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Abstract

Modeling fluid flow in porous media is a valuable and essential tool for develop-
ing underground resources such as hydrocarbon reservoirs, groundwater aquifers, or
CO, sequestration projects. The modeling, if done accurately, can provide a reliable
forecast of future fluid behavior. However, the properties of the porous media and
the correct solutions to the physics equations describing the macroscopic fluid flow are
essential to ensure accurate modeling and, consequently, reliable forecasts. Therefore,
the need to discretize the porous mediums into a large number of grids is often crucial
to capture the observed data’s behavior. And because the data has a low abundance
spatially, it is impossible to model the fluid flow uniquely. In the thesis, we study
ways to transform the modeling of fluid flow in porous media into a less non-unique
problem by exploring different models and data spaces. By reducing the number of
grids, we quantitatively demonstrate the possibility of producing more accurate rep-
resentations of reservoirs. Also, through the resolution matrix analysis and the use of
Shannon information entropy, we developed a method to acquire data adaptively for
an optimum survey design. Additional data sets from self-potential or seismic surveys
have complemented the fluid flow data in different joint inversion methods. Using self-
potential data allows the detection of fractures with higher confidence. The seismic
data was used in a cross-gradient joint inversion scheme to constrain the inversion of
fluid flow data. The joint inversion helped in around 16% reduction in the seismic
velocity root-mean-square-error (RMSE) and almost 26% decrease in the permeability
RMSE.
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Chapter 1

Non-uniqueness in Fluid-flow

Model Representation

Even as the world transitions toward cleaner and renewable energy resources, there
will be a continued dependence on fossil fuels. Because fossil fuels will serve as primary
energy sources over the next decade, we, as scientists, are on a mission to provide
reliable forecasts of the future performance of hydrocarbon reservoirs to drive policies.
Further scientific findings regarding reservoirs will aid policymakers in making informed
decisions about reservoir development and performance.

Hydrocarbons still contribute to almost 80% of the world’s energy resources. Figure
1-1 displays the global energy consumption by source as of 2021. The consumption
of oil alone in 2021 contributed to almost 51,170 terawatt-hours. It is helpful to
understand this number within the context of our daily lives. According to the U.S.
Energy Information Administration, the average consumption for a house in the U.S.
was around 30 kilowatt-hours per day.

Even with the increasing dependence on renewable and green resources in recent
years, the demand for fossil fuel energy is not showing decreasing sign. Given the

continued high reliance on hydrocarbons, it is evident that policymakers and the public
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need reliable estimates and forecasts of supply and demand. Therefore, there is a need
to continue analyzing and improving the processes of hydrocarbon production and

development.

Global primary energy consumption by source

Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel
production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as
fossil fuels,

Other
renewables
Modern biofuels
Solar

Wind
Hydropower
Nuclear

Natural gas

160,000 TWh

140,000 TWh

120,000 TWh

100,000 TWh
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0TWh
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Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy OurWorldinData.org/energy * CC BY

Figure 1-1: Primary energy consumption by sources. In 2021, oil alone contributed
to almost 51,170 terawatt-hours.

The exploration and development of underground resources, including hydrocar-
bons, frequently involve multidisciplinary partnerships. Typically, the process begins
with a geologist mapping the structural geology and assessing the subsurface for the
presence of hydrocarbons, water, or minerals. Then, geophysicists will use various tech-
niques (e.g., seismic, gravity, and resistivity) to image the subsurface. Each technique
will aid in the comprehension of subsurface characteristics. Seismic data, for exam-
ple, can provide structural information about subsurface geology and the existence of
potential hydrocarbon traps. In contrast, surface gravity measurements can yield in-
formation regarding subsurface density. Higher density, for instance, may indicate the

presence of heavy minerals, whereas lower density may indicate the presence of fluid.

Although most surveys begin with a geologist identifying potential exploration re-
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gions in the field, the order in which we conduct surveys has flipped in recent years. Due
to advancements in geophysics, geophysical surveys and geological interpretations have
become standard operating procedures. However, geoscience investigation is frequently
the initial step in exploring underground resources.

Engineers and scientists rely on the subsurface images constructed by geoscientists
to drill the first appraisal well for hydrocarbon exploration. If hydrocarbon is discov-
ered in the first well, multiple wells will be drilled to delineate the reservoir’s extent.
The reservoir will then enter the phase of production and monitoring. At this stage,
the reservoir’s production rate and pressure are constantly monitored to optimize its
performance, which requires knowledge of the reservoir’s physical properties and fluid
flow behavior. In addition to monitoring the reservoir, the ultimate goal is to forecast
its performance in the future. Predicting reservoir behavior requires knowledge of the
fluid flow’s physics and the reservoir’s geological properties. Consequently, we must
first model the fluid flow in reservoirs to comprehend the historical production rate
and then predict future performance.

Fluid flow modeling of a hydrocarbon reservoir is a powerful tool for predicting
its future performance. Modeling reservoirs requires an understanding of the fluid
behavior in porous media. For an engineer to achieve a prediction of a certain reservoir’s
future performance, a set of requirements are essential. For instance, an improved
understanding of the geological nature of the reservoir is needed to develop a model
with hydraulic parameters such as porosity and permeability. Also, there is a need to
develop a stable and accurate solution to the partial differential equations that describe
the fluid flow in porous media. If such an improved understanding is achieved, engineers
can run multiple models of the fluid flow in a reservoir to match the performance of
the existing one, thereby introducing the possibility of predicting future performance.

Forecasting a reservoir’s performance is usually achieved with the standard history-
matching approach. This approach relies on determining the values of those param-

eters, such as porosity and permeability, that will reproduce the observed behavior
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of a reservoir. By adjusting such parameters, the simulator will match the historical
production of the reservoir, thus identifying one set of parameters for the intended
outcome. More specifically, the reservoir is discretized numerically into grid blocks.
Each grid block has physical properties such as permeability. Assuming there is a
stable solution to the fluid flow equations, the simulator can numerically simulate the
fluid production rate and pore pressure changes within the reservoir. The physical
properties of each grid block are adjusted until the simulation of the production rate
matches the historical observation. Once the historical performance is matched, the
future production rate is predicted.

A significant issue in the history matching approach is raised when exploring the
differences between the simulated model and actual geological data. For example, there
may be cases in which the misfit is such that the differences between the observed data
and the data generated by the model are not found to be significantly different, but the
inverted model is far from the geological realization. In such cases, history matching
would be confirmed successful, despite being potentially inaccurate.

The inverse problem of fluid flow characterizes the reservoir hydraulic parameters
(e.g., porosity, permeability, and saturation) using pressure readings obtained from
the boreholes. Despite several proposed solutions and approaches, the solution to the
fluid flow inverse problem is still unclear. For example, Carrera and Neuman (1989)
have attributed the discrepancy in solving the inverse problem to non-uniqueness, non-
identifiability, and instability according to Hadamard’s identification of ill-posed math-
ematical models. In 1902, Hadamard stated that mathematical models of physical
phenomena would be ill-posed if any of the following properties were not satisfied: 1)
The problem has a solution. 2) The solution is unique. 3) The solution depends con-
tinuously on the data. The fluid-flow inverse problem appears ill-posed under at least
one of Hadamard’s three criteria. Geophysical surveys tend to result in discontinuous
data from measurement errors, which suggest that the solution is unstable. In 1973,

Neuman attributed an infinite number of possible solutions for the inverse problem to
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errors in the data and the governing equations. The lack of data or the discontinuous
nature of the data can lead to non-unique solutions.

It is also helpful to consider the analogies between the inverse problem’s solution
and a linear system of equations where the matrix is singular or rank-deficient. From a
mathematical perspective, consider a linear function (F) that operates on a parameter
vector (m) to generate data in vector d (Fm=d). If m«d, there exists a vector x in the
null space of F that satisfies Fx=0. Then, a model (m+x) satisfies the data as follows:
F(m+x)=Fm+Fx=d. Therefore, there are many combinations of models that can fit
the data.

Others, including McLaughlin and Townley (1996), have attributed the ill-posed
quality of the inverse problem of the flow parameters to the low sensitivity of the
data to the parameters. The researchers stated that the steady-state potential data
is relatively insensitive to the spatial variation in the hydraulic parameters. However,
Nelson (1960) has demonstrated that it is still possible to uniquely obtain the hydraulic
parameter through inversion if the spatial data is known at every stream tube under a
steady flow.

A potential solution to the inverse problem features the application of the parame-
terization approach (Neuman, 1973; Sun and Yeh, 1985; Eppstein and Dougherty, 1996;
McLaughlin and Townley, 1996), where parameters are assumed to be constant at spe-
cific blocks or segments of the aquifer. The parameters are then estimated through
an optimization algorithm that provides a good fit for the measured data. However, a
single model may not produce representative data, a notion that motivated Herndnez
et al. (1997) to use conditional simulation methods. The methods are intended to
identify a set of probable parameters rather than a single unique solution. Moreover,
Yeh (1986) and Carrera et al. (2005) have provided a detailed introduction to solving
the inverse problem for groundwater hydrology.

Each chapter of the current thesis presents a unique method for solving the inverse

modeling of fluid flow in reservoirs. We first introduce the basic methodology for
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forward and inverse fluid flow modeling in porous media. We hope that by the end of
this chapter, the reader will understand the basic methods and the relevant issues in

inverting the reservoir parameters.

1.1 Forward Modeling

Forward modeling is the process of simulating the behavior of fluid as it flows in
porous media. In the 19th century, Henry Darcy was the first to work on describing
the fluid flow in porous media mathematically. Darcy studied the volumetric flow rate
out of a tank filled with sand and water and concluded that the rate is proportional
to the pressure gradient. With a slight alteration to Darcy’s notations, Darcy’s fluid

velocity for a single-phase fluid can be written as the following;:
k
v=——VP (1.1)
7

where v is the fluid velocity in (m/s), k is permeability in (m?), p is the viscosity in
(cp), and P is pressure in (psi).

Generally, writing a fluid mass balance equation for a cube of rock with the Darcy
velocity leads to a diffusion-type equation describing the single-phase fluid flow in

porous media. For a slightly compressible fluid, the pressure diffusion equation in oil

fields units can be written as follows:

¢CL 8P((E, Y, z, t)
C, ot

%V ([K|VP(z,y,zt)) = +q(z,y, 2,t) (1.2)

where p is the fluid viscosity in (cp), [K] is the permeability tensor in milliDarcy(mD),
P is pressure in (psi), ¢ is porosity, C, is the total compressibility in psi~*. C} = 1.127x
1073 and Cy = 5.615 are the conversion factors to oil fields units. The source/sink term

q has a unit of (STB/d). A full definition of the quantities used in the flow equation
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is found in Tablel.1l

Parameters Oilfield Unit SI Unit Conversion to Oilfield Unit
(multiply SI unit)

Permeability (K) mD m” 9.9 x 10'°

Compressibility (C;) psi! Pa! 6897

Viscosity (u) cp Pa-s 1000

Rate (oil) (q) STB/d m?/ s 5.4 x 10°

Pressure (P) psi Pa 1.45 x 10~*

Dimensions (x,y,z) ft m 3.3

Table 1.1: The conversion table from SI unites to oilfield units.

Different numerical methods, such as finite methods, can solve the parabolic partial
differential eql.2 (PDE). In this thesis, we adopt an implicit finite volume method to
approximate the solution to the PDE. The finite volume method discretizes the physical
reservoir models into voxels (Figure 1-2), with each one representing the fluid flow
parameters (K ,u,p,q, and C}), and solves for the time-dependent pressure P(z,y, z, t)
given the initial and boundary conditions. The complete discretized equation for each

voxel is as follows:

dxdydz

Cid 5t

n+1 n T n+1 n+1 Tz n+1
(Puk Ple) Tz—-J,sz——,]k Tyj—lszJ 1k Ti,j,k-%,klji,j—%,k

Iy + Ty + T+ T + Ty + T )P pril o (1.3)

i—3.J

+7T% Pn+1 N Pn+1 T*

n —
i+, it gk Lj+3 " itk ,]k+—P k+1 + gézdydz =0

where T is the transmissivity at the edges of the voxels and can be estimated by:

T _ Ki—%,j,k dydz

i—g.0k T u St (14)

The K in the transmissivity equation is permeability at the edges and estimated
by the harmonic average of the permeability of two adjacent voxels:

200K, 1k Kiv1)k
6.’L‘Ki_1’j,k + 5-73Ki+1,j,k

Ko 1., =

=350

(1.5)
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Figure 1-2: A diagram showing the distribution of grids used for discretization.

The forward modeling code solves a system of equations like the one written in eql.3
at each time step. The pore pressure for each grid at multiple time steps is the output
of the forward modeling. The solution to the equation system can be computationally
expensive, depending on the model’s size. For the purposes of the current thesis, our
models were minimized in size by utilizing the backslash feature in MATLAB to solve
the system efficiently. For a more extensive system representing a large number of grids
(= 10°), the system of the equations can be solved by iterative methods such as the
Gauss-Seidel method and the Jacobie method.

Here, we ran a forward modeling problem to illustrate the solution and cross-
validate the solution with an approximate analytical solution to the PDE. Consider
a homogenous reservoir model with an extent of 1000 m in x and y dimensions and a
uniform thickness of 10 m. Solving the fluid flow equation on a 51 by 51 grid numer-
ically simulates the fluid flow. The reservoir has homogenous isotropic permeability,
K, = K, = 60 mD, and constant porosity at 0.15. The fluid is at a single phase at
all pressures. The system’s total compressibility is ¢, = 12e — 6 1/psi. The fluid’s

viscosity is 4 = 1.5 cp. One producing well at the model’s center is located at the grid
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block (26,26). The producing well has a constant pumping rate of 100 STB/day. The
reservoir’s initial pressure is P=4000 psi. Boundaries are held at a constant pressure
on all sides, P=4000 psi. A summary of the parameters and values is presented in
Table 1.2. In Figure 1-3, the pressure distribution in the reservoir is shown as a result
of simulating the fluid flow for 100 hours. The pressure is lowest at the production
well and radially increases toward the reservoir’s boundaries. The curve in Figure 1-3b
illustrates the pressure drawdown as a function of distance away from the well. We

expect the pressure to stabilize at a far distance from the well at the initial pressure.

Parameters value
K(mD) 60
phi 0.15
u(cp) 1.5
Cy(1/psi) 12 x 1076
q(m®*/day) 50
Initial P 4000 psi
Boundary P 4000 psi
Time (hours) 100

Dimensions[x,y,z] (m) [1000,1000,10]

Table 1.2: The values of the parameters used for simulating the fluid flow.

To validate our simulation solution, we compared the drawdown curve to an approx-
imate solution to the pressure drawdown away from the wells. Matthews & Russull, in
1967, estimated that the following equation could solve the pressure curve away from

a well:
—948puCyx?

70.6Qu |
Kt

KH

P(z,1) = P, + [ Bil (L6)

Figure 1-3.c displays the approximate solution in a solid red line on top of the sim-
ulation results. There is a slight discrepancy between the two solutions because of the
size of the grids. We expect the difference between the two solutions to decrease as the
grid size is reduced and the number of grid blocks increases. The spatial error analy-
sis for the numerical solution is estimated to be of second-order accuracy. Therefore,

we have performed the same simulation on different grids to see how the differences
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vary. Figure 1-4 represents the root mean square error (RMSE) between the simulated
pressure (P,) and the approximated pressure (P,) as the grid size changes.

E(Ps - Pa)2

RMSE = N

(1.7)

Given the initial and boundary conditions, the forward modeling of fluid flow in
porous media is a well-posed Cauchy problem, meaning it has a unique and stable

solution.
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1.2 Inverse Modeling

Inverse modeling is the opposite of forward modeling. Rather than simulating
the fluid pressure in a reservoir due to known parameters, we estimated the model’s
parameters from observed pressure data in inverse modeling. The model parameters
m describing the system are related to the observed data d through the forward model

operator F such that:

F(m) = d. (1.8)

The main objective of inversion is to determine m from the observed data d. In our
cases, m is a vector (length m) of the parameters’ types multiplied by the total number
of grids, and d is a vector (length n) of observed data. The numbers m and n depend
on the scale of the model and the number of data points. Consider a reservoir model
that has 100 grids, and there is an unknown permeability and porosity for each grid.
Therefore, m will be a vector of length 200. If the same reservoir has two boreholes to
measure pressure every day for ten days, then vector d will have a size of 20.

