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Abstract

Over the last two decades, mortality rates due to Alzheimer’s disease and related
dementias (ADRD) have more than doubled in the United States. Currently available
treatments for Alzheimer’s disease are more effective in the disease’s earlier stages, but
making early diagnoses remains difficult. The most common method for diagnosing
early-stage ADRD involves routine cognitive assessments under the supervision of
a medical professional, a costly and time-consuming process. Furthermore, these
assessments are often administered with pen and paper, making it difficult to measure
many behaviors expressed by the patient.

In this work, we develop an app for a tablet computer and stylus that administers
novel variations of three established cognitive assessments: the Clock Drawing Test,
the Maze Test, and the Symbol Digit Test. The app aims to replicate the role of a
human administrator by providing instructions and correcting mistakes as patients
complete each assessment. It also collects a wealth of data, such as pen strokes
and patient movements, that can be used to aid medical professionals in making an
accurate diagnosis. Combined, these innovations make it easy for patients to routinely
complete assessments at home, on their own devices. We hope this reduces barriers
toward diagnosing early-stage ADRD.
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Thesis Supervisor: Dana Penney
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Chapter 1

Introduction

Cognitive assessments are used in a wide variety of settings to identify problems with

mental acuity [9, 13, 28]. They are designed to detect cognitive changes early on, so

that patients can receive treatment before their condition gets worse.

These assessments are traditionally administered on paper, a limited medium. In

a test administered with pen and paper, it is di�cult to measure many behaviors

expressed by the patient. For example, how hard is the patient pressing their pen

on the paper? How long did the patient take to understand the instructions? Did

the patient move the sheet of paper during the test? Behaviors such as these are

impossible to reconstruct from a patient's pen strokes alone, and are di�cult to collect

without closely monitoring the patient. However, monitoring the patient is labor-

intensive, and doing it too closely could interfere with the results. As a consequence,

many potentially important variables unavailable for use in diagnosis.

In recent years, some administrators of cognitive assessments have turned to digital

pen technologies to solve some of these problems [9, 14, 18, 33]. These pens function

as normal pens while also recording their position on the page dozens of times per

second. Once the test is completed, the administrator is left with the marked paper

along with a digitized version of the user's pen strokes. These digitized strokes are

timestamped, which enables measurement of a number of interesting features.

The advent of digital tablets and styli, such as the iPad and Apple Pencil, has

opened the door to new possibilities in the administration of cognitive assessments.
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This work focuses on realizing and implementing the bene�ts of administering cogni-

tive assessments on a tablet computer, in this case an iPad. We take full advantage

of the tablet as a medium, using its interactive capabilities to administer tests in the

manner of an experienced clinician. We also use the device's sensors to measure be-

haviors that can not be measured in any traditional cognitive assessment. We develop

an app to administer these assessments and demonstrate how it will ultimately help

diagnose neurological diseases more accurately.

1.1 The Case for a Digital Platform

The goal of this work is ultimately to build an intelligent digital administrator of cog-

nitive assessments. The proposed features of this digital administrator generally fall

into two categories:unintrusive features, which monitor behavior without interfering

with the task, and corrective features, which guide the patient towards completing

the task correctly.

Unintrusive features are generally used to measure behavioral data. For example,

when patients are provided with written instructions, we can measure how much time

passes until the patient presses a button to indicate they are ready to continue. This

allows us to measure the speed at which the patients process information while they

are not under pressure to perform well.

Corrective features allow us to ensure we're measuring what we want to measure.

When patients forget the instructions and start completing the task incorrectly, it

is currently standard practice for a human administrator to interrupt the patient to

keep them on the right track. Automating this process ensures feedback will be given

consistently every time the test is administered, leading to more accurate test results.

1.2 Thesis Contributions

This thesis focuses on the design and implementation of Cognitive Health, an iPad

application that administers several cognitive assessments. We lay out the main

16



contributions below.

Cognitive Assessments We implement the Digital Clock Test, the Digital Symbol

Digit Test, and the Digital Maze Test using ResearchKit, a framework for medical

research provided by Apple. Each test is implemented with several unintrusive and

corrective features, as described above. Each test also saves all recorded behaviors

in standard formats that can be used for later analysis, and can be con�gured in the

application's settings without making any code changes. We take care to ensure that

Cognitive Health can be relied upon for years into the future.

Intelligent Test Administration For each cognitive assessment, we implement an

�intelligent� administrator that monitors patient behavior and provides any needed

feedback in real time. For example, the maze test interrupts patients who cross a wall

in the maze, and the symbol digit test interrupts patients who skip ahead by more

than one box. Behaviors such as these ensure that each test is taken properly, and

that feedback is distributed in the same way to every patient.

Steps Toward Unsupervised Administration We discuss the future of cognitive

assessments, and take steps toward administering them remotely, in an unsupervised

setting. Many of the features of our intelligent test administrator are designed with

this goal in mind. We hope this will someday make it easier for patients to get the

care they need.

Usability Study We complete a usability study in which 17 healthy MIT students

completed the three assessments administered by Cognitive Health. With these re-

sults, we provided insights into what we learned from running this study, and how it

may inform the future of Cognitive Health's development.

Documentation and User Guides Each test is documented extensively, ensuring

future researchers working on the Cognitive Health application will be able to easily

diagnose and repair issues that arise. We document each �le format used by Cognitive

17



Health, including mzs�les which describe maze layouts, and ADF �les which contain

data generated while taking a cognitive assessment.

Discussion on Conducting Medical Research with iOS Developing an iOS

application for medical research provides numerous bene�ts but also comes with some

drawbacks. For example, iOS applications require continuous maintenance in order

to perform well on the latest devices, which are updated annually. We evaluate these

trade-o�s in detail and provide guidance on when to use iOS in medical research, and

how to take full advantage of iOS as a platform.

1.3 Organization

Chapter 2 provides background on digital cognitive assessments, and on the three

established assessments we rely on in this work. In Chapter 3, we present the design

and implementation of Cognitive Health, followed by a discussion of our design goals

in Chapter 4. We then evaluate the results from a usability study completed with

MIT students in Chapter 5. Finally, we discuss future work in Chapter 6 and conclude

in Chapter 7.
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Chapter 2

Background

This section provides background on the three digital cognitive assessments included

in the current version of Cognitive Health. We also provide background on the grow-

ing �eld of digital psychological testing, and on ResearchKit, a medical research

framework provided by Apple.

2.1 Cognitive Assessments

This work implements digital versions of three established cognitive assessments, each

of which has been proven capable of indicating mental decline in patients.

2.1.1 Digital Clock Drawing Test

The Digital Clock Drawing Test (dCDT) [31] is a digitized version of the Clock

Drawing Test (CDT), which has been in use since at least 1915, which makes it the

most storied of our cognitive assessments by far [15]. Both the traditional and digital

versions of the test have long been used to detect mild cognitive impairment and early

Alzheimer's disease [5,9,10,19]. In the dCDT, patients are asked to draw an analog

clock set to a speci�c time, generally 11:10. Once they have �nished drawing, they

are asked to copy a pre-drawn clock set to the same time [13,19,20,35].

The test is then scored based on the patient's performance. Souillard-Mandar
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(a) Normal (b) Mild cognitive impairment,
early Alzheimer's disease

(c) Late Alzheimer's dis-
ease

Figure 2-1: Clock Drawing Test samples, adapted from Mattson [19]. Each patient
was asked to draw a clock showing the time 2:30.

