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Abstract

The notion of approximate information states (AIS) was introduced in [31] as a
methodology for learning task-relevant state representations for control in partially
observable systems. They proposed particular learning objectives which attempt to
reconstruct the cost and next state and provide a bound on the suboptimality of the
closed-loop performance, but it is unclear whether these bounds are tight or actually
lead to good performance in practice. Here we study this methodology by examining
the special case of discrete approximate information states (DAIS). In this setting,
we can solve for the globally optimal policy using value iteration for the DAIS model,
allowing us to disambiguate the performance of the AIS objective from the policy
search. Going further, for small problems with finite information states, we reformu-
late the DAIS learning problem as a novel mixed-integer program (MIP) and solve it
to its global optimum; in the infinite information states case, we introduce clustering-
based and end-to-end gradient-based optimization methods for minimizing the DAIS
construction loss. We study DAIS in three partially observable environments and
find that the AIS objective offers relatively loose bounds for guaranteeing monotonic
performance improvement and is sufficient but not necessary for implementing op-
timal controllers. DAIS may even prove useful in practice by itself or as part of
mixed discrete- and continuous-state representations, due to its ability to represent
logical state, to its potential interpretabilty, and to the availability of these stronger
algorithms.

Thesis Supervisor: Russell L. Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

In most autonomous control applications, the agent (or controller) only has access to

partial observations of the system state [27, 9, 16, 32]. Common examples include

robot navigation [27, 9] and robotic manipulation [16, 32]. The key to planning and

control in such partially observable systems is constructing a state representation: a

function of the partial observations through which we can predict future performance

of future control actions. There is ever-growing literature on representation learning

for control in partially observable systems, ranging from the classic state estimation

(filtering) in linear systems [19], to the deep learning-based approaches of learning for

control from pixels [14, 21, 36, 10, 34, 17].

Many of these recent approaches to representation learning for control from pixels

are built upon observation reconstruction/prediction. In particular, they encode the

history of observations (high-dimensional images) into lower-dimensional vectors to

reconstruct and predict future observations [14, 21, 36]. Notably, these approaches

are task-agnostic: the constructed representations are designed to recover all the in-

formation in the observations, including information irrelevant to the downstream

control tasks. Such irrelevant information may easily distract the control and plan-

ning modules [38]. Moreover, no theoretical guarantees for the control performance

were established for these types of representations, and the observations (images) are

11



(a) CheeseMaze (b) Object Pile Manipulation

Figure 1-1: Examples of tasks DAIS deals with.

usually high-dimensional and challenging to reconstruct/predict.

On the other hand, when modeled by the framework of partially observable

Markov decision processes (POMDPs), the state representation that is sufficient for

performance evaluation and optimal control is known to be different from those that

are necessary for predicting the observations. Specifically, it is known that the belief

state (i.e. the posterior belief of the unobserved state given the action-observation

history) is a sufficient statistic for POMDPs, on which the optimal policy can be

defined and identified via dynamic programming [2]. In fact, the belief state belongs

to a more general notion of information state [20, 31] – a function of history which is

sufficient to: 1) compute the expected reward; 2) predict the next information state.

In [31], the authors showed that these two conditions are sufficient for performance

evaluation in POMDPs. More importantly, it is also shown in [31] that any state

representation that satisfies these two conditions approximately with uniform bounds

over all possible observation/action histories, can be used to construct a Markov De-

cision Process (MDP) whose value function is a pointwise good approximation of the

original POMDP therefore inducing a policy with bounded suboptimality. In other

words, the two aforementioned properties provide rigorous metrics for the quality of

a state representation of a POMDP based on its relevance to downstream optimal

control. Such representations can thus be viewed as being task-relevant.

In this work, we study a discrete approximate information state (DAIS) represen-

tation. Specifically, we aim to discover the possible discrete nature of the approximate

information state (AIS) in many structured POMDPs, which can potentially repre-

sent logical state and improve the interpretability. Moreover, a discrete AIS enables

the use of optimal planning methods, e.g., value iteration, to solve the approximate

12



model efficiently. Finally, constructing a discrete AIS facilitates the direct use of the

two aforementioned conditions in training, without resorting to the surrogate con-

ditions given in [31], which also requires predicting the potentially high-dimensional

observations.

1.2 Contributions

The contributions of this thesis are summarized as follows. First, we present a frame-

work to construct DAIS without observation prediction, for POMDPs with both finite-

and infinite-cardinality belief states. Second, for the finite belief space POMDPs, we

propose a mixed integer programming (MIP)-based formulation for constructing the

optimal state representation, followed by a novel reformulation technique that yields

a globally optimal solution. By solving small problems to optimality, we are able to

study the gap between the DAIS loss bounds and the task performance. For the infi-

nite belief space case, we develop both clustering-based and gradient-based methods

and investigate the non-convex DAIS objective independently from the policy. We

find that although the original AIS bound in [31] can be relatively loose for guar-

anteeing monotonic performance improvement, discrete model representations solved

with exact value iteration can still yield optimal (or close to optimal in the infinite-

belief case) control strategies. Third, we evaluate the effectiveness of DAIS on three

benchmark partially observable environments, including a visual-feedback object pile

manipulation task in robotics. We also demonstrate the interpretability of DAIS in

some examples, and show the numerical advantages of planning over DAIS, compared

to existing continuous-space POMDP solvers, e.g., [27].

1.3 Organization

The thesis is organized as follows: Chapter 2 reviews the related work on represen-

tation learning for controls in partially observable systems. Chapter 3 introduces the

mathematical framework of approximate information states. Chapter 4 presents the

13



formulation of partially observable markov decision process with both finite and infi-

nite belief space. Chapter 5 provides tractable optimization programs to find discrete

approximate information states. Chapter 6 concludes with a discussion of our work.
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Chapter 2

Related Works

Besides the most relevant work [31] on AIS discussed above (and will be discussed

more in Chapter 3), the other related works are summarized as follows.

2.1 Representation Based on Observation Reconstruc-

tion/Prediction

Faced with high-dimensional visual input, model-based reinforcement learning meth-

ods typically focus on reconstructing or predicting observations [37, 17, 14] to learn

the underlying model for optimal planning. [34] employs variational autoencoders

to learn a latent state with locally linear dynamics by accurately reconstructing the

image at the next time step. [14] learns a latent space with both deterministic and

stochastic dynamics by training multi-step predictions of observations and rewards.