A solution to the inverse problem exists when a minimum residual exists between
the observed and the 'model’ data. A commonly used measure of the misfit is the

L2 —norm

O(m) =|| (F(m) —d) ||* (1.9)

However, the inverse problem is typically ill-posed, resulting in many models fitting
the data. The objective function that only relies on the quantitative misfit as in eq1.9
is not enough to describe the reservoir models, especially for many parameters. A
simple example demonstrating the non-uniqueness in the fluid flow modeling is shown
in Figure 1-5. The two models in Figure 1-5 have shuffled permeability values but

resulted in an exact data match. Therefore, we often adjust the objective function by
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adding a regularization term to constrain the inverse process.

O(m) =|| (F(m) —d) ||* +o” || Lom ||* (1.10)

Here, L is a Tikhonov matrix (Tikhonov,1977), and ) is a penalization term. For
our fluid flow problem, we have found that the second difference matrix is the best
choice for L to resolve an accurate reservoir model. Many methods can be used to
minimize the square data misfit with regularization. Each method is unique, based on
the specific data and solution. Oliver and Chen (2011) reviewed the algorithms used
to solve the history-matching problem. Each algorithm is used for different purposes.
Manual history matching can be used to create multiple realizations for uncertainty
quantification, but it most likely results in unrealistic geological realism and, therefore,
limits the prediction power. The evolutionary methods, such as a genetic algorithm,
are considered the standard approach for assisted history matching, with the number
of variables being small. However, it has a slow rate of convergence. Another method,
such as the neighborhood algorithm, approximates the posterior probability density
function but also has a slow convergence. In this thesis, we have adopted a gradient-
based method, an efficient method for finding the local minimums. The minimization
of the objective function in eql.10 is achieved by an iterative least-squares method to

estimate the parameter perturbation vector dm:

om = (JT'T + N2LTL) I (F(m) — d). (1.11)

The Jacobian "J" matrix is numerically calculated as the partial derivatives of the data

for the parameters:

od

I=o (1.12)

For the rest of this thesis, we have rescaled the inversion problem on a logarithmic
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scale as it has outperformed the non-logarithmic approach. The logarithmic rescaling

transforms the forward problem in eql.8 to:

F(ln (m))=4d (1.13)

With this transformation, the Jacobian "J" has slight alteration and can be computed
numerically by:
m Od
J=—— 1.14
dom (1.14)
Finally, in each iteration, the new parameter vector m,,,, is updated by the perturba-

tion vector(dm) where n is the iteration number

Mpy1 = Mpe™ (1.15)

We followed the Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1964) method to

update each iteration’s regularization factor A.

Here, we demonstrate the inverse modeling process on a synthetic example to verify
and evaluate the method. The reader should notice that any reference to the "true'
model in the following examples refers to the synthetic model used to simulate the

pressure data.

The first step was building a synthetic reservoir model to simulate the observed
data. The areal dimension of the reservoir model is 1000 m x 1000 m and has a uniform
thickness of 10 m. The discretized space has 31 x 31 grids in x and y dimensions. The
model has one producing well at the central grid, pumping at a rate of 100 m*/day,
and two observation wells at grids (5,5) and (26,26), respectively. As shown in Figure
1-6, we have designed the synthetic model to have two permeability anomalies with a
constant background permeability. The model has a homogenous porosity. Simulating
the fluid flow in the model results in the pressure change at the three wells, as illustrated

in Figure 1-6. Each pressure curve has 11 data points in time with one measurement
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per 5 days. The data displays a pressure decrease at all well locations as the production
well is pumped at a constant rate. The initial pressure at the reservoir is 6000 psi. The
four boundaries around the reservoir are at constant pressure- at 6000 psi.

The pressure curves are then used in the inversion algorithm to estimate the per-
meability structure. We started with a homogenous structure as a starting guess for
the permeability. We performed the inversion algorithm for multiple iterations until
the solution converged to an unchanged root mean square error between the observed
pressure and model curves. The inversion is terminated when the RMSE difference
between two sequential iterations is small (< 107%). Figure 1-6 summarizes the re-
sult of inversion for the permeability structure. The solution has converged in almost
120 iterations resulting in an inverted image showing the two permeability anomalies
without delineating the structural shapes. We can visually compare the final inverted
image with the actual model to verify our results. However, we need to compute the
model resolution matrix to quantitatively estimate the inverted model’s accuracy. The
following chapters of this thesis will discuss the use of the resolution matrix in multiple

settings to quantify and improve the quality of the inversion.

1.3 Thesis Outline

The current thesis explores the non-uniqueness associated with fluid flow in porous
media and how non-uniqueness can be reduced by adopting various techniques. A
range of scenarios and examples will be presented throughout the thesis to illustrate
the effectiveness of the discussed methods.

In Chapter 2, we will demonstrate the effect of model space and data space on
inverting the pressure data for the parameters. The synthetic examples presented
there will show how the fluid flow inverse problem is highly non-unique in that multiple
settings result in different realizations of the reservoir parameters. In Chapter 3, we

will attempt to reduce the complexity of reservoir modeling by reducing the number
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of grids and also covers optimizing the wellbore locations to improve the inversion and
reduce the non-uniqueness. In Chapter 4, we utilize additional geophysical data to
map the permeability structure and image fractures in reservoirs. Chapter 5 discusses
applying the cross-gradient method to invert the reservoir permeability jointly from
the seismic and fluid flow data. Finally, Chapter 6 will summarize and discuss the

overall results.
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Figure 1-3: a) a 3D model with a homogenous permeability and porosity. b) fluid
pressure at the surface after simulating fluid flow for 100 hours. g is the location where
the reservoir model is produced at a constant rate. The black line is placed where
the pressure drawdown is plotted with distance in Figure (c). c) a pressure drawdown

curve for the approximate solution and the simulation.
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Figure 1-5: Two models with different permeability values. Downward and white
triangles represent fluid injecting, and upward triangles represent fluid pumping out,
colored differently for model 1 and model 2. The curves at the bottom figure show the
pressure measured at the red and green triangles.
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Figure 1-6: A summary of an inversion example. The true model is shown on the top
with three colored circles where the pressure curves are observed. The central well acts
as a production well; the other two are observation wells. The pressure curves on the
top are colored based on the location of the well. The middle figures show the initial
model used in the inversion and, below it, the RMSE at each iteration in the inversion.
The final image at the bottom displays the inverted image at the last iteration with
the fitted pressure curves beside it.
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Chapter 2

Effects of Data and Model Spaces

on Fluid-flow Parameters Inversion

2.1 Abstract

The inversion of the reservoir parameters is highly non-unique due to many factors
related to the data and models. Because the number of observation wells where the
pressure data is measured is spatially sparse, there can be many realizations of the
reservoir that fit the data. One way to quantify the quality and the accuracy of the
invasion is by computing the resolution matrix. The resolution matrix is implicitly
computed from the generalized inverse matrix. We can see in different cases that the
measured quality of the resolution matrix varies with changing the data’s location,
quality, and number. The number of models is also affecting the accuracy of the

inversion results.

43



2.2 Introduction

The forward modeling of fluid flow in porous media simulates the pressure distribu-
tion across a reservoir resulting from producing or injecting fluid. In contrast, inverse
modeling estimates the fluid flow model by inverting the pressure distribution data.
The quality of the estimated inverted model is quantified by computing the model
resolution matrix. Wiggins, in 1972, applied parameter resolution analysis to surface
wave problems and claimed that the inversion studies are incomplete if such analysis
is not considered. The resolution matrix R indicates how resolved the inverted model

is compared to the actual model. The resolution matrix is estimated by:

R=J79] (2.1)

where J 79 is the generalized inverse solution. R has a dimension m x m, where m is
the number of parameters. If R is an identity matrix, we have a well-resolved solution;
otherwise, it might indicate a bad resolution (Figure 2-1). The resolution matrix in
Figure 2-2, displays different batches of value concentrations. The concentration of
values found near well locations indicates the most resolved parameters. The param-
eters close to the location where the data is observed have higher resolution than the
rest. We can measure the overall quality of the resolution matrix by computing the

Backus-Gilbert spread function (Backus and Gilbert, 1967, 1968).

NE

Spread(R) =

2

ﬁl[&-j— S (2.2)

Il
—

On the other hand, the information matrix is a qualitative measure of the predicted
data. The information matrix has a size of n X n and displays the significance of data

points. The computation of the information matrix is as follows:

N=JJ* (2.3)
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Figure 2-1: This figure is a schematic diagram to differentiate between a good and
poor resolution matrix. The good matrix has most of its values at the diagonal, while
the poor matrix has more spread-out values around the diagonal.

a)

Inverted Model " Resolution Matrix

Spread=0.991

N
(8}

y(m)
> [+))
8 8

N
[log(mD) ]
m (number of parameters)

1000 3
800 .
200 ’

1

200 600 1000 m (number of parameters)
x(m)

Figure 2-2: a) the inverted image with the location of the three wells highlighted with
circles. b) the resolution matrix at the final iteration. Each circle on the R corresponds
to a location of a well, colored accordingly.

The interpretation of the information matrix evaluates the quality of the modeled data
compared to the observed data. Each row in the matrix is a weighted average of
the neighboring observed data. The highest values are expected on the diagonal and
around it. For example, in the first row with the highest value near the diagonal, the
interpretation is that the quality of the predicted data to the observed data is high.

Figure 2-3 displays the information matrix for the problem presented in Figure 2-3.
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The N matrix displays three featured boxes. Each one of the boxes is related to data
from one observation well. We plotted the pressure curves for reference on the side of
the N matrix. Considering each box separately, we notice that the low values occur
near the middle of the curves (center of the box), indicating that the prediction is
poor near the intermediate values of the curves. An ideal information matrix that
illustrates a perfect resolution to the predicted data is if the matrix N is the identity
matrix. The spread calculation quantifies the quality of the information matrix. The

lower the spread, the better predicted the data.

Spread(N) = 3° 3 [Ny — I (2.4)
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Figure 2-3: a) Pressure curves for three wells. b) the information matrix at the
final iteration. Each box on the NV corresponds to the pressure data of a well, colored
accordingly.

After establishing the inversion and forward modeling techniques, we investigated
the effect of limited data and model space on the inversion results. The inversion
for reservoir parameters is found to be non-unique, leading to an examination of the

non-uniqueness from the data and model space aspects.
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2.3 Effects of data space

2.3.1 Casel

The number of wells where pressure data is observed is critical to the history-
matching process. Thus, we want to examine this closely and understand how this could
affect reservoir modeling. We start with a 2-D base model with a constant porosity(¢)
and a varying permeability (K in milliDarcy). The dimension of the reservoir is 1000
ft by 1000 ft, and it has a constant thickness of 50 ft. It is subjected to a constant
production rate at the center of the reservoir. The initial condition of the reservoir is
set at homogenous pressure. The boundaries are set at constant pressure, too.

Various vertical monitoring wells are randomly distributed across the reservoir. The
synthetic pressure data from these wells are computed by discretizing the flow equation
on 11 x 11 grids. Figure 2-4 displays the inversion result for the case where the number
of observation wells matches the number of parameters. In the first case, where the
number of wells equals the number of parameters, the inversion resulted in a model that
matched the true model. The resolution matrix verifies that the inversion is almost
perfect, shown by a zero spread. Figure 2-4 displays the inversion result for different
cases where the number of wells varies. As the number of wells decreases, the resolution
of the inverted image becomes less accurate. By examing the resolution matrix for the
other cases in Figure 2-5, we notice that the diagonal shape of the matrix gets distorted
as the number of wells decreases. When there is only data from a single well, neither

the inverted image nor the resolution matrix has a coherent structure.

2.3.2 Case 2

In this case study, we want to examine the effect of the location of the monitoring
wells on the inversion results. We use the same model presented in Case 1 to compute

the synthetic data. The model has 11 x 11 grids with the same number of parameters.
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Figure 2-4: This figure illustrates inverting the pressure data from 121 wells for the
permeability structure. The image on the left is the true permeability model. The
yellow circle is the location where the production well is located. The red crosses are
the locations where observation wells are placed.

One producing well is at the center, with the pressure change at this well being used
as a data point. The presented examples in Figure 2-6 display different inversions for
different random distributions of four observation wells in addition to the producing
well. This case is very similar to Case 1, with the exception that the number of
monitoring wells is fixed this time. For each example presented in this case, four wells
are distrusted randomly across the reservoir. The results of the inversion are shown in

Figure 2-6.

2.3.3 Case 3

Data can contain noise and could affect the inversion. The noise in the pressure
data can be related to the measurement tool or fluctuation in the pressure over a long
period. In this example, we add a random gaussian noise with a standard deviation,
o = 1. In Figure 2-7, we used the same true model with data from four wells in addition
to the producing well to invert for the permeability. The inversion was stopped after
30 iterations to prevent it from diverging. The final inverted model does not resemble

anything from the true model.
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image from inverting the data observed at the red marker. On top of each inverted
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for each inverted image. The spread of the resolution matrix is displayed on top of
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Figure 2-6: The figures show the inversion results from inverting different scenarios
of four randomly distributed wells. Each inversion image resolves various structures
in the model. The resolution matrices also have various structures depending on the
location of the observation wells.

2.3.4 Case 4

The pressure data observed at a well location has multiple features, such as its

gradient. In the previous cases, the transgmt pressure decreased with time, following
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Figure 2-7: Inversion of noisy pressure data. The pressure data are measured at five
wells colored differently, including the central producing wells. A random noise of one
standard deviation is added to the pressure data. The different colors of the curves

correspond to the location of the wells. The inverted in Figure (b) is the result after
30 iterations.

a similar trend in discharging a transistor in an electrical circuit. Identical to charging
a transistor, where voltage builds up, the pressure in reservoirs can also be built up
by injecting fluid into it. We sought to examine whether the different curves and
response times for the pressure depletion and build-up would affect the inversion results
differently. New synthetic pressure data are generated using the model presented in
Case 1. The curves in Figure 2-8 are the pressure data at the central wellbore, which

is partially used for production and later for injection. Inverting the new pressure
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curves does not change the result or improve the resolution matrix. By comparing
the resolution matrix in Figure 2-5 and the matrix in Figure 2-8, we do not see any

difference in the result.
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Figure 2-8: The figure displays the inversion of pressure data at the central well. The
well was produced for the simulation’s first half, then shut off, and fluid was injected
for the second half. The far-right image is the resolution matrix.

2.4 Effects of model space

The model space is referred to as the parameter space under investigation. There-
fore, the type and the number of parameters define the model space. In previous cases,
the model space consisted of one parameter type, permeability, under the assumption
that it was isotropic for 2-D cases(K, = K,). We attempted to invert the data for a
model with one parameter type.

However, in this section, we want to expand the model space and demonstrate
how the effect of expanded model space can result in different inversion results. The
model space was, thus, broadened to include more parameters. The model includes the
permeability in the x and y dimensions and the porosity. The first attempt, in Figure
2-9, was to invert the three-parameter types (K., K,, and ¢). The result of inversion

is not ideal, even with pressure data at as many wells as the number of grids. Figure
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2-10 displays the inverted image for the different parameters in four scenarios, where

the number of observation wells changes.

The model has 121x3 parameters and 121 observation wells

Inverted k, Model
True k_Model RMSE=1e-05
3 3
Inversion for 25 25
permeability 2 2
in X direction 1.5 15
1 1
Inverted k Model
True k, Model . RMSE=1e-05
3
Inversion for 25 25
permeability 2 2
in Y direction 15 15
1 1
Inverted ¢ Model

True ¢ Model RMSE=1e-05

Inversion for

porosity

Figure 2-9: This figure illustrates inverting the pressure data from 121 wells for the
porosity, in addition to the permeability structures in X and Y.

2.5 Discussion

The forward and inverse modeling methods for fluid flow in porous media were
validated and proven effective. Although the forward problem always has at least one
solution, we show that inverse modeling does not guarantee a unique answer. The
final inverted image of the reservoir parameter depends on factors in the data space
and the model space. The presented cases illustrate the difficulty in modeling reservoir
parameters. It is easy to understand the effect of the amount of data on the inversion.
With less data available, the problem becomes underdetermined. The regularization

of the inverse algorithm has improved the inversion results and has made the problem
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Number of
observation wells

Producing well

X Data location

Figure 2-10: Each color box illustrates the inversion of one type of parameter. The
green box displays the true permeability in the X direction and the inversion of the
data obtained at the data locations. The blue box is the inversion of the permeability
in the Y direction. Finally, the red box is the inversion of the porosity. Each row
displays different red crosses where the pressure data is observed, ranging from 121
wells to only one well.

less ill-posed. The inversion scheme fits the data excellently, as indicated by the RMSE
in figure 1-6. In the first example of case 1, where the number of observation wells
matches the number of parameters, the inversion result perfectly matches the true
model. Because the inversion utilizes the same forward modeling method used to create
the synthetic data, we expected the result to be close to perfect. The resolution matrix
confirms the accuracy of the inversion, which is an exact identity matrix. The number
of observation wells does not affect the match between the observed and the modeled
data (RMSE). However, the recovered reservoir models show a significant difference as

the number of wells decreases. The spread of the resolution matrices emphasizes how

54



the recovered models are affected as the number of wells changes.

