
Moist Baroclinic Instability and Macroturbulence of
the Midlatitude Atmosphere

by

Matthieu Kohl

Submitted to the Department of Earth, Atmospheric, and Planetary
Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Atmospheric Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Earth, Atmospheric, and Planetary Sciences

December 15, 2022

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Paul A. O’Gorman

Professor of Atmospheric Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Robert van der Hilst

Schlumberger Professor of Earth and Planetary Sciences
Head of Department of Earth, Atmospheric, and Planetary Sciences



2



Moist Baroclinic Instability and Macroturbulence of the

Midlatitude Atmosphere

by

Matthieu Kohl

Submitted to the Department of Earth, Atmospheric, and Planetary Sciences
on December 15, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Atmospheric Science

Abstract

Water and its change of phase greatly enrich the dynamics of the midlatitude atmo-
sphere and challenge us to extend our theories of baroclinic instability and macro-
turbulence beyond dry adiabatic dynamics. Two specific phenomena in which latent
heating plays a key role and that are poorly understood form the central focus of this
thesis.

Past research has identified a special class of storm, dubbed the Diabatic Rossby
Vortex (DRVs), which derives its energy from latent heating rather than baroclinic
effects and as such goes beyond the traditional understanding of midlatitude storm
formation. DRVs have been implicated in extreme and poorly predicted forms of
cyclogenesis along the east coast of the US and west coast of Europe and have re-
cently emerged as the dominant mode of instability in an idealized GCM with climate
warming. While we have a good theoretical understanding of dry cyclogenesis, our
understanding of DRV formation, and propagation as well as their growth rate and
length scale is poor. In chapters 2 and 4 of my thesis, a fluid dynamical theory is de-
veloped for DRVs both in terms of simple conceptual models of moist instability and
potential vorticity dynamics of finite-amplitude storms. In particular, the dispersion
relation for the growth rate and length scale of DRVs is derived analytically, and it is
shown that DRVs become faster than both dry or moist baroclinic waves in the limit
of a convectively-neutral stratification.

Latent heating also makes upward motion stronger than downward motion, and
this asymmetry has important implications for the distribution of precipitation and its
extremes. Current theories based around small-amplitude modes greatly overestimate
the change in asymmetry with warming. In chapter 3, we develop a toy-model that
takes into account adjustment of the atmosphere to a state of moist macroturbulence
and show that it better reproduces the slow increase in the asymmetry from winter to
summer over the seasonal cycle in reanalysis and with climate warming in idealized
simulations.

Thesis Supervisor: Paul A. O’Gorman
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Chapter 1

Introduction

Cloud imagery from geostationary satellites reveals the rich class of dynamical mo-

tions present in the atmosphere on any given day of weather from the small-scale puffy

convective motion in the tropics to the large-scale comma shaped midlatitude cyclones

with their elongated frontal bands and their anticlockwise swirl in the Northern Hemi-

sphere and clockwise swirl in the Southern Hemisphere (Fig. 1-1). In this thesis we

will limit ourselves to large-scale motion in the midlatitudes and be concerned with

two broad themes: how do perturbations grow in the midlatitude atmosphere and

develop into extratropical storms that we see on satellite imagery (the problem of

instability), and how do the statistical properties of the midlatitude flow look like in

the presence of many growing and decaying perturbations (the problem of macrotur-

bulence1). In both of these themes our overarching concern will be the role that water

and its change of phase play in the dynamics through the release of latent heating.

We will call this the problem of moist baroclinic instability and macroturbulence of

the midlatitude atmosphere.

When looking at cloud imagery from satellites, it is tempting to regard the clouds

as mere markers of the underlying dynamics, passive tracers that are being advected

around like white dye without any active part to play in generating and sustaining

the dynamical patterns themselves. Much of our theoretical understanding of the

1Here macroturbulence is used following Held (1999) to refer to the turbulence of the large scale
atmosphere, as distinct from the turbulence in say the boundary layer.
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Figure 1-1: Global infrared satellite imagery from EUMETSAT for 9th June, 2017.
The two storms that are visible in the North Atlantic, one close to the east coast of US
and one close to the west coast of Europe, were identified as DRVs by the tracking
algorithm of Boettcher and Wernli (2013) as part of an updated DRV climatology
based on ERA5 reanalysis. Both disturbances originated within a strong cloud field
off the coast of Florida. The first disturbance propagated more zonally towards
Europe, the second disturbance propagated more meridionally along the coast of the
US with a day succession. Photo has been extracted from the EUMETSAT video ‘A
year of weather’ ©EUMETSAT[2017].
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dynamics of storms, fronts and macroturbulence in the midlatitudes today still hails

from such a simplified dry-adiabatic view of the atmosphere (e.g. Charney 1947,

Eady 1949, Phillips 1954, Hoskins 1975, Hoskins 1976, Charney 1971).2 And for

good reason. By ignoring the complexity of moist processes, it was possible to isolate

in simple mathematical models the disturbances and macroturbulent states resulting

from the energy supply of an unstable meridional temperature gradient alone and to

show broad agreement with midlatitude flow. It has been pointed out however, that in

the process midlatitude dynamics underwent a process of “dessication” which jars with

our basic experience of weather and stands in sharp contrast to the ‘thermal view’

of the midlatitudes in the 19th century. This thermal view placed great emphasis

on the thermodynamics of water and its change of phase, and the important role

of latent heating as an energetic source for the midlatitude storms (Kutzbach 1979,

Emanuel 2001). Indeed, considerable work has shown that latent heating processes

play a crucial part in the dynamics of the midlatitude atmosphere. It changes the

growth rate, length scale, and predictability of storms and ultimately gives rise to

new classes of disturbances and turbulent states that have no direct analogue in dry-

adiabatic theory (e.g. Emanuel et al. (1987), Wernli et al. (2002), Lapeyre and Held

(2004)). We have recovered only slowly from this Kuhnian loss of moist processes in

our midlatitude theories. Understanding the role of water in weather and climate has

thus been posed as one of the grand challenges of the science of meteorology as it

entered its new millenium (Emanuel 2001). This rings true even more so today as the

pressing concerns associated with climate change push us to extend our theoretical

understanding of cyclogenesis and macroturbulence into ever warmer and moister

climate regimes in which latent heating effects become increasingly important. On a

high level therefore, this PhD is the continuation of an investigation into the integral

role that latent heating plays in the dynamics of the midlatitude atmosphere and

an attempt to isolate its effects in simple mathematical models that are “effective

2It should be noted that the modern presentation of such models in textbooks is sometimes ‘drier’
than the original authors probably intended. In a later section of his paper, Eady (1949) for instance
acknowledged the limitations of a purely dry description and sought to extend his model by including
a zone of saturated air in the instability analysis as an extension. He noted the tendency towards
frontogenesis at the boundary of the cloudy zone and the increase in growth rates.
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equivalents for the purposes of theoretical computation”, to borrow from the late

Napier Shaw’s ‘Methods of Meteorological Investigation’ (Shaw 1903).

Two specific phenomena in which latent heating plays a key role and that have

challenged our theoretical understanding form the central focus of this thesis: 1.)

Diabatic Rossby Vortices, which are a special class of midlatitude storms that derive

their energy from latent heating, rather than baroclinic effects and as such go beyond

the traditional understanding of midlatitude storm formation, 2.) the asymmetry of

the distribution of the vertical velocity field which has important implications for the

distribution of precipitation and its extremes. In the following, I will start with a brief

review of the inherent complexities of moist dynamics and the theoretical framework

used throughout this thesis to make sense of them. Then, I will provide a brief

introduction into both topics, summarize the existing body of knowledge, identify

the research gaps and spell out the specific questions motivating the research in this

thesis.

1.1 Why Moist Dynamics is inherently complicated

- Intuition and Mathematical Formulation

The presence of moisture renders the dynamics more complicated but also much more

interesting due to the inherent nonlinearity that is introduced by the irreversible

fallout of condensates during precipitation. Formally, for an air parcel following

saturated ascent and conserving its saturated equivalent potential temperature 𝐷𝜃*

𝐷𝑡
=

0, the Lagrangian rate of change of dry potential temperature 𝜃(𝑝, 𝜃*) can be written

as

𝐷𝜃

𝐷𝑡
= 𝜔

𝜕𝜃

𝜕𝑝

⃒⃒⃒
𝜃*
+
𝐷𝜃*

𝐷𝑡

𝜕𝜃

𝜕𝜃*

⃒⃒⃒
𝑝
= 𝜔

𝜕𝜃

𝜕𝑝

⃒⃒⃒
𝜃*
. (1.1)

The dynamics are now greatly complicated when taking moisture into account: whilst

moist ascending air releases latent heat upon condensation and feels a locally reduced

static stability, the descending air after rainfall is mostly dry and feels the full static
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Figure 1-2: Schematic illustrating the additional nonlinearity that is introduced into
the thermodynamic equation due to precipitation. Ascending air is moist, condenses,
releases latent and feels a reduced static stability −𝑟 𝜕𝜃

𝜕𝑝
, where 𝑟 is the reduction factor

in Eq. (1.4). However, after irreversible fall-out of condensate during precipitation,
the descending air is dry and feels the full static stability 𝜕𝜃

𝜕𝑝
. 1.2.

stability (see Fig. 1-2). This introduces an additional nonlinearity into the thermo-

dynamic equation

𝜕𝜃

𝜕𝑡
+ u · ∇𝜃 + 𝑟(𝜔)𝜔

𝜕𝜃

𝜕𝑝
= 0, (1.2)

with

𝑟(𝜔) =

⎧⎪⎨⎪⎩𝑟, −𝜔 ≥ 0

1, −𝜔 < 0

(1.3)

and

𝑟 = 1− 𝜕𝜃

𝜕𝑝

⃒⃒⃒
𝜃*

⧸︂
𝜕𝜃

𝜕𝑝
, (1.4)
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is the reduction factor under the assumption of saturated moist-adiabatic ascent.3

The reduction factor is a three-dimensional field that can be calculated from tem-

perature and pressure. It is generally smallest for the atmosphere at low levels and

tends to one with altitude because the static stability becomes closer to dry adiabatic.