[38] aims to learn invariant representations without reconstruction, which has the clos-

est motivation to ours. However, the framework was focused on the fully-observable

settings of MDPs.
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2.2 POMDP Solvers

Most exact POMDP algorithms utilize dynamic programming to compute the piece-

wise linear value function for optimal decision making under partial observability.

Such exact compuation often suffers from the exponential growth of value function

calculation. Various POMDP solvers like point-based value iteration [26, 30] and

incremental pruning [5] have been proposed to avoid this major difficulty via convex

approximations. However, most of the solvers are restricted to discrete state spaces

and require extensive iterations to update the value function. [27] deals with con-

tinuous POMDP but the algorithm is fairly slow to train and is sensitive to model

parameters (as observed in Section 5.4).

2.3 Output Feedback Control

In the controls community, there has been extensive literature on output feedback

control that guarantees stability and robustness of the closed-loop systems where the

states are unavailable for the controller design. Static output feedback [33, 4, 11]

parameterizes the controller only as a function of the output while dynamic output

feedback [1, 28] keeps an internal state for the controller update, which attempts

to summarize the history of observations and controls, and resembles the notion of

information states. However, most of the methods with theoretical guarantees only

handle linear systems where the observations are linear functions of the states and

fail under complicated, high-dimensional observations such as images.

2.4 State Aggregation

There are a number of works on state discretization [3, 24] and state aggregation [35]

in MDPs. In particular, Givan et al. [12] propose to aggregate MDPs using bisimu-

lation, the strictest partitioning form for preserving most properties. Ferns et al. [8]

soften the exact equivalence requirement in bismulation using bisimulation metrics,

presenting state aggregation techniques for MDPs which combine “behaviorally simi-

16



lar" states given the distance between their rewards and state distributions. Castro

et al. [6] extend the notion of bisimulation metrics to POMDPs. However, they do

not provide viable algorithms for computing equivalence and aggregation in belief

space. In this work, we formulate tractable optimization programs to learn DAIS as

an effective discretization of the belief space.
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Chapter 3

Background

In this chapter, we provide the background for understanding the DAIS framework.

We start with describing the POMDP and then introduce the definition of approxi-

mate information state, originated from [31].

3.1 Partially Observable Markov Decision Process

A POMDP is formally defined as a tuple ⟨S,A, 𝑇, 𝑟,Ω, 𝑂, 𝛾⟩, where S is the set of

the states of the world, A is a set of actions that the agent can execute, 𝑇 is the

stochastic transition function 𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), 𝑟 (𝑠, 𝑎) is the

reward function, Ω is a set of possible observations, 𝑂 is an observation model with

𝑂 (𝑠, 𝑜) = 𝑃(𝑜𝑡 = 𝑜 |𝑠𝑡+1 = 𝑠) and 𝛾 ∈ [0, 1) is the discount factor. The history until

time 𝑡, denoted by 𝐻𝑡 , is the summary of the past observations and actions, i.e.,

𝐻𝑡 = (𝑜1:𝑡−1, 𝑎1:𝑡−1). Another important notion for POMDP is the belief state 𝑏𝑡 ,

which is the posterior probability distribution of the unobserved states at time 𝑡. The

belief state summarizes the previous experience until time 𝑡 and assumes the Bayesian

update:

𝑏𝑡+1(𝑠′) = 𝑓 (𝑏𝑡 , 𝑎𝑡 , 𝑜𝑡) (3.1)

=
𝑃(𝑜𝑡 |𝑠𝑡+1 = 𝑠′)

∑
𝑠 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡)𝑏𝑡 (𝑠)
𝑃(𝑜𝑡 |𝑏𝑡 , 𝑎𝑡)

,

19



where

𝑃(𝑜𝑡 |𝑏𝑡 , 𝑎𝑡) =
∑︁
𝑠′
𝑃(𝑜𝑡 |𝑠𝑡+1 = 𝑠′) ·

∑︁
𝑠

𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡)𝑏𝑡 (𝑠). (3.2)

The belief update can be used to form the “belief MDP" for planning by marginalizing

over the future observations:

𝑃(𝑏𝑡+1 = 𝑏 |𝑏𝑡 , 𝑎𝑡) =
∑︁
𝑜

𝑃(𝑜𝑡 = 𝑜 |𝑏𝑡 , 𝑎𝑡)𝟙(𝑏 = 𝑓 (𝑏𝑡 , 𝑎𝑡 , 𝑜)). (3.3)

3.2 Approximate Information State

Let (𝜖, 𝛿) be positive real numbers, (X,G) be a measurable space, 𝑑 denote a probabil-

ity metric between two probability distributions 𝜇, 𝜈 ∈ Δ(X) (the space of probability

measures on X) such as the Wasserstein distance or the Total Variation 1 metrics. An

approximate information state {𝑍𝑡}𝑇𝑡=1 is generated by a history compression function

{𝜎𝑡 : Ht → Z}𝑡≥1, Markovian update kernel 𝑃 : Z × A → Δ(Z) and reward prediction

function 𝑟 : Z × A → R where 𝑍𝑡 = 𝜎𝑡 (𝐻𝑡) and the following properties are satisfied

for any 𝑡, any realization ℎ𝑡 of 𝐻𝑡 , and any action 𝑎𝑡 of 𝐴𝑡 ∈ A:

(AP1) Sufficient to predict the reward 𝑅𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡) approximately:

| E[𝑅𝑡 |𝐻𝑡 = ℎ𝑡 , 𝐴𝑡 = 𝑎𝑡] − 𝑟 (𝑧𝑡 , 𝑎𝑡) | ≤ 𝜖 .

(AP2) Sufficient to predict its Markovian transition approximately: for any Borel

subset Y of Z, define 𝜇𝑡 (Y) B 𝑃(𝑍𝑡+1 ∈ Y |𝐻𝑡 = ℎ𝑡 , 𝐴𝑡 = 𝑎𝑡) , 𝜈𝑡 (Y) B 𝑃(𝑍𝑡+1 ∈

Y |𝑧𝑡 , 𝑎𝑡),

𝑑 (𝜇𝑡 , 𝜈𝑡) ≤ 𝛿.

In general, the condition (AP2) can be abstract to enforce. [31] has thus proposed

the following two surrogate conditions that imply (AP2), which might be easier to

1The total variation is given by 𝑇𝑉 (𝜇, 𝜈) = 1
2

∑
𝑥 |𝜈(𝑥) − 𝜇(𝑥) |.

20



enforce.

(AP2’a) Evolves deterministically like a state: there exists a measurable update

function 𝜙 : Z × Ω × A such that

𝑧𝑡+1 = 𝜙(𝑧𝑡 , 𝑜𝑡 , 𝑎𝑡).

