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ABSTRACT 

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common 
malignancy because it is usually diagnosed at an advanced/metastatic stage. 
Dysregulation of protein stability and degradation has been associated with 
uncontrolled proliferation and genomic instability, promoting cancer progression to 
metastasis. One of the major regulators of protein degradation is the tumor suppressor 
FBXW7, a substrate recognition domain of the SCF E3 ubiquitin ligase, frequently 
dysregulated in many cancers.


The function and clinical significance of FBXW7 in pancreatic cancer has been 
studied in some detail. Pancreatic cancer patients with low FBXW7 expression levels 
have poor probability of survival compared to patients with high FBXW7 expression 
levels. Furthermore, Fbxw7 mutations and loss cooperate with KrasG12D to accelerate 
PDAC formation with a high frequency, showing that Fbxw7 is an important tumor 
suppressor in Kras-driven pancreatic cancer. However, studies on the impact of Fbxw7 
expression and its substrates in pancreatic cancer progression to metastasis remains 
poorly understood. 


Here, we demonstrate that Fbxw7 loss accelerates progression and 
metastatic potential of pancreatic cancer in KrasG12D/+; Trp53-/- PDAC models, in 
immunocompromised and immunocompetent hosts. We explore the impact of different 
Fbxw7 mutants in tumorigenesis, where the hotspot mutant R465 recapitulates the 
phenotype seen in complete loss-of-function of Fbxw7. Finally, we looked at global 
proteomic changes when Fbxw7 is lost to better understand mechanistically the role of 
Fbxw7 in PDAC progression to metastasis. This study addresses novel facets of PDAC 
metastasis which has the potential to identify novel therapeutic strategies for advanced 
and metastatic disease.


Thesis Advisor: Tyler Jacks

Title: David H. Koch Professor of Biology 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INTRODUCTION 
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PART 1: Pancreatic Cancer 

1.1 Introduction to Pancreatic Cancer 

	 The first recorded description of pancreatic cancer is accredited to Giovanni 

Battista Morgagni's work in 1761, titled 'de Sedibus Et Causis Morborum Per 

Anatomen Indagatis Libri Quinque’. However, the accuracy of the diagnosis of 

adenocarcinoma is questionable due to the absence of microscopic examination. The 

next significant advance in our understanding of pancreatic cancer came in 1858, 

when Jacob Mendez Da Costa reviewed Morgagni's initial study and provided the first 

microscopic diagnosis of adenocarcinoma, establishing pancreatic cancer as a distinct 

disease entity (Da Costa, 1858).


	 The exocrine and endocrine functions of the pancreas make it a very complex 

organ. The endocrine pancreas consists of hormone-secreting endocrine islets and 

relatively inactive stellate cells (Figure 1). Diabetes mellitus develops when the 

endocrine pancreas fails to secrete the hormone insulin (Kleeff et al., 2016; Ellis et al., 

2017). On the other hand, the exocrine pancreas is made up of acinar cells that 

produce digesting enzymes, ductal cells that release bicarbonate, and centroacinar 

cells that exist in the transition between acinar and ductal cells (Figure 1). Exocrine 

function is impaired in several disorders, including chronic pancreatitis, cystic fibrosis, 

and cancer (Kleef et al., 2016; Ellis et al., 2017). All of these pathologies result in 

devastating personal and economic consequences, in particular pancreatic cancer. 


	 Pancreatic cancer is the most lethal common malignancy because it is usually 

diagnosed at an advanced stage and is frequently treatment-resistant. More than 90% 
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of pancreatic neoplasms are pancreatic ductal adenocarcinomas (PDAC). Other rare 

pancreas malignancies include neuroendocrine tumors and acinar carcinomas, and 

even less prevalent are colloid carcinomas, pancreatoblastomas, and solid-pseudo 

papillary neoplasms (Ryan et al., 2014; Kleeff et al., 2016).   


Figure 1: Major cell types and structures of the pancreas. The pancreas is 
composed of exocrine components (acinar cells, ductal cells, and centroacinar cells) 
and endocrine components (islet of Langerhans composed of alpha cells, beta cells, F 
cells, and delta cells). Figure 8dapted from Ellis et al., 2017. Modified from “Pancreatic 
Islet of Langerhans” template, by BioRender.com (2022). Retrieved from https://
app.biorender.com/biorender-templates.


1.1.1 Epidemiology and Risk Factors 

	 The global incidence of pancreatic cancer ranges from 1 to 10 cases per 

100,000 individuals, with an anticipated 495,773 people diagnosed with the disease in 

2020. (Cancer Facts & Figures 2022; SEET Cancer Stats Facts). This year, an estimated 

62,210 adults in the United States will be diagnosed with pancreatic cancer, 

accounting for 3% of all malignancies (American Cancer Society, SEER Cancer Stats 

Facts). Pancreatic cancer is the eighth most prevalent cancer among women and the 

tenth most common cancer among men. In addition, it is estimated that 49,830 deaths 

from this disease will occur in the United States this year, making pancreatic cancer the 
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third leading cause of cancer deaths and it is predicted to rise to the second leading 

cause of cancer-related deaths in the coming ten years (American Cancer Society, 

SEER Cancer Stats Facts).


	 A quarter to a third of pancreatic cancer cases are attributable to risk factors like 

chronic pancreatitis, type 2 diabetes, and tobacco use (Kleef et al., 2016; Ryan et al., 

2014; Klein et al., 2004). Smokers have from twice to three times higher risk of 

presenting with pancreatic cancer in their lifetime than non-smokers, accounting for 

approximately 15-30% of cases in several populations (Kleef et al., 2016). Obesity, low 

physical activity, and diet like excessive saturated fats, low fruits and vegetables, and 

incorporation of red and processed meats are also linked to a higher risk of developing 

pancreatic cancer (Genkinger et al., 2015; Kleef et al., 2016). In addition, heavy alcohol 

consumption has been associated with an increased risk by causing chronic 

pancreatitis, leading to a tenfold increase in the risk of developing pancreatic cancer 

(Genkinger et al., 2015). Furthermore, about 5-10% of pancreatic cancers have an 

inherited component, however, the genetic basis of familial cases has not been 

identified in many patients (Ryan et al., 2014; Klein et al., 2004). A known family history 

of pancreatic cancer in a first-degree relative increases the risk of developing 

pancreatic cancer, compared to the general population, by a factor of up to 30 

depending on how many relatives are affected. Therefore, frequent screening of 

patients with an inherited predisposition is valuable for early diagnoses and treatment. 

However, these screening techniques have shown no value for asymptomatic patients.


	 The 5-year survival rate for these patients remains poor at 11.5% despite 

scientific advancements in the understanding of PDAC tumor biology and the 
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development of innovative therapy regimens. (SEER Cancer Stats Facts). Cancer stage 

at diagnosis determines treatment options and has a strong influence on the length of 

survival. In general, the earlier pancreatic cancer is caught, the better chance the 

person has of surviving 5-year. If a patient presents to the clinic with localized disease, 

where the primary tumor is confined to the pancreas (12% of patients), the 5-year 

survival rate is 43.9%. This drastically worsens if the patient presents with regional 

disease, where the primary tumor has spread to the regional lymph nodes (30% of 

patients) and the 5-year survival rate decreases to 14.7%. Unfortunately, most patients 

(52%) present to the clinic with advanced and metastatic disease, for which the 5-year 

survival rate is only 3.1% (SEER Cancer Stats Facts).


1.1.2 Clinical Presentation, Diagnosis, and Staging 

	 The presenting signs and symptoms of patients with pancreatic cancer change 

based on the location of the tumor. About 60-70% of PDAC tumors arise in the head of 

the pancreas, and only 20-25% are located in the body and tail of the pancreas (Ryan 

et al., 2014). These lesions can vary in size from microscopic lesions to masses over 

10cm (Sanchez et al., 2015). While tumors of the tail and body of the pancreas often 

obstruct distal portions of the pancreatic ducts, tumors of the head of the pancreas 

typically block both the pancreatic ducts and the bile ducts, causing upstream 

dilatation (Kleeff et al., 2016). Patients with PDAC most commonly present with 

abdominal pain, weight loss, asthenia, and anorexia (Ryan et al., 2014; Chari et al., 

2005; Porta et al., 2005). Those patients with tumors in the head of the pancreas most 
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commonly present with jaundice (Porta et al., 2005). In addition, about 50% of patients 

with PDAC present with diabetes.


	 When a mass is detected, abdominal computer tomography with both arterial 

and venous phases are usually sufficient to determine the initial stage and treatment for 

the patient (Ryan et al., 2014). Pancreatic phase images assess pancreas lesions, 

arterial phase images assess coeliac trunk, superior mesenteric artery, and other artery 

involvement, and portal venous phase images assess portal vein, superior mesenteric 

vein, and other vein involvement. (Kleeff et al., 2016). However, pathology is required to 

establish a definitive diagnosis, therefore, a biopsy of the primary tumor is often done 

using endoscopic ultrasonography and fine-needle aspiration (Ryan et al., 2014; Kleeff 

et al., 2016). The earliest stage of pancreas cancer is Stage 1 or carcinoma in situ 

where the tumor is confined within the pancreas. Then, stages range from 2 to 4 as the 

tumors become more invasive (Figure 2) (American Cancer Society). 


	 Unfortunately, there are no sensitive or specific biomarkers up to date for the 

screening and diagnosis of PDAC. Some tumor markers, such as carcinoembryonic 

antigen (CEA) and carbohydrate antigen 19-9 (CA19-9), if elevated, are useful in 

following patients with known disease (Ryan et al., 2014). Similarly, the presence of 

circulating tumor cells could be diagnostic, however, these are only present in only 

some patients with metastatic disease. Interestingly, Sausen et. al. showed that 

circulating tumor DNA encoding mutant KRAS has been detected in 43% of patients 

with localized disease at the time of diagnosis, demonstrating the power of testing 

circulating tumor DNA with a panel of mutated genes relevant to the disease for better 

diagnosis. In addition, potential biomarkers for early pancreatic cancer diagnosis have 
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been found in various studies. For instance, Mirus et al. used sequential plasma 

samples from pre-diagnosis patients and from genetically engineered mouse models 

(GEMMs) with pancreatic tumors and performed antibody microarrays, which produced 

a highly specific signature made up of tenascin C and the estrogen receptor 1 (HER1). 

In addition, Melo et al. found that both GEMMs and patients with early-stage disease 

have the heparin surface proteoglycan glypican 1 on the outer layer of circulating 

exosomes. These exosomes also contain other proteins, nucleic acids, and microRNAs 

that could yield additional diagnostic benefits. For instance, in those patients that 

developed type 3c diabetes mellitus years before being diagnosed with pancreatic 

cancer, the exosomes contained adrenomedullin (Javeed et al., 2015) Therefore, 

measuring exosome-bound adrenomedullin in people with type 3c diabetes may aid in 

the earlier detection of pancreatic cancer. Lastly, studies have shown that plasma 

microRNA signatures have diagnostic potential for pancreatic cancer, and therefore, 

such assays should be improved to enable early detection (Johnston et al., 2009; 

Zhang et al., 2013).


	 Sadly, more than 90% of patients die from the disease after being diagnosed. 

About 70% of these individuals pass away from extensive metastatic disease, while the 

remaining 30% pass away from modest metastatic disease but typically have 

significant primary tumors. Therefore, there is a significant need to better understand 

the biology behind PDAC progression to metastasis for better treatment options for 

these patients.
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Figure 2: Pancreatic cancer staging. Stages are defined based on the invasiveness 
of the tumor at the time of diagnosis. A description of the different stages can be found 
in the figure. Reprinted from “Pancreatic cancer staging” template, by BioRender.com 
(2022). Retrieved from https://app.biorender.com/biorender-templates.


1.1.3 Disease Management 

	 Surgical resection in combination with chemotherapy is the current best 

treatment option for pancreatic cancer patients. The advantages of surgical removal of 

a PDAC tumor were questioned a few decades ago due to unacceptably high morbidity 

and mortality rates, especially at small medical centers (Bramhall et al., 1995; Tjarda 

Van Heek et al., 2005). This led to skepticism and underutilization of PDAC tumor 

surgical resection. Nowadays, Pancreatic cancer surgery can now be performed safely 
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with a 5% mortality rate thanks to technological advancements, rigorous training, 

increasing experience, further centralization of these cases to high-volume centers, 

and improved preoperative management. As a result, surgical resection is the only 

potentially curative option; however, only patients whose cancer cells have not 

migrated to important abdominal arteries and nearby organs may benefit from this.  For 

this reason, the treatment regime is determined by disease stage:


Stages 1 and 2 - Surgically resectable PDAC:


	 PDAC stages 1 and 2 are tumors restricted to the pancreas, regardless of the 

involvement of the draining lymph nodes. The involvement of local arteries in these 

tumors determines where patients fall on a continuum from resectable to unresectable 

tumors. In order to determine respectability, it is crucial to evaluate the underlying 

tumor and the involvement of the local vessels, such as the celiac artery, superior 

mesenteric artery and vein, portal vein, and hepatic artery. Only 10 to 20 percent of 

patients have resectable illness at the time of diagnosis, making them candidates for 

surgery (Ryan et al., 2014; Kleeff et al., 2016). A partial pancreaticoduodenectomy, 

often known as the Whipple procedure, is typically necessary for tumors near the head 

of the pancreas, with or without a partial resection of the distal stomach. Distal 

pancreatectomy with splenectomy is performed for pancreatic tail tumors (Ryan et al., 

2014; Kleeff et al., 2016). Except for malignancies spanning the entire length of the 

organ or for tumors positioned in the center, a total pancreatectomy is rarely necessary 

since it is accompanied by exocrine and endocrine insufficiency (brittle diabetes 

mellitus).
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	 Unfortunately, after resection, most of these patients have microscopically 

positive margins and studies have shown that surgery alone is associated with poor 

long-term outcomes. Therefore, surgery is accompanied by adjuvant therapy. Adjuvant 

therapy includes systemic therapy to reduce distant metastases and chemo-

radiotherapy to reduce the risk of locoregional failure (Ryan et al., 2014). Studies have 

established a 6 months treatment regime with either gemcitabine or fluorouracil 

significantly improving overall survival, however, the use of radiation therapy is 

controversial in the field.


Stage 3 - Locally advanced, unresectable PDAC:


	 For patients diagnosed with borderline resectable and locally advanced disease, 

neoadjuvant therapy is the first line of treatment that could be followed up by surgical 

resection. About 30-40% of patients present with borderline resectable and locally 

advanced disease. In the past years, there has been growing interest in incorporating 

multi-agent chemotherapy regimes for these patients, such as fluoracil, irinotecan, 

oxaliplatin and leucovorin (FOLFIRINOX), and gemcitabine plus albumin-bound 

paclitaxel particles (nab-paclitaxel) in preoperative and postoperative regimes for 

patients with more advanced disease (Ryan et al., 2014; Kleeff et al., 2016). Some of 

these patients regress to localized disease and surgical resection becomes an option.


Stage 4 - Metastatic PDAC:


	 The majority of patients present to the clinic at this advanced and metastatic 

stage with many symptoms, and as such, supportive care is critical in helping these 
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patients remain well for as long as possible. Fluorouracil-based chemotherapies, 

especially FOLFIRINIX improves the survival of these patients. Survival for 2 years was 

previously rare among patients with metastatic disease and now it is seen in 

approximately 10% of these patients when treated with FOLFIRINOX or gemcitabine-

nab-paclitaxel (Ryan et al., 2014). Unfortunately, these patients rapidly succumb to 

tumor spread and vital organ dysfunction, intractable pain, galloping cachexia, and 

coagulopathy.


	 There is now significant potential for new therapies for metastatic pancreatic 

cancer.. These include RAS-directed therapies, immunotherapies, and stroma-

modifying therapies. Novel KRASG12C inhibitors are now becoming available for 

patients with KRASG12C mutant tumors. Even though altered forms of the KRAS gene 

are found in more than 90% of pancreatic cancers, only a few pancreatic cancer 

patients have this particular mutation. However, this inhibitor shows great promise for 

this subset of patients, and researchers are actively looking for other forms of targeted 

therapies. Immunotherapies also hold great promise in the treatment of PDAC. An 

immune checkpoint inhibitor like pembrolizumab, for instance, has been licensed for 

use in patients with pancreatic cancer with substantial microsatellite instability. 

Combining immunotherapies has significant promise for the treatment of PDAC. For 

instance, patients with advanced pancreatic cancer may benefit from taking immune 

checkpoint inhibitors along with a CD40 agonist, a type of medication that helps 

activate T cells. Last but not least, stroma in pancreatic malignancies is substantially 

denser than in most tumors. More chemotherapy medicines may reach cancer cells if 

substances that aid in stroma breakdown are used. 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1.2 Pathophysiology  

	 Pancreatic cancer follows a step-wise progression caused by the gradual 

accumulation of genetic mutations. Due to activating mutations of oncogenic KRAS 

(occurring in more than 90% of cases), a normal pancreatic duct transforms into a pre-

invasive precursor lesion known as pancreatic intraepithelial neoplasia (PanIN). The 

cytoplasm of the normal ductal and ductular epithelium is cuboidal to low-columnar in 

shape, and lacks atypic, nuclear crowding, and mucinous cytoplasm (Olca et al., 2015; 

Basturk et al., 2001). Low-grade PanIN is divided into three categories as they 

advance: PanIN-1A, PanIN-1B, PanIN-2, and PanIN-3 (Figure 3). The hallmarks of 

PanIN-1A is the presence of flat epithelial lesions made up of tall columnar cells with 

basally positioned nuclei and an abundance of supra nuclear mucin (Sanchez et al., 

2015). PanIN-1B is the same as PanIN-1A except that it possesses papillary, 

micropapillary, or basally pseudo stratified architecture (Sanchez et al., 2015). Mutinous 

epithelial lesions known as PanIN-2 can be papillary or flat, and their nuclei may exhibit 

abnormalities such loss of polarity, nuclear crowding, enlargement, pseudo-

stratification, and hyperchromatism (Sanchez et al., 2015). PanIN-3, which also exhibits 

real cribriforming luminal necrosis and significant cytologic abnormalities, magnifies 

these nuclear abnormalities further. Luminal necrosis and papillary morphology are 

typical features of PanIN-3, which typically form papillary or micropapillary tiny clusters 

of epithelial cells. These lesions exhibit aberrant mitosis, which can infrequently occur, 

loss of nuclear polarity, dystrophic giblet cells (goblet cells with nuclei orientated 

towards the lumen and mutinous cytoplasm oriented towards the basement 

membrane), large (macro) nucleoli, and nuclear abnormalities (Sanchez et al., 2015).  
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	 These pre-invasive lesions can ultimately develop into an invasive PDAC due to 

the loss of function of tumor suppressor genes such as TP53, CDKN2A, and SMAD4 

which can then invade and metastasize to distant sites (Figure 3). Studies have not yet 

identified a recurrent metastasis-specific mutation, so there is still a need to better 

understand PDAC progression to metastasis for better treatment options for these 

patients. PDAC typically metastasizes to regional lymph nodes, then to the liver, and 

less commonly to the lungs, kidneys, and adrenal glands. PDAC is made up of atypical 

glands that resemble medium-sized or smaller pancreatic ducts (Haeberle et al., 2019). 

However, the differences in growth patterns between and within tumors are startling. 

PDAC may contain non-tubular elements such clear-cell, cribriform, or gyriform 

elements, which could affect a patient's prognosis (Sanchez et al., 2015; Haeberle et 

al., 2019). This neoplasm's aggressive biological nature is influenced by the fact that 

these lesions are frequently poorly differentiated and immersed in a highly 

desmoplastic stroma made up of stromal cells, inflammatory cells, and extracellular 

matrix proteins.


Figure 3: Genetic Progression of PDAC. PDAC starts with the transition of normal cells to 
pre-invasive lesions known as Pancreatic Intraepithelial Neoplasia (PanIN) due to activating 
mutations of oncogenic Kras. These lesions progress to invasive PDAC after the loss of tumor 
suppressors such as TP53, CDKN2A, and SMAD4.
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1.2.1 Aberrant Signaling Pathways in Pancreatic Cancer 

	 In pancreatic cancer, there are several abnormal nodes and crosstalk between 

pathways that complicate the signaling process. PDAC shows abnormal autocrine and 

paracrine signaling cascades that promote signaling molecules like transforming 

growth factor (TGF), insulin-like growth factor 1 (IGF1), fibroblast growth factors (FGFs), 

and hepatocyte growth factor (HGF), as well as their corresponding tyrosine kinase 

receptors like epidermal growth factor receptor (EGFR), receptor tyrosine protein 

kinase erbB-2 (ERBB2) (Preis et al., 2011; Kleeff et al., 2016). Along with these 

pathways, anti-apoptotic and pro-survival pathways such as signal transducer and 

activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB) are co-activated. 

Some pancreatic tumors also reactivate genes including WNT, SHH, and NOTCH that 

are normally active throughout development (Kleeff et al., 2016; Magliano et al., 2007).	 


	 In the context of oncogenic KRAS and CDKN2A loss, PDAC frequently shows 

increased activity of HGFR and EGFR, increased expression of neurophilin 1, CD44, 

and integrin 1, which worsen by the gained HGFR ability to form heterodimers with 

EGFR (Kleeff et al., 2016). Additionally, metabolic changes and resistance to growth-

inhibitory pathways are present in pancreatic cancer. The most prominent example of 

this is aberrant TGF-β signaling as a result from increased production of TGF-β 

isoforms (Gore et al., 2014). TGF-β is known to be a physiological tumor suppressor, 

however, it accelerates the growth and metastasis f pancreatic cancer and many other 

solid tumors through its effects on the tumor microenvironment. TGF-β may also 

increase the expression of WNT7B through traditional SMAD4-dependent processes, 

as well as by activating non-canonical signaling through the activation of proto-
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oncogene tyrosine-protein kinase Src (SRC), mitogen-activated protein kinase (MAPK), 

and AKT (Gore et al., 2014; Kleeff et al., 2016).


1.2.2 PDAC Genetics 

	 As was already indicated, activating mutations in KRAS, which are present in 

more than 90% of tumors, dominate the molecular pathogenesis of PDAC (Figure 4). 

The KRAS protein is a small GTPase that interacts with growth factor receptors on cell 

membranes and regulates the switch of numerous signaling pathways and 

physiological functions. In PDAC, the most frequent KRAS mutations is seen in G12 of 

exon 2, G12D present in 40% of patients and G12C in 33% of patients (Hu et al., 

2021). According to multiple studies, oncogenic KRAS mutations drive PDAC initiation 

and progression through the different PanIN stages, with mutational frequency from 

50% in PanINs to 95% in PDAC (Pasca di Magliano and Logsdon, 2013; Ryan et al., 

2014; Hu et al., 2021). However, a major question that remains in the field is how KRAS 

mutations lead to the initiation and development of pancreatic tumors since studies 

have shown that KRAS mutations alone are sufficient to induce PanIN lesions in PDAC 

mouse models (Not et al., 2017; Hingorani et al., 2003). According to studies, elements 

in the tumor microenvironment such TGF-β, oxidants, and inflammation that promote 

and activate KRAS also help this transformation process.


	 Approximately 50-80% of PDAC patients have inactivating mutations in TP53, 

CDKN2A and SMAD4, while other genes such as MUC16 and ARID1A are mutated in 

less than 10% of tumors (Figure 4) (TCGA). 
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	 Cyclin-dependent kinase inhibitor 2A (CDKN2A) genetic alterations are present 

in 30-50% of PDAC patients, which collaborates with oncogenic KRAS in driving the 

malignant transformation (Hu et al., 2021). In pancreatic cancer, deletions, mutations, 

and promoter hypermethylation are the most common genetic changes in CDKN2A. 

(Caldas et al., 1994). By directly or indirectly targeting CDK4/6-cyclins, CDKN2A plays 

a critical part in regulating the cell cycle. Both the p14ARF and p16INK4A proteins are 

encoded by CDKN2A; they share exons 2 and 3, but differ in exon 1, resulting in two 

proteins that work in different ways. While p16INK4A induces cell cycle arrest by 

connecting to and inactivating MDM2, an E3 ubiquitin ligase that mediates p53 

deviation, p14ARF binds to CDK4/6 and suppresses the activation of D-cyclins, 

restricting cell cycle entry (Kong et al., 2016; Kim and Sharpless, 2006).


	 The most frequently mutated tumor suppressor gene across all malignancies is 

TP53, and in the case of pancreatic cancer, it is found in 60-70% of patients (Hu et al., 

2021). The p53 protein binds to specific DNA sequences and regulates the 

transcription of downstream genes involved in a myriad of cellular processes such as 

cell cycle, mitochondrial respiration, cell metabolism, autophagy, and stem cell 

maintenance and development (Junttila and Evan, 2009; Mantovani et al., 2018). 

Consistent with its function, TP53 is frequently mutated in its DNA binding domain, 

where the majority of the mutations are missense, giving cancer cells a great chance to 

proliferate and survive the hostile environment of the tumor. p53 genetic alterations 

without loss of heterozygozity have been detected in early PanIN, and homozygous 

p53 mutations have been observed in PanIN-3, indicating that p53 has the potential to 

drive PDAC carcinogenesis (Morton et al., 2009; Hu et al., 2021). In fact, Morton et al. 
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constructed a mouse model with mutant-p53 (Trp53R172H) in a KrasG12D background 

and found that Trp53R172H facilitated the transition from premalignant lesions to 

metastatic PDAC, accompanied by high chromosomal instability (Hingorani et al., 

2005).


	 Lastly, the tumor suppressor SMAD4 (Sma (Caenorhabditis elegans) mothers 

against decapentaplegia homologue 4) is commonly altered in a myriad of diseases 

and cancer types, particularly pancreatic cancer, which has a mutation rate of 20–50%. 

(Hu et al., 2021). Though SMAD4 is not necessary for TGF-β activation, it is essential 

for eliciting a potent signaling response, since the SMAD family plays a vital function in 

modulating TGF-β signaling (Warn, 2009). The TGF-β/SMAD4 pathway mediates the 

proliferation of cancer cells by promoting cell cycle arrest, apoptosis, and DNA damage 

repair, therefore, genetic alterations in SMAD4 reduce the tumor suppressor activity of 

the TGF-β pathway (Warn, 2009; Zhao et al., 2018). In addition, it is thought that the 

epithelial-to-mesenchymal transition (EMT) process in a SMAD4-dependent manner 

promotes cancer cell invasion and metastasis (Held et al., 2012). Studies have shown 

that 30% of PDAC patients had homozygous deletions, and 20% have chromosomal 

allelic loss of SMAD4 (Hu et al., 2021). High-grade precursor lesions have been found 

to lack SMAD4, indicating that the inactivation of SMAD4 encourages progression to a 

later stage of carcinogenesis (Wilentz et al., 2000).


	 On the other hand, among the thousands of infrequently mutated genes, often 

found at a prevalence of less than 2%, only few genes stand out. Therefore, it is crucial 

to do research into how these genes are involved in pancreatic cancer in order to 

develop new clinical practices. 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Figure 4: Mutational Landscape of Pancreatic Cancer. 200 most mutated cases and 
top 50 mutated genes in pancreatic cancer. TCGA Genome Data Analysis Center. 

32



1.3 PDAC Models 

	 Our understanding of pancreatic cancer has considerably increased thanks to 

the accessibility of model systems for this disease. Preclinical testing has traditionally 

been conducted mostly in vitro, using two-dimensional cell culture assays, or in vivo, 

using xenografts or animal models such as genetically engineered mouse models 

(GEMMs). A more contemporary hybrid approach, known as organoids, has recently 

taken force where progenitor cells are cultivated in three dimensions, combining both 

in vitro culture’s controllability and simplicity with the potential to recreate niches more 

similar to PDAC microenvironment.


