s ability to capture the variance 𝜎2
𝑅 in the simulated data, quantified

as the Pearson 𝑅2 to the true variance. The CNN+GP method again outperformed

the others (fig. 5-2b bottom). Notably, RF was unable to infer the variance beyond

chance level, and thus we did not consider this method further because its inability

to infer variance precludes accurate driver detection.

We also considered other dimensionality reduction techniques including both non-

neural and neural approaches as well as supervised and unsupervised approaches, as

an alternative to the CNN; no other approach achieved accuracy comparable to the

CNN+GP over both mean and variance (see Appendix). Moreover, we validated the

necessity of the GP by directly optimizing the CNN to predict both parameters and

found it significantly reduced model performance (7% decrease over mutation counts
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Figure 5-3: SPG accurately models mutation density and detects driver events. a. Vari-
ance explained (Pearson 𝑅2) of the observed mutation count by our SPG, binomial regression
(BR) and negative binomial regression (NBR) across length-scales. b. Observed (dashed
blue) and predicted (solid orange) mutation density from our GM at 1Mb regions across
chromosome 1 in melanoma. (c) Quantile-quantile plots of expected and observed P-values
for gene driver detection in esophageal adenocarcinoma (purple) and driver regulatory ele-
ment detection in liver cancer (pink). Esophageal and liver were chosen only for the sake of
readability; qq-plots are similar for all cancers. (d) Model detection of a well-known non-
coding driver in the TERT promoter in melanoma at 1kb resolution. Black dashed lines:
Bonferroni-corrected genome-wide significance thresholds.

and 13% over 𝜎2
𝑅 within 10kb windows in melanoma).

5.4.2 Accuracy and efficiency of mutation rate prediction

To further compare the SPG performance to existing methods, we evaluated the

accuracy and efficiency of each method over length scales ranging over 5 orders of

magnitude (10-106 positions). To evaluate SPG, we estimated the background muta-

tion rate parameters, 𝜇𝑅 and 𝜎2
𝑅, in 10kb regions genome-wide using the CNN+GP

estimation strategy; we then applied the SPG distribution to estimate mutation count

distributions over all other region sizes. The existing methods with reasonable perfor-

mance on both mean and variance prediction (BR and NBR) were trained to directly

predict the count distribution in each region for each length scale genome-wide.
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Across all tested window sizes and cancers, SPG outperformed existing meth-

ods, with performance particularly improved in esophageal adenocarcinoma and skin

melanoma (fig. 5-3a), crucial for high-accuracy driver detection downstream. Across

1Mb windows, SPG explains > 95% of the variance in mutation density across all

three cancers (fig. 5-3a,b); this is >15% more variance than both existing methods

(Fig. 5-3a), highlighting the ability of SPG to accurately capture regional distri-

bution parameters and project them upwards. The decrease in variance explained

in smaller window sizes is expected because observed mutation counts become in-

creasingly stochastic relative to the expected number of mutations predicted by each

method. The theoretical foundations of negative binomial regression and SPG are

similar, both are built upon the classical Poisson-gamma model. SPG differs from

NBR in three key ways that help explain its improved performance: 1) SPG models

mutation patterns over arbitrary sets of positions enabling it to dynamically pool in-

formation across positions after a single training; in contrast, NBR operates on fixed

regions, and must be retrained for every new region size. 2) SPG’s variational infer-

ence method estimates the gamma parameters for each region independently; NBR

estimates only the shape parameter independently for each window and uses a single

scale parameter for all windows. 3) SPG’s CNN data reduction enables non-linear

mapping of spatial covariate information to mutation rate, whereas NBR can perform

only linear inference and disregards the spatial organization of the genome.

SPG is also the most efficient method for multi-resolution search (appendix C.2.3).

Initial training of parameters using the CNN+GP method for one fold of 10kb re-

gions required 36 minutes using 1 GPU. Projection to each additional scale using

8 CPUs required at most 4 minutes (table 5.1). In contrast, training time for BR

and NBR increases considerably as the resolution decreases. Performing a search

across resolutions of 50bp, 100bp, 500bp, 1kb, and 10kb would require >5h for nega-

tive binomial, >2h for BR, and only 52 minutes for SPG (Appendix). We have also

found that parameter estimation on windows as large as 100kb does not significantly

reduce accuracy across scales (Appendix), allowing SPG parameter estimation in a

considerably shorter time (e.g. only 8 minutes for 50kb).
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Method 100bp 1kb 10kb 100kb 1Mb Multi-Scale
SPG 4m11s 3m33s 36m35s 19s 2s 42m40s
NBR 1h30m 7m3s 43s 6s 4s 1h37m56s

BR 44m36s 3m8s 15s 5s 4s 48m8s
RF >15h >15h 14h2m 5m24s 28s >15h

Table 5.1: Run times for SPG, NBR, BR, and RF for five region sizes and multi-scale
search. Reported times are for a single train-validation-test split per model over 8 CPUs
and 1 GPU machine. For SPG, parameters were inferred using the CNN+GP estimation
method at 10kb, running the CNN and GP one time each; hence SPG’s increased run time
at 10kb relative to other region sizes. Bolded is the best multi-scale search time. Presented
RF times are high due to the need for O(n) trees to estimate variance using the Jackknife
method.

5.4.3 Identification of cancer driver mutations

We leveraged SPG’s ability to model multiple resolutions to search the whole genome

of each of the four cancer cohorts for gene drivers, non-coding regulatory drivers, and

50bp windows that may harbor a driver mutation. All significant results are provided

as supplementary data tables. We compared our results to those obtained from a

previous comprehensive characterization of these cohorts by [51], who used 13 different

methods to identify drivers. Our model did not have access to information about

gene structure or function unlike the methods used in the previous characterization.

Nonetheless, the model’s p-values were well calibrated (fig. 5-3c), and we identified

19 genes with a significant excess of missense or nonsense mutations. All 19 genes

were previously reported as drivers by [51]. We failed to detect only two known driver

genes present in >5% of samples. This performance is on par with state-of-the-art

methods specifically designed for driver gene identification [214].

When analyzing non-coding regulatory elements, SPG’s p-values were again well

calibrated (fig. 5-3c), and it identified all non-coding drivers (n=11) identified by [51].

Moreover, SPG implicated several additional putative non-coding driver elements

that had not been previously reported. Examples include 1) the promoter of the gene

MTERFD1 in esophageal cancer (P = 3.1 × 10−8), whose over-expression has been

observed in numerous cancers, has been shown to promote cell growth, and decrease

clinical survival [274]; 2) an enhancer of DHX33 in liver cancer (P = 4.8 × 10−11),

whose over-expression has been shown to promote cancer development [259]; and 3)
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the 5’ UTR of ERN1 in melanoma, which has been linked to cancer therapy resistance

[281].

Finally, we performed the first, to our knowledge, genome-wide search for indi-

vidual driver mutations. All significant genic hits fell within known driver genes

whose functions have been experimentally validated including TPF3, BRAF, KRAS,

PIK3CA, and CTNNB1. In addition, SPG identified two recurrent mutations in the

genes GPR98 and KLB that had not been previously identified in [51]’s analysis of the

data. These mutations are listed as driver mutations in the Catalogue of Somatic Mu-

tations in Cancer [248]. SPG implicated numerous hotspots in the mostly unexplored

non-coding genome, including the well-known TERT promoter mutation (fig. 5-3d).

These results are promising targets for future studies of non-coding drivers in cancer

cell lines and organoids.

5.5 Discussion

We introduced an extension of the Poisson-Gamma distribution to model discrete-

time, integer-valued stochastic processes at multiple scales. The split-Poisson-Gamma

(SPG) model makes several simplifying assumptions including: 1) that the process is

quasi-stationary in a small enough region; 2) events are distributed among the discrete

units approximately independently; and 3) the behavior of the random variables can

be captured by particular parametric distributions. The assumptions are necessary

to derive a closed-form posterior distribution. This enables efficient prediction over

multiple length-scales without having to re-estimate the model parameters. We addi-

tionally proposed a variational inference strategy to reduce input dimensionality and

estimate the parameters of the model using a CNN coupled with a GP. Indeed, the

use of a CNN+GP to perform variational inference for a distribution of interest may

be of use well beyond the SPG framework and discrete stochastic process modeling.

To demonstrate the utility of the SPG, we applied it to model mutation rates in

cancer and identify genomic elements that drive tumor emergence. In the case of

this application, previous work has established the validity of the above assumptions,
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demonstrating that the mutation rate is approximately constant within 50kb regions

[214] and that mutations occur approximately independently given each position’s

trinucleotide context [169]. We demonstrated that the approach is more accurate than

other methods on both real and synthetic data. We also demonstrated that multi-

resolution prediction enables the identification of both known and novel putative

drivers of cancer, including in the non-coding genome, a crucial open problem in

genomics [143, 214].

In chapter 6 we will provide additional detail on the utility of the SPG to identify

novel discoveries in cancer biology, identify the underlying predictors it uses for its

inference, and compare it against well-validated driver detection techniques.
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Chapter 6

Genome-wide mapping of somatic

mutation rates uncovers drivers of

cancer

6.1 Summary

Identification of cancer driver mutations that confer a proliferative advantage is cen-

tral to understanding cancer; however, searches have often been limited to protein-

coding sequences and specific noncoding elements (e.g., promoters) because of the

challenge of modeling the highly variable somatic mutation rates observed across tu-

mor genomes. In this chapter, we improve on the SPG to build Dig, a method to

search for driver elements and mutations anywhere in the genome. We use deep

neural networks to map cancer-specific mutation rates genome-wide at kilobase-scale

resolution. These estimates are then refined to search for evidence of driver mutations

under positive selection throughout the genome by comparing observed to expected

mutation counts. We mapped mutation rates for 37 cancer types and applied these

maps to identify putative drivers within intronic cryptic splice regions, 5’ untrans-

lated regions, and infrequently mutated genes. Our high-resolution mutation rate

maps, available for web-based exploration, are a resource to enable driver discovery
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genome-wide.

6.2 Introduction

Neutral (passenger) mutations that do not provide a proliferative advantage to a cell

dominate the mutational landscape of tumors [244, 167]. Only a relatively small

fraction of mutations are under positive selection [262, 169, 214] due to their ability

to drive cancer by promoting cell growth, resisting cell death, or enabling tissue

invasion [117]. Because positively selected mutations reoccur across tumors [170],

genomic elements (e.g., coding sequence, promoters, enhancers, and lncRNAs) with

carcinogenic potential accumulate more mutations than expected compared to the

rates at which neutral mutations occur when counted across multiple tumors [196,

73]. Searching for mutational excesses attributable to positive selection to discover

driver mutations, genes, and noncoding elements provides crucial insight into the

mechanisms of cancer [169, 214, 71, 18, 51, 123, 93, 175].

Because robust identification of mutational excess requires an accurate model of

the neutral mutation rate, computational tools that carefully model somatic mu-

tation rates are central to locating additional cancer drivers. This task is made

challenging by the highly variable and tissue-specific patterns of neutral mutations

across the cancer genome [200, 245]. Existing methods address this challenge by fit-

ting bespoke statistical models of mutation rates to specific regions of the genome

[169, 73, 161, 236, 280, 151]. For example, methods designed to identify driver genes

model mutation rates specifically within protein-coding sequences by using synony-

mous mutations as a proxy for neutral mutations [262, 169, 151, 278]. Recent methods

designed to identify noncoding cancer drivers train sophisticated machine learning

methods such as gradient boosting machines to model mutation rates within a subset

of the genome [161, 236, 280] ( 4% of the genome in a recent pan-cancer analysis of

noncoding drivers [214]). Additionally, some models search for driver mutations in

unexpected nucleotide contexts [71], in unexpected clusters [247], or by directly (and

interpretably) predicting the consequences of variants within the coding sequence of

98



select genes [185]. Despite this progress, the ability to search for evidence of driver

mutations in arbitrary genomic regions remains incomplete: existing methods either

are not applicable to most of the genome (e.g., because they operate only within cod-

ing sequence), require time-consuming and computationally expensive model training

for each set of regions to test in a cancer cohort, or cannot test with base-pair reso-

lution. These limitations contribute to catalogs of cancer driver elements remaining

incomplete – particularly in the noncoding genome [276] – hindering precision oncol-

ogy [169, 18, 99, 253].

In this chapter, we introduce a genome-wide neutral mutation rate model that

allows rapid testing for evidence of positively-selected driver mutations anywhere

in the genome. Banking on our conceptual progress presented in chapter 5, this

approach, is predicated on two key methodological advances: first, we introduce a

deep-learning approach to map cancer-specific somatic mutation rates at kilobase-

scale resolution across the entire genome. Second, we propose a probabilistic model

that uses these maps to test any set of candidate mutations from an arbitrary cancer

cohort for evidence of positive selection. Through this framework, our maps enable

millions of mutations to be evaluated in arbitrary cancer cohorts in minutes using

the resources of a personal computer. We applied our deep-learning framework to

map cancer-specific somatic mutation rates for 37 cancer types present in the Pan-

Cancer Analysis of Whole Genomes (PCAWG) dataset [51], using high-resolution

epigenetic assays from healthy tissues as predictive features (well-known correlates

of tumor mutation rates at the megabase scale [200, 226]). We then used Dig to

identify new coding and noncoding candidate cancer drivers in publicly available

whole-genome, whole-exome, and targeted-sequencing cancer datasets. Our mutation

maps are publicly available both as an interactive genome-browser and as a standalone

software tool for quantifying excess somatic mutations anywhere in the genome in a

dataset of interest.
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6.3 Results

6.3.1 Testing mutational excess with probabilistic deep learn-

ing

To enable rapid evaluation of mutational excess anywhere in the genome, we de-

signed Dig to model somatic mutation rates genome-wide for a given type of cancer.

Thus, the distribution of neutral mutations over any set of genomic positions for

a cohort of tumors from that cancer type can be looked-up nearly instantaneously.

The method employs a probabilistic deep learning model that explicitly captures

two central determinants of somatic mutation rate variability [200, 245, 151]: 1)

kilobase-scale variation driven by epigenomic properties such as replication timing

and chromatin accessibility that broadly impact the efficacy of DNA repair [73]; and

2) base-pair-scale variation driven by the sequence context biases of processes that

induce somatic mutations such as APOBEC-driven cytidine deamination and UV

light exposure [71, 245, 11, 10]. Kilobase-scale variation is modeled with a custom

deep-learning architecture [270] that uses a neural network to predict cancer-specific

mutation rates within 10kb regions and a Gaussian Process to quantify the prediction

uncertainty, taking as input high-resolution epigenetic assays (and, optionally, flank-

ing mutation counts) (fig. 6-1a, Extended Data fig. 6-5, Methods section 6.5). By

strictly partitioning the genome into non-overlapping train, validation, and held-out

test sets with five-fold cross-validation (predicting mutation rates in each one-fifth

of the genome using a model trained and validated on observed mutations in the

remaining four-fifths; Methods section 6.5), the network constructs a kilobase-scale

map of the mutation rate genome-wide for a given type of cancer (??b). Base-pair

variation is subsequently modeled using a generative graphical model that simulates

how mutations should be distributed to individual positions in a region according to

the nucleotide biases of mutational processes (Supplementary fig. D-1, Methods sec-

tion 6.5). The marginal distribution over the number of neutral mutations at any set

of positions has a closed form solution that depends only on the predicted regional
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mutation rate, the prediction uncertainty, and the genome-wide probability that a po-

sition is mutated based on its neighboring nucleotides (Methods section 6.5). Thus,

once values for these parameters are learned from a training cohort of a given cancer

type, the distribution of mutations expected at any set of positions in the genome

can be queried for any tumor cohort of the same cancer and used to test for evi-

dence of positive selection by quantifying if excess mutations are observed (fig. 6-1c,

Methods section 6.5).

We constructed mutation rate maps and inferred nucleotide mutation biases for

37 cancer types (Supplementary table D.1, table D.2) based on somatic mutations

from the PCAWG dataset [51] and 100-bp patterns of 725 chromatin marks in 110

tissues from Roadmap Epigenomics [218], replication timing from 10 cell lines from

ENCODE [64], and average nucleotide and GC content of the reference genome. We

then benchmarked the accuracy of our somatic mutation rate models using the metric

of proportion of variance explained, which we calculated as the square of the correla-

tion coefficient between predicted and observed mutation counts as in previous works

[200]. Dig successfully predicted a median of 77.3% (mean: 70.6%; range 22.7-92.3%)

of variance in observed single nucleotide variant (SNV) rates in 10kb regions and a

median of 94.6% (mean: 91.9%; range: 73.1-98.0%) of variance in 1Mb regions (fig. 6-

1b, Supplementary table D.3) (Methods section 6.5) across 16 cancer types for which

benchmarking power was sufficient (>1 million mutations and excluding lymphomas,

in which activation-induced cytidine deaminase produces extreme outlier mutation

counts in locally hypermutated regions). Compared to existing methods designed

specifically to analyze tiled regions [191], coding sequence [169, 151], and noncoding

elements in which synonymous mutations cannot be used to calibrate mutation rate

models [161, 236] (e.g., enhancers and noncoding RNAs), Dig explained the most

variation of SNV counts within 10kb regions in 14 of 16 cohorts, of nonsynonymous

SNV counts in 16 of 16 cohorts, and of enhancer and noncoding RNA SNV counts

in 15 of 16 cohorts, respectively (fig. 6-1d, table 6.1, Supplementary fig. D-2, Supple-

mentary table D.3, table D.4, table D.5). Our approach’s accuracy is attributable in

part to the ability of the deep-learning network to identify local epigenetic structures
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such as active transcription start sites and to associate these structures with mutation

rates (Extended Data fig. 6-6, Supplementary Results appendix D.1.1).

This accuracy enabled correspondingly powerful driver identification: in bench-

marks testing downstream ability to identify evidence of positive selection (i.e., excess

of mutations) within previously-identified driver elements, Dig matched or exceeded

the performance of methods tailored towards specific classes of elements [169, 161,

236, 280, 151] in whole-genome and whole-exome sequenced samples (fig. 6-1e, Sup-

plementary fig. D-3, fig. D-4, fig. D-5, table D.6, table D.7, table D.8, table D.9,

table D.10, table D.11, appendix D.1). Considering driver genes – for which high-

quality databases of known driver genes that can approximate gold standard true-

positives exist (Methods section 6.5) – Dig had the highest F1-score (a measure of

accuracy) in 24 of 32 PCAWG cohorts (excluding skin and blood cancers as in pre-

vious works [236] due to local hypermutation processes) and the most power in 14 of

16 whole-exome cohorts compared to widely used, burden-based driver gene detec-

tion methods (fig. 6-1e, Supplementary fig. D-3, fig. D-4, Supplementary table D.6,

table D.7) (power was measured as the area under approximated receiver-operator

characteristic curves, which could be estimated due to the larger sizes of the exome

sequenced cohorts; Methods section 6.5).

Identifying potential driver elements with Dig was 1-5 orders of magnitude faster

than existing methods that train new models for every element and cohort analyzed

(fig. 6-1f). For example, testing 107 observed mutations for evidence of positive

selection within 105 noncoding elements with Dig completed in <90 seconds on a

single CPU core compared to between ∼ 10 minutes and >2 days for other methods.

Thus, our method matches or exceeds the power of existing approaches while requiring

less runtime and providing flexibility to identify drivers with mutation-level precision

genome-wide.

6.3.2 Small mutation sets increase power to identify drivers

Previous searches for noncoding driver elements have concluded that such drivers are

likely rare, carried by <1% of samples [214]. A power analysis using our model’s
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Method 10kb regions
Nonsynonymous SNVs 

in coding sequence

Enhancers & noncoding 

RNAs

Dig (this work) 92.30% 39.50% 49.00%

NBR
34 85.30%

dNdScv
4 35.70%

MutSigCV
21 17.80%

Larva
18 26.40%

DriverPower
19 47.50%

Percent of variance explained in observed SNV count

(Pearson R
2
 between observed and predicted SNV counts)

Table 6.1: Proportion of variance in observed SNV counts in the PCAWG pan-
cancer cohort (n=2,279 samples) explained by different methods. To minimize
confounding from variation in element length (as longer elements are expected to have more
mutations on average than shorter elements), the comparisons were restricted to genes with
coding sequence 1-1.5 kb (n=3,740 genes) and to noncoding elements 0.5-1kb in length
(n=7,412 elements). A shaded cell indicates that the method did not produce predictions
over the associated annotation (NBR was able to analyze a subset of 6,024 enhancers and
noncoding RNAs; it explained 1.8% of SNV count variation in those regions).
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generative capabilities concurred (Methods section 6.5), indicating the most known

noncoding elements (e.g., enhancers) require at least 1-2% of samples to carry driver

mutations to have a >90% likelihood of detecting mutational excess at current sample

sizes (∼ 102 for individual cancer types; ∼ 103 for pan-cancer cohorts) (Supplemen-

tary fig. D-6. However, by reducing the size of tested elements to encompass only

tens to hundreds of positions (as opposed to the thousands of bp spanned by most

noncoding elements considered to date, e.g., average enhancer size: 1717 bp, range:

600-30,200 bp) power to identify driver mutations in <1% of samples increased by

20% (Supplementary fig. D-6). To demonstrate Dig’s ability to find putative drivers,

we thus defined and tested specific sets of mutations with potential functional impact

for evidence of selection. The ability to test user-specified sets of specific mutations

genome-wide is a unique feature (to our knowledge) of our method.

6.3.3 Quantifying pan-cancer selection on cryptic splice SNVs

Alternative-splicing is increasingly recognized as functionally relevant to cancer [195,

61] and recent studies have associated specific somatic mutations outside canonical

splice sites with alternative splicing events observed in expression data [48, 52]. We

thus applied Dig to rigorously quantify the extent to which cryptic splice SNVs,

which may exist in both exons and introns of a gene (fig. 6-2a), occur in excess of the

neutral mutation rate and therefore may function as driver mutations under selection.

In tumor suppressor genes (TSGs) from the Cancer Gene Census (CGC) [249], cryptic

splice SNVs as predicted by spliceAI [128] (Methods section 6.5) occurred significantly

more often than expected under neutrality (648 SNVs observed in 283 TSGs vs.