In the summer or with climate warming, the reduction factor decreases because the

midlatitude lapse rate becomes closer to moist-adiabatic (Stone and Carlson 1979).

The nonlinear latent heating term which is introduced by the irreversible fallout

of precipitation is the source of much of the complexity and richness of moist dy-

namics. It is only fully negligible in the dry limit or the limit in which it is always

raining (O’Gorman 2011). As a consequence, even in the case of small-amplitude

moist motion, Eq. (1.2) becomes advectively linear but remains thermodynamically

nonlinear.4 We re-emphasize that the critical process at the source of the complexity

of moist dynamics is not latent heating per se, but the irreversible fallout of precip-

itation. If latent heating were present but all the condensate retained rather than

removed, the dynamics would be analogous to the dry problem with a greatly reduced

static stability.

The framework discussed so far goes back to Emanuel et al. (1987) and will be

employed throughout this thesis. While it makes simplifying assumptions, such as

that ascent is saturated and descent is fully dry and neglects effects like the re-

evaporation of rain, we will show throughout this thesis that it can be successfully

used to interpret and understand complex simulation and reanalysis data, and to

isolate latent heating effects within simple models amenable to theoretical insights.

3We show in the appendix A that the reduction factor in Eq. (1.4) can be rewritten with a
bit of manipulation as 𝑟 = 𝜃

𝜃*
Γ𝑚

Γ𝑑

(︁
𝜕𝜃*

𝜕𝑝

)︁
/
(︁

𝜕𝜃
𝜕𝑝

)︁
, where Γ𝑑 and Γ𝑚 are the dry-adiabatic and moist-

adiabatic lapse rates, respectively. This is the form used in the literature (Fantini 1995, Eq. 7) and
shown throughout this thesis.

4It is possible to consider separately regions of ascent and descent for which 𝑟(𝑤) would be linear,
but the transition point, which determines the length scale of ascending to descending motion, is a
priori unknown and must be found as part of the solution. This leads to nonlinear constraints.
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1.2 Diabatic Rossby Vortices: Extratropical Storms

with Strong Latent Heating

Different modes of instability and storm formation in the atmosphere can be inter-

preted elegantly within the potential vorticity (PV) formalism (Hoskins et al. 1985)

which we will employ here to review and contrast dry and moist forms of instabil-

ity and provide intuition for the DRV mechanism. The PV is a particularly useful

quantity for understanding atmospheric dynamics since it can be inverted, after spec-

ifying appropriate boundary and balance conditions, to fully determine the velocity

and temperature field in the atmosphere. Furthermore, it is conserved under fric-

tionless, adiabatic motion and its modification through non-conservative processes

such as latent heating thus allows us to understand the fundamental ways in which

moist processes affect the large scale flow. As such it has emerged in the literature

as an important metric for understanding the role of latent heating in cyclogenesis

(e.g. Davis and Emanuel 1991, Wernli et al. 2002, Stoelinga 1996, Ahmadi-Givi et al.

2004).

One of the complexities introduced by latent heating is that it can generate its

own ‘moist’ PV anomalies as distinct from the ‘dry’ or ‘displacement’ PV anomalies

generated from baroclinic advection (Fig. 1-3a). Dry PV anomalies are typically

generated on the model boundaries, where the mean meridional PV gradients are

strong. Northward and southward advection against a PV gradient gives rise to

anomalies in the form of Rossby wave trains.5 Moist PV anomalies on the other

hand, are generated above and below the latent heating source which is located in the

interior of the atmosphere where the meridional PV gradients are weaker. Vertical

gradients of the latent heating source are associated with diabatic PV generation

which leads to the production of a negative PV anomaly above the heating maximum

and a positive PV anomaly below the heating maximum. Moist PV anomalies can

5In the real atmosphere, the low level potential vorticity anomalies/gradients correspond to sur-
face temperature anomalies/gradients. However, it can be shown that these are mathematically
equivalent to potential vorticity anomalies/gradients above the boundary (Bretherton 1966). This
makes it possible to present a unified framework of instability in terms of PV.
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Figure 1-3: (a) Schematic of the model troposphere that contains dry PV anomalies
(PVd) from baroclinic advection close to the surface and tropopause where meridional
PV gradients are strong, and moist PV anomalies (PVm) generated by latent heating
in the interior of the atmosphere - negative above the heating source and positive
below the heating source. (b) Schematic of the growth mechanism of the Diabatic
Rossby Vortex: two moist PV anomalies are maintained through PV generation from
latent heating ˙𝑃𝑉 𝐿𝐻 against a shear flow −𝑈 and 𝑈 , that is in thermal wind balance
with a meridional temperature gradient. As a result they can interlock and grow.

then begin to interact with each other or with dry PV anomalies giving rise to a rich

class of moist baroclinic disturbances that are not accounted for in dry models and

theories. 6

A mode of interaction involving two moist PV anomalies, positive below and neg-

ative aloft, driven entirely by latent heating rather than baroclinic processes, has

received special attention in the literature on moist baroclinic instability due to its

ability to self-amplify without upper level forcing (Snyder and Lindzen 1991, Parker

and Thorpe 1995, Whitaker and Davis 1994, Moore and Montgomery 2004, Oda and

Kanehisa 2011). The growth mechanism is illustrated in Fig. 1-3b. Cyclonic flow

around the low level positive PV anomaly, embedded in a meridional temperature

gradient that has temperature decreasing poleward, leads to warm air advection east

of the low level positive PV anomaly. This leads to ascent east of the positive PV

anomaly and west of the negative PV anomaly. In the presence of sufficient moisture,

6The terminology of ‘dry’ and ‘moist’ anomalies follows loosely that of De Vries et al. (2010). It
should be noted however, that in the presence of nonlinear heating a simple decomposition of PV
into a dry and moist component, as the authors did, is no longer possible. A mathematically precise
classification of all the different modes of interactions thus remains an outstanding problem of moist
dynamics, and the field has worked with heuristic classifications instead.
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condensation occurs upon ascent, which releases latent heating. Latent heating in-

duces a positive PV tendency to the east of the positive PV anomaly below the heating

maximum, and a negative PV tendency to the west of the negative PV anomaly above

the heating maximum. This allows the PV anomalies to counterpropagate against

the background flow, phase lock, and self-amplify optimally in the configuration in

which the induced meridional velocities by both anomalies overlap between each other

to generate maximum meridional advection and hence maximum ascent and diabatic

PV generation. We note that the disturbance has been drawn in a frame in which it

is stationary. If we were to translate to a realistic background flow that is eastward

in both layers, the disturbance would propagate eastward at a speed larger than the

ambient flow due to the re-generation of positive PV east of the low level anomaly.

Because of the nonlinearity of latent heating, i.e. no latent cooling in the area of

descent west of the positive anomaly and east of the negative anomaly, no negative

PV anomaly is generated in the lower layer and no positive PV anomaly in the

top layer. Unlike baroclinic advection which has a tendency to produce wave-like

anomalies from northward and southward advection (illustrated by the Rossby wave-

trains at the tropopause and surface in Fig. 1-3a), latent heating thus has a tendency

to produce isolated solutions (illustrated by the isolated moist PV cloud tower in

Fig. 1-3a). Due to the diabatic character of the disturbance and its isolated nature,

this mode of interaction has been called the ‘diabatic Rossby Vortex’, or short DRV

(Moore and Montgomery 2004, Moore and Montgomery 2005, O’Gorman et al. 2018).

Because positive diabatic generation of PV east of the low level anomaly plays the

surrogate role of meridional advection in a classic Rossby wave, such disturbances are

also known as ‘diabatic Rossby waves’, or short DRWs, in the literature (Parker and

Thorpe 1995, Boettcher and Wernli 2013). However, both terminologies refer to the

same diabatically driven phenomena (Boettcher and Wernli 2013).7

In this thesis, we will refer to it as DRV to emphasize the isolated character of the

solution which also helps to distinguish it most clearly from moist baroclinic waves

7It is worth noting that the short-hand ‘DRV’ is easier to pronounce and use in spoken English
than ‘DRW’, whereas ‘DRW’ is easier to pronounce and use in spoken German than ‘DRV’. This
might be another reason for why both terminologies remain in use.
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(see Fig. 1 and 2 in O’Gorman et al. 2018). Moist baroclinic waves were described

theoretically using a two-layer Phillip’s model with nonlinear heating at the interface

by Emanuel et al. (1987). The authors derived analytical expressions for the growth

rate and length scale as a function of 𝑟. They showed that latent heating increases

the growth rates and decreases the ascent length of dry waves in the Phillip’s model.

Crucially however, the solutions in the presence of latent heating remain periodic

waves with smaller ascent, than descent length. In terms of our diagram (Fig. 1-3a),

this can be intuited by the fact that for a moist two-layer Phillip’s model dry and

moist PV anomalies occur in the same layer by construction and so PV anomalies

receive contributions from both baroclinic and latent heating effects. This disrupts

the pure moist-moist interaction mechanism and the tendency to produce isolated

solutions, although the precise conditions under which solutions transition between

moist-baroclinic waves and DRV modes remains unaddressed in the literature.