Figure 2-2: Clock drawn by a patient with allochiria, adapted from Smith et al. [29]

explored a number of ways to score the test, based on features such as speed, the

positioning of the numbers, and the lengths of each clock hand [31]. In Fig. 2-1,

clocks are shown from patients in a few cognitive states. Patients with mild cognitive

impairment will often draw the hours correctly but fail to remember the time they

were asked to draw, as shown in Fig. 2-1b [19]. Patients with late-stage Alzheimer's

disease may be unable to draw a clock, as shown in Fig. 2-1c.

While Fig. 2-1 depicts patients who were asked to draw a clock set to 2:30, the

test generally asks patients to draw a clock �set to 10 minutes past 11.� This position

requires hands to be placed on both sides of the clock, which can reveal patterns of

visual or cognitive neglect. For example, patients with allochiria may have di�culty

perceiving stimuli on one half of the space in front of them (e.g. Fig. 2-2). This

position also tests patients' inhibition of the tendency to copy features in the stimulus

(e.g. drawing a hand to point to the `10') [27].
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Cognitive Load

Notably, the clock drawing test asks patients to complete the same task twice under

di�erent cognitive loads. While a healthy patient should draw the same clock in both

portions of the test, an impaired patient may bene�t from the additional information

present in the second half. This principle has been shown to reveal information about

various cognitive impairments. For example, patients with executive functioning dif-

�culties may have trouble producing their own clock, but not with copying a clock

provided to them [27]. Each of the remaining cognitive assessments used in this thesis

bene�ts from this principle of administering the same task under di�erent cognitive

loads.

2.1.2 Digital Maze Test

The Digital Maze Test (dMaze) [24] involves solving two mazes in succession. Unbe-

knownst to the subject, while the mazes appear to be di�erent, the solution path in

both mazes is the same. In the �rst of the two mazes, any path that does not lead

to the end of the maze is blocked o�, removing the need for patients to decide where

to go next. In the second of the two mazes, this is not the case, and the patient

has multiple opportunities to stray away from the goal. An example of these pairs is

shown in Fig. 2-3.

This tests patients on a number of cognitive abilities. Penney and Davis found that

total completion time for both mazes could be used to distinguish healthy subjects

from those with mild cognitive impairments (MCI), Alzheimer's disease (AD), and

Parkinson's disease (PD) [23]. Penney et al. also found that the number of pen

strokes di�erentiated healthy subjects from those with MCI and AD [24].

Calibration Mazes

When administering the dMaze task, participants are given a calibration maze to

complete before moving on to more complicated mazes, such as those shown in Fig. 2-

3. These mazes are completed with a straight line from left to right (e.g. Fig. 2-
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(a) �No choice� maze (b) �Choice� maze

Figure 2-3: A pair of �no choice� and �choice� mazes. Despite their di�erences, the
solution path is by design the same for both mazes.

Figure 2-4: Calibration maze

4). These mazes function as a warm-up exercise while also helping us investigate a

few interesting hypotheses. Namely, how well simple path metrics, such as drawing

speed, can predict cognitive decline compared to metrics that can be derived from

performance in a full maze. Early results have indicated this may be the case [23].

Reduced Mazes

Some mazes we administer are �reduced� down to their solution paths. In these

mazes, subjects have no choices to make while completing the maze, but they are

also unable to be distracted by features of the maze other than those that de�ne the

solution path. Portions of the maze outside of the solution path may be rendered in

white or black, as shown in Fig. 2-5.

In earlier versions of the dMaze task, it was found that participants' performance
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(a) Blank reduced maze (b) Filled reduced maze

Figure 2-5: A pair of blank and �lled �reduced� mazes

in calibration mazes was often a better indicator of cognitive decline than their perfor-

mance in the normal mazes. This result was fairly unexpected, and led our group to

believe that cognitively impaired people were more vulnerable to the extra cognitive

load induced by looking at mazes. To test this hypothesis, reduced mazes were cre-

ated, which remove most distractions while still providing a complex path to follow.

Whether the blank or �lled reduced mazes yield better results is still under active

investigation.

2.1.3 Digital Symbol Digit Test

The Digital Symbol Digit Test (dSDT) [16] is a revision of the Symbol Digit Modalities

Test (SDMT) [28], both of which involve matching symbols with digits from a legend.

In the SDMT, patients are asked to write the number corresponding with each symbol,

based on the contents of an answer key printed at the top of the page. Performance

on the SDMT has been proven highly capable of assessing cognitive processing speed

in patients with multiple sclerosis [4, 21, 32], and has more recently been tested in
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patients with Alzheimer's disease and Parkinson's disease [16,22].

In the dSDT, two tasks are added after completion of the standard SDMT. The

�rst of these is a copy task, in which participants copy numbers printed directly

above each box they are asked to write in, rather than referring to a legend. After

the copy task, participants are given a delayed recall task, in which they are asked to

remember the digits corresponding with each digit from the �rst portion of the test.

A completed example of all three parts of the dSDT is shown in Fig. 2-6.

As with the dMaze test, answers to both parts of the dSDT are the same. In Fig. 2-

6, note how the answers in each cell are kept the same between the �rst and second

portions of the test. Similar to the dCDT and dMaze tasks described in Section 2.1.1

and Section 2.1.2, this allows us to essentially use each patient as their own control.

Healthy participants should complete the second portion of the dSDT more quickly,

because they should realize they do not need to refer to the legend. Huang found this

to be the case, with dSDT performance distinguishing healthy patients from those

with Alzheimer's disease and Parkinson's disease [16].

Eye Tracking

An ongoing project in our research group involves having patients wear an eye tracking

device while completing each assessment. These devices track the gazes of subjects

as they complete the task, providing a window into their thought processes. We

hypothesize that healthy subjects will tend to look further along in the maze as they

complete it in order to anticipate dead ends earlier and thus complete each maze

faster.

2.2 Digital Psychological Testing

An increased focus has been placed on digital administration of psychological tests

in recent years. Many cognitive assessments, such as the Clock Drawing Test, the

Symbol Digit Modalities Test, the Trail Making Test, and others have been adminis-

tered with digital pens, which function as normal pens while providing administrators
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Figure 2-6: A completed Digital Symbol Digit Test
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with digitized versions of the patient's pen strokes [3, 16, 25, 30, 31]. Other cognitive

assessments, such as the Digital Maze Test [24], were speci�cally created for use with

a digital pen.

However, while tests administered with digital pens yield more �ne-grained data,

they must be taken a clinical setting, which limits their reach. Smartphones and

tablet computers have enabled widespread psychological testing from the convenience

of one's home. For example, Vyshedskiy et al. [34] created the Boston Cognitive

Assessment (BOCA), a self-administered smartphone- and computer-based cognitive

assessment for longitudinal tracking of cognitive performance. Other research groups

have used similar methods to study links between cognitive ability and Parkinson's

disease, autism, and even ca�eine intake [7,11,12].

2.3 ResearchKit

Apple has encouraged usage of their devices for clinical purposes with the develop-

ment of ResearchKit [1]. ResearchKit is an open-source framework introduced by

Apple that aims to make it easy to develop mobile apps for medical research. Since

its publication in 2015, ResearchKit has been used in many large-scale studies to in-

vestigate conditions including Parkinson's disease, asthma, and obesity [7,8,17]. The

framework has been credited with making it easier to run large studies that require

frequent data collection. Many research apps are now available for free on the App

Store, available to anyone with an iPhone or iPad. This drastically lowers the bar-

rier to entry for people wishing to participate in a study, as users can now simply

download an app to join a study and participate from their home.