550 SNVs expected, 𝑃 = 2.38 × 10−5) (fig. 6-6b, Supplementary table D.12), were

primarily enriched in introns (where the majority of such mutations occur), and were

biased to occur in sites with high predicted impact on splicing (SNVs with predicted

impact ∆ score>0.8 exhibited a 1.75-fold enrichment (95% CI: 1.31-2.22 fold), 𝑃 =

2.52 × 10−5) (fig. 6-22b,c). Overall, intronic cryptic splice SNVs were estimated to

account for 4.5% (95% CI: 1.3-7.4%) of excess (potential driver) SNVs in TSGs,

similar in magnitude to the 7.4% (5.6-9.7%) attributable to canonical splice SNVs,
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whose driver potential is well established [169] (fig. 6-2d) (exonic excess SNV estimates

were consistent with estimates from dNdScv; Supplementary fig. D-7). Results were

robust to high mutation burden samples (Supplementary fig. D-8) and consistent

with an analysis that did not rely on our mutation maps (Supplementary fig. D-9).

Neither control genes not in the CGC nor oncogenes in the CGC were enriched for

cryptic splice SNVs (Extended Data fig. 6-7, Supplementary table D.12). The lack

of enrichment in oncogenes suggests that gain-of-function splice mutations beyond

those that induce skipping of MET exon 14 are extremely rare, which may reflect

the low likelihood of an intronic splice mutation resulting in the in-frame addition

of residues that pathologically activate an oncogene. Conversely, the enrichment

in TSGs suggests that cryptic splice mutations are generally inactivating, likely by

triggering nonsense-mediated decay of mRNA transcripts or generating a protein with

impaired function.

Considering individual genes, seven TSGs in 12 cancer types had a significant bur-

den of intronic cryptic splice SNVs (FDR<0.1 for n=283 TSGs in 37 cancers) (Meth-

ods section 6.5) (fig. 6-2e, Supplementary table D.13), with patterns of TSG-cancer

associations consistent with known tissue specificity of TSGs. Pan-cancer, TP53 and

SMAD4 – both implicated in numerous cancers – carried an excess of cryptic splice

SNVs. In contrast, the hematopoietic-specific TSG CIITA and the renal-specific

TSG PBRM1 carried excess cryptic splice SNVs in blood and kidney malignancies,

respectively. In further support of these associations, the intronic cryptic splice SNVs

observed in these TSGs, the majority (79.3%) of which fell outside annotated splice

regions (i.e., >20bp from exon-intron boundaries) (fig. 6-2f), had significantly higher

predicted impact on splicing than those observed in genes not in the CGC (fig. 6-2c)

(mean SpliceAI ∆ score=0.55 vs. 0.33; 𝑃 < 3 × 10−4; Methods section 6.5). More-

over, of the six cryptic splice SNV carriers with available RNA-seq data of sufficient

coverage, five had evidence of alternative splicing (fig. 6-2g, Supplementary fig. D-10,

Supplementary table D.14, Supplementary Results appendix D.1) as quantified by

LeafCutter [155] (Methods section 6.5). Overall, these results provide evidence that

intronic cryptic splice SNVs are under positive selection in TSGs and likely act as
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driver events in several percent of tumors across multiple cancer types.

Nine genes not in the CGC also had a significant burden of intronic cryptic splice

SNVs in six cancers (Supplementary table D.15) at FDR<0.1, of which two genes had

a significant burden at the more stringent Bonferroni (𝛼 < 0.05) correction for 712,600

tests conducted across all genes and cancers. The burdens of four genes were driven by

recurrent mutations at a single intronic location per gene (Supplementary table D.16).

Implicated genes include BTG2 in lymphoma, which is involved in the regulation of

the G1/S transition of the cell cycle and has recently been implicated as a driver

of blood cancers based on mutations in its coding sequence [71], and ADAM19 in

hemopoietic tumors, which has been implicated in the oncogenesis of breast [139],

prostate [124], colorectal [275], and ovarian [55] cancers. While the computational

prediction of new drivers should be interpreted with caution (Discussion section 6.4),

these genes may be promising targets for future experimental studies to investigate

their potential tumorigenic properties.

6.3.4 Noncoding candidate cancer driver mutations in 5’ UTRs

Hypothesizing that indels could have large effect size on gene expression by disrupting

transcription factor binding motifs, we searched promoters (n=19,251) for a burden of

indels in the PCAWG pan-cancer dataset (Methods section 6.5). The TP53 promoter

was the only element with a genome-wide significant (FDR<0.1) burden of indels (7

observed vs. 0.54 expected; 𝑃 = 9.4 × 10−7) (fig. 6-3a), consistent with a previous

analysis that used restricted hypothesis testing to boost statistical power [214]. The

observed mutations – all deletions significantly larger than expected (fig. 6-3b) (me-

dian length = 17bp vs 1bp expected; 𝑃 = 7.4×10−4, one-sided Mann-Whitney U-test)

– specifically affected exon 1 of the canonical 5’ UTR, disrupted critical sequence el-

ements (transcription start site, WRAP53 binding sequence [164], internal ribosome

entry site [272, 208], and the donor splice region of the multi-exonic 5’ UTR) (fig. 6-

3a), and exhibited enrichment comparable to cryptic exonic splice SNVs in TP53,

which are well-characterized cancer drivers [246] (fig. 6-3c). More than half of the

mutations (four of seven) within the exon 1 splice region did not alter the canonical
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splice sites, an unexpected pattern compared to other TP53 splice regions (fig. 6-3d)

(𝑃 = 1.8 × 10−3, two-sided Fisher’s exact test). The 5’ UTR mutation carriers had

significantly lower expression of TP53 than individuals without TP53 mutations and

individuals with predicted functional coding TP53 mutations (1-2 standard deviation

decreases in TP53 expression compared to non-carriers, 𝑃 = 1.2×10−4, Methods sec-

tion 6.5) (fig. 6-3e; Supplementary fig. D-11), suggesting that these mutations either

directly inhibit TP53 transcription or result in nonsense mediated decay of the mRNA

transcripts. Corroborating these results, seven of 2,399 distinct samples from the

Hartwig Medical Foundation [204] showed a similar mutational pattern, with three

carrying >10bp deletions and four carrying SNVs in TP53 exon 1 and its donor splice

region (fig. 6-3a).

These results motivated a targeted search for mutational burden in 5’ UTRs and

their splicing regions across 106 TSGs and 95 oncogenes with multi-exonic 5’ UTRs

(Methods section 6.5). One additional element, the 5’ UTR of ELF3, had a significant

burden of SNVs (fig. 6-3f) in PCAWG samples (6 observed SNVs vs 0.96 expected;

𝑃 = 2.9 × 10−4); samples from the Hartwig Medical Foundation displayed a similar

enrichment (10 observed vs. 1.5 expected; 𝑃 = 3.8× 10−4, Methods section 6.5). In

both sets of samples, the enrichment was concentrated within the canonical ELF3

5’ UTR; surrounding sequences (upstream promoter and intron 1) were not enriched

for mutations (fig. 6-3f). The 16 mutations largely altered distinct base pairs within

the 5’ UTR – although two positions mutated in PCAWG samples were also mutated

in the Hartwig samples – suggesting that this 5’ UTR might be broadly sensitive to

perturbation, possibly by prompting changes in promoter methylation that alter ELF3

expression [75]. An alternative possibility could be an unmodeled local mutational

process or technical artifact in this region [73]; however, a careful analysis did not

find evidence for any such features that have explained other noncoding mutational

hotspots [214] (Supplementary Results appendix D.1). The small number of carriers

and limited availability of transcriptomic assays (only three carriers from PCAWG

had RNA-seq data) prevented investigation into the possible function of these 5’ UTR

mutations. Thus, additional follow-up – particularly experimental assays assessing
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the impact of 5’UTR mutations [267] – will be necessary to determine whether the

mutational enrichment here represents positive selection or represents a new neutral

mutational process.

6.3.5 The shared landscape of common and rare driver genes

Small sample sizes have limited assessment of whether rare coding mutations (which

account for most exonic mutations in tumors) act as drivers even in well-characterized

driver genes. We increased statistical power in two ways: 1) by analyzing large meta-

cohorts of nonsynonymous SNVs from 14,018 whole-exome and targeted-sequencing

samples representing ten solid tumor types (median samples per cancer: 1,195; range:

515-3,110) (Supplementary table D.19) (Methods section 6.5); and 2) by considering

only activating mutations in oncogenes (obtained from the Cancer Genome Inter-

preter [247]) and predicted loss-of-function (pLoF) mutations in all other genes. Such

analysis has previously been impeded by the exclusion of synonymous mutations from

large, publicly available targeted sequencing datasets [54, 273, 209, 217, 131] because

existing driver gene detection methods are reliant on synonymous mutations. Dig

circumvents this difficulty because model parameters have already been inferred from

a separate training cohort.

For each cancer, we first restricted our analysis to “long-tail” genes, which we

defined as oncogenes and TSGs not associated with that cancer type in any of three

recent, large pan-cancer surveys of driver genes [18, 71, 170]. Dig estimated between

1% and 5% of samples (depending on the cancer) carried activating SNVs in long-tail

oncogenes (fig. 6-4a) and 3% to 6.5% carried pLoF SNVs in long-tail TSGs (fig. 6-4b).

These rates were significantly higher than expected (𝑃 < 3.78 × 10−9 for activating

SNVs in all cohorts; 𝑃 < 3.10×10−4 for pLoF SNVs in all cohorts except prostate, 𝑃 =

0.056 for prostate) (Supplementary fig. D-12, Supplementary table D.20, table D.21)

(Methods section 6.5). These rates were consistent when we restricted the analysis

to only whole-exome sequenced samples, though power to detect positive selection

was decreased due to reduced sample size (Supplementary fig. D-13). Considering

individual genes, 92 oncogene-tumor pairs not reported in recent pan-cancer surveys
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Figure 6-3: Enrichment of somatic mutations in the 5’ UTRs of TP53 and ELF3.
a, Mutations from PCAWG and Hartwig Medical Foundation cohorts observed within exon
1 of the 5’ UTR of the canonical TP53 transcript. DNA sequence from GRCh37 reference
genome (+ strand). Mutation types, relevant sequence and regulatory elements as indicated
in the legend. b-e, Analysis on PCAWG pan-cancer dataset (N=2,279 samples). b, Dis-
tribution of indel sizes observed within 5’ UTRs of genes other than TP53 (n=3988 indels)
and within the TP53 5’ UTR (n=7 indels). P-value comparing median indel lengths from
one-sided Mann-Whitney U-test. c, Estimated mutation enrichment relative to the neutral
mutation rate (observed / expected neutral mutations) within TP53 stratified by mutation
type and location. Error bars, 95% CI. d, Distribution of mutations observed within donor
and acceptor splice regions (defined as the 20bp 3’ and 5’ of an exon, respectively) of the
canonical TP53 transcript. Canonical splice SNVs and indels: mutations altering the two
base-pairs immediately adjacent to an exon boundary; splice region SNVs and indels: muta-
tions intersecting the splice region but not the canonical splice sites. The donor splice region
of exon 1 of the 5’ UTR (shown in a) is bolded. e, Expression of TP53 on standard devia-
tion (s.d.) scale in carriers of TP53 5’ UTR mutations (n=6) and non-carriers (n=1,205),
adjusted for tumor type and copy number in the PCAWG pan-cancer dataset (N=2,279
samples). f, SNVs overlapping ELF3 in the PCAWG and Hartwig Medical Foundation co-
horts. Insets: zoom-in of the ELF3 5’ UTR region and estimated mutational enrichments
with 95% CIs within this region.
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of driver genes had a significant (FDR<0.1) burden of activating SNVs (fig. 6-4c).

46 TSG-tumor pairs not reported in the pan-cancer surveys had a significant burden

of pLoF mutations (fig. 6-4d). The newly identified candidate driver genes were rare

compared to driver genes in existing databases (0.28% (interquartile range: 0.14-

0.53%) vs 1.3% (interquartile range: 0.59%-3.0%) for newly implicated and known

driver genes, respectively, 𝑃 = 3.1×10−27 two-sided Mann-Whitney U-test). Further

supporting these predictions, the distribution of activating mutations in a given driver

gene was similar in cancers in which the gene is a known, common driver and in cancers

in which we newly implicated the gene as a putative rare driver (Extended Data fig. 6-

8). For example, the G12, G13, Q61, and A146 positions of KRAS accounted for the

majority of KRAS SNVs in both common and rare scenarios (lung non-small cell

tumors: 568/586 mutations; prostate tumors: 12/17 mutations; gliomas: 11/15),

and the V600E mutation accounted for the plurality of BRAF SNVs in common and

rare scenarios despite each gene having dozens of known activating SNVs (52 and 71,

respectively). Additionally, carriers of mutations in several predicted rare driver genes

exhibited phenotypes consistent with those reported in tumors in which the genes are

common drivers (Supplementary Results appendix D.1). For example, CNS tumors

with rare pLoF mutations in the DNA mismatch repair genes MSH2 and MLH1

exhibited significantly increased global mutation rates across 213 targeted sequenced

genes (MSH2: mean 30.1 mutations in carriers vs. 3.0 in non-carriers, 𝑃 = 3.8×10−7

one-sided Mann-Whitney U-test; MLH1: mean 35.3 mutations in carriers vs. 3.1 in

non-carriers, 𝑃 = 8.8× 10−6 one-sided Mann-Whitney U-test).

A further 29 gene-tumor pairs had a significant (FDR<0.1) burden of pLoF muta-

tions in genes not in the cancer driver databases for any cancer (Methods section 6.5)

(Supplementary table D.22), of which two were significant at the more stringent

Bonferroni (𝛼 < 0.05) correction for the total number of genes tested and six were

additionally supported by a nominal (𝑃 < 0.05) burden of missense mutations. The

top hit is the cell polarity gene 𝑃𝐴𝑅𝐷3 in gastroesophageal cancer (9 observed pLoF

SNVs vs. 1.1 expected, 𝑃 = 1.57 × 10−6), which, despite not being in major driver

gene databases, is a known fusion partner of the oncogene RET and has been impli-
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cated in the tumorigenesis of multiple solid cancers [13]. The ability to distinguish

mutational burdens in genes with a low frequency of mutations such as PARD3 (9

carriers in 827 samples) highlights the increased statistical power our approach can

achieve by testing specific sets of mutations in large cohorts for evidence of positive

selection.

Our results represent progress toward an unbiased, pan-cancer catalog of driver

genes and suggest driver mechanisms are shared across the common and rare driver

landscape of solid cancers. However, computational identification of rare driver genes

at current sample sizes relies upon small mutation counts, and predictions should

be interpreted with care. Experimental characterization of genes’ functions in the

relevant cancers is essential to confirming their carcinogenic roles.

6.4 Discussion

Dig is a probabilistic deep-learning method that enables rapid tests for evidence of

positive selection on genomic elements that can be defined with the precision of in-

dividual mutations anywhere in the genome. The strong performance of the method

in modeling mutation rates and identifying candidate drivers highlights the power

of deep-learning to capture complex cellular processes with data derived from high-

throughput sequencing [128, 76, 96, 15, 14, 163]. Specifically, building upon the

observation that epigenetics correlate with somatic mutation rates [245], we showed

that neural networks applied to a corpus of high-resolution ChIP-seq assays are able

to learn nuanced, non-linear associations between local epigenetic structures and pat-

terns of somatic mutations. Moreover, techniques presented here are adaptable to

other contexts. For example, quantification of prediction uncertainty by coupling a

Gaussian process to the final layer of a neural network may be a practical solution

to improve the reliability and interpretability of predictions in other deep-learning

settings [121].

The application of our high-resolution mutation rate maps to quantify mutational

burdens genome-wide provides a glimpse into the landscapes of rare and noncoding
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driver mutations that we anticipate will emerge as cancer sequence sample sizes con-

tinue to grow. While the driver candidates we report – in cryptic splice sites, 5’ UTRs,

and rarely mutated genes – occurred at low frequencies individually, our estimates

suggest that they collectively contribute to the disease pathology of up to 10% of

tumors (summing across the percent of tumors predicted to carry excess mutations

in each of these elements). This estimate may be conservative, as several analyses

utilized datasets of mutations that are unlikely to be comprehensive (e.g., catalogs

of predicted cryptic splice SNVs and known activating SNVs). The quantification of

these rare driver events is important in part because it suggests avenues to expand

patient treatment options by repurposing therapeutics; a targeted therapy approved

for a mutation in one cancer type may prove beneficial to patients with that mutation

in other cancer types. Indeed, cancer-agnostic approaches to patient stratification are

currently being deployed at some cancer centers [235].

Additionally, current sample sizes are not adequate to uncover infrequent drivers

under moderate or weak positive selection. We anticipate that Dig will be particularly

useful in uncovering such mutations due to its ability to rapidly evaluate mutations

spread over large swaths of the genome. For instance, a preliminary analysis we

performed of enhancer networks identified several genes with a burden of enhancer

mutations (Supplementary table D.23, Supplementary Results appendix D.1), in-

cluding FOXA1, in which promoter mutations are thought to drive breast cancer by

increasing gene expression [215]. A possible approach to increase sample size with

existing data is to call somatic mutations in regions flanking coding sequence using

off-target reads from large targeted or whole-exome sequenced clinical cohorts.

However, computational prediction alone is not sufficient to establish the causal

role of an element or mutation in cancer pathology because an excess of mutations

compared to the neutral mutation rate does not definitively prove positive selection.

Moreover, recent studies have shown that canonical cancer driver mutations can be

present in seemingly healthy tissues [168, 152, 156, 182, 203], adding an additional

layer of complexity to interpreting whether or how a mutation causally contributes to

a malignant phenotype. Ultimately, experimental validation is necessary to establish
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the causal role for a mutation as a driver of cancer. Dig provides a tool for in

silico guidance of in vitro and in vivo studies because it enables the prioritization of

precise sets of mutations that may act as drivers in both the coding and noncoding

genome. These specific sets of mutations can then be evaluated in experimental

systems. For example, the predicted cryptic splice mutations that Dig identified as

putative drivers could be evaluated as possible drug targets by CRISPR base-editing

of cell lines followed by drug screening assays [101]. Thus, we anticipate that deep-

learning generally and our tool specifically can improve computational, experimental,

and clinical utility of the growing body of cancer genome sequencing data. Similarly,

the trend of interpretable models can accelerate novel discoveries in a wide variety of

life-science sub-domains.

6.5 Materials and Methods

6.5.1 Sequencing data curation

PCAWG dataset

We obtained somatic SNVs and indels from whole-genome sequencing of 2,583 unique

tumors from the ICGC data portal (https://dcc.icgc.org/) and dbGaP (project

code: phs000178) that previously passed quality control [214]. The somatic muta-

tion calls in this dataset have previously been stringently filtered to remove possible

germline calls, false-positive calls due to oxidative DNA damage, and calls with high

strand bias [51]. Following procedures described in Rheinbay et al., we grouped sam-

ples into 38 individual cancer types and 14 meta-cohorts that combined similar tumor

types, including a pan-cancer cohort that included all samples except melanoma and

lymphoma tumors (consistent with Rheinbay et al.). We removed samples with re-

ported high microsatellite instability from all cohorts except the pan-cancer cohort

and annotated autosomal coding SNVs and indels with their predicted functional im-

pact using a custom annotation method. (We excluded sex chromosomes because the

number of observed mutations on the X chromosome depends on the sex composition
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of a cohort). For the creation of somatic mutation maps and driver element analysis,

we considered cohorts with at least 20 samples and >105 SNVs (Supplementary ta-

ble D.1). This resulted in a set of 23 individual cancer types and 14 meta-cohorts.

Dietlein et al. dataset

We obtained somatic SNVs and indels from whole-exome sequencing of 11,873 tumors

from 28 cancer types that had previously been curated in Dietlein et al. [71] from

http://www.cancer-genes.org/; the dataset had previously undergone filtering to

remove germline calls and due to oxidative DNA damage as described in in Dietlein et

al. [71]. We restricted to a set of 8,617 tumor samples from 17 cancer types for which

we had a mutation rate model trained on the PCAWG dataset (Supplementary ta-

ble D.24). We additionally constructed a pan-cancer dataset by merging somatic

mutations from all samples excluding melanoma and hematopoietic malignancies as

in PCAWG [214]. Coding mutations were annotated for their predicted functional

impact as above.

Target sequencing datasets

We obtained somatic SNVs from targeted sequencing of 10 types of solid cancers per-

formed using the IMPACT protocol at the Memorial Sloan Kettering Cancer Institute

from cbioportal [54] (https://www.cbioportal.org/) (Supplementary table D.19).

Possible germline calls had been previously excluded from these datasets. We re-

moved duplicate patients and hypermutated samples with >100 coding mutations in

221 genes common to all whole-exome and targeted sequenced samples (removal of

hypermutated samples is common in driver gene detection and has been shown to

improve accuracy [169]). Coding SNVs were then annotated for their predicted func-

tional impact in coding sequence as above and merged with SNVs from the whole-

exome datasets (after removing hypermutated samples) of the corresponding cancer

type to form mega-cohorts with aggregate sample size of 14,018 tumors in 10 cancer

types.
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Additional filtering of germline mutations

Any mutation occurring in an element with a nominally FDR<0.1 significant burden

of mutations was cross-referenced with the gnomAD database v.2.1.1 [140] and ex-

cluded if it occurred in gnomAD with an allele count of five or more in any population,

unless the mutation occurred primarily in a single population and the carrier was not

of that population (this occurred only once; the mutation 1:43804317-C>T was ob-

served in a carrier of European ancestry, but is reported in gnomAD as occurring in

Latino/admixed American populations). If the mutational burden of the element did

not remain FDR<0.1 significant after exclusion of these possible germline mutations,

it was removed from further analysis. This filter was applied to all datasets.

6.5.2 Identification of mutational excess with probabilistic deep

learning

Dig consists of two components: 1) a deep-learning module that models approximately

constant somatic mutation rates within kilobase-scale regions (e.g., 10-50kb) due to

epigenetic features (e.g., chromatin compactness) that vary at this scale5; and 2) a

generative probabilistic model that captures the likelihood that a given position is

mutated in a cancer cohort, conditioned on its sequence context [71, 11, 10, 191] and

the kilobase-scale mutation rate of that cancer type. Intuitively, the kilobase-scale

model provides information about how many neutral mutations should be present in

a region while the nucleotide context model determines how those mutations should

be distributed amongst individual positions.

Modeling kilobase-scale mutation rates with deep-learning

Model architecture The purpose of the deep-learning model is to 1) predict the

mutation rate 𝜇𝑅 and 2) quantify prediction uncertainty 𝜎2
𝑅 conditioned on the epi-

genetic organization of the region R. The architecture has been previously described

[270]. Briefly, the network consists of a convolutional neural network (CNN) that

takes as input a high-dimensional matrix of epigenetic assays (see Model input and
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output) and projects the matrix into a 16-dimensional vector. Optionally, the CNN

also embeds into the 16-dimensional vector the mutation counts observed in the 100kb

regions flanking the region of interest. The low-dimensional embedding is then pro-

vided as input to a Gaussian process (GP) that predicts the mean and variance of

number of mutations in the region. Technical details are provided in Supplementary

Methods appendix D.2.

