
Order Fulfillment Algorithms for Online Retail

by

Pin-Yi Chen

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering (Interdisciplinary
Degree in Analytics for Supply Chain Management)

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Mechanical Engineering

October 14, 2022

Certified by. .
Stephen Graves

Abraham J. Siegel Professor of Management Science
Thesis Supervisor

Accepted by .
Nicolas G. Hadjiconstantinou

Chairman, Department Committee on Graduate Theses

2

Order Fulfillment Algorithms for Online Retail

by

Pin-Yi Chen

Submitted to the Department of Mechanical Engineering
on October 14, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mechanical Engineering (Interdisciplinary Degree in

Analytics for Supply Chain Management)

Abstract

We study an order fulfillment problem in an online-retail setting where the retailer’s
fulfillment system includes warehouses that hold inventory (fulfillment centers), and
a transportation network composed of node facilities and transportation arcs. To
minimize the total transportation costs for order fulfillment, the online retailer should
plan its transportation capacities properly in advance and execute according to the
transportation plan by making smart fulfillment decisions. To fulfill a customer order,
the online retailer must decide from where to source the inventory needed for the
order, as well as how to route the order to the customer to satisfy a delivery time
commitment. In this research we focus on the latter decision, namely choosing the
route for each order. The online retailer has full control of its transportation system
in both planning and execution; in addition, the online retailer can rely on third party
carriers to transport some of its orders.

We design an order fulfillment algorithm that makes immediate routing decisions
for incoming orders. To determine the route to assign to an order, we compare the
costs of all feasible routes. For routes that use retailer-controlled resources, we need
to account for the opportunity costs associated with these resources. We propose to
do this with the dual values from a transportation quadratic program, which tries to
account for the uncertainty of the network flows to estimate the opportunity costs
of depleting resources in the transportation network. The dual values are updated
periodically with the most updated system states that include resource capacities
and demand forecasts. We numerically test our algorithm on a realistic network with
inputs inspired by the actual data from our industry collaborator. We compare our
algorithm with several benchmark algorithms, including a LP-based algorithm that
mimics the algorithm in the retailer’s current operating system. The experiments
show a 50% reduction in the mean percentage difference in shipping cost from the
hindsight solution as compared to the LP-based algorithm.

In addition to the fulfillment algorithm, we formulate a capacity planning problem
that determines the optimal level of transportation resources in the network for a
given demand forecast. When the demand deviates from the planned capacity by a

3

lot, adding or removing planned resources becomes a crucial cost-saving mechanism.
Motivated by this, we propose ad hoc truck controllers that make online capacity
modification decisions and test it with small examples.

Thesis Supervisor: Stephen Graves
Title: Abraham J. Siegel Professor of Management Science

4

Acknowledgments

My gratitude towards my advisor, Professor Stephen Graves, is beyond words. He

was brave enough to accept me as his Ph.D. student despite my slight knowledge of

the field of operations research when we first met. His generosity has changed my life

trajectory and given me the chance to learn and grow in this field. His guidance was

invaluable in helping me conduct this research.

Further thanks go to Professor Georgia Perakis and Professor Alexandre Jacquil-

lat for serving as my committee members. They have been extremely supportive.

Throughout the pandemic, our meetings have always been virtual, but scheduling

meetings with them has always been a breeze.

I would like to thank our industry partners: Tolga Cezik, Daniel Chen, and Tamar

Cohen-hillel for all the thought-provoking discussions.

I deeply appreciate the unwavering support from my parents. They have kept

me grounded through all my ups and downs. I would also like to thank my bosom

friends, especially Qi, Jinglong, Lily, Boyi, Longjing, for always being there for me.

And lastly, I would like to thank James for being my source of happiness.

5

6

Contents

1 Introduction and Literature Reviews 17

2 Introduction to the Order Fulfillment Problem through Small Ex-

amples 27

2.1 Brief Introduction to the Transportation Network 29

2.2 A One-Link Network . 31

2.2.1 Static Policies . 33

2.2.2 Dynamic Policies . 37

2.3 Ad Hoc Truck Options . 45

2.3.1 Threshold-Based Controller 46

2.3.2 DP-Based Controller . 47

2.3.3 One-Link Network with Ad Hoc Truck Options 48

2.4 A Two-link Network . 49

2.4.1 Experimental Setups . 52

2.4.2 Hindsight Solution . 57

2.4.3 Results of Experiments . 58

2.5 DP Formulation of the One and Two Link Network 66

2.5.1 DP of the One-link Model . 66

2.5.2 DP of the Two-link Model . 67

2.6 Summary . 69

3 The Transportation Network and Capacity Planning 71

3.1 Network Representations . 71

7

3.1.1 Definition of Resources . 71

3.1.2 Definition of Routes . 74

3.1.3 Modeling a Two-Link Network 77

3.2 Capacity Planning . 78

3.2.1 Definition of Commodities . 79

3.2.2 Problem Formulation . 81

4 The QP Algorithm for the Order Fulfillment Problem 87

4.1 Problem Formulation . 87

4.2 The quadratic program formulation 90

4.3 Justification of the Objective Function 92

4.3.1 Case 1: Stair-case Cost Structure 92

4.3.2 Case 2: Linear Cost Structure 96

4.4 Summary of the Order Fulfillment Algorithm 101

4.5 Hindsight Solution of the Order Fulfillment Problem – A Benchmark 102

4.6 Ad hoc Controllers . 103

4.6.1 The Threshold-based Controller 104

4.6.2 The DP-based Controller . 105

5 Experiments on Realistic Networks 107

5.1 The Base Case . 108

5.1.1 Identifying a Self-contained Subnetwork 108

5.1.2 Input Creation . 109

5.1.3 A Comparison with the Greedy Algorithm 116

5.2 Extension from Base Case – A Realistic Test Case 123

5.2.1 Input Creation . 123

5.2.2 Sensitivity Tests . 132

5.2.3 QP vs LP algorithms . 141

5.2.4 Summary . 146

6 Concluding Remarks 149

8

A The Structure of the Dual Variables from the QP 151

B Identify Relevant Resources and Routes 153

B.0.1 Identify Relevant Resources 153

B.0.2 Identify Relevant Routes . 154

C Estimation of Incremental Costs 157

C.1 Method 1 - The Iterative Method . 157

C.2 Method 2 - The Linear Approximation 159

D Commodity Forecast of the Extended Base Case 161

E Tools for Solving Large Scale QP 171

E.1 Method 1: The Subgradient Method 171

E.2 Method 2: The ADMM Method (Multi-blocks) 174

E.3 Method 3: The ADMM Method (Two-blocks) 176

9

10

List of Figures

1-1 Network structure of the illustrative example. 22

2-1 This figure shows the relationships between different facilities in the

transportation system. For a given shipment from an FC to a customer,

there are four feasible routes in this figure: third-party route that ship

shipments directly from FC to customer, two retailer controlled routes

(FC-SC-DS-customer, FC-DS-customer), and a mixed route where the

first half (FC-SC) is shipped by retailer, and the second half is shipped

by third-party (SC to customer). 30

2-2 The one-link network . 32

2-3 Performance of the LP algorithm versus the hindsight solution 41

2-4 Progression of shadow prices from the LP algorithm overtime 41

2-5 Performance of the QP algorithm versus LP algorithm and the hind-

sight solution . 44

2-6 Progression of shadow prices from the QP algorithm overtime 44

2-7 Illustration of a complicated network 50

2-8 Illustration of the two link network. For the internal demand (from ser-

vice area 1 and service area 2), there are two routes: a third-party route

that ships directly from the FC to the customer, a retailer-controlled

route from FC to SC to DS to the customer. External demands (il-

lustrated with green lines) on FC-SC (SC-DS) consumes the FC-SC

(SC-DS) resource controlled by the retailer. 50

2-9 Average hindsight costs under different exogenous demand rates . . . 61

11

2-10 Average cost by the algorithm under different exogenous demand rates 62

2-11 MPE under different exogenous demand rates (Note that the blanked

space are the ones with zero hindsight cost, where cost difference fail

to provide a meaningful value due to zero denominator). 63

2-12 Average difference in the number of ad hoc trucks added by the algo-

rithm and the hindsight solution on upper arc 64

2-13 Average difference in the number of ad hoc trucks added by the algo-

rithm and the hindsight solution on lower arc 64

2-14 Average cost of the algorithm under different internal demand rates . 65

2-15 Average cost of the algorithm under different ad hoc truck costs . . . 66

4-1 Resemblance of quadratic cost and the expected costs when cost is a

staircase function. 96

4-2 Resemblance of quadratic cost and expected ad hoc cost with different

values of standard deviation and safety factors. (case 1) 97

4-3 Resemblance of quadratic cost and the expected costs when cost is a

linear function (case 2). 100

4-4 Resemblance of quadratic cost and expected ad hoc cost with different

values of standard deviation and safety factors. (case 2) 101

5-1 Shadow price of the upper arc (FC8, SC1) over the one-day horizon. . 122

5-2 Average per package costs at different safety factors (𝑧) and coefficient

of variations (𝛼). 134

5-3 Average per package costs at different resolve frequencies 135

5-4 Average per package costs at different 𝜌 137

5-5 Mean percentage increase from hindsight costs at different 𝜌 138

5-6 Average per package costs at different 𝜓 140

5-7 Mean percentage increase from hindsight costs at different 𝜓 140

5-8 Shadow price, optimal flows, remaining capacities on the resources as-

sociated with an upper arc over the one-day horizon when applying the

LP algorithm. 144

12

5-9 Shadow price, optimal flows, remaining capacities on the resources as-

sociated with an upper arc over the one-day horizon when applying the

QP algorithm. 145

5-10 LP algorithm’s performance with different buffer 146

13

14

List of Tables

2.1 Average costs of different ad hoc controllers (the numbers in the paren-

theses are standard deviations). 49

3.1 Daily CPTs and dwell and transit times of resources in the example

network. 77

5.1 Number of service areas each DS serves 108

5.2 Resource Capacity of each upper (FC-SC) and lower (FC-DS) arc. We

note that the arcs with 0 capacity are not active. 111

5.3 Demand forecast of each FC-DS pair 113

5.4 Third party costs of each FC-DS pair 114

5.5 Utilization percentage of each upper arc (defined by FC) to different

destination (defined by DS) with the QP algorithm and the greedy

algorithm. We note that there is no demand between FC5 and DS1;

and no demand between FC13 and DS1. 120

5.6 Average savings of upper arcs with QP and greedy algorithms. 121

5.7 Active indirect arcs (FC to SC or DS to SC) 124

5.8 Active direct arcs (FC to DS) . 125

5.9 Resource capacity of upper (FC-SC) and direct (FC-DS) arcs. We note

that the arcs with 0 capacity are not active. 127

5.10 Resource capacity of lower (SC-DS) arcs. We note that the arcs with

0 capacity are not active. 127

5.11 Third party costs of the 2-SC network. (maximum/minimum) 130

15

5.12 Mean and standard deviation of per package costs and mean percentage

error from hindsight solution of the 30 test cases. 142

D.1 Demand forecast of each (FC, service area) pair. (In this table, we

omit service areas that has 0 forecast for all FCs.) 169

16

Chapter 1

Introduction and Literature Reviews

Online retail (Ecommerce) sales take up an increasingly high percentage of total retail

sales over the past 25 years. The U.S. Ecommerce sales as a percent of total Retail

Sales has reached 16% (U.S. census bureau [5]) in 2020 Q3 during the pandemic, which

is almost triple the percentage in 2013 Q2. Riding this wave of Ecommerce growth,

Amazon has experienced exponential growth, and has become the largest online re-

tailer in the U.S.; its total sales account for 50 percent of the entire U.S. Ecommerce

retail market [7]. Interestingly, Amazon is not alone, as monopolistic online retailers

are ubiquitous around the world. For example, Shoppe and Lazada are dominating

in Southeast Asia; JD.com and Alibaba Group (who controls multiple online retail

channels such as Taobao and Tianmao) are leading the Chinese Ecommerce market.

Each of these online retail giants process a large volume of packages, and their order

delivery costs have increased dramatically. Amazon, for example, has increased its

spending on shipping from 3.99 billion dollars in 2011 to 76.70 billion dollars in 2021

[9].

Over the last two decades, the way that these online retail giants fulfill orders

has continued to evolve. The online retailers receive and store product inventory in

their network of fulfillment centers. When a customer places an order, the retailer

decides from which fulfillment center to supply the order and then picks the order

and prepares it for shipping. Initially, the retailer would then transfer the order to

a third-party carrier (like FedEx or UPS) to deliver the order from the fulfillment

17

center to the customer. In this setting, the order fulfillment problem for the online

retailer is to make a real-time decision of from which warehouse (fulfillment center) to

fulfill each order (which we refer to as the “inventory-assignment” decision of the order

fulfillment problem). This decision is primarily based on the inventory availability

across the fulfillment centers and on the third-party costs for shipping.

An early paper that addresses this problem is Xu and Graves [22]. They identify

shortcomings of the “myopic” policy, which picks the fulfillment center solely based

on a given third-party per package costs without consideration of current inventory

states and future demand arrivals. To improve upon these fulfillment decisions, they

propose an algorithm that periodically reevaluates the decisions and reassigns orders

to reduce the number of split shipments for multi-item orders. (Under similar context,

the value of delaying fulfillment decisions is further investigated by Wei et al. [21], in

particular, the balance between the cost-saving from consolidating delayed shipment

and the cost of shipping orders last-minute.) In the following decade, more researchers

have investigated the order fulfillment problem. Due to the curse of dimensionality, it

is impossible to solve real-world order fulfillment problems to optimality. Therefore,

researchers have proposed different heuristics (e.g., [1] and [16]), and some provide

asymptotic or non-asymptotic performance guarantees.

For a finite-horizon order fulfillment problem, if we have perfect knowledge of

demand arrivals and inventory positions over the finite time horizon, then we can

determine the optimal assignment decisions by solving a deterministic linear program

(LP); this LP matches the demand to the supply with the objective of minimizing

the shipping cost. Motivated by the above, researchers have designed heuristics that

leverage either the primal or dual solutions of this type of LPs and that incorporate

demand forecasts, inventory positions and costs. Acimovic and Graves [1] propose a

heuristic that assigns each order to the fulfillment center with the least “total” cost,

consisting of the shipping cost plus the inventory opportunity cost. Acimovic and

Graves [1] obtain the inventory opportunity costs from the dual values of item (SKU)-

dependent LPs, i.e., the authors solve a stand-alone LP for each item, which reduces

the size of the LPs. In addition, they periodically resolve the LPs to update the

18

opportunity costs. On the other hand, Jasin and Sinha [16] proposed a probabilistic

heuristic where orders are assigned to fulfillment centers randomly according to the

fractions derived from the primal solution of the LP that solves the demand-to-supply

matching problem with all SKUs jointly. In high level, the more orders for a SKU that

were assigned to an FC in primal solution, the higher is the probability of fulfilling an

order for the SKU from the FC. For multi-item orders, consolidating orders (shipping

multiple items from a one FC) could reduce costs. However, the heuristic decouples

the fulfillment decision across different items in the same order by assigning each item

independently according to the probabilities derived from the LP, which overlooks

any opportunity for consolidation. To fix this shortcoming, the authors propose

an improved heuristic that still uses the primal solutions from the LP but assigns

items to the same FC if they are “positively correlated” according to a correlated

rounding scheme. Building upon Jasin et al. [16]’s work, Ma [20] provides an improved

correlated rounding scheme with a better guarantee to the optimal solution. Also

based upon Jasin et al.’s work [16], Amil et al. [2] propose another heuristic that first

selects the fulfillment center(s) for multi-item orders according to, again, probabilities

derived from the LP. It then creates inventory thresholds to decide whether to actually

fulfill the order, or not, with the selected fulfillment center(s). If the order is not

fulfilled, then the order is being discarded (not fulfilled by the selected fulfillment

center). Note that this second step in the heuristic is to bound the probability of

running out inventories by the end of the time horizon. Their algorithm is shown to

be asymptotically optimal and has guarantees in the non-asymptotic setting.

The above-mentioned heuristics are designed for networks where all FCs have

the same function in the fulfillment process. In fact, other researchers have studied

fulfillment policies in fulfillment networks, where there are different types of categories

of FCs. Here, we describe two common network structures– the two-layer network

and omnichannel.

The two-layer network is adopted by several monopoly retailers in China (e.g,

JD.com and Alibaba). The network has two types of FCs (often referred to as distri-

bution centers) in the two-layer network. One type is the downstream FCs that locate

19

closer to customers with limited capacity and that store high-velocity items. The other

type is upstream FCs with larger capacities which replenish the downstream FCs and

also fulfill customers’ orders, particularly those orders for low velocity items. Zhao

et al. [23] study a myopic fulfillment policy in the two-layer network and show that

the policy performs well in this type of network through theoretical and numerical

results.

The omnichannel network holds inventory in stores and fulfillment centers and

serves two types of demands (online and in-store). The retail stores have a capacity

to fulfill online orders, and a key challenge in this network is deciding what and

how many online orders to fulfill from what retail stores. Andrew et al. [3] propose

a primal-dual algorithm in the omnichannel setting. Their approach is particularly

valuable when demand is very uncertain, and they have shown upper and lower bounds

on the competitive ratio assuming adversarial demand.

So far, we have cited research that examines the inventory assignment decision

for order fulfillment. However, in reality, order fulfillment decisions are intertwined

with other problems such as inventory allocations and pricing problem. For example,

the decisions of inventory allocation are important inputs to the order fulfillment

problem, and the decision of order fulfillment and inventory allocation jointly affect

the pricing decision. When trying to optimize the overall profit of a company, the

consideration of these adjacent problems could provide additional values. Here, we

list several papers that study the joint problem of order fulfillment and other aspects

of the supply chain. Devalve et al. [10] study the value of fulfillment flexibility (the

ability of fulfilling an order from different multiple FCs) in two-layer networks. They

test multiple heuristics under different networks with different flexibility numerically

and show that with the right choice of fulfillment policy, fulfillment flexibility may

lead to non-negligible cost-savings. Lim et al. [19] and Govindarajan et al. [13]

study joint inventory allocation and the order fulfillment problem. Lei et al. [17] and

Harsha et al. [14] study joint pricing and the order fulfillment problem. Lei et al.

[18] study the joint product display, ranking and pricing with the order fulfillment

problem.

20

As the online retailing industry has grown, some retailers have explored new strate-

gies for order fulfillment. One new strategy is for the retailer to invest in its own

logistics network and resources. With this investment, the retailer can then handle

some fraction of its order deliveries, and hence, rely less on third party carriers. This

investment can entail setting up new types of facilities between fulfillment centers and

customers for consolidation and sorting of shipments, as well as building transporta-

tion fleets to connect the facilities and to reach the customer. Currently, Amazon

appears to deliver a significant portion of their packages by their own logistics sys-

tem. The number of packages delivered by the Amazon logistics system has grown

more than 5-fold between 2018 and 2022. [8]. Moreover, in 2020, Amazon surpassed

FedEx, one of the largest delivery companies in U.S., in terms of number of packages

delivered (Amazon’s 4.2 billion compared to FedEx’s 3.3 billion [15]). This change

in strategy fundamentally changes the order fulfillment problem. For each order, the

order fulfillment decision includes not only the choice of fulfillment center(s) from

which to obtain the inventory for the order, but also the shipping route and carrier

to transport the inventory units from the fulfillment center(s) to the customer.

In this research, we examine this new element of the order fulfillment problem. In

particular, we decouple the order fulfillment problem into two decisions: the choice of

fulfillment center and the choice of shipping route (or carrier). We assume that the

inventory-assignment problem is solved, i.e., the choice of fulfillment center(s) is given

for each order. We then focus our research effort on the transportation-assignment

problem, i.e., the routing decision for the delivery between fulfillment centers and

customers.

To show the challenges of the route selection, as well as the similarity and dif-

ferences between the inventory-assignment and the transportation-assignment of the

fulfillment problem, we provide an illustrative example. Consider the following net-

work with 1 fulfillment center and 2 customer destinations – A and B (Figure 1-1).

The fulfillment center can use a third-party carrier to ship orders to each customer

destination. In addition, the retailer can use its own logistics resources to transport

an order from the fulfillment center to a delivery station (DS), from which a last-mile

21

carrier can then transport orders to each customer destination.

FC

A

B

$3

$5
3P
Capped transportation
Uncapped transportation

10 units
DS

Figure 1-1: Network structure of the illustrative example.

Suppose that the single fulfillment center holds sufficient inventory for all items in

the assortment, and the cost of last-mile delivery (from DS to customers) is negligible.

When an order arrives, the online retailer needs to decide in real-time how to ship the

order. The order can either be delivered by the retailer’s transportation (with limited

capacity of 10 units for a single time period) with zero variable cost, or delivered by

third-party with a per-package cost of $3 for destination A and $5 for destination

B. We observe that assigning the “expensive demand” (demand from destination B)

to the retailer’s transportation is always an optimal decision. The challenge lies

in the decision for “cheap demand” (demand from destination A). If we assign too

much cheap demand to the retailer’s transportation, we might consume all the limited

capacity before the end of the time period. We might then have a subsequent demand

from destination B that then needs to be assigned to the third party. If we assign

too little cheap demand to the retailer’s transportation, we might risk wasting the

limited capacity; that is, at the end of the time period we have unused capacity.

From this example, we observe similarities between the inventory-assignment and

22

the transportation- assignment problem. Both problems have limited resources, and

when the order arrives, one needs to decide how to utilize these limited resources.

For the inventory-assignment problem, the limited resources are inventories, while

for the transportation- assignment problem, the limited resources are typically the

truck capacity on a route or on a leg of a route. However, the two problems are

also different in a couple of ways. First, the transportation resources are planned in

advance and are perishable. For instance, the retailer may have planned for a truck

to depart from a fulfillment center by a given time (10 AM) and travel to a delivery

station. According to the plan, the truck departs at this time, whether it is full or not;

hence, any unused capacity perishes. Second, at the time of the real-time decision,

much of the cost of the retailer’s transportation is sunk; for instance, in the above

example, once a truck is scheduled for 10 AM, the retailer incurs a fixed cost for the

truck to go from the fulfillment center to the delivery station, regardless of its load.

Finally, the limited resource is shared across all items, and hence, only the volume

and destination of orders is relevant.

In contrast, for the prior research on the inventory-assignment problem, the re-

searchers assume that there is a known shipping cost (which might reflect third-party

delivery costs) associated with fulfillment center decisions (ex: [1], [16], [20], [2], [23]).

In chapter 2, we introduce the fulfillment problem in more detail with illustrative ex-

amples and study these examples from both theoretical and numerical standpoint.

In chapter 3, we provide a modeling framework for the transportation network.

There are several components of the network design and operation that add complex-

ity to the model. There are different types of transportation arcs and facility nodes

run by the retailer on independent schedules (ex: truck departures, labor time shifts).

In addition, part of the network relies on third-party carriers. For example, retail-

ers could have a fixed or flexible contract with third-party companies that dictates

from a given origin (retailer-owned facility node) to a destination (designated area of

customers), a certain quantity (in terms of either package count, weight, or size) of

shipments would be handled by a third-party company. In our work, for each order,

one challenge is to determine all the feasible routes that could deliver the order from

23

an assigned FC to the customer destination by the order promise time. Each route

is composed of a set of resources, regardless of mode and type as long as it matches

a feasible pre-determined pattern, and the upstream and downstream resources are

time compatible. Therefore, in real-time, making a route decision for an order entail

choosing from a set of feasible routes. Note that we assume the mapping between

route and resources are exogenous (pre-determined) which could be formulated based

on historical data or domain knowledge in practice. For our numerical simulation,

the mapping is created based on transit and dwell times, which are described in more

detail in the chapter.

In chapter 4, we develop our quadratic program (QP) algorithm that makes real-

time routing decisions. The QP algorithm is similar to the algorithm described in

Acimovic and Graves [1], where opportunity costs are periodically updated in the

background for each fulfillment options (FCs in the context of inventory fulfillment

problem), and fulfillment decisions are based on these derived costs. However, Aci-

movic and Graves (2015) determine shadow prices for the inventory for a SKU at each

FC, which can then be used to guide the inventory assignment decision. In contrast,

we determine the shadow prices for the fulfillment resource, e.g, the transportation

resources, which we will use to guide the route choice for each order.

We will compare our QP algorithm to an alternative which uses an LP to find

the resource shadow prices. We discuss here some of our motivation for the QP

algorithm relative to the LP algorithm. One advantage of the LP algorithm is that it

is computationally efficient to solve, and therefore can be easily adopted in practice.

However, the LP formulation itself has several weaknesses. First, it considers only the

expected demand and ignores the uncertainties in the forecasts. Second, the shadow

prices will be zero on any resource that has a primal solution less than the capacity (by

complementary slackness), which leads to an on-off-switch-like cost structure. This

motivates us to propose a different formulation that takes demand uncertainty into

account implicitly in the parameters of the formulation, and for which the opportunity

costs will increase gradually as the resource utilization comes closer to capacity. (More

details can be found in Appendix A).

24

In chapter 5, we test the algorithm on a realistic example against different bench-

marks, which include greedy (myopic) algorithm, LP algorithm (which mimics the

policy in our collaborators’ production system), and the hindsight solution. First,

we run these algorithms on a self-contained subnetwork extracted from the actual

transportation network of our collaborator. We aggregate historical demand arrivals

to generate realistic test cases for the experiments. The experimental results suggest

that the QP algorithm is able to reserve valuable and limited transportation resources

for demands with expensive alternatives, which leads to lower fulfillment costs com-

pared to the benchmarks. Next, we expand the network structure to a more complex

network that captures important features in the actual network. We perform sen-

sitivity tests on the network, where we observe the robustness of the QP algorithm

under different scenarios.

25

26

Chapter 2

Introduction to the Order Fulfillment

Problem through Small Examples

This research grew out of a partnership with a large American-based online retailer

that sells a large catalog of physical items and operates its own network of fulfillment

centers and transportation systems around the United States. Millions of orders are

placed online each day and are promised to be delivered within a short period of time

– often within a day or two. The online retailer needs to decide in real-time how to

ship each order, which includes answering a series of questions. These include: from

which warehouse should the order be shipped? What delivery route should the order

take? And what transportation resources should the order consume along the way?

Given the ever-increasing volume of incoming orders, minimizing fulfillment costs

by making smart order fulfillment decisions at every order arrival instance becomes

crucial to the business. In this thesis, we investigate these questions and develop

models and algorithms that support this decision-making in real-time.

Over the last decade, the way the online retailer delivers orders has greatly

changed, which expands the scope of the order fulfillment problem. The online re-

tailer previously relied exclusively on third-party companies to transport and deliver

its orders. These companies deliver orders from the online retailer’s fulfillment centers

(which store the inventory) to customers’ doorsteps. In this setting, the order ful-

fillment problem focused mainly on determining from which fulfillment center should

27

the order be shipped? For a given fulfillment center, the order would then be as-

signed to the third-party carrier that could meet the service-time commitment at the

least cost. Acimovic and Graves [1] addressed this order fulfillment problem with a

heuristic algorithm, which was implemented and made millions of order fulfillment

decisions daily. However, as the order volume continued to scale, the online retailer

started to develop its own logistic capability for order fulfillment. In particular, the

retailer invested in its own transportation fleet and facilities so as to handle orders

from the fulfillment centers to its customers.

At this time, the online retailer operates a complex transportation network with

hundreds of facilities (nodes) that are connected with transportation lanes (arcs). The

retailer currently ships a large fraction of its orders with its own fulfillment and trans-

portation systems and relies on third-party shippers for the remaining orders. This

change in operational strategy changes the online order fulfillment problem. For each

order, the order fulfillment decision includes both the choice of fulfillment center(s)

from which to obtain the inventory for the order, plus the shipping routes and carriers

to transport the inventory units from the fulfillment center(s) to the customer. In

this research, we focus on the latter, and will assume that the choice of fulfillment

center(s) is given for each order. We will then examine how to decide the route and

the transportation resources to deliver each order from the fulfillment center to the

customer’s doorstep. Note that in reality, many orders may contain multiple items,

and some of these multi-item orders will be split (or not) into multiple shipments

from different fulfillment centers. As suggested above, we assume the decision to split

an order is given for each order, along with the assignment of shipments to fulfill-

ment centers. In addition, with this simplification, we use “order" and “shipment"

interchangeably throughout the thesis.

28

2.1 Brief Introduction to the Transportation Net-

work

For our research, we assume that the retailer’s transportation network is composed of

three types of facilities: Fulfillment Centers (FC), Sortation Centers (SCs) and Deliv-

ery Stations (DS). Each FC stores inventory and is often located in rural areas. Each

order that is transported by the retailer’s logistics system originates at an FC; most

of the orders from the FC will go next to a SC, and the remainder will go directly

to a DS. Each SC operates like a cross-dock facility and does not hold any inven-

tory. The SC receives inbound orders from multiple FCs, and then sorts these orders

based on destination; the sorted shipments are then “cross-docked" and loaded onto

outbound trucks that are destined for DSs. Each DS is the terminal facility at which

shipments are sorted based on the final destination; these DSs are typically located

in urban areas that are close to customers. A last-mile carrier delivers the shipments

from the DS to the customers. Every facility has its own work shifts and shipments

can only be processed during those times. In addition, facilities are connected with

transportation arcs or lanes, on which there is typically a transportation plan that

determines the frequency of truck departures.

From FC to customers, shipments can be shipped solely by transportation re-

sources that are controlled by the retailer, or solely by third-party companies, or by

a mixture of both. On a typical retailer-controlled route, shipments travel from an

FC to a SC, then from the SC to a DS, and finally from the DS to the customer.

For some routes, there can be a direct shipment from the FC to a DS, skipping any

SCs; occasionally a shipment may go through multiple SC’s, for instance if it is a long

route from one coast to the other. Third-party deliveries can originate from either an

FC or SC and will always terminate at the customer’s doorstep. Figure 2-1 illustrates

the relationship between facilities.

29

Figure 2-1: This figure shows the relationships between different facilities in the
transportation system. For a given shipment from an FC to a customer, there are four
feasible routes in this figure: third-party route that ship shipments directly from FC
to customer, two retailer controlled routes (FC-SC-DS-customer, FC-DS-customer),
and a mixed route where the first half (FC-SC) is shipped by retailer, and the second
half is shipped by third-party (SC to customer).

Each element of a route can have limited capacity. For this research, we will

express these capacity limits in terms of the maximum number of shipments that can

be handled within a specified time window. For instance, the transportation plan

may schedule three trucks to travel on an arc between noon and 7 pm; then the

capacity on this arc for this time window corresponds to the capacity of these three

trucks, which we will state in terms of number of shipments or packages. The time

element of the problem contributes to the network complexity in a non-negligible way.

We will provide a more detailed description in the next chapter of the time-related

considerations and how we account for these in our models. In the next section, we

show an illustrative example and use simple examples to demonstrate possible pitfalls

of static policies.

30

2.2 A One-Link Network

Consider a simple network with one FC, one SC, two DSs. The nodes are connected

by retailer-controlled transportation and by third-party transportation, as illustrated

in Figure 2-2. We denote the current time as time zero, and we consider a time

horizon that spans from time 0 to time 𝑇 . Over this time horizon [0, 𝑇], there is

limited capacity between the FC and the SC, equal to 𝑢(0) packages. We assume

that the retailer has committed to this fixed amount of capacity in advance, and that

the retailer cannot adjust this capacity within the time horizon [0, 𝑇]. Furthermore,

we assume that the cost for this capacity is sunk, and that there is zero variable

cost; for instance, if the capacity corresponds to three trucks on this lane in this time

horizon, then we assume the retailer has already committed to paying the cost for

these trucks regardless of their utilization. In addition, for simplicity, we assume that

the transportation resources between SC and the two DSs are abundant and there is

zero variable cost.

For every incoming shipment, the online retailer can route the shipment through

its own transportation system with no cost, or ship with the third party from FC

directly to customers with a per shipment cost of 𝑐1 for customers served by DS 1

and 𝑐2 for customers served by DS 2. In addition, 𝑐1 < 𝑐2. We will make assignment

decisions for a fixed time horizon from time 0 to time 𝑇 . The demand arrival is

unknown, and the objective of the online retailer is to make the best use of their

limited transportation resource to minimize outbound shipping costs while satisfying

the demand. In this example, if the demand arrival between time 0 to time 𝑇 is

more than the capacity of the limited resource, then in hindsight, the online retailer

should prioritize the limited free transportation resource to demands with the larger

third-party cost (i.e., customers from DS 2). Let us start with introducing some

notation:

• 𝑢(𝑡): remaining capacity of the shared resource (transportation arc between FC

and SC) at time 𝑡 for 0 < 𝑡 ≤ 𝑇

• 𝑑𝑖(𝑡): actual demand that arrives from DS 𝑖 in the time interval (𝑡, 𝑇]

31

• 𝐷𝑖(𝑡): a random variable for the demand that arrives from DS 𝑖 in the time

interval (𝑡, 𝑇]

• 𝑑𝑖(𝑡): a forecast of the demand that arrives from DS 𝑖 in the time interval (𝑡, 𝑇],

and will typically be the expectation of 𝐷𝑖(𝑡)

• 𝑥𝑖: the amount of demand from DS 𝑖 assigned to the retailer-controlled route

in [0, 𝑇].

• 𝑦𝑖: the amount of demand from DS 𝑖 shipped by third-party in [0, 𝑇].

Figure 2-2: The one-link network

We now formulate the hindsight problem where we know the initial capacity (𝑢(0))

and we assume that we are given the actual demand (𝑑𝑖(0)) as inputs, and 𝑥𝑖 and

𝑦𝑖 are decision variables. We obtain the optimal hindsight solution by solving the

32

following LP:

min
∑︁
𝑖=1,2

𝑐𝑖𝑦𝑖 (2.1a)

∑︁
𝑖=1,2

𝑥𝑖 ≤ 𝑢(0) (2.1b)

𝑥𝑖 + 𝑦𝑖 ≥ 𝑑𝑖(0) ∀𝑖 = 1, 2 (2.1c)

x,y ≥ 0 (2.1d)

In fact, in this one-link example, we can express the optimal hindsight solution ex-

plicitly based on demand and capacity:

𝑥1 = min(𝑢(0)−min(𝑢(0), 𝑑2(0)), 𝑑1(0))

𝑥2 = min(𝑢(0), 𝑑2(0))

𝑦1 = 𝑑1(0)−min(𝑢(0)−min(𝑢(0), 𝑑2(0)), 𝑑1(0))

𝑦2 = 𝑑2(0)−min(𝑢(0), 𝑑2(0))

The solution depends on what the demands are. If the total demand arrival from

DS 1 and DS 2 does not exceed 𝑢(0), i.e., 𝑑1(0) + 𝑑2(0) ≤ 𝑢(0), then there will be

no third-party assignments for both destinations, i.e. 𝑦1 = 𝑦2 = 0. For example, if

𝑢(0) = 100, 𝑑1(0) = 40, 𝑑2(0) = 50, then 𝑦1 = 𝑦2 = 0 and 𝑥1 = 40, 𝑥2 = 50. If the

total demand arrival from DS 1 and 2 exceeds 𝑢(0), then the hindsight solution will

prioritize the transportation resource to DS 2 demand. For example, if 𝑢(0) = 100,

𝑑1(0) = 50, 𝑑2(0) = 70, then 𝑥2 = 70, 𝑥1 = 30, 𝑦2 = 0 and 𝑦1 = 20. In the following

subsections, we analyze several static policies, and compare them to dynamic policies.

