
B-Cell Epitope Prediction for Improved Antibody
Docking

by

Aristofanis Rontogiannis

BS, Computer Science and Engineering,
Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 30, 2023

Certified by. .
Regina Barzilay

Professor, Department of Electrical Engineering and Computer Science;
Faculty Co-Lead, MIT Abdul Latif Jameel Clinic for Machine Learning

in Health (J-Clinic)
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

B-Cell Epitope Prediction for Improved Antibody Docking

by

Aristofanis Rontogiannis

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Predicting how antibodies bind to their targets is a fundamental problem of immunol-
ogy, and a critical step in accelerating the development of vaccines and therapeutics
against foreign pathogens. In particular, the task of predicting the 3D structure of
an antibody-target complex, otherwise known as docking, is an important tool in
drug design, providing valuable insights such as ways to increase antibody potency or
methods to limit the likelihood of a mutational escape. State of the art models of an-
tibody docking treat the task as a regression problem, outputting a single prediction.
We hypothesized that while the performance after a single try might be poor, the
likelihood of producing a good docking pose in 𝐾 tries could be significantly higher.
To achieve this without having to alter existing docking models, we propose to first
train a B-Cell epitope predictor and to subsequently use it to produce a diverse set of
candidate binding sites. Our epitope predictor achieves state of the art performance,
with an ROC-AUC score of 76. We then show that, by properly post-processing the
epitope model’s predictions to select 𝐾 promising candidate docking sites, the suc-
cess rate of a docking model on an independent test set can be increased by a factor
of almost 10, with as little as 10 tries. Our approach is compatible with any dock-
ing model and offers an alternative to pure generative modeling, while being able to
guarantee a diverse set of solutions, without the need to leverage complex sampling
strategies.

Thesis Supervisor: Regina Barzilay
Title: Professor, Department of Electrical Engineering and Computer Science; Fac-
ulty Co-Lead, MIT Abdul Latif Jameel Clinic for Machine Learning in Health (J-
Clinic)

3

4

Acknowledgments

I would like to express my gratitude to my thesis supervisor, Regina Barzilay, for her

invaluable support and advice throughout my studies. I would also like to thank PhD

student Jeremy Wohlwend for his insight and mentorship during my research; without

his help and guidance this thesis would have been exponentially more difficult to

complete. I thank Wengong Jin for allowing me to use his model to test my hypothesis

about improving antibody docking. Moreover, I am grateful to my labmates for the

thought-provoking conversations we had.

On a more personal level, I would like to thank my parents, Lia and Panos, as well

as my brother, Dimitris, for their continuous emotional support and unconditional

love. I would also like to thank my partner, Aliai, for being by my side.

Finally, I would like to thank the Onassis Foundation for offering me a Graduate

Scholarship that really helped me during my Masters’ degree at MIT.

5

6

Contents

1 Introduction 9

1.1 B-Cell Epitopes and Epitope Prediction 10

1.2 Antibody Docking . 11

1.3 The Structure of the Thesis . 12

2 Related Work 13

2.1 Prior Work in Epitope Prediction . 13

2.2 Prior Work in Antibody Docking . 14

3 The B-Cell Epitope Model 17

3.1 Problem Formulation . 17

3.2 Model . 18

3.2.1 Architecture . 18

3.2.2 Surface Features . 22

3.2.3 Putting it All Together . 25

3.3 Data . 26

3.3.1 Protein Data Bases . 27

3.3.2 Data Processing . 27

3.4 Training and Evaluation . 31

3.5 Results . 33

4 Antibody Docking 35

4.1 The Problem of Docking . 36

7

4.2 Model . 36

4.2.1 The Docking Model . 36

4.2.2 Post-Processing . 38

4.3 Results . 40

4.3.1 Improved Structure Predictions 47

5 Conclusions 49

5.1 Summary of Results . 49

5.2 Future Work . 50

5.2.1 Incorporating Linear Epitope Data 50

5.2.2 Using Our Model to Improve AlphaFold Predictions 51

Bibliography 52

A Implementation Details 57

A.1 IEDB Experiments . 57

A.2 Our Best Epitope Model . 58

A.3 Our Best Seeding Model . 59

8

Chapter 1

Introduction

B-cells, and the antibodies they produce, are the body’s first line of defense against

foreign pathogens. They are the main targets in the design of vaccines, and the

modality of choice for many antivirals on the market. One of the key steps in the

development of a new antibody, is to experimentally resolve its 3D pose when bound

to its target antigen. This step, however, is expensive. Therefore, computational

approaches to antibody-antigen structure prediction have emerged as a powerful al-

ternative. One of the limitations of current methods, however, is that they only

provide a single output. Instead, we hypothesize that producing multiple possible

docking poses could allow for a more comprehensive evaluation of performance and

open the door to refinement-based strategies.

One possible approach would be to formulate the task as a generative model. The

issue with this strategy is that the model may sample many solutions at the same

candidate binding site, which might be completely different than the true binding site,

therefore requiring complex sampling strategies to produce a diverse set of solutions.

It also requires training completely new models, which isn’t always practical. Instead

we propose to use a binding site (i.e epitope) predictor to seed a docking model. This

has two advantages. First, it is compatible with any existing docking model, and

second, we can guarantee diversity by simply picking high-ranking residues that are

distant from one another, therefore covering multiple candidate binding sites.

In this first chapter we provide background information regarding antibodies, B-

9

cells, and antibody docking. We also briefly describe how this thesis is structured.

1.1 B-Cell Epitopes and Epitope Prediction

B-cells, also known as B-lymphocytes, are a type of white blood cells produced in the

bone marrow. They are part of the adaptive immune system, providing long-term

immunity to various diseases we are exposed to over the course of our lives. To better

understand how B-cells contribute to our protection, we will briefly go over their

structure and function.

Embedded in the surface of B-cells, we find transmembrane proteins called B-Cell

Receptors (BCRs). BCRs are Y-shaped proteins that bind to foreign substances,

called antigens, and subsequently induce an immune response, activating the B-cell.

Activated B-cells turn into plasma cells, which produce specialized proteins, called

antibodies, that can recognize the antigen which triggered the immune response.

Figure 1-1: The function of a B-cell, illustrated [34]

A B-cell epitope (or simply epitope) can be defined as the part of the antigen that

an antibody will bind to. In the following section, we will provide a more robust

definition that will help us formulate our problem clearly.

The process of discovering the epitopes of an antigen is called epitope mapping.

Mapping epitopes is crucial in medicine. Having knowledge on the epitopes of a virus

vastly helps the vaccine developing process, and contributes to making better diag-

noses. In fact, epitope-based vaccine development dates back to 1985 [22]. To locate

10

the epitopes, in-silico mapping is commonly used to obtain a set of candidate epi-

topes, which are then engineered into vaccines and tested before entering production.

This approach, however, is expensive and time-consuming, and does not scale well to

large datasets.

A good B-cell epitope prediction model would therefore have numerous applica-

tions in therapeutics and vaccine design. In section 3, we will develop such a model

from the ground up.

1.2 Antibody Docking

The problem of Antibody Docking belongs in the more broad category of Macromolec-

ular Docking [8] tasks. Macromolecular Docking can be defined as the computational

calculation of the three-dimensional structure that two macromolecules, such as pro-

teins or nucleic acids, will form by interacting together. Antibody docking is a special

case of the macromolecular docking problem, where the two interacting molecules are

both proteins, one being an antigenic protein and the other an antibody.

There are multiple questions of interest in the problem of antibody docking. First

of all, we would like to know, in a certain biological context, whether there will be

binding between the antigen and antibody; it is important to answer this question

before we start examining the structure of the resulting complex, as a false-positive

answer to the question of binding could result in misleading results to the following

questions we will be asking. Secondly, if they do indeed bind, can we accurately

predict the three-dimensional structure of the crystal they form? This particular

question is the one we will be addressing in this thesis. And finally, if they do not

bind, is it possible to mutate or otherwise alter the antibody to induce binding? The

last question is crucial in drug and vaccine design, and in the broader field of protein

and antibody manufacturing.

11

1.3 The Structure of the Thesis

In chapter 2 we discuss related work, both in the field of epitope predicting as well as

antibody docking. In chapters 3 and 4, we go over how we approached the respective

tasks, as well as the experiments we ran and our thought process behind certain

decisions we made. In chapter 5 we provide a summary of the results presented in

this thesis, as well as plans for future work. Finally, in the Appendix, we provide some

implementation specifics, as well as a more detailed look into various experiments we

ran.

12

Chapter 2

Related Work

Machine Learning approaches are being widely used in many aspects of biology and

medicine tangential to our area of focus. For instance, consider the problem of small

molecule binding, a problem critical to the task of rational drug design, where one

attempts to predict the binding structure of a small molecule ligand to a protein.

DiffDock [6], by Corso et al, is a cutting-edge machine learning model, that uses

diffusion, a technique typically used in image processing, to provide a state-of-the-art

(SOTA) solution to the molecular docking problem.

Machine learning methods also have proven to be really effective in the task of

protein design. H.C Hunt et al [12], in their recent publication, go over how they

“designed, developed, and characterized potent, trivalent miniprotein binders that

provide prophylactic and therapeutic protection against emerging SARS-CoV-2 vari-

ants of concern”.

