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Abstract

As progress is made towards the first generation of error-corrected quantum comput-
ers based on physical quantum bits (qubits), researchers require robust techniques
for designing, operating, and characterizing coupled multi-qubit systems in the labo-
ratory, and for understanding the errors which arise in such systems. This doctoral
thesis is structured around three interconnected bodies of technical work which span
the field of superconducting quantum information science. In Part II, we consider
the design, simulation, and measurement of high coherence quantum bits mediated
by tunable coupler elements, a fundamental building block of extensible quantum
processors based on superconducting Josephson circuits. In Part III, we consider the
calibration of high fidelity single- and two-qubit gate operations, and we show how
these operations were harnessed to perform a demonstration of Density Matrix Expo-
nentiation, a deep Trotter-like quantum algorithm. In Part IV, we consider an array
of techniques for the characterization, verification, and validation of quantum com-
puting hardware, and we put forth a novel quantum characterization technique for
reconstructing the dynamic loss channels of multi-qubit systems, known as Lindblad
tomography. Framing the dissertation on each end, Parts I and V offer a comple-
mentary account of quantum computing grounded in feminist science and technology
studies, situating quantum computing as a historical, social, and material-semiotic
enterprise, complicating the narrative of progress which animates our work in the
laboratory.

Thesis Supervisor: William D. Oliver
Title: Professor of Electrical Engineering and Computer Science
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A single question animates this report: Can we ever expect to understand
existence? Clues we have, and work to do, to make headway on that issue.
Surely someday, we can believe, we will grasp the central idea of it all as
so simple, so beautiful, so compelling that we will say to each other, “Oh,
how could it have been otherwise! How could we have been blind so long!”

—John Archibald Wheeler

Lear Read.

Gloucester What—with the case of eyes?

Lear O ho, are you there with me? No eyes in your head,
nor no money in your purse? Your eyes are in a heavy
case, your purse in a light; yet you see how this world
goes.

Gloucester I see it feelingly.

Lear What, art mad? A man may see how this world goes
with no eyes; look with thine ears.
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(grey) states of an rf-SQUID coupler, as a function of the external

flux Φc through the coupler loop. (b) Left axis: comparison of the

coupler circulating current, calculated using the slope of the ground

state energy (red) and using and using the current operator (green).

Right axis: effective inductance of the coupler vs. Φc. . . . . . . . . . 257

4-17 Circuit schematic used to model the loading of the qubit inductance

due to the coupler 𝐿eff . The loaded qubit inductance 𝐿loaded
B is calcu-

lated by summing the total impedance of the qubit and coupler circuit,

as seen from the small Josephson junction of Qubit B. . . . . . . . . . 259

4-18 Flux noise analysis. (a) √
𝜂0,1 vs 𝛾, determined through numerical

integration. When calculating 𝜂0, we have assumed 𝜔low/2𝜋 = 3 mHz

and 𝑡 = 200 ns. (b) Estimated coupler flux noise amplitude based

measured Ramsey, Echo, and 𝑇1 times, as a function of 𝛾. . . . . . . . 264
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5-1 The protocol for a single run of the SWAP test on two qubits. The

operations in the dotted box prepare the two qubits in the the prod-

uct state 𝜌 ⊗ 𝜌 using some sequence of single-qubit rotations, and the

operations in the dashed box perform a Bell measurement as described

in Eq. (5.56). By running the circuit many times, recording the par-

ity extracted from measurement outcomes 𝑥 and 𝑦, and summing the

estimated probabilities in post-processing according to Eq. (5.58), the

algorithm returns an estimate of the purity of state 𝜌. . . . . . . . . 288

5-2 An example of the general protocol for a single run of the SWAP test on

2𝑛 qubits (𝑛 = 3 shown). At the end of each run, 2𝑛 bits are recorded

and converted to a global parity measurement using Eq. (5.65). The

circuit is repeated many times to build up an estimate of the probability

of measuring even or odd parity, which in turn gives us an estimate of

the purity of 𝜌. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

5-3 Simulation of a single qubit evolving under the influence of amplitude

damping and dephasing channels, for an arbitrary choice of coherence

times 𝑇1 = 𝑇2 = 30𝜇s. (a) The state of the qubit, sampled at discrete

times and plotted as a series of points on the Bloch sphere. When

the qubit is initialized in |1⟩, the amplitude damping channel pulls

the qubit state through the volume of the Bloch sphere, exponentially

decaying to the |0⟩-state. (b) The purity of the qubit 𝛾 = Tr[𝜌2]

calculated at each discrete time in (a). At 𝑡 = 0, the qubit begins

in a maximally pure state (𝛾 = 1, upper dashed line); the qubit then

decays to a maximally mixed state at the center of the Bloch sphere,

where its purity reaches the theoretical minimum for a single-qubit

state (𝛾 = 1/2, lower dashed line); as the qubit state passes through the

center of the Bloch sphere and exponentially decays to the |0⟩-state, its

purity gradually recovers and asymptotes back to its maximum (𝛾 = 1).293
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5-4 A modified version of the standard two-qubit SWAP test in Eq. (5.43).

By running the SWAP test many times for several values of the waiting

time 𝑡, we expect to see the purity of the qubit decay due to amplitude

damping and dephasing environment-induced dephasing. . . . . . . . 294

5-5 Experimental results of the SWAP test applied to two superconducting

transmon qubits, each initialized in the |1⟩-state. Running the circuit

from Fig. 5-4 for the initial two-qubit state 𝜌 ⊗ 𝜌 = |11⟩⟨11|, we see

that the reported single-qubit purity decays in much the same way as

predicted in our simulation from Fig. 5-3. . . . . . . . . . . . . . . . . 294

5-6 Experimental comparison of the purity calculated using the SWAP test

(blue, same data set as Fig. 5-5) and the value calculated brute force

using state tomography. In orange, we overlay the purity calculated

from two-qubit state tomography of the pair of qubits at each time

step; since, the two-qubit purity has a minimum of 𝛾 = 1/𝑑 = 1/4,

we can compare it to the single-qubit purity reported by the SWAP

test by taking the square root at each time (plotted in green). In red

and purple, we plot the single-qubit purity of each qubit, calculated

by tracing their respective single-qubit density matrices from the two-

qubit tomography results. . . . . . . . . . . . . . . . . . . . . . . . . 296

6-1 Circuit schematic of a microwave drive line coupled to a superconduct-

ing transmon qubit. The microwave source produces a time-dependent

voltage 𝑉𝑑(𝑡) which travels along a feed line with impedance 𝑅𝑤 and

capacitively coupled to one of the circuit nodes with capacitance 𝐶𝑑.

Figure reproduced from Ref. [257]. . . . . . . . . . . . . . . . . . . . 301
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6-2 Rough qubit spectroscopy of a tunable transmon for a range of mag-

netic flux biases. Here, the 𝑥-axis corresponds to the voltage applied

through a bobbin of wire positioned over the qubit chip—as the voltage

changes, so too does the current through the bobbin wire, which in turn

induces a variable magnetic flux perpendicular to the qubit circuit, bi-

asing the transmon. At each value of the flux bias, the frequency of

the drive signal is swept (𝑦-axis) and the signal through the transmis-

sion line is recorded by an FPGA digitizer at room temperature (𝑧-axis

colormap); when the drive signal is resonant with the transition fre-

quency of the qubit, the frequency of the readout resonator coupled

to the qubit shifts and a peak is recorded by the digitizer. Watching

this peak move as a function of the applied flux bias, we trace out the

upside-down parabola characteristic of the transmon spectrum. The

highest point of this parabola, where the first derivative with repect

to flux is zero, is commonly referred to as the sweet spot of the qubit,

and this point is typically chosen as the operating point for single-qubit

gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

6-3 Measurement of Rabi oscillations in a tunable transmon qubit biased

at its sweetspot and driven using a 30ns cosinusoidal pulse at a fre-

quency of 4.79GHz, varying the amplitude of the signal. The observed

oscillation in the magnitude of the signal recorded by the digitizer is

a proxy for the state of the qubit as it coherently rotates around the

medidian of its Bloch sphere from |0⟩ (digitizer signal: ∼ 1.75mV) to

|1⟩ (∼ 0mV) and back again. Sweeping the amplitude of the drive, we

record the pulse amplitude at which the signal successfully rotates the

qubit to the |1⟩-state (here, ∼ 0.95V). Together, this amplitude and

the chosen pulse width are the approximate parameters of our 𝜋-pulse. 312
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6-4 Detuned Ramsey measurements taken at a small range of flux bias

points around the rough sweet spot we found in spectroscopy (𝑥-axis).

Setting the drive frequency slightly above the maximum qubit fre-

quency we found in spectroscopy and sweeping the delay time between

the two 𝜋/2-pulses of the Ramsey measurement (𝑦-axis), we record

oscillations in the qubit state population (𝑧-axis colormap) equal to

the detuning frequency between the qubit transition and the drive.

Recording the symmetry point of the chevron where the detuning fre-

quency is minimum (∼ −0.75V), we arrive at a more precise value of

the sweet spot flux bias point. . . . . . . . . . . . . . . . . . . . . . 313

6-5 The fast Fourier transform (FFT) of each vertical trace in Fig. 6-4.

Taking the FFT of each Ramsey measurement results in a peak at the

oscillation frequency of the detuned Ramsey measurement (𝑦-axis),

mapping out the detuning between the drive frequency (which is fixed)

and the qubit frequency (which changes as a function of the flux bias)

and allowing us to interferometrically resolve changes in the qubit fre-

quency smaller than the linewidth of our spectroscopy measurement.

Recording the minimum detuning frequency and subtracting it from

the frequency of the drive, we arrive at a precise measurement of the

qubit transition frequency at the sweet spot. . . . . . . . . . . . . . 314
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6-6 DRAG calibration of single-qubit gates. Varying the DRAG coefficient

(𝑥-axis), pairs of X-gates are applied to the qubit (𝑦-axis) and the pop-

ulation of the |0⟩-state is recorded (𝑧-axis colormap, higher |0⟩ popu-

lation in red). When the DRAG coefficient is suboptimal, coherent

over-/under-rotations in the X-gate result in oscillation in the |0⟩-state

population after multiple pairs of gates. When the coefficient is opti-

mal, the DRAG protocol actively cancels the coherent errors in each

gate and the qubit will monotonically decay to an incoherent mixed

state as the duration of the gate sequence approaches the coherence

time 𝑇2. Recording the symmetry point of the resulting chevron—at

which point the coherent oscillations disappear—we obtain the opti-

mal DRAG parameter for our single-qubit gate. For samples of vertical

traces at a few different DRAG coefficients, see Figs. 6-7 and 6-8. . . 316

6-7 Suboptimal sequences of the DRAG calibration in Fig. 6-6, taken for

the coefficients 𝜆 = 1.4 (top) and 𝜆 = −1.5 (bottom). When the

DRAG coefficient is suboptimal, the coherent errors in X-gate will

constructively interfere, rotating the qubit close to the |1⟩-state af-

ter several applications of the gate (4 gates in the top trace, 18 in the

bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

6-8 Optimal sequence of the DRAG calibration in Fig. 6-6, taken for the

coefficients 𝜆 = −0.9. When the DRAG parameter is optimal, the co-

herent errors in each X-gate is actively cancelled and the qubit mono-

tonically decays to a mixed state even after hundreds of gates. For

1000 applications of the X-gate, the total duration of the sequence is

𝑇 = 1000 gates × 30 ns/gate = 30𝜇s ≈ 𝑇2, and the gate is limited by

incoherent errors due to finite coherence of the qubit. . . . . . . . . 318
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6-9 Iterative 𝜋-train measurements, corresponding to 𝑁 = 3 (top, 7 pulses

total), 𝑁 = 15 (middle, 31 pulses), and 𝑁 = 62 (bottom, 125 pulses).

Starting with the rough 𝜋-pulse amplitude 𝑉0 obtained from the stan-

dard Rabi measurement (𝑁 = 0) in Fig. 6-3, we increase the number

of additional pairs of pulses 𝑁 and decrease the range of amplitudes

scanned around 𝑉0, updating the amplitude more precisely as the res-

olution of the measurement increases. Note the 𝑥-axis of each plot: for

𝑁 = 62 in the bottom plot, the period of the Rabi measurement has

decreased by two orders of magnitude in comparison to the standard

Rabi oscillation in Fig. 6-3, allowing us to dial in the amplitude of a

single X-gate to much greater accuracy. . . . . . . . . . . . . . . . . 321

6-10 The energy spectrum of two capacitively coupled flux-tunable trans-

mon qubits, plotted as a function of the magnetic flux through the

higher-energy qubit (here labeled ‘qubit 1’). (a) Broad plot of the five

lowest transition frequencies. The avoided crossing between the states

|20⟩ and |11⟩ (emphasized in the black box) is utilized to accrue the

necessary state-dependent frequency shift to perform a CZ gate. (b)

Zoomed plot of the |02⟩ , |11⟩, and |20⟩ states in (a), focusing on the

avoided crossing between |20⟩ and |11⟩. The path ℓ(𝜏) illustrates the

flux trajectory of duration 𝜏 which biases the system from the sweet

spot, into the avoided crossing, and back again, implementing the CZ

gate. Figure reproduced from Ref. [257]. . . . . . . . . . . . . . . . . 323

7-1 Schematic representation of a classical instruction set for classical com-

puting. Here, instructions are defined by a classical bit string 𝑔𝑛 which

uniquely determines a Boolean-logic function 𝑓𝑔𝑛 comprising single-bit

and two-bit gates. The control layer executes the resulting circuit on

data bits 𝑠𝑛 to produce the output 𝑓𝑔𝑛(𝑠𝑛). [247] . . . . . . . . . . . 330

46



LIST OF FIGURES

7-2 Schematic representation of a classical instruction set for conventional

quantum computing. Here, the instruction set which encodes a quan-

tum circuit is generated using classical resources: instructions are de-

fined by a classical bit string 𝑔𝑛 that uniquely determines a unitary

operation 𝑈𝑔𝑛 comprising single-qubit and two-qubit gates. The con-

trol layer uses solely classical hardware to generate the gate sequence

and applies it to the quantum hardware (data qubits 𝜎𝑛) to execute

the unitary evolution 𝑈 = exp(−𝑖𝐻𝑔𝑛𝑡), where 𝐻𝑔𝑛 is the quantum

circuit Hamiltonian, to produce the output 𝑈𝑔𝑛𝜎𝑛𝑈 †
𝑔𝑛 . [247] . . . . . 331

7-3 Schematic representation of a quantum instruction set for quantum

computing using the density matrix exponentiation (DME) algorithm.

Here, the instruction set which encodes the desired quantum circuit is

stored in a set of instruction qubits 𝜌𝑛. The control layer uses classical

hardware to generate 𝑁 partial SWAP operations over a small, classi-

cally chosen rotation angle 𝛿 = 𝜃/𝑁 , where 𝜃 is an algorithm-dependent

angle. These classically defined operations (grey region) contain no in-

formation about the operation implemented on the data qubits (𝜎𝑛).

Using a Trotterization approach, the partial SWAP operations are re-

peatedly applied to the quantum hardware (blue region)—data qubits

𝜎𝑛 and identically prepared copies of the instruction qubits 𝜌𝑛 – to

execute the unitary operation 𝑈 = exp(−𝑖𝜌𝑛𝜃) ≡ exp(−𝑖𝐻𝑔𝑛𝑡), for ap-

propriately chosen 𝑔𝑛. The output 𝑈𝜌𝑛𝜎𝑛𝑈 †
𝜌𝑛 is equivalent to 𝑈𝑔𝑛𝜎𝑛𝑈 †

𝑔𝑛

to within an error 𝒪 (𝜃2/𝑁) for appropriately chosen 𝜌𝑛. [247] . . . . 332

7-4 Circuit diagram of the Density Matrix Exponentiation (DME) algo-

rithm using active reset and re-initialization to re-prepare the instruc-

tion state 𝜌 after each 𝛿SWAP operation. [247] . . . . . . . . . . . . . 334

47



LIST OF FIGURES

7-5 An alternative implementation of Density Matrix Exponentiation, which

we term DME2. In DME2, quantum measurement emulation (QME) is

used to approximately reinitialize the instruction qubit to 𝜌in without

active reset and repreparation. The substep parameter 𝑛 is stepped

from 0 to𝑁 . In the experiment, we perform 𝑛 rounds of 𝛿SWAP+QME,

measure the two-qubit density matrix, and trace over each subsystem

to extract the individual data and instruction qubit density matrices

(𝜎(𝑛) and 𝜌(𝑛) respectively). [247] . . . . . . . . . . . . . . . . . . . . 335

7-6 Demonstration of quantum instructions using DME. Substeps of DME2(|+⟩⟨+| , 4, 𝜋/2),

corresponding to R𝑋(𝜋/2) on the target qubit at the final step (𝑛 = 𝑁).

Black lines are guides to the eye. [247] . . . . . . . . . . . . . . . . . 337

7-7 Demonstration of quantum instructions using DME. Substeps of DME2(|0⟩⟨0| , 8, 𝜋),

corresponding to R𝑍(𝜋) on the target qubit at 𝑛 = 𝑁 . [247] . . . . . . 338
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7-8 Algorithm performance as a function of 𝑁 . (a) Circuit schematic

for DME2(|+𝑖⟩⟨+𝑖| , 𝑁, 𝜃). Data qubit is initialized in 𝜎in = |0⟩⟨0|.

(b) State fidelity (𝐹𝑠) of the data qubit state 𝜎 to the ideal state

𝜎ideal = 𝑒−𝑖𝜌in𝜃𝜎in𝑒
𝑖𝜌in𝜃 as a function of total DME steps (𝑁). The

instruction qubit is initialized to the |+𝑖⟩⟨+𝑖|–state, resulting in an

ideal operation 𝑒−𝑖𝜌in𝜃 = 𝑅𝑦(𝜃). The 𝑥-axis shows the number of

𝛿SWAP+QME steps 𝑁 (bottom, black), circuit depth (bottom, gray),

and active circuit clock time (top). Data for 𝜃 = 𝜋 (𝜋/2) are shown

with red/◇ (blue/∘) markers. Dashed lines is the state fidelity between

𝜎ideal and a simulated output of the DME2(|+𝑖⟩⟨+𝑖| , 𝑁, 𝜃) circuit, as-

suming perfect gates. The increasing fidelity with increasing 𝑁 is a

reflection of a reduction of the discretization error scaling as 𝒪(𝜃2/𝑁).

Solid lines are the same simulation as shown in dashed lines, but with

amplitude damping and depolarizing channels included in the circuit to

model the effect of decoherence. (c) State fidelity of 𝜎 to a simulated

output of the DME2(|+𝑖⟩⟨+𝑖| , 𝑁, 𝜃) circuit with perfect gates (denoted

𝜎DME2(𝑁)). Error bars are determined from bootstrap analysis (see

Section 7.10). [247] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
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7-9 Benchmarking algorithmic fidelity of DME2. (a) Circuit schematic.

Single-qubit process tomography is performed for a set of six instruc-

tion states 𝜌in representing cardinal points of the Bloch sphere. (b,d)

Process fidelities between measured process maps and simulated pro-

cessses, for varying instruction state and overall angle in DME2. Grey

(× marker) denotes the fidelity 𝐹𝑝(𝜒, 𝜒ideal) between the measured pro-

cess map 𝜒 and the ideal process 𝜒ideal, e.g a rotation of angle 𝜃 around

the axis given by the Bloch vector of 𝜌in. The data are presented at

𝑁 = 𝑁opt, determined as the step-number at which the fidelity to

𝜒ideal is maximized; 𝑁opt is indicated by the number above each bar.

Dark blue/red (◇ marker) indicates the fidelity 𝐹𝑝(𝜒, 𝜒DME) between the

measured process map and a simulated implementation of the DME cir-

cuit assuming active reset and reinitialization of the instruction qubit

(evaluated at 𝑁 = 𝑁opt). Light blue/red (∘ marker) shows the fidelity

𝐹𝑝(𝜒, 𝜒DME2) between the measured process map and a simulation of

DME2 with perfect gates and no decoherence using QME to approxi-

mately reinitialize the instruction qubit at each step. Error bars are

calculated using bootstrap analysis (see Section 7.10). The process

map for the point enclosed by a blue/red diamond is shown in (c,e).

(c,e) Representative process matrices for 𝜒 shown in blue and red for

𝜃 = 𝜋/2 and 𝜃 = 𝜋 respectively, evaluated at 𝑁opt. Colored process

matrix elements indicate points with magnitude 𝜒𝑖𝑗 > 0.02; other ele-

ments are grey for clarity of scale. Black wire frames denote a process

matrix from a simulated implementation of 𝜒DME2 assuming perfect

gate operation and no decoherence. [247] . . . . . . . . . . . . . . . . 343

7-10 (a) Schematic of readout- and control-wiring used for these experi-

ments. The microwave line of qubit 3 is used to drive single-qubit

gates on qubit 2. (b) SEM image of identically fabricated device to

the processor used in this work. [247] . . . . . . . . . . . . . . . . . . 344
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7-11 (a) Measurement circuit to extract effective 𝑇1-like decay time, de-

noted ̃︀𝑇1. (b) Probability of measuring qubit 1 in the excited state, as

the number of CZ gates is increased. The number 𝑛̃︀𝑇1 sets a character-

istic gate number, which can be converted into a characteristic time,̃︀𝑇1. [247] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

7-12 (a) Measurement circuit to extract effective 𝑇2R-like decay time, de-

noted ̃︀𝑇2R. We essentially perform a Ramsey measurement but inter-

leave CZ gates. (b) Probability of measuring qubit 1 in the excited

state, as the number of CZ gates is increased. The number 𝑛̃︀𝑇2R gives

the effective coherence time ̃︀𝑇2R ≈ 5𝜇s. [247] . . . . . . . . . . . . . . 348

7-13 (a) Circuit diagrams for measuring the reference curve (gray dashed

box) and interleaved curve for a single qubit gate 𝑔 (red dashed box)

relevant for Clifford randomized benchmarking for a single qubit. (b,c)

Results for reference (gray) and interleaved (varying colors, for each

gate) randomized benchmarking for qubit 1 and 2, respectively. [247] 349

7-14 (a) Gate sequences for measuring the two-qubit Clifford reference (gray

dashed box) and interleaved CZ (red dashed box) RB numbers. (b)

Example decay curve of 𝑃|00⟩ as the number of two-qubit Clifford gates

(𝑚) is increased. Each datapoint is averaged over 𝑘 = 48 random-

izations of the choice of Clifford gates. Error bars are 1𝜎 standard

deviations at each point from the 48 measurements, and fitting is per-

formed using forward propagation of points weighted by their error

bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
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7-15 (a) Gate sequence used to perform process tomography of a sequence

of an even number of CZ gates, to get the chi-matrix 𝜒(𝑛), used to

compare with the identity process map to infer coherent errors. The

gate-sequence will nominally implement 𝜒11 up to overall system de-

coherence (visible as the overall decrease of both the linear and oscil-

lating measurements) if there are no phase errors in the CZ𝜑01,𝜑10,𝜑11

gate. (b) The gate fidelity 𝐹𝑔(𝜒(𝑛), 𝜒11) as the number of CZ gates

(2𝑛) is increased. With no phase errors in the CZ gate, 𝐹𝑔 decreases

monotonically. With a phase error in the CZ gate 𝐹𝑔 will oscillate,

with the period indicating the scale of the phase error. [247] . . . . . 352

7-16 Details of 𝛿SWAP and DME compilation. Row 1: The density matrix

exponentiation algorithm implemented using partial SWAP operations

and the simulated quantum measurement (QME) gate. Row 2: De-

composing each 𝛿SWAP according to Eq. (7.19). Each substep at this

step requires 8 layers of gates (7 for 𝛿SWAP decomposition and 1 for

QME). Row 3: The three layers of single-qubit gates stemming from

the the end of the 𝛿SWAP of step 𝑛, followed by QME, and the first

layer of single-qubit gates in 𝛿SWAP of step 𝑛 + 1 can be recompiled

into a single layer. Row 4: The recompiled gates are reinserted into

the algorithm result in the optimal structure of exactly one CZ gate,

followed by a single layer of single-qubit gates. Row 5: Example wave-

form output to the 𝐼,𝑄 (𝑥, 𝑦) ports and the flux tuning pulse (labeled

Φ) implementing the ‘NetZero’ waveform used to implement the CZ

gate [293, 388]. [247] . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

7-17 Schematic definition of experimental execution of a DME protocol using

QME operations (i.e. DME2). [247] . . . . . . . . . . . . . . . . . . . 362
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7-18 (a) The state fidelity between the measured output state and the result

of ideal gates implementing DME, as the number of QME randomiza-

tions are increased, as defined in Fig. 7-17. (b) Concurrence in the

two-qubit density matrix Ω (the combined state of the system), for in-

creasing number of QME randomizations. (c) The mutual information

between the two subsystems 𝜎 and 𝜌, as more randomizations of QME

are used. [247] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

7-19 Instrumenting the DME2 circuit for simulation of decoherence-induced

errors. [247] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

10-1 Single-qubit Lindblad tomography (LT) protocol. (a) The sequence of

measurements required for single-qubit LT. The qubit is prepared in its

imperfect ground state 𝜌0 and one of six single-qubit pre-pulses R𝑠 is

applied to rotate the qubit as close as possible to each cardinal state of

the Bloch sphere; free evolution of the quantum system is swept; and

one of three post-pulses R𝑏 is applied to rotate the measurement axis

into each Pauli basis. (b) Analysis protocol for LT. Results from all

combinations of pre-/post-pulses and channel durations are passed to

a classical optimizer based on maximum likelihood estimation (MLE).

SPAM errors due to imperfect ground state preparation and measure-

ment infidelity are extracted from data at 𝑡 = 0, and the results are

used to separately estimate: (left path) the Kraus operators 𝒦(𝑡𝑖) for

each discrete channel duration 𝑡𝑖 and channel Markovianity using the

trace distance 𝐷 between pairs of states; (right path) the Hamiltonian

�̂� and Lindblad matrix 𝐿 for continuous time 𝑡, where the operator fit

to data is evaluated using the average error between the measurement
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Chapter 1

Searching for Links

1.1 Physics of Information

In the spring of 1989, a group of forty scientists convened at St. John’s College in

Santa Fe, a pueblo-clad liberal arts college nestled in the high desert valley between

the Sangre de Cristo and Jemez mountains.1 Gathering under the auspices of the

Sante Fe Institute—a small independent research center founded five years prior by

theoretical physicists from nearby Los Alamos—the scientists in attendance had been

enticed to Santa Fe by a short “manifesto” issued by the Polish-American physicist

Wojciech Zurek. The document, which Zurek titled “Complexity, Entropy, and the

Physics of Information—A Manifesto,” opens on a supernatural note: “The specter

of information is haunting the sciences.2

Thermodynamics, much of the foundation of statistical mechanics, the
quantum theory of measurement, the physics of computation, and many of
the issues of the theory of dynamical systems, molecular biology, genetics,
and computer science share information as a common theme. [491]

Taking information as the core analytic, Zurek challenged like-minded scientists to

1For an anthropological analysis of Santa Fe architecture, geography, and the research interests
of the Santa Fe Institute, see Ref. [197].

2The opening to Zurek’s distinctly twentieth-century manifesto is, of course, a playful and oblique
reference to the spectral first line of the nineteenth century’s most famous manifesto [297].
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consider the deep connections which might be found between physics and computer

science, between the entropy of thermodynamics and the entropy of information the-

ory [417]. What links might be unearthed between these seemingly separate dis-

ciplines, and what profound secrets of the universe might they guide the intrepid

scientist to?

These questions, heady and abstract as they were, attracted eager participants.

Charles Bennett, a founding figure in the theory of quantum teleportation and cryp-

tography [49, 50], presented a paper weighing candidates for a formal measure of com-

plexity [48]. Benjamin Schumacher, who later coined the term qubit [410], considered

the mathematical connection between information and energy by way of Holevo’s

theorem for the entropy of a quantum system [204, 409]. Murray Gell-Mann, winner

of the 1969 Nobel Prize in Physics for his contributions to the theory of elementary

particles, coauthored a piece with James Hartle offering insights on quantum mechan-

ics gleaned from quantum cosmology [157]. William Wootters, coauthor with Zurek

of the no-cloning theorem [472], offered a meditation on the relationship between

the linearity of quantum theory and the resources required to reconstruct a quantum

state [475].

When the proceedings of the 1989 meeting on Complexity, Entropy, and the

Physics of Information were published in print the following year—collected as vol-

ume eight of the Santa Fe Institute’s iconic terracotta red series on the science of

complexity—Zurek chose to open the collection with a contributed essay by his post-

doctoral advisor, the physicist John Archibald Wheeler. Widely considered one of

the great American physicists of the twentieth century for his early contributions to

quantum theory and general relativity,3 by the 1980s Wheeler had largely shifted

his passion towards an emerging field of research captivating many of his students:

quantum information. In this endeavor, the elder Wheeler proved even more radical

than his pupils.

3More popularly, Wheeler is perhaps best known for coining the term “black hole” and for his
leading role in the US effort to design the hydrogen bomb. For a contemporary critique of the term
“black hole,” see the recent work of cosmologist Chanda Prescod-Weinstein [358]; for a reflection on
the legacy of US nuclear colonialism in the aftermath of the hydrogen bomb, see the work of particle
physicist Karen Barad [31].
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Figure 1-1: Figure from John Wheeler’s “Information, Physics, Quantum: The Search
for Links,” depicting the event horizon of a black hole digitized as a surface of binary
measurement outcomes for each Planck area. “Symbol, also, in a broader sense,”
Wheeler notes in the figure caption, “of the theme that every physical entity, every
it, derives from bits.” [468]

In his essay for the Santa Fe collection, “Information, Physics, Quantum: The

Search for Links,” Wheeler offered an expansive and provocative theory for the con-

nection between physics and information science. By the late 1980s a few scientists,

including Wheeler’s former graduate student Richard Feynman, had begun to see

the potential of new computing devices based on the principles of physics, an in-

sight which would radically alter the classical theory of computation [141]. Wheeler,

however, saw the inverse. Perhaps, he argued, it was physics itself which would be

forever changed from its encounter with computer science. Following quantum me-

chanics to its logical conclusion, Wheeler argued that the fundamental substratum

of the universe was composed not of particles and fields, as classical physics would

suggest, but of information: binary quantum measurements yielding zeroes and ones.

“The yes or no that is recorded,” Wheeler writes, “constitutes an unsplittable bit

of information”—a bit which, as his pupils Wootters and Zurek demonstrated years

prior, cannot be divided into multiple copies [472]. Partitioning the universe up into

irreducible pieces and performing a measurement on each (Fig. 1-1), wouldn’t we find
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Figure 1-2: Frontispiece to Complexity, Entropy, and the Physics of Information,
depicting the universe bending back upon itself in self-observation [468]. Illustration
originally published by John Wheeler in Ref. [467], where it is captioned “The universe
viewed as a self-excited circuit. Starting small (thin U at upper right), it grows (loop
of U) and in time gives rise (upper left) to observer-participancy—which in turn
imparts ‘tangible reality’ (cf. the delayed-choice experiment [...]) to even the earliest
days of the universe.”
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that all phenomena are—at their most foundational level—digital? Wheeler gave his

theory a lyrical name, it from bit :

Otherwise put, every it—every particle, every field of force, even the space-
time continuum itself—derives its function, its meaning, its very existence
entirely [...] from the apparatus-elicited answers to yes-or-no questions,
binary choices, bits.

It from bit symbolizes the idea that every item of the physical world has at
bottom—at a very deep bottom, in most instances—an immaterial source
and explanation; that which we call reality arises in the last analysis from
the posing of yes-or-no questions and the registering of equipment-evoked
responses; in short, that all things are information-theoretic in origin and
this is a participatory universe. [468]

For Feynman, as for most scientists today, quantum information was an application

of quantum mechanics. For Wheeler, it was its foundation.

Unique among the papers in the volume, Wheeler’s is accompanied by a cryptic

frontispiece. Opposite the opening to his essay, a full page is devoted to an abstract

hieroglyph of a serpent-like creature, its body expanding and tapering out from a

thin line on one end to a single bulbous eyeball on the other (Fig. 1-2). Like the

ouroboros of a medieval alchemical text, the figure bends back upon itself, forming

not a continuous O but a great U. Contorted in alphabetic significance, the Universe-

creature looks back on its own tail, a thin dashed line connecting it back to its origin,

looping back through space and time to where it began. The gaze completes the

circuit.

Bending backwards thirty years later, the collection of papers in the Santa Fe

Institute volume will appear utterly alien to most scientists in the accelerating field

of quantum computing. While many of the authors in the collection will be imme-

diately recognizable for their contributions to the theory of quantum computing—

such as Tommaso Toffoli [434], for whom the three-qubit CCNOT or Toffoli gate

is named [435]—Zurek and his colleagues appear largely uninterested in the indus-

trial implications or commercial utility of their research. Gathered in the New Mexico
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desert in 1989, the scientists in attendance embraced the notion that they were part of

something deeply unorthodox, perhaps even subversive. Well outside the disciplinary

borders of traditional physics, further still beyond the boundaries of computer science

or engineering, the Santa Fe cohort saw quantum information foremost as a branch of

quantum foundations, a window into the fundamental mathematical and existential

structure of the universe. For them, the relationship between physics and information

was one of true natural philosophy, answering every practical question with a deeper

spiritual one. “What kind of computer,” Feynman famously asked eight years earlier,

“are we going to use to simulate physics?” [141] “How come existence?” his mentor

blithely retorts. “How come the quantum?” [468]

Such existential questions typically have no place in a quantum computing thesis,

and yet they too are part of our history, part of our past. And the past is not yet

done with us. So, like the cryptic serpent staring back at its own tail, I turn towards

Santa Fe. I turn towards Santa Fe at the outset of this thesis because I am trying

to make sense of the present, and this means I must contend with what came before

me. I am searching, like Wheeler, for links, and links there are plenty. Indeed, as

I write this thesis, Wheeler’s questions weigh heavily on me—though likely not in

the sense he originally meant them. If the question of existence for Wheeler and

the Santa Fe cohort was one of cosmological and theological proportion—a question

whose answer would unlock the deepest secrets of the universe, explain what it all

means and why—I am far more interested in a different sort of existence, one humbler

in scale, though calibrated to the times we are living and working in. How come the

quantum computer? I ask. How come its existence, now?

Put another way, how do we make sense of this machine we are trying to build?

How do we understand the physics which animates it, the engineering which gives it

shape, the institutions which house it, the social life it has lived, and the people who

have poured so much labor, so much money, so much time into its creation? So much

time, at a time when time itself seems to be running out. For so many, has long since

run out, has been cut short. Some of these questions are scientific, and this thesis is

a ledger of my attempts to answer at least a few of them in kind. Others are not;
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this thesis is an account of my attempts to answer some of those as well.

These questions, I have learned time and time again, are utterly tangled with

each other. I will not attempt to slice the Gordian knot binding them. Instead,

this thesis is a document of my attempts to follow, feelingly, the contours of their

tangle—winding through circuit diagrams, cryostats, Python simulations, microwave

attenuators, peer review, PowerPoint, the Oval Office. What follows is a partial trace

of the tangled circuitry at the heart of quantum computing.

1.2 Tangled Circuits

In 2022, as the field of quantum computing enters its fifth decade, the opening salvo

of Zurek’s manifesto rings truer than ever before. The sciences are indeed haunted.

For many younger scientists such as myself, it is difficult to imagine a time before this

haunting, before the specter of information possessed the sciences so completely. In

the decades since the Santa Fe meeting, computers have become integral to the daily

lives and activities of most industrialized humans in ways that Zurek and Wheeler

could not have imagined. If information for the Santa Fe scientists was still an object

of inquiry that could be held at a distance and examined, today it is the opaque

lens through which we experience so much of the world, woven into the fabric of our

reality no less profoundly than the electric or magnetic fields of classical physics. The

extent to which the computing revolution of the last half-century has impacted the

methods and aspirations of our research cannot be understated.

Following in the footsteps of the classical computing revolution of the late twen-

tieth century, in the past decade alone, efforts to design and engineer real quantum

processors based on physical quantum bits have accelerated like never before. In-

deed, after decades gestating as a largely theoretical, mathematical, and philosophi-

cal curiosity, high coherence and high fidelity quantum processors based on a range

of hardware modalities—such as trapped ions, neutral atoms, and nitrogen-vacency

centers in diamond—are gradually becoming technical reality. Among these modal-

ities, quantum processors based on superconducting Josephson circuits have proven
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particularly compelling, and progress towards the first generation of fault-tolerant,

error-corrected quantum processors based on these artificial atoms is well underway.

This thesis is a partial account of that journey.

And yet, while the past ten years have been ones of enormous scientific and en-

gineering progress, the modern quantum engineer finds themselves in something of a

liminal space. Operating between the dual poles of science and engineering, of quan-

tum theory and computer science, of physics and information, the quantum computer

scientist is both chimera and polyglot: a disciplinary and intellectual shapeshifter of

sorts, versed in a dozen languages and tasked with winding them together in a single

sentence. We are not the first to find ourselves here. Though the questions ani-

mating our work may differ, like the scientists in Santa Fe, we too are interested in

tying things together, in dancing at the borders between more established disciplines,

asking profound questions at the interface between multiple levels of abstraction.

These interfaces are absolutely physical, and they have profound and material

consequences for the task of building a quantum computer. In the research reported

in this thesis, I am largely interested in the interface between two distinct levels of

abstraction which coincidentally—indeed, zeugmatically [41, 195]—share a common

name. The first is the logical circuit of a quantum algorithm. This circuit is a

mathematical object, describing the set of operations performed on a collection of

qubits to implement some interesting computational task:

The second is the electrical circuit of the superconducting quantum processor which

attempts to perform this computation. This circuit is a physical object, precision

fabricated in a cleanroom and painstakingly calibrated in the laboratory using a

dilution refrigerator and racks of microwave electronics:
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The logical circuit in the first diagram above corresponds to a hardware-efficient

formulation of the Density Matrix Exponentiation algorithm using two qubits; the

electrical circuit in the second, to three capacitively-coupled flux-tunable transmon

qubits fabricated on a silicon wafer. While these two circuits, no less hieroglyphic

than Wheeler’s serpent, share many of the same schematic elements—lines, boxes,

crosses—their interpretation could not be more different: the SWAP operation be-

tween two qubits in a logical circuit has no inherent relationship to a series pair of

Josephson junctions in an electrical circuit, though they are both signified using the

exact same symbol (two ×’s joined with a line). And yet, as we will see in Part III

of this thesis, the logical circuit and the electrical circuit above can, in principle, be

made to map perfectly onto each other, giving the mathematical abstraction of the

former flesh in the latter. In practice, they do not. When these two circuits fail to

align, errors arise in the computation. These errors can be difficult to characterize

and mitigate—in many cases, as we’ll see in Parts III and IV, deceptively so—but

they must be contended with. These errors are the main characters of this story.

However, before I turn to these errors at the interface of logical circuit and super-

conducting circuit, there are a few other interfaces which must be addressed to set

the stage for the work which follows. These interfaces are variously historical, social,

linguistic, philosophical, and they too define the material conditions of our research.

It is to these interfaces that I turn for the remainder of this introduction.
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1.3 Quantum Computing, Historically

When quantum engineers and computer scientists are called upon to tell the history

of our discipline, tradition compels us to recite the same general tale:

In 1982, the American physicist Richard Phillips Feynman delivered a keynote

address at the first conference on Physics and Computation, hosted at MIT’s Endi-

cott House. In the address, titled “Simulating Physics with Computers,” Feynman

considered the difficulty of simulating quantum mechanical processes on computers.

The problem, as quantum physicists had long known and as I will demonstrate for-

mally in Part II of this thesis, was that the state space of a quantum system scales

exponentially with the number of subsystems it is composed of. As such, in order

to simulate the dynamics of two systems interacting with one another, one required

computational resources equal not to the sum of the resources required to simulate

each system in isolation, but to their product. This fundamental exponential scal-

ing of quantum mechanics effectively thwarted any attempt to simulate all but the

smallest quantum systems in their full quantum mechanical complexity; for larger

systems, such as the atomic and molecular reactions of even the most elementary

chemistry problem, scientists were forced to resort to clever semi-classical approxi-

mations, effectively cutting down the dimensionality of the problem at the cost of

complete numerical and analytic accuracy.

To bypass this fundamental simulation penalty imposed by quantum mechanics,

Feynman imagined a computer built according to a new rule. “The rule of simulation

that I would like to have,” Feynman mused,

is that the number of computer elements required to simulate a large
physical system is only to be proportional to the space-time volume of
the physical system. I don’t want to have an explosion. That is, if you
say I want to explain this much physics, I can do it exactly and I need a
certain-sized computer. If doubling the volume of space and time means
I’ll need an exponentially larger computer, I consider that against the
rules (I make up the rules, I’m allowed to do that). [141]

That is, if one wanted to double the size of the quantum system they were simu-
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Figure 1-3: Group photograph of the participants at the first Physics of Computation
Conference, hosted at MIT’s Endicott House in May 1981 [432]. Among those in
attendance were Richard Feynman (number 38, standing in the back right) and his
graduate advisor John Wheeler (number 12, seated in the front center).

lating, Feynman demanded a computer at most twice as large to complete the task.

Feynman’s made-up rule, impetuous though it was, had clear basis in reality. After

all, when two molecules are placed together in a chemical reaction, one might say

that all the molecules are doing is simulating themselves in interaction, a process

they innately accomplish with no need for an external buffer to store the exponential

details of their tryst. Put another way, quantum mechanical systems clearly simu-

lated quantum mechanics just fine. No, the problem of simulation lay in translation,

in the mapping between the physics of quantum systems and the binary bits of our

definitively “classical” computers. In one of his characteristic and irreverent rhetor-

ical flourishes, Feynman concluded his talk by summarizing this point in a single

dramatic proclamation: that “nature isn’t classical, dammit, and if you want to make

a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a
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wonderful problem, because it doesn’t look so easy.”

Indeed, the problem was not, in fact, so easy. And yet, in the forty years since the

MIT conference, substantial progress has been made towards the design and engineer-

ing of exactly the sort of devices Feynman was imagining. These machines, which we

today call quantum simulators, encode difficult quantum mechanical problems onto

devices composed of programmable and well controlled quantum systems, systems

which are then manipulated into mimicking the desired process and outputting a

particular quantity of interest [158]. Among the myriad applications which have been

explored theoretically and experimentally in the past decades, great strides have been

made towards simulation of the Hubbard model of condensed matter physics [86, 117,

169, 219], properties of spin models and spin glasses [77, 156, 191, 222, 241, 265, 426],

and chemical reaction rates and molecular energies [26, 127, 268, 276], to name only

a few.

While the idea of quantum simulation offered a promising path towards solving

a large and imminently useful range of classically-intractable problems, Feynman’s

vision fell well short of what we would call a “computer,” let alone a universal com-

puter : a device which, as the pioneering computer scientist Alan Turing showed

in 1936, was capable of performing any computational task [445]. Throughout the

1980s, the promise of quantum computation was, in some sense, pleasantly tautologi-

cal: quantum systems representing other quantum systems for solving hard quantum

mechanical problems. Indeed, for over a decade it was entirely unclear whether or

not a programmable quantum system would be able to perform any task other than

pure simulation, let alone hard classical problems.

This changed in 1994. In November of that year, a young mathematician from

Bell Laboratories named Peter Shor presented a paper at the Annual Symposium on

Foundations of Computer Science [419]. In his paper, Shor proposed an algorithm for

performing prime factorization—a problem so notoriously hard that it has become

the backbone of many modern cryptographic protocols [316]—in an amount of time

which scaled polynomially with the size of the number to be factored, an exponential

improvement over any known prior algorithm for accomplishing the task. The trick,
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Shor discovered, was to perform the algorithm on a very different sort of computer:

a computer so unusual, in fact, that it did not exist yet. For his algorithm, Shor

required a quantum computer.

Shor’s discovery, that a computer composed of coherent quantum bits could out-

perform a classical computer in performing certain classical tasks, set in motion

three decades of experimental progress towards the creation of such a device. Dur-

ing this time, quantum computers began their transition from small-scale science

experiments—systems of 5–10 physical qubits capable of performing trivial computa-

tions, such as factoring the number 15 into 5× 3 [448]—to industrial-scale, precision-

engineered devices. While these systems—composed, at present, of 50–100 qubits—

remain too small and error-prone to run Shor’s algorithms on a classically-intractable

factorization problem, the vast Hilbert space occupied by even these modestly-sized

quantum processors already exceeds the number of classical bits in all but the largest

supercomputers. Harnessing this fact, attempts to demonstrate improved perfor-

mance on certain, contrived problems—a feat known variously as quantum advantage

or quantum supremacy [22, 469]—are currently underway.4

Although the progress towards experimental universal quantum computers has

proceeded slowly, at least in terms of the number of quantum bits in the processor, a

comparison can be made to the slow but steady progress made during the early days

of classical computing. While the building block of the modern classical computer,

the transistor, was first invented in 1947, it wasn’t until 1971 that the first commercial

microprocessor based on the transistor became available. This first device, the 4-bit

Intel 4004, consisted of 2300 transistors; by 1993, the first Intel Pentium processor

contained over 3 million transistors. This exponential increase in the size of commer-

cial classical processors over time, a phenomenon commonly known as Moore’s law,

continues to the present day, and some quantum computing evangelists argue that a

similar law will govern the increase in quantum processors in the coming decades.

At the same time that quantum computers have increased in size, enormous work

4For a deeper consideration of these experiments and the language games at play in claims of
quantum supremacy, see Part V of this thesis.
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Figure 1-4: The garden of forking paths: left, the path towards fault-tolerant quan-
tum error-corrected quantum computers; right, the path towards noisy intermediate
scale quantum (NISQ) computing. While fault-tolerant quantum computers offer the
promise of performing arbitrarily long programs to arbitrary precision using logical
(i.e. encoded and error-corrected) qubits, NISQ computers [365] attempt to per-
form highly optimized quantum algorithms and quantum simulations which take into
account the details and imperfections of the processor, avoiding the need for error
correction. Image taken from Ref. [248], designed in collaboration with the author.

has gone into improving the coherence and operation of physical qubits, as well as

towards the creation of error-corrected and fault-tolerant logical qubits, resilient to

the intrinsic errors of their constituent components [10, 14, 217]. Here, the path

forward has partly bifurcated. While many scientists and research institutions re-

main committed to the slow path towards fault-tolerant quantum computing—a path

where successful error correction is required in order to demonstrate useful quantum

applications—others have begun to branch out and explore the capabilities of the

current generation of noisy intermediate-scale quantum (‘NISQ’ [365]) devices in the

absence of error correction. Along this latter path, research has tended towards the

study of highly optimized quantum algorithms and quantum simulations which take

into account the details and imperfections of the processor, avoiding the need for error

correction. However, while the NISQ path towards useful applications is conceivably

shorter than the one for fault-tolerance, these NISQ applications forfeit many of the
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theoretical guarantees of quantum speedup which hold for fault-tolerant computation

(as in Shor’s algorithm), and to date it remains an open question whether or not such

devices can demonstrate a computational enhancement over classical processors.

1.4 Quantum Computing, Historically (Remix)

The conventional history of quantum computing sketched above is true. It is also, like

all histories, the result of deliberate and methodical curation. It is a tool for making

sense of our past and speculating about our future. Arranging the events of the last

half century in a line from Feynman at one end to industrial quantum computing

on the other, one is given the impression of continuous and unmitigated scientific

progress. For many scientists, this narrative is optimistic and comforting. Indeed,

while the dream of a universal fault tolerant quantum computer remains unfulfilled

at present, one need only connect the dots of this history to conclude that someday,

with enough time, such a machine will surely exist.

Could we tell the history of quantum computing differently? Like archaeologists

huddled over the scattered bones of some prehistoric leviathan, could we arrange the

facts of our discipline in a different sequence to tell a different story, create a different

beast? I believe we can, and we must. Placing the conventional history of quantum

computing within the broader historical and political context of the past century, we

might find that the history of our young field is not linear at all, but cyclical. In this

section, I will trace out two complete turns of this cycle over four distinct movements

in the journey from quantum mechanics to quantum computing, movements which

I believe shed considerable light on the current conditions of our research and offer,

dimly, a vision of our field’s future. In this task, I am indebted to the work of the

MIT physicist and historian David Kaiser, whose essential history of early quantum

information provides the first three of these movements [231]. The fourth movement,

which was inaugurated the same year Kaiser published his text and thus falls outside

the scope of his analysis, is my own.
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Figure 1-5: Niels Bohr (left) and Albert Einstein (right) in conversation, Leiden 1930.
Throughout the prewar period, the architects of quantum theory frequently crossed
paths to discuss and debate the philosophical interpretation of their new theory.
Photograph taken by the physicist Paul Ehrenfest in his home. Image adapted from
Ref. [229].

1.4.1 Quantum Theory and Philosophy in Weimar Europe

The first era of this history begins with the birth of quantum theory in the first quarter

of the twentieth century, a movement which reached its apex in the period of the

German Weimar Republic, between the two World Wars. This is the period of Niels

Bohr, Werner Heisenberg, and Erwin Schrödinger (to name only a few actors), and

it centers primarily in the physics capitals of Northern Europe: Göttingen, Munich,

Copenhagen, Cambridge.

During this period, the principle architects of quantum mechanics understood

their project as, first and foremost, a new way of thinking. Something was clearly

wrong with the classical Newtonian picture of nature, and physics required a dramatic

change of perspective. For these scientists, quantum theory belonged as much to the
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domain of philosophy as to that of physics. To make sense of their theory, they drew

liberally from texts as varied as Immanuel Kant’s Critique of Pure Reason, ancient

Hindu scripture, and the analytical psychology of Carl Jung, arguing vigorously with

each other over how to correctly ground their work in the larger landscape of ideas.

Indeed, even quantum theory’s greatest detractors, such as Albert Einstein, agreed

that the deficiency of quantum theory lay not in any lack of mathematical consistency

or agreement to experiment, but in its failure to stand up to rigorous philosophical

tests. The history of early quantum theory is peppered with deep and blistering

arguments over the puzzles and paradoxes of the new theory, and many of its architects

would go on to write long and searching volumes on the philosophical interpretation

of their work [61–64, 408].

The influence of history and philosophy on early quantum theory wasn’t merely

cosmetic. Just as Bohr and Schrödinger were looking to the past to validate and

ground their theories, their work was responding to the historical and political de-

mands of their present. Indeed, as the historian of physics Paul Forman famously

showed in his landmark 1971 essay “Weimar culture, causality, and quantum theory,”

quantum mechanics came of age in an extraordinarily hostile—and, relevant for many

of the scientists involved, increasingly anti-Semitic—intellectual environment [147]. In

this context, many of the core tenets of quantum theory can be seen as strategic ma-

neuvers to ensure greater cultural acceptance and survival. In particular, Forman

notes that the quantum mechanical refutation of classical causality (long seen as one

of the theory’s strangest twists) was, in fact, predated by a wider intellectual revolt

in Germany against rationalism and causal-realism—two philosophies which, many

intellectuals of the time believed, contributed to the crisis of German national iden-

tity which led to the nation’s defeat in the first World War. Forman’s argument, that

quantum theory emerged at the fertile intersection of science, history, and a partic-

ular set of cultural values, would become foundational to the late twentieth-century

discipline of Science, Technology, and Society studies (STS).
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1.4.2 Quantum Mechanics in the Corridors of Power

The second era of quantum mechanics arrived with the rise fascism in Europe and

the ensuing outbreak of World War II. During this period, the geopolitical epicenter

of quantum research shifted rapidly from the medieval colleges of Northern Europe

to the government laboratories and research institutes of the United States. This

is the period where quantum theory first became ‘useful.’ It is the period of Los

Alamos and the Manhattan Project, of the Trinity nuclear test in August 1945, and

of the American atomic bombings of Japanese civilian populations in Hiroshima and

Nagasaki the following month. It is the period, also, of the MIT Radiation Laboratory

(the “Rad Lab”), the invention of radar and microwave technologies, and the birth

of a new persona who would consummate the wartime alliance between physics and

industry for the remainder of the century: the electrical engineer.5

Following the war, the industrial apparatuses of US wartime physics research

would find a new home in the military-industrial complex of the Cold War against

the Soviet Union, a period which saw the vast expansion of federally-funded research

and development centers (FFRDCs) under the auspices of the US Departments of

Energy (such as Sandia and Lawrence Livermore National Laboratories) and Defense

(such as the Rad Lab’s successor, MIT Lincoln Laboratory). For the United States,

these centers, largely tasked with developing the guidance systems for the American

nuclear arsenal and maintaining the nation’s vast stockpiles, were not simply sites of

scientific inquiry, but of vital national security interests. To staff these laboratories

and ensure a ready standing army of scientists in the event that the Cold War turned

hot, the United States needed more physicists. A lot more physicists.

World War II and the Cold War had a profound influence on how a generation of

physicists came to understand their profession and its role in the new world order.

“Before the war,” Kaiser writes,

5This work, though ostensibly classical in nature, nonetheless had an enormous and indelible
impact on the trajectory of quantum mechanics research in the mid-twentieth century, particularly
in the development of quantum electrodynamics (QED). For a history and analysis of the MIT Rad
Lab, see Ref [151].
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Figure 1-6: The Modulator Laboratory at the MIT Radiation Laboratory, Cambridge
1941. During the early 1940’s, the ‘Rad Lab’ became a model for industrial-scale
physics research in service of the war effort. Image taken from Ref. [145].

Einstein, Bohr, Heisenberg, and Schrödinger had held one model in mind
for the aspiring physicist. A physicist should aim, above all, to be a
Kulturträger—a bearer of culture—as comfortable reciting passages of
Goethe’s Faust from memory or admiring a Mozart sonata as jousting over
the strange world of the quantum. The physicists who came of age during
and after World War II crafted a rather different identity for themselves.
Watching their mentors stride through the corridors of power, advising
generals, lecturing politicians, and consulting for major industries, few
sought to mimic the otherworldly, detached demeanor of the prewar days.
Philosophical engagement with quantum theory, which had once seemed
inseparable from working on quantum theory itself, rapidly fell out of
fashion. Those few physicists who continued to wrestle with the seemingly
outlandish features of quantum mechanics found their activity shoved ever
more sharply to the margins. [231]

This shift was reflected in the pedagogy of the postwar period. In the United States

throughout the 1920s and 30s, general exams for PhD candidacy routinely required

students to compose essays on the implications of wave-particle duality and inter-

pretations of the double-slit experiment. After the war, with the number of PhD

candidates skyrocketing by an order of magnitude in response to new government
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Figure 1-7: Julian Schwinger, calculating the quantum mechanical description of the
electromagnetic field in a transmission line at the MIT Radiation Lab, circa 1941.
Schwinger would later go on to win the 1965 Nobel Prize in Physics for his contri-
butions to quantum electrodynamics, an award he shared with Shin’ichirō Tomonaga
and Richard Feynman. Image taken from Ref. [145], adapted from Ref. [151].

fellowships and instructors struggling to manage the newly built stadium-style lec-

ture halls, physics curricula quickly dispensed with the philosophical musings in favor

of a stricter and more quantitative curriculum aggressively focused on results and

applications.

This philosophy—for of course, the impulse to repudiate philosophy is, too, part

of a larger worldview, part of a philosophy—was exemplified in a new rallying cry,

widely attributed to the postwar physicist par excellence, Richard Feynman: “Shut

up and calculate!”
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1.4.3 Quantum Counterculture and Revival

The broad strokes of the two preceding periods will be familiar to most quantum

information scientists, and it is tempting to draw a straight line between these two

movements, connecting them in a continuous chain of progress which persists to the

present day. Here, however, Kaiser stages a crucial historical intervention.

While undeniable traces of the wartime research period persist to the present

day, its reign was not eternal. The third period of quantum mechanics, to which

Kaiser directs the bulk of his analysis [231], begins with the crash in physics funding

during the early 1970s. After three decades of continual growth, with the Cold War

slowly thawing and government sponsors reevaluating their allocation of dwindling

resources, the bottom suddenly fell out for the physics economy. Within a decade,

the number of physicists enrolled in the United States plummeted by fully one half, a

plunge exacerbated by the military revoking draft deferments for undergraduates (in

1967) and graduate students (in 1969) during the height of the Vietnam War. While

all academic disciplines felt the shock of this sudden sea change, none were hit as hard

as physics, a field which had become uniquely dependent on the deep pockets of the

Department of Defense. Throughout the 1960s, the American Institute of Physics—

the umbrella organization which houses the American Physical Society—recorded

more open employment opportunities than applicants. By 1971, the organization

reported 53 available jobs for 1053 applicants.

And yet, the ruins of the postwar physics economy proved—not unlike the literal

ruins of the German Empire during the Weimar period—to be fertile ground for a new

generation of physics research. Underemployed and newly unmoored from the profes-

sional demands of their floundering discipline, a motley crew of young physics PhDs

began informally convening in a seminar room housed in the Theoretical Physics Di-

vision of Lawrence Berkeley National Laboratory. The “Fundamental Fysics Group,”

as the cohort called themselves, became standard bearers for a new generation of

physicists eager to push the boundaries of ‘acceptable’ physics, countering the aus-

tere pragmatism of their postwar mentors with a return to the wild speculation and
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Figure 1-8: Members of the Fundamental Fysics Group, 1975. (Standing, left to right)
Jack Sarfatti, Saul-Paul Sirag, Nick Herbert; (kneeling, right) Fred Alan Wolf. Image
adapted from Ref. [232].

heady questions of their prewar elders. These questions—fueled in equal parts by

rigorous formal inquiry, New Age spirituality, appropriated Buddhist iconography,

and a liberal dose of psychedelics—laid the foundation for a new way of imagining

the relationship between physics and the world.

While many of the group’s efforts would be derided by following generations—such

as their fusion of quantum mechanics and pseudo-Buddhist pop mysticism in books

such as The Tao of Physics and The Dancing Wu Li Masters [88, 490], or their at-

tempts to connect quantum theory with ESP and telepathy—others proved extremely

prescient. In particular, it was the members of the Fundamental Fysics Group who

first rediscovered the long obscure work of the Irish physicist John Stewart Bell and
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his forgotten 1964 paper “On the Einstein Podolsky Rosen paradox” [42], a work

they latched onto with extraordinary zeal. Originally published in the short-lived

trilingual journal Physics Physique Физика, Bell’s paper elegantly refuted Einstein’s

famous argument that the nonlocality of quantum mechanics—the notion that two

systems could become ‘entangled’ with one another, such that measurement of one

would instantaneously affect the state of the other, even after separation across vast

distances—was evidence of its incompleteness, necessitating the introduction of ‘hid-

den variables’ which would restore locality and fix the theory. Bell’s theorem revealed

the error in Einstein’s logic.Entanglement, he showed, wasn’t the weak link of quan-

tum theory; it was what made quantum mechanics possible.

Up until 1964, the EPR paradox was widely regarded as little more than a philo-

sophical artifact of the prewar period. Bell not only resolved this paradox: he showed

that its resolution had physical consequences. It could be measured. Seeing the im-

plications of Bell’s theorem, members of the Fundamental Fysics Group quickly be-

gan cooking up proposals for superluminal communication devices—communication

which utilized entanglement between polarized photons to send messages across vast

distances faster than the speed of light. In 1982, the proposal for one of these

devices—Nick Herbert’s scheme for the “First Laser-Amplified Superluminal Hookup,”

or “FLASH” [200]—found its way onto the desk of John Wheeler, a longtime recip-

ient of the Fysics Group’s fan letters and preprints, and into the hands of two of

his students at the University of Texas, William Wootters and Wojciech Zurek [230].

Working through Herbert’s manuscript, Wootters and Zurek hit upon the flaw in the

FLASH proposal, a flaw which escaped the paper’s referees. In order for superluminal

communication to work, one would need a way to amplify a photon with unknown po-

larization into many copies. This sort of amplification, Wootters and Zurek showed,

fundamentally violated the linearity of quantum mechanics [472]. Quantum informa-

tion was fundamentally different from classical information. While the “no-cloning

theorem”—as Wheeler christened his students’ theory—shattered the possibility of

superluminal communication, it soon set in motion a new area of inquiry inspired by

the impossibility of copying quantum data: quantum cryptography.
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Figure 1-9: Wheeler and his students, 1981. (Left to right) William Wootters, Kip
Thorne, John Wheeler, Wojciech Zurek, and William Unruh. Photograph taken at the
NATO Advanced Study Institute conference on Quantum Optics and Experimental
General Relativity in Bad Windsheim, West Germany. [473]

By the time that Zurek convened the Santa Fe conference on the physics of in-

formation in 1989 [491], the strange seeds planted by the Fundamental Fysics Group

had blossomed into a full-fledged quantum revival. If the Cold War had defined strict

boundaries within which quantum theory might be useful, by the end of the century

it appeared that these borders were rapidly disintegrating. It was clear that the story

of quantum mechanics was not yet finished, that there was still much work to be done

if physicists wanted to get to the bottom of it all, if they wanted to understand exis-

tence itself. This endeavor, like those of the eras before it, was very much of its time.

Looking back on the work of the Fundamental Fysics Group, it is impossible to ig-

nore the group’s particular politics, teetering uneasily between political activism and

psychedelic escapism, haunted in equal parts by an orientalist obsession with ‘Eastern

mysticism’ and an acquiescence to the patronage of the CIA and the Pentagon.
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As for the cohort at the Santa Fe conference, though none of the participants were

directly associated with the Fysics Group—Wheeler, for his part, tried to shield his

students as much as possible from direct contact with the group [230]—these early

investigations into quantum information share a certain faith in the transcendent, a

conviction that the secrets of the universe were theirs to unlock and harness. These

early quantum information theorists were not alone in this conviction, and one can see

a distinct resonance between Wheeler’s ‘it from bit’ theory and another contempora-

neous area of research circulating around the Santa Fe Institute at the same time: the

field of Artificial Life [196, 262]. Indeed, both fields share a common commitment to

computation as a unifying principle of the cosmos, and both attempted to ground the

secrets of the universe in the digital, reducing all of creation to a massive computer,

waiting to be programmed. This hubris too is part of our inheritance as quantum

engineers.

1.4.4 “The Era of Quantum Supremacy”

History, Hegel tells us, has a way of repeating itself: arriving first as tragedy, then

as farce [295]. If the countercultural revival of the late century recalled—in playful

pantomime—the solemn philosophizing of Bohr and Einstein, today we find that the

pendulum has once again swung. Here, we must tread cautiously. While it is foolish

to attempt a history of the present—to tell a story we are deep in the middle of,

the conclusion yet unwritten—we can nonetheless trace a number of themes which

animate quantum research in the present day, themes not altogether dissimilar from

those which animated the wartime scientists of the mid-century.

I call this fourth movement in the history of quantum mechanics “the era of quan-

tum supremacy,” a phrase which I taken in full from physicist John Preskill’s 2011

keynote address at the Solvay Conference on Physics [364]. In this phrase—a phrase

which, significantly, marked the first appearance of the term quantum supremacy

in the English language—Preskill presciently acknowledged that quantum mechanics

was once again at a turning point, at the cusp of a new era which would radically

depart from the one which preceded it.
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Figure 1-10: Promotional photograph of Google’s newly built Quantum AI research
campus in Santa Barbara, California [447].

Here, however, I have chosen to alter the phrase’s meaning. In his original re-

marks, Preskill was referring to the anticipated period of scientific history when quan-

tum computers—devices which harness quantum mechanics to perform programmed

computational tasks—would enable computations far surpassing the capabilities of

classical computers. This era, by Preskill’s definition, has not yet arrived. And yet, I

believe that this phrase provides as succinct a summary as any of the period in which

it appeared and of the period in which we currently find ourselves.

Quantum supremacy, as I argue at length in Part V of this thesis, is not simply

a quantifiable technical milestone: it is an overarching narrative and myth, in the

poststructuralist sense [37], which has guided quantum mechanics research throughout

the early decades of the twenty-first century. As such, the ‘era of quantum supremacy’

in which we currently find ourselves is not, pace Preskill, the era of demonstrable

quantum advantage—though it may prove to be that too—but rather the era governed

by the aspiration of supremacy and advantage.
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This definition will make many scientists uneasy, but the broad strokes are rela-

tively uncontroversial. As quantum mechanics has entered the twenty-first century,

a renewed emphasis has been placed on harnessing quantum theory towards ‘useful’

ends—towards designing coherent physical systems which are faster, more powerful,

and more secure than those which came before. Among the success stories of this era,

we would include the successful deployment of quantum encryption between Vienna

and Beijing in September 2017,6 the generation of large and controllable entangled

states consisting of tens of qubits, and the first claimed demonstration of quantum

supremacy by Google Quantum AI in 2019 [22].

For many scientists, these accomplishments stand as inarguable proof that the arc

of scientific history bends towards progress. And yet, as we have seen in the preceding

movements sketched above, the meaning of progress is not time invariant. Indeed, the

aspiration of quantum computational advantage is a new invention, one which diverges

profoundly from the aspirations of the Fysics Group and Sante Fe cohort, as well as

their prewar antecedents. Instead, the dream of quantum supremacy brings quantum

mechanics back into resonance with the pragmatic aims of the wartime period, where

philosophy is once again subordinated to results, to quantitative metrics, to progress.

The aspiration of quantum supremacy is not some ethereal thing hanging dimly

in thin air, a figment of the imagination; it is a guiding principle which concretely

shapes where research happens, which research is deemed acceptable, and what sort

of pedagogy must be practiced to discipline a new generation of scientists accordingly.

What do the corridors of power look like in this era? Just as the medieval academies

of Northern Europe gave way to the government laboratories of the United States,

the geographic center of quantum research has once again shifted profoundly, from

the psychedelic ashrams and privately endowed research centers of the late century

to the corporate laboratories of tech giants such as Google, IBM, Microsoft, Amazon,

Alibaba, as well as a teeming network of fledgling tech startups, each vying for their

6Notably, Kaiser’s history opens with an account of this experiment’s 2004 predecessor, in which
quantum key distribution enabled a secure bank transfer between the mayor of Vienna and the
national bank. While Kaiser portrays this experiment as the culmination of the counterculture
period, with the benefit of hindsight, I argue that it instead suggests the waning of that era and the
emergence of a new one.
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Figure 1-11: Promotional image posted on the LinkedIn account of Atlantic Quantum,
a Cambridge, Massachusetts, quantum hardware startup [125].

shot an IPO or a lucrative acquisition. Today, the quantum isn’t simply an object of

intellectual curiosity, a key which might unlock the deepest secrets of creation. It’s a

buzzword on a corporate press release. It’s a keyword, a hashtag.

To carry out this work and bear the torch of progress, the current era once again

demands more scientists and engineers. Just as the aspirations of the wartime pe-

riod were made flesh in the figure of the electrical engineer—a figure who mobilized

physics in the name of national security and strategic dominance—the era of quan-

tum supremacy demands new offspring in its image. This is the era of the quantum

engineer, of a new breed of scientists tasked with bending quantum mechanics to-

wards productive and industrious ends. Such scientists do not emerge out of thin air:

they are molded, inspired, disciplined. They are taught, but by who? Whereas the

Cold War period saw an enormous expansion of the United States university system,
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today we find that much of the pedagogical infrastructure for training new quantum

engineers is housed, not in the academy, but in the online PR and outreach appara-

tuses of for-profit corporations—corporations which, incidentally, have deep financial

interests in the success of quantum computing. Indeed, while the academy has been

slow to adapt to the new pedagogical demands of quantum engineering—uncertain,

for example, whether to offer such courses in the Physics or the Electrical Engineering

departments, hesitant to adapt the traditional syllabus of an introductory quantum

mechanics or microwave engineering course to cover such topics—companies such as

IBM and Google, have been quick to promulgate their own textbooks and educational

resources. These texts, such as IBM’s Qiskit Textbook [7] or Google’s Cirq tutorials

and education workshops [130], draw liberally from a variety of conventional academic

disciplines, teaching students just enough quantum mechanics as necessary to start

operating quantum processors and playing with real devices hosted on the cloud.

These educational resources are strategic and, like the textbooks of the wartime pe-

riod, are intended to guide students towards a particular set of useful skills. Here,

however, the tactics differ. Where the students of the 1950s and ’60s were instructed

to shut up and calculate, to bend their minds rigidly towards useful ends, students

today are encouraged to play with quantum mechanics, to be creative. Creative, at

least, within certain limits. Today, creativity is valuable; which is to say, it has a price

tag. This sentiment, like Feynman’s apocryphal invective to calculate, is embodied

in a new mantra of progress: “We are only one creative algorithm away from valuable

near-term applications.” [22]

This era of quantum research has not developed in a vacuum, and here again

history threatens to repeat itself. Just as the rise of fascism in Europe cut short the

era of the quantum Kulturträger, ushering in the age of the Bomb and the physicist-

soldier, the era of quantum supremacy has emerged simultaneously with a new era

of geopolitical upheaval. Notably, many of these movements of upheaval have also

taken shape in language of advantage and supremacy. In particular, the last decade

has been marked by an enormous resurgence in movements of ethnic nationalism

worldwide—in Western and Central Europe, with the rise of the far-right National
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Rally and AfD parties in France and Germany; in Russia, with Vladamir Putin’s

invasion of Ukraine in the name of militant cultural unity; in India, with the Hindu

nationalist movement of Narendra Modi; in China, with the consolidation of power

under Xi Jinping and the genocide of Uygher communities in Xinjiang province; and

in the United States, with the election of Donald Trump and the return of an overt

politics of white supremacy. In the latter two cases, these governments have proven

to be to most reliable sponsors of quantum computing research. The consequences of

this entanglement warrant further study.

1.5 Situating the Text

When I was a kid, I told my dad that I didn’t want to be Jewish anymore. I dreaded

the Shabbat and Rosh Hashanah services at our suburban New York synagogue; I

didn’t like evening Hebrew school, or the rich straight kids who bullied me during

Torah class, or the lavish Bat Mitzvahs a few of their parents forced them to invite me

to; and I was starting to realize that I probably didn’t believe in the Old Testament

god that these things were supposed to represent. They didn’t seem to believe in me.

So I had done the research, and I had decided that I would try to be something else,

something other than Jewish.

My dad was not impressed. He told me that I could call myself whatever I wanted,

but either way, he was going to hold me to the Nuremberg Laws. And according to

those laws—laws passed in Nazi Germany in 1935 which codified the racial criteria of

German personhood, effectively revoking the citizenship of every German with a Jew-

ish grandparent and laying the legal foundation for the project of mass extermination

which would begin six years later—I was Jewish. So I could call myself whatever I

wanted. I didn’t have to go to services anymore, didn’t have to believe in a higher

power. But if I were in Europe in 1941, I would be in the camps, same as him. And

if history repeated itself, as it had threatened to time and again during his life, we

might both still find ourselves there. So we had to stick together, and we had to make

sure that never happened again. That was what it meant to be Jewish. That was
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what it meant to be a custodian of history—to be responsible to a past you didn’t

choose, but would not be possible without. A past that is never past at all.

The kid in the story above has no place in a physics thesis—no place, except the

author page. After that, the author of a physics text must become a ghost. But

equations do not derive themselves. Before there is a proof, there is a hand, poised at

a blackboard or draped prone over a keyboard. Experiments do not simply happen of

their own accord. Before there is a spectroscopy peak heralding a great result, there

are bodies: bodies in a cleanroom to fabricate the device; bodies on ladders around a

dilution refrigerator to open the vacuum cans and wire up the device; bodies hunched

over a computer in the laboratory watching data come in, sometimes late into the

night. These bodies, physics tells us, occupy space and time. And yet, reading

through an account of a physics result—either in a published research paper or in a

thesis such as this one—the body of the scientist is forced to retreat, fatally, behind

the arras of the text.

This narrative convention is consistent, of course, with the way most physicists

are taught to understand their relationship to the systems they study. Scientific

objectivity, we are told, demands that we always hold the subject of our work at arm’s

length, removing ourselves from the story such that the data—and, by extension,

Nature—speaks for itself. The modern scientific impulse towards detached objectivity,

historically and socially contingent as it is [32, 111, 184, 201, 271, 405, 418, 438], has

its utility. It also necessitates a sort of narrative sleight of hand, disappearing the

author totally and creating what the great historian Donna Haraway once famously

called the scientist’s “conquering gaze from nowhere.” [184]

I have never been to nowhere. Nor has the kid in the story above, the kid whose

whose hands are now my hands, hunched over this keyboard, typing these words.

And so, we cannot in good conscience claim to have done any of this work there. We

refuse our disappearance.

It could be otherwise. In many social science disciplines, such as anthropology

and STS, it is considered good practice to begin a text with a brief and self-contained

autobiographical sketch describing the author’s relationship to the work which fol-

101



CHAPTER 1. SEARCHING FOR LINKS

lows [194]. This self-description provides the reader with context for the research,

context for why a particular set of questions were asked and why particular conclu-

sions are drawn from their answers. It grounds the text in a body, in a place, and in

a time. It situates the text, to borrow again from Haraway [184], and it sketches the

boundaries of the partial perspective from which it emerged. The work in this thesis

happened somewhere. It happened, in every instance, with people. Many of these

people are listed as coauthors on the associated publications; many are not, though

their contributions were no less essential. In what follows, I will attempt to offer a

thorough account of my situation—of my relationship to quantum computing over the

past decade, and of the people, places, and events through which that relationship

took shape.

When physicists tell their stories, most begin with love: love of the science, love of

Nature and its mysteries, love tested, love affirmed, love lost, sometime irrevocably.

Mine does not begin with love, though it may still end with it. My first exposure to

physics came in high school. I didn’t know much about love back then, but I did know

about competition—like many unhappy teenagers, I readily exchanged the former for

the latter and convinced myself I had gotten a pretty good deal. And so, when I was

given the choice between taking biology, chemistry, or physics late in high school, I

chose the ‘hard’ science—hard both in terms of rumored difficulty and in terms of

some imagined intellectual purity in comparison to the ‘soft’ sciences. Looking back, I

do not remember how I became naturalized to this notion—how it became obvious or

sensible to me that physics was an exceptional pursuit—but I internalized it deeply.

Physics made me feel exceptional, even as my test scores suggested otherwise.

Like most things in high school, however, I compartmentalized physics, and it

ended at the bell. Physics was a part of my life, but it was not my life. Outside of

school, I was an actor in a Shakespeare company, made long pilgrimages to the local

library to rip stacks of CDs onto my iPod, binged on video games and anime. As

far as physics was concerned, my primary extracurricular activity consisted of long
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and precocious debates about time travel with my friend Zach. In retrospect, those

rambling afternoons at the local Starbucks were my first intimation that physics was

something you did with people, something that emerged in conversation, grasping at

ideas you don’t yet have the language for. That physics, perhaps, had something to

do with love.

I started college in fall 2011 and again enrolled in physics, because it was a thing

I had done in high school and figured I could probably do again. My physics grades

that first semester were even worse than they were in high school, and I quickly

realized that my old strategy of memorizing equations before an exam wasn’t going

to work anymore. So I decided to quit physics and try something else. It was around

this time that I first encountered comparative literature, a discipline which fluidly

brought together my interests outside of the sciences, in language, storytelling, art

history, aesthetics, philosophy. Comparative literature, in turn, introduced me to

critical theory and the study of narrative structure—structures which extended their

reach well beyond the page, shaping our creation of meaning in every facet of our life.

I owe a deep thanks to my mentors along this path: Christopher Bolton, Margeaux

Cowden, Anjuli Raza-Kolb, Janneke van de Stadt, Julie Cassiday, Bill Darrow, Li Yu,

Eugene Johnson, Mike Lewis. Through them, I learned that everything was a text,

that everything could be read, and that good reading was always a practice of care.

In those early days, my studies in comparative literature were inseparable from

my evolving interest in music. My friend Stan Monfront encouraged me to join the

college radio station my first semester of college, and I began hosting a weekly—and,

with each passing semester, increasingly byzantine—music program on WCFM; here,

Isabel Vazquez, Andrew Langston, Will Hayes, Wade Phenicie, and Norman Walczak

were invaluable co-conspirators. Following my interests in literary criticism and ex-

perimental music, I secured a writing gig as a music critic at Tiny Mix Tapes, an

online music site which had shaped my listening since high school; I owe a deep grat-

itude to my editor, Marvin Lin, for taking a chance on me and for his encouragement

throughout my time at the site.

My path back to physics was accidental and fortuitous. In 2012, during a delirious
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late-summer week on campus before the start of my second year, I became entangled

with a group of people who would become my lifelong friends: Teddy Amdur, Cole

Meisenhelder, Liz Dietz, David Yan, Jeremy Boissevain, Adrienne Favis, Jack Hoover.

Cole and Teddy were planning to become physics majors, and they suggested that

I take electromagnetism with them that semester. For the first time, I had friends

to work on problem sets with; for the first time, I saw other people struggling with

physics the way I thought I alone had struggled. By the end of the semester, I had

committed to a double major in comparative literature and physics: the first, for love

of the material; the second, for love of the people.

Physics and comparative literature offered two very different windows into what

it meant to do research. In general, we tend to think of the humanities as deeply

social disciples—invested, as they are, in the study of people, their beliefs, their

interactions—while the sciences are regarded as fundamentally anti-social. In prac-

tice, I found the opposite was true. When it was time to write an essay for a literature

class, I holed up in the library or in my room, alone with my computer. I savored the

pride that came with finishing an ambitious essay and receiving praise from a profes-

sor I admired, but it was a solitary pride—perhaps even an anxious, paranoid pride.

I knew it could be taken away as easily as it was given. My successes and failures in

the humanities were two sides of a coin, deeply individuated, intensely private.

In stark contrast, my accomplishments in physics always felt far more modest,

but they were shared richly and widely. Weekly physics problem sets were always

completed in a group, and our work was permeated everywhere by play. Throughout

college, this usually took the form of weekly ten-hour marathon sessions the night

before the due date, usually from 5pm to 3am the following morning. Huddled in

the physics common room or in the basement of the math building, the music was

always loud and the tangents innumerable. Working through the derivation of a

single formula, conversation would invariably turn to politics, art criticism, petty

gossip, grave conspiracy. Midnight snack runs were ritual and required. Coffee cups

overflowed and accumulated next to calculators and textbooks. By the time we

handed it into our professor the following morning, the official document of equations
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and (variously) completed problems always felt like an incidental and perfunctory

product of the night before.

This was, I realize now, one of my earliest experiences of that wild unruly thing

which we might call study [185]. Yes, there was ‘work’ happening somewhere in the

midst of it all, but the line between labor and play was never fixed, with each con-

tributing obliquely and abstractly to a collective practice of worldbuilding, of figuring

our situation out. I am deeply grateful to my physics professors for encouraging us

to create this space: Kevin Jones, Ward Lopes, Mike Seifert, David Tucker-Smith,

Charlie Doret, William Wootters, Tiku Majumder.

During the summers after my sophomore and junior years of college, I worked on

campus as a research assistant in the physics department: the first summer, in theo-

retical particle physics under the mentorship of David Tucker-Smith; the second, in

theoretical quantum foundations with William Wootters. These were my first encoun-

ters with physics research outside the classroom, and they exposed me to yet another

model for what it meant to be a scientist. Words cannot begin to describe those two

iridescent summers in the Berkshires, and they would not have been possible without

the riotous crew of physics comrades who made them possible: Julia Cline, Corey

Smith, Max LaBerge, Kitty Kistler, Sarah Peters, Kirk Swanson, Dan Evangelakos,

Brandon Ling, Chip Herman, Kamuela Lau, Cesar Melendez, Ilya Amburg, Weng-

Him Cheung, Bijan Mazaheri, Scott Wieman, Isaac Hoenig, Sarah Fleming, Teddy

Amdur, Cole Meisenhelder.

And yet, even as I continued to apply for summer RAs and committed to writing

a senior research thesis, I had no plans to continue physics after graduation. As far

as I understood it, physics after college meant graduate school, and grad school was

for the brilliant students. As much as I enjoyed the problem set camaraderie and

the sprawling research summers, I knew I was not one of those students. And so, as

my classmates began prepping for the GRE and pulling together their applications,

I looked on from the outside, trying to figure out my path forward. With little other

guidance from the bewildered counselors at my college career office, I began applying

to jobs in management consulting.
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The fact of this thesis already spoils the twist of the story, and I owe its existence

to two interventions which occurred in the fall of 2014 during my final year of college.

The first was the mentorship of my undergraduate thesis advisor, Bill Wootters.

At the time, I was convinced that my work in comparative literature made me a

worse scientist, that it distracted me from committing fully to the life of a physicist.

Bill embraced my interests outside physics and encouraged me to incorporate them

into my work—when I shared with him my discovery of Karen Barad’s Meeting the

Universe Halfway, he excitedly offered for me to switch thesis topics and write about

the philosophy of quantum mechanics. I demurred, but the sincerity and the spirit of

his offer left a lasting impression on me. At a moment when I failed to see myself as

a scientist, Bill taught me that there were many ways to be a scientist. It was up to

me to define which sort I wanted to be, on my own terms.

The second intervention came in the form of a surprise colloquium talk. In late

October 2014, Jamie Kerman visited my college campus on behalf of MIT Lincoln

Laboratory. Lincoln Lab had recently secured a major research program to develop

a high-coherence quantum annealer using superconducting circuits, and Jamie was

returning to his alma mater to recruit undergraduates for the project. Before the

talk, my life after college felt like an ultimatum: either continue physics in grad

school, or leave research to join the workforce. All at once, a third path seemed to

open up before me, a path which allowed me to continue doing research outside of

academia, testing the waters before committing to grad school later down the line.

In conversation after the colloquium, Jamie described the program he was hiring for

as the Manhattan Project of quantum computing. I asked him where I could sign up.

On July 13, 2015, I began work as an Assistant Staff scientist in the Quantum

Information and Integrated Nanonsystems group at MIT Lincoln Laboratory. For the

next three years, I worked as a researcher on QEO (short for ‘Quantum Enhanced

Optimization’), a government research program sponsored by IARPA to investigate

the viability of quantum annealing systems beyond the capabilities of the D-Wave

system. During this time, I gradually transitioned from a role on Lincoln Lab’s

small theory team to a more interdisciplinary position, spanning both the theory
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and experimental teams. Early on, I had begun to notice that the theorists and the

experimentalists in the group spoke very different technical dialects—as a literature

student at heart, I stepped in as a translator of sorts. With the measurement team,

I worked to articulate their technical capabilities and limitations to the theorists;

with the theory team, I digested volumes of derivations into actionable results for the

experimentalists to test. I am profoundly grateful to Jamie Kerman for his mentorship

during this period and for his incredible trust and faith in me during those early years.

Like all work of translation, the role I carved out at Lincoln was deeply creative.

It also demanded fluency in both sides of the conversation, and I soon found myself

thrust, for the first time, into the laboratory as an experimentalist. While my under-

graduate thesis work had given me a firm foundation in quantum information theory,

little could prepare me for my new role designing and measuring novel superconduct-

ing qubits. Fortunately, I found myself surrounded by eager mentors, and I owe deep

thanks to Steve Weber, Danna Rosenberg, Greg Calusine, Mollie Schwartz, David

Kim, Jonilyn Yoder, Kevin Obenland, Mike O’Keeffe, Jovi Miloshi, Adam Sears, Eric

Dauler, and David Hover for their generosity, support, and friendship during these

early years. During this period, Will Oliver’s role and influence cannot be under-

stated. As the leader of the measurement team at Lincoln at the time, Will actively

encouraged my transition into the laboratory, offering me a level of trust and respon-

sibility which far exceeded my extremely limited experience. I tried my best to rise to

the challenge. Will and Jamie saw that I knew how to tell a story, and I soon found

myself presenting research at conferences and program reviews on behalf of the entire

team.

Life outside the laboratory, however, was starting to look different. In January

2016, in the middle of a particularly difficult first winter in Cambridge, I came out

to my family and a few of my closest friends. This revelation, years in the making,

somehow managed to explain everything and nothing about my life up to that point.

All these years later, it is still difficult to find the right words to articulate this, and

I have long since given up trying to. Folks who have gone through this process will

know what I mean. But I can say this: for the first time in my life, many of the
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closely guarded compartments I had divided my life into began to dissolve. Working

through the messy tangle between them, I began to make some sense of it all, and I

started to feel at peace with what I saw in the mirror. At work, however, I struggled

to negotiate the boundary between my new personal and professional lives, and I once

again defaulted to compartmentalizing. Even now, this part of the story will likely

come as a surprise to many of my oldest coworkers. So be it.

I was twenty-three in 2016—old enough, in retrospect, to start seeing myself as

more than just myself, as a body adrift in history, a living artifact—and it is around

this point that biographical time and historical time began to intertwine for me. I

was twenty-three and newly employed when, browsing the shelves of Lincoln’s sub-

terranean library one day, I first came across Zurek’s Complexity, Entropy, and the

Physics of Information; reading through that volume, I began to situate some of the

lessons Bill Wootters had instilled in me years earlier, and I began to understand

myself as part of a tangled quantum lineage, one which placed me well outside the

mainstream of the field as I was coming to understand it. I was twenty-three and

newly queer when, alone in an unfamiliar city I had just begun to call home, I first

heard the news of the massacre at Pulse, saw the pageantry of couples lined up at the

blood banks to donate to the survivors, realized my own blood was newly worthless. I

was twenty-three when Donald Trump was elected president and my dad’s childhood

warnings came flooding back like air raid sirens. I started dreaming of the camps, of

leaving my luggage on station platforms, looking back at the bags as they fade into

the distance, realizing I am never getting off the train. I still have those dreams. Dur-

ing this period, my college friends Liz Dietz and Kate Flanagan generously opened

up their home in Newburgh as a weekend refuge, and I cannot thank them enough

for their support, care, and hospitality during this period.

As the world around me began contorting into monstrous new shapes, quantum

computing thrived like never before. And so, I contorted. I thrived. It was during this

period that I first became enmeshed in the Engineering Quantum Systems (EQuS)

group at MIT campus. The group, led by Will Oliver and Terry Orlando, operated

under a “One Team” model with the Quantum Information group up in Lexington, and
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Will warmly encouraged me to see the group on campus as an extension of my home

at Lincoln. When I first joined the team in 2015, EQuS consisted of only a handful of

postdocs and research scientists; I am grateful to Terry Orlando, Simon Gustavsson,

Jeff Grover, Archana Kamal, Fei Yan, Dan Campbell, and Phillip Krantz for their

warm welcome to MIT during those early years. In 2016, the first generation of grad

students arrived at EQuS: Alex Greene, Youngkyu Sung, and Bharath Kannan. It

was late in 2016 that I first met Morten Kjaergaard, a postdoc newly arrived from the

University of Copenhagen. Morten and I quickly bonded over our shared interest in

hardcore music, and he and his wife Maria Genckel became close friends. Morten had

ambitions of starting a quantum algorithms subteam on campus, and he graciously

invited me to join brainstorming sessions on campus. Together with Alex Greene and

Mollie Schwartz from Lincoln, these weekly journal clubs became the foundation of

the nascent algorithm team in EQuS. Through those early meetings, I slowly began

to wrap my head around a vision of graduate school. I started planning my return to

academia.

In the fall of 2018, I transitioned to graduate school as a PhD candidate in Elec-

trical Engineering and Computer Science at MIT. Will Oliver generously offered me

a position in his group, and I began settling into my new role in EQuS. These first

years were a period of enormous adjustment. On the technical side, I quickly real-

ized that I had much to learn in the transition from quantum annealing to the gate

model; I am enormously indebted to Alex Greene for showing me the ropes and for

their patience and care throughout that journey, and I am grateful to the rest of the

growing EQuS team for their support and friendship those first two years: Jochen

Braumueller, Leon Ding, Simon Gustavsson, Bharath Kannan, Amir Karmalou, Re-

becca Li, Chris McNally, Tim Menke, Mirabella Pulido, Jack Qiu, Youngkyu Sung,

Fran Vasconcelos, Antti Vepsalainen, Joel Wang, Roni Winik, and Megan Yamoah.

On the academic side, I sharply felt the toll of three years away from exams and my

undergrad problem set support network; I am grateful to all my professors during this

period, particularly to Kevin O’Brien for his enormous support and understanding

during one especially difficult semester.
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The autumn of 2018 brought another change to my life, one which influenced the

trajectory of this work in innumerable, immeasurable ways. In November of that year,

I once again crossed path with Sarah Fleming, an old friend who I first met during

summer physics research in college years earlier. After college, Sarah had switched

career paths to become a hospital chaplain, and she had recently moved to Cambridge

to attend graduate school at Harvard Divinity School. In the years since our chance

encounter in 2018, our friendship matured into a partnership, and we began to build

a life together. Sarah’s service to her patients—often during their final moments of

hospice or in the neonatal ICU—inspires me every day, and her work has served as a

constant reminder to put my own in perspective. Through Sarah, years of cultivated

cynicism began to thaw, and I gradually began to think of my own work as a practice

of care. In time, I started to wonder—eyes wide open, with all the naivete and wisdom

of love—if my work was actually making the world a better place.

During my early years of graduate school as a member of the EQuS algorithm

team, our efforts all aligned towards a first demonstration of Density Matrix Expo-

nentiation (DME), an algorithm we had arrived at during lively conversations with

the theorists Iman and Milad Marvian, as well as their postdoctural advisor Seth

Lloyd. The amount of technical and theoretical infrastructure we developed during

this period was extraordinary, and I learned an enormous amount from all of my col-

leagues during this period: Morten Kjaergaard, Alex Greene, Mollie Schwartz, Chris

McNally, Andreas Bengtsson, Mike O’Keeffe, Kevin Obenland. It was during this pe-

riod that Morten first introduced me to Matthias Christandl, a theorist on sabbatical

at MIT from the University of Copenhagen, and his postdoc Johannes Borregaard;

Johannes, Matthias, and I would continue to collaborate for the remainder of my

graduate studies—culminating, after a number of twists and turns, in our joint devel-

opment of Lindblad tomography—and I am immensely thankful for their incredible

contributions to this journey.

In late 2019, two events occurred which profoundly changed my relationship to

the field of quantum computing. In July 2019, during the final stages of the DME

experiment, the financier and socialite Jefferey Epstein was arrested on federal charges

110



1.5. SITUATING THE TEXT

for the sex trafficking of minors in New York and Florida. Epstein died in prison

a month later. Over the coming months, the extent of Epstein’s crimes and his

entanglements with the scientific community quickly came to light, and it was revealed

that Epstein had made significant financial contributions to prominent researchers at

Harvard and at MIT. Following this news, my colleagues in EQuS and I first became

aware of Epstein’s name in the acknowledgment section of the original DME theory

paper. It is difficult to articulate the depth of my anger and frustration following

this revelation, or my dissatisfaction with the profound indifference expressed by the

quantum computing community during this period.

The shock waves cast by this first event were quickly quelled by the arrival of the

second. In October 2019, the team at Google Quantum AI published the first claimed

demonstration of quantum supremacy using a superconducting quantum processors.

At the time, this result was widely heralded as the crowning achievement of my field

to date, and it was greeted with excitement and euphoria by many of my colleagues.

It was, many of us believed at the time, the beginning of a new era. In the fanfare

around the result, a few colleagues began passing me online discussions and articles

they had come across over the years regarding the term ‘quantum supremacy’ and

its possible association with white supremacy: Karoline Wiesner’s 2017 arXiv article

on “the careless use of language in quantum computing” [469], the ensuing debate it

provoked on SciRate among many senior members of the quantum information com-

munity [105], Scott Aaronson’s popular blog posts on the subject [3]. As a student of

language, I took a keen interest in these texts. These two words were doing something

powerful, though I struggled at the time to fully articulate exactly what I thought

they were doing. I tucked these words away, like a splinter in the back of my brain,

and I tried to focus on my research.

A few months later, in March 2020, COVID-19 hit North America. This was the

start of the folding years. All at once, time began to bend back and forth upon itself,

collapsing 2020 and 2021 and 2022 onto each other, looping and distorting memory.

During this period, Cambridge became a ghost town—undergraduates were abruptly

ejected from campus and sent home, graduate dorms were placed on lockdown and
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surveilled, wealthy townies invested in real estate and fled to their new pieds-à-tierre

in Maine and Vermont. As the world around my apartment rapidly came undone, life

in Cambridge took on a new rhythm: paranoid, twice-monthly trips to the grocery

store for lentils and cans of non-perishables; anxious excursions though the empty

streets of our Potemkin city, masked up with no one else in sight; group meeting and

research updates over Zoom, colleagues and labmates now permanently flattened into

small boxes in a grid of faces; eyestrain; migraines.

This thesis is inseparable from the COVID-19 pandemic, and those years cast

a shadow over every chapter of this document, those in Part IV especially. The

Lindblad tomography project took shape during a period of mass quarantine, and

that work would not exist without the support, patience, and care of all my coauthors

on that work. In particular, I am incredibly thankful to Morten Kjaergaard, Johannes

Borregaard, and Matthias Christandl for generously offering so much of their time and

attention during our virtual transatlantic collaboration (particularly the late-night

Zoom calls between Copenhagen, Delft, and Cambridge), and to Alex Greene and

Youngkyu Sung for maintaining our dilution fridge at MIT campus while I collected

data remotely from my apartment during the height of lockdown in July 2020. Our

work together kept me afloat through many difficult weeks and months.

Physics research happened during COVID, but it was not my primary motivator

during that period. Looking back, the period of the pandemic was an enormously

clarifying time for me. It was an opportunity to recalibrate, and to focus on what

was really meaningful and important in my life. The company of my friends and my

family—too often taken for granted in the busy years after college, now mediated by a

computer monitor or an empty six feet of social distance—became infinitely precious

again. Words cannot express my gratitude to Teddy Amdur for our weekly morning

walks around Radcliffe campus, and to David Yan, Wei Li, and Cole Meisenhelder for

our gaming nights playing Final Fantasy XIV over Discord. I started seriously listen-

ing to music again: the work of Matana Roberts, Elysia Crampton, aya, DJ Rashad,

Moor Mother, billy woods, E L U C I D, keiyaA, MIKE, Graham Lambkin, Jim

O’Rourke, Claire Rousay, Geneviève Castrée, Phil Elverum, Klein, and SOPHIE held
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me down throughout it all.7 I reconnected with the online community of writers I

had worked with at Tiny Mix Tapes so many years earlier; after half a decade writ-

ing little more than research manuscripts and PowerPoint presentations, I started to

think seriously about writing longform criticism again. I started an online study circle

with friends from college, and I began reading theory again—Fred Moten and Stefano

Harney’s The Undercommons had a particularly powerful impact on me [185], and

their work helped crystallize my thoughts on the labor economy of academic research.

I began mentoring an undergraduate researcher in EQuS over Zoom—through teach-

ing, I caught a glimpse of something I thought I had lost back in the Berkshires, and

I started to think seriously about the transformative power of pedagogy. I started

taking long afternoon walks with my partner Sarah, wading through public parks

overrun with weeds and wildflowers. I started biking.

In the background of these tremendous joys, however, the COVID years were a

sustained and unrelenting nightmare. While I stayed home and tried to focus on

research, my partner Sarah became a frontline worker at Brigham and Women’s Hos-

pital, and she witnessed the surges firsthand—the ventilator shortages, the transfer

of cancer patients to nearby Dana Farber to free up beds, cots lining the hallway

to accommodate the sick. At the time of writing, 1.04 million people have died of

COVID-19 in the United States since January 2020; worldwide, the number is re-

ported at 6.48 million, though that figure is almost certainly an underestimate. And

the COVID years are not over. The death toll continues to rise.

It must also be remembered that, during this period of mass death, the novel coro-

navirus was not the only actor. In February 2020, Ahmaud Arbery was pursued and

murdered by three white men while jogging in Glynn County, Georgia. The following

month, Breonna Taylor was murdered in her apartment by officers of the Louisville

Metro Police Department. I was 27 in 2020. Ahmaud Arbery was 25; Breonna Taylor,

26. In May, George Perry Floyd Jr. died beneath the knee of a Minneapolis police

officer in broad daylight; his murder set off the largest mass movement for racial jus-

7For a partial discography of the works which supported and shaped me during the COVID years,
see Refs. [27, 28, 97, 98, 123, 124, 180, 235, 249, 260, 261, 305, 306, 315, 338–340, 381–384, 391, 392,
422, 423, 431].
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tice in US history. Unfortunately, like so many things during the COVID years, the

events of that summer have faded for many into collective amnesia. Faded, forgotten,

but not fixed.

In May 2022, Ruth Whitfield, Pearl Young, Katherine Massey, Heyward Patter-

son, Celestine Chaney, Geraldine Talley, Aaron Salter Jr., Andre Mackniel, Margus

Morrison, and Roberta Drury were killed by a white gunman in a mass shooting at

a Buffalo supermarket. I was writing a chapter of this thesis when the news broke.

This thesis has taken shape against a backdrop of festering white supremacy—that

too is part of its situation. In the period since I started graduate school in September

2018, 96 Black Americans have been murdered at the hands of law enforcement or

civilian hate crimes.8 Like the death toll of COVID, this number is almost certainly

underreported and continues to rise, even in the parts of this country where we tell

ourselves that both crises are long past. When I mention this fact to my colleagues

in quantum computing, most express concern, though almost all attempt to convince

me that this has nothing to do with me or with our research. I’m sure that many of

them actually believe this.

The fact remains, however, that half of my family is from the South. My mother

was born in Marietta, Georgia—the same town where Leo Frank, a Jewish pencil

factory superintendent, was lynched in 1915. The former governor of Georgia and

two Marietta mayors were among the lynch mob, flanked by sheriffs. I was raised

with this story, and it served as another cautionary tale of what might happen to me

and to my body if I find myself at the wrong place at the wrong time. But history is

not that simple. My mother’s parents were not Jewish, and the Orr family goes way

back in Cobb County. My ancestors fought for the Confederacy. They owned slaves.

To the best of my knowledge, my middle name does not appear among the records of

the mob that lynched Leo Frank. But my ancestors were part of that history. That

history made them possible, and they in turn made it possible. And they made me

possible. I do not know the names of the people my ancestors enslaved, but they did

8For a living record of the Black lives taken in the United States by law enforcement and civilian
hate crimes, see the work of the #SayTheirNames project [1].
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have names. I am responsible to them, and I am responsible to that history. That

history is my history. It is American history. I must reckon with the consequences of

that. We all do.

As for the connection between quantum computing and white supremacy—the

splinter I had pushed to the back of my brain began to throb. Here too there was

something to reckon with, but my thoughts remained tangled. I needed comrades, so

I went looking for help. Fortunately, the graduate program in EECS at MIT has a

minor requirement, and students are required to take two courses in a single discipline

outside of their research area as a ‘broadening experience.’ By the end of 2020, it

had become clear to me that many of the most pressing questions facing quantum

computing could not be answered within physics, electrical engineering, or computer

science. So, inspired by the graduate work of my dear friend Liz Dietz, I proposed

a minor in Science, Technology, and Society (STS) studies. In the spring of 2021, I

enrolled in the first of my minor courses, a graduate seminar on Social Theory and

Analysis. I am grateful to the students I shared that experience with: Bridget Burns,

Kelcey Gibbons, Tomas Guarna, Enjoli Hall, James Heard, Will Julian, Rustam

Khan, Elitza Koeva, Zachary La Rock, Antonio Pacheco, Mike Sugarman, Salina

Suri, JS Tan, and Hina Walajahi. If it weren’t for all of their work, conversation,

debate, and feedback throughout that difficult and formative semester, this thesis

would not be what it is today.

It was during through that spring semester seminar that I first met Stefan Helmre-

ich. I am profoundly grateful to Stefan for his incredible support and feedback during

those first forays back into writing, and for passing along my early essays to his

colleagues—including, to my great surprise and excitement, Karen Barad, who gen-

erously provided detailed comments on a rough piece exploring crowd theory through

the poetics of entanglement and coherence. That following fall, Stefan graciously

agreed to advise an independent study exploring the social-scientific entanglements

of quantum computing in closer detail. Our semester together quickly turned into a

crash course in the philosophy, history, sociology, and anthropology of science. Bit

by bit, I began to find new language. By the end of the semester, I had produced
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an extended manuscript on the material-semiotics of quantum supremacy; that piece,

the culmination of half a decade of subconscious data taking during my time as a

quantum engineer, is included unabridged in Part V of this thesis, where it serves as

the conclusion of this document. I am grateful to Julia Menzel and Cristopher Moore

for their feedback on early drafts of that essay, and I thank all the colleagues I passed

drafts to throughout the development process of that work.

During the years of remote work under COVID, I lost contact with many of

my friends and colleagues in EQuS and at Lincoln. In late 2021, as the pandemic

thawed and I slowly returned to in-person work on campus and at Lincoln, I quickly

realized how much the world had changed and how much I had changed with it.

All at once, I found myself surrounded by friends old and new—I resolved not to

take these communities for granted again, and I resolved to help make them better

than I had left them. At MIT campus, I was thrilled to see my old friend and

colleague Jeff Grover return to EQuS as a research scientist, and I suddenly found

myself the ‘old grad student’ amidst a new generation of students who had joined the

group during the lockdown—the generosity and care these younger students show for

each other and for their work inspires me totally: Aziza Almanakly, Junyoung An,

Lamia Ateshian, Will Banner, Shoumik Chowdhury, Andy Ding, Shantanu Jha, Sarah

Muschinske, David Rower, Sameia Zaman. Outside of MIT, I was thrilled to start

up new conversation and collaboration with Robin Blume-Kohout and Kevin Young

at the Quantum Performance Lab at Sandia, and I am grateful to them and to their

team for their support and invaluable conversation during my entry into the QCVV

community. And back at Lincoln, I began to settle in among a new generation of

friends and comrades: Kyle Serniak, Kate Azar, Tom Hazard, Bryce Fischer, Katrina

Sliwa, Mallika Randeria. I am thankful to them for their support and patience during

my impending transition back to Lincoln after grad school. We have our work cut

out for us.

This self-description brings us, at last, to the present. This document arrives at
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the end of one story arc in my life, the beginning of another, and somewhere in the

middle of countless others. There are loose ends which must be attended to. In

February 2022, Russia invaded the sovereign nation of Ukraine, bringing the horrors

of industrial warfare back to the European continent and the Western imagination.

At the time of writing, the struggle for Ukrainian independence persists—the civilian

death toll and the ledger of atrocities continue to rise. In June, the United States

Supreme Court overturned the landmark 1973 decision of Roe v. Wade, stripping ac-

cess to safe and legal abortions for pregnant people in much of the United States. This

decision—along with renewed efforts in many states to criminalize gender-affirming

treatment for transgender youths—poses a devastating threat to the bodily auton-

omy of countless Americans, particularly low-income communities and communities

of color. And in the background of it all, the climate crisis rages on across the globe,

simultaneously ushering in unprecedented droughts in the American West and calami-

tous flooding in Pakistan. In Massachusetts where I am writing this, each summer

feels hotter than the last; each winter, colder; each spring and fall, shorter.

These loose threads are tangled with each other, and they are harbingers of the

world that is to come. They are foreshadows of the world which will likely shape the

duration of my adult life. But they also suggest the terms of our struggle. None of

these crises are new, nor are their solutions. In the face of resurgent white supremacy,

the struggle for racial justice and abolition continues worldwide. In the face of rising

income inequality and labor exploitation, workers are organizing and fighting to take

back the means of their production. The academy is not a bystander in these struggles.

In April 2022, MIT graduate students overwhelmingly voted in favor of unionization—

only the latest of many universities in the United States to do the same—demanding

a say in the conditions of our intellectual labor and demanding protections for the

most vulnerable members of our community. I am grateful to all of the students and

workers who worked to make this possible.

And finally, in the midst of everything, the story of quantum computing is not yet

written. With each passing year, the hype continues to grow, the funding continues

to pour, and the whispers of an impending quantum winter grow louder. Time moves
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quickly these days, and this thesis already feels dated. I cannot predict the world into

which the text will arrive. Perhaps readers decades from now will look back on this

work as the start of something extraordinary, something bigger than my colleagues

and I could ever dream. But then again, maybe they will hold this document as an

artifact of a dead field, an account of the delirious rise before an unceremonious fall.