Model input and output The CNN and GP were trained sequentially to predict

somatic SNV counts in nonoverlapping 10kb regions by minimizing squared error loss

between predicted values and observed counts from the PCAWG dataset for each of

37 cancer types. The network received as input matrices of size 735× 100 where each

row is an epigenetic feature track and each column is the average track value in non-

overlapping 100bp windows. 723 rows were uniformly processed -log10 P-values for

peaks of chromatin markers from 127 tissues [218], 10 rows were replication timings

of 10 cell lines from ENCODE [64], and two were the average nucleotide content

and average GC content of the human reference genome. The network additionally

received as input somatic SNV counts in 100kb regions flanking each 10kb of interest

from the relevant cancer in the PCAWG dataset. However, the accuracy of the

method over 1Mb regions was benchmarked using networks trained without flanking

region counts to avoid any leakage of information between train and test sets.

Model training For each cancer, predictions in each nonoverlapping 10kb region

R of the autosome was obtained via the following five-fold cross-validation strat-

egy: bins that passed quality control (Supplementary Methods appendix D.2) were

randomly divided into five equal size folds, each containing 20% of the bins. Sequen-

tially, each fold was withheld and a deep-learning model was trained using 80% of

the remaining bins and validated over the other 20% of the remaining bins to avoid

overfitting (Supplementary Methods appendix D.2). Prediction was then performed

over the held-out fold (20% of the genome) and over regions filtered by quality checks.

Additional technical details of model training are described in Supplementary Meth-
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ods appendix D.2.

Testing mutational burden with a graphical model

Genome-wide likelihood of mutation from sequence context For each can-

cer, maximum likelihood estimation was used to estimate the genome-wide proba-

bility of a mutation in each of 192 possible trinucleotide contexts using SNV counts

from the PCAWG dataset. The statistical procedure is described in Supplementary

Methods appendix D.2.

Modeling mutation counts over an arbitrary set of positions We concep-

tualized that mutations arise in a region R with an unknown rate whose possible

values are drawn from a distribution defined by the mean and variance predicted

by the deep-learning network. As mutations arise they are distributed to individual

positions based on the probability that each position in R is mutated based on its

sequence context. Let 𝑀𝑖, 𝑎𝑋→𝑌 𝑏 be the number of SNVs of the form 𝑎𝑋 → 𝑌 𝑏 at

position 𝑖 in region 𝑅 in some cancer cohort of interest. Then under a probabilistic

graphical model described in Supplementary Methods appendix D.2, the marginal

distribution over a set of possible SNVs in a region is31:

∑︁
𝐼

𝑀𝑖,𝑎𝑋→𝑌 𝑏 ∼ NegativeBinomial

(︂
𝛼𝑅,

1

1 + 𝐶SNV · 𝜃𝑅 ·
∑︀

𝐼 𝑝𝑅,𝑎𝑋→𝑌 𝑏

)︂

where 𝛼𝑅 = 𝜇2
𝑅/𝜎

2
𝑅 and 𝜃𝑅 = 𝜎2

𝑅/𝜇𝑅 (recall 𝜇𝑅 and 𝜎2
𝑅 are the mean and variance

of mutation rate in region R estimated by the deep-learning model); 𝑝𝑅,𝑎𝑋→𝑌 𝑏 is the

genome-wide probability of a mutation of the form 𝑎𝑋 → 𝑌 𝑏, normalized such that

the probability of all possible mutations in R sums to one; and 𝐶SNV is a constant

scaling factor that accounts for the difference in sample size between the cohort of

interest and the training cohort. All parameters in the distribution except 𝐶SNV are

already estimated from the training cohort. By default, 𝐶SNV is calculated as the ratio

of the number of observed synonymous SNVs in the target dataset to the number of

expected synonymous SNVs in the training cohort across all genes excluding TP53
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(in which some synonymous mutations are under positive selection [169]). Thus, once

the model has been trained once on the training cohort, calculating the distribution

over any set of mutations in a target cohort of interest is essentially reduced to the

constant time look-up of parameters. More details on the graphical model including

its extension to indels, multiallelic variants, and sets of variants that span multiple

regions are described in Supplementary Methods appendix D.2.

6.5.3 Comparison to existing driver detection methods

We compared Dig’s performance to that of six existing methods (NBR [191], dNdScv

[169], MutSigCV [151], Larva [161], DriverPower [236], and ActiveDriverWGS [280])

over two benchmarks: accuracy of the background mutation rate models and accu-

racy of driver detection. The six comparison methods were chosen because they are

state-of-the-art methods that 1) identify putative driver candidates by searching for

mutational excess and 2) are designed to model diverse regions of the genome: tiled

regions (NBR), coding sequence (dNdScv and MutSigCV), and noncoding elements

such as enhancers (Larva, ActiveDriverWGS, and DriverPower). All methods were

run with default parameters.

Comparing background mutation rate models

We compared the variance explained of observed SNV counts between models. Vari-

ance explained is the proportion to which a mathematical model accounts for variation

in a dataset, which we calculated as the square of the Pearson correlation coefficient

between predicted and observed SNV counts as in previous works [200]. To ensure

sufficient benchmarking power, we restricted comparisons to 16 cancer types in the

PCAWG dataset with >1 million mutations because the variance explained statistic

becomes deflated when observed counts are low in a discrete system (Supplementary

Methods appendix D.2). Comparisons were performed over nonoverlapping 10kb re-

gions of the genome (Dig vs. NBR), nonsynonymous SNVs in coding sequence (Dig

vs. dNdScv vs. MutsigCV), and the noncoding elements enhancers and long & short
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noncoding RNAs (Dig vs. Larva vs. DriverPower; ActiveDriverWGS was not in-

cluded because it does not output its internal estimates of mutation counts). We

chose enhancers and noncoding RNAs because they are noncoding elements that all

three methods could analyze and are sufficiently far from coding sequence that syn-

onymous mutations cannot be used in general to estimate the neutral mutation rate.

To control for confounding from element length (longer elements have more muta-

tions on average than shorter elements), we restricted the analysis to genes 1-1.5kb in

length (N=3,740) and noncoding elements 0.5-1kb in length (N=7,412). Additional

details of region selection are described in Supplementary Methods appendix D.2.

Comparing driver element identification accuracy

Coding models We compared the sensitivity, specificity, and F1-score (harmonic

mean of sensitivity and specificity) for driver gene detection from coding sequence

mutations between Dig, MutSigCV, and dNdScv across the 32 PCAWG cancer cohorts

(melanomas and hematopoietic cancers were excluded as in previous comparisons

[236]). We additionally compared power over the 16 whole-exome sequenced cohorts

from Dietlien et al. (excluding hematopoietic cancers as above). Details of both

comparisons are provided in Supplementary Methods appendix D.2.

Noncoding models We compared the sensitivity, specificity, and F1-score for

driver noncoding element identification from noncoding SNVs between Dig, Driver-

Power, Larva, and ActiveDriverWGS across the 32 PCAWG cancer cohorts (excluding

melanoma and hematopoietic cancers as above). We chose to compare to these three

methods because they are recently introduced methods for noncoding driver element

identification that rely on neutral mutation models to test for selection. Details are

provided in Supplementary Methods appendix D.2.

6.5.4 Power analysis

We conservatively simulated Dig’s power to detect driver SNVs at different carrier

frequencies across enhancers and noncoding cryptic splice sites under the pan-cancer
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mutation map using a Monte Carlo approach described in Supplementary Methods ap-

pendix D.2.

6.5.5 Quantifying selection on cryptic splice SNVs

Curation of predicted splice SNVs

From SpliceAI [128], we obtained a list of every possible SNV in the body of 17,816

autosomal genes with predicted impact on splicing (i.e., SpliceAI ∆ score) >0.2.

Predicted splice-altering SNVs were separated into canonical (altering positions 1 or

2 base-pairs 5’ or 3’ to an exon boundary) from cryptic splice SNVs (all other SNVs

excluding sites that were 5 base-pairs 3’ to an exon boundary that had been included

in the definition of “essential splice sites” considered by Martincorena et al. [169]

– excluded to ensure any enrichment we observed was independent of enrichment

reported in that work). SNV positions were assigned based on the Gencode V24

list of basic transcripts. Cryptic splice SNVs were further divided into coding SNVs

(defined as synonymous SNVs common to each transcript of a gene) and intronic

(defined as SNVs not falling within any coding sequence of any transcript).

Enrichment of coding mutations and splice SNVs in PCAWG

Dig was applied with default settings to the following sets of mutation from the

PCAWG pan-cancer cohort in each of 17,815 genes for which we had predicted splice

SNVs: synonymous SNVs, missense SNVs, nonsense (stop-gained) SNVs, coding in-

dels, canonical splice SNVs, and cryptic splice SNVs. Mutation enrichment was de-

fined as the ratio of the observed mutations to expected mutations (this statistic

is conceptually similar to the selection coefficient reported for coding mutations by

dNdScv). P-values for a gene set and mutation type were exactly calculated by con-

volving the mutation-type specific negative binomial distributions for each gene in

the gene set and summing the upper-tail probability that at least the number of ob-

served mutations occurred by chance. We used a Monte Carlo simulation approach to

estimate the 95% confidence intervals of enrichment within a set of genes and given
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mutation type (Supplementary Methods appendix D.2). To further assess mutational

enrichment, we directly compared the rate of mutations in TSGs and oncogenes to the

rate in genes not in the CGC (Supplementary Methods appendix D.2). The excess

of SNVs in TSGs in the CGC stratified by function (missense, nonsense, canonical

splice, and noncoding canonical splice) was calculated as the difference between the

number of mutations observed and the number expected. The relative contribution

for each functional category was defined as the excess for that category normalized by

the sum of the excess across all categories. The 95% confidence interval for the contri-

bution of each category was calculated using a Monte Carlo approach (Supplementary

Methods appendix D.2).

Genes enriched for noncanonical cryptic splice SNVs

In each of the 37 PCAWG cohorts, we identified genes with a significant burden of

noncanonical cryptic splice SNVs as quantified by Dig. We considered two sets of

genes: 1) all TSGs in the CGC (n=283) and 2) all autosomal genes with predicted

splice SNVs (n=17,815). The significance threshold was defined per cancer as FDR q-

value<0.1 corrected for the number of tests (n=283 or n=17,815). We excluded genes

where multiple SNVs contributing to the burden were observed in a single sample.

We used a bootstrap method to determine whether predicted cryptic splice SNVs

observed in TSGs with a significant burden were enriched for high predicted impact

on splicing (Supplementary Methods appendix D.2).

Analysis of alternative splicing events in RNA-seq data

We obtained RNA-seq data for 8 samples carrying deep intronic predicted cryptic

splice SNVs (i.e., distance to nearest exon boundary >20 base-pairs) in TSGs with a

significant burden of predicted noncoding cryptic splice SNVs and 41 control samples

without a cryptic splice SNV. For each carrier-control pair of the same cancer type, we

performed differential splicing analysis using LeafCutter as described by Li et al. [155].

Further details of the analysis are provided in Supplementary Methods appendix D.2.
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6.5.6 Quantifying mutational excess in promoters and 5’ UTRs

Discovery of elements with a burden of mutations

Dig with default parameters was used to evaluate the PCAWG pan-cancer cohort

(excluding hypermutated samples with >3000 coding mutations) for mutational ex-

cess within two sets of regions: 1) indel excess within promoters previously defined

by the PCAWG consortium [214] (n=19,251) and 2) SNV and indel excess within 5’

UTRs of TSGS (n=106) and oncogenes (n=95) in the CGC that spanned multiple

exons of the canonical transcripts of genes (as defined by UCSC genome browser for

GRCh37); we additionally included the splice regions of the 5’ UTRs in our analysis,

defined as the 20 base-pairs bordering the start or end of an exon. The significance

threshold was defined per cancer as FDR q-value<0.1 corrected for the number of

tests (n=19,251 or n=201).

ELF3 5’ UTR mutations in the HMF cohort

We downloaded somatic mutations observed in the Hartwig Medical Foundation

metastasis cohort [204] from their online data portal (https://database.hartwigmedicalfoundation.

nl/), excluding skin and hematopoietic tumors. Since we could only download mu-

tations specific to a gene, we did not quantify burden with Dig. Rather, we directly

compared the rate of SNVs in the 5’ UTR, first intron, and 1kb upstream region of

ELF3 to the rate of synonymous mutations in ELF3 using a two-sided Fisher’s exact

test.

Analysis of expression levels

We obtained gene expression levels (FPKM) and gene-level copy number estimates

from the PCAWG data portal for all tumors for which RNA sequencing was per-

formed. For a gene of interest, we applied a fixed-effects linear regression model

to residualize the expression values for gene-level copy number per sample and the

interaction between gene-level copy number and the cancer project that originally

generated the RNA-seq data. We then normalized the residual expression values to
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have mean zero and unit variance across all samples and compared the normalized

values between mutation carriers and noncarriers using a two-sided Mann-Whitney

U-test.

6.5.7 Driver gene prediction in WES & targeted sequenced

samples

Mutational excess in “Long-tail” driver genes

For each of the 10 cancer types for which we compiled SNVs from whole-exome and

targeted sequenced cohorts, we assembled a list of known driver genes identified in

any of three recent, pan-cancer driver gene discovery efforts [170, 71, 18] (we required

genes be discovered with FDR<0.1, the significance threshold common across the

driver element detection literature) that were also common to all whole-exome and

targeted sequenced samples (n=69 oncogenes and n=56 TSGs). For a given cancer,

we considered “long-tail” genes to be driver genes that were not on the list of known

driver genes for the given cancer (that is, they were driver genes associated with

other cancers). Dig was then used to quantify mutational excess in those long-tail

genes. Because synonymous mutations were not available from the targeted sequenced

samples, we instead used missense mutations with CADD phred score<15 to estimate

the scaling factor that adapted the somatic mutation maps trained on PCAWG cohort

to the meta-cohorts (details in Supplementary Methods appendix D.2). We directly

estimated the P-value of the mutational burden long-tail genes by convolving the

neutral mutation distributions for each individual gene and calculating the upper-tail

probability of at least the number of observed mutations across all genes occurring by

chance under the null distribution. We calculated 95% confidence intervals of excess

mutations using the same Monte Carlo approach as in our analysis of cryptic splice

SNVs. Excess rate per sample was calculated as the number of excess SNVs divided

by the number of samples in the cohort for a given cancer type.
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Identification of putative driver genes

We used Dig to identify individual genes with an excess of mutations in two cases:

1) in our meta-cohorts, testing 69 oncogenes for an excess of activating SNVs and 56

TSGs for an excess of pLoF SNVs (these were the set of known driver genes common

to all whole-exome and targeted sequenced cohorts); and 2) in the exome-sequenced

cohorts alone, testing 19,210 autosomal genes for an excess of pLoF SNVs. In each

case, significance was defined as FDR q-value<0.1 for the number of genes tested.

6.6 Extended Data Figures
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Figure 6-5: Detailed overview of the Dig model. a, Dig takes as input somatic
mutations (SNVs and/or indels) (Step 1) identified from a cancer cohort sequenced with
any methodology and a set of genomic elements of the user’s interest (Step 2). The neutral
mutation rate from an available neutral somatic mutation map (detailed in panel b) is
transferred to the selected SNV dataset via a closed-form probabilistic model (a split-Poisson
gamma distribution [270]), that infers only a single scaling parameter at runtime (Step 3);
then, a P-value for positive selection is calculated for each element by comparing the number
of observed mutations to the number of expected neutral mutations (Step 4). b, A neutral
mutation map for a particular cancer consists of 1) the mean and variance of the number
of neutral mutations in kilobase-scale regions of the genome (default: 10kb) as inferred by
a convolutional neural network (CNN) and Gaussian process (GP) based on 735 epigenetic
features from the Roadmap Epigenomics dataset and ENCODE (and optionally the number
of mutations observed 100kb up- and downstream of the region in the a training cancer
cohort dataset); and 2) a sequence context model that provides the genome-wide likelihood
of a mutation given its sequence context (default: trinucleotide sequences).

128



e

a

Epilogos label

Input matrix with 
attention region highlighted b

d

c

Tissue

g

Figure 6-6: Epigenetic input features used by Dig to predict mutation density
in nine cancer types. a, An example of a feature map across the 735 input features
in a 50kb region. The attention column is highlighted. b, UMAP visualization of the
epigenetic content within attention columns, produced by averaging the same chromatin
marks (e.g., H3K27ac) across tissues, for nine types of cancer. The epigenetic content
consistently formed five clusters in each cancer type. c, An example of the average epigenetic
content of each cluster from lung squamous cell carcinoma. Each chromatin mark is the
average across tissues with 95% CI. d, The epigenetic content of each cluster as determined
by epilogos [179], averaged across the nine cancer types. e, Boxplots of the number of
mutations in regions containing an attention column from a given cluster, stratified by
cancer type. Skin-melanoma: N=107 samples, Colorectal-AdenoCa: N=50 samples, Liver-
HCC: N=314 samples, Eso-AdenoCa: N=97 samples, Lung-SCC: N=47 samples, Head-SCC:
N=56 samples, Prost-AdenoCa: N=199 samples, CNS-GBM: N=39 samples, Bladder-TCC:
N=23 samples.
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Figure 6-7: Cryptic splice SNV enrichment in oncogenes and genes not in the
CGC. Estimated SNV enrichment with 95% CIs as in fig. 6-3b for oncogenes in the CGC,
a, and 500 randomly selected genes not in the CGC, b. Enrichment is not significant in
any category after accounting for multiple hypothesis testing except missense mutations and
indels in oncogenes, as expected. (N=2,279 samples in each panel; number of mutations per
category in Supplementary table D.12).

130



50 100 150

1000

100

10

1

0

1

10

100

1000

M
ut

at
io

n 
co

un
t

(c
om

m
on

 d
riv

er
 g

en
es

)
M

ut
at

io
n 

co
un

t
(r

ar
e

dr
iv

er
 g

en
es

)

KRAS

Bladder CNS Liver Lung NSC Pancreatic Prostate

200 400 600

100

10

1

0

1

10

100
BRAF

100 200 300

100

10

1

0

1

10

100

Position of mutation in the coding sequence

GNAS

100 200

100

10

1

0

1

10

100
U AF2 1

500 1000

100

10

1

0

1

10

100
ERBB2
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Chapter 7

Conclusion

This thesis aims to optimize the utility of ML frameworks to life science research.

Throughout its pages, we reviewed current drawbacks and potential solutions such

as bespoke datasets and tailored computational methods. We highlight two unmet

challenges that are hindering the contribution of ML to the study of complex biological

systems: 1) lack of general-purpose datasets at scale, and 2) limited interpretability

of deep-learning models.

The majority of living systems are simultaneously dynamic and brittle, making

it extremely challenging to curate sufficient information to disentangle their inher-

ent noise from the desired signal. Therefore, many researchers still rely on siloed

and narrow datasets that are collected independently per study, limit reproducibility,

and are unsuitable for ML models. In this work, we use neurolinguistics - the study

of language processing in the brain - as a hallmark for a complex system that can

greatly gain from multi-purpose datasets at scale. In chapter 3, we describe the cura-

tion of a first-of-a-kind multimodal treebank, the AMMT. In chapter 4, we augment

the AMMT with aligned intracranial neural signals to study how the brain process

different POS during passive listening. We found that by using naturalistic stimuli

we were able to collect a sufficient amount of data in highly restrictive settings. The

breadth of the curated data enabled the investigation of a variety of different ques-

tions, control for a plethora of confounding factors, and application of deep-learning

models. Specifically, we demonstrated the critical nature of language context that
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differentially modifies the neural pattern and latency evoked by nouns and verbs. We

also identified a tightly-connected network of brain areas that anticipates, analyzes,

and transmits the POS of an incoming word.

Unlike digital ML tasks (e.g. image object recognition or Netflix video recommen-

dations), life sciences have an additional requirement to benefit from computational

methods. Their processing needs to be humanly explainable. Notably, deep-learning

models are notorious black-boxes, providing almost no insights into their decision-

making process or certainty of their outcome. A biologist needs to know how two

proteins interact, a chemist needs to know where a functional group will generate the

desired response, and a physician needs to know why a patient will react to a drug as

predicted. For the most part, answers to these questions exceed the need for superior

performance. In chapter 5, we developed an interpretable and probabilistic deep-

learning approach to efficiently model discrete non-stochastic processes at multiple

resolutions. We apply this framework to model somatic mutational patterns genome-

wide in seconds instead of hours or days. In chapter 6, we extended this method to

identify somatic mutations that putatively drive cancer all across the genome. The

certainty estimation of the output allows us to identify observed anomalies with re-

spect to expected values, down to a base-pair resolution, and the interpretation of

the input implies what functional regions govern these expectations. The analysis

of 37 cancer types revealed that cryptic splice mutations, 5’ UTR mutations, and

mutations that occur infrequently in genes may all contribute to the development

and progression of cancer. Moreover, a limited set of local chromatin states explains

nearly all variance of regional mutation rates.

Chapters 3-6 included sections discussing the specific contributions, limitations,

and future directions of the above. We will not repeat those points here. Rather, we

conclude by reflecting on major open challenges and the future prospects of machine

learning in human biology.

This work adds to the growing body of literature demonstrating the ability of ML

approaches to solve complex problems in biology [66, 3, 252, 134]. However, there

is great value to be gained from an even tighter integration of the fields. Progress
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can be made by carefully incorporating human knowledge into computational models.

Indeed, language models with embedded knowledge of amino acid code are solving

fundamental problems in predicting protein folding and protein properties [122, 279,

134, 17] and architectures that explicitly reproduce the underlying molecular networks

of a cell are enabling interpretability without loss of predictive power [162, 146, 74].

Yet, such examples are sparse and require tailored solutions.

Moreover, ML models trained over static datasets can only obtain so much.

Active-learning paradigms provide robust feedback between computation and exper-

imentation – computational predictions are tested in the lab and results are used to

improve the computational model – and therefore yield higher experimental efficiency

and substantially improve the accuracy of computational models. Recent work has

begun to demonstrate the utility of this approach [121], and we expect such research

to prove highly fruitful in the coming years.

The future of computation and life sciences will be intricately linked. Computation

will be needed to solve key challenges in biology and the complexity of biology will

drive innovation in the computational sciences. Inherent data limitations of living

systems will force ML models to be more flexible to smaller and noisier datasets. Such

enhanced potential will then give birth to novel branches of computation frameworks.