2.1 Prior Work in Epitope Prediction

The task of predicting B-cell epitopes is also a crucial one in the field of medicine

and drug design. As we mentioned earlier, being able to accurately predict epitope

residues has a multitude of applications, included but not limited to vaccine design,

as well as the design of monoclonal antibodies, that is, engineered proteins that when

injected into the organism induce immune response.

13

There have been numerous B-cell epitope prediction models in the current bibli-

ography. Some of the most prominent ones are described in [4], [13], [23], [18], [30],

however none of them generalize well, due to the innate noisiness of the task, as well

as the lack of large, publicly available datasets that can be used for training. These

models typically use Convolutional Neural Networks to encode their features, and

Recurrent Neural Networks to decode them and produce output logits; however, this

approach, especially when combined with poor featurization, has had little success

(see section 3.5).

The current SOTA in the field of epitope prediction is a recently published deep

neural network model, GraphBepi [36]. It achieves a fairly decent performance and

its architecture is in many ways similar to the one we propose in this thesis. Since,

however, GraphBepi was published less than a month ago, we can confidently say that

the B-cell epitope model proposed in this thesis was discovered independently and in

parallel. The proximity of our results and those of [36] suggests that the underlying

techniques are a solid basis for approaching the B-cell epitope prediction problem.

2.2 Prior Work in Antibody Docking

Machine learning methods also have a wide array of applications in structure-predicting

tasks like antibody docking, a problem crucial to generative protein/antibody design.

In their recent work, Jin et al [14] propose a novel equivariant docking model that,

given the structure of the antigen and the structure of the paratope, the part of the

antibody which will come in contact with the antigen, can accurately predict the

structure of the crystal complex the antigen and antibody form.

However, in many, if not most, practical applications, the paratope will not be

known a-priori (blind docking). In fact, one usually only knows the sequence of the

antibody, or maybe some common folding patterns it can take. In chapter 4 we go

over how we use our epitope prediction model in tandem with a docking model to

improve the task of blind docking.

When it comes to blind docking, the current SOTA is AlphaFold Multimer [15],

14

by DeepMind. AlphaFold Multimer is an extension of the popular folding model

AlphaFold2, which can predict the crystal structure of protein-protein complexes

using only their amino-acid sequences.

Figure 2-1: The architecture of AlphaFold2, as visualized in DeepMind’s original publication[15].

AlphaFold uses Multiple Sequence Alignment (MSA) against a large library of

template sequences to generate embeddings for its input sequence(s). It additionally

obtains some preliminary structural information for the protein(s) by searching into

a vast library of structural templates. These embeddings, both the structural and the

sequential, are then fed into a novel neural-network architecture containing attention-

based [32] as well as non-attention-based components, called Evoformer, and in turn

fed into a transformer-like module to produce an initial structural prediction. This

prediction is then refined three times by being recycled back into the network, to

eventually produce the final predicted structure.

The problem of antibody docking is however far from solved; in the AlphaFold pa-

per it is explicitly mentioned that AlphaFold Multimer does not perform well when it

comes to antigen-antibody binding. There is therefore a lot of room for improvement;

in this thesis we provide a robust method for augmenting a docking model, that can

be extended to apply to any docking model, such as AlphaFold Multimer.

15

16

Chapter 3

The B-Cell Epitope Model

In this section we study the problem of B-Cell epitope prediction and propose a model

that outperforms the vast majority of other state-of-the-art models for the same task.

3.1 Problem Formulation

Before we can start building our model, we first need to concretely define the problem

we are solving. Given an antigenic protein 𝐴, we say that an amino-acid residue 𝑟 in

𝐴 is part of a B-cell epitope, or equivalently, is an epitope residue, if there exists an

antibody 𝐵 such that:

1. 𝐴 and 𝐵 have been experimentally observed to form a crystal structure, that

is, 𝐵 can dock onto 𝐴, and,

2. the heavy carbon C𝛼 of 𝑟 is within 𝑥 units of distance from any C𝛼 atom in 𝐵.

Therefore, our goal is, given an antigenic protein, with its amino-acid sequence

and three-dimensional structure, to predict which residues in the antigen are epitope

residues.

17

3.2 Model

We will now discuss the architecture of our proposed epitope model, breaking down

its components and elaborating on how each contributes to a robust representation

of a protein. We will also discuss the various surface features we used, other than the

primary and tertiary structure of the protein (i.e. sequence of amino-acids as well as

the three dimensional structure of the protein).

3.2.1 Architecture

The epitope model consists of 4 components; ESM2 [21], a 150 million parameter lan-

guage model by Facebook, pretrained on a large amount of protein sequences; a GNN

(Graph Neural Network), modified to achieve 𝐸(𝑛)-Equivariance; a bidirectional RNN

(Recurrent Neural Network); and a fully connected multi-layer perceptron, which re-

ceives the resulting embeddings in order to produce the output logits. We will now

discuss each of the components in greater detail.

Pretrained Language Model (ESM2)

ESM2 is a transformer-based language model [32] trained on more than 4 million

protein sequences. For each protein sequence, approximately 15% of the amino-acids

are masked and the model is tasked with recovering those hidden residues. This is a

commonly used approach in Natural Language Processing, called Masked Language

Modeling. In the context of proteins, this particular task allows the model to infer

complex internal representations of the input sequence. Specifically, ESM2 performs

really well in secondary structure prediction, that is, the identification of common

arrangements of adjacent amino-acids in a polypeptide chain, as well as in binding

site and contact prediction (i.e. the identification of residues between two interacting

polypeptide chains that enable this interaction by being close together in the three-

dimensional space).

The task we are tackling is very closely related to the tasks ESM2 excels at; we

are interested in predicting residues on an antigenic protein that will interact with

18

some antibody and our hypothesis is that ESM2 embeddings will, to some extent,

have that information embedded in them.

𝐸(𝑛)-Equivariant Graph Neural Networks

Equivariant Graph Neural Networks (EGNNs for short) [24] is a novel architecture

used to learn graph neural networks that are 𝐸(𝑛)-equivariant. We say that a function

𝜑 : 𝑋 → 𝑌 is equivariant to a transformation 𝑇 iff

𝜑(𝑇 (𝑥)) = 𝑇 ′(𝜑(𝑥)) (3.1)

where 𝑇 ′ is the equivalent transformation in the output space. In other words, a

function is equivariant to a transformation if the order in which the function and the

transformation are applied does not matter.

An 𝐸(𝑛)-equivariant function is equivariant to translation, rotation, reflection,

and permutation. 𝐸(𝑛)-equivariance is crucial in our particular use-case, since it

allows us to leverage the inherent symmetry of our task; in our structural dataset,

proteins might appear translated, rotated, or otherwise symmetrically transformed,

and we would like our model to recognize that a certain set of proteins corresponds to

different transformations of the same original protein. EGNNs help us achieve that

in a very elegant way.

Let us briefly go over the un-augmented architecture of Graph Neural Networks

(which are by default permutation equivariant), as described in [10]. Consider a graph

𝐺 = (𝑉,𝐸), where 𝑉 = {𝑣1, . . . , 𝑣𝑁} is the set of nodes and 𝐸={(𝑢1, 𝑣1), . . . , (𝑢𝑀 , 𝑣𝑀)},

(𝑢𝑖, 𝑣𝑖) ∈ 𝑉 2 the set of edges. A graph convolutional layer is defined as follows:

𝑚𝑖,𝑗 = 𝜑𝑒(ℎ
𝑙
𝑖, ℎ

𝑙
𝑗, 𝑎𝑖,𝑗)

𝑚𝑖 =
∑︁

𝑗∈𝑁(𝑖)

𝑚𝑖,𝑗

ℎ𝑙+1
𝑖 = 𝜑𝑣(ℎ

𝑙
𝑖,𝑚𝑖)

(3.2)

19

where 𝜑𝑒, 𝜑𝑣 are the edge and node functions respectively, commonly approximated

by Multi-Layer Perceptrons, 𝑁(𝑖) the set of neighbors of node 𝑖, and ℎ𝑙
𝑖 the embedding

of node 𝑖 at layer 𝑙; 𝑎𝑖,𝑗 are edge features (e.g. distance between nodes, but also in

the case of representing amino-acids it could also involve the types of amino-acids

sharing an edge, that is, interacting); 𝑚𝑖,𝑗 enables message passing between adjacent

nodes, and 𝑚𝑖 accumulates all the information passed to node 𝑖 at a given layer.