ResearchKit makes it easier to develop research apps by providing common build-

ing blocks that are essential in running a study. For example, it contains customizable

screens for determining eligibility, collecting consent from the participant, and record-

ing data, such as workout logs, as shown in Fig. 2-7. The framework also contains

several built-in tasks that can be incorporated into a study, such as surveys, motion

tasks, and voice recording tasks, as shown in Fig. 2-8. As participants complete their
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tasks, ResearchKit also provides methods for tracking progress, uploading data to

the organization administering the study, and encouraging participants to continue

contributing their time.
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(a) Introduction and call to
action

(b) Eligibility survey (c) Simpli�ed consent doc-
ument

(d) Consent review (e) Consent signature (f) Health data integration

Figure 2-7: Sample screens provided by ResearchKit, adapted from Apple [1]
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(a) Survey (b) Voice task (c) Gait task

Figure 2-8: Sample tasks provided by ResearchKit, adapted from Apple [1]
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Chapter 3

Cognitive Health

3.1 Digital Clock Drawing Test

In the Digital Clock Drawing Test, subjects are asked to draw a clock set to a speci�c

time. After drawing their clock, they are asked to copy a pre-drawn clock set to that

time. Certain features of the subject's drawn clock can be indicative of cognitive

decline. For more details, see Section 2.1.1.

3.1.1 Con�guration

Our implementation of the Digital Clock Drawing Test has three con�guration op-

tions.

Name Default Value Description

Button Delay 2.5 seconds Duration to wait after instructions have been

given, or after the user lifts their pen, before

displaying buttons to continue or repeat in-

structions.

Clock Hours 11 Hour of the time the user will be instructed

to draw on their clock.

continues on next page
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Name Default Value Description

Clock Minutes 10 Minute of the time the user will be instructed

to draw on their clock.

Table 3.1: Digital Clock Drawing Test con�guration options

3.1.2 Identifying Intent

One primary goal of the Cognitive Health app is to replace the role of a human ad-

ministrator. In the Digital Clock Test, the administrator's role is relatively straight-

forward. The administrator may follow a set of steps such as:

1. Give patient a blank piece of paper

2. Ask patient to draw a clock set to �10 minutes after 11�

3. Wait for patient to �nish

4. Take back the piece of paper

5. Give patient a new piece of paper that shows a clock set to 11:10, with some

room for patient to draw

6. Ask patient to copy the clock

7. Wait for patient to �nish

8. Take back the piece of paper

When transferring these to a tablet computer, some of these steps present compli-

cations. Steps 1, 4, 5, and 8 are easily handled by displaying new screens in the app.

Steps 2 and 6 are handled by playing audio clips of a voice reading the instructions.

Steps 3 and 7 are trickier: an administrator would look for visual cues, such as eye

contact, to decide the patient has �nished their drawing. While tablet computers

generally have front-facing cameras, it would be di�cult to make this judgment from

a video feed.
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One approach we considered involved adding a button the patient could tap to

indicate they were done drawing. However, we were hesitant about this solution

because anything shown on the display could potentially distract the patient. After

some thought, we decided to show a button only after the user has stopped drawing

for a period of time, described in Section 3.1.1 as the �Button Delay.� Each time the

user begins a new stroke, the app pauses this timer, then restarts it once the user

completes that stroke. This way, as users draw multiple strokes in order to draw the

clock, the continue button won't be displayed until the user stops drawing for the

duration of the �Button Delay.� This duration is con�gurable in the app's settings.

3.1.3 Rendering

The Clock Drawing Test is the easiest of Cognitive Health's three assessments to

render. For the �rst part of the test, the page is blank as the user is simply asked to

draw a clock. For the second part of the test, rather than displaying an image of a

clock, we rendered a clock from scratch using the CoreGraphics framework available

on iOS. This allows us to easily modify attributes of the clock, such as the font of the

numbers and the thickness of the hands, and also change the time if necessary.

Clock hands can be drawn trivially in polar coordinates, with the hour hand as

a line from (0; 0) to (`h; � ) and the minute hand from(0; 0) to (`m ; � ), where `h is

the length of the hour hand,`m is the length of the minute hand, and� and � are

derived from the desired hoursh and minutesm as below.

� =
�

180
(90 �

1
2

(60h + m)) =
�
2

�
�h
6

�
�m
360

(3.1)

� =
�

180
(90 � 6m) =

�
2

�
�m
30

(3.2)

However, computers typically use Cartesian coordinates, with(0; 0) at the top left

of the screen. Thus, if the clock's center is at(cx ; cy), we can compute the coordinates

of the tips of each clock hand as follows:
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(hx ; hy) = ( cx + `hcos(� ); cy � `hsin(� )) (3.3)

(mx ; my) = ( cx + `mcos(� ); cy � `msin(� )) (3.4)

And then we can draw the clock hands as lines from(cx ; cy) to (hx ; hy) and

(mx ; my) for the hour and minute hands respectively.

(a) Simple clock (b) Full clock

Figure 3-1: Dynamically rendered clocks

3.2 Digital Maze Test

In the Digital Maze Test, subjects are asked to draw solution paths through a series

of mazes. For more details, see Section 2.1.2.

3.2.1 Con�guration

Our implementation of the Digital Maze test has several con�guration options.
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Name Default Value Description

Enable

Instructions

True Enables interactive instructions given before

the maze begins.

Enable Wall

Cross Detection

True Detects and interrupts participants when

they cross through walls (see Section 3.2.4)

Maximum Skip

Length

2 cells Maximum number of cells users are allowed

to skip at a time without being interrupted.

Wall Cross

Timeout

0.5 seconds Duration to wait before interrupting a user if

they cross a wall.

Maximum Pause

Skip Length

0 cells Maximum number of cells users are allowed to

skip when continuing to draw after a pause.

Pause Backtrack

Distance

20 pixels Number of pixels along the user's path to

backtrack when choosing the pause point.

No Drawing

Timeout

2 seconds Number of seconds the user needs to go with-

out drawing in order to be interrupted.

Finish Timeout 2 seconds Number of seconds to wait after the user com-

pletes the maze to render the �nish anima-

tion.

Pause Circle

Radius

32 pixels Radius of the circle showing a visible portion

of the maze when the user is interrupted.

Table 3.2: Digital Maze Test con�guration options

3.2.2 Maze Set Files

Maze set �les, with the mzs�le extension, describe the layout of mazes to display in

Cognitive Health. Our research group has used them for several years, as they enable

the addition of new mazes to the Digital Maze Test without the need for making

any changes to application code. Cognitive Health contains several maze sets, for
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easy, medium, and hard mazes that we administer to patients, in addition to a few

other experimental mazes. The speci�cation of these �les is described in detail in

Appendix A.

3.2.3 Instructions

Before patients complete any mazes, they are given a series of interactive instructions

that explain how to complete a maze. Unbeknownst to the patients, they are timed

while reading these instructions, to obtain a measure of information processing speed.

Most instructions use either a video or an interactive demonstration to explain an

aspect of the Digital Maze Test. These screens are shown in Appendix B.

