
BP-Tree: Overcoming the Point-Range
Operation Tradeoff for In-Memory B+-trees

by
Amanda Li

B.S. Computer Science and Engineering, Mathematics
Massachusetts Institute of Technology, 2022

Submitted
to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023
© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 20, 2023
Certified by .

Helen Xu
Postdoctoral Scholar

Lawrence Berkeley National Laboratory
Thesis Supervisor

Certified by .
Charles E. Leiserson

Professor of Computer Science and Engineering
Massachusetts Institute of Technology

Thesis Supervisor
Accepted by .

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

BP-Tree: Overcoming the Point-Range Operation Tradeoff for

In-Memory B+-trees

by

Amanda Li

Submitted to the Department of Electrical Engineering and Computer Science
on January 20, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents the BP-tree , an efficient concurrent key-value store based on the
B+-tree, that uses large leaf nodes to optimize for range-query performance without
sacrificing update speed by using large leaf nodes. B+-trees are a fundamental data
structure for implementing in-memory indexes in databases and storage systems. B+-
trees support both point operations (i.e., inserts and finds) and range operations (i.e.,
iterators and maps). There is an inherent tradeoff between point and range operations
however, since the optimal node size for point operations is much smaller than the
optimal node size for range operations. To avoid any slowdown in point operations, this
thesis introduces a novel insert-optimized array called the buffered partitioned array
(BPA) to efficiently organize data in leaf nodes.

Using the buffered partitioned array, the BP-tree overcomes the decades-old tradeoff
between point and range operations in B+-trees. Experiments show that on 48 hyper-
threads, the BP-tree supports slightly faster (by about 1.1×) point operations than
the best-case configuration for B+-trees for point operations while supporting between
1.4×–1.7× faster range operations. On workloads generated from the Yahoo! Cloud
Serving Benchmark (YCSB), the BP-tree is faster (by about 1.1×) on all point operation
workloads compared to the B+-tree, and slower (by about 1.15×) on the short range
operation workload compared to the B+-tree. Furthermore, this work extends the YCSB
to include large scan and map workloads, commonly found in database applications, and
find that the BP-tree is between 1.2×–1.4× faster than the B+-tree on these workloads.
This thesis contains my joint work with Helen Xu, Brian Wheatman, Manoj Marneni,
and Prashant Pandey.

Thesis Supervisor: Helen Xu
Title: Postdoctoral Scholar

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

I would like to thank Helen Xu for mentoring me over the past two years. Throughout

the development of this research, you have been incredibly supportive and have provided

invaluable technical and personal advice. The passion you have for your work is infectious

and I am very grateful for your constant encouragement.

I would like to thank Charles E. Leiserson for inspiring me to pursue this field of

research and his guidance throughout my thesis. Your teachings, as both my professor

and research advisor, have deeply influenced my perspective on computer science and

my path at MIT.

I would also like to thank Brian Wheatman, Manoj Marneni, and Prashant Pandey

for their insights and support in this joint effort. Thank you for sharing your knowledge

and providing extremely helpful feedback during our weekly meetings.

Lastly, I would like to thank my friends and family for all their love and support.

This research was sponsored in part by the United States Air Force Research Lab-

oratory under Cooperative Agreement Number FA8750-19-2-1000. The views and

conclusions contained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or implied, of the

United States Air Force or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes notwithstanding any

copyright notation herein. This research was also supported in part by Los Alamos

National Laboratory (LANL) under Subcontract Number 531711.

5

6

Contents

1 Introduction 9

2 Background 17

3 The Point-Range Tradeoff 23

4 The Buffered Partition Array 25

5 The BP-tree 33

6 Evaluation 37

7 Related work 47

8 Conclusion 49

7

8

Chapter 1

Introduction

This thesis shows how to build an efficient key-value store that outperforms the traditional

B+-tree on range operations, while maintaining performance for point operations.

The B-tree [5] has been the fundamental access path structure in databases and

storage systems for over five decades [14, 23], and the B+-tree is a widely implemented

variant of theB+-tree in real-world applications. B-trees are an extension of self-balancing

binary search trees to arbitrary fanouts (with more than two children per node). They

store elements in each node in a sorted array. A B+-tree is a scan-optimized variant

of B-trees that stores all data records in the leaves and only pivot keys in the internal

nodes. Given a cache-line size 𝑍, a B+-tree with 𝑁 elements and node size 𝐵=Θ(𝑍)

supports the point operations insert and find in 𝑂(log𝐵(𝑁)) cache-line transfers in

the I/O model [1]. B+-trees are one of the top choices for in-memory indexing [65] due

to their cache efficiency though they were initially introduced for indexing data stored

on disk [5]. This thesis presents my joint work with Helen Xu, Brian Wheatman, Manoj

Marneni, and Prashant Pandey in improving the performance of in-memory B+-trees.

B+-trees are especially popular in databases and file systems because they support

logarithmic point operations (inserts and finds) and efficient range operations (range

queries and scans) that read blocks of data [32, 57]. They are also extensively used as

the in-memory index in many popular databases such as MongoDB [40], CouchDB [17],

ScyllaDB [59], PostgreSQL [51], and SplinterDB [15].

B+-trees support updates as well as member, predecessor, and successor queries in

9

28 29 210 211 212 213 214 215 216
0

0.5

11

Insert

Find

Range
query

Node size (bytes)

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Figure 1-1: Normalized performance compared to the fastest configuration (for each
operation) in a concurrent B+-tree with 48 hyperthreads. The 𝑥-axis represents the node size
of the B+-tree in bytes. The 𝑦-axis represents the throughput for a given configuration relative
to the throughput for the best-case configuration for a given operation (1.0 is the best possible
value). Note that while only node sizes of powers of 2 are plotted, we ran additional experiments
on other node sizes and found no anomalies between powers and non-powers of 2 node sizes.

a logarithmic number of cache-line transfers. In a comparison based I/O model, this

number of cache-line transfers is the best possible for member queries [10]. This thesis

focuses on the case where 𝐵=Θ(𝑍).

B+-trees also support range operations that scan across the leaf level of the tree.

For range queries, the B+-tree requires 𝑂(log𝐵(𝑁)+𝑘/𝐵) cache-line transfers, where

𝑘 is the number of elements in the range. For long range queries, the 𝑘/𝐵 factor is the

higher-order term, so increasing the node size improves range-query performance. The

performance of point operations does not improve however and may even suffer with

larger nodes. Therefore, there is an inherent tradeoff between point operations (insert

and query) and range queries in the B+-tree as the optimal node size is quite different

for point and range operations.

As illustrated in Figure 1-1, the B+-tree exhibits1 a tradeoff between point and range

operations depending on the selection of node size. Prior work showed that setting

the node size much larger than the cache-line size can improve both point and range

operations [13, 26]. Similarly, we found that the optimal node size for point operations

was 210 bytes in the tested B+-tree. In contrast, the range-query performance improves

with the node size as the nodes grow past 210 bytes in size, but it starts to stagnate

1 Chapter 6 contains all details about the experimental setup and method.

10

beyond 216. Large nodes improve range queries because they reduce cache misses by

reading more contiguous data. As the node size grows however, insertion performance

suffers because more elements are shifted around upon each insert.

Point and range operations in key-value stores. One of the core use cases for

B+-trees is to support key-value (KV) stores [39], a ubiquitous method of storing data

as a collection of records, or key-value pairs. KV stores are used extensively in systems

such as Dynamo [18], Redis [31], and Memcached [19, 48].

KV stores have traditionally been optimized and benchmarked for point operations

(e.g., get and put) that underlie online transaction processing (OLTP) applications such

as those in the Yahoo! Cloud Serving Benchmark (YCSB) [16]. The original YCSB

workloads center around point operations such as point insertions and queries. They

contain range queries, but only in a limited capacity because range operations are not

as common as point operations in OLTP.

Emerging applications increasingly require both fast point and range operations (e.g.,

range queries and maps) in the same KV store to enable integrated support for both trans-

actional and analytic processing [50, 55, 25]. Range queries from transactional workloads

are often short (i.e., they involve only a few elements)— the default configuration inYCSB

generates range queries with a maximum length of 100. In contrast, range queries from

analytical workloads may be much longer and access a constant fraction of the data (e.g.,

1% or 10%) [50]. Real-time analytics require fast range operations to process both real-

time data and archived data as quickly as possible [9, 12, 20]. Bioinformatics applications

also use range queries to investigate genomic data [24, 62, 45]. Graph analytics workloads

often require quickly scanning through all the neighbors of a given source node [46].

Systems optimized for either point operations or range operations may suffer on the

other type of workload. For example, prior work showed that state-of-the-art KV stores

such as Cassandra [11], RAMCloud [43], and RocksDB [56] perform poorly on long range

queries because they were designed for point and short queries [50, 49]. Furthermore,

HBase [27] integrates support for point and range operations but has been shown to

underperform on point lookups compared to other KV stores.

11

Overcoming the point-range tradeoff in B+-trees. The goal of this thesis is to

overcome the inherent point-range tradeoff in B+-trees by making the nodes bigger to

support fast range operations without compromising on point-insert performance. As

shown in Figure 1-1, simply making the nodes bigger while keeping the sorted array data

structure in the nodes does not solve the problem because it improves range operations

at the cost of point operation throughput.

This work argues that not all nodes in a B+-tree need to be of the same size. Leaf

nodes contain all of the data records and making them large results in higher locality

and faster range scans. Internal nodes only store pivots and keeping them small results

in faster updates.

Making the leaf nodes larger beyond a certain point, however, requires organizing

data records inside leaf nodes to support efficient updates. As we shall see in Chapter 3,

naively increasing the size of only the leaves while keeping the sorted arrays in the leaves

does not solve the problem because it improves range operation throughput at the cost

of point operation throughput.