I do not know. So, sitting in the present, I ask the reader: was quantum computing

really the future, or was it a refracted mirage of our past, history bent back upon itself

in a great tangled circuit? And if it was indeed the future, what sort of future did it

become a part of? Did the quantum computer become an instrument of power, or a

tool of liberation? As researchers in quantum computing, we cannot wait passively

for these answers. We have a say in them. We must have a say in them.

This story does not end with love, because this story does not end. Rather, it

arrives at love, arrives at community, arrives at both having never left either. This

thesis is a work of science, but it is also a work of criticism. This will be jarring to

some readers, and to them I say this: at its best, criticism is a sort of poetry, which

is to say that it is an act of love. I wrote this thesis as an act of love—I hope that

much is clear in the reading of it. I wrote it as a living monument to the people,

the places, and the communities which have shaped me throughout this journey. I

am responsible to these communities. I simply ask that they continue to hold me

responsible. I promise to do the same.

1.6 Circuit Diagram

A text is a sort of algorithm. A reader arrives at the page in some initial state and,

through some series of operations, twists, and turns, emerges on the other side in

an altered state. It is fitting that this particular document—concerned as it is with

the nature of quantum algorithms and circuits—is itself a sort of logical circuit, with

each chapter contributing a rotation in the algorithmic sequence of the text. Like all

algorithms, the reader’s final state will depend in part on their initial, and younger

quantum computing students will likely get something different from the text than
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Figure 1-12: The outline of this thesis, abstractly rendered as the circuit diagram of
a quantum algorithm. Each part of the text is represented as a gate operation, and
the collective action of these operations executes the function of the text.

seasoned researchers. However, I venture that no one will encounter this thesis in an

eigenstate of the text and pass through it without perturbation, least of all its author.

Language is strange that way.

The technical work reported in this thesis is divided into three main parts: Quan-

tum Bits in Part II, Quantum Algorithms in Part III, and Quantum Characterization

in Part IV. We can think of these three coarse blocks as the logical operations

of this thesis-algorithm, and they are in turn composed of many smaller physical

operations—chapters, sections, and subsections, in the language of the text. The ar-

rangement of the chapters within each part follows a deliberate rhythm: the opening

chapter of each part presents an introduction to the mathematical and technical for-

malisms which structure the work, and each proceeding chapter builds in complexity

until a novel result is presented at the conclusion. The part then concludes, the topic

changes, and the pattern repeats. These three parts are bookended by Part I and

Part V, which serve as introduction and conclusion respectively.

The content of this thesis proceeds as follows:

Part I: Quantum Circuits

Part I—and this, its lone chapter—provides the ‘state preparation’ portion of the

algorithm. Like the initial preparatory gates of a quantum algorithm, we can think

of this chapter in two equivalent ways. From one vantage, this introduction prepares
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the state of the reader for a particular encounter with the remainder of the text,

initializing them in geographic space and historical time. From another perspective,

however, this introduction may be seen to rotate everything which follows it, warping

the remainder of the text relative to the reader.9 Take your pick.

Part II: Quantum Bits

Following this introduction, our technical discussion of quantum computing begins

in earnest in Part II, where we consider the fundamental building block of a quan-

tum computer: the qubit. In Chapter 2, we begin this part with a review of the

fundamental mathematical machinery of quantum bits, unitary rotations, coherent

superposition, and entanglement. This chapter is based in large part on a series of

lectures I prepared to train undergraduate researchers in the Engineering Quantum

Systems group at MIT—lectures which were significantly informed by my early ex-

periences as an undergraduate researcher under the mentorship of William Wootters.

Chapter 3 begins the transition from pure theory to engineering reality. In this

chapter, I focus on how to realize the mathematical abstraction of a quantum bit in

a piece of physical hardware: a superconducting Josephson circuit. An introduction

is made to the formalism of circuit quantization, and we consider a couple examples

in the zoology of artificial atoms, species which arise from the different arrangements

of electrical circuit elements at our disposal. Portions of this chapters are based on

notes I developed under the mentorship of Jamie Kerman, during my early experiences

simulating novel flux qubits as a research scientist at Lincoln Lab.

Part II concludes with Chapter 4, where we extend the discussion of supercon-

ducting qubits from the previous chapter to multi-qubit systems composed of coupled

circuits. In particular, we discuss the design considerations of engineering coupled

superconducting circuits with high coherence, delicately balancing a qubit’s coupling

9That is, given the state of the reader |Ψ⟩ and the text-operators 𝑈intro and 𝑈thesis, we can absorb
the action of the introduction into either the state or the other operator

𝑈thesis 𝑈intro |Ψ⟩ = 𝑈thesis |̃︀Ψ⟩ = ̃︀𝑈thesis |Ψ⟩

where |̃︀Ψ⟩ and ̃︀𝑈thesis are the introduction-modified reader-state and thesis-operator respectively.
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to its neighbor with its coupling to the noise environment around it. This chapter is

based in large part on the work reported in Ref. [463], and I am deeply thankful to all

of my coauthors for their contributions to this work, with particular acknowledgment

to Steven Weber, David Hover, William Oliver, and Jamie Kerman.

Part III: Quantum Algorithms

Building upon the foundation of single- and coupled-qubit systems laid in Part II,

Chapter 5 transitions to a discussion of quantum algorithms composed of discrete gate

operations. This chapter reviews the requirements for a universal quantum gate set,

and it considers an example algorithm as a case study: the SWAP test. The discussion

of universal gate sets in this chapter is heavily inspired by conversations with Morten

Kjaergaard early in my graduate studies, and the discussion of the SWAP test is

based on discussions with Matthias Christandl and Johannes Borregaard during their

time at MIT in 2019.

Chapter 6 picks up the discussion of gate operations and brings it into the lab-

oratory. In this chapter, we discuss the device theory behind the implementation

of single- and two-qubit gates using tunable transmon qubit, and we walk through

an example calibration of high-fidelity single-qubit gates in the lab. This chapter is

based in large part on the gate calibration techniques my colleagues and I employed

during the Density Matrix Exponentiation [247] and Lindblad tomography [399] ex-

periments reported in Chapters 7 and 10, and I gratefully acknowledge my colleagues

Alex Greene and Morten Kjaergaard for their contributions to the calibration protocol

reported in this chapter.

In Chapter 7, we wrap up our discussion of quantum algorithms by presenting the

first demonstration of the Density Matrix Exponentiation algorithm on a supercon-

ducting quantum processor. This algorithm leads us to a deeper consideration of the

relationship between data and instructions in quantum algorithms, and it explores

the tradeoffs we must face when performing quantum algorithms on noisy physical

hardware. This chapter is based in large part on the work reported in Ref. [247], and I

gratefully acknowledge all of my coauthors for their contributions to that work, with
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particular acknowledgment to Morten Kjaergaard, Mollie Schwartz, Alex Greene,

Christopher McNally, Mike O’Keeffe, Kevin Obenland, Milad Marvian, Iman Mar-

vian, and William Oliver.

Part IV: Quantum Characterization

Part IV will initially seem like a backstep. Having focused on applications and al-

gorithms in Part III, we then turn our attention back to constituent building blocks

of a quantum computer and ask: how do we understand these components better?

Phrased another way, how do we make intelligent statements about a quantum sys-

tem when its Hilbert space exceeds the limits of classical description? How do we

figure out what our quantum computer is doing? How do we say anything about the

states it prepares or the processes it executes? How do we determine whether our

processor did any of these things well? In Chapter 8, we consider seven broad cat-

egories of questions we might ask about a quantum processor, questions which each

define a different technique in the field of Quantum Characterization, Verification,

and Validation (QCVV).

In Chapter 9, we focus in on one particular category of QCVV techniques: the

characterization of quantum processes. In this chapter, we introduce a number of

mathematical formalisms for representing general quantum processes—such as the

Kraus and 𝜒-matrix representations—and we consider the relationship between these

discrete black boxes and the continuous dynamics of open quantum systems evolving

under the Lindblad master equation. This discussion inevitably brings us to the

subject of Markovianity and to its foil: non-Markovian errors.

Part IV concludes with Chapter 10, where we consider a novel technique for tomo-

graphically reconstructing the time dynamics of a physical quantum system, which

we call Lindblad tomography (LT). Performing LT on a physical quantum device, we

show how our technique reconstructs the most likely set of Hamiltonian and Lindblad

operators governing the particular evolution of a physical multi-qubit system, and we

consider how this reconstruction is affected by the presence of non-Markovian errors

arising from always-on electrical coupling between qubits. This chapter is based in
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large part on original work reported in Ref. [399], and I gratefully acknowledge all of

my coauthors for their contributions to this work, with particular acknowledgment to

Johannes Borregaard, Morten Kjaergaard, Alex Greene, Matthias Christandl, Joseph

Barreto, and William Oliver.

Part V: Quantum Supremacy

Together, Parts II, III, and IV form a useful algorithm, and the reader will hopefully

arrive at the end of them with a deeper understanding of what it takes to design,

engineer, and characterize a superconducting quantum processor. Equations have

been derived, data has been presented, progress has been made. Part V complicates

this progress. The work in this part will not help anyone build a quantum computer—

on the contrary, some will walk away from this part of the story wondering if we

should build quantum computers at all. Like the final inversion gate at the end of a

randomized benchmarking sequence, the work presented in Part V bends the thesis

back upon itself, unwinding whatever progress we believe we have made up to that

point. It completes the loop—or, rather, it reveals the loop we have been circling all

along.

This inversion gate takes the form of an extended essay in Chapter 12, which I

include in full as the conclusion of this thesis. This conclusion eschews the optimistic

outlook of a traditional physics text, offering instead a sustained meditation on the

current state of quantum computing as a human enterprise, and on the role of language

in the sciences more broadly. This chapter is based in large part on work I developed

under the mentorship of the anthropologist Stefan Helmreich during my final years of

graduate school, and it centers around the term ‘quantum supremacy’—where it came

from, what scientists believe it means, what it does. Taking these two words as a

starting point, I draw on a century of language studies to deconstruct the tangled myth

of supremacy which sits at the heart of contemporary quantum computing, a myth

which fatally short-circuits our work to projects of racial, national, and intellectual

supremacy.

If the conclusion of this thesis succeeds—if the inversion is total, if the circuit

123



CHAPTER 1. SEARCHING FOR LINKS

completes—where does this leave us? Now we are starting to ask the right questions.

This thesis ends with only a shadow of an answer, but I will say this: as in a quantum

circuit, total inversion requires both a perfect circuit and a perfect inversion gate, a

unitary operator matched to its absolute adjoint. This thesis offers neither. Then,

perhaps the accumulated errors of this tangled document will serve to splinter the

circuit, crack the artifice just enough to imagine something different beyond it, leave

us somewhere other than where we began. And then we can begin again.
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Quantum Bits
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Chapter 2

Qubits, Rotations, Entanglements

In this chapter, I provide a thorough introduction to the mathematical formalism

of quantum bits. Starting from the definition of the two orthogonal states |0⟩ and

|1⟩, requiring only that they evolve according to the Schrödinger equation with a

hermitian Hamiltonian �̂�, we derive the Bloch sphere representation of a general qubit

state. In the process, we encounter the first hallmark of quantum mechanics, coherent

superposition. Going from a single qubit to a pair of qubits evolving under a general

two-qubit Hamiltonian, we quickly encounter its second hallmark: entanglement.

2.1 Waves of Probability

Classical physics is the study of bodies in motion: atoms, electrons, bowling balls, ar-

tillery shells, planets, stars. Plotting their trajectories across space and time, we find

that these bodies are compelled by the same fundamental set of forces, regardless of

their size. This observation, commonly attributed to the seventeenth-century English

mathematician and natural philosopher Isaac Newton, had enormous consequences—

physical, political, philosophical, and theological [418]. With a small set of funda-

mental equations, this new science of the natural world successfully predicted the

motion of both an apple falling from a tree and the orbit of Venus across the heavens,

uniting the cosmos under common laws. It was not until the nineteenth century that
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practitioners of this science were given a name: ‘physicist,’ a term first coined in

English in 1836 by the theologian and ‘scientist’1 William Whewell [363]. And so it

happened that, a century after his death, Isaac Newton posthumously became the

first physicist.

Encountering quantum theory by way of classical mechanics or electromagnetism,

most students quickly find themselves on unfamiliar terrain. Gone are the free-body

diagrams, forces, trajectories through space and time. The primary object of quantum

mechanics is not a body, nor is it motion—at least in the senses that we commonly

associate either of those words. Quantum mechanics is, first and foremost, a science

of wavefunctions. Unlike a billiard ball or an electron in the classical description of

the world, a wavefunction is not an ‘object’—which is to say, it is not a thing which

exists at some discrete coordinate in both space and time. Rather, a wavefunction is

a thing which captures the probability of measuring a given property of a system, like

position or momentum. For some systems, these probabilities are localized such that

we can say, with certainty, that the system is located here and it is not located there.

For other systems, these probabilities are distributed across space more evenly: in

such cases, quantum mechanics will tell us that there is some probability of measuring

the system here, but there is also some nonzero probability of measuring it there.

In either of these two cases, the distribution of probabilities can be mathematically

described as a wave. Like waves on an ocean surface, some are sharp and pointy (the

position is narrowly localized, as in the former case) while others are spread in rolling

peaks and troughs across great distances (the position is delocalized, as in the latter

case). In this sense, we can think of a quantum mechanical wavefunction as a wave

of probability, mapping out the likelihood of measuring a particular property at a

particular coordinate. Like all waves, wavefunctions can interact and superpose on

top of each other, creating intricate interference patterns. These patterns, abstract

as they are, have enormous predictive power for characterizing phenomena across all

scales of matter. Indeed, it is this process of interaction and interference which gives

1Incidentally, the invention of the English term ‘scientist’ is also credited to Whewell in the
nineteenth century, as is the term ‘linguistics.’
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Figure 2-1: The first several electronic wavefunctions of the hydrogen atom 𝜓𝑛𝑙𝑚 from
Eq. (2.1), plotted as surfaces of constant probability |𝜓|2 around the nucleus at 𝑟 = 0.
Image reproduced from Ref. [72], as it appears in Ref. [170].

rise to the bodies of classical mechanics in the first place.

The first successes of quantum theory in the early twentieth-century came in

the domain of atomic theory. Here, the tools of Schrödinger, Bohr, and Heisenberg

provided powerful and detailed quantitative descriptions of the orbitals of electrons

around the nucleus of an atom. In doing so, however, quantum theory demanded that

physicists abandon the picture of an atom as a tiny solar system—electrons circling

the nucleus like planets around a star. Instead of imagining the electrons as spheres
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in motion, like the bodies of classical mechanics, quantum theory ascribed to each

atom distributed clouds of probability in which one might find an electron. Indeed,

when most students first learn quantum theory, one of their first tasks is to retrace

this atomic lineage, rederiving the electronic wavefunctions of the hydrogen atom

𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜑) =

√︃(︂
2

𝑛𝑎

)︂3
(𝑛− 𝑙 − 1)!

2𝑛 [(𝑛+ 𝑙)!]3
𝑒−𝑟/𝑛𝑎

(︂
2𝑟

𝑛𝑎

)︂𝑙 [︀
𝐿2𝑙+1
𝑛−𝑙−1(2𝑟/𝑛𝑎)

]︀
𝑌 𝑚
𝑙 (𝜃, 𝜑) (2.1)

where 𝑎 = 5.29177× 10−11m is the Bohr radius, 𝐿𝑝𝑞−𝑝(𝑟) are the associated Laguerre

polynomials which define the radial structure of the wavefunctions, and 𝑌 𝑚
𝑙 (𝜃, 𝜑) are

the spherical harmonics which define their polar and azimuthal structure.2 In Fig. 2-1,

we can see the structure of a few of these wavefunctions, centered around the nucleus

of the atom.

While the interpretation of these wavefunctions is abstract, the results they yield

are anything but. Taking the expectation value of these electronic wavefunctions with

a quantum operator, one can calculate properties such as the energy of a particular

electronic transition, properties which quantum theory predicts with unprecedented

accuracy. Indeed, though the hydrogen atom remains the only atom on the periodic

table whose wavefunctions can be solved analytically, the development of perturbative

methods throughout the twentieth century has allowed physicists to obtain accurate

numerical results for a large range of atomic, molecular, and condensed matter sys-

tems, such as binding energies of quantum chemistry or the electronic band structures

of semiconducting solids.

In this chapter, however, we are interested in a different handling of quantum

wavefunctions, one which eschews the literalness of atoms and electrons in favor of a

more abstract, though mathematically simpler treatment of quantum states. Here, we

are interested in the simplest possible quantum system—much simpler, in fact, than

the hydrogen atom itself. This system, which we will call a quantum bit or qubit,

has only two possible wavefunctions, which we will label |0⟩ and |1⟩ in analogy to

2For definitions and helpful tables of the associated Laguerre polynomials and spherical harmon-
ics, see an introductory quantum mechanics textbook such as Ref. [170, 179].

130



2.2. ITS AND BITS

the binary bits of classical computer science. These wavefunctions, while intimately

related to those of atomic and condensed matter systems—as we will quickly see in

the following chapter when we try to build a quantum bit in the laboratory—are

largely mathematical abstractions, and thy have their own internal rhyme and logic.

Studying the dynamics of these simple two-level systems, we quickly come face to

face with the strangeness and beauty of quantum theory at its most fundamental

level. Having established this mathematical foundation, the remainder of this thesis

will be spent attempting to reconcile this ideal with the reality of physical quantum

processors built out of imperfect bits.

2.2 Its and Bits

For the purpose of this thesis, I will be primarily concerned with only two principle

wavefunctions. These wavefunctions, curiously, have no immediate physical interpre-

tation. They are simply wavefunctions, no more, no less. In fact, all we can say about

these two wavefunctions is that they are as dissimilar from each other as possible, in

the following sense: if I ask a particular question, one wavefunction corresponds to

answering YES with 100% probability, and the other corresponds to answering NO

with 100% probability. Now, for the moment, it doesn’t matter which question these

wavefunctions are answering, just that they provide opposite answers.

Let’s call these two wavefunctions |1⟩ and |0⟩ respectively. Here, we will use the

labels 1 and 0 to denote the binary answer the wavefunction predicts, 1 for YES

and 0 for NO. As for the peculiar bracket around the labels—a notation commonly

attributed to the nineteenth-century English physicist Paul Dirac—these are simply

mathematical shorthand for ‘the wavefunction which, when queried, will always an-

swer ,’ or interchangeably ‘the -state.’ As stated above, the only thing

which we can say with absolute certainty is that these two states have no overlap

with one another—they are orthogonal and have an inner product of zero

⟨1|0⟩ ≡
∫︁
𝑉

𝜓*
1𝜓0 𝑑𝑣 ≡ 0 (2.2)
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where the integral is taken over all space.

Note that we have not specified any functional form for the wavefunctions 𝜓0

and 𝜓1. This is crucial: in general, it is the orthogonality condition in Eq. (2.2)

which defines these two states, not the specific details of their wavefunctions. The

significance of this statement will become immediately clear in the following chapters

when we try to map these states onto physical systems in the laboratory. For now,

it simply means we can clean up our notation a bit. Since these wavefunctions do

not depend on any spatial coordinate (or any other parameter for that matter), it

is convenient to dispense with the 𝜓’s altogether and define these states as simple

two-dimensional vectors, as such

|0⟩ ≡

[︃
1

0

]︃
(2.3)

|1⟩ ≡

[︃
0

1

]︃
(2.4)

Writing the states in this form, we can confirm that the orthogonality condition in

Eq. (2.2) is indeed enforced

⟨1|0⟩ =
[︁
0 1

]︁ [︃1
0

]︃
= 0 (2.5)

where ⟨𝜓| is defined as the conjugate transpose of |𝜓⟩.

In quantum information and computer science, we call systems which possess the

wavefunctions |0⟩ and |1⟩ quantum bits or qubits—a term first coined in 1995 by the

American theoretical physicists Benjamin Schumacher and William Wootters [410].

Like the binary 0’s and 1’s of classical information, a quantum bit is an irreducible

piece of quantum information out of which all other systems can be constructed,

though the significance of that statement won’t be apparent until much later in this

chapter. For now, it suffices to think of the two states as a simple pair of wavefunctions

which always contradict each other. As we’ll see, the power and beauty of quantum

bits—and, indeed, quantum mechanics itself—emerges quickly from a very small set
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of principles.

Having defined these two unremarkable quantum states, the question naturally

arises: ok, so what do they do? How do they change? How do they move? Like

all wavefunctions, these states evolve in time according to the Schrödinger equation,

which we can write in time-independent form as

𝑑

𝑑𝑡
|𝜓⟩ = − 𝑖

ℏ
�̂� |𝜓⟩ (2.6)

where |𝜓⟩ is shorthand for a general quantum mechanical wavefunction, 𝑖 ≡
√
−1 is

the imaginary unit,3 ℏ = 1.055× 10−34J · s is the reduced Planck constant, and �̂� is

the Hamiltonian of the system. Solving this first-order differential equation, we arrive

at solutions of the form

|𝜓(𝑡)⟩ = 𝑒−
𝑖
ℏ �̂�𝑡 |𝜓(𝑡 = 0)⟩ (2.7)

where |𝜓(𝑡 = 0)⟩ is the state of the system at some initial time 𝑡 = 0 and |𝜓(𝑡)⟩ is the

wavefunction at some later time 𝑡.

Looking at the differential equation in Eq. (2.6) and its solution in Eq. (2.7),

it is immediately clear that the time dynamics of the wavefunction |𝜓⟩ are entirely

determined by the Hamiltonian operator �̂�. From dimensional analysis, we see that

the Hamiltonian has units of energy: indeed, in classical mechanics the Hamiltonian

is defined as the sum of a system’s kinetic energy 𝑇 and potential energy 𝑈

𝐻 = 𝑇 + 𝑈 (2.8)

So too in continuous-variable quantum mechanics, except that the Hamiltonian, ki-

netic, and potential energies are now promoted to quantum operators

�̂� = 𝑇 + �̂� (2.9)

3For a deeper consideration of the role of the imaginary unit in the Schrödinger equation and
the implications of a real-amplitude theory of quantum mechanics without the imaginary unit, see
Ref. [13, 397, 427].
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In both the classical and quantum mechanical cases, the Hamiltonian captures the

balance of energies at play in the system, and this balance defines the conditions of

the system’s evolution for all times, past, present, and future.

We will return to Eq. (2.9) in the following chapter, but for now it isn’t immedi-

ately clear what this equation has to do with our states |0⟩ and |1⟩. After all, these

states don’t have any sense of position, let alone kinetics. For now, it suffices to treat

the Hamiltonian as a simple mathematical abstraction and look at what it can do to

our two states.

Since we’ve written our states |0⟩ and |1⟩ as simple 2 × 1 vectors, we can write

our Hamiltonian �̂� as a 2× 2 matrix, demanding only that the matrix is hermitian

�̂� = �̂�† = ℏ𝜔

[︃
𝑎+ 𝑏 𝑐− 𝑖𝑑

𝑐+ 𝑖𝑑 𝑎− 𝑏

]︃
(2.10)

where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers, the prefactor ℏ𝜔 has units of energy, and �̂�† is the

conjugate transpose of the matrix �̂�. Since �̂� is hermitian, we can decompose the

matrix into a linear combination of four basic matrices

�̂� = 𝐸𝐼𝐼 + 𝐸𝑋�̂� + 𝐸𝑌 𝑌 + 𝐸𝑍𝑍 (2.11)

where 𝐼 is the 2× 2 identity matrix

𝐼 =

[︃
1 0

0 1

]︃
(2.12)

�̂�, 𝑌 , 𝑍 are the three Pauli matrices

�̂� =

[︃
0 1

1 0

]︃
(2.13)

𝑌 =

[︃
0 −𝑖
𝑖 0

]︃
(2.14)

𝑍 =

[︃
1 0

0 −1

]︃
(2.15)
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and the coefficients 𝐸𝑘 are the energies associated with each term.

Returning to the solution to the Schrödinger equation in Eq. (2.7), we can define

a new operator which is equal to the exponentiation of the Hamiltonian evaluated at

a particular time 𝑡

�̂�(�̂�, 𝑡) = exp

(︂
− 𝑖

ℏ
�̂�𝑡

)︂
(2.16)

Rewriting the solution to the Schrödinger equation in terms of �̂�

|𝜓(𝑡)⟩ = �̂�(�̂�, 𝑡) |𝜓(𝑡 = 0)⟩ (2.17)

we can see that the evolution of the state |𝜓⟩ is completely determined by the action

of the operator �̂� on the initial wavefunction |𝜓(𝑡 = 0)⟩, where �̂� is a 2 × 2 matrix

which is unitary

�̂� †�̂� = �̂� �̂� † = 𝐼 (2.18)

To see that �̂� must be unitary, recall that we required that the Hamiltonian is a

hermitian 2 × 2 matrix such that �̂� = �̂�†. As such, taking the conjugate transpose

of Eq. (2.16) amounts to simply flipping the sign in front of the imaginary unit

�̂� †(�̂�, 𝑡) = exp

(︂
+
𝑖

ℏ
�̂�†𝑡

)︂
(2.19)

= exp

(︂
+
𝑖

ℏ
�̂�𝑡

)︂
(2.20)

Taking the product of �̂� and �̂� †, the complex exponentials will cancel out to the

identity, in agreement with the unitarity condition

�̂�(�̂�, 𝑡)�̂� †(�̂�, 𝑡) = 𝑒−
𝑖
ℏ �̂�𝑡𝑒+

𝑖
ℏ �̂�𝑡 (2.21)

= 𝐼 (2.22)

Note that the unitarity condition has a nice physical interpretation. Looking at

Eq. (2.20) and shuffling around the signs, we can see that this is equivalent to
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Eq. (2.16), except with a minus sign in front of the time 𝑡

�̂� †(�̂�, 𝑡) = exp

(︂
+
𝑖

ℏ
�̂�𝑡

)︂
(2.23)

= exp

(︂
− 𝑖

ℏ
�̂�(−𝑡)

)︂
(2.24)

= �̂�(�̂�,−𝑡) (2.25)

If �̂�(�̂�, 𝑡) is an operator which evolves the state forward in time by some duration 𝑡,

�̂�(�̂�,−𝑡) is that same operator evolving the state backwards in time by a duration 𝑡.

Evolving the state forward in time and then back in time by that same amount, we

expect the state to return to its initial state

|𝜓⟩ = �̂� †(�̂�, 𝑡)�̂�(�̂�, 𝑡) |𝜓(𝑡 = 0)⟩ (2.26)

= �̂�(�̂�,−𝑡)
(︁
�̂�(�̂�, 𝑡) |𝜓(𝑡 = 0)⟩

)︁
(2.27)

= �̂�(�̂�,−𝑡) |𝜓(𝑡 = 𝑡)⟩ (2.28)

= |𝜓(𝑡 = 0)⟩ (2.29)

which is equivalent to simply enforcing the unitarity condition on the first line and

cancelling the two operators out.

To see how our states |0⟩ and |1⟩ evolve under the influence of a general Hamil-

tonian, let’s take the decomposition in Eq. (2.11) and find the corresponding unitary

operator for each of the four terms. Starting with the case where �̂� = 𝐸𝐼𝐼

�̂�𝐼 = exp

(︂
− 𝑖

ℏ
�̂�𝑡

)︂
(2.30)

= exp

(︂
− 𝑖

ℏ
𝐸𝐼𝐼𝑡

)︂
(2.31)

= exp
(︁
−𝑖𝜔𝐼𝐼𝑡

)︁
(2.32)

where 𝜔𝐼 = 𝐸𝐼/ℏ is the angular frequency corresponding to the energy 𝐸𝐼 . To resolve
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the matrix exponential on the RHS, we can take a Taylor expansion of the exponent

�̂�𝐼 = exp
(︁
−𝑖𝜔𝐼𝐼𝑡

)︁
(2.33)

=
∞∑︁
𝑘=0

(︁
−𝑖𝜔𝐼𝐼𝑡

)︁𝑘
𝑘!

(2.34)

=
∞∑︁
𝑘=0

𝐼𝑘 (−𝑖𝜔𝐼𝑡)𝑘

𝑘!
(2.35)

Since 𝐼 is the identity matrix and 𝐼𝑘 = 𝐼 for all 𝑘, we can factor a single 𝐼 out of all

terms in the sum

�̂�𝐼 = 𝐼
∞∑︁
𝑘=0

(−𝑖𝜔𝐼𝑡)𝑘

𝑘!
(2.36)

Now that we’ve pulled the matrix 𝐼 out of the sum, we can collapse the sum back

into an exponent of scalars and arrive at our unitary matrix

�̂�𝐼 = 𝐼𝑒−𝑖𝜔𝐼 𝑡 (2.37)

=

[︃
𝑒−𝑖𝜔𝐼 𝑡 0

0 𝑒−𝑖𝜔𝐼 𝑡

]︃
(2.38)

Applying this unitary operator to our two states |0⟩ and |1⟩, we find that the operator

simply applies a phase in front of the state

�̂�𝐼 |0⟩ =

[︃
𝑒−𝑖𝜔𝐼 𝑡 0

0 𝑒−𝑖𝜔𝑖𝑡

]︃[︃
1

0

]︃
(2.39)

=

[︃
𝑒−𝑖𝜔𝐼 𝑡

0

]︃
(2.40)

= 𝑒−𝑖𝜔𝑖𝑡 |0⟩ (2.41)
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�̂�𝐼 |1⟩ =

[︃
𝑒−𝑖𝜔𝐼 𝑡 0

0 𝑒−𝑖𝜔𝐼 𝑡

]︃[︃
0

1

]︃
(2.42)

=

[︃
0

𝑒−𝑖𝜔𝐼 𝑡

]︃
(2.43)

= 𝑒−𝑖𝜔𝐼 𝑡 |1⟩ (2.44)

This result is unsurprising, since |0⟩ and |1⟩ are both eigenvectors of the matrix

𝐼. Indeed, all vectors are trivial eigenstates of the identity matrix, so this result will

hold for any general vector

|𝜓⟩ =

[︃
𝑎

𝑏

]︃
(2.45)

�̂�𝐼 |𝜓⟩ = 𝑒−𝑖𝜔𝐼 𝑡 |𝜓⟩ (2.46)

Ok, what did this Hamiltonian do to our states? While it would appear that the

Hamiltonian �̂� = 𝐸𝐼𝐼 did something to the states |0⟩ and |1⟩, the global phase

exp(−𝑖𝜔𝐼𝑡) is not physical. In quantum mechanics, physical observables—position,

momentum, energy, for example—are calculated by taking the expectation value of

the operator corresponding to the observable. For a general wavefunction |𝜓⟩, the

expectation value of a general observable �̂� is a scalar

⟨�̂�⟩ ≡ ⟨𝜓| �̂� |𝜓⟩ (2.47)

Comparing this to the expectation value calculated given the evolved state �̂�𝐼 |𝜓⟩, we

find that the global phases will always factor out of the expectation value and cancel

out

⟨�̂�⟩𝐼 =
(︀
⟨𝜓| 𝑒+𝑖𝜔𝐼 𝑡

)︀
�̂�
(︀
𝑒−𝑖𝜔𝐼 𝑡 |𝜓⟩

)︀
(2.48)

= 𝑒+𝑖𝜔𝐼 𝑡𝑒−𝑖𝜔𝐼 𝑡 ⟨𝜓| �̂� |𝜓⟩ (2.49)

= ⟨�̂�⟩ (2.50)
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In other words, while the Hamiltonian �̂� = 𝐸𝐼𝐼 modifies the wavefunction, the

global phase it applies will never affect the result of a measurement performed on

that wavefunction.

Something much more interesting happens when we consider the other three terms

of the Hamiltonian decomposition in Eq. (2.11). To see this, let’s start by finding the

unitary operator corresponding to a Hamiltonian �̂� = 𝐸𝑋�̂�. As we’ll quickly see, the

three Pauli matrices share a common set of useful properties, so this derivation will

suffice for all three cases. Starting again from the definition of the unitary operator

in Eq. (2.16), we can once again expand the exponent as a Taylor series

�̂�𝑋 = exp

(︂
− 𝑖

ℏ
�̂�𝑡

)︂
(2.51)

= exp
(︁
−𝑖𝜔𝑋�̂�𝑡

)︁
(2.52)

=
∞∑︁
𝑘=0

(︁
−𝑖𝜔𝑋�̂�𝑡

)︁𝑘
𝑘!

(2.53)

At this point, we cannot trivially pull �̂�𝑘 out of the sum, as we did with the identity.

However, we can play a similar trick if we first break the infinite sum into two parts,

one for all even values of 𝑘 is and one for all the odd

�̂�𝑋 =
∞∑︁

𝑘=0,2,4,...

(︁
−𝑖𝜔𝑋�̂�𝑡

)︁𝑘
𝑘!

+
∞∑︁

𝑘=1,3,5,...

(︁
−𝑖𝜔𝑋�̂�𝑡

)︁𝑘
𝑘!

(2.54)

Here, we can exploit an important property of the Pauli matrices: in all three cases,

the matrices square to the identity �̂�2 = 𝑌 2 = 𝑍2 = 𝐼. Seeing this, we can now

factor out all the Pauli matrices in the even and odd sums as

�̂�𝑋 = 𝐼
∞∑︁

𝑘=0,2,4,...

(−𝑖𝜔𝑋𝑡)𝑘

𝑘!
+ �̂�

∞∑︁
𝑘=1,3,5,...

(−𝑖𝜔𝑋𝑡)𝑘

𝑘!
(2.55)

where the two infinite sums are simply the Taylor expansions of cosine and sine
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respectively

�̂�𝑋 = 𝐼 cos(𝜔𝑋𝑡)− 𝑖�̂� sin(𝜔𝑋𝑡) (2.56)

Since this derivation depended only on the property that �̂�2 = 𝑌 2 = 𝑍2 = 𝐼, the

same result immediately follows for Hamiltonians proportional to each of the other

two Pauli matrices

�̂�𝑌 = 𝐼 cos(𝜔𝑌 𝑡)− 𝑖𝑌 sin(𝜔𝑌 𝑡) (2.57)

�̂�𝑍 = 𝐼 cos(𝜔𝑍𝑡)− 𝑖𝑍 sin(𝜔𝑍𝑡) (2.58)

Substituting in the full matrices from Eq. (2.12)–(2.15) and multiplying out the terms

in the three equations above, we can now explicitly write out the unitary matrices

corresponding to each of these three Hamiltonians

�̂�𝑋(𝜔, 𝑡) =

[︃
cos(𝜔𝑡) −𝑖 sin(𝜔𝑡)

−𝑖 sin(𝜔𝑡) cos(𝜔𝑡)

]︃
(2.59)

�̂�𝑌 (𝜔, 𝑡) =

[︃
cos(𝜔𝑡) − sin(𝜔𝑡)

sin(𝜔𝑡) cos(𝜔𝑡)

]︃
(2.60)

�̂�𝑍(𝜔, 𝑡) =

[︃
𝑒−𝑖𝜔𝑡 0

0 𝑒𝑖𝜔𝑡

]︃
(2.61)

These operators depend only on the product 𝜔𝑡, which has units of radians, so let’s

replace this product with an angle 𝜔𝑡 = 𝜃/2

�̂�𝑋(𝜃) =

[︃
cos(𝜃/2) −𝑖 sin(𝜃/2)

−𝑖 sin(𝜃/2) cos(𝜃/2)

]︃
(2.62)

�̂�𝑌 (𝜃) =

[︃
cos(𝜃/2) − sin(𝜃/2)

sin(𝜃/2) cos(𝜃/2)

]︃
(2.63)

�̂�𝑍(𝜃) =

[︃
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

]︃
(2.64)

The operators �̂�𝑋 , �̂�𝑌 , �̂�𝑍 are rotation matrices. Indeed, when we decomposed a

140



2.2. ITS AND BITS

general Hamiltonian into the sum of Pauli matrices in Eq. (2.11), we were essentially

defining a coordinate system within the space of possible two-dimensional hermitian

operators. In group theory, this space is known as the two-dimensional special unitary

group, SU(2). In this space, the three Pauli operators �̂�, 𝑌 , 𝑍 function in perfect

analogy to the unit vectors �̂�, 𝑦, 𝑧 in three-dimensional real space—also known as

O(3), in group theoretic terms (Fig. 2-2a). Like the familiar unit vectors in O(3), the

Pauli matrices are orthonormal such that

𝜎𝑖 · 𝜎𝑗 =

⎧⎪⎨⎪⎩1, for 𝑖 = 𝑗

0, for 𝑖 ̸= 𝑗

(2.65)

𝜎𝑖 × 𝜎𝑗 =

⎧⎪⎨⎪⎩0, for 𝑖 = 𝑗

𝜎𝑘, for cyclic permutation of 𝑖, 𝑗, 𝑘
(2.66)

where �⃗� ≡ (�̂�, 𝑌 , 𝑍) is the vector of Pauli matrices, and the dot and cross products

are defined as the symmetric and anti-symmetric matrix products

𝜎𝑖 · 𝜎𝑗 ≡
1

2
(𝜎𝑖𝜎𝑗 + 𝜎𝑗𝜎𝑖) (2.67)

𝜎𝑖 × 𝜎𝑗 ≡ − 𝑖

2
(𝜎𝑖𝜎𝑗 − 𝜎𝑗𝜎𝑖) (2.68)

Indeed, there is a homomorphic relationship between the group of unitary two-

dimensional operators SU(2) and the group of three-dimensional rotation matrices

SO(3). As a result, we can robustly think of the unitary operators �̂� as rotations

in a three dimension space defined by the three Pauli matrices, where the opera-

tors �̂�𝑋(𝜃), �̂�𝑌 (𝜃), �̂�𝑍(𝜃) are rotations around the axes defined by the Pauli matrices

�̂�, 𝑌 , 𝑍 respectively (Fig. 2-2b).

Let’s play around with these rotations and see how they evolve our states |0⟩ and

|1⟩ for particular products of time and frequency. Starting with the unitary �̂�𝑋 , we
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a) b)

Figure 2-2: (a) Cartesian coordinate system in three-dimensional real space O(3).
The space of possible vectors is defined by the orthogonal unit vectors �̂�, 𝑦, 𝑧,
where R𝑥,R𝑦,R𝑧 are rotation matrices around the three cardinal axes respectively.
(b) The space of possible two-dimensional hermitian operators SU(2), homomorphi-
cally mapped onto O(3). In this mapping, the Pauli matrices �̂�, 𝑌 , 𝑍 define the
orthogonal axes of the space of matrices, and the unitary operators �̂�𝑋 , �̂�𝑌 , �̂�𝑍 gen-
erate rotations around these axes.

can first evaluate the matrix for the case where 𝜃 = 𝜋

�̂�𝑋(𝜃 = 𝜋) =

[︃
0 −𝑖
−𝑖 0

]︃
(2.69)

=

[︃
0 1

1 0

]︃
(2.70)

where we have dropped the global phase of −𝑖 in the second line for simplicity since,

as we just showed, it has no affect on physical measurables. Applying this unitary to

our two states |0⟩ and |1⟩

�̂�𝑋(𝜃 = 𝜋) |0⟩ =

[︃
0 1

1 0

]︃[︃
1

0

]︃
(2.71)

=

[︃
0

1

]︃
(2.72)

= |1⟩ (2.73)
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�̂�𝑋(𝜃 = 𝜋) |1⟩ =

[︃
0 1

1 0

]︃[︃
0

1

]︃
(2.74)

=

[︃
1

0

]︃
(2.75)

= |0⟩ (2.76)

we find that our two states have flipped. If |0⟩ was a wavefunction which always

yielded the answer NO when measured, after evolving for some time according to the

Hamiltonian �̂� ∝ �̂� we now find that is always answers YES.

Notice that, as long as we’re rotating around the same axis, we can apply multiple

unitary operators in a row to rotate our state by their combined angle4

�̂�𝑖(𝜃𝐴 + 𝜃𝐵) = exp

(︂
− 𝑖

2
(𝜃𝐴 + 𝜃𝐵)�̂�𝑖

)︂
(2.77)

= exp

(︂
− 𝑖

2
𝜃𝐴�̂�𝑖

)︂
+ exp

(︂
− 𝑖

2
𝜃𝐴�̂�𝑖

)︂
(2.78)

= �̂�𝜎𝑖(𝜃𝐴)�̂�𝜎𝑖(𝜃𝐵) (2.79)

Applying the unitary �̂�𝑋(𝜃 = 𝜋) to each state twice such that they are rotated by a

combined angle 𝜃 = 2𝜋

�̂�𝑋(𝜃 = 𝜋)�̂�𝑋(𝜃 = 𝜋) |0⟩ =

[︃
0 1

1 0

]︃[︃
0 1

1 0

]︃[︃
1

0

]︃
(2.80)

=

[︃
0 1

1 0

]︃[︃
0

1

]︃
(2.81)

= |0⟩ (2.82)

4While this result appears to be a trivial application of the exponential of sums, note that this
only holds if the matrices in the exponential are the same

𝑒(𝑎+𝑏)𝐴 ≡ 𝑒𝑎𝐴𝑒𝑏𝐴

As we’ll see later, this does not hold in general when there is a sum of different matrices in the
exponential, particularly non-commuting matrices.
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�̂�𝑋(𝜃 = 𝜋)�̂�𝑋(𝜃 = 𝜋) |1⟩ =

[︃
0 1

1 0

]︃[︃
0 1

1 0

]︃[︃
0

1

]︃
(2.83)

=

[︃
0 1

1 0

]︃[︃
1

0

]︃
(2.84)

= |1⟩ (2.85)

we find that the two states return to their initial states.

So far, none of these operations have done anything particularly quantum me-

chanical. Indeed, the unitary operator above is no different from a NOT operation

in classical logic, inverting the state such that a 0 becomes a 1 and vice versa. But

what happens if we interrupt our wavefunction during its journey from |0⟩ to |1⟩?

For example, what if we only allow it to evolve for half the amount of time required

to completely invert, such that 𝜃 = 𝜋/2? Calculating the resulting unitary operator

�̂�𝑋(𝜃 = 𝜋/2) =
1√
2

[︃
1 −𝑖
−𝑖 1

]︃
(2.86)

and applying it to each of our states

�̂�𝑋(𝜃 = 𝜋/2) |0⟩ = 1√
2

[︃
1 −𝑖
−𝑖 1

]︃[︃
1

0

]︃
(2.87)

=
1√
2

[︃
1

−𝑖

]︃
(2.88)

=
1√
2
(|0⟩ − 𝑖 |1⟩) (2.89)

�̂�𝑋(𝜃 = 𝜋/2) |1⟩ = 1√
2

[︃
1 −𝑖
−𝑖 1

]︃[︃
0

1

]︃
(2.90)

=
1√
2

[︃
−𝑖
1

]︃
(2.91)

=
1√
2
(|0⟩+ 𝑖 |1⟩) (2.92)
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Similarly, if we apply the unitary �̂�𝑌 for an angle of 𝜃 = 𝜋/2,

�̂�𝑌 (𝜃 = 𝜋/2) =
1√
2

[︃
1 −1

1 1

]︃
(2.93)

we find that |0⟩ and |1⟩ evolve into the states

�̂�𝑌 (𝜃 = 𝜋/2) |0⟩ = 1√
2

[︃
1 −1

1 1

]︃[︃
1

0

]︃
(2.94)

=
1√
2

[︃
1

1

]︃
(2.95)

=
1√
2
(|0⟩+ |1⟩) (2.96)

�̂�𝑌 (𝜃 = 𝜋/2) |1⟩ = 1√
2

[︃
1 −1

1 1

]︃[︃
0

1

]︃
(2.97)

=
1√
2

[︃
1

−1

]︃
(2.98)

=
1√
2
(|0⟩ − |1⟩) (2.99)

As for the rotations around the Pauli-Z axis �̂�𝑍(𝜃), we can see that these rotations

simply apply a global phase to our two states, regardless of 𝜃

�̂�𝑍(𝜃) |0⟩ =

[︃
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

]︃[︃
1

0

]︃
(2.100)

=

[︃
𝑒−𝑖𝜃/2

0

]︃
(2.101)

= |0⟩ (2.102)
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�̂�𝑍(𝜃) |1⟩ =

[︃
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

]︃[︃
0

1

]︃
(2.103)

=

[︃
0

𝑒𝑖𝜃/2

]︃
(2.104)

= |1⟩ (2.105)

Together with the states |0⟩ and |1⟩, the four states in Eq. (2.89), (2.92), (2.96),

and (2.99) are special, so we’ll give them their own names, based on the coefficient in

front of |1⟩

|+⟩ ≡ 1√
2
(|0⟩+ |1⟩) (2.106)

|−⟩ ≡ 1√
2
(|0⟩ − |1⟩) (2.107)

|+𝑖⟩ ≡ 1√
2
(|0⟩+ 𝑖 |1⟩) (2.108)

|−𝑖⟩ ≡ 1√
2
(|0⟩ − 𝑖 |1⟩) (2.109)

The set of six states {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+𝑖⟩ , |−𝑖⟩} are the ±1 eigenstates of the three

Pauli matrices

Pauli matrix Eigenvalue Eigenstate

�̂�
+1 |+⟩
-1 |−⟩

𝑌
+1 |+𝑖⟩
-1 |−𝑖⟩

𝑍
+1 |0⟩
-1 |1⟩

Since the eigenstates of a given Pauli matrix 𝜎𝑖 are stationary under application of

the corresponding unitary operator �̂�𝑖 (up to a global phase), these six wavefunctions

serve as cardinal states of the three-dimensional space defined by the Pauli matrices

(Fig. 2-2b). Moreover, when these wavefunctions are rotated according to one of the

other two Pauli matrices 𝜎𝑗 ̸=𝑖, they trace out the equator and meridians of a spherical

shell in SU(2), known as the Bloch sphere (Fig. 2-3).
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Figure 2-3: The Bloch sphere, inscribed atop the axes of the matrix space SU(2)
in Fig. 2-2b. The spherical shell of constant radius represents the complete set of
possible single-qubit pure states |𝜓⟩ under evolution of a general 2 × 2 Hamiltonian
�̂�.

2.3 General Rotations

In the previous section, we showed how Hamiltonians proportional to each of the Pauli

matrices generate rotations along the equator and medians of the Bloch sphere, trans-

forming the states |0⟩ and |1⟩ into each of the six cardinal states {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+𝑖⟩ , |−𝑖⟩}.

In this section, we’ll briefly derive the unitary operator corresponding to a general

Hamiltonian of the form in Eq. (2.11), and we’ll show that this produces the full set

of states on the surface of the Bloch sphere.

Starting from the Pauli decomposition of the general 2×2 Hamiltonian in Eq. (2.11)

�̂� = 𝐸𝐼𝐼 + 𝐸𝑋�̂� + 𝐸𝑌 𝑌 + 𝐸𝑍𝑍 (2.110)
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Figure 2-4: Examples of rotations generated by the unitary operators �̂�𝑋 , �̂�𝑌 , and
�̂�𝑍 for a set of initial states. In each plot, two arcs of angle 𝜃 = 𝜋/2 are drawn along
the surface of the Bloch sphere—adding up to a combined rotation angle 𝜃 = 𝜋—and
the rotation axis is highlighted for emphasis.
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we can exponentiate this Hamiltonian and write the completely general unitary

�̂�(�̂�, 𝑡) = exp

(︂
− 𝑖

ℏ
�̂�𝑡

)︂
(2.111)

= exp

(︂
− 𝑖

ℏ
(𝐸𝐼𝐼 + 𝐸𝑋�̂� + 𝐸𝑌 𝑌 + 𝐸𝑍𝑍)𝑡

)︂
(2.112)

Since the identity matrix 𝐸𝐼𝐼 commutes with the sum of Pauli matrices 𝐸𝑋�̂�+𝐸𝑌 𝑌 +

𝐸𝑍𝑍, we can factor it out and rewrite the unitary as the product of two exponentials

�̂�(�̂�, 𝑡) = exp

(︂
− 𝑖

ℏ
𝐸𝐼𝐼

)︂
exp

(︂
− 𝑖

ℏ
(𝐸𝑋�̂� + 𝐸𝑌 𝑌 + 𝐸𝑍𝑍)𝑡

)︂
(2.113)

= �̂�𝐼(𝜃) exp

(︂
− 𝑖

ℏ
(𝐸𝑋�̂� + 𝐸𝑌 𝑌 + 𝐸𝑍𝑍)𝑡

)︂
(2.114)

As we showed previously in our derivation of Eq. (2.46), the unitary �̂�𝐼 only applies

a global phase, so we can drop this factor without loss of generality

�̂�(�̂�, 𝑡) = exp

(︂
− 𝑖

ℏ
(𝐸𝑋�̂� + 𝐸𝑌 𝑌 + 𝐸𝑍𝑍)𝑡

)︂
(2.115)

Since the Pauli matrices form an orthonormal basis in SU(2), we can rewite the sum

in the exponential above as a dot product

�̂�(�̂�, 𝑡) = exp

(︂
− 𝑖

ℏ
𝐸(�̂� · �⃗�)𝑡

)︂
(2.116)

= exp (−𝑖𝜔(�̂� · �⃗�)𝑡) (2.117)

where the unit vector �̂� = (𝑛𝑋 , 𝑛𝑌 , 𝑛𝑍) captures the relative weighting of the three

Pauli components in the Hamiltonian. Taking the general unitary operator in Eq. (2.117),

we can exploit the fact that (�̂� · �⃗�)2 = 𝐼 and follow the exact same derivation from

Eqs. (2.51)–(2.56). Doing this, we arrive at the general rotation matrix

�̂��̂� = 𝐼 cos(𝜔𝑡)− 𝑖(�̂� · �⃗�) sin(𝜔𝑡) (2.118)
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which we can write in terms of an angle 𝜃 around the axis �̂� as

�̂��̂�(𝜃) = 𝐼 cos(𝜃/2)− 𝑖(�̂� · �⃗�) sin(𝜃/2) (2.119)

Let’s apply this general rotation to the state |0⟩ and see what it does. Writing

the matrix in Eq. (2.119) and applying it to the vector |0⟩

�̂��̂�(𝜃) |0⟩ =

[︃
cos(𝜃/2)− 𝑖𝑛𝑍 sin(𝜃/2) (−𝑛𝑌 − 𝑖𝑛𝑋) sin(𝜃/2)

(𝑛𝑌 − 𝑖𝑛𝑋) sin(𝜃/2) cos(𝜃/2) + 𝑖𝑛𝑍 sin(𝜃/2)

]︃[︃
1

0

]︃
(2.120)

=

[︃
cos(𝜃/2)− 𝑖𝑛𝑍 sin(𝜃/2)

(𝑛𝑌 − 𝑖𝑛𝑋) sin(𝜃/2)

]︃
(2.121)

= 𝑎

[︃
1

0

]︃
+ 𝑏

[︃
0

1

]︃
(2.122)

= 𝑎 |0⟩+ 𝑏 |1⟩ (2.123)

where 𝑎 and 𝑏 are complex numbers which depend on the axis �̂� and angle 𝜃 of rotation

𝑎 = cos(𝜃/2)− 𝑖𝑛𝑍 sin(𝜃/2) (2.124)

𝑏 = (𝑛𝑌 − 𝑖𝑛𝑋) sin(𝜃/2) (2.125)

Notice that, since �̂� is a unit vector 𝑛2
𝑋 +𝑛2

𝑌 +𝑛2
𝑍 = 1, the complex coefficients 𝑎 and

𝑏 are constrained such that

|𝑎|2 + |𝑏|2 = |cos(𝜃/2)− 𝑖𝑛𝑍 sin(𝜃/2)|2 + |(𝑛𝑌 − 𝑖𝑛𝑋) sin(𝜃/2)|2 (2.126)

= cos2(𝜃/2) + 𝑛2
𝑍 sin

2(𝜃/2) + +𝑛2
𝑌 sin2(𝜃/2) + +𝑛2

𝑋 sin2(𝜃/2) (2.127)

= cos2(𝜃/2) + (𝑛2
𝑋 + 𝑛2

𝑌 + 𝑛2
𝑍) sin

2(𝜃/2) (2.128)

= cos2(𝜃/2) + sin2(𝜃/2) (2.129)

= 1 (2.130)

for all values of 𝜃, 𝑛𝑋 , 𝑛𝑌 , 𝑛𝑍 .

Recall that the unitary �̂��̂�(𝜃) represents the complete set of possible evolutions
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given the general 2× 2 Hamiltonian in Eq. (2.11). Thus, we have just arrived at the

complete set of quantum mechanical states |𝜓⟩ which are possible given evolution of

the states |0⟩ and |1⟩ under the Schrödinger equation

|𝜓⟩ = 𝑎 |0⟩+ 𝑏 |1⟩ (2.131)

where

|𝑎|2 + |𝑏|2 = 1 (2.132)

These vectors live on the surface of the Bloch sphere in Fig. 2-3 and form a Hilbert

space of possible quantum states. Thus, when we ask how a quantum bit moves in

time, we can imagine our qubit tracing out elaborate trajectories across the surface

of this sphere, its path through state space determined by the Hamiltonian governing

its evolution.

2.4 Coherent Superposition

Before we proceed, it is worth sitting with the consequences of what we have just

done. Starting from the Schrödinger equation in Eq. (2.6) and the requirement that

�̂� is hermitian, our states |0⟩ and |1⟩ have evolved into new states of the general form

|𝜓⟩ = 𝑎 |0⟩+ 𝑏 |1⟩ (2.133)

When we defined the states |0⟩ and |1⟩, recall that we required only that they were

orthogonal to one another—that is, that they were are dissimilar from each other as

possible. How do we interpret this new state |𝜓⟩, which appears to contain both itself

and its opposite?

To answer this question we need to return to a point that we brushed under the

rug at the beginning of the section: when the wavefunctions |1⟩ and |0⟩ were answer-

ing YES and NO with absolute conviction, what question were they responding to?

Playing with this riddle for a minute, it’s easy to see that there is only one question
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which would generically—albeit tautologically—produce these responses: “will you

answer YES?” Formally, we can write this question as a quantum operator

�̂�1 =

[︃
0 0

0 1

]︃
(2.134)

where the probability 𝑝 of a given wavefunction |𝜓⟩ answering this question in the

affirmative is

𝑝1 ≡ ⟨𝜓|𝑀1 |𝜓⟩ (2.135)

Plugging in our states |0⟩ and |1⟩

𝑝1(|0⟩) = ⟨0| �̂�1 |0⟩ (2.136)

=
[︁
1 0

]︁ [︃0 0

0 1

]︃[︃
1

0

]︃
(2.137)

= 0 (2.138)

𝑝1(|1⟩) = ⟨1| �̂�1 |1⟩ (2.139)

=
[︁
0 1

]︁ [︃0 0

0 1

]︃[︃
0

1

]︃
(2.140)

= 1 (2.141)

we get exactly the answers which we used to label these two states in the first place.

Indeed, |0⟩ and |1⟩ are the eigenstates of the operator �̂�1, with eigenvalues 0 and

1 respectively. In this sense, it is the operator �̂�1 which defines the 0 and 1 of our

quantum bit—it is the ‘question’ which defines the ‘answer’ 0 or 1.

If the operator �̂�1 corresponds to the question “will you answer YES?”, it is easy

to see that there exists another operator �̂�0 which corresponds to the question “will
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you answer NO?”

�̂�0 =

[︃
1 0

0 0

]︃
(2.142)

where the probability 𝑝 of a given wavefunction |𝜓⟩ answering this question in the

affirmative is

𝑝0 ≡ ⟨𝜓|𝑀0 |𝜓⟩ (2.143)

Plugging in our states |0⟩ and |1⟩, we find that the probabilities flip, as we would

expect: |0⟩ answers NO 100% of the time, |1⟩ answers NO 0% of the time

𝑝0(|0⟩) = ⟨0| �̂�0 |0⟩ (2.144)

=
[︁
1 0

]︁ [︃1 0

0 0

]︃[︃
1

0

]︃
(2.145)

= 1 (2.146)

𝑝0(|1⟩) = ⟨1| �̂�0 |1⟩ (2.147)

=
[︁
0 1

]︁ [︃1 0

0 0

]︃[︃
0

1

]︃
(2.148)

= 0 (2.149)

Indeed, we can see that the labels we assigned to our two states were entirely con-

tingent on the question we chose to ask—we could just as well have defined our

states |0⟩ and |1⟩ in terms of the question posed by �̂�0 instead of �̂�1, which would

simply amount to swapping which label we used for which state. Physically, this

would amount to performing a simple basis transformation which rotates the Bloch

sphere such that the poles swap, though all of the physics of the system would remain

completely unchanged.

What happens when we ask these questions of a general wavefunction |𝜓⟩? Plug-

ging in the general wavefunction |𝜓⟩ from Eq. (2.131), we can calculate the probabil-
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ities 𝑝0 and 𝑝1

𝑝0(|𝜓⟩) = ⟨𝜓| �̂�0 |𝜓⟩ (2.150)

= (⟨0| 𝑎* + ⟨1| 𝑏*) �̂�0 (𝑎 |0⟩+ 𝑏 |1⟩) (2.151)

=
[︁
𝑎* 𝑏*

]︁ [︃1 0

0 0

]︃[︃
𝑎

𝑏

]︃
(2.152)

= |𝑎|2 (2.153)

𝑝1(|𝜓⟩) = ⟨𝜓| �̂�0 |𝜓⟩ (2.154)

= (⟨0| 𝑎* + ⟨1| 𝑏*) �̂�0 (𝑎 |0⟩+ 𝑏 |1⟩) (2.155)

=
[︁
𝑎* 𝑏*

]︁ [︃0 0

0 1

]︃[︃
𝑎

𝑏

]︃
(2.156)

= |𝑏|2 (2.157)

Here, we see that the state |𝜓⟩ does not answer YES or NO unequivocally: with

probability 𝑝0 = |𝑎|2, the state will yield the answer NO ; with probability 𝑝1 = |𝑏|2,

YES. Since this is a binary response, these two probabilities should sum to 100%.

Indeed, this is exactly the normalization condition we just proved in Eq. (2.132)!

Geometrically, we can see that these probabilities correspond to taking state |𝜓⟩—

visualized as a point on the surface of the Bloch sphere—and projecting it onto the

𝑍-axis: the closer to the |0⟩ or |1⟩ pole, the higher the probability of getting the

corresponding outcome.

Which brings us back to the question we started this section with: how do we

interpret this strange state |𝜓⟩ in the first place? Naïvely, we could say that |𝜓⟩ is

simply a mathematical construct which captures a set of probabilities. In this inter-

pretation, the wavefunction |𝜓⟩ isn’t ‘real,’ but it has predictive power for estimating

the answers to questions which are. For example, looking at the state |+⟩, we see
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that this state will answer YES and NO with 50% probability

𝑝0(|+⟩) = ⟨+| �̂�0 |+⟩ (2.158)

=
1√
2
(⟨0|+ ⟨1|)

[︃
1 0

0 0

]︃
1√
2
(|0⟩+ |1⟩) (2.159)

= 0.5 (2.160)

𝑝1(|+⟩) = ⟨+| �̂�1 |+⟩ (2.161)

=
1√
2
(⟨0|+ ⟨1|)

[︃
0 0

0 1

]︃
1√
2
(|0⟩+ |1⟩) (2.162)

= 0.5 (2.163)

In this sense, it’s tempting to say that the state |+⟩ is like the state of a coin flip

before you look at the result. Before you look at which side the coin has landed on,

all you can say is that there is a 50% chance of getting heads and a 50% chance of

getting tails, just like there’s a 50% chance of |+⟩ yielding the answers 0 or 1. So can

we just say that |𝜓⟩ is like the state of a biased coin flip, where the coefficients 𝑎 and

𝑏 capture the uneven probabilities of getting heads or tails?

And yet, |+⟩ isn’t the only state which predicts a 50/50 chance of YES or NO.

Looking at the state |−⟩, we find the exact same probabilities as we just found for

|+⟩

𝑝0(|−⟩) = ⟨−| �̂�0 |−⟩ (2.164)

=
1√
2
(⟨0| − ⟨1|)

[︃
1 0

0 0

]︃
1√
2
(|0⟩ − |1⟩) (2.165)

= 0.5 (2.166)
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𝑝1(|−⟩) = ⟨−| �̂�1 |−⟩ (2.167)

=
1√
2
(⟨0| − ⟨1|)

[︃
0 0

0 1

]︃
1√
2
(|0⟩ − |1⟩) (2.168)

= 0.5 (2.169)

So too for the states |+𝑖⟩ and |−𝑖⟩. Indeed, since 𝑎 and 𝑏 are complex numbers and

the probabilities only depend on the absolute value squared of the coefficients |𝑎|2 and

|𝑏|2, we quickly see that there is a continuous degree of freedom in the phase between

the two coefficients such that the probability of getting YES or NO is 50/50

𝑎

𝑏
= 𝑒−𝑖𝜑 (2.170)

Looking at the Bloch sphere in Fig. 2-3, it is easy to see that this condition corresponds

to the infinite number of states on the equator of the sphere, equidistant from the

poles |0⟩ and |1⟩.

If the wavefunction |𝜓⟩ only exists to keep track of probabilities, why is there this

extraordinary redundancy in the number of states corresponding to an honest coin

flip? Not only that, looking closer at the states on the equator of the Bloch sphere,

we find pairs of states which clearly contradict each other. For example, though the

states |+⟩ and |−⟩ yield the exact same probability of YES and NO, these two states

are orthogonal

⟨+|−⟩ = 1√
2

[︁
1 1

]︁ 1√
2

[︃
1

−1

]︃
(2.171)

= 0 (2.172)

The same is true of the states |+𝑖⟩ and |−𝑖⟩: ⟨+𝑖| − 𝑖⟩ = 0. This is deeply strange.

Mathematically, the states |+⟩ and |−⟩ contradict each other as profoundly as |0⟩

and |1⟩ do. If this is true, surely there is something more going on than simple

probabilities of binary responses. Surely these wavefunctions are ‘real,’ at least in

the sense that they have some innate quality which is responsible for this absolute
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disagreement between states yielding the same probabilities. It’s as if these states

both correspond to honest coin flips, but to such different types of flips that the two

states have nothing in common with one another.

Here, the classical analogy of coin flips quickly starts to break down. But wait!

Maybe the orthogonality of |+⟩ and |−⟩ is a simple mathematical artifact. After all,

if we only ask these states questions of the form �̂�1 or �̂�0, surely there’s no way to

distinguish between these two states. This line of thinking has an easy rebuttal. As

we just showed in the previous section, the states |+⟩ and |−⟩ may give the same

probabilities of YES and NO, but they evolve in opposite directions. For example,

consider the unitary operator which corresponds to rotation around the 𝑌 axis by an

angle 𝜃 = 𝜋/2

�̂�𝑌 (𝜃 = 𝜋/2) =
1√
2

[︃
1 −1

1 1

]︃
(2.173)

Applying this operator to the states |+⟩ and |−⟩, we find that they evolve into states

which deterministically provide opposite answers to �̂�1 and �̂�0: namely our familiar

states |0⟩ and |1⟩

�̂�𝑌 (𝜃 = 𝜋/2) |+⟩ = 1√
2

[︃
1 −1

1 1

]︃
1√
2

[︃
1

1

]︃
(2.174)

=
1

2

[︃
0

2

]︃
(2.175)

= |1⟩ (2.176)

�̂�𝑌 (𝜃 = 𝜋/2) |−⟩ = 1√
2

[︃
1 −1

1 1

]︃
1√
2

[︃
1

−1

]︃
(2.177)

=
1

2

[︃
2

0

]︃
(2.178)

= |0⟩ (2.179)
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Mathematically, this is not surprising—indeed, recalling our derivations leading up

to Eqs. (2.96) and (2.99) from the previous section, this is exactly how we created

the states |+⟩ and |−⟩ in the first place. Physically, this is utterly bizarre. It’s as if,

having flipped our coin, there was an operation we could perform which would yield

heads or tails with absolute certainty.

In quantum mechanics, we call states of the form |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ coherent su-

perpositions. As I’ve briefly sketched in this section, the properties of these states are

deeply strange, and the philosophical implications of their existence are immense. In-

terpreting quantum theory through the lens of new materialism and queer theory, the

physicist and philosopher Karen Barad famously noted that the difference between

a classical coin flip and a quantum superposition is the difference between epistemo-

logical uncertainty and ontological indeterminacy [32]. It’s not that we don’t know

whether the system is in either |0⟩ or |1⟩—that is, it’s not an epistemological question

of what we as observers know about the system, like a flipped coin that hasn’t been

checked yet—but rather that the system in fact occupies a state which is both—its

reality defies the classical binary. If the states |0⟩ and |1⟩ are ‘classical states’—in

the sense that they correspond to classically binary properties—we have now shown

how, from only a few core principles, quantum mechanics naturally gives rise to states

which are decidedly ‘nonclassical.’ The creation, manipulation, and measurement of

such states—and the consequences which arise in doing so—will occupy much of the

remainder of this thesis.

2.5 Density Matrices

Throughout this chapter, we have described wavefunctions as state vectors of the

form

|𝜓⟩ = 𝑎 |0⟩+ 𝑏 |1⟩ (2.180)

=

[︃
𝑎

𝑏

]︃
(2.181)
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These vectors, we have shown, span the entire space of possible states which arise

from evolving the qubit states |0⟩ and |1⟩ according to the Schrödinger equation with

a hermitian 2× 2 Hamiltonian. In the remainder of this thesis, it will be convenient

to employ a complementary formalism for describing quantum states known as the

density matrix.

For a general single-qubit state vector |𝜓⟩ = 𝑎 |0⟩+𝑏 |1⟩, the corresponding density

matrix 𝜌 is simply given by the outer product of the state vector with itself

𝜌 ≡ |𝜓⟩⟨𝜓| (2.182)

=

[︃
𝑎

𝑏

]︃ [︁
𝑎* 𝑏*

]︁
(2.183)

=

[︃
|𝑎|2 𝑎𝑏*

𝑎*𝑏 |𝑏|2

]︃
(2.184)

which has the nice property that the probabilities 𝑝0 = |𝑎|2 and 𝑝1 = |𝑏|2 are readily

read off from the diagonal entries of the matrix. As such, we can see that the nor-

malization condition from Eq. (2.132) places a constraint on the trace of the density

matrix

Tr[𝜌] = 1 (2.185)

Writing out the density matrices for the four cardinal states on the equator of the

Bloch sphere

𝜌+ =
1

2

[︃
1 1

1 1

]︃
(2.186)

𝜌− =
1

2

[︃
1 −1

−1 1

]︃
(2.187)

𝜌+𝑖 =
1

2

[︃
1 −𝑖
𝑖 1

]︃
(2.188)

𝜌−𝑖 =
1

2

[︃
1 𝑖

−𝑖 1

]︃
(2.189)

we see that all these states have the same entries along the diagonal (i.e. they will
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yield the same probabilities of measuring 0 or 1) but differ in the phases on the off-

diagonal, the consequences of which we saw above in our discussion of the relationship

between different superposition states. As for the qubit states |0⟩ and |1⟩

𝜌0 =

[︃
1 0

0 0

]︃
(2.190)

𝜌1 =

[︃
0 0

0 1

]︃
(2.191)

we see that these are exactly the same as the operators �̂�0 and �̂�1 we used to obtain

the probabilities of measuring 0 and 1 above. This is not a coincidence. Notice the

relationship between the state vector and density matrix in Eq. (2.182) implies that 𝜌

must be hermitian. As a result, we can interpret the density matrix two different ways.

First and foremost, we can interpret it as a quantum state—that is, as an account

of the relative weighting of the basis states |0⟩ and |1⟩ and the phase between them.

Second, we can interpret it as a quantum operator—it is the projector which captures

the probability of collapsing another wavefunction onto the state corresponding to

that density matrix.

In the density matrix formalism, we can write the time independent Schroödinger

equation from Eq. (2.6) as
𝑑

𝑑𝑡
𝜌 = − 𝑖

ℏ

[︁
�̂�, 𝜌

]︁
(2.192)

where [𝐴,𝐵] is the commutator of the general square matrices 𝐴 and 𝐵

[𝐴,𝐵] ≡ 𝐴𝐵 −𝐵𝐴 (2.193)

The density matrix form of the Schrödinger equation in Eq. (2.192) is commonly

referred to as the von Neumann equation, and it has solutions of the form

𝜌(𝑡) = 𝑒−
𝑖
ℏ �̂�𝑡𝜌(𝑡 = 0)𝑒

𝑖
ℏ �̂�𝑡 (2.194)

which is just the density matrix of |𝜓(𝑡)⟩ from Eq. (2.7). Replacing the matrix
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exponentials with the familiar unitary operators from Eq.(2.16), we find that the

time evolved unitary 𝜌(𝑡) can be found by applying �̂� and its complex conjugate �̂� †

to either side of the initial density matrix

𝜌(𝑡) = �̂�(�̂�, 𝑡)𝜌(𝑡 = 0)�̂� †(�̂�, 𝑡) (2.195)

Using the dynamic equations above, we can easily obtain all the results we calculated

using state vectors in the previous section. However, as we’ll see later in this chapter,

the density matrix formalism is a more general way of expressing quantum states

and can capture some important wavefunctions which the state vector representation

cannot. For this reason, we will largely rely on density matrices going forward, using

the equivalent state vectors when appropriate.

2.6 Dynamics of Multiple Qubits

So far, we have only considered the dynamics of a single quantum bit as it traces out

a path across the surface of its Bloch sphere. How do we describe the dynamics of

multiple qubits?

Let’s consider two quantum mechanical systems A and B, where the wavefunction

of each can be written as a quantum bit

|𝜓⟩𝐴 = 𝑎𝐴 |0⟩+ 𝑏𝐴 |1⟩ (2.196)

|𝜓⟩𝐵 = 𝑎𝐵 |0⟩+ 𝑏𝐵 |1⟩ (2.197)

We can write the combined wavefunction of these two systems |𝜓⟩𝐴 as the tensor

product of the individual wavefunctions

|𝜓⟩𝐴𝐵 = |𝜓⟩𝐴 ⊗ |𝜓⟩𝐵 (2.198)

where the Kronecker product on the right hand side turns the two 2× 1 vectors |𝜓⟩𝐴
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and |𝜓⟩𝐴 into a single vector of dimension 4× 1

|𝜓⟩𝐴 ⊗ |𝜓⟩𝐵 =

[︃
𝑎𝐴
𝑏𝐴

]︃
⊗

[︃
𝑎𝐵
𝑏𝐵

]︃
(2.199)

=

⎡⎢⎢⎢⎢⎣
𝑎𝐴

[︃
𝑎𝐵
𝑏𝐵

]︃

𝑏𝐴

[︃
𝑎𝐵
𝑏𝐵

]︃
⎤⎥⎥⎥⎥⎦ (2.200)

=

⎡⎢⎢⎢⎣
𝑎𝐴𝑎𝐵
𝑎𝐴𝑏𝐵
𝑏𝐴𝑎𝐵
𝑏𝐴𝑏𝐵

⎤⎥⎥⎥⎦ (2.201)

From this definition, we can write down the state vectors for the four possible com-

binations of the states |0⟩ and |1⟩

|00⟩𝐴𝐵 ≡ |0⟩𝐴 ⊗ |0⟩𝐵 =

⎡⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎦ (2.202)

|10⟩𝐴𝐵 ≡ |1⟩𝐴 ⊗ |0⟩𝐵 =

⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ (2.203)

|01⟩𝐴𝐵 ≡ |0⟩𝐴 ⊗ |1⟩𝐵 =

⎡⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎦ (2.204)

|11⟩𝐴𝐵 ≡ |1⟩𝐴 ⊗ |1⟩𝐵 =

⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ (2.205)

Just as thee two states |0⟩ and |1⟩ formed an orthogonal basis for representing a

general single-qubit state, we can see that these four states form an orthogonal basis
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for representing a general two-qubit state

|𝜓⟩𝐴𝐵 = 𝑎 |00⟩+ 𝑏 |10⟩+ 𝑐 |01⟩+ 𝑑 |11⟩ (2.206)

where the absolute value of the coefficients must sum to unity to preserve probability,

as in the single-qubit case

|𝑎|2 + |𝑏|2 + |𝑐|2 + |𝑑|2 = 1 (2.207)

Having written the wavefunction for a system of two qubits |𝜓⟩𝐴𝐵, we can easily

add a third qubit by taking the tensor product of the two-qubit wavefunction we just

found with an additional single-qubit state

|𝜓⟩𝐴𝐵𝐶 = |𝜓⟩𝐴 ⊗ |𝜓⟩𝐵 ⊗ |𝜓⟩𝐶 (2.208)

= |𝜓⟩𝐴𝐵 ⊗ |𝜓⟩𝐶 (2.209)

=

⎡⎢⎢⎢⎣
𝑎𝐴𝑎𝐵
𝑎𝐴𝑏𝐵
𝑏𝐴𝑎𝐵
𝑏𝐴𝑏𝐵

⎤⎥⎥⎥⎦⊗

[︃
𝑎𝐶
𝑏𝐶

]︃
(2.210)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎𝐴𝑎𝐵𝑎𝐶
𝑎𝐴𝑎𝐵𝑏𝐶
𝑎𝐴𝑏𝐵𝑎𝐶
𝑎𝐴𝑏𝐵𝑏𝐶
𝑏𝐴𝑎𝐵𝑎𝐶
𝑏𝐴𝑎𝐵𝑏𝐶
𝑏𝐴𝑏𝐵𝑎𝐶
𝑏𝐴𝑏𝐵𝑏𝐶

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.211)

which is now a linear combination of eight orthogonal basis states

|𝜓⟩𝐴𝐵𝐶 = 𝑎 |000⟩+ 𝑏 |001⟩+ 𝑐 |010⟩+ 𝑑 |011⟩+ 𝑒 |110⟩+ 𝑓 |111⟩ (2.212)

and so on and so forth for systems of four or more qubits.

What’s significant here is that the number of basis states required to express
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the wavefunction of an 𝑛-qubit state scales as 2𝑛. In one sense, this should not be

surprising—after all, the number of possible outcomes of 𝑛 coin flips also scales as

2𝑛. Indeed, like the outcomes of 𝑛 coin flips, the exponential number of outcomes of

measuring the states in Eq. (2.198) and (2.208) is somewhat misleading: the number of

outcomes may scale as 2𝑛, but the probabilities of these outcomes are not independent.

Looking at the wavefunctions, we can see that the number of independent parameters

(i.e. the number of complex coefficients 𝑎𝑖 and 𝑏𝑖) scales only as 2𝑛. That is, as long as

we know the coefficients for each individual qubit in the ensemble, we can fully express

the wavefunctions of these product states with resources that scale only linearly with

the system size. However, as we’re about to see, quantum mechanics quickly gives rise

to states which are not product states. These states, unlike the classical example of

multiple coin flips, cannot be expressed as the product of individual qubit states, and

it is here that the exponential expanse of Hilbert space immediately unfolds before

us.

How do these ensembles of qubits evolve in time? For simplicity, let’s focus on

states of only two qubits, since the results for two qubit can easily be extrapolated

to systems of three or more qubits by taking tensor products of single- and two-qubit

subsystems, as shown above. Given a general two-qubit wavefunction |𝜓⟩𝐴𝐵, the

evolution of this state is once again determined by the Schrödinger equation

𝑑

𝑑𝑡
|𝜓⟩ = − 𝑖

ℏ
�̂� |𝜓⟩ (2.213)

where the Hamiltonian �̂� is now a 4 × 4 hermitian matrix. Just as we decomposed

the general single-qubit Hamiltonian into a sum of Pauli matrices in Eq. (2.11), the

general two-qubit Hamiltonian can be written as the sum of tensor products of Pauli

matrices

�̂�𝐴𝐵 =
∑︁

𝑖,𝑗={𝐼,𝑋,𝑌,𝑍}

𝐸𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗 (2.214)

We can pull out the terms proportional to the Identity matrix and break this sum
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into a few more illustrative pieces

�̂�𝐴𝐵 =
∑︁

𝑖,𝑗={𝐼,𝑋,𝑌,𝑍}

𝐸𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗 (2.215)

=
∑︁

𝑖={𝐼,𝑋,𝑌,𝑍}

𝐸𝑖𝐼𝜎𝑖 ⊗ 𝐼 +
∑︁

𝑗={𝐼𝑋,𝑌,𝑍}

𝐸𝐼𝑗𝐼 ⊗ 𝜎𝑖 +
∑︁

𝑖,𝑗={𝑋,𝑌,𝑍}

𝐸𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗 (2.216)

Writing the two-qubit Hamiltonian in this form, notice that the first two terms are

simply the general single-qubit Hamiltonians from Eq. (2.11) for each of the two

qubits 𝐴 and 𝐵, times the Identity for the other qubit. As a result, we can rewrite

the Hamiltonian above as

�̂�𝐴𝐵 = �̂�𝐴 ⊗ 𝐼 + 𝐼 ⊗ �̂�𝐵 +
∑︁

𝑖,𝑗={𝑋,𝑌,𝑍}

𝐸𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗 (2.217)

= �̂�𝐴⊗𝐵 + �̂�int (2.218)

where �̂�𝐴⊗𝐵 is the sum of the single-qubit Hamiltonians and �̂�int groups together the

remaining products of Paulis

�̂�𝐴⊗𝐵 ≡ �̂�𝐴 ⊗ 𝐼 + 𝐼 ⊗ �̂�𝐵 (2.219)

�̂�int ≡
∑︁

𝑖,𝑗={𝑋,𝑌,𝑍}

𝐸𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗 (2.220)

Before we look at the terms in �̂�int, let’s set �̂�int to zero and consider what happens

when our two qubits evolve according to a Hamiltonian of the form

�̂� = �̂�𝐴⊗𝐵 (2.221)

= �̂�𝐴 ⊗ 𝐼 + 𝐼 ⊗ �̂�𝐵 (2.222)

Writing the unitary operator corresponding to this Hamiltonian, we can take advan-

tage of the fact that �̂�𝐴 ⊗ 𝐼 and 𝐼 ⊗ �̂�𝐵 commute, allowing us to break apart the

165



CHAPTER 2. QUBITS, ROTATIONS, ENTANGLEMENTS

exponential

�̂�(�̂�𝐴⊗𝐵, 𝑡) = exp

(︂
− 𝑖

ℏ
(�̂�𝐴 ⊗ 𝐼 + 𝐼 ⊗ �̂�𝐵)𝑡

)︂
(2.223)

= exp

(︂
− 𝑖

ℏ
(�̂�𝐴 ⊗ 𝐼)𝑡

)︂
exp

(︂
− 𝑖

ℏ
(𝐼 ⊗ �̂�𝐵)𝑡

)︂
(2.224)

= �̂�(�̂�𝐴⊗𝐼 , 𝑡)�̂�(�̂�𝐵⊗𝐼 , 𝑡) (2.225)

Applying this unitary to the general two-qubit product state |𝜓⟩𝐴𝐵 = |𝜓⟩𝐴 ⊗ |𝜓⟩𝐵,

we obtain the time-evolved state |𝜓(𝑡)⟩𝐴𝐵

|𝜓(𝑡)⟩𝐴𝐵 = �̂�(�̂�𝐴⊗𝐵, 𝑡) |𝜓⟩𝐴𝐵 (2.226)

= �̂�(�̂�𝐴⊗𝐼 , 𝑡)�̂�(�̂�𝐵⊗𝐼 , 𝑡) (|𝜓⟩𝐴 ⊗ |𝜓⟩𝐵) (2.227)

= �̂�(�̂�𝐴⊗𝐼 , 𝑡) (|𝜓⟩𝐴 ⊗ |𝜓(𝑡)⟩𝐵) (2.228)

= |𝜓(𝑡)⟩𝐴 ⊗ |𝜓(𝑡)⟩𝐵 (2.229)

which is just a product state of the time-evolved single-qubit states |𝜓(𝑡)⟩𝐴 and

|𝜓(𝑡)⟩𝐵. Thus, for two-qubit Hamiltonians where 𝐻int = 0, we see that the dy-

namics are separable and product states will always evolve into other product states

determined by the single-qubit Hamiltonians �̂�𝐴 and �̂�𝐵.

What happens when 𝐻int ̸= 0? As a simple example, let’s consider a two-qubit

Hamiltonian where four of the coefficients 𝐸𝑖𝑗 in Eq. (2.214) are equal and all the rest

are set to zero

𝐸𝑖𝑗 =

⎧⎪⎨⎪⎩𝐸, for 𝑖 = 𝑗

0, for 𝑖 ̸= 𝑗

(2.230)

This will give us the corresponding two-qubit Hamiltonian

�̂�𝐴𝐵 = 𝐸(𝐼 ⊗ 𝐼 + �̂� ⊗ �̂� + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍) (2.231)
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which can be exponentiated into the unitary operator

�̂�(�̂�𝐴𝐵, 𝑡) = exp

{︂(︂
− 𝑖

ℏ
𝐸(𝐼 ⊗ 𝐼 + �̂� ⊗ �̂� + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍)𝑡

)︂}︂
(2.232)

= exp
{︁(︁

−𝑖𝜔(𝐼 ⊗ 𝐼 + �̂� ⊗ �̂� + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍)𝑡
)︁}︁

(2.233)

where we can replace the product of frequency and time with an angle 𝜔𝑡 ≡ 𝜃/2, as

we did in the single-qubit case

�̂�(�̂�𝐴𝐵, 𝜃) = exp

{︂(︂
−𝑖𝜃

2
(𝐼 ⊗ 𝐼 + �̂� ⊗ �̂� + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍)

)︂}︂
(2.234)

Let’s evaluate this unitary at a couple particular angles. First, consider the com-

bination of frequency and time where 𝜃 = 𝜋/2, factoring out and dropping global

phases wherever possible

�̂�(�̂�𝐴𝐵, 𝜋/2) =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦ (2.235)

To see what this operation does, we can apply this unitary to the four two-qubit basis

states

�̂�(�̂�𝐴𝐵, 𝜋/2) |00⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎦ = |00⟩𝐴𝐵 (2.236)

�̂�(�̂�𝐴𝐵, 𝜋/2) |01⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ = |10⟩𝐴𝐵 (2.237)

�̂�(�̂�𝐴𝐵, 𝜋/2) |10⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎦ = |01⟩𝐴𝐵 (2.238)
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�̂�(�̂�𝐴𝐵, 𝜋/2) |11⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ = |11⟩𝐴𝐵 (2.239)

Comparing the states on the left and right hand sides of the four equations above,

we see that the unitary �̂�(�̂�𝐴𝐵, 𝜋/2) swaps the states of the two qubits. That is, if

qubit A is in a general state |𝜓⟩ and B is in a different state |𝜑⟩

|𝜓𝜑⟩𝐴𝐵 ≡ |𝜓⟩𝐴 ⊗ |𝜑⟩𝐵 (2.240)

this operation places A in |𝜑⟩ and B in |𝜓⟩

�̂�(�̂�𝐴𝐵, 𝜋/2) |𝜓𝜑⟩𝐴𝐵 = |𝜑𝜓⟩𝐴𝐵 (2.241)

Notice that, like the Hamiltonians where �̂�int = 0 which we considered above, this

operation turns product states into other product states. However, unlike the Hamil-

tonians where �̂�int = 0, the state which each of the qubits evolves into clearly depends

on the state of its partner. The qubits are now talking to each other.

Things get even more interesting if we interrupt these states during their evolution

from one product state to another. Just as we showed how superposition states arise

from interrupting the single-qubit states |0⟩ and |1⟩ midway through their evolution

from one pole of the Bloch sphere to the other, let’s look at what happens when we

apply this same swapping operation for half the time, such that 𝜃 = 𝜋/4

�̂�(�̂�𝐴𝐵, 𝜋/4) =

⎡⎢⎢⎢⎣
𝑒−𝑖

𝜋
4 0 0 0

0 1√
2

− 𝑖√
2

0

0 − 𝑖√
2

1√
2

0

0 0 0 𝑒−𝑖
𝜋
4

⎤⎥⎥⎥⎦ (2.242)
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Applying this operation to each of the four basis states

�̂�(�̂�𝐴𝐵, 𝜋/4) |00⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
𝑒−𝑖

𝜋
4 0 0 0

0 1√
2

− 𝑖√
2

0

0 − 𝑖√
2

1√
2

0

0 0 0 𝑒−𝑖
𝜋
4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑒−𝑖

𝜋
4

0

0

0

⎤⎥⎥⎥⎦ (2.243)

= 𝑒−𝑖
𝜋
4 |00⟩𝐴𝐵 (2.244)

�̂�(�̂�𝐴𝐵, 𝜋/4) |01⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
𝑒−𝑖

𝜋
4 0 0 0

0 1√
2

− 𝑖√
2

0

0 − 𝑖√
2

1√
2

0

0 0 0 𝑒−𝑖
𝜋
4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
1√
2

− 𝑖√
2

0

⎤⎥⎥⎥⎦ (2.245)

=
1√
2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵) (2.246)

�̂�(�̂�𝐴𝐵, 𝜋/4) |10⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
𝑒−𝑖

𝜋
4 0 0 0

0 1√
2

− 𝑖√
2

0

0 − 𝑖√
2

1√
2

0

0 0 0 𝑒−𝑖
𝜋
4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

− 𝑖√
2

1√
2

0

⎤⎥⎥⎥⎦ (2.247)

=
1√
2
(|10⟩𝐴𝐵 − 𝑖 |01⟩𝐴𝐵) (2.248)

�̂�(�̂�𝐴𝐵, 𝜋/4) |11⟩𝐴𝐵 =

⎡⎢⎢⎢⎣
𝑒−𝑖

𝜋
4 0 0 0

0 1√
2

− 𝑖√
2

0

0 − 𝑖√
2

1√
2

0

0 0 0 𝑒−𝑖
𝜋
4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ (2.249)

= 𝑒−𝑖
𝜋
4 |11⟩𝐴𝐵 (2.250)

The states in Eq. (2.244) and (2.250) are unremarkable, just a phase applied to the

initial state. The states in Eq. (2.246) and (2.248) are anything but. Looking at these

two states, we see that the product states |01⟩ and |10⟩ have evolved into coherent

positions of each other on their way to swapping places. Curiously, these states are

no longer product states: try to write them as the tensor products of single-qubit
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states as in Eq. (2.198), and you quickly run into a roadblock. You can’t do it.

2.7 Entanglement

States like the ones in Eq. (2.246) and (2.248)—states which cannot be factored

into product states of the form |𝜓⟩ ⊗ |𝜓⟩—are known as entangled states. If coherent

superposition is the first hallmark of quantum theory, entanglement is the inseparable

second. Like quantum superposition, entanglement gives rise to distinctively non-

classical phenomenon.

As we showed in the previous section, a product state is separable, by definition.

Consider a two-qubit state where each qubit is in an equal superposition of |0⟩ and

|1⟩

|++⟩𝐴𝐵 = |+⟩𝐴 ⊗ |+⟩𝐵 (2.251)

=
1√
2
(|0⟩𝐴 + |1⟩𝐴)⊗

1√
2
(|0⟩𝐵 + |1⟩𝐵) (2.252)

=
1

2
(|00⟩𝐴𝐵 + |01⟩𝐴𝐵 + |10⟩𝐴𝐵 + |11⟩𝐴𝐵) (2.253)

Now, imagine we measure qubit A and get the answer NO. What can we say about the

probability of qubit B answering one way or another? Mathematically, we can figure

this out by applying the projector �̂�0 to qubit A—since our measurement projected
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it into the |0⟩-state—and the identity 𝐼 to qubit B—since we haven’t touched it yet

(�̂�0 ⊗ 𝐼) |++⟩𝐴𝐵 =

(︃[︃
1 0

0 0

]︃
⊗

[︃
1 0

0 1

]︃)︃⎡⎢⎢⎢⎣
1/2

1/2

1/2

1/2

⎤⎥⎥⎥⎦ (2.254)

=

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1/2

1/2

1/2

1/2

⎤⎥⎥⎥⎦ (2.255)

=

⎡⎢⎢⎢⎣
1/2

1/2

0

0

⎤⎥⎥⎥⎦ (2.256)

=
1

2
(|00⟩𝐴𝐵 + |01⟩𝐴𝐵) (2.257)

This wavefunction is not normalized, since the projective measurement �̂�0 is not a

unitary operator, so we’ll have to normalize it by hand such that the probabilities

add up to unity again. Doing this, we see that we have arrived at the product state

(�̂�0 ⊗ 𝐼) |++⟩𝐴𝐵 =
1√
2
(|00⟩𝐴𝐵 + |01⟩𝐴𝐵) (2.258)

= |0⟩𝐴 ⊗ 1√
2
(|0⟩𝐵 + |1⟩𝐵) (2.259)

= |0⟩𝐴 ⊗ |+⟩𝐵 (2.260)

That is, after projecting qubit A into the |0⟩-state, qubit B remains in an equal

superposition of |0⟩ and |1⟩, and there is still a 50/50 chance of measuring it in either

state. In fact, this was clear from the expansion in Eq. (2.253). Looking at the four

terms, we see there are two corresponding to qubit A being in the |0⟩-state: |00⟩𝐴𝐵
and |01⟩𝐴𝐵. Since there is an equal probability of the combined two-qubit state being

in either of these two states, we can see that there is a 50/50 chance of measuring

qubit B in |0⟩ (the combined system is projected into |00⟩𝐴𝐵 and B answers NO) or

|1⟩ (the combined system is projected into |01⟩𝐴𝐵and B answers YES ). Indeed, we
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find the exact same result if we imagine instead projecting qubit A into |1⟩

(�̂�1 ⊗ 𝐼) |++⟩𝐴𝐵 =
1√
2
(|10⟩𝐴𝐵 + |11⟩𝐴𝐵) (2.261)

= |1⟩𝐴 ⊗ 1√
2
(|0⟩𝐵 + |1⟩𝐵) (2.262)

= |1⟩𝐴 ⊗ |+⟩𝐵 (2.263)

Looking at these two cases, we can see that the state of qubit B is utterly unaffected

by how we project qubit A. In both cases, B remains in exactly the same state it was

in prior to measuring A.

In this sense, measuring the state |++⟩𝐴𝐵 is like measuring the outcomes of two

flipped coins. Look at the outcome of the first coin flip and, whatever side the coin

landed on, the outcome of the second coin flip remains completely unknown. Indeed,

as we discussed back when we derived the multi-qubit state vectors in Eq. (2.201)

and (2.211), the probability of measuring a product state in any given basis state

is determined entirely by the product of measuring each individual qubit in the cor-

responding state, just like the probability of finding 𝑛 flipped coins in a particular

state.

Something very different is going on with the entangled states in Eq. (2.246) and

(2.248). To see this, let’s take the state in Eq. (2.246) and imagine doing a projective

measurement of qubit A. Taking the expectation value of the state with the two

projectors 𝑀0 and 𝑀1, we see that there is a 50/50 chance of projecting qubit A into

either the |0⟩- or |1⟩-state

⟨�̂�0 ⊗ 𝐼⟩ = 1√
2
(⟨01|𝐴𝐵 + 𝑖 ⟨10|𝐴𝐵)(�̂�0 ⊗ 𝐼)

1√
2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵) (2.264)

= 0.5 (2.265)

⟨�̂�1 ⊗ 𝐼⟩ = 1√
2
(⟨01|𝐴𝐵 + 𝑖 ⟨10|𝐴𝐵)(�̂�1 ⊗ 𝐼)

1√
2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵) (2.266)

= 0.5 (2.267)
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Looking at these two possibilities, let’s consider what happens in the case where

we collapse qubit A into the |0⟩-state

(�̂�0 ⊗ 𝐼)
1√
2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵) =

(︃[︃
1 0

0 0

]︃
⊗

[︃
1 0

0 1

]︃)︃⎡⎢⎢⎢⎣
0
1√
2

−𝑖√
2

0

⎤⎥⎥⎥⎦ (2.268)

=

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0
1√
2

−𝑖√
2

0

⎤⎥⎥⎥⎦ (2.269)

=

⎡⎢⎢⎢⎣
0
1√
2

0

0

⎤⎥⎥⎥⎦ (2.270)

=
1√
2
|01⟩𝐴𝐵 (2.271)

This wavefunction is, again, not normalized, so we have to adjust the amplitudes by

hand such that the probabilities add up to unity. But notice that the two qubits are

no longer in a coherent superposition. Indeed, the two qubits are now in a single basis

state

(�̂�0 ⊗ 𝐼)
1√
2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵) = |01⟩𝐴𝐵 (2.272)

= |0⟩𝐴 ⊗ |1⟩𝐵 (2.273)

What does this tell us? Having measured the state of qubit A and projected it into

the |0⟩-state, we see that there is a 100% chance of qubit B being in the |1⟩-state.

That is, having queried system A and received the answer NO, we can now say with

certainty that system B will respond YES before we even ask the question. Indeed,
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we find a similar result when we instead project qubit A into the |1⟩-state

(�̂�1 ⊗ 𝐼)
1√
2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵) =

(︃[︃
0 0

0 1

]︃
⊗

[︃
1 0

0 1

]︃)︃⎡⎢⎢⎢⎣
0
1√
2

−𝑖√
2

0

⎤⎥⎥⎥⎦ (2.274)

=

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
0
1√
2

−𝑖√
2

0

⎤⎥⎥⎥⎦ (2.275)

=

⎡⎢⎢⎢⎣
0

0
−𝑖√
2

0

⎤⎥⎥⎥⎦ (2.276)

=
−𝑖√
2
|10⟩𝐴𝐵 (2.277)

which, when properly renormalized, is simply

(�̂�1 ⊗ 𝐼)
1√
2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵) = |10⟩𝐴𝐵 (2.278)

= |1⟩𝐴 ⊗ |0⟩𝐵 (2.279)

Projecting qubit A into the |1⟩-state, we now find that qubit B is unambiguously

in the |0⟩-state: we know that system B will answer NO without even asking the

question.

Returning to the analogy of coin flips, how would we interpret what is going

on here? Looking at the results above, it is as if we flipped two coins and, having

determined the result of the first, we could say with absolute certainty the state of

the second. The result is still random—repeating these coin flips, we would find that

there is a 50/50 chance of finding the first coin in heads or tails—but the outcomes

of the two coin flips are now absolutely correlated. How is this possible? It is as if,

the moment we unclenched the fist holding the first flipped coin, it sent a message to

the coin in our other hand, instructing it to give the opposite result.
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This, on its own, is not impossible to understand classically: classical physics is

built out of interactions between systems, gravitational and electromagnetic, which

produce correlated outcomes. Move an electron, and a charged particle nearby will

change its trajectory accordingly, due to the Coulomb interaction between the two

particles. Perhaps, then, there is some force exchanged between the two qubits which

induces the correlated outcomes as soon as we measure one. And yet, recall again

that none of the states or operators above have any explicit spatial dependence. All

we required was a Hamiltonian of the form in Eq. (2.231), applied for a sufficient time

to generate a rotation 𝜃 = 𝜋/4. The moment this is accomplished, we can turn off the

interaction and separate the two qubits by an arbitrary distance, nanometers, kilome-

ters, lightyears, whatever. After all, the operator �̂� ⊗ 𝐼 has no spatial dependence.

Moreover, the operation is entirely local: we performed a measurement on one qubit

at one point in space and time, and we did nothing to the other qubit, wherever it

might be at the moment of measurement.

And yet, the moment the measurement is locally performed on one qubit, some-

thing happened to the other qubit, even if it was now on the other side of the universe.

Here, we see that quantum mechanics has given rise to a phenomenon which is defi-

antly non-local, exerting an influence across spacetime which is faster than the speed

of light, appearing to violate Einstein’s theory of relativity. Indeed, for Einstein this

represented a dire flaw of quantum theory. Surely, he and other skeptics reasoned,

math of the form we have sketched above is an incomplete account of what is going

on. Surely we must be hiding some ‘hidden variables,’ parameters which would cap-

ture the spatial and temporal dependence of the interaction between these two qubits

at the moment of measurement, restoring locality. It was not until 1964 that the

Irish physicist John Stewart Bell showed that such a hidden variable theory would

result in demonstrably different measurement outcomes than a theory without hidden

variables [42]. To date, all experimental tests of Bell’s theorem have ruled against the

presence of hidden variables [20, 25, 350, 393, 404, 465]. The nonlocality of quantum

mechanics is, to the best of our understanding, fundamental to the theory.

In short, the presence of entanglement in quantum mechanics is not an anomaly
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of the theory; it’s the rule. As we’ve just showed, the emergence of entangled states

is a direct consequence of the Pauli product terms in the multi-qubit Hamiltonian

decomposition we started with in Eq. (2.214). Indeed, just as the equator of the

Bloch sphere defines an infinite number of unique coherent superposition states for a

single qubit, we can see that the states in Eq. (2.246) and (2.248) are only two of an

infinite number of unique entangled states between two qubits. Here, it is helpful to

define four special entangled states to orient ourselves

|𝛽00⟩ ≡
1√
2
(|00⟩+ |11⟩) (2.280)

|𝛽01⟩ ≡
1√
2
(|01⟩+ |10⟩) (2.281)

|𝛽10⟩ ≡
1√
2
(|00⟩ − |11⟩) (2.282)

|𝛽11⟩ ≡
1√
2
(|01⟩ − |10⟩) (2.283)

These four states are commonly referred to as the four Bell states—after J.S. Bell—

or as the four EPR pairs—after the paradox of Einstein and coauthors which Bell

resolved. Comparing these four states, we can see that they are all orthogonal to one

another

⟨𝛽𝑖𝑗|𝛽𝑘𝑙⟩ =

⎧⎪⎨⎪⎩1, for 𝑖 = 𝑘, 𝑗 = 𝑙

0, else
(2.284)

Thus, like the product states {|00⟩ , |01⟩ , |10⟩ , |00⟩} we used to construct our two-

qubit states in Eq. (2.206), the four Bell states form a complete basis for expressing

any general two-qubit state

|𝜓⟩𝐴𝐵 = �̃� |𝛽00⟩+ �̃� |𝛽01⟩+ 𝑐 |𝛽10⟩+ �̃� |𝛽11⟩ (2.285)

In this sense, just as we are free to redefine our single-qubit Bloch sphere with the

superposition states |+⟩ and |−⟩ at the poles—a basis in which case |0⟩ and |1⟩ would

be interpreted as superpositions of superposition states—we are welcome to think of

our product states as entanglements of entangled states. Mathematically, it is all a
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matter of perspective.

2.8 Coherence

In the preceding section, we showed that the dynamics of quantum mechanics gives

rise to entangled states, states which cannot be separated into a product of single-

qubit states. What happens if we try to separate them? Mathematically, there is no

great difficulty here. Just as we combined two single-qubit states |𝜓⟩𝐴 and |𝜑⟩𝐵 using

the tensor product

|𝜓𝜑⟩𝐴𝐵 ≡ |𝜓⟩𝐴 ⊗ |𝜑⟩𝐵 (2.286)

we can pull the two states apart again by taking the partial trace of the combined

system. For reasons which will quickly become apparent, the partial trace must be

performed on density matrices instead of state vectors, though we can convert to this

representation easily enough using the tools from Section 2.5

𝜌𝐴𝜓 ≡ |𝜓⟩⟨𝜓|𝐴 (2.287)

𝜌𝐵𝜑 ≡ |𝜑⟩⟨𝜑|𝐵 (2.288)

𝜌𝐴𝐵𝜓𝜑 ≡ 𝜌𝐴 ⊗ 𝜌𝐵 (2.289)

where we will use the notation convention that superscripts label the associated qubits

and the subscript denotes the corresponding pure state. Having converted our state

vectors to density matrices, we define the partial trace Tr𝑥 as the average over a full

set of projective measurements of the subsystem 𝑥

Tr𝐵
[︀
𝜌𝐴𝐵

]︀
:=
∑︁
𝑗

(𝐼𝐴 ⊗ ⟨𝑗|𝐵)𝜌
𝐴𝐵(𝐼𝐴 ⊗ |𝑗⟩𝐵) (2.290)

Tr𝐴
[︀
𝜌𝐴𝐵

]︀
:=
∑︁
𝑖

(⟨𝑖|𝐴 ⊗ 𝐼𝐵)𝜌
𝐴𝐵(|𝑖⟩𝐴 ⊗ 𝐼𝐵) (2.291)

where {|𝑗⟩}, {|𝑖⟩} are orthonormal bases in the Hilbert space of subsystems B and A

respectively. Notice that this is the same spirit as the exercise we performed in the
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previous section with the operators �̂�0 ⊗ 𝐼 and �̂�1 ⊗ 𝐼, projecting on of the qubits

into each possible basis and looking at the state of the other qubit.

Defining the partial trace above, the single-qubit density matrices 𝜌𝐴 and 𝜌𝐵 are

given by the partial traces of their combined density matrix 𝜌𝐴𝐵 over the state of the

other qubit

Tr𝐵
[︀
𝜌𝐴𝐵

]︀
≡ 𝜌𝐴 (2.292)

Tr𝐴
[︀
𝜌𝐴𝐵

]︀
≡ 𝜌𝐵 (2.293)

What happens when we take the partial trace of some of the two-qubit states we

considered in the previous sections. For example, let’s consider the product state of

two superposition states

𝜌𝐴𝐵++ ≡ |++⟩⟨++|𝐴𝐵 (2.294)

=
1

4

⎡⎢⎢⎢⎣
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤⎥⎥⎥⎦
𝐴𝐵

(2.295)

Taking the partial trace over each of the qubits, using the orthonormal bases {|𝑗⟩} =
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{|𝑖⟩} = {|0⟩ , |1⟩}

Tr𝐵
[︀
𝜌𝐴𝐵++

]︀
=
∑︁
𝑗

(𝐼𝐴 ⊗ ⟨𝑗|𝐵)𝜌
𝐴𝐵
++(𝐼𝐴 ⊗ |𝑗⟩𝐵) (2.296)

=(𝐼𝐴 ⊗ ⟨0|𝐵)𝜌
𝐴𝐵
++(𝐼𝐴 ⊗ |0⟩𝐵)

+ (𝐼𝐴 ⊗ ⟨1|𝐵)𝜌
𝐴𝐵
++(𝐼𝐴 ⊗ |1⟩𝐵) (2.297)

=

(︃[︃
1 0

0 1

]︃
𝐴

⊗
[︁
1 0

]︁
𝐵

)︃
𝜌𝐴𝐵++

(︃[︃
1 0

0 1

]︃
𝐴

⊗

[︃
1

0

]︃
𝐵

)︃

+

(︃[︃
1 0

0 1

]︃
𝐴

⊗
[︁
0 1

]︁
𝐵

)︃
𝜌𝐴𝐵++

(︃[︃
1 0

0 1

]︃
𝐴

⊗

[︃
0

1

]︃
𝐵

)︃
(2.298)

=

[︃
1 0 0 0

0 0 1 0

]︃
𝐴𝐵

1

4

⎡⎢⎢⎢⎣
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤⎥⎥⎥⎦
𝐴𝐵

⎡⎢⎢⎢⎣
1 0

0 0

0 1

0 0

⎤⎥⎥⎥⎦
𝐴𝐵

+

[︃
0 1 0 0

0 0 0 1

]︃
𝐴𝐵

1

4

⎡⎢⎢⎢⎣
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤⎥⎥⎥⎦
𝐴𝐵

⎡⎢⎢⎢⎣
0 0

1 0

0 0

0 1

⎤⎥⎥⎥⎦
𝐴𝐵

(2.299)

=
1

4

[︃
1 1

1 1

]︃
𝐴

+
1

4

[︃
1 1

1 1

]︃
𝐴

(2.300)

=
1

2

[︃
1 1

1 1

]︃
𝐴

(2.301)

= |+⟩⟨+|𝐴 (2.302)

and ditto for the trace over qubit A

Tr𝐴
[︀
𝜌𝐴𝐵++

]︀
=
∑︁
𝑖

(⟨𝑖|𝐴 ⊗ 𝐼𝐵)𝜌
𝐴𝐵
++(|𝑖⟩𝐴 ⊗ 𝐼𝐵) (2.303)

=(⟨0|𝐴 ⊗ 𝐼𝐵)𝜌
𝐴𝐵
++(|0⟩𝐴 ⊗ 𝐼𝐵)

+ (⟨1|𝐴 ⊗ 𝐼𝐵)𝜌
𝐴𝐵
++(|1⟩𝐴 ⊗ 𝐼𝐵) (2.304)

= |+⟩⟨+|𝐵 (2.305)

Running through the math above, we have confirmed that, yes, taking the partial
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traces of the tensor product of two superposition states gives us a pair of superposition

states—which is exactly what we demanded of the partial trace operation in the first

place.

