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Abstract

We are near the end of Moore’s law and hardware growth has hit a stagnation. Modern
data processing systems need to continuously improve their performance to match
the humongous growth of data. Data structures and algorithms such as sorting,
indexes, filters, hash tables, query optimization, etc are the fundamental building
blocks of these systems and dictate their performance. Traditional data structures
and algorithms provide worst-case guarantees by making no assumptions about the
data or workload. Thus, the resulting data processing system gives an adequate
performance in the average case but may not be optimal for a particular use case. In
this thesis, we will look at how to redesign membership query data structures so they
can automatically adapt to an individual use case. These instance-optimized data
structures act as drop in replacements for their counterparts in systems and improve
their performance without any significant overhaul of the system or labor-intensive
manual tuning.
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Chapter 1

Introduction

Modern data processing systems need to continuously improve their performance to

match the humongous growth of data. These systems cannot rely only on hardware for

performance improvements as we are near the end of Moore’s law and hardware growth

has hit stagnation. One way to improve the performance of a system is to specialize it

for a particular application. Specialization as a technique has been prevalent in the

data systems community with systems like C-store [148], Streambase[151] built for

analytical and streaming applications, respectively.

But one can find a diverse set of use cases even within a particular application.

For example, certain analytical use cases might be concerned with identifying recent

trends while others might want historical summaries of the data. These "instances"

have the same higher-level goal (e.g., performing analytics on the data) but operate

on different datasets or have different workload patterns.

In order to specialize for these instances, a recent trend in the research community

is to build "instance-optimized" systems which are made up of components that can

improve their performance by taking the data or workload distribution into account.

An important class of components that are being "instance-optimized" are data

structures and algorithms. Data structures and algorithms such as sorting, indexes,

filters, hash tables, query optimization, etc are the fundamental building blocks of

data processing systems and dictate their performance. Traditional data structures

and algorithms provide worst-case guarantees by making no assumptions about the

17



data or workload. Thus, the resulting system gives an adequate performance in

the average case but may not be optimal for a particular use case. By using data

structures and algorithms that optimize for a particular instance, the system can

achieve better performance for that particular instance. These instance-optimized data

structures/algorithms act as drop-in replacements for their counterparts in systems

and improve their performance without any significant overhaul of the system design.

Such instance-optimized components automatically adapt to an instance without

labor-intensive manual tuning and thus, save a huge amount of operational cost.

There have been various efforts in building instance-optimized components [88, 48,

45, 46]. A common theme in this redesign is the use of learned models that learn the

data or workload distribution. The primary work that influenced this direction was

Learned Indexes [86], which redesigned range indexes. Range Indexes store key-value

pairs and support range queries which are queries that ask for values of keys in a

certain range. The work on Learned Indexes [86] observed that B-Trees can be thought

of as models. These models predict the position of the key-value pair within a sorted

array, given the key value. Learned Indexes then propose using ML models to learn

this mapping instead of a B-Tree. This helps them to be optimized for specific data

distribution and empirically outperform B-Trees.

Range Index data structures fall under the broader umbrella of membership query

data structures which are quite commonly used in data systems for data skipping,

joins, aggregates, scans, data retrieval, etc. Membership queries check for the existence

of keys with certain properties in the data. These membership queries might be for a

single data point or a range of data points. Traditional data structures for point and

range queries are hash tables and B-Trees, respectively. Some applications can tolerate

approximate answers for better speed/memory usage, hence approximate variants of

these data structures exist which are known as filters. Traditional data structures

for approximate point and range queries are Bloom and range filters. These data

structures are shown in Fig.1-1. Instance optimized variant of B-Trees was already

proposed in the paper [86]. In this thesis, we design instance-optimized variants of

the remaining three data structures by making use of ML models. Below we briefly
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Traditional Membership Query 
Data Structures

Instance-Optimized Membership 
Query Data Structures

[Kraska et al. 2018](this thesis)

(this thesis) (this thesis)

Point Range

Figure 1-1: Traditional data structures for exact point and range membership queries are
hash tables and B-Trees whereas approximate variants are Bloom and range filters. Range
data structures B-Trees and range filters have a tree structure whereas hash tables and
Bloom filters make use of hash functions. Next, the instance-optimized variants of these
data structures are shown which make use of an ML model to capture the data or workload
distribution.
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discuss the ideas behind the design of these structures.

1.1 Bloom Filters: Approximate Point Membership

Query Structure

Bloom filters are space-efficient data structures that are used to approximately answer

point membership queries on a set S. The queries filters support are of the form: ”Is

x in the set S?”. Bloom filters only have false positives and no false negatives. A

false positive is a case where 𝑥 /∈ 𝑆 but the filter returns 𝑥 ∈ 𝑆, and a false negative

is a case where 𝑥 ∈ 𝑆 but the filter says 𝑥 /∈ 𝑆. For applications where fetching

data requires an expensive operation like disk I/O or S3 request, Bloom filters can

help prune empty requests. These empty requests don’t have data corresponding to

them on the disk and lead to unnecessary expensive data fetches. No false negatives

in Bloom filters mean that queries having data corresponding to them are always

accepted and most empty queries are rejected, thus maintaining consistency of the

results. The main trade-off in filters is between the space consumed by the filter and

the false positive rate (FPR) provided by the filter.

The key idea of instance-optimized Bloom filters is that in many practical settings,

given a query input, the likelihood that the input is in the set S can be deduced by

some observable features which can be captured by a machine learning model. For

example, a Bloom filter that represents a set of malicious URLs can benefit from a

learned model that can distinguish malicious URLs from benign URLs. This model can

be trained on URL features such as length of hostname, counts of special characters,etc.

Previous learned Bloom filter approaches did not utilize the model efficiently due to

their sub-optimal design and parameter tuning. Therefore, we propose Partitioned

Learned Bloom Filter (PLBF) [156], an instance-optimized Bloom filter with a general

design that automatically tunes its design parameters to optimal values. PLBF frames

the problem of trading off space consumed by the filter and false positive rate achieved

as an optimization problem in terms of the design parameters. The solution to this
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optimization problem provides the optimal values for the parameters.

1.2 Range Filters: Approximate Range Membership

Query Structure

Range filters are space-efficient data structures that are used to approximately answer

range membership queries on a set S. The filters support queries of the form: ”Is there

x in the set S between [A,B]?”. Similar to Bloom filters, they do not allow any false

negatives and the main trade-off in filters is between the space consumed by the filter

and the false positive rate (FPR) provided by the filter.

LSM-based key-value stores such as RocksDB, LevelDB in industry increasingly

serve as the backbone of applications across the areas of social media, stream and log

processing, file structures, and databases for geo-spatial coordinates, time-series, and

graphs. LSM’s store data in multiple immutable files on a disk. Retrieving a particular

item or set of items in a particular range leads to multiple expensive I/O’s to look up

the items in these immutable files. In many settings, the item may not be present (or

the set of items may have no item present) in the files, leading to unnecessary I/O’s

that degrade read performance.

Range filters residing in faster memory can help in this situation: if a query has no

corresponding item, the filter most likely returns false and saves expensive I/O. We

proposed Sparse Numerical Array-Based Range Filters (SNARF)[155], an instance-

optimized range filter that supports both point and range queries for numerical data.

SNARF uses a model of the data distribution to map the keys into a bit array which

is stored in a compressed form. SNARF when integrated with RocksDB provides upto

10x better read performance compared to state-of-art filters.
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1.3 Hash Tables: Exact Point Membership Query

Structure

Hash tables are a fundamental data structure in database management, playing an

important role in indexing and joins. The idea behind hash tables is to place keys

in distinct slots using a mapping function. Retrieval of a key involves using the

mapping function to identify the corresponding slot. Hash tables rely on traditional

hash functions as the mapping function. Traditional hash functions aim to mimic a

function that maps a key to a random value, which can result in collisions, where

multiple keys are mapped to the same value. There are many well-known schemes like

chaining, probing, and cuckoo hashing to handle collisions.

Another approach to build hash indexes is to use perfect hash functions instead of

truly random hash functions. Perfect hash functions have no collisions; however, they

must be specially constructed for a given data set, and have other costs in storage

and computation time.

Along the lines of instance-optimized components we studied if by leveraging the

data distribution we can build instance optimized hash functions and whether such a

reduction translates to improved performance, particularly for hash table applications:

indexing and joins. We showed that by leveraging the data distribution one can reduce

collisions in some cases, which depend on how the data is distributed. These cases can

be identified beforehand and instance optimized hash functions can be used for them.

1.4 Discussion

The work in this thesis demonstrates that instance-optimized components can give

huge performance boosts, however more work remains to make them practical and

robust for production-level deployment. We will discuss these points in detail in

Section.5 and here we highlight some key points.

PLBF showed that by using utilizing the model efficiently one can get huge benefits.

However, one of the major drawbacks is high query latency. In PLBF, the model gets

22



queried before the backup filters and thus, the query latency can be higher than that

of a traditional Bloom filter. PLBF optimizes its design for a particular workload but

the workload distribution might shift over time resulting in poor performance if the

shifts are drastic.

SNARF improves the performance of range filters compared to previous approaches

by using a static model of the data distribution. SNARF supports updates but

might not be robust in scenarios where updates might change the distribution of the

data. Making SNARF robust to these data shifts is still an open problem. Another

interesting direction would be to make SNARF workload dependent as it currently

only relies on the knowledge of data distribution.

Instance-optimized hash tables can provide performance improvements in certain

scenarios. The models we primarily focused on were piece-wise linear models but

complex models like NN, SVM, and decision trees need to be considered. The piece-wise

linear models we focused on were limited to numerical keys, using models supporting

strings to build hash tables is still unexplored.

A common drawback among all three works is handling data/workload shifts

that arise from the nature of instance optimization. Once a component optimizes

for a particular data/workload distribution, it provides good performance for that

instance but might not perform well under shifts. Instance-optimized components

need mechanisms to identify these shifts and lightweight techniques to adapt to the

new instance.
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Chapter 2

PLBF: Partitioned Learned Bloom

Filter

2.1 Introduction

Bloom filters are space-efficient probabilistic data structures that are used to test

whether an element is a member of a set [[16]]. A Bloom filter compresses a given set

𝑆 into an array of bits. A Bloom filter may allow false positives, but will not give

false negative matches, which makes them suitable for numerous memory-constrained

applications in networks, databases, and other systems areas. Indeed, there are many

thousands of papers describing applications of Bloom filters [[35], [41], [22]].

There exists a trade off between the false positive rate and the size of a Bloom filter

(smaller false positive rate leads to larger Bloom filters). For a given false positive rate,

there are known theoretical lower bounds on the space used [[123]] by the Bloom filter.

However, these lower bounds assume the Bloom filter could store any possible set. If

the data set or the membership queries have specific structure, it may be possible to

beat the lower bounds in practice [[110], [23], [113]]. In particular, [[84]] and [[111]]

propose using machine learning models to reduce the space further, by using a learned

model to provide a suitable pre-filter for the membership queries. This allows one to

beat the space lower bounds by leveraging the context specific information present in

the learned model. [135] propose a neural Bloom Filter that learns to write to memory
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using a distributed write scheme and achieves compression gains over the classical

Bloom filter.

The key idea of learned Bloom filters is that in many practical settings, given a

query input, the likelihood that the input is in the set 𝑆 can be deduced by some

observable features which can be captured by a machine learning model. For example,

a Bloom filter that represents a set of malicious URLs can benefit from a learned

model that can distinguish malicious URLs from benign URLs. This model can be

trained on URL features such as length of hostname, counts of special characters,

etc. This approach is described in [[84]], which studies how standard index structures

can be improved using machine learning models; we refer to their framework as the

original learned Bloom filter, Given an input 𝑥 and its features, the model outputs a

score 𝑠(𝑥) which is supposed to correlate with the likelihood of the input being in the

set. Thus, the elements of the set, or keys, should have a higher score value compared

to non-keys. This model is used as a pre-filter, so when score 𝑠(𝑥) of an input 𝑥 is

above a pre-determined threshold 𝑡, it is directly classified as being in the set. For

inputs where 𝑠(𝑥) < 𝑡, a smaller backup Bloom filter built from only keys with a score

below the threshold (which are known) is used. This maintains the property that

there are no false negatives. The design essentially uses the model to immediately

answer for inputs with high score whereas the rest of the inputs are handled by the

backup Bloom filter as shown in Fig.2-1(A). The threshold value 𝑡 is used to partition

the space of scores into two regions, with inputs being processed differently depending

on in which region its score falls. With a sufficiently accurate model, the size of the

backup Bloom filter can be reduced significantly over the size of a standard Bloom

filter while maintaining overall accuracy. [[84]] showed that, in some applications, even

after taking the size of the model into account, the learned Bloom filter can be smaller

than the standard Bloom filter for the same false positive rate.

The original learned Bloom filter compares the model score against a single

threshold, but the framework has several drawbacks.

Choosing the right threshold: The choice of threshold value for the learned

Bloom filter is critical, but the original design uses heuristics to determine the threshold
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value.

Using more partitions: Comparing the score value only against a single threshold

value wastes information provided by the learning model. For instance, two elements

𝑥1, 𝑥2 with 𝑠(𝑥1) >> 𝑠(𝑥2) > 𝑡, are treated the same way but the odds of 𝑥1 being

a key are much higher than for 𝑥2. Intuitively, we should be able to do better by

partitioning the score space into more than two regions.

Optimal Bloom filters for each region: Elements with scores above the

threshold are directly accepted as keys. A more general design would provide backup

Bloom filters in both regions and choose the Bloom filter false positive rate of each

region so as to optimize the space/false positive trade-off as desired. The original

setup can be interpreted as using a Bloom filter of size 0 and false positive rate of

1 above the threshold. This may not be the optimal choice; moreover, as we show,

using different Bloom filters for each region(as shown in Fig.2-1(C)) allows further

gains when we increase the number of partitions.

Follow-up work by [[111]] and [[34]] improve on the original design but only address

a subset of these drawbacks. In particular, [[111]] proposes using Bloom filters for both

regions and provides a method to find the optimal false positive rates for each Bloom

filter. But [[111]] only considers two regions and does not consider how to find the

optimal threshold value. [[34]] propose using multiple thresholds to divide the space of

scores into multiple regions, with a different backup Bloom filter for each score region.

The false positive rates for each of the backup Bloom filters and the threshold values

are chosen using heuristics. Empirically, we found that these heuristics might perform

worse than [[111]] in some scenarios.

A general design that resolves all the drawbacks would, given a target false positive

rate and the learned model, partition the score space into multiple regions with

separate backup Bloom filters for each region, and find the optimal threshold values

and false positive rates, under the goal of minimizing the memory usage while achieving

the desired false positive rate as shown in Fig.2-1(C). In this work, we show how to

frame this problem as an optimization problem, and show that our resulting solution

significantly outperforms the heuristics used in previous works. Additionally, we show
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that our maximum space saving1 is linearly proportional to the KL divergence of the key

and non-key score distributions determined by the partitions. We present a dynamic

programming algorithm to find the optimal parameters (up to the discretization used

for the dynamic programming) and demonstrate performance improvements over a

synthetic dataset and two real world datasets: URLs and EMBER. We also show

that the performance of the learned Bloom filter improves with increasing number

of partitions and that in practice a small number of regions (≈ 4− 6) suffices to get

a very good performance. We refer to our approach as a partitioned learned Bloom

filter (PLBF). Experimental results from both simulated and real-world datasets show

significant performance improvements. We show that to achieve a false positive rate

of 0.001, [[111]] uses 8.8x, 3.3x and 1.2x the amount of space and [[34]] uses 6x, 2.5x

and 1.1x the amount of space compared to PLBF for synthetic, URLs and EMBER

respectively.

2.2 Background
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Figure 2-1: (A),(B),(C) represent the original LBF, LBF with sandwiching, and PLBF
designs, respectively. Each region in (C) is defined by score boundaries 𝑡𝑖, 𝑡𝑖+1 and a false
positive rate 𝑓𝑖 of the Bloom Filter used for that region. (D),(E) show the LBF and PLBF
with score space distributions. (F) represents a PLBF design equivalent to the sandwiching
approach used in Sec.2.4.7.

1space saved by using our approach instead of a Bloom filter
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2.2.1 Standard Bloom Filters and Related Variants

A standard Bloom filter, as described in Bloom’s original paper [[16]], is for a set

𝑆 = {𝑥1, 𝑥2, ..., 𝑥𝑛} of 𝑛 keys. It consists of an array of 𝑚 bits and uses 𝑘 independent

hash functions {ℎ1, ℎ2, ...ℎ𝑘} with the range of each ℎ𝑖 being integer values between 0

and 𝑚− 1. We assume the hash functions are fully random. Initially all 𝑚 bits are 0.

For every key 𝑥 ∈ 𝑆, array bits ℎ𝑖(𝑥) are set to 1 for all 𝑖 ∈ {1, 2, ...𝑘}.

A membership query for 𝑦 returns that 𝑦 ∈ 𝑆 if ℎ𝑖(𝑦) = 1 for all 𝑖 ∈ {1, 2, ...𝑘}

and 𝑦 ̸∈ 𝑆 otherwise. This ensures that the Bloom filter has no false negatives but

non-keys 𝑦 might result in a false positive. This false positive rate depends on the

space 𝑚 used by the Bloom Filter. Asymptotically (for large 𝑚,𝑛 with 𝑚/𝑛 held

constant), the false positive rate is given by

(︃
1−

(︂
1− 1

𝑚

)︂𝑘𝑛
)︃𝑘

. (2.1)

See [[22, 18]] for further details.

[[16]] proved a space lower bound of |𝑆|×log2(
1
𝐹
) for a Bloom filter with false positive

rate 𝐹 . The standard construction uses space that is asymptotically log2 𝑒(≈ 1.44)

times more than the lower bound. Other constructions exist, such as Cuckoo filters[[54]],

Morton filters[[21]], XOR filters[[67]] and Vacuum filters[[159]]. These variants achieve

slightly better space performance compared to standard Bloom filters but still are a

constant factor larger than the lower bound. [[123]] presents a Bloom filter design that

achieves this space lower bound, but it appears too complicated to use in practice.

2.2.2 Learned Bloom Filter

Learned Bloom filters make use of learned models to beat the theoretical space bounds.

Given a learned model that can distinguish between keys and non-keys, learned Bloom

filters use it as a pre-filter before using backup Bloom filters. The backup Bloom filters

can be any variant including the standard, cuckoo, XOR filters, etc. If the size of the

model is sufficiently small, learned models can be used to enhance the performance of
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any Bloom filter variant.

We provide the framework for learned Bloom filters. We are given a set of keys

𝑆 = {𝑥1, 𝑥2, .., 𝑥𝑛} from a universe 𝑈 for which to build a Bloom filter. We are also

given a sample of the non-keys 𝑄 which is representative of the set 𝑈 − 𝑆. Features

that can help in determining if an element is a member of 𝑆 are determined. The

learned model is then trained on features of set 𝑆 ∪𝑄 for a binary classification task

and produces a score 𝑠(𝑥) ∈ [0, 1]. This score 𝑠(𝑥) can be viewed (intuitively, not

formally) as the confidence of the model that the element 𝑥 is in the set 𝑆. So, a key

in 𝑆 would ideally have a higher score value than the non-keys. An assumption in this

framework is that the training sample distribution needs to match or be close to the

test distribution of non-keys; the importance of this assumptions has been discussed

at length in [[111]]. For many applications, past workloads or historical data can be

used to get an appropriate non-key sample.

As discussed above, [[84]] set a threshold 𝑡 and inputs satisfying 𝑠(𝑥) > 𝑡 are

classified as a key. A backup Bloom filter is built for just the keys in 𝑆 satisfying

𝑠(𝑥) ≤ 𝑡. This design is represented in Fig.2-1(A). [[111]] proposes using another

Bloom filter before the learned model along with a backup Bloom Filter. As the

learned model is used between two Bloom filters as shown in Fig.2-1(B), this is referred

to as the ’sandwiching’ approach. They also provide the analysis of the optimal false

positive rates for a given amount of memory for the two Bloom filters (given the false

negative rate and false positive rate for the learned model, and the corresponding

threshold). Interestingly, the sandwiching approach and analysis can be seen as a

special case of our approach and analysis, as we describe later in Sec.2.4.7. [[34]] use

multiple thresholds to partition the score space into multiple regions and use a backup

Bloom filter for each score region. They propose heuristics for how to divide up the

score range and choose false positive rate per region.
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2.3 Partitioned Learned Bloom Filter (PLBF)

2.3.1 Design

As discussed before, the general design segments the score space into multiple regions

using multiple thresholds, as shown in Fig.2-1(C), and uses separate backup Bloom

filters for each region. We can choose different target false positive rates for each

region2. The parameters associated with each region are its threshold boundaries

and its false positive rate. Setting good values for these parameters is crucial for

performance. Our aim is to analyze the performance of the learned Bloom filter with

respect to these parameters, and find methods to determine optimal or near-optimal

parameters.

The following notation will be important for our analysis. Let 𝐺(𝑡) be the fraction

of keys with scores falling below 𝑡. We note that since the key set is finite, 𝐺(𝑡)

goes through discrete jumps. But it is helpful (particularly in our pictures) to think

of 𝐺(𝑡) as being a continuous function, corresponding to a cumulative probability

distribution, with a corresponding “density” function 𝑔(𝑡). For non keys, we assume

that queries involving non-keys come from some distribution 𝒟, and we define 𝐻(𝑡)

to be probability that a non-key query from 𝒟 has a score less than or equal to 𝑡.

Note that non key query distribution might be different from non key distribution. If

non key queries are chosen uniformly at random, non key query distribution would be

the same as non key distribution. We assume that 𝐻(𝑡) is known in the theoretical

analysis below. In practice, we expect a good approximation of 𝐻(𝑡) will be used,

determined by taking samples from 𝒟 or a suitably good approximation, which may

be based on, for example, historical data (discussed in detail in [[111]]). Here 𝐻(𝑡)

can be viewed as a cumulative distribution function, and again in our pictures we

think of it as having a density ℎ(𝑡). Also, note that if queries for non-keys are simply

chosen uniformly at random, then 𝐻(𝑡) is just the fraction of non-keys with scores

below 𝑡. While our analysis holds generally, the example of 𝐻(𝑡) being the fraction

2The different false positive rates per region can be achieved in multiple ways. Either by choosing
a separate Bloom filter per region or by having a common Bloom filter with varying number of hash
functions per region.
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of non-keys with scores below 𝑡 may be easier to keep in mind. Visualization of the

original learned Bloom filter in terms of these distributions is shown in Fig.2-1(D).

As we describe further below, for our partitioned learned Bloom filter, we use

multiple thresholds and a separate backup Bloom filter for each region, as show in

Fig.2-1(𝐸). In what follows, we formulate the problem of choosing thresholds and

backup Bloom filter false positive rates (or equivalently, sizes) as an optimization

problem in section 2.3.2. In section 2.3.3, we find the optimal solution of a relaxed

problem which helps us gain some insight into the general problem. We then propose

an approximate solution for the general problem in section 2.3.3.

We find in our formulation that the resulting parameters correspond to quite

natural quantities in terms of 𝐺 and 𝐻. Specifically, the optimal false positive rate of

a region is proportional to the ratio of the fraction of keys to the fraction of non-keys

in that region. If we think of these region-based fractions for keys and non-keys as

probability distributions, the maximum space saving obtained is proportional to the

KL divergence between these distributions. Hence we can optimize the thresholds by

choosing them to maximize this divergence. We show that we can find thresholds to

maximize this divergence, approximately, through dynamic programming. We also

show that, naturally, this KL divergence increases with more number of regions and

so does the performance. In our experiments, we find a small number(≈ 4 − 6) of

partitions suffices to get good performance.

2.3.2 General Optimization Formulation

To formulate the overall problem as an optimization problem, we consider the variant

which minimizes the space used by the Bloom filters in PLBF in order to achieve an

overall a target false positive rate (𝐹 ). We could have similarly framed it as minimizing

the false positive rate given a fixed amount of space. Here we are assuming the learned

model is given.