To improve range operation performance while maintaining fast point operations,

we introduce a new insert-optimized array-based data structure called the buffered

partitioned array (BPA) that we incorporate into B+-tree nodes to allow them to

grow in size without sacrificing point-insert throughput. The BPA is faster for inserts

than a traditional array for two main reasons. First, it buffers insertions to avoid shifting

elements on every insert, drawing inspiration from write-optimized data structures [22].

Second, it partitions the array into blocks and leaves empty spaces in the blocks to

further avoid shifting during every insert, drawing inspiration from the Packed Memory

Array (PMA) data structure [30, 7].

We use the BPA to create the BP-tree, a variant of the traditional B+-tree that

uses the BPA in the leaves and sets the leaf size to be much larger than the internal node

size. The BP-tree is optimized for long range queries that traverse multiple leaves in the

B+-tree. It improves long range queries by avoiding pointer indirections that would have

occurred with smaller leaf nodes thereby converting random reads into sequential ones.

Furthermore, the insert-optimized BPA ensures that there is no impact on the perfor-

12

Insert Find Range
iteration

Range
map

Average
0

0.5

1

1.5

2

1

Workload

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Figure 1-2: Relative speedup of the BP-tree compared to the baseline B+-tree on a series
of microbenchmarks. The 𝑥-axis lists the evaluated workloads. The 𝑦-axis represents the
throughput of the BP-tree relative to the throughput of the B+-tree (i.e. above 1 means the
BP-tree is faster than the B+-tree).

mance of point operations. In fact, it speeds up the point operations in some benchmarks.

Results summary. We implemented a concurrent BP-tree using the state-of-the-art

TLX B+-tree [8] and an optimistic concurrency control scheme [33]. We use the con-

current version of the TLX B+-tree with 1024-byte nodes as the baseline because this

is the best case for point inserts.

Figure 1-2 demonstrates that the BP-tree improves the performance of range iteration

by up to 1.4× and range maps by up to 1.7× without giving up point operation perfor-

mance when compared to the best-case configuration for point operations in a concurrent

B+-tree (B=1024, fromFigure 1-1). Since different use casesmay require different types of

range operations (iteration or maps), we include both in the evaluation. The BPA enables

the BP-tree to support faster range operations with much larger2 leaves. Furthermore,

the BP-tree is slightly faster than the baseline for both point inserts and queries (finds)

even though the leaves in the BP-tree are almost 8× larger than those in the baseline.

In addition to the baseline B+-tree, Figure 1-3 compares the range and point op-

eration performance of different node size configurations of the plain B+-tree to that

of the BP-tree. This shows that while some configurations of the plain B+-tree can

exceed the performance of the BP-tree in a single dimension, the BP-tree achieves higher

2The default configuration for the BP-tree sets Binternal=1024 bytes and Bleaf=8704 bytes.

13

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

30

35

Range iteration throughput (ops/𝜇s)

In
se

rt
th

ro
ug

hp
ut

(o
ps

/𝜇
s)

B+-tree
BP-tree

Figure 1-3: Throughput of range iteration (maximum length of 100k) versus throughput
of inserts at varying node sizes for the B+-tree, compared to the BP-tree. Each point plotted
represents the range-iteration and insert performance of one configuration of the B+-tree or
the BP-tree.

performance when considering both range and point operations.

We also tested the baseline concurrent B+-tree and BP-tree on default workloads

from YCSB and report the results in Figure 1-4. The BP-tree achieves slightly faster

performance (about 1.1×) on all point operation workloads compared to the B+-tree,

and slower performance (within 1.15×) on the short range operation workload compared

to the B+-tree. Since the BP-tree is optimized for long range queries, we created two new

workloads using the YCSB generator. The first one is called workload X and contains

large range iterations. The second one is called workload Y and contains large range

maps. The BP-tree is about 1.2× faster on workload X and 1.4× faster on workload

Y when compared to the baseline.

Types of range operations. Traditional B+-trees (and most key-value stores) store

elements in globally sorted order and implement range queries with ordered iteration

over elements by key.

The importance of ordered iteration within a range query depends on the use case.

For example, YCSB requires that the results of a range query can be iterated through

14

Load A B C E X Y
0

0.5

1

1.5

1

Workload

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Figure 1-4: Relative speedup of the BP-tree compared to the baseline B+-tree on workloads
generated from YCSB. The 𝑥-axis lists the evaluated workloads. The 𝑦-axis represents the
throughput of the BP-tree relative to the throughput of the B+-tree (i.e. above 1 means the
BP-tree is faster than the B+-tree).

in sorted order to simulate an application example of threaded conversations. Cassan-

dra [11] supports this type of query natively by taking as input a start key and a length

(i.e., the number of consecutive following entries to scan). We refer to this operation

as range iteration .

On the other hand, some applications may not necessarily need to access the keys

in order. Some examples include graph-processing systems [4, 60], feature storage

for machine learning [28, 37, 47], and file system metadata management [54, 57]. In

contrast to Cassandra’s range query API, HBase’s range query API [27] takes as input

an interval of start and end keys and scans entries with keys in the interval. We refer

to this operation as range map.

We implement and evaluate both range iteration, which iterates over the requested

number of keys in order, and range map, which maps over an interval of keys but not

necessarily in order.

Contributions

Specifically, the thesis’ contributions are as follows:

• An empirical evaluation of the impact of the node size on various B+-tree operations

in a concurrent setting.

15

• The design and implementation (in C++) of the buffered partitioned array (BPA),

an insert-optimized data structure that reduces element moves compared to a

sorted array.

• The design and implementation (in C++) of the BP-tree, a variant of the B+-tree

incorporating the BPA in the leaves, which overcomes the decades-old point-range

operation tradeoff in B+-trees.

• An evaluation of BP-tree compared to a traditional B+-tree on microbenchmarks

and workloads from YCSB that demonstrates that BP-tree supports faster range

operations without sacrificing point operation performance.

Map. The rest of the thesis is organized as follows. Chapter 2 presents necessary

preliminaries about B+-trees and concurrency schemes required to understand the

data structures and implementations in this thesis. Chapter 3 demonstrates the need

for leaf-specific data structure design to overcome the point-range tradeoff because

simply increasing the leaf size does not solve the issue. Chapter 4 describes the buffered

partitioned array (BPA) data structure that we use to enable larger B+-tree leaf nodes

while maintaining fast point operations. Chapter 5 shows how to incorporate the BPA

into a B+-tree to create the BP-tree. Chapter 6 empirically compares the BP-tree with a

baseline B+-tree on a suite of microbenchmarks and on workloads from YCSB. Chapter 7

surveys related work, and Chapter 8 provides concluding remarks.

16

Chapter 2

Background

This chapter provides necessary background to understand the data structure improve-

ments in this thesis. First, we introduce the classical “Disk-Access Machine (DAM)

model” and a refinement to the DAM model called the “affine model” [6]. We use the

DAM model to measure the cost of B+-tree operations, and in Chapter 5, use the affine

model to explain the empirical differences between data structures. Next, we review

details about B+-trees and their operations, which we will build on in the BP-tree.

Finally, we describe the concurrency control mechanism in the concurrent B+-tree that

we use as a baseline and as a starting point for the BP-tree implementation.

Memory models

The Disk-Access Machine (DAM) model [1] captures algorithm cost in hierarchical

memory by taking into account non-uniform access times in different levels of memory.

It models two levels of memory: a small fixed-size cache and an unbounded-size slow

memory. Any data must first be in the cache before it processed. Data is transferred

between the two levels in cache lines of size 𝑍. An algorithm’s cost is measured in

cache-line transfers.

The affine model [6, 3, 58] refines the DAM model to explicitly account for the cost

of random vs contiguous memory access. In the affine model, an I/O of 𝑥 words has cost

1+𝛼𝑥, where 𝛼≪1 is a hardware parameter. The 1 represents the normalized setup

17

cost of doing an indirection (or seek, on disk) and 𝛼 is the normalized bandwidth cost.

B+-tree design and operations

B+-trees generalize self-balancing binary trees to arbitrary fanouts to take advantage of

the speed of contiguous memory access [5]. Just like binary trees, B+-trees store elements

in sorted order. Traditionally, B+-trees store 𝐵=Θ(𝑍) elements per node in a sorted

contiguous array. The height of a B+-tree with𝑁 elements and node size𝐵 is𝑂(log𝐵(𝑁)).

A B+-tree is a scan-optimized variant of B-trees that stores all elements in the leaves

and replicates some of the elements in the internal nodes. In contrast, traditional B-trees

store each element exactly once (either in the internal nodes or leaves). B+-trees support

faster scans than B-trees because they can scan over all of the elements without having

to access internal nodes.

A B+-tree exposes the following four operations.

insert(k, v)

Inserts a key-value pair (k, v).

find(k)

Returns a pointer to the element with the smallest key that is at least k.

iterate_range(start, length, f)

Applies the function f to length elements in key order, starting with the element

with the smallest key that is at least start.

map_range(start, end, f)

Applies the function f to all elements with keys in the range [start, end).

Point operations refer to insert and find. Range operations refer to iterate_range

and map_range. We omit the discussion of deletes for simplicity, but they are symmetric

to insertions.

We now review the asymptotic bounds for the four main operations on B+-tree with

𝑁 elements and node size 𝐵=Θ(𝑍).

18

The B+-tree supports the point operations insert and find in 𝑂(log𝐵(𝑁)) cache-

line transfers. To find an element in a B+-tree, we traverse the internal nodes and follow

the pivots (elements at internal nodes) to find the leaf that the target element might

reside in. This procedure takes 𝑂(1) cache-line transfers at each level of the tree for a

total cost of 𝑂(log𝐵(𝑁)) cache-line transfers. Inserts begin with a find for the correct

leaf to insert the element into. To maintain elements in sorted order, the B+-tree shifts

elements in the array in the target leaf to make space and place the element in the

correct position. If the leaf becomes full, it splits into two leaves and the midpoint is

promoted to become a pivot in the internal nodes. This promotion procedure proceeds

up the tree recursively, if necessary.