(AP2’b) Sufficient to predict future observations approximately: for any Borel subset

Y of Ω, define 𝜇𝑜𝑡 (Y) B 𝑃(𝑂𝑡 ∈ Y |𝐻𝑡 = ℎ𝑡 , 𝐴𝑡 = 𝑎𝑡), 𝜈𝑜𝑡 (Y) B 𝑃𝑜 (𝑂𝑡 ∈ Y |𝑧𝑡 , 𝑎𝑡), then

𝑑 (𝜇𝑜𝑡 , 𝜈𝑜𝑡 ) ≤ 𝛿𝑜 .

We denote the true value function of the history by 𝑉 (ℎ𝑡) and the approximation

obtained from AIS with dynamic programming by 𝑉 (𝑧𝑡), then we have the following

bound on the value function approximation error [31, Theorem 9]:

|𝑉 (ℎ𝑡) −𝑉 (𝑧𝑡) | ≤ 𝛼, with 𝛼 =
𝜖 + 𝛾𝛿𝜌𝑑 (𝑉)

1 − 𝛾 ,

where 𝜌𝑑 is associated with the chosen probability metric related to the underlying

extremization definition of that metric (see [31, Definition 6]). For 𝑓 defined over a

discrete set we have that for the Wasserstein distance 𝜌𝑑 ( 𝑓 ) = | | 𝑓 | |Lip, the Lipschitz

semi-norm, and for Total Variation 𝜌𝑑 ( 𝑓 ) = max( 𝑓 )−min( 𝑓 )
2 .

The power of AIS is that, by enforcing the conditions approximately with some

relaxation error (𝜖, 𝛿), the value function of the AIS model, i.e., ⟨Z,A, 𝑃, 𝑟⟩, is also

pointwise close to the actual value function of the POMDP, up to an error that

can be bounded linearly by (𝜖, 𝛿). This provides a principled way to design state

representations for control in POMDPs, with provable suboptimality guarantees.

In many robotics applications, the observations, i.e., images, are of high dimen-

sions and can be challenging to reconstruct and predict (i.e. to enforce (AP2’b)).

Hence, we propose to only use (AP2), which becomes tangible and more tractable

under the discrete AIS framework.
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Chapter 4

Problem Formulation

We now present several common types of POMDPs that we aim to address in the

ensuing chapters.

4.1 Finite Belief Space

Some basic POMDP examples with finite state-action and observation spaces also by

nature have deterministic transition and observation models. In such models, the set

of belief states, i.e., the exact information state, has finite cardinality. In this case, it

is thus sensible to design discrete AIS. We take the CheeseMaze [23] as an example.

Example: (CheeseMaze) The maze environment consists of 11 states (grid cells) and

7 observations (numbers on the grid cells) as shown in Fig. 1-1. An agent in the maze

desires to reach the goal state (shaded cell) where the cheese lands. Its movement

in all four directions (north, south, east and west) and the observation functions are

deterministic (e.g. 𝑃(𝑜𝑡 = 𝑜 |𝑠𝑡+1 = bottom left cell) = 𝟙(𝑜 = 6)).

4.2 Infinite Belief Space

In general, with stochastic transition dynamics and observation models, there are in-

finitely many reachable belief states 𝑏𝑡 starting from an initial belief 𝑏0. We propose

to discretize the infinite-cardinality belief state space using the approximate informa-
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tion state conditions in Sec. 3.2. In particular, we focus on two such settings that

are common in robotics applications: continuous-state space POMDPs, and vision-

feedback control tasks.

4.2.1 Continuous-State POMDPs

Most existing algorithms for solving model-based POMDPs focus on discrete states

while many real-world applications, such as robot navigation and manipulation, are

naturally represented using continuous states. Note that in this case, the belief state

becomes continuous and has infinite cardinality. We consider the same class of con-

tinuous POMDPs as studied in [27]. The dynamics are given by a Gaussian model

𝑃(·|𝑠𝑡 , 𝑎𝑡) = 𝜙(𝑠𝑡 + 𝑓 (𝑎𝑡), Σ𝑎𝑡 ), where 𝜙 denotes a Gaussian distribution with mean

𝑠𝑡 + 𝑓 (𝑎𝑡) and covariance Σ𝑎𝑡 . The reward 𝑟𝑎𝑡 (𝑠𝑡) is modeled by a linear combination

of Gaussian distributions 𝑟𝑎𝑡 (𝑠𝑡) =
∑𝑁𝑟

𝑖=1 𝑤
𝑟
𝑖
𝜙𝑖 (𝑠𝑡 |𝑚𝑎𝑡𝑖 , Σ

𝑎𝑡
𝑖
), where 𝑤𝑟

𝑖
are weights, 𝜙𝑖

are Gaussian distributions, 𝑚𝑎𝑡
𝑖

and Σ
𝑎𝑡
𝑖

are the mean and covariance, and 𝑁𝑟 is a

predefined number. The observation model 𝑃(𝑜𝑡 |𝑠𝑡+1) is characterized by a Gaussian

mixture model and by assuming uniform 𝑃(𝑠) and sampling 𝑁𝑜 observation/state

pairs:

𝑃(𝑜, 𝑠) =
𝑁𝑜∑︁
𝑖=1

𝑤𝑜𝑖 𝜙𝑖 (𝑠 |𝑠𝑜𝑖 , Σ𝑜𝑖 ),

𝑃(𝑜𝑡 = 𝑜 |𝑠𝑡+1 = 𝑠) =
𝑃(𝑜, 𝑠)
𝑃(𝑠) ∝

𝑁𝑜∑︁
𝑖=1

𝑤𝑜𝑖 𝜙𝑖 (𝑠 |𝑠𝑜𝑖 , Σ𝑜𝑖 ).

The belief state is continuously valued and can be written as a Gaussian mixture:

𝑏𝑡 (𝑠) =
𝑁∑︁
𝑗=1

𝑤 𝑗𝜙 𝑗 (𝑠 |𝑠 𝑗 , Σ 𝑗 ), (4.1)

where 𝑁 is the number of Gaussian components, the weights 𝑤 𝑗 > 0 and
∑𝑁
𝑗=1 𝑤 𝑗 = 1.

Such a representation of belief states is a natural consequence of linear-Gaussian dy-

namics and Gaussian mixture observation functions because the belief update can

then be computed in closed form with all the Gaussian based functions. During the
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rollouts, the number of Gaussian components needed to represent the belief state

keeps increasing because the Bayesian update involves summing and multiplying

Gaussian components of all actions and observations. Following [27], we employ the

hierarchical clustering method described in [13] to compress the growing Gaussian

mixture to one with a fixed number of components.