What happens when we take the partial trace of an entangled state? Consider,

for example, one of the Bell states we defined in the previous section

|𝛽00⟩𝐴𝐵 ≡ 1√
2
(|00⟩𝐴𝐵 + |11⟩𝐴𝐵) (2.306)

which we can write in density matrix form as

𝜌𝐴𝐵𝛽 = |𝛽00⟩⟨𝛽00|𝐴𝐵 (2.307)

=
1

2

⎡⎢⎢⎢⎣
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎤⎥⎥⎥⎦
𝐴𝐵

(2.308)
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Taking the partial trace over qubit B, as above

Tr𝐵
[︀
𝜌𝐴𝐵𝛽

]︀
=
∑︁
𝑗

(𝐼𝐴 ⊗ ⟨𝑗|𝐵)𝜌
𝐴𝐵
𝛽 (𝐼𝐴 ⊗ |𝑗⟩𝐵) (2.309)

=(𝐼𝐴 ⊗ ⟨0|𝐵)𝜌
𝐴𝐵
𝛽 (𝐼𝐴 ⊗ |0⟩𝐵)

+ (𝐼𝐴 ⊗ ⟨1|𝐵)𝜌
𝐴𝐵
𝛽 (𝐼𝐴 ⊗ |1⟩𝐵) (2.310)

=

(︃[︃
1 0

0 1

]︃
𝐴

⊗
[︁
1 0

]︁
𝐵

)︃
𝜌𝐴𝐵𝛽

(︃[︃
1 0

0 1

]︃
𝐴

⊗

[︃
1

0

]︃
𝐵

)︃

+

(︃[︃
1 0

0 1

]︃
𝐴

⊗
[︁
0 1

]︁
𝐵

)︃
𝜌𝐴𝐵𝛽

(︃[︃
1 0

0 1

]︃
𝐴

⊗

[︃
0

1

]︃
𝐵

)︃
(2.311)

=

[︃
1 0 0 0

0 0 1 0

]︃
𝐴𝐵

1

2

⎡⎢⎢⎢⎣
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎤⎥⎥⎥⎦
𝐴𝐵

⎡⎢⎢⎢⎣
1 0

0 0

0 1

0 0

⎤⎥⎥⎥⎦
𝐴𝐵

+

[︃
0 1 0 0

0 0 0 1

]︃
𝐴𝐵

1

2

⎡⎢⎢⎢⎣
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎤⎥⎥⎥⎦
𝐴𝐵

⎡⎢⎢⎢⎣
0 0

1 0

0 0

0 1

⎤⎥⎥⎥⎦
𝐴𝐵

(2.312)

=
1

2

[︃
1 0

0 0

]︃
𝐴

+
1

2

[︃
0 0

0 1

]︃
𝐴

(2.313)

=
1

2

[︃
1 0

0 1

]︃
𝐴

(2.314)

and so too for the partial trace over qubit A

Tr𝐴
[︀
𝜌𝐴𝐵𝛽

]︀
=
∑︁
𝑖

(⟨𝑖|𝐴 ⊗ 𝐼𝐵)𝜌
𝐴𝐵
𝛽 (|𝑖⟩𝐴 ⊗ 𝐼𝐵) (2.315)

=(⟨0|𝐴 ⊗ 𝐼𝐵)𝜌
𝐴𝐵
𝛽 (|0⟩𝐴 ⊗ 𝐼𝐵)

+ (⟨1|𝐴 ⊗ 𝐼𝐵)𝜌
𝐴𝐵
𝛽 (|1⟩𝐴 ⊗ 𝐼𝐵) (2.316)

=
1

2

[︃
1 0

0 1

]︃
𝐵

(2.317)

What is going on with these single-qubit states? Looking at the density matrices

in Eq. (2.314) and (2.317), we find that these states are unlike any that we’ve en-
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countered in this chapter so far. To see how these partially traced entangled states

are different from, for example, the partial traces of the state |++⟩𝐴𝐵, let’s directly

compare the density matrices in Eq. (2.301) and (2.314)

Tr𝐵
[︀
𝜌𝐴𝐵++

]︀
=

1

2

[︃
1 1

1 1

]︃
𝐴

(2.318)

Tr𝐵
[︀
𝜌𝐴𝐵𝛽

]︀
=

1

2

[︃
1 0

0 1

]︃
𝐴

(2.319)

In one sense, these matrices are similar: looking at the matrix elements along the

diagonal, we see that both these states give a 50/50 probability of measuring qubit

A in either |0⟩ or |1⟩ (𝑝0 = 𝑝1 = 0.5). And yet, if we try to separate each of these

density matrices into the outer product of a state vector, we find that we succeed in

the former case and fail in the latter

Tr𝐵
[︀
𝜌𝐴𝐵++

]︀
=

1

2

[︃
1 1

1 1

]︃
𝐴

(2.320)

= |+⟩⟨+|𝐴 (2.321)

Tr𝐵
[︀
𝜌𝐴𝐵𝛽

]︀
=

1

2

[︃
1 0

0 1

]︃
𝐴

(2.322)

=
1

2
(|0⟩⟨0|𝐴 + |1⟩⟨1|𝐴) (2.323)

That is, while the density matrix in Eq. (2.301) corresponds exactly to a state vector—

in this case, |+⟩𝐴—the density matrix in Eq. (2.314) does not: the best we can do

is write it as sum of two other density matrices, each of which corresponds to a

basis state vector. For shorthand, let’s give this density matrix a question mark as a

subscript, to denote our confusion at being unable to write it as a state vector

𝜌? ≡
1

2

[︃
1 0

0 1

]︃
(2.324)

In Section 2.4, we discussed the difference between a coherent superposition state
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and a classical coin flip. While both systems might give rise to the same probability

distribution, we showed that superposition state has some internal sense of self which

the coin flip does not: suspended in a superposition, we can deterministically rotate

the state such that the wavefunction always collapses into |1⟩ or |0⟩, YES or NO,

heads or tails. No such operation can be applied to our classically flipped coin—

whatever we do to it prior to looking at the result, the outcome of measurement

remains totally random.

In Eq. (2.318) and (2.319), we can see the mathematical difference between a

superposition state and a coin flip. In the former case, we see that the density matrix

has non-zero diagonals, corresponding to the +1 phase between the |0⟩ and |1⟩ in the

superposition state

|+⟩ = 1√
2
(|0⟩+ |1⟩) (2.325)

𝜌+ =
1

2

[︃
1 1

1 1

]︃
(2.326)

This +1 phase is what gives the state |+⟩ its internal sense of self, its internal coher-

ence. It knows what it is, and it knows what it is not: as we showed previously, the

state |+⟩ is orthogonal to the state |−⟩, a coherent superposition which has the exact

same probability of projection into either basis state but with a phase factor of −1

between the states

|−⟩ = 1√
2
(|0⟩ − |1⟩) (2.327)

𝜌− =
1

2

[︃
1 −1

−1 1

]︃
(2.328)

which now corresponds to an opposite sign in the off-diagonals of the corresponding

density matrix.

The state in (2.319) has no off-diagonal entries, which is to say it has no internal

relationship between its constituent basis states—it has no internal sense of itself,

no internal coherence. There is no state which is orthogonal to it, and there is no
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rotation �̂� which can alter it

�̂�𝜌?�̂�
† = �̂�

1

2

[︃
1 0

0 1

]︃
�̂� † (2.329)

=
1

2
�̂� �̂� † (2.330)

=
1

2

[︃
1 0

0 1

]︃
(2.331)

= 𝜌? (2.332)

In this sense, we can see that the state 𝜌? is a purely classical object: there is no

single-qubit Hamiltonian which will cause it to evolve under the Schrödinger equation.

Geometrically, we can represent this state as a point at the center of the Bloch

sphere—rotate the sphere however you like, and the state remains fixed in position.

Here, we can see why the density matrix formalism is more general than the state

vector representation: if the set of single-qubit state vectors gives us all the points

on the surface of the sphere, the set of single-qubit density matrices gives us all the

points in the volume of the sphere. This makes sense, since the density matrices are

hermitian matrices and, as we discussed in Section 2.2, the Bloch sphere is just a

representation of the matrix space SU(2), the space of possible hermitian matrices.

Indeed, the spherical shell of the Bloch sphere in SU(2) captures a constraint of

physical density matrices
1

𝑑
≤ Tr

[︀
𝜌2
]︀
≤ 1 (2.333)

where 𝑑 is the dimension of the Hilbert space of the Hilbert space of 𝜌 (𝑑 = 2𝑛 for a

system of 𝑛 qubits) and the quantity Tr [𝜌2] indicates how deep in the volume of the

Bloch sphere the state is located

Tr
[︀
𝜌2
]︀⎧⎪⎨⎪⎩ = 1, surface of Bloch sphere (pure state)

< 1, volume of Bloch sphere (mixed state)
(2.334)

The quantity Tr [𝜌2] is known as the Rényi entropy of order 2 or, more succinctly, the
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purity of the state 𝜌. Calculating the purity of the states 𝜌+ and 𝜌?

Tr
[︀
𝜌2+
]︀
= Tr

[︃
1

2

[︃
1 1

1 1

]︃
1

2

[︃
1 1

1 1

]︃]︃
(2.335)

= Tr

[︃
1

4

[︃
2 2

2 2

]︃]︃
(2.336)

= 1 (2.337)

Tr
[︀
𝜌2?
]︀
= Tr

[︃
1

2

[︃
1 0

0 1

]︃
1

2

[︃
1 0

0 1

]︃]︃
(2.338)

= Tr

[︃
1

4

[︃
1 0

0 1

]︃]︃
(2.339)

= 0.5 (2.340)

we can see that the former is indeed a pure state (the upper bound of Eq. (2.333), pu-

rity = 1) while the latter is a maximally mixed state (the lower bound of Eq. (2.333),

purity = 1/2, since 𝑑 = 2 for a single-qubit).

As we showed at the beginning of this section, the maximally mixed state 𝜌? arises

as a natural consequence of trying to separate the two-qubit entangled state |𝛽⟩𝐴𝐵
into single-qubit states. This is critical. Indeed, it is easy to confirm from Eq. (2.306)

that, prior to performing the partial trace separating qubits A and B, the two qubits

jointly occupied a coherent superposition of |00⟩ and |11⟩. Calculating the purity

of the corresponding two-qubit density matrix, we can confirm that their combined
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state is pure

Tr
[︀
(𝜌𝐴𝐵𝛽 )2

]︀
= Tr

⎡⎢⎢⎢⎣12
⎡⎢⎢⎢⎣
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎤⎥⎥⎥⎦ 1

2

⎡⎢⎢⎢⎣
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ (2.341)

= Tr

⎡⎢⎢⎢⎣14
⎡⎢⎢⎢⎣
2 0 0 2

0 0 0 0

0 0 0 0

2 0 0 2

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ (2.342)

= 1 (2.343)

How do we interpret this? Together, qubits A and B are coherent, superposed, onto-

logically indeterminate. Separated, all the coherence shared between the two qubits

has vanished, leaving each system empty, incoherent, epistemologically uncertain.

They are mixed up, no different from a classical coin flips. This is, perhaps, the most

interesting feature of quantum entanglement. Though we attribute the state |𝛽⟩𝐴𝐵
to two distinct systems A and B, these labels are somewhat misleading. Yes, they

may correspond to objects which appear distinct—for example, two superconducting

circuits—but all the quantum information they contain is shared between them, with

neither system owning a part to the exclusion of the other. The moment we individu-

ate these systems, separating them into distinct actors and tracing out their partner,

we irretrievably shatter this precious link, reducing each qubit to an inert, classical

system.

We call the process by which a pure state becomes an incoherent mixture, moving

from the surface of the Bloch sphere into its center, decoherence. We will return

to this concept in many different contexts over the course of this thesis, but for

now we can make a few general statements about this process. First, decoherence

is intimately connected with entanglement. Like the two mixed states which arose

when we separated the entangled Bell state above, qubits lose their coherence when

they are ripped from their entanglements, either with other qubits or with systems

elsewhere in their environment. Second, decoherence is not a unitary process. The
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journey from the surface of the Bloch sphere to its center cannot be captured by

the single-qubit Schrödinger equation with a 2 × 2 Hamiltonian, and it is thus not

a reversible process (we cannot run the clock backwards by applying a single qubit

operation �̂� † which undoes the decoherence). Later in Part IV of this thesis, we will

show that there are mathematical tools for robustly handling such processes, but for

now notice that decoherence breaks the pristine mathematical picture of quantum

bits we’ve developed in this chapter. Finally, decoherence is inevitable. The moment

we attempt to build a quantum bit in the laboratory, decoherence processes will

constantly attempt to tamper with our quantum state, degrading the coherence into

a classical mixture. Indeed, much of the engineering work of building a quantum

computer centers around mitigating the effects of decoherence, restoring as much as

possible the coherent mathematical ideal we have developed in this chapter.
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Chapter 3

Designing an Artificial Atom

In Chapter 2, we introduced the mathematical formalism of quantum bits evolving

according to a general multi-qubit Hamiltonian. Starting from a minimal set of as-

sumptions, we showed how such systems come to inhabit distinctly nonclassical states,

such as coherent superpositions of orthogonal classical states and entanglements with

other systems. In this chapter, we will explore one paradigm for realizing physical

quantum bits in the laboratory using superconducting Josephson circuits. Starting

from the quantum harmonic oscillator formed by a superconducting LC-circuit, we

show that the introduction of a nonlinear element—the Josephson junction—results

in an anharmonic oscillator whose lowest two levels can be treated as the |0⟩- and

|1⟩-states of a qubit. This leads us quickly to the simplest possible superconducting

qubit, know as the transmon, which will serve as the backbone for the experiments

performed in Parts III and IV. Increasing the circuit complexity, we introduce a

general formalism for writing the circuit Hamiltonian of a more complicated assem-

blage of electrical elements, known as circuit quantization. With the tools of circuit

quantization in hand, we derive the Hamiltonian for another paradigm of supercon-

ducting qubit, known as the flux qubit. The chapter closes with results from the first

measurement and simulation of a novel superconducting qubit design, known as the

capacitively-shunted or C-shunt flux qubit.
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3.1 Artificial Atoms

When we first introduced the notion of a quantum bit in Chapter 2, we started

by noting that the wavefunctions |0⟩ and |1⟩ are, first and foremost, mathematical

abstractions. Unlike the canonical orbitals of the hydrogen atom, these wavefunction,

we argued, had no particular spatial structure or parameter dependence. All we asked

was that the two states |0⟩ and |1⟩ obey an orthogonality condition

⟨1|0⟩ = 0 (3.1)

As long as this condition holds, we showed that these states form a complete basis

in two-dimensional Hilbert space and can be combined to create superposition and

entangled states of arbitrary dimension.

Now, just because the wavefunctions of our qubit don’t need to have any special

parameter dependence, this doesn’t mean that they cannot or will not. As long as

the orthogonality condition above holds, we are free to construct these wavefunctions

however we’d like. Indeed, looking back at the orbitals of the hydrogen atom in

Eq. (2.1), we see that all of these orbitals are orthogonal with respect to one another.

In that sense, we could imagine choosing any two electron orbitals of the hydrogen

atom—say, 𝜓100 and 𝜓200 for example—and declare that these two states together

form one quantum bit. The task would then be to construct an experimental appa-

ratus which captures hydrogen atoms and reliably manipulates them such that we

can experimentally realize single- and multi-qubit Hamiltonians. While the atomic

properties of hydrogen would make this an engineering nightmare, this exact same

principle has been used to great effect in the construction of quantum processors

using trapped ions and neutral atoms [129, 325]—systems where qubit states are

mapped onto the wavefunctions of interacting atomic systems, such as the orbitals of

a Ytterbium-171 ion or the Rydberg states of Rubium-87. While quantum processors

based on atomic systems represent a compelling paradigm for realizing large systems

of quantum bits—due in no small part to the fact that every Rubium atom will be
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physically identical to every other Rubium atom in the universe—the homogenatity of

atomic systems is also a design constraint: there are only as many varieties of atoms

and ions in the universe as there are entries on the periodic table, so the set of pos-

sible wavefunctions on which one might map the states |0⟩ and |1⟩ is fundamentally

limited by the laws of nature. With the menu thus set in stone, the best we can do

is pick elements with the most favorable properties for a particular application and

design their system accordingly.

And yet, over the past three decades there has been enormous progress in designing

controllable quantum systems which are untethered from the design constraints of

the periodic table. These systems, assembled freely from electrical components such

as inductors and capacitors, can be thought of as ‘artificial atoms’ built out of an

infinite permutation of protons, neutrons, and electrons. In this chapter, we explore

the formalism for representing and engineering the Hamiltonian of such a system,

and we explore two of the most common families of circuits employed for quantum

computation: the transmon and the flux qubit.

3.2 Quantum Harmonic Oscillators

In Chapter 2, we treated the Hamiltonian operator �̂� as a purely mathematical object.

For a single qubit, we expressed the Hamiltonian as a general 2×2 hermitian matrix,

and we showed that such an operator placed into the Schrödinger equation quickly

gives rise to coherent superposition and entanglement, depending on the structure of

the Hamiltonian matrix. Where does the Hamiltonian comes from, physically?

In classical physics, the Hamiltonian of a system is defined as the sum of the

kinetic and potential energies as play inside the system

𝐻 = 𝑇 + 𝑈 (3.2)

where 𝑇 is the kinetic energy and 𝑈 is potential energy. For a particle of mass 𝑚

in motion, we can rewrite the kinetic energy in terms of the particle’s velocity 𝑣 or
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momentum 𝑝 = 𝑚𝑣

𝐻 =
1

2
𝑚𝑣2 + 𝑈 (3.3)

=
𝑝2

2𝑚
+ 𝑈 (3.4)

where the potential energy 𝑈 depends on the particular set of forces acting on the

particle which constrain its motion. In elementary classical mechanics, one of the first

systems a student will study is the canonical mass on a spring, where the particle is

bound to a spring which exerts an energy of the mass proportional to its displacement

𝑥 from equilibrium

𝐹 (𝑥) = −𝑘𝑥 (3.5)

where 𝑘 is the spring constant which captures the elasticity of the particular coil the

particle is bound to. Integrating this force over the displaced distance 𝑥, we find the

potential energy stored in the spring scales with the displacement squared

𝑈(𝑥) = −
∫︁ 𝑥

0

𝐹 (𝑥) 𝑑𝑥 (3.6)

=
1

2
𝑘𝑥2 (3.7)

Substituting this potential energy expression into Eq. (3.4), we arrive at the Hamil-

tonian of the mass and spring system

𝐻(𝑝, 𝑥) =
𝑝2

2𝑚
+

1

2
𝑘𝑥2 (3.8)

Having defined the Hamiltonian of this system, the classical equations of motion for

the particle can be derived from Hamilton’s equations

𝑑𝑥

𝑑𝑡
=

𝜕

𝜕𝑝
𝐻(𝑝, 𝑥) (3.9)

𝑑𝑝

𝑑𝑡
= − 𝜕

𝜕𝑥
𝐻(𝑝, 𝑥) (3.10)
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where plugging into the first gives us back the definition of velocity

𝑑𝑥

𝑑𝑡
=

𝜕

𝜕𝑝
𝐻(𝑝, 𝑥) (3.11)

=
𝜕

𝜕𝑝

(︂
𝑝2

2𝑚
+

1

2
𝑘𝑥2
)︂

(3.12)

=
𝑝

𝑚
(3.13)

= 𝑣 (3.14)

and plugging into the second gives us Newton’s second law

𝑑𝑝

𝑑𝑡
= − 𝜕

𝜕𝑥
𝐻(𝑝, 𝑥) (3.15)

𝑑

𝑑𝑡
(𝑚𝑣) = − 𝜕

𝜕𝑥

(︂
𝑝2

2𝑚
+

1

2
𝑘𝑥2
)︂

(3.16)

𝑚
𝑑𝑣

𝑑𝑡
= −𝑘𝑥 (3.17)

𝑚𝑎 = 𝐹 (𝑥) (3.18)

where 𝑎 = �̇� = �̈� is the acceleration of the particle.

Hamiltonians of the form in Eq. (3.8) appear over and over in physics, and they

are generally applicable to any system governed by a linear restoring force—such as a

mass on a string or a pendulum in a gravitational field—or indeed any system in an

arbitrary potential, displaced a small amount from a local minimum—around which

the potential can be approximated, to first order, as a parabola. We call such systems

simple harmonic oscillators, since their equations of motion have oscillatory solutions

of the form

𝑥(𝑡) = 𝐴 cos(𝜔𝑡+ 𝛿) (3.19)

where 𝐴 is the amplitude of oscillation, 𝛿 is a phase offset, and 𝜔 is the frequency of

oscillation, which is related to the coefficients of the kinetic and potential terms of

the Hamiltonian

𝜔 =

√︂
𝑘

𝑚
(3.20)
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for the mass on a spring.

Transitioning from classical mechanics to quantum theory, one of the first elemen-

tary tasks is to derive the quantum mechanical equivalent of the classical harmonic

oscillator, aptly called the quantum harmonic oscillator. Such a system has a Hamil-

tonian which is formally equivalent to the classical Hamiltonian of a mass on a spring,

except the Hamiltonian, kinetic, and potential energies are now promoted to quantum

mechanical operators

�̂� = 𝑇 + �̂� (3.21)

which we can write in terms of the position and momentum operators 𝑝 and �̂� as

�̂� =
𝑝2

2𝑚
+

1

2
𝑚𝜔2�̂�2 (3.22)

Having defined this Hamiltonian, we can plug it into the Schrödinger equation to find

its energy eigenstates. Doing so, we arrive at wavefunctions of the form

𝜓𝑛(𝑥) = 𝐴𝑛(�̂�
†)𝑛𝜓0(𝑥) (3.23)

where 𝐴𝑛 is the normalization constant which preserves probability, 𝑎† is the creation

operator

�̂�† ≡ 1√
2ℏ𝑚𝜔

(−𝑖𝑝+𝑚𝜔�̂�) (3.24)

and 𝜓0 is the ground state wavefunction of the oscillator

𝜓0(𝑥) =
(︁𝑚𝜔
𝜋ℏ

)︁1/4
𝑒−

𝑚𝜔
2ℏ 𝑥

2

(3.25)

which is a Gaussian wavepacket centered around the equilibrium point 𝑥 = 0. Taking

the expectation value of the Hamiltonian for each of the wavefunctions 𝜓𝑛, we find

a ladder of equally spaced energy levels, separated by an energy quanta proportional
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to the fundamental frequency 𝜔

𝐸𝑛 =

(︂
𝑛+

1

2

)︂
ℏ𝜔 (3.26)

How might we realize a quantum harmonic oscillator, physically? In classical elec-

tromagnetism, it is shown that one can construct an electrical analog to the mechan-

ical mass and spring system—one which realizes the same fundamental Hamiltonian

as the simple harmonic oscillator, with a change of variables. This system, know

as the LC-circuit, consists of a capacitor in parallel with an inductor, as shown in

Fig. 3-1a. Each of these electrical elements stores a certain amount of energy: the

energy stored in the capacitor is given by

𝐸𝐶 =
1

2
𝐶𝑉 2 (3.27)

=
1

2𝐶
𝑞2 (3.28)

where 𝐶 is the capacitance, 𝑉 is the voltage across the capacitor, and 𝑞 is the total

stored; meanwhile, the inductor stores an amount of energy

𝐸𝐿 =
1

2
𝐿𝐼2 (3.29)

=
1

2𝐿
Φ2 (3.30)

where 𝐿 is the inductance, 𝐼 is the current passing through the inductor, and Φ is

the magnetic flux across the inductor. Summing these two energies, we arrive at the

classical Hamiltonian of the LC-circuit

𝐻(𝑞,Φ) =
1

2𝐶
𝑞2 +

1

2𝐿
Φ2 (3.31)

Comparing Eq. (3.31) with Eq. (3.8), we see that the capacitive and inductive

energies mathematically mirror the kinetic and potential energies of the mass of a

spring, with the momentum 𝑝 and displacement 𝑥 mapping onto the charge stored

in the capacitor 𝑞 and flux across the inductor Φ respectively. Since the differential
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a) b)

Figure 3-1: The LC Oscillator. (a) Electrical circuit diagram of the resonant circuit
with a capacitor 𝐶 in parallel with an inductor 𝐿. (b) The quantized energy levels of
the corresponding quantum harmonic oscillator, where the levels are equally spaced
by the fundamental frequency 𝜔0 = 1/

√
𝐿𝐶, in accordance with Eq. (3.26).

equations for these two systems share a common form, we can easily show that the

charge stored in the capacitor varies in time as an oscillating function of the same

form as Eq (3.19)

𝑞(𝑡) = 𝐴 cos(𝜔𝑡+ 𝛿) (3.32)

where the fundamental frequency 𝜔 is now related to the capacitance and inductance

as

𝜔 =
1√
𝐿𝐶

(3.33)

Looking at the equation of motion for 𝑞(𝑡), we can see that electrical charge will os-

cillate back and forth around the circuit, alternating between filling up the capacitor

at one point in time (maximizing the capacitive energy, like the mass achieving maxi-

mum kinetic energy as it passes through the equilibrium point of the spring), leaving

the capacitor and flowing through the inductor (maximizing the inductive energy,

like the mass achieving maximum potential energy as the extreme of the spring’s

displacement), and back and forth ad infinitum.

The classical equations above hold for LC-circuits at normal temperatures, but

something interesting happens if we assemble the circuit out of a superconducting ma-

terial and lower the temperature of the device below the critical temperature. Under
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such a condition, the electrons in our LC-circuit will no longer act like tiny individual

masses oscillating back and forth through the circuit. Instead, all of the electrons

in the circuit will condense into a collective macroscopic wavefunction formed out of

paired electrons (Cooper pairs with charge 2𝑒) known as the fermionic condensate,

governed by the quantum mechanical Hamiltonian

�̂� =
1

2𝐶
𝑞2 +

1

2𝐿
Φ̂2 (3.34)

This is a quantum harmonic oscillator, where the classical charge and flux have been

promoted to their corresponding quantum operators 𝑞 and Φ̂. Like the quantum

harmonic oscillator describing a particle in a parabolic potential above, this system

also has quantized energy levels

𝐸𝑛 =

(︂
𝑛+

1

2

)︂
ℏ𝜔 (3.35)

where 𝜔 is now simply the resonant frequency of the LC-circuit from Eq. (3.33).

3.3 The Transmon

In the previous section, we showed how a superconducting resonant circuit composed

of an inductor and capacitor creates a quantum harmonic oscillator with energy levels

equally spaced by the fundamental frequency 𝜔. Indeed, the wavefunctions associ-

ated with each of these levels, like the corresponding wavefunctions of the harmonic

oscillator in Eq. (3.23), are mutually orthogonal

⟨𝜓𝑛|𝜓𝑚⟩ ≡
∫︁
𝑉

𝜓*
𝑛𝜓𝑚 𝑑𝑣 =

⎧⎪⎨⎪⎩ 1, for 𝑛 = 𝑚

0, for 𝑛 ̸= 𝑚

(3.36)

These wavefunctions, it would seem, are fair candidates for our qubit states |0⟩ and |1⟩.

So, why not design a superconducting LC-circuit, pick any two energy eigenstates—

say, the ones corresponding to 𝑛 = 0 and 𝑛 = 1, for example—and treat this subsys-
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tem as a quantum bit?

Running with this idea, how would we generate rotations between these two states,

like the ones we realized mathematically in Chapter 2? The most straightforward

option is to perturb the system by applying a periodic drive at a frequency equal to

the energy difference of the two qubit levels, a process known as Rabi driving. Here,

the transition probability 𝑃 of the fermionic condensate in the LC-circuit going from

the 𝑛 = 0 state to the 𝑛 = 1 state and vice versa is

𝑃0↔1(𝑡) ∼=
|𝐻01|2

ℏ2
sin2 [(𝜔01 − 𝜔drive)𝑡]

(𝜔01 − 𝜔drive)2
(3.37)

where 𝜔01 ≡ (𝐸1 − 𝐸0)/ℏ is the frequency difference between the two states 𝜓0 and

𝜓1; 𝜔drive is the frequency of the external drive (say, the signal from a microwave

generator); and 𝐻01 is the off-diagonal element of the Hamiltonian which couples the

two states. This function reaches unity when the drive is resonant with the transition

frequency 𝜔drive = 𝜔01 and the drive power is very strong 𝐻01/ℏ ≫ (𝜔01 − 𝜔drive),

at which point the system will oscillate back and forth between total population

of state 𝜓0 and total population of 𝜓1. This should sound familiar: in the Bloch

sphere picture, the system is traversing a meridian of the sphere in time, coherently

oscillating between the poles as if under the influence of the single-qubit Hamiltonian

�̂� = 𝐸𝑋�̂�. Indeed, as we will see in Part III, this is exactly how we will realize a

single-qubit rotation using a superconducting circuit.

While this idea is not too far from reality, there’s one big problem. For a quantum

harmonic oscillator such as an LC-circuit, the energy difference between adjacent

eigenstates is equal, by definition. That is, the transition frequency 𝜔01 is equal to

the transition frequency 𝜔12 between 𝑛 = 1 and 𝑛 = 2, which is equal to 𝜔23, and so

on and so forth. As such, the moment we apply a drive at this frequency, we are as

likely to drive the system from 𝑛 = 1 down to 𝑛 = 0 as we are to drive it up a level

to 𝑛 = 2 instead. Indeed, to moment we apply this drive, we will trigger transitions

between all levels 𝑛 ↔ 𝑛+ 1, shuttling the system up and down the ladder of states
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uncontrollably

𝑃0↔1(𝑡) = 𝑃1↔2(𝑡) = 𝑃𝑛↔𝑛+1(𝑡) (3.38)

In order to turn this system into a quantum bit—into a system with two well-

controlled levels we can maneuver the system back and forth between—we need some

way of individually addressing the 𝑛 = 0 ↔ 𝑛 = 1 transition, without accidentally

triggering every other transition in the process. To achieve this, we need to disturb

the harmonic structure of the energy levels and introduce some anharmonicity to the

circuit. The greater the anharmonicity—that is, the greater the difference between

𝜔01 and 𝜔12, for example—the further off-resonance the drive will be in relationship

to the other transitions, and the lower the probability that we will unintentionally

populate a state outside the qubit subspace.

Fortunately, superconductivity provides us with a circuit element which introduces

exactly this sort of anharmonicity to our resonant circuit, known as the Josephson

junction. To build a Josephson junction, one simply needs two pieces of supercon-

ducting metal separated by a thin insulating barrier—aluminum separated by a thin

layer of aluminum oxide, for example. At room temperature, such an element would

break the circuit: no charge can pass through the insulating barrier, so current cannot

flow across it, like the two pads of a capacitor. However, at superconducting tem-

peratures, the wavefunction of the superconducting condensate can tunnel through

the thin barrier, creating a current through the junction which completes the circuit.

The current through the junction 𝐼 and the voltage across it 𝑉 are given by the two

Josephson relations

𝐼 = 𝐼𝑐 sin(𝜑) (3.39)

𝑉 =
Φ0

2𝜋

𝑑𝜑

𝑑𝑡
(3.40)

where 𝜑 ≡ 2𝜋Φ/Φ0 is the gauge-invariant phase across the junction, the critical

current 𝐼𝑐 is a parameter which depends on the size and material of junction, and

the constant Φ0 = ℎ/(2𝑒) is known as the magnetic flux quantum. Playing around

with the two Josephson relations, we can ascribe an inductance to this element by
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rewriting the relations in the form

𝑑𝐼

𝑑𝜑
= 𝐼𝑐 cos(𝜑) (3.41)

𝑑𝜑

𝑑𝑡
=

2𝜋

Φ0

𝑉 (3.42)

which we can combine to get the time derivative of the current

𝑑𝐼

𝑑𝑡
=
𝑑𝐼

𝑑𝜑

𝑑𝜑

𝑑𝑡
(3.43)

= 𝐼𝑐 cos(𝜑)
2𝜋

Φ0

𝑉 (3.44)

Rearranging this expression into the form of the current-voltage relationship for an

inductor

𝑉 = 𝐿(𝜑)
𝑑𝐼

𝑑𝑡
(3.45)

we find that the kinetic inductance of the junction 𝐿(𝜑) is given by

𝐿(𝜑) =
𝐿𝐽

cos(𝜑)
(3.46)

where 𝐿𝐽 = Φ0/(2𝜋𝐼𝑐) is known as the Josephson inductance of a given junction

with critical current 𝐼𝑐. From Eq. (3.46), we see that the Josephson junction can be

thought of as a nonlinear inductor which depends on the phase across the junction

𝜑, in contrast to the normal linear inductor with constant inductance 𝐿 we used to

construct the LC-circuit.

What happens when we replace the linear inductor in the LC-circuit with a Joseph-

son junction? From the two Josephson relations, we can calculate the potential energy

stored in this element by integrating the product of the current and voltage over time

𝐸(𝑡) =

∫︁ 𝑡

−∞
𝐼(𝑡′)𝑉 (𝑡′) 𝑑𝑡′ (3.47)

Using the Josephson relationship from Eq. (3.40), we can perform a change of variables
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a) b)

Figure 3-2: The Transmon Qubit. (a) Electrical circuit diagram of the transmon
qubit, where the linear inductor of the LC-oscillator in Fig. 3-1a has been replaced
with a Josephson junction with Josephson inductance 𝐿𝐽 and intrinsic capacitance 𝐶𝐽 .
The combined Josephson inductance plus intrinsic capacitance is commonly denoted
by a × enclosed in a square. (b) The exact same circuit as in (a), except now written
with the intrinsic capacitance of the junction added to the capacitance of the shunt
capacitor 𝐶𝜎 = 𝐶𝑠ℎ + 𝐶𝐽 . The Josephson junction without its intrinsic capacitance
can be treated as a nonlinear inductor and is denoted by a × without a square.

from time to phase 𝑉 𝑑𝑡→ 𝑑𝜑

𝐸(𝜑) =

∫︁ 𝜑

−∞
𝐼(𝜑′)

(︂
Φ0

2𝜋
𝑑𝜑′
)︂

(3.48)

=
Φ0

2𝜋

∫︁ 𝜑

−∞
𝐼𝑐 sin(𝜑

′) 𝑑𝜑′ (3.49)

= −𝐸𝐽 cos(𝜑) (3.50)

where 𝐸𝐽 = Φ0𝐼𝑐/(2𝜋) is known as the Josephson energy of a given junction.

To write the Hamiltonian for a Josephson junction in parallel with a capacitor, we

can modify the LC Hamiltonian from Eq. (3.34) by replacing the inductive energy with

the Josephson junction energy we found in Eq. (3.50), plus an additional capacitive

energy due to the junction (since the Josephson junction also acts as a small parallel
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plate capacitor)

�̂� =
1

2𝐶𝑠ℎ
𝑞2 +

1

2𝐶𝐽
𝑞2 − 𝐸𝐽 cos

(︁
𝜑
)︁

(3.51)

=
1

2𝐶Σ

𝑞2 − 𝐸𝐽 cos
(︁
𝜑
)︁

(3.52)

where 𝐶𝑠ℎ and 𝐶𝐽 are the capacitances of the shunt capacitor and Josephson junction

respectively, and 𝐶Σ ≡ 𝐶𝑠ℎ + 𝐶𝐽 is their parallel sum. Finally, it is conventional

to replace the charge operator 𝑞 with a number operator �̂�, where �̂� represents the

number of Cooper pairs with charge 2𝑒 on the superconducting island

𝑞 ≡ 2𝑒 �̂� (3.53)

Making this substitution, we arrive at the Hamiltonian of the capacitor-junction cir-

cuit

�̂� = 4𝐸𝐶 �̂�
2 − 𝐸𝐽 cos

(︁
𝜑
)︁

(3.54)

where 𝐸𝐶 = 𝑒2/(2𝐶Σ) is the capacitive energy of the circuit.

The electrical circuit represented by the Hamiltonian in Eq. (3.54)—based on the

simple LC-resonator, with a single Josephson junction in place of the linear inductor to

provide the necessary anharmonicity—is the simplest possible realization of a qubit

using superconducting circuits. Looking at this Hamiltonian, we can see that the

dynamics of this circuit are entirely determined by the relative weighting of the two

energies 𝐸𝐽/𝐸𝐶 , in much the same way that a heavy mass bound to a limp spring

will differ from a light mass on a stiff spring. In the limit where the Josephson energy

is much larger than the capacitive energy 𝐸𝐽 ≫ 𝐸𝐶 , this circuit is commonly known

as the transmon qubit [254]. This choice of parameters is strategic: the larger the

weighting of one energy relative to the other, the more susceptible the circuit will be

to noise in the corresponding circuit variable. That is, when 𝐸𝐽 ≫ 𝐸𝐶 , the circuit

will be more susceptible to magnetic flux noise in the environment, which shifts the

phase 𝜑 in time; when 𝐸𝐶 ≫ 𝐸𝐽 , the circuit will be more susceptible to electric charge
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Figure 3-3: Quantum Harmonic and Anharmnonic Oscillators. (a) Electrical circuit
diagram for a quantum harmonic oscillator (QHO) created using a simple LC-circuit
with an inductor 𝐿 in parallel with a capacitor 𝐶. (b) The parabolic energy potential
of the LC-circuit, where the energy levels |0⟩ , |1⟩ , |2⟩ are spaced evenly apart by
the fundamental frequency ℏ𝜔𝑟. (c) Circuit diagram of a single-junction transmon
qubit, where the linear inductor in (a) has been replaced with a Josephson junction
(inductance 𝐿𝐽 , intrinsic capacitance 𝐶𝐽). (d) The cosinusoidal potential of the
transmon qubit, where the energy levels of the circuit are spaced unevenly such that
the lowest two energy states |0⟩ and |1⟩ can be uniquely addressed at their frequency
difference 𝜔01. Together, the states |0⟩ and |1⟩ form the computational subspace of
the quantum bit. Figure reproduced from Ref. [257].

noise in the environment, shifting the charge 𝑞. Historically, charge noise has proven

more difficult to mitigate than flux noise, hence the choice of 𝐸𝐽 ≫ 𝐸𝐶 .

To access the transmon regime (𝐸𝐽/𝐸𝐶 ≥ 50), one technique is to increase the

shunt capacitance 𝐶𝑠ℎ in parallel to the Josephson junction, flattening the energy

levels of the circuit with respect to charge and reducing the circuit’s susecpibility to

charge noise. In this limit, the anharmonicity of the qubit is simply given by the
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charging energy of the capacitor

𝜔12 − 𝜔01 = −𝐸𝐶 (3.55)

and the qubit frequency can be found by diagonalizing the Hamiltonian in Eq. (3.54)

and finding the difference in the eigenenergies of the lowest two states

𝜔01 = (
√︀

8𝐸𝐽𝐸𝐶 − 𝐸𝐶)/ℏ (3.56)

Since 𝐸𝐶 is small by design, we can see that the transmon is a weakly anharmonic

circuit: for a typical device with a qubit frequency 𝜔01 = 3–6 GHz, the anharmociity

𝜔01 − 𝜔12 is consequently on the order of 100–300 MHz [246].

We will return to the transmon qubit extensively in Part III, where it will serve as

our hardware platform for performing multi-qubit algorithms using a universal gate

set. For the remainder of this chapter, we will focus on a slightly more complex super-

conducting circuit known as the flux qubit, which will demand a more sophisticated

handling of the circuit Hamiltonian than we were permitted to get away with for

the transmon. This technique—known as circuit quantization—provides a powerful

and flexible formalism for simulating general configurations of Josephson junctions,

capacitors, and linear inductors, and it will lead us naturally to the consideration of

multi-qubit circuits in the following chapter.

3.4 Circuit Quantization: The Flux Qubit

In this section, we will introduce the formalism of circuit quantization to derive the

Hamiltonian of a more general superconducting qubit composed of an arbitrary ar-

rangement of electrical elements. As an example, we will consider a circuit which

contains multiple Josephson junctions in series, as well as shunt capacitors and—

later in the section—linear inductors. This particular circuit, known as the flux qubit

(Fig. 3-4), consists of three Josephson junctions in a loop, where two of the junctions

𝐴 and 𝐵 have Josephson energy 𝐸𝐽 , and the third junction 𝐶 has a smaller Josephson
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1

b)

2

AB

C

Figure 3-4: Electrical circuit diagram for a three-junction flux qubit, where two of
the junctions (𝐴 and 𝐵) have Josephson energy 𝐸𝐽 and the third junction (𝐶) has
Josephson energy 𝛼𝐸𝐽 (𝛼 < 1, typically accomplished by making the overlap area
of the junction a factor 𝛼 smaller than the other two). The loop formed by the
three series junctions is threaded by an external magnetic flux Φext, and each junc-
tion is shunted by a capacitance 𝐶𝑛 which includes the parallel combination of the
intrinsic capacitance of the junction and any additional shunt capacitance. The two
ungrounded circuit nodes (labeled 1 and 2) are the independent degrees of freedom
of the circuit.

energy 𝛼𝐸𝐽 (𝛼 < 1). This smaller junction will play a role similar to the single junc-

tion of the transmon in the previous section, while the two large junctions will serve

as a shunt inductance across the smaller junction. As in the case of the transmon,

each junction has a parallel capacitance 𝐶𝑛, which is the parallel combination of the

intrinsic capacitance of the junction and an optional additional shunt capacitor.

We will first derive the Hamiltonian of this circuit for the simpler case of negligible

linear inductance. From there, we will adjust add an additional degree of freedom to

the circuit to account for the linear inductance of the loop.
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3.4.1 Writing the Classical Hamiltonian

Before we treat the qubit quantum mechanically, let’s consider the classical Hamil-

tonian of our qubit circuit. Having derived the classical Hamiltonian, the transition

to the language of quantum mechanics—where the Hamiltonian is an operator on

discrete energy states, rather than a continuous function of electrical variables—will

emerge naturally.1

As we showed in Section 3.3, the Josephson potential energy 𝑈𝐽 due to each

junction in our circuit is given by

𝑈𝐽𝑛 = 𝐸𝐽𝑛 (1− cos𝜑𝑛) (3.57)

where 𝐸𝐽𝑛 = Φ0𝐼𝑐𝑛/(2𝜋) is the Josephson energy of the 𝑛th junction with critical

current 𝐼𝑐𝑛, and 𝜑𝑛 is the gauge invariant phase across the superconducting junction.

Summing over all three junctions, we get the total Josephson potential energy 𝑈 of

our circuit

𝑈𝐽 =
∑︁
𝑛

𝐸𝐽𝑛(1− cos𝜑𝑛) (3.58)

= 𝐸𝐽𝐴(1− cos𝜑𝐴) + 𝐸𝐽𝐵(1− cos𝜑𝐵) + 𝐸𝐽𝑐(1− cos𝜑𝐶) (3.59)

= 𝐸𝐽(2 + 𝛼− cos𝜑𝐴 − cos𝜑𝐵 − 𝛼 cos𝜑𝐶) (3.60)

Now, let’s define a set of circuit nodes between each of the electrical elements in our

circuit. For the transmon, there were two nodes: the point between the junction and

the capacitor on either side of the loop. One of these nodes is electrically grounded,

so the circuit can be completely described by the electrical degree of freedom in the

single ungrounded node (black dot labeled 𝜑 in Fig. 3-3c). For the flux qubit, the

multiple junctions in series result in more circuit nodes: three in total (separating the

three junctions and their parallel capacitances), two of which are ungrounded. Let’s

label these two nodes 1 and 2 (black dots in Fig. 3-4).

1The following derivation is loosely adapted from the original derivation of the persistent-current
qubit in Ref. [345].
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Having defined the nodes of the cicuit, we can make a change of variables. Rather

than writing the Josephson potential in terms of the junction phases 𝜑𝐴, 𝜑𝐵, and 𝜑𝐶

(the so-called branch variables of our circuit), we can rewrite the potential in terms of

the phase across the two circuit nodes 𝜑1 and 𝜑2 (the node variables). As we will see,

these variables will effectively take into account the basic electrical constraints im-

posed by Kirchoff’s laws and thus comprise the set of independent degrees of freedom

in our circuit.

Unlike the branch variables, the definition of the node variables depends on how

you describe the topology of the circuit, which is defined according to the following

convention:2

1. Define the set of circuit nodes such that there is a node separating every circuit

element.

2. From the set of circuit nodes, define a reference node at circuit ground.

3. Choose a set of circuit branches such that each node is connected to ground by

a single chain of branches. Together, this set of branches defines the spanning

tree of our circuit.

4. The remaining circuit paths which are not included in the spanning tree are

defined as the closure branches of our circuit. These branches connect the

spanning tree branches and complete the closed loops of the circuit.

For a given circuit, the exact choice of spanning tree and closure branches is not

unique. This freedom in defining the spanning tree of the circuit is analogous to

the freedom in choosing a particular gauge when defining the vector potential in

electromagnetism.

Having defined the set of spanning tree branches T and the set of closure branches

C, we can relate the phase across a given branch 𝜑𝑏 to the flux across its adjacent

2This method of defining the circuit topology is explained in detail in Ref. [119].
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C

Figure 3-5: One choice of spanning tree for the circuit in Fig. 3-4. Here, solid lines
denote spanning tree branches T, and dashed lines denote closure branches C. For
this choice of spanning tree, the conversion between branch variables 𝐴,𝐵,𝐶 and
node variables 1, 2 is given in Eq. (3.63)–(3.65).

nodes 𝜑𝑛 and 𝜑𝑛′

𝜑𝑏∈T = 𝜑𝑛 − 𝜑𝑛′ (3.61)

𝜑𝑏∈C = 𝜑𝑛 − 𝜑𝑛′ +
2𝜋

Φ0

Φ𝑙(𝑏) (3.62)

where Φ𝑙(𝑏) is the total external magnetic flux through loop 𝑙, the loop which branch

𝑏 closes.

For the particular choice of spanning tree illustrated in Fig. 3-5, we would relate

the flux across the three junctions in our qubit to the flux across the two nodes as
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such:

𝜑𝐴 = 𝜑1 (3.63)

𝜑𝐵 = 𝜑2 (3.64)

𝜑𝐶 = 𝜑1 − 𝜑2 +
2𝜋

Φ0

Φext (3.65)

where Φext is the magnetic flux bias applied through our qubit loop. Making this

change of variables, we arrive at an expression for the Josephson potential energy in

terms of the node fluxes

𝑈𝐽 = 𝐸𝐽

(︂
2 + 𝛼− cos𝜑1 − cos𝜑2 − 𝛼 cos

(︂
𝜑1 − 𝜑2 +

2𝜋

Φ0

Φext

)︂)︂
(3.66)

Now that we have an expression for the Josephson potential energy of the qubit in

terms of the node variables, let’s consider the electrostatic energy 𝑇𝐶 stored at each

of the junctions

𝑇𝐶𝑛 =
1

2
𝐶𝑛𝑉

2
𝑛 (3.67)

where 𝐶𝑛 is the total capacitance across the junction (a parallel sum of its intrinsic

capacitance as well as its shunt capacitance) and 𝑉𝑛 is the voltage across the junc-

tion. Summing over the capacitive energies of all three junctions, we get the total

electrostatic energy stored in our qubit circuit

𝑇𝐶 =
1

2

(︀
𝐶𝐴𝑉

2
𝐴 + 𝐶𝐵𝑉

2
𝐵 + 𝐶𝐶𝑉

2
𝐶

)︀
(3.68)

Now, just as with our expression for the Josephson potential energy, we want to

make a change of variables and rewrite this expression in terms of the node variables

of our circuit. Making this change of variable, we can write the voltage across each

junction in terms of the voltages across the two nodes

𝑇𝐶 =
1

2

(︀
𝐶𝐴 (𝑉1 − 𝑉𝑔)

2 + 𝐶𝐵 (𝑉2 − 𝑉𝑔)
2 + 𝐶𝐶 (𝑉1 − 𝑉2)

2)︀ (3.69)

209



CHAPTER 3. DESIGNING AN ARTIFICIAL ATOM

We are free to define the voltage at ground as zero (𝑉𝑔 = 0), so we can expand out

this expression and drop the terms proportional to 𝑉𝑔

𝑇𝐶 =
1

2

(︀
𝐶𝐴𝑉

2
1 + 𝐶𝐵𝑉

2
2 + 𝐶𝐶

(︀
𝑉 2
1 − 2𝑉1𝑉2 + 𝑉 2

2

)︀)︀
(3.70)

=
1

2

(︀
(𝐶𝐴 + 𝐶𝐶)𝑉

2
1 + (𝐶𝐵 + 𝐶𝐶)𝑉

2
2 − 2𝐶𝐶𝑉1𝑉2

)︀
(3.71)

Recall from Section 3.3 that the voltage across a Josephson junction is proportional

to the time derivative of the phase across it

𝑉𝑛 =
Φ0

2𝜋
�̇�𝑛 (3.72)

= Φ̇𝑛 (3.73)

We can thus rewrite the total electrostatic energy 𝑇𝐶 stored in the qubit in terms of

derivatives of the node fluxes Φ̇𝑛

𝑇𝐶 =
1

2

(︁
(𝐶𝐴 + 𝐶𝐶) Φ̇

2
1 + (𝐶𝐵 + 𝐶𝐶) Φ̇

2
2 − 2𝐶𝐶Φ̇1Φ̇2

)︁
(3.74)

which we can express in a more compact matrix form as

𝑇𝐶 =
1

2
⃗̇Φ 𝑇 · C · ⃗̇Φ (3.75)

where ⃗̇Φ is a column vector of our flux derivatives

⃗̇Φ =

[︃
Φ̇1

Φ̇2

]︃
(3.76)
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and C is the capacitance matrix for our circuit3

C =

[︃
𝐶𝐴 + 𝐶𝐶 −𝐶𝐶
−𝐶𝐶 𝐶𝐵 + 𝐶𝐶

]︃
(3.77)

Taking the electrostatic energy 𝑇𝐶 as the qubit’s kinetic energy 𝑇 and the Joseph-

son energy 𝑈𝐽 as its potential energy 𝑈 , we can write the Lagrangian of the circuit

ℒ = 𝑇 (⃗̇Φ)− 𝑈(Φ⃗) (3.78)

where 𝑈(Φ⃗) is the Josephson potential in Eq. (3.66) written in terms of the node

fluxes Φ𝑛 = Φ0𝜑𝑛/(2𝜋). Following Langrangian mechanics, the canonical momenta

𝑃𝑖 = 𝜕ℒ/𝜕Φ̇𝑖 are thus

𝑃 = C · ⃗̇Φ (3.79)

= C · �⃗� (3.80)

= �⃗� (3.81)

which is the vector of total electric charge stored on the two circuit nodes 𝑞1 and 𝑞2.

Now that we have the Lagrangian of the circuit as well as the canonical momenta,

3In practice, we can bypass most of the steps in this derivation and go straight to the matrix
expression in Eq. (3.75), provided we follow a couple simple rules in defining our capacitance matrix
C. For a completely general qubit with 𝑁 circuit nodes, the 𝑁 -dimensional capacitance matrix can
be constructed as follows:

1. The diagonal entry 𝐶𝑛𝑛 is the sum of the capacitances immediately adjacent
to node 𝑛. Since the nodes are independent degrees of freedom, only these capacitances
immediately adjacent to a given node are actually affected by its voltage.

2. The off-diagonal entry 𝐶𝑛𝑚 is the negative sum of the capacitances between node
𝑛 and node 𝑚. These off-diagonal entries give us the negative cross terms which arise when
we take the square of the difference between adjacent node voltages.

3. If nodes 𝑛 and 𝑚 are not adjacent—that is, there is at least one other node
separating them—then 𝐶𝑛𝑚 = 0.
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we can now write the classical Hamiltonian:

𝐻 =
∑︁
𝑖

𝑃𝑖Φ̇𝑖 − ℒ (3.82)

=
1

2
⃗̇Φ 𝑇 · C · ⃗̇Φ + 𝑈(Φ⃗) (3.83)

=
1

2
𝑃 𝑇 · C−1 · 𝑃 + 𝑈(Φ⃗) (3.84)

=
1

2
�⃗� 𝑇 · C−1 · �⃗� + 𝑈(Φ⃗) (3.85)

Working through the classical Langrangian mechanics, we have just shown that the

classical node fluxes Φ⃗ and node charges �⃗� are, respectively, the conjugate position

and momentum variables of our circuit. That is, the Poisson bracket of the node flux

and node charge at a given node 𝑛 is unity

{Φ𝑛, 𝑞𝑛} = 1 (3.86)

3.4.2 Writing the Quantum Mechanical Hamiltonian

In order to consider our qubit circuit quantum mechanically, we need to translate our

Hamiltonian from a classical function of conjugate variables 𝐻(�⃗�, �⃗�) to a quantum

mechanical operator �̂�. To do this, we simply substitute our classically conjugate

variables for their corresponding quantum mechanical operators

Φ𝑛 → Φ̂𝑛 (3.87)

𝑞𝑛 → 𝑞𝑛 (3.88)

Since we just showed that the classical variables Φ and 𝑞 are canonically conjugate

variables, the corresponding quantum operators obey the position-momentum com-

mutation relation

[Φ̂𝑛, 𝑞𝑛] = 𝑖ℏ (3.89)
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The quantum mechanical Hamiltonian for our three-junction qubit circuit can thus

be written be in terms of its node operators as

�̂� =
1

2

∑︁
𝑖=1,2
𝑗=1,2

(C−1)𝑖𝑗 𝑞𝑖𝑞𝑗

+ 𝐸𝐽

(︂
2 + 𝛼− cos

2𝜋

Φ0

Φ̂1 − cos
2𝜋

Φ0

Φ̂2 − 𝛼 cos
2𝜋

Φ0

(Φ̂1 − Φ̂2 + Φext)

)︂
(3.90)

We will now perform one last change of variables. Rather than express the Hamil-

tonian in terms of the node flux Φ̂ and charge 𝑞, we can substitute these variables for

their more evidently quantized counterparts

Φ̂𝑛 → Φ0

2𝜋
𝜑𝑛 (3.91)

𝑞𝑛 → 2𝑒 �̂�𝑛 (3.92)

where, once again, 𝜑 is the gauge-invariant phase operator across a node and �̂� is

the number operator corresponding to the number of Cooper pairs (charge 2𝑒) on

each node. These quantities are also conjugate variables, and the operators obey the

commutation relationship

[𝜑𝑛, �̂�𝑛] = 𝑖 (3.93)

Making these substitutions, our Hamiltonian is now given by

�̂� = 2𝑒2
∑︁
𝑖=1,2
𝑗=1,2

(C−1)𝑖𝑗 �̂�𝑖�̂�𝑗

+ 𝐸𝐽

(︂
2 + 𝛼− cos𝜙1 − cos𝜙2 − 𝛼 cos

(︂
𝜙1 − 𝜙2 +

2𝜋

Φ0

Φext

)︂)︂
(3.94)

Now that we have a quantum mechanical expression for the Hamiltonian of our

circuit in terms of conjugate node operators, we can find the energy levels on the

circuit by numerically diagonalizing the Hamiltonian and recording its eigenvalues.

Before we can explicitly write out our Hamiltonian matrix, we need to choose which

basis we express our operators in. The two most obvious options are the flux basis
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and the charge basis, which are equivalent to the position and momentum bases

respectively.4 While either basis will do the job, we will choose the charge basis for

the remainder of this example.

Working in the charge basis, our basis states correspond to having an integer

number of excess Cooper pairs at the node. By definition, the charge operator written

in the charge basis is diagonal, and the number operator can thus be written as the

diagonal matrix

�̂� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
−2

−1

0

1

2
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.95)

In principle, this matrix has infinite dimension. However, since the energy required

to put an additional Cooper pair on the island increases quadratically with 𝑛, the

lowest energy eigenstates of the circuit (the ones we will use for our qubit states |0⟩

and |1⟩) will be most affected by small values of 𝑛. To make this computationally

tractable, we will truncate our Hilbert space to allow for a finite number of states

with a maximum of 𝑛𝑞 Cooper pairs. Our charge operator for the 𝑛th node is now

given by the finite matrix of dimension 2𝑛𝑞 + 1

�̂�𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑛𝑞

−𝑛𝑞 + 1
. . .

𝑛𝑞 − 1

𝑛𝑞

⎤⎥⎥⎥⎥⎥⎥⎦
𝑛

(3.96)

Now that we have a matrix form of the number operator at each node �̂�𝑛, we can

4Though, as we will see when we get to the case of non-negligible linear inductance, these are
not the only options.
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plug this matrix into out expression for the kinetic energy operator for our qubit

𝑇 = 2𝑒2
∑︁
𝑖=1,2
𝑗=1,2

(C−1)𝑖𝑗 �̂�𝑖�̂�𝑗 (3.97)

where the product �̂�𝑖�̂�𝑗 is a tensor product of the two matrices

�̂�𝑖�̂�𝑗 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑛𝑞

−𝑛𝑞 + 1
. . .

𝑛𝑞 − 1

𝑛𝑞

⎤⎥⎥⎥⎥⎥⎥⎦
𝑖

⊗

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑛𝑞

−𝑛𝑞 + 1
. . .

𝑛𝑞 − 1

𝑛𝑞

⎤⎥⎥⎥⎥⎥⎥⎦
𝑗

(3.98)

since each node is an independent degree of freedom and thus has its own Hilbert

space.

Next, let’s consider the potential energy operator

�̂� = 𝐸𝐽

(︂
2 + 𝛼− cos𝜑1 − cos𝜑2 − 𝛼 cos

(︂
𝜑1 − 𝜑2 +

2𝜋

Φ0

Φext

)︂)︂
(3.99)

which we will now write in terms of complex exponentials

�̂� = 2𝐸𝐽 + 𝛼𝐸𝐽

− 𝐸𝐽
2

(︁
𝑒−𝑖𝜑1 + 𝑒+𝑖𝜑1

)︁
− 𝐸𝐽

2

(︁
𝑒−𝑖𝜑2 + 𝑒+𝑖𝜑2

)︁
− 𝛼𝐸𝐽

2
𝑒
−𝑖 2𝜋

Φ0
Φext

(︁
𝑒−𝑖𝜑1𝑒+𝑖𝜑2

)︁
− 𝛼𝐸𝐽

2
𝑒
+𝑖 2𝜋

Φ0
Φext

(︁
𝑒+𝑖𝜑1𝑒−𝑖𝜑2

)︁
(3.100)

Written explicitly in this form, we notice that the exponentials involving the node

phase operators are in fact the charge displacement operators

�̂�± = 𝑒∓𝑖𝜑 (3.101)

and correspond to either adding or removing a single Cooper pair from the node.5 In

5This is analogous to how, in position-momentum space, the momentum operator is the generator
of spatial translations �̂�(𝑥) = exp(−𝑖𝑝𝑥/ℏ).
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the charge basis, the charge displacement operators for the 𝑛th node are given by the

off-diagonal matrices

�̂�+
𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 1

0 1

0 1

0 1

0 1

0 1
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑛

(3.102)

�̂�−
𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
1 0

1 0

1 0

1 0

1 0

1
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑛

(3.103)

where, as with the charge operators, these infinite matrices can be truncated to finite

dimension 2𝑛𝑞 + 1.

Collecting these results and explicitly writing out the Hamiltonian in Eq. (3.94)

as a (2𝑛𝑞 +1)× (2𝑛𝑞 +1) matrix, the energy spectrum of the circuit can be found by

numerically solving for the eigenvalues of the matrix.

3.4.3 Dealing with Linear Inductance

In the circuit we have considered so far, all the inductance in the loop has come from

the nonlinear Josephson junctions. In most circuits, this is a fair approximation.

However, in circuits where the linear inductance of the loop is comparable to the

Josephson inductance or smaller, the inductive energy term in the Hamiltonian will

begin to dominate and must be accounted for. Schematically, we can model this

by placing a lumped element inductor with inductance 𝐿 in series with our three

junctions, as illustrated in Fig. 3-6. Note that now that we’ve added a new circuit
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1

b)

2

AB

C

3

D

Figure 3-6: The qubit circuit from Fig. 3-4, now including a lumped-element inductor
𝐿 which captures the combined linear inductance of the qubit loop. Adding this
element requires the introduction of a third circuit node (labelled 3), which modifies
the definition of the branch variables to those in Eqs. (3.105)–(3.108).

element, our circuit now has three ungrounded nodes rather than the two in the

previous example.

To start, let’s once again write down the total Josephson potential energy of our

circuit

𝑈𝐽 = 𝐸𝐽 (2 + 𝛼− cos𝜑𝐴 − cos𝜑𝐵 − cos𝜑𝐶) (3.104)

Translating from the branch phases 𝜑𝐴, 𝜑𝐵, 𝜑𝐶 , and 𝜑𝐷 to the node phases 𝜑1, 𝜑2,
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and 𝜑3, we (arbitrarily) choose our spanning tree such that

𝜑𝐴 = 𝜑1 − 𝜑3 (3.105)

𝜑𝐵 = 𝜑2 (3.106)

𝜑𝐶 = 𝜑1 − 𝜑2 +
2𝜋

Φ0

Φext (3.107)

𝜑𝐷 = 𝜑3 (3.108)

Making this change of variable, we can rewrite our expression for the total Josephson

potential energy in terms of the three node variable

𝑈𝐽 = 𝐸𝐽

(︂
2 + 𝛼− cos(𝜑1 − 𝜑3)− cos𝜑2 − cos

(︂
𝜑1 − 𝜑2 +

2𝜋

Φ0

Φext

)︂)︂
(3.109)

Turning next to the electrostatic energy stored in the capacitive elements of our

circuit, we can simply borrow the general expression we found in the previous example

𝑇 =
1

2
�⃗� 𝑇 · C−1 · �⃗� (3.110)

where, now that we have three nodes

�⃗� =

⎡⎢⎣𝑞1𝑞2
𝑞3

⎤⎥⎦ (3.111)

and the capacitive matrix C is now

C =

⎡⎢⎣𝐶𝐴 + 𝐶𝐶 −𝐶𝐶 −𝐶𝐴
−𝐶𝐶 𝐶𝐵 + 𝐶𝐶 0

−𝐶𝐴 0 𝐶𝐴

⎤⎥⎦ (3.112)

Finally, now that we have introduced an inductance to our circuit, we must also

consider the inductive energy it contributes to our circuit. The energy stored in the

inductor is

𝑈𝐿𝑛 =
1

2
𝐿𝑛𝐼

2
𝑛 (3.113)

218



3.4. CIRCUIT QUANTIZATION: THE FLUX QUBIT

where 𝐼𝑛 is the current flowing through the inductor, which can be related to the time

derivative of the charge on the inductor’s branch

𝐼𝑛 = 𝑞𝑛 (3.114)

So, the energy 𝑈𝐿 in our inductor can be written in terms of the time derivative of

the charge on branch D

𝑈𝐿 =
1

2
𝐿𝑞2𝐷 (3.115)

which can be rewritten in terms of the flux across the branch

𝑈𝐿 =
1

2𝐿
Φ2
𝐷 (3.116)

which, for our particular choice of spanning tree, can be written in terms of the node

flux

𝑈𝐿 =
1

2𝐿
Φ2

3 (3.117)

As we have already shown, the node fluxes Φ𝑛 and node charges 𝑞𝑛 are classically

conjugate variables, and they can thus be substituted for their corresponding quantum

mechanical operators Φ̂𝑛 and 𝑞𝑛. Making this substitution, we get our quantum

operators for the capacitive energy, the inductive energy, and the Josephson potential

energy of our circuit

𝑇𝐶 =
1

2

∑︁
𝑖=1,2,3
𝑗=1,2,3

(C−1)𝑖𝑗 𝑞𝑖𝑞𝑗 (3.118)

�̂�𝐿 =
1

2𝐿
Φ̂2

3 (3.119)

�̂�𝐽 = 𝐸𝐽

(︂
2 + 𝛼− cos

2𝜋

Φ0

(Φ̂1 − Φ̂3)− cos
2𝜋

Φ0

𝜑2 − 𝛼 cos
2𝜋

Φ0

(︁
Φ̂1 − Φ̂2 + Φext

)︁)︂
(3.120)
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which combined give us the Hamiltonian of our circuit

�̂� = 𝑇 + �̂�𝐿 + �̂�𝐽 (3.121)

Now that we have all the operators right in front of us, let’s start writing them

explicitly in matrix form. Once again, we’ll replace the flux and charge variables at

nodes 1 and 2 with the gauge-invariant phase and number operators

Φ̂1,2 →
Φ0

2𝜋
𝜑1,2 (3.122)

𝑞1,2 → 2𝑒 �̂�1,2 (3.123)

from which we can get the relevant truncated matrices we found in Section 3.4.2

�̂�1,2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑛𝑞

−𝑛𝑞 + 1
. . .

𝑛𝑞 − 1

𝑛𝑞

⎤⎥⎥⎥⎥⎥⎥⎦
1,2

(3.124)

𝑒−𝑖𝜑1,2 = �̂�+
1,2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1

0 1
. . . 1

0 1

0

⎤⎥⎥⎥⎥⎥⎥⎦
1,2

(3.125)

𝑒+𝑖𝜑1,2 = �̂�−
1,2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

1 0

1
. . .
1 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
1,2

(3.126)

What about node 3? Now that we’ve included the potential energy of our inductor,
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our Hamiltonian now has a term which is parabolic in the flux across node 3:

1

2𝐿
Φ̂2

3 (3.127)

While we are free to write this term in the charge basis in much the same way

we handled the Josephson junctions, the linear inductor lends itself naturally to a

different choice of basis. Notice that node 3 essentially divides the circuit into two

parts: on one side of ground, we have the linear inductance 𝐿; one the other, we have

a collection of capacitive elements with combined series capacitance 𝐶Tot

1

𝐶Tot

=
1

𝐶𝐴
+

1

𝐶𝐵
+

1

𝐶𝐶
(3.128)

Indeed, when we invert the capacitance matrix in Eq. (3.112) to calculate the capac-

itive energy at each node

C−1 =

⎡⎢⎣
1
𝐶𝐵

+ 1
𝐶𝐶

1
𝐶𝐵

1
𝐶𝐵

+ 1
𝐶𝐶

1
𝐶𝐵

1
𝐶𝐵

1
𝐶𝐵

1
𝐶𝐵

+ 1
𝐶𝐶

1
𝐶𝐵

1
𝐶𝐴

+ 1
𝐶𝐵

+ 1
𝐶𝐶

⎤⎥⎦ (3.129)

we find that the matrix element corresponding to node 3 is simply the inverse of the

total series capacitance in the circuit

C−1
33 =

1

𝐶𝐴
+

1

𝐶𝐵
+

1

𝐶𝐶
(3.130)

= 𝐶−1
Tot (3.131)

We can thus think of our qubit as a simple LC-oscillator (Fig. 3-7), with node 3 as

its single degree of freedom.

Following this train of thought, we can instead write the operators for node 3 in

the oscillator basis, where we take as our basis states the quantized energy levels of

the simple harmonic oscillator. Recalling the Hamiltonian for the quantum harmonic

LC-oscillator in Section 3.2

�̂�osc =
𝑞2

2𝐶
+

Φ̂2

2𝐿
(3.132)
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b)

3

Figure 3-7: The qubit circuit from Fig. 3-6, where node 3 is now thought of as
the single node of an LC circuit formed by the inductance 𝐿 and the total series
capacitance of the circuit 𝐶Tot (fundamental frequency: 𝜔 =

√︀
1/𝐿𝐶Tot). The charge

and flux operators at node 3 (𝑞3, Φ̂3) can thus be written in the oscillator basis as in
Eq. (3.134) and (3.136).

we can thus rewrite the flux and charge operators in the oscillator basis as

Φ̂ =

√︂
ℏ𝜔0𝐿

2
(�̂�† + �̂�) (3.133)

=

√︂
ℏ𝑍0

2
(�̂�† + �̂�) (3.134)

𝑞 = 𝑖

√︂
ℏ𝜔0𝐶

2
(�̂�† − �̂�) (3.135)

= 𝑖

√︂
ℏ

2𝑍0

(�̂�† − �̂�) (3.136)

where �̂�† and �̂� are the creation and annihilation operators respectively, 𝑍0 =
√︀
𝐿/𝐶

is the characteristic impedance of the circuit, and 𝜔0 = 1/
√
𝐿𝐶 is the characteris-

tic frequency of the LC oscillator. Substituting these operators into the oscillator

222



3.4. CIRCUIT QUANTIZATION: THE FLUX QUBIT

Hamiltonian in Eq. (3.132), we get the familiar result

�̂�osc = ℏ𝜔0

(︂
�̂�†�̂�+

1

2

)︂
= ℏ𝜔0

(︂
�̂� +

1

2

)︂
(3.137)

where �̂� ≡ �̂�†�̂� is the oscillator number operator

�̂� =

⎡⎢⎢⎢⎣
0

1

2
. . .

⎤⎥⎥⎥⎦ (3.138)

With this in mind, we can easily write out the charge and flux operators for the

third node in matrix form:

𝑞3 = 𝑖

√︂
ℏ

2𝑍0

(�̂�†3 − �̂�3) (3.139)

= 𝑖

√︂
ℏ

2𝑍0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −
√
1√

1 0 −
√
2√

2 0
. . .

0 −
√
𝑁 − 1√

𝑁 − 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.140)

Φ̂3 =

√︂
ℏ𝑍0

2
(�̂�†3 + �̂�3) (3.141)

=

√︂
ℏ𝑍0

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
1√

1 0
√
2√

2 0
. . .

0
√
𝑁 − 1√

𝑁 − 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.142)

where the creation and annihilation operators have been truncated to allow for a

maximum of 𝑁 oscillator states.

The only matrices we still need to complete our Hamiltonian are the ones cor-

responding to the charge displacement operators �̂�±
3 = exp

(︁
∓𝑖2𝜋Φ̂3/Φ0

)︁
. Unfortu-
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nately, writing the displacement operators in the oscillator basis is not as simple as

it is in the charge basis. Instead, we can rely on the Taylor series definition of the

exponential, expanding the operator out in powers of Φ̂3

𝑒
±𝑖 2𝜋

Φ0
Φ̂3 ≡ 1 +

(︂
±𝑖2𝜋

Φ0

Φ̂3

)︂
+

1

2!

(︂
±𝑖2𝜋

Φ0

Φ̂3

)︂2

+
1

3!

(︂
±𝑖2𝜋

Φ0

Φ̂3

)︂3

+ · · · (3.143)

Alternatively, we can integrate the matrix elements of the displacement operator

analytically, obviating the need for any series approximation.

Writing out the full Hamiltonian of our system

�̂� = 𝑇 + �̂�𝐿 + �̂�𝐽 (3.144)

=
1

2

∑︁
𝑖=1,2,3
𝑗=1,2,3

(C−1)𝑖𝑗 𝑞𝑖𝑞𝑗 +
1

2𝐿
Φ̂2

3

+ 𝐸𝐽

(︂
2 + 𝛼− cos

(︂
𝜑1 −

2𝜋

Φ0

Φ̂3

)︂
− cos𝜑2 − 𝛼 cos

(︂
𝜑1 − 𝜑2 +

2𝜋

Φ0

Φext

)︂)︂
(3.145)

notice that we can now get rid of the parabolic potential energy term simply by

replacing the capacitive and inductive energies at node 3 with the oscillator Hamil-

tonian

�̂�osc =
1

2𝐶
𝑞23 +

1

2𝐿
Φ̂2

3 (3.146)

= ℏ𝜔0

(︂
�̂�3 +

1

2

)︂
(3.147)

Making this replacement and inserting all operators in their correct basis, we at last
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3.5. THE C-SHUNT FLUX QUBIT

get the Hamiltonian for our circuit

�̂� = 𝑇 ′ + �̂�osc + �̂�𝐽 (3.148)

= 2𝑒2
∑︁
𝑖=1,2
𝑗=1,2

(C−1)𝑖𝑗 �̂�𝑖�̂�𝑗 + 𝑒2
∑︁
𝑖=1,2

(C−1)𝑖3 �̂�𝑖𝑞3 + 𝑒2
∑︁
𝑗=1,2

(C−1)3𝑗 𝑞3�̂�𝑗

+ ℏ𝜔0

(︂
�̂�3 +

1

2

)︂
+ 𝐸𝐽

(︂
2 + 𝛼− cos

(︂
𝜑1 −

2𝜋

Φ0

Φ̂3

)︂
− cos𝜑2 − 𝛼 cos

(︂
𝜑1 − 𝜑2 +

2𝜋

Φ0

Φext

)︂)︂
(3.149)

This Hamiltonian is quite a bit more complicated than the one we found for the

transmon qubit in Eq. (3.54). And yet, having picked a set of design values for the

capacitances, inductances, and Josephson energies, we can simply plug these values

into the equation above and diagonalize the resulting Hamiltonian matrix to find

the energy levels of the resulting flux qubit. In the following section, we will do

exactly this. Starting from measurements of a novel variation of the flux qubit (the

capacitively-shunted or C-shunt flux qubit), we will optimize over the parameters in

this Hamiltonian to find the most likely set of circuit parameters which the qubits

are composed of.

3.5 The C-shunt Flux Qubit

In their simplest formulations, the transmon and the flux qubit are electrical duals

of one another. As we showed in Section 3.3, the transmon can be thought of as a

Josephson junction shunted by a capacitor (Fig. 3-8a). Indeed, when this circuit is

operated outside the transmon limit (𝐸𝐽 ≫ 𝐸𝐶), it is known simply as the charge

qubit, since the basis states are well approximated as the charge states of the cir-

cuit [324].6 Meanwhile, looking at the Hamiltonian we derived in Section 3.4, we

can see that—in the limit where the shunt capacitors across each junction is simply
6This circuit was, in fact, the first realization of a coherent superconducting qubit and was

originally know as a Cooper-pair box due to the paired electrons which tunnel on and off the super-
conducting island between the capacitor and junction [70, 273, 324].
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a) b)

Figure 3-8: The Charge Qubit and the Flux Qubit. (a) Electrical circuit diagram
of the general charge qubit, where the Josephson junction is shunted by a capacitor
𝐶𝑠ℎ. In the limit where 𝐸𝐽 ≫ 𝐸𝐶 (large 𝐶𝑠ℎ) this circuit is known as the transmon
qubit. (b) Circuit diagram of the general flux qubit, where the Josephson junction
is instead shunted by a linear inductor 𝐿𝑠ℎ.

equal to the small intrinsic capacitor of the junction 𝐶Σ = 𝐶𝐽—the flux qubit can be

thought of as a Josephson junction shunted by the combined inductance of the large

junctions and the linear inductor (Fig. 3-8b). In this circuit, the basis states of the

circuit are well approximated as the flux states of the circuit, hence the name.

In this section, we will briefly introduce a novel superconducting circuit developed

at MIT which combines aspects of both of these circuit paradigms: the capacitively-

shunted flux qubit, or C-shunt flux qubit for short. In comparison to the first gen-

eration of flux qubits developed in the late 1990s [313, 345], the C-shunt flux qubits

offered two key innovations which improved the resilience of the qubit to noise in the

environment:

1. The critical currents of the Josephson junctions in the qubit loop are signifi-

cantly reduced, both by decreasing the physical area of the junctions and by re-

ducing the critical current density 𝐽𝑐 of the superconductor-normal-superconductor

(SNS) interface. This reduction in critical current reduces the sensitivity of the

qubit energy levels to external flux bias, decreasing the susceptibility of the

qubit to magnetic flux noise in the environment. This susceptibility to flux is

given by the slope of the qubit’s energy levels with respect to the external flux
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Figure 3-9: The C-shunt flux qubit, experimentally. (a) Optical micrograph of two
capacitively-shunted flux qubits (labeled A and B) coupled to a common 𝜆/2 copla-
nar waveguide for readout. The qubits and waveguide are fabricated out of super-
conducting aluminum (black) deposited on top of a sapphire substrate (white, where
aluminum has been etched away). (Scale bar: 0.5mm.) (b) SEM image of qubit A.
Together, the two 200× 200 𝜇m2 square pads form a large parallel plate shunt capac-
itor across the Josephson junctions, the hallmark of the C-shunt flux qubit. (Scale
bar: 50𝜇m.) (c) Magnified SEM image of the qubit loop, with one small Joseph-
son junction (left side of loop) in parallel with two larger junctions in series (right
side). (Scale bar: 50𝜇m.) (d) Equivalent electrical circuit diagram of the two qubits
capacitively coupled to the 𝜆/2 resonator, including signal generator for the qubit
readout 𝜔ro, qubit drive 𝜔d, and external noise source for studying qubit coherence
Padd. A global magnetic field 𝐵 is applied perpendicular to the qubit chip, inducing
an external flux Φ𝑏 through each qubit loop. [481]

bias, a quantity known as the persistent current of the flux qubit 𝐼𝑝

𝐼𝑝 =
𝑑𝐸

𝑑Φ
(3.150)

2. The effective capacitance of the small Josephson junction is dramatically in-

creased by shunting the junction with a large capacitor (𝐶𝑠ℎ ≫ 𝐶𝐽), in much

the same way as the transmon qubit. Like the transmon, this shunt capaci-

tor reduces the capacitive energy term in the qubit Hamiltonian, reducing the

susceptibility of the qubit to electric charge noise. In addition, this large dramti-
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3.5. THE C-SHUNT FLUX QUBIT

Parameter Qubit A Qubit B
Critical current density, 𝐽𝑐 1.985𝜇A/𝜇m2

Specific capacitance, 𝑆𝑐 71.3fF/𝜇m2

Shunt capacitance, 𝐶𝑠ℎ 49.712fF

Loop inductance, 𝐿 24.964pH

Area of small junction 0.01876𝜇m2 0.02126𝜇m2

Area of each large junction 0.05542𝜇m2 0.06276𝜇m2

Anharmonicity, 𝑓12 − 𝑓01 423MHz 420MHz

Table 3.1: Table of device parameters for qubits A and B, extracted from fitting high
power spectroscopy of both qubits (Fig. 3-10). Since both qubits were fabricated on
the same wafer and designed to be geometrically identical except for the junction
sizes, we simplified the optimization by contraining both qubits to have the same
values of 𝐽𝑐, 𝑆𝑐, 𝐶𝑠ℎ, and 𝐿. Running the optimization, we find a set of junction sizes
for each qubit which successfully account for the difference in energy spectra between
the two devices.

cally improves the reproducibility of the circuit. Since the intrinsic capacitance

of the small Josephson junction is the only capacitance in the traditional flux

qubit Hamiltonian (see 𝐶𝐽 in Fig. 3-8b), small deviations in this value due to

fabrication errors (for example, a deviation in the junction size by less than a

nanometer) or stray capacitances will dramatically alter the energy spectrum

of the resulting qubit. By shunting the junction with a large parallel capaci-

tance, the role of the intrinsic junction capacitance is significantly depreciated,

reducing the sensitivity of the circuit to systematic changes in this value.

In the previous sections, we saw how we can use circuit quantization to determine

the energy spectrum of a superconducting qubit from a set of electrical parameters.

Here, we can do the inverse. After fabricating and cooling the resulting circuit down to

milliKelvin temperatures in a dilution refrigerator, we can measure the energy levels

of the circuit in spectroscopy and use circuit quantization—coupled with a classical

optimization algorithm such as Nelder-Mead [328]—to back out the most likely set of

electrical parameters which gave rise to the observed spectrum.

To accomplish this, we performed high-power spectroscopy of both qubits as a

function of drive frequency (Fig. 3-10, 𝑦-axis) and magnetic flux bias (x-axis), exciting

229



CHAPTER 3. DESIGNING AN ARTIFICIAL ATOM

multiple single- and two-photon transitions between the |0⟩ , |1⟩ , |2⟩ , and |3⟩-states of

the qubits. Taking the set of transition frequencies observed in spectroscopy, we ran

an optimizer over the full set of electrical parameters in the circuit, diagonalizing the

Hamiltonian for each set of parameters and iterating until we converges on a spectrum

which matches measurement. The results of the optimization are shown in Fig. 3-10,

where the overlaid solid lines correspond to the simulated spectra which best fit the

data (2D color map underneath, resonant features appearing in yellow). In Table 3.1,

we record the set of electrical parameters extracted during the optimization.
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Chapter 4

Coherent Coupled Qubits

In Chapter 3, we saw how to engineer a single quantum bit out of a superconduct-

ing Josephson circuit. Starting from an arrangement of capacitors, inductors, and

Josephson junctions, we quantized the resulting circuit Hamiltonian and extracted

the energy spectrum of the circuit. Harnessing the anharmonicity of these circuits,

we were free to pick out a pair of energy levels—for example, the ground and first

excited states—and call those wavefunctions the |0⟩- and |1⟩-states of our qubit. In

this chapter, we will extend the discussion in the previous chapter from one qubit

in isolation to two coupled qubits. In the process, we will show how to design and

engineer multi-qubit Hamiltonians of the kind we saw in Section 2.6, consisting of

products of Pauli operators.

Coupled qubits are the backbone of any quantum processor, and we will consider

such circuits from multiple angles throughout the remainder of this thesis: in Part III,

we will see how coupled transmon qubits can be harnessed to implement two-qubit

entangling operations in quantum algorithms; in Part IV, we will study the errors

which arise due to always-on coupling between qubits, particularly non-Markovian

errors. However, as a first example, we will consider a different but related paradigm of

This chapter is based in large part on original work reported in Ref. [463], and I gratefully
acknowledge all of my coauthors for their contributions to this work, with particular acknowledgment
to Steven Weber, David Hover, William Oliver, and Jamie Kerman.
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coupled qubits: C-shunt flux qubits galvanically coupled to an rf-SQUID for analogue

quantum computation. This circuit, we will see, implements a ZZ-interaction between

the two qubits whose strength and sign can be tuned in situ via an external flux

through the coupler loop. In this way, the two qubits can be effectively mapped onto

a pair of spins governed by the transverse Ising model, the elementary building block

of a quantum annealer.

4.1 Quantum Annealing and the Ising Model

In Chapter 2, we showed how a system of interacting qubits will evolve under the

influence of a multi-qubit Hamiltonian, becoming entangled with one another over

time. In Part III, we will see how such Hamiltonians can be harnessed to perform

discrete logic gates between qubits and concatenated to perform quantum algorithms.

In this chapter, however, we will briefly consider the design considerations for an

alternative paradigm of quantum computation known as quantum annealing. Unlike

the gate-model quantum processors in Part III—where the algorithms are ‘digital,’

in the sense that the qubits are analogous to the bits of a classical computer and

manipulated using discrete logic gates—quantum annealers are analog computing

devices, in the sense that the computation of interest is encoded into the continuous

time evolution of the system.

Consider a multi-qubit Hamiltonian of the form

�̂� =
∑︁
𝑖

(︁
𝜖𝑖 𝑍𝑖 +Δ𝑖 �̂�𝑖

)︁
+
∑︁
𝑖,𝑗

𝐽𝑖𝑗 𝑍𝑖 ⊗ 𝑍𝑗 (4.1)

where 𝑍 and �̂� are the familiar Pauli operators, and the coefficients 𝜖𝑖, Δ𝑖, and 𝐽𝑖𝑗

are energies which set the relative strength of the different terms in the Hamiltonian.

Looking at the first sum in the Hamiltonian above, we see that each qubit 𝑖 has a

Hamiltonian with some weighting of single-qubit 𝑍 and �̂� operators; looking at the

second sum, we see that every pair of qubits 𝑖, 𝑗 is coupled with a two-qubit interaction

of the form 𝑍 ⊗𝑍. As we saw in Chapter 2, when all the interaction terms are set to
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zero (𝐽𝑖𝑗 = 0 for all pairs 𝑖, 𝑗), each qubit will traverse a path in its individual Bloch

sphere, completely divorced from the evolution of every other qubit in the system.

When the interaction are not set to zero, the qubits will begin to talk to each other

and, in their conversation, become entangled.

What happens when we modify the coefficients in the Hamiltonian above as func-

tions of time? As an example, let’s regroup the terms in the Hamiltonian such that

the terms proportional to 𝑍 and 𝑍 ⊗ 𝑍 change in time together according to some

function Λ(𝑡), while the terms proportional to �̂� change in time according to an

independent function Γ(𝑡)

�̂�(𝑡) = Λ(𝑡)

(︃∑︁
𝑖

𝜖𝑖(𝑡)𝑍𝑖 +
∑︁
𝑖,𝑗

𝐽𝑖𝑗(𝑡)𝑍𝑖 ⊗ 𝑍𝑗

)︃
+ Γ(𝑡)

∑︁
𝑖

Δ𝑖(𝑡) �̂�𝑖 (4.2)

At 𝑡 = 0, let Λ(0) = 0 and Γ(0) = 1 such that the Hamiltonian of the system only

has single-qubit �̂� terms

�̂�(𝑡 = 0) = Δ
∑︁
𝑖

�̂�𝑖 (4.3)

where, for simplicity, we have set all the energies Δ𝑖 equal to one another and pulled

it out of the sum. Looking at this Hamiltonian, we can see that the lowest energy

eigenstate of the system is trivial. As we showed in Chapter 2, the eigenstates of �̂�

are the superposition states |+⟩ and |−⟩, with eigenvalues +1 and −1 respectively. If

Δ𝑖 is positive, then the state |−⟩ has the lower eigenvalue of the two and is thus the

ground state of the Hamiltonian.

Since the qubits evolving under the Hamiltonian in Eq. (4.3) are totally uncoupled,

the global ground state of the system of all 𝑁 qubits is a product state of the single-

qubit ground state

|𝜓0⟩ = |−⟩⊗𝑁 (4.4)

where the tensor product in the exponent is short-hand for the multi-qubit product

state where all the qubits are in the same single-qubit state

|−⟩⊗𝑁 ≡ |−⟩1 ⊗ |−⟩2 ⊗ · · · ⊗ |−⟩𝑁 (4.5)
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Figure 4-1: Spin systems, classically. (a) An array of classical bar magnets, arranged
in the 𝑧𝑥-plane. In the absence of an external magnetic field and interactions between
the magnets, all orientations of the magnets are degenerate. (b) A uniform external
magnetic field is applied in the +�̂�-direction, breaking the degeneracy. Once the
field is applied, the lowest energy configuration of the system corresponds to all the
magnets pointing in the −�̂�-direction. This classical picture is analogous to a multi-
qubit system under the influence of the local Hamiltonians in Eq. (4.3), where the
global ground state is the trivial product state in Eq. (4.5).

This global ground state has a nice physical interpretation from classical physics.

Instead of thinking about qubits, imagine a large array of bar magnets as in Fig. 4-1.

In this picture, the Hamiltonian in Eq. (4.3) is analogous to a uniform external mag-

netic field �⃗� applied to the array, pointing in the +�̂�-direction. Intuitively, we known

what happens to the magnets under the influence of this external field: the moment

the field turns on, all the bar magnets will align with the external magnetic field such

that they each point in the −�̂�-direction, as in Fig. 4-1b. Once aligned, the magnets

will have an energy Δ which is equal to the dot product of the magnetic field �⃗� = �̂�𝐵𝑥

and the dipole moment �⃗� of the magnet

Δ = −�⃗� · �⃗� (4.6)

= −𝐵𝑥𝜇𝑥 (4.7)

Now, imagine that we slowly turn down the Δ coefficients in the Hamiltonian and

turn up the 𝜖 and 𝐽 coefficients such that, at the conclusion of the transition 𝑡 = 𝑇 ,
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Figure 4-2: Quantum annealing, classically. (a) A simple quantum annealing sched-
ule, where the coefficient Γ(𝑡) in Eq. (4.2) is linearly decreased and the coefficient
Λ(𝑡) is increased. (b) Classical picture of the multi-qubit system at 𝑡 = 0, where the
qubits are governed by a uniform magnetic field and equilibriate to the trivial global
ground state. (c) The system at 𝑡 = 𝑇 , where the uniform transverse field has been
turned off and the Ising Hamiltonian in Eq. (4.8) has been turned on. At each site, a
local magnetic field of variable strength is applied in the 𝑧-direction, and interactions
between pairs of sites are turned on. While the ground state of the general Ising
Hamiltonian is extremely nontrivial, it can be obtained adiabatically by evolving the
system from the initial trivial ground state in (b).

Λ(𝑇 ) = 1 and Γ(𝑇 ) = 0. The Hamiltonian will now have the form

�̂�(𝑡 = 𝑇 ) =
∑︁
𝑖

𝜖𝑖 𝑍𝑖 +
∑︁
𝑖,𝑗

𝐽𝑖𝑗 𝑍𝑖 ⊗ 𝑍𝑗 (4.8)

In spin physics, this ubiquitous Hamiltonian is known as the Ising model. Classically,

we can once again think of this Hamiltonian in terms of magnetic fields on an array

of magnets, as in Fig. 4-2c. Here, the first sum corresponds to a set of local magnetic
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fields on each of our bar magnets pointed in the 𝑧-direction, where each magnet 𝑖 has

energy 𝜖𝑖 proportional to the strength of the local magnetic field �⃗�𝑖 = 𝑧𝐵𝑧
𝑖

𝜖𝑖 = −�⃗� · �⃗� (4.9)

= −𝐵𝑧𝜇𝑧 (4.10)

As for the second sum in Eq. (4.8), these correspond to pairs of magnets experiencing

the magnetic field generated by each other. Here, the energy of the interaction is

proportional to the dot product of the two dipole moments

𝐸int = 𝐽𝑖𝑗 �⃗�𝑖 · �⃗�𝑗 (4.11)

In general, the strength of this interaction can be different for every pair of magnets

in the array—for example, the magnets are varying distances away from each other

and exert a different strength field on each of its neighbors.

Unlike the starting Hamiltonian in Eq. (4.3), the Hamiltonian in Eq. (4.8) does

not have a trivial ground state: the moment the fields and interactions are suddenly

turned on, there are a vast number of local minima which the system may find itself

in, states which may have much larger energy than the global ground state. Indeed,

for an array of magnets with completely general interaction strengths, solving for the

global ground state in simulation is known to be an NP-complete problem [99, 215].

And yet, physics offers us an elegant way to solve this problem and find the ground

state nonetheless. Imagine we tune our coefficients Λ(𝑡) and Γ(𝑡) very slowly in time.

At 𝑡 = 0, our system will be in the trivial ground state from Eq. (4.5), and we can

verify this is the case by performing local measurements on each of the qubits. From

here, we gradually turn down Γ(𝑡) and turn up Λ(𝑡) such that, at some later time

𝑡 = 𝑇 , our system is governed by the Ising Hamiltonian in Eq. (4.8). Now, if we

tuned our coefficients slowly enough such that the system evolved adiabatically, the

entire system will remain in the instantaneous ground state over the course of the

entire evolution. Thus, the system at 𝑡 = 𝑇 will be in the ground state of the Ising
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Hamiltonian, solving the problem.

The protocol we just considered is known as quantum annealing [78, 137, 143,

227]: prepare a system in the ground state of a trivial Hamiltonian and gradually

evolve the system into the ground state of a more complicated Hamiltonian. This

final Hamiltonian may be interesting for physics reasons—for example, it corresponds

to a complicated spin glass you wish to simulate the phase transitions of—but it

could also be chosen such that it encodes a difficult classical problem. Indeed, in the

limit that the evolution is purely adiabatic and the system remains in the ground state

throughout the evolution, quantum annealing is equivalent to adiabatic quantum com-

puting and is a form of universal quantum computation: for any arbitrary quantum

algorithm, there exists a time-dependent Hamiltonian whose ground state encodes

the algorithm’s solution [11]. However, in practice, it is extremely difficult to ensure

that the system remains in its ground state for the entirety of the evolution—as the

size of the system grows, the gaps between energy eigenstates becoming exponentially

small, increasing the likelihood of jumping out of the ground state as the Hamiltonian

evolves—effectively thwarting the possibility of true adiabatic quantum computation.

Instead, modern quantum annealing systems are designed to solve hard optimiza-

tion problems, where the final Hamiltonian encodes the cost function of the clas-

sical optimization—for example, the total distance traveled in a traveling salesman

problem—is encoded into the final Hamiltonian. As such, even if the system fails to

end up in the global ground state of the final Hamiltonian (corresponding to the most

optimal solution of the problem), evolution to a higher excited state may still yield

a solution which is more optimal than would be obtained using a classical optimizer.

Unfortunately, unlike universal quantum computation, there is no formal proof of a

quantum speedup using quantum annealing, and no experimental system to date has

succeeded in demonstrating such a speedup [12, 65, 66, 116, 214, 234, 264, 292, 389].
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4.2 Tunable ZZ-Coupling Between Coherent Flux

Qubits

To date, it remains unclear why current-generation quantum annealers have not been

able to demonstrate a quantum speedup. However, experience with existing quantum

annealers—particularly the systems designed and engineered by D-Wave systems—

suggests a number of potential avenues for improvement. The first generation of

D-Wave annealers relied on niobium flux qubit with relatively short coherence times

and pairwise couplings limited to a “Chimera” connectivity graph [79, 189]. These

systems approximately realize the transverse Ising Hamiltonian in Eq. (4.1), where

the eigenstates of the Pauli operator 𝑍 correspond to the persistent-current states of

the individual flux qubits, which can be viewed as clockwise and counter-clockwise

currents of magnitude 𝐼p circulating around the qubit loop. The energies 𝜖𝑖 and Δ𝑖

are then tuned in situ using local magnetic flux biases.

To implement the ZZ-interaction between the qubits, pairs of flux qubit are mutu-

ally coupled by way of an additional coupler circuit which mediates their interaction.

These coupler elements [15, 16, 24, 75, 90, 188, 190, 228, 314, 334, 355, 356, 486]

are themselves also flux qubits, though operated in a regime where they can be de-

scribed as a simple flux-tunable effective inductance 𝐿eff. Treating the coupler as

such, the coupling energy between two qubits, each with persistent current 𝐼p and

mutual inductance 𝑀 with the coupler, is given by

𝐽 = 𝐼2p𝑀
2/𝐿eff (4.12)

where 𝑀 is the mutual inductance between each qubit and the coupler, and the

quantity 1/𝐿eff is known to as the coupler susceptibility [190].

As we can see in Eq. (4.12), the strength of the interaction between two flux

qubits is largely determined by the magnitude of their persistent currents 𝐼p: the

larger the persistent current of each qubit, the stronger the coupling 𝐽 . As it turns

out, this is also the parameter which most directly affects the coherence of the flux
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qubits. While qubits with large values of 𝐼p strongly couple to one another, they also

couple strongly to sources of magnetic flux noise in the environment, degrading their

coherence. In this way, the persistent current 𝐼p can be thought of as analogous to the

magnetic dipole moment of a physical spin, setting the strength of interaction between

pairs of spins and well as their sensitivity to fluctuations in the surrounding magnetic

environment. For superconducting flux qubits, 1/𝑓 flux noise is the dominant noise

source limiting the energy relaxation and the dephasing times, which roughly scale

as 1/𝐼2p and 1/𝐼p respectively [372, 480]. In the D-Wave system, the qubits are

designed with large persistent currents 𝐼p ∼ 3 𝜇A [189] in order to achieve large

coupling strength with modest values of coupler susceptibility and 𝑀 , at the expense

of dramatically reduced qubit coherence.

How might we design a system with strong coupling and long coherence? As

we discussed in Section 3.5, the value of the persistent current can be significantly

suppressed by capacitively shunting the qubit, leading to robust and long-lived devices

with small persistent currents 𝐼p ∼ 50 nA [480]. As we can see from Eq. (4.12), in

order to realize strong coupling between qubits with small 𝐼p, we must compensate

by increasing either the mutual inductance 𝑀 or the coupler susceptibility 1/𝐿eff . In

exchange for a significant impovement in qubit coherence, this approach increases the

qubit’s sensitivity to flux noise in the coupler loop and requires more precise control

over the coupler flux bias.

In the work which follows, we present the results of an experiment demonstrat-

ing tunable coupling between qubits with persistent currents reduced by nearly two

orders of magnitude compared to existing quantum annealers. While coupled flux

qubits with low persistent currents have been previously demonstrated [355], until

the publication of this study, no work to date had investigated the implications that

this design choice has on qubit coherence for quantum annealing. This work pre-

sented, for the first time, a systematic study of the coherence of coupled flux qubits

in the context of quantum annealing. In particular, we investigate the effect of flux

noise in the coupler loop on qubit coherence. Our results are in good agreement

with simulations based on the full Hamiltonian of the coupled qubit system, as well
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Figure 4-3: Schematic of ZZ-coupled C-shunt flux qubits. Qubit A (left loop) and
Qubit B (right loop) are capacitively shunted three-junction flux qubits which are
galvanically coupled to an rf-SQUID coupler C (center loop) which mediates their
interaction. On-chip bias currents 𝐼1, 𝐼2, and 𝐼3 induce the external fluxes Φ𝐴, Φ𝐶 ,
and Φ𝐵 through the qubit and coupler loops, tuning the individual qubit energies and
the strength of their interaction. [463]

as a semi-classical model. This work serves as a proof-of-principle and provides a

framework for evaluating coherence in future quantum annealing architectures.

4.2.1 Experimental Setup

In Fig. 4-3, we show a circuit diagram of the coupled qubit device used in this exper-

iment. Here, two capacitively shunted three-junction flux qubits, Qubit A and Qubit

B, are each galvanically coupled to an rf-SQUID coupler via a shared inductance of

𝑀 = 34 pH, as shown in Fig. 4-4a–c. The parameters in the Ising Hamiltonian are
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tuned via externally applied magnetic fluxes ΦA, ΦB, and ΦC through the circuit

loops. The qubits are measured using standard dispersive read out [55], with each

qubit coupled to a separate readout resonator probed through a shared transmission

line.

For this device, we designed the coupler to have a transition frequency 𝜔01
C /2𝜋 ∼

20 GHz between its ground- and first-excited state, which is significantly larger than

the qubit transition frequencies at ∼ 5 GHz. As a result, the coupled qubit system

can be described by the approximate low-energy Hamiltonian [188]

𝐻 ≈ 𝐻(A)
q +𝐻(B)

q +𝐻int (4.13)

where

𝐻(𝑖)
q =

ℏ
2
𝜖𝑖(ΦA,B,C)𝑍

(𝑖) +
ℏ
2
Δ𝑖(ΦA,B,C)�̂�

(𝑖) (4.14)

𝐻int = ℏ𝐽(ΦA,B,C)𝑍
(A)𝑍(B) (4.15)

For the remainder of this chapter we will report the values of 𝜖𝑖, Δ𝑖, and 𝐽 in units

of frequency rather than energy, hence the additional factors of ℏ in the equations

above. These effective parameters are determined by the circuit parameters of the

individual qubits and coupler as well as by their couplings to each other, and can

depend on all three flux biases. For each qubit, the degeneracy point is defined as

the bias where 𝜖𝑖 = 0.

In table 4.1, we record a list of sample parameters extracted from two differ-

ent models of the coupled qubit system—a semi-classical model, where the individ-

ual qubits and coupler are treated quantum mechanically but their interactions are

treated as a classical mutual inductance (see Section 4.3), and a quantum model

of the full galvanically-coupled circuit shown in Fig. 4-9. Using the semi-classical

model, we perform an optimization routine to determine the set of parameters which

best fit the results in Fig. 4-5, 4-6, and 4-8. Note that the quantum model includes

some effects—such as cross-capacitance between the qubits and coupler—which are
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(b) (c)

1 mm

100 μm 10 μm

(a)

Figure 4-4: High-coherence flux qubits with tunable coupling. (a) Optical micrograph
of the aluminum (light grey) device on a silicon (dark grey) substrate. (b) Optical
image of the green highlighted region in (a), showing the qubits, coupler, and flux bias
lines. (c) SEM image of the orange highlighted region in (b), showing the galvanic
connection between Qubit B (lower-right) and the coupler (upper-left). [463]
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Parameter Semi-classical Full galvanic
model circuit model

Common junction 𝐽c (𝜇A) 2.78 2.78
parameters 𝑆c (fF/𝜇m2) 50 50

Qubit A
𝐼A,sm0 (nA) 78 78
𝐼A,lg0 (nA) 206 206
𝐶A

sh (fF) 53 53
𝐿A
q (pH) 115 115

Qubit B
𝐼B,sm0 (nA) 78 78
𝐼B,lg0 (nA) 209 209
𝐶B

sh (fF) 53 53
𝐿B
q (pH) 115 115

Coupler
𝑀 (pH) 39 43
𝐼C0 (nA) 727 736
𝐿C (pH) 467 542

Table 4.1: Table of parameters for the coupled flux qubit device in Fig. 4-4, extracted
from simulation of both the semi-classical model of the circuit (see Section 4.3) and
the full circuit Hamiltonian.

not included in the semi-classical model, and it was thus necessary to make small

adjustments to the parameters extracted from the semi-classical model in order to

achieve good agreement between the quantum model and the measured results.

The two qubits were each designed with shunt capacitance 𝐶sh = 50 fF, loop

inductance 𝐿q = 110 pH, and 𝐼p = 45 nA. All device components were patterned

from a high-quality evaporated aluminum film on a high-resistivity silicon wafer,

except for the superconducting loops and Josephson junctions, which were deposited

using double-angle evaporation of aluminum [480]. In Fig. 4-5a,b, we show plots of

qubit spectroscopy tracing the energy difference between the ground and first excited

state for Qubits A and B as a function of the reduced flux 𝑓i ≡ Φi/Φ0 in the qubit

loop, with the coupler biased at 𝑓C = 0. At this coupler bias, ΔA/2𝜋 = 5.042 GHz

and ΔB/2𝜋 = 5.145 GHz.

In Fig. 4-5c, we shows how the transition frequency of Qubit B depends on the

coupler bias. This dependence is a consequence of the circulating current in the

coupler loop ⟨𝐼C⟩, which induces an offset flux in the qubit loop through the shared

inductance 𝑀 , shifting the effective qubit bias (indicated by the yellow dashed line
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Figure 4-5: Spectroscopy of Qubits A and B. Overlaid curves match data to simulation
results obtained from the semi-classical model (dashed black lines) and simulation of
the full circuit Hamiltonian (solid green lines). (a) Spectroscopy of Qubit A as a
function of the reduced flux through its qubit loop 𝑓𝐴, with 𝑓𝐵 = 𝑓𝐶 = 0. (b) Spec-
troscopy of Qubit B as a function of the reduced flux through its qubit loop 𝑓𝐵 with
𝑓𝐴 = 𝑓𝐶 = 0. The yellow dot and dashed line represent the starting point and range
of qubit frequencies in panel (c). (c) Spectroscopy of Qubit B as a function of the
reduced flux through the coupler loop 𝑓𝐶 , for 𝑓𝐴 = 0 and 𝑓𝐵 = 0.516. The regions of
anti-ferromagnetic (AF), ferromagnetic (FM), and zero coupling are indicated. The
inset shows detailed data for the FM region. [463]

in Figure 2b). Treating the interaction classically, the offset flux is given by

𝛿𝑓B =𝑀⟨𝐼C⟩/Φ0 (4.16)
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Assuming that the coupler remains in its ground state, ⟨𝐼C⟩ and 𝐿eff are related to

the first and second derivatives of the coupler ground state energy 𝐸(C)
0 with respect

to the flux through the coupler loop ΦC

⟨𝐼C⟩ ≡ 𝜕𝐸
(C)
0

𝜕ΦC

(4.17)

1

𝐿eff

≡ 𝜕⟨𝐼C⟩
𝜕ΦC

=
𝜕2𝐸

(C)
0

𝜕Φ2
C

(4.18)

Fitting our results to theory, we extract the rf-SQUID coupler loop inductance

𝐿C = 470 pH and junction critical current 𝐼0C = 730 nA.The circulating current ⟨𝐼C⟩

and coupler susceptibility 1/𝐿eff vary with applied flux 𝑓𝐶 , ranging from −700 to

700 nA and 1/(1070 pH) to 1/(−48 pH) for these coupler parameters respectively.

Looking at Eq. (4.18), notice that the slope of ⟨𝐼C⟩ with respect to flux determines

the sign of 𝐿eff and, thus, the sign of the Ising interaction 𝐽 . In this sense, Fig. 4-5c

can be thought of as a map of the regions of anti-ferromagnetic (𝐽 > 0), ferromagnetic

(𝐽 < 0), and zero coupling realized in this device.