The examples in Case 2 indicate that the number and distribution of data are sig-
nificant for resolving the parameters. Because fluid flows in spatial space, we could
estimate parameters accurately depending on where we measured the pressure. Even
though the resolution matrices in Figure 2-1 do not show a significant difference, they
have slightly different spread values. In the fourth chapter of this thesis, we inves-
tigate the optimum distribution of wells to maximize the resolution matrix and the

information content.

In addition to the effects of data quantity, the noise in the data can cause the
inversion method to diverge from the solution. The inversion for the parameters with
noise did not properly image the reservoir. As a result, the method got stuck in the local
minimum or diverged from the solution. We, therefore, have changed the algorithm to
stabilize the inversion and ensure convergence to the problem. The new algorithm uses
singular value decomposition of the jacobian matrix J from the equation 1.11. Singular
Value Decomposition (SVD), which is mathematically robust and numerically stable,
can be used to solve eql.11. The Jacobian "J" matrix is decomposed into the product

of three matrices:

J=UsVT. (2.5)

where U(n x m) is the left orthognal vectors representing the data space, V is a matrix
of size (m x m) containing right orthogonal vectors representing the parameter space,
and S(m x m) is a diagonal matrix containing mostly non-zero eigenvalues of J. The
diagonal entries of S are (A, Ay, ....A,,), where \; are the eigenvalues, ordered from

highest to lowest. By substituting eq2.5 in eql.11,

om = (VS*VT + o*1)"'vSU”dd. (2.6)

Adding the regularization factor to the diagonal matrix and taking the inverse will lead
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to the following:

N T T
§m = Vdiag [ e az]v VSU7sd. (2.7)
5 ' A s
m = Vdiag Nt ol U’ éd. (2.8)

eq2.8 provides a final solution of damped least-squares inversion with SVD. The solution
has become more stable but could not resolve the exact parameters (Figure 2-11). We
think that with proper initial guesses, the inversion of the data with noise can be more

accurate.

We also illustrated the effects of the number of properties in interest on the in-
version. Whenever the number of parameters became larger, the inversion proved
unsuccessful in resolving the exact parameters. Even though observation data is at
each grid, the inversion method could not obtain accurate estimates of the parameters
(Figure 2-10). Furthermore, as we increase the number of model parameters, we tend
to make the inverse problem underdetermined, leading to higher model uncertainty
and deterioration of the final resolution. In chapter three, we will discuss the idea of

reducing the model space and its complexity through inversion.

For uncertainty quantification, the model covariance matrix is computed. It gives
us a quantitative measure of how uncertainty in the true model, the reference model,
and the data propagate into model uncertainty. The model covariance depends on the
covariance of the data and how the error is mapped from data to model parameters.
A unit covariance matrix can characterize the degree of error amplification in the
mapping. If the data are assumed to be uncorrelated and to have uniform variance,

the unit covariance matrix is given by

Cov,, = J9J9T (2.9)

The matrix Cov,, has a dimension similar to the resolution matrix (m x m). We

can examine the different covariance matrices for a different solution to evaluate the
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Figure 2-11: This figure shows the inversion of noisy pressure data using the SVD
method. The pressure data are measured at five wells colored differently, including the
central producing wells(black). A random noise of one standard deviation is added to
the pressure data. The different colors of the curves correspond to the location of the
wells. b)The inverted model after 78 iterations. ¢) pressure curves in psi at each well
location. d) the log of the RMSE at each iteration.

uncertainty. The figure (Figure 2-12) displays the results from case one with the co-
variance matrices added. The diagonal of the covariance matrix represents the variance

of the parameters. The size of the covariance matrix can be estimated by computing

the trace of the matrix.

size(Covy,) = i[covm]i,- (2.10)

i=1

The large size of the covariance matrix indicates a low certainty (high variance) in the
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parameter estimation.
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Figure 2-12: The covariance matrices highlight the uncertainty of using a different
number of wells to invert the permeability structure.

In summary, the synthetic examples presented here indicate that the fluid flow
inverse problem is highly non-unique in that multiple settings result in different real-
izations of the reservoir parameters. The objective of the geophysical data inversion

process is to accurately approximate the geological structure in the subsurface. The
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sources of non-uniqueness in fluid flow modeling may stem from any of the following
issues: 1) The data quality and quantity will allow different ranges of models to fit the
data. 2) Different combinations of parameters can result in the same identified misfit.
3) The inversion algorithm can lead to a local minimum, never reaching the global

minimum solution.
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Chapter 3

Reducing Complexity and
Optimizing Drilling Locations to

Better Represent Reservoirs

3.1 Abstract

History matching and predicting the future performance of hydrocarbon reservoirs
are considered significant challenges that engineers face. Predicting the production of a
hydrocarbon reservoir requires an accurate characterization of its fluid-flow properties,
such as permeability and porosity, which can be used to simulate future production.
The challenge in characterizing these properties is a function of the type and quality
of the available data. Borehole data, for instance, is costly to acquire, which makes
optimizing well placement a critical task for obtaining appropriate data for accurate
reservoir modeling. Also, the simulation’s complexity makes evaluating the reservoir
performance expensive. The conventional reservoir history matching procedure usually
requires a trial-and-error process of altering various reservoir parameters and simulating

the pressure distribution and field production. This article proposes 'Inversion mod-
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eling’ to obtain a reduced-parameter structure and represent reservoirs with unique,
simplified models. The simplified model is an effective medium with a few permeability
values that are spatially distributed while maintaining the model’s accuracy. In a later
section, we perform a two-stage approach for adaptive wellbore placement with the end
target of accurately resolving the reservoir parameters. In the first stage, we look for
the distribution of wells that minimizes a measure of a model’s non-uniqueness. The
second stage uses the Shannon information entropy and the resolution matrix to find
the best well locations in an adaptive manner. We test this approach on a synthetic

simulation to show the effectiveness of the proposed method.

3.2 Introduction

Fluid in the subsurface flows in porous media due to physical parameters, fluid
properties, and driving forces. Simulating the fluid flow in the porous media can help
us analyze the subsurface and characterize its properties. Interpreting the reservoir
characteristics, such as permeability and porosity, can enable us to perform history
matching of the reservoir and ultimately predict its future performance. The simu-
lation is often achieved by forward modeling, which refers to constructing a model
whose behavior matches an actual reservoir. Forward modeling aims to estimate and
optimize field performance under several production conditions. This challenging task
requires a good understanding of a given reservoir’s geology and fluid flow physics.
The required time and cost for simulation are proportional to the reservoir’s structure,
size, and complexity. The current approach to determining the reservoir properties ap-
proximates the spatial static parameters of reservoirs by a finite discretization method
by subdividing the model into cells, each cell characterized by constant parameters.
Often, a large (up to 10?) number of cells is considered to reproduce the reservoir’s per-
formance with high resolution. The parameter of each cell is altered until the output

of the forward modeling matches the production data; "History Matching." In some
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cases, the forward modeling is done on an upscaled, coarse-scaled model of a finer one

to reduce computation cost.

An alternative method to manual history matching is Inverse Modeling, which refers
to estimating the parameters that fit the measured data by an automatic algorithm.
In groundwater hydrology or the petroleum industry, inversion is related to estimating
the permeability and porosity from the well production data. Because the data is much
less than the number of parameters, mathematicians may refer to the problem as an
under-determined problem (Carrera, Alcolea, Hidalgo & Slooten, 2005). Regularization
is one method to address this problem, transforming the inversion into an approximate
unique problem. The inverse problem can be formulated as a solution to an operator

equation:

d = F(m) (3.1)

where m is a vector of the model parameters from a model space, d is a data vector

from the data space, and F' is the forward operator.

Regardless of the approach taken toward history matching, the problem is ill-posed
due to the failure to meet one or more of the following conditions: 1) solution m exists,
2) the solution m is unique, and 3) the solution m depends continuously on the data
d. The data we obtain from the field is spatially limited to drilled wellbores. Thus,
many models can fit the data. The resulting model is a non-unique representation
of the reservoir. The problem can, though, become well-posed by regularization. A
classical principle of regularization theory is discussed in (Tikhonov and Arsenin, 1977).
Instead of considering an infinite set of solutions with regularization, we narrow the
class of models that solve the inverse problem. Figure 3-1 illustrates a definition of an
approximate solution 7 to the inverse problem eq3.1. The modeled data d resulting
from the solution 7 is the closest to the observed data d. For an approximate solution,

which can be achieved by Tikhonov regularization, both the solution and the modeled
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data are part of a larger subset in the model and data space.

MODEL DATA
SPACE SPACE
FORWARD MODELING

INVERSE MODELING

Figure 3-1: Schematic representation of the model and data spaces.

The solution to the inverse problem should find the best 72, in which its modeled
data minimizes the distance between the d.s and the d. This chapter studies the
concept of narrowing the model subspace and carefully choosing a data subspace to
reduce the non-uniqueness that arises by having many possible solutions. The first
section of this chapter (Reducing Reservoir Complexity) studies the reduction of the
model space. In the second section (Optimization of Drilling Location for an Improved
Reservoir Representation), we are developing a method to choose data locations that

reduce non-uniqueness and increase information gain.

3.3 Reducing Reservoir Complexity

In this section, an inversion is used to estimate a reduced-parameter structure of
reservoirs. The flow structure is described by two hydraulic parameters: permeability

and porosity. Permeability is defined as the ability of the medium to transport the
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fluid through it under pressure gradients, and porosity describes the storing properties
of the porous medium. The parameters are identified from piezometric pressure data
in a transient flow condition. We have gathered synthetic well data from modeling a
complex reservoir with a structure as large as ten thousand cells. Then, we performed
the inversion on a smaller grid to reach a structured reservoir as small as one hundred
cells. The significance of this study is that doing reservoir modeling with a very large

number of cells is expensive, while a much simpler model is just as accurate.

3.3.1 Methodology

The reduction of the model complexity of a reservoir depends on the existing forward
and inverse modeling techniques discussed in Chapter 1. In the forward modeling, we
simulated the pore pressure resulting from fluid flowing in porous media under different
initial and boundary conditions. The forward modeling method solves the pressure dif-
fusion equations numerically. For a simple case, we are modeling the pressure changes
in time as we are producing/injecting fluid into a reservoir. The reservoir is discretized
into grids where each grid has a specific parameter value.

The inversion algorithm attempts to minimize the L, norm between the observed
data d and the modeled data resulting from a reduced model m,cgyceq (€93.2). The last
term in the equation is the regularization term. The « controls the rate of convergence

to a solution. L is a regularization matrix.

O(m) :” (F(mreduced) - d) ”2 +a? ” Lomyeduced ”2 (3-2)

3.3.2 Numerical Experiments

Two different numerical experiments with synthetic data are presented to demon-
strate the reduction in the modeling of reservoirs. Each experiment has the same

objective: to reduce the number of parameters in the model while maintaining reason-
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able accuracy. The first experiment examines complexity reduction by reducing the
grid into a coarse, regular grid. The second experiment attempts to find a further

reduced irregular grid.

Experiment 1

In this experiment, we reduce the complexity of a reservoir on a regular grid. Con-
sider the two-dimensional reservoir shown in Figure 3-2; the reservoir has a random
permeability structure constructed using a spectral density function of an exponen-
tial autocovariance function (Gelhar & Axness, 1983). We obtain synthetic pressure
data from the well locations by simulating a single-phase fluid flow on a large grid
(130x130). The boundaries of the model are constant pressure boundary conditions,
and the model has an initial constant pressure everywhere. One production well is
placed at the center of the model, which pumps fluid out of the reservoir at a constant
rate of 1000m?/day. Also, there are four wells used as monitoring wells. Details of the
simulation parameters are presented in table 3.1. The simulation runs for 40 days, and
the pressure data are collected at each monitoring well with an increment of one data
point per day (Figure 3-2).

We used the pressure data to invert for the permeability structure on a reduced
grid. The reduced grid, which has a size of (50x50), is almost 15% of the original grid
(number of parameters) used to generate the data. Inverting the pressure data on the
reduced grid appears comparable to the true model but with a slightly lower resolution
(Figure 3-3). If we compare the actual data obtained for the original model to the data
from the reduced model, the RMSE (root mean square error) is insignificantly low.

The attempt to further reduce the number of grids has also resulted in low RMSE
values. Figure 3-4 demonstrates the inversion results on various grid sizes. No matter
how small the number of grids, the inversion result produces very low data RMSE.
The overall structure of the inverted images is slightly similar to the actual structure.

In the case where the number of grids is (10x10), the inverted structure appears to
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Figure 3-2: The true permeability model with the location of the monitoring wells col-
ored differently. The bottom figure is the pressure curves with time at each monitoring
well (colored accordingly).
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be different from the true model, but it still highlights the high and low permeability

regions.

a) b)
True Reservoir Model Inverted Reservoir Model

True k Model 000 Inverted Model

200 400 600 800 1000 ! 15 2 200 400 600 800 1000
X Log(mD)

X

J Data vs. Model

RMSE = 3e-4
2900 T T

Pressure(Psi)
n
@
[+
o

n
b3
o

. Model
+ Data
!

10 20 30 40
Time (days)

Figure 3-3: a) The true permeability model. b) the inverted model on a grid 50x50.
c¢) Observation pressure data with the best fit.

The least complex model we have achieved is the model with grids(10x10). We at-
tempted to reduce that grid to an even less complex one that has (5x5) grids. However,
such a small number of grids has not enabled us to devise a plausible structure that

fits the data. In the next experiment, we developed a scheme to reduce the complexity
with a combination of variable grid sizes.
Experiment 2

The result of the first experiment has demonstrated a way to reduce the modeling

of the permeability structure of a reservoir with less complexity using a regular fewer
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Parameters value

K (mD) (1-1000)
phi 0.15
p(cp) 1.5
Ci(1/psi) 12 x 1076
q(m?/day) 1000
Initial P 2900 psi
Boundary P 2900 psi
Time (days) 40

Dimensions[x,y,z] (m) [1000,1000,30]

Table 3.1: The values of the parameters used for simulating the fluid flow for experi-
ment one.

True Reservoir Model Grid size (50 x 50) Grid size (30 x 30) Grid size (10 x 10)
Inverted Model 1000 Inverted Model 1000 Inverted Model
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Figure 3-4: The result of inverting the observation data at a different number of
grids. The displayed RMSE is the final error at the last iteration.

number of grids. It has also shown that the method can produce an upscaled model-an
averaged permeability model of the complex on-with an inversion method. However,
we feel the complexity can be reduced further with a different approach. When we
attempted to reduce the grids to a smaller grid, there was no simple structure that
would fit the data.

Our alternative way to reduce the structure is to refine the grid irregularly. Hence,
we will construct a grid with variable block sizes. The designs of the various blocks

follow multiple steps. A summary of the steps is illustrated in Figure 3-5: Step 1:
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Start with partitioning a fine grid into a coarse grid with large blocks. For example,
the (30x30) model is overlayed by a (5x5) grid. Then, all values in the fine grid (30x30)
that fall in the course grid (5x5) are averaged. The result should be an averaged model
with the size of (5x5) grids. Step 2: Find a coarse grid that has a high permeability
compared to the pre-determined cutoff permeability value and refine the course grid

into a fine grid of a specified size. Step 3: Invert the pressure data on the new irregular

grid.
1. Partition the fine-grid 2. Refine areas with 3. Invert the data on
model into coarse high permeability an irregular grid.
grids. gradient into finer grids.

7 2880
& 2060
]

Figure 3-5: a) The true permeability model. b) the inverted model on a refined grid.
c¢) Observation pressure data with the best fit.

The described method allows us to find a unique grid that we can use for the
inversion process. However, this method still relies on having a regular grid obtained
by the method in the first experiment. Once the reduced grid in experiment one is
created, we can experiment with different partitioning and refining until we find the
simplest irregular model grid that fits the data.