We assume normalized score values in [0, 1] for convenience. We have region

boundaries given by 𝑡𝑖 values 0 = 𝑡0 ≤ 𝑡1 ≤ ....𝑡𝑘−1 ≤ 𝑡𝑘 = 1, with score values

between [𝑡𝑖−1, 𝑡𝑖] falling into the 𝑖𝑡ℎ region. We assume the target number of regions 𝑘
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is given. We denote the false positive rate for the Bloom filter in the 𝑖𝑡ℎ region by 𝑓𝑖.

We let 𝐺 and 𝐻 be defined as above. As state previously, Fig.2-1(𝐸) corresponds to

this setting, and the following optimization problem finds the optimal thresholds 𝑡𝑖

and the false positive rates 𝑓𝑖:

min
𝑡𝑖,𝑓𝑖

(︁∑︀𝑘
𝑖=1 |𝑆| × (𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))× 𝑐 log2

(︁
1
𝑓𝑖

)︁)︁
+ Size of Learned Model

(2.2)

constraints
∑︀𝑘

𝑖=1 (𝐻 (𝑡𝑖)−𝐻(𝑡𝑖−1))× 𝑓𝑖 ≤ 𝐹 (2.3)

𝑓𝑖 ≤ 1 , 𝑖 = 1...𝑘 (2.4)

(𝑡𝑖 − 𝑡𝑖−1) ≥ 0 , 𝑖 = 1...𝑘 ; 𝑡0 = 0; 𝑡𝑘 = 1 (2.5)

The minimized term (Eq.2.2) represents the total size of the learned Bloom filter,

the size of backup Bloom filters is obtained by summing the individual backup Bloom

filter sizes. The constant 𝑐 in the equation depends on which variant of the Bloom

filter is used as the backup3; as it happens, its value will not affect the optimization.

The first constraint (Eq.2.3) ensures that the overall false positive rate stays below

the target 𝐹 . The overall false positive rate is obtained by summing the appropriately

weighted rates of each region. The next constraint (Eq.2.4) encodes the constraint

that false positive rate for each region is at most 1. The last set of constraints (Eq.2.5)

ensure threshold values are increasing and cover the interval [0, 1].

2.3.3 Solving the Optimization Problem

Solving a Relaxed Problem

If we remove the false positive rate constraints (Eq.2.4, giving 𝑓𝑖 ≤ 1), we obtain a

relaxed problem shown in Eq.2.6. This relaxation is useful because it allows us to use

3The sizes of Bloom filter variants are proportional to |𝑆| × log2(1/𝑓), where 𝑆 is the set it
represents, and 𝑓 is the false positive rate it achieves. See e.g. [[111]] for related discussion. The
constant 𝑐 depends on which type of Bloom filter is used as a backup. For example, 𝑐 = log2(𝑒) for
standard Bloom filter.

33



the Karush-Kuhn-Tucker (KKT) conditions to obtain optimal 𝑓𝑖 values in terms of

the 𝑡𝑖 values, which we used to design algorithms for finding near-optimal solutions.

Throughout this section, we assume the the relaxed problem yields a solution for the

original problem; we return to this issue in subsection 2.3.3.

min
𝑡𝑖=1...𝑘−1,𝑓𝑖=1...𝑘

(︁∑︀𝑘
𝑖=1 |𝑆| × (𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))× 𝑐 log2

(︁
1
𝑓𝑖

)︁)︁
+ Size of Learned Model

constraints
∑︀𝑘

𝑖=1 (𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1))× 𝑓𝑖 ≤ 𝐹 ;

(𝑡𝑖 − 𝑡𝑖−1) ≥ 0 , 𝑖 = 1...𝑘; 𝑡0 = 0; 𝑡𝑘 = 1

(2.6)

The optimal 𝑓𝑖 values obtained by using the KKT conditions yield Eq.2.7 (as derived

in Sec.2.4.3), giving the exact solution in terms of 𝑡𝑖’s.

𝑓𝑖 = 𝐹 𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1)
𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1)

(2.7)

The numerator 𝐺(𝑡𝑖) − 𝐺(𝑡𝑖−1) is the fraction of keys in the 𝑖𝑡ℎ region and the

denominator 𝐻(𝑡𝑖) −𝐻(𝑡𝑖−1) is the probability of a non-key query being in the 𝑖𝑡ℎ

region. In intuitive terms, the false positive rate for a region is proportional to the

ratio of the key density (fraction of keys) to non-key density (fraction of non-key

queries). Since we have found the optimal 𝑓𝑖 in terms of the 𝑡𝑖, we can replace the 𝑓𝑖 in

the original problem to obtain a problem only in terms of the 𝑡𝑖. In what follows, we

use ˆ𝑔(t) to represent the discrete distribution given by the 𝑘 values of 𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1)

for 𝑖 = 1, . . . , 𝑘, and similarly we use ˆℎ(t) for the distribution corresponding to

the 𝐻(𝑡𝑖) − 𝐻(𝑡𝑖−1) values. Eq.2.8 shows the rearrangement of the minimization

term(excluding model size) after substitution.

Min. Term =
𝑘∑︁

𝑖=1

|𝑆| × (𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))× 𝑐 log2

(︂
𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1)

(𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))× 𝐹

)︂

=
𝑘∑︁

𝑖=1

|𝑆| × (𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))× 𝑐 log2

(︂
1

𝐹

)︂
− 𝑐× |𝑆| ×𝐷𝐾𝐿

(︁
ˆ𝑔(t), ˆℎ(t)

)︁
(2.8)

where 𝐷𝐾𝐿 is the standard KL divergence for the distributions given by ˆ𝑔(t) and
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ˆℎ(t).

Eq.2.8 represents the space occupied by the backup Bloom filters; the total space

includes this and the space occupied by the learned model.

𝑐×
(︁
|𝑆| × log2

(︀
1
𝐹

)︀
− |𝑆| ×𝐷𝐾𝐿

(︁
ˆ𝑔(t), ˆℎ(t)

)︁)︁
+ Size Of Learned Model (2.9)

The space occupied by the Bloom filter without the learned model is 𝑐 × |𝑆| ×

log2(1/𝐹 ). Thus, the space saved by PLBF in comparison to the normal Bloom filter

is:
𝑐×

(︁
|𝑆| ×𝐷𝐾𝐿

(︁
ˆ𝑔(t), ˆℎ(t)

)︁)︁
− Size Of Learned Model (2.10)

The space saved by PLBF is therefore linearly proportional to the KL divergence of

key and non-key distributions of the regions given by ˆ𝑔(t) and ˆℎ(t) of the regions.

This derivation suggests that the KL divergence might also be used as a loss

function to improve the model quality. We have tested this empirically, but thus far

have not seen significant improvements over the MSE loss we use in our experiments;

this remains an interesting issue for future work.

Finding the Optimal Thresholds for Relaxed Problem

We have shown that, given a set of thresholds, we can find the optimal false positive

rates for the relaxed problem. Here we turn to the question of finding optimal

thresholds. We assume again that we are given 𝑘, the number of regions desired. (We

consider the importance of choosing 𝑘 further in our experimental section.) Given

our results above, the optimal thresholds correspond to the points that maximize

the KL divergence between ( ˆ𝑔(t), ˆℎ(t)). The KL divergence of ( ˆ𝑔(t), ˆℎ(t)) is the

sum of the terms 𝑔𝑖 log2
𝑔𝑖
ℎ𝑖

, one term per region. (Here 𝑔𝑖 = 𝐺(𝑡𝑖) − 𝐺(𝑡𝑖−1) and

ℎ𝑖 = 𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1).) Note that each term depends only on the proportion of keys

and non-keys in that region and is otherwise independent of the other regions. This

property allows a recursive definition of KL divergence that is suitable for dynamic

programming.

We divide the score space [0, 1] into 𝑁 consecutive small segments for a chosen value
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of 𝑁 ; this provides us a discretization of the score space, with larger 𝑁 more closely

approximating the real interval. Given 𝑘, we can find a set of 𝑘 approximately optimal

thresholds using dynamic programming, where the solution is approximate due to our

discretization of the score space. Let 𝐷𝑃𝐾𝐿(𝑛, 𝑗) denote the maximum divergence

one can get when you divide the first 𝑛 segments into 𝑗 regions. Our approximately

optimal divergence corresponds to 𝐷𝑃𝐾𝐿(𝑁, 𝑘). The idea behind the algorithm is

that the we can recursively define 𝐷𝑃𝐾𝐿(𝑛, 𝑗) as represented in Eq.2.11. Here 𝑔′, ℎ′

represent the fraction of keys and the fraction of non-key queries, respectively, in these

𝑁 segments.

𝐷𝑃𝐾𝐿 (𝑛, 𝑗) = max

(︃
𝐷𝑃𝐾𝐿(𝑛− 𝑖, 𝑗 − 1) +

(︃
𝑛∑︁

𝑟=𝑖

𝑔′(𝑟)× log2

(︂∑︀𝑛
𝑟=𝑖 𝑔

′(𝑟)∑︀𝑛
𝑟=𝑖 ℎ

′(𝑟)

)︂)︃)︃
(2.11)

The time complexity of computing 𝐷𝑃𝐾𝐿(𝑁, 𝑘) is 𝒪(𝑁2𝑘). One can increase the

value of 𝑁 to get more precision in the discretization when finding thresholds, at the

cost of higher computation time.

The Relaxed Problem and the General Problem

We can find a near-optimal solution to the relaxed problem by first, obtaining the

threshold values that maximize the divergence and then, getting the optimal 𝑓𝑖 values

using Eq.2.7. In many cases, the optimal relaxed solution will also be the optimal

general solution, specifically if 𝐹 × (𝐺(𝑡𝑖−1)−𝐺(𝑡𝑖))/(𝐻(𝑡𝑖−1)−𝐻(𝑡𝑖)) < 1 for all 𝑖.

Hence, if we are aiming for a sufficiently low false positive rate 𝐹 , solving the relaxed

problem suffices.

To solve the general problem, we need to deal with regions where 𝑓𝑖 ≥ 1, but we

can use the relaxed problem as a subroutine. First, given a fixed set of 𝑡𝑖 values for the

general problem, we have an algorithm (Alg.1, as discussed in Sec.2.4.4) to find the

optimal 𝑓𝑖’s. Briefly summarized, we solve the relaxed problem, and for regions with

𝑓𝑖 > 1, the algorithm sets 𝑓𝑖 = 1, and then re-solves the relaxed problem with these

additional constraints, and does this iteratively until no region with 𝑓𝑖 > 1 remains.

The problem is that we do not have the optimal set of 𝑡𝑖 values to begin; as such, we
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use the optimal 𝑡𝑖 values for the relaxed solution as described in Section 2.3.3. This

yields a solution to the general problem (psuedo-code in Alg.2), but we emphasize

that it is not optimal in general, since we did not start with the optimal 𝑡𝑖. We expect

still that it will perform very well in most cases.

In practice, we observe that keys are more concentrated on higher scores, and

non-key queries are more concentrated on lower scores. Given this property, if a

region with 𝑓𝑖 = 1 (no backup Bloom filter used) exists in the optimal solution of

the general problem, it will most probably be the rightmost region. In particular, if

(𝐺(𝑡𝑖−1)−𝐺(𝑡𝑖))/(𝐻(𝑡𝑖−1)−𝐻(𝑡𝑖)) is increasing as 𝑡𝑖−1, 𝑡𝑖 increase – that is, the ratio

of the fraction of keys to the fraction of non-key queries over regions is increasing –

then indeed without loss of generality the last (𝑘th) region will be the only one with

𝑓𝑘 = 1. (We say only one region because any two consecutive regions with 𝑓𝑖 = 1 can

be merged and an extra region can be made in the remaining space which is strictly

better, as adding an extra region always helps as shown in Sec.2.4.8.) It is reasonable

to believe that in practice this ratio will be increasing or nearly so.

Hence if we make the assumption that in the optimal solution all the regions except

the last satisfy the 𝑓𝑖 < 1 constraint, then if we identify the optimal last region’s

boundary, we can remove the 𝑓𝑖 ≤ 1 constraints for 𝑖 ̸= 𝑘 and apply the DP algorithm

to find near optimal 𝑡𝑖’s. To identify the optimal last region’s boundary, we simply

try all possible boundaries for the 𝑘th region (details discussed in Sec.2.4.5). As it

involves assumptions on the behavior of 𝐺 and 𝐻, we emphasize again that this will

not guarantee finding the optimal solution. But when the conditions are met it will

lead to a near-optimal solution (only near-optimal due to the discretization of the

dynamic program).
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2.4 Evaluation

We compare PLBF against the theoretically optimal Bloom filter [[16]]4, the sand-

wiching approach [[111]], and AdaBF [[34]]. Comparisons against standard Bloom

filters5 appear in Sec.2.4.11. We excluded the original learned Bloom filter [[84]] as the

sandwiching approach was strictly better. We include the size of the learned model

with the size of the learned Bloom filter. To ensure a fair comparison, we used the

optimal Bloom filter as the backup bloom filter for all learned variants. We use 3

different datasets:

URLs: As in previous papers [[84], [34]], we used the URL data set, which contains

103520 (23%) malicious and 346646 (77%) are benign URLs. We used 17 features

from these URL’s such as host name length, use of shortening, counts of special

characters,etc.

EMBER: Bloom filters are widely used to match file signatures with the virus

signature database. Ember (Endgame Malware Benchmark for Research) [[4]] is an

open source collection of 1.1M sha256 file hashes that were scanned by VirusTotal in

2017. Out of the 1.1 million files, 400K are malicious, 400K are benign, and we ignore

the remaining 300K unlabeled files. The features of the files are already included in

the dataset.

Synthetic: An appealing scenario for our method is when the key density increases

and non-key density decreases monotonically with respect to the score value. We

simulate this by generating the key and non-key score distribution using Zipfian

distributions as in Fig.2-2(A). Since we directly work on the score distribution, the

size of the learned model for this synthetic dataset is zero.
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Figure 2-2: FPR vs Space for the (A) Synthetic (B) URLs (C) EMBER datasets for various
baselines along with key and non-key score distributions. Space Saved as we increase number
of regions for the (D) Synthetic (E) URLs (F) EMBER datasets for PLBF compared to the
optimal Bloom filter

2.4.1 Overall Performance

Here, we compare the performance of PLBF against other baselines by fixing the

target 𝐹 and measuring the space used by each methods. We use PLBF Alg.3 with

DP algorithm discretization(𝑁) set to 1000. We train the model on the entire key

set and 40% of the non-key set. The thresholds and backup Bloom filters are then

tuned using this model with the aim of achieving the fixed target 𝐹 . The rest of the

non-keys are used to evaluate the actual false positive rate.

While any model can be used, we choose the random forest classifier from sklearn

[[129]] for its good accuracy. The F1 scores of the learned models used for synthetic,

URLs and EMBER were 0.99, 0.97, and 0.85, respectively. We consider the size of the

model to be the pickle file size on the disk (a standard way of serializing objects in
4For the space of a theoretically optimal Bloom filter, we take the standard Bloom filter of same

false positive rate and divide it’s space used by log2 𝑒, as obtaining near-optimality in practice is
difficult. This uses the fact that the standard Bloom filter is asymptotically log2 𝑒 times suboptimal
than the optimal as discussed in Sec.2.2.1.

5PLBF performs better against standard Bloom filters, as discussed in Sec.2.4.9. Section 2.4.1 are
conservative estimates of gains possible in practice using a PLBF.
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Python). We use five regions (𝑘 = 5) for both PLBF and AdaBF as this is usually

enough to achieve good performance as discussed in 2.4.2. Using higher 𝑘 would only

improve our performance.

The results of the experiment are shown in the Fig.2-2(A-C) along with the

distribution of the scores of keys and non-keys for each dataset. As we can see

from the figure, PLBF has a better Pareto curve than the other baselines for all the

datasets. On the synthetic dataset and URLs dataset we observe a significantly better

performance. In contrast, for the EMBER dataset our performance is only slightly

better indicating that the model here is not as helpful. The difference between space

used by PLBF and optimal Bloom filter first increases with decreasing false positive

rate but converges to a constant value for all datasets, as given in Eq.2.10. For the

same amount of space used(400Kb,500Kb,3000Kb space for synthetic,URLs,EMBER,

respectively), PLBF achieves 22x, 26x, and 3x smaller false positive rates than the

sandwiching approach, and 8.5x, 9x, and 1.9x smaller false positive rates than AdaBF

for synthetic, URLs, and EMBER, respectively. To achieve a false positive rate of

0.001, the sandwiching approach uses 8.8x, 3.3x, and 1.2x the amount of space and

AdaBF uses 6x, 2.5x, and 1.1x the amount of space compared to PLBF for synthetic,

URLs, and EMBER datasets respectively.

2.4.2 Performance and the Number of Regions

The maximum space savings obtained by using PLBF is linearly proportional to the

KL divergence of the distributions(Eq2.10) and this KL divergence strictly increases

with the number of regions(Sec.2.4.8). Fig.2-2(D-F) show the space saved w.r.t the

optimal Bloom filter as we increase the number of regions 𝑘 for a target false positive

rate of 0.001. The red line in the figure shows the savings when using 25 regions; using

more regions provides no noticeable improvement on this data. Our results suggest

using 4-6 regions should be sufficient to obtain reasonable performance. We have

additional experiments in Sec.2.4.10 that shows PLBF performance against standard

Bloom filters and PLBF performance w.r.t model quality.
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2.4.3 Solving the Relaxed Problem using KKT conditions

As mentioned in the main text, if we relax the constraint of 𝑓𝑖 ≤ 1, using the stationary

KKT conditions we can obtain the optimal 𝑓𝑖 values. Here we show this work. The

appropriate Lagrangian equation is given in Eq.2.12. In this case, the KKT coniditions

tell us that the optimal solution is a stationary point of the Lagrangian. Therefore,

we find where the derivative of the Lagrangian with respect to 𝑓𝑖 is zero.

𝐿 (𝑡𝑖, 𝑓𝑖, 𝜆, 𝜈𝑖) =
∑︀𝑘

𝑖=1 (𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))× 𝑐 log2

(︁
1
𝑓𝑖

)︁
+ 𝜆×

(︁(︁∑︀𝑘
𝑖=1 (𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1))× 𝑓𝑖

)︁
− 𝐹

)︁
+∑︀𝑘

𝑖=1 𝜈𝑖 × (𝑡𝑖−1 − 𝑡𝑖)

(2.12)

𝜕𝐿(𝑡𝑖,𝑓𝑖,𝜆,𝜈𝑖)
𝜕𝑓𝑖

= 0 (2.13)

𝜕(𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))𝑐 log2

(︁
1
𝑓𝑖

)︁
𝜕𝑓𝑖

= −𝜆𝜕(𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1))×𝑓𝑖
𝜕𝑓𝑖

(2.14)

𝑓𝑖 =
𝑐 ln(2)×(𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))×𝜆

(𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1))
(2.15)

𝜆 = 𝐹

𝑐 ln(2)×
∑︀𝑘

𝑖=1 (𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))
= 𝐹

𝑐 ln 2
(2.16)

𝑓𝑖 =
(𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))×𝐹𝑃𝑅

(𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1))
(2.17)

Eq.2.15 expresses 𝑓𝑝𝑟𝑖 in terms of 𝜆. Summing Eq.2.15 over all 𝑖 and using the

relationship between 𝐹 and 𝐻 we get Eq.2.16. Thus the optimal 𝑓𝑖 values turn out to

be as given in Eq.2.17.

2.4.4 Optimal False Positive Rate for given thresholds

We provide the pseudocode for the algorithm to find the optimal false positive rates if

threshold values are provided. The corresponding optimization problem is given in
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Algorithm 1 Finding optimal fpr’s given thresholds

Input 𝐺′ - the array containing key density of each region
Input 𝐻′ - the array containing non-key density of each region
Input 𝐹 - target overall false positive rate
Input 𝑘 - number of regions
Output 𝑓 - the array of false positive rate of each region

1: procedure OptimalFPR(𝐺′, 𝐻′, 𝐹, 𝑘)
2: 𝐺𝑠𝑢𝑚 ← 0 ◁ sum of key density of regions with 𝑓𝑖 = 1
3: 𝐻𝑠𝑢𝑚 ← 0 ◁ sum of non-key density of regions with 𝑓𝑖 = 1
4: for 𝑖 in 1, 2, ...𝑘 do
5: 𝑓 [𝑖] ← 𝐺′[𝑖]·𝐹

𝐻′[𝑖] ◁ Assign relaxed problem solution

6: while some 𝑓 [𝑖] > 1 do
7: for 𝑖 in 1, 2, ...𝑘 do
8: if (𝑓 [𝑖] > 1) then 𝑓 [𝑖]← 1 ◁ Cap the false positive rate of region to one
9: 𝐺𝑠𝑢𝑚 ← 0
10: 𝐻𝑠𝑢𝑚 ← 0
11: for 𝑖 in 1, 2, ...𝑘 do
12: if (𝑓 [𝑖] = 1) then 𝐺𝑠𝑢𝑚 ← 𝐺𝑠𝑢𝑚 +𝐺′[𝑖];𝐻𝑠𝑢𝑚 ← 𝐻𝑠𝑢𝑚 +𝐻′[𝑖] ◁ Calculate key,non-key density in

regions with no Bloom filter(𝑓 [𝑖] = 1)
13: for 𝑖 in 1, 2, ...𝑘 do
14: if (𝑓 [𝑖] < 1) then 𝑓 [𝑖] =

𝐺′[𝑖]·(𝐹−𝐻𝑠𝑢𝑚)
𝐻′[𝑖]·(1−𝐺𝑠𝑢𝑚)

◁ Modifying the 𝑓𝑖 of the regions to ensure target false
positive rate is FPR

15: return 𝑓𝑝𝑟 Array

Eq.2.18. As the boundaries for the regions are already defined, one only needs to find

the optimal false positive rate for the backup Bloom filter of each region.

min
𝑓𝑖=1...𝑘

∑︀𝑘
𝑖=1 (𝐺(𝑡𝑖)−𝐺(𝑡𝑖−1))× 𝑐 log2(

1
𝑓𝑖
)

constraints
∑︀𝑘

𝑖=1 (𝐻(𝑡𝑖)−𝐻(𝑡𝑖−1))× 𝑓𝑖 = 𝐹

𝑓𝑖 ≤ 1 𝑖 = 1...𝑘

(2.18)

Alg.1 gives the pseudocode. We first assign false positive rates based on the relaxed

problem but may find that 𝑓𝑖 ≥ 1 for some regions. For such regions, we can set 𝑓𝑖 = 1,

re-solve the relaxed problem with these additional constraints (that is, excluding these

regions), and use the result as a solution for the general problem. Some regions might

again have a false positive rate above one, so we can repeat the process. The algorithm

stops when there is no new region with false positive rate greater than one. This

algorithm finds the optimal false positive rates for the regions when the thresholds

are fixed.
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Algorithm 2 Using relaxed solution for the general problem

Input 𝐺𝑑𝑖𝑠 - the array containing discretized key density of each region
Input 𝐻𝑑𝑖𝑠 - the array containing discretized key density of each region
Input 𝐹 - target overall false positive rate
Input 𝑘 - number of regions
Output 𝑡 - the array of threshold boundaries of each region
Output 𝑓 - the array of false positive rate of each region
Algorithm ThresMaxDivDP - DP algorithm that returns the thresholds maximizing the divergence between key

and non-key distribution.
Algorithm CalcDensity - returns the region density given thresholds of the regions
Algorithm OptimalFPR - returns the optimal false positive rate of the regions given thresholds
Algorithm SpaceUsed - returns space used by the back-up Bloom filters given threhsolds and false positive rate

per region.