We also emphasize the isolated character of the disturbance to point out that

existing analytical theories for moist-moist interactions that are based around lin-

earizations of the heating term for simplicity, can only represent a first step towards

a more complete understanding (Snyder and Lindzen 1991, Oda and Kanehisa 2011).

These studies elegantly demonstrated the possibility of growth through moist distur-

bances alone by considering a free-shear flow in which the dry instability mechanism

is removed. However, the latent heating parametrization prescribed is unphysical and

they did not obtain isolated solutions as a result. In the case of Oda and Kanehisa

2011, the analytical solutions for the modes also suffer from the well-known problem

that if the static stability is reduced everywhere, and not just conditionally in ascent

areas, the growth rates for the most unstable modes become infinite in the limit of

strong latent heating 𝑟 → 0 as pointed out by Emanuel et al. (1987). Reduction of

the static stability in updrafts only is crucial for obtaining finite growth rates in the

limit of strong latent heating. As such an analytical theory for the growth rate and

length scale of DRV modes in the presence of nonlinear heating is currently missing

from the literature.

DRVs have now been studied and found in a range of different models and ob-
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servation. They were first identified in certain parameter ranges of the moist-Eady

model with nonlinear heating as a new mode of instability which could self-intensify

diabatically without interaction with an upper level disturbance (Montgomery and

Farrell 1991, Montgomery and Farrell 1992, Whitaker and Davis 1994, Moore and

Montgomery 2004). Subsequent studies with a mesoscale model showed that the

mechanism of diabatic generation could spin up isolated dipole towers of PV start-

ing from an environment that is sufficiently moist and baroclinic without upper level

forcing (Moore and Montgomery 2005). On the observational side, DRVs were shown

to be implicated in case studies of strong cyclogenesis along the east coast of the US

and the west coast of Europe causing significant destruction to property and human

life (Wernli et al. 2002, Moore et al. 2008). These storms served as catalysts for more

extensive climatological studies that used a tracking algorithm, enforcing sufficient

baroclinicity, moisture, absence of upper level forcing, and rapid propagational speed,

to systematically identify and examine DRVs (Boettcher and Wernli 2013, Boettcher

and Wernli 2015). DRVs were found to occur in all ocean basins and seasons, at

a rate of roughly 10 systems per month in the Northern and 4 systems per month

in the Southern Hemisphere with more DRVs in summer than in winter in both

hemispheres. Two DRVs that were identified in the North Atlantic by the tracking

algorithm of Boettcher and Wernli (2013) for an updated climatology based on ERA5

reanalysis, are visible in cloud satellite imagery shown in Fig. 1-1. They spun out

of a strong cloud zone off the coast of Florida one day apart. The first one tracked

more zonally towards Europe, and the second one more meridionally along the east

coast of the US. Recently, calculations of moist baroclinic instability over a range of

different climates in an idealized GCM showed that the most unstable modes of baro-

clinic instability transitioned from quasi-periodic waves to isolated DRV solutions in

warming climate (O’Gorman et al. 2018). The break-up of the quasi-periodic modes

of instability was found to occur at a midlatitude surface air temperature of 292K

which is close to Earth’s temperature in midlatitude summer. An increase in the

importance of latent heating effects on extratropical eddies is expected under global

warming since atmospheric moisture content increases strongly with temperature due
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to the Clausius-Clapeyron relationship (Schneider et al. 2010). The transition to DRV

modes of instability thus point to the profound modifying effect that latent heating

has on the structure of rapidly growing eddies in a warming climate.

It is clear from the literature that DRVs are isolated disturbances that are spawned

in moist-baroclinic environments and can rapidly intensify from latent heating with-

out the presence of upper level forcing. While we have a good theoretical under-

standing of dry cyclogenesis both in terms of simple analytical models of baroclinic

instability (Eady 1949, Phillips 1954, Charney 1947) and PV dynamics of storms at

finite amplitude (Davis and Emanuel 1991), our understanding of DRV formation and

propagation, the controls on their growth rates and length scales, and the transition

from moist-baroclinic wave to isolated DRV solutions is poor. Developing an equiv-

alent conceptual understanding for DRVs is therefore critical and one of the major

objectives of this thesis.

1.3 Asymmetry of the Vertical Velocity Distribution

in Moist Macroturbulence

Another effect of latent heating is to break the symmetry between upward and down-

ward motion, making upward motion stronger than downward motion and by mass

continuity shrinking updraft area compared to downdraft area. A snapshot of a

typical vertical velocity profile in the midlatitudes, showing stronger upward than

downward motion is shown in Fig. 1-4.

The asymmetry of the vertical velocity distribution has important implications

for the distribution of precipitation and its extremes because precipitation is a strong

function of vertical motion. The asymmetry also directly enters the definition of the

‘effective static stability’ of O’Gorman (2011), which has been successfully used in

recent years to reason about the effects of latent heating in a range of dynamical

problems from cyclone deepening rates, Hadley cell extent, and Eliassen-Palm fluxes

simply by replacing the dry static stability by the effective static stability in moist
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Figure 1-4: Vertical velocity −𝜔 at 45∘N and 500hPA from ERA5 on June 2nd, 2017
showing that upward motion are typically stronger than downward motion.

theories (O’Gorman 2011, Levine and Schneider 2015, Booth et al. 2015, Pfahl et al.

2015, Dwyer and O’Gorman 2017). While the effective static stability has proven to

be a useful tool, it it not a closed theory of moist dynamics. Its definition depends

on the asymmetry which is not known a priori and must be inferred in practice from

simulation output or reanalysis.

In order to be able to understand the distribution of precipitation extremes and to

reason about important changes to the general circulation under climate change using

the effective static stability, we are thus led to the fundamental question of what sets

the vertical velocity asymmetry and how much does it change with warming. Recent

simulations with an idealized GCM have shown that the increase in asymmetry under

warming is much smaller in the macroturbulent regime than for the modes of moist

baroclinic instability (O’Gorman et al. 2018). This distinction is significant since the

atmosphere is constantly in a state of moist macroturbulence, but scalings for moist

baroclinic modes have formed the basis for understanding skewness changes with

warming in the literature (Pendergrass and Gerber 2016). While we can use moist

baroclinic instability theory (Emanuel et al. 1987, Zurita-Gotor 2005) to understand

changes in the asymmetry in the modal regime, a theory for the asymmetry that is

reached in the macroturbulent state of the flow is currently missing from the literature.

This is one of the major objectives of my thesis.
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1.4 Thesis Outline

In chapter 2, a simple moist 2-layer QG model without PV gradients is introduced

and shown to capture an isolated DRV mode. The dispersion relation for the growth

rate and length scales of the DRV mode is derived analytically retaining the full

complexity of a nonlinear heating term. Asymptotic solutions are found in the limit

of a convectively neutral stratification and comparisons are made to the results for

dry and moist-baroclinic waves. The most unstable mode when PV gradients are

reintroduced into the moist 2-layer model is calculated for varying strength of the

latent heating and the meridional PV gradients and a phase diagram is created for

when the most unstable modes are isolated DRVs versus moist baroclinic waves. A

simple PV argument is introduced that explains the conditions under which a wave

to vortex mode transition occurs. We conclude by making comparisons between the

PV structure of DRV modes to DRV storms at finite amplitude and use a generalized

PV tendency to relate the PV structure and PV tendency in observed storms.

In chapter 3, we apply inversions of a moist QG omega equation with reduced

stability parametrization to the idealized GCM runs of O’Gorman et al. (2018) to

assess the contributions to the asymmetry of the vertical velocity distribution coming

from the dynamical forcing on the right-hand side of the moist omega equation versus

the reduction in moist static stability in the modal versus the macroturbulent regime.

We show that in the modal regime both dynamical forcing and a reduction in moist

static stability contribute to the asymmetry whereas in the macroturbulent regime

the reduction in moist static stability primarily contributes to the asymmetry. The

dynamical forcing becomes practically unskewed. We then distill the results of the

inversions into a toy-model of the macroturbulent asymmetry that is solved for a

given reduction factor and wavenumber of the dynamical forcing to reproduce the slow

change of the asymmetry over the seasonal cycle in reanalysis and with global warming

in idealized simulations. Consistent with the toy-model predictions we show using

simulations of moist QG turbulence, that high asymmetry states are still possible

even when the dynamical forcing is unskewed provided that the wavenumber of the
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dynamical forcing is sufficiently large. We show that in this regime the flow can be

characterized as a DRV world.

In chapter 4, we return to DRVs and study their dynamics in turbulent simulations

of the moist quasigeostrophic and moist primitive equations to better understand the

role that finite amplitude effects have on the dynamics of individual storms and the

character of the macroturbulent simulations. Higher order effects are then distilled

into a 1d model that is solved for a small and high Rossby number and a current and

warm climate configuration to reproduce much of the observed PV structure of DRV

modes and DRV storms.