We now revisit the first experiment’s results and reduce the complexity to demon-
strate the described method. We followed the above steps to find a grid between the
10x10 and 5x5 that will allow us to resolve a structure with a low RMSE. We started
by partitioning the 30x30 inverted model into 24 large blocks, and then we refined the
large blocks into smaller grids based on the permeability value. The inversion algorithm

finds the best permeability values for each grid that result in a low data RMSE. Figure
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3-6 shows the result of inverting the pressure data on a refined grid. The inverted

model shows two distinct regions.
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Figure 3-6: An overview of the steps adopted to refine the model into irregular grids.
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3.4 Optimization of Drilling Location for an

Improved Reservoir Representation

The spatial distribution of wells can be critical for optimizing the production of a
hydrocarbon reservoir. During the development stage of a hydrocarbon field for an op-
timum production rate, wells are ideally located in areas of high reservoir porosity and
permeability, assuming an accurate model of these properties is available. An alter-
native, and more practical optimization problem, is maximizing parameter resolution,

which can aid in optimizing the production rate.

The optimum design for a geophysical survey focuses on quantitatively obtaining
a more accurate subsurface model. Kijko (1977) was the first to attempt to optimize
a geophysical experimental design, with the type of survey being global seismic moni-
toring for earthquake-location problems. The problem of optimal geophysical designs
has been pursued in many other applications, from mapping the ocean bottom (Barth
and Wunsch (1990)) and soil testing (Crisp et al., (2020)), to magnetotelluric inves-
tigations (Jones and Foster (1986)) and electrical resistivity tomography (Uhlemann
et al., (2018)). Maurer et al., (2010) provide a solid background and development for

survey design in geophysical methods.

This study focuses on finding the spatial distribution of wells that can help resolve
the permeability structure of a hydrocarbon reservoir. The optimization objective in
this study is different from the previously published work. Wang et al., (2007) and
Zandvliet et al., (2008), for instance, implemented a gradient optimization algorithm
to optimize the wellbore locations that optimize the net present value (NPV). Their
method depends on the pre-existing knowledge of the reservoir properties (permeabil-
ity and porosity), assuming that it is accurate. Others, such as Montes et al., (2001),
optimized the NPV problem using a genetic algorithm. Nogueira and Schiozer (2009)

proposed a methodology to optimize the number and placement of horizontal and
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vertical wells, which optimizes the NPV in a field with the lowest number of flow simu-
lations. In contrast, we optimize the locations of wellbores to maximize our information
and reduce inaccuracy in resolving the permeability structure of a hydrocarbon reser-
voir. The pressure data from wells are used in an inversion scheme to characterize the
reservoir permeability, which can then be ultimately used for optimizing production or
NPV.

We adopt a two-stage adaptive method by utilizing the forward and inverse mod-
eling of fluid flow in porous media. In each iteration, we look for the next optimum
wellbore location to maximize the information gain and reduce model uncertainty. Var-
ious publications discuss the use of an adaptive method for optimizing survey designs.
For instance, Stummer et al., (2004) implemented an adaptive approach to find elec-
trode configurations that provide the most new information. Cole and Morgan (2009)
also looked at an adaptive experimental setup using a determinant-based objective
function and showed an improvement over the randomly generated surveys in a Monte
Carlo simulation.

This study adopts a technique previously developed by Winterfors and Curtis (2008)
to quantify and detect system non-uniqueness. This study also applies a uniquely

developed measure of data information to find an optimal well placement.

3.4.1 Method

Our optimization scheme aims to find the optimum survey design that would yield
the most crucial data for accurate reservoir modeling. In the first stage, we will estimate
the best distribution of wells that minimizes a measure of non-uniqueness. This stage
does not depend on available data and can be performed before the start of the survey.

In the second stage, we utilize the resolution matrix (Menke, 2012) and the Shan-
non information (Shannon, 1948) to choose the optimum location for boreholes in an

adaptive fashion. After every newly drilled borehole, we search within the survey do-

73



main for the next optimum borehole site, the one whose predicted data best reduces

the spread of the resolution matrix and increases the Shannon information entropy.

Stage 1

The main challenge with the reservoir characterization inverse problem, as is com-
mon with many geophysical problems, is that it is ill-posed, making the data explain-
able by many different models. However, some datasets can provide better constraints
on the model, making the problem appear less non-unique than other datasets. We,
therefore, attempt to find a dataset that will reduce the non-uniqueness of the system
under study, which means we first need a way to quantify non-uniqueness for different
possible well-placement designs. Winterfors and Curtis (2008) discuss detecting non-
uniqueness for a nonlinear system if the forward model is continuous and differentiable.
In their approach, they would start with initial guesses for two models, my; and my;,
and iteratively update the models until converging towards the final m,; and myy, that
yield the most similar predicted data. We formulate the problem below to find the two

models for the reservoir characterization problem.

Consider the two different initial models, my; and my;. The fluid flow modeling

would result in two different data sets:

F(mh‘) = dl, F(mzi) = d2 (33)

where F' is the forward operator for modeling fluid flow in reservoirs. d; and d, are
the pressure data resulting from modeling the fluid flow for the two models. Using a
finite volume scheme, the forward operator solved the pressure diffusion equation to

simulate fluid flow in porous media.

LV (KIVP(@,0,0) = G 5, +a(a,1:) (3.4)
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where p is the fluid viscosity in (cp), [K] is the permeability tensor in millidarcy(mD),
P is pressure in (psi), ¢ is porosity, and C; is the total compressibility in (psi~!). The
source/sink term ¢ has a unit of (volume/time).

The forward operator (F'), in eq3.3, has information about the boundary and initial
conditions. It also has details about the source/sink term and the survey designs,
such as the locations of wellbores. m,; and m,; are parameters vectors containing
reservoir permeability. Because the property of interest in this study is permeability,
other properties, such as porosity and compressibility, can be embedded in the forward
operator F'.

We want to find two models m;; and myy that are unequal and have an insignificant
difference between their modeled data. Hence, we will perturb the initial models until
we match the data. We can expand eq3.3 using Tayler expansion to determine the

model’s perturbation for comparable data.
F(mli) + J15m1 = F(mgi) + J25m2 (35)

where J; and J, are the sensitivity matrices for two different linear systems with
different initial models. dm,; and dm, are the perturbations of models one and two,

respectively. We can reformulate eq3.5 in a matrix form as follows:

57’)’11
[Jl —Jz] = F(ma;) — F(my,) (3.6)

5m2
Using the SVD factorization of the [J; — J;] matrix (Hansen, 1999), we will solve for
perturbed models in the least-squares solution. When the solution converges, the differ-
ence between the two models, my and myy, is the measure of the non-uniqueness. Fig-

ure 3-7 illustrates the basic steps for determining the measurement of non-uniqueness.

If we start the problem with one wellbore placed anywhere, we aim to find the next
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Figure 3-7: a general overview of the non-uniqueness detection scheme.

optimum well location by exploring the reduction in the problem’s non-uniqueness. We

formulate an optimization problem as follows:

6(a) = [|G(a) - N]| (3.7)
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where 6 is an objective function, and G is a forward operator developed to measure
the non-uniqueness between two models for well placement design a. N is the non-
uniqueness measure. We use a grid search method for this minimization problem
since we are searching for only one additional well placement, which would not require
extensive computation. This allows us to find designs that give a minor difference
between the two estimated models: m;; and my;. The data from the optimal well
location is then added to the available dataset, the starting point for stage 2 of the
proposed method for optimal well placement. The process in this stage can be applied
to construct a list of wellbores’ locations; however, in this study, we kept it to one for

simplicity.

Stage 2

The second stage in the survey design method is an adaptive scheme that depends
on previously acquired data to choose a new well location. At first, the available data
from previously obtained surveys is inverted for the reservoir parameters, and the data
covariance matrix is computed. We, therefore, can estimate the information gained for
possible wellbore locations using Shannon information entropy.

Shannon information entropy was developed to characterize the information content
transmitted between a source and a receiver (Shannon, 1948 ; Cover & Thomas, 1991 ).
Shannon, in his paper, described a metric for the information delivered from a source
to a receiver using only binary decisions (yes or no). We can explain the Shannon
information with a typical example regarding sending a word through binary digits and
estimating the required number of bits. If each letter in the English language has the
same probability (1/26), then the Shannon information I associated with one letter is
I= —log(%) = 4.7. To understand this number, if someone can ask yes/no questions to
guess any letter in the English language, they would require an average of 4.7 questions
to guess the letter. Shannon information entropy estimates the level of information

associated with the possible outcomes of a variable. Consider a random variable x
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that has N number of possible values z € (z;,z5,...,zy) with the corresponding

probabilities p € (py, po, ..., pn), the Shannon information entropy is written as follows:

E=-3 pin(p) (3.8)

where p(z) is the probability of an event to occur and has to be a value 0 < p < 1. The
above equation is expressed in natural units. It can be expressed in binary units (bits)
by substituting the In to logy. In our calculation, we decided to use the natural units
as they seemed appropriate for our problem. The higher the entropy is, the higher the

information gain and the less the uncertainty.

To put this in context for our problem, we want to estimate the entropy for each
possible Wellbore location. High entropy indicates high information content. The
paq is the probability of the data center on the zero data-RMSE and has a standard
deviation estimated from the model covariance matrix. The assumption here is that the
probability of the data has a Gaussian distribution. Finally, we compute the Shannon

information entropy for each possible location for the new well.

The locations with maximum entropy are chosen as potential well locations to
perform the following model resolution matrix analysis. Computing the resolution
matrix is an expensive process that requires running the inversion algorithm, in which
we invert the existing real data and the predicted data at each potential location. The
predicted data comes from modeling fluid flow on the estimated model parameters
from the inversion at the beginning of this stage. We then compute the resolution R,,
matrix, which measures how close the inverted model is relative to the accurate model,

using the equation below:

Ry, =J9] (3.9)

where J 79 is the generalized inversed matrix, and J is the jacobian matrix. R,, will

equal the identity matrix if the inverted model is very close to the true model. The
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spread (5) of the resolution matrix is then computed by the L, norm of the difference

between the resolution matrix and the identity matrix:

S =—|Rm—1| (3.10)

where [ is the identity matrix. The minus sign is there because we are interested in the
lowest spread value. The optimum location for the new well is the one that maximizes
the entropy and minimizes the spread resolution matrix, which is done by maximizing
the quantity:

[E(a) + S(a)] (3.11)

The data from the optimal well location is added to the current dataset, and the process
is repeated to find the next optimum well location. We summarize the adaptive data
acquisition in three steps, as illustrated in Figure 3-8:

1) Acquire new data. 2) Estimate a permeability model using the pressure data from the
existing wells. 3) Estimate the current model & data uncertainty 4) Explore different

well placement designs that solve the following optimization equation and repeat from

step one:
mazimize[E(a) + S(a)] (3.12)
Acquire Invert Estimate Find
new data for date covariance a well location to
data parameters and model Maximize [E(a) + S(a)]
resolution
Repeat

Figure 3-8: Flowchart illustrating the main steps for the adaptive placement of wells
in Stage 2. 1) pressure data is acquired at new wellbore locations. 2) pressure data are
inverted for the permeability structure. 3) estimation of the data and model covariance.
4) compute the E(a) and S(«). Finally, find the location that maximizes equation 3.12.

Before examining this two-stage approach for improving our wellbore placement on
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synthetic simulations, we want to present a simple example to illustrate the method
described in stage 2. Consider a nonlinear model that maps a parameter vector into

data. The model is as follows:

d(z) = myz + moe ™" (3.13)

The model can be defined by F(m) = d+e. F is the nonlinear operator that solves
eq3.13. m is a vector of unknown parameters. d is the observed data, and e is a random
data noise. Through a least-squares method, we can solve the objective function that

minimizes the Ly norm between observed data and a modeled solution:

0(m) = ||F(m) —d| (3.14)

To illustrate the survey design, we will start with two observation locations. The
first inversion for the parameter will result in a fit to the data Figure 3-9a. We can,
therefore, estimate the model covariance at all possible locations and ultimately evalu-
ate the probability of the data using a Gaussian distribution, assuming it has a Gaussian
distribution. The estimation of the model covariance matrix Cov,, can be explicitly

computed from the generalized inverse matrix J ¢ through:
Covy = J 9T 9" (3.15)

The probability of the data enables us to estimate the Shannon information entropy
for all possible locations. The spread of the resolution matrix is also estimated for
all possible locations. Both E(«) and S(«) are normalized between zero and one, as
graphed in Figure 3-9b. The lowest points in the graph represent the two starting
observation locations. The highest points will determine the new survey locations.

Figure 3-9 illustrates the adaptive approach to surveying this problem.
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Figure 3-9: a) The two crosses are the observation points and their associated d(x)
values. The solid line is the best fit model for the observation locations. The shaded
purple area highlights the data variance. b) The curve is the E(a) + S(a) at different
observation locations. ¢) The new observation point appeared at the beginning of the
survey line with the new estimated model and the data variance. d) The previous steps
are repeated eight times until we finalize a total of 10 survey locations. On top of the
best fit model, we drew the true model in a dashed line.

3.4.2 Experiments

We now present the results from a synthetic experiment to illustrate our method.
Here, we assume that permeability is the only parameter of concern. Hence, the survey
design will place wells in locations that minimize the non-uniqueness in the inverse
problem and improve the imaging of the permeability structure. We assume that the
forward fluid flow operator F' is fully known, in addition to the boundary and initial
conditions. The 2-dimensional reservoir permeability model has a square shape and
size of 10*x10%m, as shown in black in Figure 3-10. Boundaries and initial conditions
are set at constant pressure, and the producing well is fixed at the center (marked in
red). The model is discretized into 11x11 grids to solve the finite volume fluid flow
problem. Because we assume the production well is fixed at the center of the model,
we want to explore the problem’s non-uniqueness if we are to add another wellbore
for monitoring. Figure 3-10 labels the 121 possible well locations with question marks.
Which grid will result in the least measure of non-uniqueness if a wellbore is placed in
it? Figure 3-10b color codes the measure of non-uniqueness if the wellbores were to be
placed at each possible location. We choose the grid with the minimum non-uniqueness

value to be the optimum location of the second well (marked by a green circle). The
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simulated pressure data is then computed at these locations over several days.
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Figure 3-10: a) Reservoir space with the fixed red circle highlighting the production
well location. Question marks label the possible additional wellbore locations. b) the
measure of non-uniqueness of the inverse problem if the second well was placed at any
survey grid locations. The green circle represents the location with the least value of
the non-uniqueness measure chosen as a borehole location.

Afterward, we adopt the method described in the previous section to find the opti-
mum well sites that maximize equation 3.12. We aim to find a total of six wells for our
synthetic experiment, including the two well locations chosen using the non-uniqueness
measurements. There is no particular reason for deciding to optimize six well sites. Six
is not too large a number to run the synthetic experiment. Therefore, the second stage
of the method attempts to find the optimum locations of four additional wells. The
beginning of stage two relies on having an initial image of the permeability structure.
Therefore, we inverted the pressure data obtained from the starting two wells for the
permeability structure. The permeability can enable us to simulate the fluid flow in
the structure and, therefore, predict the pressure data for all discretized grids of the
model. Assuming the pressure data has Gaussian distribution, we can also estimate
the data’s probability for all grids. We can then compute the Shannon information
entropy and run the inversion multiple times to assess the spread of the resolution

matrix. Figure 3-11 illustrates how we achieved the optimum wellbores locations in
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several iterations. The top image displays the wells’ starting locations with the true
permeability reservoir model in the background. The curves in the central figures are
the observation data overlayed by the modeled data. The third column in the figure
presents the inverted images. After each inversion, we construct an information image
that displays the value of the E(a) + S(a) at each grid. The highest value in the
information map determines the location of the new wellbore for the next iteration.
We repeated the process four times to find the optimum location for six wellbores. At
the end of each survey, we invert for the permeability structure with the measure of
the model-RMSE (root mean square error between the inverted model and the true
model) and the data-RMSE (root mean square error between true data and predicted

data). A summary of the iterative survey is presented in Figure 3-11
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Figure 3-11: Summary of the four adaptive survey iterations. The first column of
figures on the left shows the true permeability structure, highlighting wellbore locations
in different colors. The number of survey iterations increases from the starting survey
at the top until the final iteration at the bottom. The second column graphs the
observed pressure data colored by the wellbore dot fitted by the best-inverted model.
The third column highlights the inverted model, given the pressure data at the wellbores
in column one. Finally, column four is the information map for the E(a) + S(a) at
each grid. The computation of the information maps happens after each inversion. The
black circles on the information maps mark the location of the newly added wellbore
for the next survey iteration.
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3.4.3 Discussion

The current advancement in computational powers enables engineers to model fluid
flow in a reservoir with higher accuracy and faster convergence. However, the inverse
process to the forward modeling will still have accuracy issues. The inversion will
mostly lead to a non-unique solution, especially for a model with many parameters.
Hence, matching the observed data with a unique model is impossible and comes with

the cost of the resolution.

