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ABSTRACT

inthis paper we formulate and solve a distributed binary
hypothesis-testing problem. We consider a cooperative team that consists
of two decision makers (DM's); one is refered to as the primary DM and the
other as the consulting DM. The team objective is to carry out binary
hypothesis testing based upon uncertain measurements. The primary DM
can declare his decision based only on his own measurements; however, in
ambiguous situations the primary DM can ask the consuiting DM for an
opinion and he incurs a communications cost. Then the consuiting DM
transmits either a definite recommendation or pleads ignorance. The
prirmary DM has the responsibility of making a final definitive decision.
The team objective is the minimization of the probability of error, taking
into account different costs for hypothesis misclassification and
communication costs. Numerical results are inciuded to demonstrate the
dependence of the different decision thresholds on the problem
parameters, including different perceptions of the prior information.

Thesis Supervisor ;. Michael Athans
Professor of Systems Science and Engineering
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1. INTRODUCTION AND MOTIVATION

In this paper we formulate, solve, and analyze a distributed hypothesis-
testing problem which is an abstraction of a wide class of team decision
problems. It represents a normative version of the “second-opinion”
problem in which a primary decision maker (DM) has the option of
soliciting, at a cost, the opinion of a consulting DM when faced with an
ambiguous interpretation of uncertain evidence.

.1 Motivating Examples.

Our major motivation for this research is provided by generic hypothesis-
testing problems in the field of Command and Control. To be specific,

consider the problem of target detection formalized as a binary hypothesis

testing problem ( Hy, means no target, while H, denotes the presense of a

target ). Suppose that independent noisy measurements are obtained by
two geographically distributed sensors (Figure 1). One sensor, the primary
DM, has final responsibility for declaring the presense or absence of a
target, with different costs associated with the probability of false alarm
versus the probability of missed detection. If the primary DM relied only
on the measurements of his own sensor, then we have a classical
centralized detection problem that has been extensively analyzed; see, for
example, Van Trees [1]. If the actual measurements of the second sensor

were communicated to the primary DM, we have once more a classical
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Figure 1. Problem Formulation




centralized detection probiem in which we have two independent
measurements on the same hypothesis; in this case, we require
communication of raw data and this is expensive both from a channel
bandwidth point of view and, perhaps more importantly, because radio or

acoustic communication can be intercepted by the enemy.

Continuing with the target detection problem, we can arrive at the model
that we shall use in the sequel by making the following assumptions which
model the desire to communicate as little as possible. The primary DM can
iook at the data from his own sensor and attempt to‘arrive at a decision
using a likelihood-ratio test (Irt), which yields a threshold test in the
linear-Gaussian case. Quite often the primary DM can be confident about
the quality of his decision. However, we can imagine that there will be
instances that the data will be close to the decision threshold,
corresponding to an ambiguous situation for the primary DM. In such cases
it may pay off to incur a communications cost and seek some information
from the other available sensor. it remains to establish what is the nature

of the information to be transmitted back to the primary DM.

In our model, we assume the existence of a consulting DM having access to
the data from the other sensor. We assume that the consulting DM has the
ability to map the raw data from his sensor into decisions. The consulting
DM is "activated” only at the request of the primary DM. It is natural to
speculate that his advise will be ternary in nature: YES, | think there is a
target; NO, | do not think there is a target; and, SORRY, NOT SURE MYSELF,
Note that these transmitted decisions in general require less bits than the



raw sensor data, hence the communication is cheap and more likely to
escape enemy interception. Then, the primary DM based upon the message
received from the consulting DM has the responsibility of making the final

binary team decision on whether the target is present or absent.

The need for communicating with small-bit messages can be appreciated
if we think of detecting an enemy submarine using passive sonar(Figure 2).
We associate the primary DM with an attack submarine, and the consulting
DM with a surface destroyer. Both have towed-array sonar capable of
long-range enemy submarine detection. Request for information from the
submarine to the destroyer can be initiated by having the sub sonar emit a
lower power sonar pulse. A short active sonar pulse can be used to
transmit the recommendation from the destroyer to the submarine. Thus,
the submarine has the choice of obtaining a "second opinion” with minimal

compromise of its covert mission.

Of course, target detection is only an example of more general binary
hypothesis-testing problems. Hence, one can readily extend the basic
distributed team decision problem setup to other situations. For example,
in the area of medical diagnosis we imagine a primary physician
interpreting the outcomes of several tests. In case of doubt, he sends the
patient to another consulting physician for other tests ( at a dollar cost ),
and seeks his recommendation. However, the primary physician has the
final diagnostic responsibility. Similar scenarios occur in the intelligence
field where the “"compartmentalization” of sensitive data, or the

protection of a spy, dictate infrequent and low-bit communications. In
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more general military Command and Control probiems, we seek insight on
formalizing the need to break EMCON, and at what cost, to resolve tactical

situation assessment ambiguities.

{2 Literature Review.

The solution of distributed decision problems is quite a bit different, and
much more difficult, as compared to their centralized counterparts. indeed
there is only a handful of papers that deal with solutions to distributed
hypothesis-testing problems. The first attempt to illustrate the
difficulties of dealing with distributed hypothesis-testing problems was
published by Tenney and Sandell [2]; they point out that the decision
thresholds are in general coupled. Ekchian [3] and Ekchian and Tenney [4]
deal with detection networks in which downstream DM's make decisions
based upon their local measurements and upstream DM decisions. Kushner
and Pacut [S) introduced a delay cost ( somewhat similar to the
communications cost in our model ) in the case that the observations have
exponential distributions, and performed a simulation study. Recently,
Chair and Varshney (6] have pointed out how the results in [2] can be
extended in more general settings. Boettcher [7] and Boettcher and Tenney
(8], [9], have shown how to modify the normative solutions in [4] to reflect
human limitation constraints, and arrive in at normative/descriptive
model that captures the constraints of human implementation in the
presense of decision deadlines and increasing human workload;

experiments using human subjects showed close agreement with the



predictions of their normative/descriptive model. Finally, Tsitsiklis [10]
and Tsitsiklis and Athans [11] demonstrate that such distributed
hypothesis-testing problems are NP-complete; their research provides
theoretical evidence regarding the inherent complexity of solving optimal
distributed decision problems as compared to their centralized

counterparts ( which are trivially solvable ).

1.3 Contributions of this Research.

The main contribution of this thesis relates to the formulation and
optimal solution of the team decision problem described above. Under the
assumption that the measurements are conditionally independent, we show
that the optimal decision rules for both the primary and the consuiting DM
are deterministic and are expressed as likelihood-ratio tests with
constant thresholds which are tightly coupled (see Section 3 and the

Appendix ).

when we specialize the general results to the case that the observations
are linear and the statistics are Gaussian, then we are able to derive
explicit expressions for the decision thresholds for both the primary and
consuiting DM's ( see Section 4 ). These threshold equations are tightly
coupled, thereby necessitating an iterative solution. They provide
clear-cut evidence that the DM's indeed operate as team members; their
optimal thresholds are very different from those that they would use in

- isolation, i.e. in a non-team setting. This, of course, was the case in other



versions of the distributed hypothesis-testing problem, e.g. [2].

The numerical sensitivity results ( summarized in Section 5 ) for the
linear-Gaussian case provide much needed intuitive understanding of the
problem and concrete evidence that the team members operate in a
more-or-less intuitive manner, especially after the fact. wWe study the
impact of changing the communications cost and the measurement
accuracy of each DM upon the decision thresholds and the overall team
performance. In this manner we can obtain valuable insight on the optimal
communication frequency between the DM's. As to be expected, as the
communication cost increases, the frequency of communication (and
asking for a second opinion) decreases, and the team performance
approaches that of the primary DM operating in isolation. In addition, we
compare the overall distributed team performance to the centralized
version of the problem in which the primary DM had access, at no cost, to
both sets of observations. In this manner, we can study the degree of
inherent performance degradation to be expected as a consequence of
enforcing the distributed decision architecture in the overall decision

making process.

Finally, we study the team performance degradation when one of the team
members, either the primary or the consulting DM, has an erroneous
estimate of the hypotheses prior probabilities. This corresponds to mildly
different mental models of the prior situation assesment; see Athans [12].
As expected the team performance is much more sensitive to

misperceptions by the primary DM as compared to similar misperceptions



by the consulting DM. This implies that, if team training reduces
misperceptions on the part of the DM's, the greatest payoff is obtained in
training the primary DM.