In chapter 5, we summarize the findings of this thesis and discuss their implications

and future work.
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Chapter 2

The Diabatic Rossby Vortex: Growth

Rate, Length Scale and the

Wave-Vortex Transition

©American Meteorological Society. 1

Abstract

In idealized simulations of moist baroclinic instability on a sphere, the most unstable
mode transitions from a periodic wave to an isolated vortex in sufficiently warm cli-
mates. The vortex mode is maintained through latent heating and shows the principle
characteristics of a diabatic Rossby vortex (DRV) which has been found in a range
of different simulations and observations of the current climate. Currently, there is
no analytical theory for DRVs or understanding of the wave-vortex transition that
has been found in warmer climates. Here, we introduce a minimal moist two-layer
quasigeostrophic model with tilted boundaries capable of producing a DRV mode,
and we derive growth rates and length scales for this DRV mode. In the limit of a
convectively-neutral stratification, the length scale of ascent of the DRV is the same
as that of a periodic moist baroclinic wave, but the growth rate of the DRV is 54%
faster. We explain the isolated structure of the DRV using a simple potential vorticity
(PV) argument, and we create a phase diagram for when the most unstable solution
is a periodic wave versus a DRV, with the DRV emerging when the moist static sta-
bility and meridional PV gradients are weak. Finally, we compare the structure of the

1This chapter has been published as Matthieu Kohl and Paul A. O’Gorman (2022). The Dia-
batic Rossby Vortex: Growth Rate, Length Scale, and the Wave–Vortex Transition, Journal of the
Atmospheric Sciences, 79(10), 2739-2755 and is reproduced here with slight adaption.
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DRV mode to DRV storms found in reanalysis and to a DRV storm in a warm-climate
simulation.

2.1 Significance Statement

Past research has identified a special class of midlatitude storm, dubbed the Diabatic

Rossby Vortex (DRV), which derives its energy from the release of latent heat as-

sociated with condensation of water vapor, and as such goes beyond the traditional

understanding of midlatitude storm formation. DRVs have been implicated in ex-

treme and poorly predicted forms of cyclogenesis along the east coast of the US and

the west coast of Europe with significant damage to property and human life. The

purpose of this study is to develop a mathematical theory for the intensification rate

and length scale of DRVs in order to gain a deeper understanding of the dynamics of

these storms in current and future climates.

2.2 Introduction

In small-amplitude calculations of moist baroclinic instability over a wide range of

climates in an idealized GCM, O’Gorman et al. (2018) found that the most unstable

mode transitions from a quasi-periodic wave to an isolated vortex at a midlatitude

surface air temperature of roughly 292K.2 The structure of the vortex mode that

emerged in warm climates (Fig. 2-1a) consists of a dipole of interlocking potential

vorticity (PV) anomalies above the boundary layer: cyclonic in the lower free tropo-

sphere and anticyclonic in the upper troposphere. Warm air advection to the east

of the cyclonic anomaly and to the west of the anticylonic anomaly leads to ascent

and diabatic PV generation from latent heat release in the form of a dipole. We note

that because the mode is found for warm-climate simulations, the diabatic generation

extends higher in the atmosphere than it would in the current climate.

2The most unstable modes were calculated in O’Gorman et al. (2018) through repeated rescaling
of perturbations to small amplitude, assuming upward motion to be saturated, and using a basic
state equal to the zonal and time-mean of a fully nonlinear simulation for that climate.
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Figure 2-1: PV anomalies (shading) and diabatic generation of PV due to latent
heating (contours) for (a) the DRV mode at latitude 44 ∘ in a calculation of small-
amplitude moist baroclinic instability on a sphere in a warm climate (global mean
surface temperature 311 K) using an idealized GCM (O’Gorman et al., 2018), and
(c) a DRV storm at latitude 61 ∘ in the corresponding macroturbulent (i.e., finite
amplitude) simulation at statistical equilibrium in the same GCM. (b,d) are the same
as (a,c) except that they show the generalized diabatic generation of PV calculated
according to Eq. (2.29) which includes both diabatic PV generation and diabatic
vertical advection of PV, where the only diabatic process considered is latent heating.
Potential vorticity (PV) is calculated using the hydrostatic approximation to Ertel’s
PV, and PV anomalies are with respect to the zonal mean. The contour interval is
9.2× 10−5 pvu h−1 in (a,b) and 0.07 pvu h−1 in (c,d). The zero contour is not plotted.
Note that since the DRV mode in (a,c) was calculated using repeated rescaling of
amplitude, the overall amplitude of its fields are arbitrary.
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The constellation of PV anomalies and diabatic PV generation is such that the

anomalies are amplified and maintained against the background shear flow. The

resulting vortex mode bears the principle characteristic of a diabatic Rossby vortex

(DRV) which has been found in a range of different simulations and observation.

Its emergence as the fastest growing mode within the moist baroclinic instability

calculations of O’Gorman et al. (2018) points to the profound modifying influence

that latent heating has on the structure of fast growing disturbances in a warming

climate.

DRVs first emerged as an alternative mode of instability in idealized studies

of moist baroclinic instability. The presence of moisture greatly enriches the dy-

namics of unstable modes due to the fact that condensation and precipitation are

strongly associated with ascending but not descending motion, and hence an addi-

tional nonlinearity is introduced into the thermodynamic equation (O’Gorman, 2011).

Emanuel et al. (1987) represented condensational heating in Eady and two-level semi-

geostrophic models by assuming saturated moist-adiabatic ascent. This assumption

leads to a nonlinear factor 𝑟(𝑤) that is a function of the vertical velocity 𝑤 and re-

duces the potential vorticity (or static stability in quasigeostrophic (QG) models) by

a factor 𝑟 < 1 in updrafts while leaving it unchanged in downdrafts (𝑟 = 1). While

this parameterization is a simplification, it captures the essential asymmetry that is

introduced through the irreversible fall-out of condensate during precipitation, and 𝑟

may be calculated from the observed temperature and pressure distributions in the

atmosphere. The effect of this condensational heating was to increase the growth

rates and decrease the area of ascent of growing modes with respect to dry waves,

results that are borne out well by moist baroclinic life cycle studies with shallow water

models (Lambaerts et al., 2012) or more comprehensive forecasting models (Booth

et al., 2015). When moist instability calculations were done with a more realistic

reduction factor 𝑟(𝑧) that varied vertically, the short wavelength cut-off of the Eady

model disappeared (Whitaker and Davis, 1994; Moore and Montgomery, 2004). A

new mode of instability emerged at shorter wavelengths which could intensify without

the presence of upper level forcing (Montgomery and Farrell, 1991, 1992; Whitaker
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and Davis, 1994; Moore and Montgomery, 2004). This mode now grew through the

interaction of a surface potential temperature anomaly and an interior PV anomaly,

rather than primarily through an interaction of anomalies of potential temperature at

the surface and lid, and the budget of eddy available potential energy was dominated

by diabatic rather than baroclinic generation.

Subsequent three-dimensional simulations with a mesoscale model by Moore and

Montgomery (2005) showed that this alternative diabatic growth mechanism could

generate isolated coherent PV-dipole structures consisting of a phase locked low-

level cyclonic anomaly and a midtropospheric anticyclonic anomaly starting from

an initial moist baroclinic environment without upper level forcing. The isolated

and diabatic character of such a growing disturbance without upper level forcing led

Moore and Montgomery (2004) to classify it as ‘Diabatic Rossby Vortex’ (DRV) - a

term we adopt in this paper. More recently, idealized channel simulations of cyclone

development using a weather forecasting model (Tierney et al. 2018) showed signs of

break-up into “jagged diabatic” PV structures reminiscent of a DRV at sufficiently

warm temperatures, in line with the results of O’Gorman et al. (2018). Finally, going

beyond initial value problems, turbulent simulations on a beta plane using moist two-

layer QG or shallow water equations showed a transition from a smooth large-scale

jet flow, to a jet-flow disrupted by the presence of small-scale vortices, that rapidly

intensify through moist-dynamical feedbacks in the strongly precipitating regime of

the simulation (Lapeyre and Held 2004,Bembenek et al. 2020). In Bembenek et al.

(2020) these vortices were explicitly likened to DRVs. We have also found growing

DRVs in the fully nonlinear warm-climate simulations of O’Gorman et al. (2018). An

example of such a DRV is shown in Fig. 2-1c, and it exhibits considerable similarity

with the DRV mode calculated by repeated rescaling to small amplitude (Fig. 2-

1a), although the positive PV anomaly extends higher into the atmosphere and the

negative PV anomaly and diabatic PV generation are more concentrated at the upper

tropopause.

DRVs have also been invoked to account for the initial phase prior to explosive

growth of certain cyclones in in operational analyses and realistic simulations. Both
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the European extreme storm ‘Lothar’ in 1999 (Wernli et al. 2002) and the explo-

sive east-coast winter storm in 2005 (Moore et al. 2008) were shown to propagate

and intensify moderately through diabatic effects without upper level forcing be-

fore intensifying explosively through upper-level interactions in a secondary growth

process. In this paper, we will remain focused on the initial phase of diabatic self-

amplification/propagation without considering upper interactions. While the isolated

and vortical structure of the east-coast winter storm led Moore et al. (2008) to classify

it as a DRV following the terminology of Moore and Montgomery (2004), the rapid

propagational character of ‘Lothar’, faster than the ambient winds, led Wernli et al.

(2002) to classify it as a ‘Diabatic Rossby Wave’ (DRW) with the positive diabatic

PV generation to the east of the low level cyclonic PV anomaly playing the role of

meriodional PV advection in a classic dry Rossby wave as discussed in Parker and

Thorpe (1995). Both DRV and DRW refer to the same phenomena, but neither name

is fully satisfactory since such storms are isolated like vortices but propagate through

PV generation like a wave (Boettcher and Wernli, 2013). The upper-level negative

PV anomaly is found to be relatively weak in observed storms, and some uncertainty

exists in the literature as to when latent heating leads to growth through interaction

of the positive low-level PV anomaly with a self-induced negative upper PV anomaly,

or rather just leads to propagation of the low-level PV anomaly. The importance

of diabatic effects in individual case studies of rapid cyclogenesis, led Boettcher and

Wernli (2013) to study DRVs more systematically by compiling a 10-year (2001-2010)

climatology of DRV tracks for the North Pacific and North Atlantic. DRVs occurred

at an average rate of 81 systems per year over the North Pacific and 43 system per year

over the North Atlantic. In line with the case studies of ‘Lothar’ and the east-coast

winter storm, DRVs in the current climate were found to propagate with moderate

intensification before interacting in a second phase with a pre-existing upper level PV

anomaly or jet stream.