With the described method in this study, we can expedite the characterization of
the reservoirs’ properties while aiming to find a unique solution. The demonstrated
experiment shows that the higher the complexity of the reservoir, the more accurate the
model and the less its data error. However, this comes with the cost of computation.
Figure 3-12 compares a different number of grids versus the data-RMSE, model-RMSE,
computation time, and parameter resolution. The model root means squares error
(model-RMSE) measures the image difference between the reduced model and the
true big model. The reduced model is scaled into the size of the big model to be
able to compute the difference. The spread of the resolution matrix, described in
Chapter 2, measures how well the parameters are resolved. The computation time
increases exponentially as the number of grid increase. The data-RMSE also shows
an exponential decrease in the error as the number of grids increases. However, we
have noticed that for specific grid sizes (50, 100, and 300), where the models are not
too small, the data-RMSE values are within the same error range. In contrast to
the exponential change of the data-RMSE, the spread and the model-RMSE decrease
linearly with the increase in the number of grids. Although in a real case scenario, we do
not have access to estimating the model-RMSE, it provided insights for the presented
synthetic experiments. Models with 1600 and 2500 grids are better at representing the
complex reservoir than the model with 6400 grids based on the model-RMSE. In the

end, we saw that most grids that are not very small and not too big are adequate and,
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in some cases, more accurate than large models in representing the true models with a

significant reduction in computation time.
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Figure 3-12: The data-RMSE, model-RMSE, spread, and CPU time resulted from
inversion for the reservoir parameter at a different number of grids. The filled circles
are the result of the inversion on a regular grid. The open circles are the results of
inverting the data on the irregular refined grid.

In the second section of this chapter, we introduced a method to optimize wellbore
locations. Our approach to optimizing wellbore locations is targeted toward better
data sampling to assist in inverting for a more accurate reservoir structure. The first
stage of the method can measure the non-uniqueness of any survey design. We ex-
plored the technique with one wellbore, making the problem more straightforward.
However, it is still possible to perform the analysis for multiple wellbores. It would
be, however, much more computationally expensive. The measure of non-uniqueness
is directly related to the forward operator and its embedded features (e.g., boundary

and initial conditions, size) and designs (e.g., location and number of wells). Also, the
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method showed the concept of utilizing the Shannon information entropy and the res-
olution matrix to optimize the wellbore placement in a hydrocarbon field. Figure 3-13
demonstrates inversion results for various randomly generated survey designs. Most
of these random designs have not outperformed our method. However, there are few
cases where well placement has produced a better-resolved model than the solution
obtained using our proposed method. Therefore, while the method does not find the
global optimum survey, as expected by a greedy-adaptive optimization scheme, it finds
a wellbore location configuration whose performance lies within the vicinity of the more
optimal designs.

One of the most significant advantages of this scheme is the ability to scale and
parallelize in terms of computation. The most time-consuming process is obtaining
the information map, which requires the calculation of the resolution matrix multiple
times. This process can be parallelized and reduce the computation time.

Finally, this method can be applied to any geophysical survey as long as we have
an accurate forward model and a stable inversion scheme. The presented example
assumes that the wellbore data follows a Gaussian distribution. This is not a limit-
ing assumption, as applying this method using other distributions is still possible by
modifying the probabilities in the computation of the Shannon information entropy.
Although this approach was applied to one type of problem, it can still be applied to

many geophysical and non-geophysical problems.
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Figure 3-13: The graph displays the model-RMSE from different distributions of the
four wells. The highlighted bar represents the model-RMSE for the design obtained
using our proposed method.
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Chapter 4

Joint Self-Potential and Fluid Flow
Inversion for Imaging Permeability

Structure and Detecting Fractures

4.1 Abstract

Detecting fracture locations and permeability structure of a subsurface reservoir ac-
curately could aid in optimizing production performance. Optimizing the performance
of subsurface groundwater or hydrocarbon reservoirs depends on having an accurate
characteristic map of the reservoir. In pursuing the history matching process, some-
one must utilize the available well data, such as downhole pressure and flow rate, to
estimate the reservoir characteristics that produce a response similar to the historical
data. The simulators often repeat the forward modeling process until good simula-
tion results match the historical data. However, matching the historical data is costly
and will likely lead to a non-unique reservoir model. We developed an algorithm that
jointly uses bottom-hole pressure data with surface Self-Potential (SP) measurements

to invert for (permeability) structure. SP is an inexpensive geophysical survey that
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enables one to invert for what is called subsurface source "geo-battery," knowing the
resistivity structure in the subsurface. This article presents different synthetic exper-
iments to show the improvement in characterizing reservoirs when different data sets

(borehole pressure and surface self-potential) are used.

4.2 Introduction

Fractures play an essential role as fluid corridors in groundwater and energy reser-
voirs, which makes the characterization of fractures critical for developing subsurface
fluid resources. The presence of clusters of fractures in an underground reservoir might
result in a variation in the flow rate. From an economic point of view, the variation
in flow rate can result in unstable economic returns. Interest in fracture characteriza-
tion has grown in recent years due to the growth of unconventional resources (Cueto-
Felgueroso and Juanes, 2013.) Characterizing the fractures can significantly aid in
optimizing the production performance of a reservoir. Various surface geophysical sur-
veys and underground logging methods can provide information about fractures in the
subsurface. However, imaging fractures with these methods is very complicated due to
the size of fractures, the contrast of the fracture properties to the surrounding mate-
rials, and the noise in the collected data. For instance, relying on seismic methods to
interpret naturally occurring fractures in a reservoir has significant uncertainty (Burns
et al., 2007; Alfred Lacazette et al., 2013). The high-resolution seismic survey might
be able to image large fractures but does not provide a probability of the fractures
being productive or permeable. Also, Imaging fractures with borehole logs lack spatial
resolution far from the boreholes. The sparsity of the borehole data limits the imaging
resolution of the fractures. Therefore, combining multiple measurements for char-
acterizing fractured geological reservoirs is more applicable. Conventionally, seismic
interpretation is independently used with fluid flow modeling to characterize fractures.

However, improvement in imaging fractures has been achieved on synthetic data when
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seismic scattered wavefield data is combined with flow data in a sequential framework
(Kang et al., 2016). Although the joint seismic-flow framework works well, the seismic
method is costly, and most migration and scattering imaging techniques have limited
capability in detecting multiple fractures (Hao Hu and Yingcai Zheng, 2018). Thus,
the alternative way is to obtain a different inexpensive geophysical measurement to aid
in imaging the fractures.

The passive Magnetotelluric (MT) or transient electromagnetic (TEM) methods
are methods that can be used besides the fluid flow data to explore the subsurface
fluid system. The currents in the subsurface can be detected using MT and TEM at
great depth at the cost of high resolution. An example of using TEM in characterizing
near-surface structures is discussed in (Colombo et al., 2008). However, using these
methods in a 2D or 3D environment is very expensive and time-consuming.

The self-potential method is a useful geophysical technique complementing the bore-
hole flow data because of its sensitivity to fluid flow in porous media and its simple
implementation. Joining two or multiple data sets in an inversion algorithm can fall un-
der two categories. 1) The parameters obtained from the different methods are similar
or linked by a relationship. 2) There is no apparent relationship between the differ-
ent parameters, but there is a structure similarity (Hyndman et al., 1994; McKenna
and Poeter, 1995; Linde et al., 2006; Irving and Singha, 2010). Both categories apply
in the case of jointly inverting fluid flow and self-potential data, unlike the fluid flow
and seismic, where only structure similarity could be applied. That is because There
is no accurate or unified relationship linking the seismic parameters to the fluid flow
parameters.

The observed surface self-potential (SP) signal is a function of the Streaming-
Potential properties of the rock/fluid couple and the gross electrical conductivity struc-
ture. This phenomenon is related to an electrical double layer (EDL)(Davis et al.,
1978). This double layer is formed by a Stern layer of weak or strong ions and a diffuse

layer in which the ionic concentrations obey Poisson-Boltzmann statistics (Chapman,
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1913). In fluid-saturated rocks, the mineral surface has net charges resulting from a
chemical reaction between the mineral and the pore fluid. In the presence of a pore
pressure gradient in porous media, fluid flow drags the electrical charges of the diffu-
sive layer. The drag creates an electrical current called the streaming current, which
is the source of an electrical field known as the streaming potential (Figure 4-1) (e.g.,
Ahmad, 1969; Morgan, 1989; Revil et al., 2003; Jardani et al., 2006). The streaming
potential can be measured in saturated or unsaturated conditions using a network of
nonpolarizable electrodes connected to a digital multichannel multimeter. (e.g., Alka-
feef et al., 2001; Vichabian and Morgan, 2002; Vinogradov and Jackson, 2011; Revil
and Mahardika, 2013; Morgan et al., 2019). Fluid behavior in a fractured medium
results in variations in the Self-potential signals. The fluid flow behavior in a fractured
medium directly affects the SP signals. Several experiments managed to record SP
responses by injecting water into a fractured aquifer (DesRoches et al., 2018). And
others used SP data to detect groundwater flow in fractures (e.g., Fagerlund and Hein-
son, 2003). In fact, (SP) method is the only geophysical method directly sensitive to
the flow in the subsurface (Revil et al., 2005). Therefore, the SP method is very appli-
cable for imaging fractures. The method of combining flow data with SP has been used
in hydrogeophysics in a growing number of publications (e.g., Wurmstich and Morgan,
1994; Suski et al., 2006; Jardani et al., 2006, 2009; Revil and Mahardika, 2013; Soueid
Ahmed et al., 2016). However, none of these studies have examined imaging frac-
tures by combining the different data sets. This chapter describes a method to detect
naturally occurring fractures in reservoirs and permeability structures by combining
borehole pressure data and SP surface data in a joint inversion solution. An accurate
method for forward modeling SP signals and fluid flow in fractures is essential. Several
synthetic experiments were generated modeling the fluid response and SP signals in a
fractured medium. The methods for modeling the synthetic data sets are explained in
section 4.3.1. The final inversion results will demonstrate how these two data sets can

aid in detecting the fractures and improve resolving of the permeability anomalies.
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Figure 4-1: Saturated rocks with fluid naturally develop an electric double layer.
The streaming current associated with the pressure gradient moves the positive charges
toward the right end, creating a streaming potential in the opposite direction.

4.3 Method

4.3.1 Forward modeling

The forward modeling of SP signals relies first on solving the fluid flow problem.
The fluid flow simulation solves the transient pressure diffusion equation in eq4.1, given

the fluid and the static rock parameters.

ll_Lv ' ([K]VP(IL',y, Z,t)) = ¢th + q(lE,y,Z,t) (41)

where g is the fluid viscosity in (cp), [K]| is the permeability tensor in (m?), P is
pressure in (psi), ¢ is porosity, and C, is the total compressibility in (psi—!). The
source/sink term ¢ has a unit of m®/s. The fluid flow problem is solved using an
existing Matlab tool (MRST (Lie, 2019)) in addition to our own finite volume solver.
The solver utilizes the embedded discrete fracture model (EDFM) method to model

fluid flow in fractured media (Hajibeygi et al., 2011).

Once fluid pressure is solved for the media, the SP response is modeled by solving
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coupled systems of equations (Sill, 1983). Pressure measurements are used as a Self-
Potential signal generator. If we assume that the only thing that carries a charge in

the subsurface is fluid, then the coupled problem is written as follows:

j = —oVU — AEKVP — AEDVC — ATEVT (42)

where j is the current density (A - m?), o is the rock electrical conductivity (s - m?!),
VU is the electrical potential gradient (V - m™!), VP is the fluid pressure gradient
(Pa-m™!), VC is the concentration gradient (M - m™!) and VT is the temperature
gradient (K- m™!). The terms (Agx, App and Arg) are the electrokinetic, exclusion-
diffusion, and thermoelectrical cross-coupling terms resulted from Onsager’s irreversible
thermodynamic theorem (Onsager, 1931; Bear, 1988). These cross-coupling terms are
functions of the electrical conductivity of saturated rock (o) and a coupling coefficient

denoted by (c):

Apk = ocgk,Agp = 0cgp, ATrg = ocrE (4.3)

The coupling coefficients introduced above are petrophysical properties measured in a
lab that relate gradients of pressure, concentration, and temperature to conductivity

by empirical relationships.

Following the continuity equation of an electric charge gives V - J = 0 (Sill, 1983).

By combining eq4.2 and eq4.3 while considering the continuity equation, we can write:

To simulate the Self-Potential (U), eq4.4 is discretized and solved for the given values
of o, coupling terms (cgk, cgp, cre), and (P,C,T). Pressure, concentration, and tem-
perature are obtained by solving Darcy’s law, Fick’s law, and Foriour’s law. In this

article, the concentration and temperature effects are ignored for simplicity. Therefore,
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eq4.4 can be reduced to the following;:

This is the Poisson equation of the self-potential field U. The right-hand side is the
source term associated with the pore pressure from fluid flow in a reservoir. Eq4.5 can
be solved analytically to compare the result with the finite volume method adopted
in this study. By treating the right-hand side of eq4.6 as a source (s) the equation

becomes:

V- (oVU) = s (4.6)

Assuming a 2D space, the solution to U(z, y) is solved by obtaining the green’s function

G(&,m, z,y) that satisfies the following equation with the boundary conditions.
V- (0eVG) =6(§ —z,n—vy) (4.7)

where ¢ is a two-dimensional delta function with £ and n as dummy variables. Solving
for the G enables the solution for the potential U (eq4.8). Detailed presentations of
green’s functions in solving differential equations are found in textbooks (e.g., Riley et

al 2002, Greenberg 2015 )

Uta,y) = [ [ Gl& ma,y)s(e,mdsdn (48)

A test model is considered to verify this study’s numerical finite volume method to
simulate the SP data. The result of the numerical method is compared to the analytical
solution. Consider a steady-state problem of a circular-grid reservoir with homogenous
fluid and electrical properties (Figure 4-2). Details of the reservoir parameters are
presented in Table 4.1. The model is bound by Dirichlet boundary conditions and has

a single source point in the middle. For this particular situation, the solution to the
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potential is in the form:

U(r) = ——in(r) + A (4.9)

207

where r = \/ (€ —z)%2+ (n — y)? is the distance from the source, and A is a constant
dependent on the boundary conditions. The source term (s) can be obtained by con-

sidering the steady-state version of the fluid flow (eq4.1).

parameters values units
Model
dimension x=1000, y=1000, z=10 m
initial pressure 100 bar
boundaries pressure@100 bar
source 1 m?/day
Rock
permeability k 10 mD
porosity .20
conductivity 0.001 S/m
Coefficient factor (cpr) le~S SNV
Fluid
density 1000 kg/m?
viscosity 1 cP
Total compressibility le ™ 1/bar

Table 4.1: The parameters used for modeling the validation example.

4.3.2 Inverse Modeling

The objective of the inverse modeling is to obtain a permeability structure of a
reservoir from the surface-observed SP signals and downhole pressure measurements.
The procedure involves subdividing the subsurface into prisms of equal size. Each prism
will have constant permeability. The fractures are represented as embedded layers and
not as grids. By altering the permeability at each grid and simulating the transient
pressure and SP signal, it is hoped that there will be a permeability structure that
matches some observed SP signals and pressure measurements. Figure 4-4 illustrates

the main steps taken in forward and inverse modeling.
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Reservoir Model

;-DDepth

1000

Figure 4-2: A two-dimensional circular homogenous reservoir model.

Assuming that the only unknown parameter in the subsurface is permeability k,

the forward problems are simplified by nonlinear forward operators; F' for pressure and
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Figure 4-3: Results of solving the fluid-flow and self-potential problem analytically
and numerically. a) A bird’s view showing the contour of the pressure by the analytical
solution (solid line) and numerical solution (dashed line). b) Contours of the potential
solved analytically (solid line) and numerically (dash line). c¢) The analytical and
numerical pressure solutions across the reservoir, where the (red line) is drawn. d) The
potential across the reservoir (red line) is solved analytically and numerically.