Now let us examine the modified Equivariant Graph Convolutional Layer (EGCL),

as proposed in [24]. Note that we have slightly tweaked the definition to account for

the fact that our network is sparse and the adjacency matrix known, that is, we do

not infer edges between residues. More details on how we build the adjacency matrix

can be found in section 3.2.3

𝑚𝑖,𝑗 = 𝜑𝑒(ℎ
𝑙
𝑖, ℎ

𝑙
𝑗, ‖𝑥𝑙

𝑖 − 𝑥𝑙
𝑗‖2, 𝑎𝑖,𝑗)

𝑥𝑙+1
𝑖 = 𝑥𝑙

𝑖 +
1

|𝑉 |
∑︁
𝑗 ̸=𝑖

(𝑥𝑙
𝑖 − 𝑥𝑙

𝑗)𝜑𝑥(𝑚𝑖,𝑗)

𝑚𝑖 =
∑︁

𝑗∈𝑁(𝑖)

𝑚𝑖,𝑗

ℎ𝑙+1
𝑖 = 𝜑𝑣(ℎ

𝑙
𝑖,𝑚𝑖)

(3.3)

where 𝜑𝑥 is yet another Multi-layered Perceptron, and 𝑥𝑙
𝑖 are the coordinate embed-

dings at layer 𝑙 (so 𝑥0
𝑖 are the initial coordinates of residue 𝑖). Notice that steps 1, 3,

and 4 of equation 3.3 are 𝐸(𝑛)-invariant; assuming that ℎ0 is invariant, we see that

𝑚𝑖,𝑗 is also going to be invariant (since the distance between 𝑥𝑙
𝑖 and 𝑥𝑙

𝑗 is invariant

to equivalent rotation and translation), and 𝑚𝑖 as well as ℎ𝑙+1
𝑖 are also going to be

invariant, since they only depend on 𝑚𝑖,𝑗 and ℎ𝑙 (the latter being invariant by induc-

tion). Finally, it is not difficult to see that the second step of 3.3 is 𝐸(𝑛)-equivariant,

that is, for some rotation matrix 𝑄 and a translation 𝑔 we have that

𝑄𝑥𝑙+1
𝑖 + 𝑔 = 𝑄𝑥𝑙

𝑖 + 𝑔 +
1

|𝑉 |
∑︁
𝑗 ̸=𝑖

(𝑄𝑥𝑙
𝑖 + 𝑔 − [𝑄𝑥𝑙

𝑗 + 𝑔])𝜑𝑥(𝑚𝑖,𝑗) (3.4)

20

To see that this holds, we can simplify the right-hand side to get:

𝑄𝑥𝑙
𝑖 + 𝑔 +

1

|𝑉 |
∑︁
𝑗 ̸=𝑖

(𝑄𝑥𝑙
𝑖 + 𝑔 − [𝑄𝑥𝑙

𝑗 + 𝑔])𝜑𝑥(𝑚𝑖,𝑗) =

𝑄
(︁
𝑥𝑙
𝑖 +

1

|𝑉 |
∑︁
𝑗 ̸=𝑖

(𝑥𝑙
𝑖 − 𝑥𝑙

𝑗)𝜑𝑥(𝑚𝑖,𝑗)
)︁
+ 𝑔 =

𝑄𝑥𝑙+1
𝑖 + 𝑔

(3.5)

as desired. A more detailed proof of the 𝐸(𝑛)-equivariance of this graph model can

be found in appendix A of [24].

EGNNs naturally excel at structural protein modeling, since they allow us to

produce embeddings that capture nuanced interactions between proximate residues

in the three dimensional space.

Recurrent Neural Networks (RNN)

Since we are working with sequences, it is only natural to utilize a sequence model to

augment our epitope model. For that purpose, we will use the Gated Recurrent Unit

architecture, as described in [2].

GRUs solve the short-term memory problem that plain RNNs suffer from by

introducing two types of gates: the update gate, responsible for determining how

much past information should be passed along to future time steps, and the reset gate,

responsible for determining how much of the past information should be forgotten.

GRUs function very similarly to Long Short-Term Memory networks [11], however

they are significantly more space-efficient compared to LSTMs, since they lack an

output gate.

For completeness sake, we include the definition of the Fully-Gated Recurrent

Unit, as described in [2].

21

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ̂𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1− 𝑧𝑡)⊙ ℎ̂𝑡

(3.6)

Here ⊙ denotes element-wise multiplication between vectors (also known as Hadamard

Product).

Multi-Layer Perceptron

Finally, we would like to convert the embeddings produced by our model into output

logits that, after feeding into a sigmoid function, we can interpret as the probability

that a given residue is part of some epitope.

3.2.2 Surface Features

We experimented with various surface-level features for encoding residues. We will

now go over the ones that we ended up using, as well as some honorable mentions

that did not make into the final model.

Relative Accessible Surface Area

Relative Accessible Surface (or Solvent) Area (RASA or relative ASA) of an amino-

acid residue within a polypeptide chain is the measure of the residue’s solvent expo-

sure. In simpler terms, it is a measure of how accessible this residue is to the solvent

(most commonly water) that surrounds the protein. This is clearly a helpful feature

to include in our model, since residues that are not very accessible to the solvent

that surrounds them are less likely to come in contact with antibody residues in an

antibody-antigen complex, and therefore less likely to be epitopes.

22

Figure 3-1: In many instances, the less accessible a residue is, the less likely it is to be part of an interaction site.
Here, we have a structure taken from [27]. Notice that the less accessible MET 42 is not part of the interaction site
between the two proteins, whereas the more accessible ASP 124 is. Of course this is not a general rule, however it
demonstrates the usefulness of including RASA as a feature of our model.

Secondary Structure

Based on their amino-acid sequence, proteins fold into three-dimensional conforma-

tions. There are four different levels one can use to describe the structure of a protein,

in order of increasing complexity, primary, secondary, tertiary, and quaternary. We

have already mentioned the primary and tertiary structures of a protein (the protein

sequence and the three-dimensional arrangement of residues in space, respectively).

The secondary structure of a protein lies somewhere between the primary and tertiary

structure, in regards to complexity; it is defined as the local spatial conformation of

the polypeptide backbone excluding the side chains [29]. More intuitively, the sec-

ondary structure of a protein describes common formations that contiguous subse-

quences of the protein sequence take in space. The two most common such formations

are 𝛼-helixes and 𝛽-sheets.

We utilized the Dictionary of Protein Secondary Structure (DSSP) classification

[16] to classify conformations into 8 different types; 310 helix, 𝛼 helix, 𝜋 helix, hy-

drogen bonded turn, extended strand in parallel and/or anti-parallel 𝛽-sheet confor-

mation, residue in isolated 𝛽 bridge, bend, and coil. To include this information in

our model, we used 1-hot encoding to create 8-dimensional secondary structure class

23

Figure 3-2: Two most common secondary structure conformations, the 𝛽-sheet and the 𝛼-helix [26].

embeddings for each residue.

Torsion Angles

We also included in our model the torsion angles of the N-C𝛼(Φ) and C𝛼-C(Ψ) bonds.

Polypeptide chains can freely rotate around these bonds, therefore affecting the struc-

ture of the entire protein, so it is important that we include them in our residue

representation.

Approximated Residue Depth

Residue Depth is a measure that describes how “burried” a residue is within the

protein. Residue depth is complementary to relative ASA, a solvent accessibility

measure we discuss above. In our experiments, we used an approximation of the

actual residue depth (𝜌), calculated as described in [9]. In the final model, we used

relative ASA instead of 𝜌, as the latter ended up introducing noise which actually

decreased model performance. It is worth noting, however, that, when not including

the language model embeddings in our architecture, incorporating 𝜌 as a residue

feature actually did slightly improve model performance.

24

Figure 3-3: Torsion Angles; 𝜔 angles are generally fairly restricted, so we do not include them as features in our
model [31].

3.2.3 Putting it All Together

Starting with the protein sequence, we feed it into the pretrained ESM2 language

model (3.2.1), to produce 640-dimensional residue embeddings. The ESM2 embed-

dings are then fed into a simple fully-connected MLP, with no activation function

or dropout, to reduce their dimension to 𝐷ESM2. The reduced embeddings are then

concatenated with the surface features (3.2.2) described above (relative ASA, 1-hot

encoded secondary structure, Ψ, Φ) to obtain (𝐷ESM2 + 11)-dimensional residue em-

beddings.

These embeddings are used as node features in our EGNN (3.2.1), so for each

residue 𝑖, we initialize ℎ0
𝑖 accordingly. The multilayer EGNN, with internal dimen-

sion 𝐷EGNN, dropout 𝑝EGNN, and 𝑛EGNN layers, will update these embeddings, while

keeping their dimension as is. For the edge features, as well as the overall graph

construction, we took inspiration from [36]; for each residue, represented in the 3D

space as a point with coordinates equal to the experimentally observed coordinates

of its C𝛼 atom, we add edges to its 10 nearest neighbors. We also add edges to all

residues in a 10Å radius. Finally, we add a total of 4 sequential edges, 2 to the pair of

residues preceding our residue in the amino-acid sequence and 2 to the pair of residues

25

following it. We featurize each edge between residues 𝑖 and 𝑗 with a 45-dimensional

1-hot encoding (21 positions to represent the type of amino-acid of residue 𝑖, 21 more

for residue 𝑗, as well as 3 positions to represent the type of edge connecting 𝑖 and 𝑗,

that is, sequential, nearest-neighbor, or within 10Å of each other).

The output of the EGNN is then be fed into a multi-layered bidirectional GRU

(3.2.1) with hidden dimension 𝐷GRU, dropout 𝑝GRU, and 𝑛GRU layers, to produce

2𝐷GRU-dimensional embeddings.