It is clear from the literature that DRVs constitute an alternative diabatic growth

mechanism that relies both on sufficient baroclinicity and moisture, and which pro-

duces relatively small scale modes that can self-amplify exponentially even without
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the presence of upper level forcing. Currently, there is no theory for the growth rate

and length scale of DRVs or the wave-vortex transition that occurs at higher tem-

peratures in moist baroclinic instability simulations. Analytically tractable models

of dry and moist baroclinic instability (Eady, 1949; Charney, 1947; Phillips, 1954;

Emanuel et al., 1987; Zurita-Gotor, 2005) form much of the basis of our theoretical

understanding of cyclones due to their ability to isolate the mechanism of cyclone

formation in a conceptually simple model and to relate growth rate and length scale

of cyclones to atmospheric parameters in a quantitative way. Given the importance

of diabatic effects in cyclogenesis both in the current and future climate, it seems

desirable to develop an equivalent conceptually simple model for a DRV.

To this end, we introduce in this paper a minimal moist two-layer QG model with

tilted upper and lower boundaries and show that it is capable of producing a DRV

mode. Latent heating is represented by an assumption of saturated ascent in updrafts

following previous work (Emanuel et al., 1987; Fantini, 1995; Zurita-Gotor, 2005). We

tilt the model boundaries at a slope equal to that of the mean isentropes to make the

two-layer model an analog of the interior of the Eady model in which dry-baroclinic

instability has been shut off but any moist instability retained. This allows us to

transition to a pure DRV solution within a conceptually simple model. We note that

this model is similar in spirit to the unbounded balanced shear flow studied by Snyder

and Lindzen (1991) to demonstrate the possibility of growth through diabatically

generated interior anomalies in a setup which is dry modally stable. However, Snyder

and Lindzen (1991) allowed for negative latent heating in descent regions and so

obtained periodic wave solutions rather than an isolated DRV.

We begin in section 2.3 by formulating the tilted two-layer model and showing

that it produces a DRV mode. We then study its PV budget and derive the dis-

persion relation of the DRV mode analytically, a significant novelty of this paper.

Asymptotic solutions for the growth rate and ascent area of the DRV are found in

the limit of small 𝑟. We also solve the dispersion relation for the infinite domain

numerically by root-finding for the whole range of 𝑟. In section 2.4, we study the

emergence of DRV modes in the more general case that includes non-zero meridional
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PV gradients. We first introduce a simple PV argument to explain the wave-vortex

transition observed to occur as latent heating becomes dominant in the moist baro-

clinic instability simulations of O’Gorman et al. (2018). We then generate a phase

diagram for when the most unstable mode in a partially tilted two-layer model is a

periodic wave versus a DRV as a function of the PV gradients and 𝑟. In section 2.5,

we compare the warm-climate DRV mode and DRV storm from the idealized GCM

simulations of O’Gorman et al. (2018) to two storms in the present climate that have

been previously been found to have the characteristics of DRVs. Lastly, in section 2.6

we summarize our results and discuss their implications.

2.3 A Simple Model for a DRV

2.3.1 Model formulation

We seek a minimal model that can capture the internal interactions of diabatically

generated PV anomalies characteristic of a DRV. We start from the moist quasi-

geostrophic equations on an f-plane:

𝜕𝑡∇2𝜓 + 𝐽(𝜓,∇2𝜓)− 𝑓𝑤𝑧 = 0, (2.1)

𝜕𝑡𝜓𝑧 + 𝐽(𝜓, 𝜓𝑧) +
𝑁2

𝑓
𝑟(𝑤)𝑤 =

𝑁2

𝑓
𝑟(𝑤)𝑤, (2.2)

where 𝜓 is the streamfunction, 𝑤 is the vertical velocity, 𝑁2 is the constant static

stability, 𝑓 is the Coriolis parameter, 𝐽(𝐴,𝐵) = 𝐴𝑥𝐵𝑦 − 𝐵𝑥𝐴𝑦 is the Jacobian, and

(...) is a horizontal domain average. Equations (2.1,2.2) are equivalent to Eqs. 16

and 17 of Fantini (1995) except for the addition of the the term 𝑁2

𝑓
𝑟(𝑤)𝑤 on the right

hand side of the thermodynamic equation Eq. (2.2) which acts as a spatially uniform

radiative cooling to ensure that the domain-mean temperature remains constant even

though there is latent heating. The effects of latent heating on the dynamics are

encapsulated in the spirit of simple moist theories (Emanuel et al., 1987; Fantini,
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1995) by the nonlinear factor

𝑟(𝑤) =

⎧⎪⎨⎪⎩𝑟, 𝑤 ≥ 0

1, 𝑤 < 0

(2.3)

which reduces the static stability by a factor 𝑟 in regions of ascent. Under an as-

sumption of saturated moist-adiabatic ascent, 𝑟 = 𝜃
𝜃*

Γ𝑚

Γ𝑑

(︀
𝜕𝜃*

𝜕𝑧

)︀
/
(︀
𝜕𝜃
𝜕𝑧

)︀
(see Eq.(7) of

Fantini 1995), where 𝜃 and 𝜃* are the potential and saturated equivalent potential

temperature, respectively, and Γ𝑑 and Γ𝑚 are the dry-adiabatic and moist-adiabatic

lapse rates, respectively. The reduction factor in the ascent region varies strongly in

the vertical. In cyclones with strong diabatic heating, 𝑟 can go all the way to zero in

the interior and tend towards 1 as the tropopause is reached. Averaged in the vertical,

𝑟 = 0.1 is a typical value for the current climate (global mean surface temperature

of 288K) and 𝑟 = 0.01 for the warm climate GCM simulations (global mean surface

temperature of 311K) in O’Gorman et al. (2018). Physically the nonlinear factor 𝑟(𝑤)

represents the fact that whilst moist ascending air releases latent heat upon conden-

sation and feels a locally reduced static stability, the descending air is subsaturated

(after irreversible fall-out of condensate by precipitation) and thus feels the full static

stability. Moist thermodynamics thus introduces an additional nonlinearity into the

equations which greatly enriches the dynamics.

We simplify the dynamics further by discretizing the equations in the vertical

into two equal layers of height (Fig. 2-2), anticipating that the two layers will be

sufficient to represent the PV-dipole structure of the DRV. We introduce a barotropic

stream function 𝜑 = 𝜓1+𝜓2

2
and a baroclinic stream function 𝜏 = 𝜓1−𝜓2

2
where 1 refers

to the upper layer and 2 refers to the lower layer. The layer interface height is

𝜂 = − 𝑓
𝑔′
(𝜓1 − 𝜓2), with 𝑔′ = 𝑔 𝜃1−𝜃2

𝜃0
where 𝑔 is the gravitational constant, 𝜃1 and 𝜃2

are potential temperatures in each layer, and 𝜃0 is a reference potential temperature.

We assume small perturbations about a basic state 𝜏0 = −𝑈𝑦 corresponding to a

flow 𝑢1 = −𝜓1𝑦 = 𝑈 in the upper layer and 𝑢2 = −𝜓2𝑦 = −𝑈 in the lower layer. The

small amplitude of the perturbations allow us to linearize the advection terms, but
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Figure 2-2: Schematic of the (a) untilted and (b) tilted two-layer model with basic-
state interface height 𝜂, boundary slopes ℎ1𝑦 = ℎ2𝑦 = 𝜂𝑦, and basic-state PV-gradients
𝑞1𝑦 and 𝑞2𝑦. Also shown is the basic-state zonal wind profile which is the same for the
tilted and untilted models.

the thermodynamic equation remains nonlinear because of the latent heating term.

Finally, the key novelty of our model is that we tilt the top and bottom boundaries,

ℎ1(𝑦) and ℎ2(𝑦), respectively, to have slopes in the meridional direction of ℎ1𝑦 = ℎ2𝑦 =

𝜂𝑦 = −2𝑓
𝑔′
𝜏0𝑦 so as to match the slope of the basic-state layer interface 𝜂 (Fig. 2-2b)

in contrast to the standard untilted two-layer model (Fig. 2-2a). This makes our

two-layer model an analogue of the interior of the Eady-model with zero meridional

PV-gradients 𝑞1𝑦 = 𝑞2𝑦 = 0 in the basic state. The dry modal instability through

interlocking Rossby-waves is thus shut-off, but any instability solely due to the moist

processes is retained. The equations for the perturbations about the basic state are

derived in section a of the appendix in the limit of small-amplitude perturbations and

are given here in nondimensional form:

𝜕𝑡𝜑𝑥𝑥 + 𝜏𝑥𝑥𝑥 − 𝜏𝑥 = 0, (2.4)

𝜕𝑡𝜏𝑥𝑥 + 𝜑𝑥𝑥𝑥 − 𝜑𝑥 + 𝑤 = 0, (2.5)

𝜕𝑡𝜏 − 𝜑𝑥 + 𝑟(𝑤)𝑤 = 𝑟(𝑤)𝑤, (2.6)

where 𝜏 , 𝜑 and 𝑤 are now perturbations about the basic state.3 Finally, we note

3Equations (2.4-2.5) are identical to the two-layer moist QG equations (Zurita-Gotor, 2005)
except for the addition of the terms −𝜏𝑥 and -𝜑𝑥 in Eq. (2.4) and Eq. (2.5), respectively, which
arise because of the tilted boundaries, and except for the presence of the mean radiative cooling
term 𝑟(𝑤)𝑤 in Eq.2.6. Zurita-Gotor (2005) studied the stability of moist waves by combining the
equations into a single equation for 𝑤 in which case any mean radiative cooling term drops out for
an untilted model. We will see shortly, however, that the mean radiative cooling does not drop out
when forming the 𝑤 equation for the tilted model.
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that a dry two-layer model with sloping upper and lower boundaries was already in-

troduced by Bretherton (1966) to allow independent variation of PV gradients and

vertical shear in an investigation of the short-wavelength cut-off of baroclinic insta-

bility. Evidently, the reason for introducing the tilted boundaries here is different, as

we are interested in eliminating the basic-state PV gradients all together.