2.2.1 Static Policies

In this section, we study three static policies – greedy policy, conservative policy and

threshold-based policy.

The greedy policy assigns every incoming shipment to the cheapest available

33

route. It assigns the first 𝑢(0) shipments to the retailer-controlled transportation

since retailer-controlled transportation is cheaper than third-party routes regardless

of demand type, and assigns the remaining shipments to third-party routes since

there is no more capacity on FC-SC arc. Among all possible demand arrivals (for

any number of shipments in any arrival sequence), the ratio of the cost of the greedy

policy to the hindsight solution could be as large as 𝑐2/𝑐1. This worse case would

happen when the first 𝑢(0) demands come from DS 1, and the remaining 𝑁 − 𝑢(0)

demands come from DS 2, where 𝑁 denotes the total number of demand arrivals, and

we assume 𝑁 > 𝑢(0). In this setting, the greedy cost is 𝑐2(𝑁 − 𝑢(0)), the hindsight

cost is 𝑐1min(𝑢(0), 𝑁 − 𝑢(0)) + 𝑐2max(0, 𝑁 − 2𝑢(0)). The competitive ratio reaches

maximum when 𝑢(0) < 𝑁 ≤ 2𝑢(0):

max
𝑁

𝑐2(𝑁 − 𝑢(0))

𝑐1min(𝑢(0), 𝑁 − 𝑢(0)) + 𝑐2max(0, 𝑁 − 2𝑢(0))
=
𝑐2
𝑐1

Note that the competitive ratio of an online algorithm is simply the approximation

ratio achieved by the algorithm, that is, the worst-case ratio between the cost of the

solution found by the algorithm and the cost of an optimal solution.

Next, we look at another static policy. The conservative policy reserves the shared

resource exclusively for the more valuable shipments, namely those that are more

costly to assign to the third party. In this one-link model, it assigns only shipments

from DS 2 to the retailer-controlled route. In the worst-case scenario, there are 𝑢(0)

shipments, and they are all from DS 1. The cost of the conservative policy is, 𝑐1𝑢(0)

while the cost of the optimal solution is 0. The maximum competitive ratio of the

conservative algorithm is infinity.

We note that in the case where the FC-SC arc has a non-zero variable cost, the

maximum competitive ratio of the static policies changes accordingly. Suppose that

the FC-SC arc charges c dollars per package with 0 < 𝑐 < 𝑐1 < 𝑐2. Then the maximum

competitive ratio of the greedy policy becomes (𝑐2 + 𝑐)/(𝑐1 + 𝑐), while the maximum

competitive ratio of the conservative policy becomes (𝑐1 + 𝑐)/𝑐.

Finally, we introduce the threshold-based policy that is a hybrid of the greedy and

34

conservative policy. The threshold-based policy limits the utilization of the shared

resource to at most 𝛼 shipments to the cheaper destination. That is, in this example,

the threshold-based policy assigns all shipments to the shared resource, until the

number of shipments assigned to DS 1 reaches the threshold, or until the capacity is

reached, whichever comes first. If the threshold occurs first, then the policy assigns

only DS 2 demand to the shared resource, again until the capacity limit is reached.

It is easy to show that regardless of any 𝛼 between 0 and 𝑢(0), the maximum

competitive ratio of the threshold-based policy algorithm is infinity. This happens

when the total demand that arrives between [0, 𝑇] is less than the initial capacity

(
∑︀

𝑖=1,2 𝑑𝑖(0) < 𝑢(0)) and the total demand from DS 1 (the cheaper destination)

that arrives between [0, 𝑇] is higher than the threshold (𝑑1(0) > 𝛼). In this setting,

the cost of the hindsight solution is zero, as there is sufficient capacity to handle all

the demand; however, the cost of the threshold-based policy is non-zero since some

demand for DS 1 gets assigned to the third party. Hence, this results in an infinite

competitive ratio.

The competitive ratios indicate that these static policies perform poorly in worst-

case scenarios. In addition to a worst-case analysis, we can also consider the expected

regret for these policies. Given the demand distributions, we may be able to com-

pute the expected regret, which is the expected additional cost paid by a policy in

comparison to the hindsight solution. The expected regret reflects the probability of

making wrong decisions (decisions that in hindsight would be made differently) and

the associated costs. We will consider the greedy policy as an example. The greedy

policy assigns every shipment to the shared resource until the shared resource is out

of capacity. In this simple example, the assignment of demand from DS 2 is always

a right decision in hindsight, while the assignment of demand from DS 1 at any time

𝑡 would be a wrong decision if the remaining capacity at time 𝑡 is less than the re-

maining demand from DS 2. In addition, the cost (“regret”) of making a mistake is

the third-party cost difference 𝑐2 − 𝑐1. The expected regret over a horizon of interest

(𝑇) can be expressed explicitly in terms of these parameters. For example, suppose

that the aggregate demand arrival process is a Poisson process with rate 𝜇, and each

35

demand comes from DS 1 (DS 2) with probability 𝑝 (1− 𝑝). We denote the number

of shipments that have arrived before time 𝑡 from DS 1 (DS 2) by 𝐷̄1(𝑡) (𝐷̄2(𝑡)), and

𝐹𝑋 denotes the CDF of random variable 𝑋. We can express the expected regret as

E[regret] =
∫︁
𝑡∈𝑇

𝑝(𝑐2 − 𝑐1)P[𝑢(𝑡) ≤ 𝐷2(𝑡)]𝜇𝑑𝑡

=𝑝(𝑐2 − 𝑐1)𝜇

∫︁
𝑡∈𝑇

P[𝑢(0)− (𝐷̄1(𝑡) + 𝐷̄2(𝑡)) ≤ 𝐷2(𝑡)]𝑑𝑡

=𝑝(𝑐2 − 𝑐1)𝜇

∫︁
𝑡∈𝑇

P[𝐷2(0) + 𝐷̄1(𝑡) ≥ 𝑢(0)]𝑑𝑡

=𝑝(𝑐2 − 𝑐1)𝜇

∫︁
𝑡∈𝑇

(1− 𝐹𝐷2(0)+𝐷̄1(𝑡)(𝑢(0)))𝑑𝑡

=𝑝(𝑐2 − 𝑐1)𝑇 − 𝑝(𝑐2 − 𝑐1)𝜇

∫︁ 𝑇

𝑡=0

𝑒−(𝑝𝑡𝜇+(1−𝑝)𝑇𝜇)

𝑢(0)∑︁
𝑖=0

(𝑝𝑡𝜇+ (1− 𝑝)𝑇𝜇)𝑖

𝑖!
𝑑𝑡

=𝑝(𝑐2 − 𝑐1)𝑇 − (𝑐2 − 𝑐1)

𝑢(0)∑︁
𝑖=0

1

𝑖!
(−Γ(𝑖+ 1, 𝑇𝜇) + Γ(𝑖+ 1, (1− 𝑝)𝜇𝑇))

where Γ is the lower incomplete gamma function. In the second equality, we replace

𝑢(𝑡) by the initial capacity minus the demand that arrives before time 𝑡. In the fourth

equality, since 𝐷2(0) and 𝐷̄1(𝑡) are independent Poisson processes, the sum of these

two random variables is a Poisson random variable with mean 𝑝𝑡𝜇+ (1− 𝑝)𝑇𝜇. The

fifth equality is by definition of Poisson CDF:

𝐹𝐷2(0)+𝐷̄1(𝑡)(𝑢(0)) = 𝑒−(𝑝𝑡𝜇+(1−𝑝)𝑇𝜇)

𝑢(0)∑︁
𝑖=0

(𝑝𝑡𝜇+ (1− 𝑝)𝑇𝜇)𝑖

𝑖!
.

The last equality is by definition of the upper incomplete gamma function, where we

derive this abbreviated expression by change of variables [12].

This analysis can be readily applied to the conservative policy. The conservative

policy assigns only demand from DS 2 to the shared resource until it is out of capacity.

In this example, the assignment of demand from DS 2 to the shared resource is always

a right decision in hindsight, while the assignment of demand from DS 1 to a third

party at any time 𝑡 would be a wrong decision if the remaining capacity at time 𝑡 is

36

greater than the remaining demand from both DSs. In addition, the cost (“regret")

of making a mistake is the third-party cost of DS 1 𝑐1. Therefore, the expected regret

can be derived from:

E[regret] =
∫︁
𝑡∈𝑇

𝑝𝑐1P[𝑢(𝑡) ≥ 𝐷1(𝑡) +𝐷2(𝑡)]𝜇𝑑𝑡

One can generate an explicit expression in similar fashion to that for the greedy

policy. Similarly, the analysis can be applied to the threshold based controller, which

is essentially a policy that switches from greedy to conservative.

2.2.2 Dynamic Policies

In this section, we introduce two dynamic heuristic policies. We note that for this sim-

ple network, we can find the optimal dynamic policy with a dynamic program, which

we will describe later. The first heuristic policy (which we name the “LP algorithm")

is inspired by the algorithm that is currently adopted by the online retailer. The

second heuristic policy (which we name the “QP algorithm") is a simplified version

of the algorithm we develop further in the thesis.

2.2.2.1 The LP Algorithm (for the One-link Network)

The LP algorithm derives a shadow price of the shared resource (FC-SC arc) at every

shipment arrival; then it makes routing decisions with the shadow price by comparing

the shadow price of the FC-SC arc to the alternative third-party cost, and picking

the cheaper option to ship the shipment. If there is a tie in the costs, we prioritize

the retailer-controlled routes over third-party routes.

At every shipment arrival time 𝑡, the shadow price is derived from a linear pro-

gramming problem that finds the optimal solution that minimizes the transportation

costs from time 𝑡 until the end of the horizon. The linear programming formulation

37

is as follows:

min
∑︁
𝑖=1,2

𝑐𝑖𝑦𝑖 (2.2a)

∑︁
𝑖=1,2

𝑥𝑖 ≤ 𝑢(𝑡) (2.2b)

𝑥𝑖 + 𝑦𝑖 ≥ 𝑑𝑖(𝑡) ∀𝑖 = 1, 2 (2.2c)

𝑥𝑖, 𝑦𝑖 ≥ 0 ∀𝑖 = 1, 2 (2.2d)

where 𝑑𝑖(𝑡) is the forecast of demand between time 𝑡 to time 𝑇 for DS 𝑖; 𝑢(𝑡) is the

remaining capacity prior to the assignment of the shipment that arrives at time 𝑡;

the decision variables 𝑥𝑖 and 𝑦𝑖 are the number of shipments from DS 𝑖 assigned to

shared resource and third-party carriers, respectively. The objective is to minimize

the transportation costs. The first constraint is the capacity constraint; the second

constraint is the demand constraint. The shadow price of the shared resource is the

dual variable of the capacity constraint.

At a high-level, the algorithm produces a large shadow price when demand fore-

casts are relatively high, and produces a small shadow price when demand forecasts

are relatively low. In particular, when the capacity constraint is not tight, by com-

plementary slackness, the shadow price will be zero; when 𝑑2(𝑡) > 𝑢(𝑡), the shadow

price will be 𝑐2; when 𝑑1(𝑡) + 𝑑2(𝑡) > 𝑢(𝑡) and 𝑑2(𝑡) < 𝑢(𝑡), the shadow price will be

𝑐1.

To understand the performance of the LP algorithm compared with the optimal

hindsight solution, we simulate the algorithm on this two-demand-one-resource net-

work over a one-day horizon with 𝑇 = 24hr. The experiment is based on the following

assumptions:

• We assume that demand arrival is a Poisson process with rate 𝜇, where for each

experiment we set 𝜇 by performing a random draw from a normal distribution

𝑁(𝑢(0),
√︀
𝑢(0)). In addition, each demand arrival has probability 𝑝 from DS 1

and probability 1− 𝑝 from DS 2.

38

• At time 𝑡 = 0, the initial demand forecast of the total demand (including the

two demand types) is set to the initial capacity of FC-SC arc, i.e. 𝑑(0) = 𝑢(0).

For other times 𝑡, where 0 < 𝑡 ≤ 𝑇 , we update the forecast for the entire day by

summing the shipments that arrived before time 𝑡 (𝑑(𝑡)) to the initial forecast

discounted by 𝑇−𝑡
𝑇

, which corresponds to the initial forecast for the remainder

of the day. Then, we multiply this revised demand forecast for the entire day

by 𝑇−𝑡
𝑇

to get an updated forecast for the remainder of the day. In summary,

the demand forecast for the remainder of the day at any time 𝑡 > 0 is:

𝑑(𝑡) =
𝑇 − 𝑡

𝑇
(
𝑇 − 𝑡

𝑇
𝑑(0) + 𝑑(𝑡))

• The demand forecasts for the two demand types (demand from DS 1 and DS

2) for the remainder of the day at time 𝑡 are:

𝑑1(𝑡) = 𝑝𝑑(𝑡)

𝑑2(𝑡) = (1− 𝑝)𝑑(𝑡)

Experimental Procedure:

1. Initialize 𝜇 with random draw from 𝑁(𝑢(0),
√︀
𝑢(0))

2. Initialize time index at 𝑡 = 0

3. We generate the next demand arrival. Since the demand arrivals are Poisson,

the time between two demands are generated by an exponential distribution

with mean 1/𝜇, and the demand type is determined randomly with probability

𝑝 from DS 1 and probability 1 − 𝑝 from DS 2. Let 𝜏 be the exponentially

distributed interarrival time; then we update the time index 𝑡 = 𝑡+ 𝜏

4. We assign the shipment that arrives at time 𝑡. For each shipment arrival, we

make an assignment decision based on its destination and on the shadow price

derived from the LP with the most updated states. That is, the shipment

39

is assigned to the third-party route if the third-party cost of the shipment is

cheaper than the shadow price; the shipment is assigned to the shared FC-SC

route if the third-party cost is more expensive. If the third-party cost equals the

shadow price, we prioritize retailer-controlled routes over third-party routes.

5. After assigning the shipment we update the states, including the forecast, and

the remaining capacity

6. We repeat step 3, 4, 5 until the shipment generated arrives after 𝑇

We simulate 100 realizations with 𝑢(0) = 100, 𝜇 is drawn randomly from a normal

distribution 𝑁(100, 10), 𝑝 = 0.5, 𝑐1 = 1, 𝑐2 = 2, 𝑇 = 24 hours.

The average cost of the 100 realizations when decisions are made by LP algorithm

is 8.74 (with 8.26 standard deviation), while the average cost of the hindsight solution

is 4.94 (with 8.17 standard deviation). Figure 2-3 shows the cost of the 100 test cases

with respect to the total demand. We note that the hindsight cost is zero when the

number of shipments (𝑑(0)) is less than or equal to the initial capacity, i.e. 𝑑(0) < 100,

and when 𝑑(0) > 100, the hindsight cost is always 𝑐1(𝑑(0) − 100) (where 𝑐1 = 1)

unless the demand from DS 2 is more than 100, which did not occur in any of the

100 realizations.

As noted earlier, the shadow price of the LP algorithm can be one of the three

possible values – 0, 𝑐1 or 𝑐2. Figure 2-4 shows the shadow price progression over time

of a random test case, where the shadow price is either 0 or 𝑐1. When demand from

DS 2 is more than the initial capacity, the shadow price can also be 𝑐2. However,

for the assumed demand distribution for the test case, this is very rare, and in most

cases, the shadow price is either 0 or 𝑐1.

2.2.2.2 The QP Algorithm (for the One-link Network)

The QP algorithm also derives a shadow price of the shared resource (FC-SC arc)

at every shipment arrival, but now the shadow price is derived from a quadratic

programming problem. To formulate a quadratic program (QP), we relax the capacity

40

Figure 2-3: Performance of the LP algorithm versus the hindsight solution

Figure 2-4: Progression of shadow prices from the LP algorithm overtime

constraint, and then set the objective function as proportional to a quadratic penalty

41

of the flows that exceed a specified flow target (𝑓(𝑡)):

min
∑︁
𝑖=1,2

1

2
𝑣(𝑡)𝑔2 (2.3a)

∑︁
𝑖=1,2

𝑥𝑖 − 𝑔 ≤ 𝑓(𝑡) (2.3b)

𝑥𝑖 ≥ 𝑑𝑖(𝑡) ∀𝑖 = 1, 2 (2.3c)

x,g ≥ 0 (2.3d)

In the QP, 𝑣(𝑡) is a penalty coefficient, 𝑓(𝑡) is the chosen “flow target”, and 𝑔 denotes

the “excess flow” over the target. The flow target (𝑓(𝑡)) represents how much we

should plan to load onto FC-SC arc over the remainder of the time horizon, in light

of the demand uncertainty and the relevant costs for third-party option. We expect

to set it to be less than the remaining capacity 𝑢(𝑡), where the difference acts as

a safety buffer. We set the penalty coefficient (𝑣(𝑡)) to approximate the expected

remaining cost at any time 𝑡. We will defer the explanation for how to set and justify

the targets and penalty coefficient until chapter 4. The optimal solution of the QP for

this one-link example is trivial, where the optimal solution can be expressed explicitly

in terms of the capacity and forecasts:

𝑥𝑖 = 𝑑𝑖(𝑡)

𝑔 = (
∑︁
𝑖=1,2

𝑑𝑖(𝑡)− 𝑓(𝑡))+

By the KKT (Karush–Kuhn–Tucker) condition, the dual variable associated with the

FC-SC resource constraint can be expressed explicitly by:

𝜆(𝑡) = 𝑣(𝑡)𝑔

42

We then set the shadow price on the retailer-controlled route by capping the dual by

the maximum third-party cost, i.e.,

min(max(𝑐1, 𝑐2), 𝜆(𝑡))

We make this adjustment to avoid the algorithm from “closing" the retailer-controlled

route entirely to all demand type when the dual variable of the shared resource is

higher than the most expensive alternative third-party cost. We will explain this

adjustment in more detail in the next chapter, where we develop the algorithm.

When we encounter a tie in the costs, we prioritize the retailer-controlled routes

over third-party routes.

We simulate the QP algorithm on the same 100 test cases by setting target and

the penalty coefficient by the following formula:

𝑓(𝑡) = 𝑢(𝑡)− 𝑘1

√︁
𝑑(𝑡),

𝑣(𝑡) = 𝑘2min(𝑐1, 𝑐2)
1√︁
𝑑(𝑡)

,

where 𝑘1 and 𝑘2 are constants set to be 2 and 0.2, respectively, in our simulation.

We note that the algorithm’s performance depends on the choice of these coefficients.

We will explain and justify this setting in the next chapter. We find that the results

are much closer to the hindsight solution than the LP algorithm. The average cost

of the 100 realizations with the QP algorithm is 6.4 (with 9.7 standard deviation),

which is 29.6 percent higher than the average cost of the hindsight solutions 4.94

(with 8.17 standard deviation). In the 100 test cases, the QP algorithm outperforms

the LP algorithm in 58 cases, the LP algorithm outperforms QP in 26 cases, and

the two algorithms incur the same cost in the remaining 16 cases. Figure 2-5 shows

the cost of the 100 test cases with respect to the total number of demand: Figure

2-6 shows the shadow price progression over time of a random test case, where the

shadow price structure is more continuous. In this simple example, the QP algorithm

performs better than the LP algorithm on average due to its flexible cost structure.

43

Figure 2-5: Performance of the QP algorithm versus LP algorithm and the hindsight
solution

Figure 2-6: Progression of shadow prices from the QP algorithm overtime

44

In the regime where 𝑑1(𝑡) + 𝑑2(𝑡) > 𝑢(𝑡) and 𝑑2(𝑡) < 𝑢(𝑡), the shadow price of the

LP algorithm can only be 𝑐1, while the QP algorithm could produce higher, equal or

lower shadow prices than 𝑐1.

To compare the dynamic policy against the static policy, we also run the same

100 test cases on the two static policies – greedy and conservative. The average cost

of the greedy algorithm is 13.91, while the average cost of the conservative algorithm

is 50.53. Both are much worse than the dynamic policies. In a later section (section

2.5), we introduce another benchmark where we model the problem as a dynamic

programming problem.

2.3 Ad Hoc Truck Options

In the prior case, we assumed that the capacity on the retailer-controlled link is set

some time ahead (e.g., a week or two ahead) and can not be changed. This reflects

the fact that some number of trucks was scheduled in some earlier time frame and can

not be changed. However, in addition to truck schedules set in advance, the online

retailer can sometimes add additional trucks during the day with short notice (e.g,

within an hour or two, an ad hoc truck can arrive at the facility as an addition to the

existing truck schedule) to some transportation link. These trucks are more expensive

than trucks scheduled a week ahead, but may be cheaper than third parties if these

trucks can be fully-utilized. Therefore, it may be economical for the retailer to add

capacity, by calling ad hoc trucks, when facing higher than expected demand. In

this section, we assume that the retailer can add ad hoc trucks to the online-retailer

controlled link (the FC-SC arc) at any time. We propose two ad hoc truck controllers

(heuristics) that decide when and where to add or remove ad hoc trucks to the system.

The controllers are triggered whenever the retailer wants to revisit the quantity of

scheduled transportation resource.

45

2.3.1 Threshold-Based Controller

We assume that an additional truck on the FC-SC arc provides a capacity of 𝑢ah units

and costs 𝑐ah. The cost for adding a truck (which we call an ad hoc truck) is greater

than the cost for planned trucks, which are scheduled in advance. Nevertheless, when

demand within a time period or day exceeds the forecast, adding an ad hoc truck

may be justified.

We propose to trigger these ad hoc truck decisions with a threshold that reflects

the cost of shipping excess flows by third-party. If the cost of adding an ad hoc truck

is cheaper than the projected third-party cost, then we add an ad hoc truck. At any

time 𝑡 we add an ad hoc truck to the arc if the following inequality holds:

𝑐3𝑝(𝑓𝑗(𝑡)− 𝑢(𝑡))+ > 𝑐ah

where 𝑐3𝑝 denotes the alternative (third-party) cost, 𝑓𝑗(𝑡) denotes the current forecast

of expected remaining flows on the arc 𝑗 at time 𝑡, 𝑢(𝑡) denotes the remaining capacity

at time 𝑡. The left-hand side of the inequality is the projected cost if we do not add

any more capacity on this arc. We note here that the specification for 𝑐3𝑝 is not

obvious, but should depend upon both 𝑐1 and 𝑐2; we will explore numerically various

ways for setting 𝑐3𝑝 in section 2.3.3. The right-hand side is the cost for adding a

truck, where we implicitly assume the truck will have sufficient capacity to handle

the remaining demand. Hence, the rule is to add a truck if its cost is less than the

projected cost for doing nothing.

We can also consider the possibility of canceling a scheduled ad hoc truck. We

might remove a truck when the expected cost of shipping the remaining demand with

capacity without the ad hoc truck is less than the ad hoc truck cost. In other words,

we remove a truck on the arc at time 𝑡 when the following inequality holds:

𝑐3𝑝(𝑓(𝑡)− (𝑢(𝑡)− 𝑢ah))+ < 𝑐ah.

Note that we allow a cancellation of an ad hoc truck only when no shipments have

46

been assigned to the truck.

2.3.2 DP-Based Controller

We describe here a second heuristic to determine when and where to add or cancel ad

hoc trucks in a transportation network. At any time instance 𝑡, we can add an ad hoc

truck to the FC-SC arc, or remove an ad hoc truck, or do nothing. Therefore, there

are 3 possible actions at any time instance. We formulate the ad hoc truck problem

as a dynamic program that minimizes the immediate cost of the ad-hoc decision plus

the resulting future expected cost:

𝐽(𝑆, 𝑡) = min
𝑎∈{−1,0,1}

{𝑐(𝑆, 𝑎) + 𝐽(𝑓(𝑆, 𝑎), 𝑡)} (2.4)

where 𝑡 is the time of decision instance, 𝑆 is the system state (which includes re-

maining capacity and a forecast of the remaining demand), 𝑎 is the ad hoc truck

decision, 𝑐() is the cost of action 𝑎 at state 𝑆, 𝑓() defines how state S evolves from

a given action 𝑎, {−1, 0, 1} denotes the three possible actions (i.e., removing a truck,

doing nothing or adding a truck). We propose to solve an approximation of the DP

by approximating the cost-to-go function (𝐽(𝑆, 𝑡)) by the objective function 𝑊 (𝑆, 𝑡)

of a linear programming problem that minimizes shipping costs while satisfying de-

mand and capacity constraints. For the one-link example, the linear program is the

following:

𝑊 (𝑓(𝑆, 𝑎), 𝑡) = min
∑︁
𝑖=1,2

𝑐𝑖𝑦𝑖 (2.5a)

∑︁
𝑖=1,2

𝑥𝑖 ≤ 𝑢(𝑡) + 𝑎𝑢𝑎ℎ (2.5b)

𝑥𝑖 + 𝑦𝑖 ≥ 𝑑𝑖(𝑡) ∀𝑖 = 1, 2 (2.5c)

𝑥𝑖, 𝑦𝑖 ≥ 0 ∀𝑖 = 1, 2 (2.5d)

where 𝑢𝑎ℎ is the capacity of an ad hoc truck, 𝑎 is either −1, 0 or 1. We solve the

problem for 𝑎 = −1, 𝑎 = 0 and 𝑎 = 1 to approximate the cost-to-go function for these

47

actions, and then apply the solution to equation 4.22 and make the ad hoc decision

by picking the cheapest option.

2.3.3 One-Link Network with Ad Hoc Truck Options

In this section, we simulate the QP algorithm on the one-link model with the two ad-

hoc controllers and compare the results with the hindsight solution. We assume that

ad hoc trucks can be added to the FC-SC arc. Each ad hoc truck is 10 dollars (𝑐𝑎ℎ)

with capacity of 30 (𝑢𝑎ℎ) shipments. For the threshold based control, we set 𝑐3𝑝 to be

either minimum of the third-party costs (𝑐3𝑝 = min(𝑐1, 𝑐2)), the average of the third-

party costs (𝑐3𝑝 = 𝑐1+𝑐2
2

) or maximum of the third-party costs (𝑐3𝑝 = max(𝑐1, 𝑐2)).

For the threshold-based controller, we set the expected flow (𝑓(𝑡)) of the FC-SC arc

by:

𝑓(𝑡) =
∑︁
𝑖=1,2

𝑑𝑖(𝑡)

We simulate the algorithms on the same 100 instances as described in section 2.2.2.

The performance averaged over the 100 instances is listed in table 2.1. We observe

that the threshold-based controller performs the best when we set the coefficient to

the minimum of third-party costs. Interestingly, the number of ad hoc trucks added

by the three different threshold-based controllers are the same, but the timing of when

they add the trucks are different.

In hindsight, the online retailer could spend less money on average when there is an

ad hoc truck option. The hindsight solution adds zero ad hoc trucks in 86 cases, and

one truck in 14 cases; both DP-based and threshold-based controllers (when 𝑐3𝑝 are

set to the minimum of third-party costs) add zero ad hoc trucks in 90 cases, and one

truck in 10 cases. In fact, the ad hoc truck decisions made by the two controllers are

exactly the same for the 100 instances. This is due to the fact that the threshold-based

controller approximates the optimal solution of the LP formulation of the DP-based

controller, presumably due to simplicity of the network and the parameter choice. In

the next section, we perform the same experiment on a more complicated network,

48

where we can observe differences between the two controllers.

QP algorithm hindsight cost

without ad hoc truck option 6.4 (±9.7) 4.94 (±8.17)

with ad hoc truck option threshold-based controller
max 3p 7.03 (±4.91)

3.38 (±4.59)mean 3p 6.54 (±5.03)

min 3p 5.79 (±5.12)

DP-based controller 5.79 (±5.12)

Table 2.1: Average costs of different ad hoc controllers (the numbers in the paren-
theses are standard deviations).

2.4 A Two-link Network

In reality, the network structure is more complex than the one-link example. Routes

are often composed of multiple arcs and nodes (resources), and these resources are

often shared by multiple routes. See Figure 2-7 for an illustration of a more com-

plicated transportation network that is representative of reality. If we zoom-in to a

FC to SC to DS network (highlighted by red in Figure 2-7), the arc from the cho-

sen FC to the chosen SC will have flows to other DSs, and the arc from the chosen

SC to the chosen DS will have other flows originating from other FCs. Eventually

we will look at this more complicated network, but for now, to build some intuition

and insight, we focus on this two-link reduced network (highlighted by red in Figure

2-7) that incorporates this complexity by modeling not only the flows that are fully

fulfilled by the network, but also the flows that are partially fulfilled by the reduced

network. Consider a transportation network with 1 FC, 1 SC, 1 DS and two service

areas. The nodes are connected by retailer-controlled transportation and third-party

transportation as illustrated in Figure 2-8.

49

FC2 DS2
SA 3

SC2

FC3 DS3SC3

SA 4

FC1 DS1
SA 1

SC1
SA 2

SA 5

SA 6

Figure 2-7: Illustration of a complicated network

FC DS

SA 1

SA 2

$c1

$c2

$0

$0SC

r1 r2
3P
Owned Transportation
uncapped, free transportation

Figure 2-8: Illustration of the two link network. For the internal demand (from
service area 1 and service area 2), there are two routes: a third-party route that ships
directly from the FC to the customer, a retailer-controlled route from FC to SC to DS
to the customer. External demands (illustrated with green lines) on FC-SC (SC-DS)
consumes the FC-SC (SC-DS) resource controlled by the retailer.

There are two types of shipments that are handled by this network – “internal

50

shipment” and “exogenous shipment”. Internal shipments are shipments that origi-

nate from the FC and that are destined to customers either in service area 1 or in

service area 2 (Figure 2-8); these shipments can only be fulfilled by either the online

retailer’s transportation route or by third-party companies with a cost of 𝑐1 for de-

mand from service area 1 and 𝑐2 for demand from service area 2. The online retailer’s

transportation route starts at the FC, goes to the SC, and then to the DS; from the

DS, the shipment is delivered by a last-mile carrier to a customer at one of the service

areas. In addition, we assume that the two retailer-controlled arcs serve other de-

mand, which we refer to as “exogenous shipments". The exogenous shipments on the

FC-SC arc are shipments that originate from the FC and transported first to the SC,

and then go from the SC to other DSs for delivery to other service areas. Similarly,

we have other exogenous shipments on the SC-DS arc. These represent shipments

that come from other FCs to the SC, are then shipped to the DS, and will go to

customers in service area 1 or service area 2. For this analysis, we follow the same

assumptions as the one-link model with the following additions:

• We model the external demand on the upper (FC-SC) and the lower (SC-DS)

as two independent Poisson processes with rate 𝛾1 and 𝛾2, respectively.

• The exogenous demand, by default, will be shipped by the retailer-controlled

resources. If the retailer-controlled route is out of capacity, then the excess

exogenous shipments will be charged a cost (𝑐ex) per shipment.

• We assume that all retailer–controlled arc and node costs are sunk costs that

have been paid, and incur no variable costs. In addition, last-mile delivery from

DS has zero cost. (Alternatively, we can interpret the third-party cost of 𝑐1 for

demand from service area 1 and 𝑐2 for demand from service area 2 to be the

actual cost net of the last-mile delivery cost from the DS)

We will illustrate the performance of the LP algorithm and the QP algorithm on

this network. We first describe the experimental setup, and then how we implement

each algorithm. We then provide results, with a comparison to the hindsight solution.

51

2.4.1 Experimental Setups

For the test cases that we simulate, we set the following parameters:

• Forecasted internal demand rate: 𝜇0 = 100 .

• Each internal shipment has probability 𝑝1 = 0.5 from service area 1, and prob-

ability 𝑝2 = 0.5 from service area 2.

• The exogenous demand rate on upper (𝛾01) and lower arc (𝛾02) arc are both 200

units per day.

• Initial arc capacities on upper (𝑢1(0)) and lower arc (𝑢2(0)) are both 300 units.

• Third-party cost of satisfying internal demand from service area 1 and service

area 2: (𝑐3𝑝1 , 𝑐
3𝑝
2) = (1, 2).

• The variable cost for any excess exogenous shipment (when retailer-controlled

resources are not available) on FC to SC arc, and for any excess exogenous

shipment on SC to DS arc are both 𝑐ex = 2 per package.

• Ad hoc trucks can be added to FC-SC or SC-DS retailer-controlled arc sepa-

rately. One ad hoc truck per arc cost 𝑐𝑎ℎ = 10, and the capacity is 𝑢𝑎ℎ = 30

units.

• Time horizon: 𝑇 = 1 day.

For each experiment, the process is as follows:

1. At the start of every instance, we generate the actual internal demand rate

(𝜇) and exogenous demand rates (𝛾𝑗) from normal distributions with mean and

standard derivation associated with the forecasted demand rate:

𝜇 ∼ 𝑁(𝜇0,
√︀
𝜇0)

𝛾𝑗 ∼ 𝑁(𝛾0𝑗 ,
√︁
𝛾0𝑗)

52

Note that 𝜇0 and 𝛾0𝑗 are the expected demand rates, and therefore, we assume

this is known information for the assignment controllers.

2. Initialize time index at 𝑡 = 0

3. We generate the next internal shipment. Since we assume the demand arrivals

are Poisson, the time from the previous demand to this demand is generated by

an exponential distribution with mean 1/𝜇 and the demand type is determined

randomly with probability 𝑝 from service area 1 and probability 1 − 𝑝 from

service area 2. Let 𝜏 be the exponentially distributed interarrival time; then we

update the time index 𝑡 := 𝑡+ 𝜏 .

4. We generate the number of exogenous demands that arrive between 𝑡 and the

previous internal shipment arrival 𝜌(𝑡) (or time 0 if it is the first shipment) from

a Poisson distribution with rate 𝛾𝑗(𝑡 − 𝜌(𝑡))/𝑇 for each arc 𝑗. The remaining

capacity on arc 𝑗 is then updated by the realized exogenous demand. If the

number of exogenous demand is more than the remaining capacity, then we set

the remaining capacity on the arc to zero, and we incur a cost of 𝑐ex for each

external shipment in excess of the arc capacity.

