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Abstract

WebAssembly is a modern binary instruction format that enables highly performant
program execution in sandboxed execution environments. WebAssembly modules can
be run natively in web browsers, or within lightweight, isolated, server-side runtimes.

This project explores applications of WebAssembly using the Julia programming
language and how languages that leverage just-in-time compilation can function under
the particular architectural limitations of WebAssembly. It demonstrates the feasi-
bility of multiple strategies for compiling Julia code to WebAssembly, and details the
future work required to run the Julia compiler entirely in WebAssembly.
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Chapter 1

Introduction

Web browsers can execute programs written in JavaScript. JavaScript is a very

flexible programming language and has become ubiquitous in today’s internet for

writing user interfaces and web applications. However, JavaScript was not designed

for high performance and data analytics applications and suffers in comparison to

languages such as C++ and Julia. The former is a lower-level language ideal for

writing high performance applications, and the latter is a higher-level language ideal

for data analytics, with a growing library of packages addressing the needs of wide

variety of use cases.

WebAssembly (Wasm) was first introduced by Mozilla in 2017, and enables pro-

grams written in any supported language to be compiled into modules and run in a

web browser. Wasm is a binary instruction format and a compilation target for pro-

gramming languages. Just as a program can be compiled for x86 or for ARM, it can

be compiled for Wasm. Wasm programs can execute at native speed, making them

significantly faster than equivalent programs written in JavaScript. Additionally, by

acting as a common compiler target for any programming language, a programmer

can choose the language and packages that best fit their needs.

A compiler is a program that converts a program written in a human-readable

language into a binary executable, such as Wasm, that can be run by a computer.

The LLVM project is a collection of modular components that is used to implement

compilers for a variety of programming languages. LLVM is built around the LLVM
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intermediate representation (LLVM IR). Programs are first converted from a language

like C++ to the LLVM IR, and then converted from LLVM IR to an executable

binary, like Wasm. Julia implements its compiler using LLVM, which means Julia

code can already be converted to LLVM IR. Independently, a Wasm backend has

been developed for LLVM, meaning that LLVM IR code can be converted to a Wasm

binary.
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Chapter 2

Background

2.1 WebAssembly

Use cases for WebAssembly can be divided into two categories: web and non-web.

For the web environment, Wasm support for Julia would enable applications writ-

ten in Julia to run natively in a web browser without the need for users to download

and install a local copy of Julia. As an example, consider interactive notebooks like

Jupyter and Pluto.jl. To view and interact with these notebooks, users must install

a local copy of Julia, install all the notebook’s required packages, and have some

ability to debug any issues related to this installation process. An alternative is a

cloud-based product like Google CoLab, which provides a backend on their servers

for a fee. Wasm support for Julia would provide a third option: users could open

Julia notebook directly in their web browser without the need to install any software.

This would also expand support to platforms like iOS, Android, and ChromeOS that

do not have native Julia support.

In addition to interactive notebooks, any web application that would currently

offload complex computation to a backend server could instead implement that logic

in Julia and execute it locally on the user’s device. Applications such as image

processing, generating charts and figures, and solving differential equations are just

a few examples.

For the non-web environment, WebAssembly acts as a flexible portable binary
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format for containerized compute. WebAssembly containers offer the same isolation

guarantees as virtual machines but are significantly more lightweight. Wasm modules

have no direct access to memory, filesystem, network, or other unsafe system APIs.

Additionally, safe memory access and control flow integrity are guaranteed. Wasm

uses the Harvard architecture, strictly segregating instruction and data memory, mak-

ing it impossible to modify the call stack with buffer overflow attacks. Control flow

integrity is guaranteed by Wasm’s execution semantics without the need for addi-

tional runtime instrumentation. These numerous security guarantees make Wasm a

prime candidate for safely executing untrusted code.

2.2 Julia

Julia is a dynamically typed just-in-time compiled language. To understand what

this means, consider a statically typed ahead-of-time (AOT) language like C. In C,

the programmer declares the concrete data types of all variables, each with specific

low-level representations in memory. In order to execute a C program, it is com-

piled to produce a platform-specific executable. The fact all variables have specific

programmer-defined types is called "static typing," and the requirement to compile

a program before it is executed is called "ahead-of-time" or "static" compilation.