The B+-tree supports the range operations iterate_range and map_range in

𝑂(log𝐵(𝑁)+𝑘/𝐵) cache-line transfers where 𝑘 is the number of elements in the range. A

range operation in aB+-tree is comprised of a find for the smallest elementwith a key that

is at least start, which takes 𝑂(log𝐵(𝑁)) cache-line transfers. Since the B+-tree stores

elements in sorted order, it implements both iterate_range and map_range with a

forward scan from the starting element until the end of the range. Since there areΘ(𝑍) el-

ements in each node, this scan of 𝑘 elements takes Θ(𝑘/𝐵)=Θ(𝑘/𝑍) cache-line transfers.

Concurrency control

This section describes the optimistic concurrency control mechanism [33] used in the

B+-tree and BP-tree in this thesis to support simultaneous operations (i.e., concurrent

inserts, finds, and range queries). Each internal node is locked with a read/write lock,

where multiple readers are allowed to access the node concurrently if no write lock is

held. Each leaf node is locked with a simple exclusive lock.

The operations below use hand-over-hand locking [29] to traverse the tree. Hand-

over-hand locking is a method of grabbing successive locks which first grabs a successor

lock (e.g., the lock on the child node) prior to releasing a lock on its predecessor (e.g.,

the lock on the parent node). We first describe concurrency mechanisms for all B+-tree

operations, then argue deadlock freedom and termination.

19

Insert. Insertions first make an optimistic descent by taking hand-over-hand read locks

from the root down to the leaf, and then locking the leaf. If we are able to insert into

the leaf without causing a split, then we successfully insert into the leaf and release all

locks. If inserting into the leaf would cause a split, we check if the parent can handle

an additional element. If the parent can handle the additional insert, the change will

not propagate farther up the tree and we just need to acquire the write lock on the

parent of the leaf. We first try to upgrade the current read lock on the parent to a write

lock, which can only be done if no other threads hold the read lock on the parent. If

the lock can be upgraded, we can complete the insert. If the parent of the leaf cannot

be upgraded, since some other thread is trying to read or write the parent, we release

the lock entirely and restart the insertion operation with a pessimistic second descent.

In the second descent, we take write locks from the root down to the leaf. Then we

lock the leaf and the new right leaf (from the split), insert into the appropriate leaf, and

propagate the midpoints back of the tree, unlocking as we go.

Find. Finds take read locks in a hand-over-hand fashion from the root down to the

leaf, then lock the leaf and search for the key within the leaf. The lock on the leaf nodes

are exclusive locks.

Range query. Range queries first perform a find on the start key to locate the starting

leaf of the query, then take locks from left-to-right as needed in a hand-over-hand fashion

starting from the leaf that resulted from the find.

Theorem 1. The B+-tree is deadlock free.

Proof. To prove that the B+-tree does not deadlock, let us show that the B+-tree imposes

a total resource ordering [41] at every given time-step. Let 𝑉 be the set of nodes in a

B+-tree. Let us order these resources, i.e. nodes 𝑉𝑖 for 𝑖=1,2,...,|𝑉 |, from top-down,

then left-to-right via the bijection 𝑓 :𝑉 → [1,|𝑉 |] at some arbitrary time-step. We refer to

𝑓(𝑉𝑖) as the value of 𝑉𝑖. Let 𝑓(𝑉𝑖)<𝑓(𝑉𝑗) if 𝑉𝑗 is on a lower level than 𝑉𝑖, or if they are on

the same level and 𝑉𝑗 is to the right of 𝑉𝑖 in order of pivots. For example, suppose 𝑉1 is the

root node, 𝑉2 is the left-most node of the second level, 𝑉3 is the next node in the second

level. Then 𝑓(𝑉1)<𝑓(𝑉2)<𝑓(𝑉3), and furthermore 𝑓(𝑉1)=1,𝑓(𝑉2)=2, and 𝑓(𝑉3)=3.

20

Suppose there exists 𝑃 parallel processes at some arbitrary time. Each process 𝑝𝑖 for

𝑖=0,1,...,𝑃−1 holds a set of resources 𝑆𝑖⊆𝑉 . Let us assign each process the maximum

value over the resources it holds. Formally, let 𝑝𝑖 have value 𝑤𝑖∈ [0,|𝑉 |] such that 𝑤𝑖=0

if |𝑆𝑖|=0, and 𝑤𝑖=max(𝑓(𝑠)|𝑠∈𝑆𝑖) otherwise.

Let us now show that each process 𝑝𝑖 only waits for resources with higher value

than 𝑤𝑖 in all operations. Finds and range queries trivially meet this condition, as all

resources are acquired from top-down while searching, then left-to-right while querying.

For inserts, there are two cases: inserts that only require the optimistic descent,

and inserts that require the second descent. In the optimistic descent and if the insert

does not cause a split, resources are trivially acquired top-down. In the second case,

some more inspection is needed when inserts would cause a split. As described prior,

upon a split at the leaf, the process attempts to upgrade the lock of the leaf’s parent.

While the parent does have a lower value than the leaf, the process does not wait and

instead immediately fails if other threads hold a read lock on the parent. In this case,

the process releases all resources and restarts from the root, again acquiring resources

top-down. Lastly, splits create a new right node at the same level as the original split

node, so processes maintain the left-to-right order of resource acquisition. Thus the

B+-tree imposes a total resource ordering across all operations and does not deadlock.

Theorem 2. The B+-tree is starvation-free.

Proof. To prove that the B+-tree is starvation-free, let us show that each process will

only wait for a bounded set of internal nodes that does not grow and a finite number

of leaf nodes. Weak fairness of the scheduler is assumed, meaning that when an action

is continuously enabled, the action will eventually be executed [35]. We continue to use

the notation for resources and processes established in Theorem 1.

A process 𝑝𝑖 for all 𝑖=0,1,...,𝑃 must wait in two cases at a given time-step: either

the process must wait to acquire an internal node’s write lock, or the process must wait

to acquire a leaf’s exclusive lock. In the first case, let 𝑀𝑖 be the node corresponding

to 𝑤𝑖, i.e. the highest value node held by process 𝑝𝑖. Let ℎ𝑖 be the height of 𝑀𝑖 (i.e., its

21

distance from the leaves). For example, the leaves have height 0 and any parent of a

leaf has height 1. Then the process 𝑝𝑖 waits for at most ℎ𝑖−1 internal-node descendants

of 𝑀𝑖. As described prior, all operations acquire internal nodes in top-down order from

the root. In order for other processes to acquire internal-node descendants of 𝑀𝑖, they

must first acquire 𝑀𝑖. Thus process 𝑝𝑖 waits for a bounded number of internal nodes

and will eventually reach the leaf level.

In the second case, the process 𝑝𝑖 is waiting for exactly one leaf node at a given

time-step. The process is either waiting at the parent of the leaf or the left predecessor

(in range queries). All processes at the leaf node release the lock upon either completion

or failure (in the optimistic descent of inserts). All processes request finitely many leaf

nodes in total. Thus given weak fairness of the scheduler, this process will terminate.

22

Chapter 3

The Point-Range Tradeoff

This chapter empirically demonstrates the tradeoff in point-range operations by varying

the B+-tree leaf node size. We find that simply increasing the size of the leaves greatly

sacrifices point insertion performance for range-operation performance. These exper-

iments establish a need for leaf-specific data structure design in B+-trees beyond sorted

arrays in order to enable larger leaf nodes.

Figure 3-1 and Table 3.2 report the performance of a version of the B+-tree that fixes

the internal node size at 1024 bytes (to match that of the best-case B+-tree for inserts) and

increases the size of the leaf nodes (starting at 1024 bytes). Although increasing the leaf

node size can improve range query1 throughput by almost 4×, the B+-tree with the largest

leaf node size we tested is almost 20× slower for inserts than the best-case B+-tree config-

uration for point insertions. The middle ground of a B+-tree with internal nodes of 1024

bytes and leaf nodes of 4096 bytes that improves range query throughput by about 1.5× is

about 2× slower for inserts when compared to the B+-tree with all nodes of size 1024 bytes.

Figures 1-1 and 3-1 exhibit similar trends even though the first one varies the size

of all the B+-tree nodes, whereas the second varies only the B+-tree leaf size. Since all

the data records in a B+-tree are present in the leaves, the internal node size does not

significantly affect overall performance. Internal nodes do not need a specialized data

structure for inserts because the internal nodes are updated rarely (especially as the

1The plot illustrates range iteration performance, but range map performance is similar in the
B+-tree.

23

210 211 212 213 214 215 216
0

0.5

11

Insert

Find

Range
iterate

Leaf size (bytes)

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Figure 3-1: Normalized performance compared to the fastest configuration (for each
operation) in a concurrent B+-tree with variable leaf size on 48 hyperthreads. The 𝑥-axis
represents the leaf node size of the B+-tree in bytes. The 𝑦-axis represents the throughput
for a given configuration relative to the throughput for the best-case configuration for a given
operation (1.0 is the best possible value).

B+-tree Insert Find Iterate range Map range

Internal size (bytes) Leaf size (bytes) Throughput N.P. Throughput N.P. Throughput N.P. Throughput N.P.
1024 1024 2.75E7 1.00 4.22E7 1.00 1.93E9 0.27 1.84E9 0.28
1024 2048 2.23E7 0.81 4.12E7 0.98 2.30E9 0.33 2.12E9 0.32
1024 4096 1.54E7 0.56 3.98E7 0.94 3.02E9 0.43 2.71E9 0.41
1024 8192 9.08E6 0.33 3.92E7 0.93 4.47E9 0.64 4.24E9 0.65
1024 16384 4.93E6 0.18 3.94E7 0.93 5.23E9 0.74 5.14E9 0.78
1024 32768 2.56E6 0.09 3.92E7 0.93 6.24E9 0.89 5.84E9 0.89
1024 65536 1.31E6 0.05 3.87E7 0.92 7.03E9 1.00 6.57E9 1.00

Table 3.2: Throughput and normalized performance of point and range operations of a
B+-tree with fixed-size internal nodes but varying leaf nodes. Point operation throughput
is reported in operations/s and range query throughput is reported in (expected elements
processed)/s. We use N.P. to denote the normalized performance in the B+-tree compared
to the best B+-tree configuration for that operation (1.0 is the best possible value).

leaf size grows). Furthermore, the leaf node size determines range-operation throughput

because operations in a B+-tree perform a scan in the leaves. B+-trees with larger

leaves exhibit better locality during scans and therefore achieve higher range-operation

throughput. See the end of Chapter 5 for the theoretical analysis in the affine model

of range scans with sequential and random I/O.