5. Re-solve the QP (or LP) to update the shadow price. Note that we update the

demand forecast of the remaining horizon based on the initial demand forecasts

and on the observed shipments:

𝑒𝑗(𝑡) =
𝑇 − 𝑡

𝑇
(
𝑇 − 𝑡

𝑇
𝛾0𝑗 + 𝑒𝑗(𝑡)) (2.6)

𝑑𝑖(𝑡) =
𝑇 − 𝑡

𝑇
(
𝑇 − 𝑡

𝑇
𝑝𝑖𝜇

0 + 𝑑𝑖(𝑡)) (2.7)

where 𝑒𝑗(𝑡) is the demand forecast of external demand on arc 𝑗 at time 𝑡, 𝑑𝑖(𝑡)

is the demand forecast of internal demand from service area 𝑖 at time 𝑡, 𝑒𝑗(𝑡)

is the observed shipment arrival of external demand on arc 𝑗 up to time 𝑡, and

𝑑𝑖(𝑡) is the observed shipment arrival of internal demand from service area 𝑖 up

to time 𝑡.

53

6. We assign the internal demand to the retailer-controlled transportation or 3P

based on the updated shadow prices. Note that if any link along the path has

no remaining capacity, then the package must be assigned to 3P.

7. If the test case allows ad hoc trucks, we decide whether to add ad hoc trucks

to the arcs. We then update the states accordingly.

8. Repeat step 3 to 7 until the next shipment arrives after time 𝑇 , and the simu-

lation is terminated

2.4.1.1 The LP Algorithm (for the Two-link Network)

At each shipment arrival time 𝑡, the LP algorithm derives shadow price for upper arc

(FC-SC) and lower arc (SC-DS) from the following linear program:

min
∑︁
𝑖=1,2

𝑐𝑖𝑦𝑖 (2.8a)

∑︁
𝑖=1,2

𝑥𝑖 ≤ (𝑢𝑗(𝑡)− 𝑒𝑗(𝑡))
+ ∀𝑗 = 1, 2 (2.8b)

𝑥𝑖 + 𝑦𝑖 ≥ 𝑑𝑖(𝑡) ∀𝑖 = 1, 2 (2.8c)

x,y ≥ 0 (2.8d)

where x is internal shipments assigned to the retailer-controlled route, y is internal

shipments assigned to the third-party route. The shadow price of the upper (𝜆1(𝑡))

and lower arcs (𝜆2(𝑡)) are the dual variables of their associated resource constraint

(2.8b). The shadow price of the retailer-controlled route is the sum of the shadow

prices of upper and lower arcs with a maximum value capped at the most expensive

third-party cost:

min(max(𝑐1, 𝑐2), 𝜆1(𝑡) + 𝜆2(𝑡))

The algorithm then makes order fulfillment decisions by comparing the shadow price

with the third-party cost, and picks the cheaper option to ship the shipment. If

54

we encounter a tie, we adopt a different tie-breaking rule in this section, where we

prioritize the retailer-controlled routes over third party routes.

2.4.1.2 The QP Algorithm (for the Two-link Network)

At each shipment arrival time 𝑡, the QP algorithm derives shadow prices for the upper

arc (FC-SC) and for the lower arc (SC-DS) from the following quadratic program:

min
∑︁
𝑗=1,2

1

2
𝑣𝑗(𝑡)𝑔

2
𝑗 (2.9a)

∑︁
𝑖=1,2

𝑥𝑖 + 𝑒𝑗(𝑡)− 𝑔𝑗 ≤ 𝑓𝑗(𝑡) ∀𝑗 = 1, 2 (2.9b)

𝑥𝑖 ≥ 𝑑𝑖(𝑡) ∀𝑖 = 1, 2 (2.9c)

x,g ≥ 0 (2.9d)

The targets and penalty coefficients are set by the following formula:

𝑓𝑗(𝑡) = 𝑢𝑗(𝑡)− 𝑘1

√︃
𝑒𝑗(𝑡) +

∑︁
𝑖=1,2

𝑑𝑖(𝑡) ∀𝑗 = 1, 2

𝑣𝑗(𝑡) = 𝑘2min(𝑐1, 𝑐2)
1√︁

𝑒𝑗(𝑡) +
∑︀

𝑖=1,2 𝑑𝑖(𝑡)
∀𝑗 = 1, 2

where 𝑘1 and 𝑘2 are constants set to be 2 and 0.2, respectively, in our simulation.

We note that the algorithm’s performance depends on the parameter choice of these

coefficients, and the parameters adopted in this chapter are hand-picked, where we

do not try to find the best set of parameters for the tests. We will explain and

justify this setting in the next chapter. We note that the flow targets are set slightly

lower than capacity, where the gap is a function of the uncertainty in the number of

shipments that could utilize the arc, including demand from service area 1 and 2 and

the exogenous demand on their associated arc; the penalty coefficient is set according

to the third-party costs and the internal and external forecasts. We derive the shadow

price of the upper and lower arc from the dual variables of their associated capacity

constraint in the QP. For the two-link example, by KKT condition, the dual variables

55

(𝜆𝑗(𝑡)) can be expressed explicitly:

𝜆𝑗(𝑡) = 𝑣𝑗(𝑡)(
∑︁
𝑖=1,2

𝑑𝑖(𝑡) + 𝑒𝑗(𝑡)− 𝑓𝑗(𝑡))
+.

The shadow price of the retailer-controlled route is the sum of the upper and lower

arc’s dual variables with a maximum value of the most expensive third-party cost:

min(max(𝑐1, 𝑐2), 𝜆1(𝑡) + 𝜆2(𝑡))

Like the LP algorithm, the QP algorithm makes order fulfillment decision by com-

paring the shadow price with the third-party cost, and picks the cheaper option to

ship the shipment. If we encounter a tie, we prioritize the retailer-controlled routes

over third party routes.

2.4.1.3 Parameter Choice of the Ad Hoc Truck Controllers

For the threshold-based controller, at every shipment arrival time 𝑡, we add an ad

hoc truck to arc 𝑗 if the following inequality holds:

𝑐3𝑝𝑗 (𝑒𝑗(𝑡) +
∑︁
𝑖=1,2

𝑑𝑖(𝑡)− 𝑢𝑗(𝑡))
+ > 𝑐ah

𝑗

where 𝑐3𝑝𝑗 is set to the minimum of the third-party costs, i.e. 𝑚𝑖𝑛(𝑐1, 𝑐2). In addition,

if cancellation of ad hoc trucks are allowed, at every shipment arrival time 𝑡 we cancel

an ad hoc truck on resource 𝑗 if these three conditions are satisfied:

1. The following inequality holds:

𝑐3𝑝𝑗 (𝑒𝑗(𝑡) +
∑︁
𝑖=1,2

𝑑𝑖(𝑡)− 𝑢𝑗(𝑡)− 𝑢𝑎ℎ𝑗)+ < 𝑐ah
𝑗

2. Remaining capacity of arc 𝑗 is more than an ad hoc truck capacity, i.e. 𝑢𝑗(𝑡) >

𝑢𝑎ℎ𝑗 . This condition is to guarantee that no ad hoc trucks are cancelled if they

already have shipments assigned to them.

56

3. The accumulated number of ad hoc trucks added to resource j is at least one.

This condition is to make sure that we do not cancel pre-scheduled trucks; in

other words, we only cancel the ad hoc trucks that are added in the current

time period.

For the DP-based controller, at every shipment arrival time 𝑡, we approximate the

cost-to-go function by the cost of the following LP:

𝐽((𝑆, a), 𝑡) ≈ 𝑊 ((𝑆, a), 𝑡) = min
∑︁
𝑖=1,2

𝑐𝑖𝑦𝑖 +
∑︁
𝑗=1,2

𝑐ex𝑦𝑗 (2.10a)

∑︁
𝑖=1,2

𝑥𝑖 + 𝑥𝑗 ≤ 𝑢𝑗(0) + 𝑎𝑗𝑢
ah ∀𝑗 (2.10b)

𝑥𝑖 + 𝑦𝑖 ≥ 𝑑𝑖(𝑡) ∀𝑖 (2.10c)

𝑥𝑗 + 𝑦𝑗 ≥ 𝑒𝑗(𝑡) ∀𝑗 (2.10d)

x,y ≥ 0, integer (2.10e)

where 𝑎𝑗 = 1, 0 or −1 depending on the ad hoc truck actions, 𝑒𝑗(𝑡) denotes the

exogenous demand forecast on arc 𝑗 at time 𝑡, 𝑑𝑖(𝑡) denotes the demand forecast

from service area 𝑖 at time 𝑡, 𝑥𝑖 (𝑦𝑖) denotes the number of service area 𝑖 shipments

shipped by retailer controlled route (third-party route), 𝑥𝑗 (𝑦𝑗) denotes the number of

exogenous shipments on arc 𝑗 shipped by retailer controlled route (third-party route).

2.4.2 Hindsight Solution

In this simple example, if we know the internal and exogenous demands, we can cal-

culate the minimum (hindsight) transportation costs by a simple linear programming

given the total exogenous and internal demand are known:

57

min
∑︁
𝑖=1,2

𝑐𝑖𝑦𝑖 +
∑︁
𝑗=1,2

𝑐ex𝑦𝑗 +
∑︁
𝑗=1,2

𝑐ah𝑎𝑗 (2.11a)

∑︁
𝑖=1,2

𝑥𝑖 + 𝑥𝑗 ≤ 𝑢𝑗(0) + 𝑎𝑗𝑢
ah ∀𝑗 (2.11b)

𝑥𝑖 + 𝑦𝑖 ≥ 𝑑𝑖 ∀𝑖 (2.11c)

𝑥𝑗 + 𝑦𝑗 ≥ 𝑒𝑗 ∀𝑗 (2.11d)

x,y, a ≥ 0, integer (2.11e)

(2.11f)

where 𝑒𝑗 denotes the total number of exogenous demands on arc 𝑗, 𝑑𝑖 denotes the total

number of demands from service area 𝑖, 𝑥𝑖 (𝑦𝑖) denotes the number of service area 𝑖

shipments shipped by retailer controlled route (third-party route), 𝑥𝑗 (𝑦𝑗) denotes the

number of exogenous shipments on arc 𝑗 shipped by retailer controlled route (third-

party route), 𝑎𝑗 denotes the number of ad hoc trucks added to arc 𝑗. Note that if the

ad hoc truck options are not allowed, we set a = 0.

2.4.3 Results of Experiments

In this section, all test cases are based on parameters and procedures described in

section 2.4.1, except for the sensitivity test, for which we will specify the different

parameters (or process) if any. We compare the performance of different algorithms

by simulating a number of realizations (50 instances) that leads to conclusions. Then,

we perform sensitivity tests on the best performing algorithm to understand the

robustness of the algorithm under different scenarios.

2.4.3.1 The QP algorithm is better than the LP algorithm

First, we compare the LP and QP algorithms’ performances by simulating the two

algorithms on the two-link network without the option of adding ad hoc trucks for

simplicity. We simulate both algorithms on the same 50 instances. The average and

58

standard deviation of costs are summarized in the following table:

LP algorithm QP algorithm hindsight

mean 20.88 19.20 14.10

std 17.08 21.34 16.61

On average, the QP algorithm performs slightly better than the LP algorithm. In

addition, among the 50 test cases, QP performs better than LP in 35 out of 50 cases.

To make a more statistically sound judgment, we perform a two-sample t-test by

the following procedure. First, we create a null hypothesis that is counter to our

belief. In this case, the null hypothesis is that the LP algorithm is better than the

QP algorithm:

𝐻0 : 𝜇
(𝐿𝑃−𝑄𝑃) < 0,

where 𝜇𝐿𝑃−𝑄𝑃 is the average difference between the cost from the LP and the cost

from the QP algorithm (cost of LP subtracting cost of QP). We assume that 𝜇(𝐿𝑃−𝑄𝑃)

is approximately normally distributed, and we perform t-test to the test statistics. If

the p-value of the test is small, we reject the null hypothesis with confidence. The

average cost difference of the 50 samples is 1.68 (𝜇̂𝐿𝑃−𝑄𝑃) and the standard deviation

of the cost difference is 6.54 (𝑠𝐿𝑃−𝑄𝑃). The t-test statistic is:

𝑇 =
√
𝑁
𝜇̂𝐿𝑃−𝑄𝑃 − 0

𝑠𝐿𝑃−𝑄𝑃
=

√
50

1.68

6.54
= 1.817

The p-value derived from the t-statistics:

P(𝑡50 > 1.817) = 0.0376

where 𝑡50 denotes a t-distribution with 50 degrees of freedom. The small p-value

suggests that our experiments show strong evidence that the QP algorithm is better

than the LP algorithm with the 50 instances.

59

2.4.3.2 The DP-based controller and the threshold-based controller

Next, we allow ad hoc trucks and repeat the experiment to compare the two ad hoc

truck controller’s performances. In this experiment, we run the two controllers on the

same 50 instances, and the assignment decisions are both made by the QP algorithm.

For simplicity, we do not allow cancellation of ad hoc trucks, i.e., once an ad hoc

truck is added to the system, it cannot be removed. We run 50 instances with two

different controllers and the mean and standard deviation of the costs are:

DP-based threshold-based hindsight

mean 15.60 16.08 8.96

std 10.62 10.59 9.92

The average cost with the DP-based controller is lower than the threshold-based

controller. However, among the 50 test cases, DP-based controller performs better

than threshold-based controller in 5 cases, performs equally in 40 cases, perform worse

in 5 cases. Again, we perform t-test to the test statistics following the same procedure

in the previous section. The p-value of our test is 0.117, which doesn’t show a strong

evidence that one controller is better than the other.

2.4.3.3 Allowing Cancellation of Ad Hoc Trucks Reduces Costs

We simulate 50 test cases with the same assignment engine (the QP algorithm) and

the same ad hoc truck controller (DP-based controller) but now with or without the

option of ad hoc truck cancellation. The mean and standard deviation of the costs

are:

without cancellation with cancellation hindsight

mean 15.60 11.22 8.96

std 10.62 11.99 9.92

Among the 50 test cases, with cancellation performs better than without cancellation

in 22 cases, performs equally in 21 cases, performs worse in 7 cases. The test statistics

show that the algorithm’s performance is better with cancellation than without, with

a small p-value 4.17e−5.

60

2.4.3.4 Sensitivity Tests

Based on the above experiments, we find that the algorithm that performs the best

on this test case for a two-link network is the one that assigns shipments with QP

algorithm, and that makes ad hoc truck decisions with the DP-based controller with

the option of cancelling ad hoc trucks. In this section, we perform sensitivity tests

to understand the robustness of this algorithm (QP + DP-based ad hoc controller +

with cancellation) under different scenarios, and we refer to this version of algorithm

as “ the algorithm" in this section.

The two-link network differs from the one-link model by having external flows.

The first sensitivity test is on the external demand rates. We vary the external

demand forecast (𝛾0𝑗) of both arcs between 100 and 300 with step size of 25, i.e. 𝛾0𝑗 =

100, 125, 150, · · · , 300. There are 92 combinations, and we simulate 10 instances for

each combination. Figure 2-9 and Figure 2-10 are the heat map of average hindsight

costs and the average costs by the algorithm, respectively.

Figure 2-9: Average hindsight costs under different exogenous demand rates

61

Figure 2-10: Average cost by the algorithm under different exogenous demand rates

As expected, the average hindsight cost and the average cost of the algorithm

increase as the exogenous demand rate increases. To compare the two algorithms, we

calculate the mean percentage error (MPE):

MPE =
avg. cost by the algo. − avg. hindsight cost

avg. hindsight cost

for each test case. Figure 2-11 shows MPE under different exogenous demand rates.

The results are quite robust to different combinations of exogenous demand rates

within groups. When one of the exogenous demand rate is more than 200, the per-

centage errors are in the range of 24% to 138%. When one of the exogenous demand

rate is less than 200, the mean percentage errors are mostly in range from 20% to

60%. Note that the controller does not have the knowledge of the actual external

demand rates (𝛾𝑗) but the controller knows the expected external demand rate (𝛾0𝑗)

and it updates the forecasts based on observed demand arrivals linearly with equation

(2.6). Therefore, the controller’s performance decreases as the forecast becomes less

62

accurate. From the 10 test cases, we observed that our algorithm performs the worst

in the cases where the actual demand rates (𝛾𝑗) are much higher than the expected

demand rate (𝛾0𝑗) and the demand arrival is relatively sparse in the beginning, and

relatively dense toward the end. This leads to poor forecasts for external demands,

which leads to poor ad hoc truck decisions by the algorithm.

Figure 2-11: MPE under different exogenous demand rates (Note that the blanked
space are the ones with zero hindsight cost, where cost difference fail to provide a
meaningful value due to zero denominator).

In addition, the number of ad hoc trucks added by our algorithm is less than the

hindsight solution in average. In figure 2-12 and figure 2-13, we show the average

difference (algorithm minus hindsight) in the number of ad hoc trucks added. We

observe that all scenarios are non-positive, and no scenario has more than 2-truck

difference in average on any arc.

63

Figure 2-12: Average difference in the number of ad hoc trucks added by the algorithm
and the hindsight solution on upper arc

Figure 2-13: Average difference in the number of ad hoc trucks added by the algorithm
and the hindsight solution on lower arc

The next sensitivity test is on internal demand rates. We vary the internal demand

forecasts from 30 units/day to 200 units/day with 10 units/day increment. Figure

64

2-14 shows the average hindsight cost and the average cost incurred by our algorithm.

The gap between the average cost of our algorithm and the hindsight solution increases

slightly as the internal demand rate increases. However, the mean percentage error

stays roughly constant when internal demand rate is greater than 100. The final

Figure 2-14: Average cost of the algorithm under different internal demand rates

sensitivity test is on ad hoc truck costs. We vary the ad hoc truck costs from 5

dollars to 15 dollars with 1 dollar increment. Figure 2-15 shows the average hindsight

cost and the average cost incurred by our algorithm. Again, we observe a slight

increase in the average cost difference. However, the mean percentage error stays

below 30% for all cases.

65

Figure 2-15: Average cost of the algorithm under different ad hoc truck costs

2.5 DP Formulation of the One and Two Link Net-

work

In the one-link and two-link example, the demand arrivals follows a known probability

distribution. Therefore, we could determine the optimal expected cost by formulating

the problem as a dynamic programming problem. In this section, we introduce the

dynamic programming formulation for both the one and two link network, which

provides another benchmark for the order fulfillment algorithm’s performance.

2.5.1 DP of the One-link Model

In the one-link model, the demand arrival follows a Poisson process with rate 𝜇 and

each demand has probability 𝑝1 from service area 1, and 𝑝2 from service area 2. The

initial capacity of the link is denoted by 𝑢(0). We divide the look-ahead period into 𝑁

infinitesimal time periods, such that the probability of having more than one demand

arrival is negligible. The dynamic programming problem takes the form:

𝐽𝑡(𝑢) = (1− 𝜇

𝑁
)𝐽𝑡+1(𝑢) +

𝜇

𝑁

∑︁
𝑖=1,2

𝑝𝑖 min(𝐽𝑡+1(𝑢− 1), 𝐽𝑡+1(𝑢)) + 𝑐𝑖) (2.12)

66

where 𝑡 = 0, 1, · · ·𝑁 , 𝑢 is the remaining capacity of the link, 𝐽𝑡 is the optimal cost

at step 𝑡. The optimal expected cost (𝐽0(𝑢(0))) over the one-day horizon with ini-

tial capacity 𝑢(0) can be estimated by the above formula with boundary condition

𝐽𝑁(𝑢) = 0 for 𝑢 ≥ 0 and boundary condition 𝐽𝑁(𝑢) = ∞ with 𝑢 < 0. Note that the

first term is the expected cost for the case where there is no shipment at time step 𝑡,

the second term is the expected cost of the case where there is a shipment to service

area 1 or service area 2. If ad hoc trucks are allowed, we modify equation (2.12) by

adding another term in the minimization which signifies the case where an ad hoc

truck is added to the transportation link:

𝐽𝑡(𝑢) = (1− 𝜇

𝑁
)𝐽𝑡+1(𝑢)

+
𝜇

𝑁

∑︁
𝑖=1,2

𝑝𝑖 min(𝐽𝑡+1(𝑢− 1), 𝐽𝑡+1(𝑢)) + 𝑐𝑖, 𝐽𝑡+1(𝑢− 1 + 𝑢ah) + 𝑐ah)

To compare with simulation results in table 2.1, we calculate the optimal expected

cost from our DP formulation by plugging in the same parameters: 𝑢(0) = 100,

𝜇 = 100, 𝑝1 = 𝑝2 = 0.5 𝑐ah = 10, 𝑢ah = 30. With 𝑁 = 1440 (which leads to one

minute time interval), the optimal expected cost with ad hoc truck option is 3.55,

and 4.41 without ad hoc truck option, which are both similar to the hindsight cost

in table 2.1.

2.5.2 DP of the Two-link Model

In the two-link model, the demand arrival also follows a Poisson process with rate

𝜇 and each demand has probability 𝑝1 (𝑝2) from service area 1, (service area 2).

The initial capacity of the upper and lower links are 𝑢1(0) and 𝑢2(0), respectively.

External demand consumes the upper and lower arc resource with Poisson rate 𝛾1 and

𝛾2, respectively. We, again, divide the look-ahead period into 𝑁 infinitesimal time

periods, such that the probability of having more than one demand arrival (including

both internal and external) is negligible. The dynamic programming problem takes

67

the form:

𝐽𝑡(𝑢1, 𝑢2) = (1− 𝑞0 − 𝑞1 − 𝑞2)𝐽𝑡+1(𝑢1, 𝑢2)

+ 𝑞0(
∑︁
𝑗=1,2

𝑝𝑗 min(𝐽𝑡+1(𝑢1 − 1, 𝑢2 − 1), 𝐽𝑡+1(𝑢1, 𝑢2) + 𝑐3𝑝𝑗))

+ 𝑞1min(𝐽𝑡+1(𝑢1 − 1, 𝑢2), 𝐽𝑡+1(𝑢1, 𝑢2) + 𝑐ex)

+ 𝑞2min(𝐽𝑡+1(𝑢1, 𝑢2 − 1), 𝐽𝑡+1(𝑢1, 𝑢2) + 𝑐ex)

(2.13)

where 𝑞0 = 𝜇
𝑁

is the probability of having an internal demand, 𝑞1 = 𝛾1
𝑁

(𝑞2 = 𝛾2
𝑁

) is

the probability of having an external demand on upper (lower) arc. The optimal cost

𝐽0(𝑢1(0), 𝑢2(0)) can be calculated through equation (2.13) with boundary condition

𝐽𝑁(·, ·) = 0 with 𝑢1 ≥ 0 or 𝑢2 ≥ 0 and boundary condition 𝐽𝑡(𝑢1, 𝑢2) = ∞ for all 𝑡

with 𝑢1 < 0 or 𝑢2 < 0. If ad hoc trucks are allowed, equation (2.13) becomes:

𝐽𝑡(𝑢1, 𝑢2) = (1− 𝑞0 − 𝑞1 − 𝑞2)𝐽𝑡+1(𝑢1, 𝑢2)

+ 𝑞0(
∑︁
𝑗=1,2

𝑝𝑗 min(𝐽𝑡+1(𝑢1 − 1, 𝑢2 − 1), 𝐽𝑡+1(𝑢1, 𝑢2) + 𝑐3𝑝𝑗 ,

𝐽𝑡+1(𝑢1 − 1 + 𝑢ah, 𝑢2 − 1) + 𝑐ah, 𝐽𝑡+1(𝑢1 − 1, 𝑢2 − 1 + 𝑢ah) + 𝑐ah,

𝐽𝑡+1(𝑢1 − 1 + 𝑢ah, 𝑢2 − 1 + 𝑢ah) + 2𝑐ah))

+ 𝑞1min(𝐽𝑡+1(𝑢1 − 1, 𝑢2), 𝐽𝑡+1(𝑢1 − 1 + 𝑢ah, 𝑢2) + 𝑐ah)

+ 𝑞2min(𝐽𝑡+1(𝑢1, 𝑢2 − 1), 𝐽𝑡+1(𝑢1, 𝑢2 − 1 + 𝑢ah) + 𝑐ah)

Note that we assume that at most one ad hoc truck can be added to each link in each

time step.

Again, we calculate the optimal expected cost from the DP formulation by plug-

ging in the same parameters used in the previous experiment: 𝑢1(0) = 𝑢2(0) = 100,

𝜇 = 100, 𝑝1 = 𝑝2 = 0.5 𝑐ah = 10, 𝛾1 = 𝛾2 = 200, 𝑢ah = 30. With 𝑁 = 1440 (which

leads to one minute time interval), the optimal expected cost with ad hoc truck option

is 10.3, and 16.8 without ad hoc truck option, which are both slightly higher than the

hindsight cost (8.96 with ad hoc truck option, 14.1 without ad hoc truck option).

68

2.6 Summary

So far, we have introduced the order fulfillment problem with two simple examples

(the one and two link network). We introduced both static and dynamic algorithms

and test these algorithms in a stylized setting. The test results in the two-link model

suggest that the QP algorithm with DP-based ad hoc controller and truck cancellation

outperforms other algorithms with statistical significance. The sensitivity tests on this

algorithm also suggest that the algorithm is robust to a range of demand and cost

inputs. Finally, we introduce the dynamic programming formulation for these two

examples, which provides another benchmark for the order fulfillment algorithm’s

performance.

69

70

Chapter 3

The Transportation Network and

Capacity Planning

In the previous chapter, we gave two small examples, derived from the online retailer’s

transportation network, to introduce the order fulfillment problem. In this chapter,

we provide a more detailed description of the transportation network, then formulate

a capacity planning problem. For this formulation, we need to explain how the “time”

element contributes greatly to the complexity of the problem. In section 3.1, we

introduce our definition of resources and routes in our model, and we provide an

example to illustrate these definitions. In section 3.2, we introduce the notion of

commodities, and provide a guideline for capacity planning.

3.1 Network Representations

3.1.1 Definition of Resources

We consider a transportation network that has three types of nodes: fulfillment cen-

ters (FCs), sortation centers (SCs), delivery stations (DSs) as explained in chapter 2.

From now on, we index the FCs by 𝑢, SCs by 𝑣 and DSs by 𝑤. The network con-

nects these nodes with three types of retailer-controlled transportation arcs: FC-SC

((𝑢, 𝑣)), SC-DS ((𝑣, 𝑤)), FC-DS ((𝑢,𝑤)). From each DS, the retailer relies on local

71

delivery resources to perform last-mile delivery of packages to customers. In addition

to the retailer-controlled transportation resources, the retailer may assign some pack-

ages to third-party carriers that can pickup packages at certain FCs and SCs, and

then deliver the packages to customers’ doorstep. In this section, we explain how we

define these transportation resources in our model.

In the one and two link network in chapter 2, we assume that facility nodes do not

have capacity limits. In addition, we assume that the transportation arcs are available

for the entire time period (e.g., for 24 hours in the example), and that the delivery

deadline for all shipments is the end of the time period. In this setting with these

assumptions, there is no “time” element, which leads to a simple definition for an arc

resource. That is, for each transportation arc that connects two facilities or nodes,

we only have a single arc resource. However, in reality, most facilities do not operate

continuously and do have limits in terms of number of packages they could process in

a limited time frame. On each transportation arc, trucks depart and arrive at certain

time frames. In addition, shipments can have different delivery deadlines. Therefore,

in order to meet the delivery deadline for a shipment, the model has to account for

multiple time periods within a day and identify routes that consider the relevant

time delays and time-dependent constraints through the network. The operational

planning for the transportation network depends on a set of time deadlines at each

facility, known as critical pull times (CPT). The purpose of these critical pull times

is to help coordinate the steps necessary to deliver each shipment. For instance, for a

link from an FC to an SC, the critical pull time relates the picking time of a shipment

to the departure time for its first transportation leg. For example, suppose the CPTs

for the link each day are 8 AM, 5 PM and 11 PM. Then if a shipment gets picked

between 8 AM and 5 PM, then it will depart on a truck no later than 5 PM. But if a

shipment gets picked shortly after 5 PM, then it may be delayed until 11 PM before

departing on a truck.

Transportation planning is specified in terms of these CPTs. The transportation

plan will be specified in terms of the number of truck departures for each CPT. In

the above example, the transportation plan might be for 10 trucks to go on the link

72

between 8 AM and 5 PM, 6 trucks to go between 5 PM and 11 PM, and 3 trucks

scheduled for between 11 PM and 8 AM next day. The exact departure times will

depend on how quickly trucks get filled up, which depends on the shipment picking.

Similarly, at a SC, the critical pull times will coordinate the inbound flow with the

outbound flow; if a CPT at the SC is noon, then any inbound flow that arrives

and get sorted prior to noon will depart as outbound flow at noon. At the DS, the

CPTs correspond to when delivery vehicles depart for last mile delivery of customer

shipments. The purpose of these critical pull times is to help coordinate the steps

necessary to deliver each shipment.

We use the CPTs to define the arc resources in the transportation network. For

each transportation arc or link (𝑢, 𝑣), we define a resource (𝑢, 𝑣, 𝑡) for each CPT in the

relevant planning horizon, where 𝑡 signifies the CPT. We understand the capacity of

resource (𝑢, 𝑣, 𝑡) to be the capacity on the arc (𝑢, 𝑣) scheduled for the time segment

(𝑠, 𝑡) where 𝑠 is the CPT immediately prior to CPT 𝑡. The transportation plan

determines the capacity level (number of trucks) for each of these link resources. For

each node or facility, there are limited number of packages that can be processed per

time segment. Therefore, we may have node resources (𝑣, 𝑡), (𝑤, 𝑡) which signify both

the type of node (SC, DS) and the end time of a time segment (ex: a labor time

shift). The capacity plan determines a capacity level for each of these resources, in

terms of how many units the resource can process within a time segment.

Aside from the retailer-controlled transportation, the capacity plan may need to

account for limits on third-party deliveries. The online retailer signs contracts with

third-party carriers in advance that may specify a maximum quantity that can be

assigned to the carrier from a pick-up location, which can be either an FC or SC. We

model the third-party resource by its pick-up location and a pick-up time window.

In summary, the set of resources of the transportation network (𝐽) is composed of

a set of arc resources (𝐽arc), a set of node resources (𝐽node), and a set of third-party

resources (𝐽 tp): 𝐽 = 𝐽arc ∪ 𝐽node ∪ 𝐽 tp. We will use index 𝑗 to denote a resource.

73

3.1.2 Definition of Routes

A route is composed of arc and node resources. We will consider four different route

patterns in the transportation network, which differ in terms of resources:

• direct route: one unit of FC-DS resource and one unit of DS resource.

• indirect route: one unit of FC-SC resource, one unit of SC resource, one unit

of SC-DS resource, and one unit of DS resource (We note that in practice the

indirect route might contain one or more SCs.)

• third-party route: one unit of FC-3P resource, whereby a shipment is transferred

to a third-party carrier at the FC; the third-party carrier then delivers the

shipment to the customer.

• mixed route: one unit of FC-SC resource, one unit of SC resource, and one unit

of SC-3P resource; this is similar to the third-party route, but the transfer to

the third-party carrier occurs at a SC.

We note that we do not consider any FC-related resources in the formulation of

the middle-mile routes. This is because we assume that for any incoming shipment

an existing controller makes the FC assignment decision, and that this controller

accounts for any FC related resources in making its assignment decision. Hence, we

do not consider FC-related resources in the transportation network planning model.

In addition, we do not consider the resources for last mile delivery (delivery from

DS to customer’s doorstep), which is needed for completing the direct and indirect

routes. The last mile delivery might come with a cost, which can be included in the

model.

The resources along a route need to be time-compatible, i.e., the timestamp of

an upstream resource should not be too far or too close from the timestamp of a

downstream resource. If the timestamp of the upstream resource is too far (early)

from the downstream resource, then packages shipped by the route might dwell in

the system for too long; if the timestamp of the upstream resource is too close, then

74

the packages shipped by the route might not be able to make it to the next resource

on time.

In order to create a set of routes that is time-compatible, we make several as-

sumptions. First, we assume that we know the minimum dwell or process time of a

shipment at every node facility, and we know the transit time on every transporta-

tion arc. Second, we assume that each order travels in the network according to these

dwell and transit times.

We then create routes based on the dwell and transit time information. We specify

a route by its path and by the resources it uses. The resources along the route are

time-compatible if with normal transit and process times, a shipment can meet each

downstream timestamp provided that upstream shipments occur at their respective

timestamp. In addition, we will consider only “no wait" routes: once a shipment

arrives at a node, it will depart on an outbound arc at the next earliest CPT. This

is a practical requirement in that delaying a shipment means that the facility will

have to hold or store the shipment for some period of time, for which there will be a

cost and/or required storage space; furthermore, there will usually be no value from

delaying a shipment. In summary, for a route to be time-compatible, we require every

upstream resource (with timestamp 𝑡1) and the downstream resource (with timestamp

𝑡2) to satisfy the following conditions:

• 𝑡1 + 𝛿 < 𝑡2, where 𝛿 is the dwell or transit time to travel from the upstream

resource to the downstream resource

• 𝑡2 is the earliest resource of the kind that satisfies this condition

For instance, a typical route might be composed of the following resources: (𝑢, 𝑣, 𝑡1) →

(𝑣, 𝑡2) → (𝑣, 𝑤, 𝑡3) → (𝑤, 𝑡4); this signifies a path from FC 𝑢 to SC 𝑣 to DS 𝑤, where

𝑡1 is the CPT for link (𝑢, 𝑣), 𝑡2 is the end time of a labor shift at SC 𝑣, 𝑡3 is the CPT

for link (𝑣, 𝑤), and 𝑡4 is the CPT at DS 𝑤. The resources along the route satisfy the

following conditions:

1. 𝑡1 plus the travel time on link (𝑢, 𝑣) is less than 𝑡2, and 𝑡2 is the earliest resource

on node (𝑣) that satisfies this condition

75

2. 𝑡2 plus dwell time at SC 𝑣 is less than 𝑡3, and 𝑡3 is the earliest resource on arc

(𝑣, 𝑤) that satisfies this condition

3. 𝑡3 plus the travel time on link (𝑣, 𝑤) is less than 𝑡4, and 𝑡4 is the earliest resource

on node (𝑤) that satisfies this condition

We create routes (indexed with 𝑟) according to the four route patterns, and the

routes are formed with resources with compatible timestamps. The set of routes of

the transportation network (𝑅) is composed of the set of direct routes (𝑅𝑑𝑖𝑟𝑒𝑐𝑡), the

set of indirect routes (𝑅𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡), the set of third-party routes (𝑅𝑡𝑝), and the set of

mixed routes (𝑅𝑚𝑖𝑥𝑒𝑑):

𝑅 = 𝑅𝑑𝑖𝑟𝑒𝑐𝑡 ∪𝑅𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ∪𝑅𝑡𝑝 ∪𝑅𝑚𝑖𝑥𝑒𝑑

So far, we have been describing the details of forming routes with time-compatible

resources. Next, we want to point out that, in real-time execution, to examine if

a route is feasible for a shipment, we do not need to know all the timestamps of

resources. Instead, as long as the following three conditions are satisfied, a route will

be feasible to a shipment:

• The origin and the destination of the route matches with the shipment’s origin

FC and destination (DS for direct and indirect routes, service area for third-

party and mixed routes).