Finally the 2𝐷GRU-dimensional residue representations are fed into a fully-connected

MLP (3.2.1) which reduces the dimension of the embeddings to 𝐷MLP, applying the

ReLU activation function and a dropout of 𝑝MLP. Then, the dimension is further

reduced with a second fully-connected convolution layer to produce the output logits.

Figure 3-4: A visual representation of the model architecture demonstrating how the per-residue logits are calculated.

3.3 Data

For training, evaluating, and testing our model, we used a multitude of publicly

available datasets. In this section, we will go over them, and explain how the data is

split in a fair way to avoid data leaks.

26

3.3.1 Protein Data Bases

Our main source of protein structures was the Protein Data Bank (PDB) [1]. The

PDB archive, currently the largest open access digital data resource in all of Biology,

contains at least a terabyte of protein structural data, DNA, and RNA.

Due to the large scale of PDB, it can get tricky to accumulate a consistent set of

protein-antibody complexes; for that purpose, we utilised The Structural Antibody

Database (SAbDab) [25]. SAbDab contains all the antigen-antibody complexes found

in PDB, consistently presented and annotated.

Finally, we explored using labeled data from the Immune Epitope Database (IEDB)

[33]. IEDB is a carefully curated database of experimentally validated epitopes, con-

taining a vast array of more than 200,000 linear epitopes (i.e. epitopes where all

the residues are a contiguous subsequence of the protein sequence). We attempted

using linear epitopes from IEDB to formulate a pretraining routine, with little to no

success (see Appendix section A.1). Since the three-dimensional structures of the

IEDB proteins were hard to obtain, we used ESMFold [21] to obtain approximate 3D

structures for the proteins used.

3.3.2 Data Processing

For our experiments, we used the train-test splits from [36] and [3]. We will however

discuss here how we re-created these splits, as it will be relevant when we later talk

about antibody docking.

Labeling the Data

First off, we start with the raw PDB files from SAbDab. Program DataBase (PDB)

is a file format commonly used to store the three dimensional structure of proteins.

Each PDB file contains two unique entities; the antigen, which commonly consists of

a single amino-acid chain, and the antibody, which consists of two chains, the Heavy

and the Light chain.

As we mentioned above, for simplicity, we represent residues in the 3D space by

27

Figure 3-5: Consecutive entries in a PDB file representing the third residue in an amino-acid chain. Columns 7-10
contain the positions of the atoms comprising the residue in the three-dimensional space.

the location of their heavy carbon atom (C𝛼). With that in mind, we define an epitope

residue on an antigenic protein Ag to be any residue in Ag within 𝑥 units of distance

from any other residue belonging to any antibody that forms a crystal structure with

Ag. The distance 𝑥 commonly ranges from 3 to 8 Å . Observe that to completely

define all the epitope residues of an antigen, one would need structural information

about all the antigen-antibody complexes this particular antigen can be a part of.

Sequence Identity

Now that we have established a labeling scheme for our residues, we need to make

sure that the proteins in our training set are non-redundant. To define the notion

of redundancy, we first need to talk about the concept of sequence identity. For two

amino-acid (or DNA, or RNA) sequences, sequence identity is a measure of similarity

between them. More specifically, after aligning the sequences, their sequence identity

is equal to the ratio of the number of aligned residues that match and the total number

of aligned residues. Here is a toy example to better illustrate the concept of sequence

identity:

A: QVAAGQLGGTPPVKGQQLNASIIAQTR

B: QVAGQLGGTTPVKGQLNASIIIAQTR

First, we align the two sequences; to optimally do so, we can use a dynamic program-

ming algorithm to minimize an alignment metric, such as the Damerau–Levenshtein

28

distance [7]. This, however, is not in the scope of this thesis.

A: QVAAGQLGGTpPVKGQQLNASII-AQTR

B: QVA-GQLGGTtPVKGQ-LNASIIIAQTR

With the sequences now aligned, we can calculate their sequence identity as

no. of matching residues
no. of total aligned residues

× 100% =
24

28
× 100% ≈ 85.7%.

MMSEQS2

For efficiently and accurately aligning and clustering our sequences based on sequence

identity, we used the tool MMSEQS2 (Many-against-Many SEQuence Searching) [28].

MMSEQS2 takes a set of protein sequences in FASTA format and a minimum se-

quence identity cuttoff 𝑐, and clusters the sequences such that, within any cluster, all

pairs of sequences in the cluster have sequence identity of at least 𝑐.

Figure 3-6: The FASTA format.

Epitope Grafting and Redundancy Reduction

Now that we have talked about sequence identity, it is time to define the notion

of redundancy. Generally speaking, we would like the sequences within our protein

29

dataset to have a relatively small maximum pairwise sequence identity. We therefore

define a set of protein sequences to be redundant if it contains a pair of sequences

with identity more than 𝑐redundant. To achieve non-redundancy, we cluster the protein

sequences using MMSEQS2 at minimum sequence identity of 𝑐redundant. Then, withing

each cluster, we pick a single sequence as the representative (typically MMSEQS2 will

pick it for us). For each sequence 𝑠 in the remaining sequences within the cluster, we

align it with the representative. For every matching residue in the alignment, if the

residue is marked as an epitope in 𝑠, we mark it as an epitope in the representative.

This step is referred to as “Epitope Grafting”. Then, we keep only the representative

sequences and discard the rest.

We perform this redundancy reduction procedure twice, the first time with 95%

minimum sequence identity, and the second time at 70%.

Fair Data Splitting

Now that we have a non-redundant set of proteins, it is crucial that we split it

into training/validation/test fairly; specifically, we would like to not have too similar

sequences in our training and test sets, as this could be a cause of a data leak; to

be able to deduce whether our model generalizes well, it is really important that the

sequences in our test set are adequately different than the sequences in our training

set. To achieve that, we cluster the sequences with minimum sequence identity of

30-50%, and split the data such that sequences belonging in the same cluster always

end up in the same split.

After this procedure, we are left with 577 proteins for training and evaluation, and

66 proteins for testing. These numbers provide some much needed insight on why

the problem of B-cell epitope prediction, and in extension the problem of antibody

docking, is so challenging. Antibodies are proteins with very high specificity that can

bind to only specific antigens. Without an adequate amount of data, it is very difficult

to create a B-cell epitope model that will generalize well to unknown antigens, and

577 proteins are generally not enough data to easily achieve such a feat. However, as

we will show in the following sections, we did the best we could with the data that

30

was available to us and managed to create a competent model.

3.4 Training and Evaluation

Now that we have our model architecture set and our data cleaned up and prop-

erly split, it is time to decide the training regime, i.e. the loss function we will be

minimizing. We ended up going with Binary Cross Entropy (BCE) loss, the most

sensible candidate since our task is a binary classification one. Given two discrete

probability distributions 𝑃 (representing the data/observations) and 𝑄 (representing

the estimations) in the same sample space 𝒳 , the cross-entropy between 𝑃 and 𝑄 is

defined as

𝐻(𝑃,𝑄) = 𝐻(𝑃) +𝐷KL(𝑃‖𝑄) (3.7)

where 𝐻(𝑃) is the entropy of distribution 𝑃 (measuring the degree of randomness)

and 𝐷KL(𝑃‖𝑄) the Kullback-Leibler divergence [19] between the two distributions

(measuring the degree of surprise if one were to use 𝑄 instead of the ground truth

𝑃), respectively defined as

𝐻(𝑃) = −
∑︁
𝑥∈𝒳

𝑃 (𝑥) log𝑃 (𝑥)

𝐷KL(𝑃‖𝑄) =
∑︁
𝑥∈𝒳

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄(𝑥)

(3.8)

Simplifying, we get:

𝐻(𝑃,𝑄) = −
∑︁
𝑥∈𝒳

𝑃 (𝑥) log𝑃 (𝑥) +
∑︁
𝑥∈𝒳

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄(𝑥)

= −
∑︁
𝑥∈𝒳

𝑃 (𝑥)(log𝑃 (𝑥)− log𝑃 (𝑥) + log𝑄(𝑥))

= −
∑︁
𝑥∈𝒳

𝑃 (𝑥) log𝑄(𝑋)

(3.9)

31

We can use this definition of cross entropy to define a loss function over all the

observations. Namely, for our ground truth distribution 𝑝𝑛 and prediction distribution

𝑞𝑛, for observations indexed 𝑛 = 1 . . . 𝑁 , where 𝑁 is the total number of observations,

we get:

𝐽(g) =
1

𝑁

𝑁∑︁
𝑛=1

𝐻(𝑝𝑛, 𝑞𝑛)

= − 1

𝑁

𝑁∑︁
𝑛=1

∑︁
𝑥∈𝒳

𝑝𝑛(𝑥) log 𝑞𝑛(𝑥)

= − 1

𝑁

𝑁∑︁
𝑛=1

[︁
𝑦𝑛 log 𝑦𝑛 + (1− 𝑦𝑛) log(1− 𝑦𝑛)

]︁
(3.10)

where g is our differentiable model, 𝑦𝑛 ∈ {0, 1} (0: non-epitope, 1: epitope) the true

label of the 𝑛th observation, and 𝑦𝑛 = g(𝑥𝑛) the predicted value from the model,

given 𝑥𝑛, the features of the 𝑛th observation.