1.3.1 Genetically Engineered Mouse Models 

	 Transgenic models facilitate the ectopic and temporal expression of specific 

genes in the mouse genome. The use of tissue or cell-type specific promoters allows 

great specificity to these systems. In the case of PDAC, lineage-specific promoters 

include the pancreatic and duodenal homeobox 1 (Pdx1), neuron (Ngn3), and elastase 

(Ela), among others, which have all been used in GEMMS of PDAC (Miquel et al., 2021).

(Supplementary Table 1). These authoctonous models faithfully reproduce the 

pathophysiology of human illness and have been used to show the roles of numerous 

mutant genes previously discovered in the human pancreatic cancer genome.


	 The first GEMMs of PDAC, known as KC mice (Hingorani et al., 2005), presented 

with the conditional expression of oncogenic KrasG12D in epithelial cells of pancreatic 

lineage. They demonstrated that oncogenic KRAS alone is sufficient to initiate PanIN 

lesions, which then spontaneuously develop locally invasive and metastatic pancreatic 
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cancer. When oncogenic KRAS is combined with additional orthologous mutations in 

the canonical tumor suppressors CDKN2A, TP53, or SMAD4, pancreatic cancer 

progression is drastically accelerated, reconstituting the whole spectrum of tumor 

progression (Aguirre et al., 2003; Hingorani et al., 2005; Izeradjene et al., 2007). These 

strategies are standard methods to query the function of a potentially pathogenetic 

allele, however, this is a very labor-intensive method to interrogate novel targets.


PDX1-Cre, LSL-KrasG12D/+ and P48+/Cre, LSL-KrasG12D/+ (KC) transgenic model 

	 In numerous GEMMs, the PDX-1 and p48 promoters have been utilized to study 

pancreatic cancer. The first identifiable progenitor cell of the pancreas appears in the 

dorsal and ventral endoderm during murine embryonic day 8 where PDX-1 begins to 

be expressed (around E8.5). On the other hand, P48 is expressed later in development 

and is needed to commit cells to a pancreatic cell fate (Offield et al., 1996; Kawaguchi 

et al., 2002).	 


	 Hingorani et al. (2005) KC mouse model expresses a Cre-activated KrasG12D 

allele in the endogenous Kras locus, LoxP-STOP-LoxP KRASG12D/+ (LSL-KRASG12D/+), 

and a Cre-recombinase allele driven by pancreas specific promoters PDX-1 or Ptf1-

p48. These KC animals developed ductal lesions that recapitulate all three stages of 

human PanINs. Early PanIN-1A lesions can be seen in mice as young as two weeks 

old, and higher-grade PanINs are more frequently seen as the mice get older. In many 

older mice, the pancreas has extensive ductal lesions, and the acinar cells have been 

replaced by stromal, desmoplastic fibroblasts and inflammatory cells. Finally, these 
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mice develop invasive and metastatic ductal adenocarcinoma within a year at low 

frequency.


PDX-1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+ (KPC) transgenic model 

	 In the same previous study, Hingaroni et al. (2005) generated a conditionally 

expressed point mutant allele of the frequent mutant version of Trp53 (LSL-Trp53R172H/+) 

and crossed it to the KC mouse. This leads to the conditional activation of both 

KrasG12D and the Trp53R172H alleles in the pancreas of transgenic animals, driven by 

PDX-1-Cre  (KPC). In these mice, early PanIN lesions are observed between 4 to 6 

weeks old mice. Once again, these animals display the whole range of PainIN lesions, 

but in addition, they develop high disease burden by 10 weeks at the earliest. The KPC 

animals have a significantly shortened median survival (~5 months) compared to wild 

type, PC and KC animals.


Pancreatic cancer mouse modeling using retrograde viral vector delivery: 

	 Despite the fact that conventional genetically engineered mouse models of 

human PDAC have been helpful in understanding the disease's progression, these 

models are far too time-consuming, expensive, and labor-intensive. This complicates 

the ability to perform the extensive molecular studies needed to fully understand the 

disease. To circumvent these issues, several strategies have been developed, such as 

the direct intrapancreatic delivery of recombinant virus harboring constructs to 

manipulate genes of interest to rapidly model different molecular aspects of PDAC 
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(Chiou et al., 2015). Even though these models require sophisticated transgenic and 

surgical skills, they are ideal to answer certain questions.


	 Chiou et al. (2015) demonstrated that retrograde pancreatic ductal injections of 

adenoviruses or lentivirus constructs containing Cre-recombinase leads to PDAC 

initiation and progression to metastasis in the current KP mouse models. This 

eliminates the need for the transgenic Cre alleles seen in traditional GEMMs of 

pancreatic cancer models and leads to more controlled, rather than widespread 

expression of oncogenic Kras and deletion of tumor suppressor genes. This model 

more closely recapitulates the human disease progression.


The ability to develop PDAC in Cre-lox mouse models without requiring the use of a 

transgenic Cre alleles speeds up and lowers the cost of molecular research in 

pancreatic cancer. This method is also compatible with the use of CRISPR/Cas9 gene 

inactivations in the pancreas. In fact, Chiou et al. (2015) integrated a Cre-conditional 

Cas9 allele into the K mouse model, and used lentivirus containing Cre-recombinase 

and sgRNA to inactivate other tumor suppressor genes. Interestingly, targeting of Lkb1 

in combination with oncogenic Kras lead to rapid tumor progression and selection of 

Lkb1 knockout tumors, that resembled the Cre-mediatias Lkb1 loss allele. This 

technique revolutionized our ability to quickly investigate how genes functioned as this 

cancer developed.


1.3.2 Organoids 

	 The term organoid (organ-like) was used for the first time in 1946 (Smith and 

Cochrane, 1946), however, it was with the establishment of intestine organoids by Sato 
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et al. in 2009 that the field significantly expanded. Nowadays, it is possible to isolate 

primary and tumor organoids from many tissues including the colon, pancreas, and 

lungs. An organoid is a 3D cellular structure that has the same identity of the organ it is 

intended to model, the diversity of cell types found in the organ, the functions unique 

to that organ, and the self-organization of the tissue that it should model (Frappart and 

Hofmann, 2020). Organoids can be easily characterized molecularly, tested in drug 

screens, and cultured indefinitely.


	 Recent studies have shown the ability to culture normal and neoplastic cells 

from the pancreatic epithelium of both human and mice (Boj et al., 2015; Huch et al., 

2013; Hindley, 2016). In humans, these organoids can be established fine needle 

aspirates taken from PDAC patients with advanced disease, allowing for therapeutic 

testing and monitoring of tumor response to treatment. By embedding cells in Matrigel, 

it is possible to recapitulate the microenvironment of the tissue, which is a requirement 

for organoid growth. All critical elements of the basement membrane are present in 

Matrigel, which is also supplemented with medium with the bare minimum 

requirements for pancreatic epithelial cells to proliferate sustainably (Miquel et al., 

2021). In addition, current culture conditions prevent normal ductal cells from quickly 

exhausting in vitro and upon orthotropic transplantation they create a proper ductal 

architecture (Boj et al.,2015). The ability to transplant neoplastic organoids into mice 

has been shown to recapitulate the progression of the disease from PanINs to 

metastatic PDAC (Figure 5) (Boj et al.,2015), thereby providing a tractable and 

transplantable system to test molecular and cellular properties of PDAC tumor 

progression. 
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Figure 5: PDAC tumor progression upon orthotopic transplantation or KP 
organoids. Organoids harboring oncogenic KrasG12D and deletion of tumor suppressor 
Trp53, upon orthotopic transplantation, recapitulate the tumor progression of the 
human disease from early pancreatic intraepithelial neoplasias (PanINs) to 
adenocarcinoma (PDA) and lastly to metastasis (Mets). Adapted from Boj et al. (2015).


	 These results support the fact that organoids should be one of the main focus of 

PDAC research in the future. Organoids are still a complicated model that needs 

extensive technical knowledge and is expensive to create and maintain. Although 

organoids display similarities with patient transcriptomics subtypes and 

chemoresistance profiles, it has been demonstrated that their transcriptomes change 

during ex vivo passage, which may limit their prognostic capacities (Miquel et al., 

2021), therefore proper passage monitoring is necessary. Further work on accelerating 

organoid establishment and testing methodologies of important drugs is needed to 

bring quick organoid testing to the clinic for PDAC patients.	 


1.4 Advances in PDAC Metastasis Biology 

	 The genetic progression of pancreatic cancer from a normal cell to pre-invasive 

lesions (PanINs), all the way to invasive PDAC is well defined. However, the molecular 
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mechanisms of the metastatic spread of PDAC remain largely understudied. Thus, 

there is still a need to uncover novel modulators of PDAC metastasis. Several groups 

have identified some genetic and epigenetic regulators of PDAC metastasis.


	 There have been a few studies that have evaluated naive primary tumor and 

metastases heterogeneity through whole-genome sequencing such as Yachida et al 

(2010), Campbell et al (2010), Sanborn et al (2015) and Hoogstraat et al (2014). Other 

studies, have looked at metastatic lesions after therapy, however, most of the time the 

genetic alterations found are a reflection of the therapeutic agent, which leads to 

mutagenesis, high selective pressures and bottlenecks. Therefore, this studies do not 

look at the disease’s nature genetic progression. On the other hand, Makohon-Moore 

et al (2018) performed whole genome sequencing of genomic DNA from 39 samples 

(26 metastatic lesions, up to 3 distinct regions of each primary tumor and normal 

tissues) across four patients with metastatic PDAC. Here, the authors found that the 

vast majority of the mutations found were found in all the samples of the same patient. 

All patients shared KRAS mutations, as well as mutations in other known driver genes 

such as TP53, SMAD4, ARID1A, and ATM. However, unique mutations were still 

identified in the in the primary tumors, but none of these were found to be metastasis 

specific.


	 Furthermore, acquired molecular changes can promote cancer progression to 

metastasis. Chiou et al (2017) used genetically engineered mouse models (GEMMs) of 

PDAC and uncovered a transient subpopulation of cancer cells with high metastatic 

potential. The authors further identified the transcription factor BLIMP1 as a driver of 

PDAC metastasis leading to an enrichment of hypoxia-associated gene expression 
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programs. These findings show that upregulation of BLIMP1 links changes in the tumor 

microenvironment to a more aggressive and metastatic cell population. In addition, 

Whittle et al (2015) identified that the transcription factor RUNX3 controls a metastatic 

switch in PDAC using GEMMs. The authors of this study show that RUNX3 acts as 

both a tumor suppressor since it slows down proliferation, but also as a promoter since 

it orchestrates a metastatic program that promotes cell migration, invasion and 

adaptation to foreign organ colonization. Lastly, Maddipati et al (2021) used a multi-

fluorescenct lineage labeled mouse model of PDAC to track paired primary and 

metastatic tumors. The authors noticed that in mice with multiple color primary tumor, 

metastasis to the liver and lung were from a single tumor clone, suggesting that tumor 

cell intrinsic factors also influence metastatic potential of a tumor. To understand the 

mechanism, the authors examined primary tumors from different colors where mets 

were attributed to just one color by performing DNA copy number analysis, RNA 

sequencing and functional studies. Copy number analysis showed unique DNA copy 

number profiles in different colored tumors, indicating that they arose independently, 

but similar copy number profiles were observed within the primary and metastases of a 

single color which is consistent with previous studies. Furthermore, this study showed 

that highly metastatic tumors had amplifications of Myc more frequently than low 

metastatic tumors, which were maintained in the paired metastases. Genomic and 

transcriptomic analysis revealed that high metastatic burden was associated with gene 

amplification and/or transcriptional upregulation of MYC and its downstream targets.


	 In addition, studies have identified epigenetic modulators of PDAC metastasis. 

Roe et al (2017) shows that metastatic progression of PDAC is associated with large-
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scale enhancer landscape reprogramming by FOXA1, which activates early 

endodermal stem cells transcriptional programs.These metastatic lesions may go 

through a retrograde developmental transition because such reprogramming activates 

genes linked to foregut endoderm development. To further validate these findings, the 

authors profiled genome-wide enrichment of H3K27ac, an epigenetic mark associated 

with higher transcription and therefore defined as an active enhancer mark, in organoid 

cultures derived from normal pancreatic ducts, PanIN lesions, and primary and 

metastatic tumors. Even though there were no changes in the global level of H3K27ac 

between all samples, there were regions identified with increased or decreased 

H3K27ac, referred as GAIN and LOSS regions, respectively. GAIN regions were 

enriched for motifs such as binding sites for the AP1, SOX, and Forkhead families of 

transcription factors. When looking more closely at the Forehead family member 

FOXA1, since it was found to be unregulated in metastatic organoids, the authors 

identified a GAIN enhancer at the FOXA1 locus in metastatic organoids. Lastly, the 

authors found that in GEMMs of PDAC there are sporadic regions of focal Foxa1 

upregulation in primary PDAC tumors, which becomes homogeneously unregulated in 

metastatic lesions.


	 Despite the clinical importance of metastatic spread, we still have a limited 

understanding of the molecular mechanisms that drive metastasis. This prompted me 

to question other mechanisms that may impact PDAC metastatic progression, such as 

regulation of cellular processes at the protein abundance and stability level. 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PART 2: Intracellular Protein Degradation 

2.1 Introduction  

	 Protein turnover is a concept that has only been around for about 80 years. It 

was thought that protein components in the body were stable and did not change 

much, while proteins from diet acted independently as energy-providing fuel. This 

concept was challenged by Rudolf Scheonheimer who showed that protein 

components in the body are significantly turning over by tracking 15N-labeled amino 

acids (Scheonheimer, 1942). Later, in 1946, early studies on nitrogen balance 

conducted by Benedict, Colin, Gamble, Smith, and others reveal that the amount of 

protein in the diet affects how quickly proteins are broken down (Peters and Van Slyke, 

1946).


	 However, until the mid-1950s, the notion that proteins were turning over was not 

widely accepted. An example of this was seen when Hogness and colleagues (1955) 

examined the kinetics of β-galactosidase in Escherichia coli and stated: “To sum up: 

there seems to be no conclusive evidence that the protein molecules within the cells of 

mammalian tissues are in a dynamic state. Moreover, our experiments have shown that 

the proteins of growing E. coli are static. Therefore it seems necessary to conclude that 

the synthesis and maintenance of proteins within growing cells is not necessarily or 

inherently associated with a ‘dynamic state’.”


	 Around that time, Melvin Simpson showed that intracellular proteolysis in 

mammalian cells requires energy, which opened the field to look at insights into the 

mechanisms or metabolic logic of this observation. Simpson (1953) studied the release 

of amino acids from protein by isotopic labeling of proteins from rat livers with 
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methionine-S35. This work demonstrated that conditions that restrict the release and 

consumption of energy, such as anaerobiosis, cyanide, or dinitrophenol,  reduced  the 

release of tagged methionine and leucine from rat liver slices.  The peptide bond 

hydrolysis is an exergonic process thus there is no thermodynamic reason to use 

energy for this. As a result, the seeming need for energy indicated that something was 

poorly understood. When Goldberg's group demonstrated that aberrant proteins were 

quickly eliminated from the cell in the middle of the 1970s, part of the answer started to 

become clear (Goldberg and Dice, 1974; Goldberg and John, 1976; Schimke, 1976). 

According to Goldberg and Schimke, enzymes that catalyzed rate-limiting steps in 

metabolic pathways were often short-lived, and their quantities were responsive to 

metabolic changes (Schimke, 1976). As a result, during the late 1970s, researchers 

started to wonder whether the energy dependency of intracellular proteolysis was due 

to an energy-dependent regulation of proteolytic systems.


	 These studies served as the foundation for the intracellular proteolysis field. The 

potential for identifying the mechanics of protein turnover was opened by the 

understanding that proteins do really undergo significant turnover, that this process is 

particular, and that the stability of numerous proteins is regulated individually and can 

vary under various conditions.


2.2 The Lysosome and Autophagy 

	 The discovery of the lysosome was a turning point in the field of protein 

degradation. Multiple studies had established that cellular proteins are constantly being 

synthesized and degraded (Scheonheimer, 1942; Peter and Van Slyke, 1946; Simpson, 
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1953), so the simultaneous discovery of an organelle containing a diverse array of 

secluded proteases with different specificities provided, for the first time, a mechanism 

that could possibly mediate intracellular proteolysis.


	 This organelle, called lysosome, was first identified in rat livers as a vacuolar 

structure that optimally functions at an acidic pH and encapsulates many hydrolytic 

enzymes. It is surrounded by a membrane that proteins the rest of the cell components 

from the enzyme’s activity (De Duve et al., 1953; Gianetto and De Duve, 1955). De Duve 

and his team discovered that the glucose-6-phosphatase precipitated irreversibly at an 

acidic pH, which led de Duve to speculate that the enzyme might be connected to 

agglutinated cytoplasmic membranes. After careful examination of cellular fractions 

using Claude’s method, de Duve’s group developed a procedure to isolate most of the 

active acid phosphate, and what the group in fact did was the purification of a new 

organelle relying solely on biochemical experiments. De Duve also identified four other 

acid hydrolyses in the fraction (β-glucuronidase, cathepsin D, ribonuclease, and 

DNAse), which lead them to formulate the following “lysosome” concept: “a 

membrane-bound organelle that contains hydrolyses with various specificities and 

whose main function is the intracellular digestion of macromolecules”. This discovery, 

lead to the Nobel Prize in 1974 to Christian De Duve, Albert Claude, and George 

Palade “for their discoveries concerning the structural and functional organization of 

the cell.
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Figure 6: Main types of autophagy. The figure shows the main digestive processes 
that are mediated by the lysosome: the engulfment of (A) intracellular proteins 
(microautophagy) and (B) organelles (macroautophagy); (C) chaperone mediated 
autophagy by the recognition of the KFERQ motif. Modified from “Three Main Types of 
Autophagy” template, by BioRender.com (2022). Retrieved from https://
app.biorender.com/biorender-templates.


	 The basic functional mechanism of the lysosome, known as microautophagy, 

occurs during basal metabolic conditions, where parts of the cytoplasm with entire 

cellular proteins are separated in the membrane-bound compartment that then fuses 

with a nascent lysosome leading to the digestion of the proteins (Ciechanover, 2005) 

(Figure 6A). Moreover, other organelles in the cell such as the mitochondria, 

endoplasmic reticulum membranes, glycogen bodies and others are engulfed under 

stress conditions, in a process known as macroautophagy (Ciechanover, 2005) (Figure 
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6B). However, these non-selective processes could not reconcile the emerging notion 

that different proteins are degraded with distinct half-lives in a process that is affected 

by pathophysiological conditions such as nutrient and hormone deprivation. 

Interestingly, in 1986, a study by Dice et al. indicated that lysosomal degradation also 

happens when a defined motif (KFERQ) is recognized in a protein by the HSC70 

chaperone complex (chaperone-assisted autophagy), which leads to the translocation 

of the target protein into the lysosome (Figure 6C). The possibility of such a mechanism 

being substrate-specific was ruled out by the presence of a similar motif in about 30% 

of cellular proteins.


	 The development of methods to monitor protein kinetics in cells, as well as 

specific and general lysosomal inhibitors, lead to the identification of long- and short-

lived cellular proteins. Poole and colleagues in 1977 and 1978 ‘fed’ 4C-leucine-labeled 

dead macrophages to 3H-leucine-labeled living macrophages, which allowed the 

monitoring of protein digestion within the same cell but from different sources: from 

within the cell (3H-leucine) and from the extracellular milieu (14C-leucine). The authors 

then treated the cells with compounds that raise the intralysosomal pH which inhibits 

the proteases in the lysosome. They found that these agents specifically inhibited the 

degradation of extracellular proteins, which lead the authors to predict the existence of 

non-lysosomal proteolytic systems that degrade intracellular proteins.+


	 As previously stated, the lysosome's functional mechanism could not explain 

many emerging protein degradation concepts such as the influence of nutrients and 

hormones, the differential effects of selective inhibitors, and the dependence on 

metabolic energy. Because proteolysis is an exergonic process, the metabolic energy 
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requirement for protein degradation was believed to happen upstream of protein 

breakdown. Hershko and Tomkins (1971) noticed in their studies that after ATP 

depletion, the activity of tyrosine amino-transferase was stabilized, indicating that 

energy might be required early in the proteolytic pathway. In light of the discovery of 

lysosomes in eukaryotic cells, it was suggested that energy is needed for substrate 

transport into the lysosome or for maintaining the low intralysosomal pH. However, the 

same phenomenon was observed in bacteria, which lack lysosomes, suggesting that 

energy is required for the regulation of the proteolytic process in both prokaryotes and 

eukaryotes (Goldberg and Etlinger, 1977).


	 Progress in identifying the putative non-lysosomal proteolytic systems was 

hindered by the lack of a cell-free assay that recapitulated the other cellular proteolytic 

events in a specific and energy-dependent manner. Rabinovitz and Fisher (1964) made 

a significant discovery when they found that rabbit reticulocytes efficiently degrade 

abnormal hemoglobin containing aminoacid analogues. Because reticulocytes are 

immature, terminally differentiating red blood cells that lack lysosomes, it was 

hypothesized that hemoglobin degradation is mediated by a non-lysosomal machinery. 

Etlinger and Goldberg (1977) were the first to isolate a reticulocyte-derived cell-free 

proteolytic preparation. The crude extract required ATP hydrolysis and preferentially 

degraded aberrant hemoglobin, and performed best at neutral pH, indicating that the 

proteolytic activity was not lysosomal. Hershko, Ciechanover, and colleagues isolated 

and characterized a similar system shortly after, and later resolved, characterized, and 

purified its components — an accomplishment that resulted in the discovery of the 

ubiquitin signaling system.
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2.3 Ubiquitin - Proteasome Pathway 

	 Avram Hershko, Aaron Ciechanover, and Irwin A. Rose discovered and 

described the ATP-dependent, ubiquitin-mediated protein degradation pathway in a 

series of ground-breaking biochemical investigations in the late 1970s and early 1980s, 

leading to the Nobel Prize of Chemistry in 2004.


	 An essential source for the purification and identification of the enzymes 

involved in the ubiquitin-proteasome system was the cell-free proteolytic system from 

reticulocytes. The reticulocyte lysate was initially processed via a column of 

diethylaminoethyl cellulose in 1978 to remove hemoglobin (Ciechanover et al., 1978). 

This divided the lysate into two portions that, when combined, restored ATP-dependent 

proteolysis but were individually inert. Additional system enzymes were discovered as a 

result of this biochemical complementation strategy, all of which are necessary to 

catalyze the multistep process for the degradation of substrates. This was a significant 

and valuable observation that lead to the future discovery of the different components 

of the proteolytic system, since it showed that this process is not made up of a single 

classic protease, but rather it had multiple components. After careful examination of 

the fractions, the active component of the first reaction was a heat-stable protein called 

APF-1 (active principle of fraction 1) (molecular weight ~9000). Wilkinson, Urban, and 

Haas later identified this protein as ubiquitin (1980). The following year, Hershko, 

Ciechanover, and Rose used salt precipitation to further separate the second fraction 

of the reticulocyte lysate leading to the identification of an ATP-stabilized protein of 

~450kDa (likely the protease but this was not further studied for almost 10 years), and 

the E1-E3 enzymes which were later isolated (Hershko, Ciechanover and Rose, 1979).
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	 Up to this point, the role of APF-1 was unknown. A potential hypothesis was 

that APF-1 could be an activator for a protease in the second fraction. A breakthrough 

came in 1980, described in two seminal papers presented at the National academy of 

Sciences of the USA. Unexpectedly, the findings of the first study showed that a 

number of the proteins in the lysate were covalently bound by 125I-labeled APF-1 when 

combined with the second fraction, which requires ATP (Ciechanover et al., 1980). In 

the second paper, the APF-1 protein was not labeled, but rather three substrates were 

labeled (lysozyme, α-lactalbumin and globin), which led to the discovery that several 

APF-1 polypeptides might be conjugated to the same substrate protein  (Hershko et 

al., 1980). Treatment resistance to hydroxyl amine and alkali suggested an amide link 

via the lysine's ε-amino groups. A deubiquitinating enzyme activity that could liberate 

conjugated APF-1 from substrate molecules was also present in the lysate. As a result, 

an APF-1-protein amide synthetase and an amidase were found to be two new 

enzymatic activities. Following these discoveries, a graphic illustrating the proposed 

timeline of events in ATP-dependent protein breakdown was put out (Hershko et al., 

1980).	


	 	 


	 Amino-acid analysis of APF-1, its molecular mass and other general 

characteristics, revealed that, in fact, APF-1 is ubiquitin (Wilkinson, Urban, and Haas, 
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1980), a known protein with a previously unknown function. This discovery and the 

finding that APF-1 attachment to the substrate is similar to the one that connects 

ubiquitin to histone H2A, solved the mystery of the energy requirement for intracellular 

proteolysis. Wilkinson et al. (1980) proposed that ATP is required in an exothermic 

reaction because it allows for control and specificity, paving the way for researchers to 

better understand the complex mechanism of isopeptide bond formation. Between 

1981 and 1983, Ciechanover, Hershko, and Rose tested the multi-step ubiquitin-

tagging hypothesis by isolating and characterizing three distinct enzyme activities, E1, 

E2, and E3. The first enzyme that was identified and purified by the group was the 

ubiquitin-activating enzyme E1 (Ciechanover et al., 1981). The group inhibited ATP-

dependent proteolysis by treating the reticulocyte lysates with pyrophosphate, which 

revealed that the activation mechanism was  an adenylyl-transfer at the carboxyl group 

of ubiquitin. As a result, ubiquitin rather than the substrate protein was the likely target 

of the activating process. In reality, the C-terminal glycine of ubiquitin was discovered 

to be the active amino acid residue through the reductive cleavage of the intermediate 

by tagged sodium borohydride (Hershko et al. 1981). This ubiquitin activating enzyme 

catalyzed a two step reaction. Firstly, the activation of the C-terminal carboxyl group of 

ubiquitin with the formation of an adenylate, which consumes ATP. Secondly, the 

adenylate is transferred to an acceptor sulfhydryl on the enzyme with the release of 

AMP (Figure 8) (Hershko et al. 1981; Haas et al, 1982). While these experiments were 

undergoing, a new covalent affinity chromatography method was developed 

(Ciechanover et al., 1982; Hershko et al. 1981; Haas et al, 1982). The reticulocyte lysate 

fractions were passed through this sepharose column containing covalently attached 
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ubiquitin. In the presence of ATP, 50% of the ATP-pyrophosphate exchange activity 

was retained in the column, while in the absence of ATP no enzyme was bound. This 

lead to the purification of the activating enzyme, which was shown to be a homo-dimer 

of 210kDa. Additionally, the following purifications of the E2 and E3 enzymes relied 

heavily on this novel technique.