4.2.2 Coupling Strength

In Fig. 4-6, we show two-qubit coupling between Qubits A and B, focusing primarily

on the ferromagnetic coupling regime. Panels (a–f) show spectroscopy of both qubits

as the transition frequency of Qubit A is tuned through resonance with that of Qubit

B, which is held at a fixed bias. When the qubits are resonant their levels hybridize

and split in frequency by 2|𝐽 |, shown here for three coupler biases corresponding

to different values of coupling strength 𝐽 . Panel (g) shows the qubit frequencies for

maximal coupling, as the reduced flux through Qubit A 𝑓A is varied over a much larger

range. At this coupler bias, we measure a maximal coupling strength of |𝐽 |/2𝜋 = 94

MHz. From this measurement and our experimental bound on the minimum coupling

(see Fig. 4-7), we place a lower bound of 425 on the coupler on/off ratio. Finally,

panel (h) shows the dependence of |𝐽 | on the coupler bias, which agrees well with

simulations of the full circuit Hamiltonian, as well as a semi-classical model (see
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Section 4.3).

4.2.3 Qubit Coherence

Having demonstrated large qubit-qubit coupling, the question immediately arises:

how does this coupling impact the coherence of the individual qubits? In Fig. 4-8,

we report the properties of an individual qubit extracted for as range of coupler bias.

Here, we present data for Qubit B, with 𝑓A set to zero. Panels (a,b) display ΔB

versus 𝑓C. For each value of 𝑓C, we sweep 𝑓B and perform qubit spectroscopy to find

the minimum qubit frequency, 𝜔min
B (𝑓C) ≡ ΔB(𝑓C). The dependence of ΔB on 𝑓C

can be understood semi-classically as loading of the qubit inductance by the effective

inductance of the coupler,

𝐿loaded
q = 𝐿q −

𝑀2

𝐿eff

, (4.19)

as illustrated by the dashed lines in Figures 4-8a,b.

In Fig. 4-8c,d we show how the qubit energy relaxation time 𝑇1 depends on 𝑓C. For

each coupler bias point, Qubit B is biased on degeneracy (at the point of minimum

qubit frequency). Error bars correspond to the standard error for fitting the decay

curve at each coupler bias point to an exponential function. In addition to any

dependence on the coupler bias, 𝑇1 also fluctuates on slow timescales [173, 480], and

the grey band indicates the typical range of 𝑇1 fluctuations when the coupler is biased

away from degeneracy [463]. When the coupler is biased near degeneracy, we observe

a reduction in 𝑇1 substantially below the range of temporal fluctuations.

Finally, panels (e,f) show the dependence of the qubit dephasing times on 𝑓C, for

the same bias conditions as above. Here, we report the 1/𝑒 decay times 𝑇Ramsey
2 and

𝑇Echo
2 for Ramsey interferometry and spin echo experiments, respectively. When the

coupler is biased away from degeneracy, 𝑇Ramsey
2 is essentially constant with respect to

𝑓C, and the variation in 𝑇Echo
2 is roughly consistent with the range of values expected

from the observed fluctuations in 𝑇1.

Importantly, we observe a sharp reduction in the coherence times as the coupler
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Figure 4-6: Measuring qubit-qubit coupling. (a–f) Spectroscopy of qubit level cross-
ings for different coupling strength, where panels (a-c) and (d-f) show measurements
using Resonator A and Resonator B, respectively. In each panel we scan 𝑓𝐴 while
holding 𝑓𝐵 at a fixed bias point ∼ 10mΦ0 away from degeneracy. The left, middle,
and right panels correspond to zero (𝑓𝐶 = 0.402), intermediate (𝑓𝐶 = 0.48), and
maximum (𝑓𝐶 = 0.5) coupling, as indicated by the insets (see Fig. 4-5). (g) Avoided
level crossings as Qubit A (red) is tuned across Qubit B (blue) with 𝑓𝐶 = 0.5, com-
pared to simulation of the energy levels of the full circuit Hamiltonian (solid green
curve). (h) Coupling strength 𝐽 vs coupler bias, compared to simulation using the
semi-classical model (dashed black lines) and full circuit Hamiltonian (solid green
lines). Error bars are derived from the error of fitting the qubit spectroscopy peaks
to a double Gaussian function. [463]
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Figure 4-7: Bounding the minimum qubit-qubit coupling. Detailed data for the
level crossing between Qubit A (red hourglasses) and Qubit B (blue circles) when
the coupler nominally biased for zero coupling (𝑓C = 0.5). At this bias point, we
observe no avoided crossing in spectroscopy, allowing us to bound any nonzero residual
coupling to < 220 kHz, a limit determined by the resolution in 𝑓A set by our bias
current source. For each value of 𝑓A, the frequency of Qubit A is determined by fitting
the spectroscopy trace to a Gaussian function. Qubit B is biased on degeneracy, and
its frequency is precisely determined through Ramsey spectroscopy.

bias approaches degeneracy, and a full recovery when the coupler is biased exactly on

degeneracy. This effect can be understood as the result of the first-order sensitivity

of ΔB to the coupler bias, which is given by the slope of the data 𝜕ΔB/𝜕ΦC in

panels (a,b). Fitting the measured dependence of ΔB on 𝑓C and assuming a 1/𝑓𝛼

spectral density of fluctuations with 𝛼 = 0.91,1 we see excellent agreement between

our model and the coherence measurements for a flux noise amplitude of 15 𝜇Φ0/
√

Hz,

as indicated by the curves in Fig. 4-8f. Using the same amplitude and exponent,

we calculate an upper limit on qubit 𝑇1 due to flux noise in the coupler loop, as

shown in Fig. 4-8c,d. In Section 4.4, we speculate on why the estimated flux noise

amplitude is larger than previously reported values for flux qubits made with the same

fabrication process [480] and the potential implications for future quantum annealing

architectures designed to optimize for both coherence and coupling.

1In our previous work [480], we determined that 𝛼 = 0.9 for capacitively shunted flux qubits with
10× 10 𝜇m2 loops produced using our fabrication process. Here, we have chosen to use 𝛼 = 0.91 in
order achieve a good fit to our coherence data, as discussed in Section 4.4.
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Figure 4-8: Properties of Qubit B (𝑓𝐴 = 0) vs coupler bias. Left column: full
range of coupler biases. Right column: zoom in near coupler degeneracy 𝑓𝐴 = 0.5.
(a,b) Δ𝐵 vs coupler bias. Dashed black traces: semi-classical model. Solid green
traces: simulations of the full circuit Hamiltonian. (c,d) Qubit energy relaxation
time 𝑇1 vs coupler bias. The red circles and the magenta triangles correspond to
measurements taken at different times. The grey band indicates the typical range
of T1 variations when the coupler is biased away from degeneracy. The solid line
represents an upper bound on qubit 𝑇1 due to flux noise in the coupler loop with
an exponent 𝛼 = 0.91 and an amplitude of 15𝜇Φ0/

√
Hz, combined in parallel with a

coupler-independent relaxation time of 3.5𝜇𝑠. (e,f) Ramsey (left axis) and echo (right
axis) 1/𝑒 decay times (𝑇2) vs coupler bias. Solid lines show the expected dependence
due to 1/𝑓𝛼 flux noise in the coupler loop with the same amplitude and exponent as
above. [463]
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4.3 Semi-classical Model of Coupled Qubits

In Section 3.4, we showed how to simulate the energy spectrum of a superconducting

qubit from the electrical elements and nodes of the circuit. For the coupled flux qubit

device in the work above, this corresponds to simulating all nine nodes of the full

galvanically-coupled circuit depicted in Fig. 4-9. In Fig. 4-5, 4-6, and 4-8, the results

of this full quantum circuit simulation is shown as a green solid line, where we have

hierarchically diagonalized the circuit Hamiltonian using the technique described in

detail in Ref. [237].

In this section, we consider a simpler model of the coupled circuit which avoids

the need to diagonalize the entire circuit. Instead, we will map this circuit onto a

simpler and more computationally convenient semi-classical model, where the indi-

vidual qubits and coupler are treated quantum mechanically, but their interactions

are treated as a classical mutual inductance. Using this simplified model, we derive

expressions for the coupling strength 𝐽 , as well as the shifts in the qubit parameters

Δ and 𝜖 due to interaction with the coupler.

4.3.1 Mutually-Inductive vs. Galvanic Coupling

To build up our model for the full coupled qubit system, let’s first consider the

simpler system depicted in Fig. 4-10. Here, two loops of inductance 𝐿A,B threaded

by magnetic flux ΦA,B are coupled through a mutual inductance 𝑀 .

Defining the flux vector Φ⃗, the mutual inductance matrix 𝑀 , and the self-inductance

matrix 𝐿 as

Φ⃗ ≡

[︃
ΦA

ΦB

]︃
(4.20)

𝑀 ≡

[︃
0 −𝑀

−𝑀 0

]︃
(4.21)

𝐿 ≡

[︃
𝐿A 0

0 𝐿B

]︃
(4.22)
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12
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5 6

7
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9

Figure 4-9: Schematic of the full galvanic circuit. The circuit nodes 1–9 are used to
define the canonical flux and charge variables of the circuit, as discussed in Section 3.4.
The green curves in Fig. 4-5, 4-6, and 4-8 are obtained by diagonalizing the entire
nine node circuit. [463]

Figure 4-10: Circuit schematic for two loops of inductance 𝐿A,B coupled through a
mutual inductance 𝑀 .

the classical potential energy of the system is given by

𝑈 =
1

2
Φ⃗𝑇
(︀
𝐿−1 +𝐿−1𝑀𝐿−1

)︀
Φ⃗ (4.23)

=
1

2

Φ2
A

𝐿A

+
1

2

Φ2
B

𝐿B

+𝑀
ΦA

𝐿A

ΦB

𝐿B

(4.24)

where the first two terms correspond to the energies of the individual loops, and the
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Figure 4-11: Circuit schematic for two loops which are galvanically coupled through
a shared inductance 𝑀 .

third term represents their interaction energy. The system can be re-expressed in

terms of the classical circulating currents 𝐼A,B = ΦA,B/𝐿A,B, which yields

𝑈 =
1

2
𝐿A𝐼

2
A +

1

2
𝐿B𝐼

2
B +𝑀𝐼A𝐼B (4.25)

Next, we will compare this result for two mutually coupled loops to the case of

two galvanically coupled loops, as depicted in Fig. 4-11. Here, the inductance matrix

can be approximately defined as2

𝐿 ≡

[︃
𝐿A −𝑀
−𝑀 𝐿B

]︃
(4.26)

and the potential energy is given by

𝑈 =
1

2
Φ⃗𝑇𝐿−1Φ⃗ (4.27)

=
1

2

Φ2
A

𝐿A −𝑀2/𝐿B

+
Φ2

B

𝐿B −𝑀2/𝐿B

+𝑀

(︂
1− 𝑀2

𝐿A𝐿B

)︂−1
ΦA

𝐿A

ΦB

𝐿B

. (4.28)

2This 2x2 inductance matrix is appropriate in the limit of small island capacitance of the node
connecting the three inductors. In this limit, independent phase fluctuations of this node can
be neglected, and the circuit can be described by only two canonical phase variables with a 2x2
inductance matrix.
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Figure 4-12: Circuit schematic for two flux qubits with persistent currents 𝐼A,Bp cou-
pled through a mutual inductance �̃� .

Note that this is equivalent to Eq. (4.24) after the following substitutions:

�̃�A,B ≡ 𝐿A,B − 𝑀2

𝐿B,A

(4.29)

�̃� ≡𝑀

(︂
1− 𝑀2

𝐿A𝐿B

)︂
(4.30)

Thus, the galvanically-coupled circuits employed in this work can be approximately

mapped onto simpler mutually-coupled circuits using the renormalized inductances

�̃� and �̃� .

4.3.2 Directly Coupled Qubits

Now, let’s take the circuit above and replace each loop with a flux qubit (Fig. 4-12)

described by the Hamiltonian 𝐻q/ℏ ≈ (𝜖𝑍 + Δ�̂�)/2 (Fig. 4-13). In the persistent

current basis, the eigenstates of the Pauli operator 𝑍, denoted |±𝑧⟩, correspond to

clockwise and counterclockwise circulating currents

𝐼 ≡ ⟨±𝑧| 𝐼 |±𝑧⟩ = ⟨±𝑧| 𝐼p𝑍 |±𝑧⟩ = ±𝐼p (4.31)
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E
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rg
y

Figure 4-13: Plot of the energies of the ground (blue) and first-excited (red) states
of a flux qubit as a function of the external flux Φext through the qubit loop. At
the degeneracy point (Φext = Φ0/2), the ground and excited states are separated in
energy by ℏΔ. When biased away from degeneracy, the qubit states are approximately
persistent current states |±𝑧⟩.

where 𝐼 is the current operator and 𝐼p is magnitude of the qubit persistent current.

The interaction term from Eq. (4.25) can be expressed as

𝐻int = �̃�𝐼Ap 𝐼
B
p 𝑍

(A)𝑍(B) (4.32)

which takes the form 𝐻int = 𝐽𝑍(A)𝑍(B), where the coupling strength 𝐽 is given by

ℏ𝐽 = �̃�𝐼Ap 𝐼
B
p (4.33)

A simple intuitive picture for this expression emerges when the qubits are biased

such that 𝜖 ≫ Δ. In this regime, qubit energy eigenstates are approximately equal

to the persistent current states |±𝑧⟩ with energy eigenvalues ±ℏ𝜖/2 = 𝐼p(Φext −

Φ0/2), where Φext is the external magnetic flux through the qubit loop and Φ0 is the

magnetic flux quantum. Here, the 𝑍𝑍 interaction is longitudinal with respect to the

energy eigenbasis, and the coupling can be understood by considering the effect of

the persistent current in one qubit loop on the flux through the other qubit loop. For

example, Qubit A induces a state-dependent offset 𝛿ΦB = ±�̃�𝐼Ap in the flux through
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Qubit B and thus a state-dependent frequency shift of

𝛿𝜔
(𝐵)
01 ≈ ±𝜖𝛿ΦB = ±2𝐽. (4.34)

Note that the coupling measurements reported in the main text were performed in

the Δ ≫ 𝜖 regime, where the 𝑍𝑍 interaction is transverse with respect to the energy

eigenbasis. In this case, the coupling manifests as an avoided crossing between the

|01⟩ and |10⟩ states, which are shifted from their bare energies by ±ℏ𝐽 .

4.3.3 Mediated Coupling

Now that we have considered the case of two directly-coupled flux qubits, let’s next

consider the case of two qubits coupled via a mutual inductance �̃� to an intermediate

loop of inductance 𝐿 (Fig. 4-14). Returning to the longitudinal coupling picture

(𝜖 ≫ Δ), the persistent current in Qubit A will induce a state-dependent offset flux

𝛿ΦC = ±�̃�𝐼Ap in the coupler loop, which changes the current circulating in the loop

by 𝛿⟨𝐼C⟩ = 𝛿ΦC/𝐿 and thus induces an offset of

𝛿ΦB = 𝛿ΦC
�̃�

𝐿
=
�̃�2

𝐿
𝐼Ap (4.35)

in the flux through Qubit B. Note that this expression takes the same form as for

the directly-coupled qubits, but with the substitution �̃� → �̃�2/𝐿 ≡ 𝑀eff . Then, in

analogy to Eq. (4.33), the coupling strength is given by

𝐽 =
�̃�2

𝐿
𝐼Ap 𝐼

B
p =𝑀eff𝐼

A
p 𝐼

B
p . (4.36)

Finally, let’s consider the case where the intermediate loop is replaced with an

rf-SQUID coupler (Fig. 4-15). Here, we will assume that the transition frequency

between the coupler ground- and first-excited state is much larger than the qubit

frequencies, and the coupler is consequently always operated in its ground state. In

general, the coupler ground state energy 𝐸0 varies with applied flux 𝑓C, as illustrated

255



CHAPTER 4. COHERENT COUPLED QUBITS

Figure 4-14: Circuit schematic for two flux qubits with persistent currents 𝐼A,Bp which
each couple through a mutual inductance �̃� to an intermediate loop of inductance
𝐿.

Figure 4-15: Schematic for a circuit similar to Fig. 4-14, but with the intermediate
loop replaced with an rf-SQUID coupler.

in Figure 4-16c. For the coupler parameters considered in this work, the circulating

current in the coupler loop is approximately equal to the slope of coupler energy

with respect to flux, ⟨𝐼C⟩ ≈ 𝜕𝐸C
0 /𝜕ΦC, as illustrated in Figure 4-16d, where we

compare this quantity with the expectation value of the current operator ⟨𝑔| 𝐼 |𝑔⟩ for

the coupler ground sate |𝑔⟩.

We then define the “quantum inductance” for the coupler—as in Ref. [190, 224,
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Figure 4-16: (a) Illustration of the energies of the ground (blue) and first-excited
(grey) states of an rf-SQUID coupler, as a function of the external flux Φc through the
coupler loop. (b) Left axis: comparison of the coupler circulating current, calculated
using the slope of the ground state energy (red) and using and using the current
operator (green). Right axis: effective inductance of the coupler vs. Φc.

436] and in analogy to the “quantum capacitance” described in the charge qubit [128,

224, 421] and semi-conducting qubit [103, 146, 162, 212, 269, 348] literature—as

1

𝐿eff

≡ 𝜕⟨𝐼C⟩
𝜕ΦC

≈ 𝜕2𝐸
(C)
0

𝜕Φ2
C

(4.37)

Note that unlike a physical inductance, this quantum inductance can take both pos-

itive and negative values. Following the same logic as above, we can now express the
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coupling strength as

𝐽 =
�̃�2

𝐿eff

𝐼Ap 𝐼
B
p (4.38)

Given a set of qubit and coupler parameters, it is straightforward to calculate 𝐽

using equation (4.38). We determine 𝐿eff by numerically diagonalizing the coupler

Hamiltonian to solve for its ground state energy 𝐸0 as a function of ΦC. We sep-

arately determine 𝐼p by numerically solving for the energy eigenstates |𝜓𝑗⟩ of the

qubit Hamiltonian, from which we calculate the matrix elements of the current op-

erator, ⟨𝜓𝑗| 𝐼 |𝜓𝑘⟩, expressed in the energy eigenbasis. When the qubit is biased on

degeneracy (𝜖 = 0), the 𝐼p is given by the off-diagonal matrix elements.

Note that Eq. (4.38) is the same expression for coupling strength used by D-Wave

in Ref. [188, 190], with the coupler susceptibility 𝜒 defined as the inverse of the

effective inductance. However, their approach differs in that instead of diagnolizing

the coupler Hamiltonian to solve for 𝜒, D-Wave chooses to approximate 𝜒 as the first-

order (linear) susceptibility, which can be expressed using a simple analytic formula.

This approach works sufficiently well for the coupler parameters of existing D-Wave

devices, but the linear approximation breaks down for larger coupler susceptibilities

and coupling strengths, as discussed in Ref. [228].

4.3.4 Qubit Flux Offset Due to the Coupler

The semi-classical model can also explain the shifts in qubit parameters due to their

interaction with the coupler. For concreteness and to follow the presentation of the

main text, we will focus on Qubit B. First, we consider the effect of the coupler on

the qubit flux bias. This effect explains the dependence of the qubit frequency on the

coupler bias shown in Fig. 4-5c.

As shown in Fig. 4-16d, the circulating current in the coupler loop ⟨𝐼C⟩ varies with

the coupler bias ΦC. This circulating current couples into the qubit loop through the

mutual inductance 𝑀 , and therefore threads a flux

𝛿ΦB = �̃�⟨𝐼C⟩ (4.39)
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Coupler Qubit B

Figure 4-17: Circuit schematic used to model the loading of the qubit inductance due
to the coupler 𝐿eff . The loaded qubit inductance 𝐿loaded

B is calculated by summing the
total impedance of the qubit and coupler circuit, as seen from the small Josephson
junction of Qubit B.

through the qubit loop. For a flux qubit described by the Hamiltonian 𝐻q/ℏ ≈

(𝜖𝑍 +Δ�̂�)/2, this flux offset corresponds to a shift in 𝜖 of

𝛿𝜖 =
2

ℏ
𝐼p𝛿ΦB =

2

ℏ
�̃�𝐼p⟨𝐼C⟩. (4.40)

4.3.5 Inductive Loading Model

The coupler also affects the value of Δ, the qubit frequency when biased at its de-

generacy point, as shown for Qubit B in Fig. 4-8a,b. This effect can be modeled

semi-classically as inductive loading of the qubit inductance by the effective induc-

tance of the coupler.

A circuit schematic for the inductive loading model is shown in Fig. 4-17.3 Here,

we consider the impedance looking out from the Josephson junction, to calculate

3Note that a general treatment would also include the effective inductance of Qubit A, 𝐿(A)
eff , but

for the device parameters presented here, 𝐿(A)
eff ≫ 𝐿

(C)
eff and therefore has a negligible effect on Qubit

B.
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loaded qubit inductance

𝐿loaded
B = 𝐿B −𝑀 +

(︂
1

𝐿eff −𝑀
+

1

𝑀

)︂−1

= 𝐿B − 𝑀2

𝐿eff

. (4.41)

Note that this expression for the loaded inductance is the same as the renormalized

inductance derived in Eq. (4.30). To calculate the semi-classical theory curves for

ΔB versus 𝑓C (Fig. 4-8a,b), we first simulate the coupler to determine 𝐿eff(𝑓C) (Fig.

4-16d). Then, for each value of 𝑓C, we determine ΔB by simulating the qubit energy

levels using 𝐿loaded
B for the qubit loop inductance.

4.4 Modeling the Effect of Flux Noise On Qubit

Coherence

4.4.1 Definition of Noise Spectral Density

In this work, as in Ref. [480], we choose to characterize noise by the symmetric power

spectral density (PSD)

𝑆𝜆(𝜔) =

∫︁ ∞

−∞
exp(−𝑖𝜔𝜏) 1

2
⟨�̂�(0)�̂�(𝜏) + �̂�(𝜏)�̂�(0)⟩ 𝑑𝜏 (4.42)

where �̂� is an operator representing a fluctuating parameter 𝜆. The two dominant

noise mechanisms for the coupled qubit system presented here are flux noise in the

qubit loop and the coupler loop, 𝜆𝑖 = ΦB,ΦC. For 1/𝑓 -like noise, the noise amplitude

𝐴𝜆 is given by4

𝑆𝜆(𝜔) = 𝐴2
𝜆

(︂
2𝜋 × 1Hz

𝜔

)︂𝛾
(4.43)

where 𝛾 ∼ 1.

4Note that this definition for 𝑆𝜆(𝜔) differs by a factor of 2𝜋 from the expression used in Ref. [85],
but for the case of 𝛾 = 1 the two definitions of 𝐴𝜆 are equivalent. Also note that the definition of
𝑆𝜆(𝜔) here is double-sided, and thus differs by a factor of 2 from the single-sided spectral density
used in Ref. [401].
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4.4.2 Energy Relaxation Due to 1/𝑓𝛾 Flux Noise

We have analyzed the data for 𝑇1 of our qubit-coupler system using the Fermi’s golden

rule model presented in Ref. [480],

1

𝑇1
=
∑︁
𝜆

2
| ⟨𝑒| �̂�𝜆 |𝑔⟩ |2

ℏ2
𝑆𝜆 (𝜔) (4.44)

where the sum is taken over decay mechanisms, 𝑆𝜆 (𝜔) is the power spectral density of

the noise responsible for each decay mechanism, and the operator �̂�𝜆 is the transition

dipole moment which couples our system to each noise source.

For the coupled system considered here, 𝑇1 can be decomposed into contributions

from the qubit, 𝑇Q
1 , and the coupler, 𝑇C

1 , where

1

𝑇1
=

1

𝑇Q
1

+
1

𝑇C
1

(4.45)

The qubit contribution dominates away from coupler degeneracy, and both processes

contribute when the system is biased near coupler degeneracy.

In our analysis, we assume that the coupler is flux noise limited on its degeneracy,

and its decay rate is thus given by

1

𝑇C
1

= 2
| ⟨𝑒| 𝐼C |𝑔⟩ |2

ℏ2
𝑆ΦC

(𝜔) (4.46)

where |𝑔⟩ and |𝑒⟩ are the ground and first excited state of the coupled system

�̂� = �̂�Q + �̂�C +𝑀𝐼Q𝐼C (4.47)

The quantum operators �̂�C and 𝐼C (�̂�Q and 𝐼Q) are the Hamiltonian and loop

current operator of the bare coupler (qubit) respectively, and the exact value of the

matrix element ⟨𝑒| 𝐼C |𝑔⟩ can thus be calculated from the device parameters listed in

Table 4.1 and the full quantum model of the bare qubit and coupler. The amplitude

and exponent of the flux noise power spectral density in our coupler loop are then
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chosen to fit the measured values of 𝑇1, 𝑇Ramsey
2 , and 𝑇Echo

2 on coupler degeneracy.

4.4.3 First Order Sensitivity to Flux Noise

The sensitivity 𝜅𝜆 of the qubit freqency to a parameter 𝜆 determines the effect of

fluctuations in 𝜆 on qubit dephasing. In the two-level approximation of the flux

qubit, the qubit transition frequency is given by 𝜔01 ≈
√
𝜖2 +Δ2, and, to first order,

𝜅𝜆 ≡
𝜕𝜔01

𝜕𝜆
(4.48)

≈ 𝜕𝜔01

𝜕𝜖

𝜕𝜖

𝜕𝜆
+
𝜕𝜔01

𝜕Δ

𝜕Δ

𝜕𝜆
(4.49)

=
𝜖

𝜔01

𝜅𝜖,𝜆 +
Δ

𝜔01

𝜅Δ,𝜆 (4.50)

where 𝜅𝜖,𝜆 ≡ 𝜕𝜖/𝜕𝜆 and 𝜅Δ,𝜆 ≡ 𝜕Δ/𝜕𝜆.

In the measurements presented in Fig. 4-8, we characterized the coherence of

Qubit B when biased near its degeneracy point (𝜖B = 0). At this bias point, 𝜅𝜖B,ΦB

and 𝜅𝜖B,ΦC
are zero. Since ΔB depends only weakly on ΦB, the dominant first-order

noise mechanism is 𝜅ΔB,ΦC
, the sensitivity of ΔB to the coupler flux.

4.4.4 Decoherence Due to 1/𝑓𝛾 Flux Noise

Here, we consider the effect of 1/𝑓 -like flux noise, as defined in Eq. (4.43), on qubit

coherence. In general, this type of noise causes phase decay of the form exp[−𝜒𝑁(𝑡)],

where [85]

𝜒𝑁(𝜏) =
1

2𝜋
𝜏 2
∑︁
𝜆

𝜅2𝜆

∫︁ ∞

0

d𝜔𝑆𝜆(𝜔)𝑔𝑁(𝜔, 𝜏) (4.51)

where 𝜏 is the free evolution time and 𝑔𝑁 is a filter function which depends on the

qubit pulse sequence. For the Ramsey (𝑁 = 0) and Hanh echo sequences (𝑁 = 1)
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considered in this work

𝑔0(𝜔, 𝜏) ≡ 𝑔0(𝜔𝜏) =

(︂
sin(𝜔𝜏/2)

(𝜔𝜏/2)

)︂2

(4.52)

𝑔1(𝜔, 𝜏) ≡ 𝑔1(𝜔𝜏) =

(︂
sin(𝜔𝜏/4)

(𝜔𝜏/4)

)︂2

sin2(𝜔𝜏/4) (4.53)

Substituting equation (4.43) into equation (4.51) and making the additional sub-

stitution 𝜔𝜏 → 𝑧 gives

𝜒𝑁(𝜏) =
(2𝜋 × 1 Hz)𝛾

2𝜋
𝜏 1+𝛾

∑︁
𝜆

𝜅2𝜆𝐴
2
𝜆

∫︁ ∞

0

d𝑧

𝑧𝛾
𝑔𝑁(𝑧) (4.54)

where we have assumed that the fluctuations in each parameter 𝜆 share a common

noise exponent 𝛾.

We define the 1/𝑒 dephasing rates Γ𝑁,𝜆, for each dephasing channel as

Γ𝑁,𝜆 =

[︂
(2𝜋)𝛾−1𝜅2𝜆𝐴

2
𝜆

∫︁ ∞

0

d𝑧

𝑧𝛾
𝑔𝑁(𝑧)

]︂1/(1+𝛾)
≡
[︁
𝜅𝜆𝐴𝜆𝜂

1/2
𝑁

]︁2/(1+𝛾)
(4.55)

where the numerical factors 𝜂0, 𝜂1 depend on the noise exponent 𝛾 and the Ramsey

and echo filter functions and are defined as

𝜂𝑁 = (2𝜋)𝛾−1

∫︁ ∞

0

d𝑧

𝑧𝛾
𝑔𝑁(𝑧). (4.56)

As discussed in Ref. [85], for the case of 𝛾 = 1, these factors are given by

𝜂0 ≈ ln

(︂
1

𝜔low𝑡

)︂
(4.57)

𝜂1 = ln(2) (4.58)

where 𝜔low is the lower cutoff frequency set by the total time of all experimental iter-

ations and 𝑡 is the typical free evolution time during a single experimental iteration.

Note that 𝜂1 is completely independent of the cutoff frequency, thus avoiding any

ambiguity in choosing 𝜔low and 𝑡 when analyzing echo experiments, while 𝜂0 varies
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Figure 4-18: Flux noise analysis. (a) √
𝜂0,1 vs 𝛾, determined through numerical

integration. When calculating 𝜂0, we have assumed 𝜔low/2𝜋 = 3 mHz and 𝑡 = 200 ns.
(b) Estimated coupler flux noise amplitude based measured Ramsey, Echo, and 𝑇1
times, as a function of 𝛾.

only weakly with 𝜔low𝑡 for realistic measurement settings.

For 𝛾 ̸= 1, we determine the numerical factors through numerical integration of

Eq. (4.56), as discussed in Ref. [401]. For the Ramsey sequence,

𝜂0 = (2𝜋)𝛾−1

∫︁ ∞

𝜔low𝑡

d𝑧

𝑧𝛾

(︂
sin(𝑧/2)

𝑧/2

)︂2

(4.59)

and for the Echo sequence,

𝜂1 = (2𝜋)𝛾−1

∫︁ ∞

0

d𝑧

𝑧𝛾

(︂
sin(𝑧/4)

𝑧/4

)︂2

sin2(𝑧/4) (4.60)

Fig. 4-18a shows √
𝜂0,1 as a function of 𝛾 for 𝜔low/2𝜋 = 3 mHz and 𝜏 = 200 ns.

4.4.5 Estimating the Flux Noise Amplitude in the Coupler

Loop

We now combine the results of the previous sections with our qubit coherence mea-

surements to estimate the flux noise amplitude and exponent in the coupler loop.
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We first consider the Ramsey and Echo results presented in Fig. 4-8e,f. We define

the total 1/𝑒 decay rates for Ramsey and Echo experiments as Γ0 ≡ 1/𝑇Ramsey
2 and

Γ1 ≡ 1/𝑇Echo
2 , respectively. We separate the decay rates into two contributions: Γ𝑁,ΦC

due to flux noise in the coupler loop and Γ𝑁,other, which includes the effect of 𝑇1 as

well as any additional dephasing.

When the coupler is biased far from degeneracy, Γ𝑁,ΦC
is negligible, and thus

Γ𝑁 = Γ𝑁,other. For simplicity, we model Γ𝑁,other as exponential decay.5 For arbitrary

coupler bias, the total phase decay takes the form

exp[−Γ𝑁,other𝜏 − (Γ𝑁,ΦC
𝜏)1+𝛾] (4.61)

Thus, we can determine Γ𝑁,ΦC
from the measured values of Γ𝑁 and Γ𝑁,other through

the relation

Γ𝑁,ΦC
= Γ𝑁

(︂
1− Γ𝑁,other

Γ𝑁

)︂1/(1+𝛾)

(4.62)

Finally, from Eq. (4.55) the spectral density of flux noise in the coupler is given

by

𝐴ΦC
= 𝜅−1

ΦC
𝜂
−1/2
𝑁 (Γ𝑁,ΦC

)(1+𝛾)/2, (4.63)

where 𝜅ΦC
≈ 𝜅Δ𝐵 ,ΦC

is experimentally determined from the slope of ΔB vs ΦC (Fig. 4-

8a,b).

In Fig. 4-18b we plot the value of 𝐴ΦC
that fits best to our Ramsey and Echo mea-

surements using Eq. 4.63, and to our 𝑇1 measurements using Eq. (4.46), for different

values of 𝛾. Although we are unable to choose values of 𝐴ΦC
and 𝛾 that fit perfectly

with all three measurements, they are roughly bounded within the triangular region

between the three curves in Fig. 4-18b, where 10 𝜇Φ0/
√
Hz < 𝐴ΦC

< 19 𝜇Φ0/
√
Hz

and 0.86 < 𝛾 < 0.96. For concreteness, when plotting theory curves in the main

text we choose 𝛾 = 0.91 and 𝐴ΦC
= 15 𝜇Φ0/

√
Hz, which results in reasonably good

agreement with all three measurements.

5In reality, when biased away from coupler degeneracy, the qubit dephasing is somewhat non-
exponential. However, it is difficult to quantify the non-exponential decay using existing data, and
any non-exponential corrections to Γ𝑁,other would only have a small impact on our estimation of
𝐴ΦC

.
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This estimate for the flux noise in the coupler loop is substantially larger than

the value previously reported for flux qubits made with the same fabrication process,

where we measured a flux noise amplitude of 1.4 𝜇Φ0/
√

Hz [480]. The most significant

difference between the coupler loop and the low-noise qubit loops is the loop size; the

coupler loop is 20 times larger in area. Therefore, these results motivate future efforts

to study the dependence of flux noise on loop size beyond the scope of this work and

previous efforts [263]. Such measurements would help to inform architectural choices

for optimizing coherence and coupling in next-generation quantum annealers.

4.5 Outlook

Taken together, this study represents an important step toward designing coupled

multi-qubit systems with improved coherence. We have demonstrated tunable cou-

pling between flux qubits with substantially lower persistent currents than existing

commercial devices, thereby reducing the qubit sensitivity to flux noise in their re-

spective loops. This approach requires an increased coupler susceptibility, which

increases the qubits’ sensitivity to flux noise in the coupler loop. We have examined

this effect by measuring qubit coherence across the full range of coupler biases, using

standard measurement techniques borrowed from the gate-based quantum computing

community, which have yet to be applied to commercial quantum annealers. Looking

forward, our approach can be extended to achieve larger coupling strength, symmetric

bipolar coupling, and �̂�x�̂�x interactions [238, 398], while maintaining low persistent

currents. Our results provide new insights into the available design space and suggest

the type of systems-level analysis that will be necessary when designing quantum

annealers with improved coherence.
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Quantum Algorithms
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Chapter 5

The Gate Model

In Part II, we worked through the mathematical formalism of quantum bits and

considered a hardware paradigm for realizing these mathematical abstractions using

superconducting circuits. These are the raw materials of a quantum computer, but

they are not computers themselves. How do we orchestrate these circuits and wave-

functions into something that looks like a computer? In this part, we will begin to put

together the pieces and show how the circuits in Part II become the programmable

building blocks of a universal computational device. Before we get there, however, we

will need to introduce another set of conceptual tools, tools which take the physics of

Part II and put them to use.

5.1 Universal Computation

What is a quantum computer? The term ‘quantum computer’ consists of two words;

we dedicated the entirety of Part II to the first word, but so far we have said little of the

second. So, before we get to quantum computers, let’s spend a few moments on this

word. What is a computer? Well, a computer is a device that runs computations—

given a string of data as input, a computer performs a series of operations which

transforms this input state into a new output state. Normally, this transformation

corresponds to the performance of a useful task, and the output of the computation
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thus provides the solution to that task.

For example, say we wish to find the answer to the math problem 3 + 5. To solve

this problem with a computer, we need to provide the numbers 3 and 5 as inputs, and

we need a device which is capable of performing the arithmetic operation of addition.

Inserting the two numbers into our adding machine, the computer will output a new

number some time later: 8. Having built this adding machine, we can now insert

different sets of numbers as inputs and hope that we get a different output—if we

now insert 7 and 14, we should hope that we get the number 21 as output, not 8.

However, while the answer to an addition problem obviously depends on the two

numbers being added, the algorithm for performing addition does not depend on the

input. This should be familiar from elementary school arithmetic: given two numbers

of arbitrary size, we can add them together by aligning the addends vertically and

adding the columns from right to left, carrying an extra digit to the next column

when the sum exceeds 9. Following this simple set of rules, we have an algorithm for

performing any addition problem we might like.

Emboldened by the success of our adding machine, we might then go about con-

structing more computers to solve different tasks—a subtraction machine, a multi-

plication machine, a division machine. Following this to the natural conclusion, we

would arrive at a world flooded with specialized computers, each engineered to im-

plement one algorithm and one algorithm only. Our desks and shelves would be very

cluttered. This is not the world we live in, and we owe this fact to one of the funda-

mental laws of the classical theory of computation: starting from a fundamental set of

operations, it is possible to construct a device which can run any possible algorithm.

We call such a device a universal computer, also known as a Turing machine after

the British mathematician Alan Turing, who proved the existence of such a device

in 1936 [445]. Turing’s notion of universal computation became the foundation of

modern computer science. It is the reason we have laptops and smartphones and su-

percomputers, devices which can perform addition and division and word processing

to write theses.

Mathematically, we can articulate the task of a universal computer as such: given

270



5.1. UNIVERSAL COMPUTATION

a Boolean string of arbitrary length as an input (that is, a sequence of 0’s and 1’s

which encodes the input data), construct a device capable of performing any Boolean

function on that string (that is, any arbitrary algorithm we might wish to perform

with our computer). To accomplish this task, we can decompose the space of general

Boolean functions into a set of smaller logical operations which act on pairs of bits;

these fundamental operations can then be strung together in different combinations

to perform different functions suited to different tasks.

In classical computation, these elementary logical operations have familiar names:

AND, OR, NOT, XOR. Each of these operations has a corresponding truth table which

specifies what that operation does when it acts on one or two input bits. For a pair

of input bits 𝑥 and 𝑦, we can write the truth tables for a few of these operations as

NOT :

𝑥 𝑥

0 1
1 0

(5.1)

AND :

𝑥 𝑦 𝑥 · 𝑦
0 0 0
0 1 0
1 0 0
1 1 1

(5.2)

OR :

𝑥 𝑦 𝑥+ 𝑦

0 0 1
0 1 1
1 0 1
1 1 0

(5.3)

XOR :

𝑥 𝑦 𝑥⊕ 𝑦

0 0 0
0 1 1
1 0 1
1 1 0

(5.4)

If it is surprising to the reader that all possible classical algorithms can be constructed

out of these few simple building blocks, they will be doubly surprised to find that

this set of operations is, in fact, overkill. As it turns out, the entire space of Boolean
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functions can be recreated by repeated applications of a single logical operation, the

NAND gate

NAND :

𝑥 𝑦 𝑥 · 𝑦
0 0 1
0 1 1
1 0 1
1 1 0

(5.5)

If the name didn’t already give it away, we can think of the NAND gate as simply

an AND gate followed by a NOT applied to its output bit, and we can combine the

truth tables of these two operations from Eqs. (5.1) and (5.2) to arrive at the one in

Eq. (5.5). Curiously, however, the inverse is also true: given only the NAND gate,

it is possible to recreate the truth tables of any other logical gate, provided you can

duplicate its output bit. This final point, trivial in classical computation, will take

on a new significance in quantum computing, where the laws of physics forbid such

duplication [472].

5.2 Quantum Gates

Let’s combine the brief sketch of classical computation above with the tools we de-

veloped in Part II. A computer, we just showed, can be though of as a device which

transforms an input data string into an output string which encodes the solution of

the algorithm. The action of this algorithm can, in turn, be decomposed into the col-

lective action of a set of fundamental operations acting on individual bits and pairs

of bits. Recalling the mathematical tools we developed in Chapter 2, we see that

quantum mechanics offers us a nice mathematical analogue to the discrete logic gates

of classical computation: unitary matrices. Indeed, a unitary operation is a sort of

quantum algorithm: just as a classical algorithm takes a string of input bits and deter-

ministically transforms them into a new output string, a unitary operation performs

a deterministic transformation of a quantum wavefunction, coherently transforming

it from one wavefunction into another. The space of unitary matrices is also, in a
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real sense, computationally complete—for a system composed of 𝑛 qubits, the space

of 𝑛-qubit unitaries contains the full set of possible rotations which can occur given

the application of an 𝑛-qubit Hamiltonian for some time. Following this argument

further, we quickly arrive at a working definition for a universal quantum computer:

if a universal classical computer is a device capable of performing any Boolean func-

tion on an input string consisting of 𝑛 classical bits, a universal quantum computer

is a device capable of performing any unitary operation on an input wavefunction

consisting of 𝑛 qubits.

How do we generate a general 𝑛-qubit unitary rotation? Just as classical algo-

rithms can be decomposed into a small set of fundamental logic gates, we can build

a general 𝑛-qubit unitary matrix out of a small set of single- and two-qubit quantum

logic gates. What do these gates look like? As a first example, let’s consider three

familiar unitary operators: the Pauli matrices

X =

[︃
0 1

1 0

]︃
= X (5.6)

Y =

[︃
0 −𝑖
𝑖 0

]︃
= Y (5.7)

Z =

[︃
1 0

0 −1

]︃
= Z (5.8)

In the equations above, we show three equivalent ways to refer to a quantum logic

gate. The first is the name of the gate, usually typeset in sanserif in analogy to the

notation for classical logic gates. The second is the unitary matrix which describes

the gate—this is the quantum version of a truth table in classical logic, and it contains

a complete description of what the gate will do when applied to any general quantum

wavefunction.

The third notation in the equations above is known as the ‘circuit representation’

of the gate, and it is used to schematically represent the application of this gate in

a quantum algorithm. As an example, we could write down a simple algorithm built
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out of these three operations, placing them into a musical staff like so

|𝜓0⟩ X Z Y |𝜓⟩ (5.9)

Expressed in this form, we refer to the number of sequential gate operations as the

depth of the circuit (in this case, three) and the number of qubits involved in the

circuit as its width (here, one). By convention, we read this algorithm from left to

right: starting with the input state |𝜓0⟩, we first apply an X-gate, then a Z-gate,

and finally a Y-gate, which results in the new state |𝜓⟩. Mathematically, we could

calculate the action of this series of gates by applying the corresponding unitary

matrices to the initial wavefunction, multiplying each square matrix with the initial

state vector, starting with the rightmost and going left

|𝜓⟩ = Y Z X |𝜓0⟩ (5.10)

=

[︃
0 −𝑖
𝑖 0

]︃ [︃
1 0

0 −1

]︃ [︃
0 1

1 0

]︃
|𝜓0⟩ (5.11)

To determine what this algorithm does the initial state, we can multiply the uni-

tary matrices corresponding to each gate together and look at the combined unitary

operation they produce

�̂� = Y Z X (5.12)

=

[︃
0 −𝑖
𝑖 0

]︃ [︃
1 0

0 −1

]︃ [︃
0 1

1 0

]︃
(5.13)

=

[︃
𝑖 0

0 𝑖

]︃
(5.14)

From this, we can see that the circuit in Eq. (6.21) represents an algorithm for ap-

plying a global phase of 𝑖 to the initial wavefunction.

This is not a particularly interesting algorithm, and it is easy to see that the

Pauli matrices alone will never produce a particularly sophisticated computation, let

alone universal quantum computation. To see this, notice that these three operations
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correspond to application of single-qubit Hamiltonians proportional to each of the

three Pauli matrices respectively, applied for a total rotation angle 𝜃 = 𝜋 (as we

showed back in Section 2.2). For an input state of either |0⟩ or |1⟩, these operations

will simply shuttle the state back and forth between the poles of the Bloch sphere,

toggling it between the two computational states just like a classical bit.

So, what are we missing? Recalling our discussion of the two hallmarks of quan-

tum mechanics from Chapter 2, we see that we are missing both of them: coherent

superposition and entanglement. Let’s start with superposition. In order to realize

a general unitary operation, it is clear that we must be able to generate coherent

superpositions out of arbitrary input states. To do this, let’s pick a unitary operation

which generates coherent superposition states, even when the initial state is not in

one

H =
1√
2

[︃
1 1

1 −1

]︃
= H (5.15)

This gate is ubiquitous in quantum computing and is known as the Hadamard gate,

since its matrix description is equivalent to the 2×2 Hadamard matrix from classical

mathematics. In the Bloch sphere picture, the Hadamard gate corresponds to a

rotation of angle 𝜋 around a diagonal axis in the 𝑥𝑧-plane, and it thus rotates each

of the computational states at the poles into equal superpositions on the equator

H |0⟩ = 1√
2
(|0⟩+ |1⟩) (5.16)

H |1⟩ = 1√
2
(|0⟩ − |1⟩) (5.17)

Now that we have a gate which gives us coherent superpositions, let’s find one that

gives us entanglement. Looking at the gates we’ve considered so far, it’s immediately

clear that single-qubit gates alone will never give us entanglement. Indeed, as we

showed in Section 2.6, entanglement arises as a natural consequence of two qubits

evolving according to a general two-qubit Hamiltonian. In general, these Hamiltonians

cannot be broken into sums of single-qubit Hamiltonians, and they thus give rise to

unitary operations which cannot be broken into products of single-qubit unitaries.
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So, if we want entanglement, we need a gate which cannot be written as the product

of single-qubit gates—we need a two-qubit gate.

As a first two-qubit gate, let’s pick perhaps the most famous example in the

literature: the controlled NOT gate, CNOT for short

CNOT =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦ =
∙ (5.18)

Looking at the unitary matrix above, it easy to see where this gate gets its name: in

the upper left 2×2 block of the matrix, we see the single-qubit identity matrix; in the

lower right, we see the single-qubit X-gate. So, applying this operation to a two-qubit

product state |𝑥𝑦⟩ where 𝑥, 𝑦 ∈ {0, 1}, we find that this operation does nothing when

the first qubit is in |0⟩

CNOT |00⟩ = |00⟩ (5.19)

CNOT |01⟩ = |01⟩ (5.20)

but it applies an X-gate to the second qubit when the first is in |1⟩, flipping its state

just like the classical NOT gate from Eq. (5.1)

CNOT |10⟩ = |11⟩ (5.21)

CNOT |11⟩ = |10⟩ (5.22)

Noting the correspondence between the quantum X-gate and the classical NOT, we

see that this gate could just as accurately have been called a ‘controlled X’ or CX-gate,

and it is common to come across this alternative name and its corresponding circuit

representation in the literature

∙
=

∙

X
(5.23)
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In either case, the interpretation of this circuit element is the same: depending on the

state of the upper qubit (in general, the one whose line contains the black dot, also

known as the ‘control’), apply a single-qubit operation to the lower qubit (in general,

the one whose line contains the ⊕ symbol or an explicit gate diagram, also known as

the ‘target’).

While it is easy to see that the CNOT cannot be expressed as a product of

single-qubit gates, so far it hasn’t generated any entanglement—starting with the

four two-qubit computational states in Eqs. (5.19)–(5.22), we arrive at same four

product states. But what happens when we combine the CNOT with a single-qubit

Hadamard gate? Consider the following simple two-qubit circuit applied to the four

computational states

|𝑥⟩ H ∙ }︁
|𝛽𝑥𝑦⟩

|𝑦⟩

(5.24)

What happens to the computational states when they pass through this circuit?

Working through the math explicitly, we find that the two qubits have been trans-

formed into one of the four Bell states, depending on which of the four computational

states they started in

|𝛽00⟩ =
1√
2
(|00⟩+ |11⟩) (5.25)

|𝛽01⟩ =
1√
2
(|01⟩+ |10⟩) (5.26)

|𝛽10⟩ =
1√
2
(|00⟩ − |11⟩) (5.27)

|𝛽11⟩ =
1√
2
(|01⟩ − |10⟩) (5.28)

These are entangled states—indeed, as we showed back in Section 2.7, they are max-

imally entangled two-qubit states.

How did the CNOT-gate generate entanglement this time around? Looking at the

circuit in Eq. (5.24), things start to make intuitive sense. Prior to applying the CNOT,

the Hadamard gate rotated the control qubit into an equal superposition of |0⟩ and |1⟩.

Then, when the CNOT is applied, the control qubit gives the target qubit conflicting
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instructions, simultaneously : in the portion of the superposition corresponding to |0⟩,

nothing happens to the second qubit; in the portion corresponding to |1⟩, it flips. So,

if we measure the first qubit and collapse the superposition which the Hadamard gate

created, we would find ourselves in one of two different universes:

1. When the first qubit randomly collapses to |0⟩, we are in a universe where the

CNOT did nothing, and we will find the second qubit in its initial state.

2. When the first qubit randomly collapses to |1⟩, we are instead in a universe

where the CNOT flipped the second qubit, and we will find it in the state

orthogonal to its initial.

In this sense, the circuit in Eq. (5.24) offers us yet another interpretation of quantum

entanglement. This circuit is ubiquitous, and it is widely used as an algorithmic

building block for preparing Bell states.

To return to the opening theme of this section: do we now have an universal

quantum gate set? We showed that the gates H and CNOT can generate coherent

superposition and entanglement, but can they be used to build any arbitrary 𝑛-qubit

unitary? Well, almost! In our haste to rush towards the two flashiest hallmarks

of quantum mechanics, we have accidentally neglected the implicit third: complex

phases. Looking at the unitary matrices for H and CNOT in Eqs. (5.15) and (5.18),

we notice that these operations are entirely real. As such, while they clearly generate

distinctly quantum mechanical states, these states will only occupy a portion of the

possible Hilbert space. For example, you can easily convince yourself that, using only

combinations of H and CNOT, it is impossible to prepare the cardinal states |+𝑖⟩ or

|−𝑖⟩.

To remedy this, we need to add at least one more gate to our gate set. As it turns

out, not just any complex gate will do, but the following single-qubit gate is sufficient

T =

[︃
1 0

0 𝑒𝑖𝜋/4

]︃
= T (5.29)

This operation—known simply as the T-gate—applies a relative phase of 𝜑 = 𝜋/4
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to the |1⟩-state, which is equivalent to a rotation around the 𝑧-axis of the Bloch

sphere (up to a global phase). Combining the T-gate with H, we easily see that we

can now generate all six cardinal states of the Bloch sphere. What is perhaps much

more surprising is that, given only these two discrete gates, we can now generate any

arbitrary single-qubit rotation, producing the continuous space of possible states on

the single-qubit Bloch sphere. The proof of this fact, known as the Solovay-Kitaev

theorem [112, 245], is one of the foundational theorems of quantum computation. It

comes, however, with an unsurprising catch: we never said how many of these gates we

need to reproduce an arbitrary rotation. According the the Solovay-Kitaev theorem,

any single-qubit rotation can be approximated to an error 𝜖 using 𝒪(log𝑐(1/𝜖)) (𝑐 > 0)

gates drawn from the set of {H,T}. Thus, while perfect reproduction of an arbitrary

rotation would require an infinite sequence of these two gates, in many cases a desired

rotation can be generated to good precision using an experimentally-tractable number

of operations.

This, in turns out, is all we need to form a universal quantum gate set 𝒢: a set

of single-qubit gates which can prepare any state on the surface of the Bloch sphere,

and one two-qubit gate to generate entanglement between qubits

𝒢 = {H,T,CNOT} (5.30)

Thus, we have arrived at the bare minimum number of quantum operations required to

construct a universal quantum computer capable of running any quantum algorithm.

5.3 Native Gate Sets and Circuit Compilation

Now that we’ve arrived at a universal gate set, the question invariably arises: Okay,

how do we realize these operations in practice? In Chapter 6, we will begin to answer

this question from an experimental standpoint and show how we calibrate physical

gates on a superconducting quantum processor. Before we get there, however, we

should spend a few moments on one remaining technical point.
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In the previous section, we showed that a universal quantum computer can be

constructed out of only H-, T-, and CNOT-gates. This was a purely theoretical argu-

ment, based only on the mathematical properties of their unitary matrices. However,

when it comes time to build a device which implements these gates, they will no

longer be abstract mathematical objects: they will be microwave pulses, magnetic

flux biases, interactions between physical electrical circuits. And, as we glimpsed in

our discussion of single and coupled superconducting qubits in Chapters 3 and 4, the

space of possible operations and Hamiltonians a device can implement is constrained

by the particular physics of a given hardware platform. So, what happens if our

device cannot implement the universal gate set we found in the previous section?

We call the set of physical operations which a given hardware platform is capable

of implementing the native gate set of a device. In order for a hardware platform to

achieve universal quantum computation, this native gate set must also be universal,

but not all native gate sets need to be the same. In some hardware platforms, certain

operations will be forbidden by the physics of the device, while other operations are

more flexible.

For example, as we will see in Chapter 6, superconducting transmon qubits have

a native gate set which looks quite different from the one we found in the previous

section, and it includes the gates

𝒢 ′ = {X𝜃,Y𝜃,Z𝜃,Ph𝜃,CZ} (5.31)

where the gates X𝜃,Y𝜃,Z𝜃 are the continuous-angle rotations around the three Pauli

axes we found back in Eqs. (2.62), (2.63), and (2.64)

X𝜃 =

[︃
cos(𝜃/2) −𝑖 sin(𝜃/2)

−𝑖 sin(𝜃/2) cos(𝜃/2)

]︃
= X𝜃 (5.32)

Y𝜃 =

[︃
cos(𝜃/2) − sin(𝜃/2)

𝑠𝑖𝑛(𝜃/2) cos(𝜃/2)

]︃
= Y𝜃 (5.33)

Z𝜃 =

[︃
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

]︃
= Z𝜃 (5.34)
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the single-qubit gate Ph𝜃 applies an overall global phase 𝜃 to one of the qubits

Ph𝜃 = 𝑒𝑖𝜃

[︃
1 0

0 1

]︃
= Ph𝜃 (5.35)

and the two-qubit gate CZ is a controlled phase gate, which applies a Z-gate depending

on the state of the control

CZ =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎦ =
∙
∙ (5.36)

As an aside, notice that the circuit representation of the CZ is symmetric and—unlike

the CNOT—it isn’t readily apparent which qubit is the control and which the target.

While this might seem strange at first, it is consistent with the symmetry of the

unitary matrix, which does not distinguish the roles of the two qubits. Indeed, the

two qubits are both the targets and the controls: when the two qubits are both in

|1⟩, a 𝜋-phase is applied to their joint state, otherwise, nothing occurs. As such, it

is perfectly valid to think of either qubit as target or control, and we can write this

operation in several different, equivalent ways

∙
∙ =

∙

Z
=

Z

∙
(5.37)

While the transmon gate set 𝒢 ′ contains none of the gates in our theoretical gate

set 𝒢, it is clear that it too is universal: the continuous single-qubit gates X𝜃,Y𝜃,Z𝜃,

and Ph𝜃 can trivially rotate any given single-qubit pure state to any point on the

surface of the Bloch sphere—indeed, with much less effort than the discrete gates H

and T—and the two-qubit CZ gate is there to provide entanglement. Indeed, since

the gate set 𝒢 ′ is universal, we should be able to recreate all the gates in 𝒢 using

only the native ones in 𝒢 ′. With a little math, we can convince ourselves that the

281



CHAPTER 5. THE GATE MODEL

following relationships do just that

H = Z𝜋 Y𝜋/2 Ph𝜋/2 (5.38)

T = Z𝜋/4 Ph𝜋/8 (5.39)

∙
=

∙

H ∙ H
(5.40)

=
∙

Z𝜋 Y𝜋/2 Ph𝜋/2 ∙ Z𝜋 Y𝜋/2 Ph𝜋/2
(5.41)

This process, in which a series of gates are broken down and translated into an

equivalent sequence of native gates, is known as circuit compilation. We will return to

this concept extensively in Chapter 7 when we run the Density Matrix Exponentiation

algorithm on a small superconducting transmon device, and we will see that efficient

circuit compilation is one of the most important steps in running a quantum algorithm

on physical hardware. In general, circuit compilation attempts to optimize over two

related criteria:

1. Express a given 𝑛-qubit unitary using the fewest number of native gates possible.

2. Express a given 𝑛-qubit unitary using the highest-fidelity native gates available.

In practice, as we will see, this compilation is decidedly nontrivial, and it requires

deep knowledge of the device being used. Indeed, as it turns out, this optimization

problem is NP-hard for some quantum circuits [68].

5.4 Case Study: The SWAP Test

For the remainder of this chapter, let’s pull together some of the pieces we have

discussed so far and consider a simple example of a quantum algorithm, known as

the SWAP test. As we will see, this algorithm has a couple nice features which will

illuminate the power of discrete gate operations to perform a computational task.
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The goal of the SWAP test is to efficiently calculate the purity of an unknown

quantum state 𝜌. Recall from Section 2.8 that the purity 𝛾 of a quantum state is

defined as the trace of its density matrix squared

𝛾 ≡ Tr
[︀
𝜌2
]︀

(5.42)

As we discussed previously purity 𝛾 is bounded between 1 and 1/𝑑, where 𝑑 = 2𝑛 is

the dimension of the 𝑛-qubit density matrix 𝜌: when 𝛾 = 1, the system is in a pure

state; when 𝜌 = 1/𝑑, it is in a completely mixed state. For a single qubit, the former

corresponds to a point on the surface of the Bloch sphere; the latter, to the point at

the center of the sphere.

From the definition in Eq. (5.42), it is easy to see that we can brute force this

calculation: given many copies of our unknown state 𝜌, we can perform a series of mea-

surements which reconstruct the entirety of the density matrix, element by element,

and then manually calculate the trace of that matrix squared. This is theoretically

possible, but practcially impossible for all but the smallest quantum states. As we’ll

discuss later in Chapter 8, there exists a robust protocol for reconstructing the den-

sity matrix of an unknown qunatum state, know as quantum state tomography. The

catch, however, is that state tomography requires on order as many measurements as

there are elements of the given density matrix. As we showed back in Chapter 2, the

density matrix of a multi-qubit system scales exponentially with the number of con-

stituent qubits, making the tomographic reconstruction of even a few tens of qubits

astronomically expensive.

In order to efficiently calculate the purity of an unknown state 𝜌, we need to

somehow beat this exponential and perform this calculation using resources which

scale polynomially with the dimension of the Hilbert space. Looking at the defi-

nition of purity in Eq. (5.42) again, we can convince ourselves that such a thing

ought to be possible. After all, while calculating the purity using state tomography

may be exponentially expensive, it is also exponentially wasteful : having performed

𝒪(2𝑛) measurements to reconstruct the density matrix in all its specificity using state
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tomography, Eq. (5.42) then crunches that massive matrix down into one number,

spitting out a single value 𝛾 regardless of the size of the underlying quantum state.

So, can we bypass the density matrix 𝜌 entirely and calculate 𝛾 directly?

The SWAP test does exactly this, but there is no free lunch. While the SWAP

test calculates 𝛾 exponentially faster than the corresponding tomographic method, it

sacrifices almost every other piece of information about the state 𝜌 in the process.

Having obtained a value of 𝛾, we are no longer able to say which specific state 𝜌

it was derived from—all we can say is that the state of our system belongs to one

of the infinite number of states which exist on a shell of some radius in the Bloch

sphere, all of which having the same value of 𝛾. Nonetheless, the SWAP test can be

a useful ‘quantum trick’ (as discussed in Section 8.2) for validating the coherence of a

large quantum state and convincing yourself that the state of your processor is indeed

coherent. The SWAP test is also a submodule of some other quantum algorithms—

such the entanglement polytope protocol [459]—which require that the initial state

of the algorithm be pure in order for the output to have meaning.

The SWAP test relies on the following mathematical observation

Tr
[︀
𝜌2
]︀
= Tr [(𝜌⊗ 𝜌) SWAP] (5.43)

On the left side of the equation, we have our expression for the purity 𝛾. On the

right side, we have an expectation value: specifically, we have the expectation value

of a product state 𝜌 ⊗ 𝜌 with the SWAP operator, where this operator is defined as

the unitary matrix which literally exchanges the states of two quantum systems with

each other

SWAP :=
𝑑∑︁
𝑖𝑗

|𝑖𝑗⟩ ⟨𝑗𝑖| (5.44)

From this, we can give a physical interpretation to the mathematical fact in Eq. (5.43):

the purity of an arbitrary 𝑛-qubit quantum state 𝜌 is equal to the expectation value

of swapping two copies of that state with each other. The task, then, is to prepare

two copies of 𝜌 and directly measure the expectation value of the SWAP operator,
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revealing the purity of the underlying state.

5.4.1 Measuring the Purity of a Single Qubit

As a concrete example, let’s first consider the SWAP test applied to a single-qubit

state. If 𝜌 is the state of a single qubit (𝑑 = 2), the SWAP operator between two

copies of 𝜌 is a 4× 4 matrix of the form

SWAP =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦ (5.45)

This matrix should be familiar—indeed, it is exactly the unitary matrix we considered

back in Section 2.6 Eq. 2.235 when we considered the general dynamics of two-qubit

systems and the emergence of entanglement. We will return to this operation again

in Chapter 7, where it forms the backbone of the Density Matrix Exponentiation

algorithm.

How do we calculate the expectation value of this operator on a given quantum

state? Looking at the matrix in Eq. (5.45), we see that the eigenstates of the SWAP

operator are the four single-triplet states

|𝜓trip1⟩ = |00⟩ (5.46)

|𝜓trip2⟩ =
1√
2
(|01⟩+ |10⟩) (5.47)

|𝜓trip3⟩ = |11⟩ (5.48)

|𝜓singl⟩ =
1√
2
(|01⟩ − |10⟩) (5.49)

where the three triplet states have eigenvalue +1 (even parity) and the lone singlet

state has eigenvalue −1 (odd parity). These eigenstates, like all eigenstates of a

unitary matrix, form a complete basis of states for representing a general wavefunction

of equal dimension. To measure the expectation value in Eq. (5.43), we thus need

to take our initial state 𝜌 ⊗ 𝜌 and project it into the basis of singlet-triplet states,
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recording the probability 𝑝 of the state collapsing into each eigenstate and weighting

that probability by the corresponding eigenvalue

Tr [(𝜌⊗ 𝜌) SWAP] = 𝑝trip1 + 𝑝trip2 + 𝑝trip3 − 𝑝singl (5.50)

In practice, however, a quantum computer does not have access to direct measure-

ments in an arbitrary basis, only to the computational basis |00⟩ , |01⟩ , |10⟩ , |11⟩—

that is, projecting each qubit in either |0⟩ or |1⟩ and reporting the resulting 𝑛-digit

bit string. So, if we want to project our state into a particular basis—here, the single-

triplet basis—we need to rotate the desired basis states into the computational basis,

such that the resulting bit strings now correspond to projections in the desired basis.

How do we perform this rotation? Looking at the single-triplet states in Eqs. (5.46)–

(5.49), we see that these states are intimately related to the four Bell states

|𝛽00⟩ =
1√
2
(|00⟩+ |11⟩) (5.51)

|𝛽01⟩ =
1√
2
(|01⟩+ |10⟩) (5.52)

|𝛽10⟩ =
1√
2
(|00⟩ − |11⟩) (5.53)

|𝛽11⟩ =
1√
2
(|01⟩ − |10⟩) (5.54)

Taking the expectation value of each of these states with SWAP, we see the Bell basis

has the exact same parity properties as the singlet-triplet: |𝛽00⟩ , |𝛽01⟩ , |𝛽10⟩ have

even parity (i.e. they are unchanged after exchanging the two underlying single-qubit

states) and |𝛽11⟩ has odd parity (it picks up a minus sign when we exchange its single-

qubit states). Indeed, since the Bell basis and the single-triplet basis are equivalent

up to a rotation in the even parity manifold, the sum of the eigenvalue-weighted

probabilities in these two bases will be equivalent

𝑝trip1 + 𝑝trip2 + 𝑝trip3 − 𝑝singl = 𝑝𝛽00 + 𝑝𝛽10 + 𝑝𝛽01 − 𝑝𝛽11 (5.55)

So, recalling the motivating equation from Eq. (5.43), our task is now to rotate
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our state 𝜌 ⊗ 𝜌 from the Bell basis into the computational basis and record the

corresponding measurement outcomes to estimate the expection value of SWAP. As

it turns out, this chapter has already provided us with all the tools we need to do

exactly that rotation. In Eq. (5.24), we showed a quantum circuit for generating each

of the four Bell states from each of the four computational states. Our task is now

the inverse: given the four Bell states, rotate them into the computational basis. This

task is now trivial—we simply need to run the circuit from Eq. (5.24) backwards

|𝛽𝑥𝑦⟩
{︁ ∙ H 𝑥 = {0, 1}

𝑦 = {0, 1}

(5.56)

This circuit is commonly known as a Bell measurement: when the input state on the

left-hand side of the circuit is equal to one of the four Bell states, measurement of

the two qubits at the end of the circuit will deterministically yield a single bit-string

which uniquely identifies which Bell state the system was in.

For the SWAP test, however, the input state will not be in one of the Bell states,

but rather in a product state 𝜌 ⊗ 𝜌. As such the Bell measurement will not yield a

single bit string, but rather a distribution of bit strings corresponding to the projection

of the product state into the Bell basis. Collecting the resulting bit strings and

calculating the relative probability of their occurrence, we can estimate the expection

value of SWAP as

Tr [(𝜌⊗ 𝜌) SWAP] = 𝑝00 + 𝑝01 + 𝑝10 − 𝑝11 (5.57)

where 𝑝00, 𝑝01, 𝑝10, 𝑝11 are the relative probabilities of the four two-qubit measurement

outcomes after performing the Bell measurement from Eq. (5.56).

Since there are only two unique eigenvalues, Eq. (5.57) is equivalent to simply

recording the probability of being in an even or odd parity state

Tr [(𝜌⊗ 𝜌) SWAP] = 𝑝even − 𝑝odd (5.58)
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|𝜓⟩ prepare 𝜌 ∙ H 𝑥 = {0, 1}

|𝜑⟩ prepare 𝜌 𝑦 = {0, 1}

Figure 5-1: The protocol for a single run of the SWAP test on two qubits. The
operations in the dotted box prepare the two qubits in the the product state 𝜌 ⊗
𝜌 using some sequence of single-qubit rotations, and the operations in the dashed
box perform a Bell measurement as described in Eq. (5.56). By running the circuit
many times, recording the parity extracted from measurement outcomes 𝑥 and 𝑦, and
summing the estimated probabilities in post-processing according to Eq. (5.58), the
algorithm returns an estimate of the purity of state 𝜌.

which we can determine in classical post-processing by taking the logical AND of the

output bits of the Bell Measurement

1− 2(𝑥 ∧ 𝑦) =

⎧⎪⎨⎪⎩+1, even parity

−1, odd parity
(5.59)

where 𝑥 and 𝑦 are the bits recorded in single-shot measurements of the first and second

qubits from Eq. (5.56) respectively, and ∧ is the classical AND operator whose truth

table we showed in Eq. (5.2). From here, we can perform repeated Bell measurements

on fresh copies of the state 𝜌 ⊗ 𝜌, gradually building up an estimate of the probability

of being in an even or odd parity state.

Combining these insights, the protocol for performing a SWAP test on two qubits

is as follows:

1. Initialize two qubits in the state of interest 𝜌.

2. Perform a Bell measurement on the two-qubit product state 𝜌 ⊗ 𝜌, recording

the parity from the two outputs bits 𝑥 and 𝑦 by Eq. (5.59).

3. Repeat the circuit many times, gradually building up an estimate for probability

of 𝜌 ⊗ 𝜌 being in an even parity state (𝑝even) or an odd parity state (𝑝odd).

4. In classical post-processing, subtract the two probabilities according to Eq. (5.58)

to get an estimate for the purity of state 𝜌.
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Expressing this as a quantum circuit, we arrive at the two-qubit algorithm for the

SWAP test in Fig. 5-1.

5.4.2 Measuring the Purity of an 𝑛-Qubit State

For a single qubit—where tomographic reconstruction of the density matrix is still

relatively cheap—calculating the purity with the SWAP test is a bit of an overkill, and

it is easy enough to measure all the elements of the density matrix 𝜌 and brute force

calculate the purity in Eq. (5.42). The real power of the SWAP test, however, comes

when we extend the technique to 𝑛-qubit states, where state tomography quickly

becomes computationally prohibitive.

For concreteness, let’s consider the three-qubit state 𝜌𝐴𝐵𝐶 , where the subscripts

𝐴, 𝐵, 𝐶 will denote the three physical qubits which compose 𝜌𝐴𝐵𝐶 . The extension to

arbitrary multi-qubit states will readily follow from there. To perform a SWAP test

on this three-qubit state, we apply our fundamental relationship from Eq. (5.43)

Tr
[︀
𝜌2𝐴𝐵𝐶

]︀
= Tr [(𝜌𝐴1𝐵1𝐶1 ⊗ 𝜌𝐴2𝐵2𝐶2) SWAP𝐴1𝐵1𝐶1:𝐴2𝐵2𝐶2 ] (5.60)

where 𝜌𝐴𝐵𝐶 is now an 8× 8 three-qubit density matrix, the subscripts 1 and 2 keep

track of our two copies of 𝜌𝐴𝐵𝐶 , and the SWAP operator is the 64× 64 matrix which

swaps the qubits in the first copy of 𝜌 with the qubits in the second copy

SWAP𝐴1𝐵1𝐶1:𝐴2𝐵2𝐶2 :=
𝑑=2∑︁

𝐴1𝐵1𝐶1
𝐴2𝐵2𝐶2

|𝐴1𝐵1𝐶1𝐴2𝐵2𝐶2⟩ ⟨𝐴2𝐵2𝐶2𝐴1𝐵1𝐶1| (5.61)

Crucially, we recognize that the global SWAP operator in Eq. (5.61) can be de-

composed into the product of local SWAP operators acting only on pairs of qubits

SWAP𝐴1𝐵1𝐶1:𝐴2𝐵2𝐶2 = SWAP𝐴1:𝐴2 ⊗ SWAP𝐵1:𝐵2 ⊗ SWAP𝐶1:𝐶2 (5.62)

where each of the SWAP operators on the right-hand side of the equation is the
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familiar 4× 4 matrix

SWAP𝐴1:𝐴2 =
𝑑=2∑︁
𝐴1𝐴2

|𝐴1𝐴2⟩ ⟨𝐴2𝐴1| =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦ (5.63)

The relationship in Eq. (5.62) is extremely powerful, because it tells us that we can

implement the global SWAP operation using only local operations on pairs of qubits.

Indeed, since each of the two-qubit SWAP operations on the right-hand side of the

equation is exactly the same operation we just addressed in the previous section, we

can use our routine for the 2-qubit SWAP test as a subroutine of the general 2𝑛-qubit

SWAP test.

From Eq. (5.62), we see that the eigenstates of the global SWAP operator are

tensor products of the eigenstates of the local SWAP operators. As such, measuring

the expectation value of the global SWAP operator simply requires rotation of the

local SWAP eigenstates into the computational basis. That is, we simply perform Bell

measurements between pairs of qubits, as illustrated in Fig. 5-2. After performing

a Bell measurement on each of the constituent pairs of qubits in the two copies of

𝜌𝐴𝐵𝐶 , the expectation value of the global SWAP operator can be found by recording

the probability of being in an even or odd parity state

Tr [(𝜌𝐴1𝐵1𝐶1 ⊗ 𝜌𝐴2𝐵2𝐶2) SWAP𝐴1𝐵1𝐶1:𝐴2𝐵2𝐶2 ] = 𝑃even − 𝑃odd (5.64)

Here, “even” and “odd” refer to the global state parity, which—following from the

SWAP decomposition in Eq. (5.62)—is the product of the local parity measured in

each of the Bell measurements

𝑛∏︁
𝑗={𝐴,𝐵,𝐶,... }

1− 2(𝑥𝑗 ∧ 𝑦𝑗) =

⎧⎪⎨⎪⎩+1, even global parity

−1, odd global parity
(5.65)

where 𝑥𝑗 and 𝑦𝑗 are the bits measured at the output of the Bell measurement between
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𝐴1: |𝜓𝐴⟩

prepare 𝜌𝐴𝐵𝐶

∙ H 𝑥𝐴 = {0, 1}

𝐵1: |𝜓𝐵⟩ ∙ H 𝑥𝐵 = {0, 1}

𝐶1: |𝜓𝐶⟩ ∙ H 𝑥𝐶 = {0, 1}

𝐴2: |𝜑𝐴⟩

prepare 𝜌𝐴𝐵𝐶

𝑦𝐴 = {0, 1}

𝐵2: |𝜑𝐵⟩ 𝑦𝐵 = {0, 1}

𝐶2: |𝜑𝐶⟩ 𝑦𝐶 = {0, 1}

Figure 5-2: An example of the general protocol for a single run of the SWAP test on
2𝑛 qubits (𝑛 = 3 shown). At the end of each run, 2𝑛 bits are recorded and converted
to a global parity measurement using Eq. (5.65). The circuit is repeated many times
to build up an estimate of the probability of measuring even or odd parity, which in
turn gives us an estimate of the purity of 𝜌.

qubits 𝑗1 and 𝑗2 (𝑗 ∈ {𝐴,𝐵,𝐶, . . . }), as shown in the measurement outcome of each

qubit in Fig. 5-2.

Pulling everything together, the protocol for performing a SWAP test on 𝑛 qubits

is as follows

1. Initialize two sets of 𝑛 qubits in the state of interest 𝜌.

2. Perform a Bell measurement on each of the 𝑛 pairs of constituent qubits, record-

ing a total of 2𝑛 classical bits after measurement of each qubit.

3. In classical processing, the 2𝑛 bits are converted into a global parity measure-

ment using Eq. (5.65).

4. Repeated steps 1 through 3 many times, building up an estimate of the proba-

bility of the state having even or odd global parity.

5. In classical post-processing, subtract the two probabilities to get an estimate

for the purity of state 𝜌.

Since each run of the general SWAP test only requires a total of 𝒪(2𝑛) measurements,

we can see that measuring state purity with the SWAP test is exponentially faster

than brute-force state tomography, which requires 𝒪(2𝑛) measurements.
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5.4.3 Experiment: Measuring Purity Loss in a

Superconducting Qubit

Having outlined the theoretical foundation of the SWAP test, let’s consider what

running this algorithm looks like in practice. As a proof of principle, we can run

the SWAP test on a small superconducting quantum processor and look at how the

purity extracted from the SWAP test compares to the value extracted from brute

force tomography. For this experiment, we use a pair of capacitively-coupled flux-

tunable transmon qubits in a linear array (for full device details, see Chapters 7 and

10, which report results from the same device).

As we know, the purity of a physical quantum bit will change in time as the qubit

undergoes 𝑇1 and 𝑇2 processes: in the latter process, the qubit’s purity will decay as

the state is drawn from the surface of the Bloch sphere to the center; in the former,

the qubit will lose purity as it passes through the volume of the Bloch sphere, followed

by an asymptotic recovery in purity as it decays to its ground state |0⟩. In Fig. 5-3, we

show simulation results for a single qubit evolving under the influence of amplitude

damping and dephasing channels, plotting both the state of the qubit on the Bloch

sphere in time, as well as the corresponding purity of the state.

Let’s test this on physical hardware. To perform this measurement, we make mak-

ing a small modification to the two-qubit SWAP test from Fig. 5-1: after preparing

the state 𝜌 on both qubits, we will wait a variable length of time 𝑡 before performing

the Bell state. During this time, the qubits will each experience 𝑇1 and 𝑇2 processes,

and the SWAP test will record the average purity of the two states as they evolve in

time. This measurement will correspond to the quantum circuit shown in Fig. 5-4,

where the Hadamard and CNOT gates are compiled into the native transmon gate set

using the decompositions from Eqs. (5.38) and (5.41). Pulling the pieces together,

our experiment proceeds as follows:

1. Initialize two physical transmon qubits in a common state of interest 𝜌 using

single-qubit rotations.

292



5.4. CASE STUDY: THE SWAP TEST
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Figure 5-3: Simulation of a single qubit evolving under the influence of amplitude
damping and dephasing channels, for an arbitrary choice of coherence times 𝑇1 =
𝑇2 = 30𝜇s. (a) The state of the qubit, sampled at discrete times and plotted as
a series of points on the Bloch sphere. When the qubit is initialized in |1⟩, the
amplitude damping channel pulls the qubit state through the volume of the Bloch
sphere, exponentially decaying to the |0⟩-state. (b) The purity of the qubit 𝛾 = Tr[𝜌2]
calculated at each discrete time in (a). At 𝑡 = 0, the qubit begins in a maximally pure
state (𝛾 = 1, upper dashed line); the qubit then decays to a maximally mixed state at
the center of the Bloch sphere, where its purity reaches the theoretical minimum for
a single-qubit state (𝛾 = 1/2, lower dashed line); as the qubit state passes through
the center of the Bloch sphere and exponentially decays to the |0⟩-state, its purity
gradually recovers and asymptotes back to its maximum (𝛾 = 1).

2. Wait for time 𝑡.

3. Perform a Bell measurement on the two-qubit product state 𝜌 ⊗ 𝜌, recording

the parity from the two outputs bits.

4. Repeat the circuit many times, gradually building up an estimate for probability

of 𝜌⊗ 𝜌 being in an even parity state (𝑝even) or an odd parity state (𝑝odd).

5. In classical post-processing, subtract the two probabilities to get an estimate

for the purity of state 𝜌.

6. Increase the waiting time 𝑡 and repeat steps 1 through 5, resulting in an estimate

of the purity at the new time.

7. Repeat for several values of 𝑡, sampled between 𝑡 = 0 and some later time where
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|0⟩ prepare 𝜌 wait for time 𝑡 ∙ H 𝑥 = {0, 1}

|0⟩ prepare 𝜌 wait for time 𝑡 𝑦 = {0, 1}

Figure 5-4: A modified version of the standard two-qubit SWAP test in Eq. (5.43).
By running the SWAP test many times for several values of the waiting time 𝑡, we
expect to see the purity of the qubit decay due to amplitude damping and dephasing
environment-induced dephasing.
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Figure 5-5: Experimental results of the SWAP test applied to two superconducting
transmon qubits, each initialized in the |1⟩-state. Running the circuit from Fig. 5-4
for the initial two-qubit state 𝜌 ⊗ 𝜌 = |11⟩⟨11|, we see that the reported single-qubit
purity decays in much the same way as predicted in our simulation from Fig. 5-3.

the two qubit states have largely decayed 𝑡≫ 𝑇2.

In Fig. 5-5, we show the results of running this experiment on a pair of transmon
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qubits, where the two qubits are initialized as two copies of the same state 𝜌 = |1⟩⟨1|

𝜌⊗ 𝜌 = |1⟩⟨1| ⊗ |1⟩⟨1| = |11⟩⟨11| (5.66)

Allowing the two qubits to decay over the course of 200𝜇s and plotting the results of

the SWAP test at a number of discrete times, we see that the purity of the underlying

single-qubit states decays near the theoretical maximum at 𝑡 = 0 to near its minimum

at 𝑡 ∼ 20𝜇s, after which it exponentially decays back to pure state. Note that the

purity in Fig. 5-5 begins slightly lower than the theoretical maximum (𝛾 = 1, upper

dashed line) and decays to slightly above the theoretical minimum (𝛾 = 1, upper

dashed line). While the exact cause of this deviation was not investigated in this

experiment, this deviation between theory and experiment is consistent which the

presence of state-preparation and measurement (SPAM) errors, where the qubits are

not prepared exactly in the |1⟩-state at the start of the experiment (due, for example,

to some significant thermal population prior to the preparation pulse). We will return

to errors of this form in greater detail in Part IV.

How do the results of the SWAP test compare to the value of the purity we would

have extracted from state tomography of the underlying single- and two-qubit states

over time? In Fig. 5-6, we plot exactly that. Here, the blue data points correspond

to the results of the SWAP test, exactly as in Fig. 5-5. In orange, we overlay the

two-qubit purity recorded from two-qubit state tomography of both qubits at each

discrete delay time. Since the two-qubit purity has a minimum of 𝛾 = 1/𝑑 = 1/4,

we can compare it to the single-qubit purity reported by the SWAP test by taking

its square root at each time (plotted in green), which qualitatively follows the value

reported by the SWAP test.

As a final comparison, we can compare the single-qubit purity calculated by the

SWAP test with the actual single-qubit purity of each of the constituent qubits. To

do this, we can take the two-qubit 4× 4 density matrix found using two-qubit state

tomography at each discrete time, trace out each of the underlying qubits to get their

respective single-qubit 2 × 2 density matrices, and then calculate the purity of each
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Figure 5-6: Experimental comparison of the purity calculated using the SWAP test
(blue, same data set as Fig. 5-5) and the value calculated brute force using state
tomography. In orange, we overlay the purity calculated from two-qubit state to-
mography of the pair of qubits at each time step; since, the two-qubit purity has a
minimum of 𝛾 = 1/𝑑 = 1/4, we can compare it to the single-qubit purity reported
by the SWAP test by taking the square root at each time (plotted in green). In red
and purple, we plot the single-qubit purity of each qubit, calculated by tracing their
respective single-qubit density matrices from the two-qubit tomography results.

individual qubit from their respective density matrices. In Fig. 5-6, we plot the single-

qubit purity calculated from the single-qubit density matrices of each qubit at each

discrete delay time, shown in red and purple, respectively. Comparing the red and

purple curves, we see that the two qubits decay at slightly different rates—consistent

with the two qubits having slightly different coherence times—and the purity recorded

by the SWAP test falls between the two. Indeed, when the two copies of 𝜌 required

for the SWAP test begin to deviate from one another—such that one qubit is in state

𝜌 and the other in a different state 𝜎—the SWAP test no longer reports the purity,
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but rather the fidelity between the two imperfect copies

ℱ(𝜌, 𝜎) = Tr [𝜌 𝜎] (5.67)

= Tr [(𝜌⊗ 𝜎) SWAP] (5.68)

In this sense, the SWAP test is a simple example of a basic quantum characterization

protocol, efficiently extracting some information about the input state. Indeed, we

will return to such techniques in greater detail in Part IV of this thesis.
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Chapter 6

Calibrating a Universal Gate Set

In Chapter 5, we considered the theoretical foundations of quantum algorithms

composed of discrete gate operations, and we showed how to construct a general

multi-qubit algorithm out of a small universal gate set composed of only single- and

two-qubit operations. In this chapter, we will walk through the steps required to

calibrate a universal gate set on a device consisting of coupled superconducting trans-

mon qubits. Building on the device physics of superconducting qubits we built up

in Chapter 3, this chapter will outline a set of techniques for calibrating microwave

single-qubit gates, as well as a two-qubit CZ gate using local magnetic flux biases.

These techniques will then form the foundation of the algorithmic study in Chapter 7,

where we utilize these gate operations to perform a deep quantum algorithm, Density

Matrix Exponentiation.

This chapter is based on the gate calibration techniques my colleagues and I employed during
the Density Matrix Exponentiation [247] and Lindblad tomography [399] experiments reported in
Chapters 7 and 10, and I gratefully acknowledge my colleagues Alex Greene and Morten Kjaergaard
for their contributions to the calibration protocol reported in this chapter. Portions of the back-
ground material outlining the principles of single- and two-qubit gates in superconducting qubits
are adapted from Ref. [257].
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6.1 Single-Qubit Microwave Gates

In Chapter 5, we showed that any multi-qubit algorithm can be synthesized out of a

gate set consisting of the following single- and two-qubit operations

𝒢 ′ = {X𝜃,Y𝜃,Z𝜃,Ph𝜃,CZ}. (6.1)

These quantum operators are mathematical abstractions: taking the matrix repre-

sentation of each gate, we can show that combinations of these operations allow us

to rotate any multi-qubit wavefunction |𝜓⟩ into any other wavefunction |𝜑⟩ of equal

dimension. Thus, these operations form the building blocks of a universal quantum

computer, a device capable of performing any desired 𝑛-qubit unitary operation. That

is, in theory. While the mathematical soundness of this observation is indisputable,

quantum computers are not simply theoretical abstractions which live on paper or

in a Python notebook. Quantum computers are pieces of hardware—assemblages

of wiring and control electronics percision engineered to bring these abstraction to

life. Thus, our challenge as quantum engineers is to take the universal gate set in

Eq. (6.1) and realize it in physical hardware. The performance of our quantum pro-

cessor will then depend on the success of our translation, our ability to give these

matrices electrical and magnetic flesh.

In this section, we will start by considering the single-qubit gates in Eq. (6.1) and

show how to generate these operations with high-fidelity in an architecture of super-

conducting transmon qubits. This discussion will build naturally on our discussion of

the transmon circuit from Section 3.3, showing how such circuits are affected by the

introduction of a microwave drive signal. Following a brief outline of the physics at

play, we will then walk through the calibration protocol we deploy to calibrate these

operations with high fidelity in the laboratory.
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room 
temperature on-chipwiring

Vd(t) Rw Cd
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Figure 6-1: Circuit schematic of a microwave drive line coupled to a superconducting
transmon qubit. The microwave source produces a time-dependent voltage 𝑉𝑑(𝑡)
which travels along a feed line with impedance 𝑅𝑤 and capacitively coupled to one of
the circuit nodes with capacitance 𝐶𝑑. Figure reproduced from Ref. [257].

6.1.1 Realizing X and Y Gates Using Capacitive Coupling

Consider a single superconducting qubit coupled to a microwave source, as sketched in

Fig. 6-1. As we did in Chapter 3, we can start by writing the classical Hamiltonian of

this circuit in terms of the charge and flux at each node of the circuit. For simplicity,

we can start by treating the qubit as a generic LC-oscillator as in Eq. (3.31). Making

this simplification, the combined Hamiltonian of the qubit and drive line is given by

𝐻 =
1

2𝐶Σ

𝑞(𝑡)2 +
1

2𝐿
Φ2 +

𝐶𝑑
𝐶Σ

𝑉𝑑(𝑡) 𝑞 (6.2)

where 𝐶𝑑 is the capacitance between the qubit and the drive line, 𝐶Σ = 𝐶 + 𝐶𝑑 is

the total capacitance to ground, and 𝑞 = 𝐶ΣΦ̇ − 𝐶𝑑𝑉𝑑(𝑡) is the renormalized charge

variable of the circuit. Having written the classical Hamiltonian of the circuit, we can

now promote the classical electrical variables 𝑞,Φ to quantum mechanical operators

𝑞, Φ̂ and arrive at the Hamiltonian operator for the combined circuit

�̂� =
1

2𝐶Σ

𝑞(𝑡)2 +
1

2𝐿
Φ̂2 +

𝐶𝑑
𝐶Σ

𝑉𝑑(𝑡) 𝑞. (6.3)

301



CHAPTER 6. CALIBRATING A UNIVERSAL GATE SET

Drawing on Eqs. (3.134) and (3.136) from Chapter 3, we can perform a basis trans-

formation and rewrite this Hamiltonian in terms of the creation and annihilation

operators of the harmonic oscillator

Φ̂ =

√︂
ℏ𝑍0

2
(�̂�† + �̂�) (6.4)

𝑞 = 𝑖

√︂
ℏ

2𝑍0

(�̂�† − �̂�) (6.5)

where 𝑍0 =
√︀
𝐿/𝐶 is the impedance of the circuit to ground. Plugging these relations

into Eq. (6.3), we arrive at the Hamiltonian

�̂� = 𝜔

(︂
�̂�†�̂�+

1

2

)︂
+
𝐶𝑑
𝐶Σ

𝑉𝑑(𝑡) 𝑖

√︂
ℏ

2𝑍0

(�̂�† − �̂�) (6.6)

where 𝜔 = 1/
√
𝐿𝐶 is the fundamental frequency of the LC oscillator. Now, since

we are using the LC circuit as a stand-in for a generic qubit circuit, we can finally

truncate this Hamiltonian such that it only includes the lowest two levels of the

oscillator. This truncation is equivalent to the operator substitution

�̂� → �̂�− =

[︃
0 0

1 0

]︃
(6.7)

�̂�† → �̂�+ =

[︃
0 1

0 0

]︃
. (6.8)

Substituting these 2 × 2 operators into the Hamiltonian in Eq. (6.6) and dropping

the constant offset in the qubit Hamiltonian, we arrive at a form of the Hamiltonian

in terms of the familiar Pauli operators

�̂� = −𝜔𝑞
2
𝑍 + Ω𝑉𝑑(𝑡)𝑌 (6.9)
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where Ω = (𝐶𝑑/𝐶Σ)
√︀

ℏ/2𝑍0 and 𝜔𝑞 = (𝐸1 −𝐸0)/ℏ is the transition frequency of the

qubit.

Looking at the right-hand side of Eq. (6.9), we can see that the Hamiltonian

breaks nicely into two parts: the first term is simply the bare qubit Hamiltonian 𝐻0;

the second, a perturbation 𝐻𝑑 due to the introduction of the drive line. Rewriting

𝐻𝑑 in the rotating frame of the qubit, this latter term takes on the form

̃︀𝐻𝑑 = Ω𝑉𝑑(𝑡)
(︁
cos(𝜔𝑞𝑡)𝑌 − sin(𝜔𝑞𝑡) �̂�

)︁
. (6.10)

In general, we can write the time-dependent voltage in the form

𝑉𝑑(𝑡) = 𝑉0𝑠(𝑡) sin(𝜔𝑑𝑡+ 𝜑) (6.11)

= 𝑉0𝑠(𝑡) (cos(𝜑) sin(𝜔𝑑𝑡) + sin(𝜑) cos(𝜔𝑑𝑡)) (6.12)

where the amplitude 𝑉0 has units of voltage, 𝑠(𝑡) is a dimensionless envelope function,

and the oscillating part of the voltage can be rewritten in terms of the in-phase

component ℐ and out-of-phase (or quadrature) component 𝒬 of the signal

ℐ = cos(𝜑) (6.13)

𝒬 = sin(𝜑). (6.14)

Writing Eq. (6.12) in terms of ℐ and 𝒬 and plugging this expression back into the

Hamiltonian in Eq. (6.10), we can rewrite the drive Hamiltonian in the rotating frame

as

̃︀𝐻𝑑 = Ω𝑉0𝑠(𝑡) (ℐ sin(𝜔𝑑𝑡) +𝒬 cos(𝜔𝑑𝑡))×
(︁
cos(𝜔𝑞𝑡)𝑌 − sin(𝜔𝑞𝑡) �̂�

)︁
. (6.15)

Multiplying everything out and taking the rotating wave approximation (i.e., drop-

ping the terms which oscillate at frequency 𝜔𝑞 + 𝜔𝑑), we finally arrive at a compact
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expression for the drive Hamiltonian

̃︀𝐻𝑑 = −Ω

2
𝑉0𝑠(𝑡)

[︃
0 𝑒𝑖(𝛿𝜔 𝑡+𝜑)

𝑒−𝑖(𝛿𝜔 𝑡+𝜑) 0

]︃
(6.16)

where 𝛿𝜔 = 𝜔𝑞 − 𝜔𝑑 is the detuning between the qubit and drive frequencies.

The relation we arrived at in Eq. (6.16) is extremely powerful. To see why, consider

the case where the drive frequency is resonant with the qubit frequency and 𝛿𝜔 = 0

̃︀𝐻𝑑 = −Ω

2
𝑉0𝑠(𝑡)

(︁
ℐ�̂� +𝒬𝑌

)︁
. (6.17)

From this equation, we see that the introduction of a microwave drive capacitively

coupled to our qubit allows us to implement 𝑋- or 𝑌 -rotations of the qubit state,

depending on the phase of the drive signal:

𝜑 = 0: When the drive is applied in-phase, the drive Hamiltonian will be proportional

to �̂�, and the qubit state will rotate around the 𝑥-axis of the Bloch sphere.

𝜑 = 𝜋/2: When the drive is applied in quadrature, the drive Hamiltonian will be

proportional to �̂�, and the qubit state will instead rotate around the 𝑦-axis of

the Bloch sphere.

Thus, by choosing the phase of the drive signal between 𝜑 = 0 and 𝜑 = 2𝜋, we can

harness the drive Hamiltonian in Eq. (6.17) to generate rotations around an arbitrary

axis in the 𝑥𝑦-plane of the Bloch sphere

To see how the Hamiltonian in Eq. (6.17) can be harnessed to perform discrete

gate operations, we can exponentiate this Hamiltonian to arrive at the corresponding

unitary operator

�̂�𝑑(𝑡) = exp

(︂
𝑖

2
Ω𝑉0

∫︁ 𝑡

0

𝑠(𝑡′) 𝑑𝑡′
[︁
ℐ�̂� +𝒬𝑌

]︁)︂
. (6.18)

Looking at this unitary operator, we see we now have all the ingredients we need to

generate arbitrary X and Y gates. As we just argued, the axis of rotation will be set

by the phase of the drive signal 𝜑, allowing us to choose whether to perform an X
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gate or a Y—or indeed, some arbitrary combination of the two. As for the angle of

rotation around this axis, we can see that this is determined by the remaining factors

in the exponent, which we can group into an angle

Θ(𝑡) = −Ω𝑉0

∫︁ 𝑡

0

𝑠(𝑡′) 𝑑𝑡′. (6.19)

Looking at this angle, we see that it depends only on the design parameters of

the device—i.e., the capacitive coupling to the drive line and the impedance of the

circuit—and the amplitude 𝑉0 and envelope 𝑠(𝑡) of the drive pulse. Thus, by plug-

ging in the fixed design parameters of the circuit and solving Eq. (6.19) for a desired

rotation angle Θ, we can easily find the amplitude and envelope of the pulse required

to perform the desired gate operation. From there, we can program the desired pulse

shape using an arbitrary waveform generator (AWG) at the input of the drive line,

mixing together the desired weighting of ℐ and 𝒬 to execute the desired rotation.

6.1.2 ‘Virtual’ Z Gates

So far, we have shown how to perform arbitrary X and Y gates using a microwave drive

line coupled to the qubit circuit. What about Z gates? As it turns out, we already

have all the tools we need to perform arbitrary Z rotations, without introducing

any additional control hardware. As we just showed, the only difference between a

physical X and Y gate comes from the choice of phase 𝜑 in the applied microwave

signal: offsetting all our pulses by a phase 𝜑+𝜋/2, we would effectively turn all of our

X gates to Y gates and vice versa (with a change of sign). Recalling our introduction

to the Pauli operators in Chapter 2, we’ll remember that there is a mathematical

operator which performs the exact same exchange of �̂� and 𝑌 : the 𝑍 operator! In

this sense, the phase degree of freedom in our microwave drive allows us to encode

the action of a Z gate without actually applying a dedicated physical gate. This

technique, first shown in Ref. [300], is commonly referred to as a ‘virtual’ Z gate.

To see how the virtual Z gate works in practice, consider a simple quantum circuit
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containing a collection of X, Y, and Z gates of arbitrary angle:

X𝜃0 Z𝜃1 Y𝜃2 Z𝜃3 X𝜃4 (6.20)

Written as such, this circuit has a depth of five, and it thus requires five physical

single-qubit gates to perform the action of this sequence. However, following the

argument above, we can absorb each of the Z gates in the circuit above into the X

or Y gate which follows it, modifying the phase of pulse accordingly and producing

leaving us with an equivalent circuit

X𝜃0 Y(𝜃1)
𝜃2

X(𝜃3)
𝜃4

(6.21)

What is the difference between the operations X𝜃4 and X(𝜃3)
𝜃4

? Both gates correspond

to microwave pulses generated using the ℐ channel of the AWG, with envelopes cal-

culated such that a total rotation angle of 𝜃4 is performed. However, we have added

an additional phase offset of 𝜃3 to the latter pulse, absorbing the action of the Z

rotation which proceeded it. In the process, we have reduced the depth of our circuit

from five to three, reducing the number of physical operations we need to perform to

implement the exact same unitary operation.

In many ways, the absorption of the virtual Z gates is similar in spirit to the idea

of circuit compilation we considered in Chapter 5, with a key difference. In circuit

compilation, non-native gates are realized through combinations of a limited number

of pre-defined gates in your native gate set, provided that gate set is universal. In

the case of these virtual gates, however, the presence of a Z gate physically alters

the native gates surrounding it, modifying the action of those gates. As such, we

can draw upon both virtual gates and circuit compilation to dramatically reduce the

number of physical gates we need to calibrate to one. To see this, we can use the

following result from Ref. [301], which shows that any general single-qubit rotation

can be generated using only discrete X𝜋
2

gates and continuous-angle Z gates

�̂�(𝜃, 𝜑, 𝜆) = Z𝜑−𝜋
2

X𝜋
2

Z𝜋−𝜃 X𝜋
2

Z𝜆−𝜋
2
. (6.22)
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Thus, drawing on the device physics we have sketched in this chapter so far, we see

that it is possible to generate a universal set of single-qubit rotations using only a

single gate calibration: all we have to do is calibrate a single X𝜋
2

gate, and every

possible single-qubit rotation will follow from the correct choice of virtual Z gates

surrounding it.

6.1.3 Accounting for Higher Levels Using DRAG

Before we proceed to an example calibration routine for a physical transmon device,

we need to return to a point we brushed under the rug in Section 6.1.1. In our deriva-

tion of the driven Hamiltonian which gives rise to our X and Y gates, we conveniently

truncated our Hamiltonian to a 2×2 matrix, treating our qubit as a perfect two-level

system. As we showed in Chapter 3, this is a highly idealized picture of a physical

superconducting qubit—in reality, our circuit has an infinite ladder of higher-energy

states, just like an LC oscillator. Now, unlike an LC oscillator, the addition of a

Josephson junction adds some anharmonicity to this level structure, and in principle

this allows us to uniquely address the lowest two states, treating these two levels as

the computational states of a quantum bit.

In reality, however, these higher levels continue to play a part, and we must

account for the presence of these higher levels when we attempt to drive transitions

between our qubit states, particularly in the case of weakly anharmonic qubits such

as the transmon. To see why these higher transitions continue to play a part, consider

a microwave drive signal of the form in Eq. (6.17), where the pulse envelope 𝑠(𝑡) is

a Gaussian function in time. Since our qubits have finite 𝑇1 and 𝑇2 times, we want

to make our pulses as short as possible so we can perform as many gate operations

as possible before our qubits decay—for a given rotation angle, this corresponds to

reducing the width of the envelope 𝑠(𝑡) and increasing its amplitude such that the

time integral of the pulse remains constant, as we can see in Eq. (6.19). Here, however,

we encounter a tradeoff. While reducing the width of the envelope 𝑠(𝑡) means we can

now perform more gates within the limited coherence time of our qubit, reducing the

width of the envelope in time increases its width in frequency. Taking the Fourier
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transform of a narrow Gaussian envelope 𝑠(𝑡), we will find that our pulse now includes

a broad spectrum of frequency components, including components which are resonant

with the higher transitions of our qubit. As we make our pulse shorter and shorter,

the amplitude of these additional frequency components will increase, and we will

find that our gate excites not only transitions between |0⟩ and |1⟩ but also between

|1⟩ and |2⟩, |2⟩ and |3⟩, and higher and higher up the ladder.

This sort of leakage to states outside the computational basis is exactly what we

were hoping to avoid by moving away the LC oscillator. Fortunately, however, there

are techniques to mitigate this effect, allowing us to achieve short single-qubit gates

with minimal leakage to higher levels. Among these techniques, one of the simplest

and most ubiquitous in superconducting qubits is known as Derivative Reduction by

Adiabatic Gate, or DRAG for short [113, 152, 320, 321]. The idea behind DRAG is

simple: while you output a gate with envelope 𝑠(𝑡) on either the ℐ or 𝒬 ports of your

AWG, simultaneously output a signal proportional to the derivative of this pulse on

the other port of the AWG

𝑠(𝑡) on ℐ → 𝑠′ =

⎧⎪⎨⎪⎩𝑠(𝑡) on ℐ

𝜆
𝛼
�̇�(𝑡) on 𝒬

(6.23)

and vice versa for a pulse on 𝒬, where 𝛼 is the anharmonicity of the qubit and 𝜆 is a

dimensionless scaling parameter which we can tune during the calibration of our gate.

As we will show in the following section, proper implementation of DRAG is essential

to tuning up high fidelity single-qubit gates, and it will occupy a considerable portion

of our calibration routine.

6.2 Single-Qubit Gate Calibration Protocol

In this section, we will apply the principles we discussed in the previous section and

walk through the steps for calibrating high-fidelity single-qubit gates on a transmon

qubit, considering each of the calibration techniques performed in the laboratory. In
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the process, we will deliberately commit a profound faux pas. When data is taken

in the laboratory, the plots which are recorded often bear the inscrutable names of

the specific instruments and variables which were swept to take the data. When data

is presented in formal settings—such as a publication, a conference presentation, or

a dissertation—it is usually imperative to translate these names into more generally

acceptable scientific language. For example, the voltage recorded by the digitizer of a

field programmable gate array (FPGA) might be relabeled as ‘|1⟩-state population’,

since that is what the signal coming into the digitizer is a proxy for. In this section

of the thesis, and this section only, we have chosen to leave the figures unaltered and

report them exactly as they are recorded by our measurement software during the

calibration process. In this way, we hope to emphasize the constant process of trans-

lation which is required during gate calibration, oscillating between the language of

instruments and the language of qubits. In the caption of each figure, an explanation

is provided to orient the reader and instruct them how to interpret the plot as an

experimentalist would in the laboratory.

6.2.1 Finding the Sweet Spot: Roughly

For fixed-frequency transmons of the form we first considered in Section 3.3, the

energy spectrum is set entirely by the electrical parameters which are hard-coded into

the device during fabrication, such as the physical size of the capacitor paddles and

the thickness of the oxide layer in the Josephson junction. In flux-tunable transmons

of the form we will consider for the remainder of this thesis, we can tune the energy

spectrum of our qubit in situ by applying a magnetic flux bias through its DC-SQUID

loop, giving us a continuous range of bias parameters at which to implement our single-

qubit gates. While this continuous degree of freedom will prove enormously useful

for implementing two-qubit gates later in this chapter, when it comes to performing

single-qubit gates, we typically choose one bias point in particular: the sweet spot

corresponding to the maximum frequency of the transmon versus flux. At this point,

the first derivative of frequency with respect to magnetic flux equals zero, and the

qubit is thus first-order insensitive to small changes in the magnetic flux at this
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Figure 6-2: Rough qubit spectroscopy of a tunable transmon for a range of magnetic
flux biases. Here, the 𝑥-axis corresponds to the voltage applied through a bobbin of
wire positioned over the qubit chip—as the voltage changes, so too does the current
through the bobbin wire, which in turn induces a variable magnetic flux perpendicular
to the qubit circuit, biasing the transmon. At each value of the flux bias, the frequency
of the drive signal is swept (𝑦-axis) and the signal through the transmission line is
recorded by an FPGA digitizer at room temperature (𝑧-axis colormap); when the
drive signal is resonant with the transition frequency of the qubit, the frequency
of the readout resonator coupled to the qubit shifts and a peak is recorded by the
digitizer. Watching this peak move as a function of the applied flux bias, we trace out
the upside-down parabola characteristic of the transmon spectrum. The highest point
of this parabola, where the first derivative with repect to flux is zero, is commonly
referred to as the sweet spot of the qubit, and this point is typically chosen as the
operating point for single-qubit gates.

point, reducing the impact of flux noise in the environment. As such, single-qubit

gates performed at this symmetry point will generally incur smaller incoherent errors

due to qubit dephasing during the duration of the gate operation, resulting in higher

fidelity operations.
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To find the sweet spot of a tunable transmon, we perform qubit spectroscopy,

varying the frequency of a microwave tone and observing the signal through the

transmission line to which the qubit is coupled. When the drive signal is resonant

with a qubit transition, the qubit will be incoherently driven into a mixed state,

shifting the frequency of the readout resonator between it and the transmission line,

resulting in a spectroscopy peak at that generator frequency [257]. Performing qubit

spectroscopy at a set of discrete flux bias points, we can gradually map out the

spectrum of the qubit versus flux and look for the symmetry point where the qubit

frequency is maximum. Having found the approximate bias point corresponding to

the maximum frequency of the qubit, we record this flux bias and the frequency of

the qubit at this point. This will give us an approximate set of coordinates at which

to start calibrating our single-qubit gates, coordinates which will be fine-tuned later

in the calbration protocol.