Now, consider a language with dynamic typing, such as Python. In Python,

programmers do not declare any types for variables. However, in order to run any

program, a computer must know the concrete types of all variables in order to prop-

erly represent their data in memory. For example, integers and decimal variables for

the same value have completely different physical representations in memory. By the

time a program is converted to machine code and executed, variables must have con-

crete data types defined. Python supports dynamic typing because it is an interpreted

language, which means that programs are converted line-by-line into executable ma-

chine code as the program is run. As each line is passed to the interpreter, the

types of each variable are checked, and the correct machine code for each operation

is executed with concrete types defined. However, this type checking at every line
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introduces significant overhead and is one of the reasons why Python programs are

significantly slower than equivalent Julia programs.

Julia is also an interpreted language, it but leverages a Just-In-Time (JIT) com-

piler to improve performance. In Julia, as in Python, functions are defined using

arguments with unspecified data types. At runtime, the first time a function is called,

the Julia interpreter determines the concrete types of each argument. Then, it passes

the function definition along with the inferred argument data types to the compiler

which compiles a bespoke implementation of the function with those particular types.

This compiled version of the function is cached so that subsequent calls with the same

types of arguments simply execute this machine code as if it had been compiled ahead

of time, reaping all the performance benefits of AOT compilation.

The Julia JIT compiler relies on the fact that most modern processors use the

Von Neumann architecture. In this model of processor design, program instructions

and program data are physically stored on the same memory bus and are essentially

interchangeable. This means that data created by a program can be marked as

instructions and executed as if it were additional lines of machine code. This is

precisely how a JIT compiler works. The compiler is passed a block of Julia code

with concrete type information, and machine code is generated and stored as regular

data in memory. The machine code is then marked as executable instruction memory,

and a pointer to the first step in the function is stored as a function pointer where it

can later be looked up and called.

WebAssembly instead uses the Harvard architecture, meaning that instructions

and data are strictly segregated, and instruction memory is locked as read-only. This

means that while it would be possible to generate Wasm machine code at runtime as

normal, that code could not be immediately marked as executable and run - it can

only be output to a separate binary file.

To circumvent this limitation, Wasm’s support for dynamic linking must be lever-

aged. Dynamic linking is primarily used to load the dependencies of programs, called

libraries. When a library is dynamically linked at runtime, the program opens the

library file by calling dlopen() and loads the functions it requires by calling dlsym().
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Linking usually occurs immediately after compilation or during a program’s initial-

ization phase, but linking using dlopen and dlsym can occur at any time. In order to

function in WebAssembly, the Julia JIT compiler could compile a function to Wasm

at runtime, save the output as a library file, and then call dlopen and dlsym to load

the machine code and make it executable.

The challenge here is not the concept of implementing a JIT compiler in Wasm

but in the implementation details of the Julia compiler that make retrofitting this

dynamic linking behavior particularly difficult.
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Chapter 3

Related Work

Emscripten

Emscripten is a compiler toolchain for Wasm. It provides a suite of tools for compiling

C/C++ programs to Wasm. While it is possible to use clang and LLVM to compile

for Wasm, one is limited to compiling simple programs that do not make use of system

calls or the C standard library (libc). Emscripten solves this problem by emulating a

POSIX operating system, which implements the system calls required to use libraries

like libc. Emscripten also implements fundamental memory operations like malloc.

Using Emscripten in place of a standard C/C++ compiler is straightforward, as

its executable, emcc, functions as a drop-in replacement for gcc or clang.

Non-web Runtimes

While WebAssembly was designed primarily to run in web browsers, Wasm binaries

can also be run in non-web containers. Wasmtime and Wasmer are two competing

implementations of non-web runtime environments for Wasm.

WASI

The WebAssembly System Interface (WASI) is an API for interacting with OS features

like filesystems and network sockets when running Wasm in a non-web environment.
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Pyodide

Pyodide is a version of Python and a collection of scientific computing packages

compiled to Wasm. This project has successfully packaged the Python interpreter in

a Wasm module, enabling Python code to be authored and executed entirely in a web

browser. Another relevant project is JupyterLite, which uses Pyodide to implement

a Python interactive notebook running entirely in Wasm.