	 The realization that the ubiquitin activating enzyme E1 could not form ubiquitin-

protein conjugates by itself lead the group to use this new purification method to 

isolate two further enzymes, E2 and E3 (Hershko et al., 1983). Hershko and colleagues 

found E2 enzymes to have an apparent molecular weight of 35kDa and the E3 enzyme 

of 300kDa. The authors also found that in order for E2 to bind to the ubiquitin-

sepharose column, it required the activity of E1 and ATP, while the binding of E3 did not 

require any of these. Together, the findings showed that E2 bound to the column 

covalently, just like E1, while E3 did not. The iodoacetamide-induced suppression of E2 

activity, which could be avoided by preincubating with E1 together with ubiquitin and 

ATP, suggested that E2 had an iodoacetamide-sensitive thiol site. The idea that E1 

might transfer ubiquitin to E2 and that E2 might assist in the transfer of ubiquitin from 

E1 to the substrate was now put to the test. Furthermore, during SDS-polyacrylamide 

gel electrophoresis, the thiol ester of E1-ubiquitin did not dissociate, and its stability 

allowed Hershko and colleagues (1983) to look for the transfer of 125I-ubiquitin from E1 

to E2 on gels. While there was evidence of ubiquitin transfer from E1-ubiquitin to E2 

enzymes, there was no evidence of transfer from E1-ubiquitin to E3. Instead, E3 aided 

in the formation of amide bonds as it catalyzed the transfer of labeled ubiquitin from E2 

to the protein substrate. The full conjugation pathway was now clear: activated 
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ubiquitin bound to the thiol ester site of E1 with its COOH terminus, then ubiquitin is 

transferred to a sulfhydryl site on E2 enzymes, and lastly, ubiquitin is transferred to firm 

stable protein conjugates in the presence of E3 enzymes, leading to polyubiquitination 

of the target protein (Figure 8):


	 The discovery of the downstream protease that would specifically detect 

ubiquitinated substrates was the final missing piece at this point. Tanaka and 

colleagues (1983) discovered a second ATP-demanding step in the reticulocyte 

proteolytic system after ubiquitin conjugation, and Hershko and colleagues (1984) 

demonstrated that energy is required for conjugate destruction. Later, Hough and 

colleagues (1986) made a significant contribution to the field by discovering a high-

molecular-mass alkaline protease that destroyed ubiquitin-tagged but not untagged 

lysozyme in an ATP-dependent manner (Figure 7). Waxman and colleagues (1987) 

discovered that the protease is an unusually large enzyme with a molecular weight of 

1.5MDa, which was later confirmed. In addition to the larger 26S complex, a smaller, 

neutral, multisubunit 20S protease complex was discovered (Hough et al., 1987). This 

20S protease is ATP-independent and has several distinct catalytic activities, including 

cleavage on the C-terminus of hydrophobic, basic, and acidic residues, raising the 

possibility that it is part of the larger 26S protease that degrades ubiquitin conjugates 

(Hough et al., 1987). Later research revealed that the 20S complex is, in fact, the core 

catalytic particle of the larger 26S complex (Eytan et al., 1989; Driscoll and Goldberg, 

1990). Hoffman and colleagues (1992) mixed the two purified particles to create the 
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active 26S enzyme (later known as the 26S proteasome) and provided direct proof that 

the assembly of a 19S ball-shaped regulatory subcomplex and the catalytic 20S core 

results in the mushroom-shaped 26S protease.


Figure 7: Various functions of ubiquitin and ubiquitin-like modifications. (A) 
Polyubiquitnation of substrate proteins by the sequential enzymatic activity of E1, E2 
and E3 enzymes leading to proteasomal degradation of substrate. (B) Mono- or oligo-
ubiquitination of membrane proteins leading to lysosomal degradation. (C) 
Polyubiqtionatopn can also lead to the activation of transcriptional regulators. (D)  
Monoubiquitination or (E) SUMOylation can localize proteins to different subcellular 
destinations such as the nuclear pore complex and nuclear foci, respectively. MVB, 
multivesibular bodies; Ub, ubiquitin; Pi, inorganic phosphate. Adapted from 
Ciechanover, 2005. Created with BioRender.com (2022).	 


	 Proteasomes can be found in both the nucleus and the cytoplasm. The barrel-

shaped 20S structure protects  the proteasome's active sites, by shielding them  from 
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the cellular environment.   Poly-ubiquitinated proteins are recognized by the regulatory 

19S complexes of the proteasome, which further unfold them and help move them 

through a small gate into the 20S core particle, where degradation takes place, leaving 

only peptides with 7-9 amino acid residues. The 19S complex's isopeptidase then 

extracts ubiquitin from the substrate protein and recycles it for use in other 

ubiquitination reactions.


	 The understanding that regulated proteolysis is involved in regulating a wide 

range of cellular processes, including the cell cycle and cell division, apoptosis, 

transcription, antigen presentation, signal transduction, receptor-mediated 

endocytosis, protein quality control, and the modulation of various metabolic 

pathways, was another significant development that followed the discovery of the 

ubiquitin-proteasome system (Figure 7). As a result, intracellular proteolysis was 

elevated from a disregarded process and research area to a crucial subject in 

contemporary biology. 


2.3.1 Ubiquitin Activating (E1) Enzymes  

	 The human genome encodes two ubiquitin-activating enzymes (E1s) that 

activate ubiquitin (Ub) and transfers them to ~40 ubiquitin-conjugating enzymes (E2s).  

The general mechanism of the E1-catalyzed reaction was well established by Haas and 

Rose (1982), Haas et al. (1982) and Hershko et al. (1983). In summary (Figure 8), E1 first 

binds to Ub in an ATP-dependent manner and catalyzes the adenylation of the Ub C-

terminus. Second, between a conserved catalytic cysteine and the Ub, E1 forms a 

thioester. E1 is then loaded with a second Ub molecule, and its C-terminus is 
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adenylated. Finally, the ternary E1-Ub thioester complex recruits an E2 to facilitate 

thioester-linked Ub transfer to a conserved E2 cysteine (transthioesterification).


Figure 8: The ubiquitin-conjugating system. (1) Ubiquitin activating (E1) enzymes 
first activate the C-terminal carboxyl group of ubiquitin with the formation of an 
adenylate, and secondly, the adenylate is transferred to an acceptor sulfhydryl on E1. 
(2) The E1-Ub thioester complex recruits an Ubiquitin Conjugating (E2) enzyme to 
facilitate thioester-linked Ub transfer to a conserved cysteine (transthioesterification). 
(3) Ub is conjugated to lysine-amino groups either directly or through complexes 
catalyzed by ubiquitin ligase (E3) enzymes using the energy stored in the E2-Ub 
thioester. The RING1 domain binds to E2-Ub and transfers ubiquitin to the RING2 
domain, which then conjugates ubiquitin to the substrate. This structure is known as 
RING1-in-between-RING (IBR)-RING2 (RBR). RING/U-box E3s can function alone or as 
a component of multisubunit complexes and depend on E2s to ubiquitinate substrates. 
HECT E3s conjugate ubiquitin to the substrate by forming a thiol-ester bond with it. 
Created with BioRender.com (2022).
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	 The major E1 enzyme in yeast is the Saccharomyces cerevisiae (Uba1) enzyme, 

which shares extensive homology with the human orthodox Ube1 and both adopt the 

same architecture and activity. The Uba1-Ub structure consists of a complex 

arrangement of six structural domains:


1. The adenylation domains that have MoeB/ThiF-homology motifs, are referred as 

inactive and active motifs (IAD and AAD, respectively). The AAD is the domain that 

binds ATP and Ub (Lee and Schindelin, 2008; Lake et  al., 2001; Lois and Lima, 

2005; Walden et al., 2003)


2. Two catalytic cysteine half domains inside the adenylation domains, that have the 

E1 active site cysteine (FHHC and SCCH, respectively) (Szczepanowski et  al., 

2005; Lee and Schindelin, 2008)


3. The four-helix bundle (4HB) is part of the IAD, and immediately follows the FCCH


4. The C-terminal ubiquitin-fold domain (UFD), which recruits E2s (Huang et al., 2005, 

Huang et al., 2007, Lois and Lima, 2005).


	 These domains cluster together to form a sizable central canyon, the end of 

which (near FCCH) successfully recruits ubiquitin molecules. Uba1 and Ub engage in 

three different ways: at the hydrophobic interface (Interface I), where the "canonical" 

hydrophobic patch of Ub interacts with the conserved AAD of Uba1, at the polar 

interface (Interface II), and at the polar interface (Interface III), where Ub interacts with 

the FCCH (Lee and Schindelin, 2008). The SCCH domain has the E1 catalytic cysteine 

that joins with the C-terminus of Ub to generate the thioester and facilitates the transfer 
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of Ub to its E2. The thioester complex between Uba1 and Ub is formed by the E1 

active site cysteine nucleophilic attack on the Ub∼adenylate, leading to the 

deprotonation of the E1’s cysteine by a general bae catalyst (Lee and Schindelin, 

2008). In addition, the active site cysteine has to be close to the Ub C-terminus in order 

to form the E1-Ub thioester. However, this isn't the case, which strongly implies that 

the complex would need to undergo major conformational modifications in order to 

accommodate the juxtaposition of the bound Ub-adenylate and the active site cysteine 

thiol. To accomplish this, the C-terminal flexible tail of ubiquitin moves in hinge 

motions, changing its relative position to the AAD, SCCH and FCCH domains, and also 

it performs other conformational changes around the catalytic cysteine in the SCCH 

(Walden et al., 2003; Lee and Schindelin, 2008). Additionally, following the creation of 

the thioester linkage, the catalytic cysteine must retract with the developing Ub 

thioester in order to permit the adenylation of a second Ub molecule.


	 The primary role of E1 is the transfer of activated ubiquitin to the associated E2 

enzyme. In this scenario, one of the E2 enzymes and E1 interact noncovalently, and 

then, in a subsequent transthioesterification step, the Ub is transferred from E1's 

catalytic cysteine to that of E2’s. Lee and Schindelin (2008) found that E2s bind on the 

opposite side of and face away from E1’s catalytic cysteine, meaning that significant 

conformational changes were needed to enable E1 and E2 catalytic cysteines to 

approach each other for the transfer of Ub. In fact, Uba1 detailed crystal structure 

showed that the E1-Ub conjugate undergoes distinct conformation changes to allow 

this to happen (Lee and Schindelin, 2008). It's interesting to note that compared to 

other E1s, Uba1 has a much wider canyon between its SCCH and UFD, which may 
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enable it to accommodate a variety of E2 partners, some of which have different N- 

and C-terminal extensions outside the E2 core domain. Additionally, the UFD appears 

poised in the unobstructed conformation and ready to accept available E2s. As a 

result, the expanded UFD linker connects the UFD to the adenylation domain, and a 

slight modification at the hinge causes a significant change in the orientation of the 

entire UFD.Once both catalytic cysteines are in close proximity, a transthioesterification 

reaction takes place producing an E2-Ub conjugate.


2.3.2 Ubiquitin Conjugating (E2) Enzymes 

	 Humans have ~40 E2s that are involved in the transfer of ubiquitin and ubiquitin-

like proteins. These enzymes carry out a variety of functional roles with just one active 

site, including transthiolation meaning canalizing transfer from a thioester to a thiol 

group; and aminolysis meaning transfer from a thioester to an amine group; as well as 

other less explored functions (Stewart et al., 2016). E2s interact with an E1 enzyme and 

one or more E3 enzymes, and in addition they may directly interact with target proteins 

determining where and how the target will be ubiquitinated (Figure 8).


	 Even though we know that E2 enzymes play important roles in the ubiquitination 

of target substrates, major questions remain in the field: why are E2 enzymes found in 

all eukaryotes, and why do we not directly transfer ubiquitin from E1 to E3? Potential 

hypotheses include that, while E3s primarily select the substrate, E2s determine the 

fate of the substrate, and that E2s promote ubiquitination independently of an E3 

ligase, such as UBC22 (Sjoerd et al., 2009; Kraft et al., 2005).	 


58



	 All E2s possess a core catalytic domain, known as the UBC domain, that 

consists of ~150 amino acids and the active site’s cysteine is needed for the formation 

of the thioester bonds. This domain consists of an α/β-fold, with four α-helices and a 

four stranded β-sheet, and important loop regions form part of the E3-binding site and 

the E2 active site (Stewart et al., 2016). The E3-binding site and the E2 active site both 

contain important loop regions. Most E2s have a single UBC domain, with multiple 

functionally distinct motifs. Interestingly, they can have short N- and C-terminal 

extensions that can impact the distinct specificity between E2s. These motifs have a 

conserved His-Pro-Asn tripeptide (HPN) at the 10th residue at the N-terminal of the 

cysteine residue (Liu et al., 2020).  While the histidine residue is essential for the 

structure, the proline serves as a link to aspartic acid residue which catalyses the 

formation of the is-peptide bond. The E2 enzyme family is divided into four classes 

based on the location of the additional fragment in the UBC domain. Class I exists only 

in the UBC domain; class II exists in both the N-terminal and UBC domains; class III 

exists in both the C-terminal and UBC domains; and class IV exists in the N-terminal, 

C-terminal, and UBC domains.


	 The energy stored in the E2-Ub thioester is used to conjugate Ub to lysine-

amino groups directly or via complexes mediated by E3s. Although there are 

topologically distinct classes of E3, some E2s function with multiple classes of E3. 

Most E2/E3 complexes have a moderate to poor binding affinity, with E3 attaching to 

the E2 UBC domain formed by the residues in helix 1, loop 4, and loop 7 (Stewart et 

al., 2020). The understanding of the characteristics of E2-Ub conjugates and the 

structural alterations that take place when they interact with an E3 and are prepared for 
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Ub transfer has advanced significantly, according to Stewart et al. (2020). Because of 

their considerable flexibility, the C-terminal residues of Ub (amino acids 72–76) enable 

an Ub molecule that is covalently attached to an E2 active site to swing by its tail and 

sample a variety of conformations with respect to the E2 domain. There are different 

orientations: one that involves little or no contact between the E2 and ubiquitin (“open 

states”) and one that involves contacts between Ub hydrophobic patch centered on Ub 

I44 and residues int he E2 crossover helix (“closed states”). Shifts towards populations 

of more “closed states” happens upon binding of an E3 ubiquitin ligase, dramatically 

enhancing the intrinsic reactivity of E2-Ub conjugates towards aminolysis and final 

polyubiquitination of target substrates.


	 Furthermore, E2s have been reported to play important roles in defining the 

linkage types of ubiquitin chains generated. Once the E2-Ub conjugate is formed, E2s 

orient a specific lysine of the acceptor ubiquitin to enable its approach and nucleophilic 

attack of the E2-Ub thioester, resulting in an isopeptide bond between the amino group 

of the acceptor ubiquitin and the C-terminal carboxylate of the donor ubiquitin, leading  

to a polyubiquitin chain (Zao et al., 2020). However, it still remains a question in the 

field how the different E2s enzymes choose from the seven lysine residues in ubiquitin 

to orient for ubiquitination, which could lead to different ubiquitin chain topologies 

affecting downstream processing of the target substrate. Substrate specificity is 

brought by ubiquitin ligating (E3) enzymes which recognize the E2-Ub conjugate and 

the target substrate, and catalyze the transfer of the polyubiquitin chain to the target.
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2.3.3 Ubiquitin Ligating (E3) Enzymes 

	 Ubiquitin ligating (E3) enzymes bridge ubiquitin transfer from E2 to substrate 

proteins. The human genome encodes more than 600 E3s which are largely 

responsible for providing the exquisite substrate specificity that characterized the 

ubiquitin-proteasome system. According to differences in structure and function, E3 

ubiquitin ligases can be divided into four types: HECT, U-box, RING-finger and RBR 

type (Figure 8). Direct ubiquitin transfer from E2-ubiquitin to the substrate is catalyzed 

by RING E3s. The catalytic cysteine in HECT and RBR E3s, in contrast, first accepts 

ubiquitin from E2 ubiquitin to generate an intermediate called an E3 ubiquitin thioester 

before transferring this ubiquitin to the substrate.


HECT E3 Ligases: 


	 HECT (homologous to the E6-associated protein carboxyl terminus) E3 ligases is 

one of the largest and earliest studied E3 ligases. There are 28 HECT E3s in humans, 

which have an N-terminal substrate-binding domain and a C-terminal HECT domain 

(Rotin and Kumar, 2009). The HECT domain is ~350 amino acids and contains the 

catalytic components for ubiquitin conjugation and transfer. Due to differences in their 

N-terminal domains, HECT E3s can be further divided into three subfamilies: the 

Nedd4 family (9 members), the HERC family (6 members), and the HECTs (13 

members) (Yang et al., 2021). Need4 members are distinguished by WW and C2 

domains that bind PY motifs in substrates. The N-terminal C2 domain can bind Ca2+ 

and phospholipid, which is required not only for protein targeting to phospholipid 

membranes, but also for substrate protein ubiquitination (Dunn et al., 2004; Tian et al., 
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2011; Rizo and Sudhof, 1998). The HERC family members contain uncharacterized 

regulator of chromosome condensation 1-like (RDL) domains. RLDs have two major 

functions: they can act as a GEF to regulate the small GTPase Ran and interact with 

chromatin via histones H2A and H2B. (Zhang and Clarke, 2000; Nemergut et al., 2001). 

The HERC subfamily is further divided into two large and four small HERCs based on 

the number of RLDs (Yang et al., 2021). Finally, the HECTs family members have 

additional protein-protein interaction domains. HECT domains have two lobes joined 

by a flexible loop, with the N-terminal lobe containing catalytic cysteines and the C-

terminal lobe containing the E2-Ub conjugate (Yang et al., 2021). The flexible 

appearance allows the lobes to rotate, facilitating ubiquitin transfer to the substrate 

(Verdecia et al., 2003). There are many other HECT E3 ligase members, such as E6AP 

and HUWEI. E6AP is the first HECT E3 discovered with a zinc-binding fold known as 

the AZUL (amino-terminal Zn-finger of Ube3a ligase) domain, which promotes K48-

linkage polyubiquitination and substrate degradation (Yang et al., 2021). HUWE1, on 

the other hand, consists of a WWE domain and a ubiquitin-associated (UBA) domain, 

both of which regulate different aspects of cancer development (Yang et al., 2021).


	 Early structures of HECT E2 showed a wide gap between the catalytic cysteine 

residues and the E2 binding site, indicating that conformational modifications are 

necessary for the E2-E3 transthiolation reaction (Huang et al., 1999; Verdecia et al., 

2003; Ogunjimi et al., 2005). These investigations showed that the HECT E3s' hinge 

rotates to place the C lobe's catalytic cysteine next to the E2-Ub bond, enabling 

transthiolation. The NEDD4 family of HECT E3s are more easily transthiolated due to 

hydrophobic interactions between ubiquitin and conserved residues on the C-lobe. 
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Further investigation is required to understand how these other HECT E3 interact with 

ubiquitin, since the C-lobe residues needed for successful transthiolation are nor 

conserved in these HECT E3s. In the NEDD4-Ub complex, the C-terminal tail of 

ubiquitin is held in an extended conformation by a hydrogen bond network made up of 

amides from the C-lobe of the HECT domain and backbone carbonyl oxygen moieties. 

According to the known E3-E2-Ub structural data, restricting the position of ubiquitin's 

C terminus appears to be a typical thioester-activating strategy for RING and HECT 

E3s (Maspero et al., 2013). A shared thioester-activating mechanism for RING and 

HECT E3s appears to be limiting the position of ubiquitin's C terminus.


	 After transthiolation, the E3-Ub thioester in HECT is put adjacent to a substrate 

lysine. This was first observed, in the crystal structure of HECT E3 Rsp5 using a three-

way chemical cross-linker was used to bind the catalytic cysteine of Rsp5, the C 

terminus of ubiquitin, and a lysine side chain of a substrate protein (Kamadurai et al., 

2013). In order to secure this conformation, the C-lobe rotates 130 degrees around the 

flexible linker, causing about half of the N-lobe to come into contact with the C-lobe. 

This brings the donor ubiquitin close to the substrate recognition domain allowing 

ubiquitin transfer to the substrate.


RING type E3 Ligases:


	 RING E3s fold their RING or U-box catalytic domain to allow for direct ubiquitin 

transfer from E2 to the substrate (Figure 8). According to bioinformatics studies, the 

human RING E3 family, which is the largest of the three E3 families, contains over 600 

members (Yang et al., 2021). The RING domain is the only element that is necessary to 
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attract E2-Ub and to promote ubiquitin transfer. The following amino acid sequence 

typically makes up the RING finger protein: His-X2-Cys-X4-48-Cys-X2-Cys, where X is 

any amino acid; Cys-X2-Cys-X9-39-Cys-X1-3-His-X2-3-Cys (Deng et al., 2020). These 

RING domains are distinguished structurally by the presence of two zinc ions, which 

are required for RING domain folding, and are coordinated by Cysteine and Histidine 

residues organized in a cross-breed configuration (Yang et al., 2021).


	 The first crystal structure of the CBL-UBE2L3 RING E3-E2 complex showed that 

the active site of E2 is far from the E3 RING domain, ruling out direct involvement of 

the RING domain in catalysis (Zheng et al., 2000).  Later research claimed that the 

RING E3 binding caused an allosteric alteration in the E2 active site (Ozkan et al., 2005; 

Petroski and Deshaies, 2005). The E2-Ub conjugate is highly dynamic and flexible, and 

prefers to adopt conformations with little to no interactions between the E2 and 

ubiquitin. However, upon interaction with a RING E3 it shifts the equilibrium towards a 

closed conformation in which ubiquitin is proximal to the RING domain, priming the 

ubiquitin for transfer (Pruneda  et al., 2012). Even though the E2-Ub complex is primed 

by the RING domain alone, the presence of additional ubiquitin-binding components in 

the sequence of RING E3s aids in further stabilizing E2-Ub in the primed conformation 

and increases the enzymatic activity of the E3-E2-Ub complex (Pruneda et al., 2012). 

Priming the ubiquitin in the E2-Ub complex and juxtaposing a substrate lysine and the 

E2-Ub thioester are the primary functions of RING E3s in ubiquitin transfer. Both the 

target protein's structure and the carefully controlled structural restrictions of the E3-

E2-Ub complex control whether a substrate lysine can be ubiquitinated.
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	 Some E3s can attach to the substrate directly and catalyze its ubiquitination 

without the help of other proteins. One such E3 is Mdm2 (murine double minute 2) / 

Hdm2 (human enzyme) which directly promotes degradation of p53 (Wade et al., 2013). 

However, some E3s' substrate recruitment and catalytic domains are made up of 

several proteins. For instance, the SCF (Skp1-Cullin1-F-box) complex, which 

comprises of the invariant Rbx1 (attract the E2 enzyme), Cul1 (scaffold protein), Skp1 

(bridge F-box proteins (FBPs)), and a distinct FBP (harbor catalytic activity), is one such 

example (Skaar, Pagan and Pagano, 2014). A total of 70 FBPs have been found in 

humans, all of which act on substrate recognition in diverse biological processes that 

are downstream and are selectively regulated.


RBR type E3 ligases: 

	 Approximately a dozen RBR E3s are encoded by the human genome, all of 

which are multidomain proteins of RING1, in-between RING (IBR) and RING2 domains 

(Figure 8) (Deng et al., 2020). RING1 binds to E2-Ub conjugate and has the 

characteristics of RING-type E3s, whereas RING2 domains contain a catalytic cysteine 

nucleophile and has similar activity as HECT E3s. It forms a thioester bond 

intermediate with ubiquitin and transfers it to the substrate (Deng et al., 2020). The 

RING1 domains harbor similar hydrophobic cores to canonical RING domains that 

interact with the loops of E2-Ub conjugates. However, they lack the ability to lock in the 

closed state which is primed for ubiquitin transfer to a lysine residue on substrate 

proteins (Wenzel et al., 2011). Therefore, RBR E3s rely on E2s that preferably transfer 

ubiquitin to cysteines in order to transfer it to its RING2 domain. The RING1-IBR 
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module adopts an extended conformation in which two extension helices, hE1 and 

hE2, connect RING1 and IBR. Ub is put in a conformation for contact with a helix 

between the IBR and RING domains by the actions of hE2-IBR and RING1. This allows 

RING2 to bind the E2 and secure the C-terminal tail of ubiquitin in the expanded 

conformation (Lechtenberg et al., 2016). The E2 and RING2 catalytic cysteine residues 

are next to each other in this configuration, which places the ubiquitin in the best 

position for transfer.


	 Various crystal structures have shown distinct RING1-IBR-RING2 arrangements, 

including active confirmations allowing ubiquitin transfer and auto-inhibitory 

conformations that are not competent for ubiquitin transfer. This auto-inhibitory 

conformation maintains a large distance between the RING2 active side and E2 which 

decreases the activity of RBR by inhibiting the thiol-transfer reaction (Deng et al., 

2020). This is very important because aberrant activity of RBR E3s lead to a number of 

diseases including Parkinson;s disease and cancer.


2.3.4 Ubiquitin Family of Modifiers 

	 The ubiquitin chain topology heavily influences the fate of ubiquitinated proteins. 

Three forms of ubiquitination linkage have been found based on structural 

characteristics: monoubiquitination, polyubiquitination, and branching ubiquitination 

(Figure 9). The attachment of a single ubiquitin to a specific lysine of the substrate, 

which has been implicated in the regulation of DNA damage repair, is referred to as 

monoubiquitination (Figure 7). An example is the E3 ligase Rad18, which recruits DNA 

polymerases to monoubiquitinate the proliferating cell nuclear antigen (PCNA) in 
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response to DNA damage repair (Gang et al., 2010). Other cellular activities mediated 

by monoubiquit inat ion include autophagy and chromatin remodel ing. 

Monoubiquitination of membrane proteins, for example, can influence their interactions 

with the autophagy adaptor protein p62, encouraging mitochondrial and peroxisome 

autophagy (Kwon and Ciechanover, 2017). Furthermore, lysine-specific 

monoubiquitination of histone, which is involved in chromatin remodeling, is a well-

defined instance.


	 When more than two ubiquitin molecules are attached to the same lysine on a 

single substrate, this process is referred to as polyubiquitination. After the lysine 

residue is linked to ubiquitin, there are numerous types of polyubiquitination (K6, K11, 

K27, K29, K33, K48 and K63). As shown by the nuclear factor-B (NF-B) pathway, K63-

linked or M1-linked ubiquitin chains control the assembly of signaling complexes, while 

K48-linked and K11-linked ubiquitin chains are typically involved with proteolysis 

(Figure 9). (Senft et al., 2018). A branching polyubiquitin chain comprises many linkage 

types that are also crucial for controlling a variety of cellular functions, as opposed to a 

homologous chain, which only has one kind of linkage. For instance, the Epsin1-

mediated endocytosis of the major histocompatibility complex I (MHCI) involves the 

mixed K11 and K63 connections (Takahashi et al., 2018).


	 In addition to ubiquitin, there are also ubiquitin-like (UBL) proteins which include 

NEDD8, SUMO, FAT10, ISG15, ATG8, ATG1, HUB1 and FUB1 (Figure 9). These UBL 

proteins not only share sequence homology and structural similarity with Ub, but they 

also modify their substrate proteins via a similar enzymatic cascade. Two of the major 

UBL modifications are neddylation and SUMOylation. Neddylation refers to the 
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attachment of NEDD8, which has the highest homology with ubiquitin and regulates 

various biological processes in a dynamic and reversible manner (Deng et al., 2020). 

Neddylation does not lead to degradation of the substrate, but rather leads to the 

activation of the substrates which subsequently control several biological processes 

such as cell cycle regulation and signal transduction. On the other hand, Small 

Ubiquitin-Related Modifier (SUMO) is linked to a substrate through the process of 

SUMOylation, which involves creating an isopeptide bond between SUMO's terminal 

glycine and the lysine of the substrate (Deng et al., 2020). SUMOylation has been 

associated with regulation of substrate localization, stability and activity.


	 Interestingly, each of these modifications are associated with specific E1 

enzymes. The E1 for ubiquitin is a monomeric protein that weighs between 110 and 

120 kDa, while the E1s for NEDD8 and SUMO are heterodimeric complexes with 

similar molecular weights (Lee and Schindelin, 2008). This brings high specificity to the 

ubiquitin-proteasome system. 