3.2.4 Maze Proctoring Algorithm

The Maze Proctoring Algorithm (MPA) de�nes how a test administrator should in-

terrupt and provide feedback to patients as they complete a maze task. These inter-

ruptions are intended to correct mistakes, such as crossing walls, to ensure patients

use intended cognitive functions while completing the task. Fig. 3-3 describes the

algorithm in condensed form for reference.

Most healthy patients will not be interrupted while completing a maze. Normal

actions such as brie�y lifting your pen, or quickly cutting a corner instead of drawing

within the path, do not trigger any feedback from Cognitive Health. However, making

a mistake, such as drawing outside of the maze, crossing a wall for longer than a brief

moment, or lifting your pen for an extended period of time, will result in the system

interrupting the user, as shown in Fig. 3-2. During an interruption, Cognitive Health

obscures the view of the maze, drawing the user's attention to the location where

they had been drawing prior to making a mistake. The user must start drawing from

this location in order to continue.

The MPA works by implementing receivers for three callback functions that should

be provided by the canvas view being used to record pen strokes. ShouldBeginDrawing

is called when the user begins drawing on the canvas by touching their pen to the iPad
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(a) While completing the maze, the user
crosses a wall.

(b) The user is interrupted, and the maze
is obscured (the degree to which the maze
is obscured has been reduced to aid visi-
bility in this �gure). Drawing must con-
tinue from where the user had drawn
prior to crossing the wall.

Figure 3-2: A user is interrupted while attempting to cross a wall in a maze
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screen. If starting a stroke at the location where the user touched their pen would

break a rule, this function returns false and the stroke is not rendered or recorded.

IsDrawing is called multiple times while the user draws a stroke, and FinishedDrawing

is called when the user lifts their pen, completing a stroke. Apple's native solution

for rendering pen strokes, PKCanvasView, does not support ShouldBeginDrawing or

IsDrawing natively, but was adapted to support them for this project.

Throughout its execution, MPA maintains astate variable to track progress and

respond appropriately to various user actions. It also maintainsactivePath , a list

of points in the current stroke without including portions of the stroke during which

the patient made an error, such as crossing a wall. The state has six possible values,

described in Fig. 3-3.

3.2.5 Detecting Wall Crosses

In order to detect wall crosses, we �rst need to de�ne what counts as a wall cross.

Detecting and responding to these mistakes is a crucial part of ensuring patients

complete the Digital Maze Test correctly, but we want to respond in a way that

doesn't interfere with a patient solving the maze correctly or provide inappropriate

guidance to a patient solving the maze incorrectly.

At �rst, it may seem reasonable to de�ne a wall cross as any instance where the

patient draws across a wall. However, subjects without any cognitive impairments

often cross walls by accident in the process of completing a maze. This is especially

true in patients with tremors, who may have di�culty drawing a straight line, but

are otherwise able to complete mazes without di�culty.

Fig. 3-4 depicts examples of wall crosses that we count as minor mistakes and

therefore shouldn't result in an interruption. Skipped cells are highlighted in orange

to show that for these �acceptable� wall crosses, no more than two cells are ever

skipped at a time. Fig. 3-4a shows a path where two walls are clipped in the process

of going around a corner. Similarly, Fig. 3-4b shows a path where two corners are

cut. Behaviors like these can be observed in healthy patients who want to �nish the

task more quickly, and may not be extra careful in completing each maze. Fig. 3-4c
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State

state user's progress with the
task (see Table 3.3)

activePath[] recent points from the cur-
rent stroke, not including
mistakes

ShouldBeginDrawing

Invoked when the user begins drawing on the

iPad.

Arguments:
point X, Y coordinates of pen press

Returns:
canDraw true lets drawing begin

Implementation:

1. Return false if any condition is met:

(a) State is notStarted and point is
far from maze start

(b) State is inProgress , paused, or
crossedWall and point is outside
maze

(c) State is inProgress or paused and
point is too far from pause point, or
shortest path through maze from
point to pause point is too long
(Ÿ3.2.5)

(d) State is finished
2. Otherwise, set state to inProgress and

return true

IsDrawing

Invoked multiple times as the user moves

their pen along the iPad's display.

Arguments:
point X, Y coordinates of pen press

Implementation:

1. If state is notEntered and stroke enters
maze, set state toinProgress

2. If state has beencrossedWall for too
long, end current stroke (Ÿ3.2.5)

3. If state is crossedWall but the user only
cut a corner, set state to inProgress

4. If state is inProgress and point is at
maze end, set state tofinished

5. If state is inProgress and point is on
the other side of a wall from most re-
cent point in activePath, set state to
crossedWall (Ÿ3.2.5)

FinishedDrawing

Invoked when the user lifts their pen, or

when the user is interrupted.

Arguments:
point X, Y coordinates of pen press

Implementation:

1. If state is finished , display ending an-
imation after short delay and allow user
to continue to next maze

2. Otherwise, start a timer. If timer com-
pletes without any drawing activity, set
state to pausedand tell user to continue
drawing

Figure 3-3: A condensed summary of the Maze Proctoring Algorithm. Section num-
bers such as Ÿ3.2.5 indicate where features are discussed in further detail.

39



State Description

Not Started The maze is displayed on the screen, but the patient has not yet
started drawing. If the patient starts drawing too far away from the
green arrow, they are interrupted and told to start drawing from
the green arrow. Once the patient starts drawing near the green
arrow, the state updates toNot Entered.

Not Entered The patient is currently drawing, or has �nished drawing, one or
more strokes that starts near the green arrow but does not yet enter
the maze. If the user completes a stroke that does not enter the
maze, after they �nish drawing, they are interrupted and told to
start drawing from the green arrow. As soon as the user enters the
maze, the state updates toIn Progress .

In Progress The patient has drawn at least one stroke that enters the maze. If
the patient starts drawing a stroke that is too far away, or across
a wall, from the last point in their previous stroke (the last point
in activePath), they are immediately interrupted, and the state
updates to Paused. When the user lifts their pen, if they don't
continue drawing after the duration of the �No Drawing Timeout,�,
they are interrupted and asked to continue drawing from where they
left o�.

Crossed Wall The patient has just crossed a wall, or they have lifted their pen just
after crossing the wall. After the state updates to �Crossed Wall,�
the patient has a moment to cross back into their previous path,
after which the state updates to �In Progress.� However, if they fail
to do so, they are interrupted, the state updates to �Paused,� and
they are asked to continue drawing from where they were prior to
crossing the wall.

Paused The task is paused, as shown in Fig. 3-2b. In this state, the maze
is obscured except for a small circle around where the user must
continue drawing. The user must begin their next stroke within
this circle, in a location where it would not cross a wall from the
point at which the pause occurred. Once the user begins drawing,
the state updates toNormal.

Finished The patient has drawn to the red arrow without making a mistake
since beginning their most recent stroke. After lifting their pen,
they will be prompted to continue to the next task.

Table 3.3: Maze Proctoring Algorithm states

40



(a) Wall clipping (b) Corner cutting (c) Many brief wall crosses

Figure 3-4: Acceptable wall-cross examples, with skipped cells highlighted in red.
Note that no more than two cells are skipped at a time.

displays behavior from a patient who may have tremors, or otherwise have trouble

keeping their hand steady. Since they cross walls for only a brief moment before re-

entering, and since they are essentially completing the maze correctly, this behavior

shouldn't be penalized.

