
Geometry-Sensitive Swarm Algorithms

by

Grace Cai

S.B. Computer Science and Engineering, Massachusetts Institute of
Technology, 2023

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 15, 2023

Certified by. .
Nancy Lynch

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Geometry-Sensitive Swarm Algorithms

by

Grace Cai

Submitted to the Department of Electrical Engineering and Computer Science
on January 15, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Insect colonies, birds, and fish successfully coordinate themselves to make collective
decisions through purely local interactions. Their behaviors have inspired the devel-
opment of algorithms for robotic swarms. Robotic swarms consist of many simple
and often identical agents that interact solely via local sensing and communication.
Swarm algorithms seek to produce collective behaviors within the swarm such as
aggregation, consensus achievement, and task allocation.

For both biological and robotic swarms, simulation is a powerful tool to facilitate
analyzing and improving swarm models. While simulating swarm algorithms is very
useful, detailed and realistic simulations can take a long time to run and gather
feedback on. This often leads to simplifications, especially in the geometry of the
problem, that are not representative of what swarms may see in the real word [4,
13, 44]. In this thesis, we present a new discrete modelling framework for swarm
algorithms that allows agents to synchronously transition on a discrete grid. Using
such a grid makes it easier to add geometric qualities to the agents’ environment and
allows for parallel speedups in the simulation time when developing swarm algorithms
or models of biological swarms.

Using our new framework, we study the existing swarm problems of house hunt-
ing and task allocation, and provide new algorithms which are more geometrically-
sensitive than previous work [4, 13, 23, 32, 42, 44].

In Chapter 3, we develop a house hunting algorithm that is able to choose the best
nest even when it is very far away from the swarm’s home nest or is being blocked by
other poorer quality candidates. Our algorithm chooses the best quality nest much
more consistently than previous work, which had not considered these geometrically
challenging setups.

In Chapter 4, we develop two new task allocation algorithms for agents in an
environment with unknown task locations and demands, and test these algorithms in
environments of varying task density. We show that one of our algorithms, inspired by
the communication of house-hunting agents via a home nest, outperforms Levy flight
foraging in environments with sparse task density. Our other algorithm, inspired
by communication via virtual pheromones, completes tasks even faster and performs

3

well at all task densities tested but requires a much larger number of agents and high
agent communication.

This thesis contributes our new discrete swarm model and uses that model to
develop a new N-site selection algorithm as well as two new task allocation algorithms.
Our new algorithms are evaluated under more geometrically varied environments,
which is enabled by the geometric simplicity of our general model. We hope that our
simulation framework, along with the new algorithms we have contributed, inspire
future swarm research and experimentation.

Thesis Supervisor: Nancy Lynch
Title: Professor

4

Acknowledgments

My history with working on swarm algorithms goes all the way back to high school,

where I published my first research paper on N-site selection in my senior year. Com-

ing to MIT, after a year of exploring, I attended by advisor’s class and was excited

to find that her lab conducted a similar type of research. After a few semesters of

undergraduate research with her, I began this thesis in my junior spring. The path I

took to getting my MEng at MIT was unusual and challenging at times, and I could

not have done it without the help of everyone around me.

I would firstly like to thank my advisor, Nancy Lynch, for her years of guidance,

both as an undergraduate and as a masters student. When I reached out to her in my

sophomore year, she welcomed me to her lab and she continues to be a supportive and

dedicated advisor. Nancy helped me come up with the idea for the general modelling

framework presented in this thesis, and has spent countless hours reviewing my ideas,

paper drafts, and more. I truly appreciate the time and energy she has put into

discussing swarm research with me and admire the vigor she brings to every lab

meeting. Chapters 2 and 3 are joint work with her.

I would also like to thank my collaborator, Noble Harasha, for his help and en-

thusiasm in implementing and testing the PROP algorithm in Chapter 4. I really

enjoyed working with him on task allocation and appreciate his thoughtfulness and

attention to detail. Chapter 4 is joint work with Noble and Nancy.

Thank you to Zhi Wei Gan and Julian Shun for their collaboration on a parallel

implementation of the model presented in this thesis. The parallel speedups that

they have been working on are very inspiring and it has been great to learn about

the techniques they used to achieve them.

The former and current members of the TDS group helped me significantly as

well. I’d like to thank Jiajia Zhao for showing me what the path of a master’s

student was like while I was in undergrad and for mentoring me in my house hunting

research throughout sophomore year. I would like to thank Brabeeba Wang, Sabrina

Drammis, and Keith Murray for their feedback on my work at lab meetings.

5

I am a strong believer that a great personal life is key to doing great work, and my

friends and family have given me immeasurable love and support. I appreciate my

mom, Qi Zhao, my dad, Duo Cai, and my sister, Elizabeth Cai for their emotional

energy and their weekly calls from afar. I appreciate my wonderful friends Paolo

Adajar, Allison Borton, Zawad Chowdhury, Matthew Cox, Laura Cui, Ashley Lin,

and Andrew Komo (among others) for having many thoughtful conversations with me

throughout the years. Last, but certainly not least, the biggest thanks to my partner,

Alex Gu, for his joy, creativity, and thoughtfulness, and for always being there for

me.

6

Contents

1 Introduction 13

2 A General Discrete Swarm Model 17

2.1 General Model . 17

2.1.1 Model Configurations . 18

2.1.2 Local transitions . 20

2.1.3 Local transition function 𝛿 . 20

2.1.4 Probabilistic execution . 21

2.2 Model Capabilities . 22

2.3 Useful Extensions . 24

2.4 Pseudocode Framework . 25

2.4.1 Vertex Class . 25

2.4.2 Vertex State Class . 25

2.4.3 Agent State Class . 26

2.4.4 Agent Class . 27

2.4.5 Configuration . 28

2.4.6 Summary . 31

3 A Geometry-Sensitive N-Site Selection Algorithm 33

3.1 Introduction . 34

3.2 Background . 35

3.2.1 Ant House Hunting . 35

3.2.2 House Hunting and Site Selection Models 36

7

3.3 Model . 37

3.3.1 General Model . 38

3.3.2 House Hunting Environment Model 40

3.3.3 Agent States and Transition Function 40

3.4 Results . 43

3.4.1 Further Nest of Higher Quality 43

3.4.2 Effects of Lower Quality Nest Being in the Way 45

3.4.3 Effects of Magnitude of Difference in Site Quality 46

3.5 Discussion . 47

3.6 Future Work . 48

3.7 Formal Pseudocode . 48

3.7.1 Vertex State Class . 49

3.7.2 Agent State Class . 49

3.7.3 Agent Transition Functions 51

3.7.4 Resolution Rule . 60

4 Two Task Allocation Algorithms in Unknown Environments with

Varying Task Density 61

4.1 Introduction . 62

4.2 Background . 64

4.2.1 Levy Flight . 65

4.2.2 House Hunting . 65

4.2.3 Virtual Pheromones and Potential Fields 66

4.3 Model . 67

4.3.1 General Model . 67

4.3.2 Task Allocation Problem Definition 69

4.4 Algorithms . 70

4.4.1 House Hunting Task Allocation Algorithm 70

4.4.2 Task Propagation Algorithm 74

4.5 Results . 76

8

4.5.1 Effects of Task Density on HHTA Performance 77

4.5.2 Effects of Task Density on PROP Performance 78

4.5.3 Effects of 𝑃𝑐 on HHTA Completion Time for Varying Task Density 81

4.5.4 Effects of 𝑃𝑒 on HHTA Completion Time for Varying Task Density 82

4.5.5 Effects of 𝑑𝑝 on PROP Completion Time for Varying Task Density 83

4.5.6 Effects 𝑡𝑝 on PROP Completion Time for Varying Task Density 84

4.6 Discussion . 85

4.7 Future Work . 86

4.8 Formal Pseudocode . 88

4.8.1 Vertex State Class . 88

4.8.2 HHTA Agent State Class . 88

4.8.3 HHTA Agent Transition Function 89

4.8.4 PROP Agent Transition Function 93

4.8.5 Resolution Rule . 95

5 Future Work 99

5.1 Simulation Speedups via Parallelization 99

5.2 Applications of Swarms to the Good of the Earth 100

5.3 A Swarm Task Allocation Algorithm Inspired by Centralized Min Cost

Flow . 101

5.3.1 Algorithm Description . 102

5.3.2 Motivation for Propagator Agents 104

6 Conclusion 107

A N-Site Selection Utility Functions 109

A.1 Utility Functions for Agent Transition Function With Definitions . . . 109

A.2 Utility Functions for Agent Transition Function With I/O Specifications112

B HHTA and PROP Utility Functions 115

B.1 HHTA Utility Functions . 115

B.2 PROP Utility Functions . 116

9

10

List of Figures

2-1 A visual representation of a global configuration for agents wandering

an arena with obstacles. Here, we use the interpretation of vertices as

squares. Each square is grey if it is an obstacle, green if it contains an

agent, and white if it is empty. 19

3-1 State model. {𝑈, 𝐹,𝐶} denote preference states. The superscript

{𝑁,𝐴} denotes the activity state, and a subscript 𝑖 denotes that an

agent is favoring or committed to site 𝑖. The transitions for Uncom-

mitted and Favoring states are shown on the left, and transitions from

Uncommitted and Favoring to Committed states are on the right. . . 41

3-2 Decision Time and Accuracy for far nests 2, 3, and 9 times as far from

the home nest. Fixed quorum indicates the fixed threshold value of 4,

and scaled quorum indicates 𝑞𝑀𝐼𝑁 = 4, 𝑞𝑀𝐴𝑋 = 7. The accuracy for

the actual ants is taken from [19]. 44

3-3 Decision Time and Accuracy for far nests 2− 9 times further than the

close nest for both fixed and scaled quorums. In the in-the-way setup,

the home nest, low quality nest, and high quality nest were lined up in

that order. In the out of way setup, the low quality nest, home nest,

and high quality nest were lined up in that order. 45

3-4 Decision Accuracy and Time given varying differences in site quality

between the near and the far nest. 47

4-1 State model of the four core states. The subscript 𝑖 denotes that an

agent is recruiting for or committed to site 𝑖. 72

11

4-2 The effect of number of tasks on completion time for HHTA and RW,

tested on up to 30 tasks (left) and on up to 80 tasks (right). The graph

on the left highlights the sparser task densities where HHTA performs

best. 77

4-3 The effect of number of tasks on average messages sent per agent for

HHTA . 78

4-4 The effect of number of tasks on completion time for PROP and RW 79

4-5 The effect of number of tasks on average messages sent per propagator

agent per round (for PROP) . 80

4-6 The effect of 𝑃𝑐 on HHTA completion time for {4, 10, 16} tasks 81

4-7 The effect of 𝑃𝑒 on HHTA completion time for {4, 10, 16} tasks 82

4-8 The effect of maximum propagation radius (𝑑𝑝) on PROP completion

time for {4, 10, 16, 50} tasks . 83

4-9 The effect of integer propagation timeout (𝑡𝑝) on PROP completion

time for {4, 10, 16} tasks . 84

5-1 Plot of percentage of tasks found via initial random walk for varying

task density and varying numbers of agents 104

12

Chapter 1

Introduction

In nature, large groups of ants, bees, fish, and even humans can work together to

make decisions and solve problems in a decentralized manner [9, 41, 46]. Through

only local sensing and interactions, these groups are able to work together and come

to a consensus when needed. Studying and modelling these biological swarms give us

insight into their behaviour and has also inspired algorithms for robotic swarms to

solve tasks like foraging, navigation, task allocation, and house hunting [18].

In the study of both natural and artificial swarms, simulating the swarm behavior

is very helpful. From a biological perspective, it is useful to compare simulated swarms

to real swarms of ants and bees in order to determine if a model correctly replicates

the swarms’ behavior [42, 16]. From an artificial swarm perspective, simulations are

crucial in testing out new algorithms and demonstrating their effectiveness, especially

because formal proofs of correctness or convergence are very challenging to show

[25, 27]. Unfortunately, simulations of a large number of agents can take a long time

to run, creating a bottleneck in the development and testing of swarm algorithms.

We introduce a formal discrete mathematical model for the simulation of swarm

algorithms, where agents are positioned among a discrete grid of vertices and can

only move from vertex to vertex in synchronous rounds. The model is simple enough

to ease simulation and testing time, which can take up a large portion of swarm

algorithms research [8]. Furthermore, because motion is discrete, our model may

make it simpler to analyze and prove information about swarm algorithms.

13

We have used our model to develop algorithms for and improve upon the well-

known and well-studied swarm problems of house-hunting and task allocation via two

main papers in Chapters 3 and 4 respectively.

Our first algorithmic contribution is a house hunting (also known in swarm litera-

ture as N-site selection) algorithm that is more sensitive and robust to the geographic

placement and distances of candidate sites. Previous work [44, 13, 7] evaluated house

hunting algorithms in mostly simple scenarios with two candidate nests equidistant

from the home nest. However, real house hunting ants are able to choose the best

candidate nest in more geographically complex setups [19]. We show that the strate-

gies used by existing swarm algorithms are far less likely to find the best nest in more

challenging environments where the highest quality nest is far away from home or

blocked by another lower quality nest. We then provide a new algorithm, tested in

our simulation framework, that is able to remain accurate in geometrically challenging

environments.

We have also developed two task allocation algorithms for environments with un-

known task locations and demands and evaluated their performance on varying task

densities. A large majority of previous task allocation algorithms assume known task

locations and demands [4, 23], which is unlikely in task allocation situations such as

search and rescue or detecting mines. Our first algorithm, the House Hunting Task

Allocation algorithm (HHTA), was inspired by the state machine models of house

hunting algorithms [44], which revolve around using a home nest as a location for

communication between agents. Our second virtual pheromone inspired algorithm

(PROP), uses two types of agents, propagators and followers [49]. Propagator agents

spread task information to each other, which follower agents use to find nearby tasks

they can perform. We compared our two algorithms to the Levy walk foraging algo-

rithm and found that HHTA outperforms the Levy flight best in low task densities,

and PROP outperforms both HHTA and the Levy flight in medium to low task densi-

ties but requires many more agents. Our findings contribute two new algorithms and

show that the geometry of the environment (the task density) greatly affects relative

algorithm performance and is a factor that should be considered in more depth.

14

Lastly, we also detail ongoing work as well as provide ideas for potential future

work using our model. We are currently in the process of developing a parallel sim-

ulator of our general model that will enable extremely large scale simulations in a

faster amount of time. We suggest environmentally beneficial swarm applications for

future work such as artificial pollination [11] or oil spill cleanup [2]. We also provide

a sketch for a potential task allocation algorithm inspired by the centralized solution

of min cost flow used to solve the Optimal Transport Problem [52]. We adapt this

centralized algorithm into a swarm algorithm to provide a potential third mechanism

for task allocation in unknown environments. Our proposed directions highlight areas

of future work that can be researched within the framework of our general model.

Overall, this thesis makes two key contributions. First, we propose a new formal

general model for swarm algorithms that can easily be adapted to simulation. Then,

we contribute to swarm literature by developing novel algorithms for the problems of

N-site selection and task allocation in unknown environments. Through developing

our house hunting and task allocation algorithms we also show that our modelling

framework is reasonable and capable of adequately representing swarm algorithms.

We used our model to examine geographic aspects of these problems that have not

been considered in the past and showed how these aspects (site placement in house

hunting, and task density in task allocation) affect algorithm performance and should

be considered. Our results shed light on the impact of environment geometry on the

performance of swarm algorithms and we contribute several algorithms which have

been evaluated in a more thorough manner geographically.

Chapter Contents The remainder of this thesis is structured as follows. Chapter

2 provides the formal details of our general swarm model, as well as pseudocode for

how the model framework was implemented. Chapter 3 presents and evaluates our

new N-site selection algorithm and then provides a pseudocode outline of it. Chapter

4 presents our two new task allocation algorithms, HHTA and PROP, which assign

robots to complete tasks in initially unknown environments. Chapter 5 discusses

future work. Chapter 6 concludes the thesis.

15

Contributors Chapters 2 is joint work with Nancy Lynch. Nancy Lynch and Grace

Cai came up with the general model and wrote Chapter 2 together. Grace imple-

mented and provided the pseudocode for the general model. Chapter 3 is joint work

with Nancy Lynch. Nancy and Grace wrote section 3.3.1 together. Grace came up

with the N-site selection algorithm in Chapter 3, implemented and conducted exper-

iments on the algorithm, prepared all figures, and wrote the remainder of Chapter

3. Chapter 4 is joint work with Nancy Lynch and Noble Harasha. Nancy and Grace

wrote section 4.3.1 together. Grace came up with, implemented, and tested the HHTA

algorithm. Grace, Nancy, and Noble came up with the PROP algorithm together.

Noble implemented and tested the PROP algorithm. Grace came up with the exper-

iments and environmental setups in Chapter 4. Chapter 5 is written by Grace Cai.

Section 5.1 is joint work with Zhi Wei Gan, Nancy Lynch, and Julian Shun.

16

Chapter 2

A General Discrete Swarm Model

In this chapter, we provide a formal model for simulating a swarm of agents syn-

chronously in two dimensions. We then provide a detailed pseudocode implementa-

tion of our framework.

Our modelling framework is designed to be general enough to design a variety of

swarm algorithms. We use our framework for the house hunting algorithm presented

in Chapter 3 and the task allocation algorithms presented in Chapter 4.

2.1 General Model

We assume a finite set 𝑅 of agents, with a state set 𝑆𝑅 of potential states. Agents

move on a discrete rectangular grid of size 𝑛×𝑚, formally modelled as directed graph

𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑚𝑛. Edges are bidirectional, and we also include a self-loop

at each vertex. Vertices are indexed as (𝑥, 𝑦), where 0 ≤ 𝑥 ≤ 𝑚− 1, 0 ≤ 𝑦 ≤ 𝑛− 1.

Each vertex also has a state set 𝑆𝑉 of potential states.

We also define squares with the same range of indices; square (𝑥, 𝑦) is the one

whose lower left vertex is (𝑥, 𝑦). This correspondence means that we can think of

squares instead of vertices if we prefer.

We use a discrete model so the model can be simulated in a distributed fashion

on each vertex to reduce computation time. Also, using a discrete model allows

algorithms to be modeled as state machines, which enables analysis using techniques

17

such as invariant assertions.

2.1.1 Model Configurations

We define four kinds of configurations, global vs. local, and ordinary vs. transi-

tory. The transitory configurations are used as intermediate steps in defining system

executions.

A global configuration specifies the information and state of entire grid. For each

vertex/square in the grid, it specifies a vertex state. For each agent in 𝑅, it specifies

the agent’s location on the grid as well as the agent’s state.

Formally, a global configuration 𝐶 is a triple of mappings, (𝑠𝑣𝑚𝑎𝑝, 𝑠𝑟𝑚𝑎𝑝, 𝑙𝑜𝑐𝑚𝑎𝑝),

where:

• 𝑠𝑣𝑚𝑎𝑝 : 𝑉 → 𝑆𝑉 is the vertex state mapping, which assigns a vertex-state to

each vertex,

• 𝑠𝑟𝑚𝑎𝑝 : 𝑅 → 𝑆𝑅 is the agent state mapping, which assigns an agent-state to

each agent, and

• 𝑙𝑜𝑐𝑚𝑎𝑝 : 𝑅 → 𝑉 is the location mapping, which assigns a location to each

agent.

A visual example of a global configuration with agents wandering an arena with

obstacles can be seen in Figure 2-1. In Figure 2-1, 3 agents wander a 𝑀 = 6, 𝑁 = 4

sized grid. The agent state is simply an agent id ∈ {0, 1, 2}, a unique identifier for

each agent. The vertex state specifies whether that vertex is an obstacle or not.

A local configuration 𝐶 ′ is intended to capture the contents of one vertex/square

and thus details the vertex’s state, the agents located at the vertex, and the states of

those agents. Formally, it is a triple (𝑠𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝), where:

• 𝑠𝑣 ∈ 𝑆𝑄 is the vertex-state of the given vertex,

• 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 ⊆ 𝑅 is the set of agents at the vertex, and

• 𝑠𝑟𝑚𝑎𝑝 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠→ 𝑆𝑅 assigns an agent-state to each agent at the vertex.

18

Figure 2-1: A visual representation of a global configuration for agents wandering an
arena with obstacles. Here, we use the interpretation of vertices as squares. Each
square is grey if it is an obstacle, green if it contains an agent, and white if it is empty.

We also have a notion of transitory configuration, which is used as an intermediate

stage between two ordinary configurations, in constructing executions. It represents

agents in motion from one vertex to another.

A global transitory configuration, like a global configuration, contains information

about the vertex state of each vertex in the grid as well as the agent state of each agent.

However, instead of also specifying the location of each agent, it instead specifies for

each agent the edge along which it is travelling. For example, agent 𝑟 travelling along

edge (𝑣, 𝑣′) means that agent 𝑟 started at vertex/square 𝑣 and is going to adjacent

vertex/square 𝑣′.

Formally, a global transitory configuration 𝑇 is a triple of mappings

(𝑠𝑣𝑚𝑎𝑝, 𝑠𝑟𝑚𝑎𝑝, 𝑒𝑑𝑔𝑒𝑚𝑎𝑝), where

• 𝑠𝑣𝑚𝑎𝑝 and 𝑠𝑟𝑚𝑎𝑝 have the same types as for ordinary configurations, and

• 𝑒𝑑𝑔𝑒𝑚𝑎𝑝 : 𝑅→ 𝐸 assigns a directed edge to each agent.

A local transitory configuration represents newly-computed states for a single

vertex and its agents, plus directions of travel for the local agents. Agents at a square

can move up (U), down (D), left (L), right (R), or stay (S) at their current vertex.

Formally, a local transitory configuration 𝑇 ′ is a quadruple

(𝑠𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝, 𝑑𝑖𝑟𝑚𝑎𝑝), where

19

• 𝑠𝑣, 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, and 𝑠𝑟𝑚𝑎𝑝 are as in the definition of a local configuration, and

• 𝑑𝑖𝑟𝑚𝑎𝑝 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → {𝑅,𝐿, 𝑈,𝐷, 𝑆} is the direction mapping, which assigns

a travel direction to each agent. Direction 𝑆 means to stay at the vertex.

2.1.2 Local transitions

The transition of a vertex 𝑣 may be influenced by the local configurations of nearby

vertices in addition to itself. We define an influence radius 𝐼, which is the same

for all vertices, to mean that vertex indexed at (𝑥, 𝑦) is influenced by all vertices

{(𝑎, 𝑏) | 𝑎 ∈ [𝑥− 𝐼, 𝑥 + 𝐼], 𝑏 ∈ [𝑦 − 𝐼, 𝑦 + 𝐼]}, where 𝑎 and 𝑏 are integers mod 𝑛. We

can use this influence radius to create a local mapping 𝑀𝑣 from local coordinates to the

neighboring local configurations. Thus, for a vertex 𝑣 at location (𝑥, 𝑦), we produce

𝑀𝑣 such that 𝑀𝑣(𝑎, 𝑏) → 𝐶 ′(𝑤) where 𝑤 is the vertex located at (𝑥 + 𝑎, 𝑦 + 𝑏) and

−𝐼 < 𝑎, 𝑏 < 𝐼. This influence radius is representative of a sensing and communication

radius for agents.

We have a local transition function 𝛿, which maps all the information associated

with one vertex and its influence radius at one time to new information that can be

associated with the vertex at the following time. It also produces directions of motion

for all the agents at the vertex.

Formally, for a vertex 𝑣, 𝛿 maps the mapping 𝑀𝑣 to a probability distribution on

local transitory configurations of the form (𝑠𝑣1,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝1, 𝑑𝑖𝑟𝑚𝑎𝑝1), where:

• 𝑠𝑣1 ∈ 𝑆𝑉 is the new state of the vertex,

• 𝑠𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠→ 𝑆𝑅 is the new agent state mapping, for agents currently

at the vertex, and

• 𝑑𝑖𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → {𝑅,𝐿, 𝑈,𝐷, 𝑆} gives directions of motion for all the

agents currently at the vertex.

2.1.3 Local transition function 𝛿

The local transition function 𝛿 is further broken down into two phases as follows.

20

Phase One: Each agent in vertex 𝑣 uses the same probabilistic transition function

𝛼, which maps the agent’s state 𝑠𝑟 ∈ 𝑆𝑅, location (𝑥, 𝑦), the vertex state of the

location 𝑠𝑣 ∈ 𝑆𝑉 , and the mapping 𝑀𝑣 to a distribution over new proposed vertex

state 𝑠𝑣′, agent state 𝑠𝑟′, and direction of motion 𝑑 ∈ {𝑅,𝐿, 𝑈,𝐷, 𝑆}.

Phase Two: A resolution rule 𝐿 is used to reconcile the different vertex states

suggested by each agent at the vertex and select one final vertex state. The rule also

determines for each agent whether they may transition to state 𝑠𝑟′ and direction of

motion 𝑑 or stay at the same location with original state 𝑠𝑟.