Based on the results in this chapter, we focus on designing specialized data structures

for B+-tree leaves because their size and data structure choice determine the overall

performance of both point and range operations. Especially, the range iteration and range

map performance which is critical in numerous database and storage systems workloads.

24

Chapter 4

The Buffered Partition Array

This chapter describes the buffered partitioned array (BPA) data structure, which

enables the BP-tree to maintain large leaf nodes without sacrificing updatability. It

then describes how the buffered partitioned array supports the four operations insert,

find, iterate_range, and map_range, which were presented in Chapter 2:.

The main idea behind the BPA is to create a data structure for B+-tree nodes that uses

a larger contiguous block of memory compared to traditional B+-tree node sizes to enable

fast scanswhilemaintaining fast inserts. As demonstrated inChapter 3, simply increasing

the leaf node size significantly degrades B+-tree insert performance. Furthermore, the

leaf node size determines overall performance because most of the writes affect only the

leaves. Therefore, we design a new data structure specifically for B+-tree leaves.

The BPA improves insertion throughput when compared to a sorted array by re-

ducing data movement in two ways. First, the BPA buffers inserts to amortize data

movement across operations. Next, it maintains empty spaces in the data structure

in a “blocked structure” to avoid element shifting as much as possible even when the

buffer becomes full. Finally, it does not maintain a global sorted order across the array.

Specifically, the items inside blocks are not stored in order and that allows new inserts

to be placed at the ends of blocks instead of requiring element shifts.

25

Structure

The BPA uses a contiguous array to store its data, but partitions that array into three

sections called the “log” the “header” and the “blocks” as illustrated in Figure 4-1. It

is parametrized by the following values:

• log_size: the maximum number of buffered inserts.

• num_blocks: the number of blocks in the data structure.

• block_size: the maximum number of elements per block.

The log encompasses the first log_size slots (i.e., locations [0,log_size)) and

is used to buffer inserts that will later propagate to the rest of the data structure.

The header uses the next num_blocks slots (i.e., locations [log_size, log_size +

num_blocks)) to partition the rest of the data structure by range. Each slot in the

header holds the minimum element (or a block marker) in the corresponding block. The

elements in the header are sorted. Finally, there are num_blocks blocks of block_size

slots each. Each block’s elements fall in the range denoted by the corresponding header

element. That is, the elements in block 𝑖 fall in the range denoted by the elements at

positions [log_size+𝑖,log_size+𝑖+1). The 𝑖-th block’s elements start at position

block_start=log_size+num_blocks+𝑖×block_size. The 𝑖-th block encompasses

the cells in positions [block_start,block_start+block_size). In contrast to the

elements in the header, elements in the log and each individual block may not be sorted.

Just as in other buffered data structures such as the 𝐵𝜀-tree [22], there may be two

copies of an element in a BPA: one in the log and one in the blocks. However, if the

element is present in both the log and the blocks, the copy in the log must have been

the one that arrived later and is therefore the one returned during queries.

Operations

Concurrency control. As described in Chapter 2, the optimistic concurrency control

mechanism in the BP-tree uses exclusive locks on each leaf. Therefore, the operations

26

Log Header Blocks

257 17 50 19 228 13 9589 9327 32

Insert(27)

Insert(22)
197 15 89 1713 8 93 9532 5025 8

197 15 89 1713 8 93 9532 5025 8 22

197 15 89 1713 8 93 9532 508 22 2725

Sort log and count how many new elements are destined for each block:

2 + 0 = 2 1 + 0 = 0 2 + 3 = 5 2 + 0 = 2

Sort and redistribute all elements evenly because at least one block overflowed:

Figure 4-1: Examples of insertions in a BPA. For simplicity, we illustrate only the keys for
each element. In this example, log_size = num_blocks = block_size = 4. Upon the first
insertion (of 22), there is enough space in the log to hold the new element, so the element
is placed at the end of the log. The second insertion (of 27) overflows the log, so the elements
from the log are sorted and the BPA determines how many are destined for each block.
Since flushing the log would overflow at least one of the blocks, the BPA sorts all blocks and
redistributes elements evenly amongst them.

on the BPA do not need to be thread safe because the leaf node will be locked when

performing the operation in the BP-tree.

Insert. The BPA is an insert-optimized data structure that supports fast inserts by

buffering inserts and storing elements in a contiguous array partitioned into fixed-size

blocks with empty spaces. The BPA maintains the invariant that there is always at

least one empty cell in the log and in each block after an insertion has been completed.

Suppose we want to insert a key-value pair (k, v) into the BPA. The BPA first scans

all elements in the log. If any of the elements in the log have k as their key, the BPA

replaces that element with (k, v) and returns. Otherwise, it appends the element to

the end of the log. There are two cases after adding the new element to the log:

Case 1: There is at least one empty cell left in the log.

The insertion is complete. The first insert in Figure 4-1 illustrates appending an

element at the end of the buffer.

Case 2: There are no empty cells left in the log.

To maintain the invariant that there are empty cells in the log before any insert, the

BPA sorts and thenflushes , or moves, the elements to the rest of the data structure based

27

on the partitioning given in the header. If this is the first time elements are being flushed

from the log (e.g., near the beginning of the lifetime of the BPA) and there are no elements

yet in the header, the log is ordered and simply moved to the header. Otherwise, if there

are elements in the header, the BPA first counts up how many elements are in each block

and stores the result in an array called count_per_block that stores how many elements

are currently in each block. It then determines how many new elements (excluding dupli-

cates) are destined for each block (based on the partitioning from the header) and stores

the result in an array called new_destined_per_block. There are two possible cases:

Case 2a: A flush would not result in any block becoming full.

Formally, for any 𝑖=0,1,...,num_blocks−1, we have count_per_block[i] +

new_destined_per_block[i] < block_size. In this case, each block has enough

space to accomodate elements from the log while still maintaining the invariant that

there is at least one empty space in each block. The BPA flushes elements from the

log to a block in two steps. It first replaces any elements in the header/block with the

same key as an element in the log with the newer version from the log. It then moves

all other elements in the log destined for the block into that block. If there are currently

elements in the block, the BPA appends any relevant elements from the log to the end

of those elements. After the flush, the BPA completes the insertion by clearing the log.

Case 2b: A flush would result in at least one block becoming full.

Formally, there exists some 𝑖=0,1,...,num_blocks−1 such thatcount_per_block[i]

+ new_destined_per_block[i] ≥ block_size. The second insert in Figure 4-1 illus-

trates this case of possibly filling one of the blocks upon a flush.

If there is not enough space in at least one of the blocks to flush elements from the log,

the BPA sorts each block and merges all elements (from the log, header, and blocks) into

a separate array, removing duplicate keys (i.e., if there are elements with the same key

in the log and the header/blocks) along the way. At the end of the merge, all elements

in the data structure are stored in sorted order in the separate array. The BPA then

performs a redistribute1 that chooses a new header that split elements as evenly as

1The redistribute procedure is inspired by the Packed Memory Array (PMA) data structure [30, 7],
but the PMA is distinct in that it may perform local redistributes that do not include all of the blocks,
while the BPA only performs global redistributes of all blocks.

28

possible amongst the blocks.

After the redistribute, the BPA completes the insertion by clearing the log.

Delete. Just as in inserts, deletes in a BPA are buffered in the log and flushed to the

header/blocks when there are no empty cells left in the log. Inserts and deletes use the

same log, but inserts grow from the front of the log and deletes grow from the back. The

BPA keeps track of how many inserts and deletes there are to determine which messages

in the log are inserts/deletes.

Suppose we want to delete an element with the key k from the BPA. First, we scan

the deletes that are currently in the log. If a delete for key k already exists, we exit

because the delete will already be propagated to the rest of the BPA. If the delete did

not already exist in the log, we scan the buffered inserts and remove any that have k

as their key. Regardless of whether a matching element was found in the log, the BPA

prepends a delete message with the key k (along with a filler null value if in map mode)

to the end of the log. If the log is full, the BPA first flushes deletes to the header/blocks

by deleting any elements with keys that match the delete messages. If the deletes affects

the header or cause any of the blocks to become empty, the BPA performs a redistribute

like in the insert case. If there was not a redistribute, the BPA then flushes the inserts.

Find. Point queries in a BPA first check the log, then the header, and then finally the

blocks. If the key is found in the inserts in the log, the BPA returns that element. If the

key is found in the deletes in the log, the BPA returns null. If the key is not found in the

log, the BPA checks the header to see if the element is in the header. If the element is in the

header, the BPA returns that element. If it is not in the header, the BPA uses the header

to determine the block that the target element might possibly reside in. Finally, the BPA

checks all elements in the relevant block and returns the element with the matching key, if

there is one. Otherwise, it returns null because there was no element with a matching key.

Range iteration. Although the BPA is not globally sorted, it supports sorted iteration

in a range (iterate_range) by sorting elements as necessary and then processing the

elements in sorted order. Suppose the user calls the procedure iterate_range(start,

length, f). As a preprocessing step, the BPA first flushes all deletes in the log to the

29

Log Header Blocks

iterate_range(start = 7, length = 2, f)

197 15 89 1713 8 93 9532 5025 8

197 15 89 178 13 93 9532 508 25

Sort the log and first relevant block, initialize the pointers:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

Advance the pointers to perform sorted iteration:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

log_ptr blocks_ptr

Figure 4-2: An example of a call to iterate_range in BPA. In this example, log_size =
num_blocks = block_size = 4. The BPA sorts parts of the data structure as needed. To
perform the ranged iteration, the BPA executes a two-finger merge through the relevant (and
now sorted) parts of the BPA.

header/blocks. The BPA then sorts the remaining inserts in the log and the block that

the start key would reside in. It then initializes two pointers:

• log_ptr: Initially points to the smallest element in the log that is greater than

or equal to start.