1: procedure Solve(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝐹, 𝑘)
2: 𝑡← ThresMaxDivDP(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝑘) ◁ Getting the optimal thresholds for the relaxed problem
3: 𝐺′, 𝐻′ ← CalcDensity(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝑡)
4: 𝑓 = OptimalFPR(𝐺′, 𝐻′, 𝐹, 𝑘) ◁ Obtaining optimal false positive rates of the general problem for given

thresholds
5:
6: return 𝑡 , 𝑓 Array

2.4.5 Algorithm for finding thresholds

We provide the pseudocode for the algorithm to find the solution for the relaxed

problem; Alg.3 finds the thresholds and false positive rates. As we have described in

the main text, this algorithm provides the optimal parameter values, if (𝐺(𝑡𝑖−1) −

𝐺(𝑡𝑖))/(𝐻(𝑡𝑖−1)−𝐻(𝑡𝑖)) is monotonically increasing.

The idea is that only the false positive rate of the rightmost region can be one.

The algorithm receives discretized key and non-key densities. The algorithm first

iterates over all the possibilities of the rightmost region. For each iteration, it finds

the thresholds that maximize the KL divergence for the rest of the array for which a

dynamic programming algorithm exists. After calculating these thresholds, it finds the

optimal false positive rate for each region using Alg.1. After calculating the thresholds

and false positive rates, the algorithm calculates the total space used by the back-up

Bloom filters in PLBF. It then remembers the index for which the space used was

minimal. The 𝑡𝑖’s and 𝑓𝑖’s corresponding to this index are then used to build the

backup Bloom filters. The worst case time complexity is then 𝒪(𝑁3𝑘).
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Algorithm 3 Solving the general problem

Input 𝐺𝑑𝑖𝑠 - the array containing discretized key density of each region
Input 𝐻𝑑𝑖𝑠 - the array containing discretized key density of each region
Input 𝐹 - target overall false positive rate
Input 𝑘 - number of regions
Output 𝑡 - the array of threshold boundaries of each region
Output 𝑓 - the array of false positive rate of each region
Algorithm ThresMaxDivDP - DP algorithm that returns the thresholds maximizing the divergence between key

and non-key distribution.
Algorithm CalcDensity - returns the region density given thresholds of the regions
Algorithm OptimalFPR - returns the optimal false positive rate of the regions given thresholds

1: procedure Solve(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝐹, 𝑘)
2: 𝑀𝑖𝑛𝑆𝑝𝑎𝑐𝑒𝑈𝑠𝑒𝑑←∞ ◁ Stores minimum space used uptil now
3: 𝑖𝑛𝑑𝑒𝑥← −1 ◁ Stores index corresponding to minimum space used
4: 𝐺𝑙𝑎𝑠𝑡 ← 0 ◁ Key density of the current last region
5: 𝐻𝑙𝑎𝑠𝑡 ← 0 ◁ Non-key density of the current last region
6:
7: for 𝑖 in 𝑘 − 1, 𝑘, ...𝑁 − 1 do ◁ Iterate over possibilities of last region
8: 𝐺𝑙𝑎𝑠𝑡 ←

∑︀𝑁
𝑗=𝑖 𝐺𝑑𝑖𝑠[𝑗] ◁ Calculate the key density of last region

9: 𝐻𝑙𝑎𝑠𝑡 ←
∑︀𝑁

𝑗=𝑖 𝐻𝑑𝑖𝑠[𝑗]

10: 𝑡← ThresMaxDivDp(𝐺[1..(𝑖− 1)], 𝐻[1..(𝑖− 1)], 𝑘 − 1) ◁ Find the optimal thresholds for the rest of the
array

11: 𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑖)
12: 𝐺′, 𝐻′ ← CalcDensity(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝑡)
13: 𝑓 = OptimalFPR(𝐺′, 𝐻′, 𝐹, 𝑘) ◁ Find optimal false positive rates for the current configuration
14: if (𝑀𝑖𝑛𝑆𝑝𝑎𝑐𝑒𝑈𝑠𝑒𝑑 < SpaceUsed(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝑡, 𝑓))
15: then 𝑀𝑖𝑛𝑆𝑝𝑎𝑐𝑒𝑈𝑠𝑒𝑑← SpaceUsed(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝑡, 𝑓); 𝑖𝑛𝑑𝑒𝑥← 𝑖 ◁ Remember the best performance

uptil now
16:
17: 𝐺𝑙𝑎𝑠𝑡 ←

∑︀𝑁
𝑗=𝑖𝑛𝑑𝑒𝑥 𝐺𝑑𝑖𝑠[𝑗]

18: 𝐻𝑙𝑎𝑠𝑡 ←
∑︀𝑁

𝑗=𝑖𝑛𝑑𝑒𝑥 𝐻𝑑𝑖𝑠[𝑗]

19: 𝑡← ThresMaxDivDP(𝐺[1..(𝑖𝑛𝑑𝑒𝑥− 1)], 𝐻[1..(𝑖𝑛𝑑𝑒𝑥− 1)], 𝑘 − 1)
20: 𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑛𝑑𝑒𝑥)
21: 𝐺′, 𝐻′ ← CalcDensity(𝐺𝑑𝑖𝑠, 𝐻𝑑𝑖𝑠, 𝑡)
22: 𝑓 = OptimalFPR(𝐺′, 𝐻′, 𝐹, 𝑘)
23:
24: return 𝑡 , 𝑓 Array

2.4.6 Additional Considerations

2.4.7 Sandwiching: A Special Case

We show here that the sandwiching approach can actually be interpreted as a special

case of our method. In the sandwiching approach, the learned model is sandwiched

between two Bloom filters as shown in Fig.2-3(A). The input first goes through a

Bloom filter and the negatives are discarded. The positives are passed through the

learned model where based on their score 𝑠(𝑥) they are either directly accepted when

𝑠(𝑥) > 𝑡 or passed through another backup Bloom filter when 𝑠(𝑥) ≤ 𝑡. In our setting,

we note that the pre-filter in the sandwiching approach can be merged with the backup

filters to yield backup filters with a modified false positive rate. Fig.2-3(B) shows
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what an equivalent design with modified false positive rates would look like. (Here

equivalence means we obtain the same false positive rate with the same bit budget;

we do not consider compute time.) Thus, we see that the sandwiching approach can

be viewed as a special case of the PLBF with two regions.

However, this also tells us we can make the PLBF more efficient by using sandwich-

ing. Specifically, if we find when constructing a PLBF with 𝑘 regions that 𝑓𝑖 < 1 for

all 𝑖, we may assign 𝑓0 = max1≤𝑖≤𝑘 𝑓𝑖. We may then use an initial Bloom filter with

false positive rate 𝑓0, and change the target false positive rates for all other intervals

to 𝑓𝑖/𝑓0, while keeping the same bit budget. This approach will be somewhat more

efficient computationally, as we avoid computing the learned model for some fraction

of non-key elements.

fpr0

Postive

Negative
Bloom filter

Input (x)

s(x) > t

Learned Model

fpr1

Bloom filter

PostiveNegative

Postive

s(x) ≤ t

Input (x)

s(x) > t

Learned Model

fpr0* fpr1

Bloom filter

PostiveNegative

s(x) ≤ t

fpr0

Bloom filter

PostiveNegative
(A) (B)

Figure 2-3: (A) represent LBF with sandwiching.(B) represents a PLBF design equivalent to
the sandwiching approach.

2.4.8 Performance against number of regions 𝑘

Earlier, we saw the maximum space saved by using PLBF instead of a normal Bloom

filter is linearly proportional to the 𝐷𝐾𝐿( ˆ𝑔(t), ˆℎ(t)). If we split any region into two

regions, the overall divergence would increase because sum of divergences of the two

split regions is always more than the original divergence, as shown in Eq.2.19. Eq.2.19
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is an application of Jensen’s inequality.

(︁
(𝑔1 + 𝑔2)× log (𝑔1+𝑔2)

(ℎ1+ℎ2)

)︁
≤
(︁
𝑔1 × log 𝑔1

ℎ1

)︁
+
(︁
𝑔2 × log 𝑔2

ℎ2

)︁
(2.19)

Increasing the number of regions therefore always improves the maximum perfor-

mance. We would hope that in practice a small number of regions 𝑘 would suffice.

This seems to be the the case in our experience; we detail one such experiment in our

evaluation(2.4.2).

2.4.9 Performance using various Bloom filter variants

We consider how the space saved of the PLBF varies with the type of backup Bloom

filter being used. The PLBF can use any Bloom filter variant as the backup Bloom

filter. When we compare our performance with a Bloom filter variant, we use that

same Bloom filter variant as the backup Bloom filter for a fair comparison.

First, absolute space one can save by using a PLBF instead of a Bloom filter

variant is given in Eq.2.10. This quantity increases with increasing 𝑐6.

The relative space one saves by using PLBF instead of the given Bloom filter

variant is shown in Eq.2.20. This quantity is the ratio of the space saved by PLBF

(as shown in Eq.2.10) divided by the space used by the given Bloom filter variant

(𝑐× |𝑆| × log2(1/𝐹 )) as shown in Eq.2.20.

(𝑐×|𝑆|×𝐷𝐾𝐿( ^𝑔(t), ^ℎ(t))−Size Of Learned Model)
𝑐×|𝑆|×log2(1/𝐹 )

(2.20)

Cancelling the common terms we obtain the following Eq.2.21.

(︂
𝐷𝐾𝐿( ^𝑔(t), ^ℎ(t))

log2(1/𝐹 )
− Size Of Learned Model

𝑐×|𝑆|×log2(1/𝐹 )

)︂
(2.21)

The relative space saved, like the absolute space saved, also increases with increasing

𝑐. Thus, both the relative and absolute space saved for the PLBF is higher for a
6The sizes of standard Bloom filter variants are proportional to |𝑆| × log2(1/𝑓), where 𝑆 is the

set it represents, and 𝑓 is the false positive rate it achieves. See e.g. [111] for related discussion. The
constant 𝑐 depends on which type of Bloom filter is used as a backup. For example, 𝑐 = log2(𝑒) for
standard Bloom filter, 𝑐 = 1.0 for the optimal Bloom filter.
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standard Bloom filter (𝑐 = 1.44) than an optimal Bloom filter (𝑐 = 1.00), and hence

our experiments in Section 2.4.1 are conservative estimates of gains possible in practice

using PLBF.

2.4.10 Additional Experiments

2.4.11 Performance w.r.t standard Bloom filters

Earlier, we evaluated our performance using optimal Bloom filters and here we present

results using standard Bloom filters. As shown in Sec.2.4.9, PLBF performs better

w.r.t standard Bloom filters than optimal Bloom filters. As one can see from Fig.2-4,

PLBF performs better than the standard Bloom filter.
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Figure 2-4: FPR vs Space for the (A) Synthetic (B) URLs (C) EMBER datasets for various
baselines along with key and non-key score distributions.

2.4.12 Performance and Model Quality

Here we provide an experiment to see how the performance of various methods varies

with the quality of the model. As discussed earlier, a good model will have high skew

of the distributions 𝑔 and ℎ towards extreme values. We therefore vary the skew

parameter of the Zipfian distribution to simulate the model quality. We measure the

quality of the model using the standard F1 score. Fig.2-5(B) represents the space

used by various methods to achieve a fixed false positive rate of 0.001 as we vary the
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F1 score of the model. The figure shows that as the model quality in terms of the

F1 score increases, the space required by all the methods decreases (except for the

optimal Bloom filter, which does not use a model). The space used by all the methods

goes to zero as the F1 score goes to 1, as for the synthetic dataset there is no space

cost for the model. The data point corresponding to F1 score equal to 0.99 was used

to plot Fig.2-2(A).

Figure 2-5: Space used by various baselines as we increase F1 score for Synthetic dataset

2.4.13 Discretization Effect on Dynamic Programming Run-

time, PLBF Size

All the runtime experiments in this subsection and the next subsection are measured

using an 2.8GHz quad-core Intel Core i7 CPU @ 2.80GHz with 16GB of memory. We

use the bloom-filter python package [[17]] for our backup Bloom filters. The dynamic

programming algorithms are implemented in Python.

Here we provide an experiment to see how the dynamic programming (DP) algo-

rithm runtime (psuedo code in Alg.3) and PLBF size vary with level of discretization

(𝑁). In the tables below, we have the DP algorithm runtime and space taken by the

PLBF to achieve an approximate empirical false positive rate of 0.001 for various

𝑁 . As discussed in Sec. 2.3.3, with increasing value of 𝑁 one gets closer to optimal
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parameters, at the cost of higher computation time. This trend is demonstrated in

the table below for the URLs and EMBER datasets. We note that if runtime is an

issue, the increase in size from using smaller 𝑁 is relatively small.

N DP Runtime(in sec) PLBF Size (in Kb)
50 1.17 187.6
100 2.15 184.37
500 10.97 183.63
1000 26.94 183.55
2000 56.79 182.85

Table 2.1: DP runtime and space used by PLBF as we increase the discretization 𝑁 in the
URLs dataset

N DP Runtime(in sec) PLBF Size (in Kb)
50 1.36 2952.33
100 2.52 2944.68
500 11.39 2933.09
1000 25.26 2928.76
2000 56.12 2926.79

Table 2.2: DP runtime and space used by PLBF as we increase the discretization 𝑁 in the
EMBER dataset

2.4.14 Construction Time for Various Baselines

Here we look at the construction time breakdown for the PLBF and various alternatives,

with the goal of seeing the cost of in terms of construction time for using the more

highly tuned PLBF. The construction time of all the learned Bloom filters includes

the model training time and parameter estimation time, which are not required for

the standard Bloom filter construction process. Since we use the same model for all

learned baselines, the model construction time is the same for all of them. In Fig.2-6,

we plot the construction time breakdown for various baselines in order to achieve

an approximate empirical false positive rate of 0.001. Recall that the AdaBF and

Sandwiching approaches use heuristics to estimate their parameters and unsurprisingly

they therefore seems somewhat faster than PLBF. However, for 𝑁 = 100 we see the

parameter estimation time is smaller than the key insertion time and model training
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time. The parameter estimation time for PLBF varies with the level of discretization

we use for the DP algorithm. The PLBF with 𝑁 = 1000 takes the longest to execute

while standard Bloom filter is fastest baseline. As shown in Table2.1 above, using

𝑁 = 1000 gives only a slight improvement in size. We therefore believe that if

construction time is an issue, as for situations where one might want to re-learn and

change the filter as data changes, one can choose parameters for PLBF construction

that would still yield significant benefits over previous approaches.

Figure 2-6: Construction time breakdown for various baselines for the URLs dataset
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Chapter 3

SNARF: Sparse Numerical Array

Based Range Filter

3.1 Introduction

Filters are space efficient, but approximate, data structures that are used to answer

membership queries on a set 𝑆. Filters allow significant improvements in the perfor-

mance for an array of applications, including big data systems [150] and networking

[22]. For example RocksDB [53], a Log-Structure-Merge Tree (LSM) [121] based

key-value store, stores data onto disks in blocks (called SST’s). However, because of

the LSM structure, RocksDB often needs to load several blocks from disk into main

memory to determine which block contains the data for a given search key. To avoid

loading disk blocks that do not contain the search key, RocksDB creates a filter per

block for all keys stored in the block.

Point filters, such as Bloom Filters, support point queries of the form: "Is 𝑥 in

the set 𝑆?". Range membership filters answer more general queries of the form "Is

there a key in the set S in between values 𝑝 and 𝑞?" [2, 100, 161]. Here we are focused

on approximate filters that guarantee that there are no false negatives. This is an

important property many applications/systems require. There may, however, be false

positives. For point queries, if the filter returns true for a search key, the key might or

might not be contained in the block, but if it returns false it is guaranteed that the key
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is not in the set/block; and this extends similarly to range queries. The probability of

a false positive for a key not in the set is the false positive rate (FPR) of the filter;

the FPR can be defined similarly for range queries.

In RocksDB, filters are usually orders of magnitude smaller than the blocks and are

cached in main memory. Before loading a disk block into main memory, the filters are

checked if the key might be contained in the block. A filter with low false positive rate

helps to significantly reduce the number of unnecessary I/O requests to disk blocks

to find the key. The benefit a filter can provide depends on the trade-off between

its false positive rate and the size of the filter; the smaller and the more precise, the

better it is. Interestingly, the latency of a filter to process a query normally matters

less as they tend to protect against very expensive operations (e.g., disk or other cold

storage access) that are often orders of magnitude slower (see also Experiment 3.6.2).

Range Filters: Range queries are often used in social web applications [30],

distributed key-value storage replication [143], statistics aggregation for time series

workloads [77], and SQL table accesses [91]. For example, from a table of customer

orders, one might ask the following SQL query to retrieve all the orders between two

particular dates: SELECT * FROM Orders WHERE Order_Date BETWEEN "07-

14-2014" AND "07-21-2014" . Past work has shown that range filters can significantly

improve the performance of systems for synthetic and real-world workloads. For

example, [100, 161] showed that workloads on RocksDB can benefit from range filters,

whereas [2] showed the advantages of range filters for Hekaton, which is part of the

MS SQL Server.

Existing Range Filter Designs: Past efforts to provide range filtering resulted

in the current state-of-the-art filters Succinct Range Filter (SuRF) [161] and Rosetta

[100]. SuRF utilizes a compact trie-like data structure which can filter arbitrary range

queries, whereas Rosetta utilizes a different approach by using a Bloom filter (a point

query filter) [16] for range queries along with the help of a hierarchy of prefix Bloom

filters. Unfortunately, which of the two filters is better depends highly on the workload.

For the same filter size, Rosetta has a lower false positive rate for very short range

sizes because of its clever combination of Bloom and prefix filters, whereas SuRF has
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CDF ModelSet (S) ={12, 35, 51, 68 ..}

Bit Positions = {1, 5, 11, 17,...}

0 0 1 0 0 00 0 0 1  ……..0
Bit Array (B)

MCDF(x) = {0.01, 0.05, 0.11, 0.17,...}

|B| = |S| x K

0 0 1 1 0 11 0 ... 1 0Compressed Bit Array (CBA)

f(x) = |B| x MCDF(x)

0 0 1 001

Figure 3-1: SNARF Idea: Given a set of keys 𝑆, SNARF builds a model 𝑀𝐶𝐷𝐹 (𝑥) to
estimate the empirical cdf of the keys, which it then uses to set corresponding bits in a
large bit array 𝐵 for all 𝑥 ∈ 𝑆. This sparse bit array which encodes key information is then
compressed. The model and the compressed bit array are the main parts of SNARF data
structure.

a lower FPR otherwise.

SNARF: In this paper, we introduce an entirely new approach to range filters,

called Sparse Numerical Array-Based Range Filters (SNARF). SNARF is a learning

enhanced range filter1 that models the data distribution of the underlying key set 𝑆.

SNARF then uses the model to encode partial information of the data in a sparse bit

array. SNARF controls the false positive rate by changing the size of the bit array.

The sparse bit array is then compressed to store it efficiently. SNARF answers range

queries by using the model to extract the relevant information from the compressed

bit array. Exploiting the data distribution and using effective compression schemes

allow SNARF to encode the data set more effectively than previous schemes, leading

to better space/false positive rate tradeoffs, while being competitive in terms of query

latency.

SNARF Results: We evaluate SNARF on multiple synthetic and real-world

numerical datasets against state-of-the-art range filters, such as SuRF and Rosetta,

and also against point filters, such as Bloom filters [16] and Cuckoo filters [55]. We

use a variety of query workloads, such as uniform, sampled from real-world, skewed

1We acknowledge that the term "learned" range filter might be a misnomer as we use simplistic
modelling of the data using linear splines. However, the name is in line with previous works
[56, 88, 85, 46].
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(certain part of data is queried more often), and correlated (query endpoint is close

to existing key) to test the effectiveness of the filters. For range queries on both

real-world and synthetic datasets, SNARF is consistently able to provide up to a

50x better FPR than SuRF under the same space budget, and SNARF has up to

100x better FPR than Rosetta under same space budget. We do note, however, that

performance depends on the dataset and query structure; for example, we have found

that Rosetta is better than SNARF specifically in the case where the query workload

has very short range queries and high correlation between queries and keys. Moreover,

for point queries, SNARF can empirically provide FPRs that are better than Bloom

filters and slightly better than Cuckoo filters under the same space budget across a

diversity of query workloads.

Finally, we measured SNARF’s impact on performance of an end-to-end system by

integrating it with RocksDB. Here we found that SNARF can improve the workload

execution time by up to 10x compared to SuRF and Rosetta for certain read only

workloads.

In summary, we make the following contributions:

• We introduce SNARF, a novel range filter which combines models and compres-

sion schema (Section 3.2).

• We provide a heuristic theoretical analysis of SNARF that matches our empirical

experiments well (Section 3.3).

• We discuss possible extensions of SNARF, including support for updates and

support for approximate count queries (Section 3.4).

• We evaluate SNARF against state-of-the-art baselines and test the impact

SNARF can have on a real system like RocksDB (Section 3.6).

3.2 SNARF: A learned filter

We first explain the idea behind SNARF (see Sec.3.2.1). Later, we describe the details

of the model (see Sec.3.2.2) and the compressed bit arrays (see Sec.3.2.3).
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3.2.1 SNARF Description

SNARF Construction:

Given a set of keys 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, we want to build a filter that answers range

queries on this set. SNARF maps the keys into a bit array 𝐵, which has |𝐵| = 𝐾 × 𝑛

bits for a suitably large 𝐾2, via a monotonic function 𝑓 . Initially, all bits are 0,

but bit position 𝑓(𝑥𝑖) is set to 1 for all 𝑥𝑖 ∈ 𝑆. The exact mapping function 𝑓 is

𝑓(𝑥) = ⌊𝑀𝐶𝐷𝐹 (𝑥)× 𝑛𝐾⌋, where MCDF is a monotonic estimate of the empirical

CDF (eCDF) of the keys in 𝑆. Storing an entire sparse bit array directly is not space-

efficient, so SNARF stores a compressed version of the bit array. The compressed bit

array (CBA) encodes the locations of the one bits in the array. Fig.3-1 illustrates the

idea of SNARF.

Alg.4 has the pseudo-code for SNARF construction. Given a set of keys 𝑆 and

scale factor 𝐾 for the bit array, the construction algorithm outputs a model of the

eCDF of the keys in 𝑆 and the compressed bit array. The first step is to train a model

to estimate the eCDF of the keys. In the next step, this model is used to generate

the set of bit positions in the bit array that are set to one. The bit array is then

compressed into the CBA.

SNARF Range Query:

To answer a range query [𝑝, 𝑞], SNARF uses the model to get the bit positions 𝑓(𝑝)

and 𝑓(𝑞) corresponding to the query endpoints. The data structure then returns true

if a one bit is found in the range [𝑓(𝑝), 𝑓(𝑞)] of 𝐵 and false otherwise. Alg.5 shows

the pseudo-code for SNARF range query. Note that we want our CBA structure to

efficiently support queries of the form: "Is there a one bit between bit positions 𝑎 and

𝑏 (inclusive)?".

Standard rank-select structures [163, 65, 128, 69] can provide compressed bit arrays

with an efficient predecessor query which can be used to answer such queries. (One can

2We use 𝐾 to control the FPR of the structure which we discuss in detail later on
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check if the first one bit preceding 𝑏 is before or after 𝑎.) Such a structure is naturally

more efficient than decompressing the entire array and checking all bits between

𝑎 and 𝑏. While rank-select structures could be used to speed up the computation

of the a predecessor operation, we find they take more space than alternatives to

do so. In our case, space is the primary resource we want to optimize for. This is

because the latency of a filter to process a query normally matters less in RocksDB

(see Sec.3.6.2). Also, with exponentially growing data, it is important to be able to

filter more data with smaller filters. Thus, SNARF uses encoding schemes which

provide near-optimal compression rather than fast query responses. We discuss simple

techniques to optimize query response times in Sec.3.2.3.