6.2.2 Calibrating a 𝜋-Pulse Using Rabi Oscillations

Having found the approximate bias point of the sweet spot and the frequency of the

qubit at this bias point, we can begin to calibrate 𝜋-pulse. To do this, we start by

sending down a pulse on the ℐ port of our AWG, where the frequency of the pulse is set

by the transition rough frequency found in spectroscopy and the shape of the envelope

is determined by three parameters: the functional form of the envelope, the width

of the envelope, and the amplitude of the pulse. Having chosen a functional form of

the pulse—typically Gaussian or cosinusoidal, such that the signal is well localized

in time—the task is to find the right combination of pulse width and amplitude such

that enough power is sent to the qubit to excite it to its |1⟩-state, executing a 𝜋-pulse.

To do this, we can choose a pulse width (typically as short as possible while also

ensuring that its spectral overlap with the higher energy transitions of the qubit is

small) and sweep the amplitude of the pulse, recording the Rabi oscillations which

result, as in Fig. 6-3. Sweeping the amplitude of the drive, we record the pulse

amplitude at which the signal achieves half of a full oscillation such that the qubit is

successfully rotated to the |1⟩-state. Together, this amplitude and the chosen pulse
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Figure 6-3: Measurement of Rabi oscillations in a tunable transmon qubit biased at
its sweetspot and driven using a 30ns cosinusoidal pulse at a frequency of 4.79GHz,
varying the amplitude of the signal. The observed oscillation in the magnitude of the
signal recorded by the digitizer is a proxy for the state of the qubit as it coherently
rotates around the medidian of its Bloch sphere from |0⟩ (digitizer signal: ∼ 1.75mV)
to |1⟩ (∼ 0mV) and back again. Sweeping the amplitude of the drive, we record
the pulse amplitude at which the signal successfully rotates the qubit to the |1⟩-
state (here, ∼ 0.95V). Together, this amplitude and the chosen pulse width are the
approximate parameters of our 𝜋-pulse.

width are the approximate parameters of our 𝜋-pulse, and we can use these values to

proceed to a more precise calibration of the single-qubit gate parameters.

6.2.3 Finding the Sweet Spot: Finely

Once we have a preliminary 𝜋-pulse from our Rabi measurement, we can use this

pulse to start fine-tuning its parameters more precisely, starting with the location

of the bias point we found in qubit spectroscopy. In qubit spectroscopy, our ability

to report a precise frequency and magnetic flux corresponding to the sweet spot is

limited by the linewidth of our spectroscopy peak, which can be several megahertz

wide depending on the drive power of the spectroscopy tone. Imprecise measurement

of the sweet spot bias point and frequency will lead to errors in the single-qubit
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Figure 6-4: Detuned Ramsey measurements taken at a small range of flux bias points
around the rough sweet spot we found in spectroscopy (𝑥-axis). Setting the drive
frequency slightly above the maximum qubit frequency we found in spectroscopy and
sweeping the delay time between the two 𝜋/2-pulses of the Ramsey measurement
(𝑦-axis), we record oscillations in the qubit state population (𝑧-axis colormap) equal
to the detuning frequency between the qubit transition and the drive. Recording the
symmetry point of the chevron where the detuning frequency is minimum (∼ −0.75V),
we arrive at a more precise value of the sweet spot flux bias point.

gates we perform at this point, in two different ways: if the frequency of the drive

is inaccurate, the single-qubit gates will contain coherent errors 𝑍 errors due to the

detuning in the drive; if the flux bias point is inaccurate, the qubit will not be biased

on its sweet spot and will thus be more susceptible to flux noise, leading to incoherent

errors during the gate.

To resolve the bias parameters of the pulse more accurately, we can use our rough

𝜋-pulse to interferometrically resolve the sweet spot using a series of detuned Ramsey

measurements in the following way:
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Figure 6-5: The fast Fourier transform (FFT) of each vertical trace in Fig. 6-4. Taking
the FFT of each Ramsey measurement results in a peak at the oscillation frequency
of the detuned Ramsey measurement (𝑦-axis), mapping out the detuning between the
drive frequency (which is fixed) and the qubit frequency (which changes as a function
of the flux bias) and allowing us to interferometrically resolve changes in the qubit
frequency smaller than the linewidth of our spectroscopy measurement. Recording
the minimum detuning frequency and subtracting it from the frequency of the drive,
we arrive at a precise measurement of the qubit transition frequency at the sweet
spot.

1. Taking the 𝜋-pulse we found in our Rabi measurement, we halve the drive

amplitude to obtain a 𝜋/2-pulse, allowing us to rotate the qubit state onto the

equator of its Bloch sphere.

2. Setting our drive frequency to a value slightly above the maximum qubit fre-

quency, we perform a standard Ramsey measurement, applying two 𝜋/2-pulses

to the qubit and sweeping the delay time between the two pulses. During this

time delay, the qubit state will precess along the equator of the Bloch sphere
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at a frequency equal to the detuning between the qubit frequency and the drive

frequency, leading to oscillations in the qubit state population as a function of

delay time.

3. Repeating step 2 for a small range of flux biases around the sweet spot we found

in spectroscopy, the frequency of the Ramsey measurements will decrease as the

the qubit comes closer to resonance with the drive, forming a chevron pattern

around the sweet spot, as in Fig. 6-4. Recording the symmetry point of the

chevron, we arrive at a more precise value of the sweet spot flux bias.

4. Finally, taking the FFT of the oscillating Ramsey trace at each flux bias, we

obtain a peak at the detuning frequency between drive pulse and the qubit

transition. Looking at the FFT of the chevron pattern we observed in step 3,

we can now precisely resolve the qubit transition frequency to greater accuracy

than in our original spectroscopy measurement. Recording the frequency of the

FFT peak at the sweet spot and subtracting this value from the frequency of

our drive tone, we arrive at a more accurate value of the qubit frequency at the

sweet spot

6.2.4 DRAG Calibration

So far, we have dialed in the parameters of a single 𝜋-pulse. For this pulse to reliably

serve as an X-gate in a deep quantum algorithm, we need to test its performance in a

sequence of tens, hundreds, and thousands of repeated gates. Indeed, as we perform

sequences of many gates, we will become increasingly sensitive to small imperfections

in the gate, and, when these errors are coherent, they can constructively build up

after many applications of the gate. To calibrate away these small errors, we need to

run a set of diagnostics to amplify these errors and tune them away.

In Section 6.1.3, we saw how the presence of higher levels in the transmon can

lead to leakage out of the computational subspace and to coherent errors in the qubit

rotation. To mitigate this effect with the DRAG protocol from Eq. (6.23), we need

to find the right value of the coefficient 𝜆 which effectively cancels out the coherent
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Figure 6-6: DRAG calibration of single-qubit gates. Varying the DRAG coefficient
(𝑥-axis), pairs of X-gates are applied to the qubit (𝑦-axis) and the population of
the |0⟩-state is recorded (𝑧-axis colormap, higher |0⟩ population in red). When the
DRAG coefficient is suboptimal, coherent over-/under-rotations in the X-gate result
in oscillation in the |0⟩-state population after multiple pairs of gates. When the
coefficient is optimal, the DRAG protocol actively cancels the coherent errors in
each gate and the qubit will monotonically decay to an incoherent mixed state as
the duration of the gate sequence approaches the coherence time 𝑇2. Recording the
symmetry point of the resulting chevron—at which point the coherent oscillations
disappear—we obtain the optimal DRAG parameter for our single-qubit gate. For
samples of vertical traces at a few different DRAG coefficients, see Figs. 6-7 and 6-8.

over-rotations and leakage.

To calibrate the optimal DRAG parameters, we perform the following measure-

ment: sweeping the strength of the DRAG coefficient, we perform an even number of

𝜋-pulses and measure the probability of the qubit being in the |0⟩-state at the end of
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Figure 6-7: Suboptimal sequences of the DRAG calibration in Fig. 6-6, taken for the
coefficients 𝜆 = 1.4 (top) and 𝜆 = −1.5 (bottom). When the DRAG coefficient is
suboptimal, the coherent errors in X-gate will constructively interfere, rotating the
qubit close to the |1⟩-state after several applications of the gate (4 gates in the top
trace, 18 in the bottom).
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Figure 6-8: Optimal sequence of the DRAG calibration in Fig. 6-6, taken for the
coefficients 𝜆 = −0.9. When the DRAG parameter is optimal, the coherent errors in
each X-gate is actively cancelled and the qubit monotonically decays to a mixed state
even after hundreds of gates. For 1000 applications of the X-gate, the total duration
of the sequence is 𝑇 = 1000 gates × 30 ns/gate = 30𝜇s ≈ 𝑇2, and the gate is limited
by incoherent errors due to finite coherence of the qubit.

the sequence, as such:

|0⟩ ( X𝜋(𝜆) X𝜋(𝜆) )𝑁

(6.24)

Now, for a perfect 𝜋-pulse, all of the X-gates will cancel and the qubit will remain

in |0⟩ for all values of 𝑛. However, when the DRAG coefficient of our 𝜋-pulse is

incorrect, the coherent errors in each X-gates will constructively add up, leading to

oscillations in the |0⟩-state population due to the over/under-rotation of each gate

(Fig. 6-7). When the DRAG parameter is optimal, these oscillations will disappear

and the |0⟩-state population will monotonically decay to 50% due to pure dephasing

of the qubit during the duration of the gate sequence (Fig. 6-8). Varying the DRAG

coefficient and increasing the number of 𝜋-pulses in the sequence (limited the width of

the microwave pulse and 𝑇2 of the qubit), we obtain a chevron pattern as in Fig. 6-6,

where the center of the chevron corresponds to the optimal DRAG parameter.
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6.2.5 Fine-Tuning the Pulse Amplitude With a 𝜋-Train

Finally, now that we have calibrated the DRAG parameters and are able to reliably

perform sequences of tens and hundred of single-qubit rotations, we can perform

one additional calibration step to ensure we are driving the qubit at the correct

pulse amplitude. Previously, we found the pulse amplitude roughly using a standard

Rabi measurement, reading off the approximate pulse amplitude at which the qubit

population of the |1⟩-state is maximized.

To fine-tune this value and ensure that we are driving the qubit at the optimal

pulse amplitude, we can perform a variant of a Rabi measurement colloquially referred

to as a 𝜋-train measurement. This measurement, similar to the DRAG calibration

technique we considered above, relies on the application of multiple gates in series,

looking at the constructive build-up of coherent errors and finding the parameters at

which these errors disappear. As in a Rabi measurement, we perform a 𝜋-pulse and

sweep the amplitude of the pulse, recording the point at which the population of the

|1⟩-state is maximized. Having recorded this point, we then add pairs of 𝜋-pulses to

the sequence, as in the circuit

|0⟩ X𝜋(𝑉0) ( X𝜋(𝑉0) X𝜋(𝑉0) )𝑁

(6.25)

As we increase the odd number of 𝜋-pulses applied to the qubit, the frequency of

the Rabi measurement as a function of pulse amplitude will increase proportionally.

Increasing the number of additional pairs 𝑁 and sweeping a Rabi measurement over

a full period from 𝑉 = 0 to 𝑉 = 2𝑉0, we see that this makes intuitive sense:

𝑁 = 0: Performing a single 𝜋-pulses and sweeping a Rabi measurement over a full

period, the |1⟩-state population will be maximized at a single amplitude, 𝑉0.

𝑁 = 1: Performing three total 𝜋-pulses, rotations will constructively add up and the

|1⟩-state population will be maximized at three different amplitudes, 𝑉0/3, 𝑉0,

and 5𝑉0/3.

𝑁 ∈ Z: Performing a general odd number of 𝜋-pulses 2𝑁+1, the |1⟩-state population
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Figure 6-9
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will be maximized at 2𝑁 + 1 different amplitudes

𝑉 =
𝑛 𝑉0

2𝑁 + 1
(6.26)

where 𝑛 is the set of odd integers between 1 and 4𝑁 + 1.

Thus, as we increase the number of additional pulse pairs 𝑁 , the frequency of the of

the Rabi measurement increases and the width of the Rabi peak at the amplitude 𝑉0

decreases, allowing us to more precisely read off the amplitude 𝑉0 corresponding to

a single 𝜋-pulse. In practice, this leads to an iterative measurement of the form in

Fig.where we iteratively increase the number of 𝜋-pulses and decrease the range of

the measurement around 𝑉0, updating the value of 𝑉0 each time we add more pulses

and increase our amplitude resolution.

6.3 Two-Qubit CZ Gates

So far, we have discussed how to calibrate all of the single-qubit gates in the universal

gate set we considered in Eq. (6.1). This leaves us with only a single remaining gate

to complete our universal gate set: the two-qubit CZ gate. As it turns out, this is

the hardest gate to calibrate in the entire gate set and, at present, two-qubit gate

performance remains one of the main roadblocks on the path towards large-scale

quantum computation.

Fortunately, however, this is also the gate which gives us the greatest flexibility in

Figure 6-9: Iterative 𝜋-train measurements, corresponding to 𝑁 = 3 (top, 7 pulses
total), 𝑁 = 15 (middle, 31 pulses), and 𝑁 = 62 (bottom, 125 pulses). Starting
with the rough 𝜋-pulse amplitude 𝑉0 obtained from the standard Rabi measurement
(𝑁 = 0) in Fig. 6-3, we increase the number of additional pairs of pulses 𝑁 and
decrease the range of amplitudes scanned around 𝑉0, updating the amplitude more
precisely as the resolution of the measurement increases. Note the 𝑥-axis of each plot:
for 𝑁 = 62 in the bottom plot, the period of the Rabi measurement has decreased by
two orders of magnitude in comparison to the standard Rabi oscillation in Fig. 6-3,
allowing us to dial in the amplitude of a single X-gate to much greater accuracy.
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its implementation—as we discussed in Chapter 5, we only need one two-qubit gate

to complete our gate set, and we are free to pick any operation which is capable of

entangling a pair of qubits. As such, there are multiple viable techniques for imple-

menting two-qubit gates in superconducting qubits—such as flux-activated 𝑖SWAP

gate and the microwave-activated cross-resonance (CR) gate—each with their own

characteristic benefits and drawbacks.

In this section, we will briefly focus on a single two-qubit gate implementation:

the flux-activated CZ gate between tunable transmon qubits. In our discussion of

DRAG in Section 6.1.3, we considered how the higher levels of our superconducting

qubits can lead to errors in our single-qubit gates. Here, however, we will show how

these higher levels can be harnessed to implement a two-qubit entangling operation

in the coupled qubit subspace.

To see how the CZ gate works, let’s start by considering two transmon qubits A

and B capacitively coupled to each other with coupling strength 𝑔. Truncating the

coupled two-qubit system to the lowest three levels, the Hamiltonian is approximately

given by

�̂� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐸00 0 0 0 0 0

0 𝐸01 𝑔 0 0 0

0 𝑔 𝐸10 0 0 0

0 0 0 𝐸11

√
2𝑔

√
2𝑔

0 0 0
√
2𝑔 𝐸02 0

0 0 0
√
2𝑔 0 𝐸20

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.27)

where the six indices correspond to the |00⟩ , |01⟩ , |10⟩ , |11⟩ , |02⟩ , |20⟩ states, respec-

tively, and the diagonal elements are sums of the single-qubit energies

𝐸𝑛𝑚 = 𝐸𝐴
𝑛 (Φ𝐴) + 𝐸𝐵

𝑚(Φ𝐵) (6.28)

where 𝐸𝐴
𝑛 (Φ𝐴) is the flux-dependent energy of the 𝑛th level of qubit A. Diagonalizing

this Hamiltonian and plotting the lowest six energy eigenstates of the coupled two-

qubit versus the magnetic flux through qubit A, we find an energy spectrum of the

form plotted in Fig. 6-10.

Looking at this energy spectrum, notice that the off-diagonal coupling terms in
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Figure 6-10: The energy spectrum of two capacitively coupled flux-tunable transmon
qubits, plotted as a function of the magnetic flux through the higher-energy qubit
(here labeled ‘qubit 1’). (a) Broad plot of the five lowest transition frequencies.
The avoided crossing between the states |20⟩ and |11⟩ (emphasized in the black box)
is utilized to accrue the necessary state-dependent frequency shift to perform a CZ
gate. (b) Zoomed plot of the |02⟩ , |11⟩, and |20⟩ states in (a), focusing on the
avoided crossing between |20⟩ and |11⟩. The path ℓ(𝜏) illustrates the flux trajectory
of duration 𝜏 which biases the system from the sweet spot, into the avoided crossing,
and back again, implementing the CZ gate. Figure reproduced from Ref. [257].

the two qubit-Hamiltonian give rise to avoided level-crossings between the single-

qubit energy eigenstates when they are brought into resonance, just as we saw in

Chapter 4 when we characterized 𝑍𝑍-coupling between coupled flux qubits. These
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avoided crossings are the key to implementing a two-qubit CZ gate. To see how,

imagine we evolved this system in time as follows:

1. Starting from the initial operating point of the two qubits (i.e., the magnetic

flux biases at which we calibrated the single-qubit gates above), we slowly apply

a flux bias through one of the qubits such that the |11⟩-state is brought near

resonance with the higher excited state |20⟩.

2. Once the system is brought near resonance with |20⟩, we wait some time and

allow the system to idle in the avoided crossing, causing the computational

states to each accrue some phase 𝜃.

3. Finally, we slowly turn off the magnetic flux bias through the qubit, detuning

the |11⟩-state away from |20⟩, returning the system back to its operating point

for single-qubit gates.

Together, these three steps form a trajectory ℓ which takes some total time 𝜏 to com-

plete. In Fig. 6-10, we can see what this trajectory looks like superposed on top of

the coupled two-qubit spectrum. Performing this evolution and allowing each com-

putational state to accrue some phase 𝜃, this excursion results in a unitary operation

of the form

�̂�(ℓ) =

⎡⎢⎢⎢⎣
1 0 0 0

0 𝑒𝑖𝜃01(ℓ) 0 0

0 0 𝑒𝑖𝜃10(ℓ) 0

0 0 0 𝑒𝑖𝜃11(ℓ)

⎤⎥⎥⎥⎦ (6.29)

where the phases 𝜃𝑖𝑗 are found by integrating the flux-dependent transition frequencies

𝜔𝑖𝑗 over the trajectory ℓ(𝑡) for its full duration 𝜏

𝜃𝑖𝑗(ℓ(𝜏)) =

∫︁ 𝜏

0

𝜔𝑖𝑗[ℓ(𝑡)] 𝑑𝑡. (6.30)

Now, if it weren’t for the coupling between the qubits, the phase accrued by the

|11⟩-state would be exactly equal to the sum of the phases accrued by the |01⟩ and

|10⟩ states (since 𝜔11 = 𝜔01+𝜔10 for two uncoupled qubits), and the resulting unitary

𝑈(ℓ) would be separable into the product of single-qubit unitaries. As we showed back
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in Chapter 2, such a unitary would not produce entanglement, and it would therefore

fail to generate a useful two-qubit gate. Fortunately, however, this is not the case.

Diagonalizing the Hamiltonian in Eq. (6.27), we find that the coupling between the

qubits results in a repulsion of the |11⟩-state due to the presence of the |20⟩-state,

shifting the transition frequency of |11⟩ away from the bare sum of the single-qubit

transitions

𝜁 = 𝜔11 − (𝜔01 + 𝜔10) ̸= 0. (6.31)

This nonzero 𝜁 is exactly what we need to engineer a CZ gate. Recall from

Chapter 5 that a CZ gate corresponds to the unitary matrix

CZ =

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎦ . (6.32)

From this unitary matrix, we see that the CZ gate applies a conditional phase of 𝜋

to the |11⟩-state relative to the other three computational states. Looking back at

the unitary in Eq. (6.35) which arises due to the adiabatic flux trajectory ℓ, we see

that we can produce a CZ gate in the following way. First, let’s choose a trajectory

ℓ𝜋 such that the time integral of 𝜁 along the path integrates to 𝜋

∫︁ 𝜏

0

𝜁(ℓ𝜋(𝑡)) 𝑑𝑡 = 𝜋. (6.33)

From Eqs. (6.30) and (6.31), we see that the left-hand side of this equation is equiv-

alent to the difference in phases 𝜃𝑖𝑗 between the computational states

𝜃11(ℓ𝜋)− (𝜃01(ℓ𝜋) + 𝜃10(ℓ𝜋)) = 𝜋. (6.34)

Plugging 𝜃11(ℓ) into the unitary in Eq. (6.35), we arrive at an expression for the
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unitary operation performed after the excursion ℓ𝜋

�̂�(ℓ𝜋) =

⎡⎢⎢⎢⎣
1 0 0 0

0 𝑒𝑖𝜃01(ℓ𝜋) 0 0

0 0 𝑒𝑖𝜃10(ℓ𝜋) 0

0 0 0 𝑒𝑖(𝜋+𝜃01(ℓ𝜋)+𝜃10(ℓ𝜋))

⎤⎥⎥⎥⎦ . (6.35)

Comparing the unitary above to the unitary of the CZ gate in Eq. (6.32), we see

that these two operators are equivalent up to the single-qubit phases 𝜃01(ℓ𝜋), 𝜃10(ℓ𝜋).

Thus, having found a trajectory ℓ𝜋 which achieves the condition in Eq. (6.33), we

can simply apply virtual Z gates to each qubit and rotate away the single-qubit

phases 𝜃01(ℓ𝜋), 𝜃10(ℓ𝜋) such that only the 𝜋 phase shift on the |11⟩ state remains,

implementing the CZ gate. We will return to this gate in detail in Chapter 7, where

we will discuss how to perform and characterize this gate in the context of a real

quantum algorithm.
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Chapter 7

Density Matrix Exponentiation

In Chapter 5, we considered the broad outline of quantum algorithms. In that

discussion, we drew a sharp line between quantum data (quantum states which are

fed as input into a circuit) and quantum algorithms (the series of quantum processes

and gates which form the circuit itself). While the distinction between data and

algorithm is useful for orienting oneself, it is in fact artificial. As it turns out, there is

a fundamental parity between the data which is fed into an algorithm and the set of

instructions which determines the operation of the algorithm itself. In the classical

theory of computation, this property is know as homoiconicity : a set of bits can serve

as either the string on which an algorithm acts, or as the instruction set which defines

the algorithm itself.

In theory, the principle of homoiconicity should hold for all forms of computation,

classical and quantum. In the case of quantum computation, this would mean that

the data encoded in a quantum state could interchangeably serve as the input of

This chapter is based in large part on original work reported in Ref. [247], and I gratefully
acknowledge all of my coauthors for their contributions to this work, with particular acknowledgment
to Morten Kjaergaard, Mollie Schwartz, Alex Greene, Christopher McNally, Mike O’Keeffe, Kevin
Obenland, Milad Marvian, Iman Marvian, and William Oliver.

I would also like to acknowledge that in August 2019, during the final stages of the experiment
reported in this work, I became aware that Ref. [281]—the original theory work on which much of
this experiment was based—was funded in part by the sex offender, human trafficker, and eugenicist
Jeffrey Epstein. I humbly acknowledge the survivors of Epstein’s crimes, and I acknowledge my
failure to recognize and respond to this association sooner.
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a quantum algorithm or as the instruction set which defines the algorithm itself.

In practice, however, a fundamental asymmetry emerges. In all demonstrations of

quantum computation to date, the instruction set which specifies the sequence of

gates in a quantum algorithm is defined using classical data—for example, a Python

driver which sequences a set of microwave pulses to implement a desired multi-qubit

algorithm composed of physical gates—while the algorithm itself acts on quantum

data.

In this work, we consider an algorithm which restores the parity between data and

instruction set in a quantum processor, restoring homoiconicity in physical quantum

computation. This algorithm, known as Density Matrix Exponentiation (DME) takes

two quantum states as input—a data state 𝜎 and an instruction state 𝜌. Starting

from a deterministic set of gate operations, DME then executes a unitary operation

on the state 𝜎 which is defined entirely by the density matrix of the state 𝜌. In this

sense, it is the state 𝜌—not the circuit diagram of DME itself—which serves as the

true instruction set of the algorithm, in absolute parity with the data state 𝜎 on which

it acts.

In the following work, we develop a hardware-efficient version of DME which runs

of a two-qubit transmon device. We demonstrate how—using a single set of classically-

defined gates—the operation executed on the data qubit changes as we change the

initial state of the instruction qubit. In the process, we study the trade-off between

errors which arise from imperfections in the device—such as decoherence and coher-

ent gate errors, which degrade algorithmic performance at longer circuit depths—and

errors which arise due to the Trotter-like structure of DME itself, errors which asymp-

totically decrease as the number of Trotter steps increases.

7.1 Data, Instructions, and Homoiconicity

The equivalence between the instructions used to define programs and the input data

on which the instructions operate is a basic principle of classical computer architec-

tures and programming [446]. Replacing classical data with quantum states enables
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fundamentally new computational capabilities with scaling advantages for many ap-

plications [309, 420], and numerous models have been proposed for realizing quantum

computation [122, 138, 373]. However, within each of these models, the quantum data

are transformed by a set of gates that are compiled using solely classical information.

Conventional quantum computing models thus break the instruction-data symmetry:

classical instructions and quantum data are not directly interchangeable. In this work,

we use a density matrix exponentiation protocol [281] to execute quantum instructions

on quantum data. In this approach, a fixed sequence of classically-defined gates per-

forms an operation that uniquely depends on an auxiliary quantum instruction state.

Our demonstration relies on a 99.7% fidelity controlled-phase gate, which enables an

algorithmic fidelity surpassing 90% at circuit depths exceeding 70. The utilization of

quantum instructions obviates the need for costly tomographic state reconstruction

and recompilation, thereby enabling exponential speedup for a broad range of algo-

rithms, including quantum principal component analysis [281], the measurement of

entanglement spectra [354], and universal quantum emulation [294].

In classical programmable computers, instructions are specified in the same medium

as the data they process (Fig. 7-1) such that programs can can be treated interchange-

ably with data. This property, known as homoiconicity [312], is a hardware-level

property of all classical computers based on the von Neumann architecture [453] as

well as of higher-level programming languages like Lisp, Julia, and Wolfram.

In all previous experimentally-realized quantum computational systems—see, for

example, the systems studied in Ref. [22, 39, 192]—the relation between instruc-

tions and data is fundamentally different. Quantum programs generally comprise a

classically-defined list of gates (the instructions) that are applied to a quantum pro-

cessor (the data) using intermediary control hardware (Fig. 7-2). This programming

architecture is thus non-homoiconic: the instructions are manifestly classical, whereas

the data are quantum mechanical. Furthermore, if an algorithm requires instructions

derived from the present quantum state of the processor, that information must first

be extracted from the quantum system (incurring exponential overhead [177]), classi-

cally processed and compiled, and then appended to the classical instruction list [19,
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Classical programming
to generate classical operations (functions)

Control
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Execution

(b)

...

n-bits

g = 00011011011...

fg = 

fg(s) s fg

Figure 7-1: Schematic representation of a classical instruction set for classical com-
puting. Here, instructions are defined by a classical bit string 𝑔𝑛 which uniquely
determines a Boolean-logic function 𝑓𝑔𝑛 comprising single-bit and two-bit gates. The
control layer executes the resulting circuit on data bits 𝑠𝑛 to produce the output
𝑓𝑔𝑛(𝑠𝑛). [247]

87, 208, 341, 374, 378, 451]. Such a costly reconstruction process would create signif-

icant bottlenecks in quantum algorithms at scale [69, 365].

In this work, we demonstrate the use of quantum instructions to implement a

quantum program—a unitary operation whose parameters are given by the proper-

ties of a quantum state [331, 483, 484]—on a superconducting quantum processor.

Our approach is based on density matrix exponentiation (DME), a protocol origi-

nally introduced in the context of quantum machine learning [281]. DME is executed

by a series of repeated classical control pulses (Fig. 7-3), which, in contrast to con-

ventional quantum programs (Fig. 7-2), carry no information about the instruction

set. Rather, the instructions are encoded in the instruction qubits (density matrix 𝜌),

which determine the unitary operations performed on the data qubits (density matrix
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Instruction

Classically defined

Classical programming to
generate quantum operations

Control
layer

Execution

Quantum mechanical

σ UgσUg
†Ug = e-iHgt

g = 1101100100110...

...

n-qubits

Ug 
= 

Figure 7-2: Schematic representation of a classical instruction set for conventional
quantum computing. Here, the instruction set which encodes a quantum circuit is
generated using classical resources: instructions are defined by a classical bit string 𝑔𝑛
that uniquely determines a unitary operation 𝑈𝑔𝑛 comprising single-qubit and two-
qubit gates. The control layer uses solely classical hardware to generate the gate
sequence and applies it to the quantum hardware (data qubits 𝜎𝑛) to execute the
unitary evolution 𝑈 = exp(−𝑖𝐻𝑔𝑛𝑡), where 𝐻𝑔𝑛 is the quantum circuit Hamiltonian,
to produce the output 𝑈𝑔𝑛𝜎𝑛𝑈 †

𝑔𝑛 . [247]

𝜎). Thus, both instructions and data are stored in quantum states [331], and together

they constitute a quantum computing analogue of homoiconicity. We apply DME to

a system comprising two superconducting qubits: a data qubit prepared in state 𝜎,

and an instruction qubit prepared in state 𝜌. In this case, DME implements a unitary

rotation on the data qubit about an axis parallel to instruction state. At this scale,

the quantum instruction state and its resulting unitary operation are easily predicted

and straightforward to reconstruct. However, extending the number of instruction

qubits to the so-called ‘supremacy regime’ [22], in which a classically-specified se-

quence of gates can produce a quantum state that is too complex to predict and too
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δ

δ

σ

DME(ρ)  =  

Figure 7-3: Schematic representation of a quantum instruction set for quantum com-
puting using the density matrix exponentiation (DME) algorithm. Here, the instruc-
tion set which encodes the desired quantum circuit is stored in a set of instruction
qubits 𝜌𝑛. The control layer uses classical hardware to generate 𝑁 partial SWAP oper-
ations over a small, classically chosen rotation angle 𝛿 = 𝜃/𝑁 , where 𝜃 is an algorithm-
dependent angle. These classically defined operations (grey region) contain no infor-
mation about the operation implemented on the data qubits (𝜎𝑛). Using a Trotteri-
zation approach, the partial SWAP operations are repeatedly applied to the quantum
hardware (blue region)—data qubits 𝜎𝑛 and identically prepared copies of the instruc-
tion qubits 𝜌𝑛 – to execute the unitary operation 𝑈 = exp(−𝑖𝜌𝑛𝜃) ≡ exp(−𝑖𝐻𝑔𝑛𝑡), for
appropriately chosen 𝑔𝑛. The output 𝑈𝜌𝑛𝜎𝑛𝑈 †

𝜌𝑛 is equivalent to 𝑈𝑔𝑛𝜎𝑛𝑈 †
𝑔𝑛 to within

an error 𝒪 (𝜃2/𝑁) for appropriately chosen 𝜌𝑛. [247]

large to tomographically reconstruct, leads to a remarkable programming and opera-

tional framework: while it would be completely impractical to ascertain the quantum

instructions stored in an unknown state 𝜌, one can nonetheless use these instructions

to execute a quantum program (as defined above). Programs based on quantum in-

structions implemented with DME enable a class of efficient algorithms addressing

both quantum computation (using 𝜌 to manipulate 𝜎) and quantum metrology (us-

ing 𝜎 to study 𝜌). The afforded quantum advantage generally stems from the fact
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that DME directly implements unitary operations 𝑒−𝑖𝜌𝜃 at the quantum hardware

layer, obviating the need for tomographic reconstruction of the instruction state 𝜌 on

which these applications are based [177, 242, 281]. One example is private quantum

software execution, whereby the action of an unknown (private) unitary 𝑈 on an arbi-

trary quantum state may be efficiently emulated using a relatively small set of known

input-output relations {𝜌in}
𝑈↦→ {𝜌out} [294], far fewer than would be required to

compromise the security of 𝑈 via its tomographic reconstruction. Quantum instruc-

tions also enable quantum advantage for quantum semi-definite programming [71] and

sample-optimal Hamiltonian simulation [242]. In addition, quantum phase estimation

executed using DME can extract with error 𝜖 the dominant eigenvalues and eigenvec-

tors of 𝜌—principal component analysis—using only 𝒪(𝜃2/𝜖) copies of 𝜌 [242, 281].

Even when 𝜌 is a large entangled state, DME can efficiently reveal its entanglement

spectrum, a form of reduced-complexity benchmarking [354].

7.2 The DME Protocol

Conceptually, DME implements the unitary operation

𝑈 = 𝑒−𝑖𝜌𝜃 (7.1)

on the data qubit(s) according to the instruction state 𝜌 and an algorithm-dependent

angle 𝜃. If the data and instruction states are single-qubit pure states 𝜎 and 𝜌, DME

rotates 𝜎 by an angle 𝜃 about an axis defined by the Bloch vector of 𝜌. More generally,

𝜎 and 𝜌 are multi-qubit states, and they need not be pure states. The protocol that

implements DME partitions 𝑈 into a sequence of 𝑁 steps (Fig. 7-4), each comprising

a “partial SWAP” operation [396]

𝛿SWAP ≡ 𝑒−𝑖SWAP𝛿 (7.2)
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Figure 7-4: Circuit diagram of the Density Matrix Exponentiation (DME) algorithm
using active reset and re-initialization to re-prepare the instruction state 𝜌 after each
𝛿SWAP operation. [247]

that is applied to 𝜎 and 𝜌 [281]. The protocol relies on the relation:

Tr𝜌
[︀
𝑒−𝑖SWAP𝛿𝜎 ⊗ 𝜌𝑒𝑖SWAP𝛿]︀ = 𝜎 − 𝑖𝛿[𝜌, 𝜎] +𝒪(𝛿2)

= 𝑒−𝑖𝜌𝛿𝜎𝑒𝑖𝜌𝛿 +𝒪(𝛿2). (7.3)

That is, 𝜎 undergoes unitary evolution of the form 𝑒−𝑖𝜌𝛿 (to first order in 𝛿; see Sec-

tion 7.12), rotating by a small angle 𝛿 = 𝜃/𝑁 . By the reciprocity of SWAP operations,

𝜌 undergoes a complementary unitary evolution about 𝜎, leaving it in a state that

differs from the original quantum instruction. As a result, the instruction qubits must

be refreshed at each step to provide a new, identical copy of the instruction state 𝜌.

Repeating these steps 𝑁 times (Fig. 7-4) approximately yields the desired operator

DME(𝜌,𝑁, 𝜃) → 𝑒−𝑖𝜌𝜃 +𝒪
(︁
𝜃2

𝑁

)︁
(7.4)

a result that is closely related to the Trotterization of non-commuting Hamiltonians

to perform quantum simulations [280]. Similar to dividing a quantum simulation into

smaller steps to reduce errors stemming from the Trotter approximation, partitioning

DME into more steps (increasing 𝑁), with a smaller partial SWAP angle 𝛿 per step,

reduces the DME discretization error. The trade-off for increased precision is a need

for more copies of the quantum instructions.

There are three general approaches to supplying the 𝑁 copies of the instruction

state 𝜌 needed to execute DME:

1. Teleport copies of the quantum instructions from a third party to the qubits

comprising 𝜌
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Figure 7-5: An alternative implementation of Density Matrix Exponentiation, which
we term DME2. In DME2, quantum measurement emulation (QME) is used to approx-
imately reinitialize the instruction qubit to 𝜌in without active reset and repreparation.
The substep parameter 𝑛 is stepped from 0 to 𝑁 . In the experiment, we perform 𝑛
rounds of 𝛿SWAP+QME, measure the two-qubit density matrix, and trace over each
subsystem to extract the individual data and instruction qubit density matrices (𝜎(𝑛)
and 𝜌(𝑛) respectively). [247]

2. Identically prepare the instructions on 𝑁 copies of 𝜌 (hardware parallelization,

Fig. 7-3)

3. Identically prepare the same set of qubits comprising 𝜌 after each 𝛿SWAP (se-

quential preparation in time, Fig. 7-4)

In this work, we choose option 3: we refresh the same instruction qubit to avoid the

need for teleportation or large numbers of instruction qubits, and to allow us to easily

vary 𝑁 .

7.3 Generating 𝑁 Copies of 𝜌 Using Emulated

Measurement

The most obvious approach for using one qubit to generate 𝑁 copies of 𝜌 (Fig. 7-4)

is to use measurement-conditioned active feedback to reset the instruction qubit to

its ground state and then re-prepare the instruction state 𝜌 [289]. However, due to

measurement infidelity and the decoherence that occurs during the relatively long

duration of the requisite measurement, feedback, and preparation steps, the conven-

tional active-reset approach would introduce an unacceptable level of errors on current

quantum processors. Here, to minimize such errors and achieve the largest possible

circuit depths with our qubits, we instead introduce an alternative approach (Fig. 7-5)
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called quantum measurement emulation (QME) that approximately reinitializes the

instruction qubit in the time required for a single qubit gate.

QME is a probabilistic operation that mimics an ensemble averaged qubit mea-

surement. For intuition, note that for a sufficiently small angle 𝛿, the states of the

two qubits are only slightly altered after a 𝛿SWAP operation. In this case, a pro-

jective measurement of the instruction qubit in the eigenbasis of 𝜌 would reset the

instruction qubit to its original state with high probability. Similarly, an uncondi-

tioned ensemble averaged measurement of many such identically prepared states (i.e.

a measure-and-forget approach) would reproduce the original 𝜌 with only a slight

depolarization. QME mimics this well-known result without actually performing a

measurement by imposing a dephasing channel corresponding to the axis of 𝜌. The

QME operation (Fig. 7-5) randomly applies either an identity gate (1) or a 𝜋-rotation

in the instruction qubit eigenbasis, according to a Bernoulli process with probability

𝑝 = 0.5:

QME𝜈 =

⎧⎪⎨⎪⎩1 with 𝑝 = 0.5

R𝜈(𝜋) with 1− 𝑝 = 0.5

(7.5)

where 𝜈 is a normalized vector parallel to the original instruction state. For instruction

states aligned with the axes of the Bloch sphere, QME represents a probabilistic

application of a Pauli gate. We incorporate QME into our circuit by interleaving

𝛿SWAP and QME operations (Fig. 7-5). The QME operations are randomized within

each instantiation of the circuit, and in the same spirit as randomized compiling [458],

the outcomes of multiple such randomized instantiations are averaged to mimic a

single circuit with an active reset of 𝜌.

The QME-enabled reset of 𝜌 is approximate due to depolarization, which intro-

duces an additional error term to the DME protocol. For our two-qubit demonstration

with QME, denoted DME2, the unitary operation is

DME2(𝜌,𝑁, 𝜃) → 𝑒−𝑖𝜌𝜃 + 𝒪( 𝜃
2

𝑁
)⏟  ⏞  

discretization

+𝒪( 𝜃
2

𝑁
)⏟  ⏞  

QME

.
(7.6)

Despite the added error term, QME effectively supplies the requisite copies of 𝜌 with
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Figure 7-6: Demonstration of quantum instructions using DME. Substeps of
DME2(|+⟩⟨+| , 4, 𝜋/2), corresponding to R𝑋(𝜋/2) on the target qubit at the final step
(𝑛 = 𝑁). Black lines are guides to the eye. [247]

less error than would be incurred with an active feedback approach in our system.

Furthermore, its use here is not fundamental to our demonstration. An implemen-

tation of arbitrary, unknown quantum instructions could be performed using states

from large quantum processors or by state-teleportation, and the underlying physics

would be the same as those in this proof-of-principle experiment.

7.4 Implementing the DME2 Algorithm

We implement DME2 using two frequency-tunable superconducting asymmetric trans-

mon qubits [211, 255] in an ‘xmon’ layout [33], operating with single-qubit gate fideli-

ties exceeding 99.9% and a two-qubit controlled phase gate with 99.7% fidelity (see

Section 7.5). In Figures 7-6 and 7-7, we interrupt the algorithm after 𝑛 ≤ 𝑁 steps

and perform state tomography (see Section 7.9) to visualize the evolution of the data-

qubit and instruction-qubit. We use an initial state 𝜎in = |+𝑖⟩⟨+𝑖| for the data qubit,

and we introduce the notation DME2(𝜌in, 𝑁, 𝜃) to indicate the initial instruction state

337



CHAPTER 7. DENSITY MATRIX EXPONENTIATION

x y z x y z

(n )

(n )
Bl

oc
h 

pr
oj

ec
tio

n

1 2 3 40 2 4 6 80

2 4 6 801 2 3 40

(n )

State
tomo...

... ...

Data qubit:

Data qubit:

Instruction qubit:

Da
ta

 q
ub

it,
 

(n
)

In
ts

tru
ct

io
n 

qu
bi

t, 
(n

)

Da
ta

 q
ub

it,
 

(n
)

In
ts

tru
ct

io
n 

qu
bi

t, 
(n

)

in

in

(d)

(b)

(a)

(c)

δ

QME

Number of substeps (n) Number of substeps (n) 

( /2)DME2(       , 4, /2)+ + ( )DME2(        , 8, )0 0

-1

1

0

-1

1

0

-1

1

0

-1

1

0

(n )

(n )

(n )

DME2(   , N, ):in

DME(   , N, ):

 n

Bl
oc

h 
pr

oj
ec

tio
n

Bl
oc

h 
pr

oj
ec

tio
n

Bl
oc

h 
pr

oj
ec

tio
n

δ

QME

δ

QME

Instruction qubit:

δ δ δ
reset

& reinit
reset

& reinit
reset

& reinit

Figure 7-7: Demonstration of quantum instructions using DME. Substeps of
DME2(|0⟩⟨0| , 8, 𝜋), corresponding to R𝑍(𝜋) on the target qubit at 𝑛 = 𝑁 . [247]

𝜌in, total number of steps 𝑁 , and the phase rotation 𝜃.

Figure 7-6 shows an implementation of DME2(|+⟩⟨+| , 4, 𝜋/2). Since 𝜌 is 𝑥-polarized,

this instruction encodes the operation R𝑋(𝜋/2), a 𝜋/2 rotation about the 𝑥 axis.

Figure 7-7 shows an implementation of DME2(|0⟩⟨0| , 8, 𝜋), encoding the instruction

R𝑍(𝜋), a 𝜋 rotation about the 𝑧 axis. In both cases, 𝜎 undergoes a rotation about an

axis defined by 𝜌in, which is visible in the step-by-step tomographic reconstruction of

the data qubit state 𝜎(𝑛). QME maintains the polarization direction of the instruc-

tion qubit state 𝜌(𝑛), albeit with gradual depolarization consistent with the effects of

the simulated measurement. The classically defined 𝛿SWAP operations are identical

in these two cases; it’s the change in the instruction state 𝜌in that causes a differ-

ent operation on the data qubit. Thus, the implemented quantum program (here,

a single-qubit operation) is uniquely determined by the state of another quantum

system, a demonstration of quantum instructions.

We next assess DME2 in the context of an imperfect quantum processor with

noise-induced errors in addition to discretization (finite 𝑁) errors (Fig. 7-8). Here,

we fix target state 𝜎in = |0⟩⟨0| and instruction state 𝜌in = |+𝑖⟩⟨+𝑖|, and vary total

338



7.4. IMPLEMENTING THE DME2 ALGORITHM

steps 𝑁 . This allows us to probe the interplay between discretization error (which

decreases with 𝑁) and noise-induced errors (which increases with 𝑁). We use two

angles, 𝜃 = 𝜋 and 𝜃 = 𝜋/2, to elucidate the effects of changing the overall angle.

For each experiment, we perform the full algorithm DME2(𝜌in, 𝑁, 𝜃) with many QME

randomizations, tomographically reconstruct the final density matrix 𝜎(𝑁), and cal-

culate its fidelity to an ideal rotation with no discretization or processor error, as

given by

𝜎ideal = 𝑒−𝑖𝜌in𝜃𝜎in𝑒
𝑖𝜌in𝜃 (7.7)

The state 𝜎ideal can equivalently be thought of as a perfect unitary rotation, or as

DME when implemented on an error-free processor with an infinite number of copies

of the quantum instructions.

There are two sources of error we must consider in understanding the output of

the DME2 protocol: the approximate nature of the algorithm and imperfections in the

quantum processor. To understand the discretization error, we calculate 𝜎DME2 , the

outcome of a simulation of the DME2 circuit (including discretization error) with per-

fect gates. We sample every possible combination of QME gates for a DME2 circuit of

length 𝑁 and simulate the application of each circuit to the experimentally-measured

𝜌in ⊗ 𝜎in (thus accounting for state-preparation errors). The fidelity 𝐹𝑠(𝜎DME2 , 𝜎ideal)

quantifies the error due solely to the approximate nature of DME2 (Fig. 7-8b, dashed

lines). Fig. 7-8c shows the fidelity of the measured state 𝜎(𝑁) to the ideal algorithm

performance, 𝐹𝑠(𝜎, 𝜎DME2). To circuit depth 73, this fidelity exceeds 0.90.

We next account for the effects of imperfections in the physical processor by build-

ing a model of DME2 performance in the presence of processor noise. To the DME2

circuit with perfect gates we add amplitude-damping and dephasing channels with

coherence parameters consistent with independent measurements (see Section 7.11).

The fidelity between the model including decoherence effects and 𝜎ideal is plotted in

Fig. 7-8b (solid lines), and shows good agreement with experimental data, indicating

we are mostly limited by decoherence effects and not by coherent errors in the gates.

Both the simulated and experimental curves reveal an interplay between finite 𝑁
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error and processor error. At small 𝑁 , the error is dominated by the approximate

nature of DME2 as given in Eq. (7.6). The error is greater for larger 𝜃, consistent

with error scaling as 𝒪(𝜃2/𝑁). For large 𝑁 , the discretization error improves and the

processor’s performance is instead limited by finite gate fidelity; here, the curves for

𝜃 = 𝜋 and 𝜃 = 𝜋/2 begin to converge. The algorithm is at its most accurate for inter-

mediate 𝑁 , where discretization error is relatively low and the circuit is sufficiently

free of compounding physical errors. This trade-off (improved performance with in-

creasing circuit depth, until gate fidelities become limiting) is a generic property of

Trotterized quantum algorithms on noisy processors in the absence of error-correction

protocols [376].

To assess the error-budget of the quantum instruction execution independent of

its operation on the target quantum state, we perform quantum process tomography.

We experimentally reconstruct the process map of the channel implemented by DME2

(denoted 𝜒(𝜌in, 𝑁, 𝜃)) for a set of instruction states given by the cardinal points on

the Bloch sphere. For each 𝜌in, we sweep 𝑁 to find the optimal point 𝑁opt, defined

as that which has the highest process fidelity (see Section 7.9) to the pure rotation

𝑈ideal = 𝑒−𝑖𝜌in𝜃. The mean 𝑁opt for 𝜃 = 𝜋/2 is 4, at circuit depth 25; for 𝜃 = 𝜋 this

increases to 8, at circuit depth 49.

Figure 7-8: Algorithm performance as a function of 𝑁 . (a) Circuit schematic for
DME2(|+𝑖⟩⟨+𝑖| , 𝑁, 𝜃). Data qubit is initialized in 𝜎in = |0⟩⟨0|. (b) State fidelity (𝐹𝑠)
of the data qubit state 𝜎 to the ideal state 𝜎ideal = 𝑒−𝑖𝜌in𝜃𝜎in𝑒

𝑖𝜌in𝜃 as a function of total
DME steps (𝑁). The instruction qubit is initialized to the |+𝑖⟩⟨+𝑖|–state, resulting in
an ideal operation 𝑒−𝑖𝜌in𝜃 = 𝑅𝑦(𝜃). The 𝑥-axis shows the number of 𝛿SWAP + QME
steps 𝑁 (bottom, black), circuit depth (bottom, gray), and active circuit clock time
(top). Data for 𝜃 = 𝜋 (𝜋/2) are shown with red/◇ (blue/∘) markers. Dashed lines is
the state fidelity between 𝜎ideal and a simulated output of the DME2(|+𝑖⟩⟨+𝑖| , 𝑁, 𝜃)
circuit, assuming perfect gates. The increasing fidelity with increasing 𝑁 is a reflec-
tion of a reduction of the discretization error scaling as 𝒪(𝜃2/𝑁). Solid lines are the
same simulation as shown in dashed lines, but with amplitude damping and depolar-
izing channels included in the circuit to model the effect of decoherence. (c) State
fidelity of 𝜎 to a simulated output of the DME2(|+𝑖⟩⟨+𝑖| , 𝑁, 𝜃) circuit with perfect
gates (denoted 𝜎DME2(𝑁)). Error bars are determined from bootstrap analysis (see
Section 7.10). [247]
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In Fig. 7-9 we plot the process fidelity at 𝑁opt to several theoretical processes to

elucidate the error budget in DME2. The fidelity to 𝜒ideal, corresponding to the perfect

rotation 𝑈ideal, is plotted in grey. 𝐹𝑝(𝜒, 𝜒ideal) is greater for 𝜃 = 𝜋/2 than for 𝜃 = 𝜋, as

expected from the 𝒪(𝜃2/𝑁) scaling of the discretization error, and is consistent for all

cardinal settings of the instruction state. This process fidelity reflects the combination

of errors arising from the Trotterized nature of density matrix exponentiation and the

errors from imperfect gates and the approximate nature of QME.

We next compare our QME-enabled algorithm to the original DME proposal re-

quiring 𝑁 copies of 𝜌in. We label this theoretical process 𝜒DME and calculate the

fidelity 𝐹𝑝(𝜒, 𝜒DME), shown in dark blue/red. This fidelity combines the physical

errors arising from our imperfect gates and the error from using QME to emulate

the re-preparation of 𝜌in. The difference between 𝐹𝑝(𝜒, 𝜒DME) and 𝐹𝑝(𝜒, 𝜒ideal) is a

reflection of finite 𝑁 error in the underlying DME algorithm.

Finally, we plot the fidelity between our measured process and 𝜒DME2 , a simulated

Figure 7-9: Benchmarking algorithmic fidelity of DME2. (a) Circuit schematic.
Single-qubit process tomography is performed for a set of six instruction states 𝜌in

representing cardinal points of the Bloch sphere. (b,d) Process fidelities between
measured process maps and simulated processses, for varying instruction state and
overall angle in DME2. Grey (× marker) denotes the fidelity 𝐹𝑝(𝜒, 𝜒ideal) between the
measured process map 𝜒 and the ideal process 𝜒ideal, e.g a rotation of angle 𝜃 around
the axis given by the Bloch vector of 𝜌in. The data are presented at 𝑁 = 𝑁opt,
determined as the step-number at which the fidelity to 𝜒ideal is maximized; 𝑁opt is in-
dicated by the number above each bar. Dark blue/red (◇ marker) indicates the fidelity
𝐹𝑝(𝜒, 𝜒DME) between the measured process map and a simulated implementation of
the DME circuit assuming active reset and reinitialization of the instruction qubit
(evaluated at 𝑁 = 𝑁opt). Light blue/red (∘ marker) shows the fidelity 𝐹𝑝(𝜒, 𝜒DME2)
between the measured process map and a simulation of DME2 with perfect gates
and no decoherence using QME to approximately reinitialize the instruction qubit at
each step. Error bars are calculated using bootstrap analysis (see Section 7.10). The
process map for the point enclosed by a blue/red diamond is shown in (c,e). (c,e)
Representative process matrices for 𝜒 shown in blue and red for 𝜃 = 𝜋/2 and 𝜃 = 𝜋
respectively, evaluated at 𝑁opt. Colored process matrix elements indicate points with
magnitude 𝜒𝑖𝑗 > 0.02; other elements are grey for clarity of scale. Black wire frames
denote a process matrix from a simulated implementation of 𝜒DME2 assuming perfect
gate operation and no decoherence. [247]
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version of the DME2 algorithm, shown in light blue/red. This fidelity compares the

experimental implementation of DME2 to a classical simulation of DME2 using perfect

operations and is therefore the most direct metric for the performance of our proces-

sor. The theoretical 𝜒DME2 is calculated by sampling all QME randomizations and

averaging their effect. The average process fidelity 𝐹𝑝(𝜒, 𝜒DME2) over all instruction

settings is 0.91 for 𝜃 = 𝜋/2 and 0.87 for 𝜃 = 𝜋; this algorithmic fidelity is overall

reduced for 𝜃 = 𝜋 because 𝑁opt occurs at deeper circuit depth.

7.5 Device Parameters

The quantum processor used in this work consists of three asymmetric xmon-style

qubits in a linear chain [33, 211, 256]. We use the two leftmost qubits in this protocol;

the third is detuned and idles in its ground state. Figure 7-10a shows a schematic

of the readout- and control-setup used to control the qubits. Figure 7-10b shows a

scanning electron micrograph of a device identical to the one used in this work. In

Table 7.1 we summarize the parameters of the two qubits used for the experiments in

this work. The measured lifetime 𝑇1 and Ramsey coherence time 𝑇2R exhibit temporal

fluctuations, consistent with other reports [81, 250].

For a qubit undergoing frequency modulation (e.g., to implement the CZ gate),

frequency-dependent 𝑇1 (and 𝑇2R) variations mean that the static coherence times do

not necessarily set the relevant limiting time-scale for the qubits [250]. To account

for the frequency-dependent variations in coherence as the target qubit undergoes the

CZ trajectory, we employ an effective 𝑇1 (𝑇2R) parameter, denoted ̃︀𝑇1 (̃︀𝑇2R). These

effective coherence times take into account any frequency-dependent variations of

coherence as the qubit frequency undergoes the trajectory to enact a CZ gate. The

effective coherence times are used in simulations of the device performance during

Figure 7-10: (a) Schematic of readout- and control-wiring used for these experiments.
The microwave line of qubit 3 is used to drive single-qubit gates on qubit 2. (b) SEM
image of identically fabricated device to the processor used in this work. [247]
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Qubit 1 Qubit 2
Parameter (𝜎, target) (𝜌, instruction)
Idling frequency, 𝜔𝑖/2𝜋 4.748 GHz 4.225 GHz
Anharmonicity, 𝜂/2𝜋 −175 MHz −190 MHz
Coupling strength, 𝑔/2𝜋 10.6 MHz
Readout resonator frequency, 𝑓𝑖/2𝜋 7.251 GHz 7.285 GHz
Junction asymmetry 1:5 1:10
Relaxation time at idling point, 𝑇1 23 𝜇s 39 𝜇s
Coherence time at idling point, 𝑇2R 13 𝜇s 25 𝜇s
Effective relaxation time during CZ trajectory, ̃︀𝑇1 ≈ 17 𝜇s (same as idling)
Effective coherence time during CZ trajectory, ̃︀𝑇2R ≈ 5 𝜇s (same as idling)
Single-qubit gate time, 𝑡1qb 30 ns 30 ns
Two-qubit gate time, 𝑡CZ 60 ns

Table 7.1: Parameters of the two qubits used in this work. See Section 7.5 for the
definition of ̃︀𝑇1 and ̃︀𝑇2R.

two-qubit gates. Since the frequency of qubit 2 is fixed during the CZ gate, its

effective coherence times are identical to the idling coherence times.

Figure 7-11 shows an example measurement of ̃︀𝑇1. We prepare the state |10⟩

(an eigenstate of CZ), apply 𝑛 CZ gates in sequence, and measure the probability of

staying in the |10⟩ state. The exponential decay is fitted and we find a characteristic

number of gates, 𝑛̃︀𝑇1 ≈ 264. The CZ gate-time is 60 ns, and we use a 5 ns spacing

between each pulse, leading to an effective decay time ̃︀𝑇1 = 𝑛̃︀𝑇1 · 𝑡CZ ≈ 17 𝜇s.

To measure the effective coherence time ̃︀𝑇2R (Fig. 7-12), we prepare the |+0⟩

state, apply 𝑛 CZ gates, and apply a final X𝜋/2 pulse before measuring. Unlike a

standard Ramsey measurement, in which we would idle between the X𝜋/2 pulses, here

we perform back-to-back CZ gates, effectively aggregating decoherence effects over the

full frequency range of the CZ gate. To ensure an oscillatory behavior, a small single-

qubit phase error is added (𝜑q1 ̸= 0), equivalent to performing a detuned Ramsey

experiment Fitting an exponentially damped sine function gives a characteristic decay

number 𝑛̃︀𝑇2R ≈ 76 CZ gates. We again estimate the effective coherence time as̃︀𝑇2R = 𝑛𝑇2R · 𝑡CZ ≈ 5 𝜇s.
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Figure 7-11: (a) Measurement circuit to extract effective 𝑇1-like decay time, denoted̃︀𝑇1. (b) Probability of measuring qubit 1 in the excited state, as the number of CZ
gates is increased. The number 𝑛̃︀𝑇1 sets a characteristic gate number, which can be
converted into a characteristic time, ̃︀𝑇1. [247]

7.6 Gate Characterization

The native gate set of our processor comprises microwave-driven single-qubit 𝑥- and 𝑦-

rotations R𝑋(𝜑) and R𝑌 (𝜑), single-qubit virtual-𝑧 rotations R𝑍(𝜑), and the two-qubit

controlled-phase (CZ) gate [258]. In particular, we calibrate a numerically optimized

99.7% fidelity CZ gate [236, 425], using the symmetrized ‘NetZero’ optimal control

waveform that reduces leakage and noise-sensitivity [293, 343, 388].

We use a combination of metrics to quantify the quality of qubit operations during

the algorithm. These techniques include single- and two-qubit randomized bench-

marking (RB) as well as novel techniques for amplifying and correcting coherent

errors.

Figure 7-13 shows single-qubit Clifford randomized benchmarking of the single-
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Figure 7-12: (a) Measurement circuit to extract effective 𝑇2R-like decay time, denoted̃︀𝑇2R. We essentially perform a Ramsey measurement but interleave CZ gates. (b)
Probability of measuring qubit 1 in the excited state, as the number of CZ gates is
increased. The number 𝑛̃︀𝑇2R gives the effective coherence time ̃︀𝑇2R ≈ 5𝜇s. [247]

qubit operations on both qubit 1 (panel b) and 2 (panel c). Each trace averages 25

randomizations of the RB circuit [35]. The reference curves (circuit diagram in panel

a, grey dashed box) are fit to a function of the form

𝑓(𝑚) = 𝐴𝑝𝑚 +𝐵 (7.8)

For the one qubit Clifford reference curve we denote 𝑝 by 𝑝r. The average error per

Clifford gate 𝒞 can be calculated as

𝜖r =
1

2
(1− 𝑝r) (7.9)

The error associated with a specific single-qubit gate is extracted by performing

interleaved randomized benchmarking (IRB). We fit the IRB data (circuit diagram
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Figure 7-13: (a) Circuit diagrams for measuring the reference curve (gray dashed box)
and interleaved curve for a single qubit gate 𝑔 (red dashed box) relevant for Clifford
randomized benchmarking for a single qubit. (b,c) Results for reference (gray) and
interleaved (varying colors, for each gate) randomized benchmarking for qubit 1 and
2, respectively. [247]

in panel a, red dashed box) for the relevant gate (denoted 𝑔) to Eq. (7.8) (where 𝑝𝑔

denotes the 𝑝 value for gate 𝑔). The normalized error rate for the one-qubit Clifford
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FCZ = 0.9972 ± 0.0035
Fref = 0.9700 ± 0.0026
Interleaved CZ
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Figure 7-14: (a) Gate sequences for measuring the two-qubit Clifford reference (gray
dashed box) and interleaved CZ (red dashed box) RB numbers. (b) Example decay
curve of 𝑃|00⟩ as the number of two-qubit Clifford gates (𝑚) is increased. Each dat-
apoint is averaged over 𝑘 = 48 randomizations of the choice of Clifford gates. Error
bars are 1𝜎 standard deviations at each point from the 48 measurements, and fitting
is performed using forward propagation of points weighted by their error bars.

reference is given by [91]

𝜖𝑔 =
1

2
(1− 𝑝𝑔/𝑝r) (7.10)

Using this procedure we find an average Clifford gate fidelity (𝐹r = 1− 𝜖r) of 0.9987

for qubit 1 and 0.9987 for qubit 2. The average gate fidelity (i.e. 𝐹 = ⟨1− 𝜖⟩𝑔) over

all single-qubit gates is 0.9991 for qubit 1 and 0.9994 for qubit 2.

In Fig. 7-14, we assess the two-qubit gate fidelity using randomized benchmarking.

The protocol is identical to the single-qubit case, except we measure the probability

of being in the |00⟩ state after the sequence [35]. We use 48 randomizations for

both reference and interleaved measurements (circuits shown in panel a). In panel

b we show the result of the RB and IRB measurements. The error bars are 1𝜎
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standard deviations of the output distribution of the 48 random circuits. The fit

is again performed using Eq. (7.8), and error margins are extracted using forward-

propagation of weights based on the standard deviation at each 𝑚 to ensure accurate

error bounds. This is achieved using the absolute_sigma option of the Python

scipy.optimize.curve_fit function. The two-qubit Clifford reference error rate is

calculated similarly to Eq. (7.9) (with 𝑝 being the two-qubit Clifford reference value,

denoted 𝑝2r), but the error per Clifford is modified to

𝜖2r =
3

4
(1− 𝑝2r) (7.11)

Then, 𝜖CZ is found by performing IRB and fitting the interleaved data to get 𝑝CZ and

normalizing to the 2QB reference error. Doing so, we find a CZ gate fidelity

𝐹CZ = 1− 𝜖CZ = 0.9972± 0.0035 (7.12)

To achieve last-mile improvements in fidelity we use numerical optimization tech-

niques to fine-tune parameters of the NetZero waveform, with the RB decay curve as

a cost function [236, 388].

7.7 Coherent Error Reduction

As practitioners of quantum computing have explored more complex circuits at greater

depth and with more underlying structure, it has become evident that RB is a lim-

ited metric for the performance of a gate (see, for example, Ref. [371, 455, 457] and

references therein). In particular, small coherent errors can cause disproportionately

deleterious effects in algorithms with a repetitive structure (such as Trotterized algo-

rithms), and RB is ill suited to characterize such small coherent errors because it is

designed to randomize over them.

To minimize the effects of coherent errors in the CZ gate, we implement a cal-

ibration technique which relies on process tomography of long strings of CZ gates
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Figure 7-15: (a) Gate sequence used to perform process tomography of a sequence
of an even number of CZ gates, to get the chi-matrix 𝜒(𝑛), used to compare with
the identity process map to infer coherent errors. The gate-sequence will nominally
implement 𝜒11 up to overall system decoherence (visible as the overall decrease of
both the linear and oscillating measurements) if there are no phase errors in the
CZ𝜑01,𝜑10,𝜑11 gate. (b) The gate fidelity 𝐹𝑔(𝜒(𝑛), 𝜒11) as the number of CZ gates (2𝑛)
is increased. With no phase errors in the CZ gate, 𝐹𝑔 decreases monotonically. With
a phase error in the CZ gate 𝐹𝑔 will oscillate, with the period indicating the scale of
the phase error. [247]

(Fig. 7-15). The general controlled-phase gate (denoted CZ𝜑01,𝜑10,𝜑11) is given by

CZ𝜑01,𝜑10,𝜑11 =

⎡⎢⎢⎢⎣
1 0 0 0

0 𝑒−𝑖𝜑01 0 0

0 0 𝑒−𝑖𝜑10 0

0 0 0 𝑒−𝑖𝜑11

⎤⎥⎥⎥⎦ (7.13)

If 𝜑01 = 𝜑10 = 0 and 𝜑11 = 𝜋, this produces the target CZ gate. However, for small

deviations from these parameters it is still possible to achieve ≳ 0.99 randomized
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benchmarking fidelities. Since small phase deviations can compound to form larger

errors—specifically in algorithms with a repeating pattern like DME or quantum error

correction protocols—we have developed other calibration strategies to detect and

correct such errors.

Our amplification protocol consists of a circuit with two back-to-back blocks of

CZ𝜑01,𝜑10,𝜑11 followed by identity gates on both qubits designed to mimic the presence

of single-qubit gates, as shown in Fig. 7-15a. If the CZ gate contains no phase errors,

this sequence produces an identity operation, irrespective of the number (𝑛) of such

two-CZ blocks applied. We perform two-qubit process tomography to extract the

process matrix 𝜒(𝑛). We compare 𝜒(𝑛) to the process map of a two-qubit identity

operation (𝜒11) via the gate fidelity 𝐹𝑔(𝜒(𝑛), 𝜒11) which is related to the process

fidelity (defined in Section 7.9) according to

𝐹𝑔(𝜒, 𝜒
′) =

𝑑𝐹𝑝(𝜒, 𝜒
′) + 1

𝑑+ 1
(7.14)

where 𝑑 is the dimensionality of the Hilbert space (𝑑 = 4 in the case of a two-qubit

gate).

Figure 7-15b shows the gate fidelity of a circuit optimized to remove phase errors

from the CZ gate (red circles), and one in which a CZ-gate with phase errors is used

(blue squares). In the optimized case, the monotonic gate fidelity decay stems only

from decoherence effects. However, in the presence of a coherent phase error, the

gate fidelity oscillates with 𝑛. In this specific example, after roughly 25 CZ gates, the

phase-error has effectively rotated by 2𝜋, corresponding to an approximate per-step

error of 2𝜋/25 ≈ 0.08𝜋 in one of the phases.

The evolution of the process maps is useful both practically (for achieving higher

performance gates) and scientifically (for understanding the limitations of RB). By

examining the details of the process maps, we are able to infer in which of the pa-

rameters 𝜑01, 𝜑10, or 𝜑11 the error appeared in, and we correct accordingly. This

minor correction typically does not change the fidelity as measured with RB (except

in the case of particularly egregious phase errors). From Fig. 7-15b it is also clear that
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process tomography of a single CZ instance does not reveal the coherent error: the

first datapoint for the sequence with phase errors has nearly identical fidelity to the

optimized gate. Both of these facts are consistent with a growing understanding that

RB may not be the optimal approach to identifying and correcting coherent errors in

single- and multi-qubit gates. Finally, the identity gates are inserted between the CZ

gates to mimic as closely as possible the generic optimal gate sequence of a two-qubit

algorithm without exploiting any specific structure of an algorithm.

7.8 Compilation

We implement 𝛿SWAP using single-qubit gates and the entangling CZ gate. 𝛿SWAP

has an optimal decomposition [449]

𝛿SWAP =
∙ ∙ ∙

∙ ∙ ∙
:=

×

×𝛿
(7.15)

where each represents a general single-qubit gate that depends on the value

of 𝛿 and ∙
∙ is the CZ gate. The open-source software package Cirq [100] is used

to determine the appropriate single-qubit gate parameters for a given 𝛿SWAP. Our

𝛿SWAP construction allows us to rely solely on high-fidelity gates whose performance

can be validated and efficiently optimized.

A conceptually transparent approach to generating a 𝛿SWAP uses the decompo-

sition

𝛿SWAP :=
∙ H ∙ H ∙

∙
2𝛿 (7.16)

where

∙

∙𝛿
=

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒−𝑖𝛿

⎤⎥⎥⎥⎦ := CZ𝛿 (7.17)

is a partial CZ gate and ∙ is the CNOT gate with qubit 2 as the target. The CZ𝛿
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gate can in turn be compiled using an additional decomposition

∙

∙𝛿
=

Z𝛿/2 ∙ ∙

Z𝛿/2 Z−𝛿/2

. (7.18)

However, such an approach would introduce two CZ gates for each CZ𝛿 gate, adding

significant circuit depth overhead.

We use a more generalized and gate-efficient approach, relying on the fact that any

two-qubit gate can generically be decomposed into a circuit with the structure [333,

449]

𝑈2QB =
R1,1 ∙ R1,2 ∙ R1,3 ∙ R1,4

R2,1 R2,2 R2,3 R2,4

. (7.19)

Here R𝑖,𝑗 is a single-qubit gate acting on qubit 𝑖 at moment 𝑗 in the circuit.

By using the identity
∙

=
∙

H ∙ H
(7.20)

and absorbing the Hadamard gates (H) into the neighboring single-qubit gates, the

circuit in Eq. (7.19) becomes identical to the circuit in Eq. (7.15).

We use the open-source software Cirq [100] to determine the settings of the single-

qubit gates for each value of 𝛿. The single-qubit rotations around the 𝑥, 𝑦 axes are

decomposed according to R𝑍(−𝜙)R𝑋(𝜃)R𝑍(𝜙) (the PhasedXPowGate in Cirq) and

the R𝑍 rotations are performed virtually [300]. The 𝛿SWAP is implemented using the

SwapPowGate function in Cirq (the SwapPowGate has a factor of 2 difference, relative

to our definition of 𝛿SWAP). Thus, we are able to compose a unique composite gate

sequence for each 𝛿SWAP relying only on high-fidelity single- and two-qubit gates.

Figure 7-16 shows the full compilation protocol. To construct the full DME(𝜌,𝑁, 𝜃)

circuit, we append 𝑁 copies of the compiled 𝛿SWAP gate using 𝛿 = 𝜃/𝑁 , interleaving

the requisite QME𝜈 on qubit 2 (the instruction qubit, 𝜌) to emulate the effect of

measurements. Rows 1 and 2 show the generic structure and gate decomposition of

our implementation of DME2. The final layer of single-qubit gates in the 𝛿SWAP at
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step 𝑛 can be recompiled together with the QME𝜈 and the first layer of single-qubit

gates in the 𝛿SWAP at step 𝑛+1. We use Cirq to slice out these three layers (Row 2)

of single-qubit gates, recompile them into a single layer (Row 3), and reinsert them

(Row 4). Finally, in Row 5 we show an example waveform output from our signal

generation software, implementing the first 𝑛 = 3 steps in a 𝑁 = 5 DME2 program.

Our compilation relies upon a restricted set of gates that are readily characterized

and numerically optimized. The final compiled circuit has a regular structure (each

CZ is followed by exactly one layer of single-qubit gates), amenable to generic tuneup

protocols for reducing coherent error buildup. These features enable it to achieve

high algorithmic fidelity at significant circuit depth.

7.9 State and Process Tomography

Quantum state tomography is performed by taking advantage of independent single-

shot readout of all four computational states {00, 01, 10, 11}. We first calibrate the

measurement operators by building a matrix ¯̄𝛽 that maps the two-qubit Pauli matrices

�̂�11, �̂�1𝑍 , �̂�𝑍1, and �̂�𝑍𝑍 onto the measurement probabilities p𝑖𝑗

p⃗ = ¯̄𝛽�⃗� (7.21)

Figure 7-16: Details of 𝛿SWAP and DME compilation. Row 1: The density ma-
trix exponentiation algorithm implemented using partial SWAP operations and the
simulated quantum measurement (QME) gate. Row 2: Decomposing each 𝛿SWAP
according to Eq. (7.19). Each substep at this step requires 8 layers of gates (7 for
𝛿SWAP decomposition and 1 for QME). Row 3: The three layers of single-qubit gates
stemming from the the end of the 𝛿SWAP of step 𝑛, followed by QME, and the first
layer of single-qubit gates in 𝛿SWAP of step 𝑛 + 1 can be recompiled into a single
layer. Row 4: The recompiled gates are reinserted into the algorithm result in the
optimal structure of exactly one CZ gate, followed by a single layer of single-qubit
gates. Row 5: Example waveform output to the 𝐼,𝑄 (𝑥, 𝑦) ports and the flux tuning
pulse (labeled Φ) implementing the ‘NetZero’ waveform used to implement the CZ
gate [293, 388]. [247]
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where

p⃗ ≡

⎡⎢⎢⎢⎣
p00

p01

p10

p11

⎤⎥⎥⎥⎦ and �⃗� ≡

⎡⎢⎢⎢⎣
�̂�11
�̂�1𝑍
�̂�𝑍1
�̂�𝑍𝑍

⎤⎥⎥⎥⎦ (7.22)

The ¯̄𝛽 matrix is calibrated using techniques drawn from Ref. [93]; a full motivation

and derivation of the technique can be found there. For a measurement of p⃗ with

perfect fidelity and no qubit decay during measurements, all components of ¯̄𝛽 have

amplitude 0.25; deviations from this amplitude correspond to a calibration of such

measurement errors. We begin by calibrating the single-qubit ¯̄𝛽 matrices namely,

[︃
p0

p1

]︃
=

[︃
𝛽0
1 𝛽0

Z

𝛽1
1 𝛽1

Z

]︃[︃
�̂�1
�̂�𝑍

]︃
(7.23)

by fitting Rabi oscillations in p0 and p1 for each qubit. Because the two-qubit proba-

bility vector p⃗ is generated from correlations between single-qubit measurements, the

two-qubit ¯̄𝛽 matrix is given by the tensor product of the single-qubit matrices, e.g.,
¯̄𝛽 = ¯̄𝛽1 ⊗ ¯̄𝛽2.

An arbitrary 4×4 matrix, including a two-qubit density matrix 𝜌, may be mapped

onto the Pauli basis according to

𝜌 =
∑︁

𝑖,𝑗={1,𝑋,𝑌,𝑍}

𝑐𝑖𝑗�̂�𝑖𝑗 (7.24)

The general 4 × 4 matrix of this form has sixteen degrees of freedom; trace normal-

ization of a physical density matrix reduces this to fifteen. The native readout gives

us access to the components of 𝜌 contained in �̂�𝑍 . We gain information about the

other components by performing one of nine pre-measurement rotations drawn from

R = R1 ⊗ R2 (7.25)
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where

R1,2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R𝑌 (−𝜋

2
) mapping �̂�𝑋 ↦→ �̂�𝑍

R𝑋(𝜋2 ) mapping �̂�𝑌 ↦→ �̂�𝑍

1 mapping �̂�𝑍 ↦→ �̂�𝑍

(7.26)

For data in Figs. 7-6 and 7-7 (7-8 and 7-9) we perform 2000 (500) single-shot mea-

surements for each tomographic rotation in order to ensure accurate estimates of p⃗.

Each of the nine rotation-and-measurement pairings provides four linearly indepen-

dent measurements of a form similar to Eq. (7.21), for a total of thirty-six equations

that over-specify fifteen degrees of freedom. We perform maximum-likelihood estima-

tion [30] to derive the positive semi-definite Hermitian matrix that is most consistent

with our combined measurement results.

Single-qubit density matrices in Figs. 7-6–7-8 are extracted by performing partial

traces over the two-qubit density matrix calculated using the approach described

above; the data in Fig. 7-9 are drawn from single-qubit tomography performed on the

target qubit using a similar protocol.

Single-qubit quantum process tomography, as presented in Fig. 7-9, is performed

using standard techniques [333]. The target qubit is sequentially prepared in four

input states

𝜎in = {|0⟩⟨0| , |1⟩⟨1| , |+⟩⟨+| , |𝑖⟩⟨𝑖|} (7.27)

which span the single-qubit Hilbert space. These prepared states are then passed

through the process DME2(𝜌in, 𝑁, 𝜃) and single-qubit state tomography is performed

to extract the set of mappings {𝜎in
DME2(𝜌in,𝑁,𝜃)↦−−−−−−−−→ 𝜎(𝑁)}. Linear combinations of

these mappings provide the process map 𝜒 that reveals the effect of the quantum

channel on an arbitrary input density matrix. We then employ techniques developed

in Ref. [252] to efficiently project 𝜒 onto the closest completely positive and trace-

preserving (CPTP) mapping 𝜒CPTP, ensuring physicality of the process.
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7.10 Bootstrap Error Analysis

We employ bootstrapping techniques to derive the uncertainty bounds in Figs. 7-8

and 7-9. In principle, one could simply take a sample of many QME randomizations

and calculate the mean and uncertainty within that dataset. However, those error

bars are not representative of the error in the DME2 protocol—rather, they represent

the uncertainty of a protocol in which only a single QME randomization is used to

perform DME2. As a result, these error bars are unphysically large, particularly at

small 𝑁 where the protocol chooses from one of only a few paths that have very

different outcomes.

The true uncertainty of the DME2 protocol is captured by: first, accumulat-

ing enough QME samples to ensure sufficient randomizations; then, building den-

sity/process matrices from the average outcome of all these randomizations; and

finally, repeating this process many times with different randomizations to estimate

the uncertainty. This is precisely what bootstrapping accomplishes [131].

The following describes the protocol for extracting boostrapped averages and

uncertainties for Fig. 7-8. For each data point representing a unique setting of

DME2(𝜌in, 𝑁, 𝜃), we employ the following protocol:

1. For a given instantiation of the QME gates, execute DME2(𝜌in, 𝑁, 𝜃) and perform

two-qubit state tomography.

2. For 𝑟QME different instantiations of QME gates, repeat step 1 to accumulate the

experimental density matrices from which bootstrapped samples will be drawn.

3. Using sample-with-replacement, select 𝑛samp samples from the 𝑟QME datasets

and average the density matrices together. This represents a single boot-

strapped density matrix.

4. Perform a partial trace over the instruction qubit to extract the reduced density

matrix of the target system.
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5. Calculate the state fidelity to the states of interest, where fidelity is calculated

as [470]

𝐹𝑠(𝜎, 𝜎
′) = Tr

(︂√︁√
𝜎′𝜎

√
𝜎′
)︂2

(7.28)

6. Repeat steps 3–5 a total of 𝑁samp times to extract mean fidelities and 1𝜎 un-

certainties.

The bootstrapping protocol for generating process maps and process fidelities in

Fig. 7-9 is similar to that used for state tomography, but we lay it out here explicitly

for completeness.

1. For a given instantiation of the QME gates, prepare the target input states {𝜎in},

apply DME2(𝜌in, 𝑁, 𝜃), and perform single-qubit state tomography to generate

the mappings {𝜎in ↦→ 𝜎(𝑁)} required for process tomography.

2. For 𝑟QME different instantiations of QME gates, repeat step 1 to produce a set

of 4× 𝑟QME single-qubit density matrices.

3. For each of the four 𝜎in, select an independent sample-with-replacement of 𝑛samp

𝜎out instances and average together, leaving four averaged mappings {𝜎in ↦→

𝜎out}.

4. Calculate the process matrix using the averaged mappings 𝜎in ↦→ 𝜎(𝑁). This

represents a single bootstrapped process matrix.

5. Calculate the process fidelity to the process of interest, where the process fidelity

between two 𝜒-matrices is given by [332]

𝐹𝑝(𝜒, 𝜒
′) = Tr

(︂√︁√︀
𝜒′𝜒
√︀
𝜒′
)︂2

(7.29)

6. Repeat steps 3–5 a total of 𝑁samp times to extract mean fidelities and 1𝜎 un-

certainties.

In Fig. 7-8 we collect 𝑟QME = 295 circuit randomizations; in Fig. 7-9 we collect

𝑟QME = 105 circuit randomizations. In both cases we use 𝑛samp = 100 and 𝑁samp = 50.
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Figure 7-17: Schematic definition of experimental execution of a DME protocol using
QME operations (i.e. DME2). [247]

The number of QME randomizations used for process tomography was limited by

experimental time due to the significant additional experimental overhead required

for process tomography in comparison to state tomography, as well as the fact that

in Fig. 7-9 we characterize processes for six settings of 𝜌. The bootstrap sample size

𝑛samp and number of bootstrap samples 𝑁samp are chosen somewhat arbitrarily, as in

all bootstrapping implementations, but are designed to ensure that each bootstrapped

sample approaches a central limit with respect to the underlying QME randomization.

A graphical representation of the convergence under QME randomizations is shown

in Fig. 7-18; more details are provided in Section 7.12.

7.11 Circuit Simulation with Noise

In order to show the qualitative consistency between the data in Fig. 7-8 and a model

of coherence-limited implementation of the DME2 protocol, we simulate the random-

ized DME2 circuits with added decoherence. We input a DME2 circuit generated

by Cirq to a software tool that adds decoherence (amplitude damping and dephas-
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Figure 7-19: Instrumenting the DME2 circuit for simulation of decoherence-induced
errors. [247]

ing) channels corresponding to the identity for duration(s) of the preceding one- or

two-qubit gate. An example of this procedure is shown in Fig. 7-19.

The channel ℰ that composes amplitude damping and dephasing is given by

ℰq𝑘(𝑡1qb) : 𝜌q𝑘 ↦→ ∑︁
𝑖=1,2
𝑗=1,2,3

𝐴𝑖,Γ1(𝑡1qb)𝐷𝑗,Γ𝜑
(𝑡1qb)𝜌q𝑘𝐷

†
𝑗,Γ𝜑

(𝑡1qb)𝐴
†
𝑖,Γ1

(𝑡1qb) (7.30)

where 𝐴𝑖,Γ1(𝑡) is the amplitude damping process (with Γ1 = 1/𝑇1), and 𝐷𝑗,Γ𝜑
(𝑡) is

the dephasing process (Γ𝜑 = 1/𝑇2R − 1/2𝑇1), Γ1,q𝑘 and Γ𝜑,q𝑘 are the appropriate

coherence parameters for qubit 𝑘, and 𝑡 is the time of the preceding single- or two-

qubit gate on that qubit. The amplitude damping and dephasing Krauss operators
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are given by

𝐴1,Γ1(𝑡) =

[︃
1 0

0 𝑒−Γ1,q𝑘𝑡/2

]︃
(7.31)

𝐴2,Γ1(𝑡) =

[︃
0

√
1− 𝑒−Γ1,q𝑘𝑡

0 0

]︃
(7.32)

𝐷1,Γ𝜑
(𝑡) =

[︃
𝑒−Γ𝜑,q𝑘𝑡/2 0

0 𝑒−Γ𝜑,q𝑘𝑡/2

]︃
(7.33)

𝐷2,Γ𝜑
(𝑡) =

[︃√
1− 𝑒−Γ𝜑,q𝑘𝑡 0

0 0

]︃
(7.34)

𝐷3,Γ𝜑
(𝑡) =

[︃
0 0

0
√
1− 𝑒−Γ𝜑,q𝑘𝑡

]︃
(7.35)

The channel ̃︀ℰ is defined similarly to ℰ , but decoherence rates in the process definitions

are replaced with their effective coherence parameters. The channel ̃︀ℰ thus accounts

for the modified coherence properties as qubit 1 undergoes the CZ trajectory (see

Figs. 7-11 and 7-12).

Each instrumented circuit yields an QME-dependent density matrix representing

the simulated finite-coherence circuit output for that QME realization. These den-

sity matrices are averaged over all 2𝑁 QME realizations (for a DME2 circuit with 𝑁

steps), thus producing the noisy simulated two-qubit DME2 output state, denoted

‘Sim. 𝐹𝑠(𝜎, 𝜎ideal) with decoherence’ and plotted as a solid line in Fig. 7-8b.

For the simulations presented, we used parameters 𝑇1 = 20 𝜇s, 𝑇2R = 10 𝜇s for

both qubits, and effective coherence times for qubit 1 of ̃︀𝑇1 = 10 𝜇s and ̃︀𝑇2R =

5 𝜇s during the channel ̃︀ℰ . These parameters are qualitatively consistent with, but

overall reduced from, the measured parameters in Table 7.1. This difference may

indicate additional coherent errors not captured by this model (e.g., from residual

𝑍𝑍-interaction or leakage out of the computational subspace).
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7.12 Algorithmic Error in DME𝑁

In this section we show that the algorithmic error in DME𝑁(𝜌,𝑁, 𝜃) (the version of

DME in which the instruction state is refreshed with a new, perfect copy after each

Trotter step) may be modeled as an amplitude damping channel and derive its scaling

with the parameters of the algorithm. We do so first for a specific instruction state

and then generalize to an arbitrary instruction. Throughout, we use �̂�𝑖 to indicate

the corresponding Pauli matrix.

Suppose that we have instruction and target qubits initially in states 𝜌 and 𝜎,

respectively, and apply the operation 𝑒−𝑖SWAP𝛿 to the joint state 𝜌⊗ 𝜎. We will first

consider the special case in which 𝜌 = |0⟩⟨0| and then show how this generalizes to an

arbitrary state. The effect of the 𝛿SWAP on the target qubit is given by the quantum

channel

ℰ𝜌=|0⟩⟨0|
𝛿SWAP (𝜎) = Tr𝜌

(︁
𝑒−𝑖SWAP𝛿

[︁
𝜎 ⊗ |0⟩⟨0|

]︁
𝑒𝑖SWAP𝛿

)︁
(7.36)

Next, we use the fact that

𝑒𝑖SWAP𝛿 = cos(𝛿)�̂�11 + 𝑖 sin(𝛿)SWAP (7.37)

which follows from the fact that SWAP2 = �̂�11 where �̂�11 is the two-qubit identity

matrix. Using this together with the identity Tr𝜌 (SWAP(𝑋 ⊗ 𝑌 )) = 𝑌 𝑋 (where Tr𝜌

is a partial trace over the second subsystem), we find

ℰ𝜌=|0⟩⟨0|
𝛿SWAP (𝜎) = cos2(𝛿)𝜎 + 𝑖 cos(𝛿) sin(𝛿)[𝜎, |0⟩⟨0|] + sin2(𝛿) |0⟩⟨0| (7.38)

Using the matrix representation of 𝜎 in the {|0⟩ , |1⟩} basis, we find that 𝜎 transforms

as [︃
𝜎′
00 𝜎′

01

𝜎′
10 𝜎′

11

]︃
=

[︃
𝜎00 + 𝜎11 sin

2(𝛿) cos 𝛿𝑒−𝑖𝛿𝜎01
cos 𝛿𝑒+𝑖𝛿𝜎10 𝜎11 cos

2(𝛿)

]︃
(7.39)

where 𝜎𝑖𝑗 = ⟨𝑖|𝜎|𝑗⟩ as measured in the {|0⟩ , |1⟩} basis. The channel that implements

this transformation has a simple interpretation as the composition of a rotation and
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an amplitude decay.

Let

𝒰𝜌=|0⟩⟨0|
𝛿 (·) = 𝑒−𝑖𝛿|0⟩⟨0|(·)𝑒𝑖𝛿|0⟩⟨0| = 𝑒−𝑖

𝛿
2
�̂�𝑍 (·)𝑒+𝑖

𝛿
2
�̂�𝑍 (7.40)

be the superoperator corresponding to the unitary 𝑒−𝑖𝛿|0⟩⟨0|, or equivalently, the su-

peroperator corresponding to the rotation by angle 𝛿 around the 𝑧-axis. Also, let 𝒜𝑝

be the amplitude damping channel described by the Kraus decomposition

𝒜𝑝(𝜎) = 𝐴1𝜎𝐴
†
1 + 𝐴2𝜎𝐴

†
2 (7.41)

where

𝐴1 =

[︃
1 0

0
√
1− 𝑝

]︃
, 𝐴2 =

[︃
0

√
𝑝

0 0

]︃
. (7.42)

This amplitude damping channel describes the process in which the system in state

|1⟩ decays to state |0⟩ with probability 𝑝. It can be shown that the amplitude damping

channel satisfies the condition

𝒜𝑝 ∘ 𝒰𝛿 = 𝒰𝛿 ∘ 𝒜𝑝 (7.43)

for all 𝜃 ∈ [0, 2𝜋). This equality implies that the action of this channel is invariant

under rotations around 𝑧 axis.

Then, using Eq. (7.39) one can show that

ℰ𝜌=|0⟩⟨0|
𝛿SWAP (𝜎) = 𝒜sin2(𝛿) ∘ 𝒰𝛿(𝜎) = 𝒰𝛿 ∘ 𝒜sin2(𝛿)(𝜎). (7.44)

The overall effect of one Trotter step of DME𝑁 can therefore be understood as the

following: (𝑖) applying the unitary 𝑒−𝑖𝛿|0⟩⟨0| to the system 𝜎, followed by (𝑖𝑖) applying

the amplitude damping channel 𝒜sin2 𝛿 to the system 𝜎. Note that because of the

condition in Eq. (7.43), by flipping the order of steps (𝑖) and (𝑖𝑖) we get exactly the

same final state.

Now suppose we repeat the above operation 𝑁 times. That is we prepare the

instruction qubit in state 𝜌 = |0⟩⟨0|, couple it to 𝜎 via the unitary 𝑒−𝑖SWAP𝛿, then
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discard the instruction qubit and prepare it again in state |0⟩⟨0|, repeating the above

procedure with 𝑁 different copies of 𝜌. Then, using Eq. (7.43) one can show that,

given an initial state 𝜎, the final state of the target system will be

[︁
ℰ𝜌=|0⟩⟨0|
𝛿SWAP

]︁𝑁
(𝜎) =

[︀
𝒜sin2(𝛿) ∘ 𝒰𝛿

]︀𝑁
(𝜎) = 𝒜𝑁

sin2(𝛿) ∘ 𝒰𝑁𝛿(𝜎). (7.45)

Since amplitude damping channels are closed under composition, we see that

𝒜𝑁
sin2(𝛿) = 𝒜1−cos2𝑁 (𝛿). (7.46)

Therefore, the overall effect on the target system is equivalent to applying the perfect

unitary 𝑒−𝑖𝑁𝛿|0⟩⟨0| and then applying the amplitude damping channel 𝒜1−cos2𝑁 (𝛿).

Now, suppose that in the above procedure, instead of preparing the state |0⟩⟨0|

we prepare the instruction qubit in state |𝜑⟩⟨𝜑| = 𝑉 |0⟩⟨0|𝑉 †, where 𝑉 is an arbitrary

unitary. Then, using the fact that SWAP(𝑉 ⊗ 𝑉 ′) = (𝑉 ′ ⊗ 𝑉 )SWAP, one can show

that the overall effect of this transformation on the target system can be described as

a unitary rotation 𝑒−𝑖𝑁𝛿|𝜑⟩⟨𝜑| followed by an amplitude damping channel in the basis

defined by state |𝜑⟩ and its orthogonal state.

To translate explicitly to the language earlier in this chapter, let 𝛿 = 𝜃/𝑁 and

𝜌 = |𝜑⟩⟨𝜑|, and use the above procedure to implement the unitary 𝑒−𝑖𝜌𝜃 on the target

system 𝜎, using 𝑁 copies of the instruction state 𝜌. From Eq. (7.46) we find that the

overall error in this procedure is determined by the probability 𝑝𝑁 = 1 − cos2𝑁(𝛿).

Then, for 𝛿 ∈ (0, 2𝜋] and 𝑁 ≫ 1 we have

𝑝𝑁 = 1− cos2𝑁
(︂
𝜃

𝑁

)︂
≈ 1− 𝑒−

𝜃2

𝑁 ≈ 𝜃2

𝑁
, for large 𝑁. (7.47)

In the limit of large 𝑁 , this corresponds to an algorithmic error for the DME𝑁 algo-

rithm of 𝒪 (𝜃2/𝑁).
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7.13 Algorithmic Error Due to QME

Here we provide an intuitive picture for the quantum measurement emulation (QME)

operation as well as a formal proof of the modified algorithmic error bound in Eq. (7.6).

We will build the intuition for this section by returning to the concrete example

from Section 7.12, i.e., the instruction qubit prepared in 𝜌 = |0⟩⟨0|. We will also

suppose that the target qubit is prepared in an orthogonal state, say, 𝜎 = |+𝑖⟩⟨+𝑖|

(which is an eigenstate of the Pauli matrix �̂�𝑌 ). Since 𝛿SWAP is a symmetric operation

by the logic in Section 7.12 the state of 𝜌 following a small 𝛿SWAP interaction is given

by a rotation about the 𝑦-axis followed by an amplitude damping channel (which we

will neglect for the moment). In this case, the state of the instruction qubit becomes

𝜌′ =

[︃
cos2(𝛿) − cos(𝛿) sin(𝛿)

− cos(𝛿) sin(𝛿) sin2(𝛿)

]︃
. (7.48)

The trace distance between 𝜌 and 𝜌′ is of order |𝛿|. However, if we measure and

forget the state of the instruction qubit in the basis of its original polarization (i.e.,

the 𝑧-basis), the coherent off-diagonal components of the density matrix are dephased

and we are left with

𝜌′′ =

[︃
cos2(𝛿) 0

0 sin2(𝛿)

]︃
. (7.49)

The trace distance between 𝜌′′ and 𝜌 is of order 𝛿2. Because DME operates in the 𝛿 ≪ 1

regime, we have 𝛿2 ≪ 𝛿. Measuring and forgetting therefore leaves the instruction

qubit in a slightly perturbed state that is closer to that of the initial state 𝜌.

The intuition developed for 𝜌 = |0⟩⟨0| extends naturally to an arbitrary initial

state 𝜌 =
⃒⃒
𝜈‖
⟩︀⟨︀
𝜈‖
⃒⃒
, in a basis defined by 𝜈 =

{︀
|𝜈‖⟩ , |𝜈⊥⟩

}︀
. A small arbitrary rotation

will result in the state

𝜌′ = cos2(𝛽)
⃒⃒
𝜈‖
⟩︀⟨︀
𝜈‖
⃒⃒
+ sin2(𝛽) |𝜈⊥⟩⟨𝜈⊥|+ cos(𝛽) sin(𝛽)

(︀
𝑒𝑖𝜑
⃒⃒
𝜈‖
⟩︀⟨︀
𝜈⊥
⃒⃒
+ 𝑒−𝑖𝜑

⃒⃒
𝜈⊥
⟩︀⟨︀
𝜈‖
⃒⃒)︀
,

(7.50)

where 𝛽 and 𝜑 generically paramterize the rotation. A measurement in the basis 𝜈
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dephases the off-diagonal elements in this basis, leaving

𝜌′′ = cos2(𝛽)
⃒⃒
𝜈‖
⟩︀⟨︀
𝜈‖
⃒⃒
+ sin2(𝛽) |𝜈⊥⟩⟨𝜈⊥| , (7.51)

which is closer than 𝜌′ to 𝜌 by a factor of |𝛽|.

Performing a physical measurement along an arbitrary axis 𝜈 generically would

require (𝑖) rotating 𝜈 onto the 𝑧-axis, (𝑖𝑖) performing a projective readout, and 𝑖𝑖𝑖) ro-

tating back to the original axis. All of these steps require finite clock time: single-qubit

gates typically require tens of nanoseconds to complete, with measurements requiring

hundred of nanoseconds to perform. We would like to avoid this significant experi-

mental overhead while still maintaining the ability to partially restore the instruction

qubit to its initial state. Instead of physically performing the measurement, we can

apply the unitaries {�̂�1, �̂�𝜈} with equal probabilities, where �̂�𝜈 = �̂�‖ · (�̂�𝑋 , �̂�𝑌 , �̂�𝑍) and

�̂�‖ is a unit vector parallel to 𝜌. Such protocols may be equivalently thought of as

an approach to turning a coherent error into an incoherent error along a known axis.

This protocol is the quantum measurement emulation (QME) operation.

When averaged over many iterations, the randomized QME operation dephases the

system in the 𝜈 basis, just as in Eq. (7.50)–(7.51). Assuming the instruction qubit is

initially in state 𝜌′, it turns out that the resulting state is the same for measurement

and random gate application, i.e.,⃒⃒
𝜈‖
⟩︀⟨︀
𝜈‖
⃒⃒
𝜌′
⃒⃒
𝜈‖
⟩︀⟨︀
𝜈‖
⃒⃒
+ |𝜈⊥⟩⟨𝜈⊥| 𝜌′ |𝜈⊥⟩⟨𝜈⊥|
2

=
�̂�1𝜌

′�̂�1 + �̂�𝜈𝜌
′�̂�𝜈

2
=

1

2𝜋

∫︁ 2𝜋

0

𝑑𝛾 𝑒−𝑖𝛾�̂�𝜈𝜌′𝑒𝑖𝛾�̂�𝜈 .

(7.52)

These three terms represent respectively measuring and forgetting, random gate appli-

cation, and phase randomization. Their equivalence can be understood more formally

from the standpoint of the stochastic master equation, to which Ref. [218] provides

an accessible introduction. This approach is also related to the Quantum Zeno Effect,

in which persistent measurement along an axis of interest “pins” the qubit state to

that axis by continuously dephasing any rotations away from it [216].

Finally, we calculate the additional error introduced to the DME algorithm by the
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use of QME. For this, we return to the specific case where 𝜌 = |0⟩⟨0| (though this

also generalizes to arbitrary 𝜌). As in Section 7.12, we apply the unitary 𝑒−𝑖SWAP𝛿 to

the joint state 𝜎 ⊗ |0⟩⟨0| and then randomly apply one of the unitaries {�̂�1, �̂�𝑍} to

the instruction qubit. Then, it can be shown that the total state of instruction and

target qubit is given by

1

2

(︁
𝑒−𝑖SWAP𝛿

[︁
𝜎 ⊗ |0⟩⟨0|

]︁
𝑒𝑖SWAP𝛿 + (�̂�1 ⊗ �̂�𝑍)𝑒

−𝑖SWAP𝛿
[︁
𝜎 ⊗ |0⟩⟨0|

]︁
𝑒𝑖SWAP𝛿(�̂�1 ⊗ �̂�𝑍)

)︁
= ℰ𝜌=|0⟩⟨0|

𝛿SWAP (𝜎)⊗ |0⟩⟨0|⏟  ⏞  
DME

− sin2(𝛿) ⟨1|𝜎|1⟩
[︁
|0⟩⟨0| ⊗ �̂�𝑍

]︁
⏟  ⏞  

QME error

, (7.53)

where ℰ𝜌=|0⟩⟨0|
𝛿SWAP (𝜎) is the quantum channel defined in Eq. (7.44). Note that the first

term, ℰ𝜌=|0⟩⟨0|
𝛿SWAP (𝜎) ⊗ |0⟩⟨0| is exactly the desired state which can be used for the next

round of DME. On the other hand, the second term sin2(𝛿) ⟨1|𝜎|1⟩
[︁
|0⟩⟨0| ⊗ �̂�𝑍

]︁
can be treated as an error. To find the contribution of this term in the total error, we

use the fact that the trace-norm is nonincreasing under any trace-preserving quantum

operation ℱ : ‖ℱ(𝑋)‖tr ≤ ‖𝑋‖tr, where ‖ · ‖tr is trace norm, i.e., sum of the absolute

value of the eigenvalues of the operator.

For the second term in Eq. (7.53) we have

⃦⃦⃦
sin2(𝛿) ⟨1|𝜎|1⟩

[︁
|0⟩⟨0| ⊗ �̂�𝑍

]︁⃦⃦⃦
tr
= 2 sin2(𝛿) ⟨1|𝜎|1⟩ ≤ 2 sin2(𝛿). (7.54)

Therefore, the additional error introduced by each application of QME is bounded by

2 sin2(𝛿).

Repeating this process 𝑁 times, and using the triangle inequality for the trace

norm, we find that the distance between the final total system state and the state

produced by DME is bounded by 2𝑁 sin2(𝛿). Choosing 𝛿 = 𝜃/𝑁 , we find that the

overall additional error introduced by the use of QME is bounded by

2𝑁 sin2(𝛿) = 2𝑁 sin2

(︂
𝜃

𝑁

)︂
≤ 2𝜃2

𝑁
. (7.55)

The right hand side of Eq. (7.55) is the QME-induced error contribution.
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7.14 Quantifying the Impact of Finite QME

Randomizations

To properly implement the probabilistic nature of the QME operation we instantiate

each DME2 circuit a number of times. Consider as an example the 𝑁 = 3 version of

the DME2 circuit from Fig. 7-8

𝜎 DME2(|+𝑖⟩⟨+𝑖|, 3, 𝜋/2) 𝜎out =

𝜎 × × × 𝜎out

|+𝑖⟩⟨+𝑖| ×
𝜋/6

QME𝑦 ×
𝜋/6

QME𝑦 ×
𝜋/6

QME𝑦
(7.56)

In this case, each QME presents a random choice between applying R𝑌 (𝜋) or 1 at each

occurence. For an 𝑁 -step DME2, there are 2𝑁 configurations of QME gates. In the

experiment it is infeasible to sample all 2𝑁 realizations, so instead we sample a smaller

number, denoted 𝑟. The circuits below show 𝑟 = 3 random example realizations of

the circuit:

× × ×

×
𝜋/6

1 ×
𝜋/6

R𝑌 (𝜋) ×
𝜋/6

1

(7.57)

× × ×

×
𝜋/6

R𝑌 (𝜋) ×
𝜋/6

R𝑌 (𝜋) ×
𝜋/6

R𝑌 (𝜋)

(7.58)

× × ×

×
𝜋/6

1 ×
𝜋/6

1 ×
𝜋/6

R𝑌 (𝜋)

(7.59)

In the experiment, a total of 𝑟QME of circuits are executed, providing a sample from

which we can extract average properties. The generic process for extracting average

properties over 𝑟 instantiations is sketched in Fig. 7-17.
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From the datasets obtained in our experiment, we can also explore algorithmic

behavior as the randomizations of QME increase toward the central limit. In Fig. 7-18

we plot three relevant figures of merit as a function of 𝑟 and 𝑁 for the 𝜃 = 𝜋 dataset

of Fig. 7-8. Figure 7-18a shows the evolution of the state fidelity of the output state

as a function of 𝑟. For all values of 𝑁 we observe that after approximately ∼50

randomizations, the effect of introducing more circuits with random choices of QME

gates does not significantly alter the result. Figure 7-18b shows the concurrence of

the two-qubit density matrix, a measurement of bipartite entanglement in the system

[474]. After just a few randomizations 𝑟 > 10, concurrence goes to zero, indicating

that (quantum) correlations have been suppressed, as expected. There may also be

classical correlations between the 𝜎 and 𝜌 subsystems. Figure 7-18c we therefore plot

the mutual information 𝐼(𝜎, 𝜌) between each subsystem, where

𝐼Ω(𝜎, 𝜌) = 𝑆(Tr𝜎(Ω)) + 𝑆(Tr𝜌(Ω))− 𝑆(Ω) (7.60)

is the mutual information and 𝑆(Ω) = −Tr (Ω lnΩ) is the von Neumann entropy

of the density matrix Ω. Here we again observe that after 𝑟 > 10 any correlations

between the subsystems are effectively removed.

7.15 Outlook

By executing a quantum program whose instructions are stored in a quantum state,

we have established the first experimental approach to instilling homoiconicity in

quantum computing. The DME2 algorithm used here to generate quantum instruc-

tions takes advantage of a 99.7% fidelity controlled-phase gate combined with a novel

simulated quantum measurement technique. We achieve output state fidelities ex-

ceeding 0.9 even at circuit depth of 73 sequential gates and process fidelities close to

0.9 independent of the instruction setting.

Our realization of quantum instructions represents a new approach to quantum

computer programming. It uses a fixed set of classical pulses that serve as a program
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“scaffolding” and an auxiliary quantum state to encode the program instructions. In-

tuitively, since the classical scaffolding is always the same, it must be the quantum

states that uniquely determine the quantum instructions. While we used pure states

to form the quantum instructions in DME2, the general DME algorithm generalizes to

mixed states and efficiently extends to multi-qubit systems, requiring only the ability

to perform controlled versions of the SWAP operation between pairs of target and

instruction qubits [155, 242, 294, 354]. Because it bypasses costly and unscalable

tomography and recompilation requirements, DME and related algorithms enable ex-

ponential speedup for a range of applications spanning quantum state metrology [281],

guaranteed private quantum software [294], efficient measurement of large-scale en-

tangled quantum systems [354], and quantum machine learning [51].
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Quantum Characterization
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Chapter 8

Characterizing Quantum Processors

In Part II of this thesis, we reviewed the mathematical formalism for describing

the evolution of single- and multi-qubit systems under the influence of a general

Hamiltonian operator and the Schrödinger equation. This picture, in which qubits

evolve along the surfaces of their respective Bloch spheres and entangle with one

another to form large and correlated nonclassical states, was then leveraged in Part III

to construct quantum algorithms composed of discrete single- and two-qubit logical

gates. However, as we also saw in Part III, the formalism of unitary operators and

coherent evolution fails to capture many errors which arise in quantum processors, and

this model quickly breaks down when we try to run algorithms on physical quantum

hardware.

This breakdown, of course, is not indicative of any fundamental flaw in quantum

mechanics. To the best of our knowledge, the Schrödinger equation provides a com-

plete description of quantum mechanics at all scales of matter. This suggests that,

if we were able to write down the wavefunction of the entire universe at a particular

moment in time and the Hamiltonian capturing all the forces at play between each

constituent quantum bit across all of space, we could perfectly describe the quantum

The seven categories of QCVV outlined in this chapter, as well as many of the references as-
sociated with each category, are based on correspondences with Dr. Robin Blume-Kohout, and I
gratefully acknowledge his generous contributions to the structure and framing of this chapter.
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mechanical state of the universe at any future moment. The problem, of course, is

that we cannot write down either of these mathematical objects: the exponential

scaling of quantum mechanics forbids this, rendering a complete classical description

of even the most modest wavefunctions absolutely intractable.