Formally, L takes in the mappings (𝑠𝑣𝑝𝑟𝑜𝑝, 𝑠𝑟𝑝𝑟𝑜𝑝, 𝑑𝑖𝑟𝑝𝑟𝑜𝑝) and the local config-

uration 𝐶 ′(𝑣) of vertex 𝑣, where:

• 𝑠𝑣𝑝𝑟𝑜𝑝 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑉 is a mapping from agents at vertex 𝑣 to the vertex

state 𝑠𝑣′ proposed in Phase One

• 𝑠𝑟𝑝𝑟𝑜𝑝 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 is the agent state mapping from agents at 𝑣 to the

agent state 𝑠𝑟′ they proposed in Phase One

• 𝑑𝑖𝑟𝑝𝑟𝑜𝑝 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → {𝑅,𝐿, 𝑈,𝐷, 𝑆} is the direction mapping from agents at

𝑣 to the direction of travel 𝑑 they proposed in Phase One

The rule 𝐿 uses these mappings and the local vertex configuration to produce the

output (𝑠𝑣1, 𝑠𝑟𝑚𝑎𝑝1, 𝑑𝑖𝑟𝑚𝑎𝑝1), which is the output of 𝛿. Specifically, L is used to

decide on one final new vertex state 𝑠𝑣1 ∈ 𝑆𝑉 and modify the proposed agent states

and directions mappings if necessary, producing 𝑠𝑟𝑚𝑎𝑝1 and 𝑑𝑖𝑟𝑚𝑎𝑝1.

2.1.4 Probabilistic execution

The system operates by probabilistically transitioning all vertices 𝑣 for an infinite

number of rounds. During each round, for each vertex 𝑣, we obtain the mapping

𝑀𝑣 which contains the local configurations of all vertices in its influence radius. We

then apply 𝛿 to 𝑀𝑣 to transition vertex 𝑣 and all agents at vertex 𝑣 and sample the

resulting distribution to select a local transitory configuration for 𝑣. For each vertex

𝑣 we now have (𝑠𝑣𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠𝑣, 𝑠𝑟𝑚𝑎𝑝𝑣, 𝑑𝑖𝑟𝑚𝑎𝑝𝑣) returned from 𝛿.

21

For each 𝑣, we take 𝑑𝑖𝑟𝑚𝑎𝑝𝑣, which specifies the direction of motion for each agent

and use it to map all agents to their new vertices. For each vertex 𝑣, its new local

configuration is just the new vertex state 𝑠𝑣𝑣, the new set of agents at the vertex,

and the 𝑠𝑟𝑚𝑎𝑝 mapping from agents to their new agent states.

2.2 Model Capabilities

We would like to highlight some useful capabilities that our framework allows for.

For example, our model allows for the use of multiple different types of agents, as

shown by the PROP algorithm presented in Chapter 4. The PROP algorithm uses

two types of agents – propagators, which are simple, mote-inspired agents [49], and

followers, which are more complex, task-performing agents. This distinction between

different types of agents can either be incorporated into the agent state as a variable,

or by easily extending the framework’s singular agent set 𝑅 and agent state set 𝑆𝑅

to multiple agent sets 𝑅1, 𝑅2, . . . and agent state sets 𝑆𝑅1, 𝑆𝑅2, . . . corresponding to

the different types of agents.

By using a torus grid, our model also allows for simulations using a rectangular

grid as a special case. Let us fix the lower left corner of the grid at vertex (0, 0) and

the upper right corner of the grid at vertex (𝑚− 1, 𝑛− 1). If an algorithm designed

within our model seeks to use such a rectangular grid for more realistic edge effects,

it needs to follow two extra restrictions. Firstly, in generating the agent’s direction of

motion, agents assuming a grid environment will ensure the direction of motion they

are generating is never out-of-bounds of the grid, meaning it never moves between

vertices (0, 𝑦) and (𝑚−1, 𝑦) or between vertices (𝑥, 0) and (𝑥, 𝑛−1). Secondly, agents

should ignore all information in their influence radius mapping 𝑀𝑣 which maps to an

"out of bounds" vertex that the agent wouldn’t be able to see in a grid.

Our model also allows for the simulation of messages. Since agents have access to

all information about other agents within their influence radius when transitioning,

a message occurs whenever an agent looks at the state information of another agent,

which can be interpreted as receiving a message from that agent. Therefore, the

22

influence radius not only functions as a sensing radius, but also a communication

radius. This makes sense under the assumption that agents must have sensed each

other to be able to message each other.

Our model allows for simulating agents without communication abilities as a spe-

cial case. Such agents would be restricted by not looking at any of the agent state

information included in the influence radius mapping 𝑀𝑣, and only using the location

of the sensed agents to make decisions. Similarly, our model can simulate agents with

no sensing or communication abilities by having agents ignore all information within

their influence radii.

The use of a problem-specific resolution rule 𝐿 allows for a dynamic handling

of the conflicts that arise from all agents at a vertex synchronously transitioning.

For example, in the task allocation problem, 𝐿 would need to handle the conflict of

more agents trying to claim a task than necessary by picking some winner agents and

turning away the rest. This functionality can be seen in detail in Section 4.8.5. An

example with a different resolution functionality would be problems which simulate

pheromones, in which 𝐿 would make sure that if multiple agents at a vertex deposited

pheromones, all of the pheromone information would be included in the new vertex

state.

Lastly, using our discrete model rather than a continuous version brings some

additional benefits. Our discrete model has a direct translation to simulation, whereas

continuous models require time to be discretized. Furthermore, our model enables

discrete analysis, since agents within our model are state machines and the entire

environment, with all vertices and agents, could be analyzed as a state machine as

well. While this analysis could be very difficult, especially with more complex swarm

algorithms, it provides an alternative to the differential equations based analysis that

continuous models use.

On the other hand, continuous models have their own merits, such as providing

more realism than discrete models. For this reason we would like to mention that there

is a direct translation of algorithms that run using our model into a 2D continuous

space. This can be achieved by discretizing the continuous space and running the

23

algorithm as if a grid were present. If we use a very fine-grained discretization then

our model is a good approximation of the 2D continuous space.

2.3 Useful Extensions

We would like to propose a few extensions of our model that could be useful in

future work. One of the most useful would be to extend our model to use a 3D grid

space, where we have influence balls instead of influence radii, and agents can move

in any one of 6 directions. This would allow more a more realistic simulation of aerial

swarms. A further generalization would be to extend our model to use any general

directed graph. Here agents would be able to move along any outgoing edge from the

vertex they are at, and an influence radius of 𝑥 could encompass all nodes that are

up to 𝑥 hops away.

Another extension of our model would be to develop a collision-avoidant version

of it, where only one agent can occupy a vertex at any given time. This is useful for

problems such as multi-agent pathfinding in warehouse environments [33], where the

goal is for agents to avoid colliding paths. In this extension, instead of a resolution

rule which prevents multiple agents from making conflicting changes to the same

vertex, we would need a collision avoidance rule. This collision avoidance rule should

look at all proposed agent directions of motion, and if multiple agents are trying to

move to the same vertex 𝑣′, only one should be allowed to make the move and the

remaining agents should stay where they are. The collision avoidance rule is different

than the resolution rule because the resolution rule looks at conflicts within agents’

current vertex 𝑣 but the collision avoidance rule looks to prevent conflicts (collision)

at agents’ new vertex 𝑣′. Note that no resolution rule is necessary in this extension

since only one agent is at any vertex at any given time, so there are no conflicts that

arise from two agents trying to modify the same vertex at once.

24

2.4 Pseudocode Framework

We now describe our pseudocode framework for implementing our model. We use the

classes listed below, each with their own functions and variables, in the implementa-

tion of our swarm model.

• Agent, representing the agents in the formal model

• Agent State, representing the state set 𝑆𝑅 for agents in the formal model

• Configuration, representing the global configuration of agents, vertices, and

agent locations within vertices

• Vertex, representing a singular vertex in the grid (a local configuration in the

formal model)

• Vertex State, representing the state set 𝑆𝑉 for vertices in the formal model

2.4.1 Vertex Class

Each vertex in the grid is represented by an instance of the Vertex class. The vertex

class represents local configurations in the formal model. A Vertex has four variables:

• x, the x coordinate of the vertex

• y, the y coordinate of the vertex

• state, the vertex state of the vertex

• agents, a list of agents located at the vertex, where each agent is an instance

of the Agent class defined below

2.4.2 Vertex State Class

An instance of the vertex state class represents a vertex state in the set 𝑆𝑉 that an

agent can take on in the formal model. The set of possible instances of the vertex

25

state class forms the set 𝑆𝑉 in the formal model. The specific variables used in the

vertex state depend on the task the swarm is performing.

For example, consider a simple toy example where agents are doing a random walk

on the grid, and each vertex stores a count of which agents have landed on it. In that

case, the vertex state would consist of the following variable:

• visited, a list of agent ids who have visited the vertex

2.4.3 Agent State Class

An instance of the agent state class represents the internal state of an agent and the

set of possible instances of the agent state class form the agent state set 𝑆𝑅 in the

formal model. Agent states can store two types of variables – constant variables,

and modifiable ones. Constant variables are fixed in value and are the same for

all agents. They represent shared knowledge that the agents have already. Three

constant variables that all agents in the formal model have are:

• INFLUENCE_RADIUS, the influence radius

• N, the height of the grid

• M, the width of the grid

More constant variables can be added depending on the specific problem. All agents

also store an agent_id to differentiate them from each other. This number is unique

to each agent and cannot be modified:

• id, a unique integer in the range [0, |𝑅| − 1] (where 𝑅 is the agent set)

Lastly, modifiable variables are used to store extra, changeable state for specific prob-

lems. Consider our toy example of agents doing a random walk, where we count which

agents have been in which squares. Suppose the agents do a simple random walk, in

which they walk in one direction (up, down, left, or right) for a fixed number of steps

before changing directions. In this case, the agent state would also need to include

the following variables:

26

• step_length, a constant variable representing the number of steps an agent

taks before changing direction

• current_direction, a modifiable variable taking on values in the set

{𝑈,𝐷,𝐿,𝑅} representing which direction the agent is currently travelling in

• steps_taken, a modifiable variable representing how many steps the agent has

taken so far in their current direction of travel

2.4.4 Agent Class

Each agent in our agent set 𝑅 is implemented as an instance of the Agent class. An

Agent has two variables – location, the Vertex class corresponding to the agent’s

location, and state, the Agent State class describing the Agent’s State.

Every agent also has the function generate_transition(local_vertex_mapping),

which corresponds in the formal model to sampling from the probabilistic transition

function 𝛼 to generate a change in agent location and state each round of the simu-

lation. Note that is a local_vertex_mapping is a map from local coordinates (dx,

dy) within the agent’s influence radius to instances of the Vertex class (local configu-

rations). The local coordinates are translated such that (0,0) maps to the Agent’s cur-

rent location vertex. The code for generate_transition(local_vertex_mapping)

is problem specific and represents the bulk of the agent’s decision making logic in

each time step.

Let us consider our toy example again, where agents are doing a random walk and

the vertices are storing which agents have been on them. The transition function for

this problem would look like Algorithm 1.

In this problem, each agent proposes changing the agent state to include its own

id if it hasn’t been added already. Each agent then proceeds to generate one step

of their random walk. If they have traveled far enough in the current direction, a

new direction of travel is generated and their travel distance counter (steps_taken)

is reset. Otherwise, they continue on their random walk leg.

27

Algorithm 1 Agent Transition for an Agent 𝑎 in the Random Walk Example
1: procedure generate_transition(local_vertex_mapping))
2: 𝑠← 𝑎.state
3: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑎.state
4: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒← 𝑎.location.state
5: ◁Propose adding the agent’s own id to the vertex it just visited
6: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒.visited← union(𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒.visited, 𝑠.id)
7: ◁Generate new direction for random walk if we have reached the step length
8: if 𝑠.𝑠𝑡𝑒𝑝𝑠_𝑡𝑎𝑘𝑒𝑛 == 𝑠.𝑠𝑡𝑒𝑝_𝑙𝑒𝑛𝑔𝑡ℎ then
9: 𝑛𝑒𝑤_𝑑𝑖𝑟 ← random_choice([L, R, D, U])

10: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.current_direction← 𝑛𝑒𝑤_𝑑𝑖𝑟
11: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.steps_taken← 1

12: return 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟

2.4.5 Configuration

A configuration represents the global configuration from our formal model and encom-

passes all agents and vertices within it. Specifically, a configuration has the following

variables:

• N, the height of the grid

• M, the width of the grid

• vertices, a map of all of the N*M vertices in the grid, from coordinates in the

set [0,𝑀 − 1]× [0, 𝑁 − 1] to instances of the Vertex class

• INFLUENCE_RADIUS, the influence radius of each agent in the configuration

(which matches the INFLUENCE_RADIUS variable in the agent state)

• agents, a map from agent id to instances of the Agent class

The configuration class also has a transition() function (Algorithm 2), which rep-

resents stepping forward once in time. This function utilizes two helper functions and

is defined as follows:

The function generate_global_transitory() (Algorithm 3) gener-

ates and returns the global transitory configuration, and the function

execute_transition(global_transitory) simply executes the updates to

28

Algorithm 2 Transition function for a configuration C
1: procedure transition
2: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑟𝑦 ← C.generate_global_transitory()
3: C.execute_transition(𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑟𝑦)

the agent locations and states based upon the transitory configuration. The global

transitory configuration is a map from coordinates to a triple consisting of the new

vertex state 𝑣′, a mapping from agent id to new proposed agent states for agents

currently at 𝑣, and a mapping from agent id to new proposed movement directions

(of the set {U, D, L, R, S}) for that vertex.

The generate_global_transitory() function is further implemented as follows:

Algorithm 3 Generating the global transitory configuration for a configuration C
1: procedure generate_global_transitory
2: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑟𝑦 ← {}
3: for 𝑥 in 1 ...C.M do
4: for 𝑦 in 1 ...C.N do
5: 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔 ← generate_local_mapping(
6: C.vertices[(𝑥, 𝑦)], C.INFLUENCE_RADIUS, C.vertices)
7: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑟𝑦[(𝑥, 𝑦)]← C.delta(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
8: return 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑟𝑦

For each vertex in the global configuration, we are generating the local ver-

tex mapping (of all vertices within the influence radius) and using it to compute

the local transitory configuration for that vertex. We then merge all of these lo-

cal transitory configurations into the global transitory configuration. The function

generate_local_mapping takes in a vertex 𝑣, influence radius, and global vertex set

in order to return a map from local coordinates (dx, dy) within the influence radius

centered around 𝑣 to the corresponding instances of the Vertex class found inside the

influence radius. Then, the delta function is applied to this local vertex mapping

to get the local transitory configuration for that vertex 𝑣. All of the local transitory

configurations are merged into the global transitory configuration.

The function delta (Algorithm 4) corresponds to the 𝛿 map in our formal model,

taking in the local vertex mapping and returning a new proposed vertex state as well

29

as maps from agent id to new agent state and movement direction. The delta function

is where agents attempt to transition states and modify their environment, and any

conflicts between their actions are resolved.

Algorithm 4 𝛿 for a configuration C

1: procedure delta(local_vertex_mapping)
2: 𝑣 ← 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔[(0,0)]
3: if length(𝑣.agents) == 0 then return 𝑣.state, {}, {}
4: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠← {}
5: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠← {}
6: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠← {}
7: for 𝑎𝑔𝑒𝑛𝑡 in 𝑣.agents do
8: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =

9: 𝑎𝑔𝑒𝑛𝑡.generate_transition(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
10: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡.id]← 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒
11: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡.id]← 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒
12: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠[𝑎𝑔𝑒𝑛𝑡.id]← 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

13: return resolution_rule(
14: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠)

In lines 2-3, we get the vertex that this local vertex mapping is centered around. If

this vertex does not have any agents inside of it, then the vertex state cannot change

in the house hunting problem, so we return the vertex’s current state as the proposed

new state. We return empty maps for the agent state and direction update since no

agents are present. In lines 4-12, we have each agent inside the vertex propose a new

vertex state, their own new agent state, and their direction of motion, and store these

pieces of information. This corresponds to phase 1 of the formal model, where each

agent samples from their 𝛼 distribution, which proposes agent transitions at each

time step.

In line 13, we execute Phase 2 of the formal model, which resolves potential

conflict between the vertex states and agents states that agents propose. We do so

via a resolution_rule, which takes in all the proposed vertex states, agent states,

and agent directions. The resolution rule decides what the final new vertex state is

by combining the proposed vertex states, and also decides which agent states and

agent directions are allowed to transition. If an agent is not allowed to transition, it

30

remains in the same state it was in before and stays where it is.

Let us examine the resolution rule for our random walk toy example. In this

example, each agent proposes to add itself to the list of agents stored by the vertex

it is currently on. However, if multiple agents try to add themselves to the same

vertex’s list, we can resolve their conflicting vertex states via a resolution rule such

as Algorithm 5.

Algorithm 5 Random walk example resolution rule
1: procedure resolution_rule(proposed_vertex_states, pro-

posed_agent_states, proposed_agent_dirs))
2: 𝑛𝑒𝑤_𝑣𝑠← VertexState()
3: for 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑠 in 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠.values()) do
4: 𝑛𝑒𝑤_𝑣𝑠.visited← union(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑠.visited, 𝑛𝑒𝑤_𝑣𝑠.visited)
5: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠← 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠
6: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠← 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠
7: return 𝑛𝑒𝑤_𝑣𝑠, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠

In this example resolution rule, we take a union of all of the suggested new vertex

states, which only add individual agents, in order to add all new agents to the list

of agents who have visited the vertex. We then allow all agents to transition states

and directions, since in this example all agents proposed vertex states have been

accepted into the final new vertex state. Note that this is not always the case for

other problems. For example, in a task allocation problem where multiple agents

attempt to claim a single-agent task and transition into doing the task, only one

agent should succeed and be allowed to transition.

2.4.6 Summary

We have described the implementation of the general model; the backbone which all

swarm algorithms run in our model share. We have also detailed which parts of the

implementation are problem-specific. Namely, where different problems differ in the

model implementation is in the Vertex State variables, the Agent State variables, the

agent transition function for transitions at each time step, and the resolution rule.

This implementation cleanly divides out the problem-specific implementations.

31

32

Chapter 3

A Geometry-Sensitive N-Site

Selection Algorithm

The house hunting behavior of the Temnothorax albipennis ant allows the colony

to explore several nest choices and agree on the best one. Their behavior serves as

the basis for many bio-inspired swarm models to solve the same problem. However,

many of the existing site selection models in both insect colony and swarm literature

test the model’s accuracy and decision time only on setups where all potential site

choices are equidistant from the swarm’s starting location [42, 44, 13, 32]. These

models do not account for the geographic challenges that result from site choices

with different geometry. For example, although actual ant colonies are capable of

consistently choosing a higher quality, further site instead of a lower quality, closer

site [19], existing models are much less accurate in this scenario. Existing models

are also more prone to committing to a low quality site if it is on the path between

the agents’ starting site and a higher quality site. We present a new model for

the site selection problem and verify via simulation that is able to better handle

these geographic challenges. Our results provide insight into the types of challenges

site selection models face when distance is taken into account. Our work will allow

swarms to be robust to more realistic situations where sites could be distributed in

the environment in many different ways.

33

3.1 Introduction

Swarms of birds, bees, and ants are able to coordinate themselves to make decisions

using only local interactions [9, 41, 46]. Modelling these natural swarms has inspired

many successful swarm algorithms [18]. One such bio-inspired algorithm comes from

the house hunting behavior of ants. Models of the ants’ behavior when selecting a

new nest serve as the basis for swarm algorithms which seek to select the best site

out of a discrete number of candidate sites in space [44].

Many variations of the best-of-N site selection problem have been studied for

swarms [53]. For example, when sites are of equal quality, choosing one is a symmetry-

breaking problem [24, 55]. Situations with asymmetric site qualities and costs (where

higher quality sites have a higher cost of being chosen) have also been studied – for

example, when one of two candidate sites is significantly larger than the other (making

it harder for agents to detect other agents favoring the larger site, even when it is of

higher quality) [10].

However, most site selection models are mainly tested on small numbers of can-

didate nest sites that are equidistant from the agents’ starting location (also known

as the home nest) [13, 42]. In many applications of the site selection problem such as

shelter seeking, sites will not be distributed so uniformly.

This equidistant setup fails to capture two important geographical details that

existing algorithms struggle with in making accurate decisions. Firstly, nests that are

closer to the home nest are advantaged because they are more likely to be found. Even

so, house hunting ants can still choose higher quality sites that are much further than

lower quality, closer sites. We have found that existing site selection models often

commit to the closer site even when there is a better, further option. Secondly, using

sites equidistant from the home nest eliminates the possibility of some nests being in

the way of others. Site selection models often trigger consensus on a new site after a

certain quorum population of agents have been detected in it. If a low quality nest is

on the path from the home nest to a high quality nest, agents travelling between the

home nest and the high quality nest could saturate the path and detect a quorum for

34

the lower quality nest that is in the way instead of the highest quality nest.

This paper aims to create a new algorithm that can successfully account for a

more varied range of nest distributions, allowing agents to successfully choose higher

quality nests even when they have the disadvantage of being further from the agents’

starting location or there are other lower quality nests in the way. The model should

also perform with similar accuracy compared to existing models on the default setup

with equidistant candidate nest sites. We show via simulation that incorporating

a quorum threshold that decreases with site quality allows for increased accuracy

compared to previous models. We also show that setups where candidate sites are in

the way of each other or are of similar quality can make it harder for site selection

models to produce accurate results.

Section 3.2 describes the house hunting process of ants and overviews existing

swarm models. Section 3.3 describes our model. We provide details on the im-

plementation of our model, test accuracy and decision time in different geographic

situations, and report the results in Section 3.4. We discuss these results in Section

3.5. Lastly, we suggest future work in Section 3.6. The full simulation code can be

found at [6].

3.2 Background

3.2.1 Ant House Hunting

When the T. albipennis ants’ home nest is destroyed, the colony can find and collec-

tively move to a new, high quality nest. To do so, T. albipennis scouts first scan the

area, searching for candidate nests. When a nest is found, the scouts wait a period

of time inversely proportional to the nest quality before returning to the home nest.

There, they recruit others to examine the new site in a process known as forward

tandem running. Tandem runs allow more ants to learn the path to a new site in case

the ants decide to move there. When an ant in a candidate nest encounters others

in the site at a rate surpassing a threshold rate (known as the quorum threshold),

35

ants switch their behavior to carrying other members of the colony to the new nest.

Carrying is three times faster than tandem runs and accelerates the move to the new

nest [40, 41].

This decision-making process allows ants to not only agree on a new nest, but also

to choose the highest quality nest out of multiple nests in the environment. This is

true even if the high quality nest is much further from the home nest than the low

quality nest [19, 47]. Franks [19] found that with a low quality nest 30 cm from home

and a high quality nest 255cm from home, 88% of ant colonies successfully chose the

high quality nest even though it was 9 times further.

3.2.2 House Hunting and Site Selection Models

To better study the ants’ behavior, models have been designed to simulate how ants

change behavior throughout the house hunting process [42, 58]. These models, initi-

ated by Pratt [42], allow simulated ants to probabilistically transition through four

phases – the Exploration, Assessment, Canvassing, and Transport phases. The Ex-

ploration represents when the ants are still exploring their environment for new sites.

When an ant discovers a site, it enters the Assessment phase, in which it examines

the quality of the site and determine whether to accept or reject it. If the ant accepts

the site, it enters the Canvassing phase, which represents the process of recruiting

other ants via forward tandem runs. Finally, if a quorum is sensed, the ant enters the

Transport phase, which represents the carrying behavior used to move the colony to

the new site.

These models, however, assume that when an ant transitions from the Exploration

phase to the Assessment phase, it is equally likely to choose any of the candidate sites

to assess. This assumes that any nest is equally likely to be found, which is unlikely in

the real world because sites closer to the home nest are more likely to be discovered.

To our knowledge, house hunting models have not tried to model situations where

nests have different likelihoods of being found, as is the case when nests have different

distances from the home nest [58].

The corresponding problem to house hunting in robot swarms is known as the

36

𝑁-site selection problem [53]. Agents, starting at a central home site, must find

and choose among 𝑁 candidate sites in the environment and move to the site with

highest quality. (The home and candidate sites are also referred to as nests, since the

problem was inspired by house-hunting ants.) Unlike house hunting models, which

do not physically simulate ants in space, swarm models set up agents in a simulated

arena and let them physically explore sites and travel between them.

Inspired by ant modelling, [13] and [44] have modeled swarm agents using four

main states – Uncommitted Latent, Uncommitted Interactive, Favoring Latent, and

Favoring Interactive (with [13] adding a fifth Committed state to emulate having de-

tected a quorum). Uncommitted Latent agents remain in the home site while Uncom-

mitted Interactive agents explore the arena for candidate sites. Favoring Interactive

agents have discovered and are favoring a certain site and recruit other agents to the

site, while Favoring Latent agents remain in the new site to try and build up quo-

rum. Agents probabilistically transition between these states based on environmental

events (e.g. the discovery of a new site) and eventually end up significantly favoring

a new candidate site or committed to it. Other swarm models for N-site selection

typically use a similar progression through uncommitted, favoring, and committed

type phases [37].