2. PROBLEM DEFINITION

2.1 _Problem Description

The problem we study is one of hypothesis testing. The team has to

choose among two alternative hypotheses H, and H,, with a priori

probabilities
P(Ho)=p0 P(H1 )=p, (1)

Each of two DM's, one called primary (DM A) and one consulting (DM B),

receives an uncertain measurement and respectively (Figure 1),
Yo Yp g

distributed with known joint probability density functions

P(ya,ys IH) i=0,1, (2)

The final decision of the team Ue (0 or 1, indicating H0 or H, to be
true) is the responsibility of the primary DM DM A initially makes a

preliminary decision u, where it can either decide (0 or 1) on the basis of

its own data (i.e, y,), or at a cost (C20) can solicit DM B's opinion (ua=l),

prior to making the commital decision.
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The consulting DM's decision Up consists of three distinct messages (call

them x,v and z) and is activated only when asked by DM A. We decided to
assign three messages to DM B, because we wanted to have one message
indicating each of the two hypotheses and one message indicating that the
consulting DM is 'not sure.” In fact, we proved that the optimal content for
the messages of DM B is the one mentioned above.

When the message from DM B is received,the burden shifts back to the

primary DM, which is called to make the commital decision of the team
based on his own data and the information from the consulting DM,

2.2 Cost Function

We now define the following cost function :

J {0, 1)x(Hy,H,) + R (3)

with J(u,H,) being the cost incurred by the team choosing U, when H is

true.

Then, the optimality criterion for the team is a function

J% 0, 1,10%(0, 1)x(HyH,) + R (4)
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with
. JUpH)*C 5 u =T (information requested)
I U= | 5)
JUg,Hp) ; otherwise

The cost structure of the problem is the usual cost structure used in
Hypothesis Testing problems, but also includes the non-negative
communication cost, which the team incurs when the DM A decides to

obtain the consulting DM's information.

Remark : According to the rules of the problem, when the preliminary

decision u, of the primary DM is 0 or 1, then the final team decision is 0 or

Irespectively (e P(us=ilu =1)=1 for i=0,1).

The objective of the decision strategies will be to minimize the expected
cost incurred

min E[J"(u_,u,H)] (6)

where the minimization is over the decision rules of the two DMs. Note

that the decision rule of the consulting DM is implicitly included in the

cost function, through the final team decision Up (which is a function of

the decision of the consulting DM.
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2.3 Prior Knowledge

All the prior information is known to both DMs. The only information they
do not share is their observations. Each DM knows only its own observation
and, because of the conditional independence assumption, nothing about the

other DM's observation.

2.4 Problem Statement

The problem can now be stated as follows :

Froblem 27 Given Py» Py, the distributions P(ya,ya l H) for 1=0,1 with

Y€V YpEYp and the cost function J*, find the decision rules Uy, Ug and U

as functions

Y, Y, {011 (7
and
Yoo Yo x (Xv,2} -+ (0,1} (9)

subject to: P(ue=i| u,=i)=1 for i=0,1, which minimize the expected cost.




25 Centralized Version of Zrodlem 2/

The centralized counterpart of the problem, where a single DM receives
both observations is a well known probiem. The solution is deterministic

and given by a likelihood ratio test (Irt). That is:

Y, Yy X Vg (0,1) (10)
with

O s

where

Algvg) = [Py T HeIpol/ [Py, yg I H D]
= PlH, 1Yyl PH 1Y,y (12)
and t lis a precomputed threshold given by

t = [JO,H = J(LHDI [T, Hg)- JO,Hy)] | (13)

provided  J(1,H,» J(O,H,y) . Thus, the difficulty of our problem arises

because of its decentralized nature.
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We will show that, under certain assumptions, the most restrictive of
which is conditional independence of the observations, the optimal
decision rules for Prob/em 2/ are deterministic and given by Irt's with
constant thresholds. The thresholds of the two DMs are coupled, indi cating

that the DMs work as a team rather than individuals.
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3. THE SOLUTION TO THE GENERAL PROBLEM
In this section we summarize the main theoretical contributions of this
thesis as they relate to the solution of AProtiem 2/

Proofs can be found in the Appendix.

3.1 _Assumptions

ASSUMPTION 1 J(1,Hy) > JOOH,) JOH) > J(1H,) (14)

or it is more costly for the team to err than to be correct.

This logical assumption is made in order to motivate the team members to
avoid erring and in order to enable us to put the optimal decisions in Irt

form.

ASSUMPTION 2 Py, Iy H)= Ply, IH) 5 Plygly, H= Plys IH) 5 1=0,1 (15)

or the observations y, and Yp are conditionally independent.

This assumption removes the dependence of the one observation on the
other and thus allows us, as we are about to show, to write the optimal
decisfon rules as Irt's with constant thresholds.
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ASSUMPTION 3 : Without loss of generality assume that :

PUg=x | Uy=L,H,) L Py ULy , Pzl ULHy)

(16)
Plug=x | U,=LH,) P(ug=v | u,=1,H) P(ug=z | u,=L,H)

This assumption is made in order to be able to distinguish between the

messages of DM B.

3.2 Results

The optimal decision rule for the final decision of the primary DM is given

in the following theorem,

THEOREM 1 : Given decision rules u, and Ug and that information is
requested by the primary DM for some YoE€Y, (e P(U =100 ), then the
optimal final decision of the primary DM after the information has been
received, can be expressed as a deterministic function

Yoo Y, % (X,v,2) 2 (0,1}

which 1s defined by likelihood ratio tests
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0 5 IF U=l and Ay 2 o
X ] ot o i .
¥p (Y, Ug)= for i=x,v,z (17)
REA [ 1, otherwise
where
: Po Py, | Hy)
Ay, = ——=2 (18)
Py Ply, I Hy)
and
Plug=11u,=1, Hp) [JC1,H)-J(O,H,)] .
@ = ;o i=xyv,z (19)

p(UB=1 I Ua=I ; Ho) [J( ],Ho)-J(O,Ho)]

The optimal decision rule for the consulting DM, when the primary DM

requests for information, is given in the following theorem.

THEOREM 2 : Given the optimal decision rule u. (derived in Theorem 1),
a decision rule u_and that information is requested for some Y.EY, (e

Plu =I»>0),the optimal decision rule of the consulting DM is a deterministic

function
Vg ! Yﬁ -+ {x,v,z}

defined by the following likelihood ratio tests

X it Aglyg) 2Dy and Ag(yp) 2 by
W = [ v If Ay <by and Aglyy) 2 b (20)
z 1T Aglyg) <bp and Aglyg) <b3
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where

Aglyg) = 21

and
P(u,=I | Hy) ;[me | Uy=LUg=V,Hy )= PCUp | U =L, Hy MU H)
f

by = (22)
PCu,=T 1 Hy) EIP(qu Uee=LUg=X,Ho )= PCU | Uy =L,Ug=V,Ho )U(ug, Hy)
Ur
PCu,=I1H,) Z[P(ufl Ug,=LUg=2,Hy )= PCUe | U =LUg=xX,H MU H,)
Ur
b =
? Plu =T Hy) Z[P(ufl Ug, LU =X,H) = PUp [ Ugy=L,Up=2,Ho)J(up, Hy)
Up
P(Uofl l H]) Z[p(Ur l Ua=I,U$=Z,H| - p(Url U‘x:I,Uﬁ:V,H] )]J(Uf,H1)
v
by = [ 24)

(
P(Ua=l l Ho) Z[P(Url Ua=I,UB=V,H0)_ p(Ur' UO‘:I,Up:Z,Ho)]J(Uf‘,Ho)
Ur

Equivalently, we can write

V(Y ={ Y if Aglyg) <By and Aglyg) 2B (25)

where
B, =max (b, b,) (26)
and

62 =min [b2, 03} . (27)
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We proceed to derive the optimum decision rule for the prefiminary
decision of the primary DM.

LEMMA 1 : Given the decision rule Ug of the consulting DM and the

final decision rule U. of the primary DM, the preliminary decision rule u,

of the primary DM can be expressed as a deterministic function
Y Y, (0,11}

defined by the following degenerate (because the thresholds are

functions of y_) Irts

0 it Alyg) 22y and Auly,)2a0
YolVo) = [ I it Aly) <ap and 1/A(y,) < 1/a3 (28)
l it Alyy) <ay and 1/7A,0y,) 2 1/a3

where A (yJ isdefinedin (18) and

a, = (29)
JU1,Hy) = JO,Hy)

2. P | ULUgYe) P(Uy | UG=LHII(URH,) + €] - JOH,)
Ur,Ug

JOHy) = D PUU | U, =TUg,Y) P(Ug | Uy=LHo (U Hy) + C]
Ur,Ug

A, = (30)
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2. Pl | ULUp Vo) PlUg | U, =LH (U H,) + €T = JCTH))
Ur,Up

JULHG) = 20 PUUp | U =LY PCUg | UmLHO (U Hy) + C]
Urlg

We proceed to show that the thresholds derived above

are /ndependent of y, .