This work and others merely reveal the tip of the computational biology iceberg, there

are many more puzzles of life to be assembled by learning machines.
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Appendix A

Supplementary Information Related

to Chapter 3
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Figure A-1: Distribution of sentence lengths in AMMT. Most sentences are quite short.
The mean sentence length is 6.97 words long. Compare to standard corpora derived from
written sources like the English Web Treebank (15.33 words/sentence) long and the Penn
Treebank (23.73 words/sentence in the test set).
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POS Count

ADJ 9829
ADP 12464
ADV 13688
AUX 18965
CCONJ 3746
DET 12984
INTJ 6275
NOUN 25457
NUM 1835
PART 7202
PRON 36370
PROPN 8679
PUNCT 30301
SCONJ 2140
SYM 10
VERB 28139
X 6

Dependencies Count

nsubj 25050
advmod 14003
obj 12825
det 12325
case 11274
aux 9286
cop 7830
obl 6653
mark 5693
amod 4958
xcomp 4306
nmod:poss 3996
discourse 3912
cc 3682
compound 3335
conj 3322
vocative 3134

Table A.1: The distribution of POS tags (left), and the most common dependencies (right).
There is a long tail of dependencies.

Figure A-2: COCO classes noun-object agreements per movie (sorted by number of nouns).
All nouns corresponding to one of the 80 COCO classes (orange) vs their corresponding
objects in the video during the noun utterance (blue) per movie.
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Figure A-3: Comparing POS frequency in EWT, a treebank derived from text on the web,
and AMMT, our new benchmark derived from spoken language. Among many differences,
note that in AMMT, nouns are much less common and pronouns are far more common.

Movie Year IMDb ID Time (s) Sentences Tokens Types Rating Frames

Ant-Man 2015 tt0478970 7027 1412 9846 1956 PG-13 168507
Aquaman 2018 tt1477834 8601 1003 7218 1563 PG-13 206251
Avengers: Infinity War 2018 tt4154756 8961 1372 8479 1780 PG-13 214884
Black Panther 2018 tt1825683 8073 1139 7571 1628 PG-13 193590
Cars 2 2011 tt1216475 6377 1801 11404 2060 G 152920
Coraline 2009 tt0327597 6036 933 5428 1251 PG 144743
Fantastic Mr. Fox 2009 tt0432283 5205 1162 8457 1892 PG 124815
Guardians of the Galaxy 1 2014 tt2015381 7251 1104 8241 1799 PG-13 173878
Guardians of the Galaxy 2 2017 tt3896198 8146 1180 9332 1839 PG-13 195341
The Incredibles 2003 tt0317705 6926 1408 9369 1966 PG 166085
Lord of the Rings 1 2001 tt0120737 13699 1424 10538 2011 PG-13 328502
Lord of the Rings 2 2002 tt0167261 14131 1620 11017 2085 PG-13 338861
Megamind 2010 tt1001526 5735 1351 8833 1748 PG 137525
Sesame Street Ep. 3990 2016 tt13725852 3440 718 4218 804 TV-Y 103096
Shrek the Third 2007 tt0413267 5568 999 7192 1586 PG 133520
Spiderman: Far From Home 2019 tt6320628 7764 1705 12004 1988 PG-13 186180
Spiderman: Homecoming 2017 tt2250912 8008 1993 12258 2107 PG-13 192031
The Martian 2015 tt3659388 9081 1421 11360 2210 PG-13 217762
Thor: Ragnarok 2017 tt3501632 7831 1471 9651 1806 PG-13 187787
Toy Story 1 1995 tt0114709 4863 1240 7194 1545 G 116614
Venom 2018 tt1270797 6727 1301 7859 1527 PG-13 161313

Table A.2: Name, unique identifier (IMDb ID), and statistics for the 21 movies from which
AMMT is derived. Movies were selected to be appropriate for most ages enabling a wide
range of experiments. Movies are not randomly sampled; they were selected for their verbose
scripts and subjects entertainment during experiments. For more on IMDb identifiers, see
https://developer.imdb.com/documentation/key-concepts#imdb-ids
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Appendix B

Supplementary Information Related

to Chapter 4

B.1 Supplementary Methods

B.1.1 Cortical surface extraction and electrode visualization

For each subject, pre-operative T1 MRI scans without contrast were processed with

FreeSurfer’s recon-all function with -localGI, which performed skull stripping,

white matter segmentation, surface generation, and cortical parcellation [69, 89, 86,

85, 83, 84, 88, 133, 149, 219, 222, 228, 67, 87, 116, 241, 229, 211, 210, 212]. iELVis [109]

was used to co-register a post-operative fluoroscopy scan to the preoperative MRI.

Electrodes were manually identified using BioImageSuite [132], and then assigned to

one of 74 regions (according to the Destrieux atlas [70]) using FreeSurfer’s automatic

parcellation. The alignment to the atlas was manually verified for each subject.

We excluded a total of 66 electrodes from two subjects from all analyses and plots

due to tumors and lesions: one subject had 43 electrodes on the border of and within

a tumor, and another subject had 23 electrodes on the border of and going through

a lesion (suspected from prior surgery). For depth electrodes in the white matter, if

they were within 1.5 mm of the gray-white matter boundary, they were projected to

the nearest point on that boundary, and were labeled as coming from that region (for
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the purposes of region significance analyses). This procedure is very similar to the

post brain-shift correction methods used for electrocorticography electrodes [271]. For

solely visualization purposes, all electrodes identified to lie in the gray matter or on

the gray-white matter boundary were first projected to the pial surface (using nearest

neighbors), and then mapped to an average brain (using Freesurfer’s fsaverage atlas)

for the visualizations shown in Extended Figures fig. 4-8.

B.1.2 Audio transcription and alignment

The audio track of each movie was first annotated by commercial services (Rev.com

and HappyScribe.com depending on the movie) and manually corrected by trained

annotators. A custom tool was developed to refine the alignment via an auditory

spectrogram of 4 seconds at a time and slowed-down audio track. Annotators were

instructed to adjust the onset and offset of every word to align with the spectrogram

and their perception of when the word started and ended. The audio annotation

tool automatically played the audio segment corresponding to each word to allow

annotators to verify their work. As the audio was played a line marked the location

of the audio sample in the spectrogram in real time.

Since speech recognizers often misused or missed critical punctuation marks, these

were inserted by annotators manually. Sentences were then manually segmented. An-

notators were instructed not to use abbreviations, even if they are common. Anno-

tators marked audio segments that consisted of overlapping speech or signing. These

were removed from the dataset. All foreign language was marked and removed from

the dataset. Annotators were instructed to transcribe literally, i.e, contractions were

used in the transcript only when spoken as such. Similarly, foreshortened words, e.g.,

goin’ vs going, were transcribed as such when used by speakers. Cardinal numbers

were spelled out. Longer numbers were spelled out as spoken, including conjunctions

such as “and”. All overheard words were transcribed, even when they could not easily

be localized on the spectrogram, for example, short words such as “to” can sometimes

be heard but no specific segment of the spectrogram seems to correspond uniquely

to such words. In this case annotators were asked to mark their onset and offset as
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they heard the words. Transcripts are as spoken, without correction, even when the

speaker erred omitting a word or using a word inappropriately.

B.1.3 Part of speech tagging

We used a state-of-the-art syntactic parser, Stanford NLP Group’s Stanza qi2020stanza,

to parse every sentence. POS tags were recorded for every word. The homonym set

was initially constructed automatically by taking every word which occurred as both

a noun and a verb. This set was then manually inspected against the original audio

track to ensure that homonym pairs were pronounced the same, removing any that

were not.

B.1.4 Confounding features

Attributes unrelated to whether a word is a noun or a verb may still be correlated

with part of speech. Models which naively analyze neural data may be decoding

part of speech from the neural activity evoked by these correlated but undesirable

attributes. We create an extensive array of such features and include them in our

analysis to hone in on part-of-speech distinctions specifically. While these confounds

are undesirable in our analysis, they may serve as objects of study in their own right.

We extracted potentially-confounding features from the video and audio tracks, and

from the transcript itself. Specifically, we extract 33 scalar features and 2 vector

features that were included in the analyses (see Extended Figures table 4.1). We also

extract 4 string features for general purposes of this work as well as the service of

additional works.

The visual scene scalar features were extracted from the middle frame presented

during a word utterance via OpenCV 4.4.0 [37]. Brightness was quantified as the

average pixel HSV value channel. Flow vectors were computed as dense optical

flow over grey-scale frames via the OpenCV calcOpticalFlowFarneback function

(pyramid scale 0.5, 5 levels, window size 11, 5 iterations, pixel neighborhood of 5,

and smoothing of 1.1). Number of faces per-frame was estimated via the OpenCV
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CascadeClassifier function with the Haar cascade frontal face default classifiers

over gray-scale frames (scale factor: 1.1, minimum neighbours: 4). The first frame

of every word utterance was mean-normalized and than passed through a pretrained

ResNet-50 object detector (Torchvision 0.6.1) to compute a visual vector image em-

bedding (size 2,048) as the last feature layer of the model.

The auditory scalar features were collected with the Python Librosa package

(0.7.2) [172], an open source audio analysis library. Sound intensity and mean fre-

quency of the audio track during word utterance were estimated, as well as their

change relatively to the preceding 500𝑚𝑠 window. The average intensity of the au-

dio segment was computed in two ways, first, as the root-mean-square (RMS) (rms

function, frame and hop lengths 2048 and 512 respectively) of that segment, and sec-

ond, as the magnitude of the Mel-spectrogram. Magnitude and pitch were extracted

using Librosa’s piptrack function over a Mel-spectrogram (sampling rate 48,000 Hz,

FFT window length of 2048, hop length of 512, and 128 mel filters). Auditory vector

embeddings were computed as the flattened log-Mel-spectrogram of the 500𝑚𝑠 word

utterance window (size 128× 47 = 6016).

Surprisal was quantified as the negative-log word probability. Word probabilities

were estimated by four different language models, ranging from word frequency in the

the BLLIP corpus [56] to transformer models. GPT-2 probabilities were computed via

GPT-2 large using the Hugging Face Transformers 3.0.0 library [265]. Word particle

surprisal were combined by summation. LSTM (layers: 2, dropout: 0.2, input/output

dimensions: 200) probabilities were pretrained on BLLIP. N-gram [42] probabilities

(N=5) were computed via the Python KenLM language model [120] (full_scores

function (beginning of sentence: true, end of sentence: false), pre-trained over BLLIP.

Word syllable and phoneme numbers were estimated via the Python Syllables

package (0.1.0) and the Python NLTK package (3.4.4) [31] (Carnegie Mellon Pro-

nouncing Dictionary Corpus Reader) respectively. All Universal Dependency features

were inferred using the standard English model of the Stanza Natural Language Pro-

cessing toolkit [206] and then manually corrected via a single trained annotator over

the course of a year (see Methods appendix B.1.3).
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B.2 Supplementary Figures

Figure B-1: The language connectivity map for a single subject’s electrodes. A pair of
electrodes are connected if they are significantly more correlated when the subject is hearing
speech vs non-speech. This highlights functional connectivity specific to language processing
rather than other faculties. Connected electrodes are spatially clustered and represented by
their cluster centers (blue triangles). Rad line width corresponds to the cumulative number
of connections between two clusters.

B.3 Supplementary Tables
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Appendix C

Supplementary information related to

Chapter 5

In this appendix, we provide detailed information on:

1. The data used in this work including its origin and all preprocessing steps.

2. Additional method details including:

• A derivation of the closed-form marginal distribution of the graphical

model presented in main text.

• Architecture and training details of all models.

• How the genome-wide search for driver mutations was performed.

The appendix also includes an analysis of the sensitivity of negative binomial re-

gression to detect well-known drivers genome-wide and additional figures that provide

context to results presented in the main paper.
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C.1 Supplementary Materials and Methods

C.1.1 Data

Epigenetic tracks

We obtained 733 −𝑙𝑜𝑔10(P-value) chromatin tracks representing the epigenetic or-

ganization of 111 human tissues from Roadmap Epigenomics [218] (see Appendix

table “predictor_track_descriptions.csv”). These tracks measure the abundance of

a particular chromatin mark genome-wide, with smaller (more significant) p-values

reflecting a greater abundance of the chromatin mark at a genomic position. Chro-

matin marks are chemical modifications of histones, the proteins used to package

DNA within a cell. We additionally obtained 10 replication timing tracks from the

ENCODE consortium. Replication timing assays measure the relative time at which

each position in the genome is replicated during cell division. For non-overlapping re-

gions 𝑅 of predefined size and location (see main text for more details), we extracted

the signal for each epigenetic track using 100 bins per region with pybbi [2]. We

additionally calculated the average nucleotide content in each window by assigning

each nucleotide a numeric value between 1 and 5 and taking the average across a bin

(N [unspecified nucleotide] = 1, A = 2, C = 3, G = 4, T = 5), and we calculated the

GC content as the percent of G and C nucleotides in a bin, resulting in a total of 735

epigenome tracks per region. The mean values for each region were calculated as the

mean chromatin signal for each track in the region.

Mutation count data

We downloaded somatic single-base substitution mutations identified in the ICGC

subset of the Pan-Cancer Analysis of Whole Genomes Consortium cohorts of esophageal

adenocarcinoma, skin melanoma, stomach adenocarcinoma, and liver hepatocellular

carcinoma. These data are freely available for download from the International Can-

cer Genomics Consortium data portal (see fig. C-1). We excluded mutations on the

sex chromosomes (X and Y) because males and females carry different sets of these
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chromosomes, leading to differential mutation patterns. We summarized the data as

mutation counts per window for window sizes of 50bp, 100bp, 500bp, 1kb, 5kb, 10kb,

25kb, 50kb, 100kb, and 1Mb.

Restriction to regions of high mappability

High-throughput genome sequencing works by randomly reading millions of short se-

quences of nucleotides (36-150 bases in length) from a target genome. These “reads”

are then mapped to the human reference genome to reconstruct the target. A chal-

lenge is that short sequences of k nucleotides (kmers) can occur multiple times in the

genome. This results in ambiguous mappings for some reads and thus a degradation

of data quality in regions composed of many kmers that occur multiple times across

the genome. Following previous work [200], we removed regions of the genome with

low quality data by calculating a mappability score for each region. Mappability

scores reflect how many times a particular kmer occurs in the genome and have been

pre-computed for the human reference genome GRCh37. We required that a region’s

average mappability score based on 36mers (e.g. average across all sequences of 36

nucleotides in the region) be >70%, reflecting that all 36mers in the region be >70%

unique. The majority of the genome passed this threshold; for 10kb regions, for

example, >75% of the genome passed this threshold. We chose to measure mappa-

bility with 36mers because this was the length of read used to generate the Roadmap

Epigenomics sequencing data.
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Figure C-1: Distribution of mutation counts in 50kb windows tiled across the genome with
36mer uniqueness >70% (see section C.1.1) for esophageal adenocarcinoma, skin melanoma,
and stomach adenocarcinoma. Of note: esophageal adenocarcinoma has a highly skewed
distribution, skin melanoma has high mutation counts relative to the other cancers, and
stomach adenocarcinoma has low mutation counts relative to the other cancers.

Synthetic data simulation

We generated synthetic datasets for each of the cancers in order to have datasets

with known mean and variance rate parameters. To generate the datasets, we used

a k-nearest-neighbors strategy to identify the 500 nearest neighbors for each region.

The mean and variance for that region were then taken to be the empirical mean

and variance calculated from the 500 nearest neighbors. The number of "observed"

mutations was then randomly sampled from a binomial defined by the mean and

variance parameters. It is important to note that these datasets are purely derived

for the purpose of comparing methods over datasets with a known ground-truth. They

do not reflect mutation patterns in the real datasets. The specific steps to generate

the simulated data were:

1. Generate vectors of the mean values for each of the 735 tracks (733 epigenetic

tracks, GC content track, and average nucleotide content track) in 50kb regions

of the genome with 36mer uniqueness >70%.

2. Perform ordinary least-squares (OLS) regression of the mean vectors against

the observed number of mutations in each 50kb window for that cancer.

3. Scale each value in the feature vectors by its corresponding coefficient from
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OLS and compress the weighted mean vectors to 50 components using Principal

Components Analysis (capturing >94% of the variance for each cancer).

4. For each region 𝑅, perform k-nearest-neighbor clustering with Euclidean dis-

tance to identify its 500 nearest neighbors in the PC space. Define the mean

𝜇𝑅 and variance 𝜎2
𝑅 of the mutation rate in 𝑅 to be the mean and variance of

the KNN cluster.

5. For region 𝑅, randomly draw a new “observed” number of mutations from a

negative binomial distribution defined using the associated mean and variance.

Specifically, 𝑋𝑅 ∼ 𝑁𝐵(𝛼, 1/(𝜃 + 1)) where 𝛼 = 𝜇2
𝑅/𝜎

2
𝑅 and 𝜃 = 𝜎2

𝑅/𝜇𝑅

We created two versions of the simulated data, one in which all regions in the genome

were used to estimate the rate parameters and one in which rate parameters were

estimated separately within independent train and test subsets. Results were quali-

tatively indistinguishable.

C.1.2 Graphical model derivation

Here we derive the closed form negative binomial distribution presented in the main

text as the graphical model marginal distribution over events at some unit 𝑖 in a

region 𝑅. We use the following notation:

• 𝑀𝑖: # mutations observed at pos 𝑖 (observed)

• 𝑝𝑖: genome-wide probability of observing a mutation at the nucleotide context

of 𝑖 (inferred)

• 𝑝𝑖: normalized probability of observing a mutation at 𝑖 in region 𝑅 (inferred)

• 𝜆𝑅: the background mutation rate in region 𝑅 (unobserved)

• 𝑋𝑅: # background mutations in region 𝑅 (unobserved)

• 𝜇𝑅: the expected background mutation rate in region 𝑅 (inferred)
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• 𝜎2
𝑅: the variance of background mutation rate in region 𝑅 (inferred).

• 𝜂𝑅: covariates associated with the behavior of the stochastic process within 𝑅

(observed)

As presented in the main text and main Figure 1, the graphical model implies the

factorization

𝑃𝑟(𝑀𝑖, 𝑋𝑅, 𝜆𝑅|𝛼𝑅, 𝜃𝑅, 𝑝𝑖; 𝜂𝑅) = 𝑃𝑟(𝑀𝑖 = 𝑘|𝑋𝑅, 𝑝𝑖; 𝜂𝑅)·𝑃𝑟(𝑋𝑅 = 𝑥|𝜆𝑅; 𝜂𝑅)·𝑃𝑟(𝜆𝑅|𝛼𝑅, 𝜃𝑅; 𝜂𝑅)

(C.1)

where

𝛼𝑅 = 𝜇2
𝑅/𝜎

2
𝑅

𝜃𝑅 = 𝜎2
𝑅/𝜇𝑅.

Since 𝜂𝑅 is a given in each equation, we suppress it for notational ease.

To marginalize out 𝑋𝑅, we note that

𝑃𝑟(𝑀𝑖 = 𝑘|𝜆𝑅) =
∞∑︁
𝑥=𝑘

𝑃𝑟(𝑀𝑖 = 𝑘|𝑋𝑅, 𝑝𝑖) · 𝑃𝑟(𝑋𝑅 = 𝑥|𝜆𝑅)

is equivalent to a split Poisson process [97]. Thus

𝑃𝑟(𝑀𝑖 = 𝑘|𝜆𝑅) = Possion(𝑀𝑖 = 𝑘; 𝑝𝑖𝜆𝑅). (C.2)

We now marginalize out the unknown rate parameter 𝜆𝑅.

𝑃 (𝑀𝑖 = 𝑘|𝑝𝑖, 𝛼𝑅, 𝜃𝑅) =

∫︁ ∞

0

𝑃 (𝑀𝑖 = 𝑘|𝜆𝑅; 𝑝𝑖)𝑃 (𝜆𝑅|𝛼𝑅, 𝜃𝑅)d𝜆𝑅

=

∫︁ ∞

0

(𝑝𝑖𝜆𝑅)
𝑘

𝑘!
𝑒−𝑝𝑖𝜆𝑅

1

Γ(𝛼𝑅)𝜃
𝛼𝑅
𝑅

𝜆𝛼𝑅−1
𝑅 𝑒−𝜆𝑅/𝜃𝑅d𝜆𝑅

=
𝑝𝑖

𝑘

𝑘!Γ(𝛼𝑅)𝜃
𝛼𝑅
𝑅

∫︁ ∞

0

𝜆𝛼𝑅+𝑘−1
𝑅 𝑒−𝜆𝑅(𝑝𝑖+1/𝜃𝑅)d𝜆𝑅.

Making the substitution 𝑡 = 𝜆(𝑝𝑖 + 1/𝜃𝑅) and noting that the resulting integrand
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is an unnormalized gamma distribution, we have:

𝑃 (𝑀𝑖 = 𝑘|𝑝𝑖, 𝛼𝑅, 𝜃𝑅) =
𝑝𝑖

𝑘

𝑘!Γ(𝛼𝑅)𝜃
𝛼𝑅
𝑅

Γ(𝛼𝑅 + 𝑘)

(︂
1

𝑝𝑖 + 1/𝜃𝑅

)︂𝛼𝑅+𝑘

=
Γ(𝛼𝑅 + 𝑘)

𝑘!Γ(𝛼𝑅)

(︂
𝑝𝑖𝜃𝑅

𝑝𝑖𝜃𝑅 + 1

)︂𝑘 (︂
1

𝑝𝑖𝜃𝑅 + 1

)︂𝛼𝑅

= NB

(︂
𝑀𝑖 = 𝑘;𝛼𝑅,

1

𝑝𝑖𝜃𝑅 + 1

)︂
.

C.1.3 Overview of parameter estimation procedure

Estimation of regional rate parameters: As training data, we use a set of input ma-

trices {𝜂𝑅; 𝑅 ∈ 𝒯 } and associated mutation counts {𝑋𝑅; 𝑅 ∈ 𝒯 }. First, a CNN

is trained to take 𝜂𝑅 as input and predict 𝑋𝑅 as output, using mean squared error

loss. The final 16-dimension feature vector of the trained CNN is then used as input

to train a Gaussian process to predict the mutation count 𝑋𝑅 and the associated

estimation uncertainty by maximizing the likelihood of the observed data. The mean

and variance output by the GP were used as estimates for 𝜇𝑅 and 𝜎2
𝑅.