So too with our quantum bits in the laboratory. If we could provide a full quantum

mechanical description of the entirety of our laboratory apparatus—of the supercon-

ducting circuits which encode our quantum bits, of the aluminum film and silicon

substrate they are fabricated out of, of the dilution refrigerator and microwave elec-

tronics which house and probe them, of the humans who toil in the laboratory and

measure them—we would find that there are no errors, so to speak, just quantum

information coherently sloshing around throughout the entirety of the device, gener-

ating entanglement across all scales of matter. This, of course, hardly makes for a

useful computer. If we want to engineer programmable and controllable quantum sys-

tems, we need to establish some sense of order, erect firm borders around our qubits

so that the information they encode stays exactly where we want it, moves exactly

how we want it. We need, in other words, to impose our mathematical abstraction

upon physical reality and assure ourselves that the two line up. And when they fail

to do so, we need robust metrics for determining the degree of mismatch and the

severity of the ensuing errors.

In this chapter, we will discuss a number of different techniques and formalisms

for articulating what is going on at the interface between mathematical abstraction

and physical reality. Together, this body of research is typically known as Quantum

Characterization, Verification, and Validation—QCVV for short. Starting from the

premise that complete classical knowledge of a large quantum mechanical system is

impossible, these techniques can be understood as different attempts to simplify the

problem, to take an intelligent cut through Hilbert space which tells us something

interesting, albeit partial, about the full quantum mechanical system. In this pursuit,

we quickly find that there are no absolute, final answers—only variously interesting,

well-posed, and complementary questions. Looking back over four decades of research,

we find that these techniques roughly break down into seven distinct archetypes, each
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of which focuses on a different type of question we might ask our quantum processor.

8.1 Ad Hoc Methods: Rabi, Ramsey, 𝑇1, 𝑇2

This category is the oldest of the seven, and many of the techniques included here

trace their lineage to long before the advent of quantum computing. Here, we are

interested in measuring physical properties our systems which correspond to familiar

physical units, such as time or frequency. These techniques, while still widely in use as

rough heuristics to validate the prospective performance of quantum bits, largely fall

in the domain of physics experiments rather than that of computational benchmarks.

As such, they are often best deployed in systems which are still too experimental

to be considered useful quantum bits. Examples of commonly used ad hoc methods

include:

Rabi oscillation: A continuous drive is applied to the quantum system, resonant

with the transition frequency between two energy eigenstates of the system.

Sweeping either the duration or amplitude of the drive, the system coherently

rotates along the median of its Bloch sphere, coherently oscillating back and

forth between the poles |0⟩ and |1⟩. Measuring the probability of the state being

in either |0⟩ or |1⟩ at discrete values of the drive duration (or drive power), the

system will trace out a sinusoid corresponding to the projection of the oscillation

onto the 𝑧-axis of the Bloch sphere, as we showed in Eq. 3.37. The successful

demonstration of coherent Rabi oscillations is often one of the first tests to

verify if a new hardware modality can be operated as a quantum bit, and Rabi

measurements are commonly used to calibrate the pulse power and duration

required to perform a single 𝜋-pulse.

𝑇1 measurement: A single 𝜋-pulse is applied to the system—coherently rotating it

from the ground state |0⟩ to the excited state |1⟩—and a variable time delay is

swept prior to measuring the system. When we measure the system at discrete

times, the probability of measuring the system in |1⟩ will exponentially decay as
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a function of the time delay, corresponding to the qubit spontaneously losing an

excitation to its environment, decaying through the center of the Bloch sphere

from one pole to the other. The characteristic 1/𝑒 time of this decay is known

as the 𝑇1 time, which provides a rough heuristic for the timescale in which the

qubit will randomly experience a bit flip.

Ramsey oscillation: A 𝜋/2-pulse coherently rotates the system from the ground

state |0⟩ to the equator of the Bloch sphere; after a variable delay time, a second

𝜋/2-pulse is applied and the system is immediately measured. Depending on

the detuning between the drive signal and the qubit frequency, the system

will precess along the equator of the Bloch sphere during the variable time

delay, changing which state the system is rotated into after the second 𝜋/2-

pulse. Measuring the state of the system as a function of the variable time

delay, the system will trace out a sinusoid whose frequency is equal to the

detuning between the qubit frequency and drive. Ramsey measurements are

commonly used to verify successful preparation of coherent superposition states,

and Ramsey interferometry—where the drive frequency is adjusted until the

frequency of oscillation goes to zero—is a powerful tool for precisely measuring

the qubit frequency.

𝑇2, Echo, and CPMG measurements: Performing a Ramsey measurement on a

physical quantum system, the oscillation will be bounded by an exponentially

decaying envelope which corresponds to the qubit spiralling into the center of

the Bloch sphere as it gradually decoheres. The characteristic 1/𝑒 time of this

decay is known as the 𝑇2 time (or, in some works, the 𝑇 *
2 or 𝑇Ramsey

2 times), which

provides a rough heuristic for the timescale in which the qubit will randomly

lose phase information to the environment. The Ramsey sequence can also be

modified by applying one or more 𝑝𝑖-pulses in the middle of the time delay

(known as a Hahn echo sequence in the case of 𝑛 = 1 𝜋-pulses, or a CPMG

sequence in the case of 𝑛 > 1); by increasing the number of 𝑝𝑖-pulses during the

evolution, the sequence intrinsically refocuses and filters out lower-frequency
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noise, allowing detailed characterization of the qubit’s sensitivity to different

frequency components of the noise environment.

8.2 Quantum Tricks

Techniques in this category attempt to demonstrate that a processor can do some-

thing distinctly ‘quantum’: something which would distinguish it, unambiguously,

from a classical computer. This category is founded on the belief that the defin-

ing characteristic of a quantum processor is its degree of ‘quantum-ness,’ whether

or not that behavior has any bearing on the performance of an actual computa-

tion. This category includes protocols for efficiently demonstrating and quantifying

quantum entanglement [135, 172, 205, 311, 459], coherence and purity [275, 286],

or state teleportation [40]. Unlike the tomographic protocols discussed in detail be-

low, these techniques emphasize efficiently over completeness, attempting to extract

a single number (such as concurrence or purity) instead of a complete description of

the entire quantum mechanical state. While these techniques offer useful methods

for studying the behavior of controllable quantum systems at scale, like the ad hoc

methods above, they largely fall in the domain of physics experiments rather than

that of computational benchmarks.

8.3 State Tomography and Its Applications

As we saw in Chapter 2, the two most distinctive features of quantum mechanics—

coherent superposition of orthogonal classical states and entanglement between systems—

emerge as natural consequences of the variety of quantum mechanical states which

arise from evolution under the Schrödinger equation. Taking this key insight as a

starting point, techniques in this category attempt to measure and reconstruct the

quantum states which are created on a quantum processor, proving that the processor

managed to create something distinctly quantum mechanical and providing tools for

quantifying the processor’s success in producing a desired state.
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Recall that a general quantum mechanical state 𝜌 is not directly measurable: if

we perform a single measurement of the state, it will randomly collapse into either

the +1 or −1 eigenstate of our measurement basis, producing a single classical bit of

information. How then do we distinguish between all the possible states of the Bloch

sphere?

Here, the foundational technique is quantum state tomography [5, 92, 150, 178,

207, 220, 322, 394, 452, 462, 464, 487]. As we showed in Chapter 2 in our derivation

of the Bloch sphere picture, the single-qubit Pauli matrices form a orthonormal basis

for describing any general single-qubit state 𝜌. As such, we can expand the matrix

𝜌 into a sum of Pauli matrices, weighted by the expectation value of the state with

each Pauli operator

𝜌 =
Tr[𝐼𝜌]𝐼 + Tr[�̂�𝜌]�̂� + Tr[𝑌 𝜌]𝑌 + Tr[𝑍𝜌]𝑍

2
(8.1)

where the expectation value Tr[𝐼𝜌] is unity for all physical density matrices, by con-

servation of probability. As for the other three expectation values, in the Bloch sphere

picture, these can be thought of as the projections of the point 𝜌(𝑥, 𝑦, 𝑧) onto each

of the three orthogonal axes. The goal of state tomography is to piece together these

projections, reconstructing Hilbert space from an orthogonal set of slices (tomos in

ancient Greek, from which tomography takes its name).

While the state 𝜌 cannot be directly measured, its shadows along the three axes

of the Bloch sphere can. Recall that the expectation value Tr[𝐴𝜌] is interpreted as

the average value of the observable 𝐴: while a single measurement of 𝐴 will collapse

the state into a discrete outcome +1 or −1, the average of many measurements of 𝐴

will converge to the true expectation value. As such, all we need to do is perform

many measurements of the state 𝜌 along each of the three Pauli axes, take the average

outcome of each, and plug the resulting values into Eq. (8.1) to reconstruct the full

matrix representation of the state 𝜌.

In most hardware modalities, experimentalists do not have direct access to mea-

surement along arbitrary axes of the Bloch sphere, only to measurement along the
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fixed axis which defines the qubit bases (𝑍 by convention). Thus, rather than mea-

sure the expectation values Tr[�̂�𝜌] and Tr[�̂�𝜌] directly, a 𝜋/2-pulse around either 𝑌

or �̂� is applied to the qubit prior to measurement, rotating the Bloch sphere such

that the effective measurement axis is either �̂� or 𝑌 respectively.

While state tomography provides an elegant protocol for completely reconstructing

the density matrix of an unknown state 𝜌, the completeness of this reconstruction

comes at an exponential price: for a general 𝑛-qubit state, the number of axes along

which the state must be measured scales as 3𝑛 in order to capture all the products of

Pauli components required to construct a general multi-qubit density matrix (as we

saw earlier in Section 2.6). Nonetheless, state tomography has become a ubiquitous

technique for characterizing and verifying the states produced on small quantum

processors, and a number of variants have emerged which attempt to approximately

reconstruct quantum states more efficiently than brute force tomography of the full

Hilbert space [4, 67, 107, 140, 171, 266, 272, 413, 437].

8.4 Process Tomography and Its Variants

This category of techniques is intimately related to state tomography, but it sub-

stantially reframes the question. Instead of aiming to characterize the interesting

quantum mechanical states created on a quantum processor, these techniques seek to

characterize the processes which created those interesting states in the first place. In

some sense, this question goes deeper than the one posed by state tomography: while

the set of possible states give us a window into the unusual phenomena of quantum

mechanics, these states are ultimately just consequences of the action of quantum

operators—unitary operators in the case of discrete gates; Hamiltonians in the case

of general dynamics. As we saw in Part III, these operators are the building block of

quantum algorithms; if quantum states are the data at the input and output of an

algorithm, quantum processes are the algorithm itself. Thus, if we want to character-

ize the action of a quantum algorithm, regardless of the data we feed it, we need to

understand the structure of the operators modifying the state of the system during
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the computation.

Here, the foundational technique is quantum process tomography [94, 96, 144, 209,

239, 244, 282, 335, 357, 402, 433, 466]. Like state tomography, process tomography

pieces together slices through Hilbert space to reassemble an unknown matrix of

interest. However, whereas state tomography pieces together an unknown 2𝑛 × 2𝑛

density matrix, process tomography pieces together an unknown process matrix. In

the case of unitary dynamics, this matrix will be equivalent to the 2𝑛 × 2𝑛 unitary

rotation matrices we studied in Chapter 2. In most practical cases, however, the

unitary representation at least partially breaks down, and we require a more flexible—

and indeed more expensive—formalism for describing the evolution of a system in the

presence of noise. In Chapter 9, we will discuss a number of equivalent formalisms for

representing a general quantum process. Here, we will sketch the main consideration

undergirding each of these representations and the general protocol for extracting

these mathematical objects from measurement.

Imagine you have a multi-qubit state 𝜌. Taking this state as an input, you then run

a quantum algorithm on 𝜌, at the end of which you wind up with some new quantum

state Λ(𝜌). Both 𝜌 and Λ(𝜌) are density matrices with dimension 2𝑛 × 2𝑛, where the

latter density matrix is some function of the former—that is, like all algorithms, the

state of the output Λ(𝜌) depends on the state of the input 𝜌. Mathematically, we can

write the relationship between the input and output states as some sum of operators

{𝐾𝑖} acting on the initial state 𝜌

Λ(𝜌) =
∑︁
𝑖

𝐾𝑖𝜌𝐾
†
𝑖 . (8.2)

The states 𝜌 and Λ(𝜌) are easily knowable from state tomography, but how can we

reconstruct the set of operators {𝐾𝑖} responsible for the journey between the two? It

is easy to see that this set of operators is not unique. For example, if the input and

output states of our algorithms correspond to the qubit states |1⟩ and |0⟩, there are

multiple ways that the former could have turned into the latter. To name only a few:

1. Perhaps a 𝜋-pulse was applied around the �̂�-axis (�̂�𝑋(𝜋)), rotaing the qubit
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from one pole to the other along the circumference of the 𝑦𝑧-plane;

2. or, perhaps a 𝜋-pulse was applied around the 𝑌 -axis (�̂�𝑌 (𝜋)), rotaing the qubit

instead along the circumference of the 𝑥𝑧-plane;

3. or, perhaps a 𝜋-pulse was applied around some other equatorial axis;

4. still yet, perhaps the evolution wasn’t unitary at all, and the state was pulled

through the Bloch sphere due to a 𝑇1 process.

How do we distinguish between each of these processes if they all turn the state |1⟩

into |0⟩?

The answer, of course, is to run the process on more input states. After all, while

all of the processes above will turn the state |1⟩ into |0⟩, they don’t perform the same

for all input states: if we had instead inputted the state |+⟩, we would find that

all of the processes above would lead to very different final states. This is the key

insight of process tomography: process tomography is the technique by which a set of

known quantum states are inputted into an unknown black box, and the input-output

relationship is systematically interrogated until the full mathematical description of

the box is determined.

Like state tomography, this reconstruction doesn’t come cheap. The price we

must pay to reconstruct a general quantum process scales as the product of two ex-

ponentials: just like in state tomography, we must once again perform an exponential

number of basis measurements to reconstruct each output state (∼𝒪(2𝑛)), but we

must now also cycle over an exponential number of input states (also ∼ 𝒪(2𝑛)) to

ensure that we have a complete basis set of inputs and outputs (overall number of

measurements ∼𝒪(22𝑛)). Nonetheless, as we demonstrated in Part III, full process

reconstruction is perfectly feasible for small systems of one or two qubits, and it has

become a ubiquitous technique for characterizing single- and two-qubit gates.

Like state tomography, process tomography has also spawned an array of vari-

ants [17, 45, 233, 308, 387, 461]. In Chapter 10, we will return to the most notable

of these variants, known as gate set tomography [56, 57, 167, 303]. This category also
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attempts at more efficient partial gate characterization [134, 148, 283, 342, 437, 489],

Pauli channel tomography [186, 187, 395], phase estimation [243], and spectral tomog-

raphy [198]. Finally, while process tomography is traditionally associated with the

characterization of discrete quantum processes—black boxes which translate a single

input to a single output—this category also includes techniques for reconstructing

quantum dynamics, including the reconstruction of Hamiltonian [80, 102, 120, 166,

206, 406] and Lindblad operators [43, 44, 399, 407, 488], the latter of which we will

return to in great detail throughout the following chapters.

8.5 Model Verification

While the preceding categories of QCVV fall squarely in the domain of physics, the

following categories become somewhat more abstract and computation-centric. Model

verification attempts to generalize beyond the scope of both state and process char-

acterization: instead of asking how well a given quantum processor prepared some

particular quantum state or implemented some particular quantum process, we in-

stead ask, How well does this processor perform on a variety of tasks we might ask it

to do? Or, more specifically, Can we build a model which predicts the performance of

our processor, regardless of what task we choose to run on it?

This branch of QCVV has the closest ties to quantum error correction: given

the error threshold of a particular correction protocol as a model, we must then

verify that a processor satisfies this threshold, allowing the correction protocol to

succeed [34, 104, 110, 175, 176, 210, 217, 226, 288, 336, 385, 400, 412, 430, 442, 444,

456]. Here, we see that the boundaries between the different categories of QCVV

are not rigid: in addition to more model-centric characterization techniques like cycle

benchmarking [136] and Pauli noise estimation [186, 187, 395], many of techniques we

considered in the process characterization category—such as gate set tomography and

some forms of process tomography—can also be applied towards model verification.
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8.6 Holistic Benchmarking

This category is the complement to model verification. Whereas model verification

aims to capture the performance of a vast range of applications from the error rates

of individual components, benchmarking aims to run a limited set of representative

applications on a processor and use their success as a proxy for the performance of

the processor. This category of QCVV is founded on the belief that while a universal

quantum computer can run any arbitrary algorithm, in practice there are only a

limited number of interesting tasks we would actually want to run on a processor,

and the performance of these applications cannot be effectively predicted using a

reductionist model for the errors of their components. At the moment, it remains

unclear which of these two categories of techniques will provide the best metric for

measuring the performance of real algorithms on large-scale quantum processors, and

as such the two are currently used in parallel to complement each other.

Examples of holistic benchmarks include tests of actual algorithms on physical

processors [121, 126, 142, 199, 267, 278, 299, 304, 310, 377, 477, 482], quantum

volume metrics [52, 108], cross-entropy benchmarking (XEB) [22], demonstrations

of quantum error correction [34, 92, 106, 164, 253, 326, 375, 476], and volumetric

benchmarking [59, 370].

8.7 Supremacy

This final category is unique among the seven. While all the other categories offer

various methods for comparing aspects of quantum systems to a particular quan-

tum mechanical model or another quantum processor, supremacy metrics attempt to

directly compare the performance of a quantum processor to the best possible clas-

sical processor [6, 109, 193]. In this respect, while supremacy metrics often overlap

with holistic benchmarking techniques in practice, their primary motivations are com-

pletely different. As an example, we can compare cross-entropy benchmarking—the

characterization technique most famously used in claims of supremacy [22]—to an-
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other holist benchmark such as quantum volume. While the quantum volume aims to

provide a purely quantum mechanical metric for comparing one quantum computer

to another, cross-entropy benchmarking seeks to benchmark the relative performance

of a quantum computer and a classical computer on the same task.

Techniques motivated by demonstration of supremacy include random circuit sam-

pling [22, 327], quantum chemistry and QAOA algorithms [139, 403], boson sam-

pling [270, 284], instantaneous quantum polynomial (IQP) circuits [73], and analog

simulation [154, 181]. Among the different characterization paradigms, this paradigm

is the most dependent on the current state of quantum and classical algorithm re-

search: as new and more efficient quantum algorithms are discovered, and as new

classical algorithms are found which outperform their quantum counterparts, the

threshold for claims of supremacy must adjust accordingly.
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Chapter 9

Quantum Processes, Dynamics,

Markovianity

In Chapter 8, we sorted the tangled task of characterizing quantum systems into a

rough zoology of seven categories. Over the next several chapters, we will focus in

detail on one category of characterization techniques: the characterization of quantum

processes. In this chapter, we will review a few of the mathematical formalisms

for representing both discrete quantum processes (such as the Kraus and 𝜒-matrix

representations) as well as continuous quantum dynamics in the presence of loss,

as described by the Lindblad master equation. These mathematical preliminaries

will then set the stage for the characterization technique presented in Chapter 10:

Lindblad tomography.

9.1 Quantum Processes and Physicality Constraints

Imagine you have a collection of qubits which are prepared in an arbitrary quantum

state described by the density matrix 𝜌. Then, something happens to your qubits,

and at a later time you discover that they are now in a new state described by the

density matrix Λ(𝜌). Now, anything could have happened to the qubits—perhaps you

ran some intentional operations on the qubit in the interim, an algorithm for example,
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or maybe your qubit encountered some noise and lost information to its environment.

Regardless of what happened to the qubits in their journey from state 𝜌 to state Λ(𝜌),

we want to be able to describe the quantum process which transformed them from

one state to another.

In more formal mathematical language, we can say that a quantum process is a

linear map on density matrices 𝜌→ Λ(𝜌) which takes an arbitrary initial state 𝜌 ∈ ℋ

in some Hilbert space ℋ and outputs another state Λ(𝜌) ∈ ℋ [167]. Put another

way, the quantum process doesn’t just describe the particular input-output relation-

ship 𝜌 → Λ(𝜌) but instead models what would happen to any arbitrary initial state

subjected to the same series of events. In this way, the quantum process describes

not only the particular transformation 𝜌 → Λ(𝜌) we observed, but also what would

have happened if we prepared a completely different state 𝜎 and watched it transform

𝜎 → Λ(𝜎).

As we will see, we have a great deal of flexibility when it comes to describing a

given quantum process, and there are many valid representations we can use to do so.

However, while it would be tempting to just write down any matrix which performs

the transformation 𝜌 → Λ(𝜌) and call it a quantum process, if we’re not careful, we

could wind up with a process that transforms certain input states into nonsensical

output states. Indeed, the laws of quantum mechanics tell us that there are two basic

constraints which a quantum process must satisfy in order to actually exist in the

real world:

Complete Positivity (CP): For any initial state 𝜌, the final state after applying

the quantum process Λ(𝜌) must have nonnegative probabilities for measuring

any physical observable. For example, if you find that the probability of mea-

suring one of your qubits in the |0⟩-state after applying the map is −50%,

something has gone horribly wrong.

Trace Preservation (TP): The total probability of measuring the system in all

of its eigenstates must be conserved. In other words, the trace of the density

matrix 𝜌 before applying the map must be equal to the trace of Λ(𝜌) after
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applying the map. For example, if 𝜌 is a single-qubit state corresponding to

a 50/50 superposition of |0⟩ and |1⟩, you shouldn’t find that Λ(𝜌) has a 90%

probability of being measured in |0⟩ and a 45% probability of being measured

in |1⟩, since the total probability of the state in either eigenstate is now 135%.1

Taken together, a quantum process which satisfies both Complete Positivity and Trace

Preservation is known as a CPTP map.

9.2 Process Map Representations and Metrics

Given a general quantum process 𝜌→ Λ(𝜌), there are several different representations

with which to express the process. In this section, we’ll discuss three of the most

common representations: Kraus operators, the process matrix (also known as the

𝜒-matrix), and the Pauli Transfer Matrix.

9.2.1 Kraus Operators

A general CP map for the process 𝜌→ Λ(𝜌) can be written as

Λ(𝜌) =
𝑁∑︁
𝑖=1

𝐾𝑖𝜌𝐾
†
𝑖 (9.1)

where 𝑁 ≤ 𝑑2, 𝑑 = 2𝑛 is the dimension of the Hilbert space for 𝑛 qubits, and the set of

matrices {𝐾𝑖} are known as the Kraus operators. Note that while the Kraus operators

have the same dimension as unitary operators—that is, they are 𝑑×𝑑 matrices—they

need not be unitary, Hermitian, or invertible. In general, equations of the form in

Eq. (9.1) are known as the operator-sum representation of a quantum process.

Since Kraus operators act on quantum states like normal operators (as opposed to

superoperators, as we will soon see), they are often the easiest the interpret by quick

1Interestingly, this constraint can be relaxed if the process contains leakage errors outside the
computational subspace—in which case the total probability would go down, since there is some
population in states outside the scope of Λ(𝜌)—but in general the total probability shouldn’t in-
crease [167].

391



CHAPTER 9. QUANTUM PROCESSES, DYNAMICS, MARKOVIANITY

inspection and basic intuition. For example, consider a quantum process described

by the following two Kraus operators 𝐾0 and 𝐾1:

𝐾0 =

[︃
1 0

0
√
1− 𝑝

]︃
(9.2)

𝐾1 =

[︃
0

√
𝑝

0 0

]︃
. (9.3)

Looking at these operators, we can easily interpret their action on a quantum state:

𝐾1 transforms the |1⟩-state to |0⟩ with probability 𝑝, while 𝐾0 leaves the |0⟩-state

unchanged and reduces the amplitude of |1⟩. From this, we can quickly see that these

Kraus operators describe spontaneous emission, also known as an amplitude damping

channel. When you measure 𝑇1 of a qubit, this is the channel you are observing, and

the decay time 𝑇1 can be used to directly calculate the probability 𝑝 in the operators

above.

However, while Kraus operators are easy to interpret, the fact that you need

to keep track of numerous operators to describe a single physical channel can be

inconvenient and often makes them less straightforward to analyze numerically. As

previously stated, you need as many as 𝑑2 Kraus operators to describe a single channel.

While amplitude damping requires far fewer than the maximum number of operators

(only two, as we just saw), other single-qubit channels require all four Kraus operators.

For example, the depolarizing channel is a process which transforms a quantum

state into a completely mixed state with probability 𝑝. It can be described by four

Kraus operators, which correspond to random rotations around all the Bloch sphere
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axes with probability 𝑝:

𝐾0 =

√︂
1− 3

4
𝑝1 =

⎡⎣√︁1− 3
4
𝑝 0

0
√︁

1− 3
4
𝑝

⎤⎦ (9.4)

𝐾1 =
𝑝√
2

X =

[︃
0 1√

2
𝑝

1√
2
𝑝 0

]︃
(9.5)

𝐾2 =
𝑝√
2

Y =

[︃
0 −𝑖√

2
𝑝

𝑖√
2
𝑝 0

]︃
(9.6)

𝐾3 =
𝑝√
2

Z =

[︃
1√
2
𝑝 0

0 −1√
2
𝑝

]︃
(9.7)

As we will see in the following section, the 𝜒-matrix is much less verbose—all quantum

channels are described using a single 𝑑2×𝑑2 matrix, though the interpretation of this

matrix will be somewhat less straightforward.

9.2.2 The 𝜒-Matrix

Let’s consider an alternative, though no less valid, way of describing our quantum

process 𝜌 → Λ(𝜌). Instead of coming up with a new set of operators for every

quantum channel—as we did with the Kraus operators—let’s think of all quantum

channels as applying the same fixed set of operations, though with varying weights of

each operation. This is just like how we can express an arbitrary quantum state 𝜌 as

the weighted sum of a fixed set of matrices: the Pauli operators. Indeed, both unitary

and Kraus operators can also be written in the Pauli basis, so we can decompose the

Kraus operators we saw above as

𝐾𝑖 =
𝑑2∑︁
𝑗=1

𝑎𝑖𝑗𝑃𝑗 (9.8)

where 𝑃 = 1√
2
{1,X,Y,Z}⊗𝑛 is the set of 𝑛-qubit Pauli operators and the matrix of

coefficients 𝑎 sets their relative weight in each operator. Plugging in the decomposition

from Eq. (9.8) into the operator-sum equation in Eq. (9.1), we get a new expression
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for the action of our channel

Λ(𝜌) =
𝑑2∑︁

𝑗,𝑘=1

𝜒𝑗𝑘𝑃𝑗𝜌𝑃𝑘 (9.9)

where 𝜒 is a 𝑑2×𝑑2 matrix which contains all the relative weights of the Pauli operators

𝜒𝑗𝑘 =
∑︀

𝑖 𝑎𝑖𝑗𝑎
*
𝑖𝑘. For obvious reasons, 𝜒 is commonly referred to as the 𝜒-matrix, or

interchangeably as the process matrix. Since 𝑃 and 𝜌 are independent of the process

𝜌→ Λ(𝜌), it is clear from Eq. (9.9) that the matrix 𝜒 completely determines the map

Λ.

Since the 𝜒-matrix expresses the channel in the Pauli basis, processes such as the

depolarizing channel—which, as we saw just saw, already involves a sum over Pauli

rotations—are easily expressed in this new formalism

𝜒 =

⎡⎢⎢⎢⎣
1− 3𝑝/4 0 0 0

0 𝑝/4 0 0

0 0 𝑝/4 0

0 0 0 𝑝/4

⎤⎥⎥⎥⎦ (9.10)

which clearly maps to the corresponding Kraus operators in Eq. (9.4)–(9.7).

On the other hand, processes which seemed intuitive in the Kraus operator formal-

ism but which don’t decompose cleanly into the Pauli basis—such as the amplitude

damping channel—become somewhat more opaque and inscrutable when turned into

a 𝜒-matrix:

𝜒 =

⎡⎢⎢⎢⎣
(1 +

√
1− 𝑝)2 0 0 𝑝/2

0 𝑝/2 −𝑖𝑝/2 0

0 𝑖𝑝/2 𝑝/2 0

𝑝/2 0 0 (1 +
√
1− 𝑝)2

⎤⎥⎥⎥⎦ (9.11)

Nonetheless, the 𝜒-matrix provides a perfectly valid method for representing these

processes, and it will reproduce the exact same math as the Kraus representation.

Furthermore, since the 𝜒-matrix is ultimately a matrix of coefficients, it is not

an operator in the same sense as the Kraus operators or (as we will see in the next

section) the Pauli Transfer Matrix. That is, you cannot simply multiply the 𝜒-matrix

by your state 𝜌 to get a new state Λ(𝜌). Rather, as Eq. (9.9) clearly states, it is the
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Pauli matrices which are actually acting on 𝜌, and 𝜒 simply dictates the magnitude

of that operation in the grander process.

Again, neither the Kraus nor 𝜒-matrix representation is more correct than the

other. However, like a sentence spoken in two different languages, the form best

suited for comprehension of its meaning will fall to context. Anecdotally, the Kraus

operator formalism is often favored among theorists and pure quantum physicists,

who appreciate and take full advantage of its verbosity. Meanwhile, the 𝜒-matrix

representation is typically the tool of choice for quantum information experimentalists,

since the Pauli decomposition lends itself particularly naturally to characterization

protocols such as process tomography, in which Pauli rotations are applied before

and after the quantum channel of interest to thoroughly map out the input-output

relationship which 𝜒 formally describes.

9.2.3 Pauli Transfer Matrices

For a third example of how one can express a general quantum process, we consider

the Pauli Transfer Matrix (PTM) formalism. In some sense, the PTM balances the

desirable qualities of both Kraus operators and the 𝜒-matrix: like more familiar

operators such as unitary matrices or Kraus operators, the PTM is a true operator

in the sense that its action can be readily assessed by multiplying it directly with a

quantum state; like the 𝜒-matrix, it is always given by a single 𝑑2 × 𝑑2 matrix, and

matrices for different process can be readily compared using a simple formula for the

process fidelity.

The entries of the Pauli Transfer Matrix 𝑅Λ are given by

(𝑅Λ)𝑖𝑗 =
1

𝑑
Tr{𝑃𝑖Λ(𝑃𝑗)} (9.12)

where Λ(𝑃𝑗) can be roughly thought of as the action of the process on a series of

states given by the Pauli operators.2 Unlike 𝜒, the entries of 𝑅Λ are real numbers in

2This shouldn’t be taken too literally since 𝜌 = 𝑃𝑗 is not a physical density matrix, though Λ(𝑃𝑗)
is perfectly well defined if you plug 𝜌 = 𝑃𝑗 into either Eq. (9.1) or Eq. (9.9).
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the interval [−1, 1], and the matrix is not in general symmetric.

The PTM for the depolarizing channel is given by

𝑅Λ =

⎡⎢⎢⎢⎣
1 0 0 0

0 1− 𝑝 0 0

0 0 1− 𝑝 0

0 0 0 1− 𝑝

⎤⎥⎥⎥⎦ (9.13)

and the PTM for the amplitude damping channel is given by

𝑅Λ =

⎡⎢⎢⎢⎣
1 0 0 0

0
√
1− 𝑝 0 0

0 0
√
1− 𝑝 0

𝑝 0 0 1− 𝑝

⎤⎥⎥⎥⎦ . (9.14)

As alluded to above, the PTM formalism provides a natural method for applying

a process to a state of interest

|Λ(𝜌)⟩⟩ = 𝑅Λ |𝜌⟩⟩ (9.15)

where |𝜌⟩⟩ is a 𝑑2×1 vector containing all the information of the 𝑑×𝑑 density matrix

𝜌. The form of Eq. (9.15) should look familiar—it’s exactly how you would apply

a unitary operator to a state vector |𝜓⟩. However, unlike the state vector |𝜓⟩, the

operator vector |𝜌⟩⟩ is not in general a pure state, and it can be thought of as the

vectorization of any allowed density matrix 𝜌. For a given density matrix 𝜌, the

corresponding operator vector |𝜌⟩⟩ is given by

|𝜌⟩⟩ =
∑︁
𝑘

Tr [𝑃𝑘𝜌] |𝑘⟩⟩. (9.16)

Since 𝑅Λ can be seen as an operator acting on the higher-dimensional state vector

|𝜌⟩⟩, matrices such as 𝑅Λ are commonly referred to as superoperators. Conveniently,

unlike with 𝜒-matrices, the action of multiple processes applied sequentially can be
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represented by simply multiplying their PTM’s together

𝑅Λ1∘Λ2 = 𝑅Λ1𝑅Λ2 (9.17)

exactly as one would do with unitary operators.

9.2.4 Process Fidelity

Once you’ve described your quantum channel using one of the representations above,

what do you do with it? For example, if all you want is to simulate the action of the

channel on a particular input state, all you need to do is write down the map in one

of the formalisms described above and use the corresponding formula—Eq. (9.1) for

Kraus operators, Eq. (9.9) for 𝜒-matrices, or Eq. (9.15) for Pauli Transfer Matrices—

to find Λ(𝜌) for your particular input state 𝜌.

However, the situation will often arise when you want to compare two quantum

processes with one another. For example, maybe you just ran process tomography on

a gate operation, and you want to figure out how close the experimental operation is

to the ideal operation you wanted to implement. How do you compare the measured

process to the ideal one, quantifying your degree of success?

The most common metric for calculating the degree of similarity between two

quantum processes is known as the process fidelity. This metric relies on the 𝜒-

matrix formalism and bears a strong similarity to the even more ubiquitous metric

for state fidelity,

𝐹𝑠(𝜌meas, 𝜌ideal) = Tr

[︂√︁√
𝜌ideal 𝜌meas

√
𝜌ideal

]︂2
(9.18)

where 𝜌meas and 𝜌ideal are the measured and ideal states, respectively, and 𝐹𝑠 is the

state fidelity between them. The state fidelity is a real, positive number in the interval

[0, 1], where 𝐹𝑠 = 1 corresponds to the states being equivalent and 𝐹𝑠 = 0 corresponds

to them being orthogonal. For the specific case where the ideal and measured states
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are pure, this reduces to the even more iconic form

𝐹𝑠(𝜌meas, 𝜌ideal) = Tr [𝜌meas 𝜌ideal] . (9.19)

Analogously, we can define the fidelity between two quantum processes as

𝐹𝑝(𝜒meas, 𝜒ideal) = Tr

[︂√︁√
𝜒ideal 𝜒meas

√
𝜒ideal

]︂2
(9.20)

where 𝜒meas and 𝜒ideal are respectively the measured and ideal processes in the 𝜒-

matrix representation, and 𝐹𝑝 is the process fidelity between them. Just like state

fidelity, the process fidelity is a real, positive number in the interval [0, 1], where

𝐹𝑝 = 1 corresponds to the processes being equivalent and 𝐹𝑝 = 0 corresponds to

them being orthogonal. For the specific case where the ideal and measured processes

are unitary, this reduces to

𝐹𝑝(𝑈meas, 𝑈ideal) = Tr [𝑈meas 𝑈ideal] . (9.21)

9.3 The Lindblad Master Equation

So far in this chapter, we have thought about quantum processes as discrete phe-

nomena: a density matrix 𝜌 passes through some black box, and we wish to build a

predictive model for the box which describes for whatever new state Λ(𝜌) it might

spit out. Notice that nowhere in the discussion above did a time axis come into play.

That is, the formalisms above do not account for the time dynamics at work inside of

the box. For example, if it takes 50 microseconds for the box to spit out a new state,

then the process map describing this box will only be valid at two times: 𝑡 = 0, when

the system is still in state 𝜌; and 𝑡 = 50𝜇s, when the system is in the final state Λ(𝜌).

As for the time 0 < 𝑡 < 50𝜇s during which the system is in the box, our map can say

nothing.

Now, in practice, we often have experimental access to a knob which allows us to

probe the box as a function of time—say, by varying the time we allow the system to
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evolve before measuring—such that we slice the box into a set of discrete snapshots

and write a process map for each slice. We will return to this picture in Chapter 10 in

our discussion of Lindblad tomography, but for now just notice that taking discrete

snapshots of the process as a function of time simply turns one black box into a

concatenation of many smaller boxes—once again, we are unable to say anything

about what the system is up to in the middle of those processes, in the times between

our discrete time steps.

How do we describe the continuous dynamics of a quantum process? The simple

answer, of course, is to write down the Hamiltonian governing the evolution of the

system. As we discussed at the beginning of Chapter 8, to the best of our knowledge,

the Schrödinger equation is valid at all scales of matter. Were we to write down the

wavefunction of the entire universe, we believe that we would find that its evolution to

be perfectly unitary, governed by the action of an unfathomably massive Hamiltonian

capturing all the forces between every quantum bit across all of space. The problem,

of course, is that we do not have access to the universal wavefunction, much less

its Hamiltonian. Indeed, we cannot have access to either of these mathematical

objects, not just because the universe is a very big place, but because the classical

description of these operators in the world of paper and pencils and fleshy humans

scales exponentially with the size of the system.

Abandoning all hope of describing the dynamics of the universal wavefunction,

how do we describe the dynamics of a small slice of this wavefunction? For example,

how do we describe the evolution of a handful of qubits in a quantum processor? These

qubits are, of course, part of the universe, and their evolution will be accounted for

somewhere in the universal Hamiltonian. Our task is thus to carve out the sliver of

this Hamiltonian which describes the evolution of our small system.

Now, if our processor is in a product state with the rest of the universe and

there is no interaction between the processor and the rest of the universe, then the

Hamiltonian fragment describing our processor will be, itself, a valid Hamiltonian.

In this case, the dynamics of our processor will be completely unitary within the

reduced Hilbert space of the device, and we can completely describe the dynamics of
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any initial state of the processor 𝜌 using the Schrödinger equation, as we found back

in Eq. (2.192)
𝑑𝜌

𝑑𝑡
= − 𝑖

ℏ

[︁
�̂�, 𝜌

]︁
(9.22)

where the Hamiltonian �̂� spans the reduced Hilbert space of the processor. In this

picture, the evolution of the processor will be entirely, and all of the information

contained in the system.

This is a highly idealized picture. In practice, our processor is never perfectly

isolated from the rest of the universe: as the universal wavefunction evolves, informa-

tion will be exchanged between the processor and the rest of the environment, and

entanglement will spread beyond the confines of our processor. When this happens,

the unitary evolution of the universal Hamiltonian will no longer be unitary from

the perspective of our subsystem. Instead, it will appear that information is leaking

out of the processor, causing the processor to randomly decohere over time. This

phenomenon should be familiar: this is exactly what happens to our qubits during a

𝑇1 or 𝑇2 process.

These processes are not unitary, so they cannot be described by plugging a reduced

Hamiltonian into the Schrödinger equation. And yet, as we just saw in Section 9.2,

we can construct operators which capture the discrete evolution of one density matrix

to another, whether or not the underlying process is unitary. Can we do the same

for continuous dynamics? Can we find dynamic operators which, when plugged into

the suitable differential equation and solved at discrete times, yield the process maps

we found in Section 9.2, in the same way that the Hamiltonian gives rise to discrete

unitary operations?

The answer is yes—in some cases. To model the dynamics of an open quantum

system coupled to a larger environment, we can take the Schrödinger equation from

Eqs. (2.192) and (9.22) and add some additional terms to the differential equation

which attempt to capture the non-unitary part of the dynamics. Doing so, we arrive

at a new differential equation, commonly referred to as the Lindblad master equation,
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or equivalently the master equation in Lindblad form

𝑑𝜌

𝑑𝑡
= − 𝑖

ℏ

[︁
�̂�, 𝜌

]︁
+

𝑑2−1∑︁
𝑖=1

𝛾𝑖

(︂
�̂�𝑖𝜌�̂�

†
𝑖 −

1

2

{︁
�̂�†
𝑖 �̂�𝑖, 𝜌

}︁)︂
(9.23)

where {𝐴,𝐵} ≡ 𝐴𝐵 + 𝐵𝐴 is the anticommutator, 𝑑 is the dimension of the Hilbert

space of the reduced system, �̂� is the Hamiltonian in this reduced Hilbert, the oper-

ators {�̂�𝑖} represent the coupling of the system to the environment, and the positive

coefficents 𝛾𝑖 > 0 are the decay rates which set the timescales of these couplings.

As we can see, the first term in Eq. (9.23) is simply the Schrödinger equation: this

term captures the coherent part of the dynamics. As for the remaining terms, these

are clearly governed by the action of the operators {�̂�𝑖}, which are commonly known

as the jump operators of the system. Unlike the Hamiltonian �̂�, which must be a

Hermitian matrix, the set of jump operators need not be Hermitian: in general, the

set of matrices {�̂�𝑖} simply needs to form a complete orthonormal basis of Hilbert-

Schmidt operators in the system’s Hilbert space, with the constraint that the square

of each jump operator �̂�2
𝑖 is proportional to the identity. Unbound from the constraint

of Hermiticity, this differential equation in no longer confined to the production of

unitary evolution and can now account for decay into the environment.

As an example, let’s consider a 𝑇1 process, where a single qubit randomly loses an

excitation into the environment via spontaneous emission. For a single qubit, we can

describe this phenomenon using a single jump operator proportional to the lowering

operator 𝜎−

�̂� = 𝜎− ≡

[︃
0 1

0 0

]︃
. (9.24)

For the simplicity of the following example, let’s set the Hamiltonian governing the

qubit’s coherent evolution proportional to the Pauli 𝑍 operator, corresponding to

rotation around the 𝑧-axis of the Bloch sphere at a frequency corresponding to the

energy difference ℏ𝜔 between the two qubit states |0⟩ and |1⟩

�̂� = −ℏ𝜔
2
𝑍 =

[︃
−1

2
ℏ𝜔 0

0 1
2
ℏ𝜔

]︃
. (9.25)
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Plugging this jump operator into the master equation in Eq. (9.23) with a decay

rate 𝛾, the differential equation describing this process becomes

𝑑𝜌

𝑑𝑡
= − 𝑖

ℏ

[︁
�̂�, 𝜌

]︁
+
𝛾

2
(2𝜎−𝜌𝜎+ − 𝜎+𝜎−𝜌− 𝜌𝜎+𝜎−) . (9.26)

To solve this differential equation, it is useful to make a change of variables and

rewrite this equation in the rotating frame of the qubit’s coherent evolution

𝜌(𝑡) ≡ 𝑒𝑖�̂�𝑡𝜌(𝑡)𝑒−𝑖�̂�𝑡. (9.27)

Making this substitution, the first term in Eq. (9.26) conveniently drops out and we

are left with the terms describing the incoherent evolution

𝑑𝜌

𝑑𝑡
=
𝛾

2
(2�̃�−𝜌�̃�+ − �̃�+�̃�−𝜌− 𝜌�̃�+�̃�−) (9.28)

where the jump operator is now written in the rotating frame of the qubit

�̃�− ≡ 𝑒𝑖�̂�𝑡𝜎−𝑒
−𝑖�̂�𝑡 = 𝑒−𝑖𝜔𝑡𝜎− (9.29)

�̃�+ ≡ 𝑒𝑖�̂�𝑡𝜎+𝑒
−𝑖�̂�𝑡 = 𝑒+𝑖𝜔𝑡𝜎+ (9.30)

Plugging Eqs. (9.29) and (9.30) into Eq. (9.28), we arrive at the final equation of

motion
𝑑𝜌

𝑑𝑡
=
𝛾

2
(2𝜎−𝜌𝜎+ − 𝜎+𝜎−𝜌− 𝜌𝜎+𝜎−) . (9.31)

We can solve this equation of motion by decomposing the state 𝜌 into its coordinates

(𝜆𝑥, 𝜆𝑦, 𝜆𝑧) in the volume of the Bloch sphere

𝜆𝑥 = 𝜆𝑥(0)𝑒
− 𝛾

2
𝑡 (9.32)

𝜆𝑦 = 𝜆𝑦(0)𝑒
− 𝛾

2
𝑡 (9.33)

𝜆𝑧 = 𝜆𝑧(0)𝑒
−𝛾𝑡 + 1 + 𝑒−𝛾𝑡 (9.34)

As a final substitution, let us define the probability 𝑝 of an emission occurring during
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an elapsed time 𝑡 in terms of the decay rate 𝛾 as

𝑝 ≡ 1− exp [−𝛾𝑡] . (9.35)

Doing this, we can easily confirm that the evolution described by the Bloch vector

equations in Eqs. (9.32)–(9.34) is equivalent to the quantum process representation

𝜌(𝑡) = Λ(𝜌(0)) ≡ 𝐾0𝜌𝐾
†
0 +𝐾1𝜌𝐾

†
1 (9.36)

where

𝐾0 =

[︃
1 0

0
√
1− 𝑝

]︃
(9.37)

𝐾1 =

[︃
0

√
𝑝

0 0

]︃
. (9.38)

These operators should be familiar: they are exactly the Kraus operators for ampli-

tude damping we defined in Eqs. (9.2) and (9.3). Thus, we have shown that just as

the solution to the Schroödinger equation produces the unitary operators describing

coherent evolution at discrete times, the solution of the Lindblad master equation

produces process maps describing more general evolution at discrete times.

9.4 Markovianity

In the previous section, we showed the continuous time dynamics of a quantum sys-

tem under the Lindblad master equation can be evaluated at discrete time to yield

the process maps we explored earlier in this chapter. However, unlike the relationship

between the set of possible Hamiltonian operators and possible unitary operators, this

mapping is not one-to-one. In coherent evolution under the Schroödinger equation,

every Hamiltonian produces a set of discrete unitary operations, and every unitary

operator can be expressed as the discrete action of a Hamiltonian at some time. The

same is not true for general quantum dynamics. While every set of jump opera-
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tors will produce a set of process maps when evaluated at discrete times, not every

quantum process which has an operator-sum representation can be written down as

a corresponding master equation.

Indeed, while the operator-sum representation of a quantum process is completely

general and provides a complete mapping between all initial and final density matrices,

the set of processes which can be described by a master equation is much more limited.

Indeed, as we can see from the master equation in Eq. (9.23), this differential equation

can only account for processes where information leaks out of the system of interest—

that is, processes which are well described by a decay rate 𝛾—such as the exponential

loss of excitations during a 𝑇1 process or phase information during a 𝑇2 process. Such

processes can be described as Markov chains since the probability of a schochastic

error happening at time 𝑡 is independent of whatever happened to the system at an

earlier time 𝑡 − 𝜖. In this sense, the errors occurring in the system over time are

uncorrelated, and it is common to say that such a system is ‘memoryless’: at any

given time, the environment acting on our system has no prior memory of the system

at an earlier time which might alter its action on the system. Fittingly, processes of

this kind are generally known as Markovian dynamics.

While the class of Markovian processes includes many of the most ubiquitous

errors which occur in experimental quantum processors—such as 𝑇1 and 𝑇2 decay—

there exist errors that are not Markovian in nature and thus cannot be described by a

master equation. As an example, consider the toy system of two qubits we examined

back in Section 2.6. Again, let’s consider two qubits A and B, one of which is prepared

in |0⟩ and the other in |1⟩ such that their combined product state is given by

𝜌𝐴𝐵(𝑡 = 0) = |01⟩⟨01|𝐴𝐵 (9.39)

=

⎡⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
𝐴𝐵

(9.40)
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Let’s then evolve the two qubits according to the Hamiltonian from Eq. (2.231)

�̂�𝐴𝐵 = ℏ𝜔(𝐼 ⊗ 𝐼 + �̂� ⊗ �̂� + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍). (9.41)

What happens to the two qubits during this evolution? As in Section 2.6, let’s

consider a few key moments during the evolution of the two qubits, each separated

by an elapsed time 𝑇 = 𝜋/(8𝜔):

𝑡 = 0: The two qubits begin in a product state of |0⟩𝐴 and |1⟩𝐵, as we defined in

Eq. (9.70).

𝑡 = 𝑇 : As the qubits interact with each other, they gradually becomes entangled with

each other. At 𝑡 = 𝑇 , the two qubits have evolved into a maximally entangled

state, as we showed in Eq. (2.246)

𝜌𝐴𝐵(𝑡 = 𝑇 ) =
1

2
(|01⟩𝐴𝐵 − 𝑖 |10⟩𝐴𝐵)(⟨01|𝐴𝐵 + 𝑖 ⟨10|𝐴𝐵) (9.42)

=
1

2

⎡⎢⎢⎢⎣
0 0 0 0

0 1 𝑖 0

0 −𝑖 1 0

0 0 0 0

⎤⎥⎥⎥⎦
𝐴𝐵

(9.43)

𝑡 = 2𝑇 : The entangled state continues to evolve, and the qubits gradually disentan-

gle from each other. At 𝑡 = 2𝑇 , the two qubits have evolved back into a product

state, though now with their initial states swapped, as we showed in Eq. (2.237)

𝜌𝐴𝐵(𝑡 = 2𝑇 ) = |10⟩⟨10|𝐴𝐵 (9.44)

=

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎦
𝐴𝐵

(9.45)

𝑡 = 3𝑇 : Having swapped states, the qubits continue to evolve and once again become
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entangled with each other, but now into the state we found back in Eq. (2.248)

𝜌𝐴𝐵(𝑡 = 3𝑇 ) =
1

2
(|10⟩𝐴𝐵 − 𝑖 |01⟩𝐴𝐵)(⟨10|𝐴𝐵 + 𝑖 ⟨01|𝐴𝐵) (9.46)

=
1

2

⎡⎢⎢⎢⎣
0 0 0 0

0 1 −𝑖 0

0 𝑖 1 0

0 0 0 0

⎤⎥⎥⎥⎦
𝐴𝐵

(9.47)

𝑡 = 4𝑇 : The qubits once again disentangle, and at 𝑡 = 4𝑇 they return to the product

state they started in back at 𝑡 = 0, as we can see from Eq. (2.238)

𝜌𝐴𝐵(𝑡 = 4𝑇 ) = |01⟩⟨01|𝐴𝐵 (9.48)

=

⎡⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
𝐴𝐵

(9.49)

𝑡 ≥ 4𝑇 : Having returned to their initial state, we can treat 𝑡 = 4𝑇 as the new 𝑡 = 0,

and we can easily see that the evolution above will repeat ad infinitum, with

the qubits returning to their initial state every multiple of 4𝑇 .

Looking at the evolution of the two qubits over the interval 0 ≤ 𝑡 ≤ 4𝑇 , it’s clear

to see that the dynamics of the two qubit system are entirely unitary, by definition;

after all, we arrived at these states through simple application of the Schrödinger

equation using the Hamiltonian in Eq. (2.231), so the evolution of the system can be

completely described without the need of the master equation.

What happens if we play this same story back, but we only look at one of the

two qubits? That is, at each time step in the evolution, let’s take the partial trace

of the resulting two-qubit state such that we are left with only the single-qubit state

of qubit A. In this toy model, we are effectively treating qubit B as the environment

which couples to qubit A, and we now wish to model the dynamics of qubit A in the

presence of this coupling.

Once again, let’s consider the moments in the evolution discussed above, but now
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from qubit A’s point of view:

𝑡 = 0: Qubit A begins in the |0⟩-state, as we can clearly see from the partial trace

of the product state in Eq. (9.70)

𝜌𝐴(𝑡 = 0) = Tr𝐵[𝜌𝐴𝐵(𝑡 = 0)] (9.50)

= |0⟩⟨0|𝐴 (9.51)

=

[︃
1 0

0 0

]︃
𝐴

(9.52)

𝑡 = 𝑇 : As time evolves, the state of qubit A decoheres from a pure state on the

surface of the Bloch sphere to an incoherent mixture at its center. At 𝑡 = 𝑇 ,

qubit A is in a maximally mixed state, as we can see from taking the partial

state of the two-qubit state in Eq. (9.42)

𝜌𝐴(𝑡 = 𝑇 ) = Tr𝐵[𝜌𝐴𝐵(𝑡 = 𝑇 )] (9.53)

=
1

2

[︃
1 0

0 1

]︃
𝐴

. (9.54)

𝑡 = 2𝑇 : The entangled state continues to evolve, and the qubits gradually disentan-

gle from each other. At 𝑡 = 2𝑇 , the two qubits have evolved back into a product

state, though now with their initial states swapped, as we can see from taking

the partial state of Eq. (9.44)

𝜌𝐴(𝑡 = 2𝑇 ) = Tr𝐵[𝜌𝐴𝐵(𝑡 = 2𝑇 )] (9.55)

= |1⟩⟨1|𝐴 (9.56)

=

[︃
0 0

0 1

]︃
𝐴

(9.57)

𝑡 = 3𝑇 : Having passed through the Bloch sphere and traveled from one pole to the

other, the state of qubit A turns around and again begines to decohere back

into the volume of the Bloch sphere. At 𝑡 = 3𝑇 , qubit A is once again in a
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maximally mixed state, as we can see from the partial trace of Eq. (9.46)

𝜌𝐴(𝑡 = 3𝑇 ) = Tr𝐵[𝜌𝐴𝐵(𝑡 = 3𝑇 )] (9.58)

=
1

2

[︃
1 0

0 1

]︃
𝐴

(9.59)

𝑡 = 4𝑇 : Finally, qubit A completes its journey back and forth along the pole of the

Bloch sphere, returning to its initial state at 𝑡 = 0

𝜌𝐴(𝑡 = 4𝑇 ) = Tr𝐵[𝜌𝐴𝐵(𝑡 = 4𝑇 )] (9.60)

= |0⟩⟨0|𝐴 (9.61)

=

[︃
1 0

0 0

]︃
𝐴

(9.62)

How do we account for what happens to qubit A over the interval 0 ≤ 𝑡 ≤ 4𝑇? From

the two-qubit picture, the story is completely straightforward: as the two qubits

evolve, they periodically become entangled with each other; as we saw back in Sec-

tion 2.8, when we try to separate two qubits which are entangled with each other,

each will appear to be a mixed state; thus, the evolution of qubit A from pure state

to mixed state and back and forth is simply an artifact of the coherent evolution of

the underlying two-qubit state. Case closed.

But what happens if we show qubit A to someone without telling them about qubit

B? What would they make of qubit A’s journey? Focusing only on the single-qubit

picture above, something very strange is happening:

0 ≤ 𝑡 ≤ 𝑇 : During this interval, qubit A appears to be spontaneously decohering, as

if under the influence of a depolarizing channel. From this, we might conclude

that the qubit has lost simply lost its phase information to the environment,

and we would attempt to find jump operators which account for this loss.

𝑇 ≤ 𝑡 ≤ 2𝑇 : Having lost its phase information to the environment in the previous

interval, qubit A appears to receive a new phase from the environment, evolving
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from a completely mixed state into a new pure state. Looking at the combined

interval 0 ≤ 𝑡 ≤ 2𝑇 , this suddenly looks more like an amplitude damping

channel than a depolarizing channel, except that the polarity of the channel is

all wrong. Instead of losing an excitation to the environment, qubit A appears

to have gained one from the environment. Moreover, if we finely sample the

evolution of the system during this combined interval, we would find that the

qubit’s path through the Bloch sphere is not an exponential decay—as we would

expect from either depolarizing or amplitude dampling channels—but rather a

sinusoid. Clearly none of the jump operators we have found in this chapter can

account for that.

2𝑇 ≤ 𝑡 ≤ 4𝑇 : Having completed half a period of this sinuosoid, we find that qubit

A once again reteats along the pole of the Bloch sphere, as if it is losing the

excitation it just gained back into the environment. This loss is short-lived:

if we continue the clock and observe the state for 𝑡 ≥ 4𝑇 , we find that the

environment returns the excitation again, swapping it back and forth with qubit

A for the rest of time.

The evolution of qubit A described above cannot be described by any single-qubit

master equation. We call processes of this form non-Markovian. Unlike the environ-

ment in a Markovian process, the environment in the system above (that is, qubit

B) clearly has a memory of where qubit A was at every given point in time—having

passed through the center of the Bloch sphere twice (once at 𝑡 = 𝑇 and then again at

𝑡 = 3𝑇 ), the environment knows whether it should send qubit A to |1⟩ or |0⟩. This

phenomenon clearly violates the requirements of a Markov chain: when the environ-

ment sees a state sitting at the center of the Bloch sphere, it should do the exact

same thing to that state regardless of where it came from.
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9.5 Detecting Non-Markovianity

We will return to the picture of non-Markovian errors above extensively in Chapter 10.

Before we get there, however, we will briefly consider a technique for detecting the

presence of non-Markovian errors in a physical system. While this technique is only

one of a number of proposed measures for non-Markovianity in the literature [379,

450], the method described below will be prove particularly useful in the following

demonstration of Lindblad tomography, where we will use it to validate whether or

not the Markovian model holds for an observed quantum evolution and, thus, whether

or not we can describe the channel using the Lindblad master equation.

In order to detect the presence of a non-Markovian process, we must first define

the limits of what can happen under a Markovian process given the action of the

master equation. To start, let’s look at the form of the master equation in Eq. (9.23)

𝑑𝜌

𝑑𝑡
= − 𝑖

ℏ

[︁
�̂�, 𝜌

]︁
+

𝑑2−1∑︁
𝑖=1

𝛾𝑖

(︂
�̂�𝑖𝜌�̂�

†
𝑖 −

1

2

{︁
�̂�†
𝑖 �̂�𝑖, 𝜌

}︁)︂
. (9.63)

Picking an arbitrary Hamiltonian �̂� and set of jump operators {�̂�𝑖} with positive

decay rates 𝛾𝑖, let’s imagine evolving two different initial states 𝜌1 and 𝜌2 under this

equation. In particular, let’s look at the distance between these two states on the

Bloch sphere and see how it changes over the course of the evolution. To simplify this,

let’s first look at the master equation in the case of unitary evolution only ({�̂�𝑖} = 0)

and then in the case of Markovian evolution in the absence of coherent evolution

(�̂� = 0):

Unitary evolution: Starting with two states 𝜌1 and 𝜌2 located somewhere on the

surface or within the volume of the Bloch sphere, the distance between these

two states will remain constant for all time. As an example, consider the two
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initial single-qubit states

𝜌1 = |1⟩⟨1| (9.64)

𝜌2 = |+⟩⟨+| (9.65)

which are each rotated under the influence of a Hamiltonian

�̂� = ℏ𝜔𝑍. (9.66)

Looking at these two states over the course of their evolution, we can take the

trace distance of the two states as a function of time, where the trace distance

𝐷 between the two states is defined as

𝐷 = |𝜌1(𝑡)− 𝜌2(𝑡)|/2 (9.67)

and

|𝑀 | ≡ Tr
[︁√

𝑀 †𝑀
]︁

(9.68)

In the Bloch sphere picture, the trace distance can be easily visualized as the

geometric distance between the coordinates defining the two states. From this

definition, it is easy to see that the trace distance between our example states 𝜌1

and 𝜌2 must remain constant. Since 𝜌1 is an eigenstate of the example Hamil-

tonian above, its position will not change in time. Meanwhile, the Hamiltonian

will cause 𝜌2 to rotate around the equator of the Bloch sphere, always main-

taining a fixed distance from the stationary state of 𝜌1 at the pole. Indeed, it is

easy to see that this must be true for any pair of initial states 𝜌1 and 𝜌2 and any

possible Hamiltonian �̂� since, as we showed back in Chapter 2, unitary rota-

tions during Hamiltonian evolution correspond to rotations of the Bloch sphere

itself: rotate the sphere however you wish, and the relative distance between

any two points on the sphere must remain constant.

Markovian evolution: Let’s now take the same two initial states as in the unitary
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example but instead look at their evolution under a set of jump operators in

the master equation. As a concrete example, let’s consider the jump operator

corresponding to an amplitude damping channel, as we showed in Eq. (9.24):

�̂� = 𝜎− ≡

[︃
0 1

0 0

]︃
. (9.69)

Plugging our two states into the master equation and evolving them according

to this operator with decay rate 𝛾, we see that both states will exponentially

decay towards the |0⟩-state of the Bloch sphere. Indeed, this is exactly what

happens during 𝑇1 decay: regardless of the initial state of the qubit, the qubit

will gradually decay to |0⟩ via the shortest path through the Bloch sphere. Thus,

we can see that the action of this non-unitary process causes the trace distance

between any pair of initial states—no matter how far away they are initially—to

monotonically decrease over time, as they are all compelled towards the same

final state. It is easy to convince oneself that this feature is a natural conse-

quence of any process which can be modelled as a Markov chain: if the process

has no memory of the initial state, then the steady state of any Markovian pro-

cess must be independent of the initial state, causing all states to converge to

the same final state. Thus, the monotonic decrease in trace distance will hold

true for any valid set of jump operators in the master equation.

Non-Markovian processes violate this condition. While processes governed by the

master equation require that the trace distance between any two initial states must

remain constant (in the case of unitary evolution) or decrease monotonically in time

(in the case of Markovian evolution), the trace distance between two states evolving

under non-Markovian dynamics can increase in time. Returing to our example of

non-Markovian evolution from above, we can see this is indeed possible. As we saw,

when qubit A is initially prepared in the |0⟩-state, it will oscillate between the poles

of the Bloch sphere, periodically passing through the center of the sphere when it

becomes maximally entangled with qubit B.

Now, what would have happened if we instead prepared qubit A in the |1⟩-state
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and ran it through the exact same process? That is, let’s just change the state of qubit

A but leave the initial state of qubit B and the underlying two-qubit Hamiltonian

unchanged. In this case, the initial two-qubit state of qubits A and B at 𝑡 = 0 is now

𝜌𝐴𝐵(𝑡 = 0) = |11⟩⟨11|𝐴𝐵 (9.70)

=

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎤⎥⎥⎥⎦
𝐴𝐵

. (9.71)

What happens when we evolve this state according to the Hamiltonian in Eq. (9.41),

tracing out qubit A as before? Well, nothing happens. Indeed, the initial state of

the two qubits is now an eigenstate of the Hamiltonian, so the state of qubit A will

remain constant in time.

Comparing these two different initial states of qubit A

𝜌1(𝑡 = 0) = |0⟩⟨0|𝐴 (9.72)

𝜌2(𝑡 = 0) = |1⟩⟨1|𝐴 (9.73)

and evolving each according to the same interaction with qubit B, we see that these

two states clearly violate the trace distance condition required for evolution under

the master equation: during the interval 0 ≤ 𝑡 ≤ 2𝑇 , the trace distance between

the two states will decrease as 𝜌1(𝑡) oscillates towards the |1⟩-state where 𝜌2(𝑡) is

frozen in time; then, during the interval 2𝑇 ≤ 𝑡 ≤ 4𝑇 , 𝜌1(𝑡) oscillates away from 𝜌2(𝑡)

and back towards the |0⟩-state, causing the trace distance between the two states

to increase. Thus, even if we don’t know the state of qubit B or the underlying

multi-qubit Hamiltonian governing the evolution of qubit A and its environment, the

relative behavior of these two different initial states clearly alerts us to a violation of

the master equation, indicating that the dynamics of qubit A cannot be captures by

a single-qubit Hamiltonian or set of jump operators.

Recognizing this particular property of non-Markovian dynamics, the group of
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Breuer, Laine, and Piilo proposed a method for characterizing the presence of non-

Markovian dynamics by comparing the trace distance between pairs of states in an

open quantum system [74]. In this method, a pair of states 𝜌1(𝑡) and 𝜌2(𝑡) are passed

through a common process and the trace distance between them 𝐷(𝜌1(𝑡), 𝜌2(𝑡)) is

measured. Comparing the trace distance as a function of time, the degree of non-

Markovian behavior in the environment 𝑁markov is found by maximizing the integral

𝑁markov = max𝜌1(0),𝜌2(0)
∫︁
𝜎>0

𝜎(𝑡, 𝜌1(0), 𝜌2(0))𝑑𝑡 (9.74)

where 𝜎(𝑡, 𝜌1(0), 𝜌2(0)) = 𝑑
𝑑𝑡
𝐷(𝜌1(𝑡), 𝜌2(𝑡)). That is, the Breuer metric integrates

the derivative of the trace distance between a pair of states over all time intervals

where the derivative is positive (i.e., trace distance increasing), quantifying the degree

to which the trace distance increases during application of the channel. Thus, the

larger the value of 𝑁markov, the more non-Markovian the channel. Indeed, we will

apply this metric to a physical quantum processor in Chapter 10 and show that it

successfully accounts for non-Markovian dynamics in the system, and we will discuss

its limitations when employed in noisy experimental systems.

414



Chapter 10

Lindblad Tomography

In our taxonomy of QCVV in Chapter 8, we noted that one of the major cat-

egories of techniques concerns the characterization of quantum processes: processes

which translate one quantum state into another quantum, either via time evolution

or application of a quantum algorithm composed of discrete gates. In Chapter 9, we

focused on this category of techniques in more detail and discussed the mathematical

formalism of process maps, Lindblad operators, and Markovianity—tools which are

vital in the characterization of operations in physical quantum system in the presense

of errors.

In this chapter, we will outline and present the first experimental results of a

novel characterization protocol for tomographically reconstructing the mathematical

objects discussed in Chapter 9 from experimental data. This technique, which we

call Lindblad tomography, provides a robust framework for finding the most likely

underlying Hamiltonian and Lindbladian of a physical multi-qubit system from an

ensemble of time domain measurements. In this way, Lindblad tomography can be

thought of as an extension of standard process tomography: where process tomog-

This chapter is based in large part on original work reported in Ref. [399], and I gratefully
acknowledge all of my coauthors for their contributions to this work, with particular acknowledgment
to Johannes Borregaard, Morten Kjaergaard, Alex Greene, Joseph Barreto, Matthias Christandl,
and William Oliver.
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raphy provides a protocol for reconstructing a quantum process at a discrete time,

Linbdlad tomography pieces together the processes found at a series of discrete time

steps to recover the dynamic operators from which these processes arise. Along the

way, we will discuss how this technique accounts for state preparation and measure-

ment (SPAM) errors which might interfere with our interpretation of data, and we

will pair our characterization with the Markovianity metric discussed in Section 9.5

to vaildate whether or not the observed evolution can be fit to operators in the master

equation representation.

10.1 A New Tool in the QCVV Toolbox

As we discussed in Chapter 8, there currently exists a broad toolbox of quantum

characterization, verification, and validation (QCVV) techniques for experimentalists

to draw from. Indeed, opening up a quantum engineer’s toolbox and pulling out

the most common techniques, we would find that this toolbox contains standard

𝑇1/𝑇2 measurements, randomized benchmarking (RB) [133, 287], and state/process

tomography [346], to name only a few. These techniques each ask fundamentally

different questions from each other, and as such each has its own set of strengths and

weaknesses [132].

For example, as we have seen in Part III, randomized benchmarking provides an

approach for assessing the average fidelity of quantum gate operations independent of

state preparation and measurement (SPAM) errors, and it has consequently become

a standard measure of performance for experimental quantum devices. However, the

average fidelity alone does not provide much information about the actual noise pro-

cesses at play in the device, and such details are crucial to more fully modeling quan-

tum device and developing tailored error mitigation and correction techniques [424,

442–444, 479].

State and process tomography, on the other hand, provide more detailed infor-

mation about discrete moments in a qubit’s evolution, such as the qubit state at a

particular time or the quantum process corresponding to a gate operation of a fixed
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duration. However, these tomographic protocols are extremely sensitive to imperfec-

tions in state preparation and measurement errors—errors, that is, in the preparation

of known states at the beginning of the tomographic protocol and accurate readout

along different measurement axes at the end—and caution must be exercised in order

to consistently interpret the results of tomography in the presence of these SPAM

errors [307]. Building on traditional tomographic protocols, a number of theoretical

and experimental works have demonstrated self-consistent characterization of SPAM

errors in process tomography and gate characterization [240, 302, 303, 307]. Com-

mon to many of these techniques is the use of maximum likelihood estimation (MLE),

which provides a robust and flexible estimation procedure capable of handling over-

complete data and constrained problems. While such techniques offer a promising

step forward, the characterization of a discrete moment in a qubit’s evolution is not

always sufficient, and one often requires detailed knowledge about how the noise en-

vironment and crosstalk between qubits dynamically influence evolution in time [82].

In this chapter, we discuss a new technique for characterizing the dynamics of a

multi-qubit system from an ensemble of time-domain measurements, which we call

Lindblad tomography (LT). Mathematically, the goal of LT is to estimate the most

likely Hamiltonian, quantum jump operators, and corresponding decay rates which de-

scribe the evolution of a multi-qubit system in time. Throughout this chapter, we will

refer to this task as extracting the Lindbladian of the channel. This task is, in some

sense, an expansion of the goal of process tomography: process tomography recon-

structs a process map at a single time step; Lindblad tomography aims to reconstruct

the underlying dynamic operators which give rise to the process maps for continuous

times. Applying this technique, one could use LT to characterize the noise processes

experienced by a qubit during free evolution—such as 𝑇1- and 𝑇2-processes, which,

as we’ve discussed, can be formally described as amplitude damping and dephasing

channels respectively. Similarly, LT could also be used to evaluate and diagnose a

deliberately engineered channel, such as a tailored Hamiltonian implemented on an

analogue quantum simulator [182] or a quantum annealing system, similar to what

we explored in Chapters 3 and 4.
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However, as we discussed in Chapter 9, the relationship between the process map

and master equation formalisms is not one-to-one: unlike in coherent evolution, where

every unitary operator arises from solution of the Schrödinger equation given some

Hamiltonian at some discrete time, not every process map corresponds to a set of

jump operators and decay rates in the master equation formalism. As such, our

ability to extract the Lindbladian using LT rests on a fundamental assumption: the

evolution of the quantum system is Markovian and well described by a

time-independent master equation. That is, since non-Markovian dynamics can-

not be captured by Lindblad operators in the master equation, our ability to extract

these operators is contingent on the Markovianity of the channel we are attempting

to characterize. As such, verification of the Markovian assumption prior to extracting

the Lindbladian is vital, as we will see shortly.

10.2 Lindblad Tomography Protocol

From an experimental standpoint, LT can be thought of as a hybrid of three distinct

tools which are ubiquitious in the laboratory:

Process tomography: Like standard process tomography, Lindblad tomography

cycles over a set of initial qubit states and measurement axes to reconstruct an

instantaneous process map at each discrete time step.

𝑇1 and 𝑇2 measurement: Unlike standard process tomography, Lindblad tomog-

raphy is also a time-domain measurement, much like standard 𝑇1 and 𝑇2 charac-

terization. Indeed, like a 𝑇1 or 𝑇2, LT sweeps the duration of a quantum channel

and records how information moves between the qubits and their environment

in time.

Classical optimization: After collecting a series of discrete tomographic slices as

a function of time, we run the data through a classical maximum likelihood

algorithm to back out the underlying Hamiltonian and Lindblad operators.
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Formally, we can describe the measurement protocol for performing LT using the

quantum circuit in Fig. 10-1a. Walking through this circuit from left to right, we can

see that this circuit consists of three primary steps:

1. The qubit is initialized in a state 𝜌0 close to its ground state and one of six

single-qubit gates R𝑠 = {1,X𝜋,Y±𝜋
2
,X∓𝜋

2
} is applied, initializing the qubit as

close as possible to each of the six cardinal states of the Bloch sphere (|0⟩, |1⟩,

|±⟩, |±𝑖⟩), respectively.

2. The idling channel 1̃(𝑡) is swept as a function of time, corresponding to a vari-

able time delay between state preparation and measurement during which no

experimental controls are performed on the qubit. In the absence of any noise,

the idling channel would correspond to the identity channel 1(𝑡).

3. One of three single-qubit gates R𝑏 = {1,Y−𝜋
2
,X𝜋

2
} is applied prior to measure-

ment, corresponding to measurement in the Pauli 𝑧-, 𝑥-, and 𝑦-bases.

These steps are then repeated for all combinations of initial state, channel duration,

and measurement basis, and the results are saved in classical memory for analysis.

Looking at the circuit diagram in Fig. 10-1a, subsets of pre- and post-pulses should

be immediately familiar. Looking at the highlighted sequence of pale green gates—

where a X𝜋 gate is applied prior to the variable time delay and the state is measured

in the 𝑧-basis—we see that this sequence is identical to a standard 𝑇1 measurement.

Looking at the highlighted sequence of purple gates—where a Y𝜋
2

gate is applied prior

to the variable time delay and the state is measured in the 𝑥-basis—we see that this

sequence is identical to a standard 𝑇2 measurement. This observation gives us a nice

physical intuition for what LT is doing: by cycling over the full set of pre- and post-

pulses and sweeping a variable time delay between them, LT is effectively piecing

together all possible combinations of 𝑇1 and 𝑇2 measurements to tomographically

reconstruct the full quantum loss channel.

Once all the measurements have been performed and all the data has been col-

lected, the entire data set is passed through a series of computations for analysis, as

illustrated in Fig. 10-1b. This analysis framework consists of three main components:
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Characterize Device: The data corresponding to the zero-duration channel 1̃(𝑡 =

0) is fed into an MLE routine to determine the matrix elements of the initial

density matrix 𝜌0 and the positive operator-valued measures (POVMs) repre-

senting the imperfect measurement apparatus.

Extract Operators: Using the SPAM parameters found in the previous step, we

independently estimate the Kraus operators which capture each discrete time

(orange bubble in Fig. 10-1b) and the Hamiltonian and Lindblad operators

which capture continuous time evolution (red bubble).

Validate Fit: Finally, we compare the results of the Kraus and Lindblad extractions

in the previous step—running the former through a Markovianity metric and the

latter through a standard error analysis—to determine whether the Markovian

assumption holds.

Over the next few sections, we will walk through each of these analysis steps in

detail and discuss how we perform the corresponding calculations. After that, we

will look at the result of a first experimental demonstration of this technique on a

pair of coupled superconducting transmon qubits, and we will show what Lindblad

tomography reveals about the underlying physics of the device.

Figure 10-1: Single-qubit Lindblad tomography (LT) protocol. (a) The sequence of
measurements required for single-qubit LT. The qubit is prepared in its imperfect
ground state 𝜌0 and one of six single-qubit pre-pulses R𝑠 is applied to rotate the qubit
as close as possible to each cardinal state of the Bloch sphere; free evolution of the
quantum system is swept; and one of three post-pulses R𝑏 is applied to rotate the
measurement axis into each Pauli basis. (b) Analysis protocol for LT. Results from
all combinations of pre-/post-pulses and channel durations are passed to a classical
optimizer based on maximum likelihood estimation (MLE). SPAM errors due to im-
perfect ground state preparation and measurement infidelity are extracted from data
at 𝑡 = 0, and the results are used to separately estimate: (left path) the Kraus op-
erators 𝒦(𝑡𝑖) for each discrete channel duration 𝑡𝑖 and channel Markovianity using
the trace distance 𝐷 between pairs of states; (right path) the Hamiltonian �̂� and
Lindblad matrix 𝐿 for continuous time 𝑡, where the operator fit to data is evaluated
using the average error between the measurement outcomes predicted by the opera-
tors (𝑥model) and data (𝑥meas).
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10.3 Extracting SPAM Errors

As we discussed earlier, accurate interpretation of quantum tomography results re-

quires thorough understanding of the SPAM errors at play in the device being char-

acterized. This makes intuitive sense: if process tomography relies on a set of well-

understood input states and orthogonal measurement axes in order to piece together

the input-output relationship of the process, we better be able to reliably prepare

those input states and accurately measure along the necessary axes. To confirm that

this is indeed the case, we must first characterize the SPAM errors in our device and

compensate for them accordingly. In the derivation which follows, we will consider

the protocol for characterizing a single-qubit state, and we will then discuss how this

protocol naturally extends to multi-qubit systems.

To reconstruct the most likely SPAM errors in our device, we start by defining a

simple maximum likelihood function

ℒSPAM = (𝑝0)
𝑓 × (𝑝1)

𝑓 . (10.1)

Here, 𝑝0 and 𝑝1 are the probabilities of measuring the qubit in the |0⟩- and |1⟩-

states, respectively, and 𝑓 and 𝑓 are the number of recorded measurements of the

qubit in either |0⟩ and |1⟩ after a series of many repeated measurements. Now,

experimentally we do not have direct access to the underlying probabilities 𝑝0 and 𝑝1,

just as we do not have access to the quantum mechanical wavefunction. However, we

do have access to 𝑓 and 𝑓 since these are just the number of random outcomes we get

when we measure our qubit in the 𝑧-basis. Using only these recorded outcomes and

the equation in Eq. (10.1), we can numerically estimate the most likely underlying

probabilities: given the measurement outcomes 𝑓 and 𝑓 , the most likely underlying

probabilities can be found by numerically maximizing the function ℒSPAM with respect

to 𝑝0 and 𝑝1.

Now, these probabilities alone do not tell us anything about our SPAM errors. But

we know that these probabilities come from somewhere: namely, from the expectation
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value of a quantum state 𝜌 with some measurement operator 𝑀 , exactly as we showed

back in Chapter 2. Let us then redefine these probabilities as

𝑝0 ≡ Tr[𝜌0𝑀0] (10.2)

𝑝1 ≡ Tr[𝜌0𝑀1] (10.3)

where 𝜌0 is a general single-qubit density matrix corresponding to the (potentially

imperfect) initial state of our protocol

𝜌0 =

[︃
𝑎 𝑏

𝑏* 1− 𝑎

]︃
(10.4)

and the operators 𝑀0 and 𝑀1 are the positive operator-valued measures (POVMs)

corresponding to (again, potentially imperfect) measurement of the states |0⟩ and |1⟩,

respectively

𝑀0 =

[︃
𝑚0 𝑚1

𝑚*
1 𝑚2

]︃
(10.5)

𝑀1 = 1−𝑀0. (10.6)

In the absence of SPAM errors, the initial state 𝜌0 will correspond to the ground state

of the qubit and the POVMs will correspond to accurate measurement of the states

|0⟩ and |1⟩

𝜌0 =

[︃
1 0

0 0

]︃
(10.7)

𝑀0 =

[︃
1 0

0 0

]︃
(10.8)

𝑀1 =

[︃
0 0

0 1

]︃
. (10.9)

To quantify the deviation of our device from this ideal, let’s plug the probabilities
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in Eqs. (10.2) and (10.3) into the maximum likelihood function in Eq. (10.1)

ℒSPAM = Tr[𝜌0𝑀0]
𝑓 × Tr[𝜌0𝑀1]

𝑓 . (10.10)

Now, we’re getting somewhere! Looking at this equation, we can now say that given

the measurement outcomes 𝑓 and 𝑓 , the most likely SPAM parameters can be found

by numerically maximizing the function ℒSPAM with respect to the unknown matrix

elements of the density matrix in Eq. (10.4) and the POVM in Eq. (10.5).

We can say this, but we would be wrong. Looking at Eq. (10.10), we can see that

this function is sorely underdetermined: given the two measurement outcomes 𝑓 and

𝑓 , it is impossible to accurately reconstruct the five independent matrix elements we

need to determine our initial state and POVMs. Thankfully, however, LT naturally

gives us a lot of data to play with. Looking back at the measurement protocol in

Fig. 10-1a, we see that we actually have 18 different sets of results to work with when

1̃(𝑡 = 0), corresponding to all of the different combinations of pre- and post-pulses in

our tomography sequence.

So let’s add these sequences to our maximum likelihood equation. Looking at

Eq. (10.10), we can expand this equation into a product over all combinations of

initial states 𝑠 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+𝑖⟩ , |−𝑖⟩} and measurement axes 𝑏 ∈ {𝑧, 𝑥, 𝑦}

ℒSPAM =
∏︁
𝑏,𝑠

(︁
Tr[𝜌𝑠𝑀𝑏]

𝑓(𝑠,𝑏) × Tr[𝜌𝑠(1−𝑀𝑏)]
𝑓(𝑠,𝑏)

)︁
(10.11)

where 𝜌𝑠 is the rotated ground state generated from application of one of the six

pre-rotations R𝑠

𝜌𝑠 = R𝑠𝜌0R†
𝑠, (10.12)

𝑀𝑏 is the POVM corresponding to measuring |0⟩ in Pauli basis 𝑏

𝑀𝑏 = R𝑏𝑀0R
†
𝑏, (10.13)

and the scalars 𝑓(𝑠, 𝑏) and 𝑓(𝑠, 𝑏) are the number of recorded measurement outcomes
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‘0’ and ‘1’ recorded during repeated measurements of state 𝜌𝑠 in measurement basis

𝑏. Looking at Eq. (10.11), we see that this maximum likelihood function is now

overdetermined, and we can now maximize this function over the full set of rotations

to find the unknown matrix elements of 𝜌0 and 𝑀0, fully capturing the SPAM errors of

the device. To make this function easier to optimize over, it is convenient to take the

natural logarithm of the likelihood function and turn in to a log-likelihood function

ln(ℒSPAM) =
∑︁
𝑏,𝑠

(︀
𝑓(𝑠, 𝑏) ln(Tr[𝜌𝑠𝑀𝑏])× 𝑓(𝑠, 𝑏) Tr[𝜌𝑠(1−𝑀𝑏)]

)︀
. (10.14)

Having taken the logarithm of ℒSPAM, our task is now to minimize ln(ℒSPAM) with

respect to the unknown SPAM parameters, which in practice is a better behaved

optimization problem.

Now, in general, we have carefully avoided one thorny issue. Looking at either

Eq. (10.11) or (10.14), we have made a tacit assumption that the rotations R𝑠 and

R𝑏 are the unitary matrices we believe they are. However, these rotations correspond

to physical gate operations, and the fiducial gates required to initialize the cardinal

states and rotate the measurement basis cannot be assumed to be error free. In order

to fully characterize these operations, one would therefore have to parameterize these

gates as arbitrary rotation matrices and estimate them together with the POVM

and initial state parameters, in much the same way as in gate set tomography [240].

However, in Lindblad tomography, we significantly simplify the analysis by excluding

the effects of imperfect rotation from our estimation. Here, our motivation is twofold.

First, we note that, for many NISQ-era devices across hardware modalities, errors

due to imperfect measurement and ground state preparation exceed single-qubit gate

errors. Second, since our ultimate goal is to characterize the idling channel over several

multiples of the qubit’s 𝑇1 and 𝑇2 times (tens of microseconds for superconducting

qubits, in comparison to tens of nanoseconds to implement a single-qubit gate), the

channel errors are naturally amplified relative to the errors in the fiducial gates,

regardless of their intrinsic magnitude (in much the same way as in GST and RB).

Furthermore, while ignoring the contribution of these errors typically introduces the
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Initialize 
36 Cardinal States Sweep Channel Measure in 

9 Pauli Bases

Idling Channel

Figure 10-2: Two-qubit Lindblad tomography measurement protocol. The two qubits
A and B are initialized into their shared ground state 𝜌𝐴𝐵0 and prepared in each of
36 combinations of cardinal states; the channel of interest is swept; the qubits are
rotated into each of nine combinations of Pauli bases and measured. The full set of
measurement results are passed through the same classical optimizer as in the single-
qubit protocol, SPAM errors are extracted, and the instantaneous process maps and
dynamic operators are estimated using MLE.

issue of gauge freedom, we note that errors in the idling channel are first-order gauge

invariant (FOGI), and the contribution of errors in the fiducial gates can be safely

ignored in this scenario [58, 60, 330]. We also note that randomized benchmarking,

which is not influenced by SPAM errors, can be performed prior to LT to obtain

an independent estimate of the rotation pulse errors, as we will disuss later in this

chapter in our presentation of experimental results.

Finally, we note that this technique for characterizing SPAM naturally extends to

multi-qubit systems, as does the rest of LT. For two qubits A and B, we can repre-

sent the initial state as a general two-qubit density matrix 𝜌𝐴𝐵0 , and we characterize

the measurement apparatus using four 4× 4 POVM matrices {𝑀00,𝑀01,𝑀10,𝑀11},

corresponding to measurement of the states |00⟩, |01⟩, |10⟩, and |11⟩, respectively. To

determine the matrix elements of the initial state and the POVMs, we maximize a

log-likelihood function analogous to Eq. (10.14), but now containing four terms for

each combination of pre- and post-rotation (corresponding to measurement of each of

the four two-qubit computational states) and summing over the full set of two-qubit

pre- and post-pulses shown in Fig. 10-2.
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10.4 Reconstructing the Kraus Operators at

Discrete Times

Having characterized the SPAM errors for our device, we can now proceed to charac-

terize the quantum channel of interest. Now, before we estimate the Lindbladian of

the channel for continuous time 𝑡, we will first separately extract the instantaneous

evolution maps of the channel at each discrete time step 𝑡𝑖, as in standard process

tomography. As we will see, while this extraction is independent of the Lindblad esti-

mation itself, the extraction of the instantaneous process maps will provide a means

to separately confirm the the validity of the time-independent Markovian model.

As we showed in Chapter 9, any quantum operation can be described by a set of

Kraus operators such that the final state is related to the initial state as

𝜌 =
∑︁
𝑗

𝒦𝑗𝜌0𝒦†
𝑗 (10.15)

where the Kraus operators {𝒦𝑗} satisfy the condition
∑︀

𝑗 𝒦
†
𝑗𝒦𝑗 = 1 for a trace-

preserving process. However, as we also discussed in our comparison of the different

process representations in Chapter 9, note that the Kraus operators are only unique

up to a unitary transformation: a quantum channel can be described by two different

but equivalent sets of Kraus operators {𝒦𝑗} and {𝒦′
𝑘}, which will be related through

a unitary matrix 𝑈 such that 𝒦𝑗 =
∑︀

𝑘 𝑈𝑗𝑘𝒦′
𝑘. To avoid this ambiguity, it is often

helpful to resort to a process matrix representation of the channel 𝜒, which is unique in

a specified operator basis. However, since the process matrix can be readily calculated

from the Kraus operators and vice versa, one can choose either description without

loss of generality. In this demonstration, we chose to estimate the Kraus operators,

however we note that we also used the same MLE approach to estimate the process

matrix but found a slower convergence of the optimization compared to the Kraus

estimation. We believe this is likely due to the unitary freedom in fixing the elements

of the Kraus matrices. In what follows, we will therefore describe the estimation of
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the Kraus operators.

To find the most likely Kraus operators which describe quantum channel at each

discrete time step 𝑡𝑖, our task is once again to minimize a log-likelihood function

based on the outcomes of repeated measurements 𝑓 and 𝑓 . For the Kraus estimation,

this function takes on a similar form to the one we used for the SPAM estimation in

Eq. (10.14). Here, however, we are no longer constrained to the subset of data where

1̃(𝑡 = 0), and our likelihood function now accounts for the state of the system at

eachdiscrete time step 𝑡𝑖 ∈ [𝑡1, 𝑡2, . . . , 𝑡𝑁 ]

ln(ℒ𝒦(𝑡𝑖)) =
∑︁
𝑏,𝑠

𝑓(𝑠, 𝑏, 𝑖) ln
(︀
Tr [𝜌𝑠(𝑡𝑖)𝑀𝑏]

)︀
+ 𝑓(𝑠, 𝑏, 𝑖) ln

(︀
Tr [𝜌𝑠(𝑡𝑖)(1−𝑀𝑏)]

)︀
(10.16)

where the state 𝜌𝑠(𝑡𝑖) is now the discrete time evolution of the initial state 𝜌𝑠 at time

𝑡𝑖 under the evolution of the Kraus operators

𝜌𝑠(𝑡𝑖) =
∑︁
𝑗

𝒦𝑗(𝑡𝑖)𝜌𝑠𝒦†
𝑗(𝑡𝑖) (10.17)

and the initial state 𝜌𝑠 and POVM 𝑀𝑏 are the matrices we already found during

the SPAM estimation. Thus, given the measurement outcomes at each discrete time

step 𝑓(𝑠, 𝑏, 𝑖) and 𝑓(𝑠, 𝑏, 𝑖), the most likely process maps which describe the action of

the channel at each time step can be found by minimizing the function ln(ℒ𝒦(𝑡𝑖)) in

Eq. (10.16) with respect to the matrix elememnts of the unknown Kraus operators

{𝒦𝑗(𝑡𝑖)}. As with the SPAM characterization, this protocol generalizes naturally

to multi-qubit systems, where the dimension and number of the unknown Kraus

operators scales with the size of the system.

10.5 Qualitatively Validating the Markovian Model

Having obtained the Kraus operators for each discrete time step of the channel,

we can use this information to provide qualitative insight into whether or not the
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measured quantum channel can be fit to a Markovian model (left path in Fig. 10-

1b). To accomplish this, we will implement the measure proposed in Ref. [74], which

quantifies the backflow of information from the environment characteristic of non-

Markovian error [279, 485]. This measure is particularly suitable for the purposes

of validating Lindblad tomography because it considers the noise process over time,

in contrast to instantaneous measures such as the one proposed in Ref. [471]. We

note that other non-Markovianity measures exist that also consider the noise process

over time and that may provide complementary information about the nature of non-

Markovianity [380]. However, for the purpose of simply assessing the validity of the

Markovianity assumption of LT, the measure of Ref. [74] is sufficient.

As we previously discussed in Section 9.5, the measure of Breuer et al. [74] ex-

ploits the following fact: for any quantum process which can be captured by a time-

dependent master equation of the form

�̇�(𝑡) = − 𝑖

ℏ
[�̂�(𝑡), 𝜌(𝑡)] +

∑︁
𝑖

𝛾𝑖(𝑡)

(︂
�̂�𝑖(𝑡)𝜌(𝑡)�̂�

†
𝑖 (𝑡)−

1

2
{�̂�†

𝑖 (𝑡)�̂�𝑖(𝑡), 𝜌(𝑡)}
)︂

(10.18)

with positive decay rates 𝛾𝑖(𝑡) > 0, the trace distance 𝐷(𝜌1(0), 𝜌2(0)) between two

initial states 𝜌1(0), 𝜌2(0) can only decrease. Here, �̂�(𝑡) and {�̂�𝑖(𝑡)} are the time-

dependent Hamiltonian and jump operators of the process.

Since non-Markovian processes cannot be captured by a time-dependent master

equation of the form in Eq. (10.18), an increasing trace distance between two states

under the evolution of a common channel signifies violation of Eq. (10.18) and thus

the presence of non-Markovian errors. Based on this observation, the measure 𝑁markov

is suggested in Ref. [74] as

𝑁markov = max𝜌1(0),𝜌2(0)
∫︁
𝜎>0

𝜎(𝑡, 𝜌1(0), 𝜌2(0))𝑑𝑡 (10.19)

where 𝜎(𝑡, 𝜌1(0), 𝜌2(0)) = 𝑑
𝑑𝑡
𝐷(𝜌1(𝑡), 𝜌2(𝑡)). In other words, we integrate the deriva-

tive of the trace distance between a pair of states over all time intervals where the

derivative is positive (i.e., trace distance increasing). Thus, the larger the value of
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𝑁markov, the more non-Markovian the channel. However, we note that the quantita-

tive value of 𝑁markov can be ambiguous, since the value is unbounded and extremely

sensitive to experimental noise in individual data points. As such, rather than treat

𝑁markov as a quantitative metric, we instead treat it as a qualitative metric, plotting

the trace distance as a function of the channel duration and looking for sustained

periods of increasing trace distance. We then complement this observation with a

rigorous quantitative analysis of the error between the operator predictions and data,

as discussed further in Section 10.7

10.6 Extracting the Lindbladian

So far, we have shown how to extract the Kraus operator description of the channel at

each discrete time step, and we have used this information to assess the Markovianity

of the channel. Now, if the channel is Markovian, we can proceed to the main thrust

of Lindblad tomography: the tomographic reconstruction of the Lindblad operators

describing the channel for continuous time 𝑡 (right path in Fig. 10-1b). If, on the other

hand, the channel is non-Markovian, one will be unable to find a set of operators which

describe the data, since non-Markovian processes cannot be fit to a master equation.

However, note that the Markovianity measure employed in Section 10.5 only tells

if the process can be captured by a general master equation with a time-dependent

Lindbladian, and it does not guarantee that the assumption of a time-independent

Lindbladian is fulfilled. As such, comparison between the Markovinaity metric and

the fit of the extracted Lindbladian allows us to qualitatively distinguish between

three possibilities:

1. The channel is Markovian and described by a time-independent Lind-

bladian. In this case, the extracted operators fit the data and the Markovianity

measure will show a monotonically decreasing trace distance between pairs of

states.

2. The channel is non-Markovian. In this case, the extracted operators poorly
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fit the data and the Markovianity measure will show clear periods of increasing

trace distance.

3. The channel is Markovian but not described by a time-independent

Lindbladian. In this case, the extracted operators poorly fit the data while the

Markovianity measure shows a monotonically decreasing trace distance between

pairs of states. The appearance of this phenomenon may also indicate failure

in the MLE optimization itself, and additional analysis is required to confirm

that the poor fit is physically meaningful.

For a time-independent Lindbladian, the master equation from Eq. (10.18) sim-

plifies to

�̇� = − 𝑖

ℏ
[�̂�, 𝜌] +

𝑑2−1∑︁
𝑖=1

𝛾𝑖(�̂�𝑖𝜌�̂�
†
𝑖 −

1

2
{�̂�†

𝑖 �̂�𝑖, 𝜌}). (10.20)

Choosing an operator basis {𝜎𝑖} consisting of a Hilbert-Schmidt orthogonal set of

traceless Hermitian operators in dimension 𝑑 (which can be constructed from tensor

products of single-qubit Pauli matrices and the identity), the master equation can be

rewritten as

�̇� = − 𝑖

ℏ
[�̂�, 𝜌] +

𝑑2−1∑︁
𝑖,𝑗=1

𝐿𝑖𝑗(𝜎𝑖𝜌𝜎
†
𝑗 −

1

2
{𝜎†

𝑗𝜎𝑖, 𝜌}) (10.21)

where 𝐿𝑖𝑗 is a Hermitian and positive semidefinite matrix capturing the incoherent

evolution, commonly referred to as the Lindblad matrix.

Similar to the relationship between the process matrix 𝜒 and the Kraus operators

discussed in Section 10.4, the Lindblad matrix is unique while the jump operators

have a unitary freedom: the Lindblad equation in Eq. (10.20) is invariant under a

unitary transformation of the jump operators and decay rates. In particular, a new set

of jump operators and decay rates {
√︀
𝛾′𝑖�̂�

′
𝑖} can be constructed from the set {√𝛾𝑗�̂�𝑗}

as
√︀
𝛾′𝑖�̂�

′
𝑖 =

∑︀
𝑗 𝑈𝑖𝑗

√
𝛾𝑗�̂�𝑗, where 𝑈 is a unitary matrix. Since the Lindblad matrix

can readily be obtained from the decay rates and jump operators (and vice versa), one

can choose either representation without loss of generality. In the following analysis,

we choose to directly estimate the Lindblad matrix, and we derive the jump operators

by diagonalizing this matrix. Specifically, a (unique) set of jump operators can be
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obtained by diagonalizing the Lindblad matrix as

�̂�𝑖 =
𝑑2−1∑︁
𝑗=1

𝑈𝑖𝑗𝜎𝑗 (10.22)

where 𝑈 is a unitary matrix such that 𝐿 = 𝑈D𝑈 †, where D = diag(𝛾1, 𝛾2, . . . , 𝛾𝑑−1)

is a diagonal matrix with the decay rates.

To estimate the most likely Hamiltonian and Lindblad matrix which describe the

continuous action of the quantum channel for all time 𝑡, we once again construct a

log-likelihood function. However, unlike the MLE function for extracting the Kraus

operators in Eq. (10.16), we must now account not only for all combinations of initial

states and measurement axes, but also for all channel durations. We therefore seek

to maximize a log-likelihood function over all time steps 𝑡𝑖

ln(ℒLT) =
𝑁∑︁
𝑖=1

ln(ℒ(𝑡𝑖)) (10.23)

where the likelihood function at each discrete time ln(ℒ(𝑡𝑖)) is defined as in Eq. (10.16)

ln(ℒ𝒦(𝑡𝑖)) =
∑︁
𝑏,𝑠

𝑓(𝑠, 𝑏, 𝑖) ln
(︀
Tr [𝜌𝑠(𝑡𝑖)𝑀𝑏]

)︀
+ 𝑓(𝑠, 𝑏, 𝑖) ln

(︀
Tr [𝜌𝑠(𝑡𝑖)(1−𝑀𝑏)]

)︀
,

(10.24)

except that we no longer write the state 𝜌𝑠(𝑡𝑖) as the discrete evolution of the initial

state 𝜌𝑠 using the Kraus operators 𝜌𝑠(𝑡𝑖) =
∑︀

𝑖𝒦𝑖𝜌𝑠𝒦†
𝑖 . Instead, we now find 𝜌𝑠(𝑡𝑖) by

numerically solving the master equation in Eq. (10.21) for each guess at the elements of

the Hamiltonian and the Lindblad matrices, where we evaluate the master equation

at each time step 𝑡𝑖 by numerical exponentiation of the Lindbladian. As with the

SPAM and Kraus estimation, a Cholesky decomposition is used to ensure that the

Lindblad matrix is positive semidefinite.
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10.7 Error and 𝜒2 Analysis

Once the most likely Lindbladian has been extracted, we evaluate the results of the

optimization by calculating the error between the predictions of the operators and

data. For each time step, the error for a given set of initial state and measurement

axis is computed as

error(𝑡𝑖) =
⃒⃒⃒
𝑥meas
𝑖 − 𝑥model

𝑖

⃒⃒⃒
(10.25)

where 𝑥meas
𝑖 is the measurement probability obtained in experiment at time step 𝑡𝑖

and 𝑥model
𝑖 is the corresponding estimate from the outcome of the MLE routine. The

error is then averaged over time steps, and the average error for a given combination

of initial state and measurement axis is reported.

In addition, the 𝑝-value of the operator fit can be similarly calculated using a 𝜒2

analysis of the extracted operators and data. In statistics, the 𝜒2 test quantifies how

likely it is that the data could have been produced by an assumed model known as the

null hypothesis. In LT, our null hypothesis is the assumption that the data is well fit

by a time-independent Markovian master equation. The 𝜒2 value is then computed

as

𝜒2(𝑡𝑖) =
𝑘∑︁
𝑗=1

(𝑥meas
𝑖,𝑗 − 𝑥model

𝑖,𝑗 )2

𝑥model
𝑖,𝑗

(10.26)

with the same definitions of 𝑥meas and 𝑥model as in Eq. (10.25). However, unlike in the

error calculation, we must also sum over the the total number of categories 𝑘 = 2𝑛

that the 𝑛-qubit data can fall into: 2 for the single-qubit data (‘0’ or ‘1’), 4 for the

two-qubit data (‘00’, ‘01’, ‘10’, or ‘11’).

Under the null hypothesis, the deviation between 𝑥observed
𝑖 and 𝑥expected

𝑖 is normally

distributed due to the central limit theorem, and it is well known that (given a large

enough sample size) the 𝜒2 statistic follows the 𝜒2-distribution with 𝑘 − 1 degrees

of freedom [101]. Intuitively, the larger the value of 𝜒2, the greater the discrepancy
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between the observed and expected values. For any value of 𝜒2, the 𝜒2-distribution

can then be used to compute the probability that a value at least as extreme might

have been obtained, which is known as the 𝑝-value. If one finds a particularly small

𝑝-value, then one should consider rejecting the null hypothesis on the grounds that

the assumed model is not very likely to have actually produced the observed data.

Whether one accepts or rejects the null hypothesis is determined by a threshold 𝑝-

value (commonly denoted as 𝛼), which is chosen in advance of analyzing the data.

This threshold is set arbitrarily and simply expresses how conservative one would like

to be when deciding to reject the null hypothesis, trading off false positives for false

negatives as the threshold is set lower and lower. In our case, we will refrain from

choosing a specific 𝛼 and let the data speak for itself, noting that higher 𝑝-values

indicate data that is more compatible with a Markovian assumption, while lower

values suggest deviation between the Markovian model and data.

In the experimental demonstration of Lindblad tomography which follows, we

compute the average error and 𝑝-value over time, for each combination of initial

state and measurement basis. The 𝑝-value is computed from the 𝜒2 distribution with

one degree of freedom to account for the two different measurement outcomes (three

independent degrees of freedom for the two-qubit data, 𝑘 − 1 in general). Since the

different outcomes are not inherently included in the calculation of the error, we

also average over the different outcome types when calculating error. Since we are

calculating the error between two probabilities, the error is bounded between 0 and

1. The 𝑝-value is inherently bounded between 0 (bad fit) and 1 (exact fit). Under

the null hypothesis, the 𝑝-values should actually be uniformly distributed due to

statistical error, and so an average 𝑝-value of around 0.5 indicates very close agreement

with the null-hypothesis. We emphasize that in all cases, whenever the expected

probabilities are small, the relative error and the 𝑝-value will both suffer even if the

fit is qualitatively quite good.
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100 μm

Figure 10-3: SEM image of an identically fabricated copy of the device characterized
in this work, consisting of three capacitively coupled superconducting flux-tunable
transmon qubits arranged in a linear chain. For this initial proof-of-principle demon-
stration of single- and two-qubit Lindblad tomography, we chose to consider only the
left and middle qubits of the chain, which we label qubits A and B, respectively. The
rightmost qubit is far detuned to its frequency minimum and left to idle in its ground
state for the duration of the characterization protocol.

10.8 Experimental Demonstration of Lindblad

Tomography

So far, our discussion of Lindblad tomography has been entirely theoretical. For

the remainder of this chapter, we will discuss what happens when you apply this

protocol to a physical device in the laboratory. As a first demonstration of Lindblad

tomography, we implemented this protocol on the same three-qubit device we studied

extensively in Part III, which consists of three capacitively coupled superconducting

flux-tunable transmon qubits arranged in a linear chain (Fig. 10-3). For this initial

proof-of-principle demonstration of single- and two-qubit Lindblad tomography, we
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Figure 10-4: Schematic of the two coupled transmon qubits characterized in this
experiment, corresponding to the left and middle qubits in the three-qubit chain in
Fig. 10-3.

Parameter Qubit A Qubit B
Idling Frequency, 𝜔𝑖/2𝜋 4.744GHz 4.222GHz
Anharmonicity, 𝜂/2𝜋 -175MHz -190MHz
Coupling Strength, 𝑔/2𝜋 12MHz
Junction Asymmetry 1:5 1:10
Single-qubit Gate Time 30ns 30ns
Readout Resonator Frequency, 𝜔𝑟/2𝜋 7.252GHz 7.285GHz
Energy Relaxation Time, 𝑇1 26𝜇s 35𝜇s
Ramsey Decay Time, 𝑇2 25𝜇s 24𝜇s

Table 10.1: Device parameters for the two qubits characterized in this work. Re-
ported values of 𝑇1 and 𝑇2 are found by fitting the raw data from the corresponding
subsets of the single-qubit LT sequence (highlighted gates in Fig. 10-1a, no pulses
applied to the neighboring qubits) and recording the decay time of the fit, consistent
with standard experimental convention. LT generalizes this technique by extracting
the decay channel from the full set of initial states, measurement axes, and channel
durations.

chose to consider only the left and middle qubits of the chain, which we label qubit

A and B, respectively. The rightmost qubit is far detuned to its frequency minimum

and left to idle in its ground state for the duration of the characterization protocol.

Significant device parameters for qubits A and B are noted in Table 10.1. For many

of the figures which follow, we will schematically represent the two coupled transmon

qubits A and B in cartoon form, as in Fig. 10-4.
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10.8.1 SPAM Characterization

Running Lindblad tomography on this device, our first task is to extract the SPAM

errors, as discussed in Section 10.3. We do this two ways: first, estimating the SPAM

errors for each qubit individually using the data collected from single-qubit LT, and

then for the combined two-qubit system using two-qubit LT. In both cases, the maxi-

mization of the log-likelihood function was performed using MATLAB’s built-in func-

tion fmincon, which is a gradient-based numerical optimizer for constrained nonlinear

problems. To avoid a situation where optimizer gets stuck in local minima, multiple

starting points were tried to find a good approximation of the global minimum, which

we accomplished by sampling random POVMs and initial states as starting points.

For both estimations, we sampled over 104 different starting points. To constrain the

space of the search, we restricted the search space of the optimization to be within

some deviation of perfect POVMs and zero temperature thermal initial state, varying

this allowed deviation until a global minimum was found. In particular, we found

that restricting the initial thermal population of the |1⟩-state to be smaller than 5%

resulted in the most successful results, a constraint which is consistent with estima-

tion of the effective device temperature for the two transmon qubits in a dilution

refrigerator at a base temperature of 11mK [223].