COROLLARY 1 : If for somey information is requested, according to
the rule of Lemma 1 and Ug=X (or z) is returned, then the optimal final

decision u. of the primary DM is always 0 (or 1); that is:

Pu=0 | U Lug=x.y,) = 1 forally,e ly I Plus=tly =1,y eY) (32
and

Plu=t Ty Lug=zy,) =1 forally.e [y I Puz=Tly)=1,yeY,) (33

Bemark : From Corrolary 1 we can now give another interpretation to the
team procedure: the primary DM can decide O or 1 using his own
observation or can decidebecause of uncertainty, to incur the
communication cost (C) and shift the burden of the decision to the
consulting DM. Then it is the consulting DM's turn to choose between
deciding O or 1, or, because of uncertainty, shifting the burden back (at no

cost) to the primary DM, which is required to make the final decision



given his observation and the fact that the consulting DM's observation is

not good enough for the consuiting DM to make the final decision.
According to the above, we can simplify our notation of the consulting
DM's messages by changing x to O, z to I and v to 7 (which is

interpreted as the consulting DM saying "I am not sure").

Define the following secondary variables :

Ay = (1 H) - JOH,) (34)
Ady = JOH,) - JOIH,) (35)
Ado*hdy
AJg P(Ug=7 | Hp) + Ay P(ug=7 [ H,)
e - o BHIPW= | HP(Y=0 | Hy) - P2 | Hp)PLy=0 | Hy) 56

NN}

A = (40)
p(U$=l l Ho) A-Jo +(C
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227 1ot 1 )+ P | Fol A+
B [P(UFO | H1)+P(UB=? | H])] AJ+C
a32 =

[p(uﬁ=0 I H0)+P(UB=? l Ho)] AJO - C

(41)

(42)

(43)

THEOREM 3 : Given the optimum final.decision rule U. of the primary

DM (derived in Theorem 1) and the optimum decision rule u

of the

consulting DM, the optimum decision rule for the preliminary decision of

the primary DM is given by a deterministic function
Y, Y, 2 (0,11}

defined by the following likelihood ratio tests

0 1If ALY, 2
YVo) = { I IT Ay <ay and Aly,) 2o,
1 1 ALY <oy

where
a1 1t 0<C<omin (W w2)
0 ={ 2, i WZ<Cowd
a,  otherwise

(44)

(43)



and

24

az, 1f 0<C<min (W3 w4
(!2 = { 33'2 if W3 <C¢ W1
a;  otherwise

(46)
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4. THE GAUSSIAN CASE

We now present detailed threshold equations for the case where the
probability distributions of the two observations are Gaussian, We
selected the Gaussian distribution, despite its cumbersome algebraic
formulae, because of its generality. Qur eventual objective is to perform
numerical sensitivity analysis to the solution of the Gaussian case, in

order to gain insight on the team decision-making structure.

4.1 Notation

We assume that the observations are distributed with the following

Gaussian distributions :
Yo~ NQo 2 Vg ~ N(p,opz) (47)
The two alternative hypotheses are characterized by
Ho:h=py or  H;: R=p, (48)
Without Toss of generality, assume that

o < By (49)

N - ~ ~ * AT M MR TR £ @ Pl et ¢ o e e rere e
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The rest of the notation is the same as in the general problem described

above,

42 Decision Thresholds

We can show that the optimum decision rules for this example are given by
thresholds on the observation axes, as shown in Figure 3. The values of
the thresholds were obtained for the baseline parameters of Table 1.
Before presenting the equations of the thresholds, we define some

variables.

Y“' . lower threshold of DM A Ya“ - upper threshold of DM A

Ynf: threshold for the final decision of DM A

Yﬁ’ . lower threshold of DM B Yﬁu ; upper threshold of DM B
Y- P
0
0= @005 e(-05x) & for =B ; Ifu ; k-0,

Note that the above function is the well-known error function, presented

with notational modifications to fit the purposes of the problem.

The variables W' (see egs. (36) to (39)) are now given by :
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FIGURE 3. The Gaussian Example

* OPTIMAL POLICIES ARE DEFINED BY THRESHOLDS

{PRIMARY DM
u =0 u =1 u = 1§
oL o o®
Uf = 0 Uf =1 R
- 00 »
Y
v
Y -
! « = 13405 |
L _ u
Y, = 1.0437 Y. = 16470
CONSULTING DM
Ug=0 = ? =
- €0 — 00
\]
p
L 4 -
L
Yg = 0.4266 vé’ - 1.6236
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TABLE 1

BASELINE PARAMETER VALUES
FOR THE GAUSSIAN EXAMPLE

In Cases 5.4 (Effects of varrying the a priori probabilities
of the hypotheses) and 5.5 (Effects of a priori

imperfect information) we change oaz to

6 2=8

«
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w'= 05 [@y(0)-@,01)] (50)

e %”(o)-@s’(o)—@p”( 1 )+¢>ﬂ‘( i )+<I>B'(o)q>s“( 1 )—%“(o)cpﬂlm ) 1)
®al(0)DU(1)-B,'( 1)D,U(0)

W = ﬁ “I "u B ; (52)

wi= 05 [ch‘(o)-@B'(:)] (53)

Yo =otp, )2 + (0.2 /(p )] Inlpg/(1-pg)] (54)

Ygo = (ot )/2 [oﬁ2 /Gy =) Inlpy/(1-py)] (55)

tn (54) and (35), the (centralized) maximum likelihood estimators for each
DM are defined,

COROLLARY 2 : If P(u =I»0 (i.e. information is requested for some Yo

and if P(UB=’?iua=I)>O (i.e. "l am not sure” is returned for some Y When

information is requested), then the optimal final decision rule of the

primary DM is a deterministic function defined by

0 if oy <Y
¥y = { Yot T (56)
i ity oV

where
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g ? DaU(0)-P,!(0)
V= ¥ ——mn( —E )

} (57

Remark : Eq. (19) is the corresponding threshold equation for the general

case.

COROLLARY 3: If P(u =1»0 (ie. information is requested for some Yy

and the primary DM's final decision rule is the one given by Corollary 2,
then the optimal decision rule of the consulting DM is a deterministic
function defined by

0 if V< Vg
AUAES B A AR (58)
! ir YU <yg
where :
042 ®,4(0)-0,f(0) ®,Y(0)-0,'(0)
v =Yy s ——min{in( =——), n( = -3} (s9)
Iy Hg DU(1)-0, (1) O LU(1)-0 /(1)
and:

042 ®,Y0)-0, 0) @, [(0)-0, 0)
Vg =Yg+ —2— max{ in( == yin(=—=-3)} 0
) @ (1 )'@al( 1) (Par( 1 )‘@a]( 1)

Remark : Equations (26) and (27) are the corresponding equations for the
general case.
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COROLLARY 4 : Given that the final decision rule employed by the
primary DM is the one of Corollary 2 and that the decision rule employed

by the consulting DM is the one of Corollary 3, then the optimal decision
rule for the preliminary decision u, of the primary DM is a deterministic

function defined by :

o if Yo <Y,
RUREL B S A PP (61)
Laf Yy,
where
0,2 1-®gl(0)+C
Y, + ——1In B ) i 0<C<min (W', W2)
p-}_p.{) 1‘¢6’(1)'C
0,2, 1-®90)C
Y, - Y+ —2 In( —2 ) wxcowd (62)
|,|.1 _}LO I_QBU( 1 )-C )
Yo ;  otherwise
and:
0,2 ®,'(0)-C
Vor—— In{ 2=}, 0<Cmin (w3 Wi
p.’_llo @a]“)"'c
0,° ®y(0)-C
Y= v —— {22}, wiccew (63)
IJ.] "p.o ’ (DBU( 1 )"'C
Yo ;  otherwise

Remark : Observe that the equations of all the thresholds include (and
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possibly reduce to) a "centralized" part (Y,") indicating the relation of

our problem to its centralized counterpart.

Remark : Equations (45) and (46) are the correspondin’g equations for the
general case.

Remark : In the subsequent Section S, sensitivity analysis is performed.

The numerical solutions are obtained by use of a computer algorithm. we
present to the algorithm initial estimates for the values of the thresholds
for the decision of the secondary DM, and the algorithm yields the optimum
thresholds for the decision of both DMs by solving for a fixed point of the
threshold eqs. (57), (59), (60), (62) and (63),
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5. NUMERICAL SENSITIVITY ANALYSES

we now perform sensitivity studies to the solution of the Gaussian
example. Our objective is to analyze the effects on the team performance,
when we vary the parameters of our problem, in order to obtain better
understanding of the decentralized team decision mechanism. We vary the
quality of the observations of each DM (the variance of each DM), the a
priori likelihood of the hypotheses and the communication cost. Finally, we
study the effects of different a priori knowledge (prior perception errors)
for each DM,

We use the following 'minimum error’ cost function :

JugHy = { (64)

We do not need to vary the cost function, because this would be
mathematically equivalent to varying the a priori probabilities of the two

hypotheses.