• blocks_ptr: Initially points to the smallest element in the header/blocks that

is greater than or equal to start.

The BPA then performs a co-iteration with the two pointers to process length

elements and applies the function f to those elements while advancing the pointers as

necessary. If the query is not finished but the blocks_ptr reaches the end of its current

block, the BPA sorts the next block (if there is one) and moves the blocks_ptr to the start

of that block. If either of the pointers reaches the end of their respective sections (the log or

the blocks) and fewer than length elements have been processed, the BPA advances the

remaining pointer until it reaches the correct number of elements or runs out of elements.

As an additional optimization to avoid unnecessary sorting, the BPA keeps a bit vec-

tor of length num_blocks that denotes whether the elements in each block are currently

30

sorted. It sorts a block during a range query if and only if the corresponding bit in the

bit vector is unset. If the BPA sorts a block as part of a redistribute or sorted range

query, it sets the corresponding bit. If there are elements flushed to a block during an

insert, the BPA unsets the corresponding bit because the elements in the block may

have become unsorted.

Figure 4-2 presents a worked example of a sorted range query.

Range map. The BPA also supports range maps queries of the form map_range(start,

end, f). The procedure for range maps is similar to the one for range iteration except

that maps do not need to sort elements and perform a two-finger co-iteration. As a

preprocessing step, the BPA first flushes all deletes in the log to the header/blocks. The

map then scans through the inserts in the log and applies the function f to all elements

that fall within the range. During this scan, the BPA searches for each of the elements

in the log in the blocks to keep track of duplicates. After scanning through the log, the

BPA scans through all blocks with elements that may fall into the range. If an element

in the blocks has a newer version in the log, we skip the one in the blocks because it has

already been accounted for. Otherwise, we apply the function f to any element in the

blocks that falls into the range.

31

32

Chapter 5

The BP-tree

This chapter introduces the BP-tree, a modified version of the concurrent B+-tree

described in Chapter 2 that used large leaf nodes to optimize range operation without

slowing down point operations. It uses the BPA from Chapter 4 in the leaf nodes and

standard sorted arrays in the internal nodes. As shown in Chapter 3, it is not necessary

to replace the sorted array in every node with a BPA because all data records are in the

leaf nodes and relatively few are in the internal nodes. Next, this chapter describes how

to implement the B+-tree operations outlined in Chapter 2 in the BP-tree. Finally, this

chapter demonstrates the benefits of the BP-tree on range operations in the affine model.

Structure

The BP-tree replaces the sorted array in the leaves of a B+-tree with the BPA. The leaf

nodes in the BP-tree do not have to be the same size as the internal nodes, and often

are much larger because of the specialized BPA data structure.

Traditional B+-trees keep track of exactly how many elements are in each leaf to

determine when a leaf becomes too full during insertions. Since the buffered partitioned

array may contain duplicates of elements due to buffering, each leaf in a BP-tree keeps

track of its num_elts, or the number of elements in each leaf (including duplicates), to

determine how full the leaf node is. Although the count num_elts in the BP-tree may

be an overestimate of the number of elements with different keys, it is at most log_size

33

away from the correct count.

Operations

Insert. Like inserts in the plain B+-tree, inserts in the BP-tree first traverse down to

the correct leaf by following the root-to-leaf path and then check if the target leaf is full

(i.e., the count num_elts is equal to the number of slots in the BPA).

If the leaf is not full, we call insert on the BPA and increment the num_elts in the

leaf. If the leaf is full, we first flush the log in the BPA in that leaf and then perform

a split. A split creates a new “right” leaf and divides the elements as evenly as possible

between the current leaf and the new leaf. Since log_size is much smaller than the

size of the BPA, there are always enough elements in the BPA to perform a valid split

even if all of the elements in the log are duplicates. The split moves the upper half of the

full BPA’s elements in sorted order into a new BPA structure. After a split, the current

leaf contains the first half of elements in sorted order, and the new right leaf contains

the new BPA with the remaining half of the elements. The BP-tree then checks which

leaf the new element should be inserted into, and calls insert on that BPA.

Find. Finds in the BP-tree first traverse down to the leaf where the key would be

located, then use the BPA’s find functionality.

Range iteration. BP-tree range iterations use the iterate_range functionality in

the BPA to process elements in sorted order at the leaves. Given a call to

iterate_range(start, length, f) in the BP-tree, the first step is to traverse down

to the leaf where the start key would be located. The BP-tree then calls the

iterate_range on the BPA (as described in Chapter 4) with the same parameters.

The BPA reports the number of elements found in the query. If the reported number

of elements found equals the length of the query, the query is finished. Otherwise,

the BP-tree keeps track of how many elements have been processed so far. It then

continues onto the next leaf and calls iterate_range on the BPA in this new leaf

with the remaining number of elements in the query and adjusts the count of elements

34

processed so far accordingly. This process of traversing leaves repeats until the total

number of elements found is equal to length, or no next leaf exists.

The concurrency mechanism described in Chapter 2 states that we always grab

exclusive locks on the leaf nodes including during find or range queries. Therefore, during

the range iteration operation in BP-tree we can safely modify the BPA as described

in Chapter 4 without modifying the concurrency mechanism in the BP-tree.

Range map. Range maps in a B-tree of the form map_range(start, end, f) traverse

down to the leaf where the start key would be located, then use the map_range func-

tionality in the BPA as described in Chapter 4 to apply the function f to all elements

in the range. We then check if the maximum key in the leaf is greater than the end key,

and if so, we are finished. Otherwise, we continue to traverse to the next leaf and repeat

the range map until the the maximum key in the current leaf is greater than the end

key, or no right leaf exists.

Analyzing range operations in the affine model. The affine model [6] captures

the benefits of the BP-tree for range operations by modeling the cost of random vs

sequential memory accesses. A range operation (iteration and map) consists of a search

through the internal nodes of the tree and then a scan at the leaves. Since the changes

in the BP-tree only affect the size of the leaves and not the higher-level search, we focus

the analysis on the scan. Suppose that a range query performs a scan of size 𝑘. Given

a leaf size of 𝐿, the scan at the leaves has cost

Θ

(︂(︂
𝑘

𝐿

)︂
(1+𝛼𝐿)

)︂
=Θ

(︂
𝑘

𝐿
+𝑘𝛼

)︂

in the affine model.

Let 𝐿1 be the size of the leaves in a B+-tree and 𝐿2 be the size of leaves in a BP-tree.

Since the BP-tree is optimized for large leaves, we have 𝐿1<𝐿2. When the length of

the scan 𝑘 is sufficiently large (𝑘=Ω(𝐿1+𝐿2)),

𝑘

𝐿1

+𝑘𝛼=Ω

(︂
𝑘

𝐿2

+𝑘𝛼

)︂
.

35

36

Chapter 6

Evaluation

This section demonstrates that the BP-tree improves long-running range operations

without giving up point-operation performance on a suite of microbenchmarks as well

as on workloads generated from YCSB [16]. The BP-tree supports range iteration

up to 1.4× faster and range maps up to 1.7× faster when compared to the best-case

insertion configuration for the B+-tree. Furthermore, the BP-tree achieves slightly

faster performance (about 1.1×) on point-operation workloads compared to the B+-tree.

The BP-tree achieves slower performance (within 1.15×) on the short-running range-

operation workload compared to the B+-tree, as the range fits within the leaf node and

thus does not benefit as much from the locality in the larger leaf nodes in the BP-tree.

To illustrate the use case for the BP-tree, we generated workloads with long-running

range operations from YCSB and found that the BP-tree achieves between 1.2×-1.4×

speedup compared to the B+-tree.

Tables 6.4, 6.5, and 6.6 contain all data used to generate the plots in this section.

Systems setup

All experiments were run on a 48-core 2-way hyperthreaded Intel Xeon Platinum 8275CL

CPU @ 3.00GHz with 189 GB of memory from AWS [2]. The machine has 1.5MiB of

L1 cache, 48 MiB of L2 cache, and 71.5 MiB of L3 cache across all of the cores. To avoid

non-uniform memory access (NUMA) issues across sockets, we ran all experiments on

37

a single socket with 24 physical cores and 48 hyperthreads. All times are the median

of 5 trials after one warm-up trial.

Data structures setup

We used the B+-tree [14] from the TLX library [8] with 64-bit elements in map mode

(i.e., with keys and values) as the starting point for our implementation. We then

implemented the optimistic concurrency control scheme described in Chapter 2 on top

of the main operations. We ran operations concurrently using the OpenCilk compiler

[42]. Finally, we implemented the BPA from Chapter 4 in the leaves of the TLX B+-tree.

We tested various node sizes in two different types of blocked trees:

• The standard B+-tree which sets the internal and leaf node sizes to be the same.

• The BP-tree with BPAs in the leaf nodes.

In Chapter 3, we tried a variant of B+-trees that only grows the leaf nodes and keeps

the size of the internal nodes fixed, but found that the performance was similar to the

traditional B+-tree because the leaf nodes are the most affected during operations.

The B+-tree takes a parameter node_size (in bytes) for both the internal and leaf

nodes. We tested different (powers of 2) node sizes ranging from 28 up to 216. We also

tested non-powers of 2 node sizes ranging from 28 up to 216 and found no discrepancies

between node sizes of powers and non-powers of 2.