For the single-qubit estimation of qubit A, we used data where the neighboring

qubit B was kept in the ground state and measured in the 𝑧-basis such that no pulses

were applied to qubit B during the measurement (and vice versa for estimation of

qubit B). The POVMs found from the maximization are

𝑀𝐴
0 =

[︃
0.870 0.00 + 0.015𝑖

0.00− 0.015𝑖 0.168

]︃
(10.27)

𝑀𝐵
0 =

[︃
0.880 −0.004− 0.031𝑖

−0.004 + 0.031𝑖 0.165

]︃
(10.28)

indicating that there are significant measurement errors on the order of 10–20%. The
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Figure 10-5: Extracted two-qubit POVMs, corresponding to imperfect measurement
of the states |00⟩, |01⟩, |10⟩, and |11⟩, respectively (negative values shown in red,
perfect POVMs shown in wireframe, imaginary parts and elements smaller than 10−2

omitted for visual clarity).

estimated initial states are

𝜌𝐴0 =

[︃
0.999 −0.002− 0.005𝑖

−0.002 + 0.005𝑖 0.001

]︃
(10.29)

𝜌𝐵0 =

[︃
0.998 0.009− 0.04𝑖

0.009 + 0.04𝑖 0.002

]︃
. (10.30)

For the combined two-qubit system, we found the following POVM elements (illus-
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trated in Fig. 10-5)

𝑀00 =

⎡⎢⎢⎢⎣
0.7920 −0.010− 0.019𝑖 −0.008 + 0.010𝑖 0.006− 0.002𝑖

−0.010 + 0.019𝑖 0.146 −0.014 + 0.000𝑖 0.010− 0.004𝑖

−0.080− 0.010𝑖 −0.014 + 0.000𝑖 0.151 0.006− 0.007𝑖

0.006 + 0.002𝑖 −0.010 + 0.004𝑖 0.006 + 0.007𝑖 0.018

⎤⎥⎥⎥⎦
(10.31)

𝑀01 =

⎡⎢⎢⎢⎣
0.095 0.010 + 0.014𝑖 0.002 + 0.002𝑖 −0.009 + 0.002𝑖

0.010− 0.014𝑖 0.726 0.014 + 0.002𝑖 0.003 + 0.004𝑖

0.002− 0.002𝑖 0.014− 0.002𝑖 0.018 −0.004− 0.002𝑖

−0.009− 0.002𝑖 0.003− 0.004𝑖 −0.004 + 0.002𝑖 0.130

⎤⎥⎥⎥⎦
(10.32)

𝑀10 =

⎡⎢⎢⎢⎣
0.110 0.00 + 0.002𝑖 −0.008− 0.009𝑖 0.002− 0.003𝑖

0.000− 0.002𝑖 0.017 0.006− 0.010𝑖 0.002− 0.001𝑖

−0.008 + 0.009𝑖 0.006 + 0.010𝑖 0.727 0.011− 0.001𝑖

0.002 + 0.003𝑖 0.002 + 0.001𝑖 0.011 + 0.001𝑖 0.124

⎤⎥⎥⎥⎦
(10.33)

𝑀11 =

⎡⎢⎢⎢⎣
0.002 0.000 + 0.003𝑖 0.014− 0.003𝑖 0.001 + 0.003𝑖

0.000− 0.003𝑖 0.111 −0.005 + 0.007𝑖 −0.015 + 0.001𝑖

0.013 + 0.003𝑖 −0.005− 0.007𝑖 0.104 −0.013 + 0.010𝑖

0.001− 0.003𝑖 −0.015− 0.001𝑖 −0.013− 0.010𝑖 0.718

⎤⎥⎥⎥⎦
(10.34)

and an initial two-qubit state (illustrated in Fig. 10-6)

𝜌𝐴𝐵0 =

⎡⎢⎢⎢⎣
0.992 −0.001 + 0.000𝑖 0.000 + 0.000𝑖 0.000− 0.001𝑖

−0.001 + 0.000𝑖 0.004 0.001− 0.002𝑖 0.000 + 0.003𝑖

0.000 + 0.000𝑖 0.001 + 0.002𝑖 0.001 −0.001 + 0.000𝑖

0.000 + 0.001𝑖 −0.003𝑖 −0.001 + 0.000𝑖 0.003

⎤⎥⎥⎥⎦ .
(10.35)

As we discussed in Section 10.3, in general we would need to account for imperfec-

tions in the single-qubit gates used to initialize our state and rotate our measurement

axis. However, as we note, Lindblad tomography is resilient to errors in the single-

qubit fiducial gates R𝑠 and R𝑏 required for state preparation and measurement axis ro-

tation, and we can safely exclude these errors from our model. Nonetheless, we can in-
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Figure 10-6: Skyscraper plots of the imperfect two-qubit ground state 𝜌𝐴𝐵0 extracted
during two-qubit LT (ideal ground state shown in wireframe, elements smaller than
10−2 omitted for visual clarity).

dependently characterize these rotations by performing Interleaved Clifford Random-

ized Benchmarking (IRB) on the full set of single-qubit gates R ∈ {1,X𝜋,Y±𝜋
2
,X∓𝜋

2
}

required to run Lindblad tomography on each qubit. For each of these operations,

we record fidelities in excess of 99.9%—over an order of magnitude greater than the

fidelity observed for state initialization or measurement—indicating that errors in

the single-qubit rotations have negligible impact on state-initialization and POVM

estimation in comparison to imperfect thermalization and measurement error.

Having extracted the SPAM parameters of our device, we can briefly pause to

analyze these prelminary results and see what they tell us about our device. Looking

at the extracted initial states in Eq. (10.29) and (10.30), we note that the initial

single-qubit states are very similar to thermal states of the form

𝜌thermal = 𝑎 |0⟩⟨0|+ (1− 𝑎) |1⟩⟨1| (10.36)

where 𝑎 ∈ [0, 1]. Minimizing the trace distance 𝐷(𝜌thermal, 𝜌0) between the estimated

initial states and a thermal state with respect to the thermal parameter 𝑎, we find

minimal trace distances 𝐷(𝜌thermal, 𝜌
𝐴
0 ) = 0.01 (𝐷(𝜌thermal, 𝜌

𝐵
0 ) = 0.04) for 𝑎 = 0.999
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Figure 10-7: Single-qubit reference and interleaved Clifford randomized benchmark-
ing. Characterization of nine single-qubit gates performed on qubit A and B, with
Clifford reference fidelity (‘Ref’) and interleaved gate fidelities recorded in the legend.
This set includes all the gates required for state preparation (R𝑠) and measurement
axis rotation (R𝑏), and each of these gates exceeds an interleaved RB fidelity of 99.9%.
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(𝑎 = 0.998). This result is thus consistent with the observation that the imperfect

ground state of a superconducting qubit at finite temperature can be approximated

as a thermal state of an anharmonic oscillator [257].

Now, traditionally the SPAM errors for a single qubit in a multi-qubit device would

be found by characterizing the qubit while all its neighbors are left in their ground

states. This would imply that, to use the device characterized here as an example,

the manipulation and readout of qubit B should have no effect on the POVM and

initial state of qubit A. The extent to which this holds can be tested by comparing

the estimated single-qubit POVMs and initial states for both qubits with the joint

two-qubit POVM and initial state estimated using full two-qubit LT. The deviation

between the estimated single- and two-qubit POVMs can be quantified as the trace

distance 𝐷(𝑀𝑥𝑦,𝑀𝑥⊗𝑀𝑦), where 𝑀𝑥 (𝑀𝑦) are the estimated single qubit POVMs for

qubit A (B), 𝑀𝑥𝑦 is a two-qubit POVM, and 𝑥, 𝑦 ∈ {0, 1}. Doing so, we find a trace

distance of 0.04 for 𝑥𝑦 = 00, 01, 10 and 0.05 for 𝑥𝑦 = 11. As for the deviation between

the single- and two-qubit initial states, the trace distance between the estimated initial

two-qubit state 𝜌𝐴𝐵0 and the product state 𝜌𝐴0 ⊗ 𝜌𝐵0 constructed from the single-qubit

estimates is found to be 𝐷(𝜌𝐴𝐵0 , 𝜌𝐴0 ⊗ 𝜌𝐵0 ) = 0.05. Comparing the initial two-qubit

state 𝜌𝐴𝐵0 to a product of single-qubit thermal states (see above), we find a trace

distance of 0.01 for thermal populations 𝑎 = 0.998 (qubit A) and 𝑎 = 0.994 (qubit

B).

10.8.2 Single-Qubit Kraus and Lindblad Extraction

Having characterized the SPAM errors for both the single- and two-qubit channels,

we can now proceed to tomographically reconstruct the channel. To start, we will

consider the results of single-qubit LT applied to qubit A, reconstructing the single-

qubit idling channel of qubit A using both the Kraus and Lindblad formalisms. To

perform the Kraus and Lindblad optimizations, we maximized their respective log-

likelihood function using MATLAB’s built-in functions fmincon and fminsearch.

For the Kraus optimization, fmincon was used in order to enforce the constraint of

a trace-preserving map and, as with the SPAM characterization, the interior-point
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algorithm was used. As an initial point of the optimization, we used Kraus operators

corresponding to an identity channel to estimate the Kraus operators of the first

time step, where the evolution from the initial state is presumed to be small. The

resulting estimate was then used as starting point for the next time step and this

procedure was iterated for the whole time series. As for the Lindblad estimation,

all physically constraints of the evolution could be ensured by employing a Cholesky

decomposition of the Lindblad matrix and using the Hermiticity of the Hamiltonian

to reduce the number of free parameters. The optimization therefore allowed for an

unconstrained optimizer, and we used the fminsearch optimizer of MATLAB, which

uses the gradient-free simplex search method of Ref. [259]. As initial starting point

for the optimization, we used the Lindblad matrix corresponding to pure dephasing

and (zero-temperature) amplitude damping for the single qubit Lindblad estimation.

In Fig. 10-8, we show the results of extracting the single-qubit Kraus operators

and most likely Lindbladian for qubit A of our superconducting transmon device,

superposed over the raw data obtained at each time step for all eighteen combinations

of pre- and post-rotation. Here, blue dots show the raw measurement probability 𝑝0,

averaged from 1000 single-shot measurements of the final state 𝜌𝑠(𝑡𝑖); orange ×’s show

the predicted outcome of an imperfect measurement 𝑀𝑏 of the state 𝜌𝑠(𝑡𝑖), estimated

by applying the extracted Kraus operators to the extracted imperfect initial state 𝜌𝑠

as in Eq. (10.17); and the solid red line traces out the predicted measurement results

for the continuous evolution of qubit A over all times 𝑡, as predicted by the most

likely Hamiltonian and Lindblad matrices. As such, the red line and orange ×’s not

only capture the channel noise but also account for the estimated SPAM errors of our

device.

Performing this optimization over all eighteen sets of pre- and post-pulses and all

time steps, we find that the mostly likely jump operators for the single-qubit noise
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Figure 10-9: Error analysis of the extracted single-qubit Kraus (orange) and Lindblad
(red) operators for qubit A when qubit B is in |0⟩. The error and 𝑝-value between
the data and the estimated operators are calculated for each time step, initial state,
and measurement axis of qubit A, and the results are averaged over the first 20𝜇𝑠.

channel of qubit A are

�̂�1 =

[︃
−0.551− 0.052𝑖 0.030− 0.622𝑖

0.030− 0.010𝑖 0.551 + 0.052𝑖

]︃
(10.37)

�̂�2 =

[︃
0.438− 0.019𝑖 0.144 + 0.757𝑖

0.144− 0.042𝑖 −0.438 + 0.019𝑖

]︃
(10.38)

with decay rates 𝛾1 = 0.029 MHz and 𝛾2 = 0.037 MHz, respectively. Looking at the

corresponding red traces in Fig. 10-8, we note that these operators generally fit the

data well, and the average error and 𝑝-values of all the extracted operators are shown

in Fig. 10-9.
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Figure 10-10: Lindblad tomography applied to the idling channel of a single supercon-
ducting transmon qubit. Data and analysis results for the LT sequence corresponding
to a 𝑇2 Ramsey measurement (purple gates in Fig. 10-1a), when the neighboring qubit
is prepared near its ground state |0⟩. Blue points are 𝑝0 of the state 𝜌𝑠(𝑡𝑖), averaged
from 1000 single-shot measurements (discussed in Section 10.3, fitted value of 𝑇2
recorded in Table 10.1, shot noise 1/

√
𝑁 ∼ 3%). Orange ×’s are predicted mea-

surement outcomes obtained from applying the Kraus operators estimated at each
discrete time 𝑡𝑖 to the extracted initial state 𝜌0 given an imperfect measurement 𝑀0

(technique discussed in Section 10.4). Red line traces the predicted outcomes for con-
tinuous time 𝑡, based on the most likely time-independent Lindblad and Hamiltonian
operators (technique discussed in Section 10.6, average error = 2.25× 10−2). Results
for the first 10𝜇s are enlarged for clarity in inset.

However, looking at the full set of measurements, we note that there is some small

disagreement between the Lindblad fits (red) and the data (blue) for sequences cor-

responding to 𝑇2-type measurements. For example, we observe that the Lindblad fit

slightly underestimates the decay time for the dataset when qubit A is prepared in

|+⟩ and measured in the 𝑥-basis (purple highlighted plot in Fig. 10-8). However, look-

ing at this measurement in the context of the full matrix of pre- and post-pulses, we

note small temporal fluctuations in the channel over the course of the data aquisition

period, and we see that the Lindblad fit consequently overestimates the decay time

of some traces relative to others. Since LT finds the single time-independent Lind-

blad operator which best describes all combinations of pre- and post-pulses, spurious
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Figure 10-11: The same measurement as depicted in Fig. 10-10, now taken when
the neighboring qubit is near its excited state |1⟩ (most likely Lindbladian in red,
average error = 2.29× 10−2). The always-on 𝑍𝑍-coupling between the two transmon
qubits induces a state-dependent frequency shift when the neighbor is excited, which
manifests here as a faster oscillation frequency.

temporal fluctuation in the channel during a small set of measurements constitutes a

partial violation of the time-independent assumption of LT, and this fluctuation will

affect the fit of the other datasets.

What happens when we change the state of qubit B? In the plots in Fig. 10-8, we

chose to leave qubit B in its ground state during the tomography of A. In principle,

this should not matter—if the two qubits are uncoupled from each other, then their

combined Hamiltonian should be separable, and the evolution of qubit A should have

no dependence of whatever we do to qubit B in the meantime. So let’s test this. What

happens when we alter the state of qubit B and repeat our characterization of A? To

get some intuition for how this affects our characterization, let’s just focus on one of

the eighteen plots in Fig. 10-8, corresponding to a standard 𝑇2 measurement of qubit

A (purple hightlighted plot). In Fig. 10-10, we focus in on this plot, highlighting the

state of qubit B during this measurement sequence. For this sequence, we find that

the most likely Lindblad operators have an average error of 2.25× 10−2 to data.

In Fig. 10-11, we show what happens when we repeat this exact same measure-

ment, now putting qubit B into its |1⟩-state while we characterize qubit A. One look
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Figure 10-12: Error analysis of the extracted single-qubit Kraus (orange) and Lind-
blad (red) operators for qubit A when qubit B is in |0⟩. The error and 𝑝-value between
the data and the estimated operators are calculated for each time step, initial state,
and measurement axis of qubit A, and the results are averaged over the first 20𝜇𝑠.

at the raw data in this plot (blue), and it is immediately clear that the state of qubit

B has a significant impact on the evolution of qubit A—the two qubits are not sepa-

rable. Nonetheless, we can run LT on this data set and the other 17 combinations of

pre- and post-pulses, extracting the most likely Kraus (orange) and Lindblad (red)

operators which describe this evolution. Calculating the error of these operators to

data (Fig 10-12), we find error values comparable to what we found when qubit B was

in |0⟩ (average Lindblad error = 2.29× 10−2). Thus, while qubit B is clearly altering

the state of A, the evolution of A remains well-described by a set of single-qubit jump

operators.

What happens when we can repeat this measurement one more time, but now
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Figure 10-13: The same measurement as depicted in Figs. 10-10 and 10-11, now taken
when the neighboring qubit is in a superposition state |+⟩. In this basis, the always-
on 𝑍𝑍-coupling is an entangling operation, and the data is poorly predicted by the
most likely single-qubit Lindbladian (red, average error = 6.91× 10−2), a hallmark of
non-Markovian evolution.

putting qubit B into the superposition state |+⟩ during the characterization of A?

Looking at the results of this measurement in Fig. 10-13, we see that once again the

state of qubit B has modified the evolution of qubit A. And yet, running this data set

through LT along with the other pre- and post-pulses, we find something remarkably

different happens when we try to estimate the most likely Lindbladian. Looking at the

red trace in Fig. 10-13, we see that the extracted Lindbladian fits the data extremely

poorly, failing to capture the high-frequency oscillations observed in data (average

Lindblad error = 6.91 × 10−2). This failure to fit the data is emphasized in the

error analysis of the Lindblad operator for the remaining seventeen plots (Fig 10-14,

bottom): while the estimated Lindbladian succeeds in fitting many of the constituent

tomographic sequences (such as the sequences corresponding to 𝑇1 measurements),

the estimated Lindbladian systematically fails to fit the 𝑇2-like sequences, resulting

in notably higher error values and lower 𝑝-values.
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Figure 10-14: Error analysis of the extracted single-qubit Kraus (orange) and Lind-
blad (red) operators for qubit A when qubit B is in |0⟩. The error and 𝑝-value
between the data and the estimated operators are calculated for each time step, ini-
tial state, and measurement axis of qubit A, and the results are averaged over the
first 20𝜇𝑠. Note that now that qubit B is prepared in a superposition state, we ob-
serve dramatically worse Lindblad fits (i.e., larger errors and lower 𝑝-values) for the
sequences corresponding to 𝑇2-like measurements of qubit A, consistent with the poor
Lindblad fit shown in Fig. 10-13. Meanwhile, the sequences corresponding to 𝑇1-like
measurements of qubit A (which are blind to the entanglement with qubit B) show
comparatively good fits to data even when qubit B is in |+⟩.

10.8.3 Single-Qubit Markovianity Check

To make sense of the Lindblad fits in Figs. 10-10, 10-11, and 10-13, we now consider

the results of these data sets when we apply the Markovianity check we discussed in

Section 9.5. Armed with the estimated Kraus operators for the single-qubit idling

channels of qubit A, we perform the optimization in Eq. (10.19) over all of the initial
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states of the LT protocol and calculate the measure 𝑁markov.

In Fig. 10-15, we graphically illustrate 𝑁markov—given here by the total area in

red—for each of the configurations of qubit B shown in Figs. 10-10, 10-11, and 10-

13. Notably, when qubit B is initialized in the state |+⟩, the idling channel of qubit

A registers clear periods of increasing trace distance (Fig. 10-15c). This behavior

disappears when qubit B is initialized in either the |0⟩- or |1⟩-state (Fig. 10-15a,b, re-

spectively): in these cases, increases in the trace distance appear to arise from isolated

statistical fluctuations in the data, with the trace distance otherwise monotonically

decreasing over the channel duration.

Comparing the poor Lindblad fit from Fig. 10-13 with the corresponding results

of the Markovianity metric in Fig. 10-15c, we see that the failure of our fit is not

the fault of the optimizer—a failure, that is, to find the right Lindbladian to fit the

data. Instead, as we have discussed in Section 10.5 and 9.5, the Markovianity metric

is alerting us to the presence of non-Markovian errors, errors which cannot be fit to

any Lindbladian.

However, to see why these errors only appear when qubit B is prepared in |+⟩ and

not when it is prepared in |0⟩ or |1⟩, we need to interrogate more fully what qubit A

and qubit B are doing to one another during their free evolution. Single-qubit results

alone will not answer this, so let’s run LT on the full two-qubit system and see what

is really going on here.

10.8.4 Two-Qubit operator extraction and Markovianity

As we showed in Section 10.3, the estimation of the two-qubit Kraus and Lindblad op-

erators follows from a straightforward generalization of the single-qubit LT protocol,

as shown in Fig. 10-2. To characterize qubit A and B together, we must prepare the

two qubits in each of the 36 combinations of single-qubit cardinal states and measure

them in each of the 9 combinations of single-qubit Pauli bases, leading to a total of

324 different time-domain sequences we must optimize over to extract the most likely

operators. Indeed, looking at the enormous jump in the number of required mea-

surements for two-qubit LT in comparison to single-qubit LT, it is easy to see that
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the resources required characterize an 𝑛-qubit system scales exponentially with the

number of qubits—exactly as in process or gate set tomography—requiring 6𝑛 initial

states and 3𝑛 measurement axes to fully reconstruct the dynamics of the system.

However, while full characterization of an arbitrarily large quantum processor with

Lindblad tomography would prove physically impossible, two qubits are well within

the realm of experimental practicality. Indeed, in Fig. 10-16, we show a subset of

the results obtained for running LT on both qubit A and B, extracting the operators

which best describe the two-qubit dynamics of the combined system. As in Figs. 10-

10, 10-11, and 10-13, raw data are reported in blue, predictions from extracted Kraus

operators in orange, and predictions from the mostly-likely Hamiltonian and Lindblad

operators in red. Crucially, these four plots represent only four of the 324 tomographic

sequences which go into the extraction of the operators, and the results of the two-

qubit Kraus and Lindblad operators in these plots represent the consensus across all

324 tomographic sequences.

Having extracted the two-qubit operators, we can revisit the poor Lindblad fit we

observed in Fig. 10-13. What happens when we repeat this exact same measurement,

putting both qubit A and B in their |+⟩-states and measuring them in the 𝑥-basis,

but now reconstructing the combined two-qubit idling channel of their combined

evolution? In Fig. 10-17, we show exactly that. Here, we apply an identical set of

pre- and post-rotations as in Fig. 10-13, but now reporting the results of the most

Figure 10-15: Markovianity of the single-qubit idling channel. (a–c) Qualitatively
comparing the measured Markovianity of qubit A’s idling channel when qubit B is
prepared in |0⟩, |1⟩, or |+⟩ respectively. We find the two initial states of qubit A
which together yield the largest value of 𝑁markov, and we plot the trace distance 𝐷
between these two states at each time 𝑡𝑖 (blue points), as well as the difference in
trace distance between sequential times (red triangles, values less than 0 omitted for
visual clarity, since they do not contribute to 𝑁markov). Summing the area under
the red points amounts to the discrete version of Eq. (10.19), with sustained periods
increasing trace distance indicating the presence of non-Markovian errors. When
qubit B is prepared in |+⟩ as in (c), we observe clear periods of increasing trace
distance, suggesting the greatest presence of non-Markovian errors.
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Idling Channel Duration (μs)

Figure 10-16: Two-qubit Lindblad tomography results for four of the 324 tomographic
sequences characterized in two-qubit LT. Raw data are reported in blue, predictions
from extracted two-qubit Kraus operators in orange, and predictions from the mostly-
likely two-qubit Hamiltonian and Lindblad operators in red. Here, the most likely
Kraus and Lindblad operators represent the consensus across all 324 tomographic
sequences.

likely two-qubit Kraus and Lindblad operators which describe their joint evolution.

Looking at the fit of the two-qubit Lindbladian in Fig. 10-17, we see that estimated

operators now fit the data significantly better than in Fig. 10-13 (average error =

2.15× 10−2 for the two-qubit operators, in comparison to 6.91× 10−2 for the single).

This is not a fluke: in Figs. 10-18 and 10-19, we report the error of the Kraus and

Lindblad extractions over all 324 tomographic sequences. Unlike in Fig. 10-14, we

do not see systematically higher fitting errors for any subset of the LT sequences,

indicating that the extracted operators fit all sequences with good success. Moreover,

when we run the full set of two-qubit data through the Markovianity check, we find

that no pair of two-qubit initial states demonstrates the oscillating trace distance

seen so clearly in Fig. 10-15c. Looking at Fig. 10-20, where we show the pair of two-

qubit states which yield the highest value of 𝑁markov, we see that their relative trace
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Figure 10-17: The same measurement as depicted in Fig. 10-13, but now interrogated
using two-qubit LT. While the pulse sequence is identical to the one performed in
the single-qubit characterization in Fig. 10-13, the data is now well-predicted by the
most likely two-qubit Lindbladian (average error = 2.15 × 10−2); this observation,
paired with the result of the Markovianity metric shown in Fig. 10-20, suggests that
the channel is Markovian in the two-qubit frame.

distance decreases monotonically in time during the two qubits’ evolution. Comparing

the error analysis in Fig.10-19 with the Markovianity check in Fig. 10-20, we conclude

that the error is largely Markovian in the two-qubit picture.

10.8.5 Investigating the Non-Markovianity

How do we make sense of this result? How is it that the idling channel of qubit A

was non-Markovian for certain states of qubit B, but Markovian when we account for

qubit B in the full two-qubit picture. To get some intuition for what is going on in our

device, we can look at the actual two-qubit operators which yielded the successful fits

in Figs. 10-16 and 10-17. Running LT on the full set of two-qubit data, we estimate
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Figure 10-18: Analyzing the Kraus extraction of the two-qubit idling channel. The
error and 𝑝-value between the data and the Lindblad estimation are calculated for
each time step and qubit configuration (qubit A on 𝑦-axis, B on 𝑥-axis), and the
results are averaged over the first 20𝜇𝑠.
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Figure 10-19: Analyzing the Kraus extraction of the two-qubit idling channel. The
error and 𝑝-value between the data and the Lindblad estimation are calculated for
each time step and qubit configuration (qubit A on 𝑦-axis, B on 𝑥-axis), and the
results are averaged over the first 20𝜇𝑠. Note that, unlike in Fig. 10-14, we do not
see systematically higher fitting errors for any subset of the LT sequences, indicating
that the extracted operators fit all sequences with good success.
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Figure 10-20: Markovianity of the two-qubit idling channel. Here, we find the pair
of two-qubit initial states of qubits A and B which together yield the largest value of
𝑁markov, and we plot the trace distance 𝐷 between these two states at each time 𝑡𝑖
(blue points), as well as the difference in trace distance between sequential times (red
triangles, values less than 0 omitted for visual clarity, since they do not contribute to
𝑁markov). Summing the area under the red points amounts to the discrete version of
Eq. (10.19), with sustained periods increasing trace distance indicating the presence
of non-Markovian errors. Unlike in Fig. 10-15c, we find that none of the two-qubit
sequences display the clear oscillations we observed in the single-qubit frame, indi-
cating the channel errors are largely Markovian in the two-qubit frame.

the following two-qubit Hamiltonian

�̂�𝑒 = ℏ

⎡⎢⎢⎢⎣
−0.001 0.008 + 0.024𝑖 0.004− 0.003𝑖 0.001 + 0.015𝑖

0.008− 0.024𝑖 −1.035 0.000 + 0.098𝑖 −0.019 + 0.004𝑖

0.004 + 0.003𝑖 0.000− 0.098𝑖 −0.258 −0.009 + 0.000𝑖

0.001− 0.015𝑖 −0.019 + 0.004𝑖 −0.009 + 0.000 1.323

⎤⎥⎥⎥⎦
(10.39)

with angular frequencies in units of 2𝜋 × MHz, relative to the laboratory frame of

the driving pulses used for single-qubit rotations. Were these pulses chosen to be

resonant with the qubit frequencies, we would expect the diagonal elements of the

Hamiltonian to be zero.

From the Hamiltonian extracted in Eq. (10.39), we see that there is a frequency

detuning of Δ𝜔𝐴/2𝜋 = 0.258/2𝜋 MHz = 41.1kHz for qubit A and Δ𝜔𝐵/2𝜋 =

1.04/2𝜋 MHz = 165kHz for qubit B, which give rise to the oscillations seen in Fig. 10-
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10a (qubit A) and in the bottom left figure of Fig. 10-16. However, we notice that

this Hamiltonian is clearly not separable: looking at the frequency of the |11⟩-state,

we see that it is not equal to the sum of the individual excitation frequencies. This

is consistent with a Hamiltonian of the form

�̂� = �̂�𝐴 + �̂�𝐵 + �̂�𝑧𝑧 (10.40)

where �̂�𝐴 and �̂�𝐵 are the single-qubit Hamiltonians of qubits A and B respectively

and �̂�𝑧𝑧 is an interaction term of the form

�̂�𝑧𝑧/ℏ = 𝜔𝑧𝑧 |11⟩⟨11| =
𝜔𝑧𝑧
4

(𝑍𝑍 − 𝑍𝐼 − 𝐼𝑍 + 𝐼𝐼) (10.41)

where 𝜔𝑧𝑧 = 𝜔11 − 𝜔01 − 𝜔10 is the strength of the 𝑍𝑍-interaction.

The presence of this 𝑍𝑍-interaction is well understood from the physics of coupled

transmon qubits. For two transmon qubits interacting via a fixed capacitance, the

resulting dispersive repulsion of the |20⟩- and |02⟩-states shifts the frequency of the

|11⟩-state and gives rise to a ubiquitous “always-on” 𝑍𝑍-interaction in the computa-

tional subspace of the form in Eq. (10.41) [153]. Consequently, when the two qubits

are far detuned from each other—as they are in this experiment—this interaction

results in an effective two-qubit Hamiltonian of the form [337]

�̂�/ℏ = 𝜔𝐴 |10⟩⟨10|+ 𝜔𝐵 |01⟩⟨01|+ (𝜔𝐴 + 𝜔𝐵 + 𝜔𝑧𝑧) |11⟩⟨11| (10.42)

where 𝜔𝐴, 𝜔𝐵 are the |0⟩→|1⟩ transition frequencies of qubits A and B, respectively.

Thus, when one of the qubits is prepared in either |0⟩ or |1⟩, this interaction is manifest

as a state-dependent frequency shift. Indeed, this is exactly what we observed in

Figs. 10-10 and 10-11: comparing these two measurements, we see that the Ramsey

frequency of qubit A increases when we excited qubit B from |0⟩ to |1⟩, indicating

that the detuning between our drive frequency and the qubit transion frequency has

increased; since the drive frequency was constant between the two measurements, we

conclude that the qubit frequency itself changed as a result of the excitation of qubit
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B, exactly as we would expect from a nonzero 𝜔𝑧𝑧.

Looking at the diagonal elements of the extracted Hamiltonian in Eq. (10.39), we

estimate the frequency shift from the 𝑍𝑍-coupling to be

𝜔𝑧𝑧/2𝜋 = (1.32− (−0.26− 1.04))/2𝜋 MHz = 416kHz, (10.43)

which is consistent with the difference in oscillation frequency seen in Figs. 10-10 and

10-11. As a check, we can compare this to the value of 𝜔𝑧𝑧 we would expect from

device parameters using the relation [337]

𝜔𝑧𝑧 =
2𝑔2

Δ− 𝜂𝐵
+

2𝑔2

−Δ− 𝜂𝐴
(10.44)

where 𝜂𝐴, 𝜂𝐵 are the anharmonicity of qubits A and B, respectively; 𝑔 is the coupling

strength between the two qubits; and Δ = 𝜔𝐴𝑖 −𝜔𝐵𝑖 is the frequency detuning between

them. Substituting in the parameters for our device from Table 10.1, we estimate a

state-dependent frequency shift 𝜔𝑧𝑧/2𝜋 = 425kHz, consistent with the value found

from the Hamiltonian extraction using LT.

However, something very different happens when the two qubits are prepared in

an initial state |++⟩. Taking this state and evolving it according to the Hamiltonian

in Eq. (10.42), we find that the 𝑍𝑍-interaction turns into an entangling operation

in this basis: as the two qubits evolve, they will change from a product state into

an entangled state and back again. This should sound very familiar. Indeed, this is

exactly the picture that we used to introduce the notion of non-Markovianity back

in Section 10.5. If we take a pair of qubits which are periodically entangling with

one another and only consider the evolution of one of the qubits, the coupling will

swap information between the qubit we are measuring and its neighbor. This is

precisely what happens when we perform single-qubit LT on qubit A. By effectively

tracing qubit B out of the two-qubit idling channel, we have turned qubit B into

an environment with memory, and the periodic entanglement between the two qubits

manifests as a non-Markovian error in the single-qubit picture (Fig. 10-15c). However,

if the evolution of both qubits is considered, as in the two-qubit Kraus estimation,
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the always-on interaction is revealed to be unitary and this non-Markovian behavior

disappears (Fig. 10-20).

10.8.6 Interpreting the Jump Operators

Having estimated the unitary part of the idling channel—and shown how it accounts

for the appearance of non-Markovian errors in the single-qubit frame—we finally turn

to the extracted two-qubit jump operators and their decay rates, operators which

reveal the mechanisms by which information is lost to the environment during the

channel. Running two-qubit LT on both qubit A and B, we estimate the following

jump operators for the two-qubit system

�̂�1 =

⎡⎢⎢⎢⎣
0.501 = 0.001𝑖 0.000 + 0.001𝑖 −0.0002 + 0.002𝑖 −0.002 + 0.000𝑖

0.000− 0.001𝑖 0.499− 0.001𝑖 −0.001 + 0.001𝑖 −0.002 + 0.002𝑖

−0.001− 0.001𝑖 0.001− 0.001𝑖 −0.499 0.000 + 0.001𝑖

0.002 + 0.000𝑖 −0.001− 0.001𝑖 0.000 + 0.000𝑖 −0.501 + 0.000𝑖

⎤⎥⎥⎥⎦
(10.45)

�̂�2 =

⎡⎢⎢⎢⎣
0.448− 0.001𝑖 0.109 + 0.246𝑖 0.001− 0.002𝑖 0.002− 0.002𝑖

0.061− 0.125𝑖 −0.451 + 0.002𝑖 −0.001 + 0.002𝑖 0.002 + 0.005𝑖

−0.003− 0.002𝑖 −0.003 + 0.001𝑖 0.454 + 0.001𝑖 0.109 + 0.249𝑖

−0.004 + 0.001𝑖 0.000 + 0.002𝑖 0.064− 0.131𝑖 −0.451− 0.002𝑖

⎤⎥⎥⎥⎦
(10.46)

�̂�3 =

⎡⎢⎢⎢⎣
−0.072 + 0.161𝑖 0.639− 0.031𝑖 −0.003− 0.001𝑖 0.007 + 0.00𝑖

0.114 + 0.039𝑖 0.072− 0.161𝑖 −0.001 + 0.001𝑖 −0.005− 0.001𝑖

0.002 + 0.003𝑖 0.001 + 0.002𝑖 −0.071 + 0.162𝑖 0.655− 0.044𝑖

0.002− 0.003𝑖 −0.001− 0.002𝑖 0.134 + 0.035𝑖 0.071− 0.163𝑖

⎤⎥⎥⎥⎦
(10.47)

�̂�4 =

⎡⎢⎢⎢⎣
0.004 + 0.000𝑖 −0.001− 0.003𝑖 0.000− 0.703𝑖 −0.003 + 0.00𝑖

0.000− 0.001𝑖 0.000− 0.002𝑖 −0.004− 0.002𝑖 0.000− 0.703𝑖

0.001 + 0.078𝑖 0.002 + 0.001𝑖 0.000 + 0.002𝑖 −0.002− 0.003𝑖

0.000− 0.001𝑖 −0.001 + 0.079𝑖 0.000− 0.001𝑖 −0.004 + 0.000𝑖

⎤⎥⎥⎥⎦
(10.48)

where the corresponding decay rates were found to be 𝛾1 = 0.071 MHz, 𝛾2 = 0.097

MHz, 𝛾3 = 0.042 MHz, and 𝛾4 = 0.055 MHz.
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How do we interpret the structure of these jump operators? Motivated by our

understanding of the dominant error mechanisms for superconducting qubits, we can

compare the extracted operators above to products of single-qubit amplitude damping

and dephasing processes (i.e., 𝑇1 and 𝑇2 processes, respectively), which correspond to

jump operators of the form

�̂�𝑑,1 ∝ 𝜎𝑧 ⊗ 𝐼 (10.49)

�̂�𝑑,2 ∝ 𝐼 ⊗ 𝜎𝑧 (10.50)

�̂�−,1 ∝ 𝜎− ⊗ 𝐼 (10.51)

�̂�−,2 ∝ 𝐼 ⊗ 𝜎− (10.52)

�̂�+,1 ∝ 𝜎+ ⊗ 𝐼 (10.53)

�̂�+,2 ∝ 𝐼 ⊗ 𝜎+ (10.54)

where the operators 𝜎𝑧 and 𝜎− = |0⟩⟨1| , 𝜎+ = 𝜎†
− correspond to dephasing and am-

plitude damping to a thermal state at finite temperature, respectively.

To investigate whether traditional 𝑇1 and 𝑇2 models accurately describe the evo-

lution of our qubits, we run a separate maximum likelihood optimization of the Lind-

bladian, this time constraining the jump operators to be of the form in Eqs. (10.49)–

(10.54) and leaving only the rates (𝛾) and Hamiltonian (�̂�) as free parameters. We

will refer to this as the restricted optimization, while the previous optimization over

general jump operators is referred to as the free optimization. We compare the output

of this restricted optimization by calculating the diamond norm distance between the

two Liouvillian superoperators

𝛿(𝑡) = ‖Φ(Lfree, 𝑡)− Φ(Lrestricted, 𝑡)‖◇ (10.55)

where Lfree (Lrestricted) is the Liouvillian superoperator corresponding to the free (re-

stricted) optimization and Φ(L, 𝑡) is the Choi-matrix representation of 𝑒L𝑡. For a

diamond norm distance 𝛿, the minimum error probability when trying to distinguish

between the two channels for each measurement shot is (1− 𝛿/2)/2 [46]. For 𝑡 ≤ 80
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Figure 10-21: Deviation between the estimated Liouvillian of the restricted and free
optimization. The deviation is calculated as the diamond norm of the difference
between the two superoperators, as in Eq. (10.55).

𝜇s, we find that 𝛿(𝑡) ≤ 0.2; evaluating the asymptotic limit, we find that 𝛿(∞) = 0.06,

indicating that the two evolutions result in similar steady states (Fig. 10-21).

From this analysis, we conclude that the extracted jump operators from the unre-

stricted optimization are largely consistent with single-qubit amplitude damping and

dephasing channels, confirming that standard 𝑇1 and 𝑇2 models describe the data

reasonably well. However, the deviation from the single-qubit model is significant

and consistent with the observed always-on interaction between the qubits, which

can lead to two qubit decay channels. Further investigation is necessary to pinpoint

the physical mechanisms responsible for these errors, a promising direction for future

work.

We also compare the steady state of the two-qubit Lindbladian found in the

free optimization (𝜌𝐴𝐵ss ) to the initial two-qubit state (𝜌𝐴𝐵0 ) from the SPAM esti-

mation. Calculating the trace distance between these two states, we find a distance

𝐷(𝜌𝐴𝐵ss , 𝜌𝐴𝐵0 ) = 0.09, indicating a slight deviation between the two. This is unex-

pected since the superconducting qubits are initialized by waiting many multiples
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of 𝑇1—letting them relax to the steady state of the idling channel—and one would

therefore have expected the steady state to be identical to the initial state. We note,

however, that the deviation is relatively small and may originate from the fact that

we only fit to data up to 80𝜇s (∼ 2𝑇1 for qubits A and B, as shown in Table 10.1)

and the qubits have not fully relaxed.

10.9 Outlook and Discussion

In the work reported in this chapter, we have presented a technique for extracting

the time-independent Hamiltonian, jump operators, and corresponding decay rates of

an experimental quantum channel, which we refer to as Lindblad tomography (LT).

As we have seen, this technique combines aspects of state/process tomography and

time-domain 𝑇1/𝑇2 measurement with Hamiltonian, Lindblad, and SPAM error esti-

mation based on maximum likelihood (MLE). Lindblad tomography provides detailed

information about the errors and noise environment of physical quantum devices and

can be used to identify sources of qubit-qubit crosstalk.

While much of this proof-of-principal study focused primarily on noise processes

which arise due to the presence of neighboring qubits, Lindblad tomography is by no

means limited to error sources found in this work. On the contrary, since LT is agnos-

tic to the structure of the noise environment prior to measurement, this framework can

be naturally applied to study a broad range of noise sources which impact the idling

channel—such as coupling to coherent two-level systems (TLSs) [251], dephasing due

to photons in readout resonators [411], and interaction with quasiparticles [415] in

superconducting systems—all of which may leave traces in the extracted Lindbladian

and result in varying degrees of non-Markovian error. In addition, LT could prove

to be a useful framework for investigating changes in the noise environment over

time [82, 369], as well as a valuable tool for validating new quantum control and error

correction techniques.

As noted in the introduction, we conclude by reiterating that the number of mea-

surements required for Lindblad tomography scales exponentially with the number
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Prediction from Kraus
Prediction from Lindblad

Figure 10-22: Outlook: applying Lindblad tomography to a large superconducting
quantum processor. (a) Schematic of a large quantum processor, where the two qubits
studied in this work are thought of as neighboring qubits (A and B) in a large two-
dimensional grid of 𝑁 qubits. In addition to studying nearest-neighbor interactions,
LT can be performed just as easily on distant qubits (for example, A and C) to study
nonlocal crosstalk. A general protocol for evaluating the presence of non-Markovian
errors might proceed as follows: (b) First, we perform single-qubit LT on each qubit
in the grid (a task which scales 𝒪(𝑁)) and evaluate the quality of each Lindblad
fit. We look for qubits which exhibit a poor single-qubit Lindblad fit and compare
the fit with the result of the Markovianity metric. When these two metrics are in
agreement, we conclude that the evolution is non-Markovian in the single-qubit frame.
(c) We then perform two-qubit LT on each pair of qubits in the grid (a task which
scales 𝒪(𝑁2)) and evaluate the quality of each Lindblad fit. Comparing (b) and (c)
in concert with their repective Markovianity checks, we hone in on the neighboring
qubit which is the source of the non-Markovian error and work to mitigate it.
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of qubits, as with standard process tomography or GST. Thus, full characterization

of a large quantum processor using LT remains experimentally impractical. How-

ever, since crosstalk between qubits is almost entirely two-body, characterization of

all combinations of two-qubit patches on a large quantum processor using LT will

nevertheless provide valuable insights into the collective noise environment of the full

processor, and these measurements can be used to bootstrap higher-order errors [165,

277]. As the number of two-qubit patches only scales as ∼𝑁2 for an 𝑁 -qubit device

(regardless of hardware platform), characterization of direct two-qubit crosstalk with

Lindblad tomography can therefore, in principle, be done efficiently. Furthermore,

for devices where it is reasonable to assume that crosstalk is restricted to pairs of

qubits within a certain maximal separation (as may well be the case for devices with

equally spaced qubits, as in a lattice of superconducting qubits), the number of pairs

to be characterized would only scale as 𝒪(𝑁), though investigating the validity of

this approach remains the subject of future work. As research scales to larger and

more complex systems and the possible sources of crosstalk and unintentional qubit

entanglement inevitably increases, we are confident that repeated Lindblad tomogra-

phy of single- and two-qubit patches will provide an important step towards modeling

the dynamics of large-scale quantum processors.
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Quantum Supremacy
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Chapter 11

Preface

In Chapter 1, I compared the structure of this dissertation to that of a randomized

benchmarking sequence, where Part V serves as the inversion gate of the circuit,

bending the document back upon itself. Standing now at the symmetry point of this

document, a few words of preface are in order before the fold.

The following essay was written in the fall of 2021, during the long and grueling

thaw after two years of the COVID-19 pandemic. While many of the texts and

phenomena considered in the essay predate the pandemic, of all the work in this

thesis, this piece bears the clearest influence of that period. It was a period, some

may remember, when the world caught fire. In the midst of the blaze, I learned

how to read again. Through reading, I came to understand that the fire this time

was no aberration, that the flames were a long time coming. So, like many scholars

in so many disciplines, I decided it was time to confront the fire in my own work.

This task would not have been possible without the support, feedback, and care

of all the collaborators who helped me sort through the kindling: I am profoundly

grateful to Stefan Helmreich for his mentorship during the writing of this essay; to

Julia Menzel and Cristopher Moore for their feedback on early drafts of this work;

to Sarah Fleming for her careful edits and nourishing conversation throughout the

writing process; and to all of the anonymous colleagues I passed copies to during its

development. Reflecting on this work almost a year later, at a moment when our
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collective memory of the pandemic slips into an anxious amnesia, the essay already

feels dated in some respects. Time moves strangely these days. And time can do so

much.

The essay in the following chapter offers a sustained mediation on the structural

role of language in the physical sciences, but close readers may note that it also offers a

quieter reflection on time. Here, I will point out that the essay was also written shortly

after the completion of the Lindblad tomography manuscript reported in Chapter 10,

and both works concern, in their own ways, the rigorous characterization of time.

Putting these two bodies of work side by side in this thesis, it is immediately clear that

they play—as Wittgenstein and Lyotard would put it [285]—very different language

games. But when I first began drafting the essay which would become Cutting the

Ground Loop and I tried to imagine the reader who would encounter it, I imagined

the essay as if it were a chapter of a quantum computing thesis, immediately following

a chapter on Lindblad tomography. I imagined a curious science student stumbling

upon it by chance, as I had once stumbled upon Wheeler’s “Information, Physics,

Quantum” and his portentous Universe-circuit [468]. In that sense, the following

chapter was in fact the first one to be written explicitly for this thesis. Perhaps, then,

this final chapter is the real thesis after all, and all the chapters which precede it are

my earnest attempts to invert the critique, to dig through my past and find some

beauty in the science which might rise to the critique, salvage the enterprise. In this

task, at least, I believe I have succeeded.

And so, I arrive at the end of this dissertation convinced that the research pre-

sented in this final chapter is inseparable from the body of technical work which

precedes it. I caution readers who attempt to encounter one at the expense of the

other. Here, I dimly imagine two different readers holding this volume: one, a quan-

tum engineer who reads everything but this final chapter; the other, a student of

language and science studies who skips the technical chapters and turns straight to

this final one. I fear these two readers would emerge from their respective encoun-

ters with this dissertation as irreconcilable mirror images of each other—one rotated

clockwise, the other counterclockwise. These readers would have little to say to one
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another, at a time when our ability to talk to one another is so vital. So I ask much

of the reader. I ask the reader for their patience and, above all, for their trust. In

turn, I place my trust in you. We are learning a new language together, and our first

conversations will be clumsy. That’s okay; we still have time.

To the reader who accepts my trust and works their way through the entirety of

this dissertation in kind, engaging rigorously with both the science and the critique,

traversing the tangled loop to its completion: welcome back. We have much work to

do together.

—September 2022
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Chapter 12

Cutting the Ground Loop

12.1 Introduction

For many scientists in the accelerating field of quantum computing, it is difficult to

imagine writing a research manuscript, dissertation, or grant proposal in 2021 without

prominently citing the 2019 Nature paper of Arute et al. on random sampling with an

intermediate-scale quantum processor, code-named Sycamore [22].1 In that work, the

researchers at Google Quantum AI demonstrated successful preparation of random

quantum states spanning 53 quantum bits (qubits), corresponding to a computational

state-space of dimension 253. That is, the prepared quantum mechanical states of the

processor can be mathematically described by a matrix of numbers spanning 253

(approximately 1016, or ten million billion) entries wide and tall, with each entry

encoding a piece of information about the state. Since the measurement outcomes

of a quantum state are by their nature probabilistic, measurement of each of the 53

qubits results in a characteristic probability distribution of possible bit-strings (a list

of 53 zeroes and ones). For a subset of prepared states, the corresponding output

1While I will frequently refer to this manuscript using the last name of the first author on the
paper, this is not to single out Dr. Arute in particular for praise or blame. With the exception
of the final two authors—Google Engineering Director Hartmut Neven and John Martinis of the
University of California, Santa Barbara, who co-led the experiment—the seventy-seven authors are
listed in alphabetical order by last name.
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Figure 12-1: Cover of the October 2019 issue of the journal Nature announcing the
first experimental demonstration of quantum supremacy.

bit-strings were then compared to the results of physics simulations performed on

a selection of industrial supercomputers and cloud computing platforms. However,

for a separate subset of quantum states prepared using a more complicated set of

operations, the authors found they were unable to generate comparable simulation

results using the Summit supercomputer, currently the most powerful computer in the

world. To do so, the authors estimated, would take ten thousand years of processing

time.

The October 2019 paper of Arute et al. landed like a clap of thunder upon the

quantum computing community, if not the academic and popular science community

at large. As of October 2021, the paper has garnered over two thousand scholarly

citations and 865,000 views. Aggregating from 341,661 tracked articles of similar age
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across a portfolio of journals, the data science firm Altmetric LLP currently ranks

the article the third highest in “online attention”—a metric which combines academic

citation, online manuscript views, press coverage, and social media references [21].

Why the fanfare? Granted, the successful calibration and operation of 53 qubits

represented a significant engineering milestone in the field of quantum computing

hardware, and this alone was enough to attract the attention of many supercon-

ducting quantum hardware engineers. But the New York Times? No, the electric

reception had everything to do with the achievement promised in the title of the ar-

ticle, “Quantum supremacy using a programmable superconducting processor.” The

front cover of the October issue of Nature was even more succinct, cutting all but the

first two words:

QUANTUM SUPREMACY
Classical supercomputer outperformed by quantum chip

for the first time

This essay is a record of a few key moments in the history of those two words, how

they were first coupled, what they have meant together and apart, and the debates

that have arisen over the consequences of their union. It is a reflection on the origin

of a specific technical term with a specific history, but it is also a meditation on

language itself, how the words we use do the things that they do. To perform this

task, I have elected to consider a term from my own area of research. I have done this

not because I believe quantum computing is necessarily exceptional in its baggage or

its sins but because I take to heart historian of science Donna Haraway’s wise dictum

that we must not undertake studies of activities in which we do not have a stake.

As a scientist in the thorny field of experimental quantum information science, I am

entangled with quantum supremacy and I am implicated by what it means. The

problem, as I will attempt to illustrate over the course of this essay, is that we are

stuck in a dangerous loop. The solution, I argue, is not simply to replace the words

we use with new ones, though indeed we must do that too. Quantum supremacy is

a fraught and hazardous term which has no place in our language or in our practice,
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but it is also a glitch which reveals something deeper and more sinister about the

enterprise of our scientific labor in the era of mass incarceration and resurgent white

nationalism. It is an opportunity for reflection and for action. If we truly wish to do

something about it, I believe we must start by attending to the invisible and powerful

circuits of matter and meaning we have woven in our work. In doing so, we might

yet learn how to sever these short circuits and build new connections in their place.

12.2 Emergence of a Hazardous Concept

The term ‘quantum supremacy’ is a young one, even with respect to the relatively

adolescent discipline of quantum mechanics (itself a mere century old). First coined

in 2012 by the California Institute of Technology physicist John Preskill in his article

“Quantum computing and the entanglement frontier,” quantum supremacy refers to

the then-theorized potential of quantum computers to solve certain problems other-

wise intractable on even the largest classical computer [364].2 Here, the term ‘classical

computer’ refers to any computational device which processes information using bi-

nary bits (zeroes and ones), such as a laptop, smartphone, abacus, or vast industrial

supercomputing cluster. The outline of the argument is relatively straightforward:

since quantum systems occupy an exponentially increasing number of computational

states in Hilbert space (2𝑛 states for 𝑛 qubits, so on order 253 for a mere handful of 53

qubits), at a certain point no computer relying on classical bits will be able to encode

this vast state within the physical limits of space or time (the number of atoms in the

observable universe or the time elapsed since the big bang, for example). Quantum

systems, on the other hand, have no trouble winding this vast amount of information

within the tight folds of their state space. If this property of quantum mechanics can

be properly controlled and harnessed for information processing, quantum computers

won’t just be faster and more powerful than all other computers which came before.

They will stand supreme over them.

2Interestingly, the no-less loaded term “entanglement frontier ” thankfully never gained compa-
rable traction, though the resonance between frontier and supremacy will be relevant later in this
essay.
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It bears saying that ‘quantum supremacy’ isn’t just an object of scientific inquiry;

it is also a series of words. The emergence of a technical term can tell us a great deal

about the times in which it first appeared. For example, the historian Leo Marx once

famously noted how the word ‘technology’—despite its Grecian artifice—is a neolo-

gism that first appeared only in the nineteenth century. In the midst of the massive

cultural and economic upheaval of the second industrial revolution—a period where

machines such as the steam engine and the telegraph were radically restructuring

human perception of space and time—the word ‘technology’ entered the vernacular

to fill a conceptual void [298]. In much the same way, ‘quantum supremacy’ is the

verbal manifestation of a critical moment in the history of quantum information sci-

ence. While the potential for quantum computers to efficiently solve certain classically

intractable problems had been speculated since at least the publication of mathemati-

cian Peter Shor’s algorithm for prime factorization in 1994, the lag between theory

and engineering has been significant. Even today, no physical quantum computer

has managed to run Shor’s algorithm for any but the most trivial elementary school

arithemtic problems.3

As the technical hurdles required to build a quantum computer became more ap-

parent with each passing decade, so too did the promise of running a useful quantum

algorithm become more distant. Quantum computing was in a rut. It needed a

change of perspective. While the task of running a useful task exponentially quickly

on a quantum computer proved too onerous in the short term, surely one could cook

up something for a quantum computer to do which a classical computer could not. In

2012, this vague spectral ‘something’ was given a name: quantum supremacy. While

much effort has been put into defining what quantum supremacy is and how it can

be achieved, it is equally important to draw attention to what it is not. Unlike Peter

Shor’s factorization protocol or any of the subsequent theoretical algorithms that fol-

lowed in its wake, quantum supremacy isn’t an application. Crucially, neither is it a

mathematical proof or theorem. While the exponential computational speedup of a

3In 2001, a research group at IBM succeeded in running Shor’s algorithm on a small NMR
system of 7 qubits, the culmination of which was the factorization of the number 15 into 5× 3 [448].
Subsequent demonstrations in the decades since have proved similarly modest.
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quantum computer has long been speculated, there remains no theoretical guarantee

that this enhancement is absolute. For every quantum ‘killer app’ promising unparal-

leled computational advantage—such as prime factorization or quantum simulation of

chemistry processes—there may exist a yet undiscovered classical algorithm capable

of performing the same task even faster.

If quantum supremacy isn’t an algorithm or a theorem, what is it? Here, it is

worth paying close attention to John Preskill’s first usage of the term, which I quote

at length for context:

We fervently wish for controlled quantum systems that are large yet ex-
hibit profoundly quantum behavior. The reason we find this quest irre-
sistible can be stated succinctly:

Classical systems cannot in general simulate quantum systems efficiently.

We cannot yet prove this claim, either mathematically or experimentally,
but we have reason to believe it is true; arguably, it is one of the most in-
teresting distinctions ever made between quantum and classical. It means
that well controlled large quantum systems may “surpass understanding,”
behaving in ways we find surprising and delightful.

We therefore hope to hasten the onset of the era of quantum supremacy ,
when we will be able to perform tasks with controlled quantum systems
going beyond what can be achieved with ordinary digital computers. To
realize that dream, we must overcome the formidable enemy of decoher-
ence, which makes typical large quantum systems behave classically. [364]

The choice of words here is significant: quantum supremacy is defined as, variously, a

“quest,” a “claim,” a “belief,” an “era,” and a “dream.” Note also that the excerpt above

contains no equations or citations, nor do any of the first three pages in the paper

it is quoted from. Granted, this is partly a question of genre—Preskill’s comments

arrived not in a peer-reviewed journal article but in the transcription of a rapporteur

talk he had delivered one year prior at the twenty-fifth Solvay Conference on Physics

in Brussels, arguably the most prestigious conference in all of physics. There is

an interesting parallel here with physicist Richard Feynman’s off-the-cuff comment,

delivered in a keynote talk at the inaugural conference on Physics and Computation at

the Massachusetts Institute of Technology (MIT) in 1981, that “nature isn’t classical,
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dammit, and if you want to make a simulation of nature, you’d better make it quantum

mechanical.” [141, p. 486]4 Feynman’s remark is widely considered to be the first

intimation of what we today call a quantum computer; indeed, Feynman’s keynote

address is the first citation in the 2019 Nature paper of Arute et al.

Paying close attention to Preskill’s choice of words, we might note that his remarks

have more stylistically in common with a religious sermon on the eve of a crusade

than a pedagogical scientific lecture. It is particularly interesting to note the repeated

use of the intimate and mysterious pronoun “we” (“we fervently wish,” “we cannot yet

prove,” “we hope to hasten,” “we must overcome”). While the rhetorical “we” is used

conventionally in many scientific publications as short-hand for we-the-coauthors-of-

this-manuscript, Preskill’s implied “we” works not as a collective authorial pronoun,

but as a device for engaging the audience and implicating them in the conversation.

This immediately begs the question, to whom is Preskill addressing his remarks? The

physical bodies in attendance at the Solvay conference? The rebellious professional

cohort of “quantum informationists” referenced a paragraph earlier in his introduc-

tion? The anonymous reader of the published remarks? You? Me?

In the decade since delivering his remarks, Preskill’s indefinite “we” has ossified

into what we today recognize as the quantum computing community. While our

ranks are drawn from different disciplines—quantum theory, electrical engineering,

atomic physics, experimental condensed matter, material science, chemistry, classical

computer science—the aspirational spirit of Preskill’s address has served as a binding

narrative to unite a disparate array of technical vernaculars and practices. Like

Shakespeare’s Henry V, rousing the troops on Saint Crispin’s day—we few, we happy

few—Preskill is giving his audience a pep talk. The dark days are upon us. The

“formidable enemy” of experimental noise and decoherence is at our gates and in our

laboratories. Let all who heed the call gather under a common banner. Though our

methods may differ, let us unite in common cause and venture forth, arm in arm,

towards the dawn of a new era: the era of quantum supremacy.

4Incidentally, John Preskill is the Richard P. Feynman Professor of Theoretical Physics at Caltech,
where Feynman famously taught.

481



CHAPTER 12. CUTTING THE GROUND LOOP

12.3 The Supremacy Feud

On October 23, 2019, “Quantum supremacy using a programmable superconducting

processor” appeared in the prestigious journal Nature as if from out of the blue. The

orchestrated surprise of the paper’s release was unusual and significant. Within the

physics community, it is considered customary to upload a preprint of all research

manuscripts to an open-access online repository known as the arXiv prior to sub-

mitting the work for peer review. In this manner, authors have the opportunity to

openly invite feedback on their work during the peer review process and, more im-

portantly, to publicly stake their claim lest they get ‘scooped’ during the lengthy and

unpredictable review process. However, in cases of extraordinary scientific impact,

the arXiv submission is avoided entirely and a manuscript will be submitted to the

final journal in total secrecy, with reviewers cautioned to keep the existence of the

work confidential until final approval and publication. Such was the case for the

February 2016 publication in Physical Review Letters reporting the first experimen-

tal observation of gravitational waves at the Laser Interferometer Gravitational-Wave

Observatory (LIGO) in September 2015; three of the authors of that work went on

to win the Nobel Prize in Physics for the result [8].

The supremacy result was met with controversy even before the article hit news-

stands. While the official publication of the article in Nature likely came as a complete

surprise to many readers, a few members of the superconducting quantum computing

community became aware of the result a full month prior due to an embarrassing on-

line leak of the final manuscript.5 As it turned out, this twist of fate gave the Google

team’s competitors a head start to mount a reply. On October 21, two days before the

official publication of the result in Nature, researchers in a competing quantum com-

puting team at IBM posted a scathing rebuttal to the results of Arute et al [347].6 At

5Ironically, the leak was the result not of a hacker, but of a clerical error on the website of one
of the author’s employer, the National Aeronautics and Space Administration (NASA).

6Since the IBM rebuttal was posted prior to its official release in Nature, the leaked Google
manuscript is anachronistically cited as: “E. G. Rieffel and al. Quantum supremacy using a pro-
grammable superconducting processor. NASA AMES Research Center Technical Report NASA/TP-
2019-220319, 2019.”
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issue was the very question of what ‘supremacy’ actually meant in the context of the

Google team’s experiment. For the authors of the paper, the comparison was clear: in

200 seconds, they had performed a computational task on a quantum processor which

would have taken the world’s largest classical supercomputer ten thousand years to

imitate. Of course, the scientists couldn’t afford to wait the ten millennia required

to actually test this comparison; instead, they extrapolated this number from the

runtimes of a series of smaller physics simulations performed on the Summit super-

computer. Since the scaling of these simulations with the size of the quantum system

is well understood, all that remained was to connect the dots and project what the

effective runtime would be for a simulation of the full system.

While no one disputed the mathematical soundness of this extrapolation, the re-

searchers at IBM argued that the quantum-classical comparison in the paper was

fundamentally inaccurate. While it may be true that the particular classical simu-

lation considered in the paper would take thousands of years to converge, the team

at Google had not chosen the best possible classical algorithm for comparison: had

they instead performed a classical computing trick involving offloading a portion of

their simulation data to secondary storage during the computation, the IBM authors

estimated that full simulation of the 54-qubit device would require only 2.5 days of

computing time on Summit. This then begs the question: does a speedup of 200

seconds on a quantum computer versus 2.5 days on the world’s most powerful classi-

cal computer constitute proof of quantum supremacy? Recall again that ‘supremacy’

is not a mathematical theorem or threshold which can be either upheld or violated.

So if it’s not a fixed value or quantity, who arbitrates what is or is not quantum

supremacy?

The answer to this riddle will come as little surprise to historians of science: people

do. While the preemptive attack on their result likely came as an embarrassment and

frustration to many of the scientists and executives at Google, history will likely

remember them as the winners of the ensuing debate. After a series of back and forth

blows on Twitter and via each company’s PR team, most outside researchers were

willing to concede that Google had succeeded in their claim for a number of reasons,
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temporal, environmental, and epistemological. Yes, most of us conceded, 2.5 days is

certainly a lot shorter than ten thousand years, but it’s still three orders of magnitude

longer than the 200 seconds (3.33 minutes or 2.31× 10−3 days) it look to run on the

quantum processor. The quantum computer beat the classical in either case; is that

not quantum supremacy? Add to that equation the enormous power consumption of

the warehouse-scale Summit compared to the tiny room-sized Sycamore, plus the fact

that the IBM team in their haste had not actually run the simulation they proposed,

and most modest witnesses—to borrow historian Steven Shapin and Simon Schaffer’s

expression, by way of Donna Haraway, for the arbiter of scientific experiment [183,

418, p. 65]—were willing to turn the other cheek. Besides, time was on Google’s side.

After all, since the trick proposed by the IBM researchers did nothing to obviate the

fundamental exponential scaling of quantum mechanics, the addition of only a few

more qubits to the processor would have quickly foiled the secondary storage technique

and rendered the simulation once again classically intractable on any human scale.

Perhaps no supremacy today, but tomorrow and tomorrow and tomorrow.

While many scientists remember well the Google-IBM supremacy feud of October

2019, the noise of that spectacle likely obscured from memory another event which

occurred in the hours after the publication of Google’s result. Like the Google-IBM

feud, this event also concerned the nature of the ‘supremacy’ in ‘quantum supremacy’;

it occurred, however, not in the realm of scientific debate and corporate intrigue but in

the realm of politics and social media. In the immediate fanfare following the posting

of Arute et al. in Nature, Ivanka Trump—advisor to and daughter of then United

States president Donald J. Trump—took to Twitter and Instagram to announce her

enthusiasm for the result. The post led with a photo of Ivanka and her father in the

Oval Office, alongside then White House Deputy Chief of Staff for Policy Coordination

Christopher Liddell and Deputy U.S. Chief Technology Officer Michael Kratsios. The

photo had been taken the previous December to commemorate the signing of the

National Quantum Initiative (NQI) Act, the largest infusion of national research

funding into quantum information science (QIS) in US history. Donald Trump, seated,

holds the leather bound bill towards the camera while his daughter and advisors stand
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Figure 12-2: October 2019 Instagram post by Ivanka Trump congratulating her father
and the Google corporation for their “collaboration” in achieving quantum supremacy.
The accompanying photograph, taken at the signing of the National Quantum Initia-
tive (NQI) Act in December 2018, features (left to right) White House Deputy Chief
of Staff for Policy Coordination Christopher Liddell, Deputy U.S. Chief Technology
Officer Michael Kratsios, President Donald J. Trump, and Director of the Office of
Economic Initiatives and Entrepreneurship Ivanka Trump.

beaming beside him; even in the small Twitter thumbnail, it is easy to make out his

enormous sawtooth signature in the center of the white blotch of paper. “It’s official!

[explosion emoji],” Ivanka writes,

The USA has achieved quantum supremacy! [US flag emoji] In collab-
oration w/ the Trump Admin & UC Santa Barbara, @Google quantum
computer Sycamore has completed a calculation in 3 min 20 sec that would
take about 10,000 years for a classical comp.
#QIS is a critical industry of the future. That’s why @POTUS signed
the National Quantum Initiative Act- record level funding for quantum
R&D- into law 2018. We’re proud to have contributed to this major
milestone, quantum supremacy, and usher in the next gen of quantum
tech in America! [439]

Tweets, like books and scientific manuscripts, are texts. They are collections of

words which do things, and we can take them apart to analyze what they are do-
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ing and how they are doing it. The post opens with a declaration, “The USA has

achieved quantum supremacy,” punctuated on either side by an emoji of a cartoon

explosion on the left, often used to signify surprise or excitement, and of the United

States flag on the right. This statement will likely make many scientists uncomfort-

able. Few would have batted an eye at the similarly structured sentence,“Scientists at

the Google Quantum AI lab have demonstrated quantum supremacy.” This statement

reads as self evident: the scientists—in this case the authors of the paper—did the

experiment and got the result. Ivanka Trump’s modification of this statement is sig-

nificant. Rather than attribute the achievement of quantum supremacy to a group of

researchers, she frames quantum supremacy as first and foremost a national accom-

plishment. This statement is echoed in the next sentence, where she congratulates

the “collaboration” between the Google corporation (the employer of the majority of

scientists on the paper), the University of California at Santa Barbara (where a por-

tion of the Sycamore processor was fabricated), and the presidential administration

of Donald Trump.

The word “collaboration” is worth sitting with here. When scientists speak of

collaboration, they usually refer to a partnership between researchers who would oth-

erwise be considered to belong to separate research groups or institutions. In this

way, one might speak of a collaboration between theorists at a center for mathe-

matical physics in Copenhagen and experimentalists at a large research university in

Cambridge, Massachusetts. Few scientists would consider themselves to be in col-

laboration with their government sponsors; for many, government patronage is to be

regarded as necessary for but separate to the actual task of science. Science, or so

the story goes, is not political. This relationship of necessity/separateness between

scientists and their national benefactors is codified in a block of stock text which

authors are required to include in the acknowledgments section at the end of every

manuscript which received government funding. In the manuscript of Arute et al.

this appears in the form of the boilerplate disclaimer:

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
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or endorsements, either expressed or implied, of AFRL [the Air Force
Research Laboratory] or the US government. [22]

Ivanka Trump’s tweet complicates this statement by upending any pretense of sci-

entific and political separateness. For her, the achievement of quantum supremacy

indeed represents the official policy and endorsement, expressed and implied, of the

United States government. Whatever the individual nationalities of the scientists

who worked on the project, the achievement of quantum supremacy was above all an

American accomplishment, backed by American capital on American soil. The era of

quantum supremacy was here, and it had borders.

12.4 Ancilla in the Forum

The broader social and political connotations of quantum supremacy were apparent

long before Ivanka Trump made the connection explicit. In May 2017, less than a year

after Donald Trump rode to power on a wave of white supremacist rehetoric, Univerity

of Potsdam professor of complexity science Karoline Wiesner posted a short article

to the arXiv titled “The careless use of language in quantum information.” [469] In

the article, Wiesner points out that the field of quantum computing has something of

a language problem on its hands and notes two concrete examples. The first regards

the term ancilla qubit, a ubiquitous phrase in the field of quantum error correction to

denote quantum bits which temporarily store information during an algorithm, but

do not themselves contribute directly to the computation. The term is not without

motivation—the Merriam-Webster dictionary defines ‘ancilla’ as “an aid in achieving

or mastering something difficult,” with is indeed how these computational objects

are employed by both theorists and hardware designers [18]. However, as Wiesner

notes, the etymology of ‘ancilla’ tells a different story. While it is not uncommon for

ancient words to warp and shift phonemes over the millennia, nucleating a variety of

divergent meanings in a vast web of vernaculars, the English word ‘ancilla’ is visually

identical to the Latin. Indeed, since modern English employs the Latin alphabet,

the word would have been as legible to Virgil and Cicero as it is to today’s quantum

487



CHAPTER 12. CUTTING THE GROUND LOOP

computing scientists, and the core meaning of the word would have traveled across

space and time intact. With one crucial exception. For the Romans, an ancilla was

not a what but a who, or more percisely a she: “maid-servant, female slave.” [318]

Wiesner’s second example, of course, was quantum supremacy. Rather than point

to classical sources for reference, the article draws upon a more modern political ex-

ample for comparison. Wiesner’s commentary here is strikingly restrained, consisting

of only short, declarative statements of fact:

The English word ‘supremacy’ denotes the quality or state of having more
power, authority, or status than anyone or anything else. These days the
word is closely associated with the politics of ‘white supremacy’ in the
apartheid regime of South Africa between 1948 and 1991, known for its
institutionalised racial segregation and discrimination. The term ‘quan-
tum supremacy’ was coined in 2012. It overtly refers to a value system of
unequal human rights. Scientific articles and workshops using this term
are increasing quickly in number.

Wiesner goes on to note that while John Preskill issued an open invitation for an

alternative term as early as the very year in which he coined it [367], that call was

largely ignored. The article concludes with a simple invitation for reflection on what

all this might mean for practicing scientists who employ terms without considering

their deeper connotations. “The association with slavery, misogyny, and racial segre-

gation in these examples is certainly not intended,” Wiesner writes, “but it is careless.

Language is powerful. The choice of terminology in science is no exception. We as a

scientific community have to think about what we want to stand for and how this is

reflected in the way we communicate.”

Wiesner’s article did not go unnoticed. Within hours of its posting, the article

was picked up by the community-run manuscript aggregator and discussion forum

SciRate [105]. Scrolling through the comments thread today and scanning the list of

responders, the thread reads like a roll call of the quantum information theory com-

munity, with many of its most cited scholars weighing in, Preskill himself included.

While I am uninterested in calling out particular scientists here,7 it is worth pointing

7When quoting comments on the SciRate forum, I have chosen to omit the names of the forum
posters. Instead, I refer to each by a pseudonym composed of their total citation number and h-

488



12.4. ANCILLA IN THE FORUM

to the dominant trends which emerged in the thread, trends which reflect many of the

responses in the broader quantum computing community at large. Some responded

with exasperation. “With ‘supremacy’ I can at least see where the argument is coming

from, even if I don’t find it particularly convincing,” wrote scientist H25-2500. “But

the ‘ancilla’ example is nonsensical. Firstly, ‘ancilla’ was not ‘invented recently for

the field of quantum information’. More importantly, it has never had the meaning,

or even connotation, of ‘female slave’ in English.” The poster proceeded to provide a

list of dictionary and encyclopedia entries to support their claim—including a surreal

digression about the shared origin of ‘testify’ and ‘testicle’—before ultimately con-

cluding that “unless you’re still writing papers in Latin, you can safely continue to

use ‘ancilla’ without offending anyone.”

Another responder, H38-7000, concurred with the sentiment, though they reiter-

ated it in less bombastic terms:

I get that these words may remind us of something bad, but it doesn’t
follow that they cause any actual bad effects. For example, they don’t
strengthen white supremacist groups (as far as I can tell) or make racial
minorities feel unwelcome (as far as I can tell). Words have multiple mean-
ings, sometimes with varying levels of offensiveness. But we don’t stop
talking about rapeseed oil, or the polynomial hierarchy, or dictatorship
tests or colonizing the gut, simply because part of those phrases are also
involved in bad things that people do.

These two comments are significant and point to a larger trend in how many scien-

tists evaluate and justify the words they use: rather than think about language as a

collection of historical objects that structure our encounter with the world, words are

evaluated based on their capacity to inflict direct harm or offend individual people,

though the metric by which this harm or offense would be evaluated is never speci-

fied. Weighing the terms ‘ancilla’ and ‘supremacy’ according to this murky criteria,

both authors retreat to vague generalizations about how neither has witnessed or can

imagine either term causing offense: “you can safely continue to use ‘ancilla’ without

index—a widely recognized metric for citation impact—as a crude proxy to draw attention to the
perceived stature of the scholars who participated in the thread. For example, H38-7000 is a scientist
with an h-index of 38 (i.e., 38 of their publications have at least 38 citations each) and approximately
7000 total citations.
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offending anyone”; “they don’t strengthen white supremacist groups [...] or make

racial minorities feel unwelcome (as far as I can tell).”

Not all voices who weighed in were so certain. In one of the few personal reflections

on the thread, H52-12000 noted that the question of personal offense was somewhat

besides the point:

it is not even about being directly offensive to other people, i simply
can’t get myself to say ‘quantum supremacy’, it suggests some superiority
involving human beings (the whole field of QC hitting other people over
the head with their ‘quantum-supreme experiments’). I mean how do you
read a popular science article with the title ‘Scientists are about to achieve
quantum supremacy’ versus the title ‘Future experiments are about to
exhibit a quantum advantage’. Ancilla seems a different matter, partially
because its meaning as a female servant is not so well-known and it is just
a technical term like slave bosons or so.

This impulse to turn the camera around and ask what these words might say about

the authors themselves—as opposed to what they might do to the members of some

imagined external audience—is echoed by another poster, H38-6500, who writes:

“ ‘Quantum supremacy’ feels so bad precisely because we use ‘quantum’ as a synonym

for our peer group. That makes the analogy to the repugnant ‘white supremacy’ par-

ticularly close, unfortunately.” While clearly neither of these authors would consider

themselves ‘quantum supremacists,’ the sheer thought that they might mistakenly be

construed as such seems sufficiently alarming to warrant jettisoning the term alto-

gether.

While both Karoline Wiesner’s original article and the SciRate thread it catalyzed

have likely faded from the memories of many scientists,8 debate over the term ‘quan-

tum supremacy’ would resume in force during the 2019 publication frenzy of the

Google result. These debates reached a climax in December of that year with the

publication of a correspondence in Nature titled “Instead of ‘supremacy’ use ‘quantum

advantage’.” In addition to the three lead authors of the letter—Carmen Palacios-

8At the time of writing, Wiesner’s piece has only 6 documented citations, in comparison to 246
for the document containing Preskill’s original coining of the term. Some might argue that this
comparison is unfair, since Wiesner’s piece was not a work of scientific research and was never
peer-reviewed. Neither, it must be said, was Preskill’s.
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Berraquero, CEO and co-founder of the quantum computing start-up Nu Quantum;

Leonie Mueck, former Nature editor and Chief Product Officer of the quantum soft-

ware start-up Riverlane; and Divya M. Persaud, composer and doctoral scholar in

planetary science at University College London—the letter was backed by thirteen

signatories representing an international cohort of researchers from across the physics

community. Shortly thereafter, a slightly modified version of the Nature correspon-

dence appeared as an open letter on a dedicated website titled Responsibility in

Quantum Science, the text of which I quote here in full:

Inherently violent language subtly pervades science, including in space
exploration, computing and genetics. For example, terms around human
and robotic spaceflight, such as “conquest,” “colonization,” and “settle-
ment” evoke the “terra nullius” arguments of settler colonialism and must
be contextualized within the ongoing issues of neo-colonialism. Such lan-
guage is now creeping into the field of quantum computing. We call for the
community to drop the term ‘quantum supremacy’ and to use ‘quantum
advantage’ instead.

The calculation speed of quantum computers surpasses that of even the
fastest supercomputers – hence the ‘supremacy’ tag. The community
claims that this is a technical term with a specified meaning. Critics
argue that it is misleading because quantum computers in general do
not reign over their classical counterparts, although they could eventually
outcompete them in solving specific problems.

Any technical justification for the ‘supremacy’ descriptor could get swamped
as it enters the public arena after the intense media coverage of the past
few months. The term has implications of violence, neo-colonialism and
racism through its association with “white supremacy”. In our view, it is
irresponsible to override the historical context of such words, which risk
sustaining divisions in race, gender and class. Instead, quantum comput-
ing should be an open arena and an inspiration for a new generation of
scientists. [344]

After the letter, the website includes a form for readers to record their contact infor-

mation and sign on in support—as of late 2021, the letter has gathered over a hundred

and fifty signatures. None of the authors on the original SciRate thread appear as

signatories.

While the open letter generated a fair share of word of mouth around laboratories

and coffee machines at the time of its publication, the reception from many scientists

491



CHAPTER 12. CUTTING THE GROUND LOOP

was ambivalent, if not outright apathetic. Among those who took the letter seriously,

the general response was perhaps best characterized in an essay by University of Texas

at Austin computer scientist Scott Aaronson, posted on his popular quantum comput-

ing blog Shtetl-Optimized. In the post, titled “Quantum Dominance, Hegemony, and

Superiority,” Aaronson weighs in on the supremacy discourse and responds directly

to the letter’s call to replace ‘quantum supremacy’ with ‘quantum advantage’ [3].

Although Aaronson expresses sympathy for the sentiment of the letter—in response

to a direct email from Mueck, he writes that “as the father of a math-loving 6-year-

old girl, I understood and shared her concerns”—he equivocates over whether the

community would be able to find a suitable replacement for the term. Reflecting on

‘quantum advantage,’ Aaronson wonders “couldn’t that term, too, remind vulnerable

people about the unfair advantages that some groups have over others? Indeed, while

‘advantage’ is certainly subtler than ‘supremacy,’ couldn’t that make it all the more

insidious, and therefore dangerous?” Unsatisfied, Aaronson runs through a list of

proposed alternatives—‘quantum ascendancy’ (too cultish), ‘quantum inimitability’

(too hard to pronounce), ‘quantum eclipse’ (too cute)—before finally concluding that

the search for an alternative term remains “an open problem.”

Besides, Aaronson wonders, what are the implications of retracting ‘supremacy’ in

the first place? Here, he gives voice to the collective handwringing of many scientists

by invoking a classic slippery slope argument: “once we’ve ceded an open-ended veto

over technical terms that remind anyone of anything bad, where does it stop? How do

we ever certify a word as kosher? At what point do we all get to stop arguing and laugh

together?” Aaronson proceeds to rattle off a list of physics terms which might end

up on the chopping block for their evocation of violence or denial of a “multiplicity

of perspectives and cultures”—‘annihilation operators,’ ‘unitary matrices,’ ‘bra/ket

notation,’ ‘daggers,’ and of course ‘ancilla.’ This “obsession” over the implications

of language, Aaronson argues, is not only a distraction, it perpetrates real harm by

(unintentionally) antagonizing well-meaning scientists:

In this context, the trouble with obsessing over terms like ‘quantum supremacy’
is not merely that it diverts attention, while contributing nothing to fight-

492



12.4. ANCILLA IN THE FORUM

ing the world’s actual racism and sexism. The trouble is that the obses-
sions are actually harmful. For they make academics—along with pro-
gressive activists—look silly. They make people think that we must not
have meant it when we talked about the existential urgency of climate
change and the world’s other crises. They pump oxygen into right-wing
echo chambers.
But it’s worse than ridiculous, because of the message that I fear is received
by many outside the activists’ bubble. When you say stuff like ‘[quantum]
supremacy is for racists,’ what’s heard might be something more like:

“Watch your back, you disgusting supremacist. Yes, you. You
claim that you mentor women and minorities, donate to good
causes, try hard to confront the demons in your own character?
Ha! None of that counts for anything with us. You’ll never be
with-it enough to be our ally, so don’t bother trying. We’ll see
to it that you’re never safe, not even in the most abstruse and
apolitical fields. We’ll comb through your words—even words
like ‘ancilla qubit’—looking for any that we can cast as offen-
sive by our opaque and ever-shifting standards. And once we
find some, we’ll have it within our power to end your career,
and you’ll be reduced to groveling that we don’t. Remember
those popular kids who bullied you in second grade, giving you
nightmares of social ostracism that persist to this day? We plan
to achieve what even those bullies couldn’t: to shame you with
the full backing of the modern world’s moral code. See, we’re
the good guys of this story. It’s goodness itself that’s branding
you as racist scum.”

Confronted by this grotesque specter of jeering elementary school anxiety, Aaron-

son offers a staggering rebuttal. “Yeah ‘quantum supremacy’ is not a term I would’ve

coined, and it’s certainly not a hill I’d choose to die on,” but perhaps, he argues,

there is a ring of truth to the word after all. If scientists are caught in a double-bind,

trapped between their commitment to accurate technical language on the one hand

and their earnest desire to combat “actual racism and sexism” on the other, what if

we instead chose to lean into the term and own it? Here, Aaronson recalls a revelation

he had in the aftermath of Donald Trump’s election:

The thinking was: even as white supremacy was making its horrific resur-
gence in the US and around the world, here we were, physicists and
computer scientists and mathematicians of varied skin tones and accents
and genders, coming together to pursue a different and better kind of
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Figure 12-3: Screen capture of the More Information tab on the website for Respon-
sibility in Quantum Science, as of late 2021 [317].

supremacy—a small reflection of the better world that we still believed was
possible. You might say that we were reclaiming the word “supremacy”—
which, after all, just means a state of being supreme—for something non-
sexist and non-racist and inclusive and good.

Aaronson concludes the article by imagining a utopian future where “my colleagues

and I still use the term ‘quantum supremacy’ whenever we care to, and none of us have

been cancelled or ostracized for it;” a future where “quantum computing researchers

now have bigger fish to fry than arguments over words—–like moving beyond quantum

supremacy to the first useful quantum simulations, as well as the race for scalability

and fault-tolerance.” A future, that is, where words are words and science is science.

In researching this essay, I returned to the website of Responsibility in Quantum

Science to see if there had ever been a response to Aaronson’s piece or to the similar

arguments which appeared around the same time. At the top of group’s webpage,

next to the tab titled ‘Open Letter,’ there is a button labeled ‘More Information.’
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Clicking on the tab leads visitors to a barren orange webpage adorned with a long

panorama image of Perseverance Valley on Mars and the text [317]:

Use language in science responsibly

MORE INFORMATION ABOUT LANGUAGE AND RESPONSIBILIITY IN

SCIENCE COMING SOON.

The webpage has not been updated in two years.

12.5 Supremacy is (Not) a Metaphor

Physics is an enormously useful analytical framework. Drawing upon a common set

of mathematical and empirical practices, physics has provided self-consistent descrip-

tions of phenomena across a vast range of scales, from the cosmological (such as the

motion of galaxies and the properties of supermassive black holes) to the subatomic

(quarks, leptons, and the constituent stuff of matter). Emboldened by their successful

accounts of the natural world, many physicists have ventured beyond the traditional

boundaries of their craft and applied physical methods to areas of interest in the so-

cial science and humanities. For example, Franz Boas, the German-American scholar

widely credited for founding modern anthropology in the early twentieth century, orig-

inally received his doctorate in physics on the optical properties of water. At their

best, these interdisciplinary ventures have promoted new avenues of communication

among scholars in a range of disciplines and fostered capacious new ways of viewing

the world. Here, I am personally indebted to the examples set by the physicists Karen

Barad and Chanda Prescod-Weinstein—two scholars who have powerfully mobilized

their backgrounds in theoretical particle physics to critique the discipline of physics

from within, bringing it into conversation with theories of gender performativity [32],

critical race [359], and postcolonialism [31].

At their worst, however, these ventures have given physicists license to displace

and subordinate entire bodies of preceding scholarship, re-deriving them from ‘first

principles’ and re-orienting them according to a narrow set of physical laws. Here,
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Figure 12-4: A June 2008 webcomic by American cartoonist Randall Munroe from his
popular website XKCD. Avatars representing a collection of disciplines are arranged
in order of their ascending “purity,” with physics and math at the top of the hierarchy.
In Munroe’s hallmark style, a hidden message appears when viewers hover their mouse
over the graphic: “On the other hand, physicists like to say physics is to math as sex
is to masturbation.” [323]

I am reminded of a popular webcomic by the cartoonist Randall Munroe which cir-

culated widely during my earliest high school physics classes. In the comic, avatars

representing a range of disciplines are ordered according to their relative “purity”—

sociology, then psychology, then biology, then chemistry—with a physicist near the

right hand side proclaiming “It’s nice to be on top.” [323] After a long blank space, a

mathematician even further to the right comments, “Oh, hey, I didn’t see you guys all

the way over there.” While the joke, of course, is that physicists haughtily perceive

themselves to occupy the top of a hierarchy of knowledge—a position they jockey with

mathematicians over—this hierarchy is far from imaginary. Indeed, it has a material

impact on the conditions of our education and our research: it is no coincidence that,

in high school, I was required to take biology in ninth grade, chemistry in tenth grade,

and physics in eleventh grade; in college, these same three departments were housed

in three separate buildings arranged in the exact same order along one side of a long

quad [225].

This phenomenon, far from representing some architectural or curricular anomaly,

constitutes what historian of science Peter Galison has called the “physicalized archi-
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tecture of knowledge.” [151, p. 785] The fact that we observe these pattern in the

world around us does not make them natural; rather, it reminds us that humans

build structures which reflect the dominant beliefs and values of the culture in which

they are built. In the case of science, these structures frequently replicate the same

linear geometry Munroe depicts in his comic, with physics at the apex.9 In this way,

Galison notes, it struck the architect of an eight-story physics complex in Liverpool

as perfectly natural to place the offices of the theoretical physicists on the top floor:

Usually a theoretical physicist will require services, a blackboard and in
some cases a bed to lie on to help his deliberations... [W]e have put him
in an ‘ivory tower’ overlooking the city in the vain hope that the view over
Liverpool may inspire him. [151, p. 787]

I belabor this point in order to draw attention to a fact that will be important later

in this essay: the conceptual and the material are not separable. Rather, they are

mutually constitutive, giving shape to one another in a feedback loop.10 A society

which believes in a hierarchy of knowledge builds towers to house the keepers of

this knowledge; the tower becomes material proof of the hierarchy and reinforces the

beliefs of its occupants; departments expand, grants are awarded, new towers are

built, et cetera, et cetera, ad infinitum. Like chicken and egg, the beginning of the

loop is often obscured—we are usually entering it in media res.

Standing in this penthouse suite (metaphorically, physically), surveying the land-

scape of knowledge, it should come as little surprise that, in all the commentary on

language written by physicists in the preceding sections, none of the writers paused to

consult a linguist. While the authors on the SciRate forum would likely have objected

to a forum of anthropologists debating the nuances of quantum electrodynamics, these

9Significantly, while the relative order of these disciplines appears consistently across a range of
architectural plans, Galison notes that the orientation is often flipped with physics housed at the
base and chemistry, microbiology, and physiology housed progressively up the tower. In much the
same way, many high school science curricula require physics in the ninth grade and biology in the
eleventh. Here, physics is interpolated between two dual functions, both as “the top” of a hierarchy
(as in Munroe’s comic) and as its foundation.

10This concept should be familiar to physicists in its resemblance to the relationship between the
electric and magnetic fields of a propagating photon, each giving rise to the other. In this way, one
can think of the conceptual and the material as governed by a set of coupled differential equations.
Of course, unlike Maxwell’s equations in a vacuum, there is no analytic solution here.
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same scholars appear to have no issue commenting on what language does or does

not do. Moreover, they do so with great authority. Had any of these authors taken

a moment to conduct a literature review—as each would no doubt have instructed

their students to do prior to embarking on a scientific research project—they would

have quickly discovered that they had been scooped decades earlier. To arrive at this

realization, of course, would have required them to leave their tower.

The question is not a new one: what do we do when the same word appears in

multiple dissimilar contexts? As it happens, this very question was famously raised

the same year that Preskill coined ‘quantum supremacy.’ In 2012, the Indigenous

studies scholars Eve Tuck (Unangax, enrolled Aleut) and Wayne Yang coauthored an

article for the inaugural issue of the journal Decolonization: Indigeneity, Education

& Society titled “Decolonization is not a metaphor.” Over the course of the essay,

Tuck and Yang craft a powerful and enduring critique of the ways in which the term

decolonization has been appropriated outside the context of Indigenous activism. “Our

goal in this article,” Tuck and Yang write,

is to remind readers what is unsettling about decolonization. Decoloniza-
tion brings about the repatriation of Indigenous land and life; it is not
a metaphor for other things we want to do to improve our societies and
schools. The easy adoption of decolonizing discourse by educational ad-
vocacy and scholarship, evidenced by the increasing number of calls to
“decolonize our schools,” or use “decolonizing methods,” or, “decolonize
student thinking”, turns decolonization into a metaphor. [441, p. 1]

This “metaphorization of decolonization,” Tuck and Yang argue, allows educators to

commit a tactical evasion: by turning decolonization into a general panacea for a

range of civil rights and social justice ills, one pays lip service to a progressive agenda

while draining the term of its specificity. In this way, one can abstractly use the term

decolonization to absolve themselves of guilt, while at the very same time ignoring

the specific demands of Indigenous communities—“the repatriation of Indigenous land

and life” in the settler-colonial nations of (what we now call) North America, full stop.

While the contents of the two sets of arguments differ in many meaningful ways,

there are a number of formal similarities between the work of Tuck and Yang and
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the debates we observe above regarding quantum supremacy. For one, both lines

of argument involve explicating the difference between multiple terms which contain

the same keyword. In the case of Tuck and Yang, this means comparing the terms

‘decolonize stolen land’ and ‘decolonize education’ and showing that decolonize means

something different in each case. In the case of the scientists in the preceding sections,

many of their arguments similarly boil down to how the supremacy in ‘quantum

supremacy’ differs from in ‘white supremacy.’ Tuck and Yang then take this a step

further and argue that not all deployments of decolonize are equally valid. Rather,

there is one usage which is real (‘decolonize stolen land’) and many usages which

are merely pale metaphors (‘decolonize education,’ ‘decolonize the mind,’ ‘decolonize

schools’). These metaphorical deployments of decolonize then do harm to the real

usage by thinning its meaning. In this way, the statement “decolonization is not

a metaphor” works to sweep aside these distracting deployments so that we might

instead focus on its true, non-metaphorical meaning.

A very similar argument simmers beneath much of the discourse involving quan-

tum supremacy. Indeed, one can easily imagine an essay titled “Supremacy is not a

metaphor,” in which the authors compare ‘quantum supremacy’ to ‘white supremacy’

and show how the metaphorical usages of supremacy distract from the real one.

The issue is that there isn’t just one hypothetical essay titled “Supremacy is not a

metaphor.” There are two, and they say opposite things:

1. The first essay would take up the call of Responsibility in Quantum Science

and argue that ‘white supremacy’ is the real form of supremacy which demands

our immediate action and attention. ‘Quantum supremacy,’ on the other hand,

is merely a hollow corporate rebranding of this original meaning. In this way,

‘quantum supremacy’ distracts from the frightening political implications of

supremacy and “override[s] the historical context” of the word [344]. The so-

lution, then, is to untether quantum computing from the word ‘supremacy’

altogether, a task which can be accomplished simply by changing the word to

‘quantum advantage.’
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2. The second essay would follow the argument of scientists such as Scott Aaron-

son. ‘Quantum supremacy,’ the authors would argue, is of course the real

supremacy, in that it is grounded in mathematics and scientific empiricism.

‘White supremacy,’ on the other hand, is the delusion of racists with no under-

standing of science. Here, ‘white supremacy’ is the distraction from ‘quantum

supremacy,’ dividing well-meaning scientists and preventing them from realizing

their shared calling. The solution, then, is to embrace the mantle of ‘quantum

supremacy’ and pursue “a different and better kind of supremacy” grounded in

the laws of nature, not politics [3].

Like a riddle, the author of each essay stands before us, each guarding the door to a

supremacy. Behind one of these two doors, they tell us, is the real supremacy. Behind

the other, the metaphor. One guard speaks the truth, the other lies. Which door do

we choose?

Both, and neither. ‘Quantum supremacy’ and ‘white supremacy’ are both metaphors.

They are also both real. This is not a trivial solution; indeed it is not a solution at

all. Rather, it is an observation that the riddle is ill-defined, and it is the opening of

a sideways pathway towards a deeper understanding of how language works. Just as

the tower of physics at the beginning of this section is both a metaphor for the imag-

ined hierarchy of knowledge and a literal building which actualizes this metaphor,

‘supremacy’ operates in a feedback loop of material and belief. For shorthand, we

can say that supremacy is (not) a metaphor, interpolating between the two meanings

by simultaneously reading and omitting the parenthetical. This is not a new concept,

and in the next section I will attempt to derive this statement. For this derivation,

I will rely not on math or formal logic but on a history of ideas. In this task, the

goal is not to uncover some deep and indisputable kernel of truth which validates

this argument. Rather, I am interested in deriving how I have arrived at my own un-

derstanding of language, which thinkers I have been in conversation with, and which

contours of thought have guided and compelled my own.
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12.6 Derivation in Oak, Turmeric, Matsutake

In this section, I will trace a brief history of twentieth century language studies, fo-

cusing in particular on three historical moments: the early-century development of

semiology by structural linguists, the mid-century move towards semiotics by post-

structuralist philosophers, and the late-century intervention of material-semiotics by

feminist scholars of science. In tracing these three moments sequentially, my goal

is neither genealogical (implying that one movement birthed the next) nor teleolog-

ical (positioning each moment as a chapter in the book of history, pointing towards

some grand future conclusion). Instead, I point to these three moments because each

emerged from—and responded to—a particular set of historical and political consid-

erations over the past century. This timeline should be familiar to physicists. It is

also the timeline of modern quantum theory.

In 1915, seven years before the observation of quantized spin by the German

physicists Otto Stern and Walther Gerlach, the Swiss linguists Charles Bally and

Albert Sechehaye published a series of posthumous lecture notes by their professor,

Ferdinand de Saussure, titled Course in General Linguistics (Cours de linguistique

générale).11 Over the course of the lectures, delivered at the University of Geneva

between 1906 and 1911, Saussure articulated a new framework of study in the field

of linguistics, which he termed semiology. Saussure’s question was a deceptively

complex one: how do words arrive at their meaning? Phrased another way, what is

the relationship between a word and the thing to which it refers? Are they the same

thing? For Saussure, the answer was a definitive no. To make this question more

tractable, he introduced a set of three technical terms which linguists could use to

distinguish between the separate and interrelated parts of language: the signifier, the

signified, and the sign.12

11Physicists may notice a passing similarity between Saussure’s Course in General Linguistics and
one of the foundational texts of modern physics, The Feynman Lectures on Physics. Like Saussure’s
text, Richard Feynman’s lectures were collated and assembled with the help of two coauthors, Robert
B. Leighton and Matthew Sands. Like Bally and Sechehaye, Leighton and Sands’ contributions to
that work are largely forgotten. Saussure and Feynman’s, on the other hand, are not.

12Throughout this section, I will use the following typographic convention to distinguish between
these three terms: the signifier will be cast in sanserif (tree), the signified will be written without
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treesigni�er

sign

signi�ed

Figure 12-5: The structuralist model of signification. The sound-image tree (the
signifier) is coupled to a physical tree in the real world (the signified), and together
the two form the sign of ‘tree.’ Adapted from Ref. [114].

For a concrete example of how to use these terms, I will employ the same example

which Saussure offers in his original text: what is the relationship between the word

tree and the wooden leafy organism I see outside my window? It is clear to see that

these are not the same thing:

1. The former is a name, or more accurately, a “sound-image” [114, p. 66]—when

spoken, it is a collection of syllables materialized in sound; in text, a visual

arrangement of ink blotches or pixels in the shape of letters. Together, Saussure

calls the sound-image tree a signifier.

2. The latter is a thing in the world—something that offers shade in the summer,

loses its leaves in the fall, and can be harvested for firewood in the winter.13

Saussure call this the signified. Importantly, the signified doesn’t have to be a

physical object (a tree, a horse, a building) but can be a concept as well (truth,

justice, love).

modifiers (tree), and the sign will be enclosed in single quotes (‘tree’).
13This description is of course imperfect and implies a particular set of biological and geographic

assumption: not all species of trees lose their leaves in colder weather, and not all climates get cold
enough for such a biological mechanism to activate in the first place, yet we would still call them all
trees. That said, the contingency of language in the face of anthropogenic climate change warrants
closer attention.
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tree grave flag

signi�eds

signi�ers

Figure 12-6: A visual metaphor for the structuralist model of language. Each sign
is an independent tree in the forest of language, with the signified extending above
ground and the signifier below.

While the signifier and the signified are two separate things, “the two elements,”

Saussure writes, “are intimately united, and each recalls the other.” [114, p. 66] This

feedback loop or “speaking-circuit,” in which the pixels tree signify a physical tree

and vice versa, is called the sign (semîon in Greek, from which semiology takes its

name). The sign is thus the fundamental building block of meaning; it is the site at

which the realm of things and the realm of utterances meet in a dynamic process of

signification.

It is perhaps not coincidental that Saussure chose a tree as the emblem for his new

framework of language. Indeed, the tree is a useful visualization for how Saussure

conceptualizes language on a deeper level. Trees extend primarily in one dimension:

up and down. Language, for Saussure, does much the same thing. For text to be

intelligible, the letters must be read in a particular spatial order—the choice is of

course arbitrary (left to right in English or French, right to left in Arabic or Hebrew),

but a choice must be made and followed. So too with spoken language: insofar as

language is auditory, it unfolds in the time-domain with one syllable following the

other. Collectively, Saussure groups these phenomena under a fundamental principle

of language, which he calls “the linear nature of the signifier.” [114, p. 70] This linearity

is not simply a temporal-spatial relationship during the duration of utterance; it is
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also a historical relationship. Words, like trees, have roots. In some cases, a word

may change significantly over the centuries: for example, the modern English word

‘alcohol’ comes from the medieval Arabic ‘al-kuh. l,’ which originally referred to a

chemical solution for transmuting the mineral stibnite into elemental antimony, a

process which was used for synthesizing cosmetic eye shadow. [36] In others, such as

the aforementioned ‘ancilla,’ the meaning has shifted in the transmission from Latin

into English, though the signifier itself has not. In this way, one might say that some

words spread out as they grow up, like beech trees, and others grow straight up, like

cypress. Regardless of species, all inevitably grow upwards with the passage of time.

In the century following its original transcription by Bally and Sechehaye, semi-

ology underwent a series of profound critiques and revisions by scholars in a range

of disciplines. Collectively, this vast expansion of Saussure’s model of signification

coalesced under a new name, semiotics. One of the most influential of these revisions

began in the middle of the twentieth century with a group of thinkers who vari-

ously assumed the label of poststructuralist.14 In contrast to the ‘structuralists’—the

linguists who closely associated themselves with the work of Saussure and the field

of Structural Linguistics he posthumously inaugurated—the poststructuralists took

exception with the clear boundary between the signifier (which exists in language)

and the signified (which exists in the real world). This critique was largely moti-

vated by two historical factors which Sassure could not have predicted at the time

of his death in 1913, one technological and one political. On the technological side,

the middle decades of the twentieth century saw an explosion in the transmission of

popular culture, with film, radio, and television becoming ubiquitous in many Euro-

pean and American households. If Saussure had been entirely comfortable drawing

a line between the sound-image tree and a tree in the garden, cultural critics of the

mid-century were forced to contend with a new range of concepts which appeared to

14While poststructuralism is often associated with a particular current of mid-century French
critique, the term has been variously attached to thinkers in a range of languages up to an including
the present day. While not all embraced the label, a partial list of poststructuralist scholars would
include literary theorist Roland Barthes, philosopher Jacques Derrida, historian Michel Foucault,
gender theorist Judith Butler, cultural theorist Jean Baudrillard, and feminist scholar Luce Irigaray,
to name only a few.
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resist this easy binary. How would Saussure have classified the image of a tree in a

photograph or a television show? Certainly it is not a real tree but a representation of

one filtered through the optical media of a camera. In what way, then, is it different

from the sound-image tree, which is itself a representation rendered in the abstract

media of sound or image? Is the photograph of a tree a signifier or a signified? What

does this mean for the real tree in my yard, itself an oblique and imperfect impression

of light on my cornea?

The second factor, of course, was fascism. Writing in the aftermath of World War

II, the poststructuralists were part of a larger cultural postmortem of what had gone

so monstrously wrong in the 1930s and ’40s. How had it happened that Europe—

cradle of the Enlightenment, self-proclaimed bastion of science and technology—had

descended into totalitarian madness and built the crematoria as its apotheosis? How

had the same nation produced both Albert Einstein and Adolf Hitler? While many

turned meekly to the economics of the post–World War I depression for answers, the

poststructuralists turned to language. Picking up the tools Saussure had left decades

earlier, these writers attempted to diagnose the mechanisms of signification at work

in fascist political speeches and mass propaganda. To do so, however, the tools re-

quired modification. For the poststructuralists, Saussure’s unproblematic separation

of the realm of language and the realm of objects became symptomatic of a deeper

philosophical malady at the heart of Western intellectual life. There was something

disturbing about the immaculate unity of the sign, something authoritarian. If there

was a true one-to-one correspondence between the signifier and signified of ‘tree’—

that is, if I believe that the sound-image tree uniquely connects me to an object in

the real world—one might argue, as the Nazis did, that the sound-image Aryan indeed

connects to a real state of genetic perfection and Jew to real debasement. Lest we

isolate fascism to Europe: so too of white and black in the United States under Jim

Crow. Saussure’s metaphor was prophetic. Trees, like words, can be beautiful. They

can provide shelter—shade in the summer, firewood in the winter. They can also be

used to lynch a body.

The poststructuralist intervention took many divergent forms, but a useful entry
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point can be found in the work of the French literary critic Roland Barthes and his

1957 book Mythologies. In that work, Barthes proposes a framework for analyzing how

mythology functions as a type of speech. Barthes’ model of mythology, as we will see,

is remarkably general and can be applied as easily to a piece of fascist propaganda as

to an advertisement for household detergent [38]. In articulating this model, Barthes

addressed the two historical factors above by offering two substantial modifications

to Saussure’s model of signification. The first was to radically expand the domain of

the signifier. For Saussure, the signifier was either a sound or a collection of letters

on a page; for Barthes, it could be almost anything that carries meaning:

We shall therefore take language, discourse, speech, etc., to mean any
significant unit or synthesis, whether verbal or visual; a photograph will
be a kind of speech for us in the same way as a newspaper article; even
objects will become speech, if they mean something. This generic
way of conceiving language is in fact justified by the very history of writing:
long before the invention of our alphabet, objects like the Inca quipu, or
drawings, as in pictographs, have been accepted as speech. [37, p. 219]

In this way, Barthes succinctly resolves the puzzle of the photographed tree by ex-

ploding the boundaries of language. Here, Barthes and many of the poststructuralists

parted ways with traditional linguists by insisting that the photograph of a tree is as

much an object of language as the lexical sound-image tree. Not only that, a physical

tree can itself function as a piece of language by becoming a signifier for something

else: for example, an oak tree becomes a signifer when it is planted in the memory of

a loved one, who then becomes the signified.

Barthes’ second modification to Saussure’s model follows naturally from this col-

lapse of the clear boundary between the signifier and the signified. For Saussure,

signification happens only once—signifier and signified meet and are consummated

in a singular sign. For Barthes and the poststructuralists, signification happens over

and over again, and these processes can nest within each other. This can be seen

clearly in the example of the memorial tree. On the first level, the sound-image tree

couples to the physical oak tree to form the sign ‘tree.’ This sign then becomes the

signifier of a second level of signification, where it now refers to the memory of a loved
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Figure 12-7: The poststructuralist chain of signification. The sign of ‘tree’ becomes
the signifier in a second layer of signification, signifying the death of a loved one in
the myth of ‘a memorial tree.’ The sign of the memorial tree might then become the
signifier in yet another layer of language, perhaps signifying the struggle of a nation
in ‘a war memorial.’ Adapted from Ref. [37].

one. Barthes calls this process a “second-order semiological system” [37, p. 223]:

1. On the first level, we have what Saussure calls language. Sound-image (signifier)

and object (signified) meet and co-create a meaning (a sign).

2. On the second level, we have what Barthes calls the “metalanguage” of myth [37,

p. 224]. Here, the sign formed on the first level becomes the signifer for some-

thing else which exists beyond the raw materiality of the original signified.