	 Furthermore, the proteolytic activity of about 100 deubiquitylating enzymes 

(DUBs) also modifies the ubiquitin code, for example by removing K48-chains or K63-

chains to stop signaling events or prevent destruction, respectively (Yau and Rape, 

2016). Ubiquitin-specific proteases, ubiquitin carboxyl-terminal hydrolases, otubain 

proteases, Machado-Joseph disease protein domain proteases, JAMM/MPN domain-

associated metallopeptidases, and monocyte chemotactic protein-induced proteins 

are six families that can be distinguished based on their structural and sequence. 

Except for the JAMM family of metalloproteinases, all of these DUBs are cysteine 
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proteases. These enzymes can attach to various types, topologies, or lengths of Ub 

chains and remove those chains from the substrate directly (Yau and Rape, 2016).





Figure 9: The Ubiquitin Code. Representative images of different ubiquitin and 
ubiquitin-like chain topologies. The different linkages were chosen arbitrarily. Modified 
from “The Ubiquitin Code” template, by BioRender.com (2022). Retrieved from https://
app.biorender.com/biorender-templates.


2.3.5 Dysregulation of the Ubiquitin-Proteasome System in Cancer 

	 Given the importance of ubiquitination in cellular homeostasis (Figure 7), it is not 

unexpected that its dysregulation is linked to a variety of illnesses, including cancer 

(Figure 10). Many E3 ubiquitin ligases are commonly dysregulated in malignancies 

through epigenetic and genetic pathways, or as a result of altered post-translational 

modifications in response to internal and extrinsic signals. Some E3s are encoded by 

genes that have been linked to familial cancer risk, such as the Von Hippel-Lindau 

(VHL)  tumor suppressor  gene in renal cell carcinoma (Gossage, Eisen, and Maher, 
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2015) and the BRCA1 gene in breast and ovarian malignancies (Savage and Harkin, 

2015).  Furthermore, large-scale genome analyses have found several E3s that have 

been changed by recurrent mutations or copy number changes in many cancer types. 

E3 dysregulation is also produced by post-transcriptional and post-translational 

changes such as phosphorylation, ubiquitination, or protein-protein interactions, 

according to research (Senft et al., 2018). Genetic and epigenetic changes in 

deubiquitinating enzymes, as well as genetic changes in the substrates themselves, 

cause further dysregulation of the system. The frequent genetic changes of the 

ubiquitination sites on Myc are one example of this (Welcker et al., 2004). 

Ubiquitination is a dynamic and reversible process that responds to stressors such as 

DNA damage and hypoxic, oxidative, and metabolic conditions, all of which cancer 

cells face. Therefore, a better understanding of how dysregulation of the ubiquitination 

process affects malignant transformation, tumor suppression, and therapy resistance is 

critical for better cancer patient outcomes.


	 Dysregulated cell-cycle control is a fundamental aspect of cancer cells since 

their proliferation proceeds essentially unchecked. In cancer, signals that regulate cell 

cycle entrance, progression, and arrest are typically dysregulated. As a result, DNA 

replication, DNA repair, and chromosomal segregation are disrupted, which can result 

in genomic instability (Senft et al., 2018). Therefore, dysregulation of E3s that induce 

proteasomal degradation of proteins involved in these processes, such as cyclins, CDK 

inhibitors and DNA damage repair machinery proteins, promote cancer initiation and 

progression. In fact, the dysregulation of the SCF (S-phase kinase-associated protein1 

70



- Cullin 1 - F-box protein) and APC/C (anaphase-promoting complex, often known as 

the cyclosome) ubiquitin ligase E3 enzymes are the most studied examples (Figure 10).


	 APC/C has two co-activators CDC20 (cell division cycle 20) or CDH1 (CDC20-

like protein 1). Even though APC/C itself is not frequently mutated in cancers, there is 

increasing evidence pointing at the tumor suppressor role for CDH1 and an oncogenic 

role for CDC20. CDH1 has been shown to be a haploinsufficient tumor suppressor 

since Cdh1+/- mice showed increased susceptibility to spontaneous epithelial tumors in 

various organs compared to wild type mice (Garcia-Higuera et al., 2008). Furthermore, 

CDH1 knockdown in human bone osteosarcoma cell lines causes an accumulation of 

cyclin A and cyclin B, an early entry into S-phase,   and a rise in DNA double strand 

breaks during mitosis due to the presence of replication intermediates (Greil et al., 

2016). On the other hand, it was shown that CDC20's residual activity enhances 

evasion of anitmitotic drug-induced apoptosis and led to the discovery that CDC20 has 

carcinogenic potential (Brito and Rieder, 2009). In a two-stage skin cancer mouse 

model, localized deletion of Cdc20 causes significant metaphase arrest and apoptosis. 

Cdc20-/- MEFs transformed with oncogenic RASG12V and early region 1A (E1A) of 

human adenovirus type 5 also exhibit this phenotype (Manchado et al., 2010). These 

discoveries prompted the creation of APC/C-CDC20 inhibitors, which bind to APC/C 

and stop CDC20 or CDH1 activation (Zeng et al., 2010).
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Figure 10: Cellular processes affected by dysregulated ubiquitin ligases (E3s) in 
cancer. As E3s ubiquitinate a diverse set of substrates, E3 loss- or gain-of-function 
affects multiple cellular processes simultaneously. These are representative E3s, 
frequently dysregulated in cancers and their downstream effects in different cellular 
components. Created with BioRender.com (2022).


	 Furthermore, F-box proteins SKP2, β-TRCP and FBXW7, which are the 

substrate recognition subunits of SCF E3 complexes, are frequently dysregulated in 

cancer, impairing its activity (Figure 10). For example, the SCF-SKP2 complex has 

been shown to be oncogenic since it regulates a number of CDK inhibitors, one of 

which is the well known tumor suppressor p27KIP1 (Loda et al., 1997; Senft et al., 2020). 

In fact, Skp2 knockout effectively prevents prostate cancer development in a 

conditional Pten-deficient and Trp53-deficient mouse model by inducing senescence 
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through activation of p27KIP1, p21CIP1 and transcription factor ATF4, while Skp2 

overexpression in the mouse prostate induces hyperplasia, dysplasia, and low-grade 

carcinoma (Shim et al., 2003; Lin et al., 2010). Additionally, SCF - β-TRCP plays two 

distinct roles in cell cycle checkpoint regulation: they mediate cell cycle arrest through 

the degradation of CDC25A (Busino et al., 2003), and they relieve arrest through the 

degradation of WEE1, clasping, eukaryotic elongation factor 2 kinase (eEF2K), and 

Fanconi anemia group M protein (FANCM) (Watanabe et al., 2004; Peschiaroli et al., 

2006; Kruiswijk  et al., 2012; Kee, Kim and D’Andrea, 2009). Additionally, studies have 

demonstrated that SCF - β-TRCP induces cell cycle arrest by targeting for degradation 

CKI-phosphorylated MDM2, which stabilizes p53 (Inuzuka et al., 2010).


	 Out of all the E3s, MDM2 and BRCA1 lead to cancer development by regulating 

the DNA damage response and cell cycle checkpoints (Wade et al., 2013; Savage and 

Harkin, 2015). In summary, elevated levels of MDM2 is seen in many cancers since it 

promotes carcinogenesis primarily by targeting p53 for degradation (Wade et al., 2013). 

Contrarily, BRCA1 mediates monoubiquitination or non-degradative polyubiquitination 

of its substrates, which include histones, CtBP-interacting protein, estrogen receptor- 

(ER), RNA-polymerase II (RNAPII), and transcription initiation factor IIE (TFIIE), by 

forming a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) 

(Savage and Harkin, 2015). Therefore, abnormal BRCA1-BRD1 activity results in errors 

in homologous recombination and cell cycle control, which affect genome stability.


	 E3s have also been implicated in signal transduction in cancer since they have 

the ability to regulate major growth-promoting pathways, including the MAPK or PI3K-

AKT-mTOR pathways, which ar currently targeted by anticancer therapies. The E3 
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NEDD4 degrades RAS in a negative feedback loop where RAS activity increases levels 

of NEDD4, which in turn reduces the activity of wild type RAS but not oncogenic RAS 

(Zeng et al., 2014). In addition, NEDD4 is  a known negative regulator of PTEN, 

therefore, NEDD4 over expression causes PTEN to degrade more rapidly, accelerating 

carcinogenesis of RAS-driven tumors. (Zeng et al., 2014). The interaction between RAS 

and NEDD4 exemplifies how a cell's genetic environment or signaling state can affect 

how aberrant ubiquitylation manifests itself. While NEDD4 acts as a tumor suppressor 

in healthy cells, it acts as an oncogene in cells that express hyperactivated and/or 

mutant RAS.


	 Sustained activation of growth and survival pathways creates a stressful 

environment; as a result, cancer cells must coordinately manage metabolic processes 

and stress signaling pathways in order to overcome these potentially detrimental 

conditions.


	 Interestingly, as seen in Figure 10, one of the most frequently dysegulated E3s is 

SCF-FBXW7 (F-box/WD repeat containing protein 7). FBXW7 mediate cyclin E 

degradation, therefore, dysregulated SCF-FBXW7 function promotes sustained 

proliferation and genomic instability (Grim et al., 2012). In a mouse model, intestinal 

FBXW7 and Trp53 co-deletion leads to advanced adenocarcinomas with high levels of 

cyclin E expression and a chromosomal instability phenotype (Grim et al., 2012). 

FBXW7 is a p53-dependent haploinsufficient tumor suppressor; thus, p53 expression 

can reverse the effects of FBXW7 substrate accumulation caused by heterozygous 

FBXW7 inactivation (Grim et al., 2012; Rajagopalan et al., 2004; Mao et al., 2004). 

FBXW7 has also been shown to play a direct role in DNA double-stranded break repair 
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(DSB). SCF-FBXW7 is phosphorylated and recruited to DSB sites as a result of ATM 

activation, a crucial mediator of the DNA damage response. Then, the X-ray repair 

cross-complementing protein 4 (XRCC4), a repair protein involved in non homologous 

end joining, is polyubiquitylated. NHEJ repair is increased by XRCC4 that has been 

K63-ubiquitinated because it is more likely to connect with the KU70 (also known as 

XRCC6) and KU80 (also known as XRCC5) complexes (Zhang et al., 2016). 

Additionally, research has demonstrated that SCF-FBXW7 controls signal transduction 

in cancer by ubiquitinating and encouraging the breakdown of the mTOR complex 1. 

(mTORC1). The relevance of FBXW7-mediated mTOR stabilization in carcinogenesis 

was demonstrated by the finding that deletion of a single copy of FBXW7 is mutually 

exclusive with loss of PTEN, a known negative regulator of mTOR, in breast cancer cell 

lines. As a result, FBXW7 depletion can accelerate tumor growth by mTOR 

accumulation, which then induces stimulation of anabolic processes.


	 Additionally, E3s have been linked to transcriptional regulation via controlling the 

abundance and activity of transcriptional activators, their ability to bind to genes and 

form transcriptional complexes, and the structure of chromatin (Geng et al., 2012). One 

important case in cancer progression is the regulation of the transcription factor MYC 

by multiple E3 complexes, including SCF-FBXW7. Dysreguralion of the SCF-FBXW7-

MYC in in vivo models of chronic myeloid leukemia causes accumulation of MYC 

which drives leukemia initiating cells out of quiescent state, promoting tumorigenesis 

(Reavie et al., 2013)).
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2.3.6 Ubiquitin ligases as therapeutic targets 

	 The growing recognition and understanding of the critical roles that E3s play, 

and how their dysfunction can alter fundamental cellular processes, has inspired the 

development of targeted therapeutics against E3s. Small molecules or peptides are 

potential inhibitors of oncogenic E3s by repressing its expression, altering its 

subcellular location, preventing substrate contact, preventing assembly into 

multisubunit complexes, preventing homodimerization or heterodimerization, and 

preventing the catalytic domain from functioning properly (Senft et al., 2018).Structure-

based design in conjunction with cutting-edge small-molecule screening technology is 

one of the current methods used for the development of E3 inhibitors, which has lead 

to inhibitors against APC/C (Sackton et al., 2014), MDM2 (Zhang et al., 2015) and SKP2 

(Chan et al., 2013)., among a few others. However, targeting protein-protein 

interactions are particularly challenging in the drug development field.


	 Targeting tumor suppressors in cancer therapy is still challenging in general. 

Reactivating an E3 that has been suppressed, investigating genetic vulnerabilities 

using the theory of synthetic lethality (like using PARP inhibitors in BRCA1- or BRCA2-

deficient tumors; Bryant et al., 2005), or inhibiting downstream oncogenic substrates 

are some methods for targeting tumor suppressor E3s. For example, targeting MCL1 in 

malignancies using SCF-FBXW7 inactivation or a more general strategy using 

proteolysis-targeting chimaera (PROTAC) technology, which uses bifunctional 

molecules to instruct other E3s to degrade oncogenic substrates, are two ways to 

carry out the latter (Skaar, Pagan and Pagano, 2014).
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	 Although targeting E3s as a novel therapeutic has great promise, the field is 

proceeding with caution. Because E3s can act as tumor suppressors or promoters in a 

substrate-dependent and context-dependent manner, targeting them requires a 

thorough understanding of their activity in the specific tissue and/or tumor context. 

Furthermore, post-translational modifications can transform an E3 from a tumor 

suppressor to a tumor promoter, emphasizing the complexities of E3 activity and 

regulation that can affect targeting. Novel therapeutics should specifically disrupt E3 

interactions with substrates important in cancer biology. Therefore, a better 

understanding of the E3s structure, post-translational modifications, and their role in 

tumor progression will undoubtedly guide the next generation of novel biological and 

small molecule drugs for this group of proteins. 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PART 3: F-box WD-repeat Containing Protein 7 (FBXW7) 

3.1 Introduction  

	 The SCF E3 is composed of four subunits: RBX1 which contains a small, zinc-

binding RING finger domain where the E-Ub conjugate binds; Cullin (CUL1) which 

forms the major structural scaffold of the complex; SKP1 which is an adaptor protein 

essential for the recognition of F-box proteins; and F-box protein (FBP) which 

contributes to substrate specificity by first aggregating to target proteins independent 

of the complex. F-box proteins are an extensive family of eukaryotic proteins 

characterized by a carboy-terminal domain that interacts with substrates, and a 42-48 

amino acid F-box motif (so named because Cyclin F was one of the first substrates 

identified) which binds to SKP1 (Winston et al., 1999). By 1998, only four mammalian F-

box proteins (Cyclin F, Skp2, β-TRCP and NFB42) were identified (Bai et al., 1996; 

Erhardt et al., 1998). Then, in 1999, two studies identified a family of 25 novel 

mammalian F-box proteins (Winston et al., 1999; Cenciarelli et al., 1999). The authors 

discovered 26 human F-box proteins, 25 of which were novel, by scanning DNA 

databases and using SKP1 as bait in a yeast two-hybrid screen. These proteins were 

grouped based on their domains: some had WD-40 domains or leucine-rich repeats, 

others had leucine-zippers, ring fingers, helix-loop-helix domains, proline-rich motifs 

and Src homology (SH2) domains; others did not fall in any of these groups. The F-box 

proteins with WD-40 domains are designated as Fbws, those with leucine-rich repeats 

as Fbls, and the rest as Fbxs (Winston et al., 1999; Cenciarelli et al., 1999). Nowadays, 

there are ~70 F-box proteins identified in humans. Among the Fbws identified was the 
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F-box WD-repeat Containing Protein 7, also known as FBXW7, FBXW7, Sel10, hCDC4, 

or hAgo. 


3.2 Molecular characteristics of FBXW7 

 	 Human FBXW7 stretches over 200kb on chromosome 4 and encodes three 

different transcripts (FBXW7α, β and γ) by alternative splicing  (Figure 11A) (Spruck et 

al., 2002). Each transcript has ten shared exons coupled to an isoform-specific first 

exon, resulting in three protein isoforms that differ solely in their N-termini (Figure 11). 

Three functional domains are found in the common region of all isoforms: a stretch with 

eight-WD-40 repeats, an F-box domain that interacts with SKP1 of the SCF complex, 

and a dimerization domain (DD). (Figure 11C, D) (Sprunk et al., 2002). The WD40 repeat 

stretch makes multiple contacts with the substrate. Crystallographic studies of FBXW7 

(and Cdc4) have revealed that the WD40 repeats form an eight-bladed barrel-shaped 

-propeller structure with defined phospho-degron binding pockets (Orlicky et al., 2003; 

Hao et al., 2007). The phosphorylated substrates are centrally contacted by three 

highly conserved arginine residues in repeats 3 and 4, and other residues in all WD40 

repeats aid in binding the substrate (Orlicky et al., 2003; Hao et al., 2007). The DD 

domain, which is located just before the F-box, facilitates FBXW7 dimerization, which 

is a feature shared by F-box proteins (Hao et al., 2007). FBXW7 has been shown to 

form homodimers through the DD, with each monomer recruiting its own E2-Ub 

conjugate, which causes the distances between each FBXW7 substrate-binding 

domain and the E2 catalytic sites to vary. This spatial heterogeneity may enable a 

greater variety of lysine acceptors for ubiquitin conjugation, both in the substrate and 

the expanding polyubiquitin chain, improving the efficiency of substrate breakdown 
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(Hao et al., 2007). Because all isoforms share these three main functional domains, in 

principle, they are functionally identical. However, the distinct N-terminal domain of 

each isoforms determines subcellular localization (Kimura et al., 2003). Cis-acting 

signals in the isoforms-specific first exon direct FBXW7α to the nucleoplasm, FBXW7 β 

to the cytoplasmic membranes and FBXW7γ to the nucleolus (Figure 11C). 

Interestingly, FBXW7γ localization signals are not very well understood since it resides 

within the shared FBXW7 exons (Welcker et al., 2004). 	 


Figure 11: The organization of the FBXW7 gene and its protein isoforms. (A) 
Representative organization of the human FBXW7 genomic locus. Alternative splicing 
of the first exon leads to distinct FBXW7 transcripts (B) and proteins (C). (D) Interaction 
between the FBXW7 functional domains and the rest of the SCF E3 complex and the 
substrate to be polyubiquitinated. NLS, nuclear localization; TMD, transmembrane 
domain. Adapted from Welcker and Clurman, 2008, and Yumimoto and Nakayama, 
2020. Created with BioRender.com (2022).
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	 Each isoform is differentially regulated, but the physiological importance of 

isoform-specific transcriptional regulation is still unknown. For instance, in the majority, 

if not all, of human cell lines and primary cells, FBXW7α mRNA is expressed at far 

higher levels than either FBXW7β or FB FBXW7γ XW7 (Sprunk et al., 2002). In adult 

mouse tissues, FBXW7α is widely expressed, however it is discovered at high levels in 

the brain and its expression is elevated in muscle (Matsumoto et al., 2006). Little is 

known about the signals that control the transcription of FBXW7, with the exception of 

FBXW7β, which is activated by the tumor suppressor p53. However, the majority of 

FBXW7's known actions seem to be attributed to the alpha isoform, with the biological 

significance of the betta and gamma isoforms appearing to be minimal.


3.2.1 Transcriptional regulation 

	 It is yet unclear how FBXW7 is regulated during transcription.  The chromatin 

immunoprecipitation database (ChIP) shows that the transcription factors encoded by  

the SPI1, CREB1, and RELA genes bind preferentially to the FBXW7 promoter region, 

in addition to fundamental elements of the transcriptional machinery like EP300, BRD4, 

and MED1 (Oki et al., 2018). But further research is needed to understand the 

significance of these connections. It has been demonstrated that the transcriptional 

regulator C/EBP δ directly inhibits FBXW7α transcription in breast cancer cells, leading 

to increased hypoxia and inflammatory signaling as a result of the accumulation of 

mTOR (Balamurugan et al., 2010). P53, which is triggered by genotoxic stress such as 

that brought on by ultraviolet irradiation, directly increases the transcription of the 

FBXW7β gene (Kimura et al., 2003). Additionally, HES5 directly downregulates FBXW7β 
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transcription (Sanxho et al., 2013). To date, no direct transcriptional regulation of 

FBXW7γ abundance has been identified.


3.3 FBXW7 substrates 

	 The majority of SCF-FBXW7 substrates contain the Cdc4 phosphodegron (CPD) 

sequence, a conserved phosphorylation motif that typically includes threonine or serine 

at position 0, proline at positions +1 and +2, threonine, serine, glutamate, or aspartate 

at position 4, and a hydrophobic amino acid at positions 5, 3, 2, and 1 (Figure 12). (Hao 

et al., 2007). The WD40-repeat domains of FBXW7 recognize the substrate when serine 

or threonine at the 0 and +4 positions of the CPD are both phosphorylated, leading to 

ubiquitination and proteasomal degradation. It's interesting to note that only ~13% of 

the known FBXW7 substrates process a CPD with this ideal sequence. The more 

dissimilar the CPD is from the optimal sequence, the weaker the affinity between 

FBXW7 and the substrate (Hao et al., 2007). For those substrates with weak affinity, 

FBXW7 dimerization is essential for stable polyubiquitination of the substrate (Welcker 

et al., 2013).


	 Many of the known FBXW7 targets are proto-oncoproteins such as cyclin E, c-

Myc, Mcl-1, mTOR, Jun, Notch, and AURKA, which support the role of FBXW7 as a 

tumor suppressor (Figure 12) (Supplementary Table 2) (Yeh et al., 2018). For instance, 

dysregulation of the proto-oncogene c-Myc has been linked to the emergence of 

numerous human malignancies. According to reports, FBXW7 ubiquitinates c-Myc in 

both the nucleoplasm and the nucleolus, causing it to degrade and preventing it from 

promoting the proliferation of cancer cells (Davis et al., 2014).
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Figure 12: FBXW7 substrates and their conserved CDC4 phosphodegrons. The 
amino acid sequence under each substrate indicates the conserved CDC4 
phosphodegron, where highlighted residues refer to the “0” and “+4” phosphorylated 
residues.


Cyclin E 

	 Cyclin E and cyclin-dependent kinase Cdk2 (cyclin E / CDK2) regulate cell cycle 

progression by licensing DNA replication at the G1-S phase transition (Grim et al., 

2008). A faster rate of DNA synthesis is linked to higher levels of Cyclin E, therefore, 

tight regulation of Cyclin E levels is needed, which is achieved by protein kinases and 

phosphates pathways. FBXW7 recognizes phosphorylated Cyclin E at Ser384 and 

Thr380, leading to Cyclin E degradation (Koepp et al., 2001). Then, phosphates remove 

these phosphorylation events such that FBXW7 no longer recognizes Cyclin E, leading 

to higher levers of Cyclin E (Davis et al., 2017). Therefore, FBXW7 mutations can lead 

to Cyclin E accumulation, which can cause chromosomal instability, aneuploidy, and 

cancer (Strohmaier et al., 2001; Minella et al., 2007; Rajagopalan et al., 2004).
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c-Myc 

	 C-Myc is a master regulator of cellular gene transcription that has been shown 

to bind to up to 15% of the promoters in the human genome (Fernandez et al., 2003). 

As a result, it can alter cellular survival and proliferation pathways and is frequently 

dysregulated in human malignancies. Skp2 and FBXW7 are two proteins of E3 

complexes that have the ability to post-transcriptionally control c-Myc turnover. In fact, 

multiple studies have reported that loss of FBXW7 function leads to an increase in c-

Myc expression and activity (Yada et al., 2004; Reavie et al., 2013). FBXW7-mediated 

degradation of c-Myc is dependent on the phosphorylation of Thr58 and Ser62 

residues in c-Myc CPD (Fernandez et al., 2003; Yada et al., 2004). However, mutations 

of these residues are frequently found in cancers leading to increased c-Myc levels and 

accelerated tumor progression (Bahram et al., 2000). 


Notch1 

	 A family of receptors known as Notch proteins ((Drosophila) Homolog 1 

Translocation-Associated) are in charge of activating Notch signaling pathways, which 

have a variety of cellular effects, including functions in development, cellular 

differentiation, control of stem cells, cellular proliferation, and cell death (Louvi and 

Artavanis-Tsakonas, 2012). FBXW7 targets Notch1 for degradation by recognizing 

phosphorylation on residues Thr1851, Thr2123, Thr2125 and Ser2173 (Foltz et al., 

2002). Numerous hematological and solid cancers have been shown to contain genetic 

abnormalities that impede Notch1 turnover (Weng et al., 2004). More than 30% of 
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children with T-ALL have FBXW7 mutations, which result in an extended FBXW7 half-

life and resistance to Notch inhibitors (Weng et al. 2004).


MCL-1 

	 The BCL-2 family member Myeloid Cell Leukemia-1 (Mcl-1) controls apoptosis 

in both healthy and malignant cells (Michels et al., 2004). Following MCL-1 

phosphorylation at Ser159 and Thr163, FBXW7 interacts with and degrades MCL-1 

(Inuzuka et al., 2011). In fact, it has been demonstrated that FBXW7 mutation in 

squamous cell cancer increases MCL expression and fosters resistance to 

conventional chemotherapy (He et al., 2013).


mTOR 

	 The mammalian target of rapamycin (mTOR) is a Ser/Thr kinase that plays 

crucial functions in cell growth, metabolism, survival, and autophagy. FBXW7-mediated 

ubiquitination and degradation controls mTOR turnover (Mao et al., 2008). FBXW7 

deleted or mutant cells are more vulnerable to rapamycin treatment due to elevated 

mTOR expression (Mao et al., 2008). This could be utilized as a biomarker to identify 

people who could respond more favorably to therapy with rapamamycin.


Jun 

	 The proteins Jun-Fos and Jun-ATF2 make up the majority of Jun dimers, which 

are crucial for regulating cell proliferation, stress reactions, and apoptosis. FBXW7 

recognizes phosphorylation events of c-Jun at Thr239 and Ser243 and targets it for 
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degradation (Wei et al., 2005). The importance of FBXW7 regulating Jun in 

carcinogenesis is seen in animals with FBXW7 knockout in the gut. At 9–10 months of 

age these mice develop adenomas and exhibit increased c-Jun expression (Babaei-

Jadidi et al., 2011).


Aurora kinase A (AURKA) 

	 AURKA is a serine/threonine kinase that regulates the centrosome duplication 

checkpoint, spindle assembly checkpoint, and cytokinesis (Mao et al., 2004). AURKA's 

half-life is increased, according to studies, when the phosphatase and tensin homolog 

on chromosome 10 (PTEN) is lost (Kwon et al., 2012). Further research revealed that 

Ser245 and Ser387 phosphorylation was necessary for FBXW7-mediated proteasome 

degradation of AURKA and that Thr217 and Glu221 amino acids were essential for 

direct contact between AURKA and FBXW7 (Kwon et al., 2012). Therefore, FBXW7 and 

PTEN can work together to inhibit tumor growth via targeting AURKA (Kwon et al., 

2012).


3.4 FBXW7 mouse models 

	 At embryonic day 10.5, FBXW7-deficient mouse embryos pass away in utero as 

a result of poor yolk sac and brain vascular development  (Bonetti et al., 2008; Durgan 

and Parker, 2010). It was discovered that the FBXW7 substrate NOTCH4 accumulated 

in mutant embryos, and that the abundance of its downstream target HEY1 was 

noticeably elevated in blood vessels, indicating that NOTCH signaling dysregulation is 

probably what causes the vascular abnormalities. Surprisingly, accumulation of Cyclin 
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E levels was not observed, likely due to a regulatory decrease in Cyclin E mRNA levels. 

