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Abstract

Due to the effects of climate change coupled with increased urbanization, many cities
will be experiencing more frequent and intense flooding in the future. As a result, it
would be very beneficial for urban planners to have a low-cost and efficient modeling
tool that can determine the flood risk at a granular level such as the census tract.
Boston is one such coastal urban city that will experience an increase in flooding.
Since each census tract in Boston is unique and varies in population and land use,
urban planners and policy makers must know which areas in Boston are the most
vulnerable to provide them with resources. This research proposes a machine learning
based model that evaluates the flood risk of census tracts in Boston. The overall
flood risk of a census tract is determined by aggregating relevant features such as
land cover data from aerial satellite imagery via semantic segmentation methods,
elevation, slope, and flow accumulation. In addition to these flood hazard features,
we also integrate flood vulnerability features from socioeconomic data and building
information for each census tract.
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Title: Professor
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Chapter 1

Introduction

1.1 Research Overview

The increased urbanization of the United States has resulted in the removal of soil

and vegetation and an increase in concrete spaces in the form of sidewalks and roads.

As a result, the volume, frequency, and intensity of flooding in urban areas has in-

creased [18]. The effects of urbanization coupled with rising sea levels and increases

in precipitation will result in frequent and severe flooding in the future. The wors-

ening of flood events due to climate change poses threats to vulnerable populations,

infrastructure, and transportation. Additionally, seaside urban cities such as Boston

are especially susceptible to damages from increased coastal and riverine flooding.

According to a climate vulnerability assessment of Boston, without stormwater

system improvements, over 11,000 structures will be adversely affected by stormwa-

ter flooding due to rising sea levels and increase in precipitation. Buildings that are

connected to a combined sewer system may face wastewater backup problems. Addi-

tionally, as a result of pooled water, it may be difficult to access buildings for refuge,

and seeking transportation may also be dangerous. The effects of flooding will be

especially felt by vulnerable populations such as those who are above the age of 65,

children, those with limited English proficiency, those in poverty, people of color, and

populations with disabilities [3].

Models that urban planners can use to evaluate the flood risk of specific census
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tracts can be very valuable for the preparation of flood events. This thesis proposes a

machine learning based flood risk model for Boston census tracts that utilizes features

extracted from aerial satellite imagery, socioeconomic datasets, building datasets, and

geographical datasets. It is beneficial to develop models that evaluate flood hazard

risk at such a granular level because urban planners can focus on high risk areas and

build flood mitigation architectures. They can also invest in better resources for those

areas such as storm walls, improved drainage systems, elevated residential buildings,

increased vegetation and green spaces, and more [18].

1.1.1 Problem Statement

To our knowledge, there is no low-cost tool for policy makers to evaluate flood risk

at the census tract level that utilizes both flood hazard features and vulnerability

features in the form of socioecnomic and building data. Such a model is important

because according to a 2022 study, there are many areas and properties that are out-

side of the FEMA flood risk zones that may be vulnerable to flooding. Additionally,

flood maps that are currently used to determine the flood risk of properties are based

on historic flood data. However, due to the rapid effects of climate change, these

models may not accurately capture the present and future risk of flooding nor adapt

to these effects [13]. Additionally, many flood risk models rely on only geographic and

environmental factors, yet a crucial aspect of flood risk includes social vulnerabilities

and building data.

1.1.2 Research Objectives

To address the problem, we propose a model that utilizes information from past

studies about factors that contribute to an increase in flood risk and aggregates these

features to create a tool for policy makers to evaluate flood risk at the census tract

level. The key topics of this research are organized in the thesis according to Table

1.1. Please refer to the locations in the table for more detailed explanations of the

research objectives.
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Table 1.1: The thesis is organized in the following manner

Objective Location in Thesis
Discussion of Flood Hazard Features

(Land Cover, Slope, Elevation, Flow Accumulation) Section 3.2

Discussion of Flood Vulnerability Features
(Socioeconomic and Building Data) Section 3.3

Aerial Imagery Dataset Information Section 3.5
Overview of Image Segmentation Models

(Segmenter, PSPNet, KNet) Sections 2.3, 3.6

Process for Finetuning each Model Section 3.7
Masking Algorithm for Aggregating Land Cover Results Section 3.8

Qualitative and Quantitative Segmentation Results Section 4.1
Flood Risk Model Output: High Flood Hazard Risk Census Tracts Section 4.2

Flood Risk Model Output: High Flood Vulnerability Risk Census Tracts Section 4.3
Flood Risk Model Output: High Risk Census Tracts (Overall) Section 4.4

Evaluation of Overall Flood Risk Model Results Section 4.5

A unique aspect of this flood risk model is that it takes environmental, societal,

and building features into account when determining a risk score. To provide context

to the rest of the paper, we define flood hazard and flood vulnerability risks. Flood

hazard risk is defined as a “quantitative or qualitative assessment of classification,

area and spatial distribution of flood” [23]. Therefore, flood hazard values are due to

environmental and geographic factors. In contrast, flood vulnerability is determined

by social and economic factors that increase the risk of damages from hazards for

individuals, communities or assets [27]. Features that are important for flood vulner-

ability are those related to socioeconomic factors and building characteristics. In this

research, we build a model that takes a weighted combination of these flood hazard

and vulnerability features to assign a single risk score to each census tract in the

Boston area.

For the case of modeling flood risk, we consider the following flood hazard features:

• Tree Area

• Grass Area

• Soil Area

• Building Area
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• Pavement Area

• Water Area

• Elevation

• Slope

• Flow Accumulation

In addition to these features, we take features that are a proxy to flood vulnera-

bility. More specifically, we look at the following socioeconomic features:

• Population of adults over 65

• Population of Children Under 6

• People of Color

• Female Population

• Limited English proficiency

• Population below the poverty line

• Foreign Born Population who are not US Citizens

• Disabled Individuals

We also process building vulnerability information such as the following:

• Building Height

• Building Type

• Building Age

18



Many of these features were collected using datasets provided by the city of Boston

as well as released data from the American Community Survey (ACS). However, the

information for areas of tree, grass, soil, building, pavement, and water were obtained

by semantically segmenting aerial satellite images. To develop this segmentation

model, we trained and evaluated three segmentation model architectures: Segmenter,

KNet and PSPNet. All three models have been pretrained on the ADE20K dataset:

a collection of labeled images consisting of 150 segmentation classes. However, these

images are all taken from a street view angle, whereas we want our model to work for

aerial view images. Additionally, the images span a much larger and diverse set of

objects as well as settings than what is necessary for this project use-case. Ultimately,

the model should be able to generalize its predicted segmentations to urban aerial

images consisting of the six relevant classes. From our experiments, we found that

the strongest performing model for the use case of segmenting urban satellite aerial

imagery is the Segmenter vision transformer model on a curated dataset. This dataset

is a combination of images and corresponding segmentations from the Kaggle Aerial

Semantic Segmentation Drone Dataset, Nearmap Map Browser, and Apple Maps.

After collecting the land cover data via the semantic segmentation model, the re-

maining flood hazard data from GeoTIFF rasters, and the socioeconomic and building

vulnerability from census data, we developed a model that aggregates these feature

values with weights to obtain a single risk value. The weights were assigned to each

value based on a literature review to understand which features contribute more to

flood hazard risk. More specifically, the relative weighting of the collected features

related to hazard was inspired by the feature ranking in Negese et al. (2022) [21].

Therefore, the ranking of hazard features that is used in this thesis from most to

least important is as follows: Elevation, Slope, Flow Accumulation, and Land Cover.

These weights can also be updated with more research in the field. Additionally,

as climate change worsens over time, it is possible that the contribution of certain

features towards flood risk changes.
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Chapter 2

Related Works

2.1 Flood Risk Modeling Approaches

Due to the effects of climate change exacerbating the frequency and intensity of floods,

urban flood risk mapping has been an area of interest in many works. For example,

there are flood maps made using hydrological and hydraulic models, GIS techniques,

and statistical models. However, these kinds of hydraulic and hydrological models can

be difficult to interpret, and the results are often beyond the technical understanding

of stakeholders and policymakers [20].

As a result, machine learning is gaining popularity as a tool to predict the prob-

ability of natural hazards since modeling based on statistical methods often make

unreasonable predictions as a result of simplifying the nature of some of these events.

In addition to floods, machine learning methods have been used to predict the likeli-

hood of hazards such as wildfires, droughts, earthquakes, and landslides [22].

For example, the authors of "Urban flood risk mapping using data-driven geospa-

tial techniques for a flood-prone case area in Iran", trained several machine learning

algorithms to predict the flood hazard and vulnerability levels across a town in Iran

[12]. There has also been work using Generative Adversarial Networks (GANs) to

produce photorealistic flood prediction images of different areas within the country.

These realistic predicted images are helpful for flood visualization and can improve

the adaptive capacity of cities [19].
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Machine learning architectures such as convolutional neural networks have also

been employed to make meaningful conclusions about satellite aerial imagery. For

example, building damage is a common effect of natural disasters, and post-disaster

assessment of such casualties can be helpful for preparing for future disasters. There-

fore, Wen et al. (2019) proposed an improved “Mask Region Convolutional Neural

Network” (Mask R-CNN). This CNN detects rotated bounding boxes of buildings and

segments the boxes from very complex backgrounds in Google Earth satellite imagery

[30].

Some studies have also taken advantage of Google Street View images in addition

to satellite imagery to classify building types. The GPS coordinates of the buildings

in aerial imagery are obtained using GIS, after which the corresponding Google Street

View image is found. Then, by fine-tuning a CNN that was pre-trained on the Places

dataset, the street view images of the buildings are classified by building type [17].

The use case of a building is an important flood vulnerability feature since residential

buildings are more prone to flood damage than commercial buildings.

The work in the paper "Deep learning neural networks for spatially explicit pre-

diction of flash flood probability" has used convolutional neural networks (CNNs) as

well as recurrent neural networks (RNNs) to create flood probability maps. Flood

probability maps are a useful tool for city planners since it can help with land cover

and use planning and mitigation strategies [22].

Our research does not make flood risk predictions based on historical data. In con-

trast, we use current flood hazard and vulnerability data from datasets. Additionally,

we use computer vision machine learning methods to find the land cover values.