For Barthes, myth is not a pejorative label—it is not a statement about what is true

or false, but about how language operates. Some myths, like the association of a tree

with a deceased loved one, are comforting and compassionate. However, if we ignore

the mythic layer and focus only on the first level of language, Barthes argues that

readers and critics fall victim to a grand deception. When I see the word tree, I might

think I see a real tree somewhere out in the real world, preserved in some pure state

of nature. But in doing so, I ignore how the tree has been “decorated” by its context:

A tree is a tree. Yes, of course. But a tree as expressed by [mid-century
French poet and musician] Minou Drouet is no longer quite a tree, it is a
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Figure 12-8: The rhizomatic model of language, as proposed by Deleuze and Guattari.
Unlike the structuralist model, where every sign stands independently, individual
signifieds emerge from an interconnected horizontal root network of signifiers beneath
the surface. The horizontal expanse of roots serves as a visual metaphor for Barthes’
chain of signification.

tree which is decorated, adapted to a certain type of consumption, laden
with literary self-indulgence, revolt, images, in short with a type of social
usage which is added to pure matter. [37, p. 218]

The invisible metalanguage of myth works to naturalize these human decorations and

convince the reader that, well, that’s just how trees are. In this way, the sign of

‘Aryan’ or of ‘White’ no longer refers to some pure state of biological reality, but

has been devoured by a human myth to signify racial supremacy. The moment we

collapse these two levels, as was the case in Nazi Germany or Jim Crow America, we

mistake the myth for reality.

While Roland Barthes restricts his model to second-order signification, radical

poststructuralists such as the philosopher Jacques Derrida would later extend Barthes’

framework to 𝑛th-order and argue that the limit as 𝑛 goes to infinity does not ex-

ist [118]. They would point out, to use the example above, that ‘biological reality’

is not the final referent of race but is itself a part of a perpetually nested chain of

signification in which scientific observations are given meaning. Thus, if language for

Saussure is a forest of trees—a collection of monolithic objects, each separable for

the others—language for the poststructuralists is something tangled, labyrinthine,
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and infinitely relational. Here, we can borrow a similarly horticultural visualization

coined by the poststructuralist philosophers Gilles Deleuze and Félix Guattari: the

rhizome [115]. Where tress extend up and down along a single axis, rhizomes such

as ginger and turmeric propagate in an orthogonal dimension, parallel to the plane

of the ground. Moreover, while a tree is visible in its singularity—one massive trunk

extending grandly into the air—a rhizome is subterranean and multiple: each node in

a rhizome can spout its own small bud above the surface and, if separated from the

rest of the root network, contains all the genetic information needed to replicate itself

indefinitely. Like signifiers in the poststructuralist chain of signification—words, im-

ages, and objects connecting to one another in layer upon layer of meaning-making—

the appearance of individual sprouts above ground disguises the vast interconnected

network of relation stretching out beneath the surface. In this way, the rhizome main-

tains, as the great Martinican poet and critic Édouard Glissant once put it, “the idea

of rootedness but challenges that of the totalitarian root.” [163, p. 11]

For all its mind-bending complexity and abstraction, the poststructuralist method

has proved extremely useful for diagnosing a range of phenomena in a number of dis-

ciplines. As a concrete example, we might look to the work of philosopher Judith

Butler—widely recognized as one of the founding thinkers of queer theory—who fa-

mously adapted poststructuralist methods to the study of gender. In doing so, Butler

showed how gender, much like language, is not natural, but instead takes shape

through a dynamic and arbitrary semiotic process [83, 84]. For other tasks, however,

the poststructuralist method proved lacking. By endlessly deferring the final signi-

fied, many poststructuralists privileged language over matter, with the material world

vanishing somewhere in an endless hall of mirrors. While this move worked for many

literary theorists and artists—particularly those who embraced poststructuralism’s

aesthetic descendant, postmodernism [221, 285]—it was less effective in addressing

the concerns of scholars in the sciences. By the late twentieth century, it was clear

that language alone could not account for the reproducible peaks of a laboratory

spectrogram or the lost limbs of a civilian in Vietnam, though it had a part to play in

both. The task, then, was to reconcile the world of language and of matter without

509



CHAPTER 12. CUTTING THE GROUND LOOP

ignoring the former or denying the latter.

Again, this work has taken many forms in many disciplines. Here, I want to

focus on a particularly heterogeneous body of scholarship undertaken by feminist

scholars of science, technology, and society (STS)—a body of scholarship which has

immeasurably influenced my project in this essay.15 Where the poststructuralists

reduced matter to language, feminist STS scholars have insisted that both have a

significant part to play in the construction of meaning, a process which the historian of

science Donna Haraway famously called material-semiotic [184, p. 588]. Once again,

the material-semiotic move was an expressly political one: how do feminists resist

science as an apparatus of militarism (the invention of weapons and tools of war),

capitalism (the extraction and exploitation of labor), colonialism (the subordination

of indigenous communities and theft of native land), and patriarchy (the elevation of

a gendered set of normative ideals) without abandoning objectivity altogether [184,

p. 578]? Where the postmodernists appeared eerily at ease abandoning any notion

of reality, Haraway and her colleagues refused to choose between science on the one

hand and their commitment to dismantling systems of oppression on the other.

For scholars of feminist STS, this choice—like the separation of language and

matter itself—represents a false binary. To see this, one has to understand the vantage

from which they are seeing in the first place. They have to pay attention to the

eyes they are seeing with, the tongue they are speaking with, and the body those

parts are plugged into. Insofar as they are human practices, language and science

don’t happen in the aether. They are encountered at the body: an imagine created

in the reflection of light on a cornea, or a word formed at the interface of lip and

tooth. As such, Haraway demanded that scientists practice “embodied objectivity,”

objectivity which is aware of the position—material, historical, political, social, racial,

sexual—from which judgements and observations are made [184, p. 581]. Take, for

15The list of thinkers here is too vast to name in full and spans a range of professional disciplines
(history of science, philosophy, anthropology, as well as the physical sciences) and a range of feminist
practices (including queer, trans, and nonbinary feminisms), though a partial list would include
historian of science Donna Haraway, philosopher and physicist Karen Barad, queer and disability
theorist Mel Chen, post-colonial historian of botany Banu Subramaniam, theoretical cosmologist
Chanda Prescod Weinstein, and anthropologist Anna Tsing.
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example, the image from a satellite or from a scanning electron microscope (SEM).

These images may be breathtaking and wondrous, stimulating the imagination, but

they are also just that: images. Like the photograph of a tree, they are also the

process of multiple layers of mediation and signification. This is not to say they are

not real, but it is to say that they are partial and contingent. Both are performed

using extremely sophisticated and expensive instruments, which depend on specific

historical-political conditions of educational and financial resources. In both cases,

data had to be processed for the image to appear at all, and the choice of analysis

function can radically alter the image. These eyes are not unique. Rather, they reveal

a fundamental condition of all eyes, organic and mechanical:

The “eyes” made available in modern technological sciences shatter any
idea of passive vision; these prosthetic devices show us that all eyes, in-
cluding our own organic ones, are active perceptual systems, building on
translations and specific ways of seeing, that is, ways of life. There is no
unmediated photograph or passive camera obscura in scientific accounts
of bodies and machines; there are only highly specific visual possibili-
ties, each with a wonderfully detailed, active, partial way of organizing
worlds. [184, p. 583]

To ignore this—to think the microscope and the satellite are transparent windows into

the world, offering unlimited access at all scales of matter—is to perpetrate a “god

trick,” to fool yourself into believing you are “seeing everything from nowhere.” [184,

p. 581]

To visualize this network of embodied language, matter, and circumstance, we

can turn to a final ecological metaphor provided by the anthropologist Anna Ts-

ing: the mushroom. In her 2015 book, The Mushroom at the End of the World:

On the Possibility of Life in Capitalist Ruins, Tsing documents almost a decade of

fieldwork interviewing scientists, traders, and migrant workers involved in the cul-

tivation of matsutake, a particularly rare and valuable species of mushroom prized

as a delicacy in Japan. [440] Like the sprouts of a rhizome root network, individ-

ual mushrooms emerge from vast fungal bodies extending weblike underground. In

scale, both spatial and temporal, these webs of mycelium can far exceed those of

the rhizome: the world’s largest living organism, the jovially named “Humongous
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Figure 12-9: The mycelium network of material-semiotics, inspired by the work of
Anna Tsing [440]. The subterranean root network of the rhizome is replaced with a
vast and diffuse network of fungal fibers, tangling together the realms of the natural,
the industrial, and the catastrophic.

Fungus,” covers almost nine square kilometers in Oregon’s Malheur National Forest;

it is over 2,400 years old. Moreover, unlike Saussure’s tree or the poststructuralist

rhizome, the mushroom defies the Western binary of Man (a creature of thoughts

and intentions) and Nature (a passive backdrop lush with resources, waiting to be

harnessed). Trees and rhizomes can be planted and arranged in meticulous parks

or plantations, tamed to the whims of human hands; mushrooms, particularly the

elusive matsutake, cannot. Rather, humans must seek out these precious delicacies

in unexpected places, leading to a massive underground economy of migrant workers

and traders spread across numerous continents, invisible to most consumers. In turn,

the mushroom feeds off the leftover detritus of human industrialization, thriving in

sites of modern environmental devastation and ruin: a messy kitchen, an abandoned

factory or logging site, even the irradiated blast radius of an atomic bombing. If

the tree and rhizome were vestiges of a romantic agrarian ideal, Tsing’s mushroom

is tuned to the reality of human-induced climate disaster, revealing the inescapable
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symbiosis between the human and non-human. Thus, the network of global finance,

labor, and industry tangles with the non-human fungal network of the mushroom.

Language and matter: neither separable, always intertwined, the one feeding off the

other.

12.7 The Zeugmatic Short

If the relevance of the preceding section to the conversation about quantum supremacy

is not immediately clear, suffice it to say that people have been thinking about lan-

guage for at least as long as they have been thinking about quantum mechanics.

As scientists, we would do well to attend to this century of intellectual labor before

making off-hand proclamations about what language does and does not do. Indeed,

with a little humility, we would quickly see that the past century has provided an

abundance of tools for making these semantic riddles tractable. So, equipped with

these tools, let us return to the question we concluded a previous section with: is

quantum supremacy a metaphor, or is white supremacy? Which one is real?

From a material-semiotic perspective, it is clear that this is another false binary:

they are both metaphors, and they are both real. They are both metaphors in the

sense that each is a sign in a chain of signification—after all, what is a metaphor if

not a piece of language which signifies another piece of language? Moreover, both

quantum supremacy and white supremacy are myths in Barthes’ sense of the word.

If quantum mechanics is a language which connects technical terms (signifiers) to

material phenomena (signifieds), then quantum supremacy operates as at the level of

metalanguage, using details from quantum mechanics (for example, the vastness of

Hilbert space) as signifiers for computational power. In much the same way, the bio-

logical condition of whiteness operates as a signifier in the myth of racial supremacy.

Here, of course, we see that the second-order model is dangerously insufficient: ‘the

biological condition of whiteness’ is not fundamental but is itself a multi-order process

of signification which draws on phenomena both physical (a deficiency of the pigment

melanin) and social (legal segregation) as signifiers in the myth of race. Indeed, race
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is a material-semiotic object, emerging out of a complex network of physical, social,

and historical considerations.

So too with quantum mechanics. As philosopher of science Karen Barad notes

in their 2007 book Meeting the Universe Halfway, the ‘pure physics’ of quantum

theory is not the ground floor of reality, but itself emerges from a material-semiotic

process. Here, Barad famously points to the 1922 experiment of Otto Stern and

Walther Gerlach, widely remembered as the first direct measurement of quantized

electron spin, the primordial quantum bit. When the polarized silver atoms failed to

leave a visible mark on the detector at the end of the experiment, Stern’s breath—

suffused with sulfur from his habit of smoking cheap cigars—unexpectedly converted

the silver to jet black silver sulfide, rendering the bifurcated pattern visible to the

human eye. For Barad, Stern’s cigar becomes an integral part of the laboratory

apparatus, revealing something about the porous boundary between the laboratory

and the social world outside. Barad’s language here is extremely precise:

Apparatuses are not static laboratory setups but a dynamic set of open-
ended practices, iteratively refined and reconfigured. As the revised dia-
gram of the Stern-Gerlach apparatus indicates, a cigar is among the signif-
icant materials that are relevant to the operation and success of the exper-
iment[...] Not any cigar will do. Indeed, the cigar is a “condensation”—a
“nodal point,” as it were—of the workings of other apparatuses, including
class, nationalism, economics, and gender, all of which are a part of this
Stern-Gerlach apparatus. Which is not to say that all relevant fac-
tors figure in the same way or with the same weight. The precise
nature of this configuration (i.e., the specific practices) matters.
Nor is it to suggest that social factors determine the outcome of scientific
investigations. Indeed, it would be a mistake to understand the presence
of the cigar in the diagram as a symbol of the fact that the experimenter’s
intrinsic identity (e.g., his gender and class) is a determining factor in the
outcome of the experiment. This reading would be mistaken in several
important ways: it misunderstands the nature of gender, class, individu-
als, practices, materiality, agency, and casuality. [...] The point is, rather,
that in this case, material practices that contributed to the production of
gendered individuals also contributed to the materialization of this specific
scientific result (“gender-and-science-in-the-making”): “objects” and “sub-
jects” are coproduced through specific material-discursive practices. [32,
p. 167]
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The contingency of the Stern-Gerlach experiment on a cheap cigar—a rhizomatic

“nodal point” connecting the semiotic practices in the laboratory with the ‘external’

world of gender and race—does not invalidate the results of the experiment. The

quantization of electron spin is real. But so too is the gender disparity in the sciences.

So too are the effects of racist police brutality. Science, gender, and race are real.

The issue is that these realities are not separable—they are intertwined and emerge

together. “The social and the scientific,” Barad writes, “are co-constituted. They are

made together—but neither is just made up.” [32, p. 168] Both the social and the

scientific matter, in the dual senses of ‘matter’: they are both concepts which matter

(in the sense that they are both significant), and they both inscribed in matter (they

leave material traces on bodies).

Quantum supremacy and white supremacy both matter. Each emerges from a

material-semiotic process, but this does not mean they are the same thing. This is

crucial. To confuse this point would be to naturalize race on the one hand and reduce

science to social construction on the other. Details matter. When we consider the

interplay of the social and the material in the emergence of phenomena, we must

take Barad’s point above that not all of these “relevant factors figure in the same way

or with the same weight. The precise nature of this configuration (i.e., the specific

practices) matters.” [32, p. 167] In mathematical terms, not all coefficients in a Fourier

expansion are equal; it depends on the function. In poststructuralist terms, not all

nodes in a rhizome are in equal proximity to one another; it depends on the myth. So

too with the material-semiotic. The relative orientation of actors (human and non-

human) in space (geography), time (history), and language (a chain of signification)

matters. Like sinews of a massive fungal body, some fibers tangle and merge many

times over, while others spread far from one another, connected imperceptibly via the

diffuse and vast network of strands between them.

Studying the relative position of ‘quantum supremacy’ and ‘white supremacy’ in

the material-semiotic web, we arrive again at the elephant in the room: they share

the same nine final letters. This matters, but how it matters also matters. Is the

‘supremacy’ in ‘quantum supremacy’ the same as in ‘white supremacy’? Or, more to
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the point, how does ‘supremacy’ connect ‘quantum’ and ‘white’ without collapsing

the distinction between them? Again, this is precisely the question at the heart of

Eve Tuck and Wayne Yang’s 2012 essay “Decolonization is Not a Metaphor,” and it

is useful to consider how scholars grappled with the consequences of Tuck and Yang’s

powerful argument. How, we might ask, is the ‘decolonization’ in ‘decolonizing In-

digenous tribal land’ both the same and different from in ‘decolonizing the mind’?

How do we prevent ‘decolonization’ from becoming “an empty signifier to be filled by

any track towards liberation” [441, p. 7]—depleted of its urgent call for the repatria-

tion of tribal lands—without demanding that some of these tracks are real and others

are merely metaphorical?

Here, we can consider one possible model offered by the anthropologist Stefan

Helmreich. In his 2020 essay, “Not a Metaphor,” Helmreich responds to Tuck and

Yang’s provocation by considering the rhetorical device of zeugma: “the use of a word

to modify or govern two or more words usually in such a manner that it applies to

each in a different sense.” [195, p. 446] In explaining how zeugma works, the literary

theorist Gillian Beer offers an example from Charles Dickens’ 1836 novel The Pickwick

Papers [41, p. 298]:

Miss Bolo rose from the table considerably agitated, and went straight
home, in a flood of tears and a Sedan chair.

Dickens is playfully toying with the word ‘in’ by using it in two different senses:

to be ‘in tears’ (an emotional state) and ‘in a chair’ (physically seated). He only

uses the word ‘in’ once, but the reader’s interpretation of that word oscillates as it

inflects the tears and the chair differently. In this way, Helmreich notes, the word

“vibrates between two meanings, one literal, the other figurative, destabilizing what

was thought to be literal in the first place.” [195, p. 449] Indeed, while one might

be tempted to distinguish between the metaphorical usage of ‘in’ (‘in tears’) and

the real (‘in a chair’), zeugma unsettles this distinction by revealing that both are

materizalized in language, though differently. Helmreich notes a deep resonance with

Donna Haraway’s call for situated meanings. “The uneasy laughter generated by

many examples of zeugma,” Helmreich writes,
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indicates the affective valence of language, and, more, emphasizes the
politics of situated meanings—and in ways that resonate with Tuck and
Yang’s call for an attentiveness to the politics of metaphor. As Haraway
has lately put it, ‘It matters what matters we use to think other matters
with; it matters what stories we tell to tell other stories with; it matters
what knots knot knots, what thoughts think thoughts, what descriptions
describe descriptions, what ties tie ties.’ It matters what metaphors mo-
tivate what metaphors. It matters what concepts are yoked together by
zeugma, and how. [195, p. 449]

In this way, the word ‘decolonizing’ in ‘decolonizing Indigenous tribal land’ and ‘de-

colonizing the mind’ operates zeugmatically. It is the same word, but its meaning

oscillates and vibrates depending on which phrase it appears in—on its situation.

By attending to the zeugmatic function of language, Helmreich argues, we can honor

Tuck and Yang’s critique of the situated politics of metaphor—the co-opting of de-

colonization discourse in ways that distract from focused anti-colonial action—while

also attending to metaphorical and figurative function of all language, as poststruc-

turalism and material-semiotics point us to.

‘Quantum supremacy’ and ‘white supremacy’ are similarly yoked together by

zeugma. Like Dickens’ ‘in,’ like Tuck and Yang’s ‘decolonization,’ ‘supremacy’ is

zeugmatically inflected by its proximity to either ‘quantum’ or ‘white,’ and the word

means something different in each term. We must attend to that difference, but we

must also attend to the fact that it is the same word. In this sense, we must undertake

a critique which is the inverse of Tuck and Yang’s. For Tuck and Yang, the issue lay

in the false sense of equivalency between various forms of ‘decolonization,’ and their

goal was to show that the same word can mean different things in different contexts.

If the quotations from scientists in the early sections of this essay are any indication,

it would appear that ‘supremacy’ suffers from the opposite problem: for many scien-

tists, even the ones who acknowledge the need to change their language, there is an

underlying belief that ‘supremacy’ means something different in ‘quantum supremacy’

than in ‘white supremacy.’ This is false. Zeugma, after all, is a relationship of simul-

taneous similarity (the same word) and difference (multiple contextual meanings),

and we would be misled if we focused only on the difference to the exclusion of the
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quantum
supremacy

Figure 12-10: The zeugmatic short. ‘Supremacy’ operates as a semiotic tether be-
tween ‘quantum’ and ‘white,’ altered by its proximity to each and reciprocally altering
each.

similarity. We must also attend to the fact that zeugma operates in both directions:

if ‘supremacy’ changes meaning depending on its proximity to either ‘quantum’ or

‘white,’ both words are reciprocally inflected by their proximity to the aspiration of

‘supremacy.’ In this way, the rhetorical device of zeugma functions something like

an electrical short circuit, tethering together two distinct pieces of circuitry in such

a way that current travels invisibly between them, altering the operation of each,

sometimes catastrophically.

Probing the zeugmatic short circuit, what do ‘quantum supremacy’ and ‘white

supremacy’ have in common? How do both ‘quantum’ and ‘white’ each take shape

under the guiding influence of ‘supremacy’? In both cases, as I showed earlier in this

section, ‘supremacy’ is a myth, in the sense of higher-order signification. More specif-

ically, both ‘quantum supremacy’ and ‘white supremacy’ are myths of power. ‘Quan-

tum supremacy’ asks us to imagine a class of devices (quantum computers) which

dominates all others (classical computers). In much the same way, ‘white supremacy’

posits one race of humans above all others. So too of ‘national supremacy’ (the dom-

ination of one geopolitical community over all others, as in the myth of American

exceptionalism) and ‘intellectual supremacy’ (the domination of one academic disci-

pline, as in the physics hierarchy). Supremacy—‘quantum,’ ‘white,’ or otherwise—is

a god trick. To believe you have access to power above all others is to imagine yourself

divine. This is not a coincidence, it is baked into the etymology of the word itself.
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The Oxford English Dictionary traces the first usage of the modern English word

‘supremacy’ to the Acts of Supremacy passed by the Parliament of England in the

sixteenth century [429]. These acts legally established the English monarchs as the

head of the Church of England, bypassing the authority of the pope. In this way,

‘supremacy’ legally yoked together the realms of the human (politics and statecraft)

and the divine (arbitration over theological matters) in the hands of a single ruler.

Like monarch-priests surveying the entirety of creation, when we compare quantum

computers to classical computers and argue that the former can accomplish tasks

which would require the age of the universe to perform on the latter, we are imagin-

ing that we have eyes which can comprehend all the atoms in the universe or multiple

big bangs. We are confusing mathematical eyes with our own profoundly finite organic

ones, ignoring the murky process of translation between them.

This process of translation is neither transparent nor innocent, and it requires

constant maintenance. In the case of white supremacy, American history and law are

scarred with repeated attempts to impress the domain of the supreme onto the do-

main of the human. Here, we can refer to the work of American legal scholar Dorothy

Roberts and her 2011 book Fatal Invention. In the opening chapter, “The Invention of

Race,” Roberts documents how the American social construct of racial supremacy—a

construct which emerged in the colonial period to legitimize the enslavement of ab-

ducted Africans and their descendants, as well as the feudal plantation economy they

powered—was instantiated in law throughout the nineteenth and twentieth centuries,

perpetuating the vantage point of white supremacy long after the legal emancipation

of Black citizens in 1863. As an example, Roberts cites the 1857 Supreme Court

case of Dred Scott, a case that cemented centuries of racist social precedent in law

by affirming the legal subordination of Black Americans, both enslaved and free, to

white Americans. The court’s decision in the case of Dred Scott not only provided

legal precedent for over a century of segregation, disenfranchisement, and terrorism;

it set in motion a surreal cycle of court cases over what it meant to be white in the

first place. In the decades surrounding the turn of the twentieth century, the horrific

Black-white binary of American law was tested by an influx of immigrants from Asia
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and Eastern Europe—some of whom legally petitioned to be counted as ‘white’ in

American law. As Roberts notes:

Determining which groups of immigrants met the whiteness test for nat-
uralization became a vital legal issue for almost a century. Between 1878
and 1952, state and federal judges issued decisions in fifty-two racial pre-
requisite cases, including two argued before the U.S. Supreme Court in
the 1920s. In these cases, judges ruled that Chinese, Japanese, Koreans,
Filipinos, Hawaiians, Afghanis, Native Americans, and anyone of mixed
ancestry were not white. Arabs, Syrians, and Asian Indians were con-
sidered white by some judges and not by others. Armenians were more
successful at claiming whiteness, despite their geographic origins east of
the Bosporus Strait, which separates Europe from Asia. [382, p. 15]

Since the condition of whiteness has no final signified in either biology or geog-

raphy, the flawed logic of white supremacy must be constantly reassessed and re-

formulated in order to appear coherent. The poet and literary theorist Fred Moten

has compared this process to the maintenance of the Ptolemaic model of the solar

system: starting from the flawed premise that the earth was at the center of the uni-

verse, Ptolemy and his followers produced an increasingly elaborate model of orbitals

and epicycles to conform their model to astronomical observation, a model which was

entirely obviated by the adoption of the heliocentric model of the solar system. “It’s

amazing,” Moten notes,

how much brilliant intellectual work these guys had to do so that they
could stay wrong. It’s like that particular cosmology was trying to main-
tain a kind of cascade failure—every time you shored up one thing, another
one would break, but you kept having to do it. You kept having to fix it
and it became more and more and more and more elaborate. Epicycles
of epicycles. So there’s this kind of weird thing where, on the one hand
it’s kind of stupid because there’s a much simpler and easier way to un-
derstand the universe, and on the other hand there’s something brilliant
and ingenious about it because look at all that beautiful weird filigree
work you had to do. In a slightly—I wouldn’t use the word beautiful or
anything—but I would say that the maintenance of racism is similar. It’s
really fucking stupid, but there’s a certain amount of impressive intellec-
tual work that has been done in order to maintain it. [319]

Ptolemy’s god trick was to imagine earthly eyes in the center of the cosmos, a supreme

vantage point around which all of creation pivots. This vantage point, like the priv-
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ileged position of whiteness in American law, is untenable without constant main-

tenance. A similar sort of iterative, epicyclic logic is at work in claims of quantum

supremacy. As we saw earlier in the Google-IBM feud which followed the publication

of Arute et al., proof of quantum supremacy can be elusive and contentious. Did

the quantum computer do something which would take the best classical computer

ten thousand years to complete, or two and a half days? Does it matter? Again,

despite the perception that quantum supremacy is a fundamental feature of quantum

mechanics, the term itself has no final referent in either mathematical proof or formal

logic. Instead, the term ‘quantum supremacy,’ like ‘white supremacy,’ works to nat-

uralize a baggy set of convictions grounded variously in science (quantum supremacy

as a set of empirical observations), social identity (quantum supremacy as the shared

aspiration of a professional community), and commerce (quantum supremacy as a

feature distinguishing the product of one corporation from another). When these

convictions are threatened—as when the IBM scientists countered the claims of the

Google paper—the term must mutate to accommodate the challenge. While these

mutations and corrections may appear self-consistent, they obscure and gild the same

cascade failure endemic to all claims of supremacy.

12.8 Ground Loops

In the earlier sections of this essay, we saw how much of the controversy about the term

‘quantum supremacy’ revolved around the question of whether or not the word might

offend individual people. By now, it should be clear that this was the wrong question

to ask, or at least an extremely incomplete one. Language is not an inert object, a

collection of stones cast at individual people, causing individual harm. Language is a

network of relation, a web pointing to other pieces of language. Language tangles with

matter and gives rise to phenomena; it doesn’t just describe phenomena that already

exist in the world. So when we talk about what ‘quantum supremacy’ does or doesn’t

do, the question isn’t simply whether or not the word might unintentionally remind

someone of a different type of supremacy. The question is, how does the aspiration
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of supremacy short-circuit quantum computing to other systems of power? How does

quantum supremacy mimic and naturalize some of the same noxious patterns we find

in, for example, racial supremacy?

This is not to say that quantum supremacy isn’t offensive. It is, for all the

reasons that scientists might anticipate, but also for other reasons which may not seem

immediately connected to issues of race, gender, and power. Foremost, I am angered

by quantum supremacy, by the careless language that circulates in the quantum

computing community and the systems of power it traffics with. I am also offended

by quantum supremacy, but I am offended by it in much the same way that I am

offended by most high-profile scientific results. I am offended by what it makes

legible and what it obscures. When my colleagues and I encountered the media

frenzy around the quantum supremacy result in 2019, what struck some of us most

was how little the acclaim had to do with our day-to-day life in the laboratory. While

major news outlets fantasized about what quantum supremacy might mean for the

future of technology and commerce, hardly any attention was paid to the work that

produced that result. As a feat of engineering, the experiment of Arute et al. is a

technical masterwork. It is also, as Chanda Prescod-Weinstein would point out, the

product of years of intellectual and physical labor by scientists, engineers, technicians,

custodial staff members, administrative assistants, cafeteria dining staff, child-rearing

spouses and domestic workers, et al.—the vast majority of whom go uncredited in

the final manuscript, let alone in the glossy news articles announcing the result [362].

This will hardly strike most scientists as strange—authorship and acknowledgements

are strictly reserved for individuals who contributed to the scientific content of the

work, though this is hardly a rigorous distinction.16 It is, however, symptomatic of a

16In their official guidelines on submitted research manuscripts [353], the American Physical So-
ciety (APS) specifies that the acknowledgement section at the end of a manuscript can be used to
“recognize named individuals who contributed scientifically to the research of the paper; cite the
funding agencies that provided financial support for the work; and note the affiliation of institutions
in the byline. Acknowledgments to people precede those of financial support.” However, on the other
hand, “acknowledgments may not recognize those who helped in preparing the paper; editors who
handled the peer review of the paper; those who contributed general encouragement (family, friends);
or those who provided services that were not directly part of the research. Acknowledgements may
not include a dedication or a memorial.”
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larger problem. ‘Quantum supremacy’ is the product of labor, and it is also a product

in the capitalist sense: it’s a computational resource that can be sold to consumers;

it’s a buzzword appearing on corporate advertising and press releases to enhance a

company mythology; it’s a scientific result which generates revenue for the for-profit

journal which published the result. Products, as Karl Marx once noted, have a way of

concealing the labor that goes into their creation such that they appear miraculous.

In this way, the “mystical character” of quantum supremacy operates as a commodity

fetish [296, p. 319], obfuscating a profoundly unequal system of production, not unlike

how the mystique of white supremacy masked and normalized the monstrous workings

of the feudal plantation economy.

What would the story of quantum supremacy look like if it were told by the la-

borers who made the result possible? Indeed, if quantum computing research is a war

against “the formidable enemy of decoherence,” as John Preskill put it in his original

address on quantum supremacy [364], it should come as little surprise that the history

of that war is told by generals and heads of state, not by the soldiers on the front lines.

What do things look like in the trenches? Well, not so glamorous. Quantum comput-

ing research, like most scientific labor, is quite often repetitive and mundane, filled

with tasks that will never appear in a journal publication. Since quantum processors

are extremely sensitive devices, the successful execution of an experiment requires a

delicate balance of environmental considerations, and this balance requires constant

maintenance. For example, in experimental quantum computing using superconduct-

ing circuits, devices are encased in a dilution refrigerator and cooled to a fraction

of a degree above absolute zero—tens of millikelvin, two orders of magnitude colder

than the darkest vacuum of outer space. Maintenance of this temperature requires a

particular set of thermodynamic conditions—to say nothing of the economic and in-

stitutional conditions required to purchase such an apparatus in the first place—and

the slightest change in the pressure or flow of cryogens throughout the system can

render a device inoperable. When the conditions are just right and an experiment

is finally performed, the technicians or graduate students responsible for successful

maintenance of these conditions may go uncredited in the final research manuscript.
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Among the forms of invisible labor undertaken in a quantum computing lab, one

of the most frustrating and fascinating is the hunt for ground loops. Ground loops

occupy a strange liminal space in the scientific imagination. On the one hand, the

concept of a ground loop is simple—so simple, in fact, that it hardly warrants mention

in an academic research publication. On the other hand, it is so technical that most

physics students will go the entirety of their undergraduate and graduate careers

without ever encountering the concept in a class or textbook. Like many of the

laboratory gremlins that occupy an experimentalist’s time, it instead occupies the

realm of lab folklore and myth. To date, the only textbook description I can find for a

ground loop appears in a highly technical volume on experiment design by Philip C. D.

Hobbs, a self-employed engineering consultant who runs a firm called ElectroOptical

Innovations, titled Building Electro-Optical Systems: Making It All Work. Hobbs’

aspiration in writing the book is encapsulated in an epigraph by Richard Feynman

at the start of the textbook, excerpted from his 1996 Nobel Prize lecture:

We have a habit in writing articles published in scientific journals to make
the work as finished as possible, to cover up all the tracks, to not worry
about the blind alleys or describe how you had the wrong idea first, and
so on. So there isn’t any place to publish, in a dignified manner, what
you actually did in order to get to do the work. [202, p. vi]

Hobbs relishes in these covered up tracks and blind alleys, compiling nearly a thousand

pages of technical details required to successfully operate an electo-optical physics

experiment. In doing so, Hobbs imagines his work as a survival guide for beleaguered

graduate students. “This book,” as he frames it on his company website,

is an attempt to provide a systematic and accessible presentation of the
practical lore of electro-optical instrument design and construction: in
other words, it’s the book I needed as a graduate student, but couldn’t
find.

It’s intended in the first instance for use by oppressed graduate students in
physics and electrical engineering, who have to get their apparatus working
long enough to take some data before they can graduate. When they
do, they’ll find that real-world design work has much the same harassed
and overextended flavor, so in the second instance, it’s intended as a
self-teaching guide and professional reference for working electro-optical
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designers. [203]

Hobbs’ section on ground loops is short, only about one page long [202, p. 621]. A

ground loop, he writes, occurs when an experimental setup is connected to electrical

ground at multiple points, such that the entire setup forms a closed loop. To un-

derstand the implications of this loop, we must say a few more words about what

electrical ground means and does.

The concept of ground is crucial in electrical engineering.17 Normally, when we

think about a simple electrical circuit, we imagine a loop of wire connecting a voltage

source (say, a 1.5-volt battery) to a load (such as a small light bulb). As long as

the loop remains intact, the voltage difference across the battery will push electrons

along the loop, powering the light bulb. If this loop is broken, the electrons can no

longer circulate and the light bulb turns off. This is how a light switch works: when

you toggle the switch, a piece of metal behind the switch flicks into position and

completes the loop, powering the light; toggle it again, and the metal pulls out of

position, breaking the loop and turning the light off. This circuit evidently requires

two lengths of wire, one to connect the light bulb to the positive terminal of the

battery, and another to connect it to the negative terminal. Together, the battery,

light bulb, and the two strands of wire connecting them form a closed loop. Now,

we might ask: what is the difference between the closed loop we just described and

an open loop, consisting of only a single wire connecting the bulb to one terminal of

the battery? Surely the circuit is still connected—after all, the remaining terminal

of the battery is connected to the bulb by air. Air, like metal in a wire, conducts

electricity, which is how we get lightning. The issue, of course, is that air has a much

larger resistance than metal, so it conducts electricity more poorly; in order to power

the light bulb via the air, we would require a battery with a voltage massive enough

to ionize the air, forcing current through. Impractical (and dangerous), for sure, but

we will note that the difference between an open circuit and a closed circuit is not

binary; it too is a question of material and of proximity, of medium and of force.

As above, so below. While the notion of plugging a circuit into the air might
17For an excellent and accessible introduction to electrical ground, see Ref. [349].
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sound fanciful, the same logic applied to the ground is absolutely practical. Taking

our open circuit and plugging the loose ends deep into the soil, we would find it takes

only a hundred or so volts (the voltage of a standard power outlet) to illuminate our

light bulb. While dirt, sand, and stone are generally poor conductors, the resistance

of a wire scales inversely with the width of its cross-section; the thicker the wire, the

lower the resistance. A strand of 20-gauge speaker wire has a cross-sectional diameter

of about a millimeter; the diameter of the planet Earth is almost 13,000 kilometers at

the equator. Thus, from an electrical standpoint, the earth can be thought of as an

enormous wire, a vast and mobile reservoir of electric charge. When we plug both ends

of our open circuit into the earth—perhaps by attaching it to a metallic water pipe

traveling beneath the building—the battery pulls electrons out of the earth on one

side and pushes them back into the planet on the other. The ground completes the

circuit. Moreover, since all points on the earth’s surface are electrically connected to

each other with low resistance, the planetary surface can be approximated as a plane

of constant voltage. Since electrical properties depend only on relative voltage—the

difference in voltage between two points, as opposed to the absolute voltage of any

one point—electrical engineers are free to define the constant voltage of the earth

as ‘zero.’ Planetary ground thus provides a common reference plane for all other

electrical systems: the ground wire in one home will have the same voltage as the

ground wire in its neighbor, which will be at the same voltage as in a home on the

other side of the planet.18

Most consumer and industrial electronics are grounded—that is, they are con-

nected to a conducting rod dug into the planetary surface, usually by way of a third

18The image of electrical ground as an infinite reservoir or absolute reference plane is, of course,
another form of god trick. From a situated position, we would necessarily ask, where is the literal
ground of electrical ground? One need only look at history to understand the urgency of this
question. In the nineteenth century, the American telegraph industry laid vast lengths of cable
between the Atlantic and Pacific coasts, enabling fast communication across the United States.
Rather than spend money on two massive lengths of wire per telegraph circuit, the telegraph system
employed electrical ground to complete the circuit, mobilizing the soil of continental America as part
of the communication network. The role of the telegraph system in the colonization of the American
continent—a project of violently seizing Indigenous land in the name of agriculture and industry—is
not coincidental. Electrical ground is often sacred ground and stolen ground, appropriated and made
‘productive’ by the forces of colonization.
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prong on their power cable. This is particularly true for precision microwave electron-

ics, which generate oscillating electromagnetic signals in the radio frequency (RF)

spectrum and play an important role in modern telecommunications technologies,

such as Wi-Fi and 5G. In RF devices, electrical ground provides a boundary condi-

tion for signals traveling down wave-guides, like the coaxial cable plugging an internet

router into the wall. The stability and invariance of electrical ground anchors these

waves such that they travel with a precise frequency, amplitude, and phase—the

parameters which encode communications signals. Building on decades of electri-

cal engineering technology developed throughout the past century, many quantum

computing platforms rely on RF instruments to control the quantum states of the

processor. This is particularly true for processors based on superconducting qubits,

such as the Sycamore device used in the work of Arute et al. A single superconduct-

ing qubit is usually connected to one or two coaxial cables—one to drive the qubit

between quantum states using a microwave pulse, and often one to position the qubit

on its energy landscape using magnetic flux. Each of these cables—dozens in total

to control a 54-qubit device such as Sycamore—is routed up through the dilution

refrigerator, through a series of electrical isolators and attenuators, and out to a box

of control electronics at room temperature, where the signals are finally grounded.

The stability of signals passed through these cables is paramount; any noise on the

line or spurious electrical current, and the fragile quantum state in the processor will

rapidly decohere, losing its ability to run any computation.

Ideally, all of these cables will be electrically connected at a single point, the

ground. In this way, the electrical signals fan out from a common point like branches

from a tree trunk, a single reference point. In practice, however, these cables often

make contact at unintended places. For example, the metallic connectors of a tight

bundle of coax cables might touch each other when plugged into the refrigerator.

While the point of contact might be almost imperceptible—as small as a few millime-

ters of metal touching each other—this is enough to electrically short the two cables

together, allowing current to pass through with hardly any resistance. When this

happens, the cables are now connected at two points, once at ground and once at the
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Figure 12-11: An electrical ground loop. Two instruments, each connected to elec-
trical ground, are accidentally shorted together when plugged into a common exper-
iment, forming a closed electrical circuit. The area enclosed by this loop is then
susceptible to stray magnetic flux, inducing spurious electrical currents which pour
noise into the experimental apparatus.

unintended contact. They form a closed loop of wire, a ground loop. This loop com-

pletes an electric circuit. Unlike the circuit of a battery and light bulb, the ground

loop should carry no electric current. Since the wires are grounded, and electrical

ground has approximately constant voltage, all points along the ground loop should

have equal electrical potential, meaning there is no electrostatic force to push current

along the wire.

The Faraday-Maxwell equation—one of the four foundational equations of electro-

magnetism, collectively attributed to the nineteenth-century Scottish physicist and

mathematician James Clerk Maxwell19—states that a temporally varying magnetic

19The Faraday-Maxwell Equation, often referred to as Faraday’s Law of Induction after the
nineteenth-century English physicist Michael Faraday, can be written in differential form as

𝜕B

𝜕𝑡
= −∇×E

where the left-hand side of the equation is the time derivative of the magnetic field vector B (the
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field will induce a spatially varying electric field, and vice versa. This means that

if you take a bar magnet and pull it back and forth through a closed loop of wire,

the changing magnetic flux of the magnet passing through the loop will generate a

circulating electric field along the circumference of the wire. The force generated by

this electric field will pull electrons around the loop, producing an electric current.

If there is a light bulb on the loop and the magnet is strong enough or moving fast

enough, the bulb will illuminate. So it is with ground loops. While an ideal ground

loop carries no current, current can be induced in the loop via an oscillating magnetic

field in the environment, and contemporary engineering has provided plenty of these.

The modern American power outlet provides an alternating electric current at a rate

of 60Hz (i.e., it changes direction 120 times per second). As a result, all electronics

radiate a small electromagnetic field oscillating at this rate. While the strength of

this field is low—perhaps only a few milligauss—the magnetic flux is proportional

to the enclosed area of the loop, and even a small field can generate a measurable

current in a large enough loop with low enough resistance. For a pair of cables con-

necting a large dilution refrigerator to a rack of control electronics, this loop can be

several meters in diameter, resulting in an induced current large to override the care-

fully calibrated signals being sent to the quantum processor. In this way, the noisy

hum of the ground loop as it is threaded by ambient magnetic fields is enough to

rapidly dephase your qubits, irretrievably scrambling your quantum state, rendering

computation impossible.

While the mechanism that causes ground loops in relatively simple—the general

sketch relies on little more than an undergraduate electromagnetism background—

the mitigation of their effect is slow and arduous. After cooling down your quantum

processor—a process which can take several days—and observing an abnormally large

amount of noise in the device, the task is to meticulously hunt down these unintended

points of contact along the measurement chain, isolating them and breaking the loop.

In a standard experimental setup, there can be dozens of coax lines crisscrossing

rate at which the magnetic field changes in time) and the right-hand side is the curl of the electric
field vector E (the vorticity of the electric field, as in a closed loop).
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across a laboratory, and the slightest brush of exposed metal between two can form

a ground loop. Sometimes the contact is less obvious—perhaps the outer shield

of a cable makes contact with the massive steel frame supporting the refrigerator,

which in turn connects to electrical ground via its contact with one of the pumps or

compressors circulating the cryogens. Since the transit of electric current is invisible

to the human eye, it is impossible to locate a ground loop by sight. Instead, you

need to systematically isolate a pair of possible connections, testing their electric

connection with a multimeter and remeasuring the qubits to see if the noise level has

changed, repeating this process over and over again until the errant contact is found.

If it isn’t, an entire measurement setup will be disassembled and put back together,

cable by cable, instrument by instrument, until perfect isolation is assured. If the

qubit noise still does not change, then perhaps the issue wasn’t a ground loop at all.

A ground loop is just one of many possible sources of noise in the qubit environment.

The hunt for other sources can be similarly arduous.

Two separate instruments, plugged deep into the ground like trees in soil; their

tendrils brush, exchanging invisible current, pulled from the expanse of dirt, through

root, bark, leaves, metal, and back into the endless ground, completing the circle.

We cock our heads. Déjà vu. Replace the instruments with signs, ‘quantum’ on

one end of the yard, ‘white’ on the other. Their limbs stretch far and wide. As

each bends towards supremacy, their branches kiss—an invisible spark is exchanged,

a short circuit is formed. The arc of ‘quantum’-‘supremacy’-‘white’ stretches across

the yard like a rainbow, like an upside-down smile, terminating in ground. An arc

is a strand until it hits the ground. Then it becomes a loop—a loop through what?

Following the trunk of each tree down, down underground into the soil, wood shatters

into a spiderweb of decay, skeins of fungus tangling with root until the line between

the one and the other blurs beyond recognition. The web pulsates, grows, recoils,

burrows beneath the yard, waiting in sleepless slumber, knotting the loop.

Quantum supremacy is (not) a metaphor. It’s a ground loop. Above ground, the

zeugmatic short of ‘supremacy’ connects ‘quantum’ and ‘white’ at a point of fatal

contact. Below ground, the two signs are sustained and given meaning through a
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Figure 12-12: A material-semiotic ground loop. Two signs, ‘quantum’ and ‘white,’
are zeugmatically shorted to one another via ‘supremacy.’ In turn, each sign is given
meaning through its chain of relation in the vast signifying network of material-
semiotics, connecting ‘quantum’ and ‘white’ through subterranean means and forming
a closed circuit of signification.
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vast chain of signification, a common ground. Weaving through this diffuse network,

the chains touch an innumerable number of times, shuttling meaning between the two

distant trees. Somewhere underground, a loop is formed. The existence of this loop

is not a trivial solution, a hand-wavy argument that everything touches everything

underground, shorting every word and thing to every other word and thing in equal

measure. Position and proximity, as Haraway and Barad remind us, matter. The

manner in which ‘quantum’ and ‘white’ make contact underground matters—it defines

the resistance of the pathway underground, the extent to which the loop conducts.

Electrical ground, despite the approximations of scientists and engineers, is not a

perfect conductor, a plane of constant voltage. The material composition of the

ground at each point—whether it is damp soil or dry sand, for example—matters. So

too with material-semiotic ground. Teasing out the degree to which two signs connect

to one another (and via how many links) is a matter of generations of arduous work.

Again, this work is often unrecognized.

I will not attempt to re-derive the underground material-semiotic connection be-

tween ‘quantum’ and ‘white.’ Instead, I refer to history, to data, and to those who

came before me, uncovering the web strand by subterranean strand. This web is also

a sort of bibliography, a citational ground plane connecting ideas, thinkers, and re-

sources to one another across space and time, revealing new forms of proximity that

cut across both. Like all bibliographies, it is always incomplete, always a work in

progress. For our task here, it includes:

• the work of Jamaican writer and cultural theorist Sylvia Wynter, whose analysis

of the origins of Western modernity traces a foundational connection between

the invention of ‘logic’ and ‘reason’ (the bedrock of Western scientific empiri-

cism) and the Spanish colonization of Central America in the sixteenth century

(i.e. the arbitrary and enduring distinction between ‘rational’ Europeans and

‘savage’ Indigenous peoples, justifying atrocities against the latter). [478]

• the work of cosmologist Chanda Prescod-Weinstein, who notes how fundamental

astronomy research has historically relied on the privileged vantage point of
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massive telescopes built on Indigenous tribal land, such as the Thirty Meter

Telescope (TMT) on the sacred Native Hawaiian land of Maunakea. [361]

• Prescod-Weinstein’s critique of the affective labor foisted onto Black and femme

faculty in the sciences, who are disproportionately expected to serve as diver-

sity educators for their peers and therapists for their students—labor which is

underpaid and illegible to tenure committees, often coming at the expense of

research time. [362]

• demographic data published by the American Physical Society (APS), the largest

professional organization of physicists: in 2018, only 3% of bachelor’s degrees

in physics in the United States were awarded to Black or African American

students, while Black people of college age (18–24) made up 14.24% of the

US population; this is a decline from two decades earlier, in 1998, when 5% of

physics degrees went to Black or African American students, while their relative

proportion of the population has remained roughly constant (13.95%). [29]

• the work of political scientist and Black studies scholar Cedric Robinson on

racial-capitalism, studying how the European invention of race preceded the in-

vention of capitalism in the sixteenth century—i.e., that capitalism first emerged

atop a deeply radicalized substratum of intra-European labor, in concert with

the emerging technoscientific enterprise of ‘New World’ colonization—rendering

the labor hierarchies of modern capitalism inseparable from the unequal valua-

tion of racialized bodies. [386]

• the interdisciplinary work of Karen Barad, particularly their recent work on

nuclear coloniality, exploring how US nuclear testing has relied on the horrific

colonial exploitation of the Marshall Islands, polluting the ocean with radioac-

tive fallout and poisoning generations of Indigenous islanders. [31]

• the recent work of Indigenous science studies scholar Eli Nelson on the early

history of American institutions of science and engineering, showing how these
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institutions emerged to directly aid the American project of land theft and

genocide against Native Americans. [23]

• the work of Ruha Benjamin and her critique of the “New Jim Code,” where mod-

ern systems of algorithmic surveillance and categorization—systems enabled by

advances in science and engineering—re-encode racist value systems and per-

petuate systems of racial supremacy. [47]

• Karoline Wiesner’s critique of the term ‘ancilla’ in quantum computing, which

draws a semantic connection between the division of computational labor in

a quantum processor and earlier systems of compulsory, gendered slave la-

bor. [469]

• John Preskill’s concurrent coining of the terms ‘quantum supremacy’ and ‘en-

tanglement frontier,’ two terms which (unintentionally) call our attention to

zeugmatic overlap between the scientific and colonial imaginations. [364]

Taken as a whole, we can think of this system as a material-semiotic ground loop—a

closed signifying circuit formed in language and in matter, conducting noise like a

massive hidden antenna.

Crucially, the metaphor of a ground loop is classical, not quantum mechanical.

The noise in a ground loop can be explained entirely using classical electromagnetism;

it has no quantum coherence, which is precisely why it frustrates attempts at quantum

computation. Throughout this essay, I have avoided invoking any metaphors which

explicitly reference quantum mechanics, even when such metaphors might have been

extremely useful: Barad’s notion of “the entanglement of matter and meaning” is a

succinct articulation of the way in which quantum theory resonates with material-

semiotics [32]; similarly, their model of comparing two concepts through “diffrac-

tive analysis”—observing the points of constructive and destructive interference like

fringes in a double-slit experiment (mapping points of similarity, difference, and all the

shades in between)—is a compelling visualization of the comparison between ‘quan-

tum supremacy’ and ‘white supremacy,’ and has much in common with the zeugmatic

analysis employed above [32, p. 34].
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I have avoided these metaphors, because quantum computing has turned quantum

mechanics into a product. I don’t want us to be blinded by its mystique. Instead, I

want us to look past the commodity fetish and notice the classical labor which makes

quantum phenomena possible in the laboratory. Here, the metaphor of ground loops

is useful. It is not without irony that scientists—obsessed as we are with isolating our

experiments, mercilessly hunting down any possible points of electrical or mechanical

connection to the outside environment—have been so naïve when it comes to noticing

the invisible connections in our language, short-circuiting our aspirations to systems

of power we claim to despise. The two tasks have much in common. In both cases,

the labor of tracking down these connections is painful and thankless. The days

spent searching for ground loops in an experimental system will never be recorded

in a final journal article; they are separate from the ‘real science,’ from the product

we are trying to sell. Instead, this work retreats into the realm of lab folklore, of

bitter hushed conversations around a coffee machine. So too with the ground loops

in our language. This is semantics, we are told, not science—a task best left to

the polite company of tenured forum posters and bloggers, or to underpaid graduate

students and DEI faculty hires. When such connections are found, they are treated

as aberrations, errors to be quietly mitigated so that the task of science proceeds

undaunted. Unfortunately, errors can tell us a great deal about how systems work in

the first place.

12.9 Glitch in the System, or, The Black Cat Seen

Twice

The record skips.

For many scientists in the accelerating field of quantum computing, it is difficult

to imagine writing a research manuscript, dissertation, or grant proposal in 2021

without prominently citing the 2019 Nature paper of Arute et al. At the same time,

however, it has become difficult to imagine using the term ‘quantum supremacy’ in
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any of those same documents. Words, like most things, go in and out of style. For all

the controversy and euphoria surrounding its 2019 demonstration, the term ‘quantum

supremacy’ has waned somewhat in the years following the publication of Arute et al.

Between its first appearance in 2012 and December 2021, 172 research publications

have been posted to the arXiv containing the term ‘quantum supremacy.’ Of those,

77 were posted following the October 2019 publication of the Google manuscript—a

rate of occurrence which is only slightly greater than in the four years prior to its pub-

lication. To put these numbers in perspective, they can be compared to the number

of articles which cited Arute et al. during that same period. According to the citation

aggregator Web of Science, 1,308 publications have cited the manuscript of Arute et

al. as of December 2021, making it the single most cited quantum computing paper of

the last decade—a feat which is all the more remarkable given that it was published in

the final months of that decade. The discrepancy between these two numbers should

give us pause. From the citation count alone, it should be overwhelmingly clear that

the result of Arute et al. continues to serve a foundational role in the internal identity

of the quantum computing community. But if the words ‘quantum supremacy’ aren’t

being used, how do scientists articulate what the result means to them? What’s being

said, and what isn’t?

From one vantage, it would appear that scientists have taken to heart the call

of Responsibility in Quantum Science. Running the same arXiv search for all occur-

rences of ‘quantum advantage’ since the publication of Arute et al. and overlaying the

results with ‘quantum supremacy,’ we find that almost five times more articles appear

using ‘advantage’ (360 articles) than ‘supremacy’ (77 articles). While it is tempting

to credit this discrepancy to the intervention of Palacios-Berraquero, Mueck, and

Persaud, the story is complicated the moment we zoom out. Scanning the arXiv

for all occurrences of ‘quantum advantage’ and ‘quantum supremacy’ over their en-

tire respective histories, we find that ‘advantage’ already dramatically outnumbered

‘supremacy’ at the time of the Google result. Moreover, while rate of occurrences for

‘supremacy’ has remained roughly constant since 2015, the number of occurrences of

‘advantage’ has increased exponentially—literally. At face value, the large discrep-
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Figure 12-13: Graph of the cumulative number of articles posted to the arXiv con-
taining the term ‘quantum supremacy’ since the October 2019 publication of Arute
et al., overlaid atop a histogram of the cumulative number of articles citing Arute
et al. in 2019 (13 articles), 2020 (546), and 2021 (740). (Keyword occurrence data
obtained from arXiv.org; citation data obtained from Web Of Science)

ancy between these two numbers would seem to paint a success story: an offensive

term failed to gain traction in our vocabulary, while a milder and less offensive term

has accelerated in usage. Perhaps, then, ‘quantum supremacy’ was simply a mis-

taken term after all, a linguistic error which scientists have successfully corrected.

The ground loop is separated, the experiment is run, the result is published.

The needle finds its groove, the song remains the same.

I suggest we sit with the error. Errors, like noisy ground loops, can teach you

a lot about how a system is intended to operate. This should be familiar to any

computer scientist or coder. When a piece of code runs smoothly, the machinery of a

programming language will run invisibly in the background, parsing the instructions

silently before outputting the result. Make a mistake, and the machinery immediately
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Figure 12-14: (top) Graph comparing the cumulative number of articles posted to
the arXiv containing the terms ‘quantum supremacy’ versus ‘quantum advantage’
since the October 2019 publication of Arute et al. (bottom) The same graph, plotted
over the entirety of their respective histories. The vertical dashed line indicates the
publication date of Arute et al. (Data obtained from arXiv.org)

becomes visible—the gears seize, grinding to a cacophonous halt. Mistype the name

of a variable somewhere in the code or bungle the syntax of a logical operation, and
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a sequence of error messages will likely pop up the moment you try to run it. These

error messages not only alert the programmer to the presence of a mistake somewhere

in the script, they offer a window into how the computer tried and failed to parse

the code. Decipher the error message, retrace the cascade of failures back to the

source, and you gradually learn what it means to write ‘good code,’ code which is

legible to the machine, which speaks its language. Again, we return to language.

The machine’s language is also our language, albeit defamiliarized. Programming

languages, like all languages, are inseparable from the people who write them, who

are in turn inseparable from the material-semiotic systems they are writing from

within. In this way, coding errors not only reveal what machines might consider

‘normal,’ they also trace the contours of the normative systems those machines are

operating in.

This point is central to the recent work of sociologist Ruha Benjamin. In her

book Race After Technology, Benjamin shows how modern tech glitches can offer a

glimpse into deeper systems of racial inequity, systems which lurk invisibly beneath

the surface of society, running silently in the background. Silently, that is, until

there’s a break in the facade. Here, Benjamin draws a compelling parallel to the

way déjà vu functions in Lana and Lilly Wachowski’s 1999 science fiction film The

Matrix. In the dystopian future of the film, mankind has been imprisoned by sentient

machines and their bodies have been turned into biological batteries, a vast energy

source for their mechanical captors; to pacify their prey, the machines construct a

massive virtual reality simulation of the late twentieth century for the human minds

to play in, tricking them into believing they are free. The provocative conceit of the

film is that the world around us might not be real, but rather an elaborate computer

simulation we have been fooled into believing is real.20 After all, since the simulation

is designed to be indistinguishable from reality, we are unable to tell the difference

between the two.

20In the decades following the release of The Matrix, the metaphorical function of the titular
simulation has been read through a number of different lenses, perhaps most notably as a queer and
trans allegory. In this reading, the simulation becomes a stand-in for the invisible coercive power
of heterosexual and cisgender norms, a delusion which some of us have awakened from and now
fugitively navigate within. For a recent trans critique of this reading, see [95, pp. 52–55].
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Until there’s a glitch. At a pivotal moment in the film, a black cat crosses the path

of the protagonist, Neo; seconds later, a black cat crosses his path again. Woah, déjà

vu. Neo’s companions turn in alarm, the music becomes tense. Déjà vu, we are told,

is not simply a spurious recursion in memory, a trivial lapse in our individual percep-

tual faculties. Instead, the double encounter with the cat is evidence of a material

alteration in the fabric of the simulation—code being modified and overwritten by

the machine taskmasters—affecting all its occupants. The encounter with the cat(s)

proves fatal—within moments, agents of the simulation descend upon their location,

and a violent encounter ensues. The glitch has consequences. Indeed, the glitch of

déjà vu, Benjamin writes, “is not an insignificant ‘mistake’ to be patched over, but

rather serves as a signal of something foundational about the structure of the world

meant to pacify humans. It draws attention to the construction and reconstruction

of the program and functions as an indication that those seeking freedom should be

ready to spring into action.” [47, p. 85] Like the skip of a phonograph needle, remind-

ing the listener that the band isn’t actually in the room with them, the error reveals

the simulation.

These glitches, Benjamin argues, aren’t simply the stuff of science fiction. They

are all around us, and they offer glimpses into a dystopia which is absolutely material,

absolutely present. As an example, Benjamin points to a 2017 viral video posted by

Chukwuemeka Afigbo, a Nigerian program manager at Facebook [9]. In the video,

Afigbo records an individual holding their hand under an automatic soap dispenser—

the machine quickly whirs to action, a stream of suds is deposited into the cupped

hand. Afigbo then invites a second person to give the machine a try—they wave

their hand under the dispenser for ten seconds, but the dispenser remains silent. The

individual then grabs a white piece of paper towel and holds it over their outstretched

palm—the dispenser immediately springs to life. For many physicists, the mystery

of the glitched soap dispenser will be clear, perhaps even comical. The automated

dispenser likely relies on a small infrared light source: when an object is placed within

the beam, some amount of light is reflected back and captured by an adjacent detector,

at which point the soap is dispensed. Of course, since ambient light already contains
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some amount of infrared radiation, the detector must be calibrated to avoid misfiring.

The engineers who design the device must impose a threshold for the amount of

reflected light required to trigger it: if the threshold is too low, the dispenser will

discharge soap constantly; too high, and only a mirror will reflect back enough light

to activate it. Between these two extremes, a judgement had to be made. A line had

to be drawn. As Afigbo’s video shows, the white skin of the first person reflected

enough infrared light to satisfy the sensor; the Black skin of the second did not.

The physical mechanisms of infrared light and epidermal melanin are well under-

stood, but they alone are insufficient to explain this particular encounter between

machine and body [360]. While physics might lead us to explain away the issue—

to conclude that this is just how infrared sensors work—this impulse obscures from

view a series of simpler and more pressing questions. The calibration of the sensor

may have been arbitrary, but it certainly wasn’t random. Before the product was

mass produced, the soap dispenser surely went through numerous rounds of testing,

fine-tuning the threshold to minimize the amount of wasted soap and maximize the

number of satisfied users. The fact that the dispenser failed to recognize Black skin

is significant, but it doesn’t necessarily point us to deliberate and intentional animus

on the part of the designers. It doesn’t have to. Rather, it suggests something much

simpler and more insidious about the conditions in which most technology is devel-

oped: none of the engineers were Black. If they had been, the dispenser would likely

never have made it to market in this form; the sensor would have been found to be

faulty during development and it would have been recalibrated, if not replaced with

a different mechanism altogether. In this way, Benjamin writes, “the discriminatory

soap dispenser offers a window onto a wider social terrain,” exposing the material im-

pact of a lack of racial diversity in engineering, and silently replicating a longstanding

vocabulary of racial hygiene [47, p. 67]. The automated soap dispenser is far from an

individual anomaly, and it must be situated within a broader matrix of technology

and social relation, a matrix which defines who is visible, who is invisible, and when:

For instance, we might reflect upon the fact that the infrared technology
of an automated soap dispenser treats certain skin tones as normative
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and upon the reason why this technology renders Black people invisible
when they hope to be seen, while other technologies, for example facial
recognition for police surveillance, make them hypervisible when they seek
privacy. When we draw different technologies into the same frame, the
distinction between “trivial” and “consequential” breaks down and we can
begin to understand how Blackness can be both marginal and focal to
tech development. [47, p. 68]

Much like the deep space telescope or scanning electron microscope, the infrared soap

dispenser and facial recognition software are apparatuses of vision, windows onto the

world. Indeed, as Haraway would remind us, they are never transparent, always

contingent, encoding and replicating a partial vision of the world. The question then

becomes, who calibrates that partial vision? Who is the window designed for?

Let’s take the metaphor of déjà vu a step further, since it too concerns vision,

what we see or don’t see. Like a black cat crossing our path, we receive a New

York Times alert announcing that scientists at Google have demonstrated quantum

supremacy. Months later, another crosses our path, this time with the news that

white supremacists have stormed the United States capitol. We double take.

Neo: Woah, déjà vu.
Trinity: What did you just say?
Neo: Nothing, uh, just had a little... déjà vu.
Trinity: What did you see?
Neo: A black cat went past us... and then another that looked just like it.
Trinity: How much like it, was it the same cat?
Neo: Might have been, I’m not sure. [454, 1:19:05]

We’re seeing double. Was it the same cat, or a coincidence, a trick of the light?

Might have been. How can we be sure? We turn to our colleagues and ask if they can

validate our observation, if they saw what we just saw. They look at us askance, what

cat? We cautiously present our findings. Was it a real cat, they ask, or a metaphorical

one? We laugh it off, but the recursion haunts us, like the fog of a half-remembered

dream. Cross-eyed, we return to lab. There are experiments to run, discoveries to be

made, papers to publish. Somewhere deep in the refrigerator, Schrödinger’s metaphor

purrs.

The loop of the ground loop is also the loop of déjà vu. Like the black cat, like the
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glitched soap dispenser, the zeugmatic slippage of ‘supremacy’ alerts us to something

terribly amiss in the fabric of our reality. If ‘quantum supremacy’ is a glitch, what

does it reveal about our reality? What does it bring into focus, and what does it

expose in the margins? Again, we return to the text. When a prominent quantum

information scientist posted on SciRate that ‘quantum supremacy’ does not “make

racial minorities feel unwelcome (as far as I can tell),” the void enclosed in that

parenthetical spoke volumes [105]. There was no one in the forum to disagree. Again,

this is not a question of individual actors saying the wrong at the wrong time; it’s

about the material and social conditions which made such an utterance possible and

sensible in the first place. Those parentheses are a window onto the warped landscape

in which ‘quantum supremacy’ emerged, the salted terrain which has nurtured and

sustained it. It’s a window into history, into the myths we tell each other.

In 1927, twenty-nine scientists convened in Brussels to attend a conference en-

dowed by the Belgian industrialist Ernest Solvay. The group photograph from that

meeting is legendary among physicists, and the list of attendees reads like the index

of an introductory physics textbook. Albert Einstein sits front row center, flanked

on all sides by the architects of modern quantum theory: Erwin Schrödinger, Wolf-

gang Pauli, Werner Heisenberg, Paul Dirac, Louis de Broglie, Max Born, Niels Bohr,

Max Planck, Marie Curie, Hendrik Lorentz. Over half of the participants are Nobel

Prize winners. In 2011, an illustrious cohort of scientists once again convened in

Brussels, this time to celebrate the centennial of the Solvay Conference. Much had

changed about the world in the intervening years; some things had not. When John

Preskill took the lectern at the twenty-fifth Solvay Conference and unveiled ‘quantum

supremacy’ for the first time, he did so to an audience that remained overwhelmingly

male, overwhelmingly white. We need not speculate whether or not an audience

member raised any objections to Preskill’s choice of words: in 2013, the organizers

of the Solvay conference published a compiled volume of the proceedings of the con-

ference, complete with transcriptions of the Q&A session following each talk. No

objections were raised [366]. Like the faulty soap dispenser, ‘quantum supremacy’

made it to market with extraordinarily narrow oversight. Indeed, one look at the
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Figure 12-15: Group photograph of the attendees at the fifth Solvay Conference on
Physics in Brussels, October 1927. Many of the scientists assembled are considered
founders of modern quantum theory, including Erwin Schrödinger, Wolfgang Pauli,
Werner Heisenberg, Paul Dirac, Louis de Broglie, Max Born, Niels Bohr, Max Planck,
Marie Curie, Hendrik Lorentz, and Albert Einstein.

group photograph from the conference—superposed with the legendary image of Ein-

stein, Heisenberg, Schrödinger et al. at the same conference eighty-four years prior,

a cascade of infrared reflected back and forth across the century—and the mystery of

Preskill’s “we” becomes eerily clear. This is who ‘quantum supremacy’ was designed

for.

What then of ‘quantum advantage’? In early October 2019, shortly after the

leaked manuscript of Arute et al. began circulating online, Quanta Magazine pub-

lished a column by Preskill titled “Why I Called It ‘Quantum Supremacy’.” In the

piece, Preskill walks readers through the scientific context of the Google result, fo-

cusing only briefly on the controversy brewing around the term itself. In doing so,

Preskill meditates on why ‘quantum advantage’—a term which, we have seen, was
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Figure 12-16: Group photograph of the attendees at the twenty-fifth Solvay Confer-
ence on Physics in Brussels, October 2011.

already accelerating in prominence at the time—is the wrong word for the job:

In 2012, I proposed the term “quantum supremacy” to describe the point
where quantum computers can do things that classical computers can’t,
regardless of whether those tasks are useful. With that new term, I wanted
to emphasize that this is a privileged time in the history of our planet,
when information technologies based on principles of quantum physics are
ascendant.

The words “quantum supremacy”—if not the concept—proved to be con-
troversial for two reasons. One is that supremacy, through its association
with white supremacy, evokes a repugnant political stance. The other
reason is that the word exacerbates the already overhyped reporting on
the status of quantum technology. I anticipated the second objection, but
failed to foresee the first. In any case, the term caught on, and it has been
embraced with particular zeal by the Google AI Quantum team.

I considered but rejected several other possibilities, deciding that quantum
supremacy best captured the point I wanted to convey. One alternative is
“quantum advantage,” which is also now widely used. But to me, “advan-
tage” lacks the punch of “supremacy.” In a race, a horse has an advantage
if it wins by a nose. In contrast, the speed of a quantum computer vastly
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exceeds that of classical computers, for certain tasks. At least, that’s true
in principle. [368]

As we’ve seen, this point was quickly echoed by Scott Aaronson, who concurred with

Preskill that ‘advantage’ lacked the right punch:

See, it’s like this. Preskill meant “quantum supremacy” to refer to a mo-
mentous event that seemed likely to arrive in a matter of years: namely,
the moment when programmable quantum computers would first outpace
the ability of the fastest classical supercomputers on earth, running the
fastest algorithms known by humans, to simulate what the quantum com-
puters were doing (at least on special, contrived problems). And . . . “the
historic milestone of quantum advantage”? It just doesn’t sound right.
Plus, as many others pointed out, the term “quantum advantage” is al-
ready used to refer to . . . well, quantum advantages, which might fall well
short of supremacy. [3]

Preskill and Aaronson are exactly right. The problem with ‘quantum supremacy’ has

never been that it was the wrong word for the task at hand. The problem has always

been that that it’s the right word. ‘Quantum supremacy’ is a glitch in the original

sense of the word: glitsh, Yiddish for ‘to skate,’ ‘to slip.’ It’s a slip of the tongue; a

Freudian slip, perhaps. It’s exactly the word we mean to say, though perhaps not in

polite company.

When we switch from ‘quantum supremacy’ to ‘quantum advantage,’ we don’t

sever the ground loop. We bury it underground. Out of sight, down amidst the

tangle of mycelium. Scott Aaronson’s belief in a “better kind of supremacy” was

dangerously naïve, but he was absolutely right about one thing: “while ‘advantage’ is

certainly subtler than ‘supremacy,’ couldn’t that make it all the more insidious, and

therefore dangerous?” [3] Despite their best intentions, the authors of Responsibility

in Quantum Science misdiagnosed the problem. Quantum computing doesn’t simply

have a problem with its signifiers, with the names we attach to phenomena and what

those names may remind people of. Quantum computing has a sign problem. The

problem is what the name is pointing towards; the problem is the chain of signification

wrapped around our wrists. The sound-image quantum supremacy points us to the

cascade of myth at the heart of our research, the myth of power which we replicate in
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our social and professional formation, in the stories we tell to delight our corporate and

government sponsors, in the forms of labor we choose to recognize and choose to make

invisible, unpublishable. It is, to permute Preskill’s words, the punch which precedes

the broken nose; conceal the fist and the shattered cartilage remains. The legacy

of white supremacy is worth learning from. The violent regime of racial supremacy

never disappeared, not even in the parts of the world inhabited by progressive and

well-meaning scientists. It too quietly mutated into invisible ‘advantage’—made it

easier for some people to get a bank loan, or obtain a tenured faculty position, or

dodge murder at the hands of the police, or tell an automated soap dispenser that

their body is really there. When we throw out a word and leave a system intact, we

suture up the rift in the simulation, but the simulation remains. We’re just hiding

the error messages.

12.10 3:20

In July of 2021, the team at Google Quantum AI held an online summer symposium

live on YouTube, the company’s video platform. Less than two years had passed

since the publication of Arute et al., but the chasm between the two events felt

boundless. In March 2020, five months after the fanfare of the supremacy result, the

first outbreak of COVID-19 rolled across the United States like wildfire, ushering in

years of intermittent mass lockdown, quarantine, and heightened economic precarity,

forcing even the most routine in-person interaction online. At the time of writing,

830,549 people have died of COVID-19 in the US alone, with the total number of

cases exceeding 57 million nationally. On May 25, 2020, George Perry Floyd Jr.

was murdered in broad daylight by an officer of the Minneapolis Police Department

for, allegedly, trying to use a counterfeit $20 bill. George Floyd’s murder set in

motion the largest series of mass protests in American history. On January 6, 2021,

white nationalists stormed the United States Capitol in an attempt to overturn the

presidential election in favor of Donald Trump. Few arrests were made.

Arriving in the aftermath of all this, the tone at the Google summer symposium
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was remarkably upbeat. The sun was shining at the end of the long first winter of

the pandemic, COVID case numbers were on the decline in many states, and the

first round of vaccines promised herd immunity in many communities. Sitting in a

conference room in Cambridge, Massachusetts, I was not immune to optimism. For

the first time in over a year, my labmates and I gathered to watch the livestream over

lunch, in person and unmasked. While this optimism was tempered less than a month

later with the arrival of the Delta variant and yet another wave of mass infections, the

recording of the symposium reads like a snapshot of mid-pandemic hubris: Google

scientists strut around their new laboratory complex in Santa Barbara without masks,

offering viewers a seductive window through their computer monitors and into the

cutting edge future of quantum computing research. The symposium opens with a

keynote address by Hartmut Neven, leader of the Quantum AI team and one of the

two principal investigators on the work of Arute et al. Over the course of half an hour,

Neven—collared shirt unbuttoned to the chest, massive sunglasses glistening high atop

his forehead—bounces between an assortment of presentation genres, shifting from

technical research talk to shareholder meeting, speculative outlook to recruitment

advertisement. The term ‘quantum supremacy’ doesn’t appear a single time. Neven

begins his talk by announcing that, in the next two years, the Google team plans

to double in size, hiring over a hundred new employees. “We cherish diversity along

many dimensions,” Neven intones, “and we think it makes our team stronger.” [329]

As for what ‘diversity’ means in this context, Neven quickly clarifies:

One misconception I would like to dispel is, please don’t think “Oh, I’m
not working in superconducting quantum computing so the Google team is
probably not so interested in me.” That is not correct. Again: diversity.
If you have a background in photonic systems or in ion trap systems,
if you have skills in adjacent engineering disciplines such as microwave
engineering, chip layout, chip manufacturing techniques, we would like to
hear from you.

Toward the end of the keynote address, Neven flashes to a blank blue slide with

the words “Prospects for real world impact” emblazoned across it. “Ultimately we

have to answer this question,” he reflects. “It will cost billions of dollars to build
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an error-corrected quantum computer—hey, if you have it, what are you going to

do with it? And we owe it to our investors—whether those are taxpayers or Google

shareholders—we owe the world a good answer to that.” He then transitions to a slide

with four columns: “Energy” (using quantum simulation for nuclear fusion research

to fight global warming); “Pharmaceuticals” (modelling the quantum mechanics of

neuroreceptors for targeted drug development);21 “Machine Learning” (using quan-

tum speedups in linear algebra to train deep neural networks); “Computer Graphics”

(modelling interference patterns in nature for more realistic video game graphics and

virtual worlds). “Admittedly these areas are slightly speculative,” Neven concedes,

“I’m not saying there will be big commercial relevance assured, but these are very

worthwhile areas to look at.”

Among these outlook slides, one image in particular caught my eye. On the

machine learning slide, Neven includes a cartoon graphic of a neural network. On

the left side of the graphic are a cluster of points labeled ‘image’; these points then

connect to a network of dots in the center of the cartoon, orange lines connecting

between them like a tangle of fibers; on the right, these lines connect to one of two

points, labelled ‘Cat’ and ‘Dog’ respectively. The graphic is a common one in machine

learning textbooks, and it attempts to illustrate how neural networks process the raw

data of a photograph and determine whether it is an image of, say, a dog or a cat.

Of course, there is nothing special or particularly lucrative about the task of sorting

dogs and cats, so consumers are free to decide which categories they would like to sort

photographs into. Indeed, as Ruha Benjamin notes, similar algorithms for predictive

policing are already in wide circulation among US law enforcement agencies—these

algorithms, trained on data steeped in racial bias, are known to disproportionately

mislabel Black defendants as criminals in comparison to white defendants [47, p. 81].

When we talk about satisfying investors, whose investments are we really talking

about? What happens when the financial interests of Google shareholders conflict,

as they historically have, with those of average American taxpayers? What happens

21Here, Neven notably avoids any mention of the ongoing pandemic, instead indulging in a bizarre
anecdote about how the soft drink 7 Up originally contained lithium citrate, a mood stabilizer used
to treat bipolar disorder.
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Figure 12-17: Summary slide of the keynote presentation by Hartmut Neven at the
Google Quantum Summer Symposium 2021. Image captured from Ref. [329].

when the strategic interests of the American Empire conflict, as they definitionally

must, with the existential interests of the the Global South? I stare at the image a

moment too long and it becomes fuzzy, the vectors of the bipartite graph blurring into

a tangle of Saussurian sycamore, limbs converging to a single point, a final signified.

Cat. Dog. Except now the letters are getting mixed up, scrambled in the pixelated

video compression of a bad internet connection, and for a moment I think I see new

words. White. Black. I stare a beat too long. Aryan. Jew. What are we really

building here?

Neven concludes his talk with a summary slide. “Our community is thriving,” the

first bullet point reads, “Can you see yourself being part of it?” On the right hand

side, a stylized illustration shows two hikers venturing up a mountain trail, the path

paved with cartoon qubits. The trail is marked with flags corresponding to milestones

in the development of a quantum computer, implying that the physical path of the

trail is also a metaphorical time axis. In the foreground, the trail is marked with a

flag labeled ‘beyond classical’—another euphemism for ‘quantum supremacy’—which

the viewer takes to mean the present moment, or perhaps the near past of 2019. The
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Figure 12-18: Illustration of the road to an error-corrected quantum computer from
Hartmut Neven’s summary slide, enhanced for visual clarity. Image captured from
Ref. [329].

hikers—who we take to be stand-ins for Google engineers—are depicted many yards

beyond this point, though it’s unclear who is in the present: the hikers, or the viewer

trailing behind them outside the picture frame? Perhaps the engineers are in our

future while the rest of us are stuck in their past, and Neven’s invitation to join the

hike is also an invitation to catch up with them. In either case, all eyes point further

down the trail, upwards to the summit of the mountain in the distance. Upwards into

the future, to the ultimate penthouse view. “There are solid prospects for real-world

impact and return on investment,” Neven concludes, “and we often say that we are

just one creative algorithm away from that.” Somewhere in the distance, behind the

angular whiteness of the mountain, the warm glow of a new sunrise illuminates the

landscape. Impossibly, the mountain casts no shadow on the trail.

“And with this, I would like to hand it over to Emi who will delight us with a

poem.” The scene changes, and the viewer is instantly teleported to a new room.

The next speaker introduces herself as Emtithal Mahmoud, a Sudanese-American

poet, activist, scientist by training, and Goodwill Ambassador for the United Na-
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tions Refugee Agency. For the symposium, Mahmoud was commissioned to write an

inspirational poem, which she tentatively titles “Quantum and Consciousness.” The

poem runs about seven minutes in length, densely pulling together a collection of

quantum computing terms into a narrative of shared struggle and triumph. “A new

milestone:” she recites, “as we becomes our own error correction / overcoming each

disturbance from an environment that makes a habit of saying no / and not yet / and

try again / and why / and how / and why again as we make progress on the proverbial

road to discovery.

Can you imagine a world where our understanding of a few systems can
change the course of climate change? / helping us forge a path towards a
fully decarbonized world / avoiding disaster / where our understanding of
how the sun works can help us reverse engineer mechanisms that attempt
to shine a light / so to speak / on change itself

and this, this is only the beginning / personalized medicine for the healers /
new materials for the builders / countless opportunities for those dreamers
among us / who want to imagine a world of our own choosing / where
we are not limited by the bounds of our bodies / or our societies / or our
systems. [291]

Mahmoud concludes her poem with an address to those who might doubt her vision

of a better world. “This is the moment / the moment where I’m always asked how it

is I can wholly believe in something I cannot see / My new favorite answer: have you

heard of this thing called quantum? / Yeah, it’s everything.”

As I watched the symposium live in that conference room at MIT, surrounded

by my colleagues and labmates, the discomfort in the room was palpable. A couple

graduate students suppressed giggles when Mahmoud announced the title of her poem,

others rolled their eyes—later at the coffee machine, a postdoc railed against the

notion of quantum consciousness, insisting that Mahmoud did not fully understand

the quantum-classical boundary. Partway through the poem, a visiting researcher

from a prestigious collaborating group asked for us to shut the stream off and switch

to a different video from the previous year’s symposium. In summer 2020, as much of

the United States smoldered from the ongoing uprising for racial justice, the organizers

of the Google symposium invited Baba Brinkman, a white Canadian rap performer,
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to produce a series of freestyles about quantum computing. The performance the

researcher excitedly wanted to put on was titled “3:20.” [76] The gimmick of the

performance was that Brinkman freestyled for three minutes and twenty seconds—

the length of time it took the Sycamore processor to perform the quantum supremacy

computation—while viewers posted quantum computing terms in the chat window for

inspiration in real time. Watching Brinkman scroll through the chat and rattle off

phrases like ‘color code surface code’ and ‘quantum money,’ the names of many of the

participants were immediately familiar from the author lists of high-impact quantum

computing papers. “This is the way that I step up,” he stumbles, off beat,

and maybe even bust words. / Sometimes I have to defrag my brain /
with those coupled clusters. / They’re unitary. / It’s very nice / when
I’m spitting this scary rap. / Is it alive or dead? / I don’t know. / It’s
the Schrodinger’s cat. / See what I’m saying? / That’s the way that the
story is told. / I am quantum.

There is a macabre déjà vu to the performance’s title, though this appeared lost

on Brinkman and the giddy audience. At the very moment that Brinkman was

deliriously counting down two hundred seconds, protesters across the country were

counting down over twice that duration in silence, bodies splayed across asphalt in

defiant monument. Months prior to the freestyle, the American comedian and social

theorist Dave Chappelle released a chilling monologue in solidarity with the protests.

In the piece, Chappelle passes the mic to the righteous anger of Black Americans

across the country, insisting there is nothing he could say on stage as a celebrity

which hadn’t already been said by millions of other voices without stages. “Does

it matter about celebrity?” Chappelle asks. “No! This is the streets talking for

themselves.” [89] Chappelle titled the piece 8:46, the length of time that officer Derek

Chauvin knelt on George Floyd’s neck.

Sitting in that conference room in July 2021, watching Emtithal Mahmoud re-

cite her poem, I too felt deeply uncomfortable. I quickly realized, not for the first

time, that it was for a different reason than many of my colleagues. What made me

uncomfortable was not so much the content of Mahmoud’s poem—the insinuation,

for example, that quantum mechanics and consciousness might have something to
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do with one another—but rather the circumstances which surrounded her delivery

of it. At the symposium the prior year, Mahmoud had delivered a sobering poem

about grief, anti-Black violence, global hunger, and the possibility of re-imagining the

world anew through quantum mechanics, though not without ambivalence. “In those

moments,” she reads, “quantum mechanics as an escape / or a catch-all cure to all of

our problems / seems more appealing than ever before / and I let this notion fill me

up / even now.” [290] The tacit shadow of doubt, of the impossibility of easy escape,

is never fully dispelled; it hangs over the rest of the piece, haunting the remainder

of the gathering. The contrast with Baba Brinkman’s piece the following day—an

incoherent karaoke of empty quantum signifiers, cloaked in faux Black vernacular

affectation—is staggering. In 2021, with Brinkman no longer on the schedule, it felt

like the organizers of the event were asking Mahmoud to serve double duty. On the

one hand, she was to reprise Brinkman’s role as entertainer, to delight the audience

with callouts to quantum computing terms and hype them up for the engineering task

ahead. On the other, she was to shoulder the burden of Neven’s nebulous promise of

diversity, to take the stage and speak on behalf of those who hadn’t been invited on

the hike. To absolve the gathering of the fact that, once again, there were no other

Black speakers on the schedule. To become our error correction.

Again, I suggest we sit with the error. Sitting in the metaphorical conference room,

we might notice a particular theory of diversity which runs throughout the Google

quantum summer symposium series. This theory is perhaps best articulated during a

telling moment in the keynote address. Flashing a photograph of the newly completed

laboratory campus—walls adorned with vibrant and abstract blotches of color—Neven

boasts of the team’s artist in residence program, an initiative which strives to cre-

ate “very pleasant working environments conducive to creative work.” [329] Creative

work, like coming up with a creative algorithm to justify a multibillion-dollar research

boondoggle, to guarantee return on investment. The art on the wall, like Mahmoud’s

poem, is ancillary to this task. Which is to say, it is “an aid in achieving or master-

ing something difficult,” the task of research; aid which, as Karoline Weisner might

reminder us, is drenched in a history of gendered, racialized, and compulsory labor.
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Creativity in quantum computing, like diversity, is a resource—which is to say, it’s a

substance to be mined and extracted, fuel for the engine of progress. There is a reason

why, in Neven’s keynote, he frames diversity as a multi-disciplinary hiring initiative.

To pursue their aggressive research timeline, Google Quantum AI requires a hundred

new employees in two years. Each year, perhaps a couple dozen people receive doc-

toral degrees in superconducting quantum computing worldwide. To fill the delta

between those two numbers, there is no option but to expand the hiring search to

researchers in “adjacent engineering disciplines,” disciplines which incidentally suffer

from the same lack of racial and gender diversity as physics and engineering at large.

There is no generosity in this effort. Google—like IBM, like Amazon, like Microsoft,

like MIT—is looking for more workers for the factory. They’re looking for labor, for

more hands to quietly hunt ground loops.

This is not to say that hiring a diverse workforce is not important. As Ruha

Benjamin’s example of the automated soap dispenser in the previous section already

illustrates, it is absolutely essential. The problem is that—like removing the term

‘quantum supremacy’ from our vocabulary—it is only the first and most visible step

in a much harder process. Many scientists still dream, like Scott Aaronson, of a

world where “physicists and computer scientists and mathematicians of varied skin

tones and accents and genders com[e] together to pursue a different and better kind of

supremacy,” overcoming the barriers of language to recognize their shared calling [3].

In this narrative, racism, sexism, homophobia, transphobia, abelism, anti-indigeneity

are all roadblocks on a path which already stands in front of us. Remove an offensive

term, hire a diverse labor force, and the path itself remains unchanged. We cherish

diversity and creativity when they allow us to do the things we already wanted to do

in the first place. But what happens when an invited speaker delivers a poem which

doesn’t delight us, but horrifies us in its reckoning with unspoken atrocity? What

happens when an artist fails to make a laboratory more pleasant, exposing instead

the brutal reality contained within those walls? What happens when, recalling the

prophecy of Aaronson’s jeering specter, the “women and minorities” we mentor spurn

our pantomime hospitality, call foul on our tax-deductible donations to “good causes,”
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lose patience in watching us shadowbox with “the demons in [our] own character”?

What happens when the artists, and the poets, and the ground loop hunters see what

the leaders of quantum computing evidently cannot: that the path before us is the

problem, that it leads us not to a glorious mountaintop, but a crematorium? There

is no better supremacy waiting for us at the end of this path. There is only the same

supremacy.

During Derek Chauvin’s trial in March 2021, body camera footage revealed that

the duration of George Floyd’s murder had been previously underreported, that Chau-

vin had in fact knelt on his neck for nine minutes and twenty-nine seconds. George

Floyd was unresponsive for the final three minutes and fifty-one seconds [274]. The

exact timestamp does nothing to change the outcome, but in the grim accounting of

supremacy—of which tasks take minutes, days, millennia—consider the data again.

It took our community three minutes and twenty seconds to claim supremacy in a

bottle colder and darker than space. It took three minutes and fifty-one seconds for

a nation to erect a monument to supremacy on a man’s neck.

Hiding the words ‘quantum supremacy’ doesn’t cut the ground loop. Neither

does hiring a poet once a year for a public livestream, or recruiting Black bodies,

female bodies, queer bodies to do the work you already promised your shareholders.

If you really want to cut the ground loop, you have to completely unearth the chain of

signification which created the short in the first place, prying it apart fiber by fiber. If

you really want to cut the ground loop, you have to hire a diverse workforce and give

them the tools to utterly dismantle the systems which made their absence sensible

in the first place. The twist of the automated soap dispenser story is important:

speculation aside, we’ll never know the color of the lead engineer’s skin. Perhaps

they put their hand under the prototype detector and discovered that it believed

them invisible. Perhaps they reported this discovery to their colleagues and their

manager, drafted up plans for an ingenious solution. What we do know is this: that

discovery did nothing to change the final product. Maybe shareholders reasoned it

was too expensive for the company to change course and switch the detector to a

different model. Or maybe the detector worked for all the other test subjects, so the

556



12.11. CODA: CUTTING THE GROUND LOOP

manager assumed it was all in the engineer’s head. Or maybe there was a bonus

promised to engineers who successfully designed devices that worked the first time,

and the engineer bit their tongue to pay rent and keep food on the table. Again,

again, this isn’t about individuals. It isn’t about finding the right actors to heroically

intervene and save us from ourselves. It’s about systems. It’s about dismantling

the protocol of racial capitalism which strives at every moment to make such an

intervention impossible in the first place. It’s about abolition.

12.11 Coda: Cutting the Ground Loop

The blues remembers everything the country forgot.
We waited and we watched.
We waited and we watched. [315]

“What,” asks the great prison abolitionist Ruth Wilson Gilmore, “is to be done?” [159]

In her tweet celebrating the Google result, Ivanka Trump wrote that quantum

information science is “a critical industry of the future.” [439] On this point at least,

the two Trumps, John Preskill, Scott Aaronson, Harmut Neven, Emtithal Mahmoud,

the signatories of Responsibility in Quantum Computing, and the vast majority of

the quantum computing research community appear to be in agreement. Of course,

the thing about the future is that it doesn’t exist yet. It’s appears always out of

reach, untethered to the present. As such, it can be tempting to imagine the future

as an empty vessel, a chalice waiting to be filled with our wildest hopes and dreams.

So it is with quantum computing. As we’ve seen, for some the future promise of

quantum computation is a promise of strategic national dominance; for others, it’s

an aspirational milestone on the path to scientific enlightenment. Or a lucrative

investment opportunity. Or the miraculous solution to climate change. Or a hopeful

panacea to cleanse the world of violence and hate. We shape the future to reflect our

desires, even if those desires are never entirely our own.

The past isn’t so easily persuaded. For all our elaborate theories of time, as

physicists, our profession doesn’t encourage us to think about the past in any great
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specificity. For us, the fruits of the past have already been thoroughly harvested—the

theories of those who came before us have already been picked clean, strip-mined and

supplanted by better theories, by better experiments with newer and more sophisti-

cated instruments. Our past is a shallow one: the timestamps in our bibliographies

are measured in years from the present, a decade or so at most. This is the sliver of

usable history we have to work with, the retreating strand of territory that might still

yield new results, new publications, new flags to plant in virgin soil. It’s the distance

between the foreground of Neven’s mountain landscape and the hikers less than a mile

in the distance, collapsed and foreshortened onto the flat plane of a PowerPoint slide.

All eyes point toward the future, to a cartoon mountain looming in the distance, its

radiant glow distracting us from the shadows falling in the wrong direction. What

happens if we avert our eyes from the path in front of us, shatter the sharp perimeter

of the keynote slide? What happens if we turn around? Will we be able to face the

history which led us to this point?

If we are truly committed to removing supremacy from our community, we must

change our strategy. Here, we have much to learn from the movement for prison

abolition. What prison abolitionists like Ruth Wilson Gilmore understand is that

the modern criminal justice system cannot be reformed. The American crisis of mass

incarceration is not simply an isolated phenomenon, a lone tree bearing poison fruit.

It’s a mushroom, a symptom of deep and structural decay metastasizing beneath the

surface. Which is to say, mass incarceration is not an aberrant error in an otherwise

just society—it’s the glitch that reveals the machinery of a deeply unjust society, a

society whose sense of justice is utterly entangled with the myth of racial supremacy,

with the imperatives of commerce and capital. Remove the buildings called prisons,

and such a society will rebuild the same structures under a different name. To remove

prisons permanently, to abolish the system of mass incarceration itself, you must work

towards a society where prisons no longer make sense. This is the task of abolition.

This is our task as well: to endeavor, not towards a world without the signifier

supremacy, but towards a world without ‘supremacy.’ The task is to abolish the

conditions of possibility which gave rise to this gnarled sign in the first place. To do
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this, Gilmore tells us, we must change everything. Students of semiotics know this to

be true. Language is a fault tolerant system. Remove a single sign from the web of

signification, and the vacuum left in its absence will be filled like scar tissue, stitched

back together by the countless fibers at its perimeter. To remove supremacy for good,

we must weave this web anew, restructure the logic which gave it meaning in the first

place. We must rewire the ground itself.

Abolition is a metaphor, but this does not mean it isn’t real. Nor does it mean,

as Tuck and Yang might warn us, that we are draining the word of the political

specificity which anti-prison activists tirelessly work towards. Metaphors, as Barad

and Helmreich remind us, can reveal deep connections between seemingly separate

things. Handled with care, they can be tools of solidarity. As physicists, our task

is not to re-derive what abolition means from first principles, to place ourselves in

its center, shape what it looks like in our own image. The work of abolition is

happening right now, we just can’t see it from our penthouse suite. Outside our

tower of intellectual supremacy, the streets are speaking for themselves. Press your

ears to the floorboards—the sound is coming from inside the tower as well. If we are

committed to abolishing supremacy, we need to start listening. We need to stand in

solidarity with the struggle against mass incarceration and police brutality, against

anti-Black violence and colonial expansion. We need to recognize that our labor is

not separable from these systems, that we have been complicit in their machinery. We

must turn our tools against this machine, refuse the projects of national supremacy,

technological supremacy, economic supremacy, military supremacy, legal supremacy,

racial supremacy, and intellectual supremacy which our benefactors and our employers

have in mind for us. We must refuse their service bell.

Refusal is an action. Before we can articulate what must be done, we must also be

prepared to say what will not be done, what we refuse to do. But refusal is not the

same as complaint. Our task is not simply to decry the systems we hope to abolish,

hoping that someone else will come along and do something about it. Abolition,

Gilmore reminds us, “is not a recitation of catastrophe or a culture of complaint.

Indeed, catastrophe and complaint, if that’s all we do, are the kinds of
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practices that induce in many people who are listening what my friend,
the historian Daryl Scott, calls ‘contempt and pity.’ And abolition is not
looking for contempt or pity.22 [161]

Beyond catastrophe, beyond complaint, abolition is fundamentally a creative practice—

creative, not in the ancillary sense of aiding or serving some higher calling, but cre-

ativity as the task itself. Creative, as in creating : creating systems of social equity,

creating networks of mutual aid, creating solidarity across the particularities of in-

dividual struggle, creating common struggle. We must create, because our future is

not simply one of absence—some hollow vessel waiting to be filled—but of absolute

and material presence. Again, Ruth Wilson Gilmore says it best: “abolition, in my

view, is not the absence of cops and prisons. It’s the presence of everything we need

to secure that absence. And renew. And rehearse the world.” [160]

Rehearse—as in practice. How do we practice the world we are working to-

ward, and how do we practice what we preach? Again, this work is already hap-

pening. On June 10, 2020, students and researchers across the world participated

in #ShutDownSTEM—a movement co-organized in large part by physicist Chanda

Prescod-Weinstein and her coalition Particles For Justice. For one day, scientists

stopped what they were doing and joined a mass boycott of scientific labor in soli-

darity with the movement for Black lives, refusing to engage in sponsored research,

refusing to grade exams, refusing to peer-review papers, refusing to hunt ground loops.

Refusing, that is, to maintain the brutal machinery of scientific progress, to keep the

lights on in the tower. One day was not enough to demolish the tower for good, but

it was enough to start creating something in its place. It was enough time for us to

come together and start talking to each other, to reckon with what we’re really doing

here. For one day, we took our eyes off the cartoon mountain dangling in the distance

and looked back over our shoulders, felt the vertigo of history in our wake. We looked

at each other and remembered that we are accountable not just to shareholders and

sponsors, advisors and thesis committees, but to each other. What happened on June

10 was a different type of glitch. The system of science stuttered like broken code,

22For Gilmore’s reference to “contempt and pity,” see Ref. [414].
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Figure 12-19: Graphic from the website of #ShutDownSTEM, compiling a list of
activities to abstain from during the strike on June 10, 2020 [2].
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momentarily failed to be productive, and through this rift we caught a glimpse of a

different way of being with each other. In the absence of our routine labor, we created

presence. We created consciousness. Fiber by fiber, the ground plane split. Together,

we started reknotting it anew, differently.

These strands lead us beyond the guarded borders of our discipline. Our task is

not simply to invite new people across the border, to gatekeep and discipline a new

and diverse workforce to police the borders with us. Our task is to tear these borders

down, to follow where these connections take us and allow ourselves to be changed by

that journey. To do this, we can start by recognizing that some of the most important

experiments in quantum mechanics are being performed right now, not in corporate

laboratory facilities, but in community DIY spaces. In 2014, Rasheedah Phillips and

Camae Ayewa formed an interdisciplinary creative collective in North Philadelphia

called Black Quantum Futurism (BQF). Neither Phillips nor Ayewa are physicists

by training—they resist easy disciplinary labels, refuse to acquiesce to their borders.

They are artists, activists, community organizers. In a recent bio, Rasheedah Phillips

describes herself as “a queer Philadelphia-based housing attorney, parent, interdisci-

plinary artist, and Black Futurist cultural producer” [352, p. 122]; Camae Ayewa, who

also performs under the name Moor Mother,23 identifies herself as “a musician, poet,

visual artist, soundscape artist, and workshop facilitator.” [352, p. 120] The goal of

the BQF collective, as laid out in the group’s first volume on theory and practice, was

to explore “the intersections of imagination, futurism, literature, art, creative media,

DIY-aesthetics, and activism in marginalized communities.” [351, p. 79] With this

blueprint, over the past decade Phillips and Ayewa have brought together a group of

artists and scholars across creative practices—music, poetry, creative writing, visual

arts, Black Studies, anthropology, mysticism—to develop a new body of theory in

the struggle against racial supremacy. This work refuses genre constraints and em-

23In addition to her work with Black Quantum Futurism, Camae Ayewa co-leads the free jazz col-
lective Irreversible Entanglements and has produced numerous works under the name Moor Mother,
including the critically acclaimed albums Analog Fluids Of Sonic Black Holes (2019), Circuit City
(2020), and Black Encyclopedia of the Air (2021). The epigraph of this section is taken from the piece
“The Blues Remembers Everything The Country Forgot,” the second track on her 2020 collaborative
album with New York City rapper billy woods, BRASS.
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braces the connections these borders attempt to sever, “weav[ing] together quantum

physics, afrofuturism, and Afrodiasphoric concepts of time, ritual, text, and sound

and creating counterhistories and Black quantum womanist futures that challenge

exclusionary, mainstream versions of history and future.” [352, p. 119]

Critically, while the Black Quantum Futurists draw liberally from the work of tra-

ditional quantum physicists, they treat this work with no particular reverence. Unlike

the poetry of Emtithal Mahmoud at the Google Quantum AI Symposium, the work

of the BQF collective refuses to acknowledge quantum mechanics as the bedrock of

the universe, the final signified which grounds their practice in some ultimate reality.

It is not “everything” [291]. Instead, they treat quantum physics as one set of tools

among many, a bag of metaphors to be arranged horizontally with those provided

by poets, abolitionists, and ancestors. In doing so, they reveal deep connections

which Western physicists have historically ignored. For example, in his essay for the

BQF collective titled “The Implications of Africa-centered Conceptions of Time and

Space for Quantitative Theorizing,” the Black Studies scholar and professor Nikitah

Okembe-RA Imani notes profound connections between modern quantum mechan-

ical theories of causality and Indigenous African cosmologies of time. In drawing

this connection, Imani is uninterested in arguing about who ‘discovered’ quantum

mechanics, or in explaining African theories of time from the Western vantage of

quantum theory. Instead, he turns the table and interprets quantum theory from

the philosophical framework of Indigenous Africans. This turn to Indigenous philos-

ophy is crucial to the BQF project. “The premise of Africa-centered scholarship,”

Imani writes, “is not merely that it emphasizes the importance of studying Africana

phenomena, but also that it attempts to engage that study beginning from Africana

philosophical perspectives.” [213, pp. 31–32] Engaging rigorously with these alterna-

tive philosophical perspectives, Imani demonstrates how many of the most bizarre

or counter-intuitive claims of quantum theory are only strange when encountered

from the limited perspective of Western philosophy. In some sense, this is another

derivation of the material-semiotic connection, showing how our intuition of natu-

ral phenomena is everywhere meditated by a set of social, cultural, and historical
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Figure 12-20: Black Quantum Futurism (Camae Ayewa, left; Rasheedah Phillips,
right) at the Community Future Laboratory, an arts gallery, library, workshop space,
and recording studio the collective operated in North Philadelphia from May 2016 to
May 2017. Photograph by Kenzi Foto.

positions which structure our limited viewpoint. By starting from a different set of

philosophical assumptions, we imagine the web of signification differently, shift the

ground beneath our feet.

We can no longer pretend that the viewpoint of quantum computing is inno-

cent or apolitical. The Black Quantum Futurists understand this deeply. In 2021,

Rasheedah Phillips and Camae Ayewa received the Collide residency award from

CERN, the world’s largest center for experimental particle physics. The competi-

tive residency, which CERN hosts every year, “invites artists from across the world

to submit proposals for a research-led residency based on interaction with CERN’s

scientific community. The focus of the residency is to invite artists into the Labora-

tory to think, discuss, be informed and inspired, and to comprehend the challenges

of fundamental research and the big questions that inform physics today.” [54] For

their application, Phillips and Ayewa proposed a project titled “CPT Symmetry and
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Violations.” The title is zeugmatic. In high-energy physics, CPT stands for charge,

parity, and time: when these three quantities are reversed, the laws of modern physics

are symmetric and remain invariant, unchanged. Historically, however, the acronym

means something different. “In physics,” Phillips and Ayewa write, “CPT Symmetry

is a fundamental symmetry of physical laws that holds for all physical phenomena.

The acronym also carries another meaning in the phrase ‘Colored People’s Time.’

CPT, in that sense, is often used as a negative stereotype to refer to Black people

as being chronically late.” [53] Placing these acronyms in resonance reveals another

ground loop. Clocks, like quantum computers, are machines which seek to encode and

materialize principles of physics. When these machines encounter human bodies, as

with Ruha Benjamin’s example of the automated soap dispenser, which bodies will be

legible within the narrow perspective of the machine’s programming, and which will

be rendered invisible? Which bodies will be on time and productive, synchronized to

the master clock of commerce and progress? Which bodies will be late, unproduc-

tive? Which bodies will run out of time, run into trouble, be in the wrong place at

the wrong time?

In their essay “Placing Time, Timing Space: Dismantling the Master’s Map and

Clock,” Phillips and Ayewa note the violence we perpetrate when we blindly place our

faith in these machines, take the laws which they encode at face value. They shatter

the god trick, push back against the notion that “just as we take for granted that a

map is a true representation of the territory it is depicting, we assume that clocks

can capture the true nature of time and reality or subjective temporal experience.

Indeed clocks do the opposite—they objectify time and render flat all ex-
periential notions of time. [Philosopher Henri] Bergson’s critique on maps
could be said of clocks, in that they are merely symbolic moments rather
than the moments themselves. For Western society bound to the Mas-
ter Clock, mechanical and digital clock time become the synchronizing
mechanism—instead of the subjective duration of your “now” interacting
with other nows. Trauma and dissociation happen in a society that neg-
atively qualifies a departure from or disruption of mechanical clock time.

White men have conquered both time and space and then said they were
the same thing, and what that has meant for Black people is the colo-
nization of the temporal space of the future and the future of man in
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the universe. Black Quantum Futurism reappropriates clocks and maps
to deconstruct hegemonic Western Spacetimes and dismantle the mas-
ter’s clocks. We create maps that embrace the inherent tensions between
space and time and that provide opportunities for reconfiguring of the
same. [149, p. 11]

What then of the future? In a recent interview with Arts at CERN, Rasheedah

Phillips and Camae Ayewa were asked precisely this question, How do you envision

the future? “In the future,” they reply,

the past and future are not cut off from the present. Both dimensions in-
fluence the whole of our lives, who we are and who we become at any par-
ticular point in space-time. In this future, we have dismantled oppressive,
hegemonic temporalities and timelines and developed, recovered, and syn-
thesized healthy alternative temporal dynamics in our communities and
the world.

We see this work as cyclical, ongoing, dynamic, generative, and generations-
long. We project a vision of our shared future(s) where we have actively
begun to address how future(s) are made inaccessible to marginalized com-
munities in general and Black people in particular. We have developed
positive futurity concepts and sustainable technologies of joy that benefit
low-income, vulnerable, and marginalized communities. We see “in the
future” an active engagement with temporalities and alternative temporal
orientations—to quote [Indigenous Studies scholar Mark] Rifkin, “the new
time rebels advocate a radically different approach to temporality.” [53]

If quantum computing has any hope of surviving supremacy—that is, if it truly

points us towards a sustainable future, a future which is just and equitable for all—it

must also become a science of the past. It must look backwards and engage with the

past rigorously, critically. Quantum computing must stand accountable to history,

reckon with the entanglements of matter and meaning which have structured our

language, our practices, and our aspirations. It must also become a witness to the

present. Quantum computing must refuse the programs of supremacy which have fed

it, stand in solidarity with the struggle for liberation across disciplines, across genres,

across borders. And when the numbness finally wears off and the myth shatters, it

must provide space to gather and to mourn, to reflect and remember everything our

science and our nation and our culture have taught us to forget. To do this, we need

to change our language. We need to recognize, as Karoline Wiesner noted in her
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original article, that our language has been careless [469]. It has lacked care. This

is how we cut the ground loop. We do it with care. We abolish supremacy when

we stitch together something stronger in its place—carefully, fiber by fiber, together.

Only then can we start talking about the future.

Only then will we realize we’ve been talking about the future all along.
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