The idea that FBXW7 is a tumor suppressor is supported by the fact that FBXW7+/− 

mice appear to be healthy and fertile but exhibit an increased sensitivity to radiation-

induced carcinogenesis, particularly on the Trp53+/− or Pten+/− background (Bonetti et 

al., 2008; Durgan and Parker, 2010).


	 Overall, the phenotypes of mice with tissue-specific FBXW7 ablation have 

shown that this protein has pleiotropic effects on cell division and proliferation. For 

instance, FBXW7 conditional deletion in the thymus caused pronounced thymic 

hyperplasia, which was followed by spontaneous thymic lymphoma formation linked to 

the buildup of c-MYC (Welcker and Clubman, 2005). Hematopoietic stem cells (HSCs) 

self-renewal capacity was lost in mice lacking FBXW7, and HSCs became exhausted 

and c-MYC and NOTCH1 accumulated in quiescent HSCs (Thompson et al., 2008). 

Hepatomegaly and steatohepatitis were seen in FBXW7-specific hepatocyte-deficient 

animals, most likely as a result of SREBP stabilization and impacts on the expression 

of its target genes (Onoyama et al., 2011).


	 To better study the complete loss of function of FBXW7, a Cre-Lox system was 

developed to specifically knockout FBXW7 in tissue-specific tumors. The FBXW7 

flowed allele has LoxP sites flanking exons 5 and 6, which encode the F-box and 

WD40 domains, such that after tissue-specific Cre-recombinase expression FBXW7 

expression is lost (Thompson et al., 2008).
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3.4 FBXW7 dysregulation  

3.4.1 Genetic dysregulation of FBXW7 

	 FBXW7 is located within 4q32, a frequently deleted chromosomal region in 

cancers (Welcker and Clurman, 2008). According to the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database, FBXW7 is the most frequently mutated F-box 

protein in cancers (Figure 13A) (Forbes et al., 2017). FBXW7 mutations can reduce its 

ability to form SCF E3 complexes, or it may change its conformation leading to non-

functional complexes. Across all human tumors in COSMIC, FBXW7 is mutated in 

2.54% of cases (n=1,216 / n=47,844), of which 72.70% are missense mutations and 

13.82% are nonsense mutations, whereas 7.89% are insertions/deletions (Yeh et al., 

2018). Further examination of tissues revealed that FBXW7 point mutations are more 

frequently seen in the endometrium (85/918: 9.26%), large intestine (346/4512: 7.73%), 

cervix (24/411: 5.84%), small intestine (8/143: 5.59%) and stomach (51/1182: 4.31%) 

(Figure 13A). Most FBXW7 mutations are found in hotspots R465 (25.41%), R505 

(13.40%  and R479 (9.29%), all of which are found in the WD40 substrate recognition 

domains (Forbes et al., 2017). Additionally, the COSMIC database shows that residues 

R278, R367, G423, S582 and R689 are mutated in more than 20 distinct cancer cases. 

It's interesting to note that various FBXW7 mutations in the WD40 domains can 

influence how well-defined substrates degrade. In fact, studies have shown that the 

point mutant FBXW7 D510E retains its capacity to degrade Cyclin E, Mcl-1, and c-

Myc, but not Notch1 (Yeh et al., 2016).
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Figure 13: Genetic dysregulation of FBXW7. (A) Distribution of FBXW7 alteration 
frequency in human cancers. (B) Distribution of FBXW7 mutations across its locus. 
Three FBXW7 hotspot mutations are identified in blue, and FBXW7 residues with 
mutation numbers more than 20 are marked in red. The FBXW7 protein domains are 
shown in the bottom panel. (DD: dimerization domain amino acid 234–257, F-Box-like 
domain: amino acid 281–325 and WD40: amino acid 374–650). All data from COSMIC 
database. Figures adapted from Yeh et al., 2016.
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	 Due to the heterozygous mutations and deletions that are present in most 

cancers, FBXW7 is regarded as a haploinsufficient tumor suppressor (loss of a single 

allele promotes tumorigenesis). Further evidence for this theory came from a study in 

which it was shown that the loss of a single FBXW7 allele occurs frequently in p53-

heterozygous backgrounds while mice in p53 wild type backgrounds appear to be 

perfectly normal (Mao et al., 2004). Recent studies on the dimerization of FBXW7 and 

the mutational spectrum of this protein in human cancers reveal that mutations of a 

single FBXW7 allele can cause dominant-negative changes in addition to loss of 

function. Point mutations in FBXW7 can manifest in a variety of ways. Nonsense 

mutations cause protein truncations, which, depending on where they occur, might 

result in alleles that are either inactive or possibly dominant-negative. For instance, 

stop codons that appear after the DD domain result in truncated FBXW7 proteins that 

are unable to bind substrates but may nevertheless significantly obstruct the activity of 

the wild-type FBXW7 protein through dimerization. Upstream of the DD domain, 

however, nonsense mutations are more likely to result in the production of non-

functional alleles.


	 There are a number of mechanisms that could explain these dominant negative 

impacts. For instance, the formation of non-functional FBXW7 dimerizing with wild-

type FBXW7, which is particularly detrimental for low affinity substrates that require 

dimerization for their degradation. Theoretically, this scenario could be caused by 

either nonsense or missense mutations anywhere downstream of the DD domain. 

However, hotspot mutants in cancer concentrate in the WD40 substrate recognition 

domains, therefore, this does not explain the whole picture. Perhaps, these full-length 
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hotspot mutants acquire functions that the truncated mutants lack. Hot-spot 

mutations, for instance, might not completely eliminate all substrate interactions, 

allowing these mutant proteins to bind some substrates without targeting them for 

degradation. By dimerizing with wild-type FBXW7 to generate inactive dimers in this 

scenario and by stably attaching to substrates and obstructing their accessibility to 

wild-type FBXW7 monomers, respectively, the hot-spot mutants could damage both 

the dimeric and monomeric FBXW7 function.


3.4.2 Epigenetic dysregulation of FBXW7 

	 The FBXW7 promoter is methylated in 43% of different cancer types, which is 

achieved through modifications of the DNA and histone proteins (Akhoondi et al., 

2010). This has been associated with high-grade tumors (Akhoondi et al., 2010). 

Interestingly, P53 mutations have been linked to hyoermethylation of the FBXW7 

promoter and lower expression levels of FBXW7 (Kited et al., 2016). This may be due to 

p53's capacity to boost DNA methyltransferase 1 expression (DNMT1). 


	 Moreover, histone alterations are known to regulate FBXW7 expression in 

addition to DNA modifications. A histone methyltransferase called Enhancer of Zeste 

Homolog 2 Polycomb Repressive Complex 2 (EZH2) is involved in the epigenetic 

silencing of many genes, including FBXW7. Three methyl groups are added by EZH2 to 

FBXW7's histone H3 residue (Zhao et al., 2015). This results in the FBXW7 gene's 

activity being silenced, which then triggers the Notch signaling pathway. It's interesting 

to note that FBXW7 has been found to be a substrate of EZH2, which is connected 
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adversely with FBXW7 expression in human PDAC samples and pancreatic cancer 

cells (Jin et al., 2017)


3.4.3 miRNA and lncRNA dysregulation of FBXW7 

	 Non-coding microRNAs (miRNAs) bind to the 3’ untranslated region (3’ UTR) of 

transcript which targets the mRNA for degradation, preventing protein translation. In 

the case of FBXW7, it has been demonstrated that the miRNA miR-548 binds 

specifically to the 3’UTR of FBXW7, leading to lower levels of FBXW7 mRNA and 

protein (Zhang et al., 2016). Additionally, this study shows that the long non-coding 

RNA (lncRNA), such as lncRNA-MIF, works as a miR-548 sponge to block the effects of 

miR-548 (Zhang et al., 2016). Therefore, overexpression of lncRNA-MIF increases 

FBXW7 levels, which in turn reduces the expression of its targets such as c-Myc and c-

Jun. Other miRNAs that inhibit FBXW7 are: miR-223, miR-25, miR-27, miR-32, miR-92, 

miR-155-3p, miR-182, and miR-503 (Yeh et al., 2016). In several of these instances, 

there was little or no association between a single miRNA and the expression of the 

FBXW7 gene in patient samples, suggesting that additional miRNAs or other regulatory 

mechanisms are needed to control the expression of FBXW7.


3.4.4 Post-translational dysregulation of FBXW7 

	 Studies have shown that FBXW7 can be regulated post-translationally via auto-

ubiquitination. For instance, it has been shown that the enzyme Pin1 (Peptidyl-prolyl 

cis-trans isomerase NIMA-interacting 1) negatively controls the FBXW7 protein by 

inducing conformational changes of FBXW7 that reduce its dimerization and promotes 
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self-ubiquitination and degradation (Min et al., 2012). This is achieved because Pin1 

physically interacts with FBXW7 and binds to its Thr205-Pro are in a phosphorylation-

dependent way, causing conformational shifts (Min et al., 2012). Additionally, FBXW7 

can be phosphorylated at Thr205 by the extracellular signal-regulated kinase (ERK), 

which causes FBXW7 to be ubiquitinated and degraded by the proteasome (Ji et al., 

2015). The FBXW7 mutation Thr205A provided resistance to ERK-mediated 

phosphorylation and decreased pancreatic cancer cell proliferation and tumorigenesis, 

illuminating the relevance of ERK-mediated phosphorylation of FBXW7 in PDAC (Ji et 

al., 2015).


	 Aspects of the stability of FBXW7 can also be managed by SCF ubiquitin ligase 

complex members. Cullin1, an adapter for FBXW7 in the SCF ubiquitin ligase complex, 

is controlled by CNS6's neddylation, and CNS6 encourages FBXW7's auto-

ubiquitination and destruction (Chen et al., 2014). In addition, loss of one of the 

components of the SCF complex, known as Glomulin (Glmn), decreases FBXW7 

expression by promoting Rbx1-mediated FBXW7 ubiquitination (Iron et al., 2012).


	 There are more than 300 distinct interacting partners for FBXW7 in the BioGrID 

interactions database (Chatr-Aryamontri et al., 2017). Many of which have been shown 

to downregulate FBXW7 levels by promoting its proteasomal degradation, as it is the 

case with the family with sequence similarity 83, member D (FAM83D). FAM83D is 

frequently dysregulated in both breast and colon cancer, and breast cancer has 

increased expression of FBXW7 substrates, such as c-Myc, mTOR, and c-Jun, as a 

result of FAM83D-mediated FBXW7 down-regulation (Wang et al., 2013).
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3.5 FBXW7 and the Hallmarks of Cancer 

	 So far, we have covered how dysregulation of FBXW7 can lead to diseases, 

including cancer, in a substrate-dependent manner. Here is a summary of how FBXW7 

impacts the Hallmarks of Cancer, such that when dysregulated, all these pathways are 

altered, promoting tumorigenesis (Figure 14).


	 Figure 14: Role of FBXW7 in the Hallmarks of Cancer. Impact of FBXW7 in 
seven hallmarks of cancer. Figure taken from Chen et al. (2022).


	 1. Maintaining Growth Signals: Through the ubiquitination and degradation of 

multiple important signal molecules, including c-MYC, c-Jun, phosphatidylinositol 3-

kinase (PI3K)/AKT, mTOR, Notch, as well as the JAK/STAT signaling cascade, FBXW7 
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reshapes the proliferative niches of tumor cells. Therefore, loss of FBXW7 leads to 

accumulation of these substrates in uncontrolled proliferation of cancer cells.


	 2. Resisting Cell Death: FBXW7 regulated apoptosis cascades through 

ubiquitination and degradation of MCL1. MCL1 is a member of BCL2 protein family, 

and functions as a crucial anti-apoptotic regulator. Therefore, dysregulation of FBXW7 

leads to MCL1 accumulation, resisting cell death, and leading to chemotherapeutic 

resistance. Additionally, FBXW7 controls mTOR directly by ubiquitinating and 

degrading it. In response to growth hormones and an abundance of nutrients, mTOR is 

a crucial inhibitory regulator of autophagy. Therefore, accumulation of mTOR promotes 

auto-Nagy, which is protective to cancer cells.


	 3. Inducing angiogenesis: Angiogenesis is crucial in providing solid tumors with 

the oxygen and nutrients they need to meet their constantly increasing metabolic 

needs. The GSK-3β/FBXW7 arm was found to affect angiogenesis and metastasis by 

ubiquitinating and degrading the hypoxia-inducible factor HIF-1 (Lv et al., 2016). This 

heterodimeric transcription factor induces the expression of factors that promote 

angiogenesis such as VEGF, VEGF-R1, VEGF-R2, plasminogen activator inhibitor-1 

(PAI-1), matrix metalloproteinase-2 (MMP-2) and MMP-9, Angioprotein-1 (Ang-1) and 

Ang-2 (Lv et al., 2016). Therefore, there is an increase in angiogenic activities that are 

advantageous to cancer cells by downregulating FBXW7 and increasing HIF-1-induced 

VEGF-A production. Interestingly, FBXW7 can deactivate the β-catenin pathway to 

affect how much VEGF-A is expressed, thereby decreasing ovarian angiogenesis.


	 4. Activating invasion and metastasis: The process of epithelial cells acquiring 

mesenchymal characteristics, known as epithelial-mesenchymal transition (EMT), is 
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essential for the development of malignant traits such migration, invasion, stemness, 

and resistance to treatment (Thiery, 2002). FBXW7 inhibits EMT upstream transcription 

factors like Snail 1 and zinc-finger E-box-binding homeobox 1 (ZEB1), inhibiting EMT 

processes (Li et al., 2016). As a result, downregulation of FBXW7 reverses its inhibitory 

function and encourages the spread of metastatic processes.


	 5. Reprogramming Energy Metabolism: Cancer cells exhibit accelerated glucose 

consumption, rapid ATP generation, and the conversion of glycolytic pyruvate to 

lactate, collectively known as "the Warburg effect," in the presence of hypoxia. 

Through the ubiquitin-dependent degradation of essential metabolic components as 

mTORC1, SREBP, HIF-1, c-MYC, and PGC-1, FBXW7 controls the rewiring of the 

metabolic network. Because of this, FBXW7 promotes metabolic reprogramming, 

which makes it easier for cancer cells to meet their early-stage nutritional needs for 

vital energy, anabolic processes, and redox functions.


	 6. Avoiding immune detection: The majority of tumor-associated macrophages 

are anti-inflammatory and pro-tumorigenic M2 macrophages. FBXW7 can slow cancer 

progression by preventing immunosuppressive niche formation and immune evasion. 

FBXW7 inhibits M2 polarization through regulating c-Myc degradation, as c-Myc has 

been shown to interact directly with the promoters of M2 macrophage-associated 

genes (Zhong et al., 2020). Indeed, animals with FBXW7-deficient macrophages had 

more aggressive tumor kinetics (Zhong et al., 2020).


	 7. Genome instability and mutation: Cyclin E, an FBXW7 substrate, promotes 

the G1/S phase transition. Cyclin E is frequently overexpressed in many human 

malignancies, which is connected to chromosome instability and cell cycle disruption. 
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Because of this, FBXW7 mutations cause an abnormal buildup of cyclin E, which 

results in improper chromosomal congression during metaphase and subsequent 

chromosome transmission. These genetic changes favor subclones of cells with 

superior mutant genotype to advance and take the lead within the local environment, 

promoting the acquisition of other cancer cell characteristics.


3.6 FBXW7 Dysregulation in Pancreatic Cancer 

	 According to the COSMIC database, FBXW7 is mutated in ~3.8% of pancreatic 

cancer patients (Figure 13A), and in fact, FBXW7 ranks among the top 50 mutated 

genes in pancreatic cancer according to the TCGA Genome Data Analysis Center 

(Figure 4). In addition, looking at the Human Protein Atlas database, those pancreatic 

cancer patients with low FBXW7 expression have a poor probability of survival 

compared to patients with high FBXW7 expression (Figure 15). Collectively, this 

supports that FBXW7 behaves as a tumor suppressor in PDAC.


	 Several studies have looked further at the role of FBXW7 in pancreatic cancer 

progression. For instance, Calhoun et al. (2003) investigated the relationship of two 

potential mutational targets, BRAF and FBXW7, and their association with distinct 

subsets of pancreas carcinomas. Using pancreatic cancer microarrays and 

immunohistochemistry, the authors found that 6% of pancreatic adenocarcinomas 

overexpress cyclin E, which was partially explained by the presence of mutations in 

FBXW7 at the exons 8 and 9.
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Figure 15: Probability of survival of pancreatic cancer patients based on FBXW7 
expression levels. Representative histology images stained with FBXW7 antibodies 
validate the high vs. low expression of FBXW7. Adapted from the Human Protein Atlas. 
Data available from https://v15.proteinatlas.org/ENSG00000109670-FBXW7/tissue


	 According to Ishii et al. (2017), FBXW7 is a crucial regulator of the PDAC tumor's 

ability to become malignant, and its substrate MCL-1 regulates treatment resistance. In 

122 pancreatic cancer tissues, the authors used immunohistochemistry to assess 

FBXW7 expression. Reduced FBXW7 expression was an independent predictor of poor 

prognosis and was substantially correlated with advanced venous invasion, increased 

MCL-1 expression, and elevated Ki-67 expression. Reduced FBXW7 expression was 

also substantially related with a poor prognosis among patients who received 

gemcitabine therapy following surgery. Additionally, in vitro knockdown of FBXW7 led 

to enhanced cell proliferation, migration, and invasion capacities as well as induced 

gemcitabine and nab-paclitaxel chemoresistance in pancreatic cancer cells, further 
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validating their findings. Moreover, the authors found that the enhanced chemo-

resistance seen in the FBXW7 knockdown pancreatic cancer cells was eliminated by 

MCL-1 inhibition. Therefore, the FBXW7/MCL-1 axis may be a promising therapeutic 

approach to treat pancreatic cancer that is refractory to chemotherapy.


	 Gao et al. (2014) explored the mechanism of action by which nuclear export 

inhibitors prevent the proliferation of pancreatic cancer cells in vitro and slow down 

tumor growth. The researchers discovered that the chemical triggers G2-M cell cycle 

arrest and apoptosis in low nano molar ranges (IC50s~150 nM), inhibits PDAC cell 

growth and migration, and prevents tumor invasion, which was associated with nuclear 

retention of FBXW7. The proposed mechanism is that FBXW7 retention in the nucleus 

leading to decreased abundance of tumor promising markers such as Notch1, c-Myc, 

Cyclin-D1, Hes1 and VEGF.


	 Additionally, Jiang et al. (2016) described that FBXW7 is downregulated upon 

pancreatic cancer development. The authors showed that FBXW7 plays a tumor 

suppressor role in PDAC. The authors found that high levels of FBXW7 hindered 

pancreatic cancer cell growth and invasion, by the degradation of β-catenin leading to 

reduced activation of the WNT/β-catenin signaling pathway. The research 

demonstrated that the FBXW7/β-catenin axis also controls c-Myc transcription in 

pancreatic cancer cells, a well-known FBXW7 target. These findings suggest that the 

abnormal activation of Wnt signaling typically observed in PDAC may be caused by 

FBXW7 inactivation in pancreatic cancer tissues.


	 Additionally, FBXW7 has been connected to the control of ferroptosis and 

apoptosis in pancreatic cancer cells (Ye et al., 2021). This research demonstrated that 
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FBXW7 increased ferroptosis, a non-apoptotic form of cell death, and controlled lipid 

peroxidation. They discovered that FBXW7 blocked nuclear receptor subfamily 4 group 

A member 1 (NR4A1) in order to suppress the production of stearoyl-CoA desaturase 

(SCD1). According to reports, SCD1 inhibits ferroptosis as well as apoptosis, which is 

in line with the roles of FBXW7 and NR4A1, another gene that is downregulated by 

FBXW7. The authors also discovered that gemcitabine's cytotoxic activity was greatly 

potentiated by the FBXW7-NR4A1-SCD1, opening up new areas for chemotherapeutic 

intervention. Targeting FBXW7, for example, can get around resistance to targeted 

therapy.


	 Most of the studies that look at FBXW7 in pancreatic cancer have been mainly 

performed in vitro in 2D cell lines and xenograft models, which are not physiologically 

relevant. On the other hand, Zhang et al. (2016) looked at the contribution of FBXW7 to 

pancreatic tumorigenesis in mouse models of PDAC. 


	 The authors developed a P48-Cre; LSL-KrasG12D/+; Fbxw7fl/fl (KFC fl/fl) mouse 

model to examine any potential interactions between the Kras mutation and FBXW7 

inactivation in pancreatic carcinogenesis. They discovered all KFC fl/fl mice developed 

PDAC lesions by 40 days, with PDAC onset occurring by 2 weeks of age. PDAC in KFC 

fl/fl mice was associated with chromosomal instability, the buildup of FBXW7 

substrates Yes-associated protein (Yap), c-Myc, and Notch, and was preceded by 

faster onset of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial 

neoplasia (PanIN) lesions. The authors also discovered that Yap silencing inhibited the 

growth promoted by FBXW7 deletion. Putting this data together, it shoes that FBXW7 

is a strong tumor suppressor in KrasG12D-driven PDAC, in part because of Yap’s action.
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	 Additionally, it has been demonstrated that FBXW7 controls Notch signaling to 

control stem cell self-renewal and differentiation in several organs. Using Pdx1-Cre, 

Sancho et al. (2014) demonstrated that conditional FBXW7 knockout in embryonic 

pancreatic progenitor cells or inducible deletion of FBXW7 in ductal cells of the adult 

pancreas, enhances cell neogenesis through ductal-to-β cell transdifferentiation. Their 

research shoes that when FBXW7 was phosphorylated at Ser183 by GSK3β, it 

facilitates the ubiquitination and degradation of neurogenic 3 (Ngn3), a crucial regulator 

for the formation of an endocrine cell identity in the pancreas. Patients with diabetes, 

one of the greatest health issues in the world and a risk factor for PDAC, should pay 

particular attention to this. Therefore, further research on targeting the FBXW7/Ngn3 

axis for in vivo neogenesis of β cells has great potential for the treatment of diabetes 

and subsequently lowering the probability of developing PDAC.	 


3.6 Potential Therapeutic Strategies against FBXW7 
	 


	 Tumors can be resistant due to the combination of multiple factors, including


physical barriers, tumor heterogeneity, tumor burden and growth dynamics, the tumor 

microenvironment, and "undraggable" genetic drivers (such c-MYC and TP53). The role 

of FBXW7 in many of the cancer hallmarks provides important insights into the 

relationship between FBXW7 and therapeutic resistance, highlighting the importance of 

identifying novel targets for precision therapy.
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The creation of FBXW7 agonists has received some attention in the past years. 

Leukemia and lymphoma cells undergo apoptosis when the natural substance oridonin 

stimulates FBW7-mediated proteasomal degradation of c-Myc (Huang et al., 2012). 

Additionally, a small molecule screening discovered SCF-12, which allosterically 

inhibits the substrate recognition function of FBP Cdc4 in yeast (Orlicky et al., 2010). 

SCF-12 binds to the WD40 domain of Cdc4 between two beta strands. Even though 

SCF-I2 did not inhibit Cdc4 activity in vivo, it shows great potential to allosterically 

inhibit the WD40 substrate recognition domains


	 The SCF-FBXW7 axis has been notably difficult to therapeutically target in the 

field. However, with an increased understanding of ubiquitination, and the relationship 

between structures/functions, we will improve the rational design of selective 

therapeutics and tool compounds by targeting this critical pathway. However, the field 

is moving with caution. FBXW7 can act as tumor suppressors or promoters in a 

substrate-dependent, therefore, one must understand in depth their activity in the 

specific tissue and/or tumor context.


	 Even though, the role of FBXW7 in pancreatic cancer has been studied to some 

extent, its role in pancreatic progression to metastasis is still a big question in the field. 

In Chapter 2 I will outline efforts to further understand the role of FBXW7 in metastatic 

progression of PDAC using genetically engineered mouse models. 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Supplemental Tables 

Supplemental Table 1: Mouse models of pancreatic cancer  

(Adapted from Saki et al.)