One setup where a high quality site was twice as far as a low quality one was

successfully solved in [44], but for the most part these models and their variations

have mainly been tested in arenas with two candidate sites equidistant from the home

site [7, 13, 32, 43]. Our model aims to analyze the behavior of these models in more

varied site setups and and improve upon them.

3.3 Model

We first summarize our discrete geographical model (presented in Chapter 2) for

modeling swarms. Then we discuss the individual restrictions, parameters, and agent

algorithms needed for the house hunting problem specifically.

The pseudocode for our general model can be found in Section 2.4. A pseudocode

37

description of our N-site selection algorithm can be found in Section 3.7.

3.3.1 General Model

The general model we present in this section is an abbreviated description of our

model in Chapter 2. For more formal details, please see Chapter 2.

We use the special case of a rectangular grid instead of a torus. The special case

works by having agents treat the graph as a grid by never generating an out-of-bounds

direction of motion and by never using any vertices in their influence radius that they

wouldn’t be able to see on a grid due to edge effects. For more details on this special

case, please see Section 2.2.

We assume a finite set 𝑅 of agents, with a state set 𝑆𝑅 of potential states. Agents

move on a discrete rectangular grid of size 𝑛×𝑚, formally modelled as directed graph

𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑚𝑛. Edges are bidirectional, and we also include a self-loop

at each vertex. Vertices are indexed as (𝑥, 𝑦), where 0 ≤ 𝑥 ≤ 𝑛− 1, 0 ≤ 𝑦 ≤ 𝑚− 1.

Each vertex also has a state set 𝑆𝑉 of potential states.

We use a discrete model so the model can be simulated in a distributed fashion

on each vertex to reduce computation time and provide the possibility of discrete

analysis via state machine methods.

Local Configurations:

A local configuration 𝐶 ′(𝑣) captures the contents vertex 𝑣. It is a triple

(𝑠𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝), where 𝑠𝑣 ∈ 𝑆𝑉 is the vertex state of 𝑣, 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 ⊆ 𝑅 is

the set of agents at 𝑣, and 𝑠𝑟𝑚𝑎𝑝 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 assigns an agent state to each

agent at 𝑣.

Local Transitions:

The transition of a vertex 𝑣 may be influenced by the local configurations of nearby

vertices. We define an influence radius 𝐼, which is the same for all vertices, to

mean that vertex indexed at (𝑥, 𝑦) is influenced by all valid vertices {(𝑎, 𝑏)|𝑎 ∈ [𝑥 −

38

𝐼, 𝑥 + 𝐼], 𝑏 ∈ [𝑦 − 𝐼, 𝑦 + 𝐼]}, where 𝑎 and 𝑏 are integers. We can use this influence

radius to create a local mapping 𝑀𝑣 from local coordinates to the neighboring local

configurations. For a vertex 𝑣 at location (𝑥, 𝑦), we produce 𝑀𝑣 such that 𝑀𝑣(𝑎, 𝑏)→

𝐶 ′(𝑤) where 𝑤 is the vertex located at (𝑥+𝑎, 𝑦+𝑏) and −𝐼 < 𝑎, 𝑏 < 𝐼. This influence

radius is representative of a sensing and communication radius. Agents can use all

information from vertices within the influence radius to make decisions.

We have a local transition function 𝛿, which maps all the information associated

with one vertex and its influence radius at one time to new information that can be

associated with the vertex at the following time. It also produces directions of motion

for all the agents at the vertex.

Formally, for a vertex 𝑣, 𝛿 probabilistically maps 𝑀𝑣 to a quadruple of the form

(𝑠𝑣1,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝1, 𝑑𝑖𝑟𝑚𝑎𝑝1), where 𝑠𝑣1 ∈ 𝑆𝑉 is the new state of the vertex,

𝑠𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 is the new agent state mapping for agents at the vertex,

and 𝑑𝑖𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → {𝑅,𝐿, 𝑈,𝐷, 𝑆} gives directions of motion for agents

currently at the vertex. Note that 𝑅, 𝐿, 𝑈 , and 𝐷 mean right, left, up, and down

respectively, and 𝑆 means to stay at the vertex. The local transition function 𝛿 is

further broken down into two phases as follows.

Phase One: Each agent in vertex 𝑣 uses the same probabilistic transition function

𝛼, which probabilistically maps the agent’s state 𝑠𝑟 ∈ 𝑆𝑅, location (𝑥, 𝑦), and the

mapping 𝑀𝑣 to a new suggested vertex state 𝑠𝑣′, agent state 𝑠𝑟′, and direction of

motion 𝑑 ∈ {𝑅,𝐿, 𝑈,𝐷, 𝑆}. We can think of 𝛼 as an agent state machine model.

Phase Two: Since agents may suggest conflicting new vertex states, a rule 𝐿 is

used to select one final vertex state. The rule also determines for each agent whether

they may transition to state 𝑠𝑟′ and direction of motion 𝑑 or whether they must stay

at the same location with original state 𝑠𝑟.

Probabilistic Execution:

The system operates by probablistically transitioning all vertices 𝑣 for an infinite

number of rounds. During each round, for each vertex 𝑣, we obtain the mapping 𝑀𝑣

which contains the local configurations of all vertices in its influence radius. We then

39

apply 𝛿 to 𝑀𝑣 to transition vertex 𝑣 and all agents at vertex 𝑣. For each vertex 𝑣 we

now have (𝑠𝑣𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠𝑣, 𝑠𝑟𝑚𝑎𝑝𝑣, 𝑑𝑖𝑟𝑚𝑎𝑝𝑣) returned from 𝛿.

For each 𝑣, we take 𝑑𝑖𝑟𝑚𝑎𝑝𝑣, which specifies the direction of motion for each agent

and use it to map all agents to their new vertices. For each vertex 𝑣, it’s new local

configuration is just the new vertex state 𝑠𝑣𝑣, the new set of agents at the vertex,

and the 𝑠𝑟𝑚𝑎𝑝 mapping from agents to their new agent states.

3.3.2 House Hunting Environment Model

The goal of the house hunting problem is for agents to explore the grid and select the

best site out of 𝑁 sites to migrate to collectively. We model sites as follows.

A set 𝑆, |𝑆| = 𝑁 of rectangular sites are located within this grid, where site 𝑠𝑖 has

lower left vertex (𝑥1
𝑖 , 𝑦

1
𝑖) and upper right vertex (𝑥2

𝑖 , 𝑦
2
𝑖). Each site 𝑠𝑖 also has a quality

𝑠𝑖.𝑞 ∈ [0, 1]. To represent these sites, we let the vertex state set be 𝑆𝑉 = 𝑆 ∪ {∅}

for each vertex, indicating which site, if any, the vertex belongs to. Furthermore, we

denote the site 𝑠0 to be the home nest. In the initial configuration, all agents start

out at a random vertex in the home nest, chosen uniformly from among the vertices

in that nest.

3.3.3 Agent States and Transition Function

The agent state set 𝑆𝑅 is best described in conjunction with the agent transition

function 𝛼. Agents can take on one of 6 core states, each a combination of one of

three preference states (Uncommitted, Favoring, Committed), and two activity states

(Nest, Active). The state model can be seen in Figure 3-1.

Uncommitted Nest (𝑈𝑁) agents stay in the home nest to prevent too many agents

from flooding the environment. They have a chance of transitioning to Uncommitted

Active (𝑈𝐴) agents, which try to explore the arena and discover new sites. 𝑈𝐴 agents

move according to the Levy flight random walk, which has been shown to be used by

foraging ants [51]. 𝑈𝑁 agents transition to 𝑈𝐴 with probability 𝑃𝐴, and 𝑈𝐴 agents

transition to 𝑈𝑁 agents with probability 𝑃𝑁 . This results in an expected 𝑥 = 𝑃𝐴

𝑃𝐴+𝑃𝑁

40

𝑈𝐴 𝑈𝑁

𝐹𝐴
𝑖

𝐹𝑁
𝑖 𝐹𝑁

𝑗 ̸=𝑖

𝑃𝑁

𝑃𝐴

𝑃
𝑆
𝑖 𝑣

𝑖 (1
−
𝑥
)

𝛽

𝑃𝑁

𝑃𝐴

𝐷𝑠𝑗𝑃𝑖𝑗

𝐷𝑠𝑖𝑃𝑗𝑖

𝑃
𝑆
𝑖 𝑣
𝑖 𝑥

𝑈𝐴

𝑈𝑁

𝐹𝑁
𝑖

𝐹𝐴
𝑖

𝐶𝐴
𝑖

𝐶𝑁
𝑖

0.5(𝑃𝑄𝑖
+ 𝑃𝑄)

0.5(𝑃
𝑄

𝑖
+
𝑃
𝑄
)

0.5(𝑃𝑄𝑖
+ 𝑃𝑄)

0.5(𝑃
𝑄

𝑖
+
𝑃
𝑄
)

0.5
𝑃𝑄𝑖

0.
5𝑃

𝑄
𝑖

0.5
𝑃𝑄𝑖

0.
5𝑃

𝑄
𝑖

Figure 3-1: State model. {𝑈, 𝐹,𝐶} denote preference states. The superscript {𝑁,𝐴}
denotes the activity state, and a subscript 𝑖 denotes that an agent is favoring or
committed to site 𝑖. The transitions for Uncommitted and Favoring states are shown
on the left, and transitions from Uncommitted and Favoring to Committed states are
on the right.

percent of uncommitted agents are active, whereas 1 − 𝑥 agents remain in the nest.

Prior work [44] lets 𝑃𝑁 = 9𝑃𝐴 = 𝐿, where 𝐿 is the inverse of the average site

round trip time, chosen to promote sufficient mixing. This leads to 10% of the agent

population being active.

Uncommitted Active agents have a chance 𝑃𝑆𝑖
of discovering a new nest, which is

1 if a new nest is within influence radius and 0 otherwise. If they discover a nest 𝑠𝑖,

they explore and accept it with probability 𝑠𝑖.𝑞 (the quality of 𝑠𝑖). They then have an

𝑥% chance of transitioning to Favoring Active, and a (1−𝑥)% chance of transitioning

to Favoring Nest.

Favoring agents (𝐹𝐴
𝑖 , 𝐹

𝑁
𝑖) prefer the site 𝑠𝑖 that they discovered. Favoring Active

(𝐹𝐴
𝑖) agents remain in site 𝑠𝑖 to build quorum. Favoring Nest (𝐹𝑁

𝑖) agents return to

the home nest to recruit others to site 𝑠𝑖. Favoring Nest agents transition to Active

with the same probability 𝑃𝐴 and Favoring Active agents transition back to Nest

agents with probability 𝑃𝑁 , creating the same effect where an expected 90% of the

favoring agent population is 𝐹𝐴
𝑖 while the rest are 𝐹𝑁

𝑖 .

𝐹𝑁
𝑖 agents have a probability 𝛽 of abandoning their nest, which is 1 if the time

41

spent without seeing other agents surpasses 𝑡𝛽. 𝐹𝐴
𝑖 agents can be inhibited by other

𝐹𝐴
𝑖 agents as follows. The chance an agent favoring nest 𝑖 is converted to favoring

nest 𝑗 is 𝐷𝑟𝑗𝑃𝑖𝑗, where the factor of 𝐷 is the probability of agents messaging each

other (to prevent excessive messaging). 𝑟𝑗 is the number of agents favoring 𝑠𝑗 that

have the agent within their influence radius. After an agent hears of the new site 𝑠𝑗,

it visits the site to evaluate 𝑠𝑗.𝑞 and changes its preference to 𝑠𝑗 if 𝑠𝑗.𝑞 > 𝑠𝑖.𝑞. Thus,

the condition 𝑃𝑖𝑗 is 1 when 𝑠𝑗.𝑞 > 𝑠𝑖.𝑞 and 0 otherwise.

𝑈𝐴 agents and 𝐹𝑁
𝑖 agents can detect a quorum and commit to a site when 𝑞

agents in the site are within their influence radius. The quorum size scales with

site value as 𝑞 = ⌊(𝑞𝑀𝐼𝑁 − 𝑞𝑀𝐴𝑋) * 𝑞𝑢𝑎𝑙(𝑖) + 𝑞𝑀𝐴𝑋⌋, where 𝑞𝑀𝐴𝑋 and 𝑞𝑀𝐼𝑁 are the

maximum and minimum possible quorum threshold respectively. The condition 𝑃𝑄 is

1 when quorum is satisfied and 0 otherwise. Agents in any Favoring or Uncommitted

state will transition to the committed state, if they encounter an agent already in

quorum. The condition 𝑃𝑄𝑖
is 1 when another quorum agent for 𝑠𝑖 is encountered

and 0 otherwise. Furthermore, agents have an 1
2

chance of transitioning to Committed

Active (𝐶𝐴
𝑖) and a 1

2
% chance of Committed Nest 𝐶𝑁

𝑖 after having detected or been

notified of a quorum.

𝐶𝑁
𝑖 agents head to the home nest to inform others of the move, while 𝐶𝐴

𝑖 agents

randomly wander the grid to find stragglers. Agents in quorum states continue to

wander until they have sensed quorum for 𝑡𝑄 time steps, whereupon they return to

the new selected site 𝑠𝑖.

The resulting agent state set 𝑆𝑅 is a product of the 6 core states needed in the

state model as well as a number of auxiliary variables such as an agent’s destination,

the names of the sites it favors or has sensed quorum for, and parameters for an

agent’s random walk when exploring the grid.

Since in the house hunting problem (unlike other problems like task allocation),

an agent never modifies the environment, an agent’s proposed new vertex state is

always the same as the old vertex state. Therefore, phase two of 𝛿 is not needed to

reconcile conflicting vertex state suggestions from agents.

The transition function 𝛼, which for each agent returns a proposed new vertex

42

state 𝑠𝑣′, agent state 𝑠𝑟′ and direction of motion works as follows. The agent never

modifies the grid, so 𝑠𝑣′ = 𝑠𝑣. The agent state 𝑠𝑟′ and direction 𝑑 are calculated

according to the core transitions and the auxiliary variables needed to keep track of

those transitions. For example, when an agent is headed towards a site, the direction

𝑑 is calculated to be the next step towards the site. When an agent is staying within

a site, the direction 𝑑 is calculated to be a random walk within the site boundaries.

The total set of variables parameters is {𝑃𝐴, 𝑃𝑁 , 𝐷, 𝑡𝑄, 𝑡𝛽, 𝑞𝑀𝐼𝑁 , 𝑞𝑀𝐴𝑋}, as well

as the site locations (𝑥1
𝑖 , 𝑦

1
𝑖), (𝑥

2
𝑖 , 𝑦

2
𝑖) and quality 𝑠𝑖.𝑞. In Section 3.4, we explore

how changes in 𝑞𝑀𝐼𝑁 , 𝑞𝑀𝐴𝑋 , and the site locations and quality impact the accuracy,

decision time, and split decisions made by the model.

3.4 Results

The model was tested in simulation using Pygame, with each grid square representing

1cm2. Agents moved at 1 cm/s, with one round representing one second. We chose

this speed because even the lowest cost robots are still able to move at 1cm/s [48].

Agents had an influence radius of 2. All simulations were run using 100 agents, and

a messaging rate of 1/15. We let the abandonment timeout 𝑡𝛽 = 5
𝐿

and the quorum

timeout 𝑡𝑄 = 1
𝐿
.

For each set of trials, we evaluated accuracy (the fraction of agents who chose

the highest quality nest), decision time (the time it took for all agents to arrive at

the nest they committed to), and split decisions (the number of trials where not all

agents committed to the same nest).

3.4.1 Further Nest of Higher Quality

House hunting ants are capable of choosing further, higher quality sites over closer,

lower quality ones [19]. When the far site and the near site are of equal value, ants

consistently choose the closer one. To test our model’s ability to produce the same

behavior, we replicated the experimental setups in [19].

Three different distance comparisons were tested, with a further, higher quality

43

2x 3x 9x
distance

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy

Decision Accuracy for Fixed and Scaled Quorum

type
fixed
scaled
control fixed
control scaled
ants

2x 3x 9x
distance

0

50

100

150

200

tim
e

(m
in

)

Decision Time for Fixed and Scaled Quorum
type

fixed
scaled
control fixed
control scaled

Figure 3-2: Decision Time and Accuracy for far nests 2, 3, and 9 times as far from the
home nest. Fixed quorum indicates the fixed threshold value of 4, and scaled quorum
indicates 𝑞𝑀𝐼𝑁 = 4, 𝑞𝑀𝐴𝑋 = 7. The accuracy for the actual ants is taken from [19].

nest of quality 0.9 being 2x, 3x, and 9x as far as a lower quality nest of quality 0.3 on

the path from the high quality nest to the home nest. We included a control setup

for each of these distance comparisons where both the far and close nest were quality

0.3. The arena size was 𝑁 = 16,𝑀 = 80 for the 2x case, 𝑁 = 18,𝑀 = 180 for the

3x case, and 𝑁 = 18, 𝑀 = 300 for the 9x case.

We tested our model using two different quorum parameters. In one test, we had

𝑞𝑀𝐼𝑁 = 𝑞𝑀𝐴𝑋 = 4, intended to represent the behavior of previous models with a fixed

quorum threshold. In the other setup, 𝑞𝑀𝐼𝑁 = 4 and 𝑞𝑀𝐴𝑋 = 7, allowing our model

to use the new feature of scaling the quorum threshold with site quality. We ran 100

trials for each set of parameters.

As seen in Figure 3-2, using a scaled threshold significantly improved accuracy

from using a fixed one. In the control case, both the fixed and scaled quorum threshold

achieved high accuracy, with all accuracies being greater than 99%. In cases where

the far site was of higher quality, the decision time for fixed and scaled quorum was

comparable. However, the scaled quorum threshold took significantly (Welch’s T-test,

p=0.05) more time in the control case to decide.

Furthermore, as seen in Figure 3-2, our model successfully chose the further site

with comparable (or significantly higher in the 9x case) accuracy than ants themselves,

indicating that our model is on par with the ants.

44

2x 3x 4x 7x 8x 9x6x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy

Accuracy for Out-of-Way vs. In-the-Way Poor Nest

type

5x
far nest distance

scaled, in the way
fixed, in the way
scaled, out of way
fixed, out of way

2x 3x 4x
far nest distance

20

30

40

50

60

70

80

tim
e

Decision TimeOut-of-Way vs. In-the-Way Poor Nest
type

scaled, in the way
fixed, in the way
scaled, out of way
fixed, out of way

5x 6x 7x 8x 9x

Figure 3-3: Decision Time and Accuracy for far nests 2 − 9 times further than the
close nest for both fixed and scaled quorums. In the in-the-way setup, the home nest,
low quality nest, and high quality nest were lined up in that order. In the out of way
setup, the low quality nest, home nest, and high quality nest were lined up in that
order.

3.4.2 Effects of Lower Quality Nest Being in the Way

To isolate the effects of the low quality nest being in the way of the high qual-

ity nest, we tested our model where the high quality nest (quality 0.9) was one

of {2, 3, 4, 5, 6, 7, 8, 9} times further than the low quality nest (quality 0.3), but in

opposite directions of the home nest. We compared model performance when the

low quality nest was in the way of the home nest. We ran tests with 𝑁 = 18,

𝑀 = 300, with the low quality nest always 30cm from home. We again tested a fixed

(𝑞𝑀𝐼𝑁 = 𝑞𝑀𝐴𝑋 = 4) and scaled (𝑞𝑀𝐼𝑁 = 4, 𝑞𝑀𝐴𝑋 = 7) quorum threshold on these

setups. 100 trials were conducted for each set of parameters.

Figure 3-3 shows that for the out-of-way setup, the scaled quorum performs sig-

nificantly (Welch’s T-test, p=0.05) more accurately than the fixed quorum on all far

nest distances. For the in-the-way setup, the scaled quorum performs significantly

better (Welch’s T-test, p=0.05) when the far nest is 3x further or more. Note it is

harder for the fixed quorum to solve the in-the-way problem accurately compared to

the out-of-way problem (Welch’s T-test, p=0.05). It is likewise harder for the scaled

quorum to solve the in-the-way problem when the far nest is {3, 4, 6, 7, 8, 9} times

further (Welch’s T-test, p=0.05), showing that the in-the-way problem is harder to

solve for site selection algorithms.

45

For distances 3x or further, there is no significant difference between the decision

times for the fixed out-of-way, scaled out-of-way, and scaled in-the-way setups. For

distances 5x and further, the fixed quorum takes significantly less time than the other

setups but suffers in decision accuracy (Welch’s T-test, p=0.05) compared to the other

three setups.

3.4.3 Effects of Magnitude of Difference in Site Quality

Because site quality affects the quorum threshold, we expect it to be harder for agents

to correctly choose a high quality far site when it is only slightly better than than

nearby lower quality sites. This is because the difference in quorum threshold is less

pronounced for sites of similar quality. For two equidistant nests, the algorithm should

consistently choose the best site as it has in past work, so the absolute difference in

site quality should not matter.

To test these effects, we used the setup in Section 4.1 where the further nest

was 2x (60 cm) as far as the in-the-way close nest (30 cm), and compared it to an

equidistant setup where both candidate nests were 30 cm away from the home nest in

opposite directions. We tested both a fixed quorum 𝑞𝑀𝐴𝑋 = 𝑞𝑀𝐼𝑁 = 4 and a scaled

quorum on these setups 𝑞𝑀𝐴𝑋 = 7, 𝑞𝑀𝐼𝑁 = 4. We varied the quality of the near nest

in the set of potential values {0.3, 0.6, 0.9}, corresponding to quorum thresholds of

{6, 5, 4} respectively, with the far nest having quality 1.0. (In the equidistant case,

we varied the quality of one nest while the other had quality 1.0.) Figure 3-4 shows

the resulting accuracy and decision time.

As predicted, a smaller difference in site quality / quorum threshold led to signifi-

cantly (Welch’s T-test, p=0.05) lower decision accuracy for the non-equidistant setup.

In the equidistant setup, agents were able to achieve a near-100% outcome regardless

of magnitude of differences in site quality. However, in the unbalanced setup, we

confirmed that for larger differences in site quality, the algorithm comes to a more ac-

curate decision, showing that non-equidistant candidate nest setups cause sensitivity

to absolute site value differences that can’t be seen in the equidistant setup.

46

0.3 0.4 0.5 0.6 0.7 0.8 0.9
close nest site quality

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy
Decision Accuracy vs. Close Nest Site Quality

type
scaled, equidistant sites
fixed, equidistant sites
scaled, 2x far nest
fixed, 2x far nest

0.3 0.4 0.5 0.6 0.7 0.8 0.9
close nest site quality

12.5

15.0

17.5

20.0

22.5

25.0

27.5

tim
e

Decision Time vs. Close Nest Site Quality
type

scaled, equidistant sites
fixed, equidistant sites
scaled, 2x far nest
fixed, 2x far nest

Figure 3-4: Decision Accuracy and Time given varying differences in site quality
between the near and the far nest.

3.5 Discussion

The results demonstrate our model’s ability to improve accuracy when choosing from

a higher quality, further site and a lower quality, closer site. This improvement comes

at the cost of a higher decision time when converging on a lower quality site, because

the quorum threshold for low quality sites is higher in our model. This higher decision

time is reasonable and represents hesitance when committing to a poor quality option

in the hopes of finding a better one.

Our model also demonstrated the extra difficulty that comes with a lower quality

site being in the path from the home nest to a high quality site. Qualitative observa-

tion showed that agents travelling back and forth between the far site and the home

nest often unintentionally contributed to a quorum in the poor quality, in-the-way

site as they travelled through it. We showed that using a scaled quorum threshold as

opposed to a fixed one is an effective way of significantly increasing decision accuracy.

However, even if the closer, poor quality site is completely out of the way of the

far, high quality site, Figure 3-3 shows that using a scaled quorum can still help to

improve accuracy.

Figure 3-4 shows that our model is still successful when candidate sites are equidis-

tant from home, as is most commonly tested. We also show that an equidistant setup

is not influenced by the absolute difference between candidate site qualities. Contrar-

47

ily, in the setup with a further, high quality nest, it is harder to make an accurate

decision the smaller the quality difference between the high and low quality nests.

Note that it is also less grievous of an error to choose the low quality nest when the

quality difference is small.

We observed a shorter decision time in conjunction with lower accuracy, similar

to the time-accuracy trade-off in natural swarms [12, 26]. In each set of 100 trials

run, there were at most 2 split decisions, indicating our model succeeds in keeping

the swarm together even when migrating to the further nest.

3.6 Future Work

While our model has made strides in being more accurate when choosing between

sites with different geographical distributions, many site setups have yet to be tested.

Future work could introduce obstacles to the environment, add uniquely shaped sites,

or try to evaluate the house hunting algorithm on a more realistic simulator.

Our model suggests that a quorum threshold that scales with site quality leads

to more accurate site selection. Future work could explore if actual ants do the same

and use this information to create more accurate models.