The baseline values of the parameters employed in the sensitivity analysis

are those presented in Table 1.
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5.1 Effects of varying the quality of the observations of the Primary DM

In Figures 4 to 19, the effects of varying the variance of the observations
of the Primary DM on all the relevant variables are presented.
Denote .

C1™ = cost incured if the consulting DM makes the decision alone

C = communication cost

We distinguish two cases depending on the cost associated with the

information (i.e. the of quality of information)

CASE 1: min(py,1-py) s CI™ +C

As the variance of the primary DM increases, it becomes less costly for
the team to have the primary DM always decide the more Tikely hypothesis,
than request for information. This occurs because the observation of DM A
becomes increasingly worthless. Thus, the primary DM progressively
ignores his observation and in order to minimize cost has to choose
between "de facto” deciding the more likely hypothesis (and incuring cost
equal to the probability of the least likely hypothesis) or "de facto”
requesting for information (and thus incuring the communication cost C
plus the cost of the consulting DM). in this case, the prior is less than the
latter and so the optimum decisivon of the primary DM, as his variance

tends to infinity is to always decide the more likely hypothesis (see

Figures 8 and 9, p,= .8). Recall that Ya* is the maximum Tikelihood

estimation threshold, that is the decision threshold that the primary- DM
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representing the probabilities of the DM's decisions, since the decision

regions are characterized by the thresholds. For example :

Py, =) =zj Py, | H) P(H)
R Ve Yol Vg Yy

The thresholds of the consuiting DM demonstrate some interesting aspects
of the team behavior (see Figures 21 and 23). For smali values of the

variance GBZ they are very close together, as the quality of the

observations is very good and so the consulting DM is willing to make the

final team decision. As his variance increases, DM B becomes more willing

to return uﬂ=’? (i.e. "I am not sure”) and let DM A make the final team

decision. As the variance continues to increase, the thresholds of the
consulting DM converge again. This might seem counter-intuitive, but there
is a2 simple explanation. The consuiting DM recognizes that the primary DM,
despite knowing that the quality of the consulting DM's information is bad,
is willing to incur the communication cost to obtain the information, This
indicates that the primary DM is 'confused’, that is, the a posteriori
probapilities of the two hypotheses (given DM A's observation) are very

close together. Hence, the consulting DM becomes more willing to make the
final decision. After a certain point (oﬂ2z62.4) the primary DM does not

find it worthwhile to request information from the consulting DM,

Remark . Note (see Figure 21) that the thresholds of the consulting DM
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FIGURE 4
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FIGURE 5
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FIGURE &

PROBABILITIES ASSOCIATED WITH THE
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FIGURE 9
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FIGURE 10
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FIGURE 11

PROBABILITIES ASSOCIATED WITH THE

DECISION CF DMB
AS A FUNCTION OF o2

P(Ho)= 8

1.0
0.9 P(ur;—'Olu;I)
08
0.7
06
P 0S
04
03
02

P(uﬁ=1 luzD)

0.1 - -
Plu=?|uzD)
0.0 +— ¥ ¥ ¥ 46;. ¥ ¥ ¥ > —
0 200 400 600 800 1000 1200 1400 1600 1800
VARIANCE OF DM A

P(Ho)= 5

1.0
09
08
0.7

06 = =) = = =
P(un-Olu“I) P(urs 1 luax)

0.4
0.3
0.2
0.1 P(uﬁ=?|u;r)
0.0 + e e

0 200 400 600 800 1000 1200 1400 1600 1800
VARIANCE OF DM A

R~ Y G AP e et e S s e o v Ao £ ot



i T e vt S hr s vt w3 i At irt m e 5 e e

43

FIGURE 12

PROBABILITIES ASSOCIATED WITH THE
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FIGURE 13

PROBABILITIES ASSOCIATED WITH THE
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AS A FUNCTION OF o2
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FIGURE 14

PROBABILITIES ASSOCIATED WITH THE
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AS A FUNCTION OF o2
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FIGURE 15

PROBABILITIES ASSOCIATED WITH THE
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AS A FUNCTION OF 03
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FIGURE 16
COSTS vs. o2
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FIGURE 17
COSTS vs. 02
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would employ, if the information option was not available (a well known
case). Thus

lim P10

2

ﬁa i )

Moreover, the percentage gain in cost achieved by the team of DMs,
relative to the cost incured by a single DM obtaining a single observation,
assymptotically goes to 0, as the variance of the primary DM goes to

infinity (Figures 18 and 19, p,=.8).

An interesting insight can be obtained from Figures 18 and 19 (p,= .8). As

the variance of the primary DM increases the percentage improvement in
cost (defined above) is initially increasing and then decreasing
assymptotically to zero. The reason for this is that for very small
yariances, the observations of the primary DM are so good that he does not
need the information of the consulting DM. As the variance increases, the
primary DM makes better use of the information and so the percentage
improvement increases. But, at a certain point as the quality of his
observations worsens, the primary DM finds it less costly to start
declaring more often the more likely hypothesis (ie. to bias its decision
towards the more likely hypothesis) than requesting for information, for
reasons mentioned above, and so the percentage improvement from then on

decreases.

CASE 2; min(py, 1- py) > C1*+¢C

With reasoning similar to the above, we obtain that (see Figures 8 and 9,
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D= 2):
lim  P(u_=1) -+ |

602'-00-0

Moreover, the percentage improvement is strictly increasing (and keeps

increasing to a precomptutable limit ; see Figures 18 and 19, py="5). This

reinforces the last point we made in Case 1 above. Since in the present
case it is always less costly for the primary DM to request and use the
information than to bias its decision towards the more likely hypothesis,

the percentage improvement curve does not exhibit the non-monotonic

behavior observed in Case 1 above (where p,=.8).

As can be seen from the Figures 4 to 19, in the case where Py™ .5 the model

exhibits symmetry. This is why in Figures 12 to 15 the probabilities of the
final decision of the Primary DM and of the final decision of the team are

straight lines at 0.5 .

in Figures 16 and 17, the team cost along with an upper and lower bound
are shown. The upper bound is obtained (COST WITHOUT COMMUNICATION)
from the simple and well known case, where the primary DM is entitled to
his own observation only and decides according to the maximum likelihood
criterion. The lower bound (COST WITH DATA FUSION) is obtained by
assuming that the primary DM is entitled to both obsevations, his own
along with the consulting DM's, at no extra cost. The primary DM decides by
considering a weighted sum of the observations. The weight of each

observation is equal to the variance of the other observation divided by the
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sum of the variances.

2.2 Effects of wvarying the guality of the observations of the
Consulting DM

In Figures 20 to 27, the effects of varying the variance of the observations
of the secondary DM, on ail the relevant variables are presented. The

baseline parameters of Table 1 are used.

As the variance of the consulting DM's observations increases, less
information is requested by the primary DM, that is the primary DM's upper
and lower thresholds move closer to each other (Figure 20). This is
something we expected, since information of lesser quality is less

profitable (more costly) to the team of DMs.

we should note here that the thresholds of a DM is an alternative way of
representing the probabilities of the DM's decisions, since the decision

regions are characterized by the thresholds. For example :

P D =Y J Py, | H) P(H)
H oy Yy «f v

The thresholds of the consulting DM demonstrate some interesting aspects

of the team behavior (see Figures 21 and 23). For small values of the
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FIGURE 21

DECISION THRESHOLDS OF DM B
AS A FUNCTION OF o2
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variance Gﬁz they are very close together, as the quality of the

observations is very good and so the consulting DM is willing to make the

final team decision. As his variance increases, DM B becomes more willing

to return uﬁ=? (i.e. "I am not sure”) and let DM A make the final team

decision. As the variance continues to increase, the thresholds of the
consulting DM converge again. This might seem counter-intuitive, but there
is a simple explanation. The consulting DM recognizes that the primary DM,
despite knowing that the quality of the consuiting DM's information is bad,
is willing to incur the communication cost to obtain the information. This
indicates that the primary DM is ‘confused’, that is, the a posteriori
probabilities of the two hypotheses (given DM A's observation) are very

close together. Hence, the consulting DM becomes more willing to make the
final decision. After a certain point (cﬁ2z62.4) the primary DM does not

find it worthwhile to request information from the consulting DM.