We trained our model using the Adam variant of stochastic gradient descent [17]

for 30 epochs with learning rate of 10−3. We used the following set of hyperparameters

(defined in section 3.2.3) for the different components of our model:

𝐷ESM2 = 512

𝐷EGNN = 512 𝑝EGNN = 0 𝑛EGNN = 2

𝐷GRU = 128 𝑝EGNN = 0 𝑛EGNN = 2

𝐷MLP = 128 𝑝MLP = 0

As our evaluation metrics, we used the Area Under the Receiver Operating Char-

acteristic Curve (AUROC) curve, as well as the Area Under the Precision Recall

Curve (AUPRC).

32

3.5 Results

We compared our model with various state-of-the-art B-cell epitope prediction models

([4], [13], [23], [18], [30], [36]). For fairness, we used the training and test set from

[36]. Bellow follows a table summarising the performance comparison results:

Model AUROC AUPRC

EpiDope 54.7 10.2

Bepipred-2.0 64.8 13.2

ElliPro 63.2 12.2

Discotope-2.0 65.5 15.4

ScanNet_WT 64.8 13.5

ScanNet_T 71.2 18.2

GraphBepi 75.1 26.1

Our Model 76.1 23.8

Our model outperformed all others in the AUROC metric, and came second in

the AUPRC metric. Notice that the performance of our model is very similar to that

of GraphBepi [36]. GraphBepi uses a very similar architecture to ours, and was in

fact published fairly recently. The main differences between the two models are that

GraphBepi uses evolutionary features (we do not), they use the 3 billion parameter

ESM2 model (we use the 150 million parameter one), and we reduce the dimension of

the ESM2 embeddings with a fully-connected layer before feeding them to the EGNN

(they do not).

33

34

Chapter 4

Antibody Docking

Now that we have developed a solid B-cell epitope model, we will discuss how we

used it to improve antibody docking. But before we go over our methods, we will

briefly provide a solid formulation to the problem of antibody docking, as well as the

baseline docking model we used in our experiments.

Figure 4-1: The problem of antibody docking, illustrated.

35

4.1 The Problem of Docking

The problem of antibody docking can be formulated as follows: given the sequence and

three-dimensional structure of an antigenic protein, and the amino-acid sequence of

an antibody, we would like to predict, as accurately as possible, the three-dimensional

structure of the complex that will be formed when the given antibody docks onto the

given antigen. Accuracy, or, more correctly, success rate, here is commonly defined in

terms of what percentage of the test samples very closely resemble the ground truth

antigen-antibody complex.

4.2 Model

Creating a solid antibody docking model is beyond the scope of this thesis; for that

reason, in our experiments, we used Wengong Jin’s antibody docking model. Wengong

is a Postdoctoral Associate at Eric and Wendy Schmidt Center of Broad Institute,

researching novel machine learning algorithms for biology and medicine. For the

remainder of this thesis, we will be referring to his model as “the docking model”.

4.2.1 The Docking Model

The docking model is a part of Wengong’s research that has not yet been published;

for that reason, we will be using it as a black box without going into too much detail

regarding its underlying architecture.

The docking model takes in three inputs; the antigen (both its three-dimensional

structure and its amino-acid sequence), the antibody (just its sequence), and a seed.

The seed is a residue on the antigenic protein around which the model will attempt

to dock the antibody. The docking model was trained with knowledge of the opti-

mal (in the vast majority of cases) seed, the epitope center. The epitope center is

defined as the antigenic residue with the closest distance to any residue belonging

to a Complimentarity-Determining Region (CDR) of the antibody we are docking;

notice that here we are referring to a single antibody, in contrast to how we have been

36

interpreting the notion of an epitope so far in this thesis.

Figure 4-2: An antibody, with its CDRs colored in light blue; the CDRs will come in contact with the antigen upon
docking [35].

Observe that the optimal seed will not always be known; in fact, in most practical

applications, we will not know the seed at all. The quality of the predictions can

therefore vary significantly based on the choice of seed. That is where our epitope

model comes in; our hypothesis is that using our model’s predictions, after some

clever post-processing, we will be able to come up with a seed or a collection of seeds

that will produce structures with quality comparable to using the optimal seed.

Namely, we would like to select a set 𝒮 of 𝐾 seeds 𝑠1, 𝑠2, . . . , 𝑠𝐾 such that the

following metric is minimized:

𝑦𝑛 = gdock(𝑥𝑛; 𝑠𝑖)

𝜇RMSD(𝒮) =
1

𝑁

𝑁∑︁
𝑛=1

min
𝑠𝑖∈𝒮

RMSD
(︁
𝑦𝑛, 𝑦𝑛

)︁ (4.1)

where 𝑁 is the number of test samples, 𝑦𝑛 is the three-dimensional structure of

the ground truth docking conformation, and gdock the docking model, taking 𝑥𝑛 as

features and 𝑠𝑖 as the seed, to produce a predicted structure, which we denote with

37

𝑦𝑛. RMSD refers to the Root Mean Square Distance metric, defined as follows:

RMSD(𝑦, 𝑦) =

⎯⎸⎸⎷ 1

𝐿

𝐿∑︁
𝑖=1

‖𝑦𝑖 − 𝑦𝑖‖2 (4.2)

where 𝐿 is the number of atoms in the ground-truth structure, indexed in the order

they appear in its PDB representation.

4.2.2 Post-Processing

To keep the evaluation of our docking predictions fair, we retrained our model on

Wengong’s training set (training/validation charts of the best model we trained can

be found in A.3). We labeled residues as described in the Data Processing section

(3.3.2), and we also created a separate label for the epitope center. Furthermore, we

employed the redundancy reduction technique, which was described in section 3.3.2

as well.

Since we have established the overall architecture of our epitope model, we now

have the chance to get creative with some finer parts of our model, as well as with

the choice of loss function for training. Because of the fact that in the context

of antibody docking there are three possible labels for each residue (non-epitope,

epitope, epitope-center), we had the option to change the setting of our problem

from binary classification to multi-class classification, or to multi-label classification,

difference being that in the latter, each sample can have multiple labels attached to

it. That would, of course, imply slightly tweaking our loss function to account for

the change in setting, as well as changing our evaluation metrics. We also explored a

completely different training regime, in which only the top 𝐾 ranking residues were

backpropagated. We go over in greater detail about each model/training configuration

we employed and how each performed on the test set.

We ran our models on Wengong’s test set to produce per-residue logits. For models

trained in a multi-class or multi-label setting, we then applied the softmax function

38

to turn the logits into per-label probabilities (𝑝0, 𝑝1, 𝑝2), for each residue:

𝑝𝑖 = 𝜎(z)𝑖 =
𝑒z𝑖∑︀2
𝑗=0 𝑒

z𝑗
(4.3)

For binary classification models, we would apply the sigmoid function, to obtain

the probability 𝑝 = 𝜎(z) = 1
1+𝑒−𝑝 that the given residue is either an epitope or an

epitope-center.

In the remainder of this section, we will address how we leveraged our predictions

to improve the predictive quality of the docking model, by selecting a set of 𝐾 seeds.

Baselines

The baseline that we will be comparing our seeding method against will be simple;

randomly sample 𝐾 residues from the antigen sequence and use them as seeds. The

docking model could also be used in a setting where a seed is given, however the area

of effect of that particular seed is set to infinity, therefore virtually not using any seed

at all. For completeness sake, we include this baseline in our tables of comparisons as

well, even though with as little as two tries, even the model selecting random seeds

mentioned above outperforms it in all the relevant metrics.

Our Three Seeding Methods

Algorithm 1 Our first seed-selection approach is to rank the antigen residues based

on the probability that they are either an epitope or an epitope-center, that is, 𝑝 in

the single-label setting, and 𝑝1 + 𝑝2 in the multiclass/multilabel setting. Then, we

pick the top-𝐾 ranked residues as our candidate seeds.

Algorithm 2 To introduce some randomness to our approach, we tried something a

little more elaborate; for each antigen, we create a distribution 𝑞 by normalizing the

per-residue predicted probabilities. For 𝑖 = 1 · · ·𝑅, where 𝑅 is the number of residues

in the antigen, we have:

𝑞𝑖 =
𝑝
(𝑖)
1 + 𝑝

(𝑖)
2∑︀𝑅

𝑗=1(𝑝
(𝑗)
1 + 𝑝

(𝑗)
2)

(4.4)

39

The distribution 𝑞 is defined similarly for the binary classification setting. Then,

we pick residues in decreasing order of 𝑞𝑖 until we have selected at least 60% of the

distribution. From this resulting set of residues, we randomly sample 𝐾 seeds.

Algorithm 3 To account for residue density in certain parts of the antigenic protein,

we used the following algorithm. First, we create distribution 𝑞 as described above.

We select top ranking residues until we have covered 75% of the distribution. Then,

we employ the 𝑘-Medoids algorithm [20] to cluster the resulting set of points into

10 clusters (since in our experiments 𝐾 ≤ 10). From each cluster, we pick the

representative (medoid), and, after ranking the medoids in decreasing order of 𝑞𝑖, we

select the top-𝐾 ones as our seeds.