• The arrival time for the shipment is earlier than the timestamp of the first re-

source of a route. That is, let the shipment arrival time be 𝑎, the first timestamp

of a route be 𝑡. Then 𝑎 ≤ 𝑡.

• The promise time for the shipment is later than the timestamp of the last

resource of a route (plus the travel time of last mile delivery from DS to the

customer if considering a direct or indirect route. However, in our experiment,

we assume this travel time is negligible). That is, let the shipment promise time

be 𝑝, the last timestamp of a route be 𝑡. Then 𝑡 ≤ 𝑝.

76

3.1.3 Modeling a Two-Link Network

In this section, we model a two link network with our definition of resources and

routes. Figure 2-1 shows an illustration of a two-link network. Table 3.1 shows the

daily CPTs and the transit and dwell times of each resource. In this model, there are

resource type daily CPT transit (dwell) time
sc node 1PM, 3PM 1
ds node 6PM, 8PM 1
fc-sc arc 8AM, 10AM 4
sc-ds arc 3PM, 5PM 2
fc-ds arc 9AM, 12PM (noon) 6

fc third-party 9:30AM Nan
sc third-party 2:30PM Nan

Table 3.1: Daily CPTs and dwell and transit times of resources in the example
network.

12 resources in total per day:

• SC node resource: 𝑗(SC, 1PM), 𝑗(SC, 3PM)

• DS node resource: 𝑗(DS, 6PM), 𝑗(DS, 8PM)

• FC-SC arc resource: 𝑗(FC, SC, 8AM), 𝑗(FC, SC, 10AM)

• SC-DS arc resource: 𝑗(SC,DS, 3PM), 𝑗(SC,DS, 5PM)

• FC-DS arc resource: 𝑗(FC,DS, 9AM), 𝑗(FC,DS, 12PM)

• FC third-party resource: 𝑗(3P@FC, 9:30AM)

• SC third-party resource: 𝑗(3P@SC, 2:30PM)

There are four types of routes from the FC to the customer destination, including

a direct route (FC → DS), a indirect route (FC → SC → DS), a third party route

(3P resource at FC) and a mixed route (FC → SC → 3P). There are more than

four feasible routes since there are multiple CPTs for some arcs. To form a feasible

time-compatible route, we start with the first resource, which differs depending on

the route type. If the route type has a downstream resource with a CPT, then we

77

identify the earliest downstream resource that is time compatible. For example, to

form a direct route, the first resource is a FC-DS resource. Suppose that we consider

the FC-DS resource with 9AM CPT, 9AM plus the travel time on FC-DS (which is

6 hours) is 3PM in the afternoon, and 3PM plus the dwell time at DS (which is 1

hour) is 4PM in the afternoon. After 4PM, the next earliest CPT at the DS is 6PM.

Thus, the arc resource (FC, DS, 9AM) connected to the node resource (DS, 6PM)

forms a feasible direct route. We note that for indirect route, and mixed routes, the

SC timestamp stands for the start of the labor time shift. In this example, there are

two SC reosurces a day at 1PM and 3PM, and the dwell time at the SC is 1 hour.

Anything that arrives before 1 PM will get sorted between 1 and 2 PM, and then be

ready for truck departures from 2 PM on. And anything that arrives between 1PM

and 3PM will get sorted between 3 and 4PM, and can depart on any truck after 4

PM.

In this manner, we can construct the six feasible routes for this example, which

we list as follows:

• two direct routes: 𝑟(𝑗(FC,DS, 9AM), 𝑗(DS, 6PM)) and 𝑟(𝑗(FC,DS, 12PM), 𝑗(DS,

8PM))

• two indirect routes: 𝑟(𝑗(FC, SC, 8AM), 𝑗(SC, 1PM), 𝑗(SC,DS, 3PM), 𝑗(DS, 6PM)),

𝑟(𝑗(FC, SC, 10AM), 𝑗(SC, 3PM), 𝑗(SC,DS, 5PM), 𝑗(DS, 8PM))

• one third-party routes: 𝑟(𝑗(3P@FC, 9:30AM))

• one mixed routes: 𝑟(𝑗(FC, SC, 8AM), 𝑗(SC, 1PM), 𝑗(3P@SC, 2:30PM))

3.2 Capacity Planning

If we take a snapshot of the online retailer’s current network, we see trucks running

between facilities, shipments being processed within facilities, and third-party trucks

come and go from the FCs and SCs to pickup shipments for delivery. Capacity

planning is an activity that determines the quantity and timing of the resources in

78

the network; this includes the number of trucks to schedule on each arc and the

staffing levels for each shift for each facility. A capacity plan determines the shipping

capacity on each transportation arc, and the throughput capacity (package process

rate) of each facility node. In addition, a capacity plan can account for a limit on

the number of packages that each third-party carrier can handle, which is usually

specified by contract. Note that we assume that the network structure, i.e., node

locations, active transportation lanes, third-party pick up points and all the CPTs

are predetermined, and capacity planning is based on this fixed network structure.

The capacity plan has as input the demand forecasts over a fixed period of time

(𝑡 = 𝑡start to 𝑡 = 𝑡end), and then determines how many retailer-controlled resources

to plan to handle the forecast of demand that arrives in this period of time. In this

section, we introduce the notion of commodities, and provide a detailed description

of the planning problem and the required inputs. (We note that the process of

identifying relevant resources (𝑗(𝑡start, 𝑡end)) and routes are non-trivial; readers can

refer to appendix B for more details.)

3.2.1 Definition of Commodities

The online retailer has detailed information associated with every historical shipment,

including the time information of the shipment (the time the shipment was placed,

promise time), the dimension (length, width, height) of the package, shipment content

(SKUs and quantities), the route that the shipment was shipped by, and the set of

feasible routes for the shipment. We define “commodity" as an aggregate of the

shipments for the purpose of capacity planning. The features for demand aggregation

include origin FC, destination DS or service area (depending on desired granularity),

package dimension, arrival time (the time the order was assigned to the FC) and

promise time of the shipment. For discrete features, e.g., origin FC, destination DS, we

simply group by distinct elements. For continuous features, e.g., arrival time, promise

time, and package dimension, we create discrete thresholds to form the grouping.

Therefore, the number of possible commodities depends on the granularity of the

discrete thresholds of the continuous features. We note that the level of aggregation is

79

important and should be chosen carefully for the best planning results. In particular,

if the granularity is too small, the accuracy of demand forecast at the commodity-

level can be arbitrarily bad; if the granularity is too large, the capacity planning result

will be too gross to be useful, despite having a perfect forecast. In summary, each

commodity 𝑘 is specified by (𝑢, 𝑑, 𝑔, 𝑎, 𝑝) where 𝑢 denotes the origin FC, 𝑑 denotes

the destination DS, 𝑔 denotes the dimension group, 𝑎 is the arrival time group, and 𝑝

is the promise time group. We denote the set of commodities with arrival time within

the planning horizon 𝑡 = 𝑡start to 𝑡 = 𝑡end by 𝐾(𝑡start, 𝑡end). Note that in our project,

we assume all packages are in the same dimension group, and therefore, we will omit

this dimension hereafter.

Next, to formulate a planning model, we generate the set of feasible routes for

each commodity. A route (𝑟) is feasible to a commodity (𝑘) if the following three

conditions are satisfied:

• The route and the commodity have the same origin FC and destination DS

• The arrival time for the commodity is earlier than the first CPT for the route.

That is, let the shipment arrival time in commodity 𝑘 be 𝑎(𝑘), the first CPT

of the route 𝑟 be 𝑡, and suppose the dwell time at the FC is 𝛾. The route is

feasible if 𝑎(𝑘) + 𝛾 ≤ 𝑡

• The commodity can be delivered on time by the route, i.e., the promise time of

the commodity is later than the delivery time of the route; this is determined by

the CPT for the DS for retailer-controlled routes, and is specified by contract

for the third-party carrier routes.

For each commodity (𝑘), we identify all the routes in the relevant route set

(𝑅(𝑡start, 𝑡end)) that satisfy the three conditions above to create the feasible route

set (𝑅𝑘) for commodity 𝑘.

80

3.2.2 Problem Formulation

For the capacity planning problem, we assume that for each transportation arc re-

source, there is a fixed cost for each truck that is scheduled on the resource. In

addition, we assume that there is a route-specific variable cost for each shipment of

a commodity assigned to the route. For example, consider a mixed route in which a

shipment goes from an FC to a SC, and then is transferred to a third party for deliv-

ery; the variable cost includes any variable process cost for handling the shipment at

the FC and at the SC, plus the cost paid to the third party for the delivery. The goal

of the planning problem is to minimize the total cost, which is the sum of the fixed

cost for scheduling trucks, plus variable transportation and processing costs while

satisfying the demand forecast over some fixed time interval (𝑡 = 𝑡start to 𝑡 = 𝑡end);

the solution is the optimal capacity of the resources.

In the capacity planning problem, we need to account for possible boundary effects.

For instance, at the start of the planning horizon 𝑡start, there may be shipments in the

system that will require resources. Similarly, at the end of the planning horizon 𝑡end,

there may be shipments not yet delivered that will require resources in subsequent

time periods.

We provide two ways of formulating the capacity planning problem, where the two

formulations address the boundary problem differently. In the first formulation, we

assume that we can estimate and account for the resources required by the shipments

that arrive outside the planning horizon. In the second formulation, we assume that

there is demand regularity and that we can then set a capacity plan that repeats

over some time cycle. For example, suppose that the planning horizon is a week, and

we forecast the same demand pattern for each week. Then, we develop a capacity

plan that repeats weekly. In this case, the boundary conditions at the start of the

planning horizon match the boundary conditions at the end of the planning horizon.

We then determine the capacity plan that assures this “wrap-around" condition. We

start with introducing a list of notation for both formulations:

Sets

81

• 𝐽 : set of relevant resources, note that in this planning problem 𝐽 = 𝐽(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑)

• 𝐽 𝑡𝑝: set of third-party resources, which is a subset of 𝐽

• 𝐾: set of relevant commodities, note that in this problem 𝐾 = 𝐾(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑)

• 𝑅: set of routes, note that in this planning problem, 𝑅 = 𝑅(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑)

• 𝑅𝑘: set of routes feasible to commodity 𝑘, which is a subset of 𝑅.

• 𝑅𝑗: set of routes that utilize resource 𝑗, which is a subset of 𝑅.

• 𝑅𝑡𝑝: set of third-party routes, which is a subset of 𝑅.

• 𝑅𝑚𝑖𝑥𝑒𝑑: set of mixed routes, which is a subset of 𝑅.

Parameters

• 𝜋𝑗: cost per unit of resource on resource 𝑗, either arc or node

• 𝑢𝑗: capacity in packages per unit of resource 𝑗, for either an arc or node

• 𝑐𝑘𝑟: variable cost of commodity 𝑘 on route 𝑟. Note that for simplicity, we

assume here that for the retailer-controlled route 𝑐𝑘𝑟 = 0; hence, for now, 𝑐𝑘𝑟

just includes any relevant third-party cost for the route. This could be easily

changed to allow a non-zero variable cost for any retailer-controlled route.

• 𝑑𝑘: demand forecast of commodity 𝑘

• 𝑝𝑗: the amount of resource 𝑗 that is committed or reserved for serving out-of-

the-horizon demand

Variables

• 𝑥𝑘𝑟: amount of shipments in commodity 𝑘 assigned to route 𝑟

• 𝑛𝑗: number of units for resource 𝑗, which are trucks on arcs and are staff level

on nodes

82

3.2.2.1 Formulation 1

The objective is to minimize the transportation and processing costs, which is com-

posed of truck costs on retailer-controlled arcs, plus variable processing and third-

party costs on routes. The first constraint is the demand constraint, where commodi-

ties are matched with routes. The second constraint is the capacity constraint, where

the sum of the reserved resource and the assigned commodities on the resource is less

than the planned capacity. We note that the capacity of each resource is termed in

units of packages. This formulation assumes there is no upper limit on the use of

third-party routes; if there is a limit, it is easy to add a constraint.

min
∑︁
𝑗∈𝐽

𝜋𝑗𝑛𝑗 +
∑︁

𝑘∈𝐾,𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝑘 ∀𝑘 ∈ 𝐾

𝑝𝑗 +
∑︁
𝑘∈𝐾

∑︁
𝑟∈𝑅𝑘∩𝑅𝑗

𝑥𝑘𝑟 ≤ 𝑛𝑗𝑢𝑗 ∀𝐽/𝐽 𝑡𝑝

𝑥𝑘𝑟 ≥ 0 ∀𝑟 ∈ 𝑅𝑘, 𝑘 ∈ 𝐾

𝑛𝑗 ≥ 0, integer ∀𝑗 ∈ 𝐽/𝐽 𝑡𝑝

3.2.2.2 Formulation 2

First, we introduce the concept of “counterpart resources”. A counterpart resource

of a resource 𝑗 within time horizon 𝑡start to 𝑡end is a resource that has the same

physical location, but the CPT is one week apart (suppose that our planning hori-

zon is one week) from resource 𝑗. In addition, both resource 𝑗 and its counter-

part are in the relevant resource set 𝐽(𝑡start, 𝑡end). For example, suppose that we

are planning for the demand over a one-week horizon from July 4, 00:00 to July

10, 23:59. The relevant resource of this horizon on a direct arc from a FC 𝑢 to DS

𝑣 are: (𝑢, 𝑣, July 4), (𝑢, 𝑣, July 5), · · · , (𝑢, 𝑣, July 11). The counterpart of resource

(𝑢, 𝑣, July 4) is (𝑢, 𝑣, July 11) since they are one week apart, while other resources

((𝑢, 𝑣, July 5), (𝑢, 𝑣, July 6), · · · , (𝑢, 𝑣, July 10)) on the link have no counterpart in

83

this planning horizon.

We create a set 𝐽(𝑗) for every resource 𝑗 in set 𝐽(𝑡start, 𝑡end). For any resource

𝑗 that has a counterpart resource in set 𝐽 , 𝐽(𝑗) contains the resource 𝑗 and its counter-

part. (In our example, 𝐽((𝑢, 𝑣, July 11)) = 𝐽((𝑢, 𝑣, July 4)) = {(𝑢, 𝑣, July 4), (𝑢, 𝑣, July 11)}.)

For every resource 𝑗 that does not have a counterpart resource in 𝐽(𝑡start, 𝑡end), 𝐽(𝑗)

only contains itself, i.e. 𝐽(𝑗) = {𝑗}. In summary, |𝐽(𝑗)| = 1 if the resource doesn’t

have a counterpart; |𝐽(𝑗)| = 2 if the resource has a counterpart; there is no other value

of |𝐽(𝑗)| for all 𝑗 ∈ 𝐽 . In the capacity planning problem, we charge the resources

and their counterpart together. In addition, we create a set of resources (𝐽 ′) that

has a counterpart resource in set 𝐽 and its counterpart resource’s CPT is one week

earlier than itself. Then, we create a unique set of resources 𝐽 = 𝐽/𝐽 ′ that represents

a weekly capacity plan. The purpose of identifying 𝐽 is to avoid double counting

the cost of resources with counterparts in the objective function. We note that the

composition of routes need not be changed since commodities arrive in the beginning

and the end of the horizon despite charged to different route (and resources), should

be charged together, which creates the desired “wrap-around” condition. For exam-

ple, suppose the planning horizon is a week (from Monday to Sunday). Orders that

arrive on Sunday might have feasible routes that utilize resources with next Mon-

day timestamp. For our purpose, these routes need to be modified by replacing the

resources with next week’s timestamp by its counterpart resource with this week’s

timestamp. In this example, the resources with timestamp on next Monday will be

replaced by the resource (with same physical attributes such as origin and destina-

tion) with timestamp on this Monday. With this change of route composition (,i.e.,

replacing out-of-horizon resources with resources within the horizon), we force the

orders arrived over the finite horizon to be charged resources within the horizon.

Now, we are ready to formulate the capacity planning problem:

84

min
∑︁
𝑗∈𝐽

𝜋𝑗𝑛𝑗 +
∑︁

𝑘∈𝐾,𝑟∈𝑅𝑡𝑝∩𝑅𝑚𝑖𝑥𝑒𝑑

𝑐𝑘𝑟𝑥𝑘𝑟

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝑘 ∀𝑘 ∈ 𝐾

∑︁
𝐽(𝑗)

∑︁
𝑘∈𝐾

∑︁
𝑟∈𝑅𝑘∩𝑅𝑗

𝑥𝑘𝑟 ≤ 𝑛𝑗𝑢𝑗 ∀𝑗 ∈ 𝐽

𝑥𝑘𝑟 ≥ 0 ∀𝑟 ∈ 𝑅𝑘, 𝑘 ∈ 𝐾

𝑛𝑗 ≥ 0, integer ∀𝑗 ∈ 𝐽

Again, the objective is to minimize the transportation and processing costs, which

are composed of truck costs, variable processing and third-party costs. The first

constraint is the demand constraint, where commodities are matched with routes.

The second constraint is the capacity constraint, where the sum of the utilization of

resources within the counterpart set is less than the planned capacity.

The output of both formulations are the optimal assignments (𝑥*𝑘𝑟) of commodities

to routes, and the number of resources (𝑛*
𝑗), for both arcs and nodes in the network.

To be more specific, for the retailer-controlled resources, the capacity of a resource 𝑗

is 𝑛*
𝑗𝑢𝑗; for the third-party resources, the desired capacity to procure from the carrier

is
∑︀

𝑘∈𝐾
∑︀

𝑟∈𝑅𝑘∩𝑅𝑗
𝑥*𝑘𝑟 for resource 𝑗

So far, we have provided a guideline for modeling and planning for a typical

transportation network of the online retail. In the next chapter, we introduce the

online algorithm that aims to make the best use of this given capacity plan by making

smart order fulfillment decisions.

85

86

Chapter 4

The QP Algorithm for the Order

Fulfillment Problem

In the previous chapter, we describe how an online retailer can plan its transportation

resources ahead of time in light of its demand forecasts. This transportation plan then

constrains or guides the real-time order fulfillment decisions for the online retailer. In

real-time execution, the online retailer needs to choose dynamically a route to fulfill

each customer’s shipment in such a way that minimizes the incremental outbound

shipping costs for the given transportation plan. This can be achieved by making order

fulfillment decisions that efficiently balance the utilization of the retailer-controlled

planned capacities with the third-party shipping options, as well as with the possibility

of augmenting the capacity plan with ad hoc trucks.

In this chapter, we develop order fulfillment heuristics that make the online routing

decision for each incoming shipment for a given transportation capacity plan. In

addition, we develop heuristics for adding ad hoc trucks to the planned transportation

resources.

4.1 Problem Formulation

We formulate the order fulfillment (route decision) problem as a dynamic program-

ming problem that minimizes the incremental outbound shipping cost plus the ex-

87

pected future costs over a finite horizon. We assume that for each shipment, an

upstream controller assigns an FC to fulfill the shipment. Hence, we now have a

route decision problem. Each arriving shipment needs to be delivered from its as-

signed FC to a specific location by a promised time. The action space is the set

of routes that can satisfy the shipment. The state of the system is defined by the

remaining capacity of every resource, by the forecasts of the remaining demand for

the planning horizon, and by the current time. We express the cost-to-go function as:

𝐽(𝑆, 𝑜) = min
𝑟∈𝑅(𝑜,𝑆)

(𝐶(𝑟, 𝑜) + 𝐸𝑜[𝐽(𝑓(𝑆, 𝑟), 𝑜)]), (4.1)

where 𝑆 is the system state, 𝑜 is the incoming shipment, 𝑟 is the route decision, 𝐶()

is the cost to fulfill shipment 𝑜 by route 𝑟, 𝑓() defines how the state evolves, 𝑅(𝑜, 𝑆)

is the set of feasible routes of shipment 𝑜 at state 𝑆. The expectation is taken over

the next incoming shipment denoted by 𝑜. For our purposes, the salient features of a

shipment are the origin FC, and the destination DS or service area, and the promise

time. Another important feature is the physical size or volume of the order, which

could affect third-party delivery costs and the volume occupied in trucks. However,

for the current research, we do not consider this and assume all orders are uniform in

volume and weight.

Solving the above dynamic program is intractable. The system state includes the

remaining capacity on each resource, as well as demand for every pair of FC and

DS (or service area). The dimension of the state space grows with the number of

resources, which is on the order of 100’s for small networks. A realistically sized

problem over a one-week horizon may have as many as 100,000 resources.

To develop an operational heuristic, we approximate the cost-to-go function by the

cost of a quadratic program. The objective of the quadratic program is to minimize

the expected incremental cost to the transportation plan while satisfying the demand

forecast over a finite planning horizon:

𝐸𝑜[𝐽(𝑆, 𝑜)] ≈ 𝑊𝑄𝑃 (𝑆). (4.2)

88

where 𝑊𝑄𝑃 denotes the optimal value for the objective function of the quadratic

programming problem. We will describe and develop the quadratic program (QP)

in the next section. Based on this approximation, we consider making the routing

decision by the following heuristic for shipment 𝑜, that arrives at state 𝑆:

𝑟* = argmin
𝑟∈𝑅(𝑜,𝑆)

(𝐶(𝑟, 𝑜) +𝑊𝑄𝑃 (𝑓(𝑆, 𝑟))) (4.3)

The above heuristic requires solving one quadratic programming problem per feasible

route per shipment; this is likely to require an unrealistic amount of computational

time for realistic networks. Therefore, we make another approximation to further

simplify the heuristic. We use the dual variables from the quadratic program to

approximate the change in the QP’s objective function from a route choice 𝑟 for a

given state 𝑆:

𝑊𝑄𝑃 (𝑓(𝑆, 𝑟)) ≈ 𝑊𝑄𝑃 (𝑆) +
∑︁
𝑗∈𝐽𝑟

𝜆𝑗. (4.4)

where 𝐽𝑟 is the set of resources that route 𝑟 consumes and 𝜆𝑗 is the dual value for re-

source 𝑗, obtained from solving 𝑊𝑄𝑃 (𝑆). This is more computationally realistic, as at

most one optimization is solved at each order occasion. Based on this approximation,

we now choose the route 𝑟 as follows:

𝑟* = argmin
𝑟∈𝑅(𝑜,𝑆)

(𝐶(𝑟, 𝑜) +
∑︁
𝑗∈𝐽𝑟

𝜆𝑗) (4.5)

We note that in Chapter 2 we enforce a cap on the shadow prices to prevent

excluding the assignment of retailer-controlled routes. This will not happen in the

general framework we introduce in this chapter, due to the inclusion of unconstrained

third-party options for each commodity. As a consequence, the third-party costs for

the commodities will constrain the shadow prices on the associated resources.

89

4.2 The quadratic program formulation

The intent of the quadratic program is to develop an estimate of the expected in-

cremental transportation costs over a finite horizon, given a transportation plan and

a demand forecast. We use 𝜏 to denote the current time and the look-ahead period

[𝜏, 𝜏 + 𝑇 ℎ], where 𝑇 ℎ is the horizon length. In addition to the current time 𝜏 , the

system state includes {𝑑𝜏𝑘}, which are the forecasts for commodity 𝑘 for the remaining

demand in the look-ahead period [𝜏, 𝜏 +𝑇 ℎ], and {𝑓 𝜏
𝑗 }, which are the flow targets for

resource 𝑗 for the look-ahead period [𝜏, 𝜏 + 𝑇 ℎ]. We will state first the formulation

of the quadratic program, and then explain the motivation, as well as how we set the

flow targets and the objective function coefficients. We note that for now we do not

consider any options to use ad hoc trucks to increase transportation capacity. We

first specify the notation as follows:

Sets

• 𝐾𝜏 : set of commodities for time horizon [𝜏, 𝜏 + 𝑇 ℎ]

• 𝐽𝜏 : set of relevant resources for time horizon [𝜏, 𝜏 + 𝑇 ℎ]

• 𝑅𝜏 : set of routes

• 𝑅𝑘: set of routes feasible to commodity 𝑘

• 𝑅𝑗: set of routes that utilize resource 𝑗

Parameters

• 𝑑𝜏𝑘: demand forecast of commodity 𝑘 at time 𝜏

• 𝑓 𝜏
𝑗 : a flow target on resource 𝑗 at time 𝜏

• 𝑣𝜏𝑗 : penalty coefficient on resource 𝑗 at time 𝜏

• 𝑐𝑘𝑟: per package cost of commodity 𝑘 shipped through route 𝑟

Variables

90

• 𝑥𝑘𝑟: number of shipments of commodity 𝑘 assigned to route 𝑟

• 𝑔𝑗: excess flows on resource 𝑗

We now formulate the QP:

𝑊𝑄𝑃 (d, f̄ , 𝜏) = min
1

2

∑︁
𝑗∈𝐽𝜏

𝑣𝜏𝑗 𝑔
2
𝑗 +

∑︁
𝑘∈𝐾𝜏

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 (4.6a)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝜏𝑘 ∀𝑘 ∈ 𝐾𝜏 (4.6b)

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 − 𝑔𝑗 ≤ 𝑓 𝜏
𝑗 ∀𝑗 ∈ 𝐽𝜏 (4.6c)

𝑥𝑘𝑟, 𝑔𝑗 ≥ 0 ∀𝑘, 𝑟, 𝑗 (4.6d)

The first set of constraints (4.6b) ensures that the assignments satisfy the remaining

demand for each commodity. For the second set of constraints (4.6c), we assume

that we have a flow target for each resource. This flow target would typically be

the amount of capacity remaining for the resource, net of some safety buffer to allow

for demand uncertainty (or forecast errors). For planning purposes, we try to assign

shipments to routes in a way that will not exceed the flow targets for each resource.

However, in the QP we allow for the assignments to exceed these flow targets, which

results in excess flow for that resource; the second set of constraints effectively define

this excess flow (𝑔𝑗) for each resource. We discuss in the next section how to set the

flow targets (𝑓 𝜏
𝑗) for each resource 𝑗.

The objective function has two elements. The first (quadratic) term in the objec-

tive function approximates the expected incremental transportation cost that will be

incurred if the assignments exceed the flow target on a resource. We discuss below a

justification for the quadratic term, as well as how to set the penalty coefficient. The

second (linear) term captures any variable costs associated with the assignment. To

be more specific, the QP allows for every route assignment to incur a per package cost

denoted by 𝑐𝑘𝑟. For the retailer-controlled route, we assume that the transportation

plan determines the number of trucks that traverse each transportation lane, and that

the fixed cost for these trucks is the dominant cost for any shipment on these lanes.

91

Hence, we regard the cost for the middle-mile delivery (i.e., from FC to DS) as a sunk

cost. In this case, we will use 𝑐𝑘𝑟 to capture only the last mile cost. For the routes

that utilize a third party, we set 𝑐𝑘𝑟 to represent the per package cost charged by the

third party.

We note that the parameters and sets depend on the current time 𝜏 and need

to be updated at every resolve of the QP. We will discuss later in the chapter how

frequently we re-solve the QP as well as how to execute the updates.

4.3 Justification of the Objective Function

4.3.1 Case 1: Stair-case Cost Structure

For the QP, we want to somehow account for uncertainty in the demand. Due to

this demand uncertainty, there will be uncertainty in the assignment decisions, which

results in uncertainty in the resource utilization.

We will use a simple example to motivate the QP formulation and will consider two

cases that differ based on the cost assumptions. We consider a link or transportation

lane, which corresponds to a resource 𝑗. For the first case, we suppose that for the

given transportation plan, the actual incremental cost on the resource is given as

follows (We will drop resource indices now until they become necessary.):

𝑐(𝑓) =

⎧⎨⎩ 0 for 𝑓 ≤ 𝑢

𝜋 for 𝑓 > 𝑢
(4.7)

where 𝑓 denotes the actual flow on the resource, and 𝑢 denotes the planned capacity

on the resource, according to the current transportation plan. Effectively, we are

assuming that the cost for the planned capacity 𝑢 is a sunk cost. Then 𝜋 is the

incremental cost if the actual flow exceeds the plan and might be set to the cost for

adding additional capacity, e.g., an additional truck on the link. For instance, the

current transportation plan assumes 𝑁 trucks are scheduled on this link over the

look-ahead period, which provides a capacity to ship 𝑢 units; if the actual flow on the

92

link is above 𝑢, then the retailer will schedule an ad hoc truck and incur an additional

cost for one more truck. To keep the presentation simple, we assume one truck will

be sufficient to handle any excess flow.

Now, as of the current time 𝜏 , we view the flow on the resource on the look-

ahead period as a random variable, denoted by 𝐹 . We will not explicitly denote the

dependence on 𝜏 , so as to not complicate the presentation. If we know the probability

distribution of this random variable, then we can express the expected cost for this

resource as:

E[𝑐(𝐹)] =
∫︁ ∞

𝑥=𝑢

𝜋𝜑(𝑥)𝑑𝑥 = 𝜋P[𝐹 > 𝑢], (4.8)

where 𝜑(𝑥) denotes the probability density function. We propose to use a quadratic

term in QP to approximate the expected cost in (4.8). This approximation depends

on a number of assumptions. First, we assume that the expectation of the flow 𝐹𝑗 on

resource 𝑗 will equal the corresponding solution from the QP. That is, we assume:

E[𝐹𝑗] =
∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 = 𝑓𝑗 (4.9)

where we define 𝑓𝑗 as the planned flow of resource 𝑗 from the solution to the QP. As

an explanation, we expect the heuristic, given in equation (4.5), to guide the online

decisions so that the actual flow on each resource aligns with the planned flow from

the QP. By using the shadow prices from the QP, the heuristic adjusts the prices for

different routes, so as to make assignments that are aligned to the optimal solution

of the QP.

Second, we assume that we can estimate the standard deviation 𝜎𝑗 for the flow 𝐹𝑗

on any resource 𝑗; we expect this can be done empirically. Third, in stating the QP,

we propose to approximate the expected cost in equation (4.8) as follows:

E[𝑐(𝐹𝑗)] =

∫︁ ∞

𝑥=𝑢𝑗

𝜋𝑗𝜑(𝑥)𝑑𝑥 = 𝜋P[𝐹𝑗 > 𝑢𝑗] ≈
𝑣𝑗
2
((𝑓𝑗 − 𝑓𝑗)

+)2 (4.10)

where we have expressed the excess flow of resource 𝑗 in terms of the assigned flow,

93

namely: 𝑔𝑗 = (𝑓𝑗 − 𝑓𝑗)
+. We will show some numerical examples later in this section

to motivate this approximation. The final step of this approximation is to set the

flow target (𝑓𝑗) and the penalty coefficient (𝑣𝑗) for each resource 𝑗. We propose to

do this by fitting the quadratic function through two points.

One point is 𝑓𝑗 = 𝑓𝑗 and the value of the RHS of (4.10) is zero. Thus, we then

want to set the flow target 𝑓𝑗 so that when the assigned flow equals the flow target

(𝑓𝑗 = 𝑓𝑗), the LHS of (4.10) also equals to zero or near zero. To do this, we see

from equation (4.10) that we need to set the flow target so that 𝜋P[𝐹𝑗 > 𝑢𝑗] ≈ 0.

We propose to set the flow target for resource 𝑗 as 𝑓𝑗 = 𝑢𝑗 − 𝑧𝜎𝑗 for a safety factor

𝑧. Then when 𝑓𝑗 = 𝑓𝑗, we have by assumption that E[𝐹𝑗] = 𝑓𝑗 = 𝑓𝑗 = 𝑢𝑗 − 𝑧𝜎𝑗;

therefore, E[𝐹𝑗] + 𝑧𝜎𝑗 = 𝑢𝑗. Thus, we will set 𝑧 so that the probability of exceeding

the capacity is likely small, which results in the LHS of (4.10) being near zero. For

instance, suppose that we assume the 𝐹𝑗 has a normal distribution, and suppose that

we set the safety factor 𝑧 = 2; then the probability of exceeding the capacity is 0.023.

For the other point, we suppose that the assigned flow equals the planned capacity,

𝑓𝑗 = 𝑢𝑗 and thus, E[𝐹𝑗] = 𝑢𝑗. If we assume that the probability distribution of 𝐹𝑗

is symmetric, then the expected cost in (4.8) is 𝜋𝑗/2, equal to the LHS of (4.10)

for 𝑓𝑗 = 𝑢𝑗. To equate the RHS of (4.10) to 𝜋𝑗/2 at 𝑓𝑗 = 𝑢, we note that for

𝑓𝑗 = 𝑢𝑗 − 𝑧𝜎𝑗, we have 𝑓𝑗 − 𝑓𝑗 = 𝑧𝜎𝑗. Thus, we have 𝜋𝑗

2
=

𝑣𝑗(𝑧𝜎𝑗)
2

2
and find that we

should set 𝑣𝑗 =
𝜋𝑗

(𝑧𝜎)2
.

In summary, for incremental cost given by (4.8), we set the parameters in the QP

for each resource as:
𝑓𝑗 = 𝑢𝑗 − 𝑧𝜎𝑗

𝑣𝑗 =
𝜋𝑗

(𝑧𝜎𝑗)2

(4.11)

Here, we observe that there is a dependence on the current time 𝜏 . In particular,

we expect that our estimate of the standard deviation of the flow on the resource

will depend on the current time, or more specifically, on the remaining time for the

resource. We denote this dependence as 𝜎𝜏
𝑗 . To be consistent with this, we then

94

express the parameters as:
𝑓 𝜏
𝑗 = 𝑢𝜏𝑗 − 𝑧𝜎𝜏

𝑗

𝑣𝜏𝑗 =
𝜋𝑗

(𝑧𝜎𝜏
𝑗)

2

(4.12)

To implement, we will need to estimate this standard deviation for each resource at

each re-solve time, as well as set a safety factor; in the computational work we will

experiment with these settings.

We illustrate this approximation paradigm through a simple numerical example.