Rernark : Mote (see Figure 21) that the thresholds of the consulting DM
converge to 1 which is the maximum likelihood threshold if the a priori
probabilities of the two hypotheses were equal. But, the a priori

probabilities which the consulting D1 uses in Its calcu/ations are

functions of the given a priori probabilities (i.e. pi) and the fact that the

primary DM has requested information (i.e. P(u =T | H) ). In fact, the

consulting DM uses as his a priori probabilities its own estimates of the

primary DM's a posteriori probabilities. That is :
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1o - P P ) )
u=1)==<s
0 T %P(H) P(u,=1 | H)

From the above, we deduce that for large variances (sﬁ2x625 the estimates,

of the consulting DM, for the a posteriori probabilities of the primary DM
are very close to .3, reinforcing the point we made about the primary DM

“being confused.”

From Figures 26 and 27 it is clear that, as the variance of the consulting
DM increases, the team percentage gain in cost decreases to 0, since the
primary DM eventually makes all the decisions alone as in the centralized

- Case,

Finally in Figure 25, the probabilities associated with the final team
decision are presented. The probability of the team deciding O (or 1) is

almost equal to the a priori probability of Ho (or H, respectively). This is a
rore general observation: whenever the quality of the observations of the
primary DM is relatively good (ie. a_f smaill), then the final team decision

is unbiased. This reinforces the point made with the two Cases in 5.1
above, where it was shown that as the quality of the primary DM's
observations decreases, the primary DM biases his preliminary decision,
and consequently the final team decision, towards the a priori more likely

- hypothesis.
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5.3 Effects of varying the Communication Cost

In Figures 28 to 35, the effects of varying the communication cost C on all
the relevant variables are presented. The baseline parameters of Table 1

are used.

Increasing the communication cost is very similar to increasing the
variance of the consulting DM, since in both cases the team "gets less for
its money” (because the team has to incur an increased cost, either in the
form of an increased communication cost, or in the form of the final cost,

because of the worse performance of the consulting DM).

The thresholds of the primary DM (see Figure 28), exhibit the same
behavior as in 5.2 above (converging together at C=35). The thresholds of
the consulting DM (see Figure 29) converge together for the same reasons
as in 5.2 above; that is the consulting DM realizes that the primary DM is
confused, since the primary DM is willing to incur the communication cost,
despite the high variance of the consulting DM's observation, and so the
consulting DM tries to make the commital decision himself. Of course, the
thresholds do not start together for small values of the communication
cost (as in 5.2), because low communication cost does not imply ability
for the consulting DM to make accurate decisions. In fact, for small values
of the communication cost, DM A is apt to request information more often

than what is reaily needed and so the consulting DM returns more often

Uﬂ=? (1.e. "l am not sure”) and lets DM A make the team final decision.
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As can be seen from Figure 33, the probabilities associated with the final
team decision are equal to the a priori probabilities of the hypotheses.

That is the final team decision is unbiased. As previously discussed, this

happens because the variance of the primary DM is small (uﬂ2=1 ).

Again it is clear from Fi‘gures 34 and 35 that, as the communication cost
Increases, the percentage gain achieved by the team of the DMs decreases
to zero as the communication becomes more costly, and less frequent,
until we reach the centralized case solution.

2.4 Effects of varying the a priori probabilities of the hypotheses

In Figures 36 to 43, we see the effects of varying the a priori probability

of H, on all the relevant variables. The baseline values of Table 1 are used,

except that ﬁ¢2=8.

This case does not present many interesting points. As expected, there is
symmetry in the performance of the team about the value p,= 0.5 . The
closer P, 1sto 05 information is requested more often by DM A (Figure
38) and the more often "I am not sure” is returned by DM B (Figure 39).
This is understandable, because the closer P, 1s to 05, the bigger the

prior uncertainty. Consequently, the percentage improvement achieved by

the team of the DMs is monotonically increasing with P, from O to 05
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FIGURE 37

DECISION THRESHOLDS OF DM B vs. P{Ho)
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and monotonically decreasing from 0.5 to 1.

In the limiting cases, Pe0 Or py=1, there is less incentive for extra

information as to be expected. Hence, the benefits of team decision making
are best when the prior uncertainty is large, even if team communication

is relatively expensive.

In Figure 37, the decision thresholds of DM B, along with the maximum

likelihood threshold of DM B (Yﬁ*) are presented. Consider the points lying

lower than the Yﬁ* and higher than YU (for example point A for p,=9). For

observations in this region, the optimum decision of the consulting DM,

whenever the primary DM requests for information, is u,=1 (because the

observation is larger then the "upper” threshold). But, if the consulting DM

were to decide alone, as an individual and not as a part of a team, he would

decide uﬁ=0 (because the observation is lower than Yﬁ”). The reasons for

this have been analyzed extensively in 52 above and are that the
consulting DM uses as his a priori probabilities his own estimates of the
primary DM's a posteriori probabilities. The important conclusion is that a
decision maker can, with the same input, make a totally different decision
if he is a part of a team of decision makers, than if he were to decide

alone.

Finally, from Figure 41, we obtain that the final decision of the team is

very close to being unbiased, although a little biased towards the more
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likely hypothesis (the P(u=0) lies a little below the 45° line for p,

between 0 and 0.5, and lies a little over the 45° iine for Py between 0.5 and

.

5.5 Effects of imperfect a priori information

Up fo now we have assumed that both DMs have identical knowledge of all
parameters that characterize the environment that the decision makers

operate in. Also, that they are perfectly rational.

If we want to endow the DMs with some "human qualities, then it is
conceivable that each DM may have a different perception of "ground truth.”

In particular, we may assume that only one of the DMs knows the true prior

probability b, associated with the hupotheses, while the other does not.

This may be the conseguence of incomplete "team training.” Obviously the
quality of the team decision process will suffer as a function of the

misperception of the prior uncertainty. The sensitivity studies described
below quantify the degree of erroneous knowledge of P, upon the

degradation in team performance,

The baseline values in Table 1 are used, except that c“2=0.8

CASE 1: Only the consulting DM knows the true p,
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FIGURE 44
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From Figure 44, where the true p, is 0.8, we deduce that our model is

relatively robust for small errors. If the primary DM's erroneous p, is

anywhere between 0.7 and 0.9, performance of the team will be not more
than 10% away from the optimum. On the other hand, if DM A believes that

the hypotheses are equally likely (p,=0.5) then the team performance

degrades about 40%,

CASE 2. Only the primary DM knows the true p,
As we see in Figure 45, where the true p, is 0.8, our model exhibits

remarkable robustness qualities. If the consulting DM's erroneous Py is as
far out as 0.01, the performance of the team will not be further than 7%
away from the optimal. This can be explained by looking at the consulting

DM's thresholds as functions of Py (Figure 37). We observe that for values

of p, between 0.01 and 0.99, the thresholds do not change by much. This

occurs because, as explained in detail in 5.2 above, the consulting DM
knows that the primary DM requests for information when its a posteriori
probabilities of the two hypotheses are roughly equal, which is the case
indeed. As already stated, the consulting DM uses as its a priori
probabilities its estimates of the a posteriori probabilities of the primary

OM. Therefore, the consulting DM's estimates of the primary DM's a

posteriori probabilities are good, besides the discrepancy in p,, and the

team’s performance is not influenced by much.
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The bottom line is that if we need invest time and money to correct
misperceptions of the team members, we should invest it to train the

primary DM. This conclusion is of course valid for the numerical values
used in this study.
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6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Conclusions

Team detection is the easiest form of decentralized decision making. A
problem of team detection with communications cost was studied
extensively, in which the team consists of two decision makers, the
Primary and the Consulting, each receiving an observation. The Primary is
responsible for the team decision, selecting one of two alternative
hypotheses, and can solicit, at _a cost, the Consultant’s opinion. The
Consuitant’'s opinion consists of one and a half bits of information. The
team objective is to minimize a cost function, which depends on the team

decision and the true hypothesis.

The Consultant’s opinion is activated only when asked. We proved that the
optimal decision of the his optimal decision should be either definitive
(i.e. indicating one of the hypotheses to be true) and thus accepted by the
Primary decision maker, or "I am not sure” in which case the burden of the

final decision shiffs back to the Primary.

We showed that by invoking the conditional independence assumption the
optimal decision rules of both decision makers are given by deterministic
functions, expressed as likelihood ratio tests with constant thresholds.
The optimal decision thresholds of the two decision makers are coupled

and can not be expressed in closed form.
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In the linear Gaussian case the optimal decision rules reduce to threshold
tests on the observations axes. This case was used to perform sensitivity

analyses, in order to enhance our knowledge of the team decision process.