Pluto.jl

Pluto is a reactive interactive notebook for Julia. Unlike Jupyter notebooks, which

require users to manually run and re-run cells as code is changed, Pluto automatically

responds to code changes by updating all affected cells. A Pluto notebook running

entirely in Wasm is an exciting application of this thesis work.
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Chapter 4

Work Done

4.1 Static Compilation of Julia Programs

The Julia compiler internally uses the LLVM compiller infrastructure to generate

native executables. Julia codegen is responsible for converting Julia code to LLVM

IR, which is then passed to LLVM to be optimized and translated to platform-specific

assembly code. While Julia code is usually just-in-time (JIT) compiled at runtime, the

GPUCompiler.jl package can be used to compile programs ahead of time, a technique

known as static compilation.

GPUCompiler.jl is a package used internally by CUDA.jl and AMDGPU.jl to pro-

vide an interface for Julia programs to interact with graphics processing units (GPUs).

GPUCompiler.jl exposes some internal compiler infrastructure that can be exploited

to statically compile Julia programs.

To statically compile a Julia function as a WebAssembly module, we first generate

a method instance for the function, specifying concrete types for any arguments. Julia

is a dynamically typed language, meaning that concrete types for function arguments

are not know until the function is called at runtime. However, when statically com-

piling, we must specify concrete types as Wasm does not support dynamic typing.

To generate a WebAssembly module that supports multiple runtime types, we could

generate a method instance for each combination of argument concrete types that we

would like to support.
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Once method instances are generated, they are converted to LLVM IR and then

to an assembly language of our choice. For Wasm, we specify the LLVM triple

wasm32-unknown-unknown. This tells the LLVM compiler to use its WebAssembly

backend implementation to generate a Wasm binary, which is then output to a file.

This file can then be executed in a web browser, on in a non-web WebAssembly

runtime.

This experiment demonstrates that Julia programs can be statically compiled to

WebAssembly. However, as mentioned above, Julia is a dynamically typed JIT com-

piled language, so static compilation alone is not sufficient for true Julia WebAssembly

support, but it is a crucial first step that demonstrates the feasibility of this work.

4.2 Spark WebAssembly UDFs

Apache Spark is a popular system for data processing and analytics. Spark typically

runs on a cluster of machines and enables users to process datasets that may be too

large to fit on a single machine. Spark provides a simple interface for writing SQL-

like queries, but also supports arbitrary user-defined functions (UDFs). UDFs are

treated as black boxes for functional operations like map, filter, and reduce. Spark

has official support for Java, Scala, Python, and R, and UDFs can be implemented

in any of those languages.

Consider a cloud computing provider that hosts shared Spark clusters and allows

its users to submit jobs. Spark UDFs would essentially allow users to run arbitrary

code on the Spark cluster, with the potential to interfere with and access the filesys-

tems of peer jobs on the cluster. Spark does provide some security features, such

as authenticated and encrypted RPCs between processes, authentication for requests

to the cluster, and encryption for local temporary files. These features, however,

are not sufficient to isolate a malicious job with submit permissions on the cluster.

Currently, the best way to isolate Spark jobs it to create separate, isolated clusters,

which introduces significant overhead and startup time.

As part of this thesis work, a solution for isolating untrusted Spark UDFs was
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object SparkUdfRunner {
def main(args: Array[String]): Unit = {

val df = readFromCSV(INPUT_PATH)
val wasmBytes = Files.readAllBytes(WASM_PATH)

import spark.implicits._
val outputDf = df.mapPartitions(iterator => {

// Instantiate Wasm Module
val instance = new Wasmer.Instance(wasmBytes)
val execFunction = instance.exports.getFunction("exec")

val results = new IntBuffer(PARTITION_SIZE)

for ( i <- 0 to PARTITION_SIZE)
results[i] = execFunction.apply(

iterator.next().asInstanceOf[Object]
)

}

results
})(RowEncoder(SCHEMA))

outputDf.write.format("csv").save(OUTPUT_PATH)
}

}

Figure 4-1: Spark job initialization pseudocode in Scala

developed using WebAssembly. Specifically, a generic UDF wrapper was implemented

in Scala that serves as an interface between Spark Datasets and a WebAssembly

runtime. This allows a user to implement arbitrary logic in any language that supports

compilation to Wasm and execute that logic on a Spark cluster. Since there is no

native support for Julia by the Spark maintainers, this introduces some level of Spark

support for Julia.