Consider a network that has a single resource that is feasible to all the incoming

demands and that there is no third-party available. The capacity of the resource is

𝑢 = 100, and additional capacity can be added to the resource at a cost of 𝜋 = 10

for additional 10 units. The flow on the resource is a normally distributed random

variable 𝐹 ∼ (𝜇, 𝜎). The expected cost at different 𝜇 with fixed standard deviation

(𝜎 = 10) can be computed with equation (4.8). The result is plotted in dotted line

in Figure 4-1.

Next, we calculate the quadratic cost approximation at different 𝜇 to examine its

resemblance to the expected cost. According to our approximation paradigm, the

quadratic cost of the resource is: 1
2
𝑣((𝑓 − 𝑓)+)2, where 𝑣 is the penalty cost, 𝑓 is

the optimal solution of QP and 𝑓 is the flow target of the resource. We set 𝑣 and 𝑓

according to (4.12) with 𝑧 = 2 and 𝜎 = 10, which gives us 𝑓 = 𝑢 − 𝑧𝜎 = 80, and

𝑣 = 𝜋/(𝑧𝜎)2 = 0.025. The quadratic cost at different 𝜇 is illustrated with solid line

in Figure 4-1.

From Figure 4-1, we observe that the approximation is quite good up to 𝜇 =

100, the capacity level; beyond this, the approximation deviates quite a bit with

increased values of 𝜇. (As a side note, we expect the most relevant range is up to and

around the capacity level.) In Figure 4-2, we vary the safety factor and the standard

deviation of flows to show how these parameters in the quadratic function affect the

approximation.

95

50 60 70 80 90 100 110 120
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

co
st

quadratic cost
expected cost (stair-case cost)

Figure 4-1: Resemblance of quadratic cost and the expected costs when cost is a
staircase function.

4.3.2 Case 2: Linear Cost Structure

In this section, we will repeat the development from the prior section, but now with a

different assumption on the incremental cost. We consider a resource 𝑗, which could

be a link or transportation lane, or a network node. For this case, we suppose that

for the given transportation plan, the actual incremental cost on the resource is given

as follows (we will drop resources indices now until they might become necessary):

𝑐(𝑓) =

⎧⎨⎩ 0 for 𝑓 ≤ 𝑢

𝜋(𝑓 − 𝑢) for 𝑓 > 𝑢
(4.13)

where 𝑓 denotes the actual flow on the resource, and 𝑢 denotes the planned capacity

on the resource, according to the current transportation plan. Again, we are assuming

that the cost for the planned capacity 𝑢 is a sunk cost. Now, however, the incremental

cost when the actual flow exceeds the capacity, is linear in the excess flow; the cost

factor 𝜋 is the cost per shipment for fulfilling each shipment in excess of the capacity.

For instance, the current transportation plan might assume 𝑁 trucks are scheduled

on this link over the look-ahead period, which provides a capacity to ship 𝑢 units;

96

50 100
0

500

1000

1500

2000
co

st

=1 z=1

50 100
0

20

40

60

80

100

120

co
st

=5 z=1

50 100
0

10

20

30

40

co
st

=10 z=1

50 100
0

5

10

15

20

25

co
st

=15 z=1

50 100
0

5

10

15

20

co
st

=20 z=1

50 100
0

100

200

300

400

500

600

co
st

=1 z=2

50 100
0

10

20

30

40

co
st

=5 z=2

50 100
0

5

10

15

20

co
st

=10 z=2

50 100
0

2

4

6

8

10

12

14

co
st

=15 z=2

50 100
0

2

4

6

8

10

co
st

=20 z=2

50 100
0

50

100

150

200

250

300

co
st

=1 z=3

50 100
0

5

10

15

20

25

co
st

=5 z=3

50 100
0

2

4

6

8

10

12

14

co
st

=10 z=3

50 100
0

2

4

6

8

10

co
st

=15 z=3

50 100
0

2

4

6

8

co
st

=20 z=3

Figure 4-2: Resemblance of quadratic cost and expected ad hoc cost with different
values of standard deviation and safety factors. (case 1)

if the actual flow on the link is above u, then the retailer will assign each excess

shipment to a third-party carrier, at an incremental cost of 𝜋 per shipment. To keep

the presentation simple, we assume the third party has sufficient capacity to handle

any excess flow.

Now, as of the current time 𝜏 , we view the flow on the link on the look-ahead

period as a random variable, denoted by 𝐹 . We do not make explicit this dependence

on 𝜏 , to simplify the presentation. If we know the probability distribution of this

random variable, then we can express the expected cost for this link as:

E[𝑐(𝐹)] =
∫︁ ∞

𝑥=𝑢

𝜋(𝑥− 𝑢)𝜑(𝑥)𝑑𝑥, (4.14)

97

where 𝜑(𝑥) denotes the probability density function. We propose to use a quadratic

term in QP to approximate the expected cost in equation (4.14). This approximation

depends on the same assumptions as for the first case. First, we assume that the

expectation of the flow 𝐹𝑗 on resource 𝑗 will equal the corresponding solution from

the QP. That is, we assume:

E[𝐹𝑗] =
∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 = 𝑓𝑗 (4.15)

where 𝑓𝑗 is the planned flow of resource 𝑗 from the solution to the QP. As explanation,

we will use the QP to determine the shadow prices or dual values for the resources.

We expect that these values will try to guide the decisions so that the actual flow on

each resource aligns with the planned flow. Thus, we expect that the heuristic will

result in the planned flow being a good estimate of the expected flow on a resource.

Second, we assume that we can estimate the standard deviation 𝜎𝑗 for the flow

𝐹𝑗 on the resource; we expect this can be done empirically. Third, in stating the QP,

we propose to approximate the expected cost in equation (4.14) as follows:

∫︁ ∞

𝑥=𝑢𝑗

𝜋𝑗(𝑥− 𝑢𝑗)𝜑(𝑥)𝑑𝑥 ≈ 𝑣𝑗
2
((𝑓𝑗 − 𝑓𝑗)

+)2 (4.16)

where we have expressed the excess flow of resource 𝑗 in terms of the assigned flow,

namely: 𝑔𝑗 = (𝑓𝑗 − 𝑓𝑗)
+.

Similar to the first case, we propose to set the penalty coefficient for each resource

by fitting the quadratic function through two points. One point is when the planned

flow equals exactly the flow target 𝑓𝑗 = 𝑓𝑗 and the value of the RHS of (4.16) is zero.

We then want to set the flow target 𝑓𝑗 so that the LHS of (4.16) also equals to zero or

near zero. To do this, we propose to set the flow target for resource 𝑗 as 𝑓𝑗 = 𝑢𝑗−𝑧𝜎𝑗
for a safety factor 𝑧. Then 𝑓𝑗 = 𝑓𝑗 implies that E[𝐹𝑗] = 𝑓𝑗 = 𝑓𝑗 = 𝑢𝑗 − 𝑧𝜎𝑗, and

therefore, E[𝐹𝑗] = 𝑢𝑗−𝑧𝜎𝑗. With the assumption that the flow is normally distributed,

98

the LHS of equation (4.16) becomes:

∫︁ ∞

𝑥=𝑢𝑗

𝜋𝑗𝜑(𝑥− 𝑢𝑗)𝑑𝑥 = 𝜋𝑗𝜎𝑗𝐿(
𝑢𝑗 − E[𝐹𝑗]

𝜎𝑗
) = 𝜋𝑗𝜎𝑗𝐿(𝑧), (4.17)

where 𝐿() is the loss function for the standard normal random variable. The above

expression is near zero for typical values for the safety factor. As an example, with

𝑧 = 2, E[𝑐(𝐹𝑗)] = 0.008𝜋𝑗𝜎𝑗. We will treat this as effectively being zero.

For the other point, suppose 𝑓𝑗 = 𝑢𝑗 and thus, E[𝐹𝑗] = 𝑢𝑗. The RHS of (4.16)

is 1
2
𝑣𝑗(𝜎𝑗𝑧)

2. With the assumption that the flow is normally distributed, the LHS of

(4.16) is:

∫︁ ∞

𝑥=𝑢𝑗

𝜋𝑗𝜑(𝑥− 𝑢𝑗)𝑑𝑥 = 𝜋𝑗𝜎𝑗𝐿(
𝑢𝑗 − E[𝐹𝑗]

𝜎𝑗
) = 𝜋𝑗𝜎𝑗𝐿(0) = 0.399𝜋𝑗𝜎𝑗. (4.18)

By equating the two, we find that 𝑣𝑗 =
0.798𝜋𝑗

𝑧2𝜎𝑗
. In summary, for incremental cost

given by (4.14), we set the parameters in the QP for each resource as:

𝑓𝑗 = 𝑢𝑗 − 𝑧𝜎𝑗

𝑣𝑗 =
0.798𝜋𝑗
𝑧2𝜎𝑗

(4.19)

Again, we expect that our estimate of the standard deviation of the flow on the

resource will depend on the current time (𝜏), or more specifically, in the remaining

time for the resource. We denote this dependence as 𝜎𝜏
𝑗 . To be consistent with this,

we express the parameters as:
𝑓 𝜏
𝑗 = 𝑢𝜏𝑗 − 𝑧𝜎𝜏

𝑗

𝑣𝜏𝑗 =
0.798𝜋𝑗
𝑧2𝜎𝜏

𝑗

(4.20)

We test this approximation paradigm on a one-resource network, which is the same

as the example in case 1 but with different cost structure. The single resource has

capacity 𝑢 = 100, and additional capacity can be added incrementally by unit: one

additional unit cost 5 dollars (𝜋 = 5). The flow of the resource is, again, a normally

distributed random variable 𝐹 ∼ (𝜇, 𝜎). The expected cost with the linear cost struc-

99

ture can be estimated by equation (4.14) given the mean (𝜇) and standard deviation

(𝜎) of the flow. The dotted line in Figure 4-3 shows the expected cost with different

𝜇 with fixed standard deviation (𝜎 = 10).

Next, we calculate the quadratic cost (the objective function of the QP) and exam-

ine its resemblance to the expected cost. According to our approximation paradigm,

the quadratic cost of the resource is: 1
2
𝑣((𝑓 − 𝑓)+)2, where 𝑣 is the penalty costs, 𝑓

is the optimal solution of QP and 𝑓 is the flow target of the resource. By certainty

equivalence, the expected cost of the quadratic function is 1
2
𝑣((𝜇 − 𝑓)+)2. We set 𝑣

and 𝑓 according to (4.19) with 𝑧 = 2 and 𝜎 = 10, which gives us 𝑓 = 𝑢 − 𝑧𝜎 = 80,

and 𝑣 = 0.798𝜋/𝑧2𝜎 = 0.09975. The expected quadratic cost at different 𝜇 is illus-

trated with a solid line in Figure 4-3. The approximation works well when 𝜇 is under

the capacity (𝑢 = 100). In Figure 4-4, we vary the safety factor and the standard

deviation of flows to show how different parameters in the quadratic function affects

the approximation.

50 60 70 80 90 100 110 120
0

20

40

60

80

100

co
st

quadratic cost
expected cost (linear cost)

Figure 4-3: Resemblance of quadratic cost and the expected costs when cost is a
linear function (case 2).

100

50 100 150
0

1000

2000

3000

4000

5000
co

st

=1 z=1

50 100 150
0

200

400

600

800

1000

1200

co
st

=5 z=1

50 100 150
0

100

200

300

400

500

600

700

co
st

=10 z=1

50 100 150
0

100

200

300

400

500

co
st

=15 z=1

50 100 150
0

100

200

300

400

500

co
st

=20 z=1

50 100 150
0

200

400

600

800

1000

1200

1400

co
st

=1 z=2

50 100 150
0

50

100

150

200

250

300

350

co
st

=5 z=2

50 100 150
0

50

100

150

200

250

co
st

=10 z=2

50 100 150
0

50

100

150

200

250

co
st

=15 z=2

50 100 150
0

50

100

150

200

250

co
st

=20 z=2

50 100 150
0

100

200

300

400

500

600

co
st

=1 z=3

50 100 150
0

50

100

150

200

250

co
st

=5 z=3

50 100 150
0

50

100

150

200

250

co
st

=10 z=3

50 100 150
0

50

100

150

200

250

co
st

=15 z=3

50 100 150
0

50

100

150

200

250

co
st

=20 z=3

Figure 4-4: Resemblance of quadratic cost and expected ad hoc cost with different
values of standard deviation and safety factors. (case 2)

4.4 Summary of the Order Fulfillment Algorithm

To apply our order fulfillment algorithm, one needs to decide the frequency of shadow

price update and the length of the time horizon (𝑇 ℎ) of the quadratic programming

problem. We will explore this decision empirically. At a high-level, we note that the

length of the time horizon (𝑇 ℎ) should at least cover resources that are “relevant"

to the current instance. Furthermore, we expect that the more frequent the shadow

prices are updated, the more “accurate" will be the values of resources; thus, we

expect a marginal improvement as the update frequency increases.

The next step is to construct the quadratic programming problem according to the

network structure and demand forecasts, which includes identifying relevant resources,

101

routes, and commodities. Depending on the cost structure of the resources, we pick

one of the two approximation paradigm to set the QP parameters (target flows and

penalty coefficients).

In real-time execution, order fulfillment decisions are based on the most updated

shadow prices, where routes are picked according to (4.5). Shadow prices are up-

dated in the background at a desired frequency with the QP, where the parameters

(including forecasts, capacity of resources... etc.) are being updated at every resolve.

In the next chapter, we test our algorithm in a large network inspired from real-

world data collected by our industrial partner.

4.5 Hindsight Solution of the Order Fulfillment Prob-

lem – A Benchmark

We provide a simple benchmark for evaluating online order fulfillment algorithms.

In the next chapter, we test different algorithms over a finite horizon, and evaluate

their performance by average per package costs of the fulfilled packages over the finite

horizon. The hindsight solution assumes that the shipment arrivals are known, and

then we can solve the following transportation LP with resource capacities relevant

to the one-day horizon:

min
∑︁
𝑠∈𝑆

∑︁
𝑟∈𝑅𝑠

𝑐𝑠𝑟𝑥𝑠𝑟 (4.21a)

s.t.
∑︁
𝑟∈𝑅𝑠

𝑥𝑠𝑟 = 1 ∀𝑠 ∈ 𝑆 (4.21b)

∑︁
𝑟∈𝑅𝑗

∑︁
𝑠∈𝑆

𝑥𝑠𝑟 ≤ 𝑢𝑗 ∀𝑗 ∈ 𝐽 (4.21c)

𝑥𝑠𝑟 is binary ∀𝑠, 𝑟 (4.21d)

notations

• 𝑆: set of shipments

102

• 𝑅: set of routes

• 𝐽 : set of resources

• 𝑅𝑠: set of routes feasible to shipment 𝑠

• 𝑅𝑗: set of routes contains resource 𝑗

• 𝑥𝑠𝑟: binary variable, 1 if shipment 𝑠 is assigned to route 𝑟, 0 if not.

• 𝑐𝑠𝑟: cost of shipping shipment 𝑠 by route 𝑟

• 𝑢𝑗: capacity of resource 𝑗

The total cost of the hindsight solution is the objective of the transportation LP.

We note that the hindsight solution is the best benchmark for any online fulfillment

algorithm. In fact, we can aggregate the shipments into commodities where shipments

in each commodity has the same set of feasible routes, and the hindsight solution can

be solved at commodity-level instead of at shipment-level.

4.6 Ad hoc Controllers

So far, we have been assuming that the online-retailer has a planned-ahead capacity

plan that is fixed over a finite horizon. In reality, when the demand deviates from

the planned capacity by a lot, adding/removing planned resources becomes a crucial

cost-saving mechanism. Motivated by this, we propose two ad hoc truck controllers

that make online capacity modification decisions by adding/removing ad hoc trucks

to arc resources. We note that the cost for adding a truck is greater than the cost

for planned trucks, which are scheduled in advance. The controllers are not tested

numerically in the realistic network presented in the next chapter, but this mechanism

is an important avenue for future research.

103

4.6.1 The Threshold-based Controller

We assume that an additional truck to arc resource 𝑗 provides a capacity of 𝑢𝑎ℎ𝑗 units

and costs 𝑐𝑎ℎ𝑗 . We propose to trigger these ad hoc truck decisions with a threshold

that reflects the cost of shipping excess flows by third-party. If the cost of adding an

ad hoc truck is cheaper than the projected third-party cost, then we add an ad hoc

truck. At any time 𝑡 we add an ad hoc truck to the arc if the following inequality

holds:

𝑐3𝑝𝑗 (𝑓𝑗(𝑡)− 𝑢𝑗(𝑡))
+ > 𝑐𝑎ℎ𝑗

where 𝑐3𝑝𝑗 denotes the alternative (third-party) cost on the arc resource 𝑗, 𝑓𝑗(𝑡) denotes

the current forecast of expected remaining flows on the arc resource 𝑗 at time 𝑡, 𝑢𝑗(𝑡)

denotes the remaining capacity at time 𝑡 on the arc resource 𝑗. The left-hand side of

the inequality is the projected cost if we do not add any more capacity on this arc. We

note here that the specification for 𝑐3𝑝𝑗 is not obvious for many middle mile arcs (e.g.,

an arc from an FC to a SC), but should depend upon the third-party costs (of various

origin-destination pairs) in the transportation network. We provide two possible ways

of estimating this cost in Appendix C for general networks. The right-hand side is

the cost for adding a truck, where we implicitly assume the truck will have sufficient

capacity to handle the remaining demand. Hence, the rule is to add a truck if its cost

is less than the projected cost for doing nothing. We can also consider the possibility

of canceling a scheduled ad hoc truck. We might remove a truck when the expected

cost of shipping the remaining demand with capacity without the ad hoc truck is less

than the ad hoc truck cost. In other words, we remove a truck on arc resource 𝑗 at

time 𝑡 when the following inequality holds:

𝑐3𝑝𝑗 (𝑓𝑗(𝑡)− (𝑢𝑗(𝑡)− 𝑢𝑎ℎ𝑗))+ < 𝑐𝑎ℎ𝑗 .

Note that we allow a cancellation of an ad hoc truck only when no shipments have

been assigned to the truck.

104

4.6.2 The DP-based Controller

The threshold-based controller makes local ad hoc truck decisions for each arc, i.e.,

the decision of adding/removing resources of an arc resource does not depend on the

decision of other arc resources. We describe here a second heuristic that makes ad

hoc truck decision globally for every arc resource. At any time instance 𝑡, we can

add an ad hoc truck to any arc resource, or remove an ad hoc truck, or do nothing.

Adding (removing) an ad hoc costs 𝑐𝑎ℎ𝑗 (−𝑐𝑎ℎ𝑗), and there is no cost for doing nothing.

Therefore, there are 3 possible actions at any time instance for an arc. We formulate

the ad hoc truck problem as a dynamic program that minimizes immediate cost of

the ad-hoc decision plus the resulting future expected cost:

𝐽(S, 𝑡) = min
a∈{−1,0,1}𝑀

{𝑐(a) + 𝐽(𝑓(S, a), 𝑡)} (4.22)

where 𝑡 is the time of decision instance, S is the system state (which includes re-

maining capacity (u) and a forecast of the remaining demand (d)), a is a vector

(of -1,0 or 1) with size 𝑀 that denotes the ad hoc truck decision, 𝑐() is the cost of

action 𝑎, 𝑓() defines how state 𝑆 evolves from a given action 𝑎, {−1, 0, 1} denotes

the three possible actions (i.e., removing a truck, doing nothing or adding a truck),

𝑀 is the number of arcs that allows addition and removal of trucks. We propose to

solve an approximation of the DP by approximating the cost-to-go function (𝐽(S, 𝑡))

by the objective function 𝑊𝐴𝐻(S, 𝑡) of a linear programming problem that minimizes

shipping costs while satisfying demand and capacity constraints:

𝑊𝐴𝐻(S, 𝑡) = min
∑︁
𝑘∈𝐾𝑡

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 (4.23a)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝑡𝑘 ∀𝑘 ∈ 𝐾𝑡 (4.23b)

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 ≤ 𝑢𝑗(𝑡) + 𝑎𝑗𝑢
𝑎ℎ
𝑗 ∀𝑗 ∈ 𝐽 𝑡 (4.23c)

𝑥𝑘𝑟 ≥ 0 ∀𝑘, 𝑟 (4.23d)

105

where 𝑢𝑎ℎ𝑗 is the capacity of an ad hoc truck. In theory, we would need to solve the

problem for all possible a to approximate the cost-to-go function for these actions,

and then apply the solution to equation 4.22 and make the ad hoc decision by picking

the cheapest option. Note that the action space grows exponentially as the number of

resources, whereby we need to solve the LP 3𝑀 times in order to make an ad hoc truck

decision. However, because 𝑐(a) is linear in the action space, we can approximate

𝐽(S, 𝑡) by the solution of the following MIP:

That is, this method is equivalent to solving a mixed-integer program that contains

ad-hoc truck decision variables. To be more specific, solving the following mixed-

integer program results in the same ad hoc decisions:

min
∑︁
𝑘∈𝐾𝑡

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 +
∑︁
𝑗∈𝐽𝑡

𝑐𝑎𝑑𝑗 𝑎𝑗 (4.24a)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝑡𝑘 ∀𝑘 ∈ 𝐾𝑡 (4.24b)

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 ≤ 𝑢𝑗(𝑡) + 𝑎𝑗𝑢
𝑎ℎ
𝑗 ∀𝑗 ∈ 𝐽 𝑡 (4.24c)

𝑥𝑘𝑟 ≥ 0 ∀𝑘, 𝑟 (4.24d)

𝑎𝑗 = {−1, 0, 1}, (4.24e)

where the decision variable 𝑎𝑗 correspond to the ad hoc truck decisions on each arc

𝑗. However, we note that this equivalence requires the convexity of the ad hoc truck

cost function. In our case, the cost function is linear, therefore, the method can be

simplified to solving (4.24) in one shot instead of solving multiple (4.23) for different

ad hoc decisions.

106

Chapter 5

Experiments on Realistic Networks

To test the practicality and performance of our work, we conduct experiments on

a series of numerical examples modeled after a subnetwork of an online retailer’s

fulfillment network. We replay the historical order arrivals (or variants of it) to

test our fulfillment algorithm in comparison to other benchmark algorithms. We

measure their performances with the total transportation cost to fulfill all orders that

arrive within a fixed time horizon. Our code is made publicly available at https:

//github.com/PinyiChen/Order_Fulfillment_Dynamic_Route_Selection.

In section 5.1, we provide details on the setup of a numerical example, which we

refer to as the “base-case”, and on the historical shipment data. Then, we analyze the

performance of our algorithm against a benchmark (greedy) algorithm. The “base

case” is deliberately simplified as the intent of the analysis is to get a more detailed

understanding of the QP’s behavior. In section 5.2 we create another test case that

has a more complicated network topology than the base case. This test case has

two SCs, which results in a larger set of routes for each order; the test case also

has multiple service areas for each DS, which results in additional trade-offs between

third-party options and retailer–controlled routes. Since this test case is more general

and is closer to reality, we perform more extensive sensitivity tests on the test case

and compare the performance with the “LP algorithm”, which is an algorithm that

mimics the online-retailer’s current operation.

107

5.1 The Base Case

5.1.1 Identifying a Self-contained Subnetwork

The experiment is performed on a self-contained subnetwork, which is composed of

13 FCs, 1 SC, 5 DSs and 164 service areas. A service area is a geographic region that

is served by a dedicated DS, and for which the third-party delivery cost to customers

in the service area is considered the same. Table 5.1 shows the number of service

areas that each DS serves. For this system, we had access to the entire set of orders

that were assigned to the SC over a 17-day period in 2020. For every order, we had

the following information: the FC from which the order was shipped, the set of

feasible routes for the order, and the route (chosen from the feasible set) that was

assigned to the order. From this 17-day order assignment data, we find that 95%

of the shipments handled by the SC came from the 13 FCs and were destined to

the 5 DSs. Thus, a large percentage of the shipments in the data set utilized the

transportation resources in the subnetwork. The 164 service areas are chosen based

on two conditions: each service area was primarily served by one of the 5 DSs, and

there were more than 100 shipments to the service area over the 17-day horizon.

DS number of service areas

DS1 18
DS2 79
DS3 25
DS4 30
DS5 12

Table 5.1: Number of service areas each DS serves

Next, we identify the network topology (arcs between nodes) from the historical

shipment data set. An arc resource is considered “active” if the resource was part of a

feasible route for at least one shipment. In this 13-FC, 1-SC, 5-DS network, every FC

has an active arc to the SC, and every DS has an active arc from the SC; however,

only a subset of the possible direct (FC to DS) arcs are active. The 9 active direct

arcs can be found in table 5.2, which are the FC-DS pairs with non-zero values. We

108

assume that a third-party option is available from every FC and from the SC to every

destination. In the next section, we build a base case from the 13-FC, 1-SC, 5-DS

network.

5.1.2 Input Creation

We select a single day of shipments for testing the order fulfillment algorithms. This

shipment data set contains shipments that satisfy the following conditions:

• The shipment “arrived” 1 within a one-day horizon (between 00:00:00 and 23:59:59

on a chosen day)

• The shipment was shipped from one of the 13 FCs

• The shipment was delivered to one of the 164 service areas

We reduce the number of shipments by a scale factor, and the total number of ship-

ments is 11,518 after reduction. Each shipment comes with arrival time, origin FC,

destination service area, and the DS associated with the service area. We assume that

each service area is assigned to a single DS for service (which corresponds to reality),

and that the third-party delivery costs are the same for all service areas served by

a DS (which is a simplification that we will relax with the test case in section 5.2).

We also ignore the physical volume of the order for simplicity. Based on this one-day

worth of shipments, we create the inputs for the base case, which include relevant

resources, routes, demand forecasts and shipment arrivals. In this section, we provide

a detailed description of these inputs.

5.1.2.1 Resources and Capacities

As we mentioned in section 3.1.1, retailer-controlled resources are defined by facilities

and timestamps. For simplicity, we assume that every arc resource has a single CPT

each day:

• FC-SC resources daily CPT: 5:00
1The arrival time is defined by the time a shipment is assigned to a FC by an existing controller.

109

• SC-DS resources daily CPT: 15:00

• FC-DS resources daily CPT: 12:00

We consider resources with CPTs on two days – day 1, and day 2, with the delivery

promise time being midnight of day 2 for all orders. Therefore, each arc has two

resources in the one-day horizon experiment. For instance, for an arc between FC

u and SC v, there are two resources, one with a timestamp (u, v, 5:00 day 1) and

the other with timestamp (u, v, 5:00 day 2). For the node resources, there may be

a capacity restriction related to the node that are time dependent. However, in this

example, we are assuming the capacity of the node resources are infinity so there is

no need to create time stamps for the nodes.

We set the capacity of the arc resources based on the quantity of the shipment

data. For each arc type, we create the capacity with different rules:

• FC-SC resources: We take 70% of the demand forecast from the associated FC

and split this by day one and day two with 2-8 ratio. For instance, if demand

forecast from a FC 𝑢 is 200 units, then we split 140 units (70% of 200) between

the day one and day two resources with a 2-8 ratio. Thus, the capacity of the

arc between FC 𝑢 and SC 𝑣 is 28 units for the first day resource (𝑢, 𝑣, 5:00 day

1), and 112 units for the second day resource (𝑢, 𝑣, 5:00 day 2).

• FC-DS resources: We take 30% of the demand forecast from the FC to the DS,

and then split this by day one and day two with 2-8 ratio. For instance, if

demand forecast from a FC 𝑢 to DS 𝑤 is 200 units, then the capacity of the arc

between FC 𝑢 and SC 𝑤 is 12 units for the first day resource (𝑢, 𝑤, 12:00 day

1), and 48 units for the second day resource (𝑢, 𝑤, 12:00 day 2).

• SC-DS resources: We set the capacity for each SC to DS resource equal to the

demand forecast for the DS for both day one and day two; in effect, we do not

constrain this resource in the base case.

We deliberately set the resource capacities to only constrain the upper and direct

arc resources, so that the other resources in the network are not constraining. This

110

allows us to focus on the resource allocation on the upper and direct arcs. Table 5.2

summarize the capacities of FC-SC and FC-DS resources. Furthermore, we set no

capacity limits on third-party resources in this test case.

upper arc direct arc
FC∖SC or DS SC1 DS3 DS2 DS1 DS4 DS5 Total

FC1 705 0 0 52 0 0 757
FC2 669 0 0 0 0 0 669
FC3 649 0 0 0 0 0 649
FC4 1685 135 352 56 145 0 2373
FC5 80 0 0 0 0 0 80
FC6 991 0 158 0 96 26 1271
FC7 364 0 0 0 0 0 364
FC8 297 0 0 0 0 0 297
FC9 339 0 0 0 30 0 369
FC10 244 0 0 0 0 0 244
FC11 1135 0 0 0 0 0 1135
FC12 380 0 0 0 0 0 380
FC13 524 0 0 0 0 0 524

Table 5.2: Resource Capacity of each upper (FC-SC) and lower (FC-DS) arc. We
note that the arcs with 0 capacity are not active.

5.1.2.2 Routes

For simplicity, we consider only three types of routes – direct, indirect and third-party

route. (We omit the mixed route, which will be considered in the later section.) As

described in section 3.1.2, a route is feasible as long as the resources that are required

are time compatible. In this base case, we create the routes assuming that dwell and

transit times are effectively zero (𝜖 = 1 second). The estimated arrival time (EAT) of

retailer-controlled routes are the last resource’s CPT plus 𝜖. We note that since the

node resources have unlimited capacity, the node resources can be omitted from route

formation. In other words, indirect routes are composed of a FC-SC arc resource and

a SC-DS arc resource, the direct routes only have a FC-DS arc resource. In addition,

all the routes we form for the base case have an EDT earlier than the promise (day

2, midnight), i.e., all the routes can deliver all the shipments on time. In this base

111

case, there are 148 retailer-controlled routes, which includes 65 indirect routes and 9

direct routes on day one and day two each.

5.1.2.3 Commodities and Forecasts

In section 3.2.1, we introduced the notion of commodities, which is an aggregated

group of shipments for the purpose of demand forecasts. Each commodity is defined

by an origin FC, a destination DS, a dimension group, an arrival time segment and a

promise time. For the base case, we assume that there are 13 FCs, 5 DSs, 1 dimension

group, 3 arrival time segments (day 0, midnight2 to 5AM, day 1, 5AM day 1 to noon

and day 1, noon to day 1, midnight), 1 promise time (day 2, midnight). We note

that these arrival time segments are created based on the first resource CPT of the

routes, such that orders that arrive within an arrival time segment have the same

set of feasible routes. For example, consider an origin FC and a destination DS, for

which there are four feasible retailer-controlled routes – two direct and two indirect

routes. The first resource CPT for the two direct routes are day 1, noon and day 2,

noon. The first resource CPT for the two indirect routes are day 1, 5AM and day

2, 5AM. All four routes can meet the promise time (day 2, midnight). Then any

demand for this FC, DS pair that arrives before day 1, 5AM can be assigned to any

of the four routes; any demand that arrives between day 1, 5AM and day 1, noon

has three feasible routes (two direct routes; and the second-day indirect route); any

demand that arrives between day 1, noon and day 2, 5 AM has two feasible routes

(the second-day indirect route and the second-day direct route).

Next, we create the demand forecasts for each commodity. For each (FC, DS)

pair, we set its daily demand forecast equal to the shipment data for day 1. Table

5.3 summarize the demand forecasts of commodities.

Then, we distribute the daily forecast of each (FC, DS) pair to its associated

commodities proportional to the length of the arrival time segment. For example,

suppose a (FC, DS) pair has a daily forecast of 100 units, and we have 3 arrival time

2By convention we associate midnight with the preceding day; so day X, midnight means the end
of day for day X

112

FC∖DS DS3 DS2 DS1 DS4 DS5 Total

FC1 187 365 175 210 71 1008
FC2 220 323 77 281 55 956
FC3 224 336 82 232 53 927
FC4 452 1174 188 484 109 2407
FC5 26 69 0 15 5 115
FC6 362 528 121 320 86 1417
FC7 98 235 59 96 32 520
FC8 86 184 37 90 28 425
FC9 96 202 54 100 33 485
FC10 82 143 40 61 22 348
FC11 268 763 118 356 116 1621
FC12 108 228 64 109 33 542
FC13 435 234 0 58 21 748

Total 2644 4784 1015 2412 664

Table 5.3: Demand forecast of each FC-DS pair

segments (day 0, midnight to day 1, 5AM, day 1, 5AM to noon and day 1, noon

to day 1, midnight). The first commodity with a 5-hour arrival time segment has a

forecast of 5
24
100 units, the second commodity with a 7-hour arrival time segment has

a forecast of 7
24
100 units, the third commodity with arrival time segment day 1, noon

to midnight has a forecast of 12
24
100 units. For each commodity, we identify the set of

feasible routes by checking the three conditions listed in section 3.2.1.

5.1.2.4 Costs

We assume that the cost of retailer-controlled node and arc resources are sunk (paid

in advance) ; therefore, every retailer-controlled route has a $0 cost. However, any

third-party costs are real costs. We estimate the cost of third-party routes by the

distance between the origin FC and the destination DS with the following linear

equation:

cost = $0.01× distance (mile) + $2 (5.1)

We note that the distance is estimated based on the longitude and latitude data of

the facilities with the Haversine formula, which determines the great-circle distance

113

between two points. The algorithm’s performance is evaluated by the total cost

incurred over the one-day horizon, which consists of just the third-party costs in this

case. Table 5.4 summarize the third-party costs for each (FC, DS) pair.