Algorithm 4 In order to reduce the randomness of the previous algorithm, we tried

a setting where instead of picking the medoid as the representative of each cluster, we

select the top ranking residue from each cluster. In that fashion we obtain a set of 𝐾

residues in a more deterministic fashion (since the 𝐾-medoids algorithm is innately

stochastic and the representative medoid is chosen randomly).

4.3 Results

In this section, we go over how the docking predictions of each configuration we

employ (model, training regime, and post-processing algorithm) perform in various

evaluation metrics. We test multiple different training settings, and evaluate each

model’s predictions with a wide array of metrics. We briefly mentioned each candidate

training regime in the previous section; here, we go over all of them in more detail,

and present the performance of each method.

Multilabel, Cross Entropy Loss

The first setting we examine is that of using multiple labels to represent the three

different classes {non-epitope, epitope, epitope-center}. Specifically, we represent

non-epitopes as the vector [1, 0, 0], epitopes but not epitope-centers as [0, 1, 0], and

epitope centers as [0, 1, 1]. The rationale behind this choice is that we would like

40

epitope-centers to be ranked highly both as epitope-centers and as simple epitopes; a

multi-class, single-label scheme would not achieve that.

For our loss function, we merely move from Binary Cross Entropy to Multi-class

Cross Entropy. To account for the fact that the vast majority of residues in our

training set are non-epitope residues, and that there will be at most one or two

epitope centers per antigen, we weight the three different class losses accordingly,

with 0.1 for non-epitope, 0.4 for epitope, and 0.5 for epitope-center. In that way,

it is ensured that true-positive predictions of non-epitopes do not dominate our loss

function.

To evaluate our model, as well as the docking predictions we use a multitude of

metrics; AUROC and AUPRC on the test set, labeled as descibed in section 3.3.2,

𝜇RMSD, as defined in 4.1, for a single seed and for 𝐾 = 10 seeds. Finally, we also

introduce a new metric, success(𝐾)
𝛿 , defined as the percentage of predictions after

using 𝐾 seeds, where the RMSD was within 𝛿 of the RMSD achieved when perfectly

seeding the docking model with the correct epitope center.

Below is a table summarizing the results in this particular setting, using the three

seeding methods described in the previous section, for the evaluation methods we just

discussed:

Setting success(1)𝛿=2 success(1)𝛿=1 success(10)𝛿=2 success(10)𝛿=1 𝜇
(1)
RMSD 𝜇

(10)
RMSD

Random Baseline 3 3 35 29 36 20

Seedless Baseline 6 5 - - 31 -

Algorithm 1 12 12 47 44 34 20

Algorithm 2 11 7.6 44 39 34 19

Algorithm 3 7.6 7.6 50 44 35 18

Algorithm 4 7.6 6.1 50 45 34 18

AUROC AUPRC

76.6 38.3

Observe that even though our model reports a mean RMSD score very close to

the random baseline for 𝐾 = 10 seeds, the success rate of our model is significantly

higher.

41

Binary Classification, Binary Cross Entropy Loss

In this setting, we treat epitope-centers as mere epitopes, and modify the task back

to a binary classification task. Below is a table summarizing our results in this

experiment.

Setting success(1)𝛿=2 success(1)𝛿=1 success(10)𝛿=2 success(10)𝛿=1 𝜇
(1)
RMSD 𝜇

(10)
RMSD

Random Baseline 3 3 35 29 36 20

Seedless Baseline 6 5 - - 31 -

Algorithm 1 15 15 47 45 32 22

Algorithm 2 10 6 53 46 34 19

Algorithm 3 18 14 56 47 31 18

Algorithm 4 15 15 56 51 32 18

AUROC AUPRC

74.1 15.3

There are a few conclusions to be drawn from these two experiments. Clearly, us-

ing binary classification out-performs the multi-label setting when it comes to success

rate, both for a single seed and for multiple seeds. When comparing RMSDs for a sin-

gle seed, the binary classification setting again comes out on top. For multiple seeds

the performance is similar; however, we should prioritize success rate over RMSD

when deciding which setting is the best, since a low RMSD does not necessarily im-

ply a good predicted structure, unless said RMSD is less than 10 (the experimentally

agreed-on cutoff for acceptable predicted structure).

Considering that only 9% of the predicted structures have RMSD less than 10,

when perfectly seeding with the correct epitope center, we would be limiting ourselves

if we used RMSD as our main metric. This low success rate of the perfectly-seeded

model is also the reason why we changed the definition of success rate, which normally

is defined as the percentage of predicted structures with RMSD to the ground truth

of less than 10. Penalizing ourselves based on the limitations of the docking model

would give us a false sense of how good our seeding model is.

42

Top-𝐾 Backpropagation

Based on the observations from our previous two experiments, we decided to switch

to a binary classification setting for our current experiment. This brings us to our

current setting, in which we introduce a second Binary Cross Entropy loss function,

that will only back-propagate the top-𝐾 ranked residues per sample. To ensure that

the remaining residues are also properly trained on, we will use this new loss function

in tandem with the original binary classification loss.

The reasoning behind this choice is the fact that we want to maximize how many

epitopes or epitope-centers will be in the top-𝐾 ranking residues. By introducing

this additional loss, we are forcing our model to rank highly residues that are either

epitopes, or epitope-centers; if the model were to rank a non-epitope highly, then the

additional loss we introduce would further penalize this choice.

Here is how this setting performed in our docking experiments:

Setting success(1)𝛿=2 success(1)𝛿=1 success(10)𝛿=2 success(10)𝛿=1 𝜇
(1)
RMSD 𝜇

(10)
RMSD

Random Baseline 3 3 35 29 36 20

Seedless Baseline 6 5 - - 31 -

Algorithm 1 8 8 48 44 36 19

Algorithm 2 5 5 44 42 37 19

Algorithm 3 5 3 44 44 36 19

Algorithm 4 8 8 47 40 36 19

AUROC AUPRC

71.1 14.0

The results of this experiment were quite underwhelming. This is likely due to a

combination of factors; first of all, the fact that by introducing the top-𝐾 loss, we

are incentivising the model to rank 𝐾 residues on each sample higher than the rest.

Secondly, since this is a binary classification model, our model does not discriminate

between epitopes and epitope-centers. However, the vast majority of positives in our

training and validation sets will be simple epitopes, not epitope-centers. It is therefore

a considerable possibility that the majority of the top-𝐾 ranking residues, which were

43

correctly identified as positives, will be epitopes, not epitope centers. The docking

model is however very sensitive to selecting the correct epitope center, since it has

only been trained in that context. Therefore, we need to add back some information

that will allow the model to correctly distinguish between residues that are epitopes

and residues that are epitope centers.

Multi-label loss combined with binary top-𝐾 backpropagation

To address the issue of not selecting epitope centers, we revert back to a multi-label

setting; however, when backpropagating the top-𝐾 ranked residues, we do so in a

binary manner. Given our predicted logits 𝑧1, 𝑧2, 𝑧3, which will be backpropagated

normally using the multi-label loss, we define 𝑧2,3 = 𝑧2+𝑧3. Then, for each sample, we

select the 𝐾 residues with the highest 𝑧2,3 score for the additional backpropagation.

In that way, our model retains the epitope-center information, while also attempting

to rank highly epitopes and epitope centers.

The results of this experiment are shown below.

Setting success(1)𝛿=2 success(1)𝛿=1 success(10)𝛿=2 success(10)𝛿=1 𝜇
(1)
RMSD 𝜇

(10)
RMSD

Random Baseline 3 3 35 29 36 20

Seedless Baseline 6 5 - - 31 -

Algorithm 1 14 11 59 53 34 19

Algorithm 2 6 5 41 35 36 20

Algorithm 3 21 21 52 48 33 18

Algorithm 4 15 9 59 47 34 18

AUROC AUPRC

72.9 38.0

As you can observe, this setting yields the highest success rate among all other

settings we have tried, both for a single seed (21%) and for 𝐾 = 10 seeds (59%).

Compared to the random and seedless baselines, this gives us a single seed approach

that achieves 3.5 times the success rate and a 𝐾 = 10 seed approach which achieves

1.7 times the success rate. Specifically compared to the seedless approach, after 10

tries our model performs almost 10 times as high as when evaluating on success rate.

44

An interesting observation can be made by looking at the columns of this table.

Notice that the success rate of our model at 𝐾 = 10 seeds, when using Algorithm 1 or

Algorithm 4, is 59; almost double the success rate compared to the random baseline.

However, if we compare the mean RMSD scores, we notice that they do not differ

significantly (19 and 18 on our end vs. 20). The only way that such disparity can be

explained is if our model correctly identifies potential docking sites. Of course, our

model does not always identify the correct docking site, which is why we do not have

100% success. After all, our model was trained only on antigenic sequences, without

accounting for the particular antibody we want to dock. On the other hand since the

predictions our model makes are limited by the capabilities of the original docking

model, the mean RMSD is inevitably going to be relatively high. Recall that we define

success rate in terms of how close we are to a perfectly seeded prediction and not the

ground truth. This would also explain why the random baseline scores so well in the

mean RMSD metric. Since it is randomly selecting residues uniformly, it is bound to

cover more area than our model, therefore achieving a decent RMSD score, since it

is likely to randomly dock the antibody in close proximity to the true docking site.