Figure 4-1 displays the pseudocode for initializing a Spark job and submitting a

Wasm module that contains the implementation of a map function. The full imple-

mentation can be found in the appendix. The Wasm module is first loaded from disk
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serialized so that it may be passed to the Spark workers. Next, a Spark session is

initialized, and the input data is loaded and partitioned to each of the worker nodes.

We use Spark’s ‘mapPartitions‘ API to provide Spark with additional initialization

code to run on each worker node before processing each partition. When processing

each partition, we deserialize the Wasm code and initialize the Wasm runtime. Then,

for each row in the partition, we call the Wasm module and return its output.

To improve performance, an optimization was implemented to reduce the number

of calls from Scala to Wasm. While Wasm has a highly restricted memory model

and cannot access the JVM memory to access Spark’s data, it is possible for the

Scala runtime write to and read from the Wasm module’s memory. In addition, by

exporting malloc, we can ask the Wasm module to allocate space in its memory for

input and output data, and it will return us pointers to blocks of memory. This means

that instead of calling the Wasm module for each row, the entire partition is copied

to the Wasm module as arrays and the Wasm module is called with pointers to the

input and output arrays. The output data is then copied back to Spark and returned

as before.

4.3 Building Julia Targeting WebAssembly

4.3.1 Julia Compiler Architecture

The Julia compiler is fundamentally just a program written in C/C++ that parses

Julia code, compiles it to a native binary format using LLVM, and executes it. Julia

is just-in-time compiled, which means there is some runtime component that or-

chestrates the compilation of methods as they are called, loads the newly compiled

binary, and executes it. This orchestration layer is called the Julia runtime, and the

component that runs the compilation is the Julia codegen.

The core of the Julia source code is divided into two separate libraries: libjulia-internal

and libjulia-codegen, both written in C/C++. A third library, libjulia, imple-

ments the Julia loader and acts as a wrapper around internal and codegen. It loads
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Figure 4-2: Julia compiler architecture

the two libraries at runtime and re-exports their exported symbols as part of a public

API, and it is also written in C. The final component is the system image. The sysimg

is created by compiling the Julia Base library, which contains implementations of core

language functionality written in Julia such as the definitions of basic numeric types,

arrays, and arithmetic operations. The sysimg is also a library loaded by libjulia.

Figure 4-2 is a graphical representation of these library dependencies.

The Emscripten compiler toolchain enables us to build C programs to WebAssem-

bly, so fundamentally, building Julia should be as simple as specifying wasm as the

target architecture. Unfortunately, several critical components in the compiler are

platform-specific, meaning that each architecture has its own implementation of parts

of the runtime. In addition, Julia has multiple dependencies that also must be com-

piled to Wasm, each with their own set of platform specific implementations and other

complexities that prevent Emscripten from building them as Wasm libraries with no

modifications.
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4.3.2 Linking in WebAssembly

When building programs with dependencies, those dependencies, known as libraries,

must be linked together to produce a final executable that can be run by a computer.

Each library contains a list of exported symbols, which are the names and memory

addresses of functions and global variables that are defined in the library. Other

code that depends on a library and references those exported symbols imports those

symbols by linking. Linkable libraries come in two flavors: static and dynamic. Static

libraries are linked at compile time, meaning that the final executable has the binaries

for all its dependencies contained within itself. This is very useful for distributing

executables that don’t require users to install additional dependencies, but it produces

much larger executables since all the dependencies are bundled together.

The alternative is to use shared libraries with dynamic linking. Shared libraries

are usually standard dependencies that are commonly required, such as math or

graphics libraries. Since these libraries are often large, it’s inefficient to distribute a

separate copy of each library for each program that uses it as a dependency. Instead,

executables are built without including all dependencies, and it is assumed that the

shared library files will be available to link at runtime. The Julia compiler uses shared

libraries with dynamic linking for all its dependencies.

However, the dynamic linking model relies on a few assumptions that, while true

on native execution environments, do not hold for WebAssembly. On a standard

platform like Windows or macOS, the application runs natively on the local system

with access to all system libraries. In addition, the size of these libraries is not

critical, as there is only one copy of each library on the system which don’t need

to be reinstalled each time they are used by a program. In contrast, WebAssembly

modules are executed in an isolated container with no access to system libraries,

meaning that all dependencies must be bundled with the Wasm module. The size

of these libraries is also very important, and they will be freshly downloaded each

time a user loads the webpage hosting a Wasm module. It is for these reasons that

Emscripten recommends that dynamic linking be avoided when possible.
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In most cases, shared libraries can be easily substituted with static libraries.