4.2.2 Visual-Feedback Control Tasks

We are interested in visual feedback manipulation tasks with quasi-static dynamics,

where the observed images can serve as sufficient statistics of history. Essentially,

the high-dimensional raw pixel images with reduced resolution can be viewed as 𝑏𝑡 ,

which are mapped into a low-dimensional discrete representations 𝑍𝑡 for reward and

transition model prediction. We believe that image reconstruction or observation

prediction is not necessary because the low-dimensional DAIS can capture the most

essential information for the manipulation tasks.
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Chapter 5

Discrete Approximate Information

States

We aim to learn a set of discrete approximate information states where Z is a finite set

and |Z| = 𝑛𝑧 (𝑛𝑧 is a positive integer). The discrete approximate information states

can be encoded as one-hot vectors 𝑍𝑡 and their categorical distributions can be rep-

resented using vectors �̄�𝑡 ∈ Δ(Z). For general AIS, it is only tractable to sample from

the probability distribution 𝜇𝑡 as closed-form computation for the infinite-cardinality

representation is prohibitively difficult. Meanwhile with discrete AIS, we can calcu-

late the distribution 𝑃(𝑍𝑡+1 |ℎ𝑡 , 𝑎𝑡) exactly using Bayes rule and belief discretization.

Moreover, instead of having to minimize the surrogate loss from samples as in the

original AIS framework [31], it is straightforward to encode probability distributions

of discrete variables in vectors and measure their distance. Starting from the current

belief, we can obtain the probability distribution �̄�𝑡+1 of the DAIS at the next time

step following the two paths depicted in Fig. 5-1. The red path shows that we can

update the current belief 𝑏𝑡 to 𝑏𝑡+1 using Bayes rule and subsequently discretize 𝑏𝑡+1

to 𝑍𝑡+1 using the discretization map 𝐷:
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Figure 5-1: DAIS learning framework. The red path shows that the current belief 𝑏𝑡
propagates to the next time step 𝑏𝑡+1 under Bayes rule 𝐶𝑎𝑡 with action 𝑎𝑡 , which is
then discretized to the DAIS under transformation 𝐷 at time 𝑡+1 as 𝑍𝑡+1; the blue path
demonstrates that the current belief 𝑏𝑡 is first discretized to 𝑍𝑡 and then propagates to
𝑍𝑡+1 under the learned transition 𝐵𝑎𝑡 . We aim to minimize the discrepancy between
the probability distribution of 𝑍𝑡+1 obtained by the two paths as well as the difference
between the reward predicted by 𝑏𝑡 (i.e. 𝑟𝑎𝑡 ) and 𝑍𝑡 (i.e. 𝑅𝑡).

𝑃(𝑍𝑡+1 |ℎ𝑡 , 𝑎𝑡) = 𝑃(𝑍𝑡+1 |𝑏𝑡 , 𝑎𝑡) (5.1)

=
∑︁
𝑏

𝑃(𝑍𝑡+1 |𝑏𝑡+1 = 𝑏)𝑃(𝑏𝑡+1 = 𝑏 |𝑏𝑡 , 𝑎𝑡)

=
∑︁
𝑏

𝟙(𝐷 (𝑏) = 𝑍𝑡+1)𝑃(𝑏𝑡+1 = 𝑏 |𝑏𝑡 , 𝑎𝑡),

where 𝑍𝑡+1 only comes from the discretization of the next time step belief 𝑏𝑡+1 and

is conditionally independent of 𝑏𝑡 and 𝑎𝑡 . Following the red path, we can also define

the categorical distributions �̄�𝑡+1 as

�̄�𝑡+1 =


𝑃(𝑍𝑡+1 = 𝑧1 |𝑏𝑡 , 𝑎𝑡)

...

𝑃(𝑍𝑡+1 = 𝑧𝑛𝑧 |𝑏𝑡 , 𝑎𝑡)


=
∑︁
𝑏

𝑃(𝑏𝑡+1 = 𝑏 |𝑏𝑡 , 𝑎𝑡)𝐷 (𝑏). (5.2)

In general, 𝐷 is a function that maps belief states, which are generally real-valued

functions, to a finite set of categorical variables; in a discrete POMDP with deter-

ministic dynamics and observations, 𝐷 becomes a projection matrix that projects a

large set of belief states down to a much smaller set of DAIS.
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Meanwhile, the blue path shows that 𝑍𝑡+1 can also be obtained by first mapping

𝑏𝑡 to 𝑍𝑡 and then propagating 𝑍𝑡 to the next time step under the learned transition

matrix 𝐵𝑎 = [𝐵𝑎
𝑖 𝑗
]𝑖, 𝑗∈[𝑛𝑧] , where 𝐵𝑎

𝑖 𝑗
= 𝑃(𝑍𝑡+1 = 𝑧𝑖 |𝑍𝑡 = 𝑧 𝑗 , 𝑎𝑡 = 𝑎):

𝑃(𝑍𝑡+1 |𝑏𝑡 , 𝑎𝑡) =
∑︁
𝑧

𝑃(𝑍𝑡+1 |𝑍𝑡 = 𝑧, 𝑎𝑡)𝑃(𝑍𝑡 = 𝑧 |𝑏𝑡)

=
∑︁
𝑧

𝑃(𝑍𝑡+1 |𝑍𝑡 = 𝑧, 𝑎𝑡)𝟙(𝐷 (𝑏𝑡) = 𝑧), (5.3)

�̄�′𝑡+1 = 𝑃(𝑍𝑡+1 |𝑍𝑡 , 𝑎𝑡)𝐷 (𝑏𝑡). (5.4)

We aim to match the probability distribution of the next step DAIS �̄�𝑡+1 and �̄�′
𝑡+1

obtained by the two procedures as well as the reward predicted by both the belief and

DAIS. This framework explicitly avoids predicting observations and is beneficial when

the output is high-dimensional (which is common in robotics applications). With the

tabular “DAIS MDP”, we can run value iteration to obtain the optimal planning policy

for the approximate model.

In the following sections, we first describe how to formulate the finite-belief DAIS

learning problem as an MIP and then extend it to the infinite-belief case with gradient-

based and clustering-based optimization schemes.