However, its success rate is going to be significantly lower than that of our model,

since it rarely actually locates the correct docking site; from our experiments, we

have observed that Wengong’s model is very sensitive to the correct epitope center,

therefore an attempt to dock somewhere that isn’t on the epitope center, or very close

to it, will usually end in failure.

To verify these claims, we sampled a subset of 26 antigen structures from our

dataset, in which both of our model as well as the random baseline reported fairly

good predictions based on the RMSD metric. We specifically chose good predictions

to be able to distinguish our model’s behavior to that of the random baseline. We

ran our seeding algorithm and the random baseline to obtain 20 seeds per antigen,

10 from our model and 10 from the random baseline. Below we have plots of the

structures projected into two dimensions, with the seeds marked in red and the true

epitope center in black:

45

Our Seeds

Random Seeds

Table 4.1: Our seeds vs. randomly selected seeds in a sample of 26 structures; observe that our seeds cover less space
and clump together in sites, as desired.

Observe that our seeds are significantly more localized compared to the random

ones. We can therefore conclude that our model is able to identify candidate binding

sites, and does not merely produce random seeds. This also explains the discrepancy

we noticed between mean RMSD and success rate, when comparing our deterministic

46

seeding method with the random one. This goes to show that, for this particular

task, mean RMSD can be a very misleading metric.

4.3.1 Improved Structure Predictions

Our seeding method is not perfect, but it significantly improves the quality of certain

predictions. Below we present some randomly sampled structures from the test set,

where the improvement in the predicted docking conformation is evident. Note that

for both the baseline and the refined prediction, only a single seed was used.

Ground Truth Baseline Prediction Our Refined Prediction

Table 4.2: Single-Seed Comparison

We also compared the baseline with the refined predictions for 𝐾 = 10 seeds. For

each model, out of the 10 generated structures per sample, we selected the one with

the smallest RMSD with the ground truth crystal structure.

Ground Truth Baseline Prediction Our Refined Prediction

Table 4.3: 𝐾-Seed Comparison; notice that in some cases the baseline model places the antibody completely inside
the antigen, which is why it is not visible in the visualizations.

47

Observe that our model correctly identifies the docking site in each case; the deviation

from the ground truth, predominantly in the form of incorrect torsion angles and

docking orientation, is a failure of the original docking model.

48

Chapter 5

Conclusions

5.1 Summary of Results

In this thesis we presented a SOTA machine learning architecture for the task of

B-cell epitope prediction. Our model outperformed all other models in the current

bibliography when using AUROC as our evaluation metric (76), and came a close

second when evaluating using AUPRC (24). Our attempts to further increase the

performance of our model using linear epitope data from the IEDB database were

not successful.

We then used our model to improve the predictive quality of Wengong Jin’s anti-

body docking model. We noticed improved quality in certain structures, and, while

our initial evaluation metric, mean-RMSD, improved only slightly, we observed im-

mense performance increase in the success rate of our predictions. Specifically, our

model was able, with only 10 tries, to achieve a success rate almost 10 times as high

as that of the original seedless model (59 vs. 6), and 1.7 times as high as the setting in

which 10 random residues are selected as seeds. This led us to investigating, and we

ended up showing that our model is able to correctly identify binding sites, something

that is obviously not the case for the random baseline.

49

R
an

d
om

O
u
r

M
od

el

Table 5.1: Some hand-picked structures where the difference in ability to distinguish docking sites between our model
and the random baseline is evident.

5.2 Future Work

There are two main areas of the proposed work presented in this thesis that we believe

require further investigation.

5.2.1 Incorporating Linear Epitope Data

Our current B-cell epitope model is decently performant, however there is much room

for improvement. We have come up with a few ways we can increase the quality of our

predictions. In our experiments, we attempted to leverage the linear epitope data from

IEDB [33]; we tried using the IEDB data for pretraining, however the distributional

shift was too intense, and we ended up observing a decrease in performance. We do

believe, nonetheless, that with the proper pre-processing, we should be able to utilize

the IEDB data; since this task is very data-sensitive, and the availability of reliable,

large-scale datasets we can use is extremely limited, we believe that managing to

incorporate in a clever way the IEDB data into our training routine will certainly

help with performance.

50

To be able to incorporate the IEDB data in our training data, however, we need to

address the distributional shift between the linear epitopes in IEDB and the epitopes

in our dataset. One way to do that would be to collect all the antigen sequences in

IEDB and locate all antigen-antibody complexes in which they participate. This part

will be tricky, since there are antigens in IEDB which form complexes that cannot be

found in the publicly available datasets we have mentioned so far. To retrieve these

complexes, we could look into the (publicly available) dataset of AlphaFold predicted

structures, or UniProt [5].

After retrieving these structures, we can label them in the way described in section

3.3.2, by marking residues as epitopes when they are in close proximity to some

antibody CDR. That should be enough to take care of the difference in distribution,

and hopefully incorporating the re-labeled IEDB entries in our training set will help

us increase our model’s performance.

5.2.2 Using Our Model to Improve AlphaFold Predictions

During our experiments, we used a docking model that was trained to be able to accept

a candidate binding site as bias for predicting the final conformation. However, the

state of the art in antibody docking models, AlphaFold Multimer, does not offer this

type of functionality. We would like to experiment with “manually” seeding AlphaFold

Multimer using our model’s predictions, by tweaking the template library AlphaFold

uses. One way to do that, would be to use our seeding model, in tandem with a

docking model that is trained to accept candidate docking sites, to produce a set of

possible structures. Then, we will inject these structures into the AlphaFold template

collection and run the model to produce a refined prediction, or set of predictions

(since AlphaFold can produce multiple candidate docking and folding conformations).

Then, using AlphaFold’s uncertainty scoring, we will be able to select the most likely

correct structure.

Such an experiment has a lot of technical challenges and requires a deep under-

standing of the underlying AlphaFold architecture, however it certainly has potential.

51

52

Bibliography

[1] Stephen K Burley, Charmi Bhikadiya, Chunxiao Bi, Sebastian Bittrich, Li Chen,
Gregg V Crichlow, Cole H Christie, Kenneth Dalenberg, Luigi Di Costanzo,
Jose M Duarte, Shuchismita Dutta, Zukang Feng, Sai Ganesan, David S
Goodsell, Sutapa Ghosh, Rachel Kramer Green, Vladimir Guranović, Dmytro
Guzenko, Brian P Hudson, Catherine L Lawson, Yuhe Liang, Robert Lowe,
Harry Namkoong, Ezra Peisach, Irina Persikova, Chris Randle, Alexander Rose,
Yana Rose, Andrej Sali, Joan Segura, Monica Sekharan, Chenghua Shao, Yi-Ping
Tao, Maria Voigt, John D Westbrook, Jasmine Y Young, Christine Zardecki, and
Marina Zhuravleva. RCSB Protein Data Bank: powerful new tools for exploring
3D structures of biological macromolecules for basic and applied research and ed-
ucation in fundamental biology, biomedicine, biotechnology, bioengineering and
energy sciences. Nucleic Acids Research, 49(D1):D437–D451, 11 2020.

[2] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. On the properties of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259, 2014.

[3] Joakim Clifford, Magnus Haraldson Høie, Morten Nielsen, Sebastian Deleuran,
Bjoern Peters, and Paolo Marcatili. Bepipred-3.0: Improved b-cell epitope pre-
diction using protein language models. bioRxiv, 2022.

[4] Maximilian Collatz, Florian Mock, Emanuel Barth, Martin Hölzer, Konrad
Sachse, and Manja Marz. EpiDope: a deep neural network for linear B-cell
epitope prediction. Bioinformatics, 37(4):448–455, 09 2020.

[5] The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in
2023. Nucleic Acids Research, 51(D1):D523–D531, 11 2022.

[6] Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi
Jaakkola. Diffdock: Diffusion steps, twists, and turns for molecular docking,
2022.

[7] Fred J. Damerau. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7(3):171–176, mar 1964.

[8] Wikimedia Foundation. Macromolecular docking. https://en.wikipedia.org/
wiki/Macromolecular_docking, 2022.

53

https://en.wikipedia.org/wiki/Macromolecular_docking
https://en.wikipedia.org/wiki/Macromolecular_docking

[9] Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina
Barzilay, Tommi S. Jaakkola, and Andreas Krause. Independent se(3)-
equivariant models for end-to-end rigid protein docking. CoRR, abs/2111.07786,
2021.

[10] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. 2017.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[12] Andrew C. Hunt, James Brett Case, Young-Jun Park, Longxing Cao, Kejia Wu,
Alexandra C. Walls, Zhuoming Liu, John E. Bowen, Hsien-Wei Yeh, Shally Saini,
Louisa Helms, Yan Ting Zhao, Tien-Ying Hsiang, Tyler N. Starr, Inna Goreshnik,
Lisa Kozodoy, Lauren Carter, Rashmi Ravichandran, Lydia B. Green, Wadim L.
Matochko, Christy A. Thomson, Bastain Vögeli, Antje Krüger-Gericke, Laura A.
VanBlargan, Rita E. Chen, Baoling Ying, Adam L. Bailey, Natasha M. Kafai,
Scott Boyken, Ajasja Ljubetič, Natasha Edman, George Ueda, Cameron Chow,
Amin Addetia, Nuttada Panpradist, Michael Gale, Benjamin S. Freedman,
Barry R. Lutz, Jesse D. Bloom, Hannele Ruohola-Baker, Sean P. J. Whelan,
Lance Stewart, Michael S. Diamond, David Veesler, Michael C. Jewett, and
David Baker. Multivalent designed proteins protect against sars-cov-2 variants
of concern. bioRxiv, 2021.