S for the self-potential.

d, = F(m),ds, = S(m) (4.10)

where m is a vector containing the subsurface’s permeability values at each discretized

grid. d, and d,, are the pressure data and SP data, respectively. The length of the
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Figure 4-4: Illustration of the forward and inverse modeling workflow.

vector d), is specified based on the number of observational wellbores multiplied by the
time steps. The vector d,, has a length defined by the number of SP data locations
multiplied by the time steps. The two data vectors are not necessarily the same length.
With the knowledge of the forward modeling of the two data sets, the goal of the joint

inversion is to obtain (m) that minimizes the objective function in eq4.11:

¢(m) =[| Wy(F(m) — dy) || + | Wep(S(m) — dyy) [I* +0® || Lm ||* (4.11)

The objective function ¢(m) is a summation of Ly norms for the different data sets with
a regularized term. The L, norm is usually a standard loss function in geophysics due
to its stability in finding a unique solution compared to the L; norm. The first term
(|| Wp(F(m)—d,) ||?) is the norm between the modeled pressure data and the observed
pressure data weighted by W,. The second term (|| W,(S(k) — ds,) ||?) is the norm
between the modeled SP data and the observed data weighted by W,,. The weight
terms; W, and W, are diagonal matrices with the reciprocal of the data uncertainty
populating the diagonal. The final term (a2 || Lk ||?) is a regularization term defined
by the regularization matrix L and a penalty parameter o (Tikhonov,1977). The

regularization matrix L consists of gradient fields in the z,y, andz directions to force
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parameters’ smoothing. The misfit guides the choice for the parameter « in the data
to lead the inversion convergence into the objective function minimization. The data

misfit is the root mean square error (RMSE) between the observed data d,, and the

RMSE — %,/Z(dobs —dy)? (4.12)

Eq4.11 can be simplified further by combining the operators, the observed data,

modeled data d,,.

and the weights into large matrices and vectors such as ds = [dpds,], G = [F'S], and
W = [W,W,.
¢(m) =|| W(G(m) — dos) ||* +o* || Lm |* (4.13)

The minimizing problem is solved in an iterative process. The perturbation of the pa-
rameter vector m is estimated using the damped least square method. The Levenberg-
Marquardt (Levenberg, 1944; Marquardt, 1964) method is adapted to update (a)in

each iteration.

4.4 Numerical Result

The synthetic experiments can provide verification and insight into the methods
described in Section 2. The objective of each experiment is different, and the analysis
of its result can assess the method’s usefulness. There are a total of three experiments
divided into two types of experiments; structure imaging and fracture detection. The
overall objective is to examine the improvement in estimating the reservoir flow param-
eters by jointly inverting the borehole pressure data and the Self-potential data. The
first experiment focused on estimating permeability anomalies in the reservoir. In the
rest of the experiments, the joint inversion scheme images naturally occurring fractures

In reservoirs.
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4.4.1 Structure Imaging Experiment

This experiment will attempt to invert for permeability structure in a confined
reservoir. For example, a realistic scenario to structure imaging might be identifying
fluvial channels. At the end of this experiment, we expect to compare images obtained
from inverting, single data sets, and two data sets. The synthetic data used for the
experiment results from simulating the forward models on the fluid-flow and electrical
models (Figure 4-5). The model is a 3D cubic model (dimension 1000 m in(z, y, and z)
with a homogenous background permeability and two structural anomalies; one has a
high permeability value, and the other is a low value. We introduced a producing well
at the model’s center and two monitoring wells on different sides. The depth of each
well is 500 m. The model’s top and bottom have a no-flow boundary condition, while
the sides have constant pressure conditions. The initial condition is set as a constant
pressure everywhere within the model, similar to the boundary pressure. The initial
pressure is 200 bars everywhere. We simulated the problem on a discretized regular grid
size (11x11x11) in z,y,and 2. We estimated the transient pressure data at the three
wells using the parameter presented in Table 4.2. In addition, the fluid pressure at all
grids of the domain has to be estimated as it will be an input for forward-modeling the

Self-potential measurements.

The parameters for the self-potential physical model are defined for the conductivi-
ties and coefficient factor (present in Table 2). The conductivities and coefficient factor
values are within the range observed for sandstone, similar to values used in (Sheffer
& Oldenburg). The self-potential data were estimated at surface electrodes spaced at
approximately 90 m, equal to the grid spacing. A reference electrode is placed far from
the experiment region, so the fluid flow does not influence it. The domain’s top and
bottom boundaries are set as insulated boundary conditions, while a constant voltage
is set at the domain’s sides to match the fluid flow’s constant pressure boundaries. The

simulation for both models, fluid flow and SP, span for a period of 20 days with data
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Figure 4-5: a) a 3D reservoir model with permeability anomalies. There are two
monitoring wells (red) and one production well (green). The black triangles represent
the locations of the SP electors. b) The pressure measurements with time at the three
well locations. c) Self-Potential distribution at the ground level is shown at different
simulation times. a) Self-Potential in mV after ten days of pumping fluid out of the
reservoir at 100 m®day . b) after 20 days of pumping.
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collected with an increment of one data point per day. Pressure data and SP data are
presented in Figure 4-5. The Self-potential data distribution is shown at two different

simulation times.

parameters value  units
Rock
Matrix permeability 100 mD
Anomaly permeability 10,1400 mD
porosity .10
conductivity 0.001  S/m
Coefficient factor (cpx) le—6 %%
Fluid
density 1000  kg/m?
viscosity 1 cP
Total compressibility le—4 1/bar

Table 4.2: Parameters details for the permeability structure experiment.

The method of jointly inverting the two data sets should aid in improving the
resolution of the permeability anomalies; at least, that is the expectation. The joint
inversion is compared against a result of inverting only the pressure data set. The
objective function inverting one data set does not differ much from eq4.11. The first
or the second terms in eq4.11 can be ignored depending on the data used. For this
comparison, the fluid flow problem is considered the individual data set; therefore,
the SP data norm is eliminated in eq4.11. The iterative process of inversion starts
with a homogenous model. The final image is the algorithm’s output stopped when
the RMSE (eq4.12) difference is small (< 107%) between the previous and the current
iteration. The RMSE resulting from inverting the pressure data only suggested an
almost perfect fit, although the inverted image differs from the true model. The overall
structure of the true permeability anomalies was not resolved, nor were their average
values. The pressure data from the three wellbores is insufficient to resolve the model’s
permeability. However, the addition of the SP surface data has performed better in
resolving a more accurate structure without adding more wellbores. The structure of

low anomaly at a shallower depth (Figure 4-6) has been delineated with the help of the
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SP data. Even though the deeper structure was not fully resolved, the joint inversion

still estimated a high permeability value.
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Figure 4-6: (al) is a 3D synthetic model with two permeability anomalies at different
depths. (a2) shows the inversion image of a shallow using data from the three wells.
(a3) shows the inversion results at a deep layer. The locations where SP measurements
were recorded are highlighted in triangles (bl). (b2) shallow inversion results from the
joint inversion method. (b3) joint inversion results at the deep layer.
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4.4.2 Fractures Detection Experiments

The presented experiments in this section investigate the effectiveness of adding a
surface SP to the pressure borehole data to image or detect random natural fractures

in reservoirs.

One Fracture Experiment

The simplest case to investigate fracture detection might be considering one fracture
in a reservoir. A computer-generated model of a reservoir with one fracture is built
to simulate the synthetic data. The model is populated with fluid flow and electrical
parameters for simulating the data.

The reservoir model has a homogenous background matrix permeability with one
fracture across the reservoir. The fluid flow parameters of the fracture are different
from the background parameters. Details of the properties of the model are presented
in Table 4.3. The relationship between the fracture permeability and its aperture is
based on the parallel plate model:

ky = — (4.14)

where k; is the fracture permeability and a is the fracture aperture. The other param-
eter in Table 4.3 are gathered from modeling experiments presented in (DesRoches et
al., 2018)

The solution for the pressure field is solved on a discretized three-dimensional grid
(21x21x3) with an extent of (500 m x 500 m x100 m) in the x, y, and z. The top and
bottom are no flux boundaries, while the model sides are set at constant pressure. The
transient pressure data are collected from three wells; two injecting wells at the corners
and one producing well at the center, as illustrated in Figure 4-7. Injecting wells are
labeled 'I," while producing wells are labeled "P". The perforation depth of all wells

is 50 m below the surface and set to pump fluid at constant rates. The two injection
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wells, I; and I, inject fluid into the reservoir at a rate of 100 m*/day and 300 m?3/day

respectively.
parameters value units
Rock
Matrix permeability 30 mD
porosity .10
conductivity 0.001 S/m
Coefficient factor (cpx) le—2 %%
Fluid
density 1000  kg/m3
viscosity 1 cP
Fracture
permeability le7 mD
porosity 1
Aperture 34e—4 m
conductivity 5e —2  S/m
Coefficient factor (cgk) 0.4
Total compressibility le—4 1/bar

Table 4.3: Details for simulating the one-fracture model experiment.
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Figure 4-7: Two views of the 3-Dimensional survey area. a) is an angled view of the
model showing the two vertical fractures and the locations of the wells. The production
well is placed center of the fracture. The injunction wells are located at the corners.
The permeability of the matrix is homogenous. The triangles are the location of the
Self-Potential electrodes. b) is a bird’s view of the survey area.

The SP measurements are collected at the surface grid (21x21), as illustrated by the

triangles in Figure 4-7. SP electrodes are spaced at 25 m covering the surface grids.
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Signals at each grid are referenced to a signal far away from the domain. Pressure
and SP signals are collected over five days, with logarithmic increments to capture the
pressure decrease at the first stage of the simulation. Figure 4-8 shows the pressure data
over five days and the SP data over two days. The SP signals clearly show significant

potential change at the location of the fractures.

a) b}

Pressure Data Self-Potential Data
w0 Day 1
230 I 05 &
X 400 s w0 S
g22of . R o E 3
— 300 3 K}
H I g =3
g2 > 200 b4 0o &
@ 0.5
& 3 3
200 ] 1 100
AR TS
1 -40
o0 . | L
107 102 10" 100 10' 100 200 300 400 500 100 200 300 400 500
Time (days) x(m) x(m)

Figure 4-8: a) shows the pressure in bars at each well. Two wells are pumping at
different constant rates. I; is injecting at 100 m®/day and I is injecting at 300 m?/day.
The production well is pumping at a 400 m*®/day rate. b) shows the recorded Self-
Potential signals at two different periods.

The high magnitude of the SP is in the middle, where fluid pumping is an indication
of streaming potential flowing in the opposite direction to the fluid flow. The inver-
sion was performed on a regular grid similar to the original grid used for simulating
the synthetic data. The only difference is in the fracture representation. When we
simulated the true synthetic data, we embedded extra fine grids on top of the regular
grid, to simulate the fractures’ effect. On the other hand, the inversion grid consists
of only the regular grid without the fine fracture grids. The first iteration in the in-
version starts with an initial homogeneous permeability model. Following the same
procedure as in the structure inversion (section 3.1), the iterative process was stopped
when there was no large change in the RMSE. The fracture location was not resolved
when attempting to detect the fracture with only the pressure data from the wells

(Figure 4-9). However, with the added SP data, the high permeability regions where
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the fracture is located were detected. Comparing the two solutions in terms of the
RMSE between the observed data and the modeled shows a significantly lower error
for the individual inversion of the pressure data. In the joint inversion, we are trying to
match different data sets with one model, so it is expected to result in a higher RMSE.
The two inversion algorithms performed their best to match the observed data despite

the accuracy of the final inverted image.

Synthetic Fracture Model Inversion Model (pressure) Inversion Model (SP + pressure)
RMSE = 0.002 RMSE =1717

Figure 4-9: (a) A 3D synthetic reservoir model is designed with one vertical fracture.
(b) Permeability structure resulted from the inversion using only the pressure data at
well locations. (c) Final permeability structure utilizing pressure and SP data in a
joint inversion. The Actual fracture locations are highlighted with a black line on the
inverted images.

Multiple Fractures Experiments

The number of fractures in a reservoir can affect the inversion result. The fracture
network in a reservoir can be complicated. In the previously presented experiment,
there was only one fracture. Therefore, the evaluation of the result was easy. A more
complex model is built to investigate the inversion approach (Figure 4-10).

The reservoir model used in this experiment to simulate the synthetic data is similar
to the model used in the one fracture experiment. The only difference is in the number
and the dimensions of the fractures. There are a total of ten randomly distributed

fractures. Each fracture was placed by randomly picking its two endings from the grid.
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a) b)

Figure 4-10: Two views of the 3-Dimensional survey area. a) Random fractures
are presented in a humongous permeability background model. The three wells are
highlighted by I, I, for Injection well number 1 and 2, and P for the production well.
The fractures have different orientations and parameters (aperture, permeability). The
triangles are the location of the Self-Potential electrodes. b) is a bird’s view of the
survey area.

The background matrix permeability is still homogenous. The Random fractures are
introduced in the domain with different permeability and apertures. The permeability
in the fractures ranges between (1 Darcy to 10e6 Darcy) and ranges in an aperture
between (3.4e-6 to le-2). The SP signal in Figure 4-11 does not show any changes
in the potential around the fractures as in the experiment (3.2.1). The existence of
multiple fractures in the reservoir has distorted the SP signal, so it is impossible to

distinguish different fractures by looking only at the SP data.

This experiment makes the difference between inverting single data sets and two
data sets even more evident (Figure 4-12). An overlay of the fracture network is
drawn on top of the final permeability image to help see the improvement in the
detection. The joint inversion approach outperformed the inversion of individual data
sets. The improvement in the result is judged based on the permeability value after
the last iteration and not on the final RMSE. Inverting the two data sets has shown
permeability variation near fractures despite the high RMSE compared to the inversion

of the pressure data. Unfortunately, because the domain has a small number of grids,
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Figure 4-11: The transient pressure and self-potential data computed on the multiple
fracture model. a) shows the pressure in bars at each well. Two wells are pumping at
different constant rates. I is injecting at 100 m®/day and I, is injecting at 300 m®/day.
The production well is pumping at a 400 m®/day rate. b) shows the recorded Self-
Potential signals at two different periods.

the exact location of fractures cannot be located. Fractures are minor in size compared
to the size of the grids. If the inversion is run on a finer grid, it would be possible
to locate the fractures with an improved resolution. However, this would be at the
cost of computation time and was not attempted in this experiment. The CPU time

is approximately increasing exponentially as the number of grids increases.

Synthetic Fracture Model Inversion Model (pressure) Inversion Model (SP + pressure)
RMSE = 0.012

Y » RMSE = 0.003

Figure 4-12: (a) A 3D synthetic reservoir shows multiple fractures. (b) Permeability
structure resulted from the inversion using only the pressure data at well locations. (c)
Final permeability structure utilizing pressure and SP data in a joint inversion. The
Actual fracture locations are highlighted with black lines on the inverted images.
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4.5 Discussion

The experiments demonstrated the inversion for the fluid flow parameters from a
single and two data sets. The derivation of the forward modeling in section 2 shows
the direct sensitivity between the fluid flow and the SP method. Therefore, the joint
inversion of the fluid flow data with the SP is particularly applicable to characterize
the fluid flow parameters. The inversion for the permeability using only pressure data
from a limited number of wellbores could not resolve the fracture locations or the per-
meability structure of the reservoirs. The number and the distribution of wellbores
are usually low and sparse. Therefore, inverting pressure data for the fluid-flow pa-
rameter lacks resolution, especially further away from the wellbore. With the SP data,
in addition to the borehole pressure data, the imaging of the permeability structure
is improved (Figure 4-6). The detection of high permeabilities at the fractures was
demonstrated in the experiment. The self-potential method has illustrated its effec-
tiveness in detecting fractures and imaging permeability anomalies. While our method
is somewhat targeted to solve a similar problem, previously studied by Ahmed et al.
(2016), the results shown in this chapter are extended to include fracture detection.
They extensively studied the effect of hydraulic stimulation by injecting fluids at dif-
ferent rates on joint inversion. With insufficient stimulation, they could not improve
the joint inversion results. On the contrary, the result in this article has improved
significantly with minimum stimulation, which was in the form of a constant injection
rate. The inversion algorithm performed its best to reduce the data residuals in all
cases regardless of the data provided. The RMSE between the observed and modeled
data is very small in all presented cases, even though the inverted images are differ-
ent. Because the true synthetic models are already known, it was easy to compare
the results of the two inverted images and decide which one was more accurate. In

reality, this comparison will not be possible because we do not know the true earth
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model. Therefore, a parameter resolution analysis is applied to estimate the accuracy
of the inverted parameters (Wiggins, 1972). The computation of the resolution matrix
R (eq4.15) can estimate how resolved the inverted parameter is compared to the true
one.