The BP-tree takes several parameters as described in Chapter 4: internal_size,

header_size, and block_size. We tested two configurations of the BPA in the leaves

to explore the effect of the number of blocks on the tree’s performance. The small

version sets internal_size= 1024 (bytes), header_size= 32 (slots), and block_size

= 32 (slots) (for a total of 1088 slots per leaf). The large version sets internal_size

= 1024 (bytes), header_size = 64 (slots), and block_size = 32 (slots) (for a total of

2176 slots per leaf). In both configurations, we set each block to take up 8 cache lines

(at 64 bytes per line). Furthermore, we set each internal node to 1024 bytes but found

that the size of the internal node did not have much of an effect.

38

Evaluation on microbenchmarks

Workloads setup. We concurrently inserted 100M uniform random elements in the

range [1,264−1]. We then performed finds (point queries) for 1M of those elements.

Finally, we tested range queries with varying maximum lengths. For each maximum

length max_len tested, we performed 1M range iterations with lengths distributed

uniformly randomly in the interval [0, max_len]. We saved the start and end points

of each of these queries and used them to perform 1M range maps on the same ranges.

In addition to the total operation times shown in Figure 1-2, we also report individual

operation latencies by percentile in Figure 6-1.

Inserts. Although the BP-tree has large leaf nodes (over 16k bytes), it achieves high

insertion throughput because the optimized BPA data structure amortizes element

moves across inserts. In the traditional B+-tree, each insertion shifts existing elements

within a leaf’s sorted array to make space for the new element. Therefore, the insertion

performance in B+-trees with sorted arrays in the leaves degrades with increasing leaf

size because the number of element moves grows proportionally with the leaf size. In

contrast, the BPA relaxes the sortedness of the leaves and buffers insertions in the log.

It flushes elements to the blocks only when the log is full, amortizing accesses to the

blocks across inserts.

The BP-tree achieves similar (within 1.1×) insertion throughput when compared

to the best-case insertion throughput of the baseline B+-tree (at node_size = 1024).

However, as shown in Table 6.4, the BP-tree is over 5× faster for inserts when compared

to a B+-tree with similar-sized leaf nodes. Figure 1-1 illustrates the decline in insertion

throughput in the B+-tree as the leaf size grows.

In addition to timing overall concurrent performance, we also timed each individual

operation to analyze worst-case latency. Figure 6-1 shows the normalized individual

operation speedup of the BP-tree relative to the B+-tree at various percentiles (with

higher percentiles indicating slower individual operation latency). For worst-case inserts,

the 99.9th percentile of inserts in the BP-tree are approximately 50% slower than the

99.9th percentile of inserts in the B+-tree. The slowdown in the worst-case is due to

39

Insert Find Range
iteration

Range
map

0

1

2

1

Workload

N
or

m
al

iz
ed

pe
rf

or
m

an
ce 50% 90% 99% 99.9%

Figure 6-1: Normalized individual operation speedup of the BP-tree relative to the baseline
B+-tree by percentile. The 𝑥-axis lists the evaluated workloads. The 𝑦-axis represents the
average latency of an individual operation in the B+-tree relative to the average latency of an
individual operation in the BP-tree (i.e. above 1 means the BP-tree is faster than the B+-tree).

the amortization of insertions in the buffered partitioned array, where some inserts may

cause a buffered partitioned array to flush or redistribute.

Finds. Figure 1-2 demonstrates that the BP-tree supports finds about 1.2× faster

than the best-case B+-tree configuration for finds (at node_size = 1024). Finding an

element in a BPA avoids looking at the entire data structure via the header, which

enables a lookup to skip to the relevant block that might contain the target element.

In contrast, finding an element in an array requires a scan when the node size is small

(up to 2048 bytes) or a binary search when the node size is large.

As shown in Figure 1-1, the find throughput does not change as much as the insert

throughput as a function of node size in a B+-tree. Insertion performance degrades

more dramatically with larger node sizes because the number of elements that must

be shifted upon an insert grows linearly with the size of the nodes. In contrast, when

the nodes are sufficiently large, finds can be implemented in the B+-tree with a binary

search, which only requires looking at a logarithmic number of elements in each node.

Figure 6-1 shows that individual operation performance for finds are equivalent between

the BP-tree and B+-tree across percentiles.

Range operations. As mentioned in Chapters 1 and 2, we evaluate two types of range

operations: range iteration, which processes elements in sorted order (according to their

40

28 29 210 211 212 213 214 215 216

2

4

6

8
·109

Node size (bytes)

T
hr

ou
gh

pu
t
(e

xp
ec

te
d

el
ts

/s
)

100 1000
10000 100000

Figure 6-2: Throughput of range iterations of varying maximum lengths as a function of
node size in B+-trees.

keys) and range map, which processes elements in a range in any order.

Figure 6-2 demonstrates that the B+-tree range iteration throughput (in terms of

expected elements processed per second) improves with both the average range size and

B+-tree node size. As predicted by the discussion of the affine model in Chapter 5, longer

range operations take advantage of locality more than short-running range operations

because longer ranges process more contiguous elements. The shortest range operation

(with maximum size 100) does not improve much with the node size because the queries

are contained in one node. In contrast, the longest range operation (with maximum size

100,000) improves by about 3× as the node size grows. In traditional B+-trees, both

types of range operations have similar throughput because the arrays in the leaves are

sorted, so we only plot the results for range iteration but report results for both types

of range operations in Tables 6.5 and 6.6. Similarly, Figure 6-1 demonstrates that both

worst-case individual range operations are improved in the BP-tree compared to the

B+-tree, as the slowest individual operations span longer ranges and thus benefit most

from the increased leaf node size in the BP-tree.

Figure 6-3 reports the throughput of range operations of varying lengths in the

best-case B+-tree for inserts and the BP-tree (with the small BPA configuration). We

find that the BP-tree is between 1.1−1.2× slower for short-running range operations

when compared to the B+-tree because the BPA incurs computational overhead for its

improved locality, but short-running ranges fit within the B+-tree nodes and do not

41

102 103 104 105

2

4

6

·109

Maximum query length

T
hr

ou
gh

pu
t
(e

xp
ec

te
d

el
ts

/s
)

Iterate B-tree Map B-tree
Iterate BP-tree Map BP-tree

Figure 6-3: Range operation thorughput as a function of the maximum length of each query.

Baseline B+-tree Insert Find Range iteration Range map

Internal size (bytes) Leaf size (bytes) Throughput N.P. Throughput N.P. Throughput N.P. Throughput N.P.
256 256 1.10E7 0.39 3.87E7 0.92 1.93E9 0.25 1.84E9 0.24
512 512 2.24E7 0.79 4.08E7 0.96 2.30E9 0.30 2.12E9 0.28
1024 1024 2.82E7 1.00 4.23E7 1.00 3.02E9 0.39 2.71E9 0.35
2048 2048 2.35E7 0.83 4.21E7 1.00 4.47E9 0.58 4.24E9 0.55
4096 4096 1.58E7 0.56 4.08E7 0.97 5.23E9 0.68 5.14E9 0.67
8192 8192 9.23E6 0.33 4.04E7 0.96 6.24E9 0.81 5.84E9 0.76
16384 16384 4.96E6 0.18 4.05E7 0.96 7.03E9 0.91 6.57E9 0.86
32768 32768 2.58E6 0.09 4.02E7 0.95 7.48E9 0.97 7.25E9 0.95
65536 65536 1.31E6 0.05 3.92E7 0.93 7.69E9 1.00 7.67E9 1.00

BP-tree Insert Find Range iteration Range map

Internal size (bytes) Leaf size (slots) Throughput SU Throughput SU Throughput SU Throughput SU
1024 1088 3.25E7 1.15 5.33E7 1.26 4.26E9 1.41 4.65E9 1.72
1024 2176 3.00E7 1.06 4.91E7 1.16 4.55E9 1.51 4.86E9 1.79

Table 6.4: Throughput and normalized performance of point and range operations. Point
operation throughput is reported in operations/s and range query throughput is reported
in (expected elements processed)/s. We use N.P. to denote the normalized performance in
the B+-tree compared to the best B+-tree configuration for that operation (1.0 is the best
possible value). We use SU in the BP-tree to denote the speedup for each operation compared
to the B+-tree with node_size = 1024. The range operations are reported for the largest
tested range (max length of 100,000).

benefit much from this better locality. However, the BP-tree achieves up 1.4× speedup

on range iterations and 1.7× speedup on range maps compared to the B+-tree on large

ranges (i.e., when the length of the range operation grows larger than the B+-tree node

size). Iteration is slower in the BP-tree compared to maps because the BPA is not a

sorted data structure. There is additional computational overhead to returning elements

in sorted order in the BPA because the blocks and log must be sorted to perform the

sorted scan. However, as mentioned in Chapter 1, many applications may not require

sortedness in their range operations.

42

Baseline B+-tree max_len = 100 max_len = 1,000 max_len = 10,000 max_len = 100,000

Internal size (bytes) Leaf size (bytes) Throughput N.P. Throughput N.P. Throughput N.P. Throughput N.P.
256 256 9.56E8 0.66 1.73E9 0.35 1.90E9 0.26 1.93E9 0.25
512 512 1.10E9 0.75 2.05E9 0.41 2.27E9 0.31 2.30E9 0.30
1024 1024 1.22E9 0.84 2.51E9 0.50 2.95E9 0.40 3.02E9 0.39
2048 2048 1.32E9 0.91 3.36E9 0.67 4.31E9 0.58 4.47E9 0.58
4096 4096 1.38E9 0.95 3.88E9 0.78 5.02E9 0.68 5.23E9 0.68
8192 8192 1.41E9 0.96 4.38E9 0.88 5.97E9 0.81 6.24E9 0.81
16384 16384 1.44E9 0.99 4.69E9 0.94 6.72E9 0.91 7.03E9 0.91
32768 32768 1.46E9 1.00 4.87E9 0.98 7.15E9 0.97 7.48E9 0.97
65536 65536 1.45E9 0.99 4.99E9 1.00 7.37E9 1.00 7.69E9 1.00

BP-tree max_len = 100 max_len = 1,000 max_len = 10,000 max_len = 100,000

Internal size (bytes) Leaf size (slots) Throughput SU Throughput SU Throughput SU Throughput SU
1024 1088 1.09E9 0.89 3.09E9 1.23 4.06E9 1.37 4.26E9 1.41
1024 2176 9.34E8 0.76 3.07E9 1.22 4.31E9 1.46 4.55E9 1.51

Table 6.5: Throughput (in expected elements processed per second) of range iterations of
varying maximum lengths (max_len) and normalized performance compared to the best-case
performance for each maximum length (1.0 is the best possible value). We use SU in the BP-tree
to denote the speedup for each operation compared to the B+-tree with node_size = 1024.