2.2 Flood Risk Models that Weight Features

There are existing works that process features related to flood risk and use methods

such as the Analytical Hierarchy Process to find weights for each feature to obtain a

final risk value. For example, "Flood Susceptibility Mapping on a National Scale in

Slovakia Using the Analytical Hierarchy Process" creates a map of regions in Slovakia
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that are susceptible to flooding. In the paper, seven flood conditioning factors are

chosen: distance from rivers, river network density, flow accumulation, elevation,

slope, curve number, and lithology. Using the Analytical Hierarchy Process, the

results from the paper determine that slope is the most important criteria affecting

flood susceptibility in a region followed by river network density, distance from rivers,

flow accumulation, elevation, curve number, and lithology [29].

A similar paper, "Potential flood-prone area identification and mapping using GIS-

based multi-criteria decision-making and analytical hierarchy process in Dega Damot

district, northwestern Ethiopia" also weights features using the same technique for a

different area in the world. This paper analyzes a larger number of features and are the

following: elevation, slope, flow accumulation, distance from rivers, annual rainfall,

drainage density, topographic wetness index, land use and land cover, Normalized

Difference Vegetation Index (NDVI), soil type, and curvature. However, the order of

features they found the most important were different from the ones in Vojtek et al.

(2019). This paper found elevation to be the most important factor followed by slope,

flow accumulation, annual rainfall, distance to rivers, drainage density, topographic

wetness index, land use & land cover, soil types, NDVI, and curvature [21]. There

exists more related works in this category, yet each of them have a different collection

of flood related features that they analyze, as well as inconsistent relative weightings

for the features that do overlap between the works.

2.3 Semantic Segmentation

There exists several different semantic segmentation architectures and algorithms

and the field has been growing and progressing at a rapid pace. One earlier image

segmentation model architecture is the Pyramid Scene Parsing Network (PSPNet)

presented at CVPR 2017. PSPNet aims to tackle the challenge that CNNs face

when encountering diverse scenes. This occurs because these models often fail to

exploit global contextual information due to the small empirical receptive fields of

CNNs. To combat this, PSPNet proposes a pyramid scene parsing network which
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serves as a global contextual prior. Traditional CNNs have a global average pooling

layer, which is not enough to cover the necessary information in complex scenes. The

PSPNet paper introduces a pyramid pooling layer, which constructs a hierarchical

global prior that consists of information from different regions and along multiple

scales. The different levels of features are then concatenated to create the output of

the pyramid pooling global feature [32].

A more recent image segmentation model architecture is KNet which was pre-

sented at NeurIPS 2021. KNet does both instance and semantic segmentation through

the use of learnable kernels. Each kernel is randomly initialized and learns a mask

for an instance or stuff class. Some of these kernels are instance kernels whereas

others are semantic ones. Using these two kinds of kernels allows for panoptic seg-

mentation —a combination of instance and semantic predictions. During the forward

pass through the model, the image features are convolved using the kernels to get

the segmenations. The kernel update process is done dynamically so that they are

conditional to their activations. This dynamic process makes the model kernels more

discriminative which leads to better segmentation performance. For assigning the

target to each kernel, KNet employs a bipartite matching strategy. This is an advan-

tageous method because it creates a one-to-one mapping between kernels and image

instances, therefore avoiding cases where one kernel maps to many instances in the

image [31].

In addition to CNN based methods, there have also been the rise of Vision Trans-

former (ViT) models for image segmentation tasks. For example, "Segmenter: Trans-

former for Semantic Segmentation" (ICCV 2021) is one such model that uses a vision

transformer instead of CNNs. One drawback of CNN based segmentation models is

that the localized nature of the kernels often miss the global information of the image.

Therefore, Segmenter frames the problem of semantic segmentation as a sequence to

sequence problem and uses an encoder-decoder transformer structure to map patch

embeddings to semantic class annotations. First, each image is split into a sequence of

patches, and each patch is flattened to be a vector. Each patch vector is then projected

to obtain a sequence of patch embeddings. To learn positional information, which is
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lost when splitting an image into patches, a learnable positional embedding vector is

concatenated to the sequence of patches. The transformer encoder then encodes this

sequence using a multiheaded self attention layer and a point-wise Multi-Layer Per-

ceptron (MLP). This encoded information is then passed to the transformer decoder

which learns to map each patch encoding to a patch level class score. The patch level

scores are then upsampled to obtain a class-score at the pixel level. Although vision

transformers require large datasets to train, Segmenter pre-trained on a large dataset

such as ADE20K only requires a moderate sized dataset for finetuning. [28].

After reviewing the literature, we find that there has been minimal to no work to

our knowledge in determining the flood risk of an area by aggregating relevant features

from satellite image data through semantic image segmentation. Additionally, the

combination of these image features with socioeconomic and geographic datasets as

well as building data to determine the flood risk at a granular level is another novel

aspect to this study. This is because the majority of flood risk mapping is done at the

city level, and building features are rarely used. Another existing problem in flood

risk mapping and land cover studies is that acquiring detailed land cover data from

GIS systems is labor intensive and expensive [26]. Therefore, it is more difficult for

poor countries to hire manpower to collect this data. In contrast, using a trained

image segmentation model on aerial imagery would be much cheaper and less time

consuming. To reiterate, one of the main research contributions in this thesis is an

image segmentation model trained on urban aerial imagery that classifies each pixel

into one of six relevant categories: building, trees, grass, pavement, soil/Earth, and

water.

There is also an abundance of aerial satellite imagery in the form of Google Maps

and Apple Maps. Therefore, there is plenty of available data to run the image segmen-

tation models on. Additionally, we combine more relevant flood features than existing

studies to determine the flood risk. Utilizing these features that directly influence the

flood hazard and vulnerability risks can give a more clear and comprehensive picture

of the flood risk of an area.
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Chapter 3

Methods

3.1 Overview

The objective of this chapter is to give an in-depth description of the project methods.

To reiterate, the main contribution of this research is a flood risk model that utilizes

several flood hazard and vulnerability features across Boston area census tracts. The

features we collect can be organized into flood hazard and flood vulnerability features.

Below we show the category that each feature falls under:

1. Flood Hazard Features

(a) Urban Land-Cover

i. Building Area

ii. Grass Area

iii. Tree Area

iv. Pavement Area

v. Soil Area

vi. Water Area

(b) Elevation Data

(c) Slope Data

(d) Flow Accumulation Data
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2. Flood Vulnerability Features

(a) Socioeconomic Data

i. Older adults (Over 65)

ii. Children (Under six)

iii. Limited English Proficiency

iv. Individuals Below Poverty Line

v. Disabled Individuals

vi. Female Population

vii. People of Color

viii. Foreign Born Population (Non-US Citizen)

(b) Building Data

i. Building Height

ii. Building Age

iii. Building Type

To find the urban land cover of Boston, we find the areas of grass, tree, building,

pavement, soil, and water from satellite aerial images of Boston. For the remaining

flood hazard features, we find the average elevation, flow accumulation, and slope

of each census tract using raster datasets. Along with these flood hazard related

features, flood vulnerability features such as socioeconomic data and building data

were also collected and processed. These particular flood hazard and vulnerability

features were chosen after a literature review of factors that affect flood susceptibility.

Additionally, all of these features had datasets available for the Boston region. This

chapter will go into more detail over why the above features were chosen and their

impact towards flood risk. Figure 3-1 displays an overview of the flood risk model

and all the features that are used in the model to find the flood risk of census tracts.

The aerial images of Boston are fed through a fine-tuned Segmenter ViT to obtain

the percentage of buildings, trees, grass, pavement, and water for each census tract.

These values are inputs to the flood risk model, which essentially weights the features.
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The other relevant flood hazard data are the elevation, slope, and flow accumulation.

Lastly, features related to flood vulnerability such as socioeconomic data and building

data are also inputs to the flood risk model. The flood risk model weights all of the

features and outputs a risk value for each census tract. These risk values are then

sorted to find the census tracts that are most susceptible to flood risk.

Figure 3-1: Diagram displaying the inputs and outputs of the flood risk model

3.2 Flood Hazard Features

This section outlines the features collected that relate to flood hazard. Flood Hazard

is risk that is due to environmental and geographical factors and they correspond to

the severity of a flood in a certain location. However, they do not provide any insight

on how the people and infrastructure in an area are affected.

3.2.1 Land Cover

Urban land is characterized by large spaces of concrete roads and sidewalks as opposed

to greenspaces and vegetated areas. In this section, we describe the types of land cover

features we are interested in. To find the values of each feature, we trained an image

segmentation model that detects the areas of each land cover type from aerial images.
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Trees

According to some studies, trees planted in urban settings can mitigate runoff and

flooding. In general, it is more desirable for cities to invest in green infrastructure than

traditional flood mitigation devices such as barriers and drains. The study showed

that cities with more trees and greenery do well in storms because trees can absorb

water and also intercept them through their canopies and roots. Additionally, trees

store water in their leaves and release it slowly through evaporation. As a result,

urban locations with more trees see reduced runoff from storms. A study in British

Columbia showed that trees are able to intercept 50 to 60 percent of rainfall [10].

Therefore, it is probable that neighborhoods and census tracts in Boston that have

an abundance of trees and greenery can fare better in flood events.

Soil and Grass

Areas with soil, grassland, and other forms of vegetation are responsible for capturing

a portion of rainfall as well as flood water that falls on it. By segmenting the satellite

data for these areas of vegetation and soil, we find the percentage of pixels that are

classified as soil and grass as opposed to the pixel percentage of concrete areas. If

there is a higher percentage of pixels classified as soil and grass than concrete, the

lower the flood hazard of that census tract. [15].

Concrete Spaces

As mentioned before, concrete spaces are not ideal for flood risk mitigation because of

their lack of ability to absorb water. Therefore, knowing the area of concrete in each

Boston census tract is valuable information for determining the flood hazard risk of

that area. The fine tuned semantic segmentation model is able to identify paved and

concrete areas such as roads and sidewalks.
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Water

Areas that are closer to coasts and and bodies of water will be hit harder during

coastal flooding events. Additionally, the levels of water bodies such as rivers increase

during rainfall events. As a result, overflow into surrounding areas often occur [27].