Deterioration of the quality of the observations of the Primary decision
maker resuit in two very different situations. If the cost of declaring "de
facto” the a priori most probable hypothesis is less than the sum of the
communication cost plus the cost of the consulting decision maker making
the final decision, then the Primary decision maker declares the more
probable hypothesis to be true. Otherwise, the Primary decision maker
decides to incur the communication cost and passes the responsibility of

the team decision to the Consulting decision maker.

when the quality of the observations of the Consulting decision maker
decreases, less information is requested by the Primary decision maker.
Moreover, the Consultant becomes more willing to make the final decision,
as he realizes that the Primary must be really confused, since the Primary
is willing to incur the communication cost for information of lesser

quality.

The effects of increasing communication cost are very similar to the
effects of decreasing quality of the observations of the Consulting
decision maker, since in both cases the Consultant’s information becomes

less helpful for the team.

By varying the a priori probabilities of the hypotheses, we observed that
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our model exhibits symmetry and that the final decision tends to biased
towards the a priori more likely hypothesis. Moreover, we found that the
team performance deteriorates, if one of the decision makers has
imperfect a priori information. The degradation is much bigger when the
Primary decision maker has the imperfect a priori information.

Finally, we would like to emphasize the two most important conclusions
of this thesis. First, the optimal decision rules of the two decision makers
are coupled. That is the optimal decision rule of each team member
depends on the decision rules of the rest members of the team. Second,
because of this, a team member can make decisions which are in total
contrast with the decisions that the team member would make, if he were

make the final decision alone and not as the part of a team.

6.2 _Suggestions for Future Research

Qur model could be extended in several different ways, besides the obvious
ones of studying more complex organizations. We could allocate to the
Consulting decision maker more than one and a half bits of information. It
would be interesting to obtain a graph of the optimum number of half bits
to be allocated to the Consultant decision maker as a function of the cost
per half bit. |

Another possible extention would be to allocate communication capacity

to the Primary decision maker. That is, whenever the Primary decision
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maker requests information to send a message concerning his observation
to the Consultant. It would be interesting to study the impact on team

performance of such a communication scheme.

Finally, another interesting extention would be to introduce the concept of
the "novice” decision maker, This decision maker would not have accurate a
priori knowledge. The Consultant decision maker would then try not only to
minimize the team cost, but also to restore the misperceptions of the
"novice” decision maker. A feed back mechanism should be devised in order

to allow the Consultant to “train” the Primary decision maker.
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APPENDIX : PROOFS

Proof of Theorem 1 :

min !—'uzu . J P(u U uf,y ,yB HYJ (ua,ur,H) =
¥ BT YV,

= Z J P(H) P(u_,u urly N ,H) Ply ,yBIH)J (U ,u.H)

H,u uﬂufy ’yﬁ

None of the decisions u_, Ug and u, depend on the (unknown) hypothesis H.

Recalling the definition of J*(u“,ur,H) (eq. (5) ) and summing explicitly

over u we obtain

Z I P(H) [ P(um=0,uﬁ,uf | ya,yﬂ) J(uf,H) + Py =1 Mgl | ya,ya) JQy H) +

Hu U
3rY,YB

+ Plu = Iu e ly yﬁ [J(ur,H)+C]] P(ya,yﬁl H) =

I P(H) [ P(uu=.0,uf | ya,yﬁ)J(uf,H) + P(ua= I,uri ya,yp) J(uf,H) +

My,

. 2P RALPAIE H+Cl] POy, ¥, | H) (66)
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because by definition, u, 1s considered only when information is requested

(i.e.u,=1) and thus when u =0 or 1, u.is independent of Ug and yg. Hence

J(ur,H) Z P(u(;i,uwur | ya,yﬁ) =
B %

Uz P(u;i,uﬂ,ufl ya’yp)_d(uf’H)

J(ur,H) P(um=1,ur | yu) for i=0,1

Again by definition, when the preliminary decision u_ of the primary DM is

deterministic (O or 1), the final decision is U =u_; that is:

P(u=i | u =iy, = | for i=0,1

Therefore ,
P(ua=i|ya) if uf=i

Plu =ty ly ) =Plu lu =iy JPu =ily)= for 1=0,1 (67)
0 otherwise

Substituting (67) into (66) we obtain

Z J PeH) [Peu =0 1y ) JOH) + Ptu =1 1y ) J(1,H)] SEALE
H

quyB Z _
¢ 2P P = LUy 1y KU HICT Ry TH) (69

H,uﬁ,ur
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The first summation is independent of Up . Thus, it suffices to find the

decision rule for u. that minimizes the second summation; this yields

min HuZu IP(H) P(u“= I,.uﬁ,ya,yp) P(uﬁlu‘: I,ya,yﬁ) P(u;llya)
\'r 3 ﬁ’ f \/‘x,yﬂ

Loy hec] P(y, ¥, | HD

= 2 I P(H) F>(uf | U= I,up,ya,yﬁ) P(uB | u= I,ya,yﬂ) P(ua= I ya)
Hu ,uu
o ﬁ f ya;‘/ﬁ

[ ] POy | H)

The last equality holds because u, is independent of y, when g is known,

tg 15 independent of Yo and U, 1s independent of Yp (due to the conditional

independence assumption).

summing explicitly over u. substituting for
Plus=1 Iu;l,ua,yu) = 1 -Plu=0| Up=TUgYy)

invoking Assumption 2, and ignoring a constant term we deduce that
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min ] P(H) P(ur=0 fu =Lu,y JP(u=1]y )Py IH)[J(O,H)— J(I,H)]
v 0 UB ; o Fla o o o
f bl = =
o ]P(uﬁlu“ I,yp) P(yﬂlH)
%

* Z I P(H)P(urlu =LU=Xy )P =1ly )P(u=x{u=1LH
H [+ ] o o o B a
Ve py_1H) L9, -a01,)]

+

+ ; JP(H) P(uf=01ua= I,uﬁ=v,ya) P(u:llya) P(uB=vIua= LH)

A Pty_1H) [ oA -1 K]+
+? JP(H)P(u=OIu=Iu=z YPW=1ly)Pu=2|u=1LH)
? f o ] B )y“ o ya B o ’
Ve Ply_IH) [J©0,H) -y 1]

To derive the optimal final decision uc (=0 or 1) of the primary DM, when
information is requested and uB=>< is received we must solve for

min I P(u =01 u = I,u;x,ya) Pu = If y,) ZH:P(H) P(u;x I u =LH)

Uf y
* Pty 11 [0, - J1,m] (69

This 1s minimized by choosing

0; 2PH) Py =x[u = 1H) Pty |HI[ JSOH-J(1,H] <0
H ] a a
P01 U =Ty =xy ) = 70)

1 ; otherwise
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and so the optimal decision rule can be expressed as a deterministic
function :

0 ; PW=0|uz= LUg=x,¥,) = |
YeX,y,) = (71)
1, otherwise

From (70) we obtain

DPH) P =x Lu = L) PGy T [op-aa ] Y o (72)
H b - <

where the notation

u=0
f(x) %2 t
u=1

means

u=1 it f(x»t
choose § either if f(x)=t
u=0 if f(x)<t

Expanding (72) over H and invoking Assumption 1 we obtain

ur=0
5 P=xlu =) [90H) - o))

Aly) Z S ' = = a (73)
OIS TR NGERENIER)

¢

Thus, the first part of the Theorem is proved.
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Proceeding in a similar manner for the cases when ug=v and when uy= 2

is received, the rest of the Theorem is proved.O

Remark : It was shown that the optimal decision rule for Ue is

deterministic and given by likelihood ratio tests, regardless of the
forms of J, Plu, ly,) and P(up | U= I'VB)' as long as the conditional

independence assumption holds.

We now proceed to prove three Corollaries, which will be helpful in the

subsequent proofs.