FC∖DS DS3 DS2 DS1 DS4 DS5 Avg

FC1 3.43 3.12 2.92 4.03 3.90 3.48
FC2 4.34 4.04 3.78 4.95 4.82 4.39
FC3 4.03 4.27 4.62 4.54 4.49 4.39
FC4 2.15 2.30 2.80 2.72 2.60 2.51
FC5 2.06 2.46 2.96 2.61 2.50 2.52
FC6 2.12 2.38 2.88 2.79 2.68 2.57
FC7 5.48 5.14 4.81 6.06 5.93 5.48
FC8 2.09 2.47 2.97 2.75 2.64 2.58
FC9 2.08 2.50 3.00 2.60 2.50 2.54
FC10 4.96 5.40 5.90 4.87 4.93 5.21
FC11 2.17 2.62 3.12 2.64 2.55 2.62
FC12 6.02 5.72 5.41 6.63 6.50 6.06
FC13 6.00 6.44 6.94 5.76 5.85 6.20
Avg 3.61 3.76 4.01 4.07 3.99 3.89

Table 5.4: Third party costs of each FC-DS pair

5.1.2.5 Parameters for the QP Algorithm

In implementing the QP algorithm, we will periodically resolve the QP in order to

update the shadow prices. At each shadow price update time instance 𝜏 , we need to

specify the target flows (𝑓 𝜏
𝑗) and penalty costs (𝑣𝜏𝑗) for each resource, and the updated

demand forecasts (𝑑𝜏𝑘) for each commodity, which are inputs for the QP. As developed

in section 4.3.2, we set the target flows (𝑓 𝜏
𝑗) and penalty costs (𝑣𝜏𝑗) by the following

formulas:
𝑓 𝜏
𝑗 = 𝑢𝜏𝑗 − 𝑧𝜎𝜏

𝑗

𝑣𝜏𝑗 =
0.798𝜋𝑗
𝑧2𝜎𝜏

𝑗

(5.2)

The incremental costs (𝜋𝑗) captures the per package cost for exceeding capacities on

each resource. We estimate the incremental cost for arc resources by:

𝜋𝑗 = 𝛾 × ($0.01× distance + $2)

114

where (0.01× distance + 2) is the formula for deriving third-party costs and 𝛾 is the

discount factor of shipping with retailer-controlled resources versus shipping through

third-party. In the base case, we set 𝛾 = 1. We set the standard deviation by:

𝜎𝜏
𝑗 = 𝛼𝑢𝜏𝑗 , where 𝑢𝜏𝑗 is the remaining capacity of resource 𝑗 at resolve time 𝜏 , 𝛼 is

like a coefficient of variation, and we set it as 𝛼 = 0.1. The remaining capacities

(𝑢𝜏𝑗) are known, and are readily determined by deducting the assignments up to time

𝜏 from the initial capacity. For the safety factor, we set it to be 𝑧 = 2 in the base

case. We note that when the remaining capacity of a resource 𝑗 is zero, the standard

deviation will be zero, which leads to infinity penalty coefficient (𝑣𝑗) according to

equation (5.2). To avoid this, the resources with zero remaining capacity should be

removed at the QP resolve instance.

For the demand forecasts, we assume that the forecast of the remaining demand

is proportional to the original forecast; hence, it is a demand rate multiplied by the

remaining time when the demand rate is inferred from the original forecast. To be

more specific, for a commodity 𝑘 with arrival time segment 𝑡start
𝑘 to 𝑡end

𝑘 , the updated

demand forecast 𝑑𝜏𝑘 at shadow price update time instance 𝜏 is:

𝑑𝜏𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑0𝑘 when 𝜏 ≤ 𝑡start

𝑘

𝜏−𝑡start𝑘

𝑡end
𝑘 −𝑡start𝑘

𝑑0𝑘 when 𝑡start
𝑘 < 𝜏 < 𝑡end

𝑘

0 when 𝜏 ≥ 𝑡end
𝑘

(5.3)

where 𝑑0𝑘 is the initial demand forecast.

In summary, at every shadow price update instance 𝜏 , we update demand fore-

casts according to equation (5.3), penalty costs (𝑣𝜏𝑗), target flows (𝑓 𝜏
𝑗) according to

(5.2) with fixed safety factor (𝑧) and incremental costs (𝜋𝑗) and time-dependent stan-

dard deviations (𝜎𝜏
𝑗 = 0.1𝑢𝜏𝑗). Then, we solve the QP formulation (4.6) with these

parameters to update the resource shadow prices (𝜆𝜏𝑗). The fulfillment decisions are

based on equation (4.5) with these updated shadow prices.

In our testing process, we can encounter ties in cost in (4.5) when applying equa-

tion (4.5) in the QP algorithm. We observed that a good tie-breaking rule is crucial

115

to an algorithm’s success. The tie-breaking rule that we apply throughput the chap-

ter makes intuitive sense: when there is a tie in costs, we first pick the route with

resources that expire on an earlier day, i.e., the route with the earliest first resource

CPT; if there is still a tie, we prioritize routes by category so that the less flexible re-

sources get utilized first, i.e., we prioritize direct routes (FC-DS) over indirect routes

(FC-SC-DS) over third-party routes. In the base case, we update the shadow prices

10 times/day.

5.1.2.6 10 Randomized Shipment Arrivals

We create 10 single-day shipment-arrival data sets from the commodity forecasts,

where the number of orders for each FC-DS pair is equal to the one-day forecast for

that pair. For each shipment-arrival data set, we first generate the same number of

shipments for each commodity, where shipments have the same FC, DS, and promise

time as the commodity. Next, we generate the arrival time of each shipment by

drawing from a uniform distribution over the arrival time segment of its associated

commodity. Finally, the feasible routes of each shipment are identified based on the

new arrival time by checking the three conditions listed in section 3.2.1 where we

replace “commodity” by “shipment” in the description. We note that these 10 data

sets are different in terms of arrival sequences (arrival times) but they all match the

demand forecasts perfectly.

5.1.3 A Comparison with the Greedy Algorithm

We make order assignment decisions with our (QP) algorithm and the greedy algo-

rithm (a benchmark) on these 10 data sets of shipment arrival instances. The greedy

algorithm makes fulfillment decisions based on route costs, while the QP algorithm

makes fulfillment decisions based on the route costs and shadow prices. In addition,

when there is a tie in costs, the greedy algorithm breaks the tie based on the same

tie-breaking rule as the QP algorithm (described in section 5.1.2.5). We note that

the greedy algorithm will always prioritize retailer-controlled routes over third-party

116

routes since the retailer-controlled routes in the base case have zero cost, while the

costs of third-party routes are non-zero (estimated based on distances, see eq (5.1)).

Other assumptions we made for the simulations are:

• Every order fulfillment decision needs to be made at the epoch of shipment

arrival, i.e., there is no wait time allowed for route decisions.

• After an order fulfillment decision is made, the resources for the route are im-

mediately reserved and are committed to the shipment based on the decision.

We evaluate our algorithm with the average per package cost, which is the total trans-

portation cost (equal to the total third-party route costs since the retailer-controlled

routes are free in the base case) over the one-day horizon divided by the number of

packages. In all 10 instances, our algorithm outperforms the greedy algorithm. The

average cost of our algorithm is 0.779 with a standard deviation of 0.002, the average

cost of the greedy algorithm is 0.818 with a standard deviation of 0.001, and the

hindsight cost is 0.755. (The hindsight cost is calculated based on full knowledge of

demand and capacity, which is described in detail in section 4.5). As we mentioned in

the previous section, there are only two types of resources that have limited capacity

– upper (FC to SC) and direct (FC to DS) arcs. In all 10 cases, the less-flexible direct

resources are 100 percent utilized by both the greedy and our algorithm, due to the

tie-breaking rule. Hence, the utilization of limited upper arc resources is the only

element that distinguishes the two algorithm’s performances.

To understand the utilization of each upper arc in detail, we calculate for each FC

the percent of its indirect shipments that go to each DS. We note that all upper arc

resources have no remaining capacity with both algorithms. Then, for each (FC, DS)

pair, we divide the total number of indirect shipments from the FC to the DS by the

total number of indirect shipments shipped from the FC (i.e., the number of shipments

from the FC to the SC). Table 5.5 lists the average utilization percentage (u.p.) of

the upper arcs (i.e, the shipments from the FC to the SC) by different destination

DS over the 10 instances. The cost of shipping through third-party from a given FC

to a given DS is also listed in Table 5.5 from cheap to expensive. From the table,

117

we observe that the QP algorithm allocates a higher percent of the limited upper arc

resources to the shipments that are more “expensive”, i.e., the DSs that have a higher

third-party cost. That is, the QP assigns a higher percentage of its limited capacity

for indirect shipments to the demand at DSs with expensive alternatives (third-party

costs).

We note that for the upper arc from FC4, the QP algorithm and the greedy al-

gorithm have the same utilization percentages. We observed that the shadow price

of this upper arc resource is always less than or equal to the minimum third-party

cost (i.e., $2.15 to DS3) over the one-day horizon for every test case with the QP

algorithm. This is because the resource capacity of this upper arc is relatively suf-

ficient considering its demand. Therefore, both algorithms make order fulfillment

based on the same tie-breaking rules, which leads to the same fulfillment decision for

the indirect shipments from FC4.

FC DS QP u.p. (%) greedy u.p. (%) 3p cost

FC1 DS1 2.46 11.29 2.92

DS2 37.43 38.58 3.12

DS3 22.99 19.86 3.43

DS5 9.01 7.70 3.90

DS4 28.11 22.57 4.03

FC2 DS1 0.00 8.16 3.78

DS2 28.18 33.39 4.04

DS3 26.94 23.05 4.34

DS5 6.83 5.80 4.82

DS4 38.06 29.60 4.95

FC3 DS3 11.76 24.10 4.03

DS2 37.95 36.52 4.27

DS5 6.66 5.84 4.49

DS4 32.10 24.67 4.54

118

DS1 11.54 8.88 4.62

FC4 DS3 18.41 18.41 2.15

DS2 47.80 47.80 2.30

DS5 6.39 6.39 2.60

DS4 19.70 19.70 2.72

DS1 7.69 7.69 2.80

FC5 DS3 11.12 23.00 2.06

DS2 68.12 59.00 2.46

DS5 5.12 4.50 2.50

DS4 15.62 13.50 2.61

FC6 DS3 29.48 32.93 2.12

DS2 32.55 31.79 2.38

DS5 5.48 5.11 2.68

DS4 20.90 19.34 2.79

DS1 11.60 10.84 2.88

FC7 DS1 0.00 11.32 4.81

DS2 46.35 45.25 5.14

DS3 21.54 19.07 5.48

DS5 7.69 5.99 5.93

DS4 24.42 18.38 6.06

FC8 DS3 8.82 20.20 2.09

DS2 47.37 43.77 2.47

DS5 7.27 6.46 2.64

DS4 25.49 20.71 2.75

DS1 11.04 8.86 2.97

FC9 DS3 11.83 22.06 2.08

DS2 49.88 45.37 2.50

DS5 8.11 7.14 2.50

119

DS4 16.46 13.54 2.60

DS1 13.71 11.88 3.00

FC10 DS4 4.96 16.55 4.87

DS5 3.36 6.68 4.93

DS3 24.38 23.77 4.96

DS2 52.01 41.06 5.40

DS1 15.28 11.93 5.90

FC11 DS3 4.88 16.72 2.17

DS5 4.36 6.87 2.55

DS2 54.31 47.35 2.62

DS4 27.42 21.66 2.64

DS1 9.03 7.40 3.12

FC12 DS1 0.00 11.55 5.41

DS2 41.66 41.95 5.72

DS3 24.24 20.10 6.02

DS5 7.55 6.08 6.50

DS4 26.55 20.32 6.63

FC13 DS4 0.00 7.83 5.76

DS5 0.55 2.81 5.85

DS3 60.46 58.04 6.00

DS2 38.99 31.34 6.44

Table 5.5: Utilization percentage of each upper arc (defined by FC) to different
destination (defined by DS) with the QP algorithm and the greedy algorithm. We
note that there is no demand between FC5 and DS1; and no demand between FC13
and DS1.

To quantify the “value” of deliveries that an upper arc achieved over the one-day

horizon, we introduce the notion of “savings", which is the third-party cost of shipping

all orders shipped by the upper arc minus the cost of shipping all orders through

retailer-controlled route (which we assumed to be zero in this base case). (We note

120

that maximizing savings for the online retailer is equivalent to minimizing the revenue

of the third party, but their profits may not be diminished, depending on their pricing

structure.) Consider a FC to SC arc, and consider all the indirect shipments that are

assigned by the QP to this arc; we then define the saving from the assignments to the

FC to SC arc to be the sum of what the third-party cost of each of these shipments

would have been. For instance, if 𝑆(𝑢, 𝑣) denotes the set of shipments assigned to

the upper arc (𝑢, 𝑣), and the third party cost of shipping shipment 𝑠 ∈ 𝑆(𝑢, 𝑣) is

denoted by 𝑐𝑠, then the savings of the upper arc (𝑢, 𝑣) is
∑︀

𝑠∈𝑆(𝑢,𝑣) 𝑐𝑠. Table 5.6 shows

the average savings of each upper arc over the 10 instances, where every upper arc

(except for the upper arc from FC4) has higher savings with the QP algorithm than

the greedy algorithm. The percentage difference (p.d.) (the difference between the

QP’s and the greedy’s savings normalized by the greedy’s savings) ranges from 0 to

4.41 percent on each arc.

upper arc FC FC1 FC2 FC3 FC4 FC5 FC6

greedy 2403 2959 2808 4065 192 2421
QP 2462 3036 2842 4065 196 2429

p.d. (%) 2.45 2.62 1.19 0 2.45 0.3

upper arc FC FC7 FC8 FC9 FC10 FC11 FC12 FC13

greedy 1956 747 844 1277 2931 2267 3208
QP 1995 769 861 1298 3002 2302 3239

p.d. (%) 1.98 3.02 2.12 1.7 2.43 1.56 0.96

Table 5.6: Average savings of upper arcs with QP and greedy algorithms.

Let’s take a closer look at one of the upper arcs to understand how the QP

algorithm reserves resources for demand with high third-party costs. By design, the

shadow prices of all the resources except the upper and direct arcs are zero, since these

resources have more capacity than demand. Therefore, in the QP algorithm, the cost

of an indirect route is equal to the shadow price of its associated upper arc. When

the shadow price is lower than or equal to the third-party cost, the shipment will be

shipped by the indirect route; when the shadow price is higher than the third-party

121

cost, the shipment will be shipped by the third-party route. Figure 5-1 shows the

shadow price of the upper arc that starts from FC8 over the one-day horizon of one

instance. We note that there are no direct routes from this FC, and thus shipments

from FC8 to any destination have only two route options: indirect retailer-controller

route or third-party route.

Figure 5-1: Shadow price of the upper arc (FC8, SC1) over the one-day horizon.

The third-party cost to ship from FC8 to different DSs ranges from 2.09 to 2.97

(Table 5.4). Between 0:00 to 7:12 on day 1, the shadow price is 2.09; any demand

arrivals in this time period will be shipped by the retailer-controlled route. Between

7:12 to 16:48 on day 1, the shadow price is 2.47; in this time period, shipments to

DS3 and DS2 are shipped by third-party, while shipments to other DSs are assigned

to the retailer-controlled route. Between 16:48 to 21:36 on day 1, the shadow price is

2.75; in this period, shipments to DS3, DS2, DS5 are shipped by third-party, while

shipments to DS1 and DS4 are assigned to the retailer-controlled route. Between

21:36 to the end of day 1, the shadow price is 2.97. In this time period, shipments to

DS3, DS2, DS5, DS4 are shipped by third-party, while shipments to DS1 are assigned

to the retailer-controlled route. By doing so, the QP algorithm gradually saves or

protects the limited resources on the upper arc for the more expensive shipments.

Over the one-day horizon, the QP diverts the less expensive demand to third-party

by the dynamically updated shadow prices.

In summary, the QP algorithm makes better fulfillment decisions than the greedy

122

algorithm by allocating limited retailer–controlled resources to serve the more expen-

sive demand, where the “expense” of a demand is its third-party costs. For this base

case, we observe that the QP algorithm saves an average of 5% in cost relative to

the greedy algorithm. In addition, the greedy algorithm is 0.063 more expensive than

hindsight, while QP is 0.024 higher than hindsight. Therefore, the QP achieves most

of the potential improvement by shrinking the gap by more than 60%.

5.2 Extension from Base Case – A Realistic Test

Case

In this section, we extend the transportation network of the base case to a more realis-

tic transportation network that incorporates other complexities existing in the actual

network structure. First, we include another SC so that the network now has more

than one SC, and consequently more indirect routes for each commodity. Second,

each DS serves multiple service areas; we then define the third-party costs and de-

mand forecasts at the service-area-level instead of at the DS-level. Third, we include

mixed routes which, are formed by both retailer-controlled resources and third-party

resources. Finally, we impose capacity limits on every resource. In section 5.2.1, we

provide a detailed description of the test case. In section 5.2.2, we run the QP algo-

rithm on this test case with different QP parameters, and perform sensitivity analysis

on the test case to understand the algorithm’s performance at different extremes. In

section 5.2.3, we compare the performance of our algorithm with the LP algorithm.

5.2.1 Input Creation

5.2.1.1 Network Structure

In the previous section, we build the base case on the self-contained subnetwork with

13 FCs, 1 SC, 5 DSs. In addition, the network is fully connected. All the FCs are

connected to the only SC and the SC is further connected to all the DSs. For the

123

extension, we add another SC to the network3, and each of these two SCs is not

connected to each FC and DS. This construction increases the number and diversity

of routes that are available for each order. We connect each SC to 8 FCs and to 3

DSs, where we chose the connections subject to connectivity requirements: each FC

is connected to at least one SC and each DS is connected to at least one SC. Table

5.7 shows the connections between FCs (or DSs) and SCs. The direct arcs available

are set the same as in the base case. Table 5.8 shows the direct connections between

FCs and DCs. (We label the FCs and DSs the same as we did for the base case 5.1.)

We note that in this network structure, some demand (from certain FC to certain

DS) has no retailer-controlled route, and therefore, has to go by third party.

SC
SC1 SC2

FC

FC1
√

FC2
√

FC3
√

FC4
√

FC5
√

FC6
√ √

FC7
√ √

FC8
√ √

FC9
√

FC10
√

FC11
√

FC12
√

FC13
√

DS

DS1
√

DS2
√

DS3
√ √

DS4
√

DS5
√

Table 5.7: Active indirect arcs (FC to SC or DS to SC)

In addition, each DS serves a set of service areas (ranging from 12 to 79 service

areas per DS), where there is a single DS for each service area. We assume that

the last-mile delivery between DSs and service areas is accomplished by a contract
3The added SC is located in this subnetwork region.

124

DS
DS1 DS2 DS3 DS4 DS5

FC

FC1
√

FC2
FC3
FC4

√ √ √ √

FC5
FC6

√ √ √

FC7
FC8
FC9

√

FC10
FC11
FC12
FC13

Table 5.8: Active direct arcs (FC to DS)

carrier at some service-area specific cost. The costs will be explained in more detail

in section 5.2.1.5.

5.2.1.2 Resources and Capacities

As we mentioned in section 3.1.1, retailer-controlled resources are defined by facilities

and timestamps – a node resource is defined by a node facility and a labor shift times-

tamp, and an arc resource is defined by an origin facility, a destination facility and a

CPT. In reality, CPTs on a node or arc are often repeated daily, if not, periodically.

For simplicity, we assume that every node resource and every arc resource have a

single daily timestamp, and we set a reasonable timestamp for each resource type:

• FC-SC resources daily CPT: 5:00

• SC resources daily CPT: 10:00

• SC-DS resources daily CPT: 15:00

• DS resources daily CPT: 20:00

• FC-DS resources daily CPT: 12:00

125

We consider these arc resources to have CPTs on two days – day 1, and day 2, with

the order promise time being day 2, midnight. Therefore, each arc has two resources

in the one-day horizon experiment. For instance, for an arc between FC 𝑢 and SC

𝑣, there are two resources, one with a timestamp (u, v, 5:00 day 1) and the other

with timestamp (u, v, 5:00 day 2). We set the capacity of the resources based on the

quantity of the in-network-shipment. For each resource type, we create the capacity

with different rules:

• FC-SC resources: 70/𝑛% of demand from the associated FC split by day one and

day two with 2-8 ratio, where n is the number of SCs connected to the FC. For

instance, if demand forecast from a FC 𝑢 is 200 units, and the FC is connected to

both SCs, indexed by 𝑣1 and 𝑣2 then the capacities of the first-day arc resources

(𝑢, 𝑣1, 5:00 day 1) and (𝑢, 𝑣2, 5:00 day 1) are both 200 × 70/2% × 20% = 14

units; similarly, the capacity of the second-day arc resources (𝑢, 𝑣1, 5:00 day 2)

and (𝑢, 𝑣2, 5:00 day 2) are both 200× 70/2%× 80% = 56 units.

• FC-DS resources: 20% of demand from the associated FC and DS split by day

one and day two with 2-8 ratio; thus, the day-one capacity is 4% of the demand,

and the day-two capacity is 16% of the demand.

• SC-DS resources: 70/𝑛% of demand from the associated DS split by day one

and day two with 2-8 ratio, where 𝑛 is the number of SCs connected to the

DS. If n= 1 (2), then the day-one capacity is 14% (7%) of the demand, and the

day-two capacity is 56% (28%) of the demand.

• SC resources: 40% of all the demand (shipments in total) split by day one

and day two with 2-8 ratio. Thus, for each SC, the day-one capacity is 920

shipments, and the day-two capacity is 3679 shipments.

• DS resources: 90% of demand from the associated DS split by day one and day

two with 2-8 ratio; thus, the day-one capacity is 18% of the demand, and the

day-two capacity is 72% of the demand.

126

Table 5.9 summarizes the capacities of FC-SC and FC-DS arc resources for the two

days, and table 5.10 summarizes the capacities of SC-DS arc resources. Furthermore,

we set no capacity limits on third-party resources (FC (or SC) to service areas) in

this extended base case.

upper arc direct arc
FC∖SC or DS SC2 SC1 DS3 DS2 DS1 DS4 DS5 Total

FC1 0 705 0 0 35 0 0 740
FC2 0 670 0 0 0 0 0 670
FC3 0 648 0 0 0 0 0 648
FC4 0 1685 90 235 38 96 0 2144
FC5 0 75 0 0 0 0 0 75
FC6 495 495 0 105 0 64 17 1176
FC7 183 183 0 0 0 0 0 366
FC8 149 149 0 0 0 0 0 298
FC9 336 0 0 0 0 20 0 356
FC10 240 0 0 0 0 0 0 240
FC11 1135 0 0 0 0 0 0 1135
FC12 380 0 0 0 0 0 0 380
FC13 523 0 0 0 0 0 0 523

Table 5.9: Resource capacity of upper (FC-SC) and direct (FC-DS) arcs. We note
that the arcs with 0 capacity are not active.

lower arc
SC∖DS DS3 DS2 DS1 DS4 DS5

SC1 926 3340 712 0 0
SC2 926 0 0 1681 461

Table 5.10: Resource capacity of lower (SC-DS) arcs. We note that the arcs with 0
capacity are not active.

5.2.1.3 Routes

We consider four types of routes – direct, indirect, mixed and third-party route. As

described in section 3.1.2, a route is feasible as long as the resources that are required

are time compatible. In this extended base case, we create the routes assuming that

dwell and transit times are effectively zero(𝜖 = 1 second). The estimated delivery

127

time (EDT) of retailer-controlled routes are the last resource’s CPT (DS CPT) plus

𝜖. All the routes that we create for the extended base case have an EDT earlier than

the promise (day 2, midnight), i.e., all the routes can deliver all the shipments on

time. There are 7674 routes in total, 114 of them are retailer-controller routes, 2184

are third-party routes, and 5376 are mixed routes.

5.2.1.4 Commodities and Forecasts

In section 3.2.1, we fintroduced the notion of commodities, which is an aggregate

group of shipments for the purpose of demand forecasts. Each commodity is defined

by an origin FC, a destination service area, a dimension group, an arrival time

segment and a promise time. For this extended base case, we assume that there are

13 FCs, 164 service areas, 1 dimension group, 3 arrival time segments (day 0, midnight

to day 1, 5AM, day 1, 5AM to noon, and day 1, noon to midnight), 1 promise time

(day 2, midnight). We note that these arrival time segments are created based on the

first resource CPT of the routes, such that orders that arrive within an arrival time

segment have the same set of feasible routes. We note that for some commodities,

there will be more feasible routes when the FC and DS is connected to both SCs. In

particular, for commodities from FC6, FC7 or FC8 to DS 3, they could have twice

the amount of feasible indirect routes than other commodities.

Next, we create the demand forecasts for each commodity. For each (FC, DS) pair,

we set its daily demand forecast equal to the shipment data for day 1. In Table D.1

(Appendix D) we provide the daily demand forecasts of each (FC, service area) pair.

Then, we distribute the daily forecast of each (FC, service area) pair to its associated

commodities proportional to the length of the arrival time segment. For example,

suppose a (FC, service area) pair has a daily forecast of 100 units, and we have 3

arrival time segments (day 0, midnight to day 1, 5AM, day 1, 5AM to noon and day

1, noon to midnight). The first commodity with a 5-hour arrival time segment has

a forecast of 5
24
100 units, the second commodity with a 7-hour arrival time segment

has a forecast of 7
24
100 units, and the third commodity with a 12-hour arrival time

segment has a demand forecast of 12
24
100 units. For each commodity, we identify the

128

set of feasible routes by checking the three conditions listed in section 3.2.1. In this

test case, there are 4128 commodities (We note that there are 124 service areas and

13 FCs, which creates 1612 origin-destination (OD) pairs. For each OD pair, there

could be 2 or 3 arrival segments depending on whether the OD pair has direct route

or not, which adds up to 4128 commodities in total).

5.2.1.5 Costs

In this extended base case, we assume that the cost of retailer-controlled node and arc

resources are sunk (paid in advance), and there is a service-area specific last-mile cost.

The retailer-controlled route has a flat rate of $1 per package plus an off-set cost that

is service-area specific. This off-set cost is incorporated into the third-party costs.

For example, consider a service area that has a last-mile delivery cost of $1.5 (which

is $0.5 higher from the flat rate, which we term the off-set); then we subtract the

off-set of $0.5 from the third-party cost of this service area. With this specification,

in real-time route assignment, each retailer-controlled route has a $1 base cost while

the third-party cost is the net third-party cost, namely the actual third-party cost

reduced by the service-area-specific offset of the last-mile delivery. We acknowledge

that this is an overly complex set up, but the intent is to demonstrate that the model

could accommodate any service-area specific costs of the retailer’s route.

The third-party costs are estimated by the distance between the origin facility

(either an FC or an SC) and the destination service area with the following linear

equation:

cost = $0.01× distance (mile) + $2

We determine the distance between a facility and a service area with the Haversine

formula, which determines the great-circle distance between two points. For each

service area, we set the location of a service area to its centroid. In this test case,

we assume that we have third party option from all FCs to all service areas, and

from all SCs to all service areas (even though some DSs are not connected to the SC,

therefore, there might not be an indirect route to a service area through the SC, but

129

there is a third-party option).

Again, we evaluate the algorithm’s performance by the total cost incurred over

the one-day horizon. In Table 5.11 we summarize the maximum and minimum values

of the third-party costs from an origin FC (or SC) to the destination service areas

served by a DS.

origin/destination DS3 DS2 DS1 DS4 DS5

FC

FC1 3.66/3.29 3.27/2.97 3.03/2.88 4.18/3.84 4.11/3.79
FC2 4.56/4.19 4.17/3.88 3.91/3.7 5.1/4.76 5.03/4.71
FC3 4.09/3.9 4.52/4.16 4.77/4.45 4.69/4.39 4.53/4.34
FC4 2.37/2.12 2.52/2.2 2.96/2.58 2.88/2.53 2.79/2.47
FC5 2.22/2.04 2.68/2.37 3.12/2.74 2.77/2.41 2.65/2.35
FC6 2.35/2.01 2.6/2.27 3.05/2.66 2.95/2.59 2.83/2.53
FC7 5.7/5.33 5.25/4.96 4.97/4.7 6.2/5.88 6.15/5.83
FC8 2.27/2.02 2.68/2.35 3.13/2.74 2.91/2.55 2.78/2.49
FC9 2.23/2.03 2.72/2.41 3.17/2.78 2.77/2.41 2.63/2.35
FC10 5.03/4.75 5.62/5.29 6.07/5.68 4.96/4.71 4.99/4.71
FC11 2.28/2.02 2.84/2.51 3.28/2.9 2.8/2.46 2.63/2.4
FC12 6.24/5.87 5.83/5.55 5.56/5.31 6.77/6.44 6.71/6.39
FC13 6.09/5.77 6.66/6.34 7.1/6.72 5.85/5.6 5.92/5.6

SC SC1 2.27/2.01 2.67/2.34 3.12/2.74 2.91/2.55 2.77/2.48
SC2 2.59/2.08 2.46/2.02 2.96/2.37 2.93/2.62 2.9/2.58

Table 5.11: Third party costs of the 2-SC network. (maximum/minimum)

5.2.1.6 Parameters for the QP Algorithm

To implement the QP algorithm, we need to periodically resolve the QP in order to

update the shadow prices. At each shadow price update time instance 𝜏 , we need to

specify the target flows (𝑓 𝜏
𝑗) and penalty costs (𝑣𝜏𝑗) for each resource, and to update

demand forecasts (𝑑𝜏𝑘) for each commodity, which are inputs for the QP. As developed

in section 4.3.2, we set the target flows (𝑓 𝜏
𝑗) and penalty costs (𝑣𝜏𝑗) by the following

formulas:
𝑓 𝜏
𝑗 = 𝑢𝜏𝑗 − 𝑧𝜎𝜏

𝑗

𝑣𝜏𝑗 =
0.798𝜋𝑗
𝑧2𝜎𝜏

𝑗

(5.4)

130

The incremental costs (𝜋𝑗) captures the per package cost for exceeding capacities on

each resource. We estimate the incremental cost for arc resources by:

𝜋𝑗 = 𝛾 × ($0.01× distance + $2)

where (0.01× distance + 2) is the formula for deriving third-party costs and 𝛾 is the

discount factor of shipping with retailer-controlled resources versus shipping through

third-party. In this extended base case, we set 𝛾 = 1. The incremental costs for

node resources are set by a fixed cost 𝜋𝑗 = $0.3. We set the standard deviation by:

𝜎𝜏
𝑗 = 𝛼𝑢𝜏𝑗 , where 𝑢𝜏𝑗 is the remaining capacity of resource 𝑗 at resolve time 𝜏 , 𝛼 is

like a coefficient of variation, and we will numerically search for a good 𝛼 in section

5.2.2.1. The remaining capacities (𝑢𝜏𝑗) are known, and are readily determined by

deducting the assignments up to time 𝜏 from the initial capacity. We note that when

the remaining capacity of a resource 𝑗 is zero, the standard deviation will be zero,

which leads to infinity penalty coefficient (𝑣𝜏𝑗) according to equation (5.4). To avoid

this, the resources with zero remaining capacity should be removed at the QP resolve

instance. For the safety factor, we will numerically search for a good value in section

5.2.2.1.

For the demand forecasts, we assume that the forecast of the remaining demand

is proportional to the original forecast; hence, it is a demand rate multiplied by the

remaining time, where the demand rate is inferred from the original forecast. To be

more specific, for a commodity 𝑘 with arrival time segment 𝑡start
𝑘 to 𝑡end

𝑘 , the updated

demand forecast 𝑑𝜏𝑘 at shadow price update time instance 𝜏 is:

𝑑𝜏𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑0𝑘 when 𝜏 ≤ 𝑡start

𝑘

𝜏−𝑡start𝑘

𝑡end
𝑘 −𝑡start𝑘

𝑑0𝑘 when 𝑡start
𝑘 < 𝜏 < 𝑡end

𝑘

0 when 𝜏 ≥ 𝑡end
𝑘

(5.5)

where 𝑑0𝑘 is the initial demand forecast.

In summary, at every shadow price update instance 𝜏 , we update demand forecasts

according to equation (5.5), penalty costs (𝑣𝜏𝑗), target flows (𝑓 𝜏
𝑗) according to (5.4)

131

with a safety factor (𝑧*), the incremental costs (𝜋𝑗), and time-dependent standard

deviations (𝜎𝜏
𝑗 = 𝛼*𝑢𝜏𝑗). (We will set 𝑧* and 𝛼* based on the numerical tests in section

5.2.2.1.) Then, we solve the QP formulation (4.6) with these parameters to update

the resource shadow prices (𝜆𝜏𝑗). The fulfillment decisions are based on equation (4.5)

with these updated shadow prices.

In our test process, we can encounter ties in cost when applying the QP algorithm.

We observed that a good tie-breaking rule is crucial to an algorithm’s success. The tie-

breaking rule that we apply throughput the chapter makes intuitive sense: when there

is a tie in costs, we first pick the route with resources that expire on an earlier day, i.e.,

the route with the earliest first resource CPT; if there is still a tie, we prioritize routes

by category so that the less flexible resources get utilized first, i.e., we prioritize direct

routes (FC-DS) over indirect routes (FC-SC-DS) over mixed routes, over third-party

routes. In this extended base case, we update the shadow prices 10 times/day; we

perform a sensitivity test on the shadow price update frequency in section 5.2.2.1.

5.2.2 Sensitivity Tests

5.2.2.1 Tuning of the QP parameters

A user needs to set several parameters to run the QP algorithm. These parameters

are: shadow price update frequency, safety factor (𝑧), standard deviation (𝜎𝜏
𝑗), and

incremental cost (𝜋𝑗) of each resource. In this section, we explore a subset of these

parameters and leave the rest for future research.

The incremental cost (𝜋𝑗), intuitively, represents the incremental cost for a ship-

ment when the resource reaches its capacity; for instance it could be the cost of a

third-party option, if this option exists. This information is not always available,

since only certain transportation arcs have known third-party costs. In Appendix C,

we provide two possible ways of estimating incremental costs for retailer-controlled

resources in the network. In our experiments, we fix the incremental costs according

to the description in section 5.2.1.6, and we do not numerically explore other options.

However, our preliminary experiments have shown that the algorithm’s performance

132

is sensitive to the incremental costs; therefore, inferring reasonable incremental costs

is an important avenue of future research.

We could estimate the standard deviations (𝜎𝜏
𝑗) from historical data by sampling

flow rates over a desired time period, and then derive the standard deviations accord-

ingly. This could be an iterative process since the standard deviations impact the

shadow prices which impacts the assignments, and presumably the flow rates on the

resources. Therefore, we expect the standard deviations would need to be updated

periodically while applying our algorithm. In our experiment, we set the standard

deviation (𝜎𝜏
𝑗) to be linear to the remaining capacity of the resource at every shadow

price resolve time instance 𝜏 , i.e. 𝜎𝜏
𝑗 = 𝛼𝑢𝜏𝑗 , where 𝛼 is like a coefficient of variation,

𝑢𝜏𝑗 is the remaining capacity at resolve time 𝜏 . We will perform sensitivity tests on

different values of 𝛼.

The safety factor (𝑧) determines the distance between the targets (𝑓 𝜏
𝑗) and the

capacities (𝑢𝜏𝑗). The larger the safety factor, the farther the target flows are from the

capacities. We will perform sensitivity tests on different magnitudes of safety factors.