[13] Martin Closter Jespersen, Bjoern Peters, Morten Nielsen, and Paolo Marcatili.
BepiPred-2.0: improving sequence-based B-cell epitope prediction using confor-
mational epitopes. Nucleic Acids Research, 45(W1):W24–W29, 05 2017.

[14] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Antibody-antigen docking
and design via hierarchical equivariant refinement, 2022.

[15] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J.
Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,
Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[16] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary struc-
ture: Pattern recognition of hydrogen-bonded and geometrical features. Biopoly-
mers, 22(12):2577–2637, 1983.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference

54

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[18] Jens Vindahl Kringelum, Claus Lundegaard, Ole Lund, and Morten Nielsen. Re-
liable b cell epitope predictions: Impacts of method development and improved
benchmarking. PLoS Computational Biology, 8(12), 2012.

[19] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79 – 86, 1951.

[20] Peter J. Rousseeuw Leonard Kaufman. Partitioning Around Medoids (Program
PAM). John Wiley & Sons, Ltd, 1990.

[21] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu,
Nikita Smetanin, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu,
Sal Candido, et al. Language models of protein sequences at the scale of evolution
enable accurate structure prediction. bioRxiv, 2022.

[22] Sepideh Parvizpour, Mohammad M. Pourseif, Jafar Razmara, Mohammad A.
Rafi, and Yadollah Omidi. Epitope-based vaccine design: a comprehensive
overview of bioinformatics approaches. Drug Discovery Today, 25(6):1034–1042,
2020.

[23] Julia Ponomarenko, Huynh-Hoa Bui, Wei Li, Nicholas Fusseder, Philip E.
Bourne, Alessandro Sette, and Bjoern Peters. Ellipro: a new structure-based
tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1):514,
2008.

[24] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant
graph neural networks. 2021.

[25] Constantin Schneider, Matthew I J Raybould, and Charlotte M Deane. SAbDab
in the age of biotherapeutics: updates including SAbDab-nano, the nanobody
structure tracker. Nucleic Acids Research, 50(D1):D1368–D1372, 11 2021.

[26] Thomas Shafee. File:Alpha beta structure (full).png. Wikipedia, the Free Ency-
clopedia, Feb 2017.

[27] Jamie B. Spangler, Jakub Tomala, Vincent C. Luca, Kevin M. Jude, Shen Dong,
Aaron M. Ring, Petra Votavova, Marion Pepper, Marek Kovar, and K. Christo-
pher Garcia. Antibodies to interleukin-2 elicit selective t cell subset potentiation
through distinct conformational mechanisms. Immunity, 42(5):815–825, 2015.

[28] Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein se-
quence searching for the analysis of massive data sets. Nature Biotechnology,
35(11):1026–1028, 2017.

55

[29] Peter D. Sun, Christine E. Foster, and Jeffrey C. Boyington. Overview of
protein structural and functional folds. Current Protocols in Protein Science,
35(1):17.1.1–17.1.189, 2004.

[30] Jérôme Tubiana, Dina Schneidman-Duhovny, and Haim J. Wolfson. Scannet: an
interpretable geometric deep learning model for structure-based protein binding
site prediction. Nature Methods, 19(6):730–739, 2022.

[31] The Center for Molecular Life Sciences University of Basel. Peptide torsion
angles. BIOZENTRUM.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
2017.

[33] Randi Vita, James A. Overton, Jason A. Greenbaum, Julia Ponomarenko, Ja-
son D. Clark, Jason R. Cantrell, Daniel K. Wheeler, Joseph L. Gabbard, Deborah
Hix, Alessandro Sette, and Bjoern Peters. The immune epitope database (IEDB)
3.0. Nucleic Acids Research, 43(D1):D405–D412, 10 2014.

[34] Wikipedia. Basic B cell function: bind to an antigen, receive help from a cognate
helper T cell, and differentiate into a plasma cell that secretes large amounts of
antibodies. Wikipedia, the Free Encyclopedia, 2023.

[35] Wikipedia. Sketch of an antibody with the variable domains shown in blue, and
the CDRs (which are part of the variable domains) in light blue. Wikipedia, the
Free Encyclopedia, 2023.

[36] Yuansong Zeng, Zhuoyi Wei, Qianmu Yuan, Sheng Chen, Weijiang Yu, Yu-
tong Lu, Jianzhao Gao, and Yuedong Yang. Identifying b-cell epitopes using
alphafold2 predicted structures and pretrained language model. bioRxiv, 2022.

56

Appendix A

Implementation Details

In this appendix section, we will briefly give some implementation details about our

models, and show some training/validation plots. To implement the machine learning

architecture described in this thesis, we used PyTorch (version 1.11) with the PyTorch

Lightning wrapper (version 1.6.2). For our language models embeddings we used

ESM2 (“bleeding edge” version) by Facebook. Our models were trained on 8 NVIDIA

RTX A6000 GPUs, each with 48 GB of GDDR6 memory.

A.1 IEDB Experiments

We extensively experimented with using the linear epitopes from the IEDB database

for a pretraining routine. Our idea was to train a model using IEDB as the training

set and evaluate it on our independent validation set. We would then pick the training

checkpoint that scores highest on metrics such as AUROC and AUPRC, and use the

model weights from that particular checkpoint as a starting point for a fine-tuning run

on the original training set. Below we present the validation curves of this experiment.

The noisiness that can be observed on the finetuning curves is due to the fact that the

original training dataset was much smaller than the IEDB dataset, therefore gradient

updates occurred more frequently.

57

Table A.1: Training/Validation Curves

Notice that both when using a small learning rate (10−5) as well as when using

a larger learning rate (5 × 10−4), the performance of the finetuned model on the

validation set is quite underwhelming when compared with the performance of the

original model (see next subsection of the Appendix). This is most likely due to the

distributional difference between the IEDB data and the the data we used, which

was obtained from SAbDab; it is likely that residues marked as epitopes on proteins

within SAbDab are marked as non-epitopes in similar proteins within IEDB.

We also tried a similar setting, where instead of using the IEDB data for pre-

training, we instead injected them into our training set, and flagged all the samples

depending on whether they were a part of the original training set or IEDB. This

flag was one-hot encoded and concatenated with the rest of the protein embeddings

that were fed into the EGNN, and it was also used to determine the backpropaga-

tion learning rate for each individual sample; we wanted IEDB samples to have a

lower learning rate, such that in case of conflicting information the original training

set labels would prevail. This setting however, albeit creative, also underperformed

compared to simply not using IEDB at all, likely due to the same reasons mentioned

above.

A.2 Our Best Epitope Model

Below we present the training/validation curves of the reported 76 AUROC B-cell

epitope model.

58

Table A.2: Training/Validation Curves

For testing our model on the independent dataset, we selected the model check-

point with the highest AUPRC score.

A.3 Our Best Seeding Model

We also trained additional models on Wengong’s training set. Here we present the

training/validation curves for the most performant of these models, namely the one

trained in the multi-label cross entropy loss with the additional top-𝐾 binary cross

entropy loss setting (see section 4.3).

Table A.3: Training/Validation Curves

Here, we are introducing two additional metrics to help us with checkpointing.

Top-1 accuracy, that is, the percentage of samples where the top-ranked residue was

59

either an epitope or an epitope-center, and top-𝐾 accuracy, that is, the percentage

of samples where at least one of the top-𝐾 ranked residues was an epitope or an

epitope-center. For the test set, we ended up selecting the model checkpoint with

the highest top-𝐾 accuracy reported on the validation set, since our main focus was

trying to improve the performance after using multiple seeds rather than just a single

one.

Observe that the validation loss plot in this setting is much more noisy compared

to the simple binary classification setting. This makes sense, since the additional loss

in conjunction with the limited amount of training data samples makes it difficult for

the model to reach a training optimum without overfitting.

60

	Introduction
	B-Cell Epitopes and Epitope Prediction
	Antibody Docking
	The Structure of the Thesis

	Related Work
	Prior Work in Epitope Prediction
	Prior Work in Antibody Docking

	The B-Cell Epitope Model
	Problem Formulation
	Model
	Architecture
	Surface Features
	Putting it All Together

	Data
	Protein Data Bases
	Data Processing

	Training and Evaluation
	Results

	Antibody Docking
	The Problem of Docking
	Model
	The Docking Model
	Post-Processing

	Results
	Improved Structure Predictions

	Conclusions
	Summary of Results
	Future Work
	Incorporating Linear Epitope Data
	Using Our Model to Improve AlphaFold Predictions

	Bibliography
	Implementation Details
	IEDB Experiments
	Our Best Epitope Model
	Our Best Seeding Model