Lastly, while our model is hard to analyze without making simplifications (because

it involves agents physically moving in space), future work could try to develop ana-

lytical bounds. One method we envision is simplifying the chance of each site being

discovered to a fixed probability and trying to model agent population flow between

the different model states, similar to [43], which does this for candidate sites all with

an equal chance of discovery.

3.7 Formal Pseudocode

Now, we describe the details of the house hunting model in terms of pseudocode

framework in Section 2.4. Specifically, we specify the Vertex State, Agent State,

agent transition function, and resolution rule, which are all problem specific.

48

3.7.1 Vertex State Class

An instance of the vertex state class has three variables. For the house hunting

problem, the vertex state is synonymous with site information, and there will only be

𝑁 + 2 unique vertex states for 𝑁 sites (one for each candidate site, one for the home

nest, and one meaning no site is present at this vertex).

• name is a string representing the name of the site that the vertex is a part of

(for example, Home or Site A or Site B). We chose to use strings for human

readability, but using an integer for site identifiers could work as well. If the

vertex is not part of any site, the string is null.

• value is a string representing the value (a float from 0 to 1) of the site the

vertex is a part of. If the vertex is not part of any site, the value is irrelevant

and can take on any value.

• location is a pair of pairs ((a, b),(c,d)). If the vertex is part of a site (meaning

name ̸= null), then location indicates that the site is located at the rectangle

with x range [a, b] and y range [c, d].

Sites

Note that in order for the site desciptions in the vertex state to be geographically

consistent, any vertex state with the same non-null name must also have the same

value and location, since they are all part of the same site. Therefore, sites are

uniquely defined by a corresponding vertex state. In later parts of the code, we store

the vertex state of a vertex in a specific site and use that vertex state as the site

information itself.

3.7.2 Agent State Class

An agent state has the following constant variables in addition to the constants from

the general model. Constants are fixed in an execution of the simulator for all agents.

Each agent has these constants as a part of its state, and the values never change.

49

• L, the inverse average site round trip

• Q_MIN, the minimum quorum threshold

• Q_MAX, the maximum quorum threshold

• MESSAGE_RATE, how often the agent sends messages when it has information, in

units of 1/rounds

• LEVY_LOC and LEVY_CAP, levy flight distribution parameters, where LEVY_CAP

caps the right tail of the distribution

Agents also have the following modifiable parts of their state, which may change

during execution.

• preference_type, the preference type of the agent (Uncomitted, Favoring,

Committed) as a String

• activity_type, the activity type of the agent (Active, Nest) as a String

• home, the information of the home nest (specifically home.location and

home.value) which are defined the same way they are in the vertex state

• angle, the angle in radians of the current random walk the agent is taking (if

there is one)

• starting_point, the (x,y) coordinates of the agent’s starting point for the

current straight-line leg of their random walk (if there is one)

• travel_distance, how many more steps the agent has to venture in the direc-

tion specified by angle and starting_point

• destination, the (x,y) coordinates of a point within the agent’s destination

site, if any

• destination_site, the vertex state of the vertex at destination, which con-

tains the site’s name, boundaries, and site value

50

• exploring_site, a boolean indicating whether the agent is currently exploring

within a site

• exploration_cooldown, a cooldown time representing how many rounds to

wait before exploring a new site after just having rejected a site. this prevents

agents from constantly sensing the site they just explored and exploring it over

and over again.

• time_since_neighbor, the time since a neighboring agent was last seen (used

for an agent to determine whether or not to abandon a site)

• favoured_site, the vertex state of a vertex within the site the agent is favoring,

if any

• committed_site, the vertex state of a vertex within the site the agent has

committed to, if any

• terminated, a boolean keeping track of whether the agent is still running the

house hunting algorithm or has finished

3.7.3 Agent Transition Functions

We now consider the generation of agent transitions at each timestep. This can be

broken down into different logic based on the six main agent states – Uncommit-

ted Nest, Uncommitted Active, Favoring Nest, Favoring Active, Quorum Nest, and

Quorum Active. We describe the algorithm for each main state below. The pseu-

docode implementations utilize some utility functions in their implementation. The

functionality of these utility functions is described in Appendix A.

Uncommitted Nest Transitions

In the main Uncommitted Nest state, an agent has not favored or committed to any

sites yet and has the role of staying in the home nest and waiting to be recruited

by others or to transition into the Uncommitted Active state. The code for the

51

transition function first checks if the Uncommitted Nest agent has sensed a quorum

within influence radius (from other agents who are in the quorum state). If it has,

the agent converts into the quorum state as well. Otherwise, we check if the agent

has just transitioned to 𝑈𝑁 , in which case it may be outside of the home nest still,

with the intention to travel there. If this is the case, the agent moves in the direction

of the home nest. Otherwise, the agent is already at the home nest. In this case, it

has a 𝐿/9 chance of transitioning to 𝑈𝐴. Otherwise, it remains at the home nest and

does not move. The pseudocode for this state can be seen in Algorithm 6.

Algorithm 6 Uncommitted Nest (UN) Agent Transition for an agent 𝑎

1: procedure generate_transition_UN(local_vertex_mapping))
2: ◁Before anything else, check if a quorum was sensed
3: 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑒𝑛𝑠𝑒𝑑, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒←
4: check_quorum_sensed(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
5: if 𝑞𝑢𝑜𝑢𝑟𝑚_𝑠𝑒𝑛𝑠𝑒𝑑 then
6: return 𝑎.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑆

7: 𝑠← 𝑎.state
8: ◁If the agent just transitioned to UN and is still travelling to the home nest
9: if 𝑠.destination ̸= 𝑛𝑢𝑙𝑙 then

10: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← get_direction_from_destination(s.destination,
11: (𝑎.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑥, 𝑎.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑦))

12: 𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛←
13: get_coords_from_movement(𝑎.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑥, 𝑎.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑦, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
14: if 𝑎.within_site(𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛[0], 𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛[1], 𝑠.home) then
15: 𝑠.destination← null
16: return 𝑎.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

17: ◁If the agent is already in the home nest
18: 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐ℎ𝑎𝑛𝑐𝑒← 𝑠.L/9
19: if random_float_from(0,1) ≤ 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐ℎ𝑎𝑛𝑐𝑒 then
20: 𝑠.activity_type← Active
21: return 𝑎.location.state, 𝑠, 𝑆
22: else
23: return 𝑎.location.state, 𝑠, 𝑆

52

Uncommitted Active Transitions

In the main Uncommitted Active state, an agent is patrolling the environment looking

for new sites to explore. The pseudocode for this state can be seen in Algorithm 7.

Once again, we begin by checking if a quorum has been sensed in the environment. If

it has, the agent converts to the quorum state. Otherwise, the Uncommitted Active

agent could either still be random walking the environment, or has found a site and

is currently exploring it by doing a random walk inside of it. If the agent is random

walking, we check if there are any sites nearby that it could discover and head towards.

The agent also has a chance of transitioning to the Uncommitted Nest state as per

the state transition diagram between the core states. If the agent is headed towards a

site it is planning to explore, we let it continue heading towards the site. If the agent

has arrived at the site it is planning to explore, we set it up to begin the random walk

within the site. If the agent has finished exploring the site, it comes to a decision on

whether to favor or reject the site. If it favors the site, it transitions to one of the

favoring states. Otherwise, it enters an short exploration cooldown period to prevent

it form exploring the same site it just left, and continues exploring.

Algorithm 7 Uncommitted Active (UA) Agent Transition for an agent 𝑎

1: procedure generate_transition_UA(local_vertex_mapping))
2: ◁Before anything else, check if a quorum was sensed
3: 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑒𝑛𝑠𝑒𝑑, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒←
4: check_quorum_sensed(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
5: if 𝑞𝑢𝑜𝑢𝑟𝑚_𝑠𝑒𝑛𝑠𝑒𝑑 then
6: return 𝑎.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
7: 𝑠← 𝑎.state
8: ◁If the agent has not found a site to explore, look for one
9: if 𝑠.destination is null and 𝑠.exploration_cooldown == 0 then

10: 𝑛𝑒𝑎𝑟𝑏𝑦_𝑠𝑖𝑡𝑒, 𝑠𝑖𝑡𝑒_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = find_nearby_site(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
11: ◁Explore the site the agent just found
12: if 𝑛𝑒𝑎𝑟𝑏𝑦_𝑠𝑖𝑡𝑒 is not null then
13: 𝑠.destination← 𝑠𝑖𝑡𝑒_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
14: 𝑠.desintation_site← 𝑛𝑒𝑎𝑟𝑏𝑦_𝑠𝑖𝑡𝑒

53

Algorithm 7 Uncommitted Active (UA) algorithm (continued)
15: else if 𝑠.exploration_cooldown > 0 then
16: ◁Decrement exploration cooldown if it is in effect
17: 𝑠.exploration_cooldown -= 1
18: ◁The agent is headed towards a site to explore
19: if 𝑠.destination_site is not null then
20: if 𝑠.location.state.site_name == 𝑠.destination_site.site_name

and not 𝑠.exploring_site then
21: ◁The agent has just arrived at the site
22: 𝑠.exploring_site← True
23: 𝑠.travel_distance← 10
24: 𝑠.angle← random_float_from(0, 2𝜋)
25: 𝑠.starting_point← (𝑠.location.x, 𝑠.location.y)
26: else if not 𝑠.exploring_site then
27: ◁The agent is still headed towards the site
28: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← get_direction_from_destination(
29: 𝑠.destination, (𝑠.location.x, 𝑠.location.y))
30: return 𝑠.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

31: ◁Calculate if agent should become nest agent
32: 𝑛𝑒𝑠𝑡_𝑐ℎ𝑎𝑛𝑐𝑒← 𝑠.L
33: if random_float_from(0,1) < 𝑛𝑒𝑠𝑡_𝑐ℎ𝑎𝑛𝑐𝑒 and not 𝑠.exploring_site

then
34: 𝑠.destination← 𝑠.random_location_in_site(𝑠.home)
35: 𝑠.activity_type← Nest
36: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

37: ◁The agent has finished exploring the site
38: if 𝑠.travel_distance == 0 and 𝑠.exploring_site then
39: 𝑠.destination← null
40: 𝑠.exploring_site← False
41: 𝑠.favored_site← 𝑠.destination_site
42: 𝑠.destination_site← null
43: if random_float_from(0,1) < 𝑠.location.site_value then
44: ◁Choose to favor the site
45: if random_float_from(0,1) < 9/10 then
46: 𝑠.destination← 𝑠.random_location_in_site(𝑠.home)
47: 𝑠.destination_site← 𝑠.home
48: 𝑠.preference_type← Favoring
49: 𝑠.activity_type← Nest
50: return 𝑠.location.state, 𝑠, S
51: else
52: 𝑠.preference_type← Favoring
53: 𝑠.activity_type← Active
54: return 𝑠.location.state, 𝑠, S

54

Algorithm 7 Uncommitted Active (UA) algorithm (continued)
55: else
56: ◁Reject the site
57: 𝑠.exploration_cooldown← 10
58: 𝑠.favored_site← null
59: ◁Agent continues exploring the arena
60: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑠← get_travel_direction(𝑠)
61: return 𝑠.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

Favoring Active Transitions

In the Favoring Active (FA) state, the agent has found a site to favor and remains in

their favored site to build up quorum. Once again, we first check to see if a quorum

has been sensed for the favored site. If the agent just transitioned to Favoring Active

and is not yet at it’s favored site, it continues heading towards the site. If the agent

is already in the favored site, it has a chance of transitioning into Favoring Nest, or

remaining as Favoring Active. Agents who remain as Favoring Active continue to

perform random walks within their favored nest to try and build up quorum. The

pseudocode for this main state can be seen in Algorithm 8.

Algorithm 8 Favoring Active (FA) Agent Transition for an agent 𝑎

1: procedure generate_transition_FA(local_vertex_mapping))
2: ◁Check if a quorum was sensed
3: 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑒𝑛𝑠𝑒𝑑, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒←
4: check_quorum_sensed(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
5: if 𝑞𝑢𝑜𝑢𝑟𝑚_𝑠𝑒𝑛𝑠𝑒𝑑 then
6: return 𝑎.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑆

7: 𝑠← 𝑎.state
8: ◁Agent still headed towards their favored site
9: if 𝑠.𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is not null then

10: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← get_direction_from_destination(
11: 𝑠.destination, (𝑠.location.x, 𝑠.location.y))
12: 𝑛𝑒𝑤_𝑙𝑜𝑐← get_coords_from_movement(
13: 𝑠.location.x, 𝑠.location.y, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)

55

Algorithm 8 Favoring Active (FA) algorithm (continued)
14: ◁Agent has just reached their favored site
15: if 𝑠.within_site(𝑛𝑒𝑤_𝑙𝑜𝑐[0], 𝑛𝑒𝑤_𝑙𝑜𝑐[1], 𝑠.favored_site) then
16: 𝑠.destination← null
17: return 𝑠.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

18: ◁Agent is inside favored site
19: 𝑛𝑒𝑠𝑡_𝑐ℎ𝑎𝑛𝑐𝑒← 𝑠.L
20: if random_float_from(0,1) < 𝑛𝑒𝑠𝑡_𝑐ℎ𝑎𝑛𝑐𝑒 then
21: 𝑠.destination← 𝑠.random_location_in_site(𝑠.home)
22: 𝑠.desintation_site← 𝑠.home
23: 𝑠.activity_type← Nest
24: return 𝑠.location.state, 𝑠, S
25: else
26: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← 𝑠.get_travel_direction()
27: return 𝑠.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

Favoring Nest Transitions

In the Favoring Nest (FN) state, the agent has found a site to favor and returns to

the home nest to try and recruit other Favoring Nest agents to support their favored

site. First, if the time since the agent has seen any neighbors exceeds 5/𝐿, the agent

abandons the site and becomes Uncommitted Active again. This is so that if everyone

in the home nest has already moved to a new committed site, the favoring agent is able

to abandon its own site and try to random walk the arena in search of the committed

agents. Afterwards, once again, we check to see if a quorum has been detected for the

favored site or some other site. If the agent has just turned into a favoring nest agent

and is still headed towards to home nest, we calculate the next step in that direction.

If the agent is already at the home nest, it tries to communicate with it’s neighbors to

see if they favor a higher quality nest. If they do, the favoring agent goes to that nest

to examine it. If a favoring agent is headed towards a better quality site to explore

it, we calculate the next step for it to continue exploring. After exploring the better

site, the agent decides to favor the new site instead and changes state accordingly.

56

Algorithm 9 Favoring Nest (FN) Agent Transition for an agent 𝑎

1: procedure generate_transition_FN(local_vertex_mapping))
2: 𝑠← 𝑎.state
3: ◁Determine whether to abandon site
4: 𝑠ℎ𝑜𝑢𝑙𝑑_𝑎𝑏𝑎𝑛𝑑𝑜𝑛, 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒← should_abandon_site(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔, 𝑠)
5: if 𝑠ℎ𝑜𝑢𝑙𝑑_𝑎𝑏𝑎𝑛𝑑𝑜𝑛 then
6: return 𝑎.location.state, 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒, S
7: ◁Check if a quorum was sensed
8: 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑒𝑛𝑠𝑒𝑑, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒←
9: check_quorum_sensed(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)

10: if 𝑞𝑢𝑜𝑢𝑟𝑚_𝑠𝑒𝑛𝑠𝑒𝑑 then
11: return 𝑎.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
12: if 𝑠.destination is null then
13: ◁Communicate with other agents to see if a better nest can be found
14: 𝑏𝑒𝑡𝑡𝑒𝑟_𝑛𝑒𝑠𝑡← find_better_nest(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
15: if 𝑏𝑒𝑡𝑡𝑒𝑟_𝑛𝑒𝑠𝑡 is not null then
16: 𝑠.destination← random_location_in_site(𝑏𝑒𝑡𝑡𝑒𝑟_𝑛𝑒𝑠𝑡)
17: 𝑠.destination_site← 𝑏𝑒𝑡𝑡𝑒𝑟_𝑛𝑒𝑠𝑡

18: if 𝑠.destination is not null then
19: if 𝑠.location.site_name == 𝑠.destination_site.site_name and

𝑠.destination_site != 𝑠.home_nest and not 𝑠.exploring_site then
20: ◁Agent has just arrived at the better site it heard of
21: 𝑠.exploring_site← True
22: 𝑠.travel_distance← 10
23: 𝑠.angle← random_float_from(0, 2𝜋)
24: 𝑠.starting_point← (𝑠.location.x, 𝑠.location.y)
25: else if 𝑠.destination_site == 𝑠.home_nest and 𝑠.location.state.site_name

== 𝑠.destination_site.site_name then
26: ◁Agent just became FN and just arrived at home
27: 𝑠.destination← null
28: 𝑠.destination_site← null
29: else if not 𝑠.exploring_site then
30: ◁Agent still headed towards either home or a better nest
31: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← get_direction_from_destination(
32: 𝑠.destination, (𝑠.location.x, 𝑠.location.y))
33: return 𝑠.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

34: ◁FN agents have chance of becoming FA
35: 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐ℎ𝑎𝑛𝑐𝑒← 𝑠.L/9
36: if random_float_from(0,1) < 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐ℎ𝑎𝑛𝑐𝑒 and not 𝑠.exploring_site)

then
37: 𝑠.destination← random_location_in_site(𝑠.favored_site)
38: 𝑠.activity_type← Active
39: return 𝑠.location.state, 𝑠, S

57

Algorithm 9 Favoring Nest (FN) algorithm (continued)
40: ◁Agent finished exploring better site; changes to favoring it
41: if 𝑠.travel_distance == 0 and 𝑠.exploring_site then
42: 𝑠.destination← null
43: 𝑠.exploring_site← False
44: 𝑠.favored_site← 𝑠.destination_site
45: 𝑠.destination_site← null
46: if random_float_from(0, 1) < 9/10 then
47: 𝑠.destination← random_location_in_site(𝑠.home)
48: 𝑠.destination_site← 𝑠.home_nest
49: return 𝑠.location.state, 𝑠, S
50: else
51: 𝑠.activity_type← Active
52: return 𝑠.location.state, 𝑠, S

Committed Active Transitions

In the Committed Active state, agents have already sensed a quorum and are wander-

ing the arena to broadcast the quorum to any straggling agents. After the agent has

travelled a distance of 1/L (as set in the check_quorum_sensed) function definition,

the agent returns to the home nest and finishes the algorithm. The algorithm for this

state can be seen in Algorithm 10.

Algorithm 10 Committed Active (CA) Agent Transition for an agent 𝑎

1: procedure generate_transition_CA(local_vertex_mapping))
2: 𝑠← 𝑎.state
3: ◁Agent done with algorithm
4: if 𝑠.terminated then
5: return 𝑠.location.state, 𝑠, S
6: ◁Agent finishing algorithm, headed to committed site
7: if 𝑠.destination_site == 𝑠.quorum_site or 𝑠.travel_distance == 0

then
8: 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟 ← committed_agent_state_and_dir(𝑠)
9: else

10: 𝑛𝑒𝑤_𝑑𝑖𝑟 ← get_travel_direction()
11: return 𝑠.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟

58

Committed Nest Transitions

In the Committed Nest state, agents have already sensed a quorum and are either

going towards / are inside the home nest to broadcast the quorum to other agents, or

have finished broadcasting and are back inside the committed site. (Once committed

agents return to the committed site, they have finished the algorithm and will no

longer take any actions). The code for the committed nest transitions can be seen in

Algorithm 11.

Algorithm 11 Committed Nest (CN) Agent Transition for an agent 𝑎

1: procedure generate_transition_CN(local_vertex_mapping))
2: 𝑠← 𝑎.state
3: ◁Agent done with algorithm
4: if 𝑠.terminated then
5: return 𝑠.location.state, 𝑠, S
6: ◁Agent headed towards home nest to broadcast quorum
7: if 𝑠.destination_site == 𝑠.home then
8: if 𝑠.location.state == 𝑠.home then
9: 𝑠.destination← null

10: 𝑠.destination_site← null
11: 𝑠.travel_distance← int(1/𝑠.L)
12: 𝑠.angle← random_float_from(0, 2𝜋)
13: 𝑠.starting_point← (𝑠.location.x, 𝑠.location.y)
14: else
15: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← get_direction_from_destination(
16: 𝑠.destination, 𝑠.location.x, 𝑠.location.y))
17: return 𝑠.location.state, 𝑠, new_direction
18: ◁Agent finishing algorithm, headed to committed site
19: if 𝑠.destination_site == 𝑠.quorum_site or 𝑠.travel_distance == 0

then
20: 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟 ← committed_agent_state_and_dir(𝑠)
21: else
22: 𝑛𝑒𝑤_𝑑𝑖𝑟 ← get_travel_direction()
23: return 𝑠.location.state, 𝑠, 𝑛𝑒𝑤_𝑑𝑖𝑟

59

3.7.4 Resolution Rule

In the house hunting model, agents do not affect vertex states in any way (they are

not acting on their environment) so their new proposed vertex state always remains

the same as the old vertex state. Therefore, all agents have the same understanding of

the grid when they are transitioning, so all agents should be allowed to execute their

new proposed state and direction of motion. Therefore, we use a naive resolution

rule which just picks a random one of the new vertex states (since they all should

be the same) and accepts all proposed agent state and direction changes. The naive

resolution rule can be seen below:

Algorithm 12 Naive resolution rule
1: procedure naive_resolution(proposed_vertex_states, pro-

posed_agent_states, proposed_agent_dirs))
2: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒← 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠.values()[0]
3: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠← 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠
4: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠← 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠
5: return 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠

Note that while the resolution rule for house hunting is simple, the resolution

rules for other problems, such as task allocation, where agents are modifying their

environment, will need to actively choose a new proposed vertex state and may have to

block some agents from transitioning state and direction if their vertex state proposal

was rejected.

60

Chapter 4

Two Task Allocation Algorithms in

Unknown Environments with Varying

Task Density

Task allocation is an important problem for robot swarms to solve, allowing agents to

reduce task completion time by performing tasks in a distributed fashion. Many ex-

isting task allocation algorithms assume prior knowledge of task location and demand

or fail to consider the effects of the geometric distribution of tasks on the comple-

tion time and communication cost of the algorithms [4, 5, 23, 56]. In this thesis, we

examine an environment where agents must explore and discover tasks with positive

demand and successfully assign themselves to complete all such tasks. We propose

two new task allocation algorithms for initially unknown environments – one based

on N-site selection and the other on virtual pheromones. We analyze the effect of

algorithm-specific parameters on each algorithm and also evaluate the effectiveness

of the two algorithms in dense vs. sparse task distributions. Compared to the Levy

walk, which has been theorized to be optimal for foraging [54], our virtual pheromone

inspired algorithm is much faster in all but very high task densities but is commu-

nication and agent intensive. Our site selection inspired algorithm also outperforms

Levy walk in sparse task densities and is a less resource-intensive option than our

virtual pheromone algorithm for this case. At very high task densities, Levy walk

61

outperforms our algorithms because the time spent communicating about tasks is

not worth it when tasks are very easily found. Because the performance of both al-

gorithms relative to random walk is dependent on task density, our results shed light

on how task density is important in choosing a task allocation algorithm in initially

unknown environments.

4.1 Introduction

Robot swarms are simple, distributed units that are able to work together to achieve

emergent collective behaviours [18]. Swarm algorithms often draw inspiration from

swarms in nature such as birds, ants, and bees [41, 46, 31]. Swarm algorithms provide

a scalable and fault-tolerant solution to problems such as search-and-rescue [14] and

environmental monitoring [17]. One of the most well-studied swarm problems is task

allocation [22], which aims to assign agents to tasks in an optimal manner.

Many classes of task allocation algorithms assume that task locations and demand

for agents are known, and try to optimize an assignment of agents to tasks [5, 56,

4]. However, in many applications, such as finding and defusing mines [50], task

information is not initially known. Algorithms which do consider task allocation in

unknown environments run limited testing on the effects of task density. However,

the density of tasks in the environment affects relative algorithm performance.

In this paper, we consider the problem of assigning agents to tasks with positive

demand in an initially unknown environment. We assume each agent can only be

assigned to one task. Within this framework, we contribute two new algorithms and

compare them to the Levy Walk (RW), which is used in nature for foraging [45].

We also show how task density makes our different algorithms better suited towards

different task environments.

The first algorithm, our house hunting task allocation algorithm (HHTA), is in-

spired by swarm house-hunting models [44]. While the house hunting problem aims

for agents to agree on one of many locations in the environment, the task allocation

problem aims for agents to split themselves proportionally to task demand amongst

62

all tasks in the environment. In our HHTA algorithm, agents use their starting loca-

tion as a home base that they can return to after discovering tasks in the environment.

The home base functions as a central point of communication and allows for agents

to recruit each other to do tasks, serving the same function as the home nest in many

swarm house hunting algorithms such as our new algorithm in Chapter 3.

The second algorithm is a propagation-based algorithm (PROP), which uses a

regular grid of cheap, simple agents to propagate task demand information outwards

to neighboring propagator agents. We assign a separate type of agent with more

advanced computing powers to read the information and use it to probabilistically

decide which task to head towards. The propagation of task demand information via

cheap agents is inspired by virtual pheromones [1, 3], a commonly used nature-inspired

technique in swarm algorithms.