Baseline B+-tree max_len = 100 max_len = 1,000 max_len = 10,000 max_len = 100,000

Internal size (bytes) Leaf size (bytes) Throughput N.P. Throughput N.P. Throughput N.P. Throughput N.P.
256 256 9.01E8 0.76 1.63E9 0.37 1.81E9 0.25 1.84E9 0.24
512 512 1.01E9 0.85 1.89E9 0.43 2.09E9 0.29 2.12E9 0.28
1024 1024 1.10E9 0.93 2.26E9 0.51 2.64E9 0.36 2.71E9 0.35
2048 2048 1.17E9 0.98 3.11E9 0.70 4.06E9 0.56 4.24E9 0.55
4096 4096 1.19E9 1.00 3.64E9 0.82 4.89E9 0.68 5.14E9 0.67
8192 8192 1.19E9 1.00 4.01E9 0.91 5.57E9 0.77 5.84E9 0.76
16384 16384 1.19E9 1.00 4.23E9 0.96 6.23E9 0.86 6.57E9 0.86
32768 32768 1.19E9 1.00 4.37E9 0.99 6.87E9 0.95 7.25E9 0.95
65536 65536 1.18E9 0.99 4.42E9 1.00 7.24E9 1.00 7.67E9 1.00

BP-tree max_len = 100 max_len = 1,000 max_len = 10,000 max_len = 100,000

Internal size (bytes) Leaf size (slots) Throughput SU Throughput SU Throughput SU Throughput SU
1024 1088 8.82E8 0.80 3.15E9 1.40 4.49E9 1.70 4.65E9 1.72
1024 2176 7.63E8 0.69 3.12E9 1.38 4.61E9 1.74 4.86E9 1.80

Table 6.6: Throughput (in expected elements processed per second) of range maps of
varying maximum lengths (max_len) and normalized performance compared to the best-case
performance for each maximum length (1.0 is the best possible value). We use SU in the BP-tree
to denote the speedup for each operation compared to the B+-tree with node_size = 1024.

Evaluation on YCSB workloads

We also evaluate the B+-tree and BP-tree on workloads from YCSB [64] and report the

results in Figure 1-4 and Table 6.7.

Experimental setup. Based on the results from Section 6, we fixed the parameters

for the B+-tree at node_size = 1024 bytes to maximize insertion throughput. For the

BP-tree, we set the internal node size internal_size = 1024 (bytes) and used the small

version of the BPA (with 1088 elements each) in the leaves.

Table 6.7 presents details of the core workloads from YCSB [64]. We tested work-

43

Workload Description B+-tree BP-tree BP-tree/B+-tree
Load 100% inserts 2.76E7 3.12E7 1.13

A 50% finds, 50% inserts 3.22E7 3.43E7 1.07
B 95% finds, 5% inserts 4.01E7 4.42E7 1.10
C 100% finds 4.23E7 4.61E7 1.09
E 95% short-running range iterations (max length 100), 5% inserts 2.75E7 2.30E7 0.84
X 100% long-running range iterations (max length 10,000) 6.82E5 8.21E5 1.20
Y 100% long-running range maps (max length 10,000) 6.34E5 9.21E5 1.45

Table 6.7: Throughput (in operations/s) of the B+-tree and BP-tree on workloads from YCSB

loads1 A, B, C, and E from the core YCSB workloads by adapting the YCSB driver from

RECIPE [34]. Running a workload in YCSB has two consecutive phases: 1) the load

phase, which adds elements to the data structure, and 2) the run phase, which performs

operations specified by the workload. For each workload, we generated 100M elements to

insert in the load phase and 100M operations to perform in the run phase. All elements

were generated uniformly at random to match the distribution in RECIPE [34]. We

ran all 100M operations in each phase concurrently.

The YCSB experiments use the insert (put), find (get), and iterate_range (scan)

operations defined in Chapter 2. To generate scan operations, the YCSB workload

generator takes as input a max_len parameter and generates range iteration operations

with lengths uniformly distributed in the range [0,max_len].

As mentioned in Chapter 1, the core YCSB workloads focus mostly on point opera-

tions and short-running range operations. To illustrate the strenghts of the BP-tree, we

added two new workloads: 1) workload X, which performs long range iterations (with

maximum length 10,000), and 2) workload Y, which performs long-running range maps

(with maximum length 10,000). Although the core YCSB workloads do not originally

include range maps, we include them in addition to the provided workloads to illustrate

how the different systems perform on operations from other application areas.

Finds and inserts. The BP-tree is slightly faster (within about 1.1×) compared to

the B+-tree for loading elements as well as on the workloads containing point operations

(workloads A, B, and C). The BP-tree is optimized for long-running range operations

but is competitive with the best-case B+-tree for point operations despite the much

larger leaves in the BP-tree because of the insert-optimized BPA in the leaves.

1We omit workload D from YCSB because it benchmarks the read-latest operation, which is not
the focus of this work.

44

Range operations. Just as in the microbenchmarks, the BP-tree is about .8× as fast

as the B+-tree on short-running range iterations (workload E) because the benefits of

improved locality do not outweigh the added computational overhead in the BP-tree

when the range size fits in one node.

Since the BP-tree is optimized for long-running range operations, we use the YCSB

workload generator to create workloads X and Y, which perform long-running range

iterations and maps, respectively. The BP-tree is about 1.2× faster on workload X and

1.4× faster on workload Y when compared to the B+-tree. Although the BP-tree incurs

computational overhead during range operations due to buffering, it is faster on the

whole for long-running range operations that take advantage of its improved locality

from large leaf nodes.

45

46

Chapter 7

Related work

This thesis focuses on resolving the point-range tradeoff in B+-trees because of the

B+-tree’s ubiquity in real-world database and storage systems. Due to the B+-tree’s pop-

ularity, there has been significant effort devoted to improving its cache utilization during

queries. For example, the CSB+-tree [53] is a cache-sensitive search tree that achieves effi-

cient updates by storing child nodes in contiguous memory areas. However, previous work

showed that theCSB+-tree exhibits a similar tradeoff between point and range operations

depending on the node size [26]. The results have shown that using node size larger than a

cache line results in better range operation performance, but that insertion performance

suffers with much larger nodes. There is no clear winner between the B+-tree and CSB+-

tree because the B+-tree outperforms the CSB+-tree on update-intensive workloads. Fur-

thermore, Masstree [38] is a trie variant of the B+-tree that achieves high query through-

put with cache optimizations. Future work includes integrating the BPA introduced in

this thesis into these B+-tree variants to improve their empirical point-range tradeoff.

The log-structured merge (LSM) tree [44] is another hierarchical structure used

frequently in key-value stores such as LevelDB [36] and RocksDB [56]. At a high level,

the LSM tree contains multiple levels of tree-like structures of increasing size. Each of

the tree-like structures is tuned for the medium it is stored in (e.g., in memory or on

disk). The smallest level of the LSM tree must support efficient insertions, and all of the

levels must support fast point and range queries. The BPA has the potential to improve

the smallest level of the LSM tree by improving both point and range operations.

47

The skip list [52] has recently gained popularity as a randomized alternative to

B+-trees. Since traditional skip lists (based on linked lists) exhibit poor cache utilization,

previous work [21, 61, 63, 66] optimized skip lists for cache utilization by collocating

some of the elements. These cache-friendly skip lists use a blocked structure to improve

cache utilization. Therefore, they should exhibit a similar point-range operation tradeoff

to B+-trees because they must choose a node size. The BPA data structure could

improve these blocked variants of skip lists by enabling fast point and range operations.

48

Chapter 8

Conclusion

In this thesis, I have presented the BP-tree as a solution to the tradeoff between point

and range operations in B+-trees by replacing the sorted array in traditional B+-tree

leaves with the novel buffered partitioned array. I believe that the BP-tree strikes an

appropriate balance between point-operation and range-operation performance. Tradi-

tionally, a user could decide to make B+-tree nodes smaller to achieve the best possible

point operation performance, or make the nodes larger to improve range operations but

sacrifice point operations. The BP-tree is an ideal candidate for emerging applications

that serve blended workloads of range and point operations with the same data store.

The BP-tree is optimized for long-running range operations because analytics-based

applications rely heavily on range operations. At the same time, the BP-tree supports

similar point-operation performance compared to the best-case B+-tree.

I see two primary avenues of future work. First, broadening the scope of supported

operations in the BP-tree will increase the robustness of this study. The BP-tree supports

both range iteration and range map, which underlie operations like database joins and

intersections. A merge operation that merges two BP-trees in sorted order would be a

valuable extension to the supported range-operation workloads. Efficient merges could

enable the BP-tree to function as the in-memory component of structures like LSM

trees, which require merging to structures on disk.

Second, this thesis’ higher-level technique of replacing sorted arrays in the nodes

of B+-trees can be applied to other blocked structures as well. I am particularly inter-

49

ested in other usages for the BPA. Example applications could include integration into

B-skiplists [21], or into enterprise B+-tree-based key-value stores such as MongoDB [40]

or CouchDB [17].

Overall, I am excited by the progress we made in developing the BPA and BP-tree,

and I anticipate further investigation into their applications will yield compelling results.

50

Bibliography

[1] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116–1127, September 1988.

[2] Amazon. Amazon web services. https://aws.amazon.com/.

[3] Matthew Andrews, Michael A Bender, and Lisa Zhang. New algorithms for disk
scheduling. Algorithmica, 32(2):277–301, 2002.