Therefore, a census tract containing water is at a higher flood hazard risk than a

census tract that is farther from bodies of water.

3.2.2 Elevation

Census tracts that are closer to sea level will face higher inundation levels due to

rainfall. Additionally, lower elevation areas are also more susceptible to flooding

due to the effects of gravity influencing the flow of water from higher to lower lying

regions [27]. Raw elevation data was obtained from EarthENV as a GeoTIFF file

at a resolution of 1 KM, and the data itself is from the Global Multi-resolution

Terrain Elevation Data (GMTED2010).1 A shapefile of the Boston census tracts

was used to mask and crop the elevation raster file to find the average, minimum,

maximum, and median elevation values for each census tract 2. More specifically,

the rasterio.mask.mask module was used to do this, and the elevation values in the

raster are expressed in meters from sea-level.

3.2.3 Slope

Previous work measuring flood risk determine that the slope of an area is a key

factor in flood susceptibility. Slope is the change in elevation between two areas, and

locations that have low elevation and low slope values are more prone to flood risk.

Low slope areas tend to store runoff accumulated from the higher slope areas. In

contrast, areas with a steeper slope can dispose of runoff water due to it flowing down

the land with a larger velocity [24]. Slope data was also obtained from EarthENV in

the GeoTIFF format at a resolution of 1 KM. The original source of the data is the

1https://www.earthenv.org/topography
2https://data.boston.gov/dataset/census-2020-tracts

31

https://www.earthenv.org/topography
https://data.boston.gov/dataset/census-2020-tracts


Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Similar to the

process for calculating elevation, for each Boston census tract in the shapefile, the

geometry for the census tract polygon was used to mask the Slope GeoTIFF file and

calculate the average, maximum, minimum, and median slope values in degrees.

Figure 3-2: How Flow Accumulation is represented in a raster file

3.2.4 Flow Accumulation

Rainfall and precipitation are relevant features that contribute to flooding. However,

it was difficult to find precipitation or rainfall datasets at the census tract level because

most rainfall data is reported at the city level. In contrast, flow accumulation is a

measure that is better suited as a feature for flood risk. Flow accumulation is an

algorithm that determines the upstream contributing cells to each cell in a raster.

It is a measure of how many cells will drain into a given cell shown in 3-2. Flow

accumulation has also been used as a feature in other flood risk models and an increase

in flow accumulation reflects an increase in flood susceptibility [29]. The raw data

was in the format of a GeoTIFF file obtained from HydroSHEDS 3. To find the flow

accumulation for each census tract, the GeoTIFF file was masked and cropped with

the shapefile containing the Boston census tracts. For each census tract, the average,

3https://www.hydrosheds.org/hydrosheds-core-downloads
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maximum, minimum, and median flow accumulation values were calculated in number

of cells.

3.2.5 Weighting Flood Hazard Features

Before weighting the flood hazard features, we normalize the values to be between

0 and 1. Then, we use weight values that mirror those used in other flood model

literature. For example, the study "Flood Susceptibility Mapping on a National

Scale in Slovakia Using the Analytical Hierarchy Process" uses analytical hierarchy

process to find the weights of their flood specific features. They find slope degree

to be the most important feature, followed by river network density, distance from

rivers, flow accumulation, elevation, curve number, and lithology [29].

There are other studies as well that use analytical hierarchy process to find the

weights for features relevant to flood risk. However, there is no consistent weight-

ing of features, and the ordering of feature importance also varies. For example in

"Potential food-prone area identifcation and mapping using GIS-based multi-criteria

decision-making and analytical hierarchy process in Dega Damot district, northwest-

ern Ethiopia", the order of features is the following: Elevation, Slope, Flow Accumu-

lation, Annual Rainfall, Distance to Rivers, Drainage Density, Topographic Wetness

Index, Land Use and Land Cover, Soil Types, NDVI, and Curvature [21]. For this

research, we pick weights that reflect those in this paper. This is because the features

we processed are a subset of the features that are weighted in that study.

3.3 Flood Vulnerability Features

In contrast to flood hazard, flood vulnerability is a measure of how the same flood

event affects different groups or areas. For example, areas with a higher population

of marginalized individuals or places that have weak building structures, have higher

flood vulnerability levels. This section details the different flood vulnerability features

processed in this research and why they are important.
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Building Feature Possible Values

Building Type Industrial Residential (Mixed-Use) Residential Vacant Commercial Public & Quasi-Public

Building Height [1, 2) floors [2, 6) floors [6, 10) floors 10+ floors

Building Age Pre-1915 1915-1949 1950 - 1979 1980 - Present

Table 3.1: Possible values that each of the building features can take

3.3.1 Building Features

As mentioned in the introduction, a climate vulnerability assessment of Boston found

that over 11,000 structures will be adversely affected by stormwater flooding as a

result of rising sea levels and an increase in precipitation [3]. Therefore, a large

indicator of the flood vulnerability risk of a census tract is the type of buildings

that exist there. This section discusses the building information we processed as well

as how they specifically contribute to flood vulnerability risk. All of this building

information was obtained from the Boston Buildings Inventory Dataset [2] which is

in the form of a CSV file. We processed the dataset for three features: building

height, building type, and building age. The possible categories that each building

feature falls under is listed in Table 3.1.

Building Height

If there is a higher density of taller buildings in a location, then the individuals in

those buildings can seek refuge at higher floors in the event of a flood. It is difficult

for people to evacuate their homes during a flood to find shelters or buildings. This

is especially true in the case of flash floods which can occur within 3 hours of heavy

rainfall. Therefore, the height of buildings is a relevant feature that gives insight

to the vulnerability of a census tract to flooding. The Boston Buildings Inventory

dataset contains a mapping between the building ID number to the census tract

number it belongs to as well as the number of floors the building has. To process this

data, we decided to divide the number of floors into 4 buckets: 1 floor, 2 to 5 floors,

6 to 9 floors, and greater than 10 floors. Then, we iterated through the buildings and

placed each in their corresponding buckets. We also kept a count of the total number

of buildings in each census tract so that the counts in each height bucket could be
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converted to percentages.

Building Type

If there are more residential buildings in an area, there is a higher flood vulnerability

risk. The City of Boston’s Climate vulnerability assessment says that the “majority

of loss expected throughout the city will be to residential and mixed-use properties”.

This is especially concerning when these buildings house over 88,000 people [3]. Ad-

ditionally, buildings such as universities, government buildings, fire stations, police

stations, malls, and office buildings are more resistant to flood related damages. This

is because these structures are often larger, and their foundations are usually deeper

in the Earth. Additionally, they are more sophisticated and have more expensive

mechanical, electrical, and plumbing systems that are more resistant to damage from

natural disasters. The Boston Buildings Inventory dataset categorizes each building

as one of the following six use-cases: Public & Quasi-Public, Residential, Residential

(Mixed-Use), Vacant, Commercial, and Industrial. Similar to processing the building

height information, we aggregated the percentage of buildings in each census tract

belonging to each of the six categories.

Building Age

A study of flood risk in three neighborhoods in Bangladesh has shown that there is a

statistically significant relationship between the age of a building and flood damage

[14]. The study shows that 64.3% of buildings in the area that were between 0 and

5 years old had low damage after a flood event in contrast to 7.7% of buildings

between 16 to 20 years. Therefore, a census tract that has a higher proportion of

older buildings is more likely to be vulnerable to flood risk than a census tract with

newer buildings. The Boston Buildings Inventory dataset has a record of the age

of buildings and sorts each into one of the following 4 groups: Pre-1915, 1915-1949,

1950-1979, and 1989-Present. We grouped the buildings in the same census tract

and found the percentage of buildings in that census tract belonging to each of the 4

buckets [2].
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3.3.2 Social Vulnerabilities

In addition to the types of buildings in a census tract, there are also many social

factors that influence the flood vulnerability risk of an area. These include, older

adults, population with limited English proficiency, people below the poverty line,

disabled individuals, female population, people of color, foreign born population who

are not US Citizens, and children under the age of six. Here we explain why these

socioeconomic features are necessary to collect to evaluate the flood vulnerability risk

of an area. These results were obtained by processing data collected by the American

Community Survey (ACS) in 2020.

• Older adults (Over 65) are more prone to physical vulnerabilities. As a

result, it is difficult for them to evacuate in the case of natural disasters such

as floods [6].

• Limited English Proficiency: If someone struggles to speak or understand

English, then they might not be aware of news of natural disasters occurring.

Therefore, it may be too late for them to prepare. Having limited proficiency

in English may also make it difficult to communicate with emergency personnel

[6].

• Low to No Income: If a family has limited financial resources, it can be

difficult to prepare for floods or help out neighbors and/or friends [6].

• Disabled Individuals: It can be difficult for people with disabilities to prepare

for natural disasters, including moving to a safer location. They are also more

likely to face discrimination in times of crisis such as a flood event [6].

• People of Color: Areas with a greater population of people of color are more

vulnerable to flood risk. Majority of Boston’s population are people of color

(53%). Statistically, people of color have lower levels of income than average.

Additionally, they are more likely to live in areas that are affected by flood

damage due to policies like redlining [6, 7].
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• Female Population: The paper "Flood-Induced Vulnerabilities and Problems

Encountered by Women in Northern Bangladesh" discusses how gender inequal-

ity plays a part in how women and men are affected by floods [9]. The study

finds that women, especially poor and disadvantaged women, are more vulner-

able to disasters in general. They often suffer more physical injuries from flood

related damage and also experience harassment and violence in flood shelters.

Although this study is specific to areas in Bangladesh, gender inequality exists

worldwide.

• Foreign Born Population (Not US Citizen): People who are not US Cit-

izens but born in a foreign country are more vulnerable because they often fall

under the category of people with limited English proficiency. Additionally,

immigrants who are undocumented may also be hesitant to seek help from law

enforcement or emergency personnel due to fears of deportation [6].