Estimation of time-averaged event probabilities: the time-average probability of

an event at 𝑝𝑖 was estimated based on it’s trinucleotide composition, 𝑛, 𝑡, 𝑛′ where 𝑛

is the nucleotide at 𝑖 − 1, 𝑡 is the nucleotide at 𝑖 and 𝑛′ is the nucleotide at 𝑖 + 1

in the reference genome. We first counted every occurrence of 𝑛, 𝑡, 𝑛′ in the human

genome and then counted the number of times the middle nucleotide of the 3mer was

mutated across the genome. The maximum likelihood estimate of 𝑝𝑖 is then the ratio

of the number of observed mutations of the 3mer divided by the total occurrences of

the 3mer.

C.1.4 Regional parameters estimation methods

To compute a model’s 𝑅2 accuracy to 𝜇𝑅 and 𝜎2
𝑅 for regions 𝑅 of size 𝑆, the genome

was divided into non-overlapping contiguous segments of size 𝑆. To assure high data

quality, any region with mappability score < 70% was excluded from further analysis.

The remaining windows (accounting for more than 75% of the genome) were randomly
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divided into train and test sets in an 80–20 split respectively. The test set was held-out

and served solely for evaluation purposes. The train set was then divided into train

and validation sets by another 80–20 split respectively (train set = 64%, validation

= 16%, and test = 20% of the considered regions with mappability score < 70%, see

appendix C.1.1).

Gaussian process feature vector generation

All networks were independently trained for 20 epochs with a batch size of 128 samples

and using the Adam optimizer to minimize mean squared error loss to either the true

mutation count (CNN and FCNN) or input tensor (AE). After training the model

parameters using the train set, predictions over the held-out test set were computed

by 1) extracting the last 16-dimensional feature layer (middle feature layer for AE)

for all sets over the best performing model over the validation set across all epochs

(according to the validation accuracy); 2) training multiple GPs (typically 10) to

predict mutation counts using the 16 dimension feature vectors of the train set as

input (see appendix C.1.4 for details); 3) taking the mean 𝜇𝑅 and 𝜎2
𝑅 of all 10 runs

over the test set as the ensemble prediction of the model. All neural network models

were implemented in Pytorch [199].

1. Convolutional neural network (CNN): The CNN contains 4 convolutional

blocks with 2 batch normalized convolutional layers and ReLU activation. The

first block transformed the input tensor from 735 × 100 to 256 × 50 with 256

channels and a double stride. The other blocks are ResNet-style residual blocks

that maintain their input dimension to facilitate residual connections, with 256,

512, and 1024 channels respectively. Between each of the 3 residual blocks there

is a double stride (ReLU activated and batch normalized) convolutional layer,

which divides the tensor length by two and doubles its height with additional

channels. The output of the last residual block is flattened and passed through

3 fully-connected layers. The first two are ReLU activated and reduce the

dimensionality of the tensor to 128 and 16 dimensions respectively. The last

uses linear functions to reduce the tensor to a single cell holding the output
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of the regression. This forces a linear relation between the regression output

and the last feature layer, thus simplifying the function the GP needs to learn,

which we found empirically improves the GP’s accuracy.

2. Fully-connected neural network (FCNN): The FCNN has an architecture

similar to the CNN’s 3 fully-connected layers but with an input space of the

mean epigenetic vector (735 dimensions). Thus, the FCNN is computationally

similar to the CNN, but operates on the mean vector instead of the full matrix

as an input. The FCNN is designed to demonstrate maximum performance

possible when reducing the input tensor to an averaged feature vector.

3. Autoencoder neural network (AE): The encoder of the AE used the same

architecture as the CNN, excluding the last linear fully connected layer. The

decoder has a mirror architecture with the same number of parameters but dif-

fers in the internal design of the convolutional blocks. Convolutional layers were

replaced by 1D transpose convolutional layers with no batch normalization and

no residual connections. The AE was designed to demonstrate the predictive

power of a feature embedding that was not optimized to a specific task but

produced in a way comparable to the CNN.

4. Other dimensionality reduction methods: PCA was computed using the

Python Scikit-learn package with default settings and UMAP was computed

via Python’s umap-learn package [173] with 20 nearest neighbours and Eu-

clidean distance. Both methods were computed over the entire training set

(80%) with no validation set and reduced the mean epigenetic vector dimen-

sionality (735 dimensions) to 16, just like all other models. Prior to processing,

we log-transformed the epigenetic data as we found this improved prediction

accuracy downstream.

Gaussian process

We implemented a sparse, inducing-point Gaussian process [250] with a radial basis

function kernel using Python’s GPyTorch package [98]. The GP was optimized with
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2000 inducing points using the Adam optimizer for 100 steps. All features were mean-

centered and standardized to unit variance prior to training. For each dataset, we

ran the GP ten independent times and calculated the ensemble mean of the mean

and variance predictions from each of the individual runs. We took these ensemble

predictions as the mean and variance for each region.

Alternative models

We implemented previously proposed alternative methods [200, 191, 169] for the esti-

mation of 𝜇𝑅 and 𝜎2
𝑅 without the use of GP. These methods use the mean epigenetic

vector as an input.

1. Random forest (RF): RF regression was implemented via the Ensemble

Methods module in the Python Scikit-learn package, with a maximum depth

of 50 trees. Since RF does not directly compute a variance, we implemented

the Jackknife method as described in [258] (we have compared our implemen-

tation to [201] and found them highly correlated). Wager et al. suggests that

the number of estimators, i.e., trees, must be linearly related to the number of

samples to obtain reasonable estimates of the variance. We chose to have one

tenth as many estimators as samples in an attempt to keep running time within

reasonable limit for datasets of smaller region sizes. Even so, for 10kb regions

(containing approximately 300K regions), RF required >24 hours to train.

2. Negative binomial regression (NBR): As described in section 3.3.2 of the

main text, NBR directly specifies the variance as 𝜎2
𝑅 = 𝜇𝑅(1 + 𝛽𝜇𝑅), where

𝛽 is an overdispersion parameter. When 𝛽 = 0 NBR reduces to Poisson

regression, also widely used in the community. NBR was implemented via

the discrete module in the Python statsmodels package [227] with the Broy-

den–Fletcher–Goldfarb–Shanno optimization algorithm and 1k maximum iter-

ations. Epigenetic predictors were log-transformed and reduced to 20 principle

components, following the field-standard [169] in both train and test sets. When

used to compare against the GM we also included the expected number of mu-
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tations based on the sequence context model (see main paper section 3.2) as an

exposure term in the model as in previous work [191, 169].

3. Binomial regression (BR): Following a previous study [26] that suggested

multinomial regression to model multiple types of mutations, we also considered

binomial regression (as the binary version of multinomial regression applicable

to our simple counts data) as a method to model mutation rates at high reso-

lution. BR was implemented via the generalized linear module in the Python

statsmodels package [227]. As in previous work [191, 169], we included the ex-

pected number of mutations based on the sequence context model (see main

paper section 3.2) as an exposure term in the model. As with NBR, the epige-

netic predictors were log-transformed and reduced to 20 principle components

for both train and test sets following state-of-the-art recommendations [169].

C.1.5 Empirical variance estimation

For real data, the true variance in mutation counts of a region is unknown. Thus to

estimate variance empirically for a given model, we used the following approach:

1. For a region in the test set, perform k-nearest neighbors clustering with Eu-

clidean distance to identify the 500 regions in the train set that are most sim-

ilar to the region of interest based on the model’s feature embedding. For all

models, a feature embedding of 16 dimensions was used.

2. Calculate the empirical variance as the variance of the KNN cluster.

Since feature embeddings are model-specific, we calculated an empirical variance esti-

mate per model. The feature-vector embeddings for models specified in section C.1.4

were the feature vectors used as input to the GP. Models specified in section C.1.4 do

not create or require comparable feature vectors and therefore were not considered in

the main paper results. However, to measure the ability of these methods to estimate

empirical variance (Fig. C-4), we computed their feature vectors by 1) taking the dot

product of the model parameters and the input data mean vectors and 2) reduced
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these scaled vectors to 16 dimensions via a PCA reduction (explaining 80%-95% of

the variance across the different region scales). For RF, we took the model parameters

to be the feature importance weights derived from the trained forest and for NBR,

we used the model coefficients as the parameters.

C.1.6 Performing a genome-wide search for cancer driver mu-

tations

For each cancer, the background mutation rate parameters were estimated across

the genome using 5-fold cross validation in 10kb, 25kb and 50kb regions. While the

model is robust to choice of 10kb, 25kb or 50kb region size (fig. C-2), the 25kb and

50kb models include some additional regions of the genome due to the the mappability

threshold (see section C.1.1). To analyze the largest possible subset of the genome, we

performed our analysis iteratively: we first searched for drivers using regions accessible

via the 10kb model; we then searched additional regions not accessible by the 10kb

model in the 25kb model and then in the 50kb model. To search for drivers, we

applied our probabilistic model to estimate the mutation count distributions in 50bp

regions across the genome, and we then searched for 50bp regions with significantly

more observed mutations than expected under the null distribution of our model. We

controlled false-discovery rate at the 0.05 level using a Bonferroni-corrected p-value

threshold of P<1e-9.

To compare our hits with known cancer drivers, we tabulated the recurrent driver

mutations reported by PCAWG that were present in our dataset, including in the

TERT promoter, a well known non-coding driver. While most recurrent driver muta-

tions are activating mutations (e.g. cause a gain of cellular function), we also found

recurrent mutations in the tumor suppressor genes TP53 and SMAD4. Recurrent

mutations in a single position are far less likely in tumor suppressor genes because

any deleterious mutation can act as a potential cancer-causing mutation. For exam-

ple, TP53 had 6 genome-wide significant 50bp regions, consistent with its status as a

crucial tumor suppressor that can be knocked-out with many different mutations (see
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table C.1). Methods specialized to discover driver genes are necessary to find tumor

suppressor genes in general [151, 187, 169].
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Figure C-2: Model robustness to region size. We tested the robustness of our GM estimates
to the choice of the scale of region 𝑅 over which 𝜇𝑅 and 𝜎2

𝑅 were inferred with the CNN+GP.
Here we show our GM’s Pearson 𝑅2 accuracy to the observed number of mutations over a
range of sizes for different choices of initial region size 𝑆. Melanoma shows a slight decrease
in performance at larger scales, suggesting local chromatin structure more strongly influences
mutation rates in this cancer.

C.1.7 Environment and compute time

A benchmark run at 10kb scale with 10 GP reruns takes 2-3 hours on a single 24

Gb Nvidia RTX GPU, with 8 CPU cores and 756GB RAM. Thus, a full 5-fold of

the entire genome takes 10-15 hours. Due to the model’s robustness to scale, this

time may be significantly reduced without drastic loss of accuracy by using larger

region scales (e.g. only 30-40 minutes for 50Kb regions, fig. C-2). Importantly, after

completing the CNN+GP training, projections to lower or higher scales via the GM

require no additional training.
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C.2 Supplementary Results

C.2.1 Negative Binomial Regression does not detect well-known

drivers genome-wide

Negative binomial regression is the only other method that has been used to perform

an unbiased genome-wide search for driver mutations [191, 214]. We thus evaluated

how the sensitivity of NBR to detect driver mutations genome-wide compared with the

sensitivity of our method. While all known melanoma drivers present in >3 samples

were found by the GM by projecting down to only 1kb scale, NBR at 1kb fails to

detect TERT, the only known common non-coding driver mutation, yielding a p-value

that was an order of magnitude less significant than the genome-wide significance for

this scale. Similarly, while the GM detects all known esophageal adenocarcinoma

drivers by projecting down to 100bp, NBR over 100bp fails to detect KRAS, an

important genic driver of esophageal cancers, again yielding a p-value that was an

order of magnitude less significant than the genome-wide significance threshold for

100bp. Note: we presented results at 50bp in the text to highlight our model’s

ability to search in arbitrarily small regions, but all known drivers for esophageal

adenocarcinoma are also detected in a search over regions of 100bp.

C.2.2 Convolutional neural network outperforms other dimen-

sionality reduction alternatives for a Gaussian process

We first evaluated the methods for regional rate first and second moment inference,

𝜇𝑅 and 𝜎2
𝑅, using our simulated datasets. We calculated accuracy as the Pearson

𝑅2 of the estimated mean and variance to the simulated ground-truth mean and

variance. CNN+GP, FCNN+GP, NBR and RF accurately inferred 𝜇𝑅, with 𝑅2
𝜇𝑅

>

0.95 for all three datasets (fig. C-3a). However, PCA+GP, UMAP+GP, and AE+GP

consistently under-performed (fig. C-3a left), suggesting supervision when creating

feature vectors is critical for the GP downstream performance.

The CNN+GP and FCNN+GP outperformed the other models when estimating
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the simulated variance (fig. C-3a, right), suggesting the ability to represent arbitrary

functions is important for learning uncertainty in a complex dataset. This conclusion

is strengthened by the observation that UMAP and AE enabled relatively accurate

variance estimation despite mediocre performance over the mean. Importantly, the

clusters used for the simulated data were computed from mean epigenetic vectors;

thus our CNN architecture (receiving an input in matrix form) was at a disadvantage.

Nonetheless, the CNN+GP most accurately learned both 𝜇𝑅 and 𝜎2
𝑅 across all three

simulated datasets (Fig. C-3a), with slight improvement over the FCNN+GP.

To further compare the approaches, we applied the GP coupled models to esti-

mate real mutation counts from the three cancers on multiple scales. Models were

compared by their 𝑅2 to the observed mutations over the test set and to an empirical

variance based on the model’s own feature vectors (fig. C-3b) (see Appendix). The

CNN+GP outperformed the FCNN+GP model over observed mutation counts and

empirical variance estimation for all three cancer types. Additionally, the performance

advantage of the CNN appeared to grow as window size and observed mutation counts

increased. This suggests that local epigenetic patterns play an appreciable role in set-

ting mutational processes and indicates that our model is well-designed to leverage

the recent growth in genomics corpus sizes.

C.2.3 Existing whole-genome regression models are time inef-

ficient at multi-resolution search

All existing regression models (RF, NBR, BR) require retraining for each desired

scale. A requirement that becomes computationally challenging at finer resolutions

(e.g. >1.5h for NBR at 100bp). To provide an estimate of the differences between

existing methods and our SPG, we performed a multi-scale time analysis presented

in . However, it does not include scales <100bp, such as 50bp used in this work

to detect driver hot-spots. A log-log transform of the scale against the run-time

() exposes a polynomial relation between the the window size and time (for small

enough scales where the compute power is not governed by the machine’s memory
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Figure C-3: 𝜇𝑅 and 𝜎2
𝑅 estimation accuracy over three cancer types: esophageal adeno-

carcinoma (top row), skin melanoma (middle row), and stomach adenocarcinoma (bottom
row). a. 𝑅2 accuracy of all models with respect to simulated 𝜇𝑅 (left) and 𝜎2

𝑅 (right) at
50kb. b. 𝑅2 accuracy of GP-based models to observed number of mutations (left) and
empirical variance (right) across scales in real data.
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Figure C-4: NBR and RF 𝑅2 accuracy (with CNN+GP as a reference) to observed num-
ber of mutations (top row) and empirical variance (bottom row) in real data and across
multiple scales for each cancer type: melanoma (left), esophageal adenocarcinoma (middle)
and stomach adenocarcinoma (right). Due to the Jackknife method requirement that the
number of RF estimators be linear with respect to the number of samples, estimating RF
variance at scale <50kb was computationally infeasible (with >8,000 estimators).

Figure C-5: Mean (𝜇𝑅) vs variance (𝜎2
𝑅) at 50kb for the ground-truth simulated data (blue)

and predictions for each model across all cancer types: melanoma (left), esophageal ade-
nocarcinoma (middle), stomach adenocarcinoma (right). NBR significantly over estimates
𝜎2
𝑅 in high mutation count regions because of its strict quadratic relation to the predicted

mean. RF consistently underestimates 𝜎2
𝑅. FCNN+GP is accurate in low to medium muta-

tion count windows, but overestimates 𝜎2
𝑅 with respect to the CNN+GP in high mutation

count regions.
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Figure C-6: Number of observed mutations versus number of expected mutations based
on the sequence context model alone in 50kb and 1kb regions with mappability >70% across
the three cancers. Sequence context explains <10% of variance at 50kb and <1% of variance
at 1kb scales for all cancers.

and system operations). Extending this relation to a scale as small as 50bp run-time

is as high as 1.5h for BR and 2.5h for NBR. Making the overall run-time for a typical

multi-resolution scan of 50bp, 100bp, 500bp, 1kb, 10kb over 2h for BR and over 4h

for NBR, while the SPG run-time remains under 1h.
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Figure C-7: Log-log run-time of current whole-genome regression methods that require
retraining per desired scale. Run-time increases polynomially with scale beyond a threshold
(where memory operations dominate the computation of the method).

Figure C-8: -𝑙𝑜𝑔10(P-value) quantile-quantile (qq) plots for expected vs observed number
of mutations in 50bp and 1kb windows using our graphical model with rate parameters
estimated in 10kb regions for each cancer. Under a properly calibrated null model, p-values
generated from the null distribution are uniformly distributed between zero and one. QQ
plots thus provide a qualitative assessment of the accuracy of a model’s null distribution: the
observed p-values should closely match the expected p-values from a uniform distribution
(red line) except at extremely small p-values where observations from the alternate model
should be found. The step-like nature of the qq-plot for stomach adenocarcinoma in 50bp
regions is because the null distribution is discrete (negative binomial) and the dataset has
relatively few mutations; thus each 50bp bin can have only one of a few possible mutation
counts (typically between 0 and 5).
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Chrom Start End Observed Expected p-value

17 7577500 7577549 13 0.0141 1.75× 10−30

17 7577100 7577149 10 0.0153 7.43× 10−23

17 7577550 7577599 8 0.00856 3.72× 10−20

17 7578400 7578449 8 0.0147 2.76× 10−18

17 7578500 7578549 6 0.0129 6.16× 10−14

17 7578200 7578249 6 0.0146 1.28× 10−13

Table C.1: All 50bp windows with significant recurrent mutations in the TP53 gene from
genome wide driver search in esophageal adenocarcinoma.
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Appendix D

Supplementary information related to

Chapter 6

D.1 Supplementary Results

D.1.1 Insights into mutation rate prediction accuracy from

feature maps

To gain insight into which specific epigenetic features the deep-learning model uti-

lized to achieve its high prediction accuracy over mutation counts, we leveraged an

approach that highlights input features important to the model’s performance (fea-

ture maps, Supplementary Methods appendix D.2). Averaging chromatin marks of

the same type (e.g., H3K27ac) across tissues revealed that the network learned to

focus on localized epigenetic structures (avg. size 1526 bp; 95% CI: 1512-1540 bp)

corresponding to known functional elements: transcription start sites, regions of ac-

tive transcription, enhancers, repressive regulatory states, and heterochromatin to

make predictions within kilobase-scale regions (Extended Data fig. 6-6). This behav-

ior was consistent across numerous cancers (Extended Data fig. 6-6). The functional

epigenetic structures that the network learned to recognize associated with observed

somatic mutation rates in ways consistent with known epigenetic correlates of muta-

tion rates [245] (Extended Data fig. 6-6). For example, regions of closed chromatin
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exhibited high mutation rates while those of active transcription exhibited relatively

low mutation rates. These results add to the growing evidence that deep-learning

models can implicitly learn biological structure when trained to directly predict func-

tion from sequence [59, 15, 122].

D.1.2 Comparison of cancer driver detection methods

Because our approach identifies driver candidates by testing for selection, we com-

pared its accuracy to other methods that also test for selection. We first compared our

method’s ability to identify driver genes in the PCAWG dataset against MutSigCV

[151] and dNdScv [169], two widely used methods created specifically to identify

genes under positive selection. Following previous works [71, 236], we used the Can-

cer Gene Census (CGC) [249] as a conservative approximation of the true-positive

rate and found our method matched or exceeded the F1-score (a joint measure of

sensitivity and specificity) of the other methods in 24 of 32 PCAWG cohorts (exclud-

ing hematological and skin malignancies [236]) (uniquely highest score in 13 cohorts;

tied for highest in 11 cohorts) (Supplementary fig. D-3, Supplementary table D.6).

We additionally calculated the receiver-operator curves for the top 600 genes iden-

tified by each method in the PCAWG pan-cancer cohort and found Dig systemat-

ically identified more true-positive drivers and fewer false-positives than the other

methods (Supplementary fig. D-3), a pattern that we also observed when we addi-

tionally compared the methods across whole-exome sequenced (WES) cohorts [71]

(Supplementary fig. D-4). We additionally found that Dig’s ability to accurately re-

call noncoding drivers previously identified in the PCAWG dataset was comparable

to that of three other burden-based non-coding driver detection methods, Larva [161],

ActiveDriverWGS [280], and DriverPower [236] (Supplementary fig. D-5, Supplemen-

tary table D.8, table D.9, table D.10, table D.11), although this analysis was biased

against Dig because the other three methods were used to generate PCAWG’s own

set of noncoding drivers.
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D.1.3 Additional details on alternative splicing analysis with

LeafCutter

Of the eight predicted cryptic splice SNV carriers for which we obtained RNA-seq data

(Methods section 6.5), two carriers were discarded due to insufficient coverage either

at the gene of interest (DO222305, median coverage of CIITA of 17 reads) or globally

(DO9074, median depth of coverage of 33). Of the remaining 6 carriers, 4 had clear

evidence of alternative splicing: LeafCutter [155] reported a splicing cluster containing

the predicted splice SNV with significantly different usage (𝑃 < 0.05) between the

carrier and at least a majority (4 of 6) of the control pairs (Supplementary table D.14).

We further investigated the remaining 2 predicted cryptic splice SNV carriers and

observed that one had some evidence of alternative splicing in the raw junction file.

This carrier (DO52675) had evidence of differential splicing that was not reported

by LeafCutter. Specifically, by manually annotating the junction files produced by

Regtools [65] with the introns defined in ENSEMBL, we observed that the carrier used

an alternative site consistent with the predicted splice SNV in approximately 10% of

transcripts, while the controls utilized this site in approximately 1% of transcripts.

The remaining carrier (DO33392) sample did not have evidence of alternative splicing

upon manual review. This may be due to the mis-spliced transcripts undergoing

nonsense mediated decay; however, we did not have statistical power to evaluate this

hypothesis.