By comparing both algorithms to the Levy flight, we show that it is harder for

PROP to do well with very dense tasks, as a large influx of propagated information

can confuse agents. Our other algorithm, HHTA, does worse when tasks are mid to

high density because inter-agent communication about tasks is not worth it compared

to a random walk, which is highly likely to encounter tasks quickly. However, it does

better than RW when tasks are sparse as the cost of communication about task

location is justified when tasks are harder to find. It is also less resource intensive

compared to PROP. We also evaluate the effects of varying individual parameters

within several task densities in order to better understand our new algorithms.

Our results demonstrate how different task allocation algorithms do well in en-

vironments with different task density and invite further examination on the perfor-

mance of other task allocation algorithms in different types of task environments.

Section 4.2 provides the inspiration for our two proposed algorithms, explaining

house hunting and virtual pheromones in greater depth. Section 4.3 describes our

general formal model and our task allocation problem statement. Section 4.4 dives

into our two new algorithms. Our simulation results and comparison between the two

new algorithms in sparse and dense task environments can be found in Section 4.5.

Section 4.6 discusses our results, and Section 4.7 concludes our findings and provides

63

ideas for future work. Section 4.8 provides pseudocode details for the two algorithms

we introduce.

4.2 Background

Task allocation is a well studied problem and several variants of the problem have

been studied. Per the taxonomy defined in [22] our task allocation problem is of the

single-task agents, multi-robot tasks variety, which means that agents can only do

one task at a time, but tasks may require multiple agents.

When task demands and locations are known, this problem becomes a coalition

formation problem, where we wish to form agents into groups that are best suited to

do each task. This problem can be thought of as a set partitioning problem [22], and

adaptations to distributed swarms have been proposed [5, 56].

Other strategies for when tasks are fixed at known locations model tasks as a

graph where agents can travel between edges [4, 30, 23]. These algorithms optimize

for a flow rate between edges in the graph so that agents can satisfy all task demands

quickly. Another strategy in this case, based on Optimal Mass Transport [52], is to

treat the tasks with demands as sinks and the tasks with agents as sources in a min

cost flow problem. However, both strategies require prior knowledge of task locations.

Our problem differs from coalition formation and the graph-based task allocation

problems because we are assuming that agents have no initial knowledge of task loca-

tion or demands. In this case, we want to discover tasks and communicate information

about them as quickly as possible so that agents can satisfy all task demands.

One solution to task allocation in an environment with unknown tasks is to have

agents form local clusters and run Optimal Mass Transport locally [57]. Other task

allocation algorithms, such as auction-based algorithms, perform a similar type of

agent clustering to assign tasks [28]. Our two algorithms by contrast are fully dis-

tributed and computationally simple, without the need for grouping to locally run a

complex centralized algorithm. This allows us to save the time needed to form agent

clusters and allows agents to be cheaper to implement due to low computation cost.

64

4.2.1 Levy Flight

The Levy Flight is a random walk shown to be optimal in certain foraging scenarios.

When the resources being foraged are destructive (resources do not reappear after

being foraged) or are non-destructive (resources can be visited any number of times)

and sparse, then the Levy Flight is the optimal random walk for foraging [54]. The

Levy flight has been observed in foraging animals and has been adapted to swarm

algorithms [45, 20] as well. As such, we will be using this random walk as a baseline

to compare against for our two new algorithms.

4.2.2 House Hunting

Several ant species engage in a house-hunting behaviour when their home nest is

destroyed [41, 40]. First, ants explore nearby for nest sites. If a site is found, the

ant waits a period of time inversely proportional to the site quality before returning

to the home nest to lead others to the new nest. This process of recruitment is

known as forward tandem running (FTR). Once the encounter rate of other ants in

the candidate nest reaches a critical threshold known as the quorum threshold, ants

switch to carrying members of the colony to the new nest. This carrying behaviour

is 3 times faster than FTR and accelerates the move to the new site [41].

Ant house hunting has inspired the corresponding swarm problem of N-site selec-

tion [53], where agents must choose the highest quality site from N initially unknown

candidates. One common N-site selection model has agents transition between four

main states: Uncommitted Interactive, Uncommitted Latent, Favoring Interactive,

and Favoring Latent [44]. Some works also include a fifth Committed state [32, 13, 7].

In this type of model, Uncommitted Interactive agents explore the arena for new sites,

while Uncommitted Latent agents stay in the home nest. Once an Uncommitted In-

teractive agent discovers a site, it can decide to favor the site. Favoring agents can be

interactive, meaning they return to the home nest to recruit other favoring agents, or

latent, meaning they stay in their favored site to build up quorum. Lastly, if agents

detect a sufficient number of others in a new candidate site, they can transition into

65

the committed state to finalize their decision.

Task allocation can be thought of as a variant of the house hunting problem,

where instead of trying to send all agents to one location, we want to send agents

to multiple locations according to the demand at each one. This idea has been

used in Berman [4] and Halasz’s [23] work to develop task allocation algorithms

for a known graph of tasks where agents can traverse along the edges. We extend

this idea further by using inspiration from site selection algorithms to develop our

HHTA algorithm. In HHTA, agents use a home nest which functions as a location

for recruiting other agents to tasks and communicating with other agents. The four

main states of the HHTA algorithm share parallels to the Uncommitted Interactive,

Uncommitted Latent, Favoring Active, and Committed states described above which

are further explained in Section 4.4.1.

4.2.3 Virtual Pheromones and Potential Fields

Ants leave pheromones in their environment when foraging to guide other ants to any

discovered food sources [1]. This strategy of leaving information in the environment

has inspired swarms to implement virtual pheromones (pheromones represented by

computational data instead of chemical signals). For example, [3] used physically

deployable beacons that robots could leave in the environment to store information

in, and [36] set up a virtual pheromone approach with a pre-deployed network of

beacons that acted as a grid of locations to leave information in. One cheap way to

implement virtual pheromones is using wireless sensor motes to store and propagate

information [49].

Pheromones are frequently used in conjunction with potential fields or particle

swarm optimization techniques. Potential field algorithms model objects in the en-

vironment as either positive charges or negative charges, with agents experiencing

attraction or repulsion from the objects based on the electric force between them.

Particle swarm optimization [39] follows a similar physics approach, except the at-

tractive and repulsive forces were based on springs as opposed to charges. These

techniques are employed in navigation tasks, where potential fields and pheromones

66

can work together to guide robots around obstacles and towards a target in space

[38]. Pheromones are also employed in foraging tasks to help robots efficiently find

what they are foraging for [29].

We utilize the ideas of virtual pheromones in our propagation-base algorithm,

which uses simple mote-like agents to leave task information in the environment.

Task-performing robots use this information when searching for tasks in the task

allocation process. The use of virtual pheromones allows us to easily notify task-

performing robots of nearby tasks. We also use potential fields as inspiration for

how a robot’s motion should be influenced when it learns of multiple potential tasks

through pheromones in the environment. Robots are more attracted to tasks with

higher demand and tasks that are closer to their current location, so tasks can be

thought of like charges which robots can feel the force of.

4.3 Model

We first summarize our new discrete general model (presented in Chapter 2) for

modeling swarms. Then we discuss the individual restrictions, parameters, and agent

algorithms needed for task allocation.

The pseudocode for our general model can be found in Section 2.4. A pseudocode

description of our task allocation algorithms can be found in Section 4.8.

4.3.1 General Model

The general model we present in this section is an abbreviated description of our

model in Chapter 2. For more formal details, please see Chapter 2.

We use the special case of a rectangular grid instead of a torus. The special case

works by having agents treat the graph as a grid by never generating an out-of-bounds

direction of motion and by never using any vertices in their influence radius that they

wouldn’t be able to see on a grid due to edge effects. For more details on this special

case, please see Section 2.2.

We assume a finite set 𝑅 of agents, with a state set 𝑆𝑅 of potential states. Agents

67

move on a discrete rectangular grid of size 𝑁 × 𝑀 , formally modelled as directed

graph 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑀𝑁 . Edges are bidirectional, and we also include

a self-loop at each vertex. Vertices are indexed as (𝑥, 𝑦), where 0 ≤ 𝑥 ≤ 𝑁 − 1,

0 ≤ 𝑦 ≤𝑀 − 1. Each vertex also has a state set 𝑆𝑉 of potential states.

Local Configurations: A local configuration 𝐶 ′(𝑣) captures the contents of vertex

𝑣. It is a triple (𝑠𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝), where 𝑠𝑣 ∈ 𝑆𝑉 is the vertex state of 𝑣,

𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 ⊆ 𝑅 is the set of agents at 𝑣, and 𝑠𝑟𝑚𝑎𝑝 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 assigns an

agent state to each agent at 𝑣.

Local Transitions: The transition of a vertex 𝑣 may be influenced by the local

configurations of nearby vertices. We define an influence radius 𝐼, which is the

same for all vertices, to mean that vertex indexed at (𝑥, 𝑦) is influenced by all valid

vertices {(𝑎, 𝑏)|𝑎 ∈ [𝑥 − 𝐼, 𝑥 + 𝐼], 𝑏 ∈ [𝑦 − 𝐼, 𝑦 + 𝐼]}, where 𝑎 and 𝑏 are integers. We

can use this influence radius to create a local mapping 𝑀𝑣 from local coordinates to

the neighboring local configurations. For a vertex 𝑣 at location (𝑥, 𝑦), we produce

𝑀𝑣 such that 𝑀𝑣(𝑎, 𝑏) → 𝐶 ′(𝑤) where 𝑤 is the vertex located at (𝑥 + 𝑎, 𝑦 + 𝑏) and

−𝐼 < 𝑎, 𝑏 < 𝐼. This influence radius is representative of a sensing and communication

radius. Agents can use all information from vertices within the influence radius to

make decisions.

We have a local transition function 𝛿, which maps all the information associated

with a vertex and its influence radius at one time to new information that can be

associated with the vertex and the agents at that vertex for the following time.

Formally, for a vertex 𝑣, 𝛿 probabilistically maps 𝑀𝑣 to a quadruple of the form

(𝑠𝑣1,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝1, 𝑑𝑖𝑟𝑚𝑎𝑝1), where 𝑠𝑣1 ∈ 𝑆𝑉 is the new state of the vertex,

𝑠𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 is the new agent state mapping for agents at the vertex,

and 𝑑𝑖𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → {𝑅,𝐿, 𝑈,𝐷, 𝑆} gives directions of motion for agents

currently at the vertex. Note that 𝑅, 𝐿, 𝑈 , and 𝐷 mean right, left, up, and down

respectively, and 𝑆 means to stay at the vertex. The local transition function 𝛿 is

further broken down into two phases as follows.

Phase One: Each agent in vertex 𝑣 uses the same transition function 𝛼, which

probabilistically maps the agent’s state 𝑠𝑟 ∈ 𝑆𝑅, location (𝑥, 𝑦), and the mapping

68

𝑀𝑣 to a new suggested vertex state 𝑠𝑣′, agent state 𝑠𝑟′, and direction of motion

𝑑 ∈ {𝑅,𝐿, 𝑈,𝐷, 𝑆}. We can think of 𝛼 as an agent state machine model.

Phase Two: Since agents may suggest conflicting new vertex states, a rule 𝐿 is

used to select one final vertex state. The rule also determines for each agent whether

they may transition to state 𝑠𝑟′ and direction of motion 𝑑 or whether they must stay

at the same location with original state 𝑠𝑟.

Probabilistic Execution: The system operates by probablistically transitioning

all vertices 𝑣 for an infinite number of rounds. During each round, for each vertex 𝑣,

we obtain the mapping 𝑀𝑣 which contains the local configurations of all vertices in

its influence radius. We then apply 𝛿 to 𝑀𝑣 to transition vertex 𝑣 and all agents at

vertex 𝑣. For each vertex 𝑣 we now have (𝑠𝑣𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠𝑣, 𝑠𝑟𝑚𝑎𝑝𝑣, 𝑑𝑖𝑟𝑚𝑎𝑝𝑣) returned

from 𝛿.

For each 𝑣, we take 𝑑𝑖𝑟𝑚𝑎𝑝𝑣, which specifies the direction of motion for each agent

and use it to map all agents to their new vertices. For each vertex 𝑣, its new local

configuration is just the new vertex state 𝑠𝑣𝑣, the new set of agents at the vertex,

and the 𝑠𝑟𝑚𝑎𝑝 mapping from agents to their new agent states.

4.3.2 Task Allocation Problem Definition

Consider 𝑇 tasks [𝑡0 . . . 𝑡𝑇−1] arranged at a subset of vertices in our general model,

with at most one task at each vertex. Specifically, the task locations can be described

as 𝑙 = [(𝑥0, 𝑦0), . . . , (𝑥𝑇−1, 𝑦𝑇−1)], where 𝑙𝑖 = (𝑥𝑖, 𝑦𝑖) is the vertex location of task 𝑡𝑖

and 𝑖 ̸= 𝑗 → 𝑙𝑖 ̸= 𝑙𝑗 (each task has a distinct location). We wish to distribute agents

among the tasks to achieve a certain distribution 𝑎 = [𝑎0, ..., 𝑎𝑇−1] where 𝑎𝑖 represents

the number of agents doing task 𝑖 and
∑︀

𝑎𝑖 = 𝑘𝑅 < 𝑅 (meaning a fraction 𝑘 of all

agents is enough to complete all the tasks).

We assume that when an agent senses a task within its influence radius, it is able

to detect the demand of that task. This assumption follows from our general model,

which assumes agents have access to all vertex states of the vertices within their

influence radius. Since agents can also detect how many agents are at the task, they

can use this information to compute the residual demand, defined as the difference

69

between the task demand and the number of agents already at the task. We denote

the residual demand at task 𝑖 by 𝑡𝑟𝑑𝑖 . We assume that the desired task distribution

does not change over time, and that the task is complex enough that each agent can

only do one task over the course of the algorithm.

In order to properly represent tasks in both of our algorithms, the vertex state set

𝑆𝑉 contains the following variables: is_task, whether the vertex is a task; demand,

the task demand if the vertex is a task; residual_demand, the residual demand if

the vertex is a task; task_location, the 𝑥, 𝑦 coordinates of the vertex if it is a task.

We go into more detail on the agent states and transitions for our two algorithms

in Sections 4.4.1 and 4.4.2. One other detail to note about task allocation is that

in phase two of 𝛿, we reconcile conflicting proposed vertex states. This shows up

in task allocation when multiple agents attempt to claim the same task. When this

happens, if there are 𝑠 agents trying to claim the task but only 𝑟𝑑 < 𝑠 residual

demand, then only 𝑟𝑑 agents are allowed to transition their state to having claimed

the task. Otherwise, if 𝑟𝑑 > 𝑠, all agents will be allowed to claim the task.

4.4 Algorithms

In this section we present our two new task allocation algorithms, HHTA and PROP,

which are designed to run within the general model framework described in Section

4.3.

4.4.1 House Hunting Task Allocation Algorithm

In our house-hunting inspired algorithm (HHTA), agents start out at a square home

nest with lower left corner (𝑥1
ℎ, 𝑦

1
ℎ) and upper right corner (𝑥2

ℎ, 𝑦
2
ℎ). Call the set of

vertices that make up the home location ℋ. We assume that ∀𝑖, 𝑙𝑖 /∈ ℋ, meaning no

tasks are located at any home nest vertex. In HHTA, the vertex state set 𝑆𝑉 needs

the additional variable is_home, indicating whether the vertex is a home vertex or

not.

Agents can be in one of four core states: Home (H), Exploring (E), Recruiting (R),

70

or Committed (C). Home agents wait in the home nest for news of tasks. Exploring

agents explore the arena for tasks. Recruiting agents go to the home nest and try

to recruit others to go to a task they have found. Committed agents are already

committed to a task do not participate in any further decision making. The algorithm

is parameterized by the following three variables, which are used in the transitions

between these four core states:

• 𝑃𝑐, the base probability of committing to a task after discovering it

• 𝑃𝑒, the expected fraction of exploring agents

• 𝑟𝑚, the probability for Recruiting agents to send a message to another agent at

any given time step

All other variables used in the description of the algorithm that cannot be directly

calculated from {𝑃𝑐, 𝑃𝑒, 𝑟𝑚, 𝑁,𝑀} (where 𝑁 and 𝑀 are the size of the arena) are

unknown quantities that could be determined via simulation.

Home agents have a 𝑃𝐸 chance of converting to exploring agents, where 𝑃𝐸 is

defined as 𝐿*𝑃𝑒

1−𝑃𝑒
. Here, 𝑃𝑒 is the expected fraction of exploring agents and 𝐿 is defined

as 1/(𝑀 + 𝑁) where 𝑀 is the width of the grid, and 𝑁 is the height of the grid.

Exploring agents have a 𝑃𝐻 chance of converting to Home agents, where 𝑃𝐻 is defined

as 𝐿. Note that 𝐿 is independent of the number of agents, the number of tasks, and

the total task demand.

We let 𝑃𝑡𝑖 denote the probability that an exploring agent finds task 𝑖 at any given

time step. Once it finds task 𝑖, it has a 𝑐 = max(𝑃𝑐, 1/𝑡
𝑟𝑑
𝑖) chance of becoming a

Committed agent, where 𝑃𝑐 is an algorithm parameter and 𝑡𝑟𝑑𝑖 is the residual demand

of task 𝑖 as defined in Section 4.3.2. The agent has a 1 − 𝑐 chance of becoming a

Recruiting agent instead.

Committed agents have fully committed to a task and stay at that task. Recruiting

agents head back to the home nest to tell Home agents about the task they have

found. Agents recruiting for site 𝑖 have a 1/𝑡𝑟𝑑𝑖 chance to stop recruiting and become

committed to task 𝑖.

71

𝐻 𝐸

𝐶𝑖𝑅𝑖

𝑃𝐸

𝑃𝐻

𝑃
𝑡 𝑖
𝑐

𝑃 𝑡 𝑖
(1
−
𝑐)

𝑃
𝑟
𝑖

𝑃
𝑟
𝑖 (1
−
𝑐)

1/𝑡𝑟𝑑𝑖

Figure 4-1: State model of the four core states. The subscript 𝑖 denotes that an agent
is recruiting for or committed to site 𝑖.

Recruiting agents have a 𝑟𝑚 chance of sending a message to each agent within

their influence radius at each time step, where 𝑟𝑚 is the message rate. We let 𝑃𝑟𝑖

denote the probability that a Home agent receives at least one recruiting message

for task 𝑖 at any given time step. If a Home agent does receive a message from a

recruiting agent, it has a 𝑃𝑐 chance of committing to the task and heading towards

it, and a 1 − 𝑃𝑐 chance of recruiting for the task. Note that the residual demand

information for C and R agents may become stale as more agents commit to tasks.

A diagram of the transitions between these core states can be found in Figure 4-1.

In order to execute the core state transitions, the agent state set 𝑆𝑅 consists of the

following variables: core_state, which can be H, E, R or C; id, the agent id, taking

on values from 0 . . . |𝑅| − 1; L, defined as 𝐿 = 1/(𝑀 +𝑁); P_commit, the probability

𝑃𝑐; P_explore, the probability 𝑃𝑒; message_rate, the message rate 𝑟𝑚; angle, the

agent’s current angle of travel; starting_point, a random walk parameter tracking

where the agent started from; travel_distance, the length of the current leg of the

random walk; destination_task, the agent’s destination if they have just found a

task or are headed towards their committed task; home_destination, the agent’s

destination if they are headed to a home vertex; recruitment_task, the task an

agent is recruiting for; and committed_task, the task an agent has committed to.

The agent transition function 𝛼 uses these state variables to implement the transitions

72

between the four core states.

We would now like to provide some intuition for the transitions presented in the

HHTA algorithm. Firstly, the transition probability 𝑃𝐻 from the Exploring to the

Home state (with 𝐿 being defined as 1
𝑀+𝑁

and 𝑃𝐻 being defined as 𝐿) indicates that

agents are expected to explore for 𝑀 + 𝑁 time steps (enough to reach the corners

of the grid) before returning home. The factor of 𝐿 is inspired by house hunting

algorithms, where 𝐿 is defined as the inverse of the average site round trip so that

exploring agents will have enough time to reach candidate sites before returning home.

The transition 𝑃𝐸 in the other direction from Home to Exploring ensures that the

expected fraction of Exploring agents out of the total number of Exploring and Home

agents is 𝑃𝑒.

When an Exploring agent discovers a task, its probability of becoming Committed

was mentioned to be max(𝑃𝑐, 1/𝑡
𝑟𝑑
𝑖). Here, 𝑃𝑐 is the base probability of committing.

We take the max of 𝑃𝑐 with 1/𝑡𝑟𝑑𝑖 to ensure that if task 𝑖 has low enough residual

demand 𝑡𝑟𝑑𝑖 such that 1/𝑡𝑟𝑑𝑖 > 𝑃𝑐, then agents have a higher chance than the base

probability 𝑃𝑐 of committing to the task right away. If a task has residual demand 1,

for instance, any agent which discovers it will commit to the task right away instead

of trying to recruit others for it.

We would like to mention that 𝑃𝑟𝑖 , the probability that a Home agent receives

at least one recruiting message for task 𝑖 at any given time step, can be defined as

𝑃𝑟𝑖 = 𝐼1−𝑟𝑚(𝑅𝑡𝑖−1, 2) where 𝑅𝑡𝑖 represents the number of agents recruiting for task 𝑖

that are within sensing radius, and 𝐼 is the regularized incomplete beta function. This

formula can be derived by seeing that the distribution of the number of messages that

the Home agent receives about task 𝑖 is a binomial distribution with 𝑛 = 𝑅𝑡𝑖 , 𝑝 = 𝑟𝑚

(where 𝑛 is the number of independent experiments and 𝑝 is the probability of success).

Thus, the probability that at least 𝑘 messages are received is the CDF of this binomial

distribution evaluated at 𝑘, which is given by 𝐼1−𝑝(𝑛− 𝑘, 1+ 𝑘). Since we are looking

for the probability that at least one message about task 𝑖 is received, 𝑘 = 1. Plugging

in for 𝑝, 𝑛, 𝑘 gives 𝑃𝑟𝑖 = 𝐼1−𝑟𝑚(𝑅𝑡𝑖 − 1, 2).

73

4.4.2 Task Propagation Algorithm

In our task propagation algorithm (PROP), we distinguish between two types of

agents – 𝑁 * 𝑀 propagators and 𝐹 followers. Propagators are simple, mote-like

agents. One of them is assigned to each vertex to allow vertices to propagate task

information to each other. Followers are more advanced agents which are able to

perform the tasks in the task allocation problem. Followers follow the signals left by

propogators in order to find tasks.

Similarly to HHTA, all agents are initially deployed at a square home location

with lower left corner (𝑥1
ℎ, 𝑦

1
ℎ) and upper right corner (𝑥2

ℎ, 𝑦
2
ℎ). However, agents in

PROP do not utilize this home location after starting the algorithm. We assume this

home location to be at the center of the grid to ease deployment. First, all 𝑁 *𝑀

propagators travel to the vertex which they are assigned to, taking 𝑀+𝑁
2

time for all

agents to reach their assigned vertex.

Each propagator has an influence radius of 1 and also stores in its state a mapping

ℳ𝑇 from task locations 𝑙𝑖 to residual demands 𝑡𝑟𝑑
′

𝑖 , representing that it has heard

that task 𝑖 at location 𝑙𝑖 has residual demand 𝑡𝑟𝑑
′

𝑖 . After all propagators are in

place, propagators that are at a task vertex 𝑖 spread the tuple (𝑡𝑟𝑑
′

𝑖 , 𝑙𝑖) to all other

propagators in their influence radius. Every 𝑡𝑝 time steps, a propagator takes all

new task information (if it has new information it did not already propagate) it has

received and spreads that information to all other propagators in their influence radius

with the following conditions: information about task 𝑖 can only be spread to agents

whose assigned vertex 𝑣 is located within the bounds [𝑥𝑖 − 𝐼𝑀 , 𝑥𝑖 + 𝐼𝑀] for the x

coordinate and [𝑦𝑖 − 𝐼𝑀 , 𝑦𝑖 + 𝐼𝑀] for the y coordinate, and the Euclidian distance

between 𝑖 and 𝑣 must be less than or equal to 𝑑𝑝. Here, 𝑡𝑝 is the integer propagation

timeout and 𝑑𝑝 is the maximum propagation radius.

Because the residual demand of a task changes over time, the propagator at task

𝑖 will have to send new information whenever the residual demand decreases. When

a propagator which already has task information ℳ𝒯 (𝑙𝑖) → 𝑡𝑟𝑑
′

𝑖 receives new in-

formation about a task (𝑡𝑟𝑑
′′

𝑖 , 𝑙𝑖), it updates the task information for task 𝑖 to be

74

ℳ𝒯 (𝑙𝑖)→ 𝑚𝑖𝑛(𝑡𝑟𝑑
′

𝑖 , 𝑡𝑟𝑑
′′

𝑖) in order to have the most up-to-date information. Since the

residual demand of a task is always decreasing as more and more agents join the task,

we know the smaller residual demand is the more accurate one.