Genotype Time of 
expression

Phenotype Reference

Sox9CreER;KasLSL-G12D ;Trp53flox/flox 

Ptf1aCreER;KrasLSL-G12D ;Trp53flox/flox 
Inducible PanIN, PDAC Lee, 2019

Tg(Ela5-KrasG12D) ~P30 Preinvasive ductal 
neoplasia, acinar 
cell dysplasia 
PanIN, PDAC

Grippo, 2003


Pdx1-Cre;LSL-KrasG12D E8.5 PanIN, PDAC Hingorani, 2003

Ptf1Cre/+ ;LSL-KrasG12D E9.5 PanIn, PDAC Hingorani, 2003

KrasG12Vgeo ;Elas-tTA/tetO-Cre Inducible PanIN, PDAC Guerra, 2007

Tg(CAG-lox-GFP-stop-lox- 
KrasG12V );Hinf1b/CreERT2 

Inducible PanIN, PDAC Singh, 2021

Pdx1-Flp;FSF-KrasG12D/+ ;FSF- R26CAG-
CreERT2 

E9.5 PanIN, PDAC Schönhuber, 2014 

Pdx1-FlpO;Frt-STOP-Frt krasG12D E9.5 PanIN, PDAC Wu, 2017


Pdx1-CreERT2 ;BrafCA/+ Inducible PanIN Collisson, 2012

Tg(Pdx1-Cre)Pik3cap110* E8.5 PanIN, PDAC Payne, 2015

Tg(Pdx1-Cre);Pik3caH1047R E8.5 PanIN, PDAC Payne, 2015

Sox9-CreERT2 ;Ptenflox/flox ;LSL-KrasG12D Inducible IPMN, PDAC
 Kopp, 2018

Tg(Ela-1-myc) ~P30 Mixed acinar/
ductal 
adenocarcinoma

Sandgren, 1991


Pdx1-Cre;CAG-tTA;TetO-Myc Inducible PanIN, PDAC Lin, 2013

Pdx1-Cre;CAG-tTA;TetO-KrasG12D Inducible PanIN, PDAC Rajbhandari, 2017

Pdx1CreER;KrasG12D ;Trp53fl/+ ; 
Rosaconfetti/YFP 

Inducible PanIN, PDAC Maddipato, 2021
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Tg(CAG-LSL-GNASR201H ); LSL-
KrasG12D ;Ptf1Cre/+ 

E9.5 IPMN Taki, 2016

Sox9-CreERT2 ;LSL- KrasG12D ;Lkb1flox/
flox 

Inducible IPMN Collet, 2020

Pdx1-Cre; LSL-KrasG12D ; Smad4flox/flox  E8.5 IPMN, PanIN Bardeesy, 2006


Pdx1-Cre;LSL-KrasG12D ;Ink4a/Arfflox/
flox ;Smad4flox/flox 

E8.5 IPMN 
differentiated 
PDAC

Bardeesy, 2006


Pdx1-Cre; LSL-KrasG12D; Ink4a/Arfflox/flox E8.5 PanIN, poorly 
differentiated 
PDAC

Aguirre, 2003

Ptf1Cre/+ ;LSL-KrasG12D ;LSL- 
Trp53R172H/+ 

E9.5 IPMN, PDAC Hingorani, 2005

Ptf1a-CreER;LSL- KrasG12D ;Tp53loxP/
+ ;LSL-GnasR201C

Inducible IPMN, PDAC
 Patra, 2018

 LSL-KasG12D;ptf1a+/cre;ATMloxp/loxP E8.5 PDAC, metastasis Misha, 2020

Ptf1Cre/+ ;LSL- KrasG12D;rtTA3lox/
lox;sgRnf43;Tre3g- Cas9 

Inducible 
gene editing

PanIN, PDAC Kimura, 2018

Ptf1Cre/+;LSL-KrasG12D;Arid1aflox/flox E9.5 IPMN, PDAC
 Wang, 2019

Ptf1Cre/+,LSL-KrasG12D;Brg1flox/flox E9.5 IPMN, PDAC
 Von Figura, 2014
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Supplemental Table 2: FBXW7 substrates segregated by CPD 

(Adapted from Yumimotoa and Nakayama, 2020)


Optimal CDC4 phosphodegron (CPD): 

Semiptimal CDC4 phosphodegron (CPD): 

Name Localization CPD sequence CPD mutation (%) Reference

c-MYC N 53-FELLP T PPL S -62 18.60 Yada, 2004

N-MYC N 53-FELLP T PPL S -62 3.99 Otto, 2009

OASIS ER to N 202-VQMPP T PPS S -211 2.45 Yumimoto, 2013

BBF2H7 ER to N 200-LHLPP T PPS S -209 0.65 Yumimoto, 2013

GATA2 N 171-FGFPP T PPK E -180 1.09 Nakajima, 2015

GATA3 N 151-FTFPP T PPK D -160 1.33 Kitagawa, 2014

NFκB2 C to N 702-LCPLP S PPT S -711 1.49 Arabi, 2012

NONO N 423-GTLGL T PPT T -432 1.09 Alfano, 2017

DISC1 Mito, C, CS 193-PEVPP T PPG S -202 4.67 Yalla, 2017

Cyclin E1 N
390-PSGLL T PPQ S -399 2.65

Welcker, 2003
72-CSLIP T PDK E -81 1.59

PGC1α N
290-GTAGL T PPT T -299 0.00

Housley, 2009
258-LSLPL T PESP-267 2.20

KLF2 N
239-ARGLL T PPA S -248 0.00

Wang, 2013
168-PPPPD T PPL S -177 0.00

Name Localization CPD sequence CPD mutation (%) Reference

KLF5 N 298-TYFPP S PPS S -307 22.97 Liu, 2010

KLF7 N 132-AVTSL T PPS S -141 11.49 Sugiyama, 2019

KLF10 N 88-PAFCL T PPY S -97 2.70 Yu, 2018

KLF13 N 114-AAAPP S PAW S -123 1.89 Kim, 2012

SOX9 N 231-SQGPP T PPT T -240 1.90 Hong, 2016
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SOX10 C to N 235-SHGPP T PPT T -244 1.06 Lv, 2015

MyRF ER to N 133-GTLPD S PPD S -142 1.52 Nakayama, 2018

GRα C to N 399-PDVVS S PPS S -408 0.45 Malyukova, 2013

SREBP1 ER to N 421-VEDTL T PPP S -430 0.74 Sundqvist, 2005

SREBP2 ER to N 427-NVLLM S PPA S -436 3.57 Sundqvist, 2005

C/EBPα N 221-QPGHP T PPP T -230 1.32 Bengoechea-
Alonso, 2010

C/EBPδ N 151-AAGQP T PPT S -160 0.00 Balamurugan, 
2013

BRG1 N 26-AMLGP S PGP S -35 0.28 Huang, 2018

EGLN2 N 396-VQVPV S QPP T -405 2.86 Takada, 2017

MED13 N 321-SSVTL T PPT S -330 2.64 Davis, 2013

MED13L N 321-CGMPL T PPT S -330 0.17 Davis, 2013

NOTCH1 PM to N 2506-EHPFL T PSP E -2515 11.09 O’Neil, 2007

NOTCH2 PM to N 2411-EHPYL T PSP E -2420 0.43 Conservation 
with NOTCH1

NOTCH3 PM to N 2241-EHPYL T PSP E -2250 0.22 Conservation 
with NOTCH1

NOTCH4 PM to N 1968-PPPCL T PSP E -1977 1.26 Conservation 
with NOTCH1

c-JUN N 234-EMPGE T PPL S -243 1.16 Wei, 2005

JUNB N 250-RSRDA T PPV S -259 5.81 Perez-Benavente, 
2013

TGIF1 N 359-SGLFN T PPP T -368 4.48 Bengoechea-
Alonso, 2010

HSF1 N, CS 298-KEEPP S PPQ S -307 2.92 Courtis, 2015

IRF1 N 175-VEQAL T PAL S -184 0.94 Garvin, 2019

GFI1 N 89-FWRPP S PSA S -98 2.90 Kuai, 2019

SNAIL N 102-PPSPP S PAP S -111 3.75 Xiao, 2018

REV-ERBα N 269-FPQQL T PPR S -278 0.55 Zhao, 2016

BLM N 166-SKSFV T PPQ S -175 0.18 Kharat, 2016

BRAF C, N 396-TGLSA T PPA S -405 0.00 De la Cova, 2012
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NCOA3 C to N 500-VAGVH S PMA S -509 0.05 Wu, 2007

Presenilin-1 PM 111-GQLIY T PFT E -120 0.00 Li, 2002

NRF1 ER to N 374-DFLLF S PEV E -383 4.03 Biswas, 2011

RICTOR C 1690-EAVLA T PPKQ-1699 0.29 Koo, 2015

NGN 3 N 178-QAGSL S PAA S -187 5.50 Sancho, 2014

EZH2 N 256-LPPEC T PNI D -265 0.45 Jin, 2017

FOXM1 N 484-LEEWP S PAP S -493 1.42 Chen, 2016

FAAP20 N 108-GGHLE S PAR S -117 4.35 Wang, 2016

ZNF322A N 386-KGLEL S PPHA-395 10.53 Liao, 2017

CRY2 C to N 295-VKRNS T PPL S -304 1.99 Fang, 2015

p53 C, N, ER 28-ENNVL S PLP S -37 0.22 Cui, 2020

SETD3 C to N 369-ALHFTEPPI S -378 0.61 Cheng, 2017

SHOC2 C to N 502-GENLL T HLP E -511 2.44 Xie, 2019

Aurora-A CS 212-YAPLG T VYR E -221 2.02 Kwong, 2012

Cyclin E2 N
387-NGGIM T PPK S -396 1.79

Klotz, 2009
69-CIIIE T PHK E -78 0.89

MCL1 N, Mito
116-ADAIM S PEE E -125 2.94

Inuzuka, 2011
154-TSTDG S LPS T -163 3.53

DEK N
10-GEGTP T QPA S -19 3.70

Akhoondi, 2007
62-KVERL T MQV S -71 1.85

CCDC6 CS
422-KFKRP T PPP S -431 2.10

Zhao, 2012
408-GITRP S PRR S -417 2.80

CDX2 N
55-LDSAQ S PGP S -64 4.50

Kumar, 2016
278-VPEPL S PVS S -287 0.00

DAB2IP PM
134-HESLL S PSSA-143 0.87

Dai, 2014
697-FTRLP S PTP E -706 2.04

EBP2 * NL 1-MD T PPL S -7 1.63 Welcker, 2011

LSD1 * N 776-MAQPI T PGP S -785 1.12 Lan, 2019
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Other CDC4 phosphodegron (CPD): 

c-MYB N 567-SSVLM T PVS E -576 ** Kitagawa, 2009

Fetuin-A S 300-LRHAF S PVA S -309 *** Zhao, 2018

Name Localization CPD sequence CPD mutation (%) Reference

NF1 N 2752-EESLL T PTSP-2761 0.17 Tan, 2011

TOPOIIα N 1356-PKTKT S PKL S -1365 0.00 Chen, 2011

EYA1 N 152-LSQSQ S PGQ T -161 0.27 Sun, 2014

PLK1 N, CS 209-KTLCG T PNYI-218 1.21 Giraldez, 2014

PLK2 CS 238-RTICG T PNYL-247 0.87 Conservation 
with PLK1

PLK3 N, CS, Ga 218-KTICG T PNYV-227 1.44 Conservation 
with PLK1

PLK4 N, CS 169-YTLCG T PNYI-178 0.00 Conservation 
with PLK1

NDE1 CS 186-QEKPR T PMP S -195 3.17 Maskey, 2015

mTOR Lyso, C, Mito, 
ER, Ga, N 626-CSRLL T PSIH-635 0.37 Mao, 2008

PTPN11 N 549-LADQT S GDQ S -558 0.91 Song, 2017

HIF1α N 493-QIQDQ T PSP S -502 1.73 Cassavaugh, 
2011

Aurora-B N, CS Not found Teng, 2012

ZEB2 N Not found Li, 2019

p63 N Not found Galli 2010

RCAN1 N Not found Lee, 2012

YAP N Not found Tu, 2014

NRF3 N Not found Kannan, 2015

ENO1 PM, C, N Not found Zhan, 2015

GCSFR PM Not found Ocher, 2013

STAT3 C to N Not found Yao, 2017
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* A pseudosubstrate.


** Mouse sequence; T572 is not conserved in human.


*** Mouse sequence; S305 is not conserved in human. 

RHOGDIα C Not found Zhu, 2017

MTDH ER Not found Chen, 2018

NDRG1 C Not found Gasser, 2014

XRCC4 N Not degraded Zhang, 2016

γ-Catenin C to N Not degraded Li, 2018
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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common 

malignancy because it is usually diagnosed at an advanced or metastatic stage. 

Dysregulation of protein stability and degradation has been associated with 

uncontrolled proliferation and genomic instability, leading to cancer progression to 

metastasis. One of the major regulators of protein degradation is the tumor suppressor 

FBXW7, a substrate recognition domain of the SCF E3 ubiquitin ligase, frequently 

dysregulated in many cancers. The function and clinical significance of FBXW7 in 

PDAC have been studied in some detail, showing that FBXW7 acts as a tumor 

suppressor in PDAC cells. However, studies on the impact of FBXW7 expression and 

its substrates on pancreatic cancer progression to metastasis remain unclear. Here, we 

demonstrate that Fbxw7 loss accelerates the progression and metastatic potential of 

pancreatic cancer in KrasG12D/+; Trp53-/- PDAC models, in immunocompromised and 

immunocompetent hosts. We explore the impact of different Fbxw7 mutants in 

tumorigenesis, where the hotspot mutant R465 recapitulates the phenotype seen in 

complete loss-of-function of Fbxw7. Finally, we looked at global proteomic changes 

when Fbxw7 is lost to better understand mechanistically the role of Fbxw7 in PDAC 

progression to metastasis. This study presents a novel and mechanistically distinct 

facets of pancreatic cancer progression to metastasis.
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Introduction 
	 Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common 

malignancy and is currently the third leading cause of cancer deaths in the United 

States. The 5-year relative survival rate of all stages is 11.5%, mostly because 52% of 

patients are diagnosed at an unresectable and metastatic stage, for which the 5-year 

survival rate is only 3.1% (Howlader et al., 2021) and treatment options for these 

patients are very limited. The development of PDAC follows a stepwise progression 

driven by the gradual accumulation of genetic mutations. This progression is 

characterized by the transition of normal pancreatic ductal cells to a pre-invasive 

precursor lesion known as pancreatic intraepithelial neoplasia (PanIN) due to activating 

mutations of oncogenic KRAS (Hingorani et al., 2003; Kanda et al., 2012), which can 

ultimately develop into an invasive PDAC after inactivation of tumor suppressors such 

as CDKN2A, TP53, and SMAD4 (Hustinx et al., 2005; Kanda et al., 2012; Morton et al., 

2010; Wilentz et al., 2000). Typically, pancreatic cancer cells metastasize to the regional 

lymph nodes, then to the liver, and less commonly to the lungs, kidneys, and adrenal 

glands (Ryan et al., 2014). Despite the clinical importance of metastatic spread, our 

knowledge of the molecular processes that underlie PDAC's capacity for metastatic 

spread is still limited.


            The ubiquitin-proteasome system regulates the abundance  of various cellular 

proteins, vital for many cellular processes. As a result, its deregulation may result in 

uncontrolled proliferation and genomic instability, which can contribute to cancer 

development and metastasis. Ubiquitination is an enzymatic reaction that leads to the 

attachment of ubiquitin moieties to target proteins and to ubiquitin itself, creating 
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polyubiquitin chains. This process is orchestrated by the sequential activity of ubiquitin 

activation enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin gases (E3) 

(Ciechanover, 2015; Hershko et al., 1979), eventually leading to proteasomal 

degradation of targeted proteins, as well as changes in protein activity, localization, or 

complex formation (Husnjak & Dikic, 2012; Popovic et al., 2014; Senft et al., 2018; Yau 

& Rape, 2016). Many E3s are frequently dysregulated in cancer through epigenetic and 

genetic mechanisms, as well as altered post-translational mechanisms that change in 

response to extrinsic and intrinsic cues (Qi & Ronai, 2015; Senft et al., 2018).


A major class of ubiquitin ligases is the Skp1-Cul1-F-box protein (SCF) 

complex, which consists of four components: the invariable subunits SKP1, CUL1, and 

RBX1 and a variable F-box protein that affects target specificity by acting as a receptor 

for target proteins (Skaar et al., 2014; Winston et al., 1999). According to an analysis of 

the Catalogue of Somatic Mutations in Cancer (COSMIC) database, the F-box and 

WD-40-containing protein 7 (FBXW7) has the greatest mutation frequency among the 

several F-box proteins that have been found (Cenciarelli et al., 1999; Winston et al., 

1999; Forbes et al., 2017). The most common mutations are found in mutational 

hotspots, R505, R465, and R479, codons located in the WD40 substrate binding 

domains, which may reduce its stability to form a stable SCF complex or may affect its 

interaction with specific substrates (Forbes et al., 2017; Yeh et al., 2018). There are 

three FBXW7 isoforms: FBXW7α, FBXW7β, and FBXW7γ, which localize to different 

sub-cellular compartments, further restricting interactions with specific partners and 

functions (Spruck et al., 2002). FBXW7α is ubiquitously expressed in the majority of 

proliferating cells and is localized in the nucleoplasm, FBXW7β is cytosolic and 
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FBXW7γ is nucleolar. Many of the known FBXW7 targets are proto-oncogenes such as 

cyclin E, MYC, MCL1, MTOR, JUN, NOTCH, and AURKA, which support the role of 

FBXW7 as a tumor suppressor (Fernandez et al., 2003; Foltz et al., 2002; Grim et al., 

2008; Inuzuka et al., 2010; Koepp et al., 2001; Kwon et al., 2012; Mao et al., 2008; Wei 

et al., 2005; Yada et al., 2004).


The function and clinical significance of FBXW7 in pancreatic cancer have 

been studied in some detail, showing that FBXW7 acts as a tumor suppressor in 

pancreatic cancer (Calhoun et al., 2003; Gao et al., 2014; Ishii et al., 2017; Ji et al., 

2015; Pérez-Mancera et al., 2012; Sancho et al., 2014; Ye et al., 2021; Zhang, Zhang, 

et al., 2016). FBXW7 ranks amongst the top 50 mutated genes in pancreatic cancer 

patients, with a mutation frequency of ~3.8% (TCGA Genome Data Analysis Center). In 

fact, pancreatic cancer patients with low FBXW7 expression levels have a poor 

probability of survival compared to patients with high FBXW7 expression levels (Ishii et 

al., 2017; Uhlén et al., 2005). Furthermore, studies have shown that Fbxw7 mutations 

and loss cooperate with KrasG12D to accelerate PDAC formation with a high frequency 

(24%), showing that Fbxw7 is an important tumor suppressor in Kras-driven pancreatic 

cancer (Pérez-Mancera et al., 2012; Zhang, Zhang, et al., 2016). Furthermore, in vitro 

studies suggest that loss of Fbxw7 function promotes cell proliferation, migration, and 

the epithelial-to-mesenchymal transition (EMT) needed for metastasis in PDAC (He et 

al., 2017; Ishii et al., 2017; Jin et al., 2017). However, studies on the impact of Fbxw7 

expression and its substrates on pancreatic cancer progression to metastasis are very 

limited. 
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Here, we demonstrate that Fbxw7 loss accelerates metastatic progression of 

pancreatic cancer in KrasG12D/+; Trp53-/- driven PDAC models, in immunocompromised 

and immunocompetent hosts. We show that loss of Fbxw7 increases the metastatic 

potential of PDAC cells. Furthermore, we explore the impact of different Fbxw7 

mutants in tumorigenesis, where only the hotspot mutant R465 recapitulates the 

phenotype seen in complete loss-of-function of Fbxw7. Finally, we looked at global 

proteomic changes when Fbxw7 is lost in an attempt to better understand 

mechanistically the role of Fbxw7 in PDAC progression to metastasis.
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Results 

Fbxw7 loss accelerates PDAC metastatic progression in immunocompromised 

and immunocompetent mouse models 

                       We hypothesized that suppression of the ubiquitin ligase function of Fbxw7 

induces metastatic progression of pancreatic cancer. To test this hypothesis, we 

knocked out Fbxw7 using CRISPR/Cas9 technology in the KrasLSL-G12D; p53flox/flox 

model, which faithfully mimics human KRAS-driven PDAC, displaying similarities at the 

molecular and histopathological level (Hruban et al., 2000; Lee et al., 2019). We derived 

pancreatic organoids from normal pancreata of KrasLSL-G12D/+; Trp53flox/flox; Rosa26LSL-

Cas9/LSL-TdTomato mice. Following ex vivo delivery of adenovirus containing Cre 

recombinase, pancreatic organoids express oncogenic Kras with loss of tumor 

suppressor p53, as well as expression of endonuclease Cas9 and the fluorescent 

protein TdTomato (KP Cas9/Tom). This system allows efficient CRISPR/Cas9 genomic 

editing, as well as in vivo tracking of cancer cells by fluorescence imaging. Organoids 

are three-dimensional cell clusters that self-organize into organ-like structures, that 

have been shown to recapitulate PDAC disease at the pathophysiological level (Boj et 

al., 2015). KP Cas9/Tom pancreatic organoids were transduced with lentiviral vectors 

expressing sgRNA against Fbxw7 (sgFbxw7.1) and Olfr102 as a control (sgOlfr102) 

(Figure 1A). Olfr102 was identified as a non-essential gene in PDAC in multiple shRNA 

screens. Editing at the Fbxw7 locus was confirmed by sequencing and TIDE analysis, 

which quantifies INDEL rates and provides an estimate of gene editing efficiency, which 

in this case was 48.3% (Figure 1A). 
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Figure 1: Loss-of-function of Fbxw7 accelerates PDAC progression to metastasis 
in immunocompromised hosts. 

(A) Experimental design. Briefly, KP Cas9/Tom organoids were transduced with 

lentivirus containing sgRNA against Fbxw7 and control Olfr102 for CRISPR/Cas9 
editing. Editing efficiency was confirmed by sequencing and TIDE analysis, 
revealing a 48.3% overall editing efficiency at the Fbxw7 locus. Organoids were 
orthotopically transplanted to Rag2-/- hosts and primary and tumor progression 
were assessed at 6 and 8 weeks post-transplant.


(B) Whole pancreas weight (grams) as a proxy for primary burden when Fbxw7 is lost 
compared to control animals at 6 and 8 weeks post transplant. **** p<0.0001.


(C) Percentage of animals with distal metastases in the liver, kidneys, adrenal glands, 
and lungs when Fbxw7 is lost compared to control animals at 6 and 8 weeks post 
transplant.


(D) Representative TdTomato fluorescence images of the pancreas and distal organs 
show primary tumors and metastatic foci from Fbxw7 knockout and control animals 
at 6 and 8 weeks post transplant. Arrows point to micrometastatic foci.


(E) Representative images of the histopathology of tumors from Fbxw7 knockout and 
control animals. TdTomato staining marks tumors formed from the transplanted 
organoid lines.


(F) Distribution of Fbxw7 in-frame and out-of-frame INDELs in laser captured primary 
and metastatic tumors.


145



To avoid tumor rejection due to the expression of antigenic proteins Cas9 and 

TdTomato, the organoid l ines were or thotopica l ly t ransplanted into 

immunocompromised Rag2-/- animals (Figure 1A), which revealed a significant 

increase in primary and metastatic tumor burden when Fbxw7 function is lost (Figure 

1B-1D). Histological analysis of these tumors revealed that TdTomato+ primary and 

metastatic tumors recapitulate the histopathology of the human disease from abnormal 

glands to more advanced and poorly differentiated tumors, as well as the characteristic 

desmoplastic stroma in PDAC (Figure 1E). Furthermore, to look at the distribution of 

INDELs at the Fbxw7 locus in the targeted tumors, primary and metastatic tumors from 

sgFbxw7.1 mice were laser-capture microdissected, and DNA from these tumors were 

sequenced by next-generation sequencing. Interestingly, at both early (6 weeks post-

transplant) and late (8 weeks post-transplant) stages of tumor progression, the primary 

tumors show an equivalent representation of in-frame and out-of-frame INDELs (Figure 

1F). On the other hand, the invasions and metastatic tumors showed significant 

enrichment of out-of-frame INDELs that more likely lead to complete loss-of-function 

of Fbxw7 (Figure 1F). Collectively, this data shows that loss of Fbxw7 function 

accelerates PDAC progression to metastasis in immunocompromised mouse models 

of PDAC.
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Accelerated PDAC metastatic progression is not linked to the loss of a single 

Fbxw7 isoform, but, rather, the complete loss of all Fbxw7 isoforms 

                       In principle, the three Fbxw7 isoforms (Fbxw7α, Fbxw7β and Fbxw7γ) are 

functionally identical since they share the three main functional domains: the 

dimerization domain (DD), the F-box domain which interacts with Skp1 from the SCF 

complex, and eight WD40 domains that interact with target proteins for 

polyubiquitination (Yeh et al., 2018, p. 7; Yumimoto & Nakayama, 2020) (Figure 2A). 

Distinct N-terminal signals in the isoform-specific first exon direct FBXW7α to the 

nucleoplasm, FBXW7 β to the cytoplasmic membranes and FBXW7γ to the nucleolus, 

which restricts the protein pool they sample for degradation (Bonetti et al., 2008; 

Durgan & Parker, 2010; Grim et al., 2008; Matsumoto et al., 2006; Welcker et al., 2004). 


                       To test whether the observed accelerated PDAC progression to metastasis is 

linked to the loss of a single Fbxw7 isoform, we used CRISPR/Cas9 technology to 

knockout each individual isoform (sgFbxw7α, sgFbxw7β and sgFbxw7γ), as well as to 

completely knockout all Fbxw7 isoforms (sgFbxw7.1, which targets the C-terminal 

WD40 domains, and sgFbxw7.2, which targets upstream of all functional domains) 

(Figure 2A). Towards this goal, we derived genetically defined KrasLSL-G12D/+; Trp53flox/

flox; Rosa26LSL-Cas9-eGFP/LSL-Cas9-eGFP (KP Cas9-GFP) pancreatic organoids, and ex vivo 

transformed them with adenovirus expressing Cre recombinase. Transformed 

organoids were transduced with lentiviral vectors expressing the sgRNA against Fbxw7 

variants and Olfr102 control (sgOlfr102, sgFbxw7α, sgFbxw7β and sgFbxw7γ, 

sgFbxw7.1 and sgFbxw7.2) (Figure 2A and S2A). Organoid lines were cloned, and only 

clones with out-of-frame INDELs leading to homogenous knockouts were used (Figure 
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S2A and S2B). Orthotopic transplantation of these organoid lines into syngeneic, 

immunocompetent mice (C57BL/6 KP Cas9-GFP) revealed that only complete loss of 

Fbxw7 (sgFbxw7.1 and sgFbxw7.2) lead to a significant increase in primary and 

metastatic tumor burden (Figure 2B–2D and S2C). Together this data shows that there 

is isoform redundancy (isoforms compensate each other) and that only complete loss-

of-function of all three Fbxw7 isoforms accelerates PDAC tumor progression to 

metastasis.


            To further explore the metastatic potential of PDAC cells when Fbxw7 function 

is lost, sgOlfr102, sgFbxw7.1 and sgFbxw7.2 pancreatic organoid lines were adapted 

to 2D and followed up by in vitro and in vivo proliferation, migration, and invasion 

assays. While there was no significant difference observed in their in vitro proliferation 

and migration capacity (Figure 2E and S2D–S2F), in vivo tail vein injection of these 

lines revealed a significant increase in lung colonization when Fbxw7 is lost (Figure 2E 

and 2F), demonstrating an increased metastatic potential of PDAC when Fbxw7 is lost.
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Figure 2: Interrogation of the the different Fbxw7 isoforms in PDAC progression to 
metastasis. 
(A) Representative diagram of the Fbxw7 genomic locus and functional domains (DD, 

dimerization domain; F-box domain; WD40 repeats, substrate binding domains). 
sgRNAs targeting loci used to target each individual Fbxw7 isoform (sgFbxw7α, 
sgFbxw7β and sgFbxw7γ), and all isoforms simultaneously (sgFbxw7.1 and 
sgFbxw7.2).


(B) Representative GFP fluorescence images of the pancreas and distal organs show 
primary tumors and metastatic foci from Fbxw7α, Fbxw7β, Fbxw7γ, Fbxw7.1 and 
Fbxw7.2 knockout animals at 9 weeks post transplant. Arrows point to 
micrometastatic foci.
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(C) Whole pancreas weight (grams) as a proxy for primary burden from Fbxw7α, 
Fbxw7β, Fbxw7γ, Fbxw7.1 and Fbxw7.2 knockout animals at 9 weeks post 
transplant.. ** p<0.01.


(D) Percentage of animals with distal metastases in the liver, kidneys, adrenal glands, 
and lungs from Fbxw7α, Fbxw7β, Fbxw7γ, Fbxw7.1 and Fbxw7.2 knockout animals 
at 9 weeks post transplant.


(E) Experimental design of tail vein injections. Briefly, Fbxw7.1 and Fbxw7.2 knockout 
organoids were transiently adapted to 2D cultures, expanded and 100,000 cells 
were injected via tail vein. Lung colonization was analyzed by fluorescence imaging 
and histology.


(F) Representative GFP fluorescence images and histology of lung tumors after tail 
vein injection of Fbxw7.1 and Fbxw7.2 knockout lines. Percentage of animals with 
low, medium or high lung tumor burden.


Fbxw7 loss leads to stabilization of c-Myc in PDAC tumors 

                       So far, we have shown that Fbxw7 loss increases the metastatic potential of 

PDAC, leading to accelerated progression in both immunocompromised and 

immunocompetent mouse models of PDAC. In order to mechanistically interrogate the 

role of Fbxw7 in PDAC progression, we started by establishing a clean knockout 

system by introducing a Cre recombinase conditional Fbxw7 allele (Fbxw7flox/flox; F) to 

the KrasLSL-G12D/+; Trp53flox/flox; R26LSL-TdTomato (KPT) mouse model (Figure 3B). This 

Fbxw7flox/flox allele contains LoxP sites flanking exons 5 and 6, which encode the F-box 

domain and WD40 repeats, leading to complete deletion of Fbxw7 after Cre-mediated 

recombination (Figure 3B) (Thompson et al., 2008). We derived genetically defined 

pancreatic organoids from normal pancreata of mice C57BL/6 KPT and KPFT mice 

(Figure 3A). Following ex vivo transformation by delivery of adenovirus expressing Cre 

recombinase, these organoids express oncogenic Kras with loss of tumor suppressor 

p53 and Fbxw7 (in the case of KPFT organoids), as well as expression of the 

fluorescent protein TdTomato (Figure 3A, 3B and S2A). Similar to what we have shown 
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before, these organoids show no difference in their in vitro proliferative capacity (Figure 

3C, S2B–S2D), but upon orthotopic transplantation to syngeneic mice, there is a 

significant increase in PDAC primary and metastatic tumor burden when Fbxw7 is lost 

(Figure S2E–S2G). Furthermore, KPFT mice have a significantly lower probability of 

survival with a median survival of 8.3 weeks post-transplant, while KPT mice have a 

median survival of 10.5 weeks post-transplant (Figure 3D). Histologic analysis of 

TdTomato+ tumors show similar histopathological features of the human disease, from 

abnormal glands to more advanced and poorly differentiated tumors in the case of 

KPFT mice (Figure 3E). In addition, immunohistochemistry staining of known Fbxw7 

targets revealed a significant accumulation of c-Myc in KPFT mice compared to KPT 

controls (Figure 3E and 3F).