Essential properties of Mapping Function 𝑓

Monotonicity: The monotonicity of the mapping function, so that 𝑝 < 𝑞 =⇒

𝑓(𝑝) ≤ 𝑓(𝑞), is an essential property that ensures no false negatives in SNARF.

Monotonicity ensures that for any range query [𝑝, 𝑞] with 𝑝 < 𝑞, any key from 𝑆

between the query endpoints will be mapped to a position between the bit positions

of these endpoints. That is, if 𝑥𝑖 ∈ [𝑝, 𝑞], then 𝑓(𝑝) ≤ 𝑓(𝑥𝑖) ≤ 𝑓(𝑞); there is a bit set

in the range [𝑓(𝑝), 𝑓(𝑞)]. Note, however, that it is possible that 𝑥𝑖 /∈ [𝑝, 𝑞], but either

𝑓(𝑥𝑖) = 𝑓(𝑝) or 𝑓(𝑥𝑖) = 𝑓(𝑞), leading to false positives.

Uniform Mapping: SNARF aims for a uniform mapping into the bit array 𝐵 for

performance reasons; that is, we desire the bits set in the array to be as equally spaced

as possible. Mapping the keys approximately uniformly allows the range filter to be

robust to skewed query workloads (workloads where certain part of the range is queried

more often) as we discuss in detail in Sec.3.3. The empirical cumulative distribution

function of a (discrete) set 𝑆 has the property that it maps the keys uniformly over

the range [0, 1]. Hence, SNARF makes use of a monotonic CDF model of the set 𝑆 to

achieve a monotonic and approximately uniform mapping of the keys. The details of

the model we utilize are presented in Sec.3.2.2.
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Algorithm 4 SNARF Construction:

Input 𝑆 - set of keys
Input 𝑛 - number of keys
Input 𝐾 - Scaling factor for the bit array size
Output 𝑀𝐶𝐷𝐹 - Monotonic CDF estimate of keys
Output 𝐶𝐵𝐴 - Compressed bit array
Function 𝑇𝑟𝑎𝑖𝑛(𝑆) - function that returns a model to estimate the cdf of keys in set S
Function 𝐸𝑛𝑐𝑜𝑑𝑒(𝑆) - function that encodes the numbers in the set S

1: procedure Construction(𝑆,𝐾)
2: //Building the monotonic CDF model for set of keys
3: 𝑀𝐶𝐷𝐹 ← 𝑇𝑟𝑎𝑖𝑛(𝑆)
4:
5: //Get Bit positions that are set to one
6: 𝐵𝑖𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡← {}
7: for 𝑘𝑒𝑦 in 𝑆 do
8: 𝐵𝑖𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡.add(⌊ 𝑀𝐶𝐷𝐹 (𝑘𝑒𝑦)× 𝑛𝐾 ⌋)
9:
10: //Compress the Bit Positions that are set to one
11: 𝐶𝐵𝐴← 𝐸𝑛𝑐𝑜𝑑𝑒(𝐵𝑖𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡)
12:
13: return 𝑀𝐶𝐷𝐹,𝐶𝐵𝐴

Algorithm 5 SNARF Range Query

Input 𝑛 - number of keys
Input 𝐾 - Scaling factor for the bit array size
Input 𝑀𝐶𝐷𝐹 - Monotonic CDF estimate of keys
Input 𝐶𝐵𝐴 - Compressed bit array
Input 𝑝, 𝑞 - the range query endpoints
Output 𝑟 - boolean answer of the range query
Function 𝐶ℎ𝑒𝑐𝑘𝑂𝑛𝑒𝐵𝑖𝑡(𝑎, 𝑏) - function that returns true if there is a 1 bit between bit locations [𝑎, 𝑏] else false.

1: procedure RangeQuery(𝑀𝐶𝐷𝐹,𝐾, 𝑛,𝐶𝐵𝐴, 𝑝, 𝑞)
2: //Get the bit location of the query endpoints
3: 𝐿𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐← ⌊𝑀𝐶𝐷𝐹 (𝑝)×𝐾𝑛⌋
4: 𝑈𝑝𝑝𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐← ⌊𝑀𝐶𝐷𝐹 (𝑞)×𝐾𝑛⌋
5:
6: //Check if 1 bit exists in the range.
7: 𝑟 ← 𝐶𝐵𝐴.𝐶ℎ𝑒𝑐𝑘𝑂𝑛𝑒𝐵𝑖𝑡(𝐿𝑜𝑤𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐, 𝑈𝑝𝑝𝑒𝑟𝐵𝑖𝑡𝐿𝑜𝑐)
8: return 𝑟

3.2.2 Model Details

As discussed before, the model needed for SNARF must be monotonic and provide

an estimate of the empirical CDF. Further, we want the space overhead added by

the model to be small. Here, we present models for fixed size numerical values

such as doubles, floats, and 32/64/128 bit signed/unsigned integers. Recently, a

hierarchy of linear models have been used for indexing numerical keys [56, 85, 46, 72].

This ensemble of linear models is both small in size and provides fast evaluation for
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numerical values.3 However, these models do not always guarantee monotonicity.

Inspired by them, we use linear spline models for CDF estimation. Given a set 𝑆,

the idea is to use a small sample of keys from the input set and build linear models

between consecutive keys in the sample to estimate the CDF as shown in Fig.3-2.

This sample is stored in a sorted order, and we refer to it as the key array. The size of

the sample determines how large the model is and the quality of the CDF estimation.

Larger samples lead to better CDF approximation and larger models which increase

the space used by SNARF.

12 35 67 80Key Array (T)

L1
s1,y1

Array of 
Linear Models 

L2
s2,y2

L3
s3,y3

L4
s4,y4

L5
s5,y5

1.0

0.75

0.5

0.25

0.0
12 35 67 80

L1
L2

L3
L4 L5

Key (x)

CD
F 

Set (S): 3 5 12 13 25 35 47 57 67 72 75 80

.08eCDF: .17 .25 .33 .41 .50 .58 .66 .75 .83 .91 1.0

CDF 
Model

Figure 3-2: SNARF Numerical Model

Querying the Model: The number of keys stored by the model is one less than the

number of linear models. The first step is to binary search in the sorted array of keys

(𝑀𝐶𝐷𝐹.𝑘𝑒𝑦𝑠). The number of keys in the array that are less than the query point 𝑥

gives the index to the linear model parameters that are supposed to be used. We then

use the corresponding line’s slope and intercept to obtain the final estimated CDF

value for the value. If the computed CDF is outside the range [0, 1], we correct the

value to 0 or 1 as appropriate.

Training the Model: During training, we sort the input set 𝑆 and compute the

empirical CDF. We then choose keys at regular intervals (every (𝑁/𝑅)𝑡ℎ key for a

suitable 𝑅) and these keys form endpoints for linear spline models. Between every

pair of consecutive sample points, we compute the slope and 𝑦-intercept of the line

segment connecting the two points.
3We experimented with monotonic cubic splines [60] but found them to be slightly worse than a

series of linear models
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The number of line segments we use in our model can be tuned to improve the

tradeoff between the CDF estimate and overall model size. The more lines the better

one can potentially approximate the CDF, but the more space used as well. A good

value for number of line segments will depend on the dataset. We empirically found

that using |𝑆|/1000 line segments generally gives good CDF estimates along with

small model size. The space overhead of model when using |𝑆|/1000 line segments is

approximately 0.2 bits per key.

3.2.3 Managing the Bit Array

We describe compression schemes for bit arrays and simple techniques to make range

queries faster on the compressed bit array.

Compressing the Bit Array

The main idea for space efficient encoding of a sparse bit arrays is to simply encode

the positions of the one bits. We discuss two such specific techniques.

Golomb Coding: Golomb coding is a form of lossless delta compression which is the

optimal lossless compression scheme for a sparse bit array with uniformly randomly

spread one bits [63].4

In general delta compression schemes, the values to be encoded are sorted and then

the differences, or deltas, between consecutive values are stored efficiently. In Golomb

coding, for each delta value 𝑋 to encode, 𝑋 is divided by a fixed constant 𝑀 to obtain

a quotient ⌊𝑋/𝑀⌋ and a remainder 𝑋%𝑀 . The remainder is stored in a fixed length

binary format using log2(𝑀) bits, whereas the quotient, which is expected to be small,

is encoded in unary. The choice of the fixed constant is important in determining the

size of the compressed array. For uniformly randomly generated values, the average

delta value is the optimal constant. In our case, the average delta value will be the bit

array size 𝑛𝐾 divided by number of one bits, which is approximately 𝑛. We therefore

use 𝐾 as the constant for our Golomb coding. Fig.3-3 describes an example of Golomb

4We expect nearly uniform randomly place one bits in our case.
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encoding a sparse bit array.

Bit Positions: 3 5 11 16 24 25 28 32 35 41 43 47

Bit Array: 0 0 1 0 0 01 0 0 1  ……..0

Delta Values: 2 6 5 8 1 3 4 3 6 2 4

Golomb Coding: 
(M=4)

1 10 01 10 01 01 001 00 ………. 01 00

Q = ⌊X/M⌋ R = X%M 000..01

Q zero’s
Q+1 bits 

Unary 
Encoding

Binary 
Encoding

101..1

Log2(M) bits    

Golomb Coding:
Of value X

1      2      3     4      5      6      7      8     9     10    11

  5-3   11-5   16-11  24-16            ………………………..                  47-43

1100110010100100….0100Final Compressed :
Bit Array

Figure 3-3: Golomb coding

In order to check if a bit is one in the range of bit positions [𝑎, 𝑏], one needs

to decode the array from the start by adding the deltas one by one. This process

continues until you either find a 1 after 𝑎 and before 𝑏 or you go past 𝑏. Decoding the

array for each query can be slow; we discuss better approaches shortly.

Elias-Fano Encoding: Elias-Fano is a form of entropy encoding to represent a

monotone non-decreasing sequence of 𝑁 integers. The bit positions in our case form

the non-decreasing sequence. In Elias-Fano encoding, the integers are first binary

encoded using log2(𝑀) bits if [0,𝑀) is the universe range. This representation is split

into two parts: an upper log2(𝑁) bits and the remaining lower log2(𝑀/𝑁) bits. The

lower bits are trivially stored by concatenating them and this uses 𝑁 log2(𝑀/𝑁) bits.

The higher part is represented by a bit vector of 2𝑁 bits as follows. We first create a

count of occurrences of upper bit values for all values between [0, 𝑁 − 1]. We then

put this count vector in unary notation; that is, each count is represented in unary

(a sequence of 1s) with 0 stop bit between values. This leads to 2𝑁 total bits, with

one bit set to 1 for each of the 𝑁 elements and one 0 bit for each possible values for

the upper bits. Finally, the Elias-Fano representation is the concatenation of these

two vectors. Fig.3-4 describes a Elias-Fano encoding for a set of integers. In our case,

we will be encoding the bit positions so 𝑀 = 𝑛𝐾 and 𝑁 = 𝑛. Thus, we will binary

encode the log2(𝐾) lower bits and unary encode the upper log2(𝑛) bits for each bit

position.
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Bit Positions
(N=8):

2 3 5 7 11 13 24

Bit Array
(M=32):

1 0 1 0 1 01 0 0 1  ……..0 0

Elias Fano               
Coding   : 

(M=32,N=8)
000 10 000 11 001 01 001 11 ………. 111 01

1      2      3     4      5      6      7      8     9     10    11                   32

29

10 11 01 11 …... 01

Lower 2 bits

000 001 010 011 100 111

110110101000101

110101

Upper 3 bits

Unary Encode

Count: 2       2        1         1       0         0        1         1

10 11 01 11 … 01

Concatenate

Final Compressed :
Bit Array

110110101000101 10 11 01 11 … 01

Figure 3-4: Elias Fano Encoding

While checking if a bit is one in the range [𝑎, 𝑏], one can decode the upper bit array

from the start (similar to Golomb coding) but accessing the lower part is not always

necessary. Any bit position with upper bit value less than ⌊ 𝑎

2𝑀−𝑁
⌋ will definitely be

smaller than 𝑎. This is because the value of the lower part can be at max 2𝑀−𝑁 − 1

and that is not enough for it to be greater than 𝑎. Thus, we only need to check the

lower bits if the upper bits are relevant. This property greatly reduces the amount

memory accessed during a range query compared to Golomb coding. On the other

hand, Elias-Fano coding uses slightly more space (≈ 0.4-0.5 bits per key) than Golomb

coding. Thus, Elias-Fano coding has a faster query time compared to Golomb coding

but with a slightly higher space overhead.

Making Compressed Bit Arrays Efficient:

As noted earlier, simply decoding from the beginning is an expensive approach; in

the worst case, we might need to decode the entire bit array. To avoid this, we split

the bit array into equal sized segments and then compress them separately. If 𝑛𝐾

is the bit array size and 𝑛 is the number of keys, we divide the bit array into 𝐾𝛽

sized segments generating 𝑛/𝛽 segments. Now to perform a range query [𝑝, 𝑞] for 𝑆

we only need to decode the corresponding segments that overlap the range [𝑓(𝑝), 𝑓(𝑞)]

in the CBA. On an average each segment has around 𝛽 one bits. While answering

the range query [𝑝, 𝑞], one only needs to consider segments from segment number

⌊𝑓(𝑝)𝛽/𝑛⌋ to ⌊𝑓(𝑞)𝛽/𝑛⌋. The first value greater then 𝑓(𝑝) either exists in segment

number ⌊𝑓(𝑝)𝛽/𝑛⌋ or in the next non-empty segment. Generally, decoding segment
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number ⌊𝑓(𝑝)𝛽/𝑛⌋ is sufficient as we find a number greater than 𝑝 in it or the next

segment.

Even though the uncompressed bit array size is the same, the compressed size of

each segment differs. Hence, we need to store the starting point of each compressed

segment. This creates a tradeoff between space used by SNARF and the range query

response time provided by SNARF. Using more segments would lead to faster queries

but larger metadata space overhead. Empirically, we found that 𝛽 ≈ 50−100 provides

good range query response times and has negligible memory overhead (shown in

Sec.3.6.1).

3.3 Analysis

In the following section, we provide an analysis regarding the tradeoff between the

space used by SNARF and the corresponding false positive rate. We show that for

point queries SNARF is competitive with Bloom filter variants. The results extend to

queries over small ranges in the natural way. While this analysis is only for certain

workloads, it provides understanding for why SNARF works well in many scenarios.

We start by showing that SNARF for uniformly distributed queries (point queries

and small ranges) provides an FPR of approximately 1/𝐾 while using 2.4 + log2(𝐾)

bits per key.

Initial Assumptions: We assume all key values are in the range [0, 𝑧] for some

suitably large 𝑧 with 𝑧 >> 𝑛𝐾.5

Notation: Our set 𝑆 of 𝑛 keys 𝑆 = 𝑥1, 𝑥2, .., 𝑥𝑛. We use a model with 𝑡 linear models

and thus, we have one linear model per 𝑛/𝑡 points. Recall we use a bit array of size

𝑛×𝐾 and divide it into blocks of size 𝐾𝛽 bits for faster queries; we assume also a

per block metadata of 𝑐 bits.

Analysis: Our goal is to show that for uniform workload SNARF provides a false

positive rate of 1/𝐾 for point and small range queries, while using around 2.4+log2(𝐾)

5If 𝑧 < 𝑛𝐾, then each value in the domain would likely map to a different bit position. If each
value has a different bit position then false positive rate would be zero.
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bits per key. For uniform point queries, we have 𝑧 total queries out of which 𝑧 − 𝑛 are

negatives. We proceed by showing that SNARF only gives false positive for (𝑧−𝑛)/𝐾

point queries.

We divide the key range into 𝑡 segments of size ∆𝑧1,∆𝑧2, ...∆𝑧𝑡, where
∑︀𝑡

𝑖=1 ∆𝑧𝑖 = 𝑧

and each segment has a separate linear model. Let the corresponding segment endpoints

be 𝑧0, 𝑧1, . . . , 𝑧𝑡. For each segment the following holds:

• The number of keys from 𝑆 in the segment [𝑧𝑖−1, 𝑧𝑖) is 𝑛/𝑡 as we build separate

linear model for every 𝑛/𝑡 keys.

• Over each segment [𝑧𝑖−1, 𝑧𝑖), we have a total of 𝑧𝑖 − 𝑧𝑖−1 distinct possible point

queries out of which ((𝑧𝑖 − 𝑧𝑖−1)− 𝑛/𝑡) are negative queries.

• The keys of 𝑆 in the segment [𝑧𝑖−1, 𝑧𝑖) are evenly spread over the range [(𝑖 −

1)(𝑛𝐾/𝑡), 𝑖(𝑛𝐾/𝑡)) in the bit array.

An implication of these statements is that for a non-key in the range [𝑧𝑖−1, 𝑧𝑖), the

probability of false positive is at most the number of 1 bits in the range, which is at

most 𝑛/𝑡, divided by the corresponding size of the range in the bit array, which is

𝑛𝐾/𝑡. It follows that the number of keys that give false positives is

𝑡∑︁
𝑖=1

((𝑧𝑖 − 𝑧𝑖−1)− 𝑛/𝑡))× 𝑛/𝑡

𝑛𝐾/𝑡
=

1

𝐾

𝑡∑︁
𝑖=1

((𝑧𝑖 − 𝑧𝑖−1)− 𝑛/𝑡)) .

But since
∑︀𝑡

𝑖=1(𝑧𝑖 − 𝑧𝑖−1) = 𝑧 the summation collapses, giving the total number of

false positives is (𝑧 − 𝑛)/𝐾. Since, we have 𝑧 − 𝑛 negatives in the range the false

positive rate turns out to be 1/𝐾 for the uniform distribution. This shows that for

uniform workload using a bit array that is 𝐾 times larger than the number of keys

yields a false positive rate of approximately 1/𝐾 for point queries.

Extending to small ranges: Here, we perform a similar analysis for uniform range

queries of size 𝑅. The main idea is to show that the total number of false positive

range queries is at most the total number of false positive point queries. We show this

for a region and then aggregate across the entire domain.
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Consider a region [𝑝, 𝑞] of the domain such that all points in the region map to

a one bit and values just outside the region map to zero bits. That is, the bit at

location 𝑓(𝑝 − 1)) is 0, and the bit at location 𝑓(𝑞 + 1)) is 0, but for all 𝑥 ∈ [𝑝, 𝑞],

the bit at 𝑓(𝑥) is 0. Let 𝑙 be the number of keys in this region. The number of false

positive point queries is (𝑞 + 1− (𝑝+ 𝑙)). The total number of range queries of size 𝑅

intersecting with the region would be (𝑞+1+𝑅− 𝑝). Out of the these, the number of

true positive range queries is at least (𝑙+𝑅) as we show later. Thus, the false positive

range queries end up being at most (𝑞+ 1+𝑅− 𝑝)− (𝑙+𝑅) = (𝑞+ 1− (𝑙+ 𝑝)) which

is exactly equal to the number of false positive point queries in the region. Now, we

can simply sum up the queries in each such region to get the total number. Thus, we

can conclude that total number of false positive range queries is at most the total

number of false positive point queries.

We argue that the number of true positive range queries is at least 𝑙 + 𝑅 in a

region. Let 𝑘1, 𝑘2, ...𝑘𝑙, be the keys in the region [𝑝, 𝑞] in sorted order For the smallest

key 𝑘1 in the region, we have 𝑅+ 1 true positive ranges of size 𝑅 as enumerated by

set {(𝑘1 −𝑅, 𝑘1), (𝑘1 −𝑅+ 1, 𝑘1 + 1), ...(𝑘1 −𝑅+𝑅, 𝑘1 +𝑅)}. Now, if we consider 𝑘2,

then we can add a unique true positive range query (𝑘2, 𝑘2 +𝑅) to the set. Similarly,

every subsequent addition of a key increases the size of the set by at least one. Earlier,

we showed that the total number of false positive point queries is 𝑧/𝐾. The number

of negative range queries is at least 𝑧 − 𝑛𝑅. Thus, the false positive rate for range

queries is at most
(𝑧/𝐾)

𝑧 − 𝑛𝑅
≈ 1

𝐾

Here the approximation holds for small ranges 𝑅, so that 𝑛𝑅 << 𝑧, yielding a false

positive rate close to 1/𝐾.

Extending to skewed workloads: We assume there is a distribution with cdf

𝑤(𝑥) that generates a point query, such that over suitably small intervals [𝑧𝑖−1, 𝑧𝑖],

the probability of querying any point in the range is approximately uniform. Each
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segment would independently have a false positive rate of approximately 1/𝐾, thus it

follows that the false positive rate for point queries is:

𝐹𝑃𝑅 =
𝑡∑︁

𝑖=1

(𝑤(𝑧𝑖)− 𝑤(𝑧𝑖−1)))×
𝑛/𝑡

𝑛𝐾/𝑡
=

1

𝐾

𝑡∑︁
𝑖=1

(𝑤(𝑧𝑖)− 𝑤(𝑧𝑖−1))) .

The ratio in the summation is approximately 1/𝐾, giving an approximate false

positive rate of 1/𝐾.

We indeed observe that the false positive rate is approximately 1/𝐾 for point

queries as well as range queries over various query distributions for SNARF empirically

for synthetically generated datasets and workloads, as we discuss in Sec. 3.6.1.

Model Size: The size of the model is dependent on the number of keys and linear

models it stores. We assume the linear models utilize 2 double values and hence we

use 128 bits per linear model. For uint64 integers, we need 64 bits to store each key

in the key array. In our experiments, for example, we stored 𝑛/1000 models and thus,

the space used by model is around 192𝑛/1000. This accounts to approximately 0.2

bits per key.

Compressed Bit array Size: Given that the bit array is 𝐾𝑛 bits long, the compressed

version of the bit array using Golomb and Elias Fano coding takes no more than

2𝑛+ 𝑛 log2(𝐾) bits in total6. This is because the unary code for both Golomb and

Elias Fano coding takes no more than 2𝑛 bits and the binary representations take

log2𝐾 bits per key . The space overhead due to dividing the compressed bit array

into blocks of size 𝛽𝐾 bits is approximately 𝑛𝑐/𝛽, bits where 𝑐 is the number of bits

per block needed to store the metadata. In our experiments, 𝑐 is around 20 bits

and we fix 𝛽 to be around 100. Thus, the space used by SNARF per key is around

(2 + log2(𝐾) + 𝑐/𝛽 + 192𝑛/1000) ≈ (2.4 + log2(𝐾)) bits7.

Recall that our heuristic analysis gives a false positive rate for point queries of

1/𝐾. This is close to the theoretical space lower bound of log2(𝐾) bits per key for

Bloom filter variants [22]. Empirically we observed that SNARF gives a similar false

6Note this is the worst case space used. Golomb coding generally uses less space than 2𝑛+𝑛 log2(𝐾)
bits.

7In practice, we do even better than (2.0 +log2(𝐾)) bits per key
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positive rate for point queries as cuckoo filters with the same space usage on synthetic

datasets and workloads as shown in Sec.3.6.1.

3.4 Discussion

We discuss here various aspects of SNARF behavior, including performance on work-

loads with high key-query proximity, SNARF use for other queries, and handling

updates.

3.4.1 Key-Query Correlation in Workloads

For the purpose of range filters, we say that a workload is correlated with the data, if

the end point of a query is consistently close to some key. Assume a data set contains

all multiples of 10 from 1 to 1000 (e.g., 10, 20, 30,...,1000). A correlated workload

would be one which consistently ask for ranges close to these keys (e.g., 10.01-11.01,

28.99-29.99, etc.). When a query end point is consistently close to an actual key but

the query does not include a key, it may yield a false positive in SNARF and SuRF.

Meanwhile, Rosetta is relatively unaffected by correlated queries as it is uses Bloom

filters which are robust towards correlation.