Notice how in each example, patients never skip ahead by more than two cells at

a time, and they re-enter their intended path fairly quickly. For example, in the wall

clipping example in Fig. 3-4a, the patient skips exactly two cells at each clip. In the

corner cutting example shown in Fig. 3-4b, the patient skips one cell when they cut

each corner. Thus, we can de�ne a rule for identifying wall crosses that are considered

errors in need of correction. When this condition is met, we will interrupt the patient

and ask them to continue from before where they crossed the wall.

Wall-cross rule: Wall crosses require an interruption only if the patient skips

more than two boxes for at least 500 milliseconds.

With this de�nition in place, we can now implement wall-cross detection. To

solve this problem, we represent each maze as an undirected graph, where each node

describes one of the maze's cells, and each edge describes the ability to enter one cell

from another. This results in edges between all adjacent cells that are not separated

by walls. Fig. 3-5 shows an example of a maze's graph representation, and how a
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(a) Solution path drawn through a
maze

(b) The same maze and solution path,
represented as a graph

Figure 3-5: Visualizing the solution path through a maze in graph form

drawn solution path mimics an open walk1 through the graph.

Note that we can �nd the shortest path from one maze cell to another by running

breadth-�rst search (BFS) in the maze's graph representation. This allows us to

identify how many cells users are skipping each time they cross a wall, and hence,

we can use the rule we identi�ed earlier to complete our implementation. If the user

crosses a wall, and the shortest valid path between the cells on either side of that wall

is more than two cells long, we interrupt the user, asking them to continue drawing

from a location prior to where they had crossed the wall. This simple but powerful

concept allows us to ensure patients use intended cognitive functions in order to solve

each maze, which should enable more accurate diagnoses down the road.

1An �open walk� is simply any path along a graph's edges in which the start and end nodes are
di�erent.
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3.3 Digital Symbol Digit Test

In the Digital Symbol Digit Test, subjects are �rst asked to copy digits corresponding

with symbols from a legend. After copying the digits for each symbol, they are asked

to copy digits directly, removing the need to refer to a legend. Then, subjects are

given a delayed recall test, asking them to remember the pairings of symbols and

digits from the �rst portion of the test. For more details, see Section 2.1.3.

3.3.1 Con�guration

Our implementation of the Digital Symbol Digit test has a few con�guration options.

Name Default Value Description

Enable Skip

Detection

True Pauses subjects when they skip more than one

box at a time.

Enable

Instructions

True Enables interactive instructions given before

each test begins.

Enable Repeat True Runs two full symbol digit tests each time the

test is administered.

Display Mode False Enables display mode, which replaces the

symbols and digits with alternatives to cre-

ate �gures for publications, thereby keeping

the test form private.

Delayed Recall

Warning

20 seconds Delay after which subjects should be re-

minded of the instructions for the delayed re-

call portion of the test.

Table 3.4: Digital Symbol Digit Test con�guration options
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Figure 3-6: Lengths of elements in the Digital Symbol Digit Test

3.3.2 Rendering

The Digital Symbol Digit Test is surprisingly di�cult to render on an iPad display.

Let's start with the fact that ideally, the test should be rendered at the exact same

size as it is currently printed on paper. To identify the sizes of each element in the

real world, I used the measuring tool in the Preview application in macOS on a PDF

version of the test. These measurements are shown in Table 3.5, with Fig. 3-6 showing

exactly what each measurement refers to.

With these measurements, rendering each element on the iPad's display should

be fairly straightforward. We can use a simple formula to convert real-world sizes,

measured in centimeters, to display sizes, measured in pixels. For example, to render

a cell border (0.026cm wide) on an iPad Pro (3rd gen, 11�), we can look up the

device's screen density, described in more detail in Section 3.4.4, and convert from

centimeters as shown below in Eq. (3.5).
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Label Name Length (cm)

A Inner Cell Height 1.11
B Inner Cell Width 1.27
C Vertical Row Margin 0.34
D Border Width 0.026
E Sample Border Width 0.06
F Stop Sign Height 2.076

Table 3.5: Digital Symbol Digit Test measurements

(0:026cm)(
0:3937in

1cm
)(

264px
1in

) = 2 :7024px (3.5)

So, to render the border of each cell at the same width as it appears on paper, we

need to render them each at 2.7024 pixels wide. However, when rendering several of

these borders in a row, we run into a problem: it's not possible to render something

with a width of 2.7024 pixels on a screen with discrete pixels. To overcome this

problem, we can round each size to the nearest pixel before rendering each element

on the display. While these rounded sizes don't exactly match the correct sizes on

paper, the di�erences are imperceptibly small.

3.3.3 Instructions

At the beginning of the Digital Symbol Digit Test, the participant is given several

instructions. These instructions are read aloud while visual cues are shown on the

display. For example, Fig. 3-7 shows the six sample cells being focused, and the sixth

cell being highlighted, while instructing users to complete the sample cells in order.

Orange speech bubbles also appear in the top corners of the screen to indicate when

instructions are being read aloud.

Instructions may be triggered by di�erent actions. For example, after instructing

the user to �ll out the sample cells, the user must �ll out the sample cells in order for

the next instruction to begin. The most common action triggering the next instruction

is when the previous instruction is �nished being read aloud. A full list of instructions
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Figure 3-7: Highlighting and focusing regions while giving an instruction in the Digital
Symbol Digit Test. The rest of the test is obscured to encourage attention toward
the focused region. This visual e�ect has been reduced in this �gure to aid visibility.
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Figure 3-8: Interruption made after skipping a box in the Digital Symbol Digit Test.
The test is obscured, so the user focuses on the green arrow indicating where they
need to draw. This visual e�ect has been reduced in this �gure to aid visibility.

for both portions of the Digital Symbol Digit Test can be found in Appendix C.

3.3.4 Skip Detection

While taking the test, Cognitive Health keeps track of the patient's progress. If the

patient skips more than one box at a time, the patient is interrupted and instructed

to continue at the box after the last one they have drawn inside, as shown in Fig. 3-

8. This functionality mimics what a human administrator would do while observing

someone taking this test, and ensures patients use intended cognitive functions.
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Assessment Extension Root Element

Digital Clock Drawing Test csk ClockSketchXMLFile
Digital Maze Test msk MazeSketchXMLFile

Digital Symbol Digit Test ssk SymbolDigitSketchXMLFile

Table 3.6: Assessment Data File variants

3.4 Assessment Data Files

This section provides a speci�cation de�ning the features and syntax for Assessment

Data Files (ADF). ADF is a language based on XML for describing the results of

cognitive assessments that require patients to draw. ADF comes in three �avors,

corresponding to results from each cognitive assessment as shown in Table 3.6. These

�les are automatically generated by the Cognitive Health application after a patient

completes any of these tests, and are used to view and process test results at a later

point in time.

3.4.1 De�ning a Document

An ADF document consists of severaldata elements contained inside aroot element.

The name of the root element depends on the type of test that was taken, as shown in

Table 3.6. Below is an example skeleton of an ADF �le that would depict the results

of a Clock Drawing Test.

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<ClockSketchXMLFile>

<ClockSketchData />

<TaskData />

<DisplayData />

<PenData />

<MotionData />

</ClockSketchXMLFile>
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3.4.2 Environment and Patient Data

The ClockSketchData element contains data about the patient and the environment

in which they are taking the test. Each piece of data is stored as a child tag using

the value attribute, shown in the example below.