                       To further explore the role of Fbxw7 in metastatic progression of PDAC, we 

measured circulating tumor cell (CTC) shedding longitudinally, over 2 weeks during 

tumor progression in the same unanesthetized mouse using an optofluidic device 

(Hamza et al., 2019). Interestingly, KPFT mice showed lower numbers of CTCs 

normalized to primary tumor burden, compared to KPT mice, which showed variable 

higher numbers (Figure 4A). Moreover, tail vein injections of 2D adapted KPFT and 

KPT cells showed an increase in lung colonization (Figure 4B and 4C). Collectively, this 

suggests that KPFT CTCs have a higher potential of extravasation and/or foreign organ 

colonization, increasing their metastatic potential. However, further studies are required 

to dissect the role of Fbxw7 in the metastatic cascade or PDAC.
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Figure 3: Cre-mediated deletion of Fbxw7 recapitulates accelerated PDAC tumor 
progression and leads to increased metastatic potential. 
(A) Experimental design for the establishment of pancreatic organoids from KPT 

(KrasLSL-G12D/+; Trp53flox/flox; R26LSL-TdTomato) and KPFT (KrasLSL-G12D/+; Trp53flox/flox; 
R26LSL-TdTomato; Fbxw7flox/flox) animals. This is followed by ex-vivo transformation with 
adenovirus expressing Cre recombinase and Nutlin treatment for the selection of 
successful transformation. Organoids were orthotopically transplanted to 
immunocompetent (PT) hosts. 


(B) Representative diagrams of the Cre-conditional alleles used in this study: KrasLSL-
G12D/+; Trp53flox/flox; R26LSL-TdTomato and Fbxw7flox/flox 


(C) Total organoid area over time of KPT and KPFT organoids as a measure of 
proliferation.


(D) Kaplan-Meier curve showing the probability of survival of animals after orthotropic 
transplant of KPT and KPFT organoid, accompanied by the median survival time for 
each experimental group. **** p<0.0001.


(E) Histopathology of KPT and KPFT tumors (H&E). Immunohistochemistry staining of 
TdTomato, which marks tumors from the transplanted organoid lines, and c-Myc.


(F) Percentage of cells positive for c-Myc expression from IHC staining of KPT and 
KPFT tumors.
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Figure 4: Fbxw7 loss increases the metastatic potential of PDAC cells. 
(A) Number of circulating tumor cells (CTCs) per mL of blood sampled, normalized to 

the tumor volume of KPT and KPFT animals (n=3 per group)

(B) Representative TdTomato fluorescence images of lungs after tail vein injection of 

KPT and KPFT cells.

(C) Percentage of mice of low, medium and high lung tumor burden after tail vein 

injection of KPT and KPFT cells.

           


	 The majority of Fbxw7 targets are known proto-oncogenes, leading to the 

degradation of cell cycle activators and oncogenic proteins such as Cyclin E, c-Myc, 

Aurora-A, Notch, c-Jun, and HIF-1a. Therefore, we looked at global proteomic and 

transcriptomic changes in KPFT and KPT tumors, in order to deeply understand the 

role of Fbxw7 in the metastatic progression of PDAC. Towards this goal, tumor cells 

were isolated from KPFT and KPT mice by fluorescence-activated cell sorting (FACS) 

of TdTomato+ tumor cells from late-stage tumors (8 weeks post-transplant), followed 

by mass spectrometry and RNA-sequencing. Differential protein expression analysis 

followed by gene set enrichment analysis revealed pathways that are downregulated or 

enriched in KPFT tumors compared to KPT control tumors (Figure 5A and 5B). These 

studies revealed a significant enrichment of c-Myc targets, hypoxia response pathways 
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and the unfolded protein response in KPFT tumors, as expected based on known 

Fbxw7 targets. Interestingly, KPFT tumors show consistent downregulation of 

inflammatory processes such as interferon alpha and gamma response, as well as 

downregulation of antigen processing and presentation. This raises interesting biology 

to be further explored since recent studies have shown that Fbxw7 loss impairs dsRNA 

sensing pathways, leading to impaired production of type I interferons and an altered 

tumor microenvironment (Gstalder et al., 2020; Song et al., 2017). Furthermore, gene 

ontology analysis of the most dysregulated proteins revealed downregulation of 

glutathione metabolic processes and an enrichment of hydrogen peroxide catabolic 

processes, iron metabolism, and oxygen transport.


Figure 5: Global proteomic changes after loss of Fbxw7 in PDAC tumors. 
(A) Differential protein expression analysis (DEqMS) between KPFT and KPT PDAC 

tumors is represented in a volcano plot. Bottom panel shows gene ontology 
analysis of the most differentially expressed proteins with a log2(KO/ctrl)>1 and 
-log10(p-value)>1.3.


(B) Gene set enrichment analysis (GSEA) of DEqMS data in KPFT tumors compared to 
KPT tumors. NES, Normalized Enrichment Score; FDR, false discovery rate.
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Conditional reexpression of Fbxw7 regresses phenotype 

                       Aiming to further dissect the role of Fbxw7 in pancreatic tumorigenesis and 

metastasis, we developed a system to conditionally re-express wild type Fbxw7, as 

well as hotspot mutants R505 and R465 (Forbes et al., 2017; Yeh et al., 2018), in the 

Fbxw7 knockout organoids, and track how this affects PDAC metastatic progression. 

Towards this goal, we designed a doxycycline-inducible TetON system to regulate 

Fbxw7 re-expression in tumors. These constructs have an EF1α promoter driving 

constitutive expression of the transcriptional activator (rtTA), and a doxycycline-

responsive promoter TRE3G driving expression of FLAG-tagged inserts of interest: 

Fbxw7WT-FLAG, Fbxw7R465C-FLAG, Fbxw7R505C-FLAG, Fbxw7∆WD40-FLAG and no insert 

control (NIC) (Figure 6A) (Fbxw7∆WD40 has functional DD and F-box domains but lacks 

all WD40 repeats). Transduction of KPFT and KPT organoids with lentivirus containing 

these constructs, leads to stable organoid lines with the ability to temporally regulate 

the expression of the inserts by adding doxycycline, both in vitro and in vivo (Figure 

6A). Proof of concept of the system in vitro revealed increasing expression of FLAG-

tagged Fbxw7WT when doxycycline is given, in a dose-dependent manner (Figure 6B). 

Interestingly, c-Myc levels immediately decrease by ~75% when doxycycline is added 

(Figure 6B), suggesting that low levels of Fbxw7 expression is sufficient to target c-

Myc for degradation, and that it is not dose-dependent.


            The established organoid lines (KPT NIC, KPFT NIC, KPFT + Fbxw7WT, KPFT + 

Fbxw7R465C, KPFT + Fbxw7R505C, and KPFT + Fbxw7∆WD40) were orthotopically 

transplanted into immunocompromised Rag2-/- mice, and doxycycline diet was given 

to mice upon transplantation. Longitudinal ultrasound tracking of PDAC tumors 
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revealed that KPFT NIC tumor volume (Vavg.= 247.7 mm3 at 6 weeks post-transplant) is 

significantly larger compared to KPT NIC tumors (Vavg.= 0 mm3 at 6 weeks post-

transplant), as expected from previous data, which is then rescued by the re-

expression of Fbxw7WT (KPFT + Fbxw7WT; Vavg. = 0 mm3 at 6 weeks post-transplant) 

(Figure 6C). Interestingly, the hotspot mutant Fbxw7R505C does not rescue the 

phenotype (Vavg. = 303.4 mm3 at 6 weeks post-transplant), meaning that these tumors 

recapitulate the accelerated progression observed with the complete loss-of-function 

of Fbxw7 (KPFT NIC) (Figure 6D). On the other hand, expression of mutants 

Fbxw7R505C (Vavg. = 0 mm3 at 6 weeks post-transplant) and Fbxw7∆WD40 (Vavg. = 28.03 

mm3 at 6 weeks post-transplant) behaved similar to expression of Fbxw7WT (Figure 

6D). The fact that Fbxw7∆WD40 expression does not recapitulate the phenotype seen in 

KPFT NIC raises interesting biology of Fbxw7, suggesting that Fbxw7 plays a role in 

PDAC progression outside of its main function as an E3 ubiquitin ligase. 
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Figure 6: Conditional re-expression of wild-type Fbxw7 regresses phenotype. 
(A) Experimental design. KPT and KPFT organoids were transduced with lentivirus 

expressing a doxycycline-inducible system for the temporal regulation of Fbxw7WT, 
Fbxw7R465C, Fbxw7R505C and Fbxw7∆WD40 expression. Organoids were orthotopically 
transplanted to Rag2-/- mice, and mice were given doxycycline food upon 
transplant. Tumor burden was tracked via ultrasound. NIC, no insert control.


(B) Representative western blot of KPFT+ Fbxw7WT-FLAG organoid line exposed to 
increasing concentration of doxycycline (0-1000 µg/mL). Normalized band intensity 
quantification is shown below each panel.


(C) Longitudinal tumor volume was measured by ultrasound at 6, 8, 10 and 12 weeks 
post transplant of KPT NIC, KPFT NIC and KPFT+ Fbxw7WT organoids. Doxycycline  
was given to all mice upon transplant. ** p<0.01


(D) Tumor volume measured by ultrasound at 6 weeks post transplant of KPT NIC, 
KPFT NIC, KPFT+Fbxw7WT, KPFT+Fbxw7R465C, KPFT+Fbxw7R505C, and 
KPFT+Fbxw7∆WD40 organoids. Left panel shows tumor volume with doxycycline 
upon transplant and right panel shows tumor volume without doxycycline. * p<0.05.
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Discussion 

Studies have explored the role and clinical significance of Fbxw7 in pancreatic 

cancer to some extent, showing that Fbxw7 is an important tumor suppressor in Kras-

driven PDAC (Calhoun et al., 2003; Gao et al., 2014; He et al., 2017; Ishii et al., 2017, 

2017; Ji et al., 2015; Jin et al., 2017; Pérez-Mancera et al., 2012; Sancho et al., 2014; 

Ye et al., 2021; Zhang, Zhang, et al., 2016). However, the function of Fbxw7 

dysregulation and its substrates in metastatic progression of PDAC remains unclear. 

Here, we interrogate this mechanically distinct pathway in PDAC progression to 

metastasis.


In this study we demonstrate that Fbxw7 loss accelerates PDAC progression 

to metastasis in the KP mouse model (KrasLSL-G12D/+; Trp53fl/fl) in both 

immunocompromised and immunocompetent backgrounds. We show that while 

Fbxw7 loss does not significantly impact proliferation and migration of PDAC organoids 

in vitro, it does lead to increased tumor colonization in distal organs in vivo, by tail vein 

injections. Furthermore, we show that only complete loss-of-function of all Fbxw7 

isoforms leads to accelerated metastatic progression of PDAC, while isoforms can 

compensate for the loss of any one of them. 


We show that this phenotype is rescued by re-expression of wild type Fbxw7, 

while the expression of the hotspot mutant Fbxw7R465C recapitulates the phenotype 

seen in complete loss-of-function of Fbxw7. Interestingly, Fbxw7∆WD40 expression, 

which lacks the substrate recognition domains (∆WD40), but still has functional DD and 

F-box domain, does not recapitulate the phenotype seen with complete loss-of-

function of Fbxw7. This suggests that Fbxw7 plays other functions in PDAC 
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progression in addition to supplying substrates for polyubiquitination and degradation. 

In fact, non-canonical functions of Fbxw7 including complex formation, target protein 

stabilization, DNA damage repair and cell proliferation, have been previously described 

(Lan et al., 2019; Li et al., 2018; Song et al., 2017, p. 2; Zhang, Karnak, et al., 2016). 

Future studies could further dissect the different functional roles of Fbxw7 in PDAC 

progression.


Moreover, we performed proteomic studies on Fbxw7 knockout tumors, which 

revealed an enrichment of c-Myc targets, hypoxia response pathways, the unfolded 

protein response, and hydrogen peroxide catabolic processes. The data also shows 

consistent downregulation of inflammatory processes such as interferon alpha and 

gamma response and antigen processing and presentation, as well as glutathione 

metabolic processes. These dysregulated pathways raise interesting biology of Fbxw7 

in pancreatic cancer to be further explored. Collectively, data suggests that the 

dysregulation of multiple of these pathways potentially synergies to accelerate PDAC 

progression to metastasis. However, more studies are needed to dissect the 

mechanism of action.


In summary, this study presents novel and mechanistically distinct facets of 

pancreatic cancer progression to metastasis, which we envision will lead to more 

mechanistic studies with the potential to uncover novel therapeutic strategies for 

pancreatic cancer patients.
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Materials and Methods 
Mice:


All animal studies described in this study were approved by the MIT 

Institutional Animal Care and Use Committee. Mouse strains in this study were 

previously published: KrasLSL-G12D (Jackson et al., 2001), Trp53flox (Marino et al., 2000), 

FBXW7flox (Thompson et al., 2008), Rosa26LSL-tdTomato (Madisen et al., 2010) and Rag2-/- 

(Hao & Rajewsky, 2001). Mice were maintained in a C57BL/6 genetic background and 

bred in-house. FBXW7flox/flox and Rag2-/- were purchased from The Jackson Laboratory 

(JAX) and bred in-house. Tumors were initiated by pancreas orthotopic transplant 

surgery (see details below). When needed for experimental design, animals were fed 

with 625 ppm doxycycline rodent diet (Harlan-Tekla, catalog no. TD.01306). Animal 

health was monitored daily by the investigators and/or veterinary staff at the 

Department of Comparative Medicine at MIT. Mice were euthanized by CO2 inhalation 

or cervical dislocation at defined time points (6, 8, or 10 weeks post-transplant) or 

upon reaching a body condition score under 2 for long-term studies. 


 


Organoid generation and propagation:


Pancreatic organoid generation and propagation as previously described (Boj 

et al., 2015). Briefly, to generate pancreatic organoids from genetically defined mice, 

the pancreas was manually minced with razor blades and dissociated in digestion 

buffer (1X PBS, 125 U/mL collagenase IV, Worthington) for 20-30mins at 37oC. Cells 

were filtered through 70µm cell strainers, washed with PBS, and centrifuged with slow 

deceleration. Cell pellets were embedded in 85-100% Matrigel (Corning) and solidified 
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at 37oC for 30mins. Subsequently, cells were cultured in complete medium AdDMEM/

F12 medium supplemented with HEPES (1x, Invitrogen), GlutaMAX (1x, Invitrogen), 

penicillin/streptomycin (1x, VWR), B27 (1x Invitrogen), R-Spondin1-Conditioned 

Medium (Cultrex HA, R&D Systems, as per manufacturer’s instructions) (10% v/v), 

A83-01 (0.5µM, Tocris), murine Epidermal Growth Factor (mEGF, 0.05µg/mL, 

PeproTech), Fibroblast Growth Factor 10 (FGF-10, 0.1µg/mL, PeproTech), Gastrin I 

(0.01µM, Tocris), recombinant murine Noggin (0.1µg/mL, PeproTech), N-acetyl-L-

cysteine (1.25mM, Sigma-Aldrich), Nicotinamide (10mM, Sigma-Aldrich) and Y-27632 

(10.5µM, Cayman Chemical Company, added right before use when organoids are 

thawed, or when organoids are dissociated to single cells) (minor modifications from 

previously described formulation (Boj et al., 2015)). Organoids were passaged with 

TrypLE Express (Life Technologies) for at least 4 passages to purify the ductal cells 

before proceeding with experiments. 


For Cre recombinase-meditated recombination, organoids were spinfected 

with adenovirus Ad5-CMV-Cre at a MOI>100. Briefly, dissociated organoids and virus 

at desired MOI were centrifuged at 1700 rpm for 1 hour at room temperature, followed 

up by a 6 hour incubation at 37oC. Cells were then embedded in 100% Matrigel and 

cultured as described above. Recombination was confirmed by genotyping at the Kras, 

Trp53 and Fbxw7 loci.


For single organoid cloning, whole organoids were dissociated from Matrigel 

using dispase (1X, Corning) and plated individual organoids. Briefly, matrigel domes 

were incubated with dispase for 20-30 mins at 37oC, and then diluted with PBS. Using 

a pipette, individual organoids were picked under a microscope and transferred to a 
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well of a 96 well V-bottom plate. Organoid clones were resuspended in 30µL of 100% 

Matrigel and plated in 96 well flat bottom plates. Organoid clones were passaged as 

previously described.


 


Pancreas Orthotopic Transplants:


Orthotopic transplants of pancreatic organoids were performed with minor 

modifications from previously described protocols (Boj et al., 2015). Briefly, animals 

were anesthetized with Isofluorane, the left abdominal side was depilated with Nair and 

the surgical region was disinfected with Chloraprep swabstick (BD). A small incision 

(~1.5cm) was made in the left subcostal area and the spleen and pancreas were 

exteriorized with ring forceps. The organoid suspension (containing 1x105 organoid 

cells in 100µL of 50% PBS + 50% Matrigel) was injected using a 30-gauge needle into 

the pancreatic parenchyma parallel to the main pancreatic artery. Successful injection 

was verified by the appearance of a fluid bubble without signs of intraperitoneal 

leakage. The pancreas and spleen were gently internalized, and the peritoneal and skin 

layers were sutured independently using 4/0 PGA suture and 4/0 silk suture 

respectively (AD Surgical).   All mice received pre-operative analgesia Buprenorphine 

Sustained-Release (Bup-SR, 0.5mg/kg) and were followed up post-operatively for any 

signs of distress. Organoids/Matrigel mixtures were kept on ice throughout the whole 

procedure to avoid solidification. Male pancreatic organoids were only transplanted 

into male recipients.
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 Mice ultrasound:


Tumor volume quantification by high resolution ultrasound as previously 

described (Sastra & Olive, 2013). Briefly, animals were anesthetized by Isofluorane and 

the lateral and ventral abdominal areas were depilated using Nair. To improve 

visualization of the pancreas, sterile 0.9% saline (1mL) was administered by 

intraperitoneal injection. Imaging was done using the Vevo3100/LAZRX ultrasound and 

photoacoustic imaging system (Fujifilm-Visualsonics). Animals were placed on the 

imaging platform in the supine position and a layer of ultrasound gel was applied to 

whole depilated abdominal area. The ultrasound transducers (VisualSonics 550S and/

or 250S) were placed on the abdomen orthogonal to the plane of the platform.


The area of the pancreas was defined by identifying landmark organs such as 

the kidney, spleen, and liver. The transducer was placed at the scanning midpoint of 

the normal pancreas or pancreatic tumor, and a 3D image of 10-20 mm was obtained 

at a Z- slice thickness of 0.04 mm, depending on tumor size. 3D images were loaded 

to the Vevo Lab Software and the volumetric analysis function was used to define the 

tumor border at various Z-slices throughout the tumor and calculate the final tumor 

volume. (As shown in Freed-Pastor et al., 2021).


Molecular cloning: 

Lentiviral vectors (LV-U6-sgRNA-EFS-puromycin, LV-TRE3G-FBXW7-EF1α-

rtTA-P2A-blasticidin and LV-TRE3G-EF1α-rtTA-P2A-blasticidin) were generated using 

gBlocks (IDT) and Gibson assembly. To insert sgRNAs, the vector was digested with 

FastDigest Esp3I (Thermo Fisher) and ligated using BsmBI-compatible annealed 
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oligonucleotides. sgRNAs were designed and assessed for off-target effects using 

Benchling (www.benchling.com). 


 


Lentiviral production:


Lentiviruses were produced by co-transfection of HEK293 cells with lentiviral 

plasmids and packaging vectors PsPax2 (gift from Didier Trono - Addgene plasmid # 

12260 ; http://n2t.net/addgene:12260 ; RRID:Addgene_12260) and Pmd2.G (gift from 

Didier Trono - Addgene plasmid # 12259 ; http://n2t.net/addgene:12259 ; 

RRID:Addgene_12259) at a 4:3:1 ratio. All plasmids were prepared using endotoxin-

free midiprep kits (QIAGEN). Briefly, 7.5 x10^6 HEK293 cells were seeded in 15cm 

plates (Corning), 24 hours later cells were transfected using Mirus transfection reagent, 

and the media was replaced 24 hours after transfection. Viral supernatant were 

harvested at 48 and 72 hours post-transfection, filtered through a 0.45µm low-protein 

binding PVDF filter (EMD Millipore), and concentrated by ultracentrifugation at 25,000 

rpm for 2 hours at 4oC. Concentrated virus was resuspended in Opti-MEM (Gibco) 

overnight at 4oC and aliquots were stored at -80oC.


 


Name Protospacer Sequence
sgFbx7α GAGCAAAAGACGACGAACTGG

sgFbxw7β GTATGTCACAGATTCTAACG
sgFbxw7γ GGAAAAGCTCCTGTGAACCA
sgFbxw7.1 ACGTTAGTGGGACATACAGG
sgFbxw7.2 GTGTTGCTGAACATGGTACA
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Histology and Immunohistochemistry:


Tissues were fixed overnight in zinc formalin within 1 hour of necropsy, 

transferred to 70% ethanol, and embedded in paraffin. Sections were cut at 4-μm 

thickness and stained for hematoxylin and eosin (H&E) for histologic examination. For 

immunohistochemical analysis (IHC), unstained slides were dewaxed and antigen 

retrieval was done with citrate buffer (pH=6). Slides were blocked using the 

Endogenous Peroxidase Block (Dako) according to manufacturer's instructions, and 

endogenous species proteins were blocked using the appropriate species serum 

(Vector Labs) depending on the secondary antibody for 1 hour at room temperature. 

Slides were incubated with primary antibody overnight at 4oC. Primaries antibodies 

used were: anti-TdTomato (anti-RFP, Rockland, catalog no. 600-401-379, 1:400), anti-

GFP (Novus Biological, catalog no. NB600-308SS, 1:1000), anti-Myc (Abcam, catalog 

no. ab32072, clone Y69, 1:1000). For signal detection, slides were incubated with 

ImPRESS horseradish peroxidase secondary antibodies (Dako) and the DAB 

Peroxidase Substrate Kit (Vector Labs). Identification of primary and metastatic tumors 

was performed by microscopic examination of H&E-stained and RFP-/GFP-stained 

sections. Measurements of the percentages of c-Myc were performed using QuPath.


 


Laser capture microdissection, DNA extraction, and sequencing of tumors:


Tumors identified by IHC were laser-capture microdissected (LCM) from 

paraffin sections using the Veritas Laser-Capture Microdissection microscope. Briefly, 

tissues were sectioned into Arcturus PEN Membrane Glass Slides and were H&E 

stained. Right before LCM, slides were dehydrated by serial incubations with 95% and 
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100% ethanol, followed by xylene and air dry. Tumors were microdissected as per the 

manufacturer’s instructions. DNA was extracted from individual tumors using the 

Arcturus PicoPure DNA Extraction Kit (Applied Biosystems). Briefly, tumor sections 

were incubated in proteinase K extraction solution at 65oC for 16-18 hours, spun down, 

incubated at 95oC for 10 minutes, and cooled. The Fbxw7 loci was amplified using the 

primers below and analyzed via Sanger Sequencing followed by TIDE analysis and/or 

CRISPR sequencing.


 


Tail Vein Injections:


Cells were dissociated to single cells by Trypsin-EDTA (0.25%, Invitrogen) 

incubation for 5-10 minutes at 37oC, counted using a hemocytometer, and the desired 

number of cells were resuspended in 1X PBS (100,000 cells/100µL/mouse). Prior to 

injection, mice were warmed for 5-10 minutes using an overhead heat lamp to dilate 

the veins and then placed in a tail access rodent restrainer (Stoelting, catalog no. 

51338). Lateral tail veins were further dilated with 70% ethanol wipes and cells were 

injected into the tail vein using a 30-gauge needle. If resistance was encountered and/

or a white blister appeared, the needle was removed and reinserted above the first site. 


 


Name Forward primer Reverse primer
sgFbxw7α GAACTGCTCTCTGTGGGCA TGCTCTTCCTGATTTCCCGA
sgFbxw7β TGGTGCTGGGGAGTTTTGCT GCACAGGAAGAAAACAGATT
sgFbxw7γ TGCCTGTAGTACATATTGAGAGTGT ACAGACAACACACAGGCGAT
sgFbxw7.1 GTGTAGTCTTTGACTTACTT GTAATGCGAGCCCCAATCAT
sgFbxw7.2 TCTTACGTATAAGCAGGAAATCCA TCTGTACTCCCACCCTGACC
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IncuCyte Proliferation, Scratch Wound Healing Assay and Organoid modules:


Cells were plated in 48 well plates (Corning 3338) at a seeding density of 

~30,000 cells/well and growth was analyzed using the IncuCyte live-cell imaging 

analysis system, as per manufacturer's instructions. For scratch wound healing assay, 

after cells arrived at 80% confluency, a scratch was made using a p20 pipette tip, 

pictures were taken at different time points using the IncuCyte live-cell imaging system 

and wound closure was determined using ImageJ. For organoid growth assays, 

organoids were dissociated as described above, 5,000 cells were plated in 10µL 100% 

Matrigel domes in 48 well plates (Corning 3338). Analysis was done as per 

manufacturer’s instructions using the IncuCyte Organoid Module which tracks total 

organoid area, organoid count, darkness, and eccentricity.


 


Longitudinal circulating tumor cell (CTC) detection:


All animal based procedures were approved by the Massachusetts Institute of 

Technology Committee of Animal Care (CAC), Division of Comparative Medicine (DCM). 

Briefly, mice underwent cannulation surgery for circulation through an optical detection 

platform for CTC detection as previously described on (Hamza et al., 2019). Briefly, 

candidate mice for the arteriovenous shunt surgery were identified by ultrasound using 

the Vevo 3100 LAZR-X (FUJIFILM-Visualsonics). Catheters are inserted into the right 

jugular vein and the left carotid artery and are externalized using standard cannulation 

surgical techniques in anesthetized mice. A peristaltic pump (Instech Laboratories Inc., 

Plymoth Meeting, PA, USA) is then connected to the catheters for blood sampling and 

return through the carotid artery and jugular vein, respectively, in the conscious mouse. 
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The blood is directed into the main flow channel of the CTC sorter chip. For TdTomato-

positive cells, a green (532-nm) laser illuminates two points along the main flow 

channel of the CTC chip separated by a known distance, and are detected by a 

photomultiplier tube.