COROLLARY 5 : If the optimal decision rule presented in Theorem 1 is
employed for u. by the primary DM, then, whenever the following

conditional probabilities are defined, we have

PQUE=0 | U= Lug=x,y,) 2 P(u=01u = LUg=v.¥,) 2 P(u=0lu,= Lug=2,y,) (74)
Proof : From Assumption 3 and (43):

a <o, <a, (75)
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From Theorem 1 it follows that
E: P(H) P(ya | H)
. D = H
VoAl 2o Pu =1 lya)>0

P(u,=0 | u = I,u;i,y“) = &
2, XHIPGy_1H)
H

(76)

v, Plu=1ly »0

Note that P(H) P(y_ | H) is always non-negative. This together with (75)

and (76) yields (74).0

COROLLARY 6 : If the optimal decision rule , derived in Theorem 1, is

employed for u., then, when the following conditional probabilities are

gefined, we have

; [D(uflu; I,u;x,ya) - P(url u = I,u;z,ya)] J(UH) €0 (77)
c

; [D(ufl U I,us=x,ya) - P(url u = I,uﬁ=v,ya)] J(ur,Ho) <0 (78)
f

Z [P(ufl u = I,u;v,ya) - P, | u = I,up=z,ya)] JUH) <0 (79)

Y

Proof : Only (77) will be proved, as the proofs of (78) and (79) are very

similar.
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Z [P(url u = I,uﬁ=x,ya) - P(url u = I,uﬁ=z,ya)] J(U_r’Ho) =

Y

P(uf=0|ua= I,uB=><,y“) J(O,Ho) + P(uf=l lua= I,u;x,yu) J(I,Ho) -

P(ur=Olua= LU= Ly JJOH) - Plu=11]u = I,uﬁ=z,ya) JOLH) =

P01 U = Lu=xy ) JOH) + [1-Pw-0ru- I,uﬂ=x,ya)]J(l,H0) -

PO U =Lu=zy ) JOH) + [1- P(U=0 | u = I,up=z,yu)]J(I,Ho) =

[Py =01 - LUy - P =0 u - I,u;z,ya)] [uon)-uip] < 0

The above hold because of Assumption 1 and Corollary 5.0

COROLLARY 7 : If the optimal decision rule, derived in Theorem 1, is

employed for ue, then, whenever the following conditional probabilities
are defined, we have

;[P(ufl u= I,us=><,H)— P(ufl u= I,u;z,H)]J(ur,Ho) <0 (80)
f

Z[P(ur lu =Lu

Uy

;M = PG, U = 1,uB=v,H)]J(uf,HO) <0 (8D

;[P(url U= I,UB=V,H) - P(url u= I,uﬁ=z,H)]J(uf,Ho) <0 (82)
f
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Proof : The proof follows from Corollary 6, by muitiplying (77), (78) and
(79) respectively by P(y, | H) and intergrating with respect to Y, Note

that H may be either H, or H,.0

Proof of Theorem 2 :

min z JP(U u ur,y ,y'5 H)YJ (ua,uf,H) =

‘{ﬁ Hu Ul}Uf y ’yg

= Z I P(H) Plu_,u ufly ’VB) P(y ,yﬁl HYJ (U U H) =

HuU , uﬁury Vp

- Z I Pt [Peu =01y ) JO,H) + P =11y )J(LH] Py Ly 1H) +
Houu o o o o ]

gr Y o
B
+ Z J P(H) P(u =Lu urly ,yB [J(ur,H)+C] P(ya,yBlH)

H,u_ U
RN

where all the steps were explained in the proof of Theorem 1.

The first summation is independent of up. Thus, it suffices to find the

function ug=y(y,) that minimizes the following:

min z J P(H) P(u —Iu M, ly ,yB) [J(u H)+C] P(ya,yBlH) =

B Ty,
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= z I P(H) Py, u = I’Us’ya) P(uﬁ lu = I,yp) Pl =1 y)

H,uﬂ,ur "’a"/p

[, mec] SEALY

=UZ I P(u'3 | U= I,yﬁ)HZ P(H) P(ysl H) [J(ur,H)+C] IP(url u = I,up,ya)
ﬁ yB 'Uf y(!.
P(y = I y,) Ply_ | H)

= Z JP(uﬁlu‘; I,yS)ZP(H) Pu = I,urluﬂ,H) P(yﬂlH) [J(uf,H)+C] =
u H,u
B Vg f

= Z I P(uslu; I,yB)Z P(H) Pu, Tu = I,uﬁ,H) P(u=TI1H)
y Vg AU,

Ply, | H) [J(ur,H)+C] (83)

For i=x,v,z denote

P = 2 P(H) Plu | u = Lu ) P(u =11 H) Pty [ H) [utu c]  (84)
H,Uf o B o B f

Then, in order to minimize (83) we find that

1 ir pi={pxpv pz)
P(uﬁ=i lu,= I,yﬁ) = (85)
0 otherwise
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Thus, the optimal decision rule can be expressed as a deterministic
function :

Ypl¥g) = 1 if P(uB=ilua= Lyg) =1 for i=x,v,z  (86)

Putting the above in likelihood ratio form and invoking Corollary 7,
equations (20)-(27) are obtained completing the proof of Theorem 2.0

Remark : The optimal decision rule for Uﬁ is deterministic and can be

expressed as likelihood ratio tests with constant thresholds, regardiess of

the form of J and P(u.|u_= LUy.¥,).

-

Proof of Lemma 1 :

min z JP(U UgUpY ¥ H)J (U u H) =
HU_ U U ¥ “f
Yo BT VY

z I P(H) P(u U urly ,yB) Ply ,yﬁiH)J (U U H) =

H,u UBUM’ ys

I[p(u;o |ya)§p(m Ply_| H)J(OH) + Pl =1 iya>§p(H) Ply_I H)JC1H) +
y

o

+ PQu -Ily ) Z JP(H) P(u, lu =LY, )P(u lu -I,yB [J(u L H)*+CT Py g |H)]

Hu U
rys
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where all the steps were explained in the proof of Theorem 1,

Invoking the conditional independence assumption and integrating over yﬁ,

we obtain :

“P(u;OIya)ZP(H)P(yalH)J(O,H) * Py =1 lyu)ZP(H) Ply_ [H) JC1H) +
H : H
y

[+3

Py ) 2P Pl - Lugy,) P, 0= LH) Pty | H)J(u, HIC] (87)

H’UB’U!‘

Set

p =Z P(H) Py HYJGH) =0, 1 (88)
H

1 = = = +
p = ZP(H) P(uflua I,up,y“) P(uﬂlua LH) P(yalH) [J(uf,H) C] (89)

H,up,uf

Then, in order to minimize (87) we use

] it pi={poptpi}
P(u_=ily,)= 3 (90)
0 otherwise

Thus, the optimal decision rule can be expressed as a deterministic

function :
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Yo (¥, = 1 if Plu=ily)) for i=0,11 (91}

Then, invoking Assumption 1, it is a matter of simple, but tedious

algebraic manipulations to put the decision rule in the form of (28)-(31).0

Proof of Corollary 1 : Only (33) will be proved, since the proof of (32)
is very similar,

Suppose that for u , the optimal policy derived in Lemma 1 is employed

and that information is requested for some y . Then from (28) :
Al <ay, and /ALy ) <o

According to the optimal decision rule U, derived in Theorem 1, whenever

UB=L is returned

>
Aa(ya) ¢ @,

Thus, it suffices to show that
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o, < a (92)
because it implies that

Aly) <a, <a, (93)
and so ug=1 will always be the optimal final decision.

we now prove that (92) is indeed true :

(12 SC!Z =

Uzéjp(uf | u = I,up,yu) P(uﬁ | u=LH) [J(uf,H1)+C] - J(O,Hl)
= B <
HOH) = 2Pt U =Ly P, | U= L)) [ Ho ]
Ug Yy

P(uB=z | u = I,HI) [J(I,HI) - J(O,Hj)]
P(up=z l u= I,HO) [J(O,Ho) - J l,Ho)]

§P(Uf=1 U= LUy, P LU= LHD LI - JOH ) + ¢

S5 <
UZP(u;I U= LUpy,) P, U = LH) LXOH) - JLH ) - €
b
PU=z U= LH,) [J(1H)) = JOH,)
< (94)

P(us=z | u = I,Ho) [J(O,HO) -J{ ,HO)]
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Recalling Assumption 1 and that C20, multiply with the product of the
denominators and simplify to get :

C [p(u‘;z u=IH,) [J(O,HQ)-J( L))+ P21y = 1H) H)-JOH ]+

+ [[P(u;x hu = I,H‘)P(u;z lu=1H)- P(u';x lu = I,HO)P(uB=z lu = I,H|)]
Plu=1 | u = I,uﬂ=x,ya) *

+ [Py =1m P2 11U = LR = Py = LH P=z | u = 1)
Plu=tl u = I,uﬂ=v,yu)]

[J(O,HO)-J(I,HO)] [J(!,H1)-J(O,H1)] £ 0 (93)

(95) is valid because of Assumptions 1 and 3. Hence, (92) is valid and thus

Corollary 1 is proved.O

Proof of Theorem 3 : The proof of this theorem is tedious, yet easy. It
is broken up to various cases and subcases, the optimal decision
thresholds for each one are obtained and then everything is combined to
obtain equations (44), (45) and (46).

in the proof, it will be considered whether :
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CASE A P(uﬁ=v lu=LH,) ¢ P(uﬂ=v tu=1H)

in which case with simple, but tedious algebra yields
W, < W, < W, < Wy and @, 2,
or:

CASE B ; P(uB=v I U= LHy) > P(uB=v lu=LH,)
in which case we obtain

WS<W4<VVI<W2 and @, <a,

In the end, it will be shown that the decision thresholds are independent of
whether Case A or Case B is true.

start by considering Corollary 1 and by assuming to know what the final

decision of DM A, given his own observation, will be even in the case when

information is requested and UB= v is returned. That is, assume to know the
position of Aly,) relative to a,. It will be then shown that the thresholds

are independent of the position of A(y,).