R=GG (4.15)

where G779 is the generalized inverse solution (Menke, 2010). R has a dimension m x m,
where m is the number of parameters. Ideally, the R would be an identity matrix for the
unique results. If the resolution matrix shows a spread of values around the diagonal,

it indicates inaccuracy and poor resolution (Figure 4-13).

1 ‘i, Good resolution t [ Poor resolution
) . Sy
A N
mj \[\ mj j\\—

\‘A\ \>~¢/\

\A\ A ,\QQ/\\
R FAS RN
v AN 4 S
< m > < p >

Figure 4-13: A schematic diagram showing two resolution matrices; a good resolution
matrix on the right and a poor resolution matrix on the left. The good matrix has
most of its values at the diagonal, while the poor matrix has more spread-out values.

The resolution matrices for the experiments are presented in Figure 4-14. These
matrices are slightly different than what we have seen before in Chapter 2. To describe
the main elements in the matrices, refer to Figure 4-15. Each row in the resolution
matrix shows how each parameter is a weighted average of the other neighboring pa-
rameters. By examining the resolution matrix, we see nine boxes. The three boxes in
the diagonal represent the three layers of the model. The off-diagonal boxes represent

the different layers too. The reason that this resolution matrix has this shape is related
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to the convention used in this study to order the grids. If we consider the middle row
(dashed black box in Figure 4-15), which represents the parameter at the center of the
model at Layer 2, it has weights from the neighboring parameters in Layers 1 and 3 in

addition to Layer 2.

Examining the resolution matrix for the one-fracture experiments in Figure 4-14
shows a different batched concentration of values. The concentration of values is found
near the location where the data is collected, especially at later 1 and 2. Consequently,
the parameters close to the observed data location have higher resolution than the
rest. The overall quality of the resolution matrix is computed by the Backus-Gilbert
spread function (Backus and Gilbert, 1967, 1968). The spread (eq4.16), is an L, norm

between the R and the identity matrix; I.

spread (R) = f: 3 (Ry; — I;)* (4.16)

i=1 j=1

In Figure 4-14, in addition to the image of the resolution matrices, we also write the
spread on each one. The spread was lower in both cases when the two data sets were

used for the inversion.

Overall, the described method is computationally very expensive as the big matrix
G in eq4.12 has to be computed at each iteration. This is one limitation of the joint
inversion problem, especially when the number of parameters increases. The G ma-
trix will become bigger and bigger as we decide to improve the modeling resolution.
Nevertheless, it is still faster than solving the fluid flow and seismic joint inversion
problem because of the direct relationship between the fluid parameters and the SP.
The problem with using seismic and flow data to model fluid properties is due to the
different relationships coupling the seismic to the fluid-flow parameters. A sequential
approach might be better used than a joint approach. The SP, on the contrary, is
directly related to the flow properties. Another limitation that could complicate the

inversion of the SP data is the complexity of the self-potential signals. It was assumed
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Figure 4-14: Summary of the inversions for experiment 2. The top figures represent
the one-fracture case, and the bottom figures are the multi-fracture case. In addition to
presenting the final inverted images, resolution matrix R is added below each inverted
image. The calculated spread indicates how accurate the inversion is. The lower the
spread-out the better-resolved the image.
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Figure 4-15: The inversion image of the one fracture model with the resolution
matrix. The resolution matrix shows that each row, representing one parameter, is a
weighted average of parameters from the three different layers. The black dashed box
shows spread-out values around the parameter located at the center of the model.

throughout this study that the self-potential signals are only related to the fluid flow,
disregarding the other forces explained in the equation 4.2. Including the other forces
in the inversion process will require solving the problem for more parameters. This is
still possible with the joint inversion scheme, but it is outside the scope of this thesis.
For instance, including the other forces might be necessary for modeling SP in geother-
mal systems where thermoelectric is in effect. The presented method does not search
for the location of the fractures, nor does it invert for their locations. It, however,
aids in interpreting the inverted permeability images for the fracture locations. In the
multi-fracture experiment, it was impossible to distinguish between the high and low
permeability fractures (Figure 4-12). It appears that only high permeability fractures
were detected. The multiple-fracture experiment was done again, with all fractures
having similar parameters. It resulted in better illumination of the fracture regions
(Figure 4-16). The method is susceptible to the permeability of the fractures. The
inversion with only the fluid flow data proves that fracture detection is almost impos-
sible with the available three wellbores in all cases. On the other hand, the added SP

data to the existing pressure data improved the confidence in fracture detection.
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Synthetic Fracture Model Inversion Model (SP + pressure)
b) RMSE = 0.03

a)

Figure 4-16: Results of running experiment 3.2.2 with all fractures having similar
high permeability values. a) the 3D model with multiple fractures. b) the permeability
image results from joint inverting of the SP and pressure data.
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Chapter 5

Joint Fluid-flow Seismic Inversion

Using Cross Gradient Method

5.1 Abstract

Optimizing a hydrocarbon reservoir’s performance depends on having an accurate
characteristic map of the reservoir. This map’s construction requires a reasonably pre-
cise match to the historical reservoir performance, such as pressure and production
rate. However, matching the historical data is costly and will lead to a non-unique
reservoir model. This chapter developed an algorithm that jointly inverts for the reser-
voir permeability and seismic velocity using a cross-gradient method. The results are

a more accurate reservoir model and an improved seismic image.

5.2 Introduction

A hydrocarbon-producing reservoir often goes through multiple stages as part of its
life cycle, spanning from exploration to production. In early stages, geoscientists de-

pend on field surveys such as seismic to explore hydrocarbon prospects. Interpretation
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of the prospects could include the structure of the reservoir in addition to the fluid flow
parameters (e.g., porosity & permeability). The flow parameters are an indication of
the producing quality of a reservoir. If a reservoir is successfully explored and hydro-
carbons are discovered, then the reservoir will be evaluated. At the evaluation stage,
multiple boreholes are drilled to reduce uncertainty related to the reservoir geometry
and characteristics. The drilled boreholes can also provide additional data from cores
or logs, helping to describe the reservoir’s complexity. Next, engineers and simulators
collaborate to develop a field mainly using economically viable solutions such as the
number of drilled production wells and their location. A preliminary reservoir model,
including the rock properties, is built using seismic and borehole data. This model
can aid in running many what-if scenarios to adopt the most appropriate strategy for
field development. Finally, the field will undergo the production stage, which might be
divided into different stages to ensure high hydrocarbon recovery.

During the production stage, the reservoir simulator can use the previously built
reservoir model to match the reservoir’s historical performance in the forward modeling
process. In forward modeling, a simulator attempts to simulate the fluid flow behavior
in a reservoir. The modeling process is repeated multiple times to update the reservoir
model until a good simulation from an updated reservoir model matches the historically
recorded data (Baker et al., 2006; Oliver & Chen, 2011).

There are some limitations to the sequential approach to history matching. There is
often minimum interaction between the different disciplines during the stage of history
matching. The seismic imaging used to obtain a preliminary model cannot resolve the
reservoir down to the scale of the fluid-flow parameter, making the interpretation of
the flow parameters difficult. Consequently, the model will not accurately capture the
fluid behavior in the porous media. Not only that but also, the image acquired from
the seismic data requires a stable and accurate algorithm with a relatively close initial
guess to the actual model.

Another limitation that was discussed by (Kowalsky et al., 2006) is related to the
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Figure 5-1: An overview diagram showing the stages leading to history matching

anisotropic nature of the seismic waves. The azimuthal variation in the traveling wave
might indicate different relative velocities for the same region and, therefore, can be

interpreted as different permeabilities.

The costly reservoir history matching process will also lead to a non-unique solution
(Tavassoli Z. et al., 2004). The inverse problem is ill-posed and challenging to find a
unique solution. Many reservoir models could result in an excellent match to the
historical data. Additionally, in the sequential approach, the models obtained from the
history match are never used to constrain or improve seismic imaging. There is a clear

separation between the process done by geoscientists and engineers (Figure 5-1).

Therefore, in this chapter, we adopt a simultaneous inversion method instead of
characterizing reservoirs with a conventional sequential process. Two different data
sets, surface seismic and down-hole pressure data, are used in a simultaneous joint
inversion algorithm to reduce the non-uniqueness and improve the resolution of the
reservoir image. The objective of the joint inversion scheme is to minimize multiple

data misfit functions while yielding a reasonable estimation of the model of interest.
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In geophysics, there exist two techniques for joint inversion. One method depends on
the direct relationship between two or three parameters, for example, seismic velocity
and conductivity (Nielsen and Jacobsen,2000; Moorkamp et al., 2011). The second
method, which we are adopting in this chapter, focuses on finding structural similarities
as described by (Haber and Oldenburg, 1997; Gallardo and Meju 2004). Gallardo
& Meju in (2007) used the cross-gradient to invert magnetotelluric and seismic data
jointly. (Gao & Haijiang, 2018) applied the method to cross-borehole seismic and DC
resistivity tomography. We will be testing a similar technique on synthetic seismic and
pressure data to examine the effectiveness and accuracy of the method in detecting
and imaging permeability structures.

There have been many studies done to understand the relationship between perme-
ability and compressional seismic wave velocities. Kassab and Weller (2015 ) concluded
that there is no clear relationship between the two parameters. Even establishing an
empirical relationship has not been successful. However, some studies attempted to
correlate the permeability to seismic velocity from various core data (e.g., Prasad 2003;
Kitamura et al. 2010, Hamada H & Joseph, 2020). While these attempts illustrated
a correlation, they are not applicable/relevant to all types of reservoirs. They only
fit certain rock types, such as sandstones, under specific conditions (eq, porosity, sat-
uration, mechanical properties of rocks). Therefore, we extended the cross-gradient
coupling to help resolve the reservoir permeability structure by enforcing a structure

similarity constraint rather than depending on a coupled relationship.

5.3 Method

The method is built on establishing accurate and stable forward and inverse mod-
eling algorithms for the fluid flow in porous media and for seismic imaging problems.
The fluid flow forward problem simulates the down-hole transient pressure in porous

media. We discretize the reservoir into regular grids and solve the fluid transport
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equation using a finite volume scheme (Peaceman, 2000).

Given the model parameters (porosity and permeability), we can formulate the fluid

flow simulation by the non-linear system (5.1):

d, = F(k) (5.1)

Where d,, is a vector of the transient pressure data, F' is the forward operator that
solves the finite volume discretization with prescribed initial and boundary conditions,

and k is a vector of the model parameters.

On the other hand, the seismic forward problem solves the acoustic wave equation
using a second-order accurate finite difference approximation and can be simplified by

the notation(5.2).

dy = G(v) (5.2)

Where d; is a vector of the seismic signals, GG is the forward operator, and v is a

vector of the model parameters.

In addition to these two equations, we will have to estimate the cross-gradient
structure constraint (eq5.3), which can be written as follows for a two-dimensional
structure:

t(z,z) = Vk(z, 2) x Vou(z, 2) (5.3)

By computing ¢(z,2), a 2-Dimensional image with cross-gradient values is esti-
mated. If these cross-gradient values are small, they indicate that the two models are
structurally similar. Even if there is a difference in the values of the parameters in the
two models, the cross-gradient will result in a measure of the similarity of the struc-
tures of the two models. Figure 5-2 illustrates an example of the cross-gradient using
two different models, one case where the structure is similar and the other where the

structure is different
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The adapted scheme in this study aims to minimize three objective functions; the
pressure residuals, the seismic residuals, and the cross-gradient objective function. The

objective functions can be written in permeability (k) and compressional wave velocity

(v).

ay(k) = [|[Wi(F(k) — dp)|| (5.4)
as(v) = [Wy(G(v) — dJ| (5.5)
al(k7 'U) = ”t(ka 'U)“ (56)

Each minimization equation depends on separate algorithms to solve. The term
|Wi(F (k) — d,)|| is the L, norm between the modeled fluid flow and the observed
pressure data weighted by Wy. The second objective function, ||W,(G(v) — dy)||, is
the L2 norm between the modeled and the observed seismic signals weighted by Wi.
The weight terms; W) and W, are diagonal matrices with the reciprocal of the data

uncertainty populating the diagonal.

The last objective function o (k,v) = ||t(k,v)| should disappear if the spatial gra-
dient of the permeability and velocity models point in the same direction. If there is
a difference in the structure of the two models, the values of the objective function
will deviate from zero. To illustrate the computation of the cross-gradient, consider
the different models presented in Figure 5-2. The cross-gradient of two similar struc-
tures should be zero even if the two structures vary in magnitude (Figure 5-2.a). The
difference in the structure will result in variation in the cross-gradient values (Figure
5-2.b).

The joint inversion method in this study does not combine the different data (seismic

and fluid flow) in a coupled system. Instead, we solve for each parameter k and
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Figure 5-2: The cross-gradient function on different models. a) Models with similar
structures but different magnitudes. b) Models with different structures and magni-
tudes.

v separately and constrain the results with the cross-gradient method in a separate
step. Because of the non-linearity of the inverse problem, we solve for the perturbed

parameters (dm & dv) in an iterative approach.

In Figure 5-3, we present an overview of the joint inversion algorithm. The joint
inversion algorithm starts with separate inversions for each data set. We perform
the full waveform inversion (FWI) for the seismic data to obtain an inverted velocity
model using a pre-existing open-source python code (PySIT: Seismic imaging toolbox
for Python (Hewett & Demanet, 2017)), and in parallel, we invert for a permeability
model from the pressure data using a least squares method. The separate inversions are
done iteratively until convergence to a solution is reached, in which the resolved models
represent permeability (k) and velocity (v). We numerically estimate the cross-gradient
sensitivity between the two models by slightly varying the structure and recalculating
the cross-gradient. Finally, a coupled system of equations is formulated to solve for the
parameter perturbation simultaneously while targeting to minimize the cross-gradient

objective function. The main calculation happens in the joint inversion step, where
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three systems of equations are solved (eq 4).

Start of the
inversion

Permeability
initial model

Velocity initial
model

uid-flow eismic
sensitivity sensitivity
calculation calculation

l Update
velocity

Update I
permeability

m_

YES

Terminate
Inversion

Figure 5-3: Overview flow-chart of the proposed joint inversion approach with the
cross-gradient constraint.
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wg 0 wyddys
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0 wel = | w,dvy (5.7)
ov
w, Ty w,T, —wyt
where J is the sensitivity matrix for the fluid flow populated by the partial derivatives of
the pressure data with respect to the permeabilities, I is an identity matrix. T = %’;}
and T, = %ﬂ are the sensitivity matrices of the cross-gradient function with respect

to the fluid-flow and the seismic parameters, respectively.

Unlike the formulation proposed by (Gao & Zhang, 2018), the formulation in this
study takes advantage of the sensitivity matrix J, computed in the previous step,
to improve estimations of the perturb permeability. In their formulation, the coupling
system updates the parameters based on the values obtained from the previous iteration

without considering the misfit in the data.

The different terms in the coupled system are weighted differently by the wy, wj,
and wy;. The weights are chosen by testing various values and finding the one that
minimizes the data misfits and the cross-gradient functions. The ranges of the weights
might differ based on different scenarios, where the amount of data or the magnitude

of the parameters are different.

The coupled system of the equation can be expressed by
Adm = dd (5.8)

where A is a large matrix consisting of the sensitivity and identity matrices.

wrJ 0
A=1 0 w, (5.9)
thk thv
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dm is a vector containing (dk & dv).

ok
om = (5.10)
v
And,
wyddy
6d = | w,du, (5.11)
—'U)Lt

In each iteration, the perturbation of the parameters is estimated using an SVD
(Hansen, 1999) factorization of matrix A in a regularized damped least square method

(Tikhonov & Vasiliy, 1977) as follows (Ren & Kalscheuer, 2020):

A=USV" (5.12)

sm = (VS2VT — eI) "'V S2Usd (5.13)

Where V' is a matrix having the right eigenvectors, U is a matrix with the left
eigenvectors, S is the diagonal matrix with eigenvalues populating the diagonal in
decreasing order. € is a damping factor, and I is an identity matrix. € controls the
rate of convergence towards a solution. The Levenberg-Marquardt (Levenberg, 1944;

Marquardt, 1964) method alters the € at each iteration.