5.1 Finite Belief Space

In discrete POMDPs with deterministic dynamics, the number of finite beliefs 𝑛𝑏

is bounded. We would like to use a much smaller number (𝑛𝑧 < 𝑛𝑏) of DAIS to

represent the task-relevant information of the belief optimally, i.e., minimizing the

loss that enforces the AIS conditions (AP1) and (AP2). Due to the discreteness of

the belief space, we can describe each belief state 𝑏𝑡 as a one-hot vector 𝑏𝑘 (where

the 𝑘-th entry is 1), write the belief update as a matrix multiplication and formulate
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the DAIS learning as a mixed-integer program:

min
{𝐵𝑎},𝐷,{𝑟𝑎}

∑︁
𝑎

𝑛𝑏∑︁
𝑘=1

|𝑟𝑎𝑘 − 𝑟
𝑎𝐷𝑏𝑘 |2 + ∥𝐵𝑎𝐷𝑏𝑘 − 𝐷𝐶𝑎𝑏𝑘 ∥2

s.t. 1𝑇𝐷 = 1𝑇

1𝑇𝐵𝑎 = 1𝑇 , ∀𝑎

𝐷𝑖 𝑗 ∈ {0, 1}, ∀𝑖, 𝑗

𝐵𝑎𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 , 𝑎,

(5.5)

where we denote the belief MDP transition probability matrix by 𝐶𝑎 = [𝐶𝑎
𝑖 𝑗
]𝑖, 𝑗∈[𝑛𝑏]

with 𝐶𝑎
𝑖 𝑗

= 𝑃(𝑏𝑡+1 = 𝑏𝑖 |𝑏𝑡 = 𝑏 𝑗 , 𝑎𝑡 = 𝑎), the DAIS transition probability matrix

by 𝐵𝑎. The projection matrix 𝐷 ∈ {0, 1}𝑛𝑧×𝑛𝑏 can only take entries 0 and 1, and has

exactly a single 1 in each column because 𝑏𝑘 ’s are transformed into one-hot encodings.

𝑟𝑎
𝑘
= E[𝑅𝑡 |𝑏𝑡 = 𝑏𝑘 , 𝑎𝑡 = 𝑎] and 𝑟𝑎 = [𝑟 (𝑧1, 𝑎), · · · , 𝑟 (𝑧𝑛𝑧 , 𝑎)] is the reward estimation

vector with action 𝑎 for all 𝑧. 1 denotes an all-one vector. The two terms in the

objective enforce (AP1) and (AP2) respectively.

5.1.1 Reformulating Bilinear Optimization Problem

Notice that the optimization objective is bilinear in 𝐵𝑎 and 𝐷 as well as 𝑟𝑎 and

𝐷. Such bilinear objectives are not mixed-integer convex. To make the optimiza-

tion problem amenable to numerical computation, we use change of variables 𝑄𝑎 =

𝐵𝑎𝐷, 𝑟𝑎 = 𝑟𝑎𝐷 and introduce binary auxiliary variables {𝑡 𝑗1 𝑗2} 𝑗1, 𝑗2 to reformulate the
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optimization problem exactly:

min
{𝑄𝑎},𝐷,{𝑟𝑎},{𝑡 𝑗1 𝑗2

}

∑︁
𝑎

𝑛𝑏∑︁
𝑘=1

|𝑟𝑎𝑘 − 𝑟
𝑎𝑏𝑘 |2 + ∥𝑄𝑎𝑏𝑘 − 𝐷𝐶𝑎𝑏𝑘 ∥2

s.t. 𝐷𝑖 𝑗 ∈ {0, 1}, ∀𝑖, 𝑗 and 1𝑇𝐷 = 1𝑇

𝑄𝑎
𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 , 𝑎 and 1𝑇𝑄𝑎 = 1𝑇 , ∀𝑎

𝑡 𝑗1 𝑗2 ∈ {0, 1}, ∀ 𝑗1 ∈ [𝑛𝑧], 𝑗2 ∈ [𝑛𝑧], 𝑗1 < 𝑗2

𝑡 𝑗1 𝑗2 − 1 ≤ 𝐷: 𝑗1 − 𝐷: 𝑗2 ≤ 1 − 𝑡 𝑗1 𝑗2

𝐷: 𝑗1 + 𝐷: 𝑗2 ≤ 1 + 𝑡 𝑗1 𝑗2

𝑄𝑎
: 𝑗1

−𝑄𝑎
: 𝑗2

≤ 1 − 𝑡 𝑗1 𝑗2 , ∀𝑎

(𝑡 𝑗1 𝑗2 − 1)𝑀 ≤ 𝑟𝑎: 𝑗1 − 𝑟
𝑎
: 𝑗2

≤ (1 − 𝑡 𝑗1 𝑗2)𝑀, ∀𝑎∑︁
𝑗1, 𝑗2

𝑡 𝑗1 𝑗2 ≥ 𝑛𝑏 − 𝑛𝑧, (5.6)

where 𝐷: 𝑗 denotes the 𝑗 th column of matrix 𝐷 and 𝑀 can be set to max |𝑟𝑎
𝑘1

− 𝑟𝑎
𝑘2
|.

This optimization problem can be efficiently solved to its global optimum using off-

the-shelf solvers like Gurobi [25]. The additional constraints on 𝑡 𝑗1 𝑗2 , 𝑄
𝑎, 𝑟𝑎 and 𝐷

adopt the big-M technique and retains the important structure of 𝑄𝑎 and 𝑟𝑎 as the

multiplication of a matrix and the projection matrix 𝐷: 𝐷’s columns are one-hot

vectors, and multiplying 𝐵𝑎 (resp. 𝑟𝑎) by 𝐷 is essentially selecting certain columns

of 𝐵𝑎 (resp. 𝑟𝑎) and concatenating them into 𝑄𝑎 (resp. 𝑟𝑎). The binary auxiliary

variables 𝑡 𝑗1 𝑗2 specify the connections between 𝐷’s column selection behavior and

𝑄𝑎 (resp. 𝑟𝑎)’s columns: when 𝑡 𝑗1 𝑗2 = 1, 𝐷: 𝑗1 = 𝐷: 𝑗2 guarantees 𝑄𝑎
: 𝑗1

= 𝑄𝑎
: 𝑗2

and

𝑟𝑎: 𝑗1
= 𝑟𝑎: 𝑗2

(meaning that 𝐷 is selecting the same column from 𝐵𝑎 for both 𝑗1-th and

𝑗2-th column of 𝑄𝑎); when 𝑡 𝑗1 𝑗2 = 0, 𝐷’s 𝑗1-th column is guaranteed to be different

from its 𝑗2-th column and there are no constraints on 𝑄𝑎 (resp. 𝑟𝑎)’s corresponding

columns. To the best of our knowledge, this is the only algorithm that computes

globally optimal AIS and enables exact computation of the downstream policy to

study the gap between the representation learning and the task performance.
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5.2 Infinite Belief Space

We extend our discrete representation learning framework to infinite belief settings.