Followers try to use the information of propagators in order to find tasks to head

towards. Followers only begin their algorithm after all propagator agents have reached

their assigned vertex and begun the propagation process described above. At every

time step, a follower first checks the vertices within its influence radius for a task with

non-zero residual demand, and starts moving towards that task if it exists. If no task

is found in its influence radius, a follower located at (𝑥, 𝑦) looks at the propagator

assigned to location (𝑥, 𝑦) in order to get information about potential task locations

it could head towards. It compiles all non-zero residual demands into the resulting

mapping 𝑀𝐹 , which maps from task locations 𝑙𝑖 to residual demands 𝑡𝑟𝑑
′

𝑖 . If 𝑀𝐹 is

non-empty (there is at least one task location with non-zero residual demand) then

the probability that a follower located at (𝑥, 𝑦) heads towards task location 𝑙𝑖 ∈ 𝑀𝐹

is:
𝑀𝐹 (𝑙𝑖)

𝐿2(𝑙𝑖,(𝑥,𝑦))2∑︀
𝑙𝑗∈𝐷(𝑀𝐹)

𝑀𝐹 (𝑙𝑗)

𝐿2(𝑙𝑗 ,(𝑥,𝑦))2

(4.1)

This means that the probability of a follower heading towards a task has an

inverse square relationship with 𝐿2 distance between the task location and the agent’s

location, and is also weighted by the residual demand of the task itself. This equation

is determined so that agents are less likely to travel to tasks that are further away

from them, but more likely to travel to a task if it has higher residual demand. If the

mapping 𝑀𝐹 is empty (the agent has no task information), it takes a random step in

one direction {𝐿,𝐷,𝑅, 𝑈} (following a Levy flight random walk) in order to explore.

Once a follower agent reaches a task with non-zero residual demand, it stays there

indefinitely, "completing the task" and decrementing the task’s residual demand by

one.

In order to execute the algorithm, the agent state set contains the following vari-

ables: type, the type of agent, which can be ‘propagator’ or ‘follower’ and id, the

agent id, which takes on values from 0 . . . |𝑁 ·𝑀 + 𝐹 | − 1. The following additional

75

variables are in SR and are only used by propagator agents: task_info, the map-

ping ℳ𝒯 ; propagation_rate, the propagation timeout 𝑡𝑝; and propagation_ctr,

the number of rounds since an agent last propagated task information. Lastly, the

variables in SR used only by follower agents are: destination_task, the agent’s des-

tination if they have just found a task or are headed towards their committed task;

committed_task, the task an agent has committed to; angle, a random walk param-

eter denoting angle of travel; starting_point, a random walk parameter tracking

where the agent started from; and travel_distance, the length of the current leg of

the random walk.

4.5 Results

Our algorithms were tested in simulation using Pygame on a grid of size 𝑀 = 𝑁 = 50.

Each vertex had an area of 1cm2, meaning that agents moved at 1cm/s, a speed which

simple, low-cost robots are able to move at [48]. All simulations were run using 100

task-performing agents and the total task demand summed to 80. In the trials for

the HHTA algorithm, agents had an influence radius of 2. In the trials for the PROP

algorithm, propagators had an influence radius of 1 and followers had an influence

radius of 2.

For each set of trials, we evaluated task completion time, defined as the time

necessary for the total residual demand to become 0. In subsections 4.5.1 and 4.5.2,

we also measure the average number of messages sent per run per agent. For the

HHTA algorithm, whenever a Home agent is notified of a task by a Recruiting agent,

the Recruiting agent’s message count is incremented. For the PROP algorithm, the

message count is incremented when a propagator shares new task information with

one of its neighbors. We do not track the message count for follower agents since it

is a negligible portion of total messages.

76

5 10 15 20 25 30
Tasks

300

400

500

600

700

800
Ti

m
e

to
 C

om
pl

et
io

n
(#

 R
ou

nd
s)

Effect of Task Density on Runtime

HHTA
RW

0 20 40 60 80
Tasks

200

300

400

500

600

700

800

Ti
m

e
to

 C
om

pl
et

io
n

(#
 R

ou
nd

s)

Effect of Task Density on Runtime

HHTA
RW

Figure 4-2: The effect of number of tasks on completion time for HHTA and RW,
tested on up to 30 tasks (left) and on up to 80 tasks (right). The graph on the left
highlights the sparser task densities where HHTA performs best.

4.5.1 Effects of Task Density on HHTA Performance

To examine the effects of task density on the HHTA algorithm’s performance, we

measured task completion time and average number of messages sent per agent for

𝑇 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80}. For each value of 𝑇 (the number

of tasks), we ran 100 trials with 𝑚𝑟 = 1
6
, 𝑃𝑒 = 2

3
, 𝑃𝑐 = 3

10
. Note that 𝑇 directly

determines task density since the size of our arena was held fixed. Therefore, we refer

to low 𝑇 as low task density and high 𝑇 as high task density.

We compared the performance of HHTA to the Levy Flight random walk (RW).

The Levy Flight random walk sampled random walk step lengths from a Levy dis-

tribution with 𝜇 = 10. Figure 4-2 shows the resulting average task completion time

for varying task densities. The HHTA algorithm outperforms the random walk by

about 100 rounds in very sparse task setups when 𝑇 ≤ 6 and performs comparably

when 7 ≤ 𝑇 ≤ 10, but for denser task setups, the cost of returning to the home nest

to recruit others is too high compared to the random walk (Welch’s T-test, p=0.05).

We can approximate the area covered by detectable tasks as 𝑇 (2𝐼+1)2

𝑁𝑀
, where (2𝐼 +1)2

is the size of the influence radius (in reality, the ratio would be a bit smaller as the

detectable range for tasks can intersect). This means that for our choice of param-

eters, the HHTA algorithm outperforms the random walk when about 6% or less of

the total task area has an immediately detectable task.

77

5 10 15 20 25 30
Tasks

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Av
er

ag
e

M
es

sa
ge

s
S

en
t

Effect of Task Density on Average Messages Sent

Figure 4-3: The effect of number of tasks on average messages sent per agent for
HHTA

Figure 4-3 shows the average number of messages sent per agent for the HHTA

algorithm. (Note that the random walk algorithm uses no communication). Note

that on average, each agent sends fewer than 1.2 messages per round using HHTA.

Note also that agents send fewer messages on average as density increases. Since the

total task demand is fixed at 80, a larger number of tasks indicates less demand per

task on average, making agents in the HHTA algorithm less likely to enter the task

state (where messages are sent) and remain in it.

4.5.2 Effects of Task Density on PROP Performance

To examine the effects of task density on the PROP algorithm’s performance, we

once again measured task completion time and average number of messages sent per

propagator agent for 𝑇 ∈ {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80}.

For each value of 𝑇 (the number of tasks), we ran 20 trials with 𝑡𝑝 = 3 and 𝑑𝑝 = 25.

Note again that 𝑇 directly determines task density since the size of our arena was

held fixed. Therefore, we refer to low 𝑇 as low task density and high 𝑇 as high task

density.

We compared the performance of PROP to the same Levy Flight random walk

(RW) that we compared HHTA with. The Levy Flight random walk sampled random

78

0 20 40 60 80
Tasks

200

300

400

500

600

Ti
m

e
to

 C
om

pl
et

io
n

(#
 R

ou
nd

s)

Effect of Task Density on Runtime

PROP
RW

Figure 4-4: The effect of number of tasks on completion time for PROP and RW

walk step lengths from a Levy distribution with 𝜇 = 10. Figure 4-4 shows the result-

ing average task completion time for varying task densities. The PROP algorithm

outperforms the random walk significantly (Welch’s T-test, p=0.05) in sparser task

setups (𝑇 ∈ [1, 25]), with fewer tasks exaggerating this performance gap nonlinearly.

In moderately dense task setups (𝑇 ∈ [30, 60]), the two algorithms’ runtimes are

comparable, and in our most dense task setups (𝑇 ∈ [70, 80]), the random walk be-

gins to increasingly outperform the PROP algorithm to a significant extent (Welch’s

T-test, p=0.05). Intuitively, as the density of tasks in the environment increases,

follower agents are more likely to find tasks in their influence radius (benefiting RW).

Conversely, more tasks means more task information within each propagator agent,

overloading and misguiding the follower agents during their decision process (harming

PROP). This overload occurs as a result of having too many nearby tasks as choices

for followers to head towards. Because followers decide a new direction of motion

at each time step based on propagator agents’ information, too many task options

increases a follower’s chance of indecision (choosing different tasks at each time step

to head towards). After a certain point, too much propagated information results in

that information declining in its specificity and thus usefulness.

Figure 4-5 shows the average number of messages sent per propagator agent per

round (for the PROP algorithm). Note that on average, each propagator agent sends

79

20 40 60 80
Tasks

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Av
er

ag
e

M
es

sa
ge

s
Se

nt

Effect of Task Density on Propagation Message Count

Figure 4-5: The effect of number of tasks on average messages sent per propagator
agent per round (for PROP)

fewer than 1.3 messages to other agents per round; however, given the grid space’s

size, a large communication cost is still incurred as there are 2, 500 propagator agents.

Regarding the effect of task density on these communication costs, agents generally

send more messages as the number of tasks increases. When there are more tasks and

thus more vertices close to tasks, it takes less time for most of the propagator agents

to receive some information initially that they can begin propagating. Additionally,

having more tasks means that some task’s demand gets updated more often, resulting

in there being new information (as messages) that needs to be propagated more often.

This increasing trend becomes less dramatic at higher task densities, likely due to the

fact that with enough tasks, the overlapping propagation radii all cover roughly the

same area. As shown in Figure 4-4, recall that higher task densities result in higher

completion times for the PROP algorithm. Therefore, higher task densities do not

only result in agents sending more messages per round, but the total number of

messages sent over an entire run increases even more dramatically along with the

number of tasks.

80

0.0 0.2 0.4 0.6 0.8
P_commit

400

500

600

700

800

Ti
m

e
to

 C
om

pl
et

io
n

(#
 R

ou
nd

s)

Effect of P_commit on Runtime

HHTA, 16 tasks
HHTA, 10 tasks
HHTA, 4 tasks

Figure 4-6: The effect of 𝑃𝑐 on HHTA completion time for {4, 10, 16} tasks

4.5.3 Effects of 𝑃𝑐 on HHTA Completion Time for Varying

Task Density

We explored the effects of varying 𝑃𝑐, the base probability of committing to a task

instead of recruiting for it, on completion time for varying 𝑇 . We ran 100 trials for

each value of 𝑃𝑐 ∈ { 𝑖
10
, 0 ≤ 𝑖 ≤ 9} using 𝑚𝑟 =

1
6

and 𝑃𝑒 =
2
3
. The results can be seen

in Figure 4-6.

For 𝑃𝑐 ≤ 0.7, there was no significant difference between the HHTA completion

time at different task densities (Welch’s T-test, p=0.05). However, for 𝑃𝑐 ∈ {0.8, 0.9},

the completion time for 𝑇 = 4 is higher than the completion time for 𝑇 = 16 (Welch’s

T-test, p=0.05). Our results show that only for large 𝑃𝑐 do we see a significant

difference in performance at different task densities. This makes sense, as a larger

proportion of committing agents means agents mostly find tasks by discovering them

independently, which is harder in the sparse case. We also note that from 𝑃𝑐 = 0.4

to 𝑃𝑐 = 0.8, task completion time follows an increasing trend, indicating that higher

recruitment (lower 𝑃𝑐) allows agents to complete tasks faster.

81

0.2 0.4 0.6 0.8 1.0
P_explore

400

500

600

700

800

Ti
m

e
to

 C
om

pl
et

io
n

(#
 R

ou
nd

s)

Effect of P_explore on Runtime

HHTA, 16 tasks
HHTA, 10 tasks
HHTA, 4 tasks

Figure 4-7: The effect of 𝑃𝑒 on HHTA completion time for {4, 10, 16} tasks

4.5.4 Effects of 𝑃𝑒 on HHTA Completion Time for Varying

Task Density

We also explored varying 𝑃𝑒, the probability of exploring vs. staying at home, running

100 trials each for 𝑃𝑒 ∈ { 𝑖
10
, 1 ≤ 𝑖 ≤ 10}, with 𝑇 ∈ 4, 10, 16 and using 𝑚𝑟 = 1

6
and

𝑃𝑐 =
3
10

. The results can be seen in Figure 4-7.

For 𝑃𝑒 ≤ 0.8, there was no significant difference between the HHTA completion

time at different task densities (Welch’s T-test, p=0.05) with the exception of 𝑇 = 10

vs. 𝑇 = 4 at 𝑃𝑒 = 0.2, with 𝑝 = 0.03. However, there was a significant difference

in completion time between 𝑇 = 4 and 𝑇 = 16 when 𝑃𝑒 = 1.0 and 𝑃𝑒 = 0.9. Our

results show that HHTA has a consistent completion time regardless of task density

other than for large 𝑃𝑒 ∈ {0.9, 1.0}, meaning a large majority of agents are exploring

(making the algorithm more similar to random walk). When 𝑃𝑒 is high, it is harder

to complete the sparse problem because exploring is harder in a sparse environment.

Our results also show that a more even balance of 𝑃𝑒 (the proportion of Exploring

agents) vs. 1−𝑃𝑒 (the proportion of Home agents) leads to a faster completion time.

When 𝑃𝑒 is too low, not enough agents are exploring, making it harder to find tasks.

When 𝑃𝑒 is too high, not enough agents are available in the home nest to be recruited

when tasks are found.

82

0 10 20 30 40 50 60 70
Max Propagation Radius (d_p)

100

200

300

400

500

600

Ti
m

e
to

 C
om

pl
et

io
n

(#
 R

ou
nd

s)

Effect of Maximum Propagation Radius on Runtime

PROP, 4 tasks
PROP, 10 tasks
PROP, 16 tasks
PROP, 50 tasks

Figure 4-8: The effect of maximum propagation radius (𝑑𝑝) on PROP completion
time for {4, 10, 16, 50} tasks

4.5.5 Effects of 𝑑𝑝 on PROP Completion Time for Varying

Task Density

We explored the effects of varying 𝑑𝑝, the maximum propogation radius, on com-

pletion time for varying 𝑇 . We ran 20 trials for each unique pair of 𝑑𝑝 ∈

{0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 50
√
2} (Note that 𝑑𝑝 = 50

√
2 means all tasks’ in-

formation can be propagated over the entire grid space) and 𝑇 ∈ {4, 10, 16, 50}, using

𝑡𝑝 = 3. The results can be seen in Figure 4-8.

For reasonably sparse task setups (𝑇 ∈ {4, 10, 16}), larger maximum propagation

radii correlate with faster runtimes (Welch’s T-test, p=0.05) but after a certain point,

completion time is mostly unchanged. In contrast, for very dense task setups (𝑇 =

50), besides a slight improvement in completion time moving from around 𝑑𝑝 = 0

to 𝑑𝑝 = 10, larger maximum propagation radii result in slower completion times

(Welch’s T-test, p=0.05). Increasing 𝑑𝑝 results in more propagator agents having

more task information, which allows (1) for follower agents to find tasks even if

they are far way and (2) for follower agents to leverage this extra task information to

prioritize tasks with higher demand. This causes the initial decline in completion time

for increasing 𝑑𝑝 values. However, if 𝑑𝑝 is too large, there is too much information

being propagated, diluting the agents’ strategy. This adverse effect is likely not

83

5 10 15 20
Propagation Timeout (t_p)

100

150

200

250

300

350

400

Ti
m

e
to

 C
om

pl
et

io
n

(#
 R

ou
nd

s)

Effect of Propagation Timeout on Runtime

PROP, 4 tasks
PROP, 10 tasks
PROP, 16 tasks

Figure 4-9: The effect of integer propagation timeout (𝑡𝑝) on PROP completion time
for {4, 10, 16} tasks

seen with sparser environments because even with every single propagator having

information about every single task, each mapping of task info is still bounded in

size by this smaller number of tasks. It is also reasonable to infer that the turning

point in each plot’s trend (when completion time either becomes constant or starts

increasing) is related to the 𝑑𝑝 value at which every propagator agent receives some

task information.

4.5.6 Effects 𝑡𝑝 on PROP Completion Time for Varying Task

Density

We explored the effects of varying 𝑡𝑝, the number of rounds a propagator must

wait before sharing new task information with its neighbors, on completion time

for varying T. We ran 20 trials for each unique pair of 𝑡𝑝 ∈ {1, 2, 3, 5, 10, 15, 20} and

𝑇 ∈ {4, 10, 16}, using 𝑑𝑝 = 25. The results can be seen in Figure 4-9.

There is a clear, mostly linear trend between 𝑡𝑝 and completion time, where in-

creasing the propagation timeout results in increasing completion times. The trend is

fairly consistent across all distinct task densities that were tested. This relationship

between 𝑡𝑝 and completion time is to be expected, as smaller 𝑡𝑝 means that task infor-

mation is moved about the environment more quickly, causing the information that is

84

used by follower agents to decide which task to move towards to be more up-to-date.

Besides at the very beginning, 𝑡𝑝 has no effect on the locations of task information, so

none of the adverse phenomena we have seen in which there is “too much” propagated

information occur when varying 𝑡𝑝. It is the same task information, simply better

when when the timeout is smaller. It is worth noting, though, that smaller values of

𝑡𝑝 involve more message passing.

4.6 Discussion

Our results demonstrate for both HHTA and PROP that when the total demand for

agents is held fixed, task density significantly affects algorithm performance. HHTA

performs better than RW when tasks are very sparse, and worse when the number of

tasks is high because communicating about individual tasks matters less when there

are many of them (Figure 4-2). RW performs very poorly with sparse tasks because it

becomes harder over time for the remaining agents to find tasks. PROP also performs

better than RW until the number of tasks is very high, as agents struggle to arrive

at tasks when too much task information is being propagated (Figure 4-4). PROP’s

completion time increases for very sparse tasks (𝑇 ≤ 6), though it still outperforms

RW and HHTA. We would also like to point out that PROP consistently outperforms

HHTA for all task densities tested, which can be seen by comparing Figures 4-2 and

4-4. Though PROP has a faster completion time and is more distributed than HHTA,

it is much more resource and communication intensive. This is because it requires a

propagator agent at every grid cell in order to spread information.

In relevant task allocation problems such as search-and-rescue or mine detection,

the number of tasks in the environment is expected to be sparse, so both algorithms

provide a speed-up in completion time compared to the Levy walk. HHTA pro-

vides a less agent intensive and less communication intensive approach but requires

a central communication location. Contrarily, PROP provides a quicker and more

distributed approach for sparse and mid-density environments but is more resource-

intensive. Since the Levy flight has been shown to optimize search efficiency and

85

can be observed in many species in nature, it makes sense that for very dense task

environments with a low demand per task, the Levy flight outperforms both algo-

rithms. Such environments are a very similar problem to foraging itself. On the other

hand, environments with fewer tasks that require more agents benefit more from the

coordination and communication of more advanced algorithms.

We also analyzed both algorithms’ mechanics individually, showing the importance

of recruitment in HHTA as well as the importance of an even balance of Exploring vs.

Home agents. For PROP, we showed as expected that generally, higher 𝑑𝑝 leads to

better performance, though it is more communication-intensive. We also showed that

as propagation timeout increases, time to completion increases, since task demands

are stale for longer periods of time.

We also note that in extreme parameter settings, HHTA completion time was

similar regardless of task density while varying algorithm parameters like 𝑃𝑐 and 𝑃𝑒.

However, this is untrue for PROP, which had a higher completion time for sparser

environments at low 𝑑𝑝, and a higher completion time for denser environments at

high 𝑑𝑝. This behavior makes sense because as 𝑑𝑝 approaches 0, PROP reduces to

RW, which is similarly affected with a higher completion time for sparse tasks.

4.7 Future Work

The environmental parameter we focused on varying was the number of tasks, while

we kept the arena size and total task demand fixed. We kept total task demand fixed

to ensure a fixed ratio of number of agents to total task demand even as we varied the

task density (number of tasks). However, there are still many other environmental

parameters that we could explore the effects of and use to evaluate HHTA and PROP.

One example is varying the arena size while keeping the total task demand and

number of agents fixed. We would expect it to be harder to find tasks in a larger

arena compared to a smaller one. Another example is varying 𝑘, the fraction of agents

needed to complete all tasks. Varying 𝑘 could be done by fixing the number of agents

but changing the total task demand. We would expect larger 𝑘 to have a longer

86

completion time for both algorithms since a larger fraction of agents need to find and

complete tasks.

Future work could explore experiments in a dynamic setting, where new tasks can

appear over time and agents can search for a new task after their existing tasks are

finished. It could also evaluate other environment parameters, such as the ratio of

total task demand to total number of agents. A larger such ratio would make the

task allocation problem harder to solve, as there are fewer and fewer extra agents

available to communicate.

Future work could also combine the strengths of the PROP and HHTA algorithms,

where one agent for each task is assigned to propagate by leaving information in the

vertex state of nearby vertices or communicating task information directly to any

nearby agents like HHTA does. This algorithm would have a much smaller agent cost

than the PROP algorithm while still being able to propagate task information. It

would also not require a central home nest like the HHTA algorithm does, instead

opting to induce agent communication all around the arena.

The results we obtained were using a relatively small number of agents and tasks.

Our general model allows for easy parallelization and we are exploring the possibility

of running much larger experiments with hundreds of thousands of agents via par-

allelization [21]. We have used our parallel implementation in [21] already to run

the density estimation algorithm in [35] on one hundred thousand agents and verify

high-probability bounds on the algorithm. Evaluating our task allocation algorithms

on a larger scale would be useful for understanding their scalability.

Lastly, future work could aim for analytical bounds on the expected task com-

pletion time of our two algorithms. Because the algorithms are relatively simple

compared to many swarm algorithms, high probability bounds may be possible to

obtain.

87

4.8 Formal Pseudocode

Now, we describe the details of the house hunting model in terms of pseudocode.

Specifically, we reiterate the Vertex State used, which dictates the environment of

both the PROP and HHTA algorithms. Then we reiterate the Agent State and spec-

ify the agent transition functions for the PROP and HHTA algorithms individually.

Lastly, we specify the resolution rule needed for the task allocation problem.

4.8.1 Vertex State Class

In order to properly represent tasks in both of our algorithms, the vertex state set

𝑆𝑉 contains the following variables:

• is_task, whether or not the vertex is a task

• demand, the task demand if the vertex is a task; otherwise 0

• residual_demand, the residual demand if the vertex is a task; otherwise 0

• task_location, the 𝑥, 𝑦 coordinates of the vertex if it is a task

4.8.2 HHTA Agent State Class

An agent state has the following constant variables in addition to the constants from

the general model. Constants are fixed in an execution of the simulator for all agents.

Each agent has these constants as a part of its state, and the values never change.

• L, defined as 𝐿 = 1/(𝑀 +𝑁)

• P_COMMIT, the probability 𝑃𝑐

• P_EXPLORE, the probability 𝑃𝑒

• MESSAGE_RATE, the message rate 𝑟𝑚

• LEVY_LOC and LEVY_CAP, levy flight distribution parameters, where LEVY_CAP

caps the right tail of the distribution

88

Agents also have the following modifiable parts of their state, which may change

during execution.

• core_state, the core state described above, which can be H, E, R or C

• angle, a random walk parameter denoting angle of travel

• starting_point, a random walk parameter tracking where the agent started

from

• travel_distance, the length of the current leg of the random walk

• destination_task, the agent’s destination if they have just found a task or are

headed towards their committed task

• home_destination, the agent’s destination if they are headed to a home vertex

• recruitment_task, the task an agent is recruiting for, initially None

• committed_task, the task an agent has committed to, initially None

4.8.3 HHTA Agent Transition Function

We now consider the generation of agent transitions at each time step for our HHTA

algorithm. This can be broken down into different logic based on the four core states

– Home, Exploring, Recruiting, or Committed. The helper functions used in the

pseudocode for the transition functions can be found in Appendix B.

Home Agent Transitions

Home agents stay in the home nest to receive communications from other agents. In

the Home agent transition function, we first check if the agent has just transitioned to

this state and has not reached the home nest yet. If so, the agent continues moving in

the direction of the home nest. If the agent is already at the home nest, it may receive

a message via the states of other agents about a new discovered task, in which case it

will either transition to Committed and try to do the task, or to the Recruiting state

89

and try to recruit for the task. Agents who have not heard of any task information

have a chance of converting to exploring and searching for tasks. The pseudocode for

Home agents can be seen in Algorithm 13.