<ClockSketchData>

<DeviceModel value="iPad" />

<DeviceName value="Jack's iPad" />

</ClockSketchData>

Fig. 3-9 shows an example of a completeClockSketchData element with anno-

tated labels and values. Most values are taken from theUIDevice API provided by

Apple's UIKit to provide diagnostic information about the iPad.PatientEncodedID

and LocalPatientEncodedID contain encrypted data about the patient who took the

test, if available, and are explained further in Section 3.4.6.

3.4.3 Task Data

The TaskData element is used to record environment data recorded throughout the

test, organized by ResearchKit steps. For example, the Digital Clock Test contains

two steps: one where the patient draws their own clock, and one where the patient

copies an existing clock.

Unlike the environment data described in Section 3.4.2, this tag is used to record

environment data that can change over the course of the test. Currently, this recorded

data includes screen brightness, volume level, and motion data. Screen brightness can

be modi�ed manually in the device's control center, or automatically via the device's

ambient light sensor. Volume level can be modi�ed in control center or via the

physical buttons on the side of the device. Motion data includes attitude (orientation)

and acceleration, recorded approximately every 10 milliseconds. Fig. 3-10 shows an

example of aTaskData element from a clock test.

This element can also be used to store task-speci�c data from each test. For

example, anInterruptions tag, shown below, is used to indicate timestamps of
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<ClockSketchData>
<!-- Name of the device ' s operating system -->
<DeviceSystemName value="iPadOS" />

<!-- Version of device ' s operating system -->
<DeviceSystemVersion value="16.2" />

<!-- Device ' s unique identifier. Does not remain constant if the
app is uninstalled and reinstalled -->

<DeviceID value="F48B13D5-72A9-4B68-8965-1E53B850BDB8" />

<!-- Model of the device -->
<DeviceModel value="iPad" />

<!-- Model identifier of the device. Use a website like
https://everymac.com/ultimate-mac-lookup/ to convert to a
readable device model -->

<DeviceModelIdentifier value="iPad8,3" />

<!-- Name of the device, set in iOS settings -->
<DeviceName value="Jack's iPad" />

<!-- Unique Bluetooth identifier of the Apple Pencil -->
<PencilID value="2EB522FF-60DE-8ACC-EC57-5207ED590B74" />

<!-- Device ' s battery level at the end of the test -->
<BatteryLevel value="1.00" />

<!-- Width of the device ' s screen, in points -->
<CanvasWidth value="539.0000" />

<!-- Height of the device ' s screen, in points -->
<CanvasHeight value="691.0000" />

<!-- Full name of the patient ' s doctor -->
<Doctor firstlast="Dana Penney" />

<!-- Must be set to these values for current ADF parser -->
<OriginalOrigin x="14.8413" y="24.9303" />

<!-- Values below are encrypted and not displayed in full for
brevity. Explained in detail in Section 3.4.6 -->

<PatientEncodedID value="quXhZ82wYS..." />
<LocalPatientEncodedID value="FTH3NwlFt5..." />

</ClockSketchData>

Figure 3-9: A complete ClockSketchData tag
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<TaskData>
<Step identifier="clockStep-command">

<Start brightness="0.3927" timestamp="1673535657692"
volume="0.6505" />

<End brightness="0.3927" timestamp="1673535664177"
volume="0.6505" />

<Motion timestamp="1673987905421">
<Attitude pitch="0.0040" roll="0.0020" yaw="0.0000" />
<Acceleration x="-0.0002" y="0.0003" z="-0.0051" />

</Motion>
</Step>
<Step identifier="clockStep-copy">

<Start brightness="0.3927" timestamp="1673535664741"
volume="0.6000" />

<End brightness="0.3927" timestamp="1673535672950"
volume="0.6000" />

<Motion timestamp="1673987927328">
<Attitude pitch="0.0043" roll="0.0000" yaw="0.0008" />
<Acceleration x="0.0002" y="-0.0047" z="-0.0012" />

</Motion>
</Step>

</TaskData>

Figure 3-10: A complete TaskData tag. Normally, eachStep tag would have many
Motion tags, recorded approximately every 10 milliseconds. Only one tag has been
included per step for brevity.

each time the patient was interrupted in the Digital Maze Test and Digital Symbol

Digit Test.

<Interruptions>

<Pause timestamp="1673989894109" type="no-drawing" />

<Pause timestamp="1673989901040" type="wall-cross" />

</Interruptions>

The `Motion' Element

The Motion element has one attribute,timestamp, which records the time at which

this element's data was recorded. It is represented by a unix timestamp (i.e., mil-
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Figure 3-11: Illustration of an iPhone's roll, pitch, and yaw, adapted from Apple

liseconds since Jan 1 1970). The motion element contains two elements,Attitude

and Acceleration .

The `Attitude' Element

The Attitude element contains data about the device's orientation at a moment

in time. This data is recorded as roll, pitch, and yaw, which represent orientation

in three dimensions. Each value is recorded in radians with respect to the device's

position at the start of the test, meaning that in the �rst Attitude element, each of

these values should be very close to zero. Fig. 3-11 shows how each value is re�ected

in the device's positioning.

The `Acceleration' Element

The Acceleration element contains data about the device's acceleration at a moment

in time. This data is recorded as x, y, and z, which represent acceleration in three
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Figure 3-12: Illustration of an iPhone's acceleration in the x, y, and z directions,
adapted from Apple

dimensions. Each value is recorded in increments of the gravitational acceleration,

with the value 1:0 representing an acceleration of9:8 meters per second2 in the given

direction. These values may be positive or negative, depending on the direction of the

acceleration. Fig. 3-12 shows how each value is re�ected in the device's movement.

3.4.4 Display Data

The DisplayData element is used to record data about the device's display. Since

nearly every iPad has a di�erent screen size, these values generally vary from one

device to another. It contains tags with the device's screen density, and the scaling

factor used by the device. These values are publicly available online2, but are provided

here by theGBDeviceInfo library 3 for convenience.

This tag also contains point sizes for each element in the Digital Symbol Digit

Test, as speci�ed in Fig. 3-6 and Table 3.5. Fig. 3-13 shows an example of complete

2https://www.ios-resolution.com , https://iosref.com/res
3https://github.com/lmirosevic/GBDeviceInfo
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DisplayData elements, generated by an iPad Pro (3rd gen, 11�) and an iPad Mini

(6th gen) for comparison.

3.4.5 Pen Data

The PenData element contains data about the pen strokes drawn throughout the

assessment. Each ResearchKit step, such as the command and copy steps in the

Digital Clock Test, is represented by adrawing element. This tag has no attributes,

but contains a strokes element, aRawDataelement, and aMazeFeatureselement.

The `strokes' Element

The strokes element has no attributes. It contains one or more strokes, each of

which is represented by astroke element. An example is shown below.

<strokes>

<stroke index="1" label="1">

<point x="0" y="0" />

<point x="1" y="0" />

</stroke>

</stroke>

This tag is used only in the Digital Maze Test and the Digital Symbol Digit Test

for backward compatibility reasons. In the Digital Clock Test, this tag instead takes

the name symbol, with the attributes label="" and type="UNCLASSIFIED". An

example is shown below.