Unfortunately, this is not the case for libjulia-internal and libjulia-codegen,

which are loaded by libjulia in a non-standard way. The design of the libjulia

loader is quite unique and was built specifically to support flexibility with how system

libraries are used by Julia, and to support compatibility with different execution plat-

forms that each handle dynamic linking slightly differently. If instead static linking

is used, the complexities of libjulia become unnecessary. When statically linking

for Wasm, libjulia is excluded entirely, and the final executable is linked statically

with libjulia-internal and libjulia-codegen.

4.3.3 Building the Julia Runtime

While Julia is primarily just-in-time compiled, the Julia runtime can use its interpreter

to execute lines of Julia code without compiling using libjulia-codegen. This is

useful for simple operations where the additional overhead of compiling a particular

line of code would cause it to execute more slowly than if it were interpreted. If, for

some reason, Julia is not able to compile a particular function or line of code, it falls

back to evaluating using the interpreter. We can exploit this fallback functionality of

the compiler to build a version of the Julia runtime that does not include any codegen

components.

To build the Julia runtime without codegen, we simply compile libjulia-internal

and skip the build step that compiles libjulia-codegen, not linking it to the final

executable. By skipping the build of libjulia-codegen entirely, we reduce the num-

ber of source files and codegen-specific dependencies that may need patches for Wasm

compatibility which should result in a more straightforward build process. This sim-

plified architecture is pictured in figure 4-3.

Building Dependencies

Several dependencies are still required by libjulia-internal, each necessitating

modifications to build scripts and source code to be built as static Wasm libraries.
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Figure 4-3: Architecture of Julia interpreter-only Wasm module

The dependencies that were modified as part of this work were, LibUV, UTF8proc,

pcre, gmp, mpfr, and dsfmt.

For each library, it was necessary to modify their build scripts to use Emscripten

to target Wasm. For some libraries, it was sufficient to simply replace calls to the gcc

compiler with calls to emcc, but for other libraries, attempting to compile with emcc

produced compile time errors. These errors were usually either caused by the usage of

a native feature such as a system call not supported by Emscripten, or by the source

code defining specific implementations for specific architectures and not recognizing

_OS_EMSCRIPTEN_ as a supported architecture. Patching these libraries was relatively

straightforward, except for LibUV which required additional modifications.

LibUV is a library that enables cross-platform asynchronous IO. Julia strives to

support as many platforms as possible, but it can be difficult to maintain different

implementations of functionality for each platform that relies on platform-specific

APIs. For example, supporting Windows can be particularly tedious when Windows

APIs differ from those offered by macOS and GNU/Linux. Usually, platform-specific

code is implemented by using pre-processor directives that include or exclude blocks

of code based on compiler variables. Julia uses variables such as _OS_WINDOWS_ and

_OS_LINUX_ to declare platform-specific implementations but using these variables

to include or exclude code makes the Julia compiler harder to maintain and greatly
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decreases code readability. LibUV solves this problem by providing a single cross-

platform API and internally picking the correct implementation based on the platform

defined at compile time.

WebAssembly is not a platform currently supported by LibUV, but since the Em-

scripten compiler attempts to emulate a number of POSIX APIs, it is possible use

the LibUV’s POSIX implementations for most operations, with the addition of a

small emscripten.c file for any functions that have Emscripten-specific implemen-

tations. For this work, it was not necessary to implement Emscripten support for

all LibUV features. The only features that were implemented were those used di-

rectly by Julia, specifically the methods uv_exepath, uv_get_available_memory,

uv_get_free_memory, uv_get_total_memory, and uv_load_avg. With these modi-

fications, LibUV was successfully compiled as a Wasm library.