• Children Under Six Years Old: Families who have very young children

require more assistance and support during disasters such as flooding. Children

are also more vulnerable from stress after a natural disaster [6]

We used a 2020 census dataset from the American Community Survey (ACS) to

calculate these values for each census tract. We downloaded the shapefile that includes

socioeconomic details at the census tract level for the state of Massachusetts.4 To

process the dataset, we filtered the shapefile to only consider census tracts in Suffolk

County. The shapefile had many table headings in the format of a string code. We

mapped the string code to the actual value using a reference text file and found the

string codes that are relevant for each feature.5. For example, for population over 65,

we had to aggregate the male and female populations for each age bracket over the

age of 65. Similarly, for finding the total population of people who have a limited

English proficiency, we had to combine the speakers of each language that did not
4https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.

html
5https://www2.census.gov/geo/tiger/TIGER_DP/2020ACS/Metadata/TRACT_METADATA_

2020.txt
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speak English fluently. The number of people belonging to each vulnerable population

was then divided by the area of the census tract (found using the Boston census tract

shapefile) to find the population density.

3.4 Computational Resources

Training machine learning models especially larger transformer arcitechtures, require

parallel computing power not capable by CPUs. Therefore, we used MIT SuperCloud

in order to train the semantic segmentation models on GPU resources [25]. To train

each segmentation model, we utilized 1 GPU unit and 20 CPUs.

3.5 Image Segmentation Datasets

Figure 3-3: Example Images and Segmentations from the ADE20K Dataset

3.5.1 ADE20K

Every model used in this research is pretrained on the ADE20K dataset. This is a

densely annotated dataset used for scene parsing. The training set consists of 20,210

images with 150 semantic classes [33]. Although the models are trained on this large

dataset, finetuning was needed because the images in ADE20K are taken from a street
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view perspective (as seen in Figure 3-3) whereas the view that we are interested in

segmenting is aerial.

Figure 3-4: Example Images and Segmentations from the Kaggle Aerial Semantic
Segmentation Drone Dataset

3.5.2 Drone Dataset

Initially, we did not have a labeled dataset of Boston aerial images to finetune the

baseline models with. Therefore, to test out the finetune and evaluation pipeline,

we used the "Aerial Semantic Segmentation Drone Dataset" from Kaggle [1]. We

also used this dataset to observe how well the models finetune with aerial images.

This dataset consists of 24 labeled classes and most of the scenes are from suburban

locations as seen in Figure 3-4. Although this dataset consists of images from the

correct perspective, we hypothesized that the sparse nature of these training images

may not transfer well to a dataset with urban aerial scenes.
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Figure 3-5: Nearmap AI Layer Features as seen on the Nearmap Map Browser. The
layers on the left pane are shown in the image, where the color of the building layer
is orange, vegetation layer is green, and the surfaces layer is yellow

3.5.3 Nearmap

Nearmap is an aerial imagery map company that provides frequently updated, high

resolution images 6. The data is available via a MapBrowser UI, and it also provides

exportable AI layers. These AI layers are overlayed segmentations on the map and

include tree overhang, asphalt, vegetation, lawn grass, water body and more. Figure

3-5 shows how the Nearmap MapBrowser can be used to view different AI layers

on the map. Overall, the AI layer feature is a great resource for obtaining ground

truth segmentations of aerial images in Boston. The format of the AI layers were

GeoPackage files, so there was some additional processing needed to be done in order

to generate a dataset of images and corresponding image segmentations for training.

This process is detailed in section 3.5.6.

Figure 3-6 shows an example of images from Nearmap from March 2022 and

August 2022. As evident in the image, the trees in the March image have less leaves

on them, which made it difficult for the image segmentation model to detect them.

As a result, we included Nearmap images from August 2022 in our training, testing,

and validation datasets to finetune the segmentation models.

6https://www.nearmap.com/au/en
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Figure 3-6: Example Images and Segmentations from Nearmap

3.5.4 Apple Maps

We noticed that Apple Maps has images with better resolution than Nearmap. There-

fore, we collected some images from Apple Maps to include in our train, test, and

validation dataset. However, we were able to re-use the segmentations from Nearmap

with some edits. We also included additional images for which we created manual

ground-truth segmentation maps for.

3.5.5 Combined Dataset

The final test and train dataset was a combination of the Drone, Nearmap August,

and Apple Map datasets. The final dataset had a total of 545 images, and we used a

80%, 10%, and 10% split to have 432 train, 60 test, and 53 validation images. Each

image was also resized smaller to be 600 x 400. Example images and segmentations

from the combined dataset are shown in Figure 3-7.
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Figure 3-7: Example Images and Segmentations from Combined Dataset

3.5.6 Dataset Labeling Process

The Kaggle Aerial Semantic Segmentation Drone dataset had available annotations

for each image in the dataset. However, the Nearmap dataset segmentations were

given to us via GeoPackage files. Therefore, we first had to pre-process the AI layers

using GeoPandas. We overlayed a visualization of each GeoPackage file for each AI

layer on top of each other and assigned each a different color in the segmentation

map: Building = black, Dirt/Soil = Brown, Hard Pavement = Gray, Tree = Red,

Vegetation = Green, and Water = Blue. The result was a segmentation map such as

the ones displayed in Figures 3-6 and 3-7. However, the segmentation map was not

rotated or aligned properly to match with the corresponding aerial image. In order

for an image segmentation model to train, the pixels of the image and corresponding

annotation file must match up. To do this, we used Adobe Photoshop to align the

segmentation with the corresponding image. After fixing the alignment, we also had

to fill in some of the incomplete segmentations with Photoshop. As mentioned earlier,

we had to manually create the segmentations from scratch for some of the additional

Apple Maps Images. These examples are shown in the last row of Figure 3-7.
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Model Method Backbone Crop Size LR Schedule Mem (GB) Inf Time (fps) mIoU mIoU(ms+flip)

Segmenter Segmenter Mask ViT-S_16 512x512 160000 2.03 24.80 46.19 47.85

KNet KNet + DeepLabV3 R-50-D8 512x512 80000 7.42 12.10 45.06 46.11

PSPNet PSPNet R-101-D8 512x512 160000 - - 44.39 45.35

Table 3.2: Baseline Model Details for Segmenter, KNet and PSPNet

3.6 Image Segmentation Models

To choose the image segmentation model that would extract the relevant flood hazard

features from satellite aerial imagery, the performance of three different models were

compared. These were PSPNet (CVPR 2017), Segmenter (ICCV 2021), and KNet

(NeurIPS 2021). The task of segmenting urban aerial imagery is challenging due

to the density of objects in cities. Therefore, we wanted to see how each model

would fare in this specific use case. All three models are available in OpenMMLab’s

MMSegmentation repository 7 [11]. Additionally, all baseline models were pretrained

on the ADE20K dataset and Table 3.2 shows more details of each baseline model we

used.

3.6.1 Segmenter

Segmenter is an image segmentation model that has a Vision Transformer as its back-

bone. This was a model that we wanted to try because the filters of traditional CNN

based segmentation models often miss the global information of the image due to their

localized nature. Therefore, Segmenter frames the problem of semantic segmentation

as a sequence to sequence problem. Additionally, pre-trained vision transformers

such as Segmenter on a large dataset such as ADE20K only require a moderate sized

dataset for finetuning. This is an advantageous property because annotating the

satellite images of urban areas can be time consuming due to the dense nature of

cities. We use one of the models pre-trained on the ADE20K dataset and picked the

transformer mask decoder instead of the linear one due to better performance on the

ADE20K dataset.

7https://github.com/open-mmlab/mmsegmentation
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Figure 3-8: Segmenter Architecture [28]

3.6.2 KNet

KNet is another image segmentation model architecture introduced during NeurIPS

2021. Out of the three models we used, this one is the most recent. KNet is capable of

doing both instance and semantic segmentation through the use of learnable kernels.

In our case, we want to do semantic segmentation, and we were interested in the

dynamic kernel update process that allows for more discriminative kernels [31]. The

details of the KNet model we are using are displayed in Table 3.2.

Figure 3-9: KNet Architecture [31]
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3.6.3 PSPNet

PSPNet is an older segmentation model we were interested in. PSPNet introduces

a pyramid pooling layer, which constructs a hierarchical global prior that consists

of information from different regions and along multiple scales. This improves the

ability of the model to capture global contextual information. We were interested

in the novel pooling layer because urban areas often have uniform layouts, so the

capability of PSPNet of taking advantage of the global context of an image when

making segmentation predictions may be useful.

Figure 3-10: PSPNet Architecture [33]

3.7 Training Segmentation Models

Figure 3-11 shows the pipeline for training and testing each model to eventually choose

one for the task of calculating land cover values in Boston. As mentioned in 3.5.5, the

dataset we used to train and test the model contains images from the Kaggle Drone

dataset, Nearmap, and Apple Maps as well as their corresponding segmentations.

Then, after obtaining the quantitative and qualitative results, we chose the model

that performs the best for the task of segmenting urban aerial imagery into different

land cover classes.
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Figure 3-11: Train and Testing Pipeline to Find the Optimal Model for the Land
Cover Task

3.7.1 Pre-Processing

All models used were pretrained on the ADE20K dataset. The ADE20K dataset

has its own segmentation color palette as well as class IDs representing different

objects. Additionally, there are 150 segmentation classes in ADE20K, whereas the

Drone Dataset has 24, and Nearmap and Apple both have 6. Since ADE20K is such

a vast dataset, there were corresponding class names in the ADE20K dataset for each

class in the Drone, Nearmap and Apple datasets. Therefore, we wrote pre-processing

code to convert the segmentation map of the Drone, Nearmap and Apple datasets

to have pixel values corresponding to the class number in the ADE20K dataset. In

addition to this, the images also had to be resized to a smaller size as well as converted

to JPG for the segmentation models. After the images were processed, we split the

image and annotation pairs into train, test, and validation sets.

3.7.2 Experiments and Metrics

We ran several experiments to find the optimal model for our task. The results from

these experiments are outlined in Chapter 4 in detail. We finetuned each model on

a dataset comprising of images from the Kaggle Drone Dataset, Nearmap Images,
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and images from Apple Maps. As mentioned earlier, the models that we finetuned

were Segmenter, KNet, and PSPNet. Before finetuning on a dataset, we initially

evaluated the performance of the baseline model. Then, after finetuning, we compared

the qualitatative results and quantitative results. The quantitative metric we were

interested in is the Intersection over Union. We found this to be a more valuable

metric over metrics such as pixel accuracy. This is because models can yield high

pixel accuracy without having good qualitative results.