Same as the shipment instances that we generated for the base case (section

5.1.2.6), we create 10 single-day shipment-arrival data sets from the commodity fore-

casts. For each shipment-arrival data set, we first set the number of shipments for

each commodity equal to the forecast. Next, we generate the arrival time of each

shipment by drawing from a uniform distribution over the arrival time segment of

its associated commodity. Finally, the feasible routes of each shipment are identi-

fied based on the arrival time by checking the three conditions listed in section 3.2.1

where we replace “commodity” by “shipment” in the description. We note that these

10 shipment-arrival data sets differ in terms of arrival sequences (arrival times) but

they all set the demand for each commodity equal to the forecast.

We simulate the 10 test cases with the QP algorithm under different combinations

of safety factors (𝑧) and coefficient of variations (𝛼), while fixing the number of shadow

price resolves at 10 times per day where the time difference between each resolve is

the same (namely 2.4 hours between resolves of the QP). Figure 5-2 shows the average

per package cost of the 10 instances under different combinations of 𝑧 and 𝛼. The

133

average per package cost ranges from 1.9546 to 2.1340. As a benchmark, the cost of the

hindsight solution is 1.9139 and the average cost of the greedy solution is 2.0764. (We

note that the cost of hindsight is the same for all test cases, since the only difference

between the test cases are order arrival sequences within commodities.) The QP

algorithm performs better than greedy for a wide range of 𝑧 and 𝛼 combinations;

however, the QP algorithm could perform worse than the greedy algorithm at some

𝑧 and 𝛼 combinations, which shows the importance of the choice of parameter of the

QP algorithm.

Figure 5-2: Average per package costs at different safety factors (𝑧) and coefficient of
variations (𝛼).

Next, we test the QP algorithm with different resolve frequencies with 𝑧 = 3

and 𝛼 = 0.25, which is one of the better-performing combinations for the parameter

pair. The blue solid line in figure 5-3 shows the average per package costs of the QP

134

algorithm, with error bars illustrating the standard deviations. The two benchmarks

are the hindsight cost (illustrated in the red dashed line) and the greedy algorithm

(illustrated with the green dotted line and the green shadows represent the standard

deviations). Regardless of the number of iterations, the QP algorithm performs better

than the greedy algorithm, and the QP performance improves as the resolve frequency

increases. However, it is surprising, and we do not have an explanation for why costs

increase with more frequent resolves for some instances; but the increase is small,

and the trend is consistent with our intuition (of increasing resolves improves the

algorithm’s performance).

In the following sensitivity tests, we set the safety factor by 𝑧 = 3, coefficient of

variation by 𝛼 = 0.25, and the resolve frequency is 10 times per day.

Figure 5-3: Average per package costs at different resolve frequencies

135

5.2.2.2 Sensitivity to Demand Variability and Forecast Accuracy

In reality, the demand forecasts are not perfect. In this section, instead of the 10 test

cases created from a fixed demand forecast, we allow the actual demand to deviate

from the forecast and test the order fulfillment algorithms in light of this demand

uncertainty. This mimics the reality that the online retailer faces where resource

capacities are planned based on demand forecasts, and inevitably the actual demand

deviates from the forecasts. In addition, to assess the impact of forecast errors, we

tested the QP algorithm with or without perfect forecasts.

To create demand arrivals, we first create the actual quantity of demand at a

commodity level. We determine the number of shipments of each commodity 𝑘 with

a random draw from a log-normal distribution 𝑑𝑘 ∼ Lognormal(𝜇𝑘, 𝜎𝑘), where we set

𝜇𝑘 so that E[𝑑𝑘] = 𝑑𝑘, where 𝑑𝑘 is the original demand forecast for the commodity

𝑘. We set 𝜎𝑘 so that the standard deviation 𝜎[𝑑𝑘] = 𝜌𝑑𝑘, where 𝜌 is an experimental

parameter. The explicit expressions to do this are as follows:

𝜇𝑘 = ln(
𝑑2𝑘√︀

𝑑2𝑘 + (𝜌𝑑𝑘)2
) = ln(

𝑑𝑘√︀
1 + 𝜌2

), (5.6)

𝜎𝑘 = ln(1 +
(𝜌𝑑𝑘)

2

𝑑2𝑘
) = ln(1 + 𝜌2)). (5.7)

The parameter 𝜌 controls the magnitude of the standard deviation – the standard

deviation of the distribution increases as 𝜌 increases. For a given commodity 𝑘, we

generate the 𝑑𝑘 shipment arrival times by drawing from a uniform distribution over

the arrival time segment of the commodity.

We run the experiment with 20 different choices of 𝜌 = 0.1, 0.2, · · · , 2. For each

𝜌, we create 10 sets of demand forecasts (𝑑𝑘) and shipment arrival times accordingly.

We run two variants for the QP algorithm: for one case, we assume that we know

the actual demand for each commodity, namely, we know 𝑑𝑘. For the other case, we

assume that we only know the forecast or expected demand, namely, we know only

𝑑𝑘. Figure 5-4 shows the costs of the QP algorithm with accurate demand forecast

(where demand forecast matches the demand 𝑑𝑘), the QP algorithm without accurate

136

demand forecast (where demand forecasts are 𝑑𝑘), as well as the greedy algorithm, and

hindsight solution at different 𝜌. We note that the parameters in the QP algorithm are

set as section 5.2.1.6 described; the safety factor (𝑧 = 3), the coefficient of variation

(𝛼 = 0.25) and the resolve frequency (10 times per day) are fixed for all sensitivity

tests.

Figure 5-4: Average per package costs at different 𝜌

The QP algorithm’s performance is always better than the greedy algorithm, re-

gardless of demand variability. Figure 5-5 shows the average mean percentage increase

from hindsight costs at different 𝜌. For the case when the QP algorithm knows the

demand, we see that its performance is quite insensitive to increasing 𝜌, which in-

creases the demand variability; however, when the QP algorithm does not know the

realized demand, its performance degrades with increasing 𝜌, which increases the

forecast error.

137

Figure 5-5: Mean percentage increase from hindsight costs at different 𝜌

5.2.2.3 Sensitivity to Capacity Plans

The retailer will develop a capacity plan to match its resources to its forecast demand.

This capacity plan will affect how many and what shipments can be assigned to

retailer-controlled resources versus to third-party carriers. For instance, if there is

ample capacity then there might be limited need for third party; in contrast, if the

capacity is very limited, the retailer will need extensive help from third parties.

We would like for an algorithm to perform consistently under different capacity

plans. In this section, we test the algorithms on various capacity plans with a single

shipment-arrival data set. We create a range of capacity plans from the resource

capacity data in section 5.2.1.2 by modifying the capacity of each resource 𝑗 as follows:

𝑢̂𝑗 = 𝑢𝑗𝜓(1 + 𝑤𝑗)
+ (5.8)

138

where 𝑢̂𝑗 is the modified capacity of resource 𝑗, 𝑤𝑗 is a random noise variable for

resource 𝑗 drawn from a normal distribution (𝑤𝑗 ∼ 𝑁(0, 1)), 𝑢𝑗 is the original capacity

in the test case, and 𝜓 is a scaling factor. For instance, by setting 𝜓 = 0.5, we are

effectively reducing the amount of capacity by 50% compared to the original test case.

For each 𝜓, we make a random draw of the noise (𝑤𝑗) for each resource 𝑗. We create

the single shipment-arrival data set from the demand forecast described in section

5.2.1.4, where the number of shipments for each commodity equals the forecast for the

commodity. We obtain the arrival time of each shipment by drawing from a uniform

distribution over the arrival time segment of its associated commodity. Figure 5-6

shows the mean and standard deviation of the costs of QP, greedy and hindsight.

As we decrease 𝜓, there is less and less retailer-controlled capacity, and hence an

increased reliance on third party shipping. Thus, the per package cost increases as

we decrease 𝜓. Furthermore, the difference between the algorithms also decreases

with decreasing 𝜓: with less retailer-controlled resources, there is less opportunity

from “smart" resource allocation. Nevertheless, over the full range of capacity plans,

the QP algorithm always performs better than greedy in average. In fact, the mean

percentage cost increase of the QP algorithm from the hindsight solution is between

0.1% ∼ 1.7%, while the mean percentage cost increase of the greedy algorithm from

the hindsight solution is between 0.6% ∼ 4.4% (see Figure 5-7). The QP algorithm’s

gap from the hindsight solution is consistently less than half of the gap for the greedy

algorithm over the entire range of 𝜑.

139

Figure 5-6: Average per package costs at different 𝜓

Figure 5-7: Mean percentage increase from hindsight costs at different 𝜓

140

5.2.3 QP vs LP algorithms

In this section, we introduce the LP algorithm, which mimics the algorithm currently

run by the online retailer. The LP algorithm is nearly identical to the QP algorithm,

except for the optimization problem that derives the shadow prices. Instead of equa-

tion (4.6), the LP algorithm solves the following linear program for shadow prices:

𝑊𝐿𝑃 (d,u, 𝜏) = min
∑︁
𝑘∈𝐾𝜏

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 (5.9a)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝜏𝑘 ∀𝑘 ∈ 𝐾𝜏 (5.9b)

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 ≤ 𝑢𝜏𝑗 ∀𝑗 ∈ 𝐽𝜏 (5.9c)

𝑥𝑘𝑟 ≥ 0 ∀𝑘, 𝑟 (5.9d)

where variable 𝑥𝑘𝑟 denotes the number of shipments of commodity 𝑘 assigned to route

𝑟, and other parameters and sets are specified as follows:

Sets

• 𝐾𝜏 : set of commodities for time horizon [𝜏, 𝜏 + 𝑇 ℎ]

• 𝐽𝜏 : set of relevant resources for time horizon [𝜏, 𝜏 + 𝑇 ℎ]

• 𝑅𝑘: set of routes feasible to commodity 𝑘

• 𝑅𝑗: set of routes that utilize resource 𝑗

Parameters

• 𝑑𝜏𝑘: forecast of remaining demand of commodity 𝑘 at time 𝜏

• 𝑢𝜏𝑗 : remaining capacity on resource 𝑗 at time 𝜏

• 𝑐𝑘𝑟: per package cost of commodity 𝑘 shipped through route 𝑟

141

The objective of the LP is to minimize the total transportation costs. Constraint

(5.9b) is the demand constraint; constraint (5.9c) is the capacity constraint, from

which we use the dual variables as the shadow price of each resource.

The two algorithms share the same inputs and we compare their performances

on 30 test cases. These test cases are randomly generated from the extended base

case by modifying the demand and the capacity. For each test case, we first create

actual demand (𝑑𝑘) at a commodity level from the log-normal distribution based on

demand forecast as described in equation (5.6) where we set 𝜌 = 1. Next, we create

shipment data from the actual demand (𝑑𝑘), where the arrival time of each shipment

is drawn from a uniform distribution over the arrival time segment of its associated

commodity. Finally, we set the capacity plan with equation (5.8) with 𝜓 = 1 for

each test case. We assume that both the LP and QP algorithm have perfect demand

forecasts in this experiment. Table 5.12 shows the average per package cost of the

30 cases. The QP algorithm (where we set 𝑧 = 3 and 𝛼 = 0.25) performs the best

among all algorithms with 2.67% mean percentage error from the hindsight solution,

which is half of MPE of the LP algorithm, and around 40% of MPE of the greedy

algorithm. In addition, among the 30 test cases, the QP algorithm performs better

than the LP algorithm in 29 cases and performs better than the greedy algorithm in

all cases.

mean std MPE from hindsight (%)

QP 2.31 0.16 2.67
LP 2.37 0.14 5.34
greedy 2.41 0.17 7.10
hindsight 2.25 0.16 0

Table 5.12: Mean and standard deviation of per package costs and mean percentage
error from hindsight solution of the 30 test cases.

In the 30 test cases, we observe that the primal solutions of the LP algorithm at

every shadow price resolve instance are quite different from the QP algorithm’s primal

solution. In particular, the LP algorithm often leads to unbalance primal solutions

where the resource constraints are either “tight” or “very loose” (By “tight”, we mean

142

that the capacity constraints are binding, i.e.,
∑︀

𝑟∈𝑅𝑗

∑︀
𝑘∈𝐾𝑟

𝑥*𝑘𝑟 = 𝑢𝜏𝑗 , where 𝑥*𝑘𝑟 is the

optimal solution of either the LP or QP problem; by “loose, we mean that the resource

constraints are not binding nor close to binding, i.e.,
∑︀

𝑟∈𝑅𝑗

∑︀
𝑘∈𝐾𝑟

𝑥*𝑘𝑟 ≪ 𝑢𝜏𝑗 .); while

the QP algorithm often leads to a more balanced primal solution where flows are

more evenly distributed among resources. To illustrate this observation, we zoom in

on a test case and observe the progression of remaining capacity, the primal solution,

and the shadow prices of an upper arc (FC1 to SC1) over time. Figure 5-8 shows

the remaining capacities, optimal flows, and shadow prices of the resources associated

with the upper arc when the LP algorithm is applied to the test case, while figure

5-9 shows this information when the QP algorithm is applied. There are two relevant

resources on the chosen upper arc: 𝑗2 is the first resource (with an earlier CPT at

5:00 day 1) on the upper arc and 𝑗55 is the second resource (with a later CPT at day

2, 5:00) on the upper arc. With the LP algorithm, the optimal flow of resource 𝑗55 is

always equal to the capacity, while the optimal flow of resource 𝑗2 is always below the

capacity, which leads to zero shadow price for 𝑗2. On the other hand, with the QP

algorithm, the optimal flow on resource 𝑗2 and 𝑗55 are close to but not equal to the

capacity, and the shadow prices are non-zero since there is a penalty when the primal

solution exceeds the target flow. The shadow prices produced by the QP algorithm

lead to a better utilization of the upper arc than the LP algorithm; for instance, the

savings (as defined in section 5.1.3) of this upper arc resource with the QP algorithm

is 7% higher than the LP algorithm.

143

(a) Primal solutions and remaining capacities on resource 𝑗2 over the one-day horizon.

(b) Primal solutions and remaining capacities on resource 𝑗55 over the one-day horizon.

(c) Shadow price of resource 𝑗2 over the one-day horizon.

(d) Shadow price of resource 𝑗55 over the one-day horizon.

Figure 5-8: Shadow price, optimal flows, remaining capacities on the resources asso-
ciated with an upper arc over the one-day horizon when applying the LP algorithm.

144

(a) Primal solutions and remaining capacities on resource 𝑗2 over the one-day horizon.

(b) Primal solutions and remaining capacities on resource 𝑗55 over the one-day horizon.

(c) Shadow price of resource 𝑗2 over the one-day horizon.

(d) Shadow price of resource 𝑗55 over the one-day horizon.

Figure 5-9: Shadow price, optimal flows, remaining capacities on the resources asso-
ciated with an upper arc over the one-day horizon when applying the QP algorithm.

145

One might argue that the QP algorithm’s success is due to the target flows that

provide a buffer from the capacity, while the LP algorithm does not have this buffer.

What if the remaining capacity (𝑢𝜏𝑗) in the LP formulation is replaced by a discounted

capacity (𝜂𝑢𝜏𝑗), where 𝜂 is a discount factor? Will the LP algorithm perform better

than the QP algorithm? To answer this question, we simulate the LP algorithm on

the same 30 test cases with different values for the buffer (𝜂). Figure 5-10 shows the

LP’s performance with different 𝜂, where we observe that the LP algorithm does not

benefit from having buffers in capacity.

Figure 5-10: LP algorithm’s performance with different buffer

5.2.4 Summary

The experiments in this chapter suggest that the QP algorithm outperforms the

benchmark algorithms in this set of test problems. The QP parameters are the key

to success the algorithm’s success, and the algorithm is robust to different scenarios

(varied demand, varied capacity, and inaccurate forecasts) when applied with the

146

right set of parameters. The QP algorithm provides early and gradual alerts when we

expect the capacity of a resource to be tight. In addition, the algorithm seems better

at modulating the shadow prices so as to allocate better scarce capacity on resources,

which leads to a more flexible flow assignment.

147

148

Chapter 6

Concluding Remarks

The order fulfillment problem is highly time-sensitive in the eCommerce setting. The

transportation assignment of the fulfillment problem, which our research considers,

contains time elements in every corner. In particular: Orders need to be delivered by

a certain deadline and can only be processed (observed) after the orders are placed in

the system, therefore is time sensitive. Transportation resources are only available for

a certain time period. Routes should be formed with resources in a time-harmonious

way. Therefore, the formulation of the problem needs extra care, in that an ideal

model should capture the time elements in all aspects. In the meantime, the model

cannot be overly complex (detailed) since the fulfillment decision needs to be made

very frequently given the high volume of incoming orders and short fulfillment win-

dows. In our research, we realized that aggregation and simplification are crucial for

an implementable model in practice. The formulation we proposed in chapter 3 serves

this purpose, where the model remains in its simplest form, and leaves the complexity

in the pre-processing of the input parameters of the model (e.g., route formation from

resources, feasible route identification for orders... etc).

At the start of the project, our industry collaborator already has an algorithm

up and running for the transportation assignments, and our goal is to improve upon

it. As a result, the QP algorithm we proposed, by design, aims to address the un-

desired features of the existing algorithms. In chapter 4, we share the details of the

design logic of the QP algorithm. Finally, the QP algorithm is tested in the realistic

149

subnetwork, and the tests are performed with semi-realistic data. The QP algorithm

demonstrates its potential for cost-saving while remaining as implementable as the

existing algorithm.

We conclude by noting several interesting future directions to explore. First,

a natural question is whether we could provide theoretical guarantees of our algo-

rithm in comparison with other benchmarks. Second, in our project, we formulate

the transportation assignment of the fulfillment problem as a standalone problem.

The upstream decisions (transportation capacity planning) and concurrent decisions

(which fulfillment center to fulfill each order), if considered jointly, could potentially

provide additional improvements. In addition, other problems like pricing and assort-

ment display are also intertwined with the order fulfillment decisions and could be

studied jointly. Third, the benefit of delaying fulfillment decisions is not investigated

in our work. In fact, orders come with different delivery promises (ex: end of the

next day or end a week from now) based on preferences of the customer. Orders

with delayed delivery have more chance for reassignment, which provide a chance of

improvement in costs.

Online retailing will continue to prosper in the foreseeable future, which accelerates

the development of cost and time-efficient order fulfillment systems. Our industry

collaborator has provided continuing improvement in the delivery experiences for

their customers, thanks to their early and heavy investment in their transportation

system. In an ideal world, the whole eCommerce space (including the transportation

companies and online retailers) would operate jointly and harmoniously to achieve

an efficient fulfillment process that has the smallest impact on the environment. Our

research is only a small slice of this big picture, and we look forward to seeing more

diverse systems and innovative algorithms that propel this goal.

150

Appendix A

The Structure of the Dual Variables

from the QP

The KKT condition helps us understand the structure of the resource shadow prices

derived from the QP (4.6). Here, we repeat the QP formulation (at resolve time 𝜏)

again:

𝑊𝑄𝑃 (d,u, 𝜏) = min
1

2

∑︁
𝑗∈𝐽𝜏

𝑣𝜏𝑗 𝑔
2
𝑗 +

∑︁
𝑘∈𝐾𝜏

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 (A.1a)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝜏𝑘 ∀𝑘 ∈ 𝐾𝜏 (A.1b)

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 − 𝑔𝑗 ≤ 𝑓 𝜏
𝑗 ∀𝑗 ∈ 𝐽𝜏 (A.1c)

𝑥𝑘𝑟, 𝑔𝑗 ≥ 0 ∀𝑘, 𝑟, 𝑗 (A.1d)

We denote the dual variables of the demand constraints (A.1b) by 𝜂𝜏𝑖 ; denote the dual

variables of the resource constraints (A.1c) by 𝜆𝜏𝑗 ; denote the shadow prices associated

with the non-zero constraints of variable 𝑥𝑘𝑟 by 𝜌𝑘𝑟 and variable 𝑔𝑗 by 𝜌𝑗.

By the KKT stationarity conditions, we have:

𝑣𝑗𝑔𝑗 − 𝜆𝑗 + 𝜌𝑗 = 0 (A.2)

151

When 𝜌𝑗 = 0, 𝜆𝑗 = 𝑣𝑗𝑔𝑗, which means that the dual variables are linear to the excess

flows. This cost structure is very different from the one in LP. We note that by

complementary slackness, when 𝑔𝑗 > 0, 𝜌𝑗 = 0, which means that the linearity of

dual variable holds when there are positive excess flows on the resource.

152

Appendix B

Identify Relevant Resources and

Routes

The process of identifying relevant resources and routes for the capacity planning

problem is non-trivial. In this section, we provide a detailed description of the process

for a capacity planning problem with a fixed time horizon between 𝑡 = 𝑡start and

𝑡 = 𝑡end.

B.0.1 Identify Relevant Resources

Relevant resources are the resources with timestamps that are available to orders

arrive between 𝑡 = 𝑡start and 𝑡 = 𝑡end. As we mentioned earlier, orders are assumed to

travel in the network fluidly according to the average dwell and transit times at the

nodes and arcs. With this assumption, the arrival time of the earliest order (which

arrives at 𝑡 = 𝑡start) and the latest order (which arrives at 𝑡 = 𝑡end) on each resource

can be estimated, and if the lifetime of the resource overlaps this time interval, the

resource is considered relevant. (Note that the lifetime of the resource is the time

from the resource’s previous CPT to its associated CPT. For example, suppose that

a facility has daily CPT at 11AM and 5PM, the lifetime of the node resource with

11AM CPT is from 5PM the day before to 11AM today; the lifetime of the node

resource with 5PM CPT is from 11AM today to 5PM today.).

153

• For lower arc (SC 𝑣 to DS 𝑤), the relevant arc resource’s CPT (𝑡) satisfies:

[𝑡start +min
𝑢∈𝑈

{𝛾𝑢 + 𝛾𝑢𝑣}+ 𝛾𝑣, 𝑡
end +max

𝑢∈𝑈
{𝛾𝑢 + 𝛾𝑢𝑣}+ 𝛾𝑣] ∩ [𝑓−1

𝑣𝑤 (𝑡), 𝑡] ̸= ∅

where 𝑈 denotes the set of FCs, 𝛾𝑢𝑣 denotes the transit time on arc from FC 𝑢

to SC 𝑣, 𝛾𝑣 denotes the dwell time at SC 𝑣.

• For upper arc (FC 𝑢 to DS 𝑤), the relevant arc resource’s CPT (𝑡) satisfies:

[𝑡start + 𝛾𝑢, 𝑡
end + 𝛾𝑢] ∩ [𝑓−1

𝑢𝑤 (𝑡), 𝑡] ̸= ∅

• For node resources at SC (𝑣), the relevant node resource’s CPT (𝑡) satisfies:

[𝑡start +min
𝑢∈𝑈

{𝛾𝑢 + 𝛾𝑢𝑣}, 𝑡end +max
𝑢∈𝑈

{𝛾𝑢 + 𝛾𝑢𝑣}] ∩ [𝑓−1
𝑣𝑤 (𝑡), 𝑡] ̸= ∅

• For node resources at DS (𝑤), the resources we consider has CPTs (𝑡) that

satisfy:

[𝑡start + min
𝑢∈𝑈,𝑣∈𝑉

{𝛾𝑢 + 𝛾𝑢𝑣 + 𝛾𝑣 + 𝛾𝑣𝑤}, 𝑡end + max
𝑢∈𝑈,𝑣∈𝑉

{𝛾𝑢 + 𝛾𝑢𝑣 + 𝛾𝑣 + 𝛾𝑣𝑤}] ∩ [𝑓−1
𝑣𝑤 (𝑡), 𝑡] ̸= ∅

where 𝑉 denote the set of SCs, 𝛾𝑣𝑤 denotes the transit time on arc from SC 𝑣

to DS 𝑤, 𝛾𝑤 denotes the dwell time at DS 𝑤.

We denote the resources that satisfy the above criteria by 𝐽(𝑡start, 𝑡end), which is the

set of resources relevant to orders that arrive between 𝑡start and 𝑡end.

B.0.2 Identify Relevant Routes

In this section, we compose routes from relevant resources (𝐽(𝑡start, 𝑡end)). As we

mentioned in section 3.1.2, there are four route types, and every route type has its

own pattern. To form different types of routes, we start with the first resource that

was identified as “relevant" by the previous step, and identify consecutive resources

154

according to the following formula:

𝑡𝑑𝑜𝑤𝑛 ≤ 𝑡𝑢𝑝 + 𝛾𝑢𝑝 < 𝑡𝑑𝑜𝑤𝑛 (B.1)

where 𝑡𝑢𝑝 (𝑡𝑑𝑜𝑤𝑛) is the CPT of the upstream (downstream) resource, 𝑡𝑑𝑜𝑤𝑛 is the

previous CPT of 𝑡𝑑𝑜𝑤𝑛 of the same arc or node resource, 𝛾𝑢𝑝 is the time it takes to

travel from the upstream resource to the downstream resource. Specifically, if the

upstream resource is a node, then 𝛾𝑢𝑝 is the dwell time at the node facility; if the

downstream resource is an arc, then 𝛾𝑢𝑝 is the transit time on the arc. In addition

to time coherence, the formation of routes follow fixed patterns. The four different

route patterns are:

• Direct route (FC 𝑢 to DS 𝑤) is composed of a FC-DS resource and a DS re-

source, i.e. 𝑟(𝑗(𝑢,𝑤, 𝑡𝑢𝑤), 𝑗(𝑤, 𝑡𝑤)). Based on formula (B.1), 𝑡𝑤 can be uniquely

identified, where 𝑡𝑤 satisfies:

𝑓𝑤(𝑡𝑤)
−1 ≤ 𝑡𝑢𝑤 + 𝛾𝑢𝑤 < 𝑡𝑤

• Indirect route (FC 𝑢 to SC 𝑣 to DS 𝑤) is composed of a FC-SC resource, a SC re-

source, a SC-DS resource and a DS resource, i.e. 𝑟(𝑗(𝑢, 𝑣, 𝑡𝑢𝑣), 𝑗(𝑣, 𝑡𝑣), 𝑗(𝑣, 𝑤, 𝑡𝑣𝑤), 𝑗(𝑤, 𝑡𝑤)).

Based on formula (B.1), 𝑡𝑣, 𝑡𝑣𝑤, 𝑡𝑤 can be identified uniquely sequentially by sat-

isfying the following equations:

𝑓−1
𝑣 (𝑡𝑣) ≤ 𝑡𝑢𝑣 + 𝛾𝑢𝑣 < 𝑡𝑣

𝑓−1
𝑣𝑤 (𝑡𝑣𝑤) ≤ 𝑡𝑣 + 𝛾𝑣𝑤 < 𝑡𝑣𝑤

𝑓−1
𝑤 (𝑡𝑤) ≤ 𝑡𝑣𝑤 + 𝛾𝑣𝑤 < 𝑡𝑤

• Third party route (with pickup point at FC 𝑢) is composed of one FC third

party resource, i.e. 𝑟(𝑗(𝑢, 𝑡)). We create routes for every relevant FC third

party resources.

• Mixed route (starts from FC 𝑢, with pickup point at SC 𝑣) is composed of one

155

FC-SC resource and one SC third party resource, i.e. 𝑟(𝑗(𝑢, 𝑣, 𝑡𝑢𝑣), 𝑗(𝑣, 𝑡𝑣)).

Based on formula (B.1), 𝑡𝑣 can be uniquely identified, where 𝑡𝑣 satisfies:

𝑓𝑣(𝑡𝑣)
−1 ≤ 𝑡𝑢𝑣 + 𝛾𝑢𝑤 < 𝑡𝑣

We denote the routes composed in this section by 𝑅(𝑡start, 𝑡end), which is the set of

relevant routes to orders that arrive between 𝑡start and 𝑡end.

156

Appendix C

Estimation of Incremental Costs

Incremental costs (𝑐𝑗) are estimated per package cost for flows that exceed the capac-

ities. It is used in the derivation of penalty costs (𝑣𝑗) in the QP formulation (section

4.3.2). It also represent an estimated “alternative cost", which is the cost for the

network to process an extra unit on the resource. In reality, such cost is not readily

available for every resource. For some third-party resources that charge extra pack-

ages by package, the incremental costs are readily available, but for other resources,

especially the retailer-controlled resources, there is no per package costs for flows that

exceed capacities.

In this section, we assume that the incremental costs of a subset of resources (𝐽)

are unknown, while the remaining resources (𝐽/𝐽) have known incremental costs.

Our goal is to develop an approximation or reasonable estimate for the unknown

incremental costs. We provide two different methods that achieve this goal.

C.1 Method 1 - The Iterative Method

The iterative method solves a transportation LP (C.1) with gradually inflated de-

mand. The intent of this heuristic is to capture the cost for each resource right after

capacities are exceeded. The inputs of the LP include initial demand forecasts (𝑑𝑘),

capacities (𝑢𝑗) and route base costs (𝑐𝑘𝑟). The LP has demand constraints (C.1b),

resource constraints for the resources with unknown incremental costs (C.1c). The

157

first term of the objective function is the sum of total route base costs, and the second

term of the objective function penalize the resources with known costs. As demand

is gradually inflated by the parameter 𝛼, a subset of the resource constraints of the

LP becomes tight, and by complementary slackness, these resource constraints have

non-zero shadow prices, which we can use as their incremental costs. The heuristic

goes through the following steps until termination:

1. Set 𝛼 = 1,

2. Solve the LP (C.1) with updated 𝛼 (𝑊 (𝛼)) for dual variables associated with

the resource constraints.

3. For any resource 𝑗 ∈ 𝐽 that has non-zero duals in the solution of 𝑊 (𝛼), set 𝑐𝑗

equal to the duals from the solution of 𝑊 (𝛼).

4. Remove 𝑗 from 𝐽 .

5. If 𝐽 is not empty, set 𝛼 = 𝛼(1 +min𝑗 𝛿𝑗)(1 + 𝜖), where 𝛿𝑗 are the relative slacks

(slack divided by capacity) in resource constraints and 𝜖 is some small constant.

Return to step 2. If 𝐽 is an empty set, the heuristic terminates.

𝑊 (𝛼) = min
∑︁
𝑘∈𝐾

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 +
∑︁
𝑗∈𝐽/𝐽

𝑐𝑗(
∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 − 𝑢𝑗) (C.1a)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝛼𝑑𝑘 ∀𝑘 ∈ 𝐾 (C.1b)

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 ≤ 𝑢𝑗 ∀𝑗 ∈ 𝐽 (C.1c)

𝑥𝑘𝑟 ≥ 0 ∀𝑘, 𝑟 (C.1d)

We note that there are several details of this heuristic that can be done differently.

First, the parameter 𝛼 can be updated differently. The intent of the formula in step

5 is to infer a reasonable step size that guarantees the inflation would lead to at

least one binding resource constraint in the next iteration. Second, instead of having

158

a universal 𝛼, the parameter can be commodity-dependent (𝛼𝑘). The commodity-

dependent 𝛼𝑘 allows the demand to be inflated in different directions. We note that

the convergence of this iterative process is not guaranteed and need to be tested

numerically for practical purposes.

C.2 Method 2 - The Linear Approximation

The linear approximation is a straightforward approach that approximates the in-

cremental costs for the retailer-controlled arc resources from third party costs. The

method assumes that each arc is associated with a “weight" and approximates the

incremental costs with these weights. In addition, it assumes that we have the third

party cost of every FC (𝑢) and DS (𝑤) pair, i.e., 𝑐3𝑝𝑢𝑤 is given. There are three types

of retailer-controlled arcs: upper arcs, lower arcs and direct arcs. For an upper arc

between FC 𝑢 to SC 𝑣, the incremental cost is approximated by the following formula:

𝑐𝑗(𝑢,𝑣) =
∑︁

𝑤∈𝑊 (𝑣)

𝑙𝑢𝑣
𝑙𝑢𝑣 + 𝑙𝑣𝑤

𝑐3p
𝑢𝑤,

where 𝑊 (𝑣) is the set of DSs connected to SC 𝑣, 𝑐3p
𝑢𝑤 is the third party cost from

FC 𝑢 to DS 𝑤, 𝑙𝑢𝑣 and 𝑙𝑣𝑤 are weights associated with upper arc (𝑢, 𝑣) and lower

arc (𝑣, 𝑤), respectively. For lower arc between SC 𝑣 to DS 𝑤, the incremental cost is

approximated by the following formula:

𝑐𝑗(𝑣,𝑤) =
∑︁

𝑢∈𝑈(𝑣)

𝑙𝑣𝑤
𝑙𝑢𝑣 + 𝑙𝑣𝑤

𝑐3p
𝑢𝑤,

where 𝑈(𝑣) is the set of FCs connected to SC 𝑣, 𝑙𝑢 is the weight associated with FC

𝑢. For direct arc between FC 𝑢 to DS 𝑤, the incremental cost is set by the third

party cost:

𝑐𝑗(𝑢,𝑤) = 𝑐3p
𝑢𝑤.

159

The weighing of arcs (𝑙𝑢𝑣, 𝑙𝑣𝑤) could be set based on the distance between the origin

and destination, or the adhoc truck cost, or other sensible weights. By setting the

incremental cost with this linear approximation, the incremental costs are compatible

to the third party costs in magnitude, in that the cost of shipping a package from a

given origin and destination with third party would be similar to the cost of all the

feasible routes where the costs are the sum of incremental costs of the resources along

the routes.

We note that the linear approximation can be extended to the case where there are

not only arc resources, but node resources that have unknown incremental costs. By

the same token, the linear approximation would require estimated “weights" for node

resources (𝑙𝑢, 𝑙𝑣, 𝑙𝑤), which could be estimated from the size of the facility or the cost

of processing a package. And for each resource type, a sensible linear approximation

need to be created similarly as the above equations such that the incremental costs

are compatible to the third party costs in magnitude.