D.1.4 Investigation of mutational burden in ELF3 5’ UTR

The PCAWG consortium previously carefully reviewed noncoding mutational hotspots

in the PCAWG dataset [214] and cataloged several reasons for excess mutations that

were unrelated to positive selection: activation-induced cytidine deaminase (AID)

activity in lymphomas, impaired nucleotide excision repair (NER) at transcription

factor binding sites in melanomas, activity of endogenous apolipoprotein B mRNA-

editing enzyme catalytic subunit (APOBEC) family deaminases, particularly in the

in the loop region of predicted hairpin structures, and systematic short-read mapping
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inaccuracies leading to artefactual mutation calls. We examined whether any of these

processes could be responsible for the observed enrichment of SNVs in the 5’ UTR of

ELF3.

In our analysis of the 5’ UTR of ELF3, we specifically excluded hematopoietic

tumors and melanomas, so neither AID nor NER likely account for the observed ele-

vated mutation rate. To investigate the possible role of APOBEC at the 5’ UTR of

ELF3, we obtained the results of the ABOPEC analysis performed by the PCAWG

consortium in which each observed mutation was annotated for whether it could be

attributed to APOBEC. Of the six SNVs observed in the ELF3 5’ UTR, only one

was annotated as occurring in a context targeted by APOBEC; however, the sample

in which that mutation occurred was not significantly enriched for APOBEC muta-

tions of that kind nor did the mutation occur within a cluster as would be expected

if it were due to APOBEC mutagenesis. We thus do not believe APOBEC likely

explains the mutational excess in the EFL3 5’ UTR. We next examined the gno-

mAD database [140] which both cataloged population polymorphic germline genetic

variation and noted regions of the genome where mapping artefacts were present.

The 5’ UTR of ELF3 was not annotated as a region with mapping artefacts by gno-

mAD. Moreover, of the 16 somatic mutations observed in the PCAWG and Hartwig

datasets, only one affected a position also affected by a germline SNP (the canonical

splice site chr1:201979836, although the mutation itself is different). The germline

SNP was rare (2 alleles observed in >30000 haplotypes). Moreover, the six muta-

tions in the PCAWG dataset were observed in five different cancer types and the

ten mutations in the Hartwig dataset were observed in seven different cancer types.

Thus, the enrichment cannot be attributed to a mutational process specific to one

cancer type. Finally, the mutation enrichment was specific to the canonical 5’ UTR of

ELF3 ; enrichment was not observed in surrounding regions as was noted by PCAWG

for several lncRNAs. In summary, we were unable to explain the mutation burden

observed in the 5’ UTR of ELF3 by processes that had been previously noted to

increase mutation rate independent of positive selection.
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D.1.5 Functional correlates of mutations in rare driver genes

We investigated the functional consequences of rare mutations in three genes with

known phenotypes when they act as common drivers: MSH2 (CNS tumors), MLH1

(CNS tumors), and SF3B1 (liver tumors). MSH2 and MLH1 encode DNA mismatch

repair proteins25; inactivation of these genes increases the spontaneous mutation rate

in cells [148]. Thus, carriers of pLoF mutations in these genes are expected to have

elevated mutation rates compared to non-carriers. Consistent with this expectation,

CNS tumors with rare pLoF mutations in both MSH2 and MLH1 exhibited signifi-

cantly increased mutation rates relative to non-carriers across 213 targeted sequenced

genes (MSH2 : mean 30.1 mutations in carriers vs. 3.0 in non-carriers, 𝑃 = 3.8×10−7

one-sided Mann-Whitney U-test; MLH1 : mean 35.3 mutations in carriers vs. 3.1 in

non-carriers, 𝑃 = 8.8 × 10−6 one-sided Mann-Whitney U-test). Further supporting

the potential driver role of MSH2 in CNS tumors, the gene also exhibited a significant

burden of missense mutations (18 observed vs. 5.3 expected, 𝑃 = 2.5 × 10−5), and

missense MSH2 carriers also exhibited a significantly elevated mutation rate (mean

35.4 mutations in carriers vs. 3.0 in non-carriers across 213 targeted sequenced genes;

𝑃 = 3.7×10−12, one-sided Mann-Whitney U-test). The mutation rate between pLoF

and missense MSH2 carriers was not statistically distinguishable (P=0.27). MLH1

did not carry a significant burden of missense mutations in CNS tumors, though this

may reflect a lack of statistical power.

SF3B1 encodes a protein involved in the splicing of pre-mRNA molecules. Acti-

vating mutations in this gene have previously been associated with increased rates of

alternative 3’ splice site usage and exon-skipping events [138]. One liver tumor with

a rare activating mutation in SF3B1 had been characterized with RNA-seq. Based

on a quantitative accounting of the alternative splicing events in this sample from

Kahles et al. [138], the carrier was in the 89th percentile for number of alternative

3’ splice events amongst TCGA liver samples (40th of 368 samples) and in the 88th

percentile for exon skipping events (43rd of 368 samples), exhibiting more than a

standard deviation increase in both types of events relative to the mean across liver
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samples. More samples are required to achieve the statistical power necessary to con-

clude that SF3B1 activating mutations in tumors in which SF3B1 is rarely mutated

alter splicing systematically.

D.1.6 Preliminary analysis of enhancer networks

An analysis of the SNV and indel burden in enhancers (obtained from Nasser et

al. [190]) of 725 CGC genes using Dig with default settings revealed 36 enhancers

with significant (FDR<0.1) mutational burdens. To coarsely filter regions potentially

affected by unmodeled local hypermutation processes, we required that observed mu-

tations each occur in a unique sample. This filter reduced the number of enhancers

to ten (Supplementary table D.23). Two enhancers (for LEPROTL1 and SRGAP3 )

contained recurrent mutations (LEPROTL1: 8:29952919-G>A (n=7), 8:29952921-

C>A,G,T (n=5); SRGAP3 : 3: 8486222-G>C,T (n=6)); however, it is possible

that these mutational hotspots could result from APOBEC mutagenesis or mapping

artefact [214]. Carriers of mutations in several enhancers demonstrated significant

(𝑃 < 0.05) or nearly-significant (𝑃 < 0.1) differences in expression compared to

non-carriers (not corrected for multiple hypothesis testing). For example, carriers of

mutations in the NCOR2 enhancer (12:125422682-125425761) had a nearly significant

decrease in expression (𝑃 = 0.078). However, expression did not always change in a

direction consistent with the known or predicted function of the gene in tumorigene-

sis. For example, carriers of indels in the MSI2 enhancer (17:54992281-54993673) had

decreased MSI2 expression (𝑃 = 0.0081) based on carrier tumors from kidney, rec-

tum, and ovary; however, MSI2 is a known oncogene in hematopoietic cancers. More

follow-up analysis will be necessary to determine whether the mutational enrichment

constitutes positive selection or unaccounted for neutral mutational processes.
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D.2 Supplementary Methods

D.2.1 Technical details of Dig’s deep-learning framework

Deep-learning network architecture

Convolutional neural network The CNN architecture is as follows: it contains 4

convolutional blocks with 2 batch normalized convolutional layers and ReLU activa-

tion. The first block reduces the 735×100 input tensor to 256×50 with 256 channels

and a double stride. The following blocks are ResNet-style residual blocks which

maintain their input dimension to facilitate residual connections with 256, 512, and

1024 channels respectively. Between each of the 3 residual blocks there is a double

stride (ReLU activated and batch normalized) convolutional layer, which reduces the

tensor length by half and doubles its height with additional channels. The output of

the last residual block is flattened (and optionally concatenated with the two-flanking

region counts) and passed through 3 fully connected (FC) layers. The first two FC

layers are ReLU activated and reduce the dimensionality of the vector to 128 and 16

dimensions respectively. The last FC layer performs the final regression that predicts

the SNV count in the 10kb region via a linear function. The CNN architecture was

implemented in PyTorch [199].

Gaussian process The Gaussian process is a sparse, inducing-point GP [250] with

a radial basis function kernel that takes as input the final 16-dimensional feature

vector of the trained CNN and non-linearly predicts both the mean and variance

of the neutral mutations in the associated 10kb region. The GP architecture was

implemented in GPyTorch [98].

Deep-learning model training

Filtering of 10kb regions To avoid training the model over regions with inac-

curate mutation counts due to technical noise, we removed regions likely to contain

spurious mutation counts, defined as windows where less than 50% of the 36mers
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uniquely mapped back to that region or regions in the top 99.99th percentile of mu-

tation counts.

Model training The CNN and GP were trained sequentially. First, the CNN was

trained for 20 epochs with a batch size of 128 samples, using the Adam optimizer to

minimize mean squared error loss to the observed mutation counts in each training

window. For training, the input data was additionally divided via an 80-20 split into

training data and validation data (thus for each fold, 64% of the genome was used for

training, 16% for validation, and 20% for held-out prediction). To avoid overfitting

the data, the epoch from which the trained CNN was selected was determined by

highest validation R-squared accuracy to observed counts in the validation-set across

all CNN epochs. Once the CNN was trained, the final 16-dimension feature vector for

each training window was passed as input to the Gaussian process which was trained

to predict the observed mutation counts in each training window by minimizing a

multivariate normal loss function with the Adam optimizer. The GP was optimized

with 400 inducing points for 50 iterations. Due to the inherent variability in gradient-

based optimization, we ran the GP five independent times and calculated the ensemble

average of the mean and variance predictions from each of the individual runs on the

held-out set of regions. These ensemble predictions were then used as the mean

and variance estimates for each 10kb region. For each fold, we also predicted mean

and variance of mutation counts in windows filtered prior to training. The ensemble

average across all GP runs and all folds were used as the mean and variance estimates

for these regions.

Some random initializations of the GP would fail to converge (defined as a de-

crease in R-squared accuracy of more than 0.03 compared to the final accuracy of the

trained CNN). When this occurred, the GP was restarted up to 3 times to achieve a

successful convergence. If after 3 attempts, the GP had not successfully converged,

the number of inducing points was reduced by 100 and the GP given another 3 at-

tempts to converge. This process continued until successful convergence or a reduction

to zero inducing points. If a GP failed to converge in all 12 attempts, the CNN was
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reinitialized to generate a new set of feature vectors.

D.2.2 Technical details of Dig’s probabilistic graphical model

We derived a probabilistic method to estimate a distribution over the number of SNVs

and indels observed at a set of positions in a dataset of interest given the kilobase-scale

estimated mutation rate 𝜇𝑅 and estimation uncertainty 𝜎2
𝑅 along with the sequence

context likelihood estimates. We refer to this method as Dig.

Passenger model for indels and multi-nucleotide variants

The indel model is identical to that of the SNV model with two exceptions. First,

we assume a uniform distribution of indels independent of sequence context, as has

been assumed in previous works [169]. Thus in the negative binomial distribution

above,
∑︀

𝐼 𝑝𝑅,𝑎𝑋→𝑌 𝑏 is replaced by the uniform mutation probability |𝐼| /|𝑅| where

|·| denotes the total number of genomic positions in 𝐼 and 𝑅. The uniform assumption

of indels could readily be replaced with a probability distribution based on indel type,

size and homology [10], but we do not pursue that extension here. Second, the scaling

factor for indels, 𝐶indel, is estimated as the ratio of the number of indels observed in

the target dataset to the number of expected indels in the training dataset across the

coding sequence of all genes not in the Cancer Gene Census. We treat multi-nucleotide

variants (MNVs) as indels.

We tested estimating 𝜇𝑅 and 𝜎2
𝑅 independently for SNVs and indels using separate

deep learning models for the two types of mutations. We found that direct estimation

of these parameters for indels resulted in a less accurate indel model than using the

SNV estimates as a proxy for indel estimates. We suspect this is due to the fact that

indels occur an order of magnitude less frequently than SNVs and thus there are too

few observed indels in the training cohort for the deep-learning model to build an

accurate prediction function. As sample sizes become larger, we expect that directly

training a deep-learning model to predict indels will yield more accurate predictions.
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Extension to mutations spanning multiple kilobase-scale regions

We take two approaches to extend the above passenger models to account for sets of

mutations that span multiple kilobase-scale regions.

• Approach 1: approximate the distribution across the regions by extending the

variational estimation of 𝛼𝑅 and 𝜃𝑅. Specifically, let 𝑅′ = {𝑅1, . . . , 𝑅𝑛} be

the set of regions in which a set of mutations occur. Then we estimate 𝜇𝑅′ =∑︀𝑛
𝑖=1 𝜇𝑅 and 𝜎2

𝑅′ =
∑︀𝑛

𝑖=1 𝜎
2
𝑅, and 𝛼𝑅′ and 𝜃𝑅′ are then estimated as above from

𝜇𝑅′ and 𝜎2
𝑅′ .

• Approach 2: exactly estimate the distribution across the mutation set by con-

volving the distributions arising from the subset of mutations in each 𝑅𝑖 ∈ 𝑅′.

Approach 1 is computationally efficient and accurate so long as the mutation rate

estimates across {𝑅1, . . . , 𝑅𝑛} are sufficiently similar. Thus approach 1 is preferred

when 𝑅′ is composed of a small number of contiguous (or nearly contiguous) regions

and is the default implemented algorithm. When 𝑅′ is composed of regions with

highly variable mutation rates, approach 1 is likely to either over- or under-estimate

the passenger mutation rate, leading to improperly calibrated p-values. In this case,

approach 2 will provide accurate estimates but requires more computation due to the

convolution operation.

Testing mutational burden across a set of candidate mutations using an

existing mutation map

The steps to estimate selection using Dig are as follows:

User steps:

1. Download a mutation map for the cancer matching the cancer type of the

dataset of interest.
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2. Provide the mutation dataset of interest and define the set 𝐼 of possible muta-

tions. 𝐼 can be defined as any set of genomic intervals (contiguous or noncon-

tiguous) or any set of possible SNVs anywhere in the genome.

Software steps:

1. The mutation likelihoods 𝑝𝑅, 𝑎𝑋→𝑌,𝑏 and 𝑝indel are calculated as described above

for each mutation set. The nucleotide sequence of R is extracted from the

reference genome.

2. The SNV and indel scaling factors are estimated for the cohort of interest

3. The p-value of the number of SNVs and indels observed in the cohort of interest

for each mutation set are calculated using the negative binomial distributions

defined above as the null models. In this work, we calculated the P-value as

the upper-tail probability of the observed mutation count, applying a mid-P

correction to account for the discrete data.

4. The p-values for the SNVs and indels are combined via Fisher’s method.

For this study, we used the mutation maps trained using both epigenetic tracks

and flanking mutation counts to test for burdens of mutations. These are also the

maps we have made publicly available.

D.2.3 Associating epigenetic structure to mutation density

with feature maps

To investigate the underlying features the deep learning model considered when pre-

dicting mutation rates, we added another layer of computation between the input

epigenetic matrix and the CNN to serve as feature maps. Feature maps are a tool

used in computer vision tasks to detect which regions of an image the model uses to

perform prediction [239]. We used this technique to evaluate which epigenetic pat-

terns the CNN exploited to predict mutation rates. To reduce the potential for noise,

we applied this technique to input matrices encoding 50kb regions.
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Feature map generation

An additional two-layered network was added between the input matrix and CNN to

force the model to attend to the subset of most salient input sub-regions and compute

the feature maps. In the attention augmented CNN, the input matrix was first passed

through two convolutional layers preserving the input dimensionality (stride length

1, kernel sizes 5 and then 3) with ReLU activations. Subsequently, the output of

the two layers was passed through a row-wise Softmax function that had the effect

of making most entries in the matrix close to zero with sparse values close to one.

The resulted “feature map” matrix was then element wise multiplied with the original

input and passed on to the downstream CNN. This had the effect of setting most

entries in the original epigenetic matrix to near zero, thus forcing the CNN to rely

only on the small subspace of the input that was not zeroed out. The optimization

process compels the feature maps to attend to the features of the input matrix most

relevant for the prediction process.

Extraction of epigenetic content of feature maps via dimensionality reduc-

tion and clustering

While the feature maps have the theoretical ability to attend to any regions of the

input matrix, in practice we found they almost always attended to a large set of

epigenomic features (rows) in a small set of contiguous columns (genomic positions),

zeroing out most values outside of these columns. We extracted and summarized the

epigenetic content of each of these attention columns through the following approach:

1) in each 50kb window, we extracted the largest contiguous set of columns such that

each column contained at least 10 cells with a non-zero entry. This contiguous set of

columns was defined as an “attention super-column”. 2) Each attention super-column

was reduced to an 8-dimensional vector by averaging together tracks of the same

epigenetic type per column (DNase, H3K27ac, H3K27me3, H3K36me3, H3K4me1,

H3K4me3, H3K9ac, and H3K9me3) and taking the maximum value across each row.

3) The vectors were normalized and projected into a two-dimensional subspace for
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clustering and visualization via a Uniform Manifold Approximation and Projection

(UMAP) transformation (Python UMAP-learn package; # neighbors: 30, minimum

distance: 0, # components: 2). 4) Spectral clustering (Python Sklearn package) was

applied to the two-dimensional subspace to identify attention super-columns with

similar epigenetic content. The clustering consistently identified five distinct clusters

across cancer cohorts (Extended Data fig. 6-6).

Connecting feature map epigenetic clusters to functional annotations

To determine whether the attention super-columns in a cluster represented a func-

tional epigenetic structure, we extracted the average Epilogos [179] signature vector

per attention super-column and examined whether the Epilogos signatures were con-

sistent within a cluster. Epilogos is a summary of the functional epigenetic states

across 111 tissue types as inferred by the ChromHMM method.

Connecting feature map epigenetic clusters to mutation rate

We extracted the mutation count for the 50kb window in which each attention column

occurred. We computed the mean and standard deviation of mutation counts across

the attention column clusters.

D.2.4 Additional details about the comparison of mutation

rate models

Deflation of variance explained statistic in low count scenarios

In discrete stochastic systems, random stochasticity of events when event rate is

low results in deflation of the variance explained statistic. The characteristic arises

because a discrete system generally has a fractional expected value but observations

must take on integer values. Thus, even if a model perfectly predicts the expected

value, it will explain relatively little variance if the difference between the fractional

expected value and possible observed values is of similar magnitude to the possible

observations (e.g., expected value of 0.5 versus possible observed values of 0 or 1).
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Intuitively, for a discrete process with event rate <1, the expected value will be a real

value between zero and one but the observed count will be an integer (0, 1, 2, etc.);

thus, the true expected value will explain relatively little variance of observed data

because the observed values almost always deviate substantially from the expected

value.

Tiled regions

We compared the variance explained (square of the Pearson correlation coefficient)

in SNV counts within 10kb windows tiled across the genome between Dig and NBR

[191]. NBR is, to our knowledge, the only method that has been previously used to

build passenger mutation rate models in kilobase-scale regions tiled across the genome.

However, code for running the NBR method is not currently publicly available. For

each cancer, the NBR model was trained on the same regions used to train our deep-

learning model (excluding regions with 36mer mappability <50% and regions in the

top 99.99th percentile of mutation count). The regions excluded from training were

also excluded when calculating the variance explained statistic. We also assessed the

variance explained of SNV counts in 1Mb regions by our method and NBR (restricted

to 1Mb regions with >50% 36mer mappability). To estimate the expected mutation

count in each 1Mb region, we summed together the estimates of each non-overlapping

10kb window within the 1Mb region.

Coding sequence

We compared the variance explained in nonsynonymous SNV counts between Dig

and two widely used methods that generate nonsynomous SNV passenger mutation

models: MutSigCV [151] and dNdScv [169]. Both MutSigCV and dNdScv utilize the

synonymous mutations observed in each gene to estimated gene-specific passenger

mutation rates. Variance explained was evaluated over the coding sequence of 3,740

genes that were 1) common to all three methods; 2) between 1kb and 1.5kb in length;

and 3) not in the CGC. The length restriction was imposed to prevent coding sequence

length from artificially inflating variance explained since the number of mutations in
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a gene strongly correlates with its length.

Noncoding regulatory elements

We compared the variance explained in SNV counts between Dig and two other

methods that estimate passenger mutation rates in noncoding regulatory elements:

DriverPower [236] and Larva [161]. DriverPower is optimized to estimate mutation

rate within a set of regulatory elements predefined by the authors of the software; this

set of elements is not easily changed. We thus evaluated variance explained in a set of

7,412 noncoding regulatory elements (enhancers, lncRNAs, and sncRNAs) between

0.5kb and 1kb in length that could be modeled by DriverPower. The length restriction

was again implemented to prevent inflation of variance explained due to variance in

element length. While Larva can predict mutation rate within genomic intervals,

it cannot natively provide a prediction for elements that are composed of multiple,

non-contiguous intervals. To circumvent this, we divided each element evaluated by

DriverPower into its constituent intervals, produced a prediction for each interval

separately with Larva, and summed the predictions across regions composing a single

element.

D.2.5 Details about the comparison of driver element detec-

tion methods

Comparison of driver gene detection methods

We compared the sensitivity, specificity, and F1-score (harmonic mean of sensitivity

and specificity) for driver gene detection from coding sequence mutations between

Dig, MutSigCV, and dNdScv across the 32 PCAWG cancer cohorts (melanomas and

hematopoietic cancers were excluded as in previous comparisons [236]). We chose to

compare to these two methods because they are widely used driver gene detection

methods that rely on neutral mutation models to test for selection. An FDR sig-

nificance threshold of 0.1 was applied for all methods and cohorts. A true-positive

driver gene was defined as any gene in the Cancer Gene Census (CGC) [249] that was
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detected as FDR significant by any of the methods in a given cohort. A false-positive

was defined as any gene identified as FDR significant that was not in the CGC. Each

method was applied to the same set of 16,794 genes. Both SNVs and indels were

used to identify potential driver genes. We additionally compared power over the 16

whole-exome sequenced cohorts from Dietlien et al. (excluding hematopoietic can-

cers as above). The larger cohort sizes enabled the approximation of receiver-operator

characteristic curves for the methods. The curves were approximated because genes

in the CGC were used as a proxy for true-positives (that is, a gene not in the CGC

may still be a true-positive driver but would be counted as a false-positive in this anal-

ysis). Because of the approximated nature of these curves, we visualized the results

as false-positive counts vs true positive counts rather than the standard false-positive

vs true-positive rates, following precedent from Dietlein et al. The power of a method

was quantified as the area under these approximated receiver-operator characteristic

curves.

Comparison of noncoding driver element detection methods

We compared the sensitivity, specificity, and F1-score for driver noncoding element

identification from noncoding SNVs between Dig, DriverPower, Larva, and ActiveDriver-

WGS across the 32 PCAWG cancer cohorts (excluding melanoma and hematopoietic

cancers as above). We chose to compare to these three methods because they are

recently introduced methods for noncoding driver element identification that rely on

neutral mutation models to test for selection. An FDR significance threshold of 0.1

was applied for all methods and cohorts. A true-positive driver element was defined

as any element previously identified by PCAWG as carrying a burden of mutations

[214] that was detected as FDR significant by any of the methods in a given cohort.