3.8 Calculating Land Cover

Semantically segmenting the aerial images of Boston Census tracts are used to calcu-

late the land cover. This section details how the results from the segmentation model

are aggregated to get a percentage of each type of land area (Building, Tree, Grass,

Soil, Sidewalk/Concrete, and Water).

3.8.1 Aggregating Image Features Across Census Tracts

Obtaining Georeferenced Images

To find the area of trees, grass, concrete, soil, water, and buildings in each census tract,

we needed to ensure that we collect a complete aerial imagery dataset that includes all

areas of each census tract and unseen by the model. Simply taking screenshots from

Apple Maps or Nearmaps would not be enough because we needed a way to associate

each image, more specifically each pixel in the image, with a geographic location (i.e

census tract). In order to associate image pixels with their world coordinate, we

exported several georeferenced images from Nearmap so that together all of Boston

is covered.

Georeferenced images are images that have an associated coordinate file consisting

of the scale of the image per pixel as well as the (𝑋, 𝑌 ) world coordinates of the top

left pixel in the image. An example of how this is done is shown in Figure 3-12. In the

figure, the red lines represent census tract boundaries from the shapefile and the white-
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Figure 3-12: Exporting Georeferenced Images from Nearmap Map Browser. The
coordinate projection is in WGS84. The red outlines on the map separate each
Boston census tract

bordered rectangle is the area for which the image and its associated coordinate file is

downloaded. The resolution at which we download the image is at 0.149 meters/pixel.

Additionally, the dimensions of each image was approximately 7000 pixels wide and

7000 pixels high. As seen in the image, a single image can contain several census

tracts within it. Therefore, we produced masks for each image that has a white pixel

in the area that corresponds to belonging to a given census tract, and the rest of the

image having black pixels. As a result, when we obtained the image segmentations,

we knew which pixels to count in each census tract to avoid over/undercounting.

Using the georeferenced images, we converted the pixel coordinates (𝑥𝑝𝑖𝑥𝑒𝑙, 𝑦𝑝𝑖𝑥𝑒𝑙)

to their world coordinates using the following equations. In the equations, 𝑥𝑆 is the

pixel width, 𝑦𝑆 is the pixel height, and (𝑋𝑇𝐿, 𝑌𝑇𝐿) is the world coordinate of the top

left pixel in the image.
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𝑋𝑤𝑜𝑟𝑙𝑑 = 𝑥𝑆 · 𝑥𝑝𝑖𝑥𝑒𝑙 +𝑋𝑇𝐿 (3.1)

𝑌𝑤𝑜𝑟𝑙𝑑 = 𝑦𝑆 · 𝑦𝑝𝑖𝑥𝑒𝑙 + 𝑌𝑇𝐿 (3.2)

Creating Masks for each Image and Census Tract

In addition to the georeferenced images, we also used a shapefile that consists of the

2020 Boston census tracts. This is the shapefile that is displayed in Figure 3-12 and

it consists of the world coordinates for each census tract boundary. Our approach

was the following: We iterated through each census tract in the shapefile and checked

if there is an intersection between the given census tract geometry and the polygon

of the georeferenced image. We were able to do this by converting the corner pixel

coordinates of the image to their world coordinates and creating a Shapely Polygon.

If there was no intersection, we moved on to the next image. Otherwise, we found the

intersecting pixels by using the skimage.measure.grid_points_in_poly function

and created the mask for that census tract and image pair. Note: One image can

have multiple masks (since an image can contain more than one census tract).

After we generated the masks, we processed the images some more. Image inputs

to each segmentation model must be resized smaller, yet the georeferenced images and

their associated masks were very large. However, simply resizing the images would

have caused a problem with the coordinate file specifications (since the dimensions of

the image would have changed). Additionally, there may have also been a problem

with the location of mask pixel values when resizing the mask smaller. To avoid these

problems, we cropped each image and mask, and ran the segmentation model on the

cropped images.

Applying Masks to Segmentations

After obtaining the segmentations from running the model on the cropped images,

we masked each image with their associated masks (the number of masks for each
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Figure 3-13: Masking Process

image is equal to the number of census tracts represented in that area). For example,

the aerial image in Figure 3-13 has two census tracts in it: 2.01 and 3.01. Therefore,

there are two masks that are inverses of each other. The masks are overlayed on the

segmentation to only consider the pixels in the white areas of the mask to be added

to the land cover count for that census tract.
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Chapter 4

Results

4.1 Semantic Segmentation

The performance of each baseline model is displayed in Table 4.1, the quantitative

results from the finetuned semantic segmentation models are displayed in Table 4.2,

and the qualitative results are in Figure 4-2. The results displayed here are from

evaluating the models finetuned on the combined dataset consisting of images from

the Kaggle Drone Dataset, Nearmap, and Apple Maps.

Baseline PSPNet Baseline Segmenter Baseline KNet

IoU Accuracy IoU Accuracy IoU Accuracy

Building 21.37 42.09 36.36 81.86 25.4 55.96

Tree 24.52 64.31 42.39 75.19 35.45 72.25

Grass 22.48 26.37 36.66 41.37 26.85 31.53

Sidewalk 0.91 0.91 13.47 13.93 2.65 2.66

Earth 9.18 20.86 10.99 32.61 9.41 24.6

Water 0.11 0.12 12.37 12.42 0 0

Clutter 0 0 0 0 0 0

Table 4.1: Quantitative Performance of each Baseline model on the Test Dataset
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4.1.1 Performance

Figure 4-1: IoU Samples [8]

Metrics

The quantitative metrics that we used to evaluate the performance of PSPNet, KNet,

and Segmenter on the test dataset are pixel accuracy and Intersection Over Union

(IoU). Pixel accuracy is the percentage of pixels correctly classified for each segmen-

tation class, and the IoU is a measure of how well the predicted and ground-truth

segmentation maps for each class overlap each other. The value for the IoU metric

ranges from 0 to 1, where 1 is a perfect overlap and 0 is no overlap between the

ground truth and predicted segmentations. Figure 4-1 shows example IoU scores for

each level of bounding box overlaps. An IoU score of greater than or equal to 0.532

for each class represents a segmentation model that is satisfactory for the purposes

of detecting urban land cover.

Quantitative and Qualitative Performance on Test Dataset

The performance of each baseline model is displayed in Table 4.1. The poor results are

expected because the baseline models were trained on ADE20K, which is a dataset

with images taken from the street level. Additionally, many of the images in the

dataset are not of urban or outdoor scenes. As a result, the baseline models did not

generalize to the aerial images in the test set. Out of all the models, the baseline

Segmenter model performs the best on the test dataset.
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Finetuned PSPNet Finetuned Segmenter Finetuned KNet

IoU Accuracy IoU Accuracy IoU Accuracy

Building 65.55 81.12 71.88 85.17 67.12 82.16

Tree 61.16 78.93 65.73 82.49 65.28 79.81

Grass 86.35 93.13 86.69 92.81 87.27 92.09

Sidewalk 72.72 89.12 78.24 89.94 78.09 92.45

Earth 66.66 76.78 70.2 76.35 71.93 79.27

Water 81.49 81.98 95.78 97.85 95.12 95.84

Clutter 21.72 38.01 20.71 34.74 20.52 29.41

Table 4.2: Quantitative Performance of each Finetuned Segmentation Model on the
test dataset

The performance of all three models on the test set improved significantly after

finetuning. Based on Table 4.2, Segmenter outperforms the other two models for all

categories except for grass and earth, for which KNet performs better in. We also

include a separate category called "Clutter" which is what the model predicts if it is

not able to fit the pixel into one of the six categories. The model also tends to classify

heavily shadowed or occluded areas to be clutter.

Based on the qualitative results in Figure 4-2, Segmenter outperforms KNet and

PSPNet for the example images. All three models do well at classifying trees and

grass. However, for the first example aerial image, Segmenter classifies less of the grass

area to be clutter (the areas in blue) and also does a better job classifying buildings.

Although KNet and PSPNet do not perform as well for segmenting general and larger

areas of the image, they can segment more finegrained areas of the image. This is

observed in the first example where KNet is able to distinguish the small buildings

surrounded by grass better than Segmenter.

In the second example in Figure 4-2, Segmenter produces better segmentation

predictions than KNet and PSPNet because it correctly classifies the areas of water.

On the other hand, KNet finds the large portion of the water as clutter, whereas

PSPNet predicts it to be pavement. Lastly, all three models correctly classify the
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trees and grass regions in the third image example comparably. However, Segmenter

predicts less areas as clutter and also correctly classifies more paved areas than the

other two models. Additionally, KNet classifies the boundaries of the trees to be

soil/Earth even though the ground truth segmentations do not have those areas la-

beled as soil/Earth. Due to Segmenter having better quantitative and qualitative

results, we used this finetuned Segmenter model as the land cover feature extractor

on Boston aerial images.

Figure 4-2: Example Qualitative Results after Evaluating Fine-tuned Models on Test
Dataset

Qualitative Performance on Boston Aerial Images

Figure 4-3 shows a few examples of the performance of each finetuned model on a few

examples of the Boston Aerial Images that we collected from Nearmap. These are the

images that we used to find the areas of building, grass, tree, paved area, soil/earth,

and water for each census tract in Boston. Therefore, these segmentations cannot be

quantitatively evaluated. For the first example image, Segmenter correctly classifies

all of the buildings, whereas KNet and PSPNet have less complete segmentations for

them. This behavior is also evident in the second and third images. These qualitative

examples further support that the finetuned Segmenter model is the best choice for

the given use-case in this research.
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Figure 4-3: Example Segmentations of Boston Aerial Images Produced by Each Fine-
tuned Model

Qualitative Performance on NYC

Although the model was trained and tested on a dataset consisting of aerial images

from Boston, the model was also tested on aerial images from New York City to

examine how well the model generalizes to other urban areas. The qualitative results

for the Manhattan, Queens, and Brooklyn boroughs are shown in Figure 4-4. Figure

4-4 image (a) and 4-4 (c) are examples from Manhattan. Manhattan is much more

urban than Boston, Queens, and Brooklyn. Additionally, Manhattan consists of a

higher density of buildings that are also taller than buildings in Boston. As a result,

many areas in the Manhattan aerial images are occluded by shadows. The rooftops

of Manhattan buildings are also more complex than those of Boston, Queens, and

Brooklyn. However, the qualitative results from the model are reasonable, and sub-

figures (a) and (c) in Figure 4-4 give a few examples of how the model is able to infer

the heavily shadowed areas correctly.