160

Appendix D

Commodity Forecast of the Extended

Base Case

161

service area∖FC FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 FC11 FC12 FC13 Total

SA1 6.0 4.0 7.0 14.0 1.0 9.0 5.0 2.0 3.0 3.0 13.0 4.0 4.0 75.0

SA2 4.0 4.0 3.0 8.0 2.0 6.0 3.0 1.0 2.0 1.0 7.0 2.0 2.0 45.0

SA3 3.0 2.0 2.0 6.0 1.0 4.0 2.0 1.0 1.0 1.0 7.0 2.0 2.0 34.0

SA4 5.0 6.0 4.0 9.0 1.0 9.0 4.0 2.0 2.0 2.0 11.0 2.0 3.0 60.0

SA5 5.0 5.0 5.0 13.0 1.0 13.0 4.0 4.0 4.0 2.0 13.0 4.0 4.0 77.0

SA6 12.0 12.0 10.0 26.0 3.0 20.0 9.0 6.0 6.0 5.0 33.0 8.0 8.0 158.0

SA7 11.0 12.0 10.0 20.0 2.0 20.0 7.0 5.0 5.0 6.0 26.0 7.0 7.0 138.0

SA8 6.0 9.0 8.0 20.0 2.0 12.0 5.0 5.0 5.0 4.0 21.0 5.0 5.0 107.0

SA9 4.0 3.0 5.0 11.0 1.0 7.0 3.0 4.0 3.0 3.0 10.0 4.0 3.0 61.0

SA10 5.0 5.0 4.0 10.0 1.0 8.0 3.0 2.0 2.0 2.0 11.0 3.0 3.0 59.0

SA11 7.0 7.0 6.0 12.0 0.0 9.0 5.0 3.0 4.0 3.0 14.0 4.0 4.0 78.0

SA12 3.0 5.0 4.0 8.0 1.0 7.0 3.0 3.0 3.0 2.0 8.0 4.0 4.0 55.0

SA13 6.0 7.0 7.0 13.0 2.0 11.0 5.0 3.0 3.0 2.0 17.0 4.0 4.0 84.0

SA14 6.0 5.0 5.0 12.0 1.0 8.0 4.0 4.0 4.0 3.0 14.0 4.0 3.0 73.0

SA15 9.0 9.0 11.0 20.0 3.0 16.0 8.0 5.0 6.0 4.0 23.0 6.0 6.0 126.0

SA16 4.0 4.0 4.0 9.0 0.0 6.0 4.0 2.0 2.0 1.0 8.0 2.0 3.0 49.0

SA17 5.0 5.0 5.0 11.0 1.0 6.0 3.0 3.0 4.0 2.0 9.0 4.0 3.0 61.0

SA18 8.0 8.0 7.0 16.0 2.0 13.0 6.0 7.0 6.0 4.0 20.0 6.0 6.0 109.0

162

SA19 10.0 5.0 5.0 12.0 0.0 9.0 4.0 1.0 3.0 3.0 8.0 5.0 0.0 65.0

SA20 4.0 3.0 3.0 6.0 0.0 4.0 2.0 1.0 2.0 1.0 6.0 2.0 0.0 34.0

SA21 6.0 6.0 6.0 11.0 1.0 10.0 4.0 2.0 3.0 2.0 13.0 4.0 5.0 73.0

SA22 9.0 7.0 7.0 16.0 2.0 12.0 4.0 4.0 4.0 3.0 14.0 5.0 5.0 92.0

SA23 7.0 8.0 8.0 18.0 0.0 11.0 6.0 4.0 5.0 4.0 18.0 6.0 4.0 99.0

SA24 8.0 6.0 6.0 37.0 2.0 8.0 4.0 3.0 4.0 2.0 13.0 5.0 4.0 102.0

SA25 8.0 4.0 5.0 34.0 1.0 8.0 3.0 3.0 3.0 2.0 14.0 4.0 4.0 93.0

SA26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0

SA27 4.0 3.0 4.0 20.0 0.0 4.0 3.0 3.0 2.0 1.0 8.0 2.0 2.0 56.0

SA28 5.0 5.0 8.0 12.0 1.0 8.0 3.0 2.0 3.0 3.0 13.0 4.0 4.0 71.0

SA29 11.0 6.0 9.0 44.0 3.0 14.0 6.0 4.0 4.0 4.0 19.0 6.0 6.0 136.0

SA30 2.0 2.0 2.0 4.0 0.0 4.0 1.0 1.0 1.0 0.0 4.0 2.0 1.0 24.0

SA31 4.0 2.0 3.0 17.0 1.0 4.0 2.0 1.0 1.0 1.0 8.0 2.0 2.0 48.0

SA32 6.0 6.0 8.0 14.0 1.0 9.0 5.0 4.0 4.0 3.0 16.0 4.0 6.0 86.0

SA33 5.0 7.0 6.0 12.0 1.0 6.0 3.0 2.0 3.0 2.0 12.0 3.0 5.0 67.0

SA34 4.0 4.0 6.0 10.0 1.0 7.0 3.0 3.0 4.0 2.0 9.0 3.0 4.0 60.0

SA35 6.0 6.0 6.0 39.0 2.0 13.0 5.0 3.0 3.0 4.0 14.0 4.0 4.0 109.0

SA36 5.0 5.0 4.0 10.0 1.0 7.0 3.0 2.0 2.0 1.0 10.0 3.0 3.0 56.0

SA37 6.0 5.0 6.0 32.0 2.0 7.0 3.0 4.0 4.0 2.0 14.0 4.0 4.0 93.0

SA38 8.0 7.0 9.0 42.0 2.0 12.0 6.0 4.0 4.0 3.0 20.0 6.0 5.0 128.0

163

SA39 4.0 2.0 3.0 18.0 1.0 4.0 2.0 2.0 2.0 1.0 6.0 2.0 2.0 49.0

SA40 5.0 5.0 6.0 10.0 1.0 4.0 4.0 3.0 4.0 2.0 13.0 4.0 3.0 64.0

SA41 4.0 4.0 3.0 8.0 1.0 6.0 3.0 2.0 2.0 1.0 9.0 2.0 2.0 47.0

SA42 3.0 3.0 2.0 6.0 1.0 4.0 2.0 2.0 2.0 2.0 6.0 3.0 2.0 38.0

SA43 4.0 5.0 5.0 12.0 1.0 9.0 3.0 3.0 4.0 2.0 14.0 4.0 4.0 70.0

SA44 8.0 6.0 8.0 13.0 2.0 11.0 5.0 3.0 4.0 3.0 15.0 5.0 6.0 89.0

SA45 2.0 2.0 3.0 4.0 1.0 4.0 2.0 2.0 2.0 1.0 5.0 2.0 2.0 32.0

SA46 4.0 5.0 4.0 10.0 1.0 7.0 2.0 2.0 2.0 2.0 9.0 3.0 2.0 53.0

SA47 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 2.0

SA48 17.0 7.0 5.0 15.0 0.0 10.0 4.0 5.0 4.0 4.0 12.0 6.0 0.0 89.0

SA49 18.0 8.0 9.0 18.0 0.0 12.0 5.0 4.0 6.0 4.0 11.0 4.0 0.0 99.0

SA50 12.0 5.0 6.0 14.0 0.0 7.0 5.0 3.0 4.0 2.0 7.0 5.0 0.0 70.0

SA51 20.0 10.0 11.0 24.0 0.0 14.0 8.0 5.0 8.0 5.0 17.0 8.0 0.0 130.0

SA52 16.0 8.0 6.0 17.0 0.0 12.0 6.0 4.0 5.0 4.0 9.0 6.0 0.0 93.0

SA53 12.0 4.0 4.0 10.0 0.0 7.0 3.0 2.0 3.0 2.0 8.0 4.0 0.0 59.0

SA54 20.0 10.0 10.0 22.0 0.0 15.0 6.0 4.0 7.0 4.0 12.0 9.0 0.0 119.0

SA55 16.0 6.0 6.0 16.0 0.0 8.0 5.0 2.0 4.0 3.0 9.0 6.0 0.0 81.0

SA56 20.0 11.0 12.0 24.0 0.0 17.0 9.0 4.0 7.0 5.0 15.0 8.0 0.0 132.0

SA57 8.0 2.0 4.0 9.0 0.0 5.0 2.0 2.0 2.0 2.0 4.0 3.0 0.0 43.0

SA58 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0

164

SA59 0.0 1.0 0.0 0.0 0.0 0.0 0.0 2.0 1.0 0.0 1.0 0.0 0.0 5.0

SA60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0

SA61 12.0 9.0 9.0 40.0 2.0 14.0 6.0 4.0 6.0 4.0 17.0 5.0 4.0 132.0

SA62 11.0 8.0 6.0 41.0 1.0 10.0 5.0 4.0 6.0 4.0 19.0 6.0 6.0 127.0

SA63 6.0 4.0 4.0 28.0 0.0 8.0 3.0 3.0 3.0 2.0 11.0 3.0 3.0 78.0

SA64 5.0 1.0 3.0 17.0 0.0 4.0 2.0 2.0 2.0 1.0 7.0 2.0 2.0 48.0

SA65 3.0 3.0 3.0 16.0 0.0 6.0 2.0 2.0 2.0 1.0 7.0 1.0 2.0 48.0

SA66 7.0 6.0 6.0 28.0 1.0 10.0 3.0 2.0 2.0 2.0 12.0 4.0 5.0 88.0

SA67 6.0 4.0 3.0 22.0 1.0 6.0 3.0 2.0 2.0 1.0 8.0 2.0 3.0 63.0

SA68 6.0 5.0 5.0 34.0 2.0 7.0 4.0 4.0 3.0 2.0 14.0 5.0 4.0 95.0

SA69 6.0 4.0 5.0 11.0 1.0 8.0 3.0 3.0 3.0 2.0 13.0 5.0 5.0 69.0

SA70 3.0 3.0 5.0 8.0 1.0 7.0 2.0 2.0 2.0 2.0 9.0 2.0 3.0 49.0

SA71 8.0 7.0 6.0 41.0 1.0 10.0 5.0 4.0 4.0 4.0 15.0 4.0 5.0 114.0

SA72 6.0 4.0 4.0 24.0 0.0 6.0 3.0 2.0 3.0 2.0 9.0 3.0 3.0 69.0

SA73 7.0 4.0 6.0 28.0 1.0 7.0 4.0 3.0 4.0 2.0 10.0 3.0 5.0 84.0

SA74 7.0 5.0 7.0 28.0 1.0 8.0 3.0 3.0 3.0 2.0 12.0 3.0 4.0 86.0

SA75 8.0 6.0 6.0 38.0 0.0 9.0 5.0 5.0 4.0 3.0 14.0 4.0 4.0 106.0

SA76 10.0 10.0 9.0 44.0 1.0 17.0 7.0 4.0 6.0 3.0 12.0 6.0 6.0 135.0

SA77 5.0 5.0 4.0 24.0 0.0 7.0 3.0 3.0 3.0 1.0 8.0 3.0 4.0 70.0

SA78 4.0 4.0 5.0 10.0 0.0 8.0 2.0 2.0 2.0 1.0 8.0 2.0 1.0 49.0

165

SA79 10.0 6.0 7.0 16.0 0.0 12.0 5.0 4.0 5.0 3.0 19.0 4.0 1.0 92.0

SA80 1.0 2.0 1.0 4.0 0.0 2.0 1.0 0.0 0.0 1.0 2.0 1.0 1.0 16.0

SA81 6.0 3.0 4.0 9.0 0.0 8.0 2.0 3.0 3.0 2.0 12.0 2.0 1.0 55.0

SA82 8.0 6.0 6.0 12.0 1.0 11.0 3.0 4.0 4.0 3.0 18.0 4.0 1.0 81.0

SA83 5.0 6.0 6.0 15.0 0.0 7.0 3.0 3.0 2.0 1.0 13.0 4.0 0.0 65.0

SA84 2.0 2.0 2.0 8.0 0.0 4.0 3.0 1.0 0.0 0.0 3.0 1.0 3.0 29.0

SA85 1.0 1.0 1.0 4.0 0.0 2.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 11.0

SA86 1.0 2.0 2.0 4.0 1.0 4.0 0.0 1.0 0.0 1.0 2.0 0.0 2.0 20.0

SA87 1.0 1.0 1.0 4.0 1.0 2.0 1.0 0.0 0.0 0.0 2.0 1.0 2.0 16.0

SA88 2.0 2.0 1.0 5.0 0.0 4.0 0.0 1.0 0.0 0.0 1.0 1.0 2.0 19.0

SA89 1.0 1.0 1.0 2.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 1.0 9.0

SA90 18.0 29.0 17.0 37.0 1.0 28.0 8.0 9.0 10.0 5.0 29.0 9.0 3.0 203.0

SA91 12.0 8.0 8.0 15.0 0.0 11.0 4.0 4.0 5.0 3.0 20.0 6.0 2.0 98.0

SA92 13.0 10.0 10.0 19.0 0.0 18.0 8.0 6.0 8.0 4.0 26.0 7.0 2.0 131.0

SA93 2.0 3.0 2.0 6.0 0.0 2.0 0.0 0.0 0.0 1.0 2.0 1.0 3.0 22.0

SA94 14.0 10.0 9.0 12.0 0.0 13.0 5.0 4.0 5.0 3.0 13.0 5.0 2.0 95.0

SA95 3.0 5.0 4.0 6.0 1.0 6.0 1.0 2.0 2.0 7.0 5.0 2.0 0.0 44.0

SA96 1.0 2.0 2.0 4.0 0.0 2.0 1.0 1.0 1.0 1.0 2.0 0.0 2.0 19.0

SA97 4.0 5.0 5.0 11.0 0.0 6.0 2.0 2.0 2.0 2.0 10.0 3.0 0.0 52.0

SA98 2.0 2.0 2.0 8.0 1.0 4.0 1.0 0.0 0.0 0.0 3.0 1.0 2.0 26.0

166

SA99 1.0 2.0 1.0 4.0 0.0 2.0 1.0 1.0 1.0 0.0 1.0 1.0 2.0 17.0

SA100 1.0 1.0 1.0 3.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 2.0 10.0

SA101 1.0 2.0 2.0 5.0 0.0 0.0 1.0 0.0 1.0 1.0 2.0 1.0 2.0 18.0

SA102 1.0 2.0 1.0 2.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 8.0

SA103 1.0 1.0 1.0 4.0 0.0 4.0 1.0 1.0 0.0 0.0 3.0 1.0 0.0 17.0

SA104 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.0

SA105 12.0 16.0 15.0 20.0 0.0 20.0 6.0 5.0 6.0 3.0 15.0 6.0 2.0 126.0

SA106 14.0 18.0 14.0 28.0 0.0 20.0 5.0 5.0 6.0 4.0 22.0 7.0 3.0 146.0

SA107 18.0 19.0 20.0 39.0 1.0 20.0 6.0 7.0 7.0 3.0 31.0 9.0 5.0 185.0

SA108 1.0 2.0 1.0 4.0 0.0 2.0 1.0 0.0 0.0 0.0 1.0 1.0 2.0 15.0

SA109 4.0 4.0 3.0 11.0 0.0 6.0 2.0 1.0 2.0 1.0 8.0 2.0 1.0 45.0

SA110 17.0 24.0 18.0 38.0 1.0 28.0 8.0 7.0 7.0 5.0 25.0 9.0 4.0 191.0

SA111 12.0 17.0 9.0 20.0 0.0 14.0 5.0 4.0 4.0 2.0 16.0 6.0 2.0 111.0

SA112 9.0 11.0 10.0 22.0 0.0 15.0 5.0 5.0 6.0 2.0 18.0 4.0 1.0 108.0

SA113 21.0 32.0 20.0 48.0 2.0 32.0 8.0 8.0 10.0 4.0 30.0 10.0 6.0 231.0

SA114 18.0 27.0 21.0 32.0 0.0 26.0 7.0 9.0 10.0 5.0 23.0 9.0 5.0 192.0

SA115 1.0 1.0 2.0 4.0 1.0 2.0 1.0 0.0 0.0 1.0 2.0 1.0 2.0 18.0

SA116 18.0 18.0 18.0 40.0 1.0 26.0 10.0 9.0 7.0 3.0 32.0 8.0 2.0 192.0

SA117 20.0 27.0 29.0 56.0 1.0 31.0 9.0 8.0 10.0 6.0 48.0 12.0 4.0 261.0

SA118 1.0 1.0 2.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 2.0 11.0

167

SA119 15.0 17.0 20.0 42.0 2.0 30.0 7.0 6.0 8.0 6.0 21.0 9.0 42.0 225.0

SA120 3.0 5.0 4.0 7.0 1.0 7.0 1.0 2.0 1.0 2.0 5.0 3.0 6.0 47.0

SA121 3.0 3.0 3.0 4.0 0.0 5.0 1.0 1.0 2.0 1.0 5.0 3.0 10.0 41.0

SA122 13.0 11.0 10.0 20.0 2.0 19.0 7.0 7.0 4.0 4.0 9.0 3.0 14.0 123.0

SA123 11.0 12.0 13.0 22.0 2.0 23.0 8.0 7.0 7.0 7.0 19.0 6.0 22.0 159.0

SA124 7.0 6.0 7.0 12.0 1.0 11.0 2.0 4.0 2.0 2.0 7.0 3.0 11.0 75.0

SA125 2.0 3.0 3.0 6.0 0.0 4.0 1.0 1.0 1.0 1.0 3.0 1.0 6.0 32.0

SA126 11.0 13.0 13.0 24.0 2.0 20.0 7.0 4.0 5.0 6.0 14.0 7.0 22.0 148.0

SA127 11.0 14.0 13.0 24.0 2.0 18.0 5.0 4.0 5.0 5.0 17.0 6.0 22.0 146.0

SA128 4.0 4.0 4.0 32.0 1.0 9.0 2.0 3.0 2.0 1.0 7.0 3.0 7.0 79.0

SA129 13.0 17.0 18.0 36.0 3.0 28.0 5.0 6.0 8.0 7.0 22.0 8.0 42.0 213.0

SA130 9.0 16.0 11.0 24.0 1.0 14.0 5.0 3.0 4.0 4.0 11.0 5.0 23.0 130.0

SA131 4.0 6.0 5.0 8.0 0.0 7.0 3.0 2.0 2.0 1.0 6.0 2.0 9.0 55.0

SA132 14.0 16.0 17.0 33.0 1.0 27.0 6.0 5.0 8.0 5.0 21.0 7.0 33.0 193.0

SA133 2.0 2.0 3.0 6.0 0.0 3.0 1.0 0.0 1.0 1.0 4.0 2.0 5.0 30.0

SA134 4.0 6.0 6.0 12.0 1.0 10.0 3.0 2.0 3.0 3.0 9.0 3.0 11.0 73.0

SA135 3.0 2.0 3.0 6.0 0.0 5.0 2.0 1.0 1.0 1.0 3.0 2.0 5.0 34.0

SA136 9.0 11.0 13.0 22.0 2.0 26.0 6.0 5.0 7.0 5.0 18.0 5.0 27.0 156.0

SA137 11.0 13.0 10.0 20.0 2.0 20.0 6.0 4.0 3.0 4.0 14.0 6.0 22.0 135.0

SA138 8.0 9.0 11.0 20.0 1.0 20.0 6.0 5.0 5.0 5.0 12.0 5.0 22.0 129.0

168

SA139 10.0 13.0 12.0 18.0 1.0 18.0 6.0 5.0 5.0 4.0 15.0 6.0 21.0 134.0

SA140 2.0 3.0 3.0 4.0 0.0 5.0 2.0 1.0 0.0 0.0 3.0 1.0 6.0 30.0

SA141 8.0 8.0 10.0 24.0 1.0 15.0 4.0 3.0 5.0 3.0 12.0 5.0 23.0 121.0

SA142 4.0 5.0 5.0 11.0 0.0 9.0 2.0 2.0 2.0 2.0 6.0 2.0 10.0 60.0

SA143 6.0 6.0 6.0 14.0 0.0 10.0 2.0 4.0 4.0 3.0 6.0 4.0 14.0 79.0

Total 1006 957 925 2396 107 1406 522 426 476 342 1621 542 747

Table D.1: Demand forecast of each (FC, service area) pair. (In this table, we omit service areas that has 0 forecast for all
FCs.)

169

170

Appendix E

Tools for Solving Large Scale QP

The quadratic program in the QP algorithm can be hard to solve when the number

of variables (resources, routes and commodities) are large. We propose two iterative

methods that aim to make the process of obtaining near optimal (dual) solutions

more computationally efficient. We remind readers that the quadratic program in the

QP algorithm is equation (4.6). The time element 𝜏 in quadratic program denotes

the time when the quadratic program is solved, which is irrelevant to this section.

Therefore, we drop 𝜏 in this section for simplicity:

𝑊𝑄𝑃 (d, f̄) = min
1

2

∑︁
𝑗∈𝐽

𝑣𝑗𝑔
2
𝑗 +

∑︁
𝑘∈𝐾

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟

s.t.
∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 − 𝑔𝑗 ≤ 𝑓𝑗 ∀𝑗 ∈ 𝐽

∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝑘 ∀𝑘 ∈ 𝐾

𝑥𝑘𝑟, 𝑔𝑗 ≥ 0 ∀𝑘, 𝑟, 𝑗

(E.1)

E.1 Method 1: The Subgradient Method

The quadratic program can be decomposed into multiple subproblems when resource

constraints are relaxed:

171

𝑊̃ = min
1

2

∑︁
𝑗∈𝐽

𝑣𝑗𝑔
2
𝑗 +

∑︁
𝑘∈𝐾

∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 + 𝜆𝑗(
∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥𝑘𝑟 − 𝑔𝑗 − 𝑓𝑗)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝑘 ∀𝑘 ∈ 𝐾

𝑥𝑘𝑟, 𝑔𝑗 ≥ 0 ∀𝑘, 𝑟, 𝑗,

(E.2)

where 𝜆𝑗 is a non-negative multiplier of resource constraint 𝑗. It is not hard to

show that solving this relaxed problem is equivalent to solving the following 𝐾 + 1

subproblems in parallel:

Subproblem 0:

min
1

2

∑︁
𝑗∈𝐽

𝑣𝑗𝑔
2
𝑗 − 𝜆𝑗

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑔𝑗

s.t. 𝑔𝑗 ≥ 0 ∀𝑗,
(E.3)

Subproblem 1 to 𝐾 (one for each commodity 𝑘 ∈ 𝐾):

min
∑︁
𝑟∈𝑅𝑘

𝑐𝑘𝑟𝑥𝑘𝑟 + 𝜆𝑗
∑︁
𝑟∈𝑅𝑗

𝑥𝑘𝑟

s.t.
∑︁
𝑟∈𝑅𝑘

𝑥𝑘𝑟 = 𝑑𝑘

𝑥𝑘𝑟 ≥ 0 ∀𝑟

(E.4)

We note that subproblem 0 has closed form solution: 𝑔𝑗 = 𝜆𝑗/𝑣𝑗. The subgradi-

ent method starts with an initial vector of multiplier {𝜆0𝑗∀𝑗 ∈ 𝐽}, then update the

multipliers with the optimal solutions of the subproblems until the optimality gap

is smaller than some desired threshold 𝜖 In summary, the subgradient method goes

through the following steps until termination:

1. Set an initial multipler 𝜆0𝑗 for every resource 𝑗. One choice of initial multipler

is the variable cost for the corresponding resource, i.e., 𝜆0𝑗 = 𝑐𝑗 for all 𝑗.

2. Solve the subproblems for optimal solutions (𝑥*𝑘𝑟 and 𝑔*𝑗). Note that we have

an upper and lower bound of the optimal cost and a feasible solution at every

172

iteration:

• upper bound 𝑊 upper = 𝑊𝑄𝑃 (𝑥*𝑘𝑟, 𝑔𝑗)𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑Wlower = 𝑊̃ (𝑥*𝑘𝑟, 𝑔*𝑗)

•• feasible solution 𝑥*𝑘𝑟, 𝑔𝑗, where 𝑔𝑗 = (
∑︀

𝑟∈𝑅𝑗

∑︀
𝑘∈𝐾𝑟

𝑥*𝑘𝑟 − 𝑓𝑗)
+

3. Update the mutlipliers with optimal solutions (𝑥*𝑘𝑟 and 𝑔*𝑗). We propose two

different ways of doing it:

(a) Method 1: Updated the multipliers with 𝑥*𝑘𝑟 and 𝑔*𝑗

𝜆𝑚+1
𝑗 := 𝜆𝑚𝑗 + 𝛼(

∑︁
𝑟∈𝑅𝑗

∑︁
𝑘∈𝐾𝑟

𝑥*𝑘𝑟 − 𝑓𝑗 − 𝑔*𝑗) ∀𝑗,

where step size 𝛼 is a function of the upper and lower bound of the optimal

solution

𝛼 =
𝜃(𝑊 upper −𝑊 lower)

(
∑︀

𝑟∈𝑅𝑗

∑︀
𝑘 ∈ 𝐾𝑟𝑥*𝑘𝑟 − 𝑓𝑗 − 𝑔*𝑗)

2

where 𝜃 is a scalar satisfying 0 < 𝜃 ≤ 2. See [11] for further discussion

about the choice of step sizes.

(b) Method 2: Update the multipliers with 𝑥*𝑘𝑟

First, we create the “intermediate multipliers" 𝜆𝑚𝑗 with feasible excess flow

solution 𝑔𝑗 inspired by the closed form solution of subproblem 0:

𝜆𝑚𝑗 :=
𝑔𝑗
𝑣𝑗

∀𝑗

Then we update the multiplier with the “intermediate multipliers" with

some step size 𝛼 ∈ (0, 1):

𝜆𝑚+1
𝑗 = 𝛼𝜆𝑚𝑗 + (1− 𝛼)𝜆𝑚𝑗 ∀𝑗

173

4. If the optimality gap is smaller some desired threshold 𝜖, i.e.,

𝑊 upper −𝑊 lower < 𝜖,

then the heuristic terminates, otherwise, return to step 2.

E.2 Method 2: The ADMM Method (Multi-blocks)

A dilemma in the subgradient method is that we do not have a clear guidance on

the choice of step size that guarantees convergence for multipliers. On the other

hand, Alternating Direction Method of Multipliers (ADMM) has strong convergence

properties, including the one we care the most - multipliers will converge to optimal

regardless of the choice of step size. (An introduction to ADMM can be found in

[4].) The standard ADMM framework described in [4] can not be directly applied

to our problem since it is limited to two blocks of variables, while our problem was

decomposed into 𝐾 + 1 blocks after relaxing the resource constraints. Therefore, we

introduce an ADMM-like method that contains 𝐾 + 1 blocks instead of two blocks.

We note that method doesn’t enjoy the same convergence guarantees as the standard

ADMM method due to the differences in problem structure, and therefore, would

require more research on convergence guarantee like [6].

Before we dive in to the algorithm, let us re-write the full problem (equation E.1)

into a simpler form, which captures the main structure of our problem:

min 𝑓(g) +
∑︁
𝑘∈𝐾

ℎ(xk)

s.t.
∑︁
𝑘∈𝐾

𝐴𝑘xk − g ≤ f̄

xk ∈ 𝑋𝑘 ∀𝑘

xk,g ≥ 0 ∀𝑘 ∈ 𝐾,

(E.5)

where g is a vector (with size |𝐽 |) that contains all the excess flow variables (𝑔𝑗),

xk is a vector (with size |𝑅|) that concatenates all the assignment variables (𝑥𝑘𝑟) of

174

commodity 𝑘, f̄ is a vector (with size |𝐽 |) of target flows. The resource constraint in

(E.1) is replaced by the first constraint in (E.5), the demand constraint in (E.1) is

replaced by the second constraint in (E.5). Unlike the regular Lagrange relaxation

applied in the subgradient method, we apply the augmented Lagrangian:

𝐿(x,g𝜆) = 𝑓(g) +
∑︁
𝑘∈𝐾

ℎ(xk) + 𝜆𝑇 (
∑︁
𝑘∈𝐾

𝐴𝑘xk − g ≤ f̄) +
𝜌

2
||(
∑︁
𝑘∈𝐾

𝐴𝑘xk − g ≤ f̄)||2

(E.6)

where 𝜆 is a vector of multipliers (with size |𝐽 |) and 𝜌 > 0. We note that the penalty

parameter 𝜌 need not be constant over iterations. We refer readers to [4] for further

discussion on choice of penalty parameters. The method goes through the following

steps until termination:

1. Start with an initial feasible solution of (E.5): 𝑥0𝑘𝑟 and 𝑔0𝑗 and 𝜆0𝑗 , where 0 denote

the 0th iteration

2. Minimize equation (E.6) sequentially with respect to x1,x2, · · · ,xK and g under

the last two constraints in (E.5), i.e,

x𝑚+1
𝑖 := argmin

x𝑖∈𝑋𝑖,x𝑖≥0
𝐿(x𝑚+1

1 ,x𝑚+1
2 , · · · ,x𝑚+1

𝑖−1 ,x𝑖,x
𝑚
𝑖+1, · · · ,x𝑚

𝐾 ,g
𝑚, 𝜆𝑚) ∀𝑖 := 1, 2, · · ·𝐾

g𝑚+1 = argmin
g≥0

𝐿(x𝑚+1
1 ,x𝑚+1

2 , · · · ,x𝑚+1
𝑁 ,g𝑚, 𝜆𝑚)

where 𝑚 is the number of iteration.

3. Update multipliers by the following equation:

𝜆𝑚+1 := 𝜆𝑚 + (
∑︁
𝑘∈𝐾

𝐴𝑘xk
𝑚 − g𝑚 ≤ f̄)

4. If the optimality gap is smaller than some threshold 𝜖, then the heuristic ter-

minates, otherwise, return to step 2. We note that upper and lower bound is

readily available in each iteration from x𝑚
𝑘 and g𝑚 (the same procedure as the

upper and lower bound derivation in the subgradient method).

175

E.3 Method 3: The ADMM Method (Two-blocks)

In this section, we show that by introducing additional variables z, the quadratic

program can be decomposed into two-blocks of variables, which fits the two-block

structure described in [4], therefore, preserves the convergence guarantee of the mul-

tipliers. We replace the first constraint in E.5 by the following constraints:

𝐴𝑘xk = zk ∀𝑘 ∈ 𝐾 (E.7)

g = z0 (E.8)∑︁
𝑘∈𝐾

zk + z0 ≤ f̄ (E.9)

With this new formulation, the augmented Lagrangian (after relaxing constraint E.7

and E.8) is:

𝐿(x,g, z, 𝜃) = 𝑓(g) +
∑︁
𝑘∈𝐾

ℎ(xk) +
∑︁
𝑘∈𝐾

𝜃k
𝑇 (𝐴𝑘xk − zk) + 𝜃0

𝑇 (g − z0)

+
𝜌

2
(
∑︁
𝑘∈𝐾

||(𝐴𝑘xk − zk)||2 + ||(g − z0)||2)

where xk ∈ 𝑋𝑘, g ≥ 0, z ∈ 𝑍 = {z|
∑︁
𝑘∈𝐾

zk + z0 ≤ f̄}

It’s easy to see that variable x,g are now decomposed. By treating variable x and

g as one block, and z as the other block, we obtain the same two-block structure as

described in [4]. The rest is just standard ADMM procedure, which we do not repeat

here.

176

Bibliography

[1] J. Acimovic and S. C. Graves. Making better fulfillment decisions on the fly in

an online retail environment. Manufacturing & Service Operations Management,

17(1):34–51, 2015.

[2] A. Amil, A. Makhdoumi, and Y. Wei. Multi-item order fulfillment revisited: Lp

formulation and prophet inequality. Available at SSRN 4176274, 2022.

[3] J. M. Andrews, V. F. Farias, A. I. Khojandi, and C. M. Yan. Primal–dual

algorithms for order fulfillment at urban outfitters, inc. INFORMS Journal on

Applied Analytics, 49(5):355–370, 2019.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers.

Foundations and Trends® in Machine learning, 3(1):1–122, 2011.

[5] U. C. Bureau. The 2nd quarter 2022 retail e-commerce sales report. 2022.

https://www.census.gov/retail/index.html.

[6] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of admm for multi-

block convex minimization problems is not necessarily convergent. Mathematical

Programming, 155(1):57–79, 2016.

[7] S. R. Department. Projected retail e-commerce gmv share of amazon in

the united states from 2016 to 2021. 2022. https://www.statista.com/

statistics/788109/amazon-retail-market-share-usa/.

177

[8] S. R. Department. Number of packages delivered by amazon logistics in

the united states from 2018 to 2020. 2022. https://www.statista.com/

statistics/1178979/amazon-logistics-package-volume-united-states/.

[9] S. R. Department. Amazon’s shipping costs from 2011 to 2021. 2022. https:

//www.statista.com/statistics/806498/amazon-shipping-costs/.

[10] L. DeValve, Y. Wei, D. Wu, and R. Yuan. Understanding the value of fulfill-

ment flexibility in an online retailing environment. Manufacturing & Service

Operations Management, 2021.

[11] M. L. Fisher. The lagrangian relaxation method for solving integer programming

problems. Management science, 27(1):1–18, 1981.

[12] W. Gautschi. A computational procedure for incomplete gamma functions. ACM

Transactions on Mathematical Software (TOMS), 5(4):466–481, 1979.

[13] A. Govindarajan, A. Sinha, and J. Uichanco. Joint inventory and fulfillment

decisions for omnichannel retail networks. Naval Research Logistics (NRL), 68

(6):779–794, 2021.

[14] P. Harsha, S. Subramanian, and J. Uichanco. Dynamic pricing of omnichannel

inventories: honorable mention—2017 m&som practice-based research competi-

tion. Manufacturing & Service Operations Management, 21(1):47–65, 2019.

[15] A. Hartmans. Amazon says it will ship more packages than ups and fedex by

2022 at the latest. 2021. https://www.businessinsider.com/amazon-surpassing-

ups-fedex-by-2022-dave-clark-2021-11.

[16] S. Jasin and A. Sinha. An lp-based correlated rounding scheme for multi-item

ecommerce order fulfillment. Operations Research, 63(6):1336–1351, 2015.

[17] Y. Lei, S. Jasin, and A. Sinha. Joint dynamic pricing and order fulfillment for

e-commerce retailers. Manufacturing & Service Operations Management, 20(2):

269–284, 2018.

178

[18] Y. Lei, S. Jasin, J. Uichanco, and A. Vakhutinsky. Joint product framing (display,

ranking, pricing) and order fulfillment under the multinomial logit model for e-

commerce retailers. Manufacturing & Service Operations Management, 24(3):

1529–1546, 2022.

[19] Y. F. Lim, S. Jiu, and M. Ang. Integrating anticipative replenishment allo-

cation with reactive fulfillment for online retailing using robust optimization.

Manufacturing & Service Operations Management, 23(6):1616–1633, 2021.

[20] W. Ma. Simple and order-optimal correlated rounding schemes for multi-item

e-commerce order fulfillment. arXiv preprint arXiv:2207.04774, 2022.

[21] L. Wei, R. Kapuscinski, and S. Jasin. Shipping consolidation across two ware-

houses with delivery deadline and expedited options for e-commerce and omni-

channel retailers. Manufacturing & Service Operations Management, 23(6):1634–

1650, 2021.

[22] P. J. Xu, R. Allgor, and S. C. Graves. Benefits of reevaluating real-time order

fulfillment decisions. Manufacturing & Service Operations Management, 11(2):

340–355, 2009.

[23] Y. Zhao, X. Wang, and L. Xin. Multi-item online order fulfillment in a two-layer

network. Chicago Booth Research Paper, (20-41), 2020.

179