CASE 1: Aly) <o,

In this case it is known, that whenever information is requested, DM A
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decides 1 if u$= v or z isreturned and Q if uﬁ= X 15 returned. Then, the

thresholds a, and a2z (eq. (30) and (31) ) reduce to:

dy= @y (96)

az= a3

Subcase 1.1.A: If C» P(uB=O lu= LHy) ad,

Then

C: P(up=v lu=LH) Ay & 1/az, <0
and

C> P(uB=v lu=LH) A, & C2 W, & a2 3,
Als0

@, 2a,

Consequently the decision rule of (28) reduces to
u =0
vy
Ay Y a, (97)
u =1
o

Subcase 1.2.A: If Wo<C« P(uB=0 lu= LHy) A,
W< C< P(uﬂ=0 lu,= LHYaJ, e A, <@ <@, <2y,

The decision rule of (28) reduces to the decision rule of (97).
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Subcase 1.3.A: If W4 <C« W3

W4£C<W3 =S a2,25a1s33’1 <a,

The decision rule of (28) reduces again to the decision rule of (97).

Subcase 1.4A: If W2 <C <W4
WQSC<W4 & dgy <a, <aZ2 (o,

The decision rule of (28) reduces to
0 a,, <Aly,)

U~ )T 5 g SAly ) <ay, (98)
1 Aly,) <ag

Subcase 1.5 A: If 0<C« W2
OsC<w2 & a3, <, gav<a2‘2

The decision rule of (28) reduces to
u=1I
-
Aa(ya) ¢ % (99)
u =1
[+ 4

Subcase 1.1B: If CzP(uB=Olua= LHy) AJ,
Then

C2 P(uﬂ=v lu=LH)AJ, & 1/a5¢0
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Also
av ¢ a1
Consequently the decision rule of (28) reduces to

u =1 (100)

o

Subcase 1.2B: If W,<C«< P(us=0 | u,= LHy) Ad

W, < C < P(uﬁ=0 | u=LH) A, & ay,<Q, <2 <ag,

The decision rule of (28) reduces to the decision rule (100).

Subcase L3B: If W, < C <min{P(ug=0 | u = LHp) AJg , W, )

W,eC< mv’n{P(u[fO | U= I,HO) Ay, W2} 0, <8, < ag,

The decision rule of (28) reduces to the decision rule of (100).

oubcase 1.4B: If Wz,smw4
W, <Cew, o dvsa3,1<a1<a2,2

The decision rule of (28) reduces to the decision rule of (100).

Subcase 1.58: If 0<C« W3

0<LeW; & ag,<a <a <a,,

The decision rule of (28) reduces to the decision rule of (99).
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CASE2: Aly,) 20,

In this case, whenever information is requested, DM A decides 1 if Up= Z
is returned and decides 0 if Ug= X Or' v is returned. Then, the thresholds 3y

and as (eq. (30) and (31) ) reduce to:

4= 3y | (101)

a3= 335

subcase 2 1A If C2[1-Pup=11u,=1Hp] Ay,
Then

cal1- Plug=11u,= I,Ho)]AJ0 & W<l o a,<q
Als50
o, 2,
Consequently the decision rule of (28) reduces to

uz=0 | (102)

Supcase 2.2.A: If W5 ¢ C< [1- Plug=11u,= I,HO)] Ad,y

Wz <C< [T - P(UB=| ly,= I,HO)] Ay & 3, <a <, ¢ as 5

The decision rule of (28) reduces to the decision rule of (102),
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W15C<W3 & a2,1sa1$a3'1<ozv

The decision rule of (28) reduces to the decision rule of (102)

Subcase 2.4A: |If W2 <C« Wl
W2_<.C< Wl =3 33,2 <a, <32,, (o,

The decision rule of (28) reduces to the decision rule of (102).

Subcase 25A: If 0<C< W,

0<CeWw, e 335 <@ <@, <2,

The decision rule of (28) reduces to
u =0

5

Au(y“) 7
U =1

o

a,, (103)

supcase 2.18: 1f C2[1-Plug=11y=1H)] Al

Then

Crli-pweviv=tHplay, o 172y, <0

Crli-Pugetiu=tiplaly, & wiic o ey <a
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@, <3
Consequently the decision rule of (28) reduces to the decision rule of (97).
Subcase 228 1f W, C < [1 - Pyg=1 [u=LHp] Al

wosCel-pPugetiuetiplad, o 2, <o, <o, <ay,

The decision rule of (28) reduces to the decision rule of (97).

subcase 238 If W, <C <min{w,, [1 - Pug=1 1y = 1Hp ] Ay,

W, <C< min[wz, [l - P(uﬁ=l qu= I,HO)] AJO} ©® @, <8,$3,¢,

The decision rule of (28) reduces to the decision rule of (97).

Subcase 2.4B: If W3 <C« w1

The decision ruie of (28) reduces to

0 ay; <Alyy)
U™ )T 5 3, Ay ) <ay, (104)
[ Aly,) <as,

Subcase 25B: If 0¢<C«< W3

The decision rule of (28) reduces to
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u =0

[1.4
ALy) z 2, , (105)

u=I

We can now summarize the twenty cases as follows :

0 it Ay, 2o

W0 = {1 Ay <oy and Ay (44)
1 iIf ALYy <oy
where
a, ; P(uﬁ=vlu“=I,Ho)sP(uB=v|uu=l,H1)and C2W,

or P(uﬁ=v lu,=1LH,) > P(u',=v lu,= LH)and C2 W,

@)= )2, PV U= LH) < Plug=v fu=1H) and W, > C2 W,

(106)
35 PUgvIU=THY) < Plug=viu=1H)and W,>C20

or P(u$=v lu=LHy) > P(uB=v lu,=LH,) and W, >C20

a5 PlUgEvIU=LH) < Plug=v Iy =LH) and C2 W,
or P(up=v lu=LH,)> P(u8=v Ju=LH)and C2 W,

= ) az,; P(u$=vl u,= LHy) > P(uﬁ=v l us=LH)and W,>C> W

(107)
CEPE P(uﬁ=v | U= LH,) < P(uﬂ=v | u,= LH,) and W,>C20

or P(uﬂ=v | U= LHy)» P(uB=v I U, =LH)and W;>C20
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The above equations of the thresholds are independent of the position

of A ly,)relative to o, (Cases | and 2),

In the discussion of Cases A and B above, it was shown, using simple
but tedious algebra, that :

P(u5=v lu,= I’HO,) < P(uﬁ=v lu=1H) & W, S W, < W, < Wy

The parts of the above relation, which are going to be employed in the

further simplification of the threshold equations, are presented below:

P(uﬂ=v Fu,=LHy) < P(uﬁ=v lu=LH,) & W, < W, (108)
P(u‘fv fu,= LH,) < P(u3=v lu=LH) & W, < W, (109)
PlUg=v lu,=LHp) > Plug=vIu=1H) & W,> W, (110)
P(uB=v lu,= I,Ho) < P(uB=v lu=LH) <& W, < Wy (111

It is now straightforward to show that equations (108) to (111)
together with equations (106) and (107), yield equations (45) and
(46) completing the proof of the Theorem.O
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Proof of Corollaries 2,3 and 4 : No actual proof will presented. By
substituting directly the Gaussian probability density functions on the

threshold equations derived for the general case and solving for Yo OF

Yoo the corresponding thresholds for the Gaussian case are obtained.

wWhenever DM A requests information and Ug=X (or ) is returned, the

final team decision is always O (or 1). So, the notation is changed from

X (or z) to O (or 1). Moreover, whenever uB=v is returned, the final

decision can either 0 or 1. So, the notation is changed from v to ?
indicating that DM B is not sure.

Moreover, the subscripts of the thresholds indicate the decision maker
whose decision they characterize and the superscripts of the
thresholds indicate the content of the decision:

u (upper) : for any observation greater than the upper threshold the
optimal decision is 1 (since we assumed p, <p,).

1 (Tower) : for any observation smaller than the lower threshold the
optimal decision is 0.
f (final) : characterizes the final decision

This completes the discussion of Corollaries 2,3 and 4.
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