Pairs (b) and (d) are images from Queens and (e) and (f) are from Brooklyn.
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In contrast to the Manhattan images, these are less urban and are similar to some

areas in Boston. As a result, the model performs reasonably well on these images.

As noticed in the performance of the Boston aerial images as well, the model still has

difficulty classifying heavily shadowed areas although it had improved after making

the training dataset more comprehensive.

Figure 4-4: Example Qualitative Results for NYC Boroughs

4.2 Flood Hazard Features

4.2.1 Land Cover Results

Top 5 Grass Top 5 Tree Top 5 Earth Top 5 Paved Top 5 Water Top 5 Building

CT Percentage CT Percentage CT Percentage CT Percentage CT Percentage CT Percentage

9816.0 22.41 9807 54.32 9815.02 21.52 9813 43.80 9812.01 43.91 701.02 31.43

9809 22.22 9803 45.45 9816 16.37 907 42.08 9801.01 41.05 106 30.71

9811 22.09 1106.01 45.30 9813 13.50 612.02 41.79 606.04 40.95 701.04 29.71

9817 18.54 9810 43.37 9812.01 13.14 606.02 40.63 305 39.07 403 28.68

9810 17.32 1201.05 40.99 909.01 12.30 606.03 39.40 503 36.03 303.02 27.79

Table 4.3: Top 5 Boston Census Tracts with Highest Percentage of Each Class
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Figure 4-5: Boston Census Tracts with Highest Percentage of Each Class

We applied the finetuned Segmenter model on 20972 aerial images of Boston that

cover all census tracts. Then, we aggregated the pixel values for each class using the

masking method outlined in Chapter 3, and found the top 5 census tracts with the

highest percentage of each class (shown in Table 4.3). To verify that the results make

sense, example aerial images for the top census tract for each class is displayed in

Figure 4-5.

The census tract with the highest percentage of grass is 9816 which consists of

the Belle Isle Marsh Reservation. The Belle Isle Marsh Reservation is Boston’s only

salt marsh area and is a nature reservation. From the aerial image in Figure 4-5, it is

evident that much of the area consists of grass, meaning that the segmentation model

correctly classifies the large area of grassland in the census tract.

Similarly, census tract 9807 consists of the highest percentage of trees. This census

tract contains Stony Brook Park, which is a forest in Boston. Figure 4-5 displays an
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image of the aerial view of the park, showing an abundance of trees. The segmentation

model found census tract 9815.02 to be the area with the most Earth/soil locations.

This census tract is located in East Boston and the image in Figure 4-5 is of a housing

development that is located next to the Suffolk Downs Horse Racecourse. As evident

in the image, there are a lot of areas with soil and dirt.

The area with the highest percentage of concrete/sidewalk is 9813 which only

contains the Boston Logan Airport. It makes sense that there is a lot of concrete

areas due to the presence of airplane runways. The census tract containing the largest

percentage of water is 9812.01, which is the coast containing Castle Island. The entire

census tract is virtually all water, therefore, this result makes sense. Lastly, the census

tract with the most buildings is in Downtown Boston.

We also calculated a weighted combination of all the land cover results together

to find a risk score. This risk score does not consider other flood hazard factors such

as elevation, slope, flow accumulation. It is only a measure of flood risk due to land

cover. The weights and results are shown in Table 4.4. All of the high flood risk

locations are those that are by a body of water and also lack vegetation. These are

areas such as the Seaport Harbor and the Seaport Cruise Terminal. On the other

hand, the lowest risk areas in Boston are those that have a lot of vegetation, minimal

concrete, and no large water bodies surrounding them.

High Flood Risk (Land Cover Only) Low Flood Risk (Land Cover Only)

Census Tract Location Weighted Risk Value Census Tract Location Weighted Risk Value

606.04 Seaport 0.843 9807 Stony Brook Reservation -0.649

9812.02 Seaport (Cruise Terminal) 0.825 9803 Franklin Park Zoo -0.590

305 Northend 0.770 9810 Arnold Arboretum -0.556

408.01 Charlestown 0.741 9809 Millennium Park -0.536

303.01 Waterfront 0.731 9811 Mount Hope Cemetery -0.483

Class Weight Value

Building 1

Tree -1

Grass -1

Concrete 1

Earth -1

Water 1.5

Table 4.4: High and Low Flood Risk Census Tracts Base on Land Cover Results Only
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Census Tract Location Elevation (m)

9801.01 Boston Harbor Islands 0.411

512 Jeffries Point 3.000

503 East Boston (Facing Boston Harbor) 3.250

504 East Boston 3.500

9813 Boston Logan Airport 3.542

Table 4.5: High Risk Census Tracts due to Low Elevation

4.2.2 Elevation Results

In Table 4.5, we have the top 5 census tracts with the lowest elevation. These are

the census tracts that have the highest flood risk as a result of being closer to sea

level. All of these locations directly border a water body. The census tract with the

lowest average elevation is 9801.01, which includes the Boston Harbor Islands such

as Fort Warren, Spectacle Island, Deer Island, and Thompson Island. Census tract

9801.01 also contains areas of water surrounding the islands, as a result, the value of

the minimum elevation in that area is 0 m (sea-level) making the average elevation

very low (around 0.411 meters).

4.2.3 Slope Results

Table 4.6 consists of the 5 census tracts that are most susceptible to flooding based

on slope data only. Lower sloped areas are prone to flooding due to runoff water

remaining in the area instead of flowing out of the census tract. All of the top 5

census tracts have very similar slope values. It is difficult to verify that the processed

slope results are indeed correct for the low slope areas. However, the ordering makes

sense because the census tracts with the highest slope are all areas in Boston that have

considerable changes in terrain based on the Google Maps Terrain feature. Conversely,

areas with lower slope have little to no change in terrain.
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Census Tract Location Average Slope (Degrees)

607 Orton Field (West Broadway) 0.219

709.01 Chester Square (South End) 0.251

709.02 Chester Square (South End) 0.287

612.01 Columbus Park/Andrew Square 0.291

505 East Boston Memorial Park 0.297

Table 4.6: Top census tracts with highest flood risk due to low slope values

4.2.4 Flow Accumulation Results

Table 4.7 displays the top 6 census tracts that have the highest average accumulation

from other areas. To reiterate, flow accumulation is calculated using a flow direction

raster. The flow direction raster shows the direction water will flow from neighboring

cells. It is a good measure of how much water will flow into a particular area in the

case of a flood event. We ignore the first result since it is a census tract comprised

of only the Charles River. An interesting observation is that the rest of the census

tracts are all those that border bodies of water. For example, census tract 203.05 is

located near the O’Brien Highway and Zakim Bridge. This is also near census tract

404.01, and both of these locations border the Charles River. Similarly, census tract

401 is in Charlestown next to the USS Constitution museum on the Boston Harbor.

Census tract 8.06 is in Allston and 1.02 is in North Brighton, and both census tracts

border the Charles River.

Census Tract Location Average Accumulation Per CT Cell (In Number of Cells)

9815.01 Charles River 18143

401 USS Constitution, Charlestown 10987

404.01 Paul Revere Park 7528

203.05 O’Brien Highway/TD Garden 7278

1.02 North Brighton 6837

8.06 Harvard Business School 6466

Table 4.7: Top census tracts with highest flood risk due to flow accumulation
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4.2.5 Flood Hazard Weighting

High Flood Hazard Risk Low Flood Hazard Risk

Census Tract Location Weighted Risk Value Census Tract Location Weighted Risk Value

9801.01 Harbor Islands 0.180 1401.06 Bordering Stony Brook Reservation -3.426

512 Jeffries Point 0.128 1303 Bordering Stony Brook Reservation -2.856

606.04 Seaport 0.120 1201.05 Bordering Jamaica Pond -2.788

9812.02 South Boston Waterfront 0.047 1106.01 Allandale Woods -2.778

305 Northend (Facing Boston Harbor) 0.034 1105.01 Bordering Bellevue Hill -2.759

612.01 South Boston 0.014 9807 Stony Brook Reservation -2.710

503 East Boston (Facing Boston Harbor) -0.038 5.02 Pine Tree Preserve -2.633

606.03 Seaport (Bordering 606.04) -0.040 1105.02 Bordering 1105.01 -2.573

504 East Boston -0.042 1304.04 Roxbury Latin School -2.498

9813 Boston Logan Airport -0.050 5.05 Brighton -2.491

Hazard Weight Value

Land Cover 0.5

Slope -1.5

Elevation -2

Flow Accumulation 1

Table 4.8: Census Tracts with the Highest and Lowest Susceptibility to Flood Hazard
Risk

As mentioned in section 3, we based on our weighting from the following paper:

"Potential food-prone area identifcation and mapping using GIS-based multi-criteria

decision-making and analytical hierarchy process in Dega Damot district, northwest-

ern Ethiopia". As a result, the order of features in terms of contributing to flood

hazard were the following: Elevation, Slope, Flow Accumulation, and Land Cover.

Table 4.8 displays the top 10 census tracts in Boston that are the most and least

susceptible to flood hazard risk. The table also includes the given weight for each

feature. The location that is most likely to experience flooding due to its location

and geographic factors is census tract 9801.01. This includes the Boston Harbor

islands such as Fort Warren, Spectacle Island, Deer Island, and Thompson Island.

The average elevation value of the census tract is very low. This is partly due to

the fact that the census tract includes areas of water as well, which have elevation

levels of zero meters. Although there are limited areas of building and concrete on

the islands, they are surrounded by areas of water which increases the flood hazard

risk of an area.

Census tract 512 near Jeffries Point is the flood risk with the second highest
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weighted hazard risk value. The location faces the Boston Harbor and has low slope

and elevation values as well. A large portion of the census tract also includes the

Boston Harbor. As a result, the land cover risk value is also higher than that of the

9801.01 census tract. An aerial image of Jeffries Point reveals minimal greenspace

and vegetation.