[4] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. Linkbench: a database benchmark based on the Facebook social
graph. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 1185–1196, 2013.

[5] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, 1(3):173–189, 1972.

[6] Michael A Bender, Alex Conway, Martín Farach-Colton, William Jannen, Yizheng
Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant
Pandey, et al. Small refinements to the DAM can have big consequences for
data-structure design. In The 31st ACM Symposium on Parallelism in Algorithms
and Architectures, pages 265–274, 2019.

[7] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. Cache-oblivious
B-trees. SIAM Journal on Computing, 35(2):341–358, 2005.

[8] Timo Bingmann. TLX: Collection of sophisticated C++ data structures,
algorithms, and miscellaneous helpers, 2018. https://panthema.net/tlx.

[9] Lucas Braun, Thomas Etter, Georgios Gasparis, Martin Kaufmann, Donald
Kossmann, Daniel Widmer, Aharon Avitzur, Anthony Iliopoulos, Eliezer Levy, and
Ning Liang. Analytics in motion: High performance event-processing and real-time
analytics in the same database. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, page 251–264,
New York, NY, USA, 2015. Association for Computing Machinery.

[10] Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory
dictionaries. In SODA, volume 3, pages 546–554, 2003.

[11] Cassandra. https://cassandra.apache.org.

51

https://aws.amazon.com/
https://panthema.net/tlx
https://cassandra.apache.org

[12] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei,
Nikhil Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat Yilmaz.
Realtime data processing at Facebook. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, page 1087–1098, New York,
NY, USA, 2016. Association for Computing Machinery.

[13] Shimin Chen, Phillip B Gibbons, and Todd C Mowry. Improving index performance
through prefetching. ACM SIGMOD Record, 30(2):235–246, 2001.

[14] Douglas Comer. Ubiquitous B-tree. ACM Computing Surveys (CSUR),
11(2):121–137, 1979.

[15] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,
Richard Spillane, Amy Tai, and Rob Johnson. SplinterDB: Closing the bandwidth
gap for NVMe Key-Value stores. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 49–63, 2020.

[16] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, pages 143–154, 2010.

[17] CouchDB. https://couchdb.apache.org/.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. ACM
SIGOPS Operating Systems Review, 41(6):205–220, 2007.

[19] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,
2004(124):5, 2004.

[20] Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean, Franz
Färber, Francis Gropengiesser, Christian Mathis, Thomas Bodner, and Wolfgang
Lehner. Towards scalable real-time analytics: An architecture for scale-out of
OLXP workloads. Proc. VLDB Endow., 8(12):1716–1727, Aug 2015.

[21] Daniel Golovin. The B-skip-list: A simpler uniquely represented alternative to
B-trees. arXiv preprint arXiv:1005.0662, 2010.

[22] Goetz Graefe. Write-optimized B-trees. InProceedings of the Thirtieth International
Conference on Very Large Data Bases-Volume 30, pages 672–683, 2004.

[23] Goetz Graefe. A survey of B-tree locking techniques. ACM Transactions on
Database Systems (TODS), 35(3):1–26, 2010.

[24] Jörg Hakenberg, Wei-Yi Cheng, Philippe Thomas, Ying-Chih Wang, Andrew V
Uzilov, and Rong Chen. Integrating 400 million variants from 80,000 human
samples with extensive annotations: towards a knowledge base to analyze disease
cohorts. BMC Bioinformatics, 17(1):1–13, 2016.

52

https://couchdb.apache.org/

[25] Rui Han, Zhen Jia, Wanling Gao, Xinhui Tian, and Lei Wang. Benchmarking
big data systems: State-of-the-art and future directions. arXiv preprint
arXiv:1506.01494, 2015.

[26] Richard A Hankins and Jignesh M Patel. Effect of node size on the performance
of cache-conscious B+-trees. In Proceedings of the 2003 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
pages 283–294, 2003.

[27] HBase. https://hbase.apache.org/.

[28] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi,
Antoine Atallah, Ralf Herbrich, Stuart Bowers, et al. Practical lessons from
predicting clicks on ads at Facebook. In Proceedings of the Eighth International
Workshop on Data Mining for Online Advertising, pages 1–9, 2014.

[29] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The Art of
Multiprocessor Programming. Newnes, 2020.

[30] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation
of priority queues. In ICALP, pages 417–431, 1981.

[31] Vijay Janapa Reddi, Benjamin C Lee, Trishul Chilimbi, and Kushagra Vaid. Web
search using mobile cores: quantifying and mitigating the price of efficiency. ACM
SIGARCH Computer Architecture News, 38(3):314–325, 2010.

[32] Donald E. Knuth. The Art of Computer Programming, volume 1 of Fundamental Al-
gorithms. Addison Wesley Longman Publishing Co., Inc., 3rd edition, 1998. (book).

[33] H.T. Kung and John T Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981.

[34] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. RECIPE: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19), Ontario, Canada, October 2019.

[35] Daniel J. Lehmann, Amir Pnueli, and Jonathan Stavi. Impartiality, justice and
fairness: The ethics of concurrent termination. In International Colloquium on
Automata, Languages and Programming, 1981.

[36] LevelDB. http://ccrma.stanford.edu/jos/bayes/bayes.html.

[37] Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and Sandeep Pandey. Click-through
prediction for advertising in Twitter timeline. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1959–1968, 2015.

53

https://hbase.apache.org/
http://ccrma.stanford.edu/ jos/ bayes/bayes.html

[38] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for fast
multicore key-value storage. In Proceedings of the 7th ACM European Conference
on Computer Systems, pages 183–196, 2012.

[39] Andreas Meier and Michael Kaufmann. NoSQL databases. In SQL & NoSQL
Databases, pages 201–218. Springer, 2019.

[40] MongoDB. https://www.mongodb.com/.

[41] University of Alberta. Lecture notes in CMPUT 379: Operating system concepts,
February 2014.

[42] OpenCilk. https://www.opencilk.org/.

[43] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob
Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Diego Ongaro,
Guru Parulkar, et al. The case for RAMCloud. Communications of the ACM,
54(7):121–130, 2011.

[44] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[45] Prashant Pandey, Yinjie Gao, and Carl Kingsford. VariantStore: an index for
large-scale genomic variant search. Genome Biology, 22(1):1–25, 2021.

[46] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. Terrace: A
hierarchical graph container for skewed dynamic graphs. In Proceedings of the
2021 International Conference on Management of Data, pages 1372–1385, 2021.

[47] Apostolos N Papadopoulos, Spyros Sioutas, Christos Zaroliagis, and Nikolaos
Zacharatos. Efficient distributed range query processing in Apache spark. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 569–575. IEEE, 2019.

[48] Jure Petrovic. Using memcached for data distribution in industrial environment. In
Third International Conference on Systems (icons 2008), pages 368–372. IEEE, 2008.

[49] Markus Pilman, Kevin Bocksrocker, Lucas Braun, Renato Marroquin, and Donald
Kossmann. Fast scans on key-value stores. Proceedings of the VLDB Endowment,
10(11):1526–1537, 2017.

[50] Pouria Pirzadeh, Junichi Tatemura, Oliver Po, and Hakan Hacıgümüş. Performance
evaluation of range queries in key value stores. Journal of Grid Computing,
10(1):109–132, 2012.

[51] PostgreSQL. https://www.postgresql.org/.

[52] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, Jun 1990.

54

https://www.mongodb.com/
https://www.opencilk.org/
https://www.postgresql.org/

[53] Jun Rao and Kenneth A. Ross. Making B+- trees cache conscious in main memory.
SIGMOD Rec., 29(2):475–486, May 2000.

[54] Kai Ren and Garth Gibson. TABLEFS: Enhancing metadata efficiency in the
local file system. In 2013 USENIX Annual Technical Conference (USENIX ATC
13), pages 145–156, 2013.

[55] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen. On the
state of NoSQL benchmarks. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion, ICPE ’17 Companion, page
107–112, New York, NY, USA, 2017. Association for Computing Machinery.

[56] RocksDB. http://rocksdb.org/.

[57] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree filesystem.
ACM Transactions on Storage (TOS), 9(3):1–32, 2013.

[58] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.
Computer, 27(3):17–28, 1994.

[59] ScyllaDB. https://www.scylladb.com/.

[60] Julian Shun and Guy E Blelloch. Ligra: A lightweight graph processing framework
for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 135–146, 2013.

[61] Stefan Sprenger, Steffen Zeuch, and Ulf Leser. Cache-sensitive skip list: Efficient
range queries on modern CPUs. In Data Management on New Hardware, pages
1–17. Springer, 2016.

[62] Xiaohui Xie, Jun Lu, EJ Kulbokas, Todd R Golub, Vamsi Mootha, Kerstin
Lindblad-Toh, Eric S Lander, and Manolis Kellis. Systematic discovery of
regulatory motifs in human promoters and 3’UTRs by comparison of several
mammals. Nature, 434(7031):338–345, 2005.

[63] Zhongle Xie, Qingchao Cai, HV Jagadish, Beng Chin Ooi, and Weng-Fai Wong. PI:
a parallel in-memory skip list based index. arXiv preprint arXiv:1601.00159, 2016.

[64] YCSB. Core workloads. https://github.com/brianfrankcooper/YCSB/wiki/
Core-Workloads, 2020.

[65] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang.
In-memory big data management and processing: A survey. IEEE Transactions
on Knowledge and Data Engineering, 27(7):1920–1948, 2015.

[66] Jingtian Zhang, Sai Wu, Zeyuan Tan, Gang Chen, Zhushi Cheng, Wei Cao, Yusong
Gao, and Xiaojie Feng. S3: A scalable in-memory skip-list index for key-value
store. Proceedings of the VLDB Endowment, 12(12):2183–2194, 2019.

55

http://rocksdb.org/
https://www.scylladb.com/
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

	Introduction
	Background
	The Point-Range Tradeoff
	The Buffered Partition Array
	The BP-tree
	Evaluation
	Related work
	Conclusion