Algorithm 13 Agent transition function 𝛼 for a Home agent with state 𝑠 at vertex
𝑣 with coordinates (𝑥, 𝑦)

1: procedure generate_transition(local_vertex_mapping)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: ◁Agent just transitioned, headed home
4: if 𝑠.home_destination is not null then
5: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← dir_from_dest(
6: 𝑠.home_destination, 𝑠.location.x, 𝑠.location.y))
7: 𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛← coords_from_dir(
8: 𝑠.location.x, 𝑠.location.y, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)

9: if within_home(𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) then
10: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.home_destination ← null
11: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

12: ◁Learn about new task
13: if 𝑠.home_destination is null then
14: 𝑡𝑎𝑠𝑘_𝑠𝑡𝑎𝑡𝑒← get_task_info(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒)
15: if 𝑡𝑎𝑠𝑘_𝑠𝑡𝑎𝑡𝑒 is not null then
16: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒← 𝑠.P_commit
17: if random_float_from(0,1) < 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒 then
18: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Committed
19: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← 𝑡𝑎𝑠𝑘_𝑠𝑡𝑎𝑡𝑒
20: else
21: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.𝑐𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒← Recruiting
22: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡_𝑡𝑎𝑠𝑘 ← 𝑡𝑎𝑠𝑘_𝑠𝑡𝑎𝑡𝑒

23: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
24: ◁Chance of converting to exploring
25: 𝑐← (1− 𝑠.P_explore)/(𝑠.P_explore)
26: if 𝑐 != 0 then
27: 𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑐ℎ𝑎𝑛𝑐𝑒← 𝑠.L/𝑐
28: else
29: 𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑐ℎ𝑎𝑛𝑐𝑒← 1
30: if random_float_from(0,1) < 𝑒𝑥𝑝𝑙𝑜𝑟𝑒_𝑐ℎ𝑎𝑛𝑐𝑒 then
31: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Exploring
32: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

90

Exploring Agent Transitions

Algorithm 14 Agent transition function 𝛼 for an Exploring agent with state 𝑠 at
vertex 𝑣 with coordinates (𝑥, 𝑦)

1: procedure generate_transition(local_vertex_mapping)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: ◁Search for nearby tasks, has chance of converting to committed
4: 𝑛𝑒𝑎𝑟𝑏𝑦_𝑡𝑎𝑠𝑘𝑠← find_nearby_tasks(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
5: if 𝑛𝑒𝑎𝑟𝑏𝑦_𝑡𝑎𝑠𝑘𝑠 != [] then
6: 𝑠𝑢𝑚_𝑟𝑑← 0
7: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠← 0
8: for 𝑡𝑎𝑠𝑘_𝑠𝑡𝑎𝑡𝑒 in 𝑛𝑒𝑎𝑟𝑏𝑦_𝑡𝑎𝑠𝑘𝑠 do
9: 𝑠𝑢𝑚_𝑟𝑑 += 𝑡𝑎𝑠𝑘_𝑠𝑡𝑎𝑡𝑒.residual_demand

10: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠.append(𝑡𝑎𝑠𝑘_𝑠𝑡𝑎𝑡𝑒.residual_demand)
11: for 𝑖 in range(len(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) do
12: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑖] /= 𝑠𝑢𝑚_𝑟𝑑

13: 𝑐ℎ𝑜𝑠𝑒𝑛_𝑡𝑎𝑠𝑘 ← choose_weighted(𝑛𝑒𝑎𝑟𝑏𝑦_𝑡𝑎𝑠𝑘𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
14: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒←
15: max(𝑠.P_commit, 1/𝑐ℎ𝑜𝑠𝑒𝑛_𝑡𝑎𝑠𝑘.residual_demand)
16: if random_float_from(0,1) < 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒 then
17: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Committed
18: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← 𝑐ℎ𝑜𝑠𝑒𝑛_𝑡𝑎𝑠𝑘
19: else
20: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Recruiting
21: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.home_destination← random_loc_in_home()
22: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.recruitment_task← 𝑐ℎ𝑜𝑠𝑒𝑛_𝑡𝑎𝑠𝑘

23: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
24: ◁Chance of converting to home
25: ℎ𝑜𝑚𝑒_𝑐ℎ𝑎𝑛𝑐𝑒← 𝑠.L
26: if random_float_from(0,1) < ℎ𝑜𝑚𝑒_𝑐ℎ𝑎𝑛𝑐𝑒 then
27: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.home_destination← random_loc_in_home()
28: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Home
29: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
30: ◁Keep random walking
31: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← get_travel_direction(𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒)
32: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

Algorithm 14 describes the transition function for an exploring agent. Exploring

agents first look within their influence radius for tasks. If tasks are found, they

have a probability of choosing each task weighted by residual demand. After a task

is chosen, the agent either becomes Committed or Recruiting for that task. If an

91

exploring agent has not found any tasks, it has a chance of converting to a Home

agent. Otherwise, it random walks in search of tasks.

Recruiting Agent Transitions

Algorithm 15 describes the transition function for a recruiting agent. We first check

if the recruiting agent has reached the home nest to recruit yet. If they haven’t,

they keep heading towards the home nest by stepping one step in that direction. If

they have reached the home nest, they have a 1/𝑡𝑟𝑑𝑖 chance of transitioning to the

Committed core state. Otherwise, they remain in the Recruiting state.

Algorithm 15 Agent transition function 𝛼 for a Recruiting agent with state 𝑠 at
vertex 𝑣 with coordinates (𝑥, 𝑦)

1: procedure generate_transition(local_vertex_mapping)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: if 𝑠.home_destination is not None then
4: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛←
5: dir_from_dest(𝑠.home_destination, x, y)
6: 𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛←
7: coords_from_dir(x,y,𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
8: if within_home(𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) then
9: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.home_destination← None

10: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

11: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒←
12: 1/𝑠.recruitment_task.residual_demand
13: if random_float_from(0,1) < 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒 then
14: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Committed
15: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task←
16: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.recruitment_task
17: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.recruitment_task← None
18: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
19: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

Committed Agent Transitions

Algorithm 16 describes the transition function of a Committed agent. If the agent is

still heading towards the task it committed to, it continues moving towards the task.

92

If the agent has arrived at the task and discovers it to already be full (with residual

demand 0), it returns to being an exploring agent. Otherwise, it tries to complete

the committing process by decrementing the task’s residual demand. Otherwise, the

committed agent has already committed to a task and merely remains at the task for

the rest of the algorithm.

Algorithm 16 Agent transition function 𝛼 for a Committed agent with state 𝑠 at
vertex 𝑣 with coordinates (𝑥, 𝑦)

1: procedure generate_transition(local_vertex_mapping)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: if 𝑠.destination_task is not None then
4: ◁Agent arrived at committed task after recruiting)
5: if 𝑠.location.coords() == 𝑠.destination_task.task_location then
6: ◁Task is full, continue exploring
7: if 𝑠.location.state.residual_demand == 0 then
8: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← null
9: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Exploring

10: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
11: ◁Try to commit to task
12: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.committed_task← 𝑠.destination_task
13: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← null
14: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒← 𝑠.location.state
15: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒.residual_demand←
16: 𝑠.location.state.residual_demand-1
17: return 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
18: else
19: ◁Head towards committed task after recruiting
20: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← dir_from_dest(
21: 𝑠.destination_task.task_location, 𝑠.location.coords()
22: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

23: else
24: ◁Once committed, stay committed
25: return 𝑠.location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

4.8.4 PROP Agent Transition Function

We now consider the agent transition functions for follower and propogator agents in-

dependently. The helper functions used in the pseudocode for the transition functions

93

can be found in Appendix B.

Propagator Agent Transitions

The propagator agent transitions can be seen in Algorithm 17. If the propagator

agent is at a task, it first checks if the residual demand information has changed and

stores that new information in the message that it will later propagate. Then, for all

propagator agents, if they are allowed to propagate at this round (agents can only

propagate every propagation_rate rounds), then they do so. Otherwise, they keep

waiting until they reach a round where they can propagate.

Algorithm 17 Agent transition function 𝛼 for a propagator agent with state 𝑠 at
vertex 𝑣 with coordinates (𝑥, 𝑦)

1: procedure generate_transition(local_vertex_mapping)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: if 𝑣.state.is_task then
4: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.task_info[(𝑥, 𝑦)]←
5: 𝑣.state.residual_demand
6: if 𝑠.propagation_ctr >= 𝑠.propagation_rate then
7: 𝑠𝑒𝑙𝑓.propagate()
8: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.propagation_ctr← 0
9: else

10: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.propagation_ctr←
11: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.propagation_ctr+ 1

12: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

Follower Agent Transitions

The follower agent transitions can be seen in Algorithm 18. First, if the follower agent

is still looking for a task, it scans the propagator agent of the vertex it is located at

to find nearby tasks. If a task is found, it heads toward that task. Otherwise, it

moves in a random direction. If the follower agent has arrived at the destination task

and the residual demand is 0, it stops committing to that task. Otherwise, it tries to

commit to the task and will be accepted as long as others are not trying to commit

to the same task at the same time (if this is the case, winners will be chosen by our

resolution function).

94

Algorithm 18 Agent transition function 𝛼 for a follower agent with state 𝑠 at vertex
𝑣 with coordinates (𝑥, 𝑦)

1: procedure generate_transition(local_vertex_mapping)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: if 𝑠.committed_task is None then
4: if 𝑠.destination_task is None then
5: if find_nearby_task(v) is not None then
6: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task←
7: find_nearby_task(v)
8: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
9: else

10: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒,

11: dir_from_propagator()
12: else
13: if 𝑠.destination_task.state.residual_demand is 0 then
14: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← None
15: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
16: if 𝑠.destination_task is 𝑣 then
17: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.committed_task←
18: 𝑠.destination_task
19: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← None
20: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒← 𝑣.state
21: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒.residual_demand←
22: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒.residual_demand− 1

23: return 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
24: else
25: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒,

26: dir_to((x,y), 𝑠.destination_task)
27: else
28: return 𝑣.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

4.8.5 Resolution Rule

In the task allocation problem, agents cause changes to the vertex states of tasks when

they commit to them, by decrementing the task’s residual demand. This creates the

potential for conflicts if a task has current residual demand 𝑟𝑑 but 𝑥 > 𝑟𝑑 agents are

trying to claim the task at the same time. In this case, an arbitrary subset of the 𝑥

95

agents should be allowed to move forward and commit to the task, whereas the other

𝑟𝑑−𝑥 agents will not be allowed to commit. The new residual demand is now 𝑟𝑑′ = 0

(Note that if 𝑥 < 𝑟𝑑, all 𝑥 agents should be allowed to commit and the new residual

demand 𝑟𝑑′ = 𝑟𝑑− 𝑥.) Our resolution rule accomplishes this by looking at all agents

who wish to commit in this round (being careful to ignore agents who have already

committed to the task in earlier rounds) and arbitrarily choosing a subset of them as

the "winners" who get to commit to the task. The pseudocode for this task-claiming

resolution rule can be found in Algorithm 19.

Algorithm 19 Resolution rule for agents trying to claim tasks in a task allocation
problem
1: procedure task_claiming_resolution(proposed_vertex_states, pro-

posed_agent_states, proposed_agent_dirs))
2: if not vertex.state.is_task then
3: ◁No resolution needed for non-task vertices
4: return naive_resolution(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠,
5: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠)
6: 𝑎𝑔𝑒𝑛𝑡𝑠← list(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠.keys())
7: 𝑐𝑜𝑛𝑡𝑒𝑛𝑑𝑒𝑟𝑠← []
8: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑠𝑙𝑜𝑡𝑠← 𝑣𝑒𝑟𝑡𝑒𝑥.state.residual_demand
9: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑_𝑐𝑙𝑎𝑖𝑚𝑠← 0

10: for 𝑎𝑔𝑒𝑛𝑡_𝑖𝑑 in 𝑎𝑔𝑒𝑛𝑡𝑠 do
11: ◁Check if agent is trying to claim the task
12: if 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡_𝑖𝑑].residual_demand ==

𝑣𝑒𝑟𝑡𝑒𝑥.state.residual_demand-1 then
13: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑_𝑐𝑙𝑎𝑖𝑚𝑠 += (𝑣𝑒𝑟𝑡𝑒𝑥.state.residual_demand -
14: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡_𝑖𝑑].residual_demand
15: 𝑐𝑜𝑛𝑡𝑒𝑛𝑑𝑒𝑟𝑠.append(𝑎𝑔𝑒𝑛𝑡_𝑖𝑑)
16: if 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑_𝑐𝑙𝑎𝑖𝑚𝑠 <= 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑠𝑙𝑜𝑡𝑠 then
17: ◁Everyone allowed to claim task
18: 𝑣𝑒𝑟𝑡𝑒𝑥.state.residual_demand← 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑠𝑙𝑜𝑡𝑠 - 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑_𝑐𝑙𝑎𝑖𝑚𝑠
19: return 𝑣𝑒𝑟𝑡𝑒𝑥.state, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠
20: else
21: ◁Choose winners to claim task
22: 𝑛𝑒𝑤_𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠← {}
23: 𝑤𝑖𝑛𝑛𝑒𝑟𝑠← choose_n_from(𝑐𝑜𝑛𝑡𝑒𝑛𝑑𝑒𝑟𝑠)
24: for 𝑎𝑔𝑒𝑛𝑡_𝑖𝑑 in 𝑎𝑔𝑒𝑛𝑡𝑠 do
25: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡_𝑖𝑑] ←
26: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡_𝑖𝑑]

96

Algorithm 19 Task allocation resolution (continued)
27: if 𝑎𝑔𝑒𝑛𝑡_𝑖𝑑 not in 𝑤𝑖𝑛𝑛𝑒𝑟𝑠 and 𝑎𝑔𝑒𝑛𝑡_𝑖𝑑 in 𝑐𝑜𝑛𝑡𝑒𝑛𝑑𝑒𝑟𝑠 then
28: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡_𝑖𝑑].committed_task ← None
29: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡_𝑖𝑑].destination_task ← None
30: if algorithm is HHTA then
31: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠[𝑎𝑔𝑒𝑛𝑡_𝑖𝑑].core_state ← Exploring
32: 𝑣𝑒𝑟𝑡𝑒𝑥.state.residual_demand ← 0
33: return 𝑣𝑒𝑟𝑡𝑒𝑥.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒𝑠, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑔𝑒𝑛𝑡_𝑑𝑖𝑟𝑠

Note that the resolution rule slightly differs between HHTA and PROP in that if an

HHTA agent tries to claim a task but fails, it’s state is changed from the Committed

state to the Exploring state. For PROP, by setting the agent’s committed_task to

None, it will automatically resume exploring.

97

98

Chapter 5

Future Work

This chapter describes our work-in-progress in addition to some new algorithmic

ideas that could be implemented within our general model. Chapter 5.1 discusses our

ongoing work on a parallel implementation of our general model in C++. Chapter

5.2 presents some ideas for swarms being applied to environmental problems such as

pollination and oil spill cleanup. Chapter 5.3 presents an algorithmic sketch for task

allocation in unknown environments which is inspired by the centralized min-cost flow

solution to the Optimal Mass Transport problem.

5.1 Simulation Speedups via Parallelization

Our model is highly distributed on individual vertices and easily lends to paralleliza-

tion. We are in the process of developing PAR-SWARM, a C++ parallel implemen-

tation of our modelling framework, which provides significant speedups to large-scale

simulations (on the order of 106 vertices and agents or larger). These large-scale sim-

ulations can be useful when demonstrating high probability bounds on agent behavior

such as the density estimation work in [35]. These demonstrations can require a large

number of agents, and parallelization makes simulations much easier and faster to

conduct.

We have a manuscript in progress describing our parallelization work [21]. Zhi Wei

Gan wrote the parallel simulator and is evaluating it. Julian Shun provided advice on

99

parallelization techniques, and Grace Cai and Nancy Lynch provided details about

the original general model.

5.2 Applications of Swarms to the Good of the Earth

Robot swarms are well suited to tackle far-reaching and complex tasks for the good

of the environment. Many swarm robots and swarm prototypes have been developed

with the goals of pollinating in the place of bees, cleaning up oil spills in the ocean,

and more [11, 34]. However, many of these designs focus on tackling the physical

aspects of designing these robots rather than the algorithmic ones. For example, [11]

seeks to develop robotic bees (RoboBees) to enable pollinating behavior, but focuses

on the necessary mechanical components such as mechanisms for swimming, flying,

and perching on surfaces. Another example is [34], which develops a design for a

swarm robot that can skim oil off the surface of the ocean. While these physical

mechanisms are necessary and simple random-walk algorithms could suffice on the

coordination front, more advanced algorithms could save time and swarm resources.

Some existing work has been done algorithmically, with [2] getting a simulated

swarm to surround the perimeter of an oil spill and [15] introducing a programming

language for RoboBees with an example algorithm of random walk alfalfa monitoring

and pollination. However, more effective algorithms could be developed given more

precise problem statements that seek to minimize completion time or other metrics

of evaluation.

One problem that would be interesting to explore is developing an algorithm that

not only successfully surrounds the oil spill, but then cleans it up as efficiently as

possible. Agents should maximize the percentage of the oil spill that they collectively

clean while also trying to complete the process quickly. Another interesting problem

would be to design an artificial pollination algorithm that outperforms the random

walk presented in [15], where the goal for agents would be to pollinate as many flowers

as possible in a fixed arena within a fixed period of time. More complicated variants

of the pollination problem could consider multiple species of plants at the same time

100

and try to develop an algorithm that fairly pollinates all species according to a desired

pollination rate.

Developing algorithms for the problem statements we have suggested in artificial

pollination and oil spill cleanup is a promising step for future work within our general

modelling framework. The discrete nature of our model along with its modifiable

vertex states are beneficial to testing and developing environment-based algorithms.

Our model would make it simple to set up complex environments such as irregular

oil spill shapes or flower locations for pollination.

5.3 A Swarm Task Allocation Algorithm Inspired by

Centralized Min Cost Flow

As we have mentioned in Chapter 4, one centralized solution for getting a group of

agents to tasks with known locations and demands is to build a graph with vertices at

the task locations and the agents’ starting location. We can then run a min cost flow

algorithm on this graph with the agent locations connected to a super-source and the

task locations connecting to a super-sink. The min cost flow algorithm determines

how agents should travel in order to minimize the total distance travelled by all

agents.

The type of task allocation problem that this algorithm solves differs from the

scenario proposed for our HHTA and PROP algorithms in several ways. First, it

assumes known task locations and demands. Second, it seeks to minimize the total

distance travelled by all agents as opposed to the fastest time it tasks for all tasks

to be completed. The metric of minimizing total distance travelled is more relevant

when fuel or other resource costs for agents are important to reduce.

We propose an idea for a distributed version of this algorithm in the situation

where tasks locations and demands are initially unknown. The distributed version

of this algorithm makes use of propagator agents similar to our PROP algorithm in

Chapter 4. Future work could evaluate the completion time and messages sent in this

101

algorithm and compare it to that of PROP and HHTA. Note that our distributed

version no longer minimizes total distance travelled by agents, as it includes extra

steps at the beginning to discover task information and share it with agents.

5.3.1 Algorithm Description

In the centralized algorithm (CENT), we assume two types of agents – propagator

agents and follower agents. Propagator agents are simple, mote-like agents [49] and

one is assigned to each vertex. Follower agents perform tasks and will rely on propa-

gator agents to direct them where to go. We assume that follower agents all start in

a home nest at the center of the arena, similar to HHTA and PROP. Suppose there

are 𝑇 tasks, and task 𝑖 has demand 𝑎𝑖.

Phase 1 (Propagator agents share information): Propagator agents spread

their task’s location in the same manner as they do in the PROP algorithm but

do not spread any demand information. Follower agents wander the grid and head

towards the first task they sense from a propagator agent’s information. (If the agent

hears of multiple tasks at once, it randomly chooses a task). After some time, each

follower agent is located at one of the tasks in the grid. We assume this fact for

the rest of the algorithm. Suppose that there are 𝑟𝑖 followers located at task 𝑖. Of

the 𝑟𝑖 agents, as many followers as possible should be assigned to a task at their

starting site 𝑖. Formally, for every task 𝑖, min(𝑟𝑖, 𝑎𝑖) agents should automatically be

assigned to task 𝑖. Tasks where 𝑟𝑖 > 𝑎𝑖 we call sources because they have excess

agents that can be distributed elsewhere. Tasks where 𝑟𝑖 < 𝑎𝑖 we call sinks because

they still need more agents to arrive. Tasks where 𝑟𝑖 = 𝑎𝑖 have their demand satisfied

and are neither sources nor sinks. The graph now contains 𝑆 sources with 𝑟𝑖 − 𝑎𝑖

agents and 𝑇 sinks with 𝑎𝑖 − 𝑟𝑖 agents needed, where 𝑆 + 𝑇 < 𝑁 . (This problem of

transporting supplies to multiple demanders is more generally known as the Optimal

Mass Transport problem [52]). Thus we have reduced our problem to finding how to

distribute the agents at the sources to the tasks at the sinks while minimizing total

distance travelled.

By the end of Phase 1, each propagator agent knows whether its task is a source,

102

a sink, or neither. If the task is a source, the agent knows 𝑟𝑖− 𝑎𝑖 (how many leftover

agents there are). If the task is a sink, the agents know 𝑎𝑖− 𝑟𝑖 (the residual demand).

Phase 2 (Learning all Sinks / Sources): Note that the tasks form a complete

graph 𝐺𝑇 , an overlay network on our model grid 𝐺. Tasks 𝑎 and 𝑏 are connected in

𝐺𝑇 with weight 𝑤(𝑎, 𝑏) equal to the taxicab distance between 𝑙𝑎 and 𝑙𝑏. We wish for

the propagator agent at each task to know the full graph 𝐺𝑇 .

In order to do so, each propagator agent spreads its task surplus and demand

to its neighbors within one influence radius. Whenever a propagator agent receives

information about a new task, it in turn propagates that information to it’s own

neighbors. In this way, after 𝑁 +𝑀 rounds, all propagator agents will know the full

graph 𝐺𝑇 .

Phase 3 (Run Min-Cost Flow): Since every propagator at a task knows the

location of each task, each propagator can independently build the graph 𝐺𝑇 . Dis-

tributing the agents from sources to sinks is now an instance of the min cost flow

problem. To solve this problem we connect a super-source 𝑠 to each source 𝑠𝑗 with

capacity equal to the number of agents at 𝑠𝑗, and connect each sink 𝑡𝑗 to a super-sink

𝑡 with capacity equal to the number of agents needed at 𝑡𝑗. Call the graph with the

addition of the super-source and super-sink 𝐺′
𝑇 . The flow we wish to send over 𝐺′

𝑇 is

equal to the total remaining demand from the sinks. We let all propagators located at

tasks use cycle cancelling or other min cost flow algorithms to determine the optimal

flow of agents through each edge. (Note that here, optimal means minimizing the

total distance travelled by all agents). By the end of Phase 3, all propagator agents

at tasks should have the same optimal flow graph.

Phase 4 (Send Agents to Sinks): After all propagators at tasks have com-

puted the optimal flows, any propagator which is at a source node looks at its outgoing

edge flows and sends its agents in the correct distribution along those edges. Because

the edge weights in 𝐺𝑇 follow the triangle inequality and 𝐺𝑇 is complete, the flow

should go directly from the sources to the sinks in one hop (it will always be more ef-

ficient to go directly from a source to a sink than via any intermediate node). At this

point all tasks should have their demands satisfied, and the allocation is complete.

103

10 20 30 40 50 60 70 80
Number of Tasks

65

70

75

80

85

90

95

100

P
er

ce
nt

 o
f t

as
ks

 fo
un

d

Number of Tasks with Total Demand 180 vs. Percentage of Tasks Found

100 agents
160 agents
1000 agents

Figure 5-1: Plot of percentage of tasks found via initial random walk for varying task
density and varying numbers of agents

Note we assume that propagator agents have advanced enough computation to

perform a min cost flow algorithm. Furthermore, while the algorithm can tolerate

failures in propagator agents not located at tasks as long as the propagator agents

remain connected, it cannot tolerate failures in the propagator agents located at tasks

themselves, since they are each performing a centralized computation of min-cost flow.

More detailed analysis and evaluation of this algorithm is left to future work.

5.3.2 Motivation for Propagator Agents

An alternative idea that was initially considered for Phase 1 of our centralized algo-

rithm was to only have one type of agent, have them initially do a random walk to

find the first task they see, and cluster agents at tasks in that way. Then one agent at

each task would be chosen as a leader, and the leaders would try to share their task’s

information with the agents located at every other task. However, the assumption

that at least one agent would end up at each task is not very realistic, especially when

the number of agents is to the number of tasks in the arena.

Figure 5-1 shows the percentage of tasks found by agents using this random walk

strategy in a 𝑁 = 50,𝑀 = 50 grid where there were 𝑇 = {10, 20, 30, 40, 50, 60, 70, 80}

tasks and the total task demand was 80. We tested this strategy using |𝑅| =

104

{100, 160, 1000} agents. Note that when other than at very sparse task densities, not

all tasks were found when using 100 agents or 160 (twice the task demand) agents.

Only by using 1000 task performing agents would we see almost 100% of tasks being

found no matter the task density.

The inability to guarantee that all tasks are found before starting the centralized

task allocation portion of the algorithm motivates our use of propagator agents. Using

propagator agents, one agent is always at each task and this all tasks are made known

to other propagator agents before running the min cost flow algorithm. Having the

propagator functionality separated out also makes it so that we only need the number

of follower agents to be equal to 𝑇 to satisfy task demand. This way propagator agents

can be simpler and have the sole roles of sharing information and computing the min

flow.