Majority of the high risk areas border a water body. For example, the two Sea-

port census tracts (606.04 and 606.03) face the Boston Harbor. Additionally, they

have minimal greenspace or vegetation and majority of Seaport consists of high rise

buildings and concrete areas. Additionally, Seaport is very close to sea-level and has

lower slope. From previous publications, low elevation and low slope areas make areas

prone to flooding. However, the flow accumulation value for Seaport was quite low.

In contrast, the census tract with the lowest susceptibility to flood hazard risk is

1401.06. This is a census tract that borders the Stony Brook Reservation. Although

it does not have an abundance of greenspace, trees, or Earth, the slope and elevation

values are very high. This makes it unlikely that the area receives runoff from higher

elevated areas. Additionally, the runoff that it receives will run down to other areas

due to the high slope. The next census tract is 1303 which also borders the Stony

Brook Reservation. It has similar geographic characteristics to census tract 1401.06.

Many of the other low risk census tracts are in the West Roxbury area and border each

other. This makes logical sense because we expect there to be similar geographical

features in adjacent census tracts.

Many of the low risk census tracts are high elevation and slope areas that consist

of greenspace and trees. For example, the Stony Brook Reservation is a woodland

state park that consists of many trees and vegetated areas. Additionally, there are

minimal concrete and grass spaces. In the low risk areas where the land cover value is

higher, it is offset by high elevation and slope values. For example, census tract 5.05

has relatively no greenspace and some trees, but its high elevation and slope reduce

the weighted risk value.
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4.3 Flood Vulnerability

4.3.1 Socioeconomic Data

High Flood Vulnerability Areas Low Flood Vulnerability Areas

Census Tract Location Vulnerability Score Census Tract Location Vulnerability Score

705.02 South End 5.949 9812.02 South Boston Waterfront 0.001

104.03 Fenway/Near Northeastern University 5.900 9811 Forest Hills 0.002

702.02 Chinatown 5.375 9803 Franklin Park 0.028

607 South Boston 5.179 9801.01 Boston Harbor Islands 0.030

709.01 South End (Near BU Medical Campus) 5.134 606.02 Seaport 0.042

507 East Boston 4.969 606.03 Seaport 0.155

502 East Boston 4.775 8.06 Allston (Harvard Business School) 0.207

701.02 Downtown Crossing 4.551 612.01 South Boston 0.227

501.01 Eagle Hill 4.155 1006.03 Neponset 0.266

104.04 Northeastern University 4.052 1201.05 Jamaica Plain 0.277

Feature Weight

POC population per area 1

Disabled population per area 1

Limited English proficiency population per area 1

Female population per area 1

Foreign born and not US citizen population per area 1

Children under 6 years population per area 1

Poverty status population per area 1

Male population over 65 per area 1

Female population over 65 per area 1

Table 4.9: Census Tracts Most and Least Vulnerable to Flood Risk (Based on So-
cioeconomic Features Only)

Table 4.9 shows the top 10 most vulnerable census tracts as a result of marginal-

ized populations. The table also shows the different features processed and their

corresponding weights in the vulnerability score. The census tract that is the most

socially vulnerable is 705.02. This is an area in the South End of Boston. Based on

Census Reporter, the median age in the location is 50.2, which is about 1.5 times

higher than the rest of Boston and Suffolk County. Additionally, around 42.5% of the

population is below the poverty line. This is more than double the rate in Boston

(17.6%) and Suffolk County (17.3%) [4].

The rest of the census tracts in the top 10 besides 507 and 501.01 also have poverty

rates that are above the city and county values based on Census Reporter data. For

census tract 507, the poverty rate is 13.7% and for 501.01 it is 15%. However, census

tract 507 has a very high population of POC, people with limited English proficiency,

and children under 6 years old. Similarly, census tract 501.01 has a high population

of children under 6 years old as well as POC.
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The top 11 Census tracts with the lowest flood vulnerability are areas where

there’s limited to no population. As a result, the vulnerability value is 0. The name

of the census tracts are: 9807, 9813, 9817, 9812.01, 9815.02, 9819, 9809, 9816, 9810,

612.02, and 9815.01. These are areas in Boston such as the Boston Logan Airport,

Stony Brook Reservation, Boston Commons and Boston Public Garden, the Charles

River, etc. Therefore, Table 4.9 shows the top 10 census tracts that have a population

greater than 0. This includes areas with a younger population and low poverty rates

such as Seaport.

4.3.2 Building Vulnerability

As mentioned in the methods section in Chapter 3, we also collected and processed

relevant building information for flood vulnerability. The features processed were the

age, height, and type of the buildings in each census tract. The most vulnerable areas

included areas that had the highest percentage of buildings under 6 floors, buildings

built before 1950, as well as residential buildings. All of these features were given

equal weighting. Based on the results in Table 4.10, the two census tracts that are

the most vulnerable for flood risk due to building features only are 602 and 603.01.

These two census tracts border each other and are located in Dorchester Heights. To

verify the results, we looked at Google Street View images of the area. The area is

densely populated with residential buildings that are lower in height. This matches

up with the processed data, which shows that 98% of the buildings are residential and

less than 6 floors in height. Additionally, based on the processed data, approximately

92% of the buildings are built before 1950.

The area that has the lowest flood vulnerability score due to building charac-

teristics is 704.02. This area is in the South End and a street view of the location

shows taller, non-residential buildings. The census tract with the second lowest flood

vulnerability score is 203.01 located in the West End. More specifically, this area

includes the Massachusetts General Hospital, The Liberty Hotel, and the Shriner’s

Children’s Hospital. Majority of the other buildings in the area are similar in that

they are all non-residential buildings. In fact, only 10% of the buildings in the area
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are residential.

High Building Vulnerability Areas Low Building Vulnerability Areas

Census Tract Location Vulnerability Score Census Tract Location Vulnerability Score

602 Dorchester Heights 2.882 704.02 South End 0.751

603.01 Dorchester Heights 2.855 203.01 West End 0.902

1004 Ashmont 2.847 909.01 Dorchester 0.941

1105.01 West Roxbury 2.812 9811 Forest Hills 0.941

2.01 Brighton 2.806 9813 Boston Logan Airport 1.007

911 Uphams Corner 2.799 203.04 West End 1.062

1006.01 Dorchester Center 2.781 9807 Stony Brook Reservation 1.111

2.02 Brighton 2.777 9812.02 Seaport (Cruise Terminal) 1.117

501.01 Eagle Hill 2.772 808.01 Mission Hill 1.136

502 Eagle Hill 2.766 9815.02 Beachmont 1.167

Feature Weight

Building Age 1

Building Height 1

Building Use Case (Residential Buildings) 1

Table 4.10: Census Tracts Most and Least Vulnerable to Flood Risk (Based on Build-
ing Features Only)

4.3.3 Weighting Flood Vulnerability Features

Table 4.11 displays the results after combining the normalized building and socioe-

conomic vulnerability weights to get a single vulnerability score. The building and

socioeconomic features each have a weight of one and were added together to get the

vulnerability score. The area with the highest flood vulnerability risk score is 705.02

in the South End. This is the same census tract that is the most socially vulnera-

ble in Boston as well. The normalized socioeconomic vulnerability value for census

tract 705.02 is 1.0 and the normalized building vulnerability value is 0.849. This

value agrees with other sources such as Census Reporter and Google Maps. Besides

the large population of people below the poverty line and limited English speakers,

Google Street View images of the area also reveal many residential buildings that are

under 6 stories tall.

The next census tract with the highest flood vulnerability risk score is 502. This

was another census tract that was in the top 10 for the most socially vulnerable

census tracts. This area is in East Boston, near the Mystic River. The census tract
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High Vulnerability Areas Low Vulnerability Areas

Census Tract Location Vulnerability Score Census Tract Location Vulnerability Score

705.02 South End 1.849 9811 Forest Hills 0.327

502 East Boston 1.762 9813 Boston Logan Airport 0.349

104.03 Fenway/Near Northeastern University 1.760 9812.02 Seaport (Cruise Terminal) 0.387

507 East Boston 1.752 9810 Arnold Arboretum 0.420

709.01 South End (Near BU Medical Campus) 1.713 9801.01 Harbor Islands 0.421

501.01 Eagle Hill 1.660 909.01 JFK Presidential Library 0.428

610 South Boston 1.530 9803 Franklin Park Zoo 0.490

301 North End 1.516 203.04 West End 0.502

104.04 Northeastern University 1.512 8.06 Allston (Near Harvard Business School) 0.517

821 Roxbury 1.500 701.04 Financial District 0.287

Feature Weight

Building Features 1

Socioeconomic Features 1

Table 4.11: Census Tracts Most and Least Vulnerable to Flood Risk (Based on Com-
bining Building and Socioeconomic Results)

has a normalized socioeconomic vulnerability score of 0.80 and a normalized building

vulnerability score of 0.952. Similarly, Google Street View of the area reveals many

residential neighborhoods comprised of older and shorter homes.

The census tract with the lowest flood vulnerability risk score is 9811. This area is

in Forest Hills and has a very small population of people living there. As a result, the

normalized socioeconomic vulnerability score for the area is 0.00042 and the building

vulnerability score is 0.327. Based on Census Reporter, there are only 4 households

living in the area, and Google Maps shows mostly non-residential buildings in the

area [4]. The rest of the low flood vulnerability risk census tracts are similar in that

they have a smaller population of people living there and also a small number of

residential buildings. As a result, it makes sense that these areas rank low for flood

vulnerability risk.

4.4 Obtaining Flood Risk

Finally, we combined the flood vulnerability (which includes socioeconomic and build-

ing vulnerability features) with the flood hazard features to obtain a singular flood

risk value for each census tract. First, the hazard and vulnerability scores were nor-

malized, and then the flood hazard values were weighted with a value of 2. This is
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High Flood Risk Areas Low Flood Risk Areas

Census Tract Location Total Risk Score Census Tract Location Total Risk Score

709.01 South End 2.588 9807 Stony Brook Reservation 0.578

705.02 South End 2.565 1401.06 Bordering Stony Brook Reservation 0.586

104.03 Fenway 2.544 1201.05 Jamaica Plain 0.795

504 East Boston 2.508 1304.04 West Roxbury 0.808

104.04 Northeastern University 2.457 9810 Arnold Arboretum 0.837

507 East Boston 2.457 1303 West Roxbury 0.839

506 East Boston 2.428 9809 Oak Hill Park 0.866

502 East Boston 2.420 1106.01 Allandale Woods 0.878

512 Jeffries Point 2.417 9803 Franklin Park Zoo 0.879

607 South Boston 2.400 5.02 Pine Tree Preserve 0.921

Feature Weight

Vulnerability Features 1

Hazard Features 2

Table 4.12: Census Tracts Most and Least Susceptible to Flood Risk (Based on
Combining Vulnerability and Hazard Values)

because although vulnerability is important, we want to find the areas that have a

risk of flooding as well as vulnerable populations living in it. Increasing the weight

from 2 causes the hazard values to completely overpower the vulnerability values.