2.3.2 Numerical Simulation

We first solve the tilted model equations numerically to isolate and study the fastest

growing mode for a given static-stability reduction factor 0 ≤ 𝑟 ≤ 1. To this end,

we discretize the equations using second-order central finite differences in a periodic

domain in 𝑥.

We integrate the barotropic and baroclinic vorticity equations (Eqs. 2.4,2.5) for-

ward in time for the variables Φ = 𝜑𝑥𝑥 and 𝑇 = 𝜏𝑥𝑥. Timestepping is performed with

matlab’s ode45 function, which is based on an explicit Runge-Kutta (4,5) formula

with an adaptive time step.

The system of equations is closed by calculating the vertical velocity 𝑤 at each

time step from the nonlinear omega equation,

(𝑟(𝑤)𝑤)𝑥𝑥 − 𝑤 = 2𝜑𝑥𝑥𝑥 − 𝜑𝑥, (2.7)

which is formed by eliminating the time derivatives between Eq. (2.5) and (2.6). By

using the omega equation, time stepping of Eq. (2.6) is not needed. The nonlinearity

in the omega equation arises from 𝑟(𝑤) and requires an iterative approach to finding

the solution. We solve it iteratively at each time step as (𝑟(𝑤𝑛)𝑤𝑛+1)𝑥𝑥 − 𝑤𝑛+1 =

𝑅𝐻𝑆, where 𝑛 is the iteration step. We start the iteration from a random guess

for 𝑤 to define the initial 𝑟(𝑤), and we iterate until the root-mean-square (rms) of

(𝑤𝑛+1 − 𝑤𝑛) is smaller than 10−12.

We start the timestepping from random initial conditions for Φ and 𝑇 . At each

time step, we invert Φ = 𝜑𝑥𝑥 and 𝑇 = 𝜏𝑥𝑥 to obtain 𝜑 and 𝜏 by imposing that

𝜑 and 𝜏 have zero mean. We then solve for 𝑤 using the iterative approach to the
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Figure 2-3: (a) Vertical velocity, (b) PV anomalies (solid) and diabatic PV generation
rate (dashed), and (c) total meridional winds (solid) and meridional winds induced
by PV anomalies in the same layer (dashed). All quantities are plotted versus 𝑥 for
the fastest growing mode of the tilted model equations at 𝑟 = 0.01 which is a DRV. In
(b-c), quantities in the upper layer are show in blue and quantities in the lower layer
are shown in red. The domain size is 𝐿 = 8𝜋 and the grid spacing is ∆𝑥 = 0.025. All
quantities are non-dimensional and the overall magnitude of the DRV is arbitrary.
The results in (b,c) have been zoomed in around the location of ascending motion to
better show the structure of the fields since the DRV occupies only a small fraction
of the domain.

omega equation described above, and we then update Φ and 𝑇 using Eqs. (2.4) and

(2.5). We rescale the amplitudes of the vectors Φ and 𝑇 by a factor of 100 each time

rms(x) > 10, where x = [𝑇,Φ], to avoid large numbers which could cause problems

with the numerical representation. We integrate until the nondimensional time is

𝑡 = 200 when we find that the solution has converged to a normal mode.

The vertical velocity (at time 𝑡 = 200) for 𝑟 = 0.01 is shown in Fig.2-3a where

we have used a grid spacing of ∆𝑥 = 0.025 and a domain size of 8𝜋 . Remarkably,

the solution evolves into a DRV with a single spatially localized peak in vertical

velocity just like in the warm limit of the idealized GCM calculations of O’Gorman

et al. (2018), their Figs. 1f and 2f. The isolated solution is in stark contrast to the

spatially periodic structure of moist baroclinic waves. The solution is exponentially

growing and fixed in space because the basic-state zonal wind is equal and opposite

in each layer, but the DRV would propagate zonally with a more realistic vertical

wind profile. We have repeated the calculations using a linear drag on the relative

vorticity in the lower layer with a damping time scale of either 10 days (weak drag)

or 2.5 days (strong drag). Isolated DRV solutions persist even with drag included,

with similar length scale but reduced growth rate compared to the default case with
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Figure 2-4: Terms in the lower-layer PV budget versus 𝑥 for the fastest growing mode
of the tilted model equations at 𝑟 = 0.01 which is a DRV. The domain size is 𝐿 = 8𝜋
and the grid spacing is ∆𝑥 = 0.025. The terms in the PV budget that are shown are
the total tendency (blue) and the contributions from zonal advection (red dashed),
and latent heating (black dashed dotted). The PV tendency from radiative cooling
is a small constant with a value of 𝑟(𝑤)𝑤 = −0.011 (not shown). All quantities are
non-dimensional and the overall magnitude of the DRV is arbitrary. The PV budget
has been zoomed in around the location of ascending motion since the DRV occupies
only a small fraction of the domain.
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no drag (not shown).

We next analyze the PV dynamics of the DRV mode. The PV budget in the

lower layer was obtained by rewriting the 𝑟(𝑤)𝑤 term as 𝑟(𝑤)𝑤 = 𝑤− (1− 𝑟(𝑤))𝑤 in

the thermodynamic equation (Eq. 2.6), eliminating the 𝑤 term using the baroclinic

vorticity equation (Eq. 2.5) and adding the barotropic vorticity equation (Eq. 2.4)

to give

𝜕𝑞2
𝜕𝑡

= 𝜎𝑞2 = 𝑞2𝑥 + (1− 𝑟(𝑤))𝑤 + 𝑟(𝑤)𝑤, (2.8)

where 𝑞2 = 𝜑𝑥𝑥 − 𝜏𝑥𝑥 + 𝜏 is the lower-layer PV, 𝜎 is the growth rate, 𝑞2𝑥 is zonal

advection, and 𝑞2,diab = (1 − 𝑟(𝑤))𝑤 + 𝑟(𝑤)𝑤 is the diabatic generation rate. A

similar equation may be derived for the upper-layer PV anomaly 𝑞1 = 𝜑𝑥𝑥 + 𝜏𝑥𝑥 − 𝜏

which has diabatic generation given by 𝑞1,diab = −(1 − 𝑟(𝑤))𝑤 − 𝑟(𝑤)𝑤. The DRV

mode is made up of a positive PV anomaly in the lower layer and a negative PV

anomaly in the upper layer that are both growing through diabatic PV generation

(Fig. 2-3b). Note that meridional PV advection does not appear in the PV budget

because the meridional PV gradients are zero by construction in the tilted model,

but for completeness, we also show the meridional winds (Fig. 2-3c). Exploration of

the parameter space of 𝑟 shows that the basic PV structure remains similar for all

values of 0 ≤ 𝑟 < 1 , although the growth rate and horizontal length scale of the

ascent region do change when 𝑟 is varied. At 𝑟 = 1 the system is dry and stable

because there are no contributions from latent heating, and by construction there are

no meridional PV gradients to otherwise support baroclinic instability.

We calculate the growth rate of the mode by assuming exponential growth of the

rms of x = [Φ, 𝑇 ] over each time-step ∆𝑡 to give 𝜎 = log
(︁

rms(x(t))
rms(x(t−Δt))

)︁
/∆𝑡. Note

that the time-stepping is adaptive and the step size ∆𝑡 can vary. We then average 𝜎

over the end period of the calculation (𝑡 = 195− 200).

From Fig. 2-4 we see that within the narrow region of ascent the growth of the

positive PV anomaly is due to diabatic PV generation through latent heating that is

partially offset by zonal advection. In the region of descending motion to the west,
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the PV generation due to latent heating is zero and the growth of the PV anomaly

is due to zonal advection over a more extended spatial scale. The PV tendency from

radiative cooling is spatially constant with a value of 𝑟(𝑤)𝑤 = −0.011. In the region

of descent to the east, all the terms in the lower-layer PV budget are zero except for

the time tendency and the small term due to radiative cooling. The PV budget in

the upper layer is the same as in the lower layer except that the signs of the terms

are flipped and they are mirrored about the axis of maximum ascent.

Now that we have isolated the DRV solution within a simplified model, it is

possible to develop analytical solutions for its characteristics.