The fact that performance degrades for SuRF and SNARF for correlated queries in

these ways is not surprising based on the lower bound result in [66]. The lower bound

shows that a range filter that supports range queries up to size 𝑅 and guarantees a

false positive rate of FPR will take at least log2(𝑅)+ log2(1/FPR) bits per key. Hence,

for a fixed memory budget, a range filter data structure cannot handle large ranges

and a low false positive rate simultaneously without making further assumptions about

the data set or workload.

Due to this FPR degradation in SNARF with correlation, Rosetta turns out to

be the better filter for workloads with highly correlated and very short range queries.

We demonstrate these behaviors empirically in Sec.3.6.1. In big data systems like

RocksDB, data is stored in multiple blocks (called SST’s in RocksDB) with each block

having its own filter. Even if a query is correlated to a key in a certain block, SNARF
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is still useful for the rest of the blocks (as shown in Sec.3.6.2).

3.4.2 Handling Updates

A variety of systems like LSM-based key-value stores use immutable files and thus do

not need filters that support updates. On the other hand, OLTP systems which are

not based on log structured storage schemes would benefit from an updatable range

filter. SNARF is able to naturally support updates owing to its design. To support

updates, we keep the mapping function static and only modify the bit array. Because

we divide SNARF into small blocks for query efficiency, incremental updates only

affect the corresponding block without affecting other blocks.

Update Procedure: To perform an insertion/deletion of a key, we use the

mapping function to get the bit location of that key. The bit location is used to

identify the corresponding block. We simply add/remove the bit location from the

block depending on whether it was an insert/delete. In our basic implementation, we

allocate a new block and copy all the bit locations from the old block to the new one

after adding/removing the bit location corresponding to the update. Updates to a

block can be made faster by using the standard technique of over-allocating memory

for that block.

Particularly with deletes, removing a bit location might lead to inconsistency as

multiple keys might be mapping to the same bit location. A simple workaround

for this is to store duplicates of the bit location. If 𝑑 keys map to the same bit

location, we store precisely 𝑑− 1 duplicates.8 We show some experiments with our

basic implementation of updatable SNARF in Sec.3.6.1.

Effect of Updates on SNARF’s FPR: We modify the bit array but the mapping

function(𝐶𝐷𝐹 (𝑥) × 𝑛𝐾) remains static during updates. Updates can lead 𝑛 and

𝐶𝐷𝐹 (𝑥) of the mapping function to diverge from the ideal values. We refer to updates

that do not change the distribution of the data as in-distribution updates whereas the

ones who do as out-of distribution updates.

8Duplication adds small space and query latency overhead for small values of K and the impact is
not significant for larger K’s.
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In-distribution updates do not change the data distribution but may affect the

number of keys. Let the final number of keys after updates be 𝑛′. After the updates,

the ideal mapping function would have been 𝐶𝐷𝐹 (𝑥)×𝑛′𝐾 to achieve an FPR of 1/𝐾,

whereas we use 𝐶𝐷𝐹 (𝑥) × 𝑛𝐾. The FPR for SNARF thus ends up being 𝑛′/(𝑛𝐾)

instead of 1/𝐾. If the in-distribution updates are dominated by inserts, then the FPR

becomes worse, and similarly with deletions it gets better.

Out-of-distribution updates may change the data distribution and the number of

keys. For out-of distribution updates, predicting the FPR is more complex and it also

depends on distribution of queries. We expect the combined effect of change in 𝑛 and

𝐶𝐷𝐹 (𝑥) to worsen the FPR of SNARF more than in-distribution updates.

The above discussion also applies to the case of append-only databases. In this

setting, when a series of updates significantly reduces the FPR sufficiently, the model

should be re-trained and a complete rebuild of the structure would be necessary.

3.5 Related Work

Filter Data Structures: There is a long history of using compact filters to represent

sets that are deemed too expensive to store and query explicitly, for reasons including

memory limitations, speed, hardware amenability, and others. Indeed, there are now

many variants of the canonical Bloom filter [16] that use various hashing schemes to

encode the key set (e.g., Cuckoo filters, Quotient filters, Xor filters, Ribbon filters

[55, 13, 68, 42]). These filtering schemes are limited to testing a single key at a time.

In some ways, our technique resembles compressed Bloom filters [109] and Golomb

coded sets [132]. However, these structures do not handle range queries nor do they

take advantage of the data distribution.

We note that theoretical results from [66] show that in the worst case, a data

structure that can answer a range query of size up to 𝑅 with a false positive rate

of FPR needs to store Ω(log2(𝑅) + log2(1/FPR)) bits per key. Their lower bound

suggests looking for structures that may not have worst case guarantees, which can

obtain better performance in practical scenarios by focusing on the data and query
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distributions.

Learning Enhanced Data Structures and Algorithms: We utilize the incorpora-

tion of learned models into traditional structures and algorithms. This technique has

been applied for indexing [46, 62, 80, 72, 56, 33] and sorting [88, 90]. However, while

both like SNARF leverage a model of the eCDF, those structures cannot be used as

range filters unless they store all keys, which would not make them space efficient

(e.g., one should consider how a B-Tree could be used as a space efficient Range or

Bloom filter, which is equally hard/impossible). Learning-enhanced approaches also

have been proposed for Bloom filters design [101, 112, 156] but again they are not

designed for range queries. Moreover, existing ml-enhanced bloom filters are actually

based on classification models, not empirical CDFs.

LSM based Key Value Stores: An important application of filter structures are

key-value store data systems [75] based on log-structured merge trees (LSM) [121].

Numerous workloads served by key-value stores (social media, networking, security)

include heavy portions of both point and range queries. LSM-based key-value systems

store data in multiple immutable files on a disk. Retrieving a particular item or

set of items in a particular range leads to multiple expensive I/O’s to look up the

items in these immutable files. In many settings, the item may not be present in the

files, leading to unnecessary I/O’s that degrade total query response time. Modern

LSM-based key-value systems have extended the basic LSM structure with in-memory

filters to address this problem: if a query has no corresponding item, the filter most

likely returns false and saves expensive I/O.

Adaptive Range Filter: The Adaptive Range Filter (ARF) [2] uses a binary trie to

encode integer key spaces. ARF only stores a number of prefixes of the key set and

range queries are then processed by searching the trie for any prefixes of the given

range. If a leaf node results in a false-positive, then it is extended until it would no

longer do so and, if needed, an old branch is pruned to maintain memory constraints.

ARF is not a space efficient data structure for many workloads and in some cases

1300× bigger than SuRF while having a worst FPR (see [161]). Hence, we do not

consider ARF further here.
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SuRF: The Succinct Range Filter (SuRF) [161] utilizes a compact trie-like data

structure which can filter arbitrary range queries. The trie is culled at certain

prefix lengths. The basic version of SuRF stores minimum-length prefixes such that

all keys can be uniquely represented and identified. Other SuRF variants store

additional information such as hash bits of the keys (SuRF-Hash) or extra bits

of the key suffixes (SuRF-Real). A weakness of SuRF is that for point queries,

SuRF can provide up to 100x worse FPR compared to Bloom filter variants such as

Cuckoo filters under the same space budget.

Rosetta: Rosetta utilizes a different approach that performs better for point queries,

correlated workloads, and very short ranges. Rosetta essentially uses a Bloom filter

for range queries along with the help of a hierarchy of prefix Bloom filters that form

an implicit segment tree. Empirically, this design helps Rosetta achieve little to no

degradation for point queries compared to Bloom filters. On the other hand, the FPR

for Rosetta, while good for small ranges, becomes worse with increasing range query

size. For large range queries, Rosetta provides almost no filtering.

LSM Range Queries: ElasticBF [98] proposes a method to adapt Bloom filters in

LSMs to query workload. The idea is to use larger filters for hot regions which can

be used with SNARF or any other range filter as well. BloomRF [137] is another

proposed filter which uses the idea of implicit segment tree with hierarchy of filters

similar to Rosetta. It also suffers from FPR degradation with range size like Rosetta.

Orthogonal to our approach, REMIX [162] focuses on making range queries faster by

creating an alternative path on top of an LSM tree that maintains range indexing info.

Compression Schemes: SNARF needs to compress a sparse bitmap of size 𝑛𝐾

with 𝑛 one bits. Assuming a uniform random spread of the one bits, the asymptotic

information theoretic lower bound for lossless compression of such a bit array would be

log2(𝐾) bits per key (log2(𝐾)−𝑂((log 𝑛𝐾)/𝑛) bits per key to be precise ). Golomb

Coding and Elias Fano Coding are near optimal coding schemes as they use at most 2

bits per key over this lower bound (2𝑛+𝑛 log2(𝐾)). Other compression techniques such

as WAH[36], CONCISE[28], and Roaring[25] are less space efficient for our particular

task, though they can be somewhat faster, so if speed was a concern they could be
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substituted for our compression approach.

To support fast writes, a LSM-based key-value stores inserts data into an in-memory

buffer. When the buffer grows beyond a predetermined threshold, it is flushed to disk

and periodically merged with the old data. This process repeats recursively, effectively

creating a multi-level tree structure where every subsequent level contains older data.

Every level may contain one or more runs (merged data) depending on how often

merges happen. The size ratio (i.e., how much bigger every level is compared to the

previous one) defines how deep and wide the tree structure grows, and also affects

the frequency of merging new data with old data. As the capacity of levels increases

exponentially, the number of levels is logarithmic with respect to the number of times

the buffer has been flushed. To support efficient point reads, LSM-trees use in-memory

Bloom filters to determine key membership within each persistent run. Each disk

page of every run is covered by fence pointers in-memory (with min-max information).

Collectively Bloom filters and fence pointers help reduce the cost of point queries to at

most one I/O per run by sacrificing some memory and CPU cost. Nit: Technically not

100% correct, at least not for RocksDB where L0 is kept unsorted (files may overlap).

Wait... do you mean run or level here? Do we need this much info about LSMs and

does it belong here? Maybe just a brief desctiption in the eval section?

Range queries are increasingly important to modern applications, as social web

application conversations, distributed key-value storage replication, statistics aggre-

gation for time series workloads, and even SQL table accesses as tablename prefixed

key requests are all use cases that derive richer functionality from building atop of

key-value range queries. What is a ’tablename prefixed key request’? While LSM

based key-value stores support efficient writes and point queries, they suffer with range

queries. This is because we cannot rule out reading any data blocks of the target

key range across all levels of the tree. Range queries can be long or short based on

selectivity. The I/O cost of a long range query emanates mainly from accessing the

last level of the tree because this level is exponentially larger than the rest, whereas the

I/O cost of short range queries is (almost) equally distributed across all levels. I don’t

understand this paragraph. Don’t fence pointers already ensure that the correct files
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are read? Don’t range filters only help in cases where the qualifying files (according

to fence pointers) are false positives?

A recent trend in research has also seen the incorporation of learned models into

traditional structures and algorithms. This technique has also been applied to Bloom

filters [101] and has been iterated upon, resulting in improved techniques such as

sandwiching [112] and partitioning [156]. These filters can be more memory efficient

in situations where the data set has characteristics that can be learned, but they

suffer from the same issue with regards to range queries. [66] shows that to robustly

answer a range query of size 𝑅 with a false positive rate of 𝑓 one needs to store

(𝑙𝑜𝑔2(𝑅) + 𝑙𝑜𝑔2(1/𝑓)) bits per key.

One means of addressing approximate range emptiness queries is to encode regions

of the key space rather than individual members. For example, a prefix Bloom

filter encodes the key space in fixed size regions by hashing the prefix of each region

containing at least one member of the key set. This method works well for range

queries of a known size, but ranges that are significantly smaller or larger than the

encoded regions will not be filtered as reliably. As such, multiple projects have designed

range filters that use multiple prefix filters or search trees to encode regions of different

sizes.

The Adaptive Range Filter (ARF) [2] makes use of a binary trie to encode integer

key spaces. The entire trie representing the key set is typically too large to fit in

memory, so an ARF only stores a number of prefixes of the key set. Range queries are

then processed by searching the trie for any prefixes of the given range. If a prefix

is found, then the query is considered positive. An ARF regularly changes which

prefixes it stores in response to queries. If a leaf node results in a false-positive, then

it is extended until it would no longer do so and, if needed, an old branch is pruned

to maintain memory constraints.

The Succinct Range Filter (SuRF) [161] is another trie based approach. While it

does not change its shape in response to queries, it encodes prefixes of the key set as

a fast succinct trie (FST). FSTs efficiently encode nodes representing eight prefix bits

and support constant search time by using both dense and sparse node encodings.
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This allows for more of the trie to fit within memory as well as fast queries independent

of range size. Since the whole trie is still too large, SuRF’s default pruning strategy

is to store the minimal prefix that uniquely identifies each key within the key set.

Additional memory can be spent to extend these prefixes or to store bits of the key

hashes at each leaf node to improve point query performance.

Despite adapting to queries and using efficient encodings, these trie based methods

still have trouble with more fine grained queries. Even though they can store prefixes

of different lengths, the long prefixes necessary to filter fine grained queries are still

quite expensive to encode in a trie. This means that only a limited portion of the key

space can be encoded to support fine grained queries.

Alternatively, Rosetta [100] is another range filter aimed at addressing these more

fine grained range queries. To do so, Rosetta makes use of multiple prefix Bloom filters

with different prefix lengths. Unlike the tries, this allows memory to be allocated

to longer prefix lengths at the same cost as any other prefix length. These prefix

filters implicitly encode levels of the same binary trie used by ARFs. Whether a

node is present in the trie is determined by querying the corresponding prefix in the

Bloom filter with the respective prefix length. To perform well on finer grained queries,

Rosetta allocates most of its memory to the bottom levels of the trie, i.e. the Bloom

filters with the longest prefix lengths; however, this again results in worse performance

for larger ranges.

There exist structures which can provide faster range queries than the encoding

schemes we discussed above. Typical Rank Select structures provide efficient predeces-

sor queries. In order to check if there is a one bit in the bit range([𝑎, 𝑏]) , one can use

the predecessor operation 𝑝𝑟𝑒𝑑(𝑏+ 1) to get the position of the first bit at or before

position 𝑏. If 𝑝𝑟𝑒𝑑(𝑏+ 1) < 𝑎 holds, then there cannot be a set bit in the range([𝑎, 𝑏])

since the first one bit before 𝑏 + 1 is more than 𝑏 − 𝑎 bits away. The predecessor

operation is therefore sufficient to answer range queries over a bit vector. A lot of work

has focused on improving the efficiency of Rank-Select structures [126, 64? , 119].

I just skimmed through it. We probably have to shorten this section. I am also

wondering, if we should move it up to Section 2 as background and related work.
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3.6 Experimental Evaluation

We now demonstrate that SNARF can bring more than one order of magnitude

improvement when compared to state-of-the-art filters. We evaluate SNARF both as

a standalone filter as well as part of RocksDB. 9

3.6.1 Standalone Analysis

Our experiments comparing SNARF against other baselines aim to support the

following key claims:

• SNARF offers a better FPR-space tradeoff curve than other baselines on various

synthetic and real world datasets/workloads.

• The FPR provided by SNARF is robust to increasing query range sizes as well

as skew in query workload (certain part of data queried more often).

• SNARF performance drops with correlation (as discussed in Sec. 3.4.1) resulting

in Rosetta being better for very short and highly correlated range queries.

• SNARF has a reasonable construction time and its query response time can be

tuned as needed. SNARF with Elias Fano encoding has a faster query response

time than with Golomb Coding at a slightly higher space cost.

• SNARF supports updates at reasonable throughput.

We now provide experiment details.

Baselines:We evaluate SNARF against three other baselines:

SuRF: We use the SuRF implementation from [27] with real suffixes as they

provided the best performance. 10

Rosetta: We use the original Rosetta implementation [100].
9For our experimental design, we follow the evaluation setup as done in SuRF and Rosetta as

much as possible.
10Note, SuRF has a limited range of operation as the implementation starts with minimum of 10

bits per key (0 bits as the suffix length).
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Cuckoo Filter: For our point queries, we compare against the Cuckoo Filter

implementation from [26] in the semi-sorted setting as it achieved the best FPR-space

tradeoff.

Datasets: For our experiments, we build a filter on 100 million keys chosen from

the following datasets.11 We use two synthetic datasets and three real world datasets

from [104]:

Uniform Random: Keys are generated uniformly at random in the range [0, 250].

Normal: Keys are generated from normal distribution (𝑁(𝜇 = 100, 𝜎 = 20)) and

are linearly scaled to range [0, 250].

wiki: Keys represent the time an edit was made on Wikipedia.

osm: cell IDs from Open Street Map representing a location.

fb: unique Facebook user IDs [157].

Workload: We use 100 million queries for our experiments. The queries are of the

type [left,left+range_size]. If range_size=0, then the query is a point query. We first

generate the left endpoint(left) of the range query from a certain distribution and

then the right endpoint of the query is calculated by adding the left endpoint and the

range_size. The range query workloads use a range size of 256 while the mixed-query

workloads use range sizes of 0, 16, 64 and 256 in equal proportion. We generate the

left endpoint(left) of the queries in following manner:

Uniform Random: left endpoint chosen uniformly at random in the range

[0, 250].

Exponential: We use an exponential distribution(𝑝(𝑥) = 𝜆𝑒−𝜆𝑥;𝜆 = 10) which

results in certain part of the data being queried more often. We then scale them to

range [0, 250].

Correlated: This distribution generates queries which are close to the keys. A

key is chosen uniformly at random from the dataset and then left endpoint is chosen

11We evaluate on integer keys but would also work for floats. Floats are numerical keys, the current
CDF model for SNARF works for them. We expect minimal change in the performance of SNARF
for floating point values.
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Figure 3-5: FPR vs Space Used(in bits per key) by various filters. Each subfigure shows the
space-FPR tradeoff for a (A) synthetic (B) real dataset and workload distribution and for a
particular range query type (point, range query of size 256 and mixed query workload of size
0,16,64,256).

uniformly at random from [key, key+230*(1−𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒)]. Higher 𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒 implies

increased proximity between keys and queries, so that 𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒 = 1 generates

extremely correlated queries (left end point being 𝑘𝑒𝑦 + 1) whereas 𝑐𝑜𝑟𝑟_𝑑𝑒𝑔𝑟𝑒𝑒 = 0

generates queries independent of the key value.

Sampled Data: This is used to generate range queries for real world datasets

(as previously done in SuRF). We first divide the dataset into two equally sized parts

by choosing keys uniformly at random. A filter is built on one half of the dataset and

the other half is used as the left endpoints for queries in the respective workload.

SNARF parameters: The CDF model uses (𝑁/1000) linear models unless stated

otherwise. By default, we choose 𝛽 = 100 and thus divide the bit array into (𝑁/100)

equally sized segments. We use Golomb coding for SNARF unless specified.
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Figure 3-6: FPR vs Key-Query Correlation Degree of the queries on uniformly random/wiki
keys. With increasing key-query correlation, SNARF and SuRF become worse and Rosetta
turns out to be the better filter for very short and highly correlated range queries.

FPR vs Space Tradeoff for Synthetic Dataset/Workloads:

In Fig.3-5(A), each subfigure corresponds to a particular key and query distribution

along with a particular query workload. Each subfigure shows the space used by the

baselines in bits per key and the FPR achieved by them on the corresponding query

workload. For point queries, SNARF achieves performance similar to Cuckoo filters

for all cases. For range queries, SNARF consistently has a better Pareto curve than

all other baselines. When using 16 bits per key, SNARF and SuRF provide false

positive rates of 6.2× 10−5 and 1.1× 10−3, respectively. Rosetta is competitive for

point queries but its performance degrades as query range size increases.

Even with exponentially distributed data, SNARF maintains its performance as

the CDF model can capture this skew in data distribution. As discussed in Sec.3.3,

mapping the keys evenly across the bit array results in a robust false positive rate

and consistent performance across different skewed query distributions.

FPR vs Space Used Tradeoff for Real Dataset/Workloads:

In Fig.3-5(B), each subfigure corresponds to a particular dataset along with a particular

query workload. Each dataset is divided into two equal parts. One part forms the set

of keys and the other half forms the left endpoint of the query. The right endpoint is

decided by the range query size.
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SNARF has a better Pareto curve than other baselines for all cases. SNARF is able

to perform particularly well on real-world datasets due to certain patterns present in

them. A common pattern we observed in our real-world datasets is that they have large

empty contiguous ranges; for example, S={10,78,95,10045,10052,10089,30011,.....},

where the sorted keys suddenly jump by large amounts. While we do not have a

clear global reason for such behavior, it is natural for settings such as when the set

is a collection of numerical IDs; different ID subranges may be assigned by different

entities. Both SNARF and SuRF effectively model large empty ranges in a way that

is both succinct and avoids false positives.

In some cases, while keys may be from a large domain, they may be concentrated

in a small range. For example, the keys may lie in the domain [0, 232) but all appear in

the small range [210, 212]. The modelling step of SNARF automatically takes advantage

of this type of pattern to benefit performance12. For most cases, SNARF is able to

achieve a low FPR (below 10−4) using less than 10 bits per key. For the osm dataset,

SuRF also achieves a FPR below 10−4 but still uses more memory (≈ 15− 16 bits per

key). Similar to our previous experiments on synthetic data, Rosetta is competitive

for point queries but its performance degrades as query range size increases.

Correlated Workload:

As discussed in Sec.3.4.1, the correlated workloads are when the query endpoint is

close to a key, which is more likely to lead to a false positive in SNARF and SuRF. In

Fig.3-6, we show the FPR vs key-query correlation degree tradeoff for various baselines

for a fixed memory budget of 15 bits per key. Higher the key-query correlation

degree closer the queries are to the keys. As expected, FPR of both SNARF and

SuRF degrades with increasing correlation. Both SNARF and SuRF provide virtually

no filtering for uniform dataset when workload is highly correlated. On the other

hand, Rosetta is unaffected by this correlation and performs the best for very short

range queries and highly correlated workloads.

12This is similar to the case when 𝑧 < 𝑛𝐾 and all values are mapped to distinct bit positions
leading to no false positives.
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Figure 3-7: (A) FPR with increasing range query size for fixed space budget. (B) Filter
Latency (in ns) against space used (bits per key) (C) Build Time(in millisecs) with increasing
number of keys. (D) Filter Throughput as we vary the percentage of updates in the workload.

FPR vs Range Size:

In Fig.3-7(A), we vary the range query size from 1 to 106 and report the FPR of

various range filters under a memory budget of 15 bits per key. We use uniformly

randomly distributed keys and workloads for this experiment. As discussed in Sec.3.3,

the FPR of SNARF stays constant with the range query size. SuRF also maintains its

FPR with increasing range query size but has a 17x worse FPR than SNARF. Rosetta

becomes worse with increasing range size and provides almost no filtering for range

sizes greater than 1000.
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Filter Query Latency vs Space Used:

In Fig.3-8, we show the query latency of various filters with increasing filter sizes

for uniform random and FB datasets for mixed range queries. We skip other

datasets/workloads as we observed similar trends for them. For this experiment,

we fix the size of the dataset to 100 million keys and vary the filter parameters that

control its size. In both of the subfigures, both variants of SNARF are slower than

SuRF but faster than Rosetta. SNARF with Elias Fano encoding is consistently faster

than SNARF with Golomb coding. This is because Golomb coding (a form of delta

coding) requires decoding of the first key and the following delta values to retrieve

a key, which is not the case for Elias Fano coding. For SNARF, filter query time

increases slightly with increasing filter size. This is because as the filter size increases,

the model size remains constant but the encoded bit array size increases, so SNARF

then has to parse more data to decode the bit array. The filter query latency increases

drastically for Rosetta as its filter size increases, as larger internal Bloom filters mean

Rosetta has to perform a greater number of random accesses.
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Effect of Bit Array Division on Space and Query Latency:

As discussed in Sec.3.2.3, for SNARF we can improve the query latency by reducing

the segment size. Recall we use small segments of size 𝛽𝐾 in the bit array, and using

smaller 𝛽 can improve latency at the cost of extra space overhead. The overhead

arises because when we have a larger number of segments in the bit array there is

more associated metadata. Fig.3-7(B) shows the query latency and the space used by

the various baselines to achieve a FPR of 2−13 on uniform random keys and uniform

randomly generated mixed sized queries. We show multiple configurations for SNARF

with 𝛽 values 10, 20, 50, and 100 (increasing marker size representing larger 𝛽 values).