We propose two approaches with function approximations to handle the infinitely

many belief states.

5.2.1 Gradient-Based Optimization

We parametrize the discretization map 𝐷 as well as the transition and reward esti-

mation models {𝐵𝑎}𝑎∈A and {𝑟𝑎}𝑎∈A as neural networks with a set of parameters 𝜃 to

minimize the DAIS loss in Eq. (5.7) using end-to-end gradient-based optimization:

min
𝜃

∑︁
𝑎

∑︁
𝑡

|𝑟𝑎𝑡 − 𝑟𝑎𝜃𝐷𝜃 (𝑏𝑡) |2 + ∥𝐵𝑎𝜃𝐷𝜃 (𝑏𝑡) − �̄�𝑎𝑡+1∥
2

s.t. [𝐵𝑎𝜃 ]𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 , 𝑎 and 1𝑇𝐵𝑎𝜃 = 1𝑇 , ∀𝑎, (5.7)

�̄�𝑎𝑡+1 =
∑︁
𝑏

𝑃(𝑏𝑡+1 = 𝑏 |𝑏𝑡 , 𝑎)𝐷𝜃 (𝑏), (5.8)

where 𝑟𝑎𝑡 = E[𝑅𝑡 |𝑏𝑡 , 𝑎𝑡 = 𝑎]. Unlike the finite belief setting where there are finitely

many 𝑟𝑎
𝑘

and 𝑏𝑘 , 𝑟𝑎𝑡 and 𝑏𝑡 can be assumed to have a continuous spectrum of values and

the loss corresponding to (AP1) and (AP2) have to be minimized through sampling.

In the continuous-state POMDPs with Gaussian mixed models, i.e., the setting in

Section 4.2.1, the weights, means and covariances of a Gaussian mixture characterizing

a belief state are flattened and concatenated into a single vector as the input to the

discretization map 𝐷, which outputs a one-hot vector 𝑍𝑡 as the discrete representation;

in visual feedback control tasks, i.e., the setting in Section 4.2.2, the images are

fed into the discretization map 𝐷 instantiated by a convolutional neural network

followed by categorical reparametrizaiton. In order to allow backpropagation through

categorical variables to adjust the parameters of 𝐷, {𝐵𝑎} and {𝑟𝑎} simultaneously, we

use the Gumbel-Softmax [18] as a continuous approximation to the one-hot vector.

The discretization map 𝐷 essentially aggregates beliefs into clusters based on

(AP1) and (AP2) loss. The one-hot vector 𝑍𝑡 indicates that the current belief is

assigned deterministically to the cluster corresponding to 𝑍𝑡 ’s non-zero entry. The
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next-time-step belief 𝑏𝑡+1 given the current action has the probability of being assigned

to the clusters based on the categorical distribution specified by �̄�𝑡+1.

5.2.2 Clustering-Based Optimization

Jointly optimizing 𝐷, {𝐵𝑎}𝑎∈A and {𝑟𝑎}𝑎∈A as in Eq. (5.7) is highly nonconvex and

generally intractable (note that even the discrete case with deterministic dynamics

in the previous section requires convex reparametrization and the MIP reformulation

technique). Therefore, we propose to sequentially optimize 𝐷 followed by {𝐵𝑎} and

{𝑟𝑎} jointly. Because the expected reward 𝑟𝑎𝑡 =
∫
𝑠
𝑟 (𝑠, 𝑎)𝑏𝑡 (𝑠)𝑑𝑠 is linear in the belief,

aggregating the belief states with small distances to each other helps reduce the loss

associated with (AP1). Similarly, because the Bayesian update Eq. (3.1) is linear

in belief, starting from belief states 𝑏𝑡 close in probability metrics and executing

the same action 𝑎 result in 𝑏𝑡+1 close to each other. If these neighboring 𝑏𝑡 get

mapped to the same DAIS 𝑧𝑖 and similar 𝑏𝑡+1 get mapped to the same DAIS 𝑧 𝑗 , �̄�𝑡+1

will become a one-hot vector 𝐷 (𝑏𝑡+1) and the second term in Eq. (5.9)’s objective

can be made small with 𝐵𝑎
𝑗𝑖
= 1. Hence, we first find a suitable discretization 𝐷

via K-means clustering under the total variation-distance metric and then solve a

constrained convex optimization problem to minimize the DAIS loss:

min
{𝐵𝑎},{𝑟𝑎}

∑︁
𝑎

∑︁
𝑡

|𝑟𝑡 − 𝑟𝑎𝑧𝑡 |2 + ∥𝐵𝑎𝑧𝑡 − �̄�𝑡+1∥2

s.t. 𝐵𝑎𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 , 𝑎 and 1𝑇𝐵𝑎 = 1𝑇 , ∀𝑎, (5.9)

where 𝑧𝑡 = 𝐷 (𝑏𝑡) is the one-hot vector representing the clusters obtained by total

variation K-means clustering [7] and �̄�𝑡+1 is again computed using Eq. (5.2).

To obtain more precise discretization 𝐷, one could cluster the belief states based on

Wasserstein distance. The Wasserstein-style clustering resembles the iterative process

of K-means clustering: the beliefs are first coarsely grouped into 𝑛𝑧 number of clusters

according to their corresponding immediate reward and each group’s barycenter can
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Algorithm 1 DAIS Learning and Planning
1: Generate data (𝑏𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑏𝑡+1) from rollout samples of {𝑎𝑡 , 𝑜𝑡}𝑡≥1 using Eq. (3.1)
2: if gradient-based optimization then
3: Solve Eq. (5.7) for {𝐵𝑎}, 𝐷, {𝑟𝑎}, using gradient-based solvers
4: else
5: Find 𝐷 via Wasserstein K-means clustering
6: Solve Eq. (5.9) for {𝐵𝑎}, {𝑟𝑎}
7: end if
8: policy, 𝑉 = value_iteration ({𝐵𝑎}, {𝑟𝑎})

be calculated by solving a linear program [7]. Each belief state is then reassigned to

a new cluster whose barycenter has the smallest Wasserstein distance to that belief.

The barycenter calculation and assignment steps are repeated until convergence.