Building Julia Internal

Once all the requisite dependencies were compiled as Wasm static libraries, it was

possible to begin compiling libjulia-internal. Similar to how the libraries were

compiled, it was necessary to modify the Julia build scripts to use the Emscripten

toolchain in place of the default C compiler. This was done with a custom Make.user

file, which overrides all the necessary build settings. It sets the compilation target to

wasm32-unknown-emscripten and sets all the compiler executables to those provided

by Emscripten. This works surprisingly well. In fact, with the correct compiler

options set, it was possible to compile the latest version of libjulia-internal to

Wasm with no source code modifications. That is, until the build script called for

self-execution.

Build script self-execution is a common technique used when compiling certain

complex programs, such as the Julia runtime. Essentially, some subset of the final

build is compiled to an executable, and that executable is itself called as part of

subsequent build processes. Self-execution can be a challenge when cross compiling

to a target architecture different from the build architecture, as the intermediate

executable will be built for the target architecture and will not be runnable on the
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host machine running the build. In this work, all builds were run on a Linux host

machine, with Emscripten-Wasm as the target architecture. In this case, the build

script for the Julia runtime compiles a parsing library, libflisp, as an executable,

and then immediately attempts to run that executable. Since the current build target

is Wasm, libflisp is compiled as a Wasm module, which cannot be executed on the

Linux host.

The solution to build self-execution when cross compiling is to separately build

all self-executing components for the Linux host architecture and then use those

executables instead of the ones built for the Wasm target architecture. This can be

accomplished by creating a separate native Linux build of Julia, and then setting the

build variable FLISP_EXECUTABLE_release to the path of the flisp executable in that

native build.

At this point, libjulia-internal could be successfully compiled as a Wasm

static library.

Building the System Image

The last required dependency of a functional build of the Julia runtime is the System

Image. As detailed in section 4.3.1, the sysimg is just another library dependency,

except it is built from Julia source code instead of from C/C++. This means that

we can’t use Emscripten to compile in same way all the other libraries have been

compiled. Instead, this is another case that requires build script self-execution.

In a native build of Julia, the sysimg is built by loading libjulia-internal

and libjulia-codegen into an executable and passing each source file from Julia

Base to be compiled by that executable. This strategy will not work for a Wasm

cross-compiled build for two reasons. First, as before, the libraries and executables

built targeting Wasm cannot be executed on the Linux build system. In addition,

libjulia-codegen is required to build the sysimg, which is the part of the compiler

not built for this runtime-only build.

We use the same strategy as with flisp to build the sysimg: use a native build.

However, unlike with flisp where all that was needed was an executable compatible
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with the host build architecture, the sysimg must be built as a Wasm library. This can-

not be easily done with a native Linux build, as the native build of libjulia-codegen

can only compile the sysimg targeting the same native architecture. To bypass this

constraint, we use a technique introduced in prior work by Keno Fischer [1] to build

the sysimg as LLVM bytecode.

When programs are compiled using the LLVM compiler infrastructure, source code

is first converted to LLVM IR, then lowered to architecture-specific LLVM bytecode

before finally being converted to architecture-specific assembly. The critical detail

here is that while assembly code will always be architecture specific and never cross

compatible with other assembly languages, it is possible for bytecode intended for

different architectures to be compatible if the architectures are sufficiently similar.

In his prior work, Fischer [1] showed that the Julia sysimg compiled for 32-bit Linux

(i686) was compatible with 32-bit Wasm. This allows us to use a native Julia build

to produce a sysimg using the command make julia-sysimg-bc. The file produced

has the metadata label architecture: i686-linux-gnu. By changing this label to ar-

chitecture: wasm32-unknown-unknown-wasm, the sysimg can be linked by Emscripten

with no errors.

Building an Executable WebAssembly Module

With all the requisite components built as static Wasm libraries, the final step is to

link everything together and call the necessary initialization logic. For normal builds

of Julia, the initialization logic is contained in libjulia, the Julia loader. The loader

is responsible both for dynamically linking all dependencies, including the sysimg,

and for initializing the runtime. Since libjulia is excluded from this Wasm build,

all the initialization logic must be re-implemented, excluding the code for dynamically

linking dependencies that have instead been statically linked.

For much of the initialization codepath, this is as simple as copying the imple-

mentation of jl_load_repl into a separate source file and removing any parts that

call load_library, as all libraries have already been statically linked. At this point,

Emscripten can be used to create an executable Wasm module which can then be
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run in a web browser. In this state, the Wasm module can echo constant values, but

attempting to parse any expression causes the module to crash.