<symbol label="" type="UNCLASSIFIED">

<stroke index="1" label="1">

<point x="0" y="0" />

<point x="1" y="0" />

</stroke>

</symbol>
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<DisplayData>
<PixelsPerInch value="264.0000" />
<ScreenScalingFactor value="2.0000" />
<PointsPerInch value="132.0000" />
<SymbolDigit>

<BorderWidth value="1.5000" />
<InnerCellHeight value="58.0000" />
<InnerCellWidth value="66.0000" />
<RowVerticalMargin value="18.0000" />
<SampleBorderWidth value="3.0000" />
<SampleLabelRightMargin value="7.0000" />
<StopSignHeight value="108.0000" />

</SymbolDigit>
</DisplayData>

(a) iPad Pro (3rd gen, 11�)

<DisplayData>
<PixelsPerInch value="326.0000" />
<ScreenScalingFactor value="2.0000" />
<PointsPerInch value="163.0000" />
<SymbolDigit>

<BorderWidth value="1.0000" />
<InnerCellHeight value="51.0000" />
<InnerCellWidth value="58.5000" />
<RowVerticalMargin value="16.0000" />
<SampleBorderWidth value="2.5000" />
<SampleLabelRightMargin value="6.0000" />
<StopSignHeight value="95.5000" />

</SymbolDigit>
</DisplayData>

(b) iPad Mini (6th gen)

Figure 3-13: Complete DisplayData tags generated with two di�erent iPad models
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The symbol tag is used by software that processes ADF �les at a later point in

time, which groups strokes together by the digit or part of the clock they represent.

In the future, this technique may be extended to the Digital Symbol Digit test as

well.

The `stroke' Element

The stroke element has two attributes,index and label , both of which should be

set to the same value. This value should be the index of the stroke from when the

user started the current test (not the current step), starting from 1. For example, if

the patient takes a Digital Clock Test and then a Digital Maze test, the stroke index

would start at 1 in the �rst portion of the clock test. If the user made 20 strokes

in this �rst portion, the stroke index would start at 21 for the following portion of

the clock test, in which the patient copies a clock. The counter would then reset to

1 when recording data from the �rst step from the maze test, and continue without

resetting for the remainder of the maze test's steps.

The `point' Element

The point element represents a moment at which the patient had their stylus pressed

on the iPad's screen. It contains multiple attributes.

Attribute Name Description

altitude The altitude (in radians) of the stylus (see Fig. 3-14).

azimuth The azimuth angle (in radians) of the stylus (see Fig. 3-14).

pressure The force with which the stylus was pressed into the display,

measured in increments of the force of an �average touch,� rep-

resented by the value 1,000.4

timestamp Unix timestamp at which this point was recorded (i.e., seconds

since Jan 1 1970).

x X coordinate of the point.

y Y coordinate of the point.
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Figure 3-14: Illustration of the Apple Pencil's azimuth and altitude values, adapted
from Apple

The `RawData' Element

The RawDataelement contains the same stroke and point information as thestrokes

element. However, it is kept in a di�erent format maintained for backward compati-

bility, allowing existing code to display all tests. The format begins with a list of keys

and values, including the number of strokes, an identi�er for each stroke, the num-

ber of samples (points), the ink color, and the time at which the stroke began. Each

subsequent line represents one point, with values separated by spaces. Each value rep-

resents the point's x coordinate, y coordinate, milliseconds since the previous point,

and pressure value, respectively. Fig. 3-15 shows theRawDatarepresentation of a

stroke with two points along with its ADFrepresentation.

The `MazeFeatures' Element

The MazeFeatureselement must be kept within thedrawing element, but should be

left empty. It is �lled in later by software that analyzes the task data.

4Seehttps://developer.apple.com/documentation/pencilkit/pkstrokepoint/3566687-f
orce . We multiply this value by 1,000 and round to the nearest integer. Apple's documentation
does not specify a maximum value, but empirically, it does not appear to increase past 4,300. This
may change in the future.
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Number of strokes: 1
StrokeID: 0
Number of samples: 2
Color: 0 0 255
StartTime: 1673535664834.0
708.5000 314.5000 0 1239.0000
708.5848 312.2214 103 1226.0000

(a) RawData representation

<stroke index="1" label="1">
<point altitude="1.5708" azimuth="2.6374"

pressure="1239" timestamp="1673535664834"
x="708.5000" y="314.5000" />

<point altitude="1.5708" azimuth="2.6374"
pressure="1226" timestamp="1673535664936"
x="708.5848" y="312.2214" />

</stroke>

(b) ADF representation

Figure 3-15: Comparison between a stroke's RawData and ADF representations
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3.4.6 Encrypted Data

Because Cognitive Health is designed to operate in a medical setting, the app needs

to be HIPAA compliant in order to be used in the United States. While Cognitive

Health is a research prototype that has not been audited for HIPAA compliance, we

encrypt all patient data to ensure it is kept secure. The design goals of our encryption

feature were as follows:

1. If the device is stolen, it should be nearly impossible for a skilled adversary to

obtain patient data.

2. Clinicians should be able to view patient data in the Cognitive Health app,

provided they can authorize themselves.

3. It should be possible to securely transmit patient data to external servers.

These design goals resulted in an approach through which two copies of encrypted

patient data are stored with each test result: one copy for external transmission,

which we refer to as theexternal copy, and another for on-device reads, which we

refer to as thelocal copy.

Data Format

Data encrypted by Cognitive Health is currently limited to personally-identifying

information about the patient, such as full name and date of birth. When decrypted,

the data is represented by a series of values separated by commas in an ASCII string.

This string is organized as follows:

"{lastName}","{firstName}","{medicalRecord}","{birthday}",

"{testingSite}","{testIdentifier}"

The newline is added to improve readability, and does not appear in the real

string. Each variable represented by{key} is replaced with its corresponding value.

Medical record is a string that identi�es the patient within their hospital or clinic.

Testing site is the location at which the test was taken, and test identi�er is a string
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that identi�es the patient and the speci�c test they're taking, generated by Cognitive

Health.

The External Copy

The external copy is used to transmit patient data to a web server, and it may be

encrypted with any public-key encryption scheme. In public-key cryptography, a

pair of keys, known as the public and private keys, are used to encrypt and decrypt

messages. The public key is made available to anyone who wants to encrypt a message

to send to the owner of the private key. The private key is kept secret by its owner,

and is used to decrypt these messages.

Cognitive Health makes use of RSA, a prominent public-key encryption algo-

rithm [26]. Here is a simpli�ed example of how RSA encryption is used to send

personal information to a backend server:

1. Bob takes a test in the Cognitive Health application. The application now needs

to send Bob's personal information to Alice, Bob's doctor.

2. After completing the test, Cognitive Health encrypts Bob's data with the server's

public key in the format described in the �Data Format� section above. This

creates a ciphertext that can only be decrypted with the server's private key.

3. Cognitive Health sends the ciphertext to a backend server.

4. The server receives the ciphertext and uses its private key to decrypt it. This

reveals the personal information sent by Cognitive Health, which can then be

viewed by Alice.

The Local Copy

The local copy is used to view patient data within the Cognitive Health application,

and is not intended (nor is it easily possible) to be used elsewhere. To create the

local copy, we encrypt patient data with AES-GCM encryption, using a 256-bit key

generated with PBKDF2 (Password-Based Key Derivation Function 2).
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PBKDF2 is a cryptographic function that uses a password as the primary input,

along with a salt value, to generate a unique and secure key. In contrast with public-

key cryptography, in which a public and private key pair are used for encryption and

decryption, the same key is used to encrypt and decrypt data. PBKDF2 is considered

more secure than traditional password-based encryption methods because of the use

of the salt value, which makes it more di�cult for attackers to guess the password or

key.