5.3 Planning

One main advantage of DAIS is that we can perform exact dynamic programming,

i.e., value iteration, to obtain the optimal policy for such a representation. This

way, we are able to “solve the approximate model exactly”. Note that other planning

approaches, i.e., policy iteration, Monte-Carlo tree search, may also be used for the

DAIS model, but we focus on value iteration for simplicity.The overall DAIS learning

and planning pipeline is summarized in Algorithm 1.

5.4 Results

In this section, we validate our discrete representation learning framework for both fi-

nite belief space task (CheeseMaze), and infinite belief space tasks: one with continuous-

state space (Corridor Navigation) and the other with high-dimensional visual inputs

for robotic manipulation (Object Pile Manipulation).

5.4.1 CheeseMaze

We investigate the relationship between learning loss, model performance and DAIS

dimension in the CheeseMaze example adapted from [31]. We solve the DAIS opti-
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mization program (5.6) to its global optimum using Gurobi. As baselines comparison,

we replace the second term in Eq. (5.6) that enforces (AP2) by losses corresponding

to (AP2’ab), (AP2)+(AP2’a), (AP2)+(AP2’b) and (AP2)+(AP2’ab) respec-

tively. Recall that the DAIS construction loss associated with (AP1)+(AP2) gives

a concrete bound on the suboptimality of the downstream policy, we plot the DAIS

construction loss associated with (AP1)+(AP2) for the five different optimization

programs in Fig. 5-2a. We also compute the bounds 𝛼 on the loss in performance

and find them orders of magnitude larger (e.g., 17.6 for 𝑛𝑧 = 11 and 189.9 for 𝑛𝑧 = 7)

than the empirical value function approximation errors. Although the DAIS fitting

loss offers a relatively loose bound on approximation errors and consequently task

performance (e.g., purple curve with larger DAIS fitting loss in Fig. 5-2a can have

smaller value function approximation mean squared errors in Fig. 5-2c compared

with the blue curve), Fig. 5-2b shows that DAIS can still recover the optimal con-

troller computed from the true belief states (dashed line) up to compressed dimension

𝑛𝑧 = 9 by solving the DAIS model exactly with value iteration. Intuitively, the higher

dimensional the discrete representation is, the more capacity it has to capture use-

ful information to model the task. Using only (AP2), we observe that the DAIS

loss and value function approximation error decrease monotonically as the maximum

DAIS dimension grows (Fig. 5-2). Notice that using other variants of the second term

in Eq. (5.6) can result in non-monotonic changes in the DAIS loss because they are

not precisely minimizing the DAIS loss (AP1)+(AP2) but rather some redundant

surrogates. The AIS loss is zero at 15 states, which is the true cardinality of the belief

state, but the value function approximation error reaches zero with just 11 states.

Predicting observations is unnecessary in the regime where the DAIS can retain

the optimal sufficient statistics for planning and control. Although we do not en-

courage observation prediction, this can still be done in this small-scale example. We

then observe that in the suboptimal regime where the low-dimensional DAIS has to

sacrifice useful information, predicting the output and DAIS’ deterministic evolution

(i.e., enforcing conditions (AP2’ab)) can help decrease the value function approxi-

mation error and improve the overall performance (Fig. 5-2c). In fact, minimizing the
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(AP1)) and (AP2)) objectives is not precisely equivalent to minimizing the value

function approximation error: experiments have shown that there is a nontrivial gap

between the theoretical bound and the empirical evaluation. Note that the last three

optimization programs have redundancy ((AP2’ab) imply (AP2)), the additional

losses can change the objective landscape and thus might offer some numerical ad-

vantages for empirical implementation.

Remark (Interpretability of DAIS in CheeseMaze): Notably, one main advan-

tage of discrete AIS is that the learned representation may be readily interpretable,

which can be illustrated in this example. For instance, the DAIS algorithm learns to

aggregate the three belief states where it is certain about its location at the bottom

left cell 𝑏𝑡 (𝑠) = 𝟙(𝑠 = bottom left cell), certain about its location at the bottom right

cell 𝑏𝑡 (𝑠) = 𝟙(𝑠 = bottom right cell) and uncertain about its location at the bottom

left or right cell with probability 0.5 each 𝑏𝑡 (𝑠) = 0.5·𝟙(𝑠 = bottom left cell)+0.5·𝟙(𝑠 =

bottom right cell). The aggregation of these three beliefs does not sacrifice informa-

tion for planning at all because the optimal action at all three belief states is to go

north. DAIS also achieves similar aggregation for the three belief states associated

with the middle left and right cells without losing any information for optimal plan-

ning (as demonstrated by the non-degrading performance and small value function

approximation error until 𝑛𝑧 = 11 in Fig. 5-2). One interesting observation is that

if we specify DAIS’ exact dimension (instead of its maximum dimension), there can

be an increase in DAIS loss as the number of DAIS grows based on the problem’s

structure. This is because one of the three equivalent beliefs might have to be sepa-

rated from the other two as the exact DAIS dimension grows (and thus breaking the

symmetry of DAIS model established by the coarser aggregation). To specify exact

DAIS dimension, one can add the constraint 𝐷1 ≥ 1 to Eq. (5.6), that is, each 𝑧𝑖 gets

assigned at least one 𝑏𝑘 .

Remark (Minimality of State Representation): When implementing the opti-

mal controller, it is possible to fully describe the evolution of this particular map using

only 7 controller states by aggregating the belief states with the same optimal action

and analyzing their closed-loop transitions. However, this closed-loop state space is
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Figure 5-2: (top) DAIS loss, task performance from empirical rollouts and value
function approximation error vs maximum DAIS dimension in CheeseMaze example.
(bottom) DAIS loss and task performance vs exact DAIS dimension for Corridor Nav-
igation with 10 random seeds. DAIS achieves higher return, more robust performance
and much smaller runtime compared to CPBVI.

insufficient for describing transitions under policies other than the optimal one. As

(AP2)/(AP2’ab) require the distribution bound to hold for all possible histories

and actions, for the histories and actions that are not covered by the optimal policy,

the error bound 𝛿 (or 𝛿𝑜) can be vacuous. In other words, this 7-state representa-

tion cannot be properly characterized by the AIS framework, confirming that the

AIS conditions are only sufficient but not necessary for optimal decision-making. An

interesting observation is that if we decrease the weights for the transition loss cor-

responding to the belief states executing the same optimal action in the handcrafted

controller, the optimization program with loss (AP2)+(AP2’ab) will be able to find

a 8-state DAIS that recovers the optimal policy.