105

106

Chapter 6

Conclusion

This thesis first presents our new discrete geometric swarm model, and then dives into

two main projects in which we have used our model as an algorithmic framework. In

the first project, presented in Chapter 3, we present a more geographically robust

N-site selection algorithm compared to previous work [44, 13]. Specifically, our model

is able to accurately select the best quality nest even when it is disadvantaged by

being further away from the home nest, or by being blocked by poorer, lower quality

nests. We showed that the use of a quorum threshold which scales on site quality is

particularly useful in more challenging site setups. Our results show the usefulness of

our general model in easily testing areas with different site setups and provide an N-

site selection algorithm that is more effective than past work at dealing with these new

setups. Furthermore, our work also poses questions to the ant research community

as to whether quorum sensing ants also employ a variable quorum threshold in their

decision making.

Our second project, presented in Chapter 4, presents two new task allocation al-

gorithms meant for dealing with environments where task locations and demands are

initially unknown. We evaluate these algorithms with varying task densities in our

arena and discover that both algorithms, as well as the Levy walk we are comparing

them to, have varying performance with different task density. We draw inspiration

from the fields of virtual pheromones to introduce one algorithm using propagator

agents to spread task information. We draw inspiration from house hunting to intro-

107

duce another algorithm which uses agent communication in a home nest to spread task

information. When keeping total task demand fixed, we find that our house-hunting

based algorithm (HHTA) is effective on small task densities. Our propagation-based

algorithm (PROP) is effective in all but extremely high task densities, but requires

many more messages sent between propagator agents. At very high task densities,

the Levy flight outperforms both of our algorithms since the task demand is very

small. A small task demand of one or two agents makes the problem very similar

to foraging, which the Levy flight has been theorized to be optimal for [54]. Our

results again highlight the usefulness of our model in evaluating algorithms, as our

ability to easily configure the task density within our model revealed how algorithm

performance depends on task density.

We supplement our general model as well as all of the new algorithms we present

with detailed pseudocode at the end of the relevant chapters and hope that it is useful

for both clarity and reproducibility purposes.

Lastly, we detail ongoing work on our model in the form of parallelization using

C++, which will allow for running simulations much faster and at a much larger

scale. We also include some ideas for environmental problems where our model could

be employed to develop swarm solutions, as well as a sketch of a new centralized task

allocation algorithm that could be implemented in our model.

We hope that our model and the results we have obtained in house hunting and

task allocation inspire further geometric swarm research.

108

Appendix A

N-Site Selection Utility Functions

A.1 Utility Functions for Agent Transition Function

With Definitions

We include a few commonly used utility functions with definitions because they con-

tribute to modifying the agent state and should be defined for completeness.

The function check_quorum_sensed(local_vertex_mapping) first calls the

quorum_sensed(local_vertex_mapping) to see if a quorum site has been found.

It then returns a boolean representing whether the quorum has been sensed, and a

new_agent_state representing if a quorum has been sensed. The new agent state has

a 50/50 chance of being either a Quorum Nest or Quorum Active state. The Quorum

Nest agent state is set up for the agent to travel back to the home nest, while the

Quorum Active agent state is set up for the agent to perform a random walk around

the environment. The pseudocode can be seen in Algorithm 20.

The function committed_agent_state_and_dir(s) calculates the proper new

agent state and direction for a committed agent returning to it’s committed site

for the final time. Here, s is the current agent state. If the agent has just arrived at

the committed site, the agent terminates the house hunting algorithm. If the agent

has just decided to move to the committed site or is already headed towards it, this

function returns the direction the agent needs to move and any state modifications

109

Algorithm 20 Determining agent state transitions after quorum is sensed for agent
𝑎

1: procedure check_quorum_sensed(local_vertex_mapping)
2: 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑖𝑡𝑒← quorum_sensed(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔)
3: 𝑠← a.state
4: if 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑖𝑡𝑒 is not null then
5: 𝑠.quorum_site← 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑖𝑡𝑒
6: if random_float_from(0,1) < 0.5 then
7: 𝑠.destination← random_location_in_site(𝑠.home)
8: 𝑠.destination_site← 𝑠.home
9: return True, 𝑠

10: else
11: 𝑠.travel_distance← int(1/𝑠.L)
12: 𝑠.angle← random_float_from(0,2𝜋)
13: 𝑠.starting_point← 𝑠.location.x, 𝑠.location.y
14: 𝑠.destination← null
15: 𝑠.destination_site← null
16: return True, 𝑠
17: return False, null

(for example, setting the committed site as the agent’s destination site). The code

for how this function works can be seen in Algorithm 21.

Algorithm 21 Determining agent state and direction for agents 𝑎 moving to the
committed site
1: procedure committed_agent_state_and_dir(s)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: if 𝑠.destination_site == 𝑠.quorum_site then
4: ◁Agent arrived at committed site
5: if 𝑠.location.x == 𝑠.destination[0] and 𝑠.location.y ==

𝑠.destination[1] then
6: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination← null
7: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_site← null
8: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.terminated← True
9: return 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

10: else
11: ◁Agent still headed towards committed site
12: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← get_direction_from_destination(
13: 𝑠.destination, (𝑠.location.x, 𝑠.location.y))
14: return 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

110

Algorithm 21 Determining agent state and direction for agents 𝑎 moving to the
committed site (cont.)
15: ◁Agent just finished broadcasting, should return to committed site
16: if 𝑠.travel_distance == 0 then
17: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination←
18: random_location_in_site(𝑠.quorum_site)
19: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_site← 𝑠.quorum_site
20: return 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

The function should_abandon_site(local_vertex_mapping, s) calculates

whether a favoring nest agent with agent state 𝑠 should stop favoring a site based on

when the last time it saw a neighbor was. It returns a pair of a boolean, indicating

whether or not to abandon the favored site, and an agent state. If the time since a

neighbor was last seen exceeds 5/𝐿 time steps, we decide to abandon the site and have

the agent transition to Uncommitted Active. The specifics can be seen in Algorithm

22.

Algorithm 22 Determining whether a favoring agent 𝑎 should abandon its site
1: procedure should_abandon_site(local_vertex_mapping, s)
2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒← 𝑠
3: ◁Update time since last neighor was seen
4: if num_neighbors(𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑒𝑥_𝑚𝑎𝑝𝑝𝑖𝑛𝑔) > 1 then
5: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.time_since_neighbor← 0
6: ◁Abandon the favored site
7: else
8: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.time_since_neighbor += 1
9: if 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.time_since_neighor >= 5/𝑠.L then

10: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.angle← 0
11: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.starting_point←
12: (𝑠.location.x, 𝑠.location.y)
13: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.travel_distance← 0
14: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination← null
15: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_site← null
16: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.exploring_site← False

111

Algorithm 22 Determining whether a favoring agent 𝑎 should abandon its site (cont.)
17: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.exploration_cooldown← 0
18: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.favored_site← None
19: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.time_since_neighbor← 0
20: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.preference_type← Uncommitted
21: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.activity_type← Active
22: return True, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒
23: else
24: return False, 𝑠

A.2 Utility Functions for Agent Transition Function

With I/O Specifications

Utility functions are functions that we will use in the agent pseudocode to help with

certain computations but will not offer the pseudocode for as they should be simple

enough to derive. We specify the input and output of these utility functions, which

will be referenced in the remainder of the pseudocode. Note that all utility functions

are implemented within the agent state and have access to current agent state variable

values.

• quorum_sensed(local_vertex_mapping) is a function that looks at the neigh-

boring squares in the local vertex mapping and checks if a quorum is detected.

If so, it returns the vertex state of the site it sensed a quorum for. If not, it

returns null. Remember that we detect a quorum for a site based on whether

the number of neighbors within a site if the number of agents there surpasses

the scaled quorum threshold (based on site value), or if we see a committed

agent who has already detected quorum for a specific site.

• get_coords_from_movement(x,y,dir) takes in the agent’s current x-y coordi-

nates x and y as well as the intended direction of travel dir ∈ {𝐿,𝑅,𝐷,𝑈, 𝑆}

and returns the new corresponding x-y coordinates if the agent moves one step

in direction dir. The coordinates are returned as a tuple [𝑥, 𝑦].

• within_site(x,y,site) takes in the agent’s x-y coordinates and the vertex

state representing a site to check whether the agent is within the site or not. It

112

returns true if the agent is inside the site, and false otherwise.

• random_float_from(a,b) generates a uniformly random float in the range [𝑎, 𝑏]

• find_nearby_site(local_vertex_mapping) is a function that looks at the

neighboring squares in the local vertex mapping and checks to see if any site is

visible amongst them. It takes the first site it finds and returns the vertex state

of the site it found, and the location ((𝑥, 𝑦) coordinates) of the vertex that it

found to be within a site.

• find_better_site(local_vertex_mapping) is a function for favoring agents

that looks at the local vertex mapping and checks to see if there are other

favoring agents who are favoring a higher quality site. If so, it returns the

vertex state of the higher quality site. Otherwise, it returns null.

• num_neighors(local_vertex_mapping) is a function that looks at the local

vertex mapping and counts the number of visible agents (neighbors) in the

local radius. It returns this count as an integer.

• get_direction_from_destination(destination, curr_loc) is a function

that takes in the agents current x-y location curr_loc and the agent’s

destination (also in x-y coordinates) and outputs the direction in the set

{𝐿,𝑅,𝐷,𝑈, 𝑆} that will bring the agent closest to their destination.

• get_travel_direction(new_agent_state) is a function that computes the

next step of agent random walks, and makes sure that agents do not go out of

bounds. The function uses the random walk parameters 𝑡𝑟𝑎𝑣𝑒𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑎𝑛𝑔𝑙𝑒,

and 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡 to determine which direction the agent should head in next.

If the random walk runs the agent into the edge of the grid, we regenerate a

new angle of travel for the random walk. If an agent is currently within a

site, the boundaries for the random walk become the site boundaries instead.

The function outputs the new travel direction, in the set {𝐿,𝑅,𝐷,𝑈} and the

modified agent state with the new random walk parameters in place.

113

114

Appendix B

HHTA and PROP Utility Functions

Utility functions are functions that we will use in the agent pseudocode to help with

certain computations but will not offer the pseudocode for as they should be simple

enough to derive. We specify the input and output of these utility functions, which

will be referenced in the remainder of the pseudocode. Note that all utility functions

are implemented within the agent state and have access to current agent state variable

values.

B.1 HHTA Utility Functions

The following utility functions are used in the HHTA pseudocode.

• dir_from_dest(destination, curr_loc) is a function that takes in the

agents current x-y location curr_loc and the agent’s destination (also in

x-y coordinates) and outputs the direction in the set {𝐿,𝑅,𝐷,𝑈, 𝑆} that will

bring the agent closest to their destination.

• coords_from_dir(x,y,dir) takes in the agent’s current x-y coordinates x and

y as well as the intended direction of travel dir ∈ {𝐿,𝑅,𝐷,𝑈, 𝑆} and returns

the new corresponding x-y coordinates if the agent moves one step in direction

dir. The coordinates are returned as a tuple [𝑥, 𝑦].

115

• within_home(location) takes in the agent’s location (a tuple of x,y coordi-

nates) to check whether the agent is within the home location or not. It returns

true if the agent is inside the site, and false otherwise.

• random_float_from(a,b) generates a uniformly random float in the range [𝑎, 𝑏]

• get_travel_direction(new_agent_state) is a function that computes the

next step of agent random walks, and makes sure that agents do not go out of

bounds. The function uses the random walk parameters 𝑡𝑟𝑎𝑣𝑒𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑎𝑛𝑔𝑙𝑒,

and 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡 to determine which direction the agent should head in next.

If the random walk runs the agent into the edge of the grid, we regenerate a

new angle of travel for the random walk. If an agent is currently within a

site, the boundaries for the random walk become the site boundaries instead.

The function outputs the new travel direction, in the set {𝐿,𝑅,𝐷,𝑈} and the

modified agent state with the new random walk parameters in place.

• choose_weighted(tasks, weights) takes in a list of tasks and weights and

returns one task using a weighted probability according to the weights provided.

• find_nearby_tasks(vertex) looks within the influence radius of a vertex and

finds all tasks, returning them as a list.

• get_task_info(local_vertex_mapping, new_agent_state) looks within the

influence radius of a vertex and gathers messages from any agents who are

recruiting for a particular task. As soon as a Recruiting agent is found, the

function returns the task the agent is recruiting for.

B.2 PROP Utility Functions

The following utility functions are used in the PROP pseudocode.

• find_nearby_task(vertex) looks within the influence radius of a vertex and

finds all tasks, returning them as a list

116

• dir_to(location, destination_task) computes and returns the direction an

agent should travel to head to a given destination task

• dir_from_propagator() looks at the propagator agent of the vertex an agent

is located at and uses the propagator agent’s task information to choose a task

to head towards and compute the direction the agent needs to head. If the

propagator has no task information, this function returns a random direction.

117

118

Bibliography

[1] Athula B Attygalle and E David Morgan. Ant trail pheromones. In Advances in
insect physiology, volume 18, pages 1–30. Elsevier, 1985.

[2] Fidel Aznar, Mireia Sempere, Mar Pujol, R Rizo, and MJ Pujol. Modelling
oil-spill detection with swarm drones. In Abstract and Applied Analysis, volume
2014. Hindawi, 2014.

[3] Eric J Barth. A dynamic programming approach to robotic swarm navigation
using relay markers. In Proceedings of the 2003 American Control Conference,
2003., volume 6, pages 5264–5269. IEEE, 2003.

[4] Spring Berman, Adám Halász, M Ani Hsieh, and Vijay Kumar. Optimized
stochastic policies for task allocation in swarms of robots. IEEE transactions on
robotics, 25(4):927–937, 2009.

[5] Mickaël Bettinelli, Michel Occello, and Damien Genthial. Coalition formation
problem: a group dynamics inspired swarming method. In International Con-
ference on Swarm Intelligence, pages 282–289. Springer, 2020.

[6] Grace Cai. Geometric Swarm Modelling, January 2023. Available at
https://github.com/ssgcai/geo-swarm.

[7] Grace Cai and Don Sofge. An urgency-dependent quorum sensing algorithm for
n-site selection in autonomous swarms. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1853–1855,
2019.

[8] Cindy Calderón-Arce, Juan Carlos Brenes-Torres, and Rebeca Solis-Ortega.
Swarm robotics: Simulators, platforms and applications review. Computation,
10(6):80, May 2022.

[9] Scott Camazine, Peter K Visscher, Jennifer Finley, and Richard S Vetter. House-
hunting by honey bee swarms: collective decisions and individual behaviors.
Insectes Sociaux, 46(4):348–360, 1999.

[10] Alexandre Campo, Simon Garnier, Olivier Dédriche, Mouhcine Zekkri, and
Marco Dorigo. Self-organized discrimination of resources. PLoS One,
6(5):e19888, 2011.

119

[11] Yufeng Chen, Hongqiang Wang, E Farrell Helbling, Noah T Jafferis, Raphael
Zufferey, Aaron Ong, Kevin Ma, Nicholas Gravish, Pakpong Chirarattananon,
Mirko Kovac, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic
microrobot. Science robotics, 2(11):eaao5619, 2017.

[12] Lars Chittka, Adrian G Dyer, Fiola Bock, and Anna Dornhaus. Bees trade off
foraging speed for accuracy. Nature, 424(6947):388–388, 2003.

[13] Jason R. Cody and Julie A. Adams. An evaluation of quorum sensing mechanisms
in collective value-sensitive site selection. In 2017 International Symposium on
Multi-Robot and Multi-Agent Systems (MRS), pages 40–47, 2017.

[14] Micael Santos Couceiro. An overview of swarm robotics for search and rescue
applications. Artificial Intelligence: Concepts, Methodologies, Tools, and Appli-
cations, pages 1522–1561, 2017.

[15] Karthik Dantu, Bryan Kate, Jason Waterman, Peter Bailis, and Matt Welsh.
Programming micro-aerial vehicle swarms with karma. In Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, pages 121–134, 2011.

[16] Gloria DeGrandi-Hoffman, Stephen A Roth, GL Loper, and EH Erickson Jr.
Beepop: a honeybee population dynamics simulation model. Ecological mod-
elling, 45(2):133–150, 1989.

[17] Miguel Duarte, Jorge Gomes, Vasco Costa, Tiago Rodrigues, Fernando Silva,
Víctor Lobo, Mario Monteiro Marques, Sancho Moura Oliveira, and Anders Ly-
hne Christensen. Application of swarm robotics systems to marine environmental
monitoring. In OCEANS 2016-Shanghai, pages 1–8. IEEE, 2016.

[18] Xumei Fan, William Sayers, Shujun Zhang, Zhiwu Han, Luquan Ren, and Hassan
Chizari. Review and classification of bio-inspired algorithms and their applica-
tions. Journal of Bionic Engineering, 17(3):611–631, 2020.

[19] Nigel R Franks, Katherine A Hardcastle, Sophie Collins, Faith D Smith,
Kathryn ME Sullivan, Elva JH Robinson, and Ana B Sendova-Franks. Can ant
colonies choose a far-and-away better nest over an in-the-way poor one? Animal
Behaviour, 76(2):323–334, 2008.

[20] Ryusuke Fujisawa and Shigeto Dobata. Lévy walk enhances efficiency of group
foraging in pheromone-communicating swarm robots. In Proceedings of the 2013
IEEE/SICE International Symposium on System Integration, pages 808–813,
2013.

[21] Zhi Wei Gan, Julian Shun, Grace Cai, and Nancy Lynch. Par-swarm: A c++
framework for evaluating distributed algorithms for robot swarms.

[22] Brian P Gerkey and Maja J Matarić. A formal analysis and taxonomy of task
allocation in multi-robot systems. The International journal of robotics research,
23(9):939–954, 2004.

120

[23] Adám Halász, M Ani Hsieh, Spring Berman, and Vijay Kumar. Dynamic redis-
tribution of a swarm of robots among multiple sites. In 2007 IEEE/RSJ inter-
national conference on intelligent robots and systems, pages 2320–2325. IEEE,
2007.

[24] Heiko Hamann, Thomas Schmickl, Heinz Wörn, and Karl Crailsheim. Analysis
of emergent symmetry breaking in collective decision making. Neural Computing
and Applications, 21(2):207–218, 2012.

[25] Heiko Hamann and Heinz Wörn. A framework of space–time continuous models
for algorithm design in swarm robotics. Swarm Intelligence, 2(2):209–239, 2008.

[26] Richard P Heitz. The speed-accuracy tradeoff: history, physiology, methodology,
and behavior. Frontiers in neuroscience, 8:150, 2014.

[27] David Hiebeler et al. The swarm simulation system and individual-based mod-
eling. Santa Fe Institute Santa Fe, NM, USA, 1994.

[28] Matthew Hoeing, Prithviraj Dasgupta, Plamen Petrov, and Stephen O’Hara.
Auction-based multi-robot task allocation in comstar. In Proceedings of the 6th
international joint conference on autonomous agents and multiagent systems,
pages 1–8, 2007.

[29] Nicholas R Hoff, Amelia Sagoff, Robert J Wood, and Radhika Nagpal. Two
foraging algorithms for robot swarms using only local communication. In 2010
IEEE International Conference on Robotics and Biomimetics, pages 123–130.
IEEE, 2010.

[30] M Ani Hsieh, Ádám Halász, Spring Berman, and Vijay Kumar. Biologically
inspired redistribution of a swarm of robots among multiple sites. Swarm Intel-
ligence, 2(2):121–141, 2008.

[31] Dervis Karaboga and Bahriye Akay. A survey: algorithms simulating bee swarm
intelligence. Artificial intelligence review, 31(1):61–85, 2009.

[32] Shreeya Khurana and Donald Sofge. Quorum sensing re-evaluation algorithm for
n-site selection in autonomous swarms. In ICAART (1), pages 193–198, 2020.

[33] Abderraouf Maoudj and Anders Lyhne Christensen. Decentralized multi-agent
path finding in warehouse environments for fleets of mobile robots with limited
communication range. In International Conference on Swarm Intelligence, pages
104–116. Springer, 2022.

[34] Nirmal Joshua Mathews, Tesbin K Varghese, Prince Zachariah, and Ninos Aji
Chirathalattu. Fabrication of solar powered oil skimmer robot. 2018.

[35] Cameron Musco, Hsin-Hao Su, and Nancy A. Lynch. Ant-inspired density es-
timation via random walks. Proceedings of the National Academy of Sciences,
114(40):10534–10541, 2017.

121

[36] Keith J O’hara, Daniel B Walker, and Tucker R Balch. The gnats—low-cost
embedded networks for supporting mobile robots. In Multi-Robot Systems. From
Swarms to Intelligent Automata Volume III, pages 277–282. Springer, 2005.

[37] Chris A. C. Parker and Hong Zhang. Cooperative decision-making in decentral-
ized multiple-robot systems: The best-of-n problem. IEEE/ASME Transactions
on Mechatronics, 14:240–251, 2009.

[38] H Van Parunak, Michael Purcell, and Robert O’Connell. Digital pheromones for
autonomous coordination of swarming uav’s. In 1st UAV Conference, page 3446,
2002.

[39] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization.
Swarm intelligence, 1(1):33–57, 2007.

[40] Stephen C Pratt. Behavioral mechanisms of collective nest-site choice by the ant
temnothorax curvispinosus. Insectes Sociaux, 52(4):383–392, 2005.

[41] Stephen C Pratt. Quorum sensing by encounter rates in the ant temnothorax
albipennis. Behavioral Ecology, 16(2):488–496, 2005.

[42] Stephen C Pratt, David JT Sumpter, Eamonn B Mallon, and Nigel R Franks. An
agent-based model of collective nest choice by the ant temnothorax albipennis.
Animal Behaviour, 70(5):1023–1036, 2005.

[43] Andreagiovanni Reina, James AR Marshall, Vito Trianni, and Thomas Bose.
Model of the best-of-n nest-site selection process in honeybees. Physical Review
E, 95(5):052411, 2017.

[44] Andreagiovanni Reina, Gabriele Valentini, Cristian Fernández-Oto, Marco
Dorigo, and Vito Trianni. A design pattern for decentralised decision making.
PloS one, 10(10):e0140950, 2015.

[45] A. M. Reynolds and C. J. Rhodes. The lévy flight paradigm: Random search
patterns and mechanisms. Ecology, 90(4):877–887, 2009.

[46] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, pages 25–34, 1987.

[47] Elva JH Robinson, Faith D Smith, Kathryn ME Sullivan, and Nigel R Franks.
Do ants make direct comparisons? Proceedings of the Royal Society B: Biological
Sciences, 276(1667):2635–2641, 2009.

[48] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low
cost scalable robot system for collective behaviors. In 2012 IEEE international
conference on robotics and automation, pages 3293–3298. IEEE, 2012.

122

[49] Katherine Russell, Michael Schader, Kevin Andrea, and Sean Luke. Swarm
robot foraging with wireless sensor motes. In Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages 287–
295. Citeseer, 2015.

[50] F Sahin et al. A swarm intelligence based approach to the mine detection prob-
lem. In IEEE International Conference on Systems, Man and Cybernetics, vol-
ume 3, pages 6–pp. IEEE, 2002.

[51] David W Sims, Nicolas E Humphries, Russell W Bradford, and Barry D Bruce.
Lévy flight and brownian search patterns of a free-ranging predator reflect differ-
ent prey field characteristics. Journal of Animal Ecology, 81(2):432–442, 2012.

[52] Justin Solomon. Optimal transport on discrete domains. AMS Short Course on
Discrete Differential Geometry, 2018.

[53] Gabriele Valentini, Eliseo Ferrante, and Marco Dorigo. The best-of-n problem in
robot swarms: Formalization, state of the art, and novel perspectives. Frontiers
in Robotics and AI, 4:9, 2017.

[54] Gandimohan M Viswanathan, Sergey V Buldyrev, Shlomo Havlin, MGE Da Luz,
EP Raposo, and H Eugene Stanley. Optimizing the success of random searches.
nature, 401(6756):911–914, 1999.

[55] Jan Wessnitzer and Chris Melhuish. Collective decision-making and behaviour
transitions in distributed ad hoc wireless networks of mobile robots: Target-
hunting. In European Conference on Artificial Life, pages 893–902. Springer,
2003.

[56] Bo Xu, Zhaofeng Yang, Yu Ge, and Zhiping Peng. Coalition formation in multi-
agent systems based on improved particle swarm optimization algorithm. Inter-
national Journal of Hybrid Information Technology, 8(3):1–8, 2015.

[57] Dandan Zhang, Guangming Xie, Junzhi Yu, and Long Wang. Adaptive task
assignment for multiple mobile robots via swarm intelligence approach. Robotics
and Autonomous Systems, 55(7):572–588, 2007.

[58] Jiajia Zhao, Nancy Lynch, and Stephen C Pratt. The power of social informa-
tion in ant-colony house-hunting: A computational modeling approach. bioRxiv,
pages 2020–10, 2021.

123