5.4 Synthetic Results

We are testing our proposed method on numerical examples. The synthetic data
used for the inversion results from forward modeling of the fluid flow in porous media
and modeling the seismic reflection. Therefore, we need to set up two models; one

model for permeability and another for velocity. Each one of the models has property
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anomalies that are similar in terms of location and structure but different in value.
The synthetic reservoir model has a constant thickness and is set up in 2-dimensional
space. Also, it has three boreholes; two injecting wells and one producing at the center.
The three wells act as the source/sink term for the fluid flow simulation and serve as
the data point where the pressure is recorded. We simulated the fluid flow on a model
of size 1100x1100 m by discretizing the flow equation on 11x11 grids. The reservoir
has a constant thickness. Both initial and boundary pressure conditions are set to
constant. The duration of the simulation is run for 20 days. Only the pressure data
from the three wells will be used for the inversion. The inversion is performed using
the least squares method. We assume that all the other fluid parameters are known
except for permeability. The simulation result of fluid flow is presented in Figure 5-
5. The reservoir in Figure 5-5 shows the permeability structure on a log scale. The
pressure versus time curves are plotted, showing two curves with increasing pressure
with time as they represent injecting wells. The two injecting wells do not show similar
pressure curves due to the permeability anomaly’s variability. The anti-symmetry in
the permeability anomaly causes the pressure curves to behave differently on both sides
of the reservoir. The other curve is a producing well showing a decreasing pressure with
time.

For the synthetic seismic data, we generated a 3-dimensional velocity model. Within
the model, we embedded a 2-Dimensional model, representing the fluid-flow model. A
sketch diagram illustrating the two models is shown in Figure 5-4. We simulated
the seismic acoustic signals in the model and recorded the signals on the surface. A
recording station is placed at each grid on the surface, with a total of 121 stations. A
Ricker wavelet with a peak frequency of 10 Hz is the source in the center of the model
(Figure 5-6). The anomalies are placed in the exact locations where the permeability
anomalies exist. As discussed earlier, there is no generalized mathematical equation
correlating permeability to seismic velocity. Therefore, we randomly chose one of the

linear relationships from (Prasad, 2003) to relate the permeability to velocity values.
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Prasad (2003) has shown that many permeability-velocity relationships can be linearly
correlated under certain conditions indicated by the flow zone indicator (FZI). For

FZI = 1, the relationship is as follows:

a) b)

Fluid-flow Model Seismic-velocity Model

>

y | oz L
R

X | X

Figure 5-4: A sketch illustrating the dimension and the physical space of the models.
a) The permeability model is built in a 2-Dimensional space. b) The velocity model is
built in 3-Dimensional space. The x indicates the location of the seismic shot, and the
small triangles are the location of the receivers.

logy(k) = 4.05 — 0.75v (5.14)

The seismic data is computed on a model of size 1100x1100x1100m on 11x11x11
grids. The forward and inversion of the seismic signals are performed using the PySIT
python code. Figure 5-6 displays the shot gathers for all receivers. The length of the
seismic record is three seconds, where the sampling rate is set at six milliseconds.

After the pressure and seismic data were simulated using the "true" models, we
performed the proposed method Figure 5-3 to compare its result with an inversion
done on single-type data. Figure 5-7 shows the summary of the joint inversion scheme.

Figure 5-7.b & Figure 5-7.e present the results of inverting pressure and seismic

data for permeability and velocity individually. We did not apply the cross-gradient
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Figure 5-5: The true permeability model with the location of the injecting and
producing wells colored differently. The right figure shows the pressure curves with
time at each well (colored accordingly).

method in this individual inversion to constrain the structure. Clearly, the inverted
image miss interprets the anomalies’ value and shape. Both separate inversions have
done a decent job of detecting the different anomalies.

In Figure 5-7.c & Figure 5-7.f, we present the result of using the cross-gradient
joint inversion method. There is a definite improvement in the anomalies’ final images
for both models. In this particular case, we chose the following values for weights:
wy = 0.1, wy = 0.01, w, = 200 after examining various values for the weights.

The image root means square error (iRMSE) and data root means square error
(RMSE) can assist in estimating the overall improvement of the inversion results. The
true model used to create the synthetic data is known; thus, computing the error
between the inverted and true images is possible. The images resulting from the in-
dividual inversions show slightly higher iRMSE than what was constructed by joint
inversion, indicating that the joint inversion resulted in models being closer to the true
one. The joint inversion contributed to an almost 7% reduction in the iRMSE for the
seismic velocity model and an approximately 1% reduction for the permeability model.

Even though there is improvement in the overall parameter estimation indicated by
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Figure 5-6: The true seismic velocity model. The location of the shot is marked by

(X). The triangles are the locations of the receivers. b) The shot gathers, displaying
all the traces.

iRMSE, the RMSE data did show a slight increase.

— . . 2
’I,RMSE=\/E(mtrue A;nmversum) (515)

2 (da'tatrue - datamodel ) 2
N

RMSE =

(5.16)
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Figure 5-7: Comparing the individual inversion and the joint inversion method for
fluid flow parameter (permeability) and the seismic parameter (velocity). a) true model
in (x, y) plane with two permeability anomalies in milliDarcy. Pressure data are
collected from the two injecting wells and one producing well. b) inversion for the
permeability using only data from the three wells. ¢) joint inversion result for the
permeability using the cross-gradient method. d) (x, y) section of the true seismic
model used for the synthetic data. e) individual inversion for the seismic velocity. f)
joint inversion for the seismic velocity.

5.5 Discussion

The cross-gradient joint inversion method aims to minimize the structure difference
between the models (seismic velocity and permeability) and the data misfit simulta-
neously. The method works well if there is a similarity in structure, as shown in the
presented example. In real scenarios, this method would work to detect large-scale
features such as faults and channels because the seismic inversion does not resolve the

velocity to the scale of fluid flow parameters. Therefore, the cross-gradient method will
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not be effective in characterizing the small-scale heterogeneity of a reservoir. We have
demonstrated that the cross-gradient joint inversion method improves the results for
the case where two data sets are utilized. The improvement of the imaging is illustrated
by examining the (iRMSE).

Although this method is computationally costly, it shows that using a cross-gradient
can improve imaging of the seismic velocity and, in some cases, improve the perme-
ability estimation. The cost in computation is attributed to two main factors; 1) the
computation of the big matrix (A) in eq 5.8 and its singular value decomposition 2) the
estimation of the weighting values wy, w, and w; which require multiple runs to choose
the most appropriate values. However, the general method is very versatile because the
initial guess is a homogeneous model and can still resolve a reasonable solution. The
significance of the method is that it can be more useful in cases where there is more
data coverage for one of the surveying methods. In Figure 5-8, we examined a test
case with more observed pressure data from additional wells. The joint inversion result
shows a better-resolved structure, especially for the seismic velocity. The increase in
the number of wells enabled the algorithm to delineate the structure of the anomalies
better. There is almost a 16% reduction in the seismic velocity iRMSE with more wells
compared to 7% when there were only three wells. The permeability iRMSE also shows
a significant reduction of 26% compared to the 1% achieved with fewer data.

In the inversion algorithm, the relationship that was assumed to generate true mod-
els was not taken into consideration. Even though we know the relationship (eq 5.14),
we wanted to test the inversion for the two models regardless of such relationships. As
discussed earlier, there is no clear relationship linking permeability to velocity. Using
the cross-gradient inversion of the two models, we can estimate a relationship linking
the two parameters. The method presented in this chapter can assist in finding such
empirical equations. We used a non-parametric Gaussian process regression (Williams
& Rasmussen, 1995) to predict a relationship between the two parameters and esti-

mate permeability for a wide range of velocities. The cross plot of the velocity and
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Figure 5-8: Comparing the individual and joint inversion methods for fluid flow
parameter (permeability) and the seismic parameter (velocity). a) true model in (x, y)
plane with two permeability anomalies in milliDarcy. Pressure data are collected from
a total of nine wells. b) inversion for the permeability using only data from the wells.
c) joint inversion result for the permeability using the cross-gradient method. d) (x, y)
section of the true seismic model used for the synthetic data. e) individual inversion
for the seismic velocity. f) joint inversion for the seismic velocity.

permeability shows an almost linear relationship, which is expected considering that
the relationship used to create the models is linear. Let’s compare the fit of the esti-
mated parameters from the joint inversion to the fit from the individual inversion. The

joint inversion fit is closer to the assumed relationship Figure 5-9.

Therefore, we propose that inverting for seismic velocity and permeability through
the cross-gradient method can be used to determine a more accurate relationship be-
tween the two parameters. While a relationship might be deduced from well logs by

correlating the sonic logs to the core permeability, the joint inversion scheme can allow
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Figure 5-9: The velocity-permeability relationship from different inversion results.
The black line is the true relationship from eq5.14 used to build true models. The blue
line is the fit to the data from the individual inversion. The red line is the fit to the
data from the joint inversion results.
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us to infer a more general relationship of an entire field or a region.
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Chapter 6

Conclusion

The fluid flow modeling in porous media is an essential tool for predicting the future
performance of hydrocarbon reservoirs. Characterizing reservoirs’ properties, such as
porosity and permeability, is achieved with various geophysical and engineering meth-
ods. Geophysical surveys usually provide low-resolution characterizing of reservoirs
but have broad spatial coverage. Engineering methods such as logs observed from
wellbores can provide high-resolution information but are limited by the area around
the wellbores. Reservoir-scale property characterization with high resolution can be
achieved with history matching, where the parameters of the reservoirs are altered, so

the simulated fluid flow data matches the observed data.

In the first and second chapters of the thesis, we discussed using downhole pressure
data in inversion for the reservoir parameters. The use of gradient-based methods in
inversion was an effective choice. Levenberg-Marquardt algorithm allowed combining
the Newton’s method with the steepest descent for a fast and stable convergence to-
wards local or global minimum. The algorithm even provided better and more stable
convergence when the problem was modified for a log-scaled solution. We have no-
ticed the logarithmic scaling reduced the jaggedness convergence and made it more

durable because it smoothens the misfit space. The non-log-scaled problem, on the
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other hand, still converges to a solution but slowly and with significant fluctuation. A
similar result was seen in (Weelock et al., 2015), where the inversion of log-scaled MT
data outperforms the use of non-log-scaled data.

By the end of the second chapter, we demonstrated the problem associated with his-
tory matching. The solution to the inverse problem is highly non-unique and ill-posed.
Even with the regularization of the objective function, where it added a smoothening
constraint, the recovered permeability models are non-unique.

An added advantage to using the gradient-based inversion method is the ability
to compute the generalized inverse matrix explicitly and consequently compute the
resolution matrix (R). The model resolution matrix measures the closeness of the in-
verted preferred solution to the true model. Without the computation of the resolution
matrix, inversion results would be incomplete. There are many ways to evaluate the
quality of the R matrix. For no particular reason, we chose to use the spread (Backus
and Gilbert, 1967, 1968), which computes the norm between the R matrix and an
Identity matrix. Even though the R matrix can evaluate the quality of the inverted
results, in some cases, it is used to compare different inversion results, as demonstrated
in chapters; 2 & 3. Having the comparison as an objective, the various methods of
evaluating the R matrix won’t matter because the difference is relative. The study of
the R matrix for different inversions provided insight into how non-unique the fluid
flow inversion results. The first experiments were done to illustrate the non-uniqueness
and show how the model space (number of models) and the data space (amount and
quality of data) can result in different model resolutions of the same model. For exam-
ple, in the case where the locations of four boreholes were randomly shuffled, inversion
resulted in different resolved models. Thereby, the R matrix was used in later chapters
as a lens, in which we can see the differences between the unknown true model and the
best-inverted results.

Understanding the fact that non-uniqueness is an inherited problem in the inversion

of the reservoir parameters makes simulating the reservoir with a large number of grids
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\parameters counter-intuitive. Representing a reservoir with many parameters would
result in a broader space of non-unique solutions. Therefore, in chapter three, we
studied the reduction of the number of parameters to represent reservoirs with better
accuracy and with less expensive computations. In some cases, the reduction in the
number of parameters resulted in models that are as good as the complex model, if not
better. Reducing the 133x133 true model into a model with a size of 50x50 has visually
and quantitively (image-RMSE) represented the true reservoir better than the 80x80
model with an order of magnitude less in computation time. We demonstrated that
there is a different method for reducing the complexity. Using a non-regular griding
scheme demonstrated a slightly improved resolved model (less spread in the R matrix)
over the regular grids of more parameters. Nevertheless, it is visually and quantitively
not as good as the other higher models.

Not only does reducing the number of grids \ parameters enable a better representa-
tion of the reservoir, but through survey design, we have also seen that the inversion can
result in an improved resolved parameter. The two-stage approach for survey design
allowed us to seek high-content information and high model resolution by examining
various scenarios of wellbore placement. The method did not find a global optimum
survey design, though; it was in the local minimum. Because the approach depends
on an adaptive process, finding the global solution for all the wells at once was not
possible.

We have not looked into pairing the two sections of the second chapter to examine
the reduction of non-uniqueness. This could be the future direction towards which
we move for possible improvement. A disadvantage to the adaptive method for this
particular problem is related to the cost of acquiring new data from a new wellbore.
In many cases, the choice to drill a new well is to optimize production and not for the
sake of gathering new data. Alternatively, additional data from different geophysical
surveys can be added to constrain the borehole data. Chapter four has results of

complimenting the borehole pressure data with surface self-potential data.
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The limited spatial coverage for the boreholes can result in a poor resolution for
the reservoir parameters, especially away from the borehole locations. Combined with
borehole pressure data, the SP data improved the detection of permeability structure
not only for large anomalies but also for small features such as fractures. The sensitivity
of the SP method to the fluid flow in porous media provided a unique way to detect
fractures.

We implemented the resolution matrix analysis to differentiate the improvement
in the result of the joint inversion. Presented different scenarios in the joint inversion
study improved the final image of the permeability structure compared to inversion
of only pressure data despite high data RMSE. As discussed, SP signals studied in
this thesis are primarily the consequence of an electrokinetic mechanism. The other
coupled forces described by Onsager resulted from the microscale mechanisms (such
as thermoelectric and electrochemical effects) that may influence the signal but are
not included in our study. This effect might not be important in analyzing macroscale
features (such as fractures). Still, it may be useful for volcanic and geothermal settings
where a hydrothermal system is in play.

Considering that the SP method can cover a large surface area with a fraction of
the cost spent to acquire seismic data, it is suitable for real-case scenarios. Though
that does not mean the use of seismic data is not useful. Seismic data is the most
likely data to be available for most hydrocarbon fields. It just sounds reasonable to
take advantage of the seismic data.

In chapter five of the thesis, we used the surface seismic data to structurally con-
strain the inversion in a joint inversion process. There is no specific relationship to map
the permeability into seismic velocity and vice versa; therefore, applying a structure
similarity for the inversion of the two data sets (pressure and seismic data) seemed
plausible

We studied the use of a cross-gradient method in inversion for permeability and

seismic velocity. In the joint inversion workflow, we simultaneously minimized three
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objective functions related to the fluid-flow data residuals, seismic data residuals, and
the cross-gradient function. The workflow of the joint inversion accounts for the sensi-
tivity of the different systems with the proper weights and therefore avoids coupling the
two systems. We have better mapped the structural anomalies by testing the method
on synthetic data and comparing the result to the separated inversion. Throughout the
study, we demonstrated that the strength of the algorithm is in cases when there is high
data coverage of one of the data types. A crucial element that adds to the success of
the method depends on the weights. We essentially looked for only one weighing value
for each factor and kept them constant at all iterations. There can be an alternative
way that we have not explored in this study, and that is examining different weights
of the factors in each iteration. This will be obviously a time-consuming approach
because, at each iteration, the different weight values are tested to find the optimum
choice. At the end of this study, we showed that this method could be used to conclude
the relationship between the velocity and the permeability of an entire field.

Even though this thesis has attempted to study the non-uniqueness in fluid flow
through different approaches, combining the presented methods might result in a better
solution. In future pursuits, we can look at combining the various aspects of each
chapter into one problem. The joint inversion of SP data with pressure data can be
combined with the joint seismic fluid inversion in one algorithm. Also, the survey
design can be applied to improve the survey design for the SP and seismic data.

The real-world scenarios might pose more complicated cases than what was pre-
sented in this thesis. Most of the synthetic data used in our studies are noise-free and
recorded with higher precision than what can be recorded in the fields. This complica-
tion from real data will worsen the problem of non-uniqueness and limit our inversion
capabilities. Therefore, combining the different approaches is the best way to reduce

the non-uniqueness.
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