2.3.3 Analytic Theory

We now derive the growth rate and horizontal length scale of the DRV mode. In the

modal regime, the DRV satisfies the equations

𝜎𝜑𝑥𝑥 + 𝜏𝑥𝑥𝑥 − 𝜏𝑥 = 0, (2.9)

𝜎𝜏𝑥𝑥 + 𝜑𝑥𝑥𝑥 − 𝜑𝑥 + 𝑤 = 0, (2.10)

𝜎𝜏 − 𝜑𝑥 + 𝑟(𝑤)𝑤 = 𝑟(𝑤)𝑤. (2.11)

We eliminate the stream functions and combine the equations into a single equation

for 𝑤

(𝑟𝑤)𝑥𝑥𝑥𝑥 − (2 + 𝜎2)(𝑟𝑤)𝑥𝑥 + 𝑤𝑥𝑥 + (𝑟 + 𝜎2 − 1)𝑤 = 𝑟𝑤, (2.12)

as shown in section 2.7.2 of the appendix. This equation is similar to the equation for

𝑤 derived for moist baroclinic modes in an untilted two-layer model (compare with

Eq.12 in Zurita-Gotor 2005) except for the two extra terms −2(𝑟𝑤)𝑥𝑥 and (𝑟 − 1)𝑤

on the left-hand side of the equation, and the radiative cooling term 𝑟(𝑤)𝑤 on the

right-hand side which is constant in space but varies in time. As we will see shortly,

the extra terms on the left-hand side are responsible for producing exponentially

decaying rather than periodic solutions in the descent area which are characteristic
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Figure 2-5: Schematic of the solution of the 𝑤 equation (see Eq. 2.12) for the DRV
mode. For 0 ≤ 𝑥 ≤ 𝑏 we have ascending motion 𝑤 = 𝑤↑ > 0 and 𝑟 < 1, and for
𝑥 > 𝑏 we have descending motion 𝑤 = 𝑤↓ < 0 and 𝑟 = 1. 𝑥 = 𝑏 is the location of the
boundary between ascent and descent that must be found as part of the solution.

of an isolated DRV.

We look for symmetric solutions about the peak in 𝑤 since that is what was

obtained in the numerical solutions and since the equation for 𝑤 is symmetric under

𝑥→ −𝑥. We put the peak in 𝑤 at 𝑥 = 0, and by symmetry we need only consider the

half of the domain 𝑥 ≥ 0, where w is ascending between 0 ≤ 𝑥 ≤ 𝑏 and descending

for 𝑥 > 𝑏 (see Fig. 2-5). Here 𝑏 is the location of the boundary between ascent and

descent that must be solved for.

Eq. 2.12 is readily solved separately in the descending and ascending region. In

the descending region, the solution is given by

𝑤↓ =
𝑎

𝜎2
+ 𝑑1𝑒

−(𝑥−𝑏) + 𝑑2𝑒
−𝜎(𝑥−𝑏), (2.13)

where 𝑎 = 𝑟(𝑤)𝑤, and we have discarded exponential solutions that become un-

bounded as 𝑥 → ∞ assuming growing solutions 𝜎 ≥ 0. In the ascending region, the
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solution is symmetric about 𝑥 = 0 and is given by

𝑤↑ =
𝑎

𝑟 + 𝜎2 − 1
+ 𝑐1 cos(𝑘1𝑥) + 𝑐2 cos(𝑘2𝑥), (2.14)

with wavenumbers

𝑘1 =
1√
2𝑟

√︂
1− 𝑟(2 + 𝜎2) +

√︁
(1− 𝑟(2 + 𝜎2))2 − 4𝑟(𝜎2 + 𝑟 − 1) (2.15)

𝑘2 =
1√
2𝑟

√︂
1− 𝑟(2 + 𝜎2)−

√︁
(1− 𝑟(2 + 𝜎2))2 − 4𝑟(𝜎2 + 𝑟 − 1) (2.16)

that are functions of 𝑟 and 𝜎.

We define the domain half-size to be 𝐿 and then take the limit of an infinite

domain 𝐿 → ∞. Mass conservation expressed as
∫︀ 𝐿
0
𝑤𝑑𝑥 = 0 allows us to rewrite

𝑎 = 1
𝐿

∫︀ 𝐿
0
𝑟𝑤𝑑𝑥 = 1

𝐿

∫︀ 𝐿
0
(𝑟 − 1)𝑤𝑑𝑥 = 1

𝐿

∫︀ 𝑏
0
(𝑟 − 1)𝑤↑𝑑𝑥, which implies that 𝑎 → 0

as 𝐿 → ∞ if we want solutions for which 𝑏 and 𝑤↑ remain bounded. We need

additional constraints to determine the constants 𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝜎, and 𝑏. We impose

that 𝑤↑ = 𝑤↓ = 0 at 𝑥 = 𝑏, continuity of (𝑟𝑤)𝑥 and (𝑟𝑤)𝑥𝑥 at 𝑥 = 𝑏 and mass

conservation. The continuity conditions follow from the continuity of 𝜑, 𝜏 and the

existence of the derivatives in the governing Eqs. 2.9-2.11. The constraint that

𝑤↓ = 0 at 𝑥 = 𝑏 gives

𝑑1 = −𝑑2 −
𝑎

𝜎2
. (2.17)

Furthermore, the amplitude of the 𝑤 solution is arbitrary which allows us to fix one of

the amplitudes without loss of generality. We choose 𝑑2 = 1 when 𝜎 > 1 and 𝑑2 = −1

when 𝜎 < 1 to ensure that 𝑤↓ < 0. In the limit of 𝐿 → ∞ and 𝑎 → 0, the resulting
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equations are:

𝑐1 cos(𝑘1𝑏) + 𝑐2 cos(𝑘2𝑏) = 0, (2.18)

𝑐1𝑘1 sin(𝑘1𝑏) + 𝑐2𝑘2 sin(𝑘2𝑏) = 𝑑2
𝜎 − 1

𝑟
, (2.19)

𝑐1𝑘
2
1 cos(𝑘1𝑏) + 𝑐2𝑘

2
2 cos(𝑘2𝑏) = 𝑑2

1− 𝜎2

𝑟
, (2.20)

𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏) = 𝑑2
𝜎(𝜎 − 1)

𝜎2 + 𝑟 − 1
, (2.21)

expressing 𝑤↑ = 0 at 𝑥 = 𝑏, continuity of (𝑟(𝑤)𝑤)𝑥, continuity of (𝑟(𝑤)𝑤)𝑥𝑥, and mass

conservation respectively. The limit of 𝐿 → ∞ and 𝑎 → 0 in the mass conservation

equation must be taken carefully, a subtle point that is discussed in section 2.7.3 of

the appendix.

Eliminating the constants 𝑐1, 𝑐2, which also gets rid of the arbitrary constant 𝑑2

(see section 2.7.4 of the appendix), we obtain two equations

tan(𝑘1𝑏) =
𝑟𝑘1𝑘2
𝜎 + 1

(︂
− 1

𝑟𝑘2
+

𝜎𝑘2
𝜎2 + 𝑟 − 1

)︂
, (2.22)

tan(𝑘2𝑏) =
𝑟𝑘1𝑘2
𝜎 + 1

(︂
− 1

𝑟𝑘1
+

𝜎𝑘1
𝜎2 + 𝑟 − 1

)︂
, (2.23)

which along with the definitions of 𝑘1 and 𝑘2 (Eqs. 2.15,2.16) yield the dispersion

relationship for the growth rate 𝜎 and half-ascent length 𝑏 as a function of the static-

stability reduction factor 𝑟, a key novel result of this paper.

In general, this dispersion relationship needs to be solved numerically, but in the

limit of a convectively neutral stratification 𝑟 → 0 it is possible to show analytically

that at leading order the growth rate is

𝜎 =
1 +

√
5

2
= 1.62, (2.24)
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and the half-ascent length is

𝑏 =
𝜋

2

√
𝑟, (2.25)

(see section 2.7.5 of the appendix).4 For comparison, the growth rate (𝜎) and half-

ascent length (equal to 𝑏 for the DRV) for the fastest growing modes in an untilted

dry two-layer model (Phillips 1954) and moist two-layer model (Emanuel et al. 1987)

are given in Table 2.1.

Note that the half-ascent length is just quarter the wavelength for the dry mode,

and that the results in Emanuel et al. (1987) need to be rescaled by a factor
√
2

to agree with our nondimensionalization. The DRV grows about four times faster

than the dry wave, and 1.5 times faster than the moist wave in the small 𝑟 limit,

consistent with the fact that the DRV emerges as the fastest growing solution in the

warm climate simulations of moist baroclinic instability in O’Gorman et al. (2018).5

The ascent length of the DRV and moist wave are the same in the small 𝑟 limit, and

about fifteen times smaller than that of a dry wave for 𝑟 = 0.01.

To obtain 𝜎 and 𝑏 for the full range of 𝑟, we solve the dispersion equations nu-

merically. Equations (2.22) and (2.23) are solved using matlab’s fsolve. We start by

solving at 𝑟 = 10−3 with initial guess 𝜎 = 1.53 and 𝑏 = 0.06 for the first two values of

𝑟, and we use linear extrapolation for the initial guesses at each subsequent value of

𝑟. The results are compared to the time-marching solutions of Eqs. 2.4,2.5 and 2.7

for a finite domain with periodic boundary conditions in Fig. (2-6), where we use a

larger domain 𝐿 = 32𝜋 with ∆𝑥 = 0.084 for all values of 𝑟 to resolve the large and

weakly growing solutions as 𝑟 → 1. Note that the time-marching solution at 𝑟 = 1 is

4The dimensional growth rate for 𝑟 → 0 is 1.62
√
2𝑈𝑓/(𝑁𝐻) and the dimensional half-ascent

length is 𝜋
√
𝑟/(2

√
2)𝑁𝐻/𝑓 , where 𝐻 is the depth of one layer and the vertical shear is 2𝑈/𝐻.