The results show that with decreasing 𝛽 we get better query latency. Elias Fano

coding is faster than Golomb coding for the same number of segments. By varying 𝛽,

Golomb coding and EF coding with SNARF are able to achieve a query latency of

890 ns and 746 ns, respectively. SuRF is the fastest baseline with latency of 480ns,

but uses around 19.4 bits per key.

Build Time:

In Fig.3-7(C), we vary the number of the keys from 105 to 108 and report the build

times of various range filters. We use a uniformly random distribution for the keys.

The build times of all the filters grow linearly with the number of keys. The build

time for learned range filters is around 5x faster than Rosetta and around 2x slower

than SuRF. Depending on the application, filter construction might play a more or

less important role. For example, for LSM trees, filter construction only plays a minor

role as part of the merge phase as shown in Sec.3.6.2.

Updates:

In Fig.3-7(D), we vary the percentage of updates(50% insertions and 50% deletions)

in the query workload (the rest of the workload is range queries) and report the

throughput. SuRF and Rosetta do not support both inserts and deletes, so we only

analyze SNARF here. We use the SNARF variant with duplication in order to support
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deletes. We use a uniform random distribution for the keys. The workload contains

1 million operations overall and is also uniformly randomly distributed. Since, the

updates do not change the distribution of the data, the FPR stays constant. On

average an update takes around 12k ns whereas a range query takes around 1898

ns. The throughput of the filter decreases with increase in proportion of updates as

updates are slower than range queries.

3.6.2 RocksDB Experiments

Our experiments on RocksDB integrated with SNARF aim to support the following

key claims:

• RocksDB with SNARF offers better read performance than other baselines on

various synthetic and real world datasets and workloads.

• SNARF’s as well as other filters impact reduces as the proportion of empty

range queries in the workload decreases. This leads to SNARF’s performance

improvement over other filters to reduce as well.

• In RocksDB with SNARF, read performance drops with correlation (as discussed

in Sec. 3.4.1) resulting in Rosetta being better for very short (range size less

than 16) and highly correlated range queries.

• SNARF adds little overhead to RocksDB

• SNARF improves end-to-end performance of RocksDB for a typical read-write

workload.

Integration with RocksDB: We use a RocksDB integration and workload generation

setup identical to that of Rosetta [100]. We utilized an API of filter functionalities such

as populating, querying, serializing, and deserializing the filter to integrate SNARF.

RocksDB stores its data in multiple immutable tables called SST (Sorted String

Tables). A SNARF instance is created for each SST file. We store the filter on disk

as a character array and the process of converting the filter to char array is called
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Figure 3-9: SNARF outperforms other baselines when fully integrated in RocksDB.

serialization. In order to use the filter we need to read it to memory from the disk

and deserialize it13. We enable the block cache and allow the caching of filters.14

Implementation Overview of a Range Query: For a range query [𝑝, 𝑞], RocksDB

probes filter instances of all levels for existence of keys within this range. If all filter

instances return negative, an empty result is returned. If one or more filters return

positive, RocksDB seeks the lower end (𝑝) incurring an I/O. When RocksDB get a

valid pointer, it reads data until 𝑞 is reached and incurs as much I/O’s needed to reach

𝑞.

Setup and Workloads: We use 14 bits per key for all the filter baselines(as previously

done in SuRF)15. We first populate RocksDB with 50 million 64-bit keys from a

distribution and 512 byte values. Each experiment has a description of the workload.

After population, we run the workload on this populated RocksDB instance. Total

execution time of this workload is usually the metric of interest.

13To reduce the deserialization overhead we maintain a dictionary that has the deserialized bits for
each filter instance and its corresponding SST similar to [100]

14𝑐𝑎𝑐ℎ𝑒_𝑖𝑛𝑑𝑒𝑥_𝑎𝑛𝑑_𝑓𝑖𝑙𝑡𝑒𝑟_𝑏𝑙𝑜𝑐𝑘𝑠=true. We also ensure that the fence
pointers and filter blocks have a higher priority than data blocks when
block cache is used 𝑐𝑎𝑐ℎ𝑒_𝑖𝑛𝑑𝑒𝑥_𝑎𝑛𝑑_𝑓𝑖𝑙𝑡𝑒𝑟_𝑏𝑙𝑜𝑐𝑘𝑠_𝑤𝑖𝑡ℎ_ℎ𝑖𝑔ℎ_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦=true,
𝑝𝑖𝑛_𝑙0_𝑓𝑖𝑙𝑡𝑒𝑟_𝑎𝑛𝑑_𝑖𝑛𝑑𝑒𝑥_𝑏𝑙𝑜𝑐𝑘𝑠_𝑖𝑛_𝑐𝑎𝑐ℎ𝑒=true.

1514 bits per key allows reasonable performance with fpr below 10% for all filters
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Figure 3-10: Workload Execution time in RocksDB for (A) real world datasets/workloads (B)
correlated workloads and (C) varying percentage of empty queries (D) read-write workload
(E) varying rnage query sizes

We use uniform random distribution for keys/workload generation by default and

we have 100k queries in a workload as default. We used the same distributions of

dataset and workload mentioned in Sec.3.6.1. The workloads are primarily read only

to highlight the impact of filters, but we also have a few experiments with a mixture

of reads and writes. Each workload is run with read queries of various range sizes (1,

16, 64, 256).

SNARF improves RocksDB Performance:

For this experiment, we generate YCSB key-value workloads that are variations of

Workload E, a majority range scan workload modeling a web application use case [31].

The quality of the filter is best judged with empty range queries as filters enhance

performance by identifying empty queries for which an unnecessary seek can be avoided.

Thus, we compose our workload with 100, 000 empty range queries.

Fig.3-9(A) shows the workload execution time of various baselines. The workload

execution time consists of two parts, time spent by the CPU and time spent on I/O.

We observe that I/O time dominates the CPU time. SNARF’s workload execution

time is consistently one order of magnitude less than the other baselines. SNARF

has a better FPR than SuRF and Rosetta leading to fewer I/O’s and hence lower
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workload execution time. As shown in Fig.3-9(B), SuRF has a FPR 40x worse than

that of SNARF across all range sizes. Rosetta’s FPR becomes worse with increasing

range size. Worse FPR leads to more block I/O’s as shown in Fig.3-9(C). In summary,

Rosetta and SuRF have significantly high I/O time due to their worse FPR.

SNARF adds little CPU overhead In the previous experiment, we further break

down the total CPU time for various baselines in Fig.3-9(D). The CPU time is further

divided into deserialization time, filter probing time, and residual seek time. The

residual seek time is the time taken for routine jobs performed by RocksDB iterators –

looking for checksum mismatch and I/O errors; going forward and backward over the

data, filters and fence pointers; and creating and managing database snapshots for

each query. The filter probe time is time taken to probe the filters and deserialization

time is the time taken for filter deserialization. The filter probe time accounts for at

most 20% of the total CPU time for even the slowest filter (Rosetta). Residual seek

time accounts for the dominant portion of the CPU time. Thus, a CPU intensive filter

does not affect the performance of RocksDB much.

SNARF improves RocksDB Performance on real world datasets For this

experiment, we populate RocksDB with 50 million keys from real world datasets

and use sampled-data workload consisting of 100k empty range queries. Fig.3-10(A)

shows the workload execution latency of this workload in RocksDB. SNARF exhibits

a lower workload latency than other baselines for all three datasets. Same as previous

experiment, this is due to the better FPR that SNARF delivers compared to other

filters.

As range size increases, SNARF improves RocksDB Performance for cor-

related workloads As discussed in Sec.3.4.1, SNARF and SuRF become worse

with increased correlation between queries and keys. For this experiment, we use a

correlated workload consisting of 100k empty range queries. In Fig.3-10(B), we vary

the key-query correlation degree of the queries and measure the workload execution

latency. The execution time of SNARF and SuRF increases with correlation but not

beyond a certain level. This is because even if a query is highly correlated to a key in

a particular SST file, SNARF and SuRF are still useful for the rest of the SST files.
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Rosetta is the better filter for range size equal to one and a highly correlated workload

otherwise SNARF is the better filter.

SNARF performance for mixed workload (empty and non-empty range

queries):

Here, we measure the workload execution latency on a mixed read-only workload of

empty and non-empty range queries by varying the percentage of empty range queries

from 10 to 100. As shown in Fig.3-10(C), the workload execution time of all filters

decreases with an increase in the proportion of empty range queries. This is because

filters are more effective on empty queries than non empty queries. Notice, even with

majority non-empty workload filters are still useful. This is because non-empty range

queries will return a true positive for one SST but other SST’s might still return a

false positive leading to additional unnecessary scans. The decrease in execution time

is faster for SNARF than other baselines because SNARF has better FPR than others

and thus, is more effective in reducing unnecessary I/O’s.

SNARF performance for read-write mixed workload:

In order to simulate real working of RocksDB, we used a majority write workload (only

1 percent reads) with 10 million operations similar to YCSB workload A(majority

updates). Read and writes are performed in an interleaved manner. We first start

with a RocksDB instance that already has 50 million uniform randomly distributed

keys . Reads and writes are generated using the uniform random distribution. Each

write operation is a point write which inserts a unique key into the RocksDB instance

with a corresponding randomly generated value. All the read queries are empty range

queries and we evaluate 4 different workloads for read queries with 4 different range

sizes: 1, 16, 64 and 256.

Writing keys to RocksDB leads to compaction and creation of new SST files.

Creation of new SST files involves constructing the filter and thus filter construction

time gets accounted for in the overall execution time. While performing reads, the

query response time of the filter gets accounted for in the execution time. Thus, this
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experiment evaluates the end-to-end filter performance as it accounts for reduced I/Os

due to filtering, filter query response time and filter construction time. In Fig.3-10(D),

we show the workload execution time of the workload for various range sizes. Owing

to its lower FPR, SNARF has a lower workload execution latency than SuRF and

Rosetta. SNARF’s slightly slower filter query time and construction time compared

to SuRF is offset by gains produced in lower I/Os.

SNARF impact with increasing range query size:

In Figure 3-10(E), we show the workload execution time as we increase query range

size for uniformly randomly generated keys and workloads. The impact of filters

decreases with increasing range size. For range sizes around ≈ 103 − 104 most queries

are empty; accordingly, filters have a large impact and here SNARF outperforms other

filters by an order of magnitude. For range sizes around ≈ 107 − 108 most queries are

non-empty, touching a few SSTs, and filter have less impact. For range sizes around

≈ 109 − 1010 most queries touch most SSTs and filters have negligible impact.
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Chapter 4

Learned Hash Tables

4.1 Introduction

Hashing and hashing-based algorithms and data structures find countless applica-

tions throughout computer science, such as in machine learning, computer graphics,

bioinformatics, and compilers (e.g., [83, 102, 15, 115]). Hashing is also a fundamental

operation in database management (e.g., [10, 136, 76]), including playing a key role in

the implementation of numerous core database data structures and algorithms (e.g.,

indexes [76, 78], filters [74], joins [10], partitioning [130], and aggregation [49]). Due

to its numerous applications, considerable research efforts have focused on introducing

efficient hashing functions (e.g., [136, 124, 96, 102]).

Traditionally, hash functions aim to mimic a function that maps a key to a random

value in a specified output range. For typical cases where the size of the output

range is linear in the number of keys, this random assignment results in colliding

keys. A collision occurs when multiple keys get mapped to the same output value. A

typical hash index approach allocates a number of fixed size slots (the number of slots

generally being a constant times the expected number of keys) and maps incoming

keys into these slots using a hash functions. The ideal case for indexes would have no

keys collide, so each key goes to its own separate slot. This would make key lookups

and updates faster, as one would simply check the corresponding slot for the key.

With truly random hash functions, collisions are unavoidable, and one can readily
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calculate the expected number of collisions given number of slots and keys [114].

Naturally, there are many well-known schemes like chaining, probing, and cuckoo

hashing to handle collisions. As the name suggests, chaining handles collisions by

creating a chain of colliding keys. Probing checks neighboring slots to find an empty

slot to place the key. Cuckoo hashing handles collisions by using multiple hash

functions to provide alternate slots for colliding keys. For each of these schemes, more

collisions reduces their performance.

Another approach to build hash indexes is to use perfect hash functions instead of

truly random hash functions. Perfect hash functions have no collisions; however, they

must be specially constructed for a given data set, and have other costs in storage

and computation time.

In recent years, several works have utilized the idea of using machine learning to

improve the performance of many database components (e.g., [107, 79, 103]) and basic

data structures (e.g., [87, 43, 97, 47]). By using machine learning to explicitly capture

trends in the underlying data, these methods can aim for instance-optimal performance.

For example, in a recent benchmarking study [105], it has been shown that learned

index structures (e.g., RMI [87], RadixSpline [81]), which employ CDF-based learned

models, can outperform traditional indexes on practical workloads.

As one direction in this line of research, it was suggested in [87] that such learned

models can be used to obtain an efficient hash function with fewer collisions. They also

provided some empirical evidence that a hash index with learned model as the hash

function can have better performance than using a truly random hash function. What

is unclear, however, is when such learned models are effective in replacing existing

hash functions in applications. At one end, traditional hash functions [52, 154] are

fast to compute, but suffer from collisions [149] that can reduce query performance.

On the other hand, perfect hash functions [102] avoid collisions, but are difficult to

construct [93], and are not scalable [38], in the sense that the size of the function

representation grows with the size of the input data. As an alternative, learned models

can potentially provide a better tradeoff between computation and collisions. If the

model learns a good approximation of the empirical CDF of the input keys, we may
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achieve few collisions; and if the data allows a compact learned model, we may achieve

a model size independent of or very slowly growing with the input data size.

Surprisingly, though, we are not aware of a thorough experimental study examining

the performance of learned models against both traditional and perfect hashing in

query processing operations like indexing and joins. We aim to remedy that here. We

make the following contributions:

• We provide an analysis of the factors affecting collisions for learned models,

helping us to identify situations where they can have fewer collisions than

traditional hash functions.

• We perform an extensive benchmarking study for traditional, perfect, and learned

model hash functions. We benchmark them through three different applications:

hash table probing/inserting, range querying, and joins. We test using multiple

synthetic and real-world datasets.

• Through the empirical study and analysis we find useful insights on when to use

learned models instead of traditional and perfect hashing in various database

applications.

• We provide a unified open-source implementation for the baselines used in our

experiments.

As a summary, we gained the following key insights based on our collisions analysis

and experimental benchmarking:

• The performance of learned models depends on the input keys, and specifically

on the distribution of gaps between consecutive keys in the sorted list of inputs.

Generally, evenly spaced gaps are favourable for learned models.

• The computation throughput of learned models decreases with model size and

is on par with traditional hash functions for small model sizes.

• Collision reduction due to learned models translates to improved hash table

insert and probe throughput. The gain varies across different hashing schemes.
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• Using order-preserving learned models as hash functions provides additional

advantage of supporting range queries. Such learned hash tables provide better

probe throughput for majority point query workloads than other baselines.

• We show that this type of hash table can reduce the running time of non-

partitioned hash join [92, 153] with at least 28% over other baselines.

• In many other cases, however, such as with data from typical distributions (like

the normal distribution), we do not see gains using learned models.

Based on our insights, we recommend special handling of datasets with evenly

spaced gaps by using simple learned models or other suitable techniques, particularly

for hash based indexing and joins.

4.2 Traditional Hash Functions

A uniform hash function ℎ(𝑥) : 𝑋 ↦→ 𝑈 attempts to map arbitrary inputs to inde-

pendent and identically distributed (i.i.d.) uniform random outputs. Obtaining true

randomness is not feasible in practice [83]. However, state-of-the-art hash functions

appear to come reasonably close to imitating true randomness in many practical set-

tings [154, 122]. The extent to which a hash function avoids collisions, i.e., instances

where two distinct inputs map to the same output, is often referred to as the its’

quality. There is a seemingly endless supply of different proposed hash functions to

choose from [154]. Here, we briefly give a background on some of the well-known

functions that we study in the paper.

Multiplicative Hashing (MultiplyPrime). This method is prominently described

by Donald Knuth [83] as a family of hash functions with great properties for practical

applications. He explicitly advertises their non uniform random properties, i.e.,

sensitivity to the data distribution, as a strength [83]. Let 𝐴 be a constant, relatively

prime 2𝑤 with 𝑤 being the machine word size. Then, the following function produces

outputs in [0,𝑀).

ℎ(𝑥) =

⌊︂
𝑀 ·

(︂(︂
𝐴

2𝑤
𝑥

)︂
mod 1

)︂⌋︂
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The trick to make this efficient is to avoid fractional computations by shifting the

entire calculation by 𝑤, i.e., to multiply with 𝐴
2𝑤

≪ 𝑤 = 𝐴 instead of the complex

decimal computation: ℎ(𝑥) =
⌊︀
𝑀
2𝑤

· (𝐴𝑥 mod 2𝑤)
⌋︀
. Neatly, this will allow us to get rid

of the modulo since most physical machines with a word size 𝑤 will naturally compute

everything mod 2𝑤. According to Knuth, 𝑀 should be some power of the machine’s

radix [83] to ensure that we are including the more significant bits in the final result.

Fibonacci Hashing (FibonacciPrime). It is an instance of multiplicative hashing,

choosing 𝐴
𝑤
= Φ−1 =

(︀√
5− 1

)︀
/2 based on the golden ratio. It promises to inherit

Φ−1’s neat scattering characteristics, i.e., that each added consecutive element falls in

the largest remaining interval, dividing it by the golden ratio [83, 145, 7, 164, 146].

As in multiplicative hashing, we implement Fibonacci hashing using the integer

multiplication trick. However, this time we choose 𝐶 = Φ · 2𝑤 with 𝑤 as the machine

word size. Some implementations also round 𝐶 to the next closest prime.

Murmur Hashing (Murmur). Murmur is a family of simple and fast hash functions

developed by Austin Appleby [6, 5], and has been studied extensively in previous

works (e.g., [3, 136]). Its name is derived from the original idea for its implementation,

i.e., repeatedly applying multiply and rotate instructions to imitate true randomness.

Ultimately, however, it ended up being implemented as a sequence of multiply, shift,

and xor operations. In particular, its 64-bits finalizer merely consists of three xors,

three shifts, and two multiplications [5, 136].

XXHash. It is a widely used open-source uniform hash function with support for

many programming languages [29]. It targets RAM speed limits for hashing large

enough blobs of data, all while promising decent performance on small inputs.

AquaHash. It is a uniform hash function that utilizes Advanced Encryption Standard

(AES) intrinsics [70], i.e., AES encryption primitives implemented in hardware on

many modern CPUs [139]. In a previous study, AquaHash has shown promising results

compared to XXHash and Murmur for small keys [140].
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4.3 Learned Models as Hash Functions

Learned index structures [87] approximate the cumulative distribution function (CDF)

of the data to predict the position of a lookup key in a sorted array. When the data

has a learnable pattern, i.e., has low entropy, learned indexes can be much smaller

than the input data itself. While initial proposals considered using neural networks to

approximate the CDF, state-of-the-art learned indexes use a collection of simple linear

models, which we refer to as submodels; these are fast to both learn and evaluate.

Some indexes aim to minimize the root-mean-squared-error (i.e., L2 loss) [87] and

others bound the maximum prediction error. Assuming a perfect modeling of the

CDF, a learned index would constitute a perfect order-preserving hash function, i.e.,

a collision-free mapping from keys to positions. For the rest of this paper, we refer to

Learned Model based Hash functions as LMH . Since real-world data contains many

irregularities that make it hard to approximate, a learned index inevitably needs to

trade off precision for space. With larger models, inference time increases because of

limited cache sizes [105]. We describe the three main learned indexes we evaluate for

hashing.

4.3.1 Recursive Model Indexes (RMI)

The recursive model index (RMI) is a multi-stage model combining simpler models [87].

When the data fits into memory, an RMI rarely has more than two stages. It is built

in a “top-down” fashion. The stage-one model computes a rough approximation of the

CDF, which is scaled between 0 and the branching factor 𝐵. This value is used to

select a second-stage model, which approximates the local distribution of the data

and is used to produce the final approximation. In other words, the stage-one model

partitions the data into 𝐵 buckets and each second-stage model approximates the

data that falls into its corresponding bucket. A recent study [105] showed that RMI,

amongst other indexes, achieves the best tradeoff between inference time and space.
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4.3.2 Radix Spline Indexes (RadixSpline)

RadixSpline [81] is another learned index variant, that is built “bottom up”, and

consists of a linear spline [120] to approximate the CDF and a radix lookup table that

indexes resulting spline points. Compared to RMI, RadixSpline can be built in a single

pass with constant cost per element. RadixSpline’s spline-building algorithm [120]

bounds the maximum prediction error. Besides the maximum error, RadixSpline is

parameterized with a certain number of radix bits that define the size of the radix

table. Lookups first consult the radix table, which indexes 𝑟-bit prefixes of spline

points and is used to narrow the search range over the spline points. Then binary

search is used on the narrowed range to identify the two spline points surrounding

the lookup key. Finally, linear interpolation between the two spline points is used to

obtain a prediction. The necessity to search over the spline points make it somewhat

slower than RMI which does not require any search in inner nodes.

4.3.3 Piece-wise Geometric Model Indexes (PGM)

Similar to RadixSpline, the Piece-wise Geometric Model Index (PGM) [57] provides

an error-bounded approximation of the CDF. It consists of multiple levels where each

level represents an error-bounded piece-wise linear regression (PLR). In contrast to a

spline where consecutive spline points are connected, a PLR additionally stores an

intercept value with each point. Like RadixSpline, PGM is built “bottom up” but

instead of using a radix layer it recursively applies its PLR algorithm until a certain

error threshold has been met. PGM can also be built in a single pass with constant

amortized cost per element. Due to its multi-level structure, PGM can have slightly

higher inference cost than RadixSpline [105] but is more robust when outliers are

present.

4.4 Perfect Hashing

Where traditional hash functions aim to produce (near)-i.i.d. uniform random outputs,

perfect hash functions provide an injective function that maps a set of elements into a
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range. That is, for a given input set, the function will produce no collisions [59, 51, 12,

102]. Here, we focus on two types of perfect hash functions: minimal perfect (MPHF),

and order preserving minimal perfect (OMPHF). We first explain the corresponding

definitions, and then describe the state-of-the-art MPHF and OMPHF algorithms we

study.

Perfect. A hash function ℎ(𝑥) : 𝑋 ↦→ [0, 𝑁 ] is perfect for the domain 𝑋 if it is

injective. Equivalently, it produces zero collisions in the output domain (∀𝑥1, 𝑥2 ∈ 𝑋 :

ℎ(𝑥1) = ℎ(𝑥2) =⇒ 𝑥1 = 𝑥2).

Minimal. A hash function ℎ(𝑥) : 𝑋 ↦→ [0, 𝑁 ] is minimal perfect if it is perfect and a

bijection; that is, each element of the output range has a single corresponding domain

element (Perfect, and additionally ∀𝑦 ∈ [0, 𝑁 ] : ∃𝑥 ∈ 𝑋 | ℎ(𝑥) = 𝑦). The information

theoretical lower bound for storing a minimal perfect hash function is lg 𝑒 ≈ 1.44

bits per key [59, 51, 12, 73, 20] since key-related information is not retained after

construction. For this reason, querying with non-keys (unknown keys) generally yields

arbitrary results.

Order Preserving. Order preserving perfect hash functions order their outputs

according to the original relative order ⪯ of input elements (∀𝑥1, 𝑥2 ∈ 𝑋 : 𝑥1 ⪯

𝑥2 =⇒ ℎ(𝑥1) ≤ ℎ(𝑥2)). Being able to store any arbitrary data order induces an

Ω(𝑛 log 𝑛) space cost [12].