Tumor digestion and Fluorescence-Activated Cell Sorting:


Tumors were manually minced with razor blades and dissociated for 30 

minutes at 37oC in digestion buffer: 1X HBSS (Gibco), 10mM HEPES (Gibco), 1% heat-

inactivated FBS, 125 U/mL collagenase IV (Worthington), 40 U/mL DNase I, grade II 

(Roche), 1 U/mL Dispase (Corning), 0.25 mg/mL Trypsin inhibitor (Sigma-Aldrich). The 

digested cell mixture was diluted with cold HBSS and passed through a 70µm cell 

strainer. Single cell suspensions were pelleted at 2000 rpm for 5 minutes and 

transferred to 96 well U-bottom plates for flow cytometry staining. Surface staining of 

CD45+, CD31+, CD11b+ and TER119+ was performed in PBS with 1% heat-

inactivated FBS on ice for 30 minutes in the dark. Right before sorting, the cell 

suspension was stained with DAPI (Thermo Fisher) for Live/Dead separation. TdTomato 

positive cancer cells were sorted by FACS, excluding all cells positive for the previous 

stains.


 


Mass Spectrometry:


Reduction, Alkylation and Tryptic Digestion:


Cells were lysed in 8M urea.   Proteins were reduced with 10mM dithiothreitol 

(Sigma) for 1h at 56oC and then alkylated with 20mM iodoacetamide (Sigma) for 1h at 
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25oC in the dark.   Proteins were then digested with modified trypsin (Promega) at an 

enzyme/substrate ratio of 1:50 in 100mM ammonium bicarbonate, pH 8.9 at 25oC 

overnight.   Trypsin activity was halted by addition of formic acid (99.9%, Sigma) to a 

final concentration of 5%.  Peptides were desalted using Pierce peptide desalting spin 

columns (cat#89851) per manufacturer’s instructions. 


 


TMT labeling


Desalted peptides were dissolved in 100 μL of 100 mM  triethylammonium 

bicarbonate, pH 8.5, and the TMT 6-plex, TMT 10plex or 16-Plex   reagents was 

dissolved in 41 μL of anhydrous acetonitrile. The solution containing peptides were 

mixed with the appropriate TMT reagent, vortexed and incubated at room temperature 

for 1 h.   Samples labeled with different isotopic TMT reagents were combined and 

concentrated to completion in a vacuum centrifuge.


 


Peptide Fractionation:


The TMT labeled peptides were fractionated via Pierce High pH Reveresed-

phase peptide fractionation kit (cat#84868) per manufacturer’s instruction with the 

slight modification of 10 fractions instead of 8 fractions. .   Each of the fractions were 

speed-vac to dryness than re-suspended in 0.2% formic acid and run on the LC-MS.  


 


LC-MS/MS:


TMT 6-plex and 10-plex: The TMT labeled tryptic peptides were separated by 

reverse phase HPLC (Thermo Ultimate 3000) using a Thermo PepMap RSLC C18 
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column (2um tip, 75umx50cm PN# ES903) over a 100 minute gradient before 

nanoelectrospray using a Exploris mass spectrometer (Thermo).   Solvent A was 0.1% 

formic acid in water and solvent B was 0.1% formic acid in acetonitrile.   The gradient 

conditions were 1% B (0-10 min at 300nL/min) 1% B (10-15 min, 300 nL/min to 200 

nL/min) 1-10% B (15-20 min, 200nL/min), 10-25% B (20-68.4 min, 200nL/min), 25-36 B 

(68.4-75 min, 200nL/min), 36-80% B (75-75.5 min, 200 nL/min), 80% B (75.5-80 min, 

200nL/min), 80-1% B (80-80.1 min, 200nL/min), 1% B (80.1-100 min, 200nL/min).


The mass spectrometer was operated in a data-dependent mode.   The parameters for 

the full scan MS were:  resolution of 120,000 across 375-1600 m/z and maximum IT 25 

ms.   The full MS scan was followed by MS/MS for as many precursor ions in a two 

second cycle with a NCE of 36, dynamic exclusion of 30 s and resolution of 30,000 for 

6-plex and 45,000 for 10-plex.  


TMT 16-plex: The TMT labeled tryptic peptides were separated by reverse 

phase HPLC (Thermo Ultimate 3000) using a Thermo PepMap RSLC C18 column(2um 

tip, 75umx50cm PN# ES903) over a 140 minute gradient before nanoelectrospray using 

a Exploris mass spectrometer (Thermo).  Solvent A was 0.1% formic acid in water and 

solvent B was 0.1% formic acid in acetonitrile.   The gradient conditions were 1% B 

(0-10 min at 300nL/min) 1% B (10-15 min, 300 nL/min to 200 nL/min) 1-5% B (15-20 

min, 200nL/min), 5-25% B (20-104.8 min, 200nL/min), 25-35 B (104.8-112 min, 200nL/

min), 35-80% B (112-115.5 min, 200 nL/min), 80% B (115.5-120 min, 200nL/min), 

80-1% B (120-120.1 min, 200nL/min), 1% B (120.1.1-140 min, 200nL/min).


The mass spectrometer was operated in a data-dependent mode.   The parameters for 

the full scan MS were:   resolution of 60,000 across 450-1600 m/z and maximum IT 50 

170



ms.   The full MS scan was followed by MS/MS for as many precursor ions in a two 

second cycle with a NCE of 36, dynamic exclusion of 30 s and resolution of 45,000.  


Database Search and data analysis:


Raw mass spectral data files (.raw) were searched using Sequest HT in 

Proteome Discoverer (Thermo).   Request search parameters were:   20 ppm mass 

tolerance for precursor ions; 0.05 Da for fragment ion mass tolerance; 2 missed 

cleavages of trypsin; fixed modifications were carbamidomethylation of cysteine and 

TMT modification on the lysines and peptide N-termini; variable modifications were 

methionine oxidation, methionine loss at the N-terminus of the protein, acetylation of 

the N-terminus of the protein and also Met-loss plus acetylation of the protein N-

terminus.   For peptide groups data only PSMs with a Xcorr score greater than 2, 

isolation interference less than or equal to 30 and a deltaM(ppm) between -3 and 3 

were used.


Data analysis was performed using the previously described DEqMS R 

package for differential protein expression analysis (Zhu et al., 2020). 

 


 


171



Acknowledgments 
	 We thank Carla Conception, Santiago Naranjo, Rodrigo Romero, Christina 

Cabana, Nicolas Mathey-Andrews, Marianna Trakala, Megan Burger, Meghan Torrence, 

Will Hwang, Demi Sandel, Peter Westcott, Amanda Cruz, and the rest of the Jacks Lab 

family for helpful discussions and technical assistance; the Koch Insititute’s Robert A. 

Swanson Biotechnology Center for technical support, specifically the Histology Core 

Facility, the Biopolymers, and Proteomics Core Facility, the Flow Cytometry Core 

Facility, and the Animal Imaging and Preclinical Testing Core; Nicole Hennings and 

Howard Mak for animal imaging support; the MIT BioMicro Center for performing high-

throughput sequencing; and Karen Yee and Judy Teixeira for administrative support.


	 This work was supported by the Howard Hughes Medical Institute and the 

Lustgarten Foundation for Pancreatic Cancer Research. G.C.J was supported in part 

by the National Cancer Institute of the National Institutes of Health under Award 

Number F31CA239493. 


	 T.J. is a member of the Board of Directors of Amgen and Thermo Fisher 

Scientific. He is also a co-Founder of Dragonfly Therapeutics and T2 Biosystems. T.J. 

serves on the Scientific Advisory Board of Dragonfly Therapeutics, SQZ Biotech, and 

Skyhawk Therapeutics. He is the President of Break Through Cancer. None of these 

affiliations represent a conflict of interest with respect to the design or execution of this 

study or interpretation of data presented in this manuscript. T.J. laboratory currently 

also receives funding from the Johnson & Johnson Lung Cancer Initiative, but this 

funding did not support the research described in this manuscript.  

172



Supplemental Figure 1 
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Supplemental Figure 1: Further interrogation of Fbxw7 isoforms in PDAC 
progression and metastatic potential. 
(A) Experimental design. Briefly, KP Cas9-GFP organoids were transducer with 

lentivirus expressing sgRNAs targeting individual Fbxw7 isoforms (sgFbxw7α, 
sgFbxw7β and sgFbxw7γ), as well as sgRNA targeting all isoforms at different loci 
(sgFbxw7.1 and sgFbxw7.2) and control sgOlfr102; and puromycin resistance. 
Successful transduction was selected by puromycin treatment. Stable organoid 
lines were single organoid cloned, and editing was confirmed by CRISPR-
sequecing. Two clones with out-of-frame INDELs were orthotopically transplanted 
to syngeneic KP Cas9 mice.


(B) CRISPR-seqeuncing results of selected clones with out-of-frame INDELs at the 
different Fbxw7 loci. Bp, base pairs; del, deletion; in, insertion; WT, wild type.


(C) Representative histopathology images of primary and metastatic tumors. GFP 
immunohistochemistry marks tumors from the transplanted organoids.


(D) In vitro proliferation assay of control organoid line (sgOlfr102) and complete Fbxw7 
loss-of-function lines (sgFbxw7.1 and sgFbxw7.2)


(E) Percetange of wound closure after scratch wound healing assay of control organoid 
line (sgOlfr102) and complete Fbxw7 loss-of-function lines (sgFbxw7.1 and 
sgFbxw7.2)


(F) Representative images over time of Scratch Wound Healing Assay of control 
organoid line (sgOlfr102) and complete Fbxw7 loss-of-function lines (sgFbxw7.1 
and sgFbxw7.2) 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Supplemental Figure 2 
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Supplemental Figure 2: Further interrogation of the Fbxw7 flexed allele in PDAC 
progression to metastasis 
(A) Representative brightfieqld (BF) and TdTomato fluorescence (Tom) images of 

derived organoids from KPFT mice.

(B) Doubling time of derived organoids lines KPT and KPFT

(C) Total organoid count over time of KPT and KPFT organoids

(D) Organoid darkness over time of KPT and KPFT organoids as a proxy for organoid 

necrosis

(E) Representative TdTomato fluorescence images of the pancreas and distal organs 

show primary tumors and metastatic foci from KPT and KPFT animals at 6 and 8 
weeks post transplant. Arrows point at micrometastatic foci.


(F) Whole pancreas weight (grams) as a proxy for primary burden from KPT and KPFT 
animals at  6 and 8 weeks post transplant.. ** p<0.01. 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Discussion and Future Directions 
 


	 The genetic progression of pancreatic cancer from a normal cell to pre-invasive 

lesions (PanINs) and finally to PDAC is well understood. However, the molecular 

processes behind the metastatic spread of PDAC remain unclear. Therefore, there is 

still a need to discover novel modulators of PDAC metastasis for better treatments for 

this devastating disease.


	 Advances in this field have been made by several groups who have identified 

some novel genetic and epigenetic regulators of PDAC. As covered in Chapter 1, there 

have been a few studies that have evaluated naive primary tumor and metastases 

heterogeneity through whole-genome sequencing such as Yachida et al (2010), 

Campbell et al (2010), Sanborn et al (2015), Hoogstraat et al (2014) and Makohon-

Moore et al (2018). However, studies have not yet identified a recurrent, metastasis-

specific driver mutation. Furthermore, acquired molecular changes can promote the 

spread of primary tumor cells to distant tissues. Chiou et al (2017) used genetically 

engineered mouse models (GEMMs) of PDAC and uncovered a transient subpopulation 

of cancer cells with exceptionally high metastatic potential driven by the transcription 

factor BLIMP1. In addition, Whittle et al (2015) identified that the transcription factor 

RUNX3 controls a metastatic switch in PDAC using GEMMs. Lastly, Maddipati et al 

(2021) used a multi-fluorescent lineage labeled mouse model of PDAC to examine 

primary tumors and matched metastases in order to gauge the degree of metastatic 

heterogeneity in the tumor-bearing mice, which was connected to higher levels of Myc 

expression. Moreover, studies have identified epigenetic modulators of PDAC 

metastasis. Roe et al (2017) shows that metastatic progression of PDAC involves large-
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scale enhancer reprogramming by FOXA1, which activates an early endodermal stem 

cell transcriptional program.


	 Despite the clinical importance of metastatic spread, our knowledge of the 

molecular processes that underlie PDAC's capacity for metastatic spread is still limited, 

which prompted me to question metastatic progression at the protein abundance level. 

The work presented in this thesis focuses on gaining a deeper understanding of the 

dynamics of pancreatic ductal adenocarcinoma (PDAC) progression to metastasis in 

the context of FBXW7 dysregulation (Figure 1). I have demonstrated that FBXW7 loss 

accelerates metastatic progression of PDAC in the KP (KrasLSL-G12D/+; Trp53fl/fl) mouse 

model in both immunocompromised and immunocompetent hosts. I showed that only 

complete loss-of-function of all FBXW7 isoforms leads to accelerated metastatic 

progression of PDAC, while isoforms can compensate for the loss of any one of them. 

Interestingly, I showed that the phenotype is rescued by re-expression of wild type 

FBXW7, while the expression of the hotspot mutant FBXW7R465C recapitulates the 

phenotype seen in complete loss-of-function of FBXW7. Lastly, early efforts to 

mechanistically interrogate the role of FBXW7 in PDAC progression to metastases 

showed a myriad of dysregulated pathways including c-Myc targets, the unfolded 

protein response, hydrogen peroxide catabolic pathways, and the anti-tumor immune 

response, among others. These findings deepen our understanding of the biology 

behind pancreatic cancer progression to metastasis. In this section, I will discuss the 

implications of these findings for our understanding of pancreatic cancer biology, 

metastatic progression, and the potential clinical translatability that further work could 

reveal.
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Figure 1: Working model presented in this thesis. In normal cells, FBXW7 recognizes 
substrates and catalyzes polyubiquitination of the substrate which is then recognized 
and degraded by the proteasome. This maintains protein homeostasis and normal cell 
function. When FBXW7 function is lost, substrates are no longer polyubiquitinated and 
degraded, causing their accumulation leading to protein imbalance and accelerated 
PDAC progression to metastasis. 	 


3.1 FBXW7 role in PDAC metastasis remains largely understudied 

	 FBXW7 is mutated in ~3.8% of pancreatic cancer patients, and low expression 

of FBXW7 has been associated with a poor probability of survival compared to patients 

with high FBXW7 expression (Figure 13, 15). Collectively, this supports that FBXW7 

behaves as a tumor suppressor in PDAC.


	 Since the mutational frequency of FBXW7 in pancreatic cancer is not high, a 

frequent question that I ask myself is: what other mechanisms are at play in PDAC that 

lead to loss-of-function of FBXW7? This has been studied to some extent in other 

cancer types such as glioblastoma, breast cancer, colorectal cancer, esophageal 

cancer and leukemia (Kim et al., 2012; Li et al., 2014; Ma et al., 2016; Mansour et al., 

2013; Teplyuk et al., 2015; Yokobori et al., 2012). However, not many studies have 

186



looked at other mechanisms of FBXW7 dysregulation in PDAC. There is evidence that 

ERK kinase phosphorylates and destabilizes FBXW7 in pancreatic cancer (Ji et al., 

2015). In this work, the scientists discovered that, predominantly as a result of KRAS 

mutations in pancreatic cancer, low FBXW7 expression was correlated with  ERK 

activation in clinical samples. They also demonstrated that FBXW7 was directly 

contacted by ERK, which phosphorylates FBXW7  at Thr205, promoting 

FBXW7 ubiquitination and proteasomal degradation. These findings showed how the 

oncogenic KRAS mutation suppresses the tumor suppressor FBXW7, highlighting the 

pivotal role that oncogenic KRAS play in accelerating  pancreatic cancer progression. 

Nevertheless, the aforementioned studies have revealed other epigenetic, post-

transcriptional and post-translational mechanisms of FBXW7 dysregulation in cancer 

that are worth further exploring in PDAC. 


	 Moreover, as I covered in chapter 2, FBXW7 loss-of-function significantly 

accelerates PDAC progression to metastasis, revealing that FBXW7 is an important 

tumor suppressor in PDAC. However, just looking at its mutational frequency in PDAC 

would not necessarily suggest the same. Since FBXW7 dysregulation could also 

happen post-transcriptionally and post-translationally, it raises the importance of all the 

efforts to map the proteome in health and disease, such as the Human Protein Atlas 

(Uhlén et al., 2005, 2015). The proteome is the chief mediator of cellular function, 

therefore, a better understanding of how protein abundance and stability change from 

normal tissues to different diseases has the potential to uncover novel and druggable 

targets for better therapeutics. Furthermore, having matched samples from primary and 

metastatic tumors could significantly improve our understanding of metastatic drivers.
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	 This work also revealed interesting FBXW7 biology in PDAC. In chapter 1, I 

covered the molecular characteristics of FBXW7. Briefly, FBXW7 has three functional 

domains: a dimerization domain (DD), an F-box domain which interacts with the rest of 

the SCF E3 complex, and eight WD40 repeats which interact with the different 

substrates (Sprunk et al., 2002; Yeh et al., 2018). There are three FBXW7 isoforms: 

FBXW7α, FBXW7β, and FBXW7γ, which only differ in their N-terminal signals, sending 

them to different cellular compartments, further restricting the substrate pool they can 

sample (Sprunk et al., 2002; Yeh et al., 2018). The most common FBXW7 mutations are 

found in mutational hotspots, R505, R465, and R479, codons located in the WD40 

substrate binding domains, which may reduce its ability to form a stable SCF complex 

or may affect its interaction with specific substrates (Forbes et al., 2017; Yeh et al., 

2018). Interestingly, in chapter 2 I showed that in the KP mouse model of PDAC, 

different FBXW7 variants have different effects on tumor progression. Firstly, I showed 

that the loss of an individual Fbxw7 isoform does not accelerate metastatic 

progression in PDAC mouse models. This suggests that the other functional isoforms 

are able to restore the function of the lost isoform. An interesting question to be further 

explored is the mechanisms behind this phenomenon. Can the different FBXW7 

isoforms translocate to other subcellular compartments to compensate for the lost 

isoform, or are they able to restore the lost isoform since they all share the same 

functional domains? These are questions that I continue to ask myself. Furthermore, I 

showed in chapter 2 that the hotspot mutant FBXW7R465C recapitulates the phenotype 

seen in complete loss-of-function of FBXW7, while FBXW7R505C does not. Is this a 

human to mouse difference? Do these mutants affect differently the stability of the 
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protein? Since these mutants are in different WD40 repeats, are they affecting different 

substrates with distance relevance to the disease in our mouse models? These are 

very intriguing questions, and very interesting question to further pursue. More 

interestingly, deletion of the WD40 domains only partially recapitulates complete loss-

of-function phenotype, which suggests that FBXW7 plays other functions in PDAC 

progression in addition to supplying substrates for polyubiquitination and degradation. 

In fact, non-canonical functions of FBXW7 including complex formation, target protein 

stabilization, DNA damage repair and cell proliferation, have been previously described 

(Lan et al., 2019; Li et al., 2018; Song et al., 2017, p. 2; Zhang, Karnak, et al., 2016). 


	 In addition, the DOX inducible system developed in this study allows us to re-

express different FBXW7 functional versions once a tumor is established and 

dependent on the loss of FBXW7. This will give great insights into the role of FBXW7 in 

PDAC tumor progression, which has not been done in the literature to this point. To 

achieve this, we need the re-expression to be very tight and controlled. An 

improvement to this system would be to add a degron domain to either the inner of 

interest or the rtTA itself, such that it is degraded under normal conditions, and only in 

the present of TMP (trimethoprim) would the system be stabilized. Therefore, in order 

to re-express the insert of interest, both DOX and TMP need to be present, allowing 

more control to the system. Future studies using these models could further dissect the 

different functional roles of FBXW7 in PDAC progression, which could also be related 

to the fact that the majority of the differentially expressed proteins identified in the 

proteomics studies presented in this thesis are not known or predicted FBXW7 targets.
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3.2 Proteomics is a powerful tool to better understand global 
changes in protein abundance, but still poses limitations 

	 To better understand the mechanism of action by which loss of FBXW7 leads to 

accelerated progression of PDAC, Chapter 2 describes the use of global proteomics of 

murine tumors when FBXW7 is lost. These studies revealed the dysregulation of 

multiple pathways, including: an enrichment of c-Myc targets, hypoxia response 

pathways, the unfolded protein response, hydrogen peroxide catabolic processes and 

glutathione catabolic processes, among others. Obvious future direction for this project 

is the dissection of these pathways and how they play a role in FBXW7 biology in 

PDAC progression. However, because FBXW7 targets many proteins involved in the 

regulation of a myriad of cellular processes important in cancer progression, there is a 

high probability that it is not just one pathway in play, but rather the combination of 

many of these dysregulated pathways that are leading to the accelerated metastatic 

progression of PDAC when FBXW7 is lost. This makes the task of finding the 

mechanism of action extremely challenging. A passion of mine is to find vulnerabilities 

to treat these tumors and find better therapeutics for PDAC patients, but, this is equally 

challenging for the same reasons. In an attempt to find vulnerabilities of KPFT tumors, I 

treated KPT and KPFT organoids with an inhibitor of myeloperoxidase (MPOi), involved 

in hydrogen peroxide catabolic processes, and iron chelators, two pathways seen 

consistently enriched in KPFT tumors, and no significant difference in organoids growth 

and death was observed (Figure 2). However, an unbiased CRISPR screen could be a 

good strategy to tackle this question with more depth. To take this idea a step further, it 

would be very interesting to look at cooperation between the different dysregulated 
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pathways. For this, a CRISPR screen using the endonuclease Cpf1 will be a great 

strategy. Cpf1 has the ability to process its own CRISPR ran (crRNA) from the same 

transcript, which allows simple and efficient multiplexed genome editing. This has the 

potential to find synergistic effects of targeting different identified pathways, which 

could uncover potential novel combination therapies.


Figure 2: Iron chelators and MPO inhibitor treatments of KPT and KPFT 
organoids. Organoids were exposed to increasing concentrations of the inhibitors and 
organoid growth was measured longitudinally using live-imaging and quantification 
tools of the IncuCyte. 	 


	 A surprising result consistently observed in this work is the downregulation of 

inflammatory processes such as interferon alpha and gamma response and antigen 

processing and presentation. These dysregulated pathways raise interesting biology of 

FBXW7 in pancreatic cancer to be further explored. Recent studies have shown that 

FBXW7 loss impairs dsRNA sensing pathways leading to impaired production of type I 

interferons and altered tumor microenvironment (Gstalder et al., 2020; Song et al., 

2017). In more details, these studies show that FBXW7 plays an important role in 
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antiviral immune responses by maintaining the stability of RIG-I, meaning that FBXW7 

protects RIG-I from degradation. Therefore, inactivation of FBXW7, leads to unstable 

RIG-I which impairs the dsRNA sensing pathway leading to impaired immune 

responses. This further supports the hypothesis that FBXW7 plays roles in PDAC 

progression to metastasis, outside of its main function as a substrate recognition 

component of the SCF E3 ubiquitin ligase. Interestingly, these studies also show that 

FBXW7 inactivation leads to resistance to the immunotherapy PD-1 blockade (Gstalder 

et al., 2020; Song et al., 2017). This is particularly important in PDAC since PDAC is 

known to be largely unresponsive to immunotherapies (Hilmi et al., 2018). Therefore, a 

better understanding of novel mechanisms of treatment resistance can help identify 

patients that would benefit from these treatments, as well as potentially identify novel 

therapeutic targets for these patients. In an effort to begin the study of changes in the 

tumor microenvironment when FBXW7 is lost in PDAC, I looked at overall changes in 

immune cell infiltration in tumors by immunohistochemistry and flow cytometry 

analysis. Immunohistochemistry against CD4+ T cells, CD8+ T cells, and regulatory T 

cells (Tregs) in KPT and KPFT tumors revealed an overall decrease in tumor immune 

cell infiltration when FBXW7 is lost (Figure 3A). Further analysis using flow cytometry 

revealed that there is also a significant decrease in antigen-experienced CD4+ T cells, 

CD8+ T cells, as well as a significant decrease in overall and antigen-experienced 

Tregs (Figure 3B). Collectively, my hypothesis is that loss of FBXW7 cannot stabilize the 

RIG-I sensing pathway, leading to a decrease in type I interferons and pro-inflammatory 

cytokines which are needed to activate an immune response again the cancer cells. 
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Because there’s not an active immune response to begin with, Tregs are not as needed 

in the tumor microenvironment to dampen the immune response.


Figure 3: Changes in the tumor microenvironment when FBXW7 is lost. (A) 
Representative images of KPT and KPFT tumors after triple Immunohistochemistry  
against CD4+ T cells, CD8+ T cells and regulatory T cells (Tregs). Heatmap created 
with Aiforia software. (B) Quantification of flow cytometry analysis of immune cells in 
the tumor microenvironment of KPT and KPFT tumors. Graphs show the percentage of 
CD45+ cells that are antigen experienced (CD44+) CD4+ T cells, CD8+ T cells and 
regulatory T cells (Tregs). *p<0.05; **p<0.01, ***p<0.001.


	 However, further studies are needed to better understand this mechanism. With 

this versatile system in place we could further investigate the changes in the tumor 

microenvironment when FBXW7 is lost. Firstly, introducing a defined antigen, such as 

the MHC-I restricted antigens: OVA257–264 [SIINFEKL], LAMA4-G1254V or ALG8-A506T 

(Alspach et al., 2019; Gubin et al., 2014; Freed-Pastor et al., 2021) to the tumors will 

allow us to better track tumor specific immune response in the context of FBXW7 

knockout. In addition, looking at changes in the myeloid compartment both in the 

tumor microenvironment and the draining lymph nodes could also raise very interesting 
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biology in this setting, since the literature points that FBXW7 affects early activation 

mechanisms, therefore we would expect changes in dendritic cells function. Lastly, our 

data also shows that antigen processing and presentation pathways are 

downregulated in the FBXW7 knockout setting, therefore, a closer look at the different 

members in this pathway as well as the differences in antigens being presented 

specifically in the tumor cells could further our understanding of FBXW7 role in the 

tumor microenvironment.


	 While the proteomics data revealed known and novel biology of FBXW7 loss in 

PDAC tumors, the technique has some limitations, one of which is the need for large 

amounts of protein material in order to obtain good coverage data. This was 

particularly challenging in this study because PDAC tumors are known to have low 

purity, meaning only ~10-20% of the tumors are actually cancer cells. For the study of 

primary tumors, we were still able to obtain enough material to generate this rich 

dataset. However, I was particularly interested in comparing the proteome of matched 

primary and metastatic tumors in both KPT and KPFT tumors. However, these animals 

succumb to the primary tumor burden before the metastatic lesions are significantly 

large to obtain enough material for proteomics studies. Unfortunately, we were not able 

to do this with the techniques available to us at this time. This raises the importance of 

continuing work in the development and improvement of novel proteomics 

technologies that have the ability to effectively detect proteins in low-input samples. 

Some recent technologies, such as the development of single-cell mass spectrometry 

(Tajik et al., 2022) have great potential to improve these issues, and therefore, we 

should consider pursuing them for this and other projects.
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3.3 Final Perspectives 

	 Translating basic cancer research findings into therapies is a lengthy process. 

Similar to the history of the development of molecular targeted therapies directed at 

oncogenes such as KRAS, EGFR, and BRAF, targeting tumor suppressor genes is a 

decade-long effort. Therefore, continued progress in basic research of tumor 

suppressor genes biology and related fields such as signaling pathways, the cancer 

epigenome, and the immune system, are essential to inform translational laboratory 

work bringing novel compounds to the clinic. In this thesis, we present for the first time 

the molecular consequences of the loss of the tumor suppressor FBXW7 in the KP 

(KrasLSL-G12D/+; Trp53fl/fl) mouse model of pancreatic ductal adenocarcinoma (PDAC), as 

well as the different FBXW7 hotspot mutants found in cancers. This study shows great 

potential to identify FBXW7-specific vulnerabilities for better therapeutics.
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