As a result, a weight of 2 balances the two features while still favoring higher flood

hazard weights.

The results are shown in Table 4.12 and the top census tract that is most suscep-

tible to flood risk is 709.01 which is in the South End. The normalized flood hazard

value for the census tract was 0.83 and the vulnerability weight was 0.926. Based

on Census Reporter, the area has 22.6% of people who are below the poverty line,

which is around 1.3% times the poverty rate in Boston [4]. Additionally, based on the

processed flood hazard data, census tract 709.01 has low slope and elevation values

(normalized values are 0.014 and 0.137 respectively). The maximum value that each

of these features can take are 1. Additionally, the normalized flood risk from land

cover is relatively high (0.55) where the maximum value is 1.

From the processed flood vulnerability data, census tract 709.01 has a normalized

socioeconomic vulnerability score of 0.86 and a normalized building vulnerability

score of 0.85. More specifically, the normalized POC population density is 1 (maxi-

mum), the disabled population density is also 1, and the limited English proficiency
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population density is around 0.93. As a result, this area is very socioeconomically

vulnerable. The census tract is also vulnerable in terms of buildings. Based on the

processed Boston Buildings Dataset data, 88% of buildings in the area are residential

buildings and 87% of buildings are less than 6 floors. Lastly, around 68% of buildings

are built before 1950.

The next most susceptible area to flood damage is 705.02, which is adjacent to

709.01. As a result, the area is very similar in terms of flood hazard and flood

vulnerability to that of census tract 709.01. There are also many adjacent East

Boston areas that are in the top 10 census tracts that may incur the most damage.

All of these areas have high flood hazard risk due to low elevation and slope (since

they are along or near a coast) as well as high land cover risk, which is also due to

the fact that they are more urban areas near water. Additionally, it makes sense that

areas that are adjacent to each other have similar levels of flood risk.

The areas that have low flood risk vulnerability are those that are in areas with

a lot of greenspace and vegetation and limited concrete. For example, areas such as

9807, 1401.06, 1304.04 and 1303 have low flood risk due to being or being near highly

vegetated areas such as the Stony Brook Reservation. Additionally, these census

tracts have very high elevation values. Census tract 1303 has a normalized elevation

value of 1 and census tract 1304.04 has a normalized elevation value of 0.84. Lastly,

census tract 1401.06 has a normalized elevation value of 0.96.

4.5 Overall Flood Risk Model Evaluation

There have been very few works combining flood hazard features obtained from aerial

images as well as vulnerability features from socioeconomic data and building datasets

to find the rankings of susceptible urban areas as granular as census tracts. As a

result, it is difficult to completely verify the accuracy of these rankings quantitatively.

However, the city of Boston has created an interactive tool that has results from

various flood models to predict the areas affected by different types of floods across
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time frames in the future 1 [5].

Figure 4-6 displays flooding visualizations from the Boston Climate Ready Map

for the top 10 census tracts that the Flood Risk model has output (shown in Table

4.12). The teal regions are the predicted long term storm water flooding areas. The

light blue color represents areas impacted by coastal flooding as a result of a 36 inch

rise in sea-level in the long term (2070s). For a majority of the top 10 high risk census

tracts, the Boston Climate Ready models are in agreement. Many of these areas are

at risk for flood hazard. The Boston Climate Ready map also shows visualizations

of vulnerable populations such as the elderly, children, medical illness, disabilities,

limited English proficiency, people of color, and low income. The visualizations (not

included in this report) show more than one vulnerable population living in each of

the high risk census tracts.

Figure 4-6: Boston Climate Ready Map Visualizations for each of the top 10 high
flood risk (vulnerability + hazard) census tracts [5]

1https://www.boston.gov/departments/environment/climate-ready-boston-map-explorer

69

https://www.boston.gov/departments/environment/climate-ready-boston-map-explorer


Figure 4-7: Boston Climate Ready Map Visualizations for each of the top 10 low
flood risk (vulnerability + hazard) census tracts [5]

In contrast, Figure 4-7 shows visualizations of areas impacted by flooding for the

10 low-risk census tracts. These visualizations are also from the Boston Climate

Ready Map. The color scheme is the same as in Figure 4-6, and the areas in green

represent open-spaces in Boston. It is evident that there are a lot more open-spaces in

the low risk areas in Figure 4-7 than in the Figure 4-6 images. Additionally, there are

significantly smaller areas that are predicted to be affected by storm-water flooding,

and virtually no areas that will be impacted by coastal flooding. Lastly, less of the low

risk census tracts are covered by vulnerable population layers in the Boston Climate

Ready Map. As a result, these areas are both low risk in terms of flood hazard and

flood vulnerability. From these observations, we can see that the outputs from the

flood risk model are qualitatively consistent with predictions made by the Boston

Climate Ready map.

70



Chapter 5

Conclusion

5.1 Discussion

Climate change has been exacerbating flood frequency as well as intensity. As a

result, many existing flood models that use historical data to create flood maps may

not accurately capture the growing effects of climate change towards flooding. In

this project we aggregated flood hazard and flood vulnerability features to build a

granular flood risk model at the census tract level. Additionally, we considered the

potential flood hazards from urban land cover by finetuning the Segmenter, KNet

and PSPNet segmentation models on a dataset we curated consisting of images and

segmentations from the Kaggle Aerial Drone Dataset, Nearmap, and Apple Maps. All

three finetuned models yielded significantly improved results from the baseline. After

evaluating the qualitative and quantitative results for all three model architectures,

we found Segmenter to be the best performing model for the task. The finetuned

Segmenter model had a mean IoU of 78% and had pixel accuracies of at least 70%

for each class. Not only does the image segmentation model yield promising results

for Boston images, but it is also able to generalize to areas in New York City. Many

areas in New York City such as Manhattan are a lot more urban than Boston also

include a higher density of taller buildings creating shadowed areas. However, the

finetuned model handles these cases reasonably well.

We also manually collected georeferenced images from Nearmap and created a
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masking algorithm to keep track of the pixels belonging to each census tracts in the

images. Then, we applied the finetuned Segmenter model on the images to find areas

of grass, trees, concrete/sidewalk, soil, and water in each census tract.

The features we aggregated for the model are also very relevant to flood hazard

as well as vulnerability. For example, for flood vulnerability, we took into account

both socioeconomic factors as well as building information. More specifically, we used

datasets to find areas of socioeconomically vulnerable populations such as people who

are low income, over the age of 65, people who are disabled, people who have limited

English proficiency, people of color, children under the age of 6, and foreign born

populations who are not US citizens.

We also utilized the Boston Buildings Dataset to incorporate building vulnerabili-

ties in the model. For example, for each census tract in Boston, we found the number

of buildings that are residential, below six floors tall, and built before 1950. Areas

with a larger number of these features are more susceptible to flood risk. After com-

bining the features with the relative weights and obtaining the highest and lowest risk

census tracts, we found the corresponding areas on the Boston Climate Ready Map

visualizer to qualitatively evaluate the high hazard and social vulnerability areas. We

observe that a majority of the top 10 census tracts with the highest risk as per the

flood risk model is shown to have a significant area of predicted flooded regions on

the Boston Climate map. In contrast, the areas that have the lowest flood risk based

on the flood risk model has little to no predicted coastal or storm-water flooded areas

on the Boston Climate map.

5.2 Limitations

One of the limitations in our project is the relatively small dataset for finetuning.

Although finetuning a pre-trained Segmenter model does not require a dataset as big

as ADE20K (20,000 images), our dataset had a total of 545 images, where 432 of them

were used for training. Another limitation in our project is that the finetuned model

tends to classify a significant portion of images to be clutter. Often times, these are
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areas occluded by shadows or that have low visibility. An improved segmentation

model would be able to infer the patterns necessary to predict these low visibility

areas. This may be possible by finetuning the model on a larger dataset containing

more urban images.

The ordering of the weights for the land use were determined by those found in

previous literature. However, it would be beneficial to find more precise weights using

the analytical hierarchy process. Additionally, we currently weight all the socioeco-

nomic values the same, but collaborating with an expert in the field may lead to more

accurate weighting of these values.

5.3 Future Work

This project can be extended by incorporating more features related flood hazard

and vulnerability risk. For example, although our image segmentation model is able

to detect sidewalk areas, it would be beneficial to find the specific material of the

sidewalk. This is because surface materials impact water runoff during flood events.

More specifically, more permeable sidewalk materials are beneficial in the event of a

flood. Finding sidewalk types can be done by using a semantic segmentation model

called CitySurfaces [16]. Most cities do not have a catalogue of the different types of

pavement surfaces and a computer vision approach is less time-consuming than the

alternative manual process. The model is able to detect 8 kinds of sidewalk materials

from street view images: concrete, bricks, asphalt, granite, mixed concrete & brick,

hexagonal asphalt paver, and cobblestone roads. All of these sidewalk materials can

be found in Boston and differentiating between them in our model would be beneficial.

Another flood related feature that would be important to use is soil type. Similar

to sidewalk materials, some soil types are more permeable than others. Additionally,

soil texture also plays a role in the amount of flooding. Areas that have soil with finer

texture are more likely to be flooded than areas with coarser soil. Studies such as

Negese et al. (2022) have split the following soil types as very low (Eutric Cambisols),

low (Eutric Nitisols), moderate (Chromic Luvisols), high (Leptosols), and very high
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(Chromic Vertisols and Pellic Vertisols) impact in flood susceptibility [21]. Using the

information from previous studies like this can be useful to make the flood model

more rich. Lastly, it would be beneficial to gain feedback and input from experts in

the fields of flood analysis and other environmental domains.
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