Comparison to Traditional Hashing. In general, building a MPHF, ℎ(𝑥) : 𝑋 ↦→

[0, 𝑁 ], requires knowing the entire input set 𝑋 a priori. In many implementations, the

set 𝑋 is not stored or reconstructible after the MPHF is built. Querying with a non-key

𝑥′ /∈ 𝑋 generally yields some arbitrary output value; most often, ℎ(𝑥′) ∈ [0, 𝑁 ], but

this is not guaranteed. MPHF are generally not easily updated in place; often a full

rebuild is performed if a new element is inserted, or other expensive (non-constant)

time work. Compared to traditional hashing, where only constant work is necessary

for initialization, MPHF and OMPHF generally require running a one time 𝒪(𝑛) build

algorithm before they can be used, which is sometimes even further relaxed to expected

𝒪(𝑛) [51].
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4.4.1 Recursive Splitting (RecSplit)

RecSplit [51] is a MPHF which has been shown to deliver state-of-the-art results in

regards to space usage, lookup, and build time. Specifically, it comes close to achieving

the theoretically optimal 1.44 bits per key in practice, while only requiring expected

linear and constant times for construction and lookups, respectively [51].

RecSplit works by recursively partitioning inputs into ever smaller buckets until

brute force search for a MPHF, i.e., a bijection, is viable. The threshold for this

search, called leaf size 𝑙, as well as the average bucket size 𝑏 for partitioning are

parameters of the construction algorithm. RecSplit utilizes an indexed family of

uniform random hash functions (examples in Section 4.2). This enables efficiently

encoding the tree of brute-force determined indexes using an optimal Golomb-Rice

instantaneous code [51, 141].

4.4.2 MWHC

MWHC [102], named after its four inventors Majewski, Wormald, Havas and Czech,

was originally proposed as a family of OMPHFs with expected 𝒪(𝑛) construction

and 𝒪(1) access time. It has been extended to provide a practical MPHF with

constant access and requiring 3 bits per key storage [19, 12]. We refer to our simplified

implementation of the latter approach as BitMWHC. Abstractly, MWHC utilizes a

hypergraph to efficiently find a solution for a randomly generated system of linear

equations that is used to store the desired order preserving has function 𝑓(𝑥) : 𝑋 ↦→ 𝑈

given by

𝑓(𝑥) = 𝑣(ℎ1(𝑥)) ◇ . . . ◇ 𝑣(ℎ𝑘(𝑥)).

Each ℎ𝑖 denotes a distinct uniform random hash function, 𝑣(𝑥) maps each hash

function output to a value in 𝑈 and ◇ reduces 𝑈 × 𝑈 to 𝑈 . In practice, 𝑣(𝑥) may, for

example, be implemented as a simple array of values, ℎ𝑖 as a family of reasonably high

quality hash functions such as Murmur with seed values, and ◇ as xor or as addition

with an additional modulo computation at the end.

The construction algorithm first builds a 𝑘-hypergraph with each of the 𝜆|𝑋|
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vertices corresponding to one entry of 𝑣(𝑥) and one edge [ℎ1(𝑥), ..., ℎ𝑘(𝑥)] for each

input, where 𝑘 and 𝜆 are user-defined parameters. All ℎ𝑖 are randomly chosen from

a suitable family of hash functions as described above. A valid assignment for 𝑣(𝑥)

exists, i.e., 𝑓(𝑥) is solvable iff this hypergraph is acyclic. A simple peeling scheme is

used to both determine acyclicity and the order in which we can safely assign values

to each 𝑣(𝑥) to yield the desired values for 𝑓(𝑥) for each 𝑥 ∈ 𝑋. We simply restart if

the acyclicity test fails, hence the expected 𝒪(𝑛) construction time [102]. For 𝑘 = 3,

we require 𝜆 ≥ 1.23 to efficiently find a suitable acyclic hypergraph [102, 117].

4.5 Hashing Schemes

When collisions occur in a hash table, they are resolved using hashing schemes. In this

section, we give a brief background on the hashing schemes we study in this paper.

We focus on (1) chained hashing (Section 4.5.1) and (2) two open-addressing schemes:

linear probing and cuckoo hashing (Section 4.5.2). In each scheme, we discuss how

the hash table is implemented and how collisions are handled.

4.5.1 Bucket Chaining (CHAIN)

Bucket chaining is a classic collision resolving scheme [10, 136, 140]. In this scheme,

the hash table is implemented as an array of pre-allocated buckets, where each bucket

stores multiple tuples, with collided keys, at a specific slot in the table. To insert a

tuple, the key of this tuple is first hashed to a slot in the hash table, and then the

whole tuple is first tried to be placed in the corresponding bucket at this slot. If the

current bucket is already filled up, a new one is created, pre-allocated and chained to

it. To query for a tuple, the query key is first hashed to a slot in the table (similar to

what happens in inserts), then the chain of buckets at this slot is traversed until either

the matching tuple is found or the end of the chain is reached (i.e., the matching tuple

is not found). In general, bucketization improves the data locality, and reduces the

number of cache misses. That being said, choosing the bucket size should be carefully

tuned to avoid wasting large spaces.
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4.5.2 Open-Addressing

In open-addressing, all tuples are inserted in the hash table slots themselves, without

extra chains to handle collisions. In case of a tuple with a colliding key, the hash

table slots are probed (i.e., searched), until a slot is found to place the tuple [32, 136].

Typically, a probing scheme decides the set of hash table slots to check, referred to as a

probing sequence, till a place is found to insert the tuple. Query operations follow the

same probe sequence. There are two main categories of probing schemes: (1) schemes

that probe for the first available (i.e., empty) slot, and (2) schemes that evict the

existing tuple at the probe location (i.e., when a collision occurs) and replace it with

the new tuple. In this paper, we study an example of each of these two categories

(linear probing and cuckoo hashing).

Linear Probing (LP)

This is the most basic probing scheme for collision handling in open-addressing. In

this scheme, when inserting (or querying) a tuple, the key of this tuple is first hashed

to obtain a hash table slot (i.e., initial probe location). Then, the hash table is

sequentially traversed starting from this slot. In case of insertion, the traversal stops if

an available slot is found. In case of querying, the traversal stops if we find either the

matching tuple or an empty slot (i.e., matching tuple is not found). Linear probing

has two main advantages: (1) its simple design, and (2) cache efficiency due to the

sequential scan. In contrast, its performance degrades when large contiguous blocks

of hash table slots are occupied, referred to as primary clusters. In this case, the

number of nearby empty slots around each probe location is significantly reduced,

and the scheme tends to have long probe sequences. Such performance issue can be

avoided by either (1) increasing the hash table size such that the percentage of its

occupied slots (a.k.a load factor) is always kept less than 60% [136] or (2) carefully

tuning its update operations [14]. We note that there are two other popular variants

of linear probing: (1) quadratic [83, 32], and (2) robinhood [24], which are efficient for

write-heavy and high unsuccessful lookup workloads, respectively. However, according
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to a recent study [136], linear probing outperforms both of them using the appropriate

load factor. Therefore, we focus on linear probing here.

Cuckoo Hashing (CUCKOO)

Cuckoo hashing [124] provides another useful alternative hash table design. A simple

variation of cuckoo hashing uses two subtables, where each subtable has an independent

hash function. To insert a tuple, the key of this tuple is hashed with the first (or

primary) hash function to obtain a slot in the primary table. If this primary slot

is available, then the tuple is inserted and the probe sequence ends. Otherwise, the

tuple tries to be inserted in the second (or secondary) subtable using the second hash

function. If the secondary slot is occupied as well, then a kicking strategy is applied to

evict the existing tuple in either the primary or the secondary slot, and replace it with

the current input tuple. After that, the evicted tuple is reinserted again, following the

same steps. The eviction chain continues until either all evicted tuples are successfully

inserted or a maximum chain length is reached. This last case is a failure; one solution

is for all tuples in both hash tables to be rehashed with two new hash functions.

With balanced kicking [124], the primary or the secondary slot is randomly selected

for eviction. In biased kicking [39, 78], the tuple in the secondary slot is preferred

for eviction, which has been shown to improve performance for positive lookups. We

experimentally found that biased kicking performs better, so we use it throughout all

our experiments involving cuckoo hashing.

To probe for a tuple, we need only to check the primary and secondary slots,

which yields at most two cache misses regardless of the load factor. However, a major

drawback of the simple variation of cuckoo hashing is the failure case, where the

maximum length of the eviction chain is reached, happens at low loads. Higher loads

can be handled by generalizing to use more hash tables (e.g., 4 instead of 2) [58, 136] or

allowing multiple tuples per slot [40, 3, 140]. In this paper, we employ the bucketized

variant, where each hash table slot allows more than one tuple, which again limits to

two cache misses when a bucket fits in a cache line.
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4.6 Collisions Analysis for Hashing

Here, we identify and analyze the factors affecting collisions for both LMH and

traditional hash functions. This analysis helps us to identify situations where LMH

can have fewer collisions than traditional hash functions. We specifically focus on

LMH functions with piece-wise linear submodels for this analysis.

Notation. For ease of analysis, we start by focusing on the task of mapping 𝑁 keys

to 𝑁 locations. This analysis readily generalizes, and the high-level conclusions are

independent of this assumption, with the main difference being the number of locations

increases, the number of collisions decreases. Assume that we apply a hash function

𝑓 on the keys, where 𝑓 could be a traditional hash (Section 4.2) or a LMH function

(Section 4.3). Let 𝑥0, 𝑥1, . . . , 𝑥𝑁−1 be the sorted array of the 𝑁 input keys, and let

𝑦0, 𝑦1, . . . , 𝑦𝑁−1 be the sorted array of the hashing outputs 𝑓(𝑥0), 𝑓(𝑥1), . . . , 𝑓(𝑥𝑁−1)

(note that 𝑦𝑖 = 𝑓(𝑥𝑗) for some 𝑗, but 𝑦𝑖 is not necessarily 𝑓(𝑥𝑖)). For LMH functions,

the 𝑦𝑖’s may be on the real-valued range [0, 𝑁), and we would then map each key to the

location corresponding to the value of 𝑦𝑖 rounded down to an integer. For convenience,

we let 𝑦−1 = 0. The sorted output values generate a set of gaps 𝑔0, 𝑔1, 𝑔2, ... such that

𝑦𝑖 =
(︁∑︀𝑖

𝑡=0 𝑔𝑡

)︁
. We assume that 𝑔𝑖’s are i.i.d, with probability density function 𝑓𝐺(𝑧)

and CDF 𝐹𝐺(𝑧); this is a reasonable approximation for analysis. For example, for

uniformly randomly distributed outputs 𝑓(𝑥𝑖), the gaps between 𝑦𝑖 are approximately

exponentially distributed [114].

Characterizing Collisions. A collision occurs when two keys are mapped to the

same location. The key insight regarding collisions is that they depend on the gaps

between consecutive sorted hashing output values (𝑦𝑖 − 𝑦𝑖−1). If the gap between two

consecutive values is greater than one (i.e., 𝑦𝑖 − 𝑦𝑖−1 ≥ 1), then the corresponding

keys would definitely be placed in separate locations. On the other hand, if the gap is

smaller than one (i.e., 𝑦𝑖 − 𝑦𝑖−1 ≤ 1), the corresponding keys may be mapped to the

same location; it depends where 𝑦𝑖 and 𝑦𝑖−1 relative to the integer boundary.

Ideally, we would want all the gaps to be more than one, to have zero collisions.
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However, the gap values are constrained by the condition that the sum of all the gaps

should be less than the number of locations which is 𝑁 here.1 Thus, the gap distribution

would have to be the trivial distribution that is always 1 to avoid collisions.

Let 𝑐 be the number of colliding keys (i.e., keys that are not alone in a location).

Assuming that 𝑓 is not a lattice distribution2, we can describe the expected number

of colliding keys E[𝑐] with the following lemma. In the below, recall {𝑥} = 𝑥− ⌊𝑥⌋.

As 𝑁 grows large, E[𝑐] converges to

𝑁

(︂
1−

∫︁ 1

𝑢=0

(︂∫︁ ∞
𝑡=1−𝑢

(1− 𝐹𝐺(1− {𝑡+ 𝑢})) · 𝑓𝐺(𝑡)𝑑𝑡
)︂
𝑑𝑢

)︂
.

We remark that the proof reveals that this formula is also a good approximation

for large 𝑁 .

Let 𝑍𝑖 be the indicator random variable that is 1 if 𝑦𝑖 is alone in its own location.

We first consider the position of 𝑦𝑖−1. For sufficiently large 𝑖, {𝑦𝑖−1}, the fractional

part of 𝑦𝑖−1, is known to converge to the uniform distribution on [0, 1] (see, e.g., Thm

5.8.4. of [82]). We therefore treat {𝑦𝑖−1} as being distributed uniformly on [0, 1].

Accordingly, the probability 𝑦𝑖 is in a different location from 𝑦𝑖−1 is given by

∫︁ 1

𝑢=0

(︂∫︁ ∞
𝑡=1−𝑢

𝑓𝐺(𝑡)𝑑𝑡

)︂
𝑑𝑢.

We also need, however, that 𝑦𝑖+1 is also in a different location from 𝑦𝑖. This

depends on the value of {𝑦𝑖}. Taking this into consideration yields the following

probability for 𝑍𝑖:

𝑃𝑟(𝑍𝑖 = 1) =

∫︁ 1

𝑢=0

(︂∫︁ ∞
𝑡=1−𝑢

(1− 𝐹 (1− {𝑡+ 𝑢})) · 𝑓𝐺(𝑡)𝑑𝑡
)︂
𝑑𝑢.

As 𝑁 grows large, the approximation of uniformly distributed {𝑦𝑖−1} is arbitrarily

accurate (as accurate as desired) for almost all 𝑖, giving the convergence.

Collisions for Traditional Hash Functions. In case of a truly random hash

1Sum of gaps is:
∑︀𝑁−1

𝑡=1 (𝑦𝑡 − 𝑦𝑡−1) = 𝑦𝑁−1 − 𝑦0 ≤ 𝑁 .
2Lattice Distribution: A discrete probability distribution concentrated on a set of points of the

form a+nh, where h>0, a is a real number and n=0,±1,±2,.
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function, the output values will be uniformly distributed in the range [0, 𝑁 ] irrespective

of the input distribution. Therefore, the gap distribution of the output values is very

well approximated by the exponential distribution with mean 1. Murmur, XXHash

and most other traditional hash function displayed this behaviour in our evaluation.

Collisions for LMH Functions with Piece-wise Linear Submodels. To gain

intuition, let us start by using a single linear model to approximate the CDF of the

input data 𝑥0, 𝑥1, . . ., and this will give us our hash function 𝑓 . Let the linear model

be 𝑚 * (𝑥 − 𝑥0) where 𝑚 is (𝑁 − 1)/(𝑥𝑁−1 − 𝑥0). Note that the slope would be

approximately the mean of the gap distribution of the input keys. The resulting hash

function would be ℎ(𝑥) = (𝑚 * (𝑥 − 𝑥0)) which maps the input keys in the range

[0, 𝑁). After applying this hash function to obtain the output values 𝑦0, 𝑦1, . . ., we

notice that the gaps between the output values are simply the scaled version of the

gaps between the input keys: 𝑦𝑖+1 − 𝑦𝑖 = (𝑥𝑖+1 − 𝑥𝑖) *𝑚. At a high level, if the input

is evenly spaced, then our outputs will similarly be evenly spaced, resulting in fewer

collisions. If the input gaps are high in variance, we would expect more collisions. In

LMH functions, this scaling would happen at the submodels scale.

Accordingly, if the data is generated similarly to our theoretical model, with a gap

distribution 𝑔
′ (𝑥0, 𝑥1 = 𝑥0+𝑔

′
0, 𝑥2 = 𝑥1+𝑔

′
1, ....), the gap distribution of the input keys

determines the gap distribution of the output keys and thus the amount of collisions.

In certain cases, like auto-generated keys (1,2,3,4,5,...) perhaps with some deletions or

noise, the input gaps are mostly constant. In this scenario, a piece-wise linear model

can lead to fewer collisions than a traditional hash function. However, if the input

keys are generated by sampling from a distribution instead of sequentially, multiplying

the CDF value of the key by the array size will behave as an order-preserving hash

function. A LMH function that approximates this underlying distribution would

behave essentially the same as a truly random hash function in terms of collisions.

Increasing the number of submodels can improve the accuracy of when using a

piece-wise linear model to approximate a CDF. This helps in the case of indexing

an item, but from our argument above, we see that this does not necessarily reduce

the number of collisions. We show this via an example. We mapped 100 million
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Figure 4-1: Proportion of collisions with increasing RMI size for uniform randomly and
normally distributed keys.

uniform randomly and normally distributed keys to 100 million slots using RMI with

varying number of submodels. In Figure 4-1, we plot the proportion of collisions as

we increase the number of submodels in RMI. We observe that for uniform randomly

distributed keys increasing the number of linear submodels does not affect collision

metric until we reach 50 million submodels. RMIs with 100 submodels and 100000

submodels are both able to approximate the CDF of the distribution well and the

output is approximately uniformly randomly distributed in both cases. The larger

RMI provides better accuracy than the smaller one but essentially the same number

of collisions. The RMI with 50 million submodels essentially memorizes the empirical

CDF of the dataset and thereby results in lower collisions. For the normal distribution,

an initial increase in the number of submodels reduces collisions as an RMI with only

1-2 submodels fails to approximate the CDF of normal distribution well.

Conclusions. In summary, our discussion and analysis in this section supports the

following points:

• Collisions are dependent on the gaps 𝑔𝑖 between consecutive sorted hashing

output values.

• For LMH functions with piece-wise linear submodels, the number of collisions

depends on the key distribution, specifically the gaps between consecutive sorted

keys (𝑥𝑖 − 𝑥𝑖−1).

• Having more linear submodels in the LMH function improves the model accuracy
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but may not reduce collisions.

4.7 Evaluation

In this section, we present an empirical study for the performance of LMH functions

and compare them against both traditional and perfect hashing. Our main objective is

to answer the following question: what are the main workload characteristics, scenarios,

and operations where employing LMH functions would improve performance? We

first study the collisions and computation time tradeoffs (Section 4.7.2). Then, we

evaluate the performance of the various types of hash functions in supporting the

main hash table operations, lookup and insertion, for different types of hash tables

(Section 4.7.3). We also provide some more detailed experiments regarding issues such

as how collisions affect performance in practice, and the impact of construction time

for LMH (Section 4.7.4). Finally, we move to some higher-level operations that use

hash tables, and show cases where LMH can improve the performance of range queries

(Section 4.7.5) and non-partitioned hash join (Section 4.7.6).

4.7.1 Experimental Setup

Datasets. We use both real and synthetic key datasets in our experiments. All keys

are 64-bit integers. For real keys, we use two datasets from the SOSD benchmark [105].

These datasets are (1) fb, which has 200 million randomly sampled Facebook user

IDs, and (2) wiki , which has 200 million timestamps of edits from Wikipedia. In any

experiment, we use either the whole dataset or a sample from it (details are mentioned

in each experiment separately).

For synthetic keys, we use three different key generation processes: (1) gap_10 , in

which sequential keys are first generated at regular intervals of 10 and then 10% of the

keys are uniformly randomly deleted (this represents the case of auto-generated IDs

after removal of certain users), (2) uniform, in which keys are generated uniformly

at random in the range [0, 250], and (3) normal , in which keys are generated from a
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Figure 4-2: Gap distribution of various datasets

normal distribution (𝑁(𝜇 = 100, 𝜎 = 20)) and then are linearly scaled to the range

[0, 250].

As discussed in Section 4.6, the gaps between sorted hash outputs determine

collisions. In order to understand the distribution of these gaps in our datasets, we

use an RMI, with 1 million submodels, to map 100 million keys from each dataset to

100 million slots and then plot the gaps between consecutive sorted output values. In

Figure 4-2, x-axis shows the gap value and y-axis shows the count of this gap. We

observe that gap_10 and wiki datasets have gaps concentrated around 1. uniform and

normal datasets have very similar gap distributions concentrated around 0.25-0.35,

while fb dataset has significant number of gaps concentrated around 0.1.

In all hash table, range query, and join experiments, we generate 8-byte payloads

chosen randomly from the range [0, 264]. All tuples (or keys) are randomly shuffled

before running any experiment.

Hardware. All experiments are conducted in the main memory on a machine with

256 GB of RAM and an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz with Skylake

micro-architecture (SKX) and L3 cache of 55MiB. The operating system is Arch

Linux with a page size of 4KB (default page size). The implementation of all hashing
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wiki fb gap_10 uniform normal
RMI 103 107 10 102 102

RadixSpline 103 108 10 102 102

Table 4.1: Default numbers of submodels in LMH functions.

functions and schemes is our own and in C++. The binaries are compiled with

clang++ (12.0.1) using optimization -O3. We have activated prefetching.

Default Settings. Unless otherwise mentioned, we set the number of submodels in

RMI and RadixSpline as stated in Table 4.1. Each value represents the least number

of submodels needed to give the least amount of collisions in a specific dataset. For

PGM models, we vary the error bound values from 1 to 10000. The number of tuples

(or keys) in each synthetic dataset is set to 100 million. We use a default bucket size

of 1 in the bucket chaining scheme. To support cuckoo hashing with a load factor up

to 90%, we use a bucket size of 4 as described in [3]. As mentioned in Section 4.5.2,

we use the biased kicking strategy as it performs better than the balanced one. We

set 50000 as a maximum number of kicks. This value led to a suitably small number

of insert failures.

Metrics. Throughput is the default metric in most of the experiments. When

studying the hash function itself, we use the computation throughput, which is the

number of hash function operations executed per second. In the hash table and range

query experiments, we use the number of completed queries (e.g., probe/insert queries

on hash tables) per second (i.e., queries throughput). For the join experiments, we use

the runtime instead of the throughput to perform a breakdown for the join phases.

Measurement and Profiling. For all experiments, we report the average of three

independent runs, where we use a different random seed for generating and shuffling

synthetic and real data, respectively, in each run. We use the PerfEvent library [99]

to profile the low-level hardware counters in Section 4.7.3. These counters include L1

and LLC cache misses, branch misses and cycles.

Beyond Scope. Our study focuses only on the single-threaded setup to fairly

compare the performance of LMH functions with traditional and perfect hashing,

without parallelism optimizations. That being said, we believe that multi-threaded
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Figure 4-3: Computation throughput and collisions tradeoffs for various hash functions and
using different datasets.

implementations of these hashing schemes should be evaluated in a standalone study,

which we currently plan as an extension for this work.

4.7.2 Computation Throughput vs Collisions

In this experiment, we are interested in studying the tradeoff between the hash function

quality and its efficiency. We use the eleven hash functions and five datasets previously

discussed. In each dataset, we map a randomly-selected 100 million keys into 100

million hash table slots, and measure both the hash function computation throughput,

and the proportion of colliding keys.

Figure 4-3 shows the results of this experiment. Note that each traditional and

perfect hash function is represented as a single point in the scatter plot. However, in

LMH functions, we vary (1) the number of submodels in RMI and RadixSpline from

1 to 50 million and (2) the error bound of PGM as in the default settings, yielding

multiple points on the plot. As expected, traditional hash functions have a significant

number of collisions, and perfect hash functions are slow. All traditional functions

have similar throughput (90-100 million operations/sec) and colliding keys proportion

(0.63-0.65) across all datasets. This proportion of colliding keys nearly matches that

for truly random hash function which is approximately (1− 1/𝑒 ≈ 0.632). All perfect

hash functions have no collisions (by definition), but low throughput (10-20 million

operations/sec) due to the high computation overhead coming from either an expensive

traversal over the splitting tree in RecSplit [51] or multiple random accesses to the

array storing the hypergraph-related values in MWHC [102].
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The performance of LMH functions, however, depends on the gap distribution

of the input datasets as discussed in Section 4.6. The RMI and RadixSpline hash

functions, at their best configurations, can achieve low collisions (0.2 and 0.3) and

high throughput (80 to 120 million operations/sec) in two datasets, gap_10 and wiki .