5.4.2 Corridor Navigation

We test the effectiveness of DAIS on the robot corridor navigation task used in [27],

which fits in the setting in Sec. 4.2.1. We observe that the clustering-based optimiza-

tion approach leads to better and more consistent performance than gradient-based
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DAIS + value iteration (ours) Continuous IS + RL

model approximate exact

policy exact approximate

Table 5.1: Comparison of optimal decision making between DAIS and continuous
information states.

optimization in this example, and thus report results from the former in Fig. 5-2. As

an alternative to computing �̄�𝑡+1 analytically following Eq. 5.2, we can approximate

𝑃(𝑍𝑡+1 |𝑍𝑡 , 𝑎𝑡) using samples:

𝑃(𝑍𝑡+1 = 𝑧𝑖 |𝑍𝑡 = 𝑧 𝑗 , 𝑎𝑡 = 𝑎) ≈
∑
𝑡 𝟙(𝐷 (𝑏𝑡+1) = 𝑧𝑖))𝟙(𝑎𝑡 = 𝑎)∑
𝑡 𝟙(𝐷 (𝑏𝑡) = 𝑧 𝑗 ))𝟙(𝑎𝑡 = 𝑎)

.

The optimization program that uses samples to approximate the DAIS transition

kernel then becomes:

min
{𝐵𝑎},{𝑟𝑎}

∑︁
𝑎

∑︁
𝑡

|𝑟𝑡 − 𝑟𝑎𝑧𝑡 |2 + ∥𝐵𝑎𝑧𝑡 − 𝐷 (𝑏𝑡+1)∥2

s.t. 𝐵𝑎𝑖 𝑗 ≥ 0, ∀𝑖, 𝑗 , 𝑎 and 1𝑇𝐵𝑎 = 1𝑇 , ∀𝑎, (5.10)

which replaces analytic �̄�𝑡+1 in program (5.9) with samples 𝐷 (𝑏𝑡+1).

Our method is compared with continuous point-based value iteration (CPBVI),

a competitive baseline solution proposed in [27]. CPBVI samples belief points to

perform Bellman updates due to the piecewise-linearity of the value function. In

contrast, our method first aggregates the belief states into discrete variables and then

runs value iteration on this finite set. In our experiments, we observe that CPBVI

is extremely sensitive to environmental parameters, takes a long time to train and

can fail to converge for certain model parameters. On the contrary, our DAIS does

not suffer from convergence issues and consistently achieves higher return and much

lower variance.

We also compare DAIS + value iteration against continuous information states +

reinforcement learning (RL). We feed the continuous belief states (i.e. the informa-
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tion states with both 𝜖 and 𝛿 equal to 0 in (AP1) and (AP2)) into state-of-the-art

RL algorithms such as PPO and A2C to learn a policy. The RL implementation

is using Stable-Baselines3 [29] across 10 random seeds. As shown in Table 5.1, the

discrete approximate information states incur approximation error for the model rep-

resentation but enable quick synthesis of the optimal controller for the approximate

model; the continuous information states achieve zero AIS construction loss but make

it much harder to obtain the optimal policy due to function approximation. Fig. 5-2e

shows that for tasks with certain structures (e.g. the innate discreteness in corridor

navigation), DAIS can achieve better performance with much lower variance than

running PPO and A2C on continuous information states.

As in any K-means approach, convergence to local optima is possible, given differ-

ent initialization. Moreover, increasing 𝐾 does not necessarily improve test prediction

due to various factors attributable to overfitting [15]. Nevertheless, in Fig. 5-2d we

observe a strong downward trend in the loss as the dimension of the DAIS is allowed

to increase. As expected, this downward trend in loss correlates with an upward

trend in average return. Though the increase in performance is less dramatic, it is

important to note that the higher DAIS dimensions give a stronger a priori bound on

the worst case suboptimality even if they achieve roughly the same expected return.

Remark (Interpretability of DAIS in Corridor Navigation): DAIS learns to

capture the inherent discreteness in the corridor navigation problem: the agent only

has to have a sense of its “high-level status" (i.e. whether it is in front of a door, in

the corridor or at one of the two ends) but not necessarily its exact location (which is

a continuous variable). This high-level information can be captured by the clustering

method based on the distance between belief states. The agent then reasons with

this “high-level" knowledge to solve a much simpler MDP and constantly rectifies its

logical DAIS with incoming observations.

5.4.3 Visual-Feedback Control for Object Pile Manipulation

We are interested in manipulating a pile of objects (e.g., a pile of carrot pieces), whose

movement is more “fluid" with interactions among themselves (carrot pieces colliding
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and pushing each other). We aim to extract such challenging evolution in image space

into transitions in a discrete representation. We follow the setup developed by Suh

et al. [32] where the robot manipulator is required to use a flat pusher to push the

object pile into a target region. This can be viewed as an example of the setting in

Section 4.2.2. In total, 2000 trajectories of length 20 are generated with randomly

sampled actions (i.e. the pusher’s starting and ending locations) in the Pymunk

simulator. The greyscale images of the object pieces are downsampled to 32 × 32.

The DAIS 𝑍𝑡 is then generated by feeding the images into a convolutional neural

network followed by a Gumble-Softmax [18, 22]. The one-hot vector 𝑍𝑡 then goes

through a feedforward neural network 𝐵𝑎 with softmax as the last layer to output the

categorical distribution of DAIS �̄�𝑡+1 at the next time step. The parameters of all the

neural networks are optimized using the end-to-end gradient-based method proposed

in Section 5.2.1. Fig. 5-3 shows that reasoning in the low-dimensional DAIS space

without reconstructing or predicting the high dimensional visual outputs enables the

robot manipulator to push the object pile into different target sets including circles,

H-shaped and T-shaped regions. In fact, DAIS learns to aggregate images with similar

block structures into the same representation catalogue.
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Figure 5-3: DAIS performance in object pile manipulation task: the robot manipu-
lator is required to push the object pieces into the blue region.
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Chapter 6

Conclusion

In this thesis, we evaluate discrete task-relevant representations for planning and

control in partially observable environments using AIS. For finite-belief space tasks,

we formulate a mixed-integer program for solving the globally optimal DAIS in terms

of expected reward and Markovian transition prediction; in infinite-belief space tasks,

we develop new gradient-based and clustering-based optimization methods to learn

the discrete approximate representation. Even the simple finite CheeseMaze example

demonstrates that the AIS bounds on closed-loop performance can be loose. However,

we posit that DAIS can still be effective due to its ability to extract the most relevant

information to accomplish the tasks, which often times can be characterized in a

discrete form, especially for control tasks with certain structures. We are interested

in validating the effectiveness of DAIS on the real robot and other partially observable

robotic control tasks in the future.
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