A false-positive was considered any FDR significant element that was not previously

identified by PCAWG as having a burden of mutations. This comparison was con-

servative (biased against our approach) for two reasons: 1) The other three methods

were previously applied to the PCAWG dataset to generate the set of putative driver

elements that we then used as a gold standard for the same samples; and 2) we re-
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stricted the analysis to SNVs because not all methods we compared to could accept

indels. Indeed, our approach is the only approach that models SNVs and indels inde-

pendently; the other approaches either do not model indels or model indels and SNVs

as a single category.

D.2.6 Constructing a genome-browser of genome-wide muta-

tion rate estimates

We used Dig to estimate mutation rates in every non-overlapping regions of size

100bp, 250bp, 500bp, 1kb, 2.5kb, 25kb, 50kb, 100kb, 250kb, 500kb and 1Mb tiled

across the genome (excluding assembly gaps in the GRCh37 reference genome) for 37

PCAWG cancer types. These predictions were used to construct data structures that

can be interactively visualized by HiGlass [141].

D.2.7 Details about power analysis

We conservatively simulated Dig’s power to detect driver SNVs at different carrier

frequencies across enhancers and noncoding cryptic splice sites under the pan-cancer

mutation map using the following Monte Carlo approach.

For a given sample size and carrier frequency of driver mutations:

1. For each element, randomly draw a mutation rate parameter from the gamma

distribution defined by mean and variance estimated by the kilobase-scale model.

2. For each element, estimate the scaling factor as the target sample size divided by

the pan-cancer sample size (n=2,279) and randomly draw an observed number of

mutations from a Poisson distribution with rate parameter equal to the sampled

rate multiplied by the scaling factor and by the probability of an SNV in the

element.

3. For each element, randomly sample the number of driver mutations from a Pois-

son distribution with rate parameter equal to the target sample size multiplied

by the carrier frequency.
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4. Count the number of elements for which the sum of the background mutations

and driver mutations exceeded the Bonferroni-corrected 𝛼 < 0.05 threshold

under Dig’s negative binomial null mutation distribution for each element. Di-

vide the count by the total number of tested elements to estimate a detection

likelihood.

5. Repeat steps 1-4 one thousand times and average the detection likelihoods across

all simulations.

D.2.8 Additional details about quantifying selection on cryp-

tic splice SNVs

Monte Carlo method for estimating confidence intervals of mutational en-

richment.

Mutation enrichment was defined as the ratio of the observed mutations to expected

mutations. We used the following Monte Carlo simulation approach to estimate the

95% confidence intervals of enrichment for a given set of genes and given mutation

type.

1. For each gene, estimate the enrichment coefficient as the number of observed

mutations divided by the number of expected mutations. A small pseudo-

count of 1× 10−16 was added to the numerator and denominator to prevent the

enrichment from being identically zero when no mutations were observed in a

gene. (This would lead to a degenerate Poisson distribution in step 3). For each

gene, randomly draw a Poisson rate parameter from the gamma distribution

defined by the mean and standard deviation estimates of the kilobase-scale

mutation rate map.

2. For each gene, randomly draw a number of “observed” mutations from a Pois-

son distribution with rate parameter equal to the simulated rate parameter

multiplied by the enrichment coefficient and the likelihood of the mutation type
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occurring within the gene. Conceptually, this mutation count is simulated under

the hypothesis of positive selection on the mutations within the gene.

3. Estimate a simulated enrichment by summing the number of simulated mu-

tations across all genes in the set and dividing by the expected number of

mutations under the null model of no enrichment.

4. Repeat steps 1-4 one thousand times and define the boundaries of the 95%

confidence interval as the lower 2.5th percentile and upper 97.5th percentile of

the simulated enrichments.

Additional quantification of mutation enrichment in TSGs and oncogenes

To gain additional confidence in the accuracy of our mutation enrichment estimates,

we directly compared the mutation rate in genes not in the CGC to TSGs and onco-

genes in the CGC using a two-sided Chi-squared test for a two-by-two contingency

table. This approach recapitulated the enrichment patterns we observed using Dig.

However, the Chi-squared test does not account for global mutation rate differences

between genes not in the CGC and genes in the CGC; thus, the precise estimates in

Supplementary fig. D-9 are unlikely to be accurate.

Identification of individual TSGs enriched for noncanonical cryptic splice

SNVs

In each of the 37 PCAWG cohorts, we identified TSGs in the CGC with a signifi-

cant burden of noncanonical cryptic splice SNVs under the null model estimated by

our method. The significance threshold was defined per cancer as FDR q-value<0.1

corrected for the number of tested TSGs (n=283). We excluded one significant

gene, PRDM1, from further analysis because the observed excess mutations were

attributable to a single sample.
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Quantification of the pan-cancer contribution of cryptic splice SNVs to

TSG driver SNVs

We calculated the excess of SNVs in TSGs in the CGC stratified by function (mis-

sense, nonsense, canonical splice, and noncoding canonical splice) as the difference

between the number of mutations observed and the number expected. The relative

contribution for each category was defined as the excess for that category normal-

ized by the sum of the excess across all categories. The 95% confidence interval for

the contribution of each category was calculated using the Monte Carlo approach

described above for enrichment with the following modifications:

• In step 3: for each gene, the number of neutral mutations was also simulated

from a Poisson distribution with rate parameter equal to the gamma-simulated

rate parameter multiplied by the probability of a mutation occurring in the

gene. Conceptually, this mutation count is simulated under the hypothesis of

neutral selection on the mutations within the gene.

• In step 4: the excess for each gene is calculated as the difference between the

number of mutations simulated under positive selection and the number sim-

ulated under neutral selection. The total excess for each mutation category is

summed across all genes and the relative contribution calculated as above.

Enrichment of predicted splicing impact in noncoding cryptic splice SNVs

observed in significantly burdened TSGs

We used a bootstrap method to calculate a p-value for the null hypothesis that non-

canonical cryptic splice SNVs observed in the genes with a significant burden of cryp-

tic splice SNVs had a predicted impact on splicing similar to the predicted impact of

cryptic splice SNVs observed in genes not in the CGC. We calculated the median of

the ∆ scores randomly resampled from the observed cryptic splice SNVs in the TSGs

and observed cryptic splice SNVs in genes not in the CGC ten thousand times (the

number of SNVs sampled from the non-CGC set was equal to the number observed

in the TSG set). We estimated the p-value as the number of times the resampled
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median of the non-CGC cryptic splice SNVs exceeded the resampled median of the

cryptic splice SNVs observed in the TSGs.

Analysis of alternative splicing events in RNA-seq data

We obtained RNA-seq data for 8 samples carrying deep intronic predicted cryptic

splice SNVs (i.e., distance to nearest exon boundary >20 base-pairs) in TSGs with a

significant burden of predicted noncoding cryptic splice SNVs. This represented all

such carriers with available RNA-seq data. We downloaded the STAR aligned BAM

files for each donor and six randomly selection non-carriers from the same cancer

cohort, and we used bedtools bamtofastq to convert these reads into FASTQ files

for de novo alignment. We then ran olego [268] with the default junction database

and max edit distance of 4 (flag -M 4) on each FASTQ file. Olego is specifically

designed for increased sensitivity to de novo splicing in RNA-seq reads. The de novo

aligned sam files were then converted to bam files, sorted, indexed, and processed for

junctions by Regtools [65] for downstream analysis (input parameters: -a 8 -m 50

-M 50000). For each of the carrier-control pairs, we performed differential splicing

analysis using LeafCutter as described by Li et al. [155]. The introns in each pair

were clustered using the leafcutter_cluster_regtools.py script, requiring a single

split read to support a junction and assuming a maximum intron length of 500Kb

(input flags -m 1 -o -l 500000). Differential splicing was then evaluated using the

leafcutter_ds.R script using the Gencode v19 exons provided with the software.

When a gene had more than one transcript available, we used the canonical transcript

as annotated in UCSC genome browser. We considered a predicted splice SNV to

have strong supporting evidence if LeafCutter reported a splice cluster containing

the predicted splice SNV that had significantly different usage between carrier and

control (𝑝 < 0.05) in the majority of the carrier-control pairs. If LeafCutter did

not report a cluster containing the predicted splice SNV, we additionally examined

the raw junction files from Regtools. We considered a predicted SNV to have some

supporting evidence if junctions supporting the prediction were observed in the raw

junction files. Two of the eight samples were discarded due to insufficient coverage of
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the gene of interest (Supplementary table D.14).

D.3 Supplementary Figures
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Figure D-1: Plate diagram of the probabilistic model that Dig uses to model the number of
neutral mutations (𝑀𝑖) in an element of interest. 𝜂𝑅: observed data used as input to Dig’s
deep-learning model (chromatin modifications and, optionally, flanking mutation counts) to
estimate regional neutral mutation parameters for region R. 𝜇𝑅 and 𝜎𝑅: mean and standard
deviation estimates of the neutral mutation rate in region R. 𝛼𝑅 and 𝜃𝑅 gamma distribution
shape and scale parameters, respectively. 𝜆𝑅 gamma-distributed mutation rate parameter
for region R. 𝑋𝑅 poisson-distributed mutation count in region 𝑅. DNA seq.: the DNA
sequence from the human reference genome. 𝑝𝑖: genome-wide likelihood of a mutation in
a given DNA context centered at position 𝑖. 𝑝𝑖: likelihood of mutation based on sequence
context centered at position 𝑖 normalized such that

∑︀
𝑖∈𝑅 ̃︀𝑝𝑖 = 1. See Methods for additional

details.

191



Figure D-2: Comparison of variance explained of SNV counts across methods, annotations,
and cohorts. a, Variance explained of SNV count in 10kb regions tiled across the genome
by Dig and NBR [191] in N=16 PCAWG cancer cohorts with >1 million SNVs (excluding
hemopoietic tumors, for which NBR failed to converge). Regions in which <50% of 36mers
are unique are excluded as are regions in the 99.99th percentile of mutation count. b,
Variance explained of nonsynonymous SNV count in genes 1-1.5kb in length (n=3,740 genes)
in N=16 PCAWG cancer cohorts. c, Variance explained of SNV count in enhancers and
noncoding RNAs (long and short) 0.5-1kb in length (n=7,412 noncoding elements) in 16
PCAWG cancer cohorts. d, as b for 16 whole-exome sequenced cancer cohorts from Dietlein
et al. [71].
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Figure D-3: Precision-recall comparison of gene driver methods in the PCAWG cohort. a,b
F1-score (harmonic mean of precision and recall) in N=32 PCAWG cohorts (melanoma and
hematopoietic tumors were excluded as in previous work [236]) across 16,794 genes common
to the three methods. Precision and recall were calculated using genes in the Cancer Gene
Census as a conservative true positive set. a, All samples. b, Excluding samples with >3000
coding mutations and restricting the total number of mutations per sample per gene to 3
(default filtering options for dNdScv). c,d Recall and precision measured across all N=32
PCAWG cohorts for c, all samples and d, samples with <3000 coding mutations.
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Figure D-4: Approximate number of false-positive and true positive driver genes identi-
fied from 15 whole-exome sequenced cohorts from Dietlein et al. [71]. The numbers are
approximate because the full set of driver genes is unknown; we therefore used genes in the
CGC as a conservative approximation of true positives (since a non-CGC gene may still be
a true driver). The MutSigCV model produced mis-calibrated p-values for the pan-cancer
cohort, suggesting that its model assumptions may have been violated by the large cohort
of heterogeneous cancer types.
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Figure D-5: Precision-recall comparison of noncoding driver detection methods in the
PCAWG dataset. a, F1-score across 95,231 noncoding elements as defined in Rheinbay et
al. [214] in PCAWG cancer cohorts with at least one identified noncoding driver (n=20
cohorts). The performance of Dig was also evaluated when removing samples with >1000
SNVs across all elements and restricting the total number of SNVs per sample per element
to 3. DriverPower and Larva do not have built-in filtering options. ActiveDriverWGS was
run with default filtering which removes any sample with >30 SNVs per megabase. b, Recall
and precision by method combined across the cohorts in a. c,d, as in a and b but restricting
to n=11 cohorts with at least two identified noncoding drivers.
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Figure D-6: Simulated power to detect driver elements in a pan-cancer cohort by sample
size and by size of the elements being tested. The simulations were performed based on
cryptic splice sites in 15,000 genes and 15,000 enhancers.
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Figure D-7: Proportion of excess protein-altering SNVs in TSGs as estimated by Dig, a,
and dNdScv, b. c, Distribution of proportion of excess SNVs as estimated using a Monte
Carlo simulation approach based on Dig (Methods section 6.5) with the corresponding dNd-
Scv estimate indicated with a black dashed line. Essential splice SNVs include SNVs at
canonical splice sites (see fig. 6-3a) and SNVs 5 bp 5’ of an exon start, which dNdScv also
considers in its analysis of splice mutations.
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Figure D-8: SNV enrichment (with 95% CI) and excess analysis excluding samples with
>3000 coding mutations. a, as in fig. 6-3b but excluding samples with >3000 coding mu-
tations (default filtering criterion in dNdScv) (N=2,271 samples). b, As in fig. 6-3e but
excluding samples with >3000 coding mutations.
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Figure D-9: Estimated SNV enrichment with 95% CI in tumor suppressor genes (TSGs),
a, and oncogenes, b, with enrichment calculated with respect to the number of observed
mutations in genes not in the Cancer Gene Census (CGC). Enrichment is calculated as the
rate of SNVs of a given type observed in TSGs (oncogenes) relative to the rate of SNVs of
the same type observed in genes not in the CGC. (N=2,279 samples in both panels).
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Figure D-10: Additional predicted cryptic splice SNV carriers in which LeafCutter iden-
tified strong evidence of alternative splicing. The location of the predicted cryptic splice
SNV is marked with a thick black vertical line and labeled in red. a, SMAD4 cryptic splice
carrier. b,c TP53 cryptic splice SNV carriers.
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Figure D-11: Normalized expression of TP53 stratified by the type of mutation individuals
carry in TP53. P-values comparing expression of 5’ UTR variant carrier to other carrier
categories: 5’ UTR vs no variant: 𝑃 = 1.2× 10−4; 5’ UTR vs. missense: 𝑃 = 3.3× 10−5; 5’
UTR vs. nonsense: 𝑃 = 0.023; 5’ UTR vs. essential splice: 𝑃 = 0.011; 5’ UTR vs. coding
indel: 𝑃 = 8.5× 10−3. All p-values by one-sided Mann-Whitney U-test.

201



Figure D-12: Evaluation of neutral mutation model for ten solid cancer megacohorts.
Using whole-exome sequenced samples, we compared the accuracy of estimating the scal-
ing factor based on missense SNVs with CADD phred<15 observed in genes in the MSK
IMPACT 230 targeted sequencing panel (the approach used for analyzing the megacohorts,
see Methods) to the scaling factor estimated using synonymous mutations observed in all
autosomal genes (Dig’s default method), a, and using synonymous mutations observed in
genes in the MSK IMPACT 230 targeted sequencing panel, b. c, The estimated rate of ex-
cess missense SNVs with CADD phred<15 (with 95% CI) in tumor suppressor genes in the
MSK IMPACT 230 targeted sequencing panel. The burden of missense SNVs with CADD
phred<15 is not significant in any cancer type. d, The rate of excess pLoF SNVs in onco-
genes (with 95% CI) in the MSK IMPACT 230 targeted sequencing panel. The burden of
pLoF SNVs is not significant in any cancer type.
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Figure D-13: Estimated excess activating SNV rate in oncogenes with 95% CIs, a, and
excess pLoF SNV rate in TSGs with 95% CIs, b, as in fig. 6-4 but with analysis restricted to
whole-exome sequenced samples only. Asterisks indicate the burden of SNVs is significant
in the given cancer type. Error bars are larger than in 6-4a,b because sample size is smaller.
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D.4 Supplementary Tables
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PCAWG cancer code MSI samples in cohort
Number of samples 
(excluding MSI high)

Number of SNVs 
(excluding MSI high)

Number of indels 
(excluding MSI high)

Adenocarcinoma_tumors TRUE 1622 22927110 1346913
Biliary-AdenoCA FALSE 34 421403 135990
Bladder-TCC FALSE 23 486025 17926
Bone-Leiomyo FALSE 34 172618 9343
Bone-Osteosarc FALSE 41 147296 7854
Breast-AdenoCa FALSE 195 1305975 89681
Breast_tumors FALSE 208 1396392 92707
CNS-GBM FALSE 39 478194 19565
CNS-Medullo FALSE 141 184168 21725
CNS_tumors FALSE 287 726664 46066
Carcinoma_tumors TRUE 1847 26554707 1527041
ColoRect-AdenoCA TRUE 50 8270011 161029
Digestive_tract_tumors TRUE 792 17188295 883504
Eso-AdenoCa FALSE 97 2557599 145549
Female_reproductive_system_tumors TRUE 378 3012549 221936
Glioma_tumors FALSE 146 542496 24377
Head-SCC FALSE 56 835990 41955
Hematopoietic_tumors FALSE 235 1437483 103016
Kidney-RCC FALSE 143 857733 133974
Kidney_tumors FALSE 186 932040 139803
Liver-HCC FALSE 314 3600337 252980
Lung-AdenoCA FALSE 37 1231550 63730
Lung-SCC FALSE 47 1960685 109184
Lung_tumors FALSE 84 3192235 172875
Lymph-BNHL FALSE 105 1164199 88542
Lymph-CLL FALSE 90 205996 11659
Lymph_tumors FALSE 197 1395113 101257
Ovary-AdenoCA FALSE 110 911513 88368
Panc-AdenoCA FALSE 232 1410855 163903
Panc-Endocrine FALSE 81 239462 12277
Pancan FALSE 2279 28682089 2004228
Prost-AdenoCA FALSE 199 607393 57541
Sarcoma_tumors FALSE 95 349465 19414
Skin-Melanoma FALSE 107 11585437 314368
Squamous_tumors FALSE 121 2902110 157191
Stomach-AdenoCA TRUE 65 928090 60175
Uterus-AdenoCA TRUE 40 591830 34734

Table D.1: Information about the 37 PCAWG cancer cohorts used to train Dig’s mutation
rate models.
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PCAWG cancer cohort Fold_1 R2 Fold_2 R2 Fold_3 R2 Fold_4 R2 Fold_5 R2
Adenocarcinoma_tumors 0.918957259 0.920199532 0.92084372 0.920420119 0.921227
Biliary-AdenoCA 0.159543393 0.153712927 0.161466432 0.15548508 0.158615
Bladder-TCC 0.093561652 0.096111685 0.09370767 0.10493435 0.090787
Bone-Leiomyo 0.100839814 0.09198088 0.097773089 0.097283233 0.099921
Bone-Osteosarc 0.102080291 0.107975532 0.10504885 0.108352047 0.111192
Breast-AdenoCa 0.233392222 0.232596857 0.222005497 0.222182137 0.230129
Breast_tumors 0.23160267 0.236206516 0.232948879 0.229368443 0.235223
CNS-GBM 0.155941469 0.152852124 0.160001526 0.161626354 0.160865
CNS-Medullo 0.056017201 0.054874819 0.055408597 0.055214318 0.055461
CNS_tumors 0.200499694 0.208184835 0.204590346 0.203489125 0.207013
Carcinoma_tumors 0.930802911 0.927844493 0.929195139 0.930959549 0.930235
ColoRect-AdenoCA 0.806928846 0.809537932 0.809242211 0.809217844 0.806461
Digestive_tract_tumors 0.913153946 0.914786675 0.915964141 0.917274978 0.915462
Eso-AdenoCa 0.84146191 0.83870089 0.837969342 0.840333921 0.836239
Female_reproductive_system_tumors 0.475950291 0.477638573 0.475720539 0.471543677 0.470669
Glioma_tumors 0.177448169 0.181617708 0.181398039 0.184360074 0.185118
Head-SCC 0.415764933 0.422772844 0.414905789 0.421471756 0.412209
Hematopoietic_tumors 0.66365421 0.660048014 0.663345927 0.661911568 0.661729
Kidney-RCC 0.197549456 0.195892232 0.200420277 0.198640356 0.202251
Kidney_tumors 0.214503216 0.209528507 0.211909113 0.21112298 0.212555
Liver-HCC 0.753755021 0.750048604 0.753049178 0.749070396 0.754676
Lung-AdenoCA 0.589564947 0.592223691 0.587637085 0.593390371 0.590048
Lung-SCC 0.751722084 0.744283421 0.744044097 0.74499904 0.750165
Lung_tumors 0.795927779 0.797426594 0.796048109 0.795781177 0.797582
Lymph-BNHL 0.619589997 0.62002137 0.62140508 0.618096388 0.615534
Lymph-CLL 0.226229235 0.220440701 0.225749969 0.234055611 0.237688
Lymph_tumors 0.661000575 0.66246853 0.658772919 0.669499312 0.656566
Ovary-AdenoCA 0.314582108 0.316631599 0.316777848 0.318607898 0.315259
Panc-AdenoCA 0.564556965 0.558164325 0.565755976 0.568496612 0.561917
Panc-Endocrine 0.086544892 0.087967663 0.091137666 0.082849311 0.094436
Pancan 0.928776305 0.927468551 0.929467186 0.929231796 0.928408
Prost-AdenoCA 0.302719943 0.308234709 0.287893416 0.314358688 0.302626
Sarcoma_tumors 0.184687828 0.180720697 0.180044256 0.183628744 0.176017
Skin-Melanoma 0.912902822 0.912437702 0.914483541 0.913165657 0.913739
Squamous_tumors 0.765511687 0.770300171 0.771727313 0.770406053 0.77486
Stomach-AdenoCA 0.628936589 0.63169647 0.624888328 0.628246467 0.626256
Uterus-AdenoCA 0.262440298 0.261473287 0.25571689 0.261070941 0.256235Table D.2: Variance explained of SNV counts in 10kb regions in held-out test data per

fold.
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Table D.3: Variance explained of SNV counts in tiled regions by method.
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Table D.4: Variance explained of SNV counts in genes by method. Genes were restricted
to 1-1.5kb in size to avoid inflated correlation due to long genes harboring more mutations.
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Table D.5: Variance explained of SNV counts in enhancers and noncoding RNAs restricted
in length to 0.5-1kb to prevent inflation of correlation due to larger genomic regions harboring
more mutation counts.
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Table D.6: Accuracy measures of driver gene detection methods at FDR<0.1.
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Cohort Dig dNdScv MutSigCV
Pan-cancer (all samples) 58295 49652.5 40561.5
Pan-cancer (no hypermutated samples) 57901 52334 40561.5

Bladder 37267 33340.5 29320.5

Brain 24532.5 23397.5 19871

Breast 37888.5 32580.5 29319

Colorectal 23872.5 20874 20042.5

Endometrial 27592.5 25399.5 20346

Gastroesophageal 35422.5 23426.5 22685.5

HeadNeck 28046.5 25705.5 20171

KindeyClear 19718 18498 14988

Liver 20413 17948 16798.5

LungAD 26213.5 26173.5 20509

LungSC 17703 18769.5 11413

Ovarian 19460 15299 9856.5

Pancreas 32653.5 29874 #N/A
Pancancer 74422.5 63422 50455.5

Prostate 28090 27177.5 22944

Sarcoma 13788 14309 9373

PCAWG

Dietlein et al.