For these datasets, the gaps are more or less evenly spaced, and hence LMH functions

yield a very low number of collisions. In addition, the number of submodels needed

for these datasets is small, which makes the LMH computation overhead efficient.

For fb, the variance in the gap distribution is very high, yielding a large number of

collisions. Reducing these collisions requires using a large number of submodels (the

best proportion of colliding keys is 0.5), yielding low throughput.

In the case of uniform and normal datasets, we observe that LMH and traditional

functions have similar collision behavior, regardless of the used number of submodels.

This matches our understanding that the CDF-based hashing of LMH for these

datasets will lead to a distribution of items in buckets that is nearly the same as

traditional hashing (as described in Section 4.6). In general, as discussed in Section 4.6,

increasing the number of submodels in LMH functions does not necessarily decrease

the collisions. For example, in wiki , the proportion of colliding keys using RMI

significantly drops from 0.9 to 0.3 after an initial increase in the number of submodels

from 1 to 1000, and then becomes stable regardless the number of submodels used.

For the rest of our experiments, we choose the best hash functions, in each hashing

category, in terms of both computation time and collisions: Murmur and MultiplyPrime

for traditional hashing, RMI for LMH and MWHC for perfect hashing.

4.7.3 Hash Table Performance

Here, we are interested in studying the performance of two main hash table operations;

probe and insert.

Probe Throughput. In this experiment, we first insert 100 million tuples in a hash

table with varying number of slots (i.e., buckets). Then, we probe the hash table

with all the inserted tuples (i.e., query workload), after randomly shuffling them, and

measure the throughput. We generate different load factors by varying the number of
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Figure 4-4: Probe throughput for combinations of 4 hash functions and 3 hashing schemes:
(A) bucket chaining, (B) linear probing, and (C) cuckoo hashing. Results are shown for 4
different datasets, and various load factors for each hashing scheme.

slots. Figure 4-4 shows the results for this experiment while using four input datasets

(uniform and normal nearly have the same results). For each hashing scheme, we use

a different range of load factors that are suitable for the scheme. For example, we

use load factors ≥ 100% in bucket chaining as it can support inserting tuples more

than the total slots in a hash table. Also, we only use high load factors (≥ 75%) with

cuckoo hashing because, in smaller load factors, cuckoo hashing is always dominated

by other schemes [136].

For bucket chaining, we observe a clear ranking among the different hash functions.

RMI has the best throughput in all datasets, except fb, with average 1.4x better

throughput than the second best function, MultiplyPrime. In addition, MWHC has

the worst throughput in all datasets, except fb in which RMI becomes the worst option

with average throughput of 1.5 million queries/sec only. This is because (1) RMI has

the fewest collisions in gap_10 , normal , and wiki , and (2) MWHC has the highest

hash computation overhead in all datasets. Fewer collisions results in shorter chains

that need to be traversed during the probe queries, and hence fewer cache misses. For

fb, although MWHC still has the highest computation overhead, the high amount of

collisions for RMI leads it to perform the worst.
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We also look at the throughput across different load factors. Increasing the load

factor increases collisions because there are fewer slots, which degrades the throughput.

For example, Murmur has throughputs of 12.5 and 6 million queries/sec at load factors

of 25% and 200%, respectively. However, we observe two exceptions to this throughput

trend when using: (1) RMI at load factors between 25% and 100% in gap_10 and wiki ,

where the throughput actually increases, and (2) MWHC in all load factors, where the

throughput is fixed around 6 million queries/sec, regardless of the dataset. The reason

for the first exception is that collisions are already close to zero in these two datasets,

so increasing the load factor from 25% to 100% primarily reduces empty hash table

slots, leading to better caching behavior. The reason for the second exception is that

the MWHC computation overhead for each tuple is constant [102], regardless of the

used load factor.

For linear probing, the throughput depends on the length of the sequential scan

needed to handle collisions. We observe that the throughputs achieved by using

Murmur, MultiplyPrime, and MWHC have the same trend as in bucket chaining. In

contrast, RMI has the following three notable changes. First, RMI yields a bit worse

throughput than traditional hashing in normal (10% less throughput). Although the

number of collisions using RMI is slightly smaller in this case (Section 4.7.2), the

effect of this difference can be hidden by the sequential scan benefits (e.g., prefetching)

of linear probing, and hence the overhead of RMI hash computation becomes more

significant. Second, RMI results in worse throughput than traditional hashing in wiki

(average 40% less throughput than MultiplyPrime). This was a bit surprising as LMH

functions result in significantly fewer collisions than traditional hashing. However, we

found that in a few parts of the wiki dataset RMI maps up to 100 keys to the same

slot, creating clusters that result in long sequential scans during probing.

For cuckoo hashing, we observe that the throughputs achieved by any hash function

are pretty much similar within the same dataset, regardless of the load factor used.

This is expected as handling collisions in cuckoo hashing is typically performed in

constant time (two cache misses at most). Even better, we employ a biased kicking

strategy, in which most of the tuples are placed in their primary hash slots (i.e., one
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cache miss for most of the probes). This makes the hash function computation (model

prediction in case of RMI) has a great impact on the probe latency in cuckoo hashing,

and explains why the throughput using RMI is a bit worse than using traditional

hashing in normal , and almost similar in gap_10 and wiki . Note that we failed

to construct the cuckoo hash table for fb using RMI because the resulting number

of collisions is extremely high, and the required number of kicks to handle them

exceeds the maximum threshold. Also, the construction failed using MultiplyPrime

at load factor 95% because of high number of collisions. In general, cuckoo hashing

significantly reduces the impact of collisions, regardless of the hash function used,

and hence the performance improvement of LMH over traditional hashing becomes

negligible.

In conclusion, the potential performance improvement of LMH functions (e.g.,

RMI) over traditional and perfect hash functions is greatly affected by the used hashing

scheme. It is strongest with bucket chaining, and weakest with cuckoo hashing.

Insert Throughput. Here, we use the same setup in the probe throughput experi-

ment, while changing the query workload. To generate the insert workload, we first

uniformly and randomly sample 101 million tuples from an input dataset. Then, we

initialize the hash table by bulk-inserting 100 million tuples from this sample as in

the probe throughput experiment, and use the remaining 1 million tuples as the query

workload. Figure 4-5 shows the results of this experiment for two input datasets only,

wiki and fb (the remaining datasets show similar performance trends).

In general, the relative ranking and throughput trends remain the same as in

the probe throughput. We also observe that, in wiki , the performance benefit that

RMI offers over MultiplyPrime - when used with bucket chaining - in insertion is

not as high as in probing (only 10% throughput improvement in insertion compared

to 30% in probing). Probing time mainly depends on the length of the chain to be

traversed whereas insertion requires allocating and adding new buckets to the chain,

and hence the collision reduction improves only a portion of the total insert time.

Another interesting observation is that at load factor 95% using cuckoo hashing with

MWHC is the best because the overhead of kicking operations becomes higher than
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Figure 4-5: Insert throughput for combinations of 4 hash functions and 3 hashing schemes:
(A) bucket chaining, (B) linear probing, and (C) cuckoo hashing. Results are shown for 2
different datasets, and various load factors for each scheme.

the complex computation of MWHC.

Performance Counters. To deeply understand what happens on the hardware

level, we investigate the following four performance counters: cycles, L1 cache misses,

last-level cache (LLC) misses, and branch misses. Figure 4-6 shows the average values

of these counters per tuple for the probe throughput experiment in Figure 4-4 at load

factor 80% and only for two datasets gap_10 (first row) and fb (second row). For
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Figure 4-6: Performance counters per tuple for the probe experiment in Figure 4-4 using the
gap_10 (first row) and fb (second row) datasets at load factor 80%.

MWHC, we only show chained results as other schemes have similar performance.

For gap_10 , the three RMI-based variants achieve the lowest performance counter

values (e.g., one L1/LLC miss per tuple for RMI-CHAIN and RMI-LP) compared to

other variants. For fb, we found that scanning very large clusters, as in RMI-LP or

MULT-LP, significantly increases both cache and branch misses, and in turn increases

cycles (high cache and branch misses lead to an excessive increase in the amount of

CPU stalls and wasted cycles, respectively). In contrast, RMI-CHAIN significantly

reduces the effect of the high collisions produced by RMI in fb (RMI-CHAIN has at

least 3X less LLC misses and cycles than RMI-LP). Even in gap_10 , RMI-CHAIN still

has at least 2X and 4X less cycles than RMI-LP and RMI-CUCKOO, respectively. This

confirms our conclusion about the impact of hashing schemes on the probe throughput

using LMH functions. Another interesting observation in fb is that MULT-CHAIN

and MULT-CUCKOO have close values in all counters, yet MULT-CUCKOO is a bit

better in cycles and branch misses. This shows that bucket chaining can provide a

competitive performance at challenging datasets and high load factors.
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4.7.4 More Performance Analysis

In this section, we study more parameters related to LMH functions and their

performance in hash tables.

Gap Distribution. In this section, we vary the gap distribution to display that gaps

concentrated around the mean have lower collisions. Assuming that the variance of

the gap distribution of uniform keys is 𝑋, we generate 4 different variations of the

uniform dataset, such that the gap distribution variances of their keys are 2𝑋, 4𝑋,

0.5𝑋 and 0.25𝑋 (i.e., scaled variances) 3. Then, we insert the keys of each dataset

variation in a hash table using RMI, and calculate the proportion of colliding keys.

The left part of Figure 4-7 shows the proportion of colliding keys with varying load

factors. As expected, the amount of collisions can be decreased by decreasing either

decreasing the gap variance or the load factor. Lower gap variance cause the gap

distribution to concentrate around the mean value resulting in lower collisions.

Build Time. Unlike traditional hash functions, LMH and perfect hash functions

require a building stage. In right part of Figure 4-7, we show the building time for

RMI and MWHC, as examples for LMH and perfect hashing, respectively, while

using the uniform dataset and vary the number of keys between 106 and 108. We can

see that the building time of MWHC is consistently two orders of magnitude slower

than the building time of RMI. Although MWHC has an expected 𝒪(𝑛) construction

time [102], its hypergraph building process requires an excessive amount of random

memory accesses, and hence cache misses (check Section 4.4). In contrast, building an
3Each dataset variation is generated by scaling the gaps between the uniform keys with the

corresponding factor (e.g., the "2𝑋 Variance" dataset scales the gaps between uniform keys by a
factor of 2).
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RMI requires only sorting the data once and doing multiple sequential passes over it,

which is a cache-friendly process.
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Figure 4-8: Effect of increasing the bucket capacity on the probe throughput of a chained
hash table at load factor of 50%.

Bucket Capacity. In this experiment, we study how increasing the bucket capacity

(i.e., number of tuples in the bucket) affects the probe throughput. For each dataset,

we build different hash tables with a load factor of 50%, and are bulk-loaded with 100

million tuples. Note, since we fix the load factor, increasing the bucket capacity by a

factor 𝑋 reduces the number of buckets by a factor 1
𝑋

. We use the same inserted tuples

as a probe workload, after randomly shuffling them, and measure the throughput as

in Figure 4-8.

In bucket chaining, increasing the bucket capacity reduces the length of needed

chains (i.e., extra buckets) to handle collisions, as any colliding key now has a high

probability to be in the main hash table bucket. However, this increases the probe

time as well because finding a key in the bucket requires larger scan overhead as the

bucket becomes larger. In wiki , RMI already produces a low number of collisions,

and hence increasing the bucket capacity will not benefit chaining, yet causes probes

to scan unnecessary keys, and hence the throughput significantly decreases (this is

also true for MWHC as it has no collisions by definition). In fb, RMI produces a lot

of collisions that result in longer chains. In this case, increasing the bucket capacity

improves the probe throughput. In the case of Murmur and MultiplyPrime, we can
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Figure 4-9: Effect of both point queries percentage (first row), and range query size (second
row) on the point/range queries throughput.

see that benefit from the capacity increase initially, then they suffer from the extra

scan overhead within the bucket.

4.7.5 Range Queries Performance

Hash tables support fast point queries only, and do not support range queries. On the

other hand, index structures like B-Tree, ART [94], and RMI [87] support both point

and range queries. However, the performance of index structures in point queries is

not as efficient as hash tables. In case of having a mixed workload of point and range

queries, where range queries represent only a small proportion, one cannot use a hash

table and is forced to use an index to be able to answer the range queries. This results
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in a huge performance degradation for the majority of the point queries. Fortunately,

we can use LMH functions along with bucket chaining to build a hash table that

supports range queries in addition to its natural support for fast point queries. In this

case, a range query can be processed by scanning the buckets between the locations

corresponding to the query lower and upper bound keys. This is possible as LMH

functions are order-preserving, and hence the target keys are bound to be within the

bucket locations.

Point Queries Percentage. In this experiment, we study the throughput of a

mixed workload of point and range queries (the percentage of point queries is variable)

using (1) an RMI-CHAIN hash table (bucket size of 8 and load factor of 50%), which

is our proposed solution, and (2) a sorted array of the input data with a typical

RMI on top of it (we refer to it here as RMI-SORT). We use wiki and fb, where we

sample 100 million tuples from each one of them as input data. We generate a mixed

query workload by first randomly sampling 𝑋% of the input data to be used as point

queries, and then for the rest of the workload (i.e., 100-𝑋%) we generate random

range queries that retrieve about 25-50 tuples. The upper part of Figure 4-9 shows

the results for this experiment, where we vary 𝑋 between 0 and 100. As expected,

in both wiki and fb, RMI-CHAIN has faster throughput than RMI-SORT when the

workload has a majority of point queries, and vice versa. This is explainable as, for

a point query, RMI-CHAIN just needs to scan the bucket pointed out by the model

whereas, RMI-SORT needs a local search to find the relevant key. For a range query,

RMI-CHAIN scans the buckets that fall within the range query and also the additional

chains associated with them. This leads to excessive random memory accesses, and

hence a decrease in the throughput. In contrast, RMI-SORT is more suitable for range

queries as it only needs to sequentially scan the relevant keys in the sorted range.

Range Query Size. Here, we reuse the setup of the previous experiment, while

focusing only on 100% range queries workload. We vary the range query size from 1

to 1024. The below part of Figure 4-9 shows the results for this experiment (x-axis

has a logscale). With increasing the range size, RMI-CHAIN becomes slower than

RMI-SORT as RMI-CHAIN needs to scan additional chained buckets.
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Figure 4-10: Runtime breakdown for the different implementations of non-partitioned hash
join (NPJ) using various combinations of hashing functions and schemes.

4.7.6 Hash-based Join Performance

In this experiment, we are interested in understanding the performance of non-

partitioned hash join (NPJ) over two input relations [92, 153], when implementing

it using different combinations of hashing functions and schemes. Note that we do

not investigate the hashing effect on partitioned hash join [153, 142] as it employs

small cache-fit hash tables. In this situation, using any traditional hash function to

build such small tables will be the best choice. In contrast, NPJ builds a large global

hash table for the smaller input relation and the probability of having performance

degradation, due to large number of collisions, is high. Therefore, employing an

efficient hash function is crucial to improve the join performance. We use wiki and fb

datasets, where we uniformly and randomly sample two variations from each dataset
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with 10M and 25M tuples. These variations will be used to perform the NPJ on.

Figure 4-10 shows the running time of the NPJ build and probe phases.

Interestingly, we can observe that RMI-CHAIN and MULT-CHAIN have the best

join performance in both wiki and fb, where RMI-CHAIN has 28% less runtime than

MULT-CHAIN. Looking at the build phase, we can see that RMI-CHAIN and RMI-LP

build the hash table more efficiently than other solutions in most of the cases. This

is mainly because RMI sorts the data to build its submodels, and then uses them to

insert each tuple from the sorted data into the hash table. Although sorting the data

is a bit expensive, it helps the model-based insertion to happen in a cache-friendly

manner, and the overall overhead, including both sorting and model-based insertion, is

still significantly less than randomly inserting tuples using MultiplyPrime and Murmur.

This observation was confirmed in a previous study before [89]. Due to the efficiency

of RMI in building the hash table, the total time of NPJ using RMI-CHAIN becomes

more competitive with MULT-CHAIN in a challenging dataset like fb because the

performance gain in building compensates for the performance degradation in probing,

and the total running time becomes very close.

4.8 Related Work

Traditional Hashing. Traditional hash functions can be categorized as either non-

cryptographic [52] or cryptographic [1]. Non-cryptographic hash functions [32, 83, 136,

3, 140, 29, 139, 37], which we mainly focus on in our study, are mostly used in building

data structures (e.g., hash maps, Bloom filters) and algorithms (e.g., searching) due

to their good balance between computation time and collision rates. More recent

work has focused on optimizing the performance of non-cryptographic hashing on

modern hardware by either proposing new hash functions [154] (e.g., CLHash [95], and

tabulation hashing [131]) or customizing the existing ones to utilize the underlying

hardware (e.g., GPU [96] and SIMD vectorization [11, 71]). Cryptographic hash

functions have the property of being computationally hard to invert. These functions

can still be used in building data structures, yet their performance can be much slower
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than non-cryptographic ones [29]. Examples of cryptographic hash functions include

MD5 [138], SHA1 [50] and SipHash [8].

Perfect Hashing. Perfect hashing has been widely studied; see, e.g., the survey

in [102]. In general, obtaining a perfect hashing scheme, especially for large datasets, is

known to be difficult [93, 108]. Although perfect hashing schemes provide competitive

probe performance, due to the lack of collisions, they incur significant overhead to

support incremental updates. Perfect hashing solutions can be divided into two

categories: static and dynamic. When inserting new tuples to the hash table, the

static solutions (e.g., [51, 19, 102, 125]) reconstruct the whole table from scratch, while

the dynamic solutions (e.g., [160, 38]) reconstruct the table parts that are related to

the update only. Another interesting line of work is improving the perfect hashing

computation using modern hardware, such as GPU (refer to a survey in [96]).

Learned Models for Indexing and Hashing. During the last few years, the idea of

using CDF-based learned models to replace traditional indexes has been investigated

extensively including single-dimension (e.g., [87, 81, 57]), multi-dimensional (e.g., [118,

43]), updatable (e.g., [47]), and spatial (e.g., [97, 133, 127]) indexes. Interestingly, the

authors of [87] also discussed the idea of using learned models as order-preserving

hash functions. A recent study [140] initially investigated whether learned models

are better than traditional hash functions in performing hash table lookups or not.

In contrast, our proposed study is more comprehensive as it spans additional hash

function types, hashing schemes, workload types, and hash-based operations. Another

recent interesting work [74] employs an entropy-learned approach to reduce the hashing

overhead by choosing how much and which parts of the input data we need to hash,

instead of hashing the whole input.

Hashing Experimental Studies and Analysis. Previous experimental studies

for the performance of different hash functions and schemes have been provided.

SMHasher [154] is a widely-known test-suite for evaluating the performance of non-

cryptographic hash functions. [152] provided both theoretical and experimental analysis

for cryptographic hash functions. [61] and [9] focused on experimentally studying the

performance of non-cryptographic and cryptographic hash functions, respectively, on
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embedded devices. [116] did an experimental evaluation for the major hash functions

that are designed for sampling packets during network traffic measurements. [158]

experimentally investigated how choosing a different hash function might significantly

affect the blockchain performance. [3] provided a detailed experimental comparison

between the performance of two hashing schemes (cuckoo hashing and quadratic

probing) and two radix tree variations. [144] micro-benchmarked the performance of

SIMD-aware variations of different hashing schemes. [136] is another recent comprehen-

sive experimental study for the different combinations of hash functions and schemes.

However, it only focused on non-cryptographic traditional hash functions and hash

table operations. For learned models, they have been extensively benchmarked in [106]

for indexing only, and not for hashing. In this paper, we try to fill this gap.
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Chapter 5

Discussion

5.1 Summary

In this thesis, we saw instance-optimized variants of exact and approximate membership

query data structures. The variants used ML models, capturing the data/workload

distribution, in order to specialize to a particular use case.

First, we saw an instance-optimized variant of Bloom filters which are data

structures for approximate point membership queries. These variants used a model to

answer queries with a backup Bloom filter to correct the false negatives. In PLBF,

we proposed a design to utilize the model more efficiently along with a framework to

automatically tune the parameter values. The score of the model indicates how likely

is it for the input to be in the set and PLBF essentially treats the inputs differently

based on the score of the model. PLBF frames an optimization problem and solves

it to obtain the optimal parameter values. Using these techniques, PLBF is able to

achieve a better space v/s error rate trade-off compared to its competitors as shown

empirically.

Second, we presented SNARF which is an instance-optimized variant of range

filters, which are data structures for approximate range membership queries. SNARF

uses a model to map the keys to a small domain and stores the mapped values. The

model helps SNARF compress the data set while also allowing range queries. Using

this structure, SNARF is able to provide a better space v/s error rate trade-off than
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its competitors.

Last, we saw how in certain scenarios one can use models instead of hash functions

in hash tables to improve point query latencies. For datasets with evenly spaced

keys, models have lower collisions than hash functions leading to faster point lookups.

Another interesting aspect of these model-based hash tables is that they are able

to support range queries. For workloads with majority point queries (<10% range

queries), model-based hash tables turn out to be faster than using state-of-art range

indexes.

5.2 Future Work

The data structures presented in this thesis show that instance optimization is a

promising direction. There are a lot more components in systems like schedulers,

query optimizers, sorting, etc that can be instance optimized. We believe this is going

to be an active research direction in the coming years. Various challenges need to be

addressed before these instance-optimized components can become production ready.

Some of these challenges are mentioned below:

Handling Data/Workload Shifts:

Instance-optimized components specialize for a particular data/workload distribu-

tion and are able to provide huge performance gains by doing so. In practice, data

and workload patterns might change over time leading to a drop in the performance of

these components. Sensing capabilities need to be added to these systems which can

detect shifts in the distribution and then trigger the re-optimization algorithm. In the

context of PLBF, the performance depends on both the data/workload distribution,

hence it is important to monitor both shifts. When such shifts are identified one can

trigger the parameter tuning framework of PLBF.

SNARF and learned hash tables use a model that approximates the data distribu-

tion. Both these structures operate independently of the workload distribution and

hence, are robust to workload shifts. Data distribution shifts can occur over time due

to inserts/deletes of keys in the set. The models used by these structures are static
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and hence when data distribution shifts the performance might drop for them. This

can be mitigated by triggering a rebuild in case of data shifts or by the use of an

updatable model similar to ALEX[46] and PGM[56].

Supporting Complex Data Types

SNARF and learned hash tables use piece-wise linear models for approximating

the data distribution. This works well for numerical keys but does not extend to other

data types such as strings, embeddings, multi-dimensional values, etc. Developing

models that work with such data types is an interesting research direction and initial

efforts in this direction have shown a lot of promise[147, 134].

Theoretical Results and Robustness

The data structures proposed in this thesis show great empirical improvements

over real-world datasets along with some preliminary theoretical results explaining

the performance. However, more work needs to be done to quantify the robustness of

these techniques. More rigorous theoretical analysis of these structures would help us

identify scenarios where they do or do not work well. Such analysis will help in making

an informed decision on when/where it makes sense to use such instance-optimized

components. Further, this analysis would also help us design data structures that are

more robust than current designs while offering similar performance benefits.

System Integration

These prototype data structures have been largely built in isolation and there have

been efforts to integrate them into an end-to-end system. It is unclear how multiple

instance-optimized components would work together. It is easy to imagine a number

of learned components destructively interfering with each other. Also, it is unclear

how much benefit would this specialization provide compared to a general-purpose

system. SageDB[44] is a preliminary effort to build an instance-optimized system.

Integrating these data structures in such a system and measuring their performance

benefits is still an open challenge.
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