When Cognitive Health is �rst installed on an iPad, users are prompted to set

a password. The application then generates a random 128-bit salt, which is used

in combination with the password in order to create the encryption key. Both the

salt and the key are subsequently kept in the iPad's keychain, stored on the device's

Secure Enclave. According to Apple, keys kept in the Secure Enclave are encrypted on

disk and accessible only to the application that owns them [2]. This makes it nearly

impossible for an adversary to decrypt patient data encrypted with this key, as even

with the correct password, the odds of guessing the correct salt are12128 . Hence, even

with a compromised password, the encryption key is still pragmatically secure.

Here is a simpli�ed example of how AES-GCM encryption is used with a PBKDF2

key to view personal information in the Cognitive Health application:

1. Alice is a doctor, and she needs to set up the Cognitive Health application on

her iPad for her patients to use. During setup, she chooses a password, which

is used to create a key with PBKDF2. This key, and the key's salt, are stored

in the iPad's keychain.

2. Bob, Alice's patient, takes a test in the Cognitive Health application on Alice's

iPad.

3. After completing the test, Cognitive Health retrieves the key from the keychain

and uses it to encrypt Bob's personal information.

4. When Alice later views Bob's test results in the app, she is prompted to enter

her password.
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5. Cognitive Health then retrieves the salt from the keychain, and uses it to check

if a new key generated with the password Alice entered matches the key that is

already stored in the keychain.

6. If the keys match, Alice is successfully authorized, and the key is used to decrypt

Bob's personal information.

While this procedure involves brie�y copying a plain-text version of the key into

system memory, it would be prohibitively di�cult for an adversary to take advantage

of this. According to Apple, this possibility only presents a �reasonably small attack

surface,� and can be ignored [2].

Encryption Evaluation

At the beginning of this section, we outlined three design goals that would make

it easy for administrators to view patient data while keeping it out of the hands of

a skilled attacker. We believe this combination of the external and local encrypted

copies allows us to achieve all three.

1. If the device is stolen, it should be nearly impossible for a skilled

adversary to obtain patient data.

With access to the iPad, an adversary would need to correctly guess a six-digit

device passcode in their �rst few tries, in order to prevent locking themselves out

of the device. They would then also need to correctly guess the user's password

in Cognitive Health, which can not be easily automated.

With access to an ADF �le with encrypted patient data, an adversary would

need either the backend server's private key, or the PBKDF2 key, or the user's

password and the PBKDF2 salt. Each of these involves correctly guessing at

least 128 bits of random information, which would take a prohibitively long

time.

2. Clinicians should be able to view patient data in the Cognitive Health

app, provided they can authorize themselves.
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Provided with their device's passcode and Cognitive Health password, clinicians

can decrypt and view patient data in the app as necessary.

3. It should be possible to securely transmit patient data to external

servers.

By only transmitting RSA-encrypted data, Cognitive Health ensures that data

is kept safe while being sent to external servers.

3.5 Settings

Multiple aspects of each cognitive assessment can be modi�ed depending on the needs

of the test administrator. Con�guration options for each test are detailed in Sec-

tions 3.1.1, 3.2.1 and 3.3.1. Additional options related to encryption, speech synthesis,

and more are detailed in this section.

All options in settings are stored with theUserDefaults API provided by iOS.

We created a customSettings class, which abstracts theUserDefaults API calls

away from most of the Cognitive Health app's source code for very easy implemen-

tation. This class implements Swift'sCodable protocol, making its values very easy

to serialize when saving toUserDefaults . To specify settings values, we simply add

new properties to theSettings class and specify each property's default value, as

shown below. Creating new settings values after the app has been installed is covered

in Section 3.5.3.

class Settings: NSObject, Codable {

// MARK: - Maze Settings

/// True if instructions should be displayed before maze test.

@objc var mazeInstructionsEnabled = true

/// Identifier of the active MazeBattery object.
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@objc var activeMazeBatteryIdentifier = MazeBatteryDefaultIdentifier

//

// implementation continued below

//

}

3.5.1 Reads

The Settings class contains a shared instance which updates when new values are

written to settings. This shared instance can be referenced in order to retrieve any

value from settings. For example, the following code prints the identi�er of the active

maze battery.

print(Settings.current.activeMazeBatteryIdentifier)

> "default"

3.5.2 Updates

Our Settings class makes updating values very straightforward. To update any

value, an update handler can be passed toSettings.update , which takes care of

synchronizing the update toUserDefaults . An example, in which maze instructions

are enabled, is shown below.

Settings.current.update { settings in

settings.mazeInstructionsEnabled = true

}

3.5.3 Migrations

When Cognitive Health starts up, ourSettings class checks if any changes have been

made to the app's settings, and runs a migration if necessary. This is never needed
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for fresh app installations, but if any part of the settings class is modi�ed in an app

update, it is important to specify how to deal with the update.

For example, let's say a future Cognitive Health developer would like to change the

name of a setting. Currently, the setting to enable instructions in the Digital Maze

Test is called mazeInstructionsEnabled , but let's say in a few months, someone

wants to change it to enableMazeInstructions . Without a migration, when this

update is made, Cognitive Health would not know what value to use for this new

setting. To deal with this issue, a migration must be written that speci�es the value

of the new setting.

Settings.migrate(schemaVersion: 2)

{ oldSchemaVersion, oldSettings, newSettings in

if oldSchemaVersion < 2 {

newSettings["enableMazeInstructions"] =

oldSettings["mazeInstructionsEnabled"]

}

}

Similar migrations must be written when settings are added, to specify the default

value, or removed, to deal with the old setting's value before it is permanently deleted.

In fact, Cognitive Health crashes upon startup with a message instructing the app

developer to write a migration if a change has been detected that a migration was

not written for. This ensures that when the app is updated in the future, no data

will be lost in the process of making updates to settings.

3.5.4 Maze Battery

Test administrators can use settings to update the sequence of mazes, also referred

to as a maze battery, administered in the Digital Maze Test. A typical maze battery

includes a calibration maze, a �no-choice� maze, and a �choice� maze, where the

solution paths in the last two mazes are identical. Mazes can be added, removed, or
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re-ordered within a battery, and multiple batteries can be saved or loaded at a time.

Fig. 3-16 shows an example of the maze battery selection screen.

3.5.5 Speech Synthesis

Test administrators can also select the voice used to synthesize spoken instructions

in all three tests. We allow selection of any American English voice available from

Amazon Polly, a high-quality commercial service for speech synthesis.5 Each voice has

di�erent features, varying mostly based on age and gender. We recommend the usage

of Matthew for administrators who prefer a male-sounding voice, and Joanna for a

female-sounding voice. Fig. 3-17 shows an example of the speech synthesis selection

screen.

3.5.6 Test Results

Test administrators can also enter settings to view results of previously administered

tests. This screen searches for all ADF �les in Cognitive Health's documents directory,

which can be accessed in the Files app. The app �nds ADF �les by looking for apps

with the extensions speci�ed in Table 3.6. Once the �les are found, they are listed in

the �Test Results� pane in settings, as shown in Fig. 3-18. Administrators can then

tap on a row in the list to view the results from that test, and optionally export the

test's raw ADF �le, or export it as a PDF, as shown in Fig. 3-19.

5https://aws.amazon.com/polly/
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Figure 3-16: Maze battery selection in settings
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Figure 3-17: Voice selection in settings
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Figure 3-18: Test results list in settings
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