Table D.7: Areas under the approximated ROC curves of Fig fig. 6-1e and Supplementary
Fig fig. D-4.
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Table D.8: Accuracy measures of noncoding driver detection methods at FDR<0.1 for
Dig.
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TOTAL_HITS
TP FP TN FN RECALL PRECISION F1

meta_Adenocarcinoma 15 8 0 95746 7 0.533333 1 0.695652174
Biliary-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Bladder-TCC 6 3 0 95755 3 0.5 1 0.666666667
Bone-Leiomyo 1 0 0 95760 1 0 #N/A #N/A
Bone-Osteosarc 0 0 0 95761 0 #N/A #N/A #N/A
Breast-AdenoCa 4 2 0 95757 2 0.5 1 0.666666667
meta_Breast 5 2 0 95756 3 0.4 1 0.571428571
CNS-GBM 1 1 0 95760 0 1 1 1
CNS-Medullo 1 1 0 95760 0 1 1 1
meta_CNS 1 1 0 95760 0 1 1 1
meta_Carcinoma 27 13 0 95734 14 0.481481 1 0.65
ColoRect-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
meta_Digestive_tract 9 5 0 95752 4 0.555556 1 0.714285714
Eso-AdenoCa 2 1 0 95759 1 0.5 1 0.666666667
meta_Female_reproductive_tract 6 1 0 95755 5 0.166667 1 0.285714286
meta_Glioma 1 1 0 95760 0 1 1 1
Head-SCC 2 1 0 95759 1 0.5 1 0.666666667
Kidney-RCC 1 0 0 95760 1 0 #N/A #N/A
meta_Kidney 1 0 0 95760 1 0 #N/A #N/A
Liver-HCC 11 5 0 95750 6 0.454545 1 0.625
Lung-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Lung-SCC 0 0 0 95761 0 #N/A #N/A #N/A
meta_Lung 0 0 0 95761 0 #N/A #N/A #N/A
Ovary-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Panc-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Panc-Endocrine 0 0 0 95761 0 #N/A #N/A #N/A
PANCANCER 23 14 1 95737 9 0.608696 0.933333333 0.736842105
Prost-AdenoCA 1 0 0 95760 1 0
meta_Sarcoma 0 0 0 95761 0 #N/A #N/A #N/A
meta_Squamous 1 1 0 95760 0 1 1 1
Stomach-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Uterus-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
COMBINED 119 60 1 3064232 59 0.504202 0.983606557 0.666666667

DriverPower

Table D.9: Accuracy measures of noncoding driver detection methods at FDR<0.1 for
DriverPower.
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TOTAL_HITS
TP FP TN FN RECALL PRECISION F1

meta_Adenocarcinoma 15 6 2 95744 9 0.4 0.75 0.521739
Biliary-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Bladder-TCC 6 4 0 95755 2 0.666667 1 0.8
Bone-Leiomyo 1 0 0 95760 1 0 #N/A #N/A
Bone-Osteosarc 0 0 0 95761 0 #N/A #N/A #N/A
Breast-AdenoCa 4 3 0 95757 1 0.75 1 0.857143
meta_Breast 5 4 0 95756 1 0.8 1 0.888889
CNS-GBM 1 1 0 95760 0 1 1 1
CNS-Medullo 1 1 0 95760 0 1 1 1
meta_CNS 1 1 0 95760 0 1 1 1
meta_Carcinoma 27 14 3 95731 13 0.518519 0.823529412 0.636364
ColoRect-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
meta_Digestive_tract 9 5 0 95752 4 0.555556 1 0.714286
Eso-AdenoCa 2 2 0 95759 0 1 1 1
meta_Female_reproductive_tract 6 4 0 95755 2 0.666667 1 0.8
meta_Glioma 1 1 0 95760 0 1 1 1
Head-SCC 2 1 0 95759 1 0.5 1 0.666667
Kidney-RCC 1 1 0 95760 0 1 1 1
meta_Kidney 1 1 0 95760 0 1 1 1
Liver-HCC 11 5 0 95750 6 0.454545 1 0.625
Lung-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Lung-SCC 0 0 0 95761 0 #N/A #N/A #N/A
meta_Lung 0 0 0 95761 0 #N/A #N/A #N/A
Ovary-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Panc-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Panc-Endocrine 0 0 0 95761 0 #N/A #N/A #N/A
PANCANCER 23 11 3 95735 12 0.478261 0.785714286 0.594595
Prost-AdenoCA 1 0 0 95760 1 0 #N/A #N/A
meta_Sarcoma 0 0 0 95761 0 #N/A #N/A #N/A
meta_Squamous 1 1 0 95760 0 1 1 1
Stomach-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Uterus-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
COMBINED 119 66 8 3064225 53 0.554622 0.891891892 0.683938

ActiveDriverWGS

Table D.10: Accuracy measures of noncoding driver detection methods at FDR<0.1 for
ActiveDriverWGS.

214



TOTAL_HITS
TP FP TN FN RECALL PRECISION F1

meta_Adenocarcinoma 15 2 0 95746 13 0.133333 1 0.235294
Biliary-AdenoCA 0 0 0 95761 0 #N/A #N/A #N/A
Bladder-TCC 6 6 1 95754 0 1 0.857142857 0.923077
Bone-Leiomyo 1 0 2 95758 1 0 0 #N/A
Bone-Osteosarc 0 0 7 95754 0 #N/A #N/A
Breast-AdenoCa 4 3 6 95751 1 0.75 0.333333333 0.461538
meta_Breast 5 4 7 95749 1 0.8 0.363636364 0.5
CNS-GBM 1 1 0 95760 0 1 1 1
CNS-Medullo 1 1 0 95760 0 1 1 1
meta_CNS 1 1 0 95760 0 1 1 1
meta_Carcinoma 27 7 0 95734 20 0.259259 1 0.411765
ColoRect-AdenoCA 0 0 8 95753 0 #N/A 0 #N/A
meta_Digestive_tract 9 2 0 95752 7 0.222222 1 0.363636
Eso-AdenoCa 2 0 5 95754 2 0 0
meta_Female_reproductive_tract 6 6 8 95747 0 1 0.428571429 0.6
meta_Glioma 1 1 0 95760 0 1 1 1
Head-SCC 2 2 2 95757 0 1 0.5 0.666667
Kidney-RCC 1 0 0 95760 1 0 #N/A #N/A
meta_Kidney 1 0 0 95760 1 0 #N/A #N/A
Liver-HCC 11 1 0 95750 10 0.090909 1 0.166667
Lung-AdenoCA 0 0 3 95758 0 #N/A 0 #N/A
Lung-SCC 0 0 0 95761 0 #N/A #N/A #N/A
meta_Lung 0 0 2 95759 0 #N/A 0 #N/A
Ovary-AdenoCA 0 0 3 95758 0 #N/A 0 #N/A
Panc-AdenoCA 0 0 4 95757 0 #N/A 0 #N/A
Panc-Endocrine 0 0 0 95761 0 #N/A #N/A #N/A
PANCANCER 23 7 0 95738 16 0.304348 1 0.466667
Prost-AdenoCA 1 1 4 95756 0 1 0.2 0.333333
meta_Sarcoma 0 0 6 95755 0 #N/A 0 #N/A
meta_Squamous 1 1 0 95760 0 1 1 1
Stomach-AdenoCA 0 0 1 95760 0 #N/A 0 #N/A
Uterus-AdenoCA 0 0 1 95760 0 #N/A 0 #N/A
COMBINED 119 46 70 3064163 73 0.386555 0.396551724 0.391489

Larva

Table D.11: Accuracy measures of noncoding driver detection methods at FDR<0.1 for
Larva.
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CATEGORY SUBCATEGORY OBSERVED EXPECTED ENRICHMENT CI_LOWER CI_UPPER P_VALUE
Synonymous 1502 1502.955749 0.999364087 0.952123841 1.050596467 0.513126806
Missense 5574 4324.921641 1.288809477 1.249242287 1.329977853 2.93E-71
Nonsense 941 326.5870386 2.881314592 2.682209936 3.08968171 2.26E-167
Canonical splice 265 107.3748176 2.467990224 2.169968763 2.775324855 1.38E-37
indels 1323 354.9731821 3.727042116 3.524209892 3.95811591 0
0.2 < Delta < 0.5 450 415.5678698 1.082855612 0.976976397 1.176703098 0.049525369
0.5 < Delta < 0.8 128 92.55979298 1.382889869 1.145205673 1.609770238 0.000281627
0.8 < Delta < 1.0 70 41.69617301 1.678811146 1.295082884 2.062539408 3.93E-05
0.2 < Delta < 0.5 427 390.056267 1.094713856 0.999855747 1.199826896 0.034022184
0.5 < Delta < 0.8 115 85.29369163 1.348282596 1.113505562 1.606214919 0.001262974
0.8 < Delta < 1.0 64 36.56239029 1.750432603 1.312824452 2.215391263 2.52E-05
0.2 < Delta < 0.5 18 23.36427861 0.770406838 0.428003799 1.155610257 0.891324075
0.5 < Delta < 0.8 13 6.690311119 1.94310844 1.04628916 3.13886748 0.019712989
0.8 < Delta < 1.0 5 4.858393713 1.029146729 0.205829346 2.058293459 0.534310275

Synonymous 1159 1106.145653 1.047782448 0.989019843 1.109257173 0.060648465
Missense 4048 3043.214193 1.330172556 1.285803349 1.376833747 2.17E-63
Nonsense 215 216.7673072 0.991846985 0.857947642 1.125746328 0.55666725
Canonical splice 64 72.52468519 0.882458157 0.648055209 1.116861104 0.855968363
indel 327 251.5069378 1.300162941 1.164977804 1.431372046 3.15E-06
0.2 < Delta < 0.5 279 260.9752659 1.069066829 0.950281626 1.195515594 0.139546584
0.5 < Delta < 0.8 79 60.6762861 1.301991356 1.021816001 1.582166711 0.013623882
0.8 < Delta < 1.0 28 25.82239446 1.084330117 0.697069361 1.510316948 0.359717383
0.2 < Delta < 0.5 257 243.2484832 1.056532796 0.929091097 1.183974495 0.197075089
0.5 < Delta < 0.8 72 55.33012907 1.301280174 0.975960131 1.608526882 0.017859353
0.8 < Delta < 1.0 27 22.33268733 1.208990194 0.761216048 1.701541755 0.186556579
0.2 < Delta < 0.5 22 15.85375059 1.38768425 0.883071795 1.955373261 0.083173728
0.5 < Delta < 0.8 7 4.957884417 1.411892535 0.403397867 2.420387203 0.231694962
0.8 < Delta < 1.0 1 3.225359871 0.310042922 0 0.930128767 0.960250871

Synonymous 1460 1468.836443 0.993984052 0.942872167 1.043717295 0.593685717
Missense 3961 4045.0097 0.979231274 0.949317872 1.010380766 0.90254688
Nonsense 273 291.4519586 0.936689536 0.83375662 1.049915744 0.866571618
Canonical splice 88 98.19266123 0.896197322 0.702700173 1.089694471 0.860325645
indel 320 332.6485447 0.961976251 0.850747747 1.061180052 0.762661792
0.2 < Delta < 0.5 369 338.2765684 1.09082341 0.981445453 1.19436295 0.051905393
0.5 < Delta < 0.8 87 80.78904491 1.07687868 0.854076194 1.312059081 0.259056092
0.8 < Delta < 1.0 37 34.35692798 1.076929812 0.75676149 1.426204346 0.348232631
0.2 < Delta < 0.5 332 309.0511675 1.07425577 0.957689312 1.197212756 0.10204519
0.5 < Delta < 0.8 75 72.39284104 1.036014044 0.814652377 1.270843894 0.395144359
0.8 < Delta < 1.0 35 29.64978819 1.180446881 0.80944929 1.551444473 0.184653962
0.2 < Delta < 0.5 32 26.78910786 1.194515329 0.821229289 1.605129974 0.179700476
0.5 < Delta < 0.8 11 7.703338144 1.427952375 0.649069261 2.336649341 0.155815964
0.8 < Delta < 1.0 2 4.431819399 0.451281927 0 1.128204818 0.935385357
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Table D.12: SNV enrichment across coding and cryptic splice sites in the PCAWG pan-
cancer cohort.
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PCWAG cancer code Gene OBS_SAMPLES OBS_SNV EXP_SNV PVAL_SNV_BURDEN Q_VALUE
meta_Digestive CBFA2T3 6 6 1.085823261 0.000530317 0.043662784
meta_Hematopoietic CIITA 4 4 0.162078147 1.53E-05 0.003787693
Lymph-BNHL CIITA 4 4 0.187775328 2.81E-05 0.006929697
meta_Lymphatic CIITA 4 4 0.206112555 3.71E-05 0.009161746
Lymph-CLL NOTCH1 3 3 0.012776719 4.93E-07 0.000121709
meta_Hematopoietic NOTCH1 3 3 0.108935917 0.000109741 0.013552959
meta_Lymphatic NOTCH1 3 3 0.106952137 0.000113328 0.013995985
Kidney-RCC PBRM1 3 3 0.100314372 8.20E-05 0.020244022
meta_Kidney PBRM1 3 3 0.104355281 9.16E-05 0.022630276
Prost-AdenoCA PTEN 2 2 0.037486646 0.000363654 0.08982256
Panc-AdenoCA SMAD4 4 4 0.069937003 5.58E-07 0.00013777
meta_Digestive SMAD4 5 5 0.437965655 5.13E-05 0.009190921
meta_Adenocarcinoma SMAD4 5 5 0.645948075 0.000308198 0.03806249
meta_Carcinoma SMAD4 5 5 0.771440753 0.000683982 0.059238233
PANCANCER SMAD4 5 5 0.835384734 0.000976274 0.080379929
meta_Carcinoma TP53 4 4 0.392226885 0.000396972 0.059238233
PANCANCER TP53 4 4 0.415603648 0.000495085 0.080379929

Table D.13: Tumor suppressor genes with a FDR<0.1 significant burden of intronic cryptic
splice SNVs.
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Table D.14: Evidence of cryptic splice events in RNA-seq data.
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Table D.15: Genes not in the CGC with a FDR<0.1 significant burden of intronic cryptic
splice SNVs.
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Table D.17: Enrichment of mutations in TP53 and ELF3 5’UTRs in the PCAWG pan-
cancer dataset.
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Table D.18: Enrichment of mutations in the ELF3 5’UTR in the Hartwig Medical Foun-
dation pan-cancer dataset.
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Table D.19: Metadata on mega-cohorts of targeted and whole-exom sequenced samples.

223



CA
N

CE
R

O
BS

_M
U

T
EX

P_
M

U
T

M
ED

IA
N

_B
CK

_M
U

T
CI

_L
O

W
ER

_B
CK

_M
U

T
CI

_U
PP

ER
_B

CK
_M

U
T

N
_S

AM
PL

E
M

EA
N

_R
AT

E_
EX

CE
SS

_M
U

TA
TI

O
N

S
CI

_L
O

W
ER

_R
AT

E_
EX

CE
SS

_M
U

TA
TI

O
N

CI
_U

PP
ER

_R
AT

E_
EX

CE
SS

_M
U

TA
TI

O
N

P_
VA

LU
E

Bl
ad

de
r c

an
ce

r
37

2.
16

60
05

70
6

2
0

5
69

9
0.

04
92

57
51

1
0.

03
00

42
91

8
0.

06
87

05
29

3
5.

40
E-

32
CN

S 
ca

nc
er

29
1.

86
24

93
19

3
2

0
5

16
60

0.
01

64
54

81
9

0.
00

96
38

55
4

0.
02

40
96

38
6

6.
00

E-
24

Br
ea

st
 c

an
ce

r
33

2.
32

43
49

44
1

2
0

6
31

08
0.

00
99

08
62

3
0.

00
61

13
25

6
0.

01
41

57
01

4
2.

81
E-

26
G

as
tr

oe
so

ph
ag

ea
l c

an
ce

r
39

3.
33

97
41

68
1

3
0

7.
02

5
12

12
0.

02
96

88
11

9
0.

01
81

51
81

5
0.

04
12

54
12

5
2.

17
E-

27
H

ea
d-

N
ec

k 
ca

nc
er

20
1.

74
33

18
29

2
0

5
64

4
0.

02
82

29
81

4
0.

01
24

22
36

0.
04

50
31

05
6

8.
08

E-
15

Li
ve

r c
an

ce
r

34
0.

77
81

96
13

3
1

0
3

74
8

0.
04

42
99

46
5

0.
02

80
74

86
6

0.
06

14
97

32
6

5.
64

E-
43

Lu
ng

-N
SC

 c
an

ce
r

48
2.

90
64

29
22

7
3

0
7

21
31

0.
02

11
06

99
2

0.
01

31
39

37
1

0.
02

95
63

58
5

8.
55

E-
40

O
va

ria
n 

ca
nc

er
9

0.
50

02
26

18
8

0
0

2
51

5
0.

01
65

51
45

6
0.

00
38

83
49

5
0.

03
10

67
96

1
3.

78
E-

09
Pa

nc
re

at
ic

 c
an

ce
r

28
1.

21
92

65
84

7
1

0
4

11
76

0.
02

27
12

58
5

0.
01

35
84

18
4

0.
03

40
13

60
5

6.
33

E-
28

Pr
os

ta
te

 c
an

ce
r

24
2.

61
09

06
29

5
2

0
6

21
12

0.
01

01
14

58
3

0.
00

47
23

01
1

0.
01

60
98

48
5

4.
38

E-
15

Co
lu

m
n 

na
m

e
D

es
cr

ip
tio

n
CA

N
CE

R
Ca

nc
er

 n
am

e
O

BS
_M

U
T

N
um

be
r o

f o
bs

er
ve

d 
ac

tiv
at

in
g 

SN
Vs

EX
P_

M
U

T
N

um
be

r o
f e

xp
ec

te
d 

ac
tiv

at
in

g 
SN

Vs
M

ED
IA

N
_B

CK
_M

U
T

M
ed

ia
n 

nu
m

be
r o

f p
re

di
ct

ed
 b

ac
kg

ro
un

d 
m

ut
at

io
ns

 
CI

_L
O

W
ER

_B
CK

_M
U

T
Lo

w
er

 b
ou

nd
 o

f 9
5%

 c
on

fid
en

ce
 in

te
rv

al
 o

f p
re

di
ct

ed
 b

ac
kg

ro
un

d 
m

ut
at

io
ns

CI
_U

PP
ER

_B
CK

_M
U

T
U

pp
er

 b
ou

nd
 o

f 9
5%

 c
on

fid
en

ce
 in

te
rv

al
 o

f p
re

di
ct

ed
 b

ac
kg

ro
un

d 
m

ut
at

io
ns

N
_S

AM
PL

E
N

um
be

r o
f s

am
pl

es
 in

 th
e 

co
ho

rt
M

EA
N

_R
AT

E_
EX

CE
SS

_M
U

TA
TI

O
N

S
M

ea
n 

ra
te

 o
f e

xc
es

s m
ut

at
io

ns
 in

 s
im

ul
at

io
ns

CI
_L

O
W

ER
_R

AT
E_

EX
CE

SS
_M

U
TA

TI
O

N
Lo

w
er

 b
ou

nd
 o

f 9
5%

 c
on

fid
en

ce
 in

te
rv

al
 o

f m
ut

at
io

na
l e

nr
ic

hm
en

t 
CI

_U
PP

ER
_R

AT
E_

EX
CE

SS
_M

U
TA

TI
O

N
U

pp
er

 b
ou

nd
 o

f 9
5%

 c
on

fid
en

ce
 in

te
rv

al
 o

f m
ut

at
io

na
l e

nr
ic

hm
en

t 
P_

VA
LU

E
P-

va
lu

e 
of

 m
ut

at
io

na
l b

ur
de

n

Table D.20: Burden of activating mutations in long-tail oncogenes in mega-cohorts.
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Table D.21: Burden of pLoF mutations in long-tail tumor suppressor genes.
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Table D.22: Genes not in driver gene databases with a FDR<0.1 significant burden of
pLoF mutations in exome-sequenced samples.
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Table D.23: ABC enhancer elements with a FDR<0.1 significant burden of mutations in
the PCAWG pan-cancer cohort.
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Cancer type N_SAMPLES N_MUTATIONS Reference Model
Bladder 317 61478 Bladder-TCC_SNV.Pretrained.h5

Brain 698 31788 CNS_tumors_SNV.Pretrained.h5
Breast 1442 105773 Breast_tumors_SNV.Pretrained.h5

Colorectal 223 75041 ColoRect-AdenoCA_SNV.Pretrained.h5
Endometrium 327 191117 Uterus-AdenoCA_SNV_msi_low.Pretrained.h5

Gastroesophageal 831 217561 Eso-AdenoCa_SNV.Pretrained.h5
HeadNeck 425 58000 Head-SCC_SNV.Pretrained.h5

KidneyClear 412 20979 Kidney-RCC_SNV.Pretrained.h5
Liver 407 44758 Liver-HCC_SNV.Pretrained.h5

LungAD 445 128816 Lung-AdenoCA_SNV.Pretrained.h5
LungSC 172 55297 Lung-SCC_SNV.Pretrained.h5
Lymph 184 22261 Lymph_tumors_SNV.Pretrained.h5
Ovarian 316 17694 Ovary-AdenoCA_SNV.Pretrained.h5
Pancreas 714 60660 Panc-AdenoCA_SNV.Pretrained.h5
Prostate 878 56029 Prost-AdenoCA_SNV.Pretrained.h5
Sarcoma 247 17096 Sarcoma_tumors_SNV.Pretrained.h5

Skin 579 398335 Skin-Melanoma_SNV.Pretrained.h5
Pancan 7569 1132911 Pancan_SNV.Pretrained.h5

Table D.24: Metadata about whole-exome sequenced cohorts from Dietlein et al. 2019
Nat. Genet..
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