Initializing the System Image

To parse Julia expressions, it is not sufficient to just statically link the sysimg - it must

be properly loaded. When linked statically, the symbols for all functions defined in the

sysimg are loaded correctly, but critical global variables are not initialized. The logic

to load a sysimg exists in src/staticdata.c, but this implementation heavily relies

on dynamic linking and does not function correctly when the sysimg is statically

linked. Referencing prior work by Fischer, [1] src/staticdata.c was modified to

support loading a statically linked sysimg.

4.3.4 Julia Codegen in WebAssembly

JIT Compilation in WebAssembly

Building the full Julia compiler as a Wasm module is significantly more challenging

that just building the runtime without codegen. As discussed in section 2.2, JIT

compilation relies on runtime dynamic linking and indirect function calls, both which

are restricted when running in WebAssembly. Prior work [3] has demonstrated that

it is possible to implement a JIT compiler in Wasm, but this work has not yet been

replicated using Emscripten.

In addition, libjulia-codegen requires a full functioning copy LLVM. LLVM is a

significantly more complicated dependency when compared to the other dependencies

built for libjulia-internal, and it was anticipated that significant work would be

required to build LLVM as a Wasm module. Fortunately, there exists prior work in

the Emception project that addresses this issue.

LLVM in WebAssembly

Emception [2] is an open source project that bundles the entire Emscripten compiler

toolchain as a single WebAssembly module, including LLVM compiled to Wasm.
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Using a custom build script and the patches to LLVM included in this project allows

us to build libLLVM.a as a static Wasm library. This enables us to compile and link

libjulia-codegen, which is a significant step towards a full Julia JIT in Wasm.

Building Julia Internal

libjulia-codegen was compiled to WebAssembly using Emscripten with the same

strategy used to compile libjulia-internal. Surprisingly, it was not necessary to

make any modifications to the codegen source code to enable Wasm compatibility.

Dynamic Linking with Emscripten

As mentioned in section 4.3.2, Emscripten recommends that dynamic linking be

avoided whenever possible. However, in order to link JIT-compiled outputs to the

original Wasm module and make them callable by the runtime, some form of dynamic

linking is required. To enable run time dynamic linking in Emscripten, we pass the

option -sMAIN_MODULE when compiling and linking the Wasm module. This flag en-

ables implementations for the dynamic linking functions dlopen and dlsym, the API

used internally by libjulia to load the sysimg. Implementing the necessary logic

to load the outputs of the JIT compiler running in Wasm is one area of future work

for this thesis.
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Chapter 5

Results and Conclusion

Overall, this thesis was successful in demonstrating the feasibility of building a Julia

JIT compiler that runs entirely in WebAssembly. While it fell short of providing a fully

functional prototype runnable in a web browser, multiple critical components have

been built, laying the foundation for future work expanding Julia’s Wasm support.

Goal Status

Static compilation of Julia functions to Wasm complete

Execute Julia Wasm functions as Spark UDFs complete

Compile libjulia-internal and all dependencies to Wasm complete

Build a Wasm executable of the Julia runtime in progress

Compile libjulia-codegen and all dependencies to Wasm complete

Build a Wasm executable of the Julia JIT compiler future work

Successful static compilation of Julia functions using GPUCompiler.jl demon-

strates that the Julia language is capable of being compiled to WebAssembly using

LLVM. The positive results from the Spark UDF experiment shows that small, stat-

ically compiled WebAssembly modules can be useful for data analytics applications.

Furthermore, the extensive work done to compile components of the Julia compiler

to WebAssembly shows that it is indeed feasible to build this compile as a standalone

Wasm module, and lays the groundwork for future experimentation.
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Future Work

Further experimentation is required to optimize Spark partition size when executing

Wasm UDFs. Smaller partition size increases parallelism but potentially increases

overhead by instantiating more Wasm modules.

Additional work is also required to properly initialize the statically linked sysimg,

and to integrate the Julia JIT with Emscripten dynamic linking.
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Appendix A

Code

The full code for this work is hosted on several GitHub repositories.

• Wasm Static Compilation: https://github.com/rhuffy/GPUCompiler.jl

• Spark Wasm UDFs: https://github.com/rhuffy/spark-wasm-udf

• Julia Runtime in Wasm: https://github.com/rhuffy/julia-wasm
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