5It is possible that ‘climate warming’ in the idealized GCM calculations of O’Gorman et al.
2018 favors DRVs both through a reduction in the 𝑟 factor but also through changes in the mean
state of the midlatitude atmosphere, in particular a weakening of the mean meridional PV gradient
structure at upper levels. Weaker PV gradients can also favor DRV formation (see section 2.4) and
are not considered at this point. However, a separate set of instability calculations were performed
in O’Gorman et al. 2018 in which the mean state of the atmosphere was held fixed at that of the
current climate and the effects of latent heating were parametrized simply through a reduction of
the static stability in updrafts, similar to theory. Consistent with the analytical results, the most
unstable mode broke up from quasi-periodic waves into isolated DRV modes in the limit as 𝑟 → 0.
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Table 2.1: Comparison of the nondimensional and dimensional growth rate 𝜎, and
half-ascent length in two-layer models for the most unstable dry wave (Phillips 1954),
moist wave (Emanuel et al. 1987) and DRV. The half-ascent length is given by quarter
the wavelength for the dry wave, and by half the length of the region of ascent for
the DRV and moist wave (for the DRV it is 𝑏). Dimensional values for the growth
rate (𝜎 𝑈

𝐿𝐷
) and ascent length (𝑏𝐿𝐷) are calculated using typical scales 𝐿𝐷 = 𝑁𝐻√

2𝑓
=

1000 km/
√
2, and 𝑈 = 10ms−1. The factor of

√
2 in 𝐿𝐷 follows from our choice

of nondimensionalization. Growth rates for the moist wave and DRV are presented
in the limit of a convectively neutral stratification (𝑟 → 0). Half-ascent lengths for
the moist wave and DRV are presented as the small-𝑟 asymptotic expressions for the
non-dimensional results, and evaluated at 𝑟 = 0.01 (representative of a warm climate)
for the dimensional results, since the ascent length would be zero for 𝑟 → 0.

Growth rate Growth rate (day−1)
𝑟 → 0 𝑟 → 0

Dry wave
√
2− 1 = 0.41 0.50

Moist wave 1.05 1.28
DRV 1

2
(1 +

√
5) = 1.62 1.98

Half-Ascent length Half-Ascent length (km)
𝑟 ≪ 1 𝑟 = 0.01

Dry wave 𝜋

2
√√

2−1
1726

Moist wave 𝜋
2

√
𝑟 111

DRV 𝜋
2

√
𝑟 111
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Figure 2-6: (a) Growth rate 𝜎 and (b) half-ascent length 𝑏 from the time-marching
solutions of the tilted model equations (Eqs. 2.4,2.5 and 2.7) in a finite periodic
domain 𝐿 = 32𝜋 with ∆𝑥 = 0.084 (solid red), and from the root-finding of the
dispersion Eqs. (2.22-2.23) for an infinite domain (dashed blue).

not growing and is not shown in Fig. (2-6). The growth rates from the time-marching

and dispersion-relation approaches are in good agreement for values below a critical

value of 𝑟 = 0.38, whereas the ascent lengths are in good agreement only for values

of 𝑟 less than roughly 0.2. A sample vertical-velocity profile at 𝑟 = 0.01 (Fig. 2-7)

confirms that the 𝑤 profiles from the time-marching and dispersion relations are in

very good agreement at small 𝑟. As the critical value of 𝑟 = 0.38 is approached, the

root-finding solution for 𝑏 tends to large numbers. For values of 𝑟 > 0.38, we only

find solutions to the dispersion relation for which the half-ascent length 𝑏 < 0. These

solutions are unphysical and can be discarded.

Mathematically, the breakdown of the solution on an infinite domain at 𝑟 = 0.38

can be traced to the point at which 𝜎2 + 𝑟 − 1 = 0 and the right-hand sides of Eqs.

(2.22-2.23) diverge to infinity. Empirically we find that as this point is approached,

both 𝑘1 and 𝑘2 also go to zero, such that 𝑏 → ∞ is needed to balance a diverging

right-hand side. Setting 𝑘1 = 𝑘2 = 0 we obtain 𝑟 =
(︀
3−

√
5
)︀
/2 = 0.38 and 𝜎 =√︁

(
√
5− 1)/2 = 0.79 for the breakdown point in good agreement with the numerical

results. Beyond this point 𝜎2+ 𝑟−1 < 0, which implies from Eqs. (2.15-2.16) that 𝑘2

becomes imaginary while 𝑘1 remains real. Hence, tan in Eq. (2.23) switches to tanh
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Figure 2-7: Comparison of the vertical velocity versus 𝑥 for 𝑟 = 0.01 from the time-
marching solution (Eqs. 2.4,2.5 and 2.7) in a finite periodic domain (solid red), and
from the root-finding of the dispersion relation (Eqs. 2.22-2.23) for an infinite domain
(dashed blue).

while the right-hand side of Eq. (2.23) becomes negative. To satisfy the equation for

growing modes, this requires 𝑏 < 0 which is unphysical.

Thus, while DRV solutions continue to exist for 𝑟 > 0.38 on a finite domain with

periodic boundary conditions, isolated DRV solutions on an infinite domain cease to

exist.

2.4 The role of meridional PV gradients and the

wave-vortex transition

So far we have discussed the emergence of DRVs in a moist two-layer model with zero

meridional PV gradients in which PV is generated purely from diabatic effects. While

such a setup is a useful idealization for a DRV mode, we are interested in studying how

the occurrence of DRVs generalizes to a more realistic situation with PV gradients.

We start by considering a qualitative PV argument for how the dynamics changes as

diabatic effects become dominant over meridional PV advection, and we then extend

our tilted two-layer model to include meridional PV gradients.
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2.4.1 PV dynamical perspective on the wave-vortex transition

The transition from a periodic wave to an isolated vortex mode in simulations of moist

baroclinic instability in which diabatic effects become dominant can be interpreted

elegantly within the PV framework of a moist two-layer model (see Fig. 2-8). Focusing

on the lower layer (the upper layer is analogous), we start from the initial condition

of a PV wave train consisting of positive and negative anomalies (Fig. 2-8a).

In a regime in which PV gradients are dominant, meridional advection of the

negative background PV gradient in the lower layer would generate a positive PV

tendency to the east of a positive PV anomaly, and a negative PV tendency to its

west. These advective PV tendencies give rise to a eastward propagating Rossby wave

that can phase lock and grow by interacting with a counter-propagating Rossby wave

in the upper layer.

If instead we are in a regime in which the diabatic generation of PV is dominant,

ascent to the east of a positive PV anomaly causes latent heat release that generates a

positive PV tendency in the lower layer, whereas descent to its west does not generate

latent heating and thus there is no negative PV tendency in the lower layer. Thus, only

positive PV anomalies survive in the lower layer (with repeated amplitude rescaling

to calculate the growing mode) due to the asymmetry in diabatic PV generation (Fig.

2-8b).

However, a series of positive PV anomalies have weaker meridional flow between

them (because of cancellation of the induced flow from neighboring PV anomalies; Fig.

2-8b) as compared to the meridional flow surrounding an isolated single PV anomaly.

Thus one PV anomaly is a faster growing mode of the system when diabatic PV

generation is dominant over meridional PV advection (Fig. 2-8c).

2.4.2 Including PV gradients in the two-layer tilted model

A range of PV gradients can be easily included in our two-layer model by tilting the

top and bottom boundaries at variable slopes ℎ1𝑦 = 𝛼1 and ℎ2𝑦 = 𝛼2. We retain

the basic state 𝜏0 = −𝑦 (nondimensionalized) and 𝜑0 = 0 corresponding to a shear
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Figure 2-8: PV perspective on the transition from a periodic wave to an isolated vortex
in simulations of moist baroclinic instability. Cyclonic PV anomalies are shown in red
pluses and anticylonic PV anomalies are shown in blue minuses. Blue arrows illustrate
the direction of horizontal winds induced by the anomalies. Starting from an initial
condition consisting of (a) a wave train of PV anomalies in the lower layer, (b) only
positive anomalies survive due to the asymmetry in diabatic generation. However, a
series of positive anomalies have weaker meridional flow between them which leads
to weaker diabatic PV generation as compared to an isolated anomaly, and thus (c)
one anomaly is a faster growing mode of the system.

flow in thermal wind balance. The perturbation equations around this basic state are

derived in section 2.7.1 of the appendix and take the form

𝜕𝑡𝜑𝑥𝑥 + 𝜏𝑥𝑥𝑥 −
1

2
(𝛼1 − 𝛼2)𝜑𝑥 −

1

2
(𝛼1 + 𝛼2)𝜏𝑥 = 0, (2.26)

𝜕𝑡𝜏𝑥𝑥 + 𝜑𝑥𝑥𝑥 −
1

2
(𝛼1 − 𝛼2)𝜏𝑥 −

1

2
(𝛼1 + 𝛼2)𝜑𝑥 + 𝑤 = 0, (2.27)

𝜕𝑡𝜏 − 𝜑𝑥 + 𝑟(𝑤)𝑤 = 𝑟(𝑤)𝑤, (2.28)

with PV gradients 𝑞1𝑦 = 1− 𝛼1 and 𝑞2𝑦 = −1 + 𝛼2.

We solve the equations numerically for given values of 𝑟, 𝛼1 and 𝛼2 using time

marching as in section 2.3.2. We use a domain size of 𝐿 = 8𝜋, but to calculate

solutions for a large parameter space we use a larger grid spacing of ∆𝑥 = 0.13 than

before. We classify the most unstable solution as either an isolated DRV (single local

maximum in 𝑤) or a periodic wave (multiple local maxima in 𝑤) or stable. Local

maxima in 𝑤 for which 𝑤 < 0 are not counted. Cases that are stable or very weakly
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Figure 2-9: Phase diagram showing whether the most unstable mode of the tilted
two-layer model is a periodic wave (blue) or a DRV (red) or stable (white) for a
setup where (a,d) the PV gradients are equal and opposite in strength 𝑞1𝑦 = −𝑞2𝑦
for multiple values of 𝑟, and for a setup where the PV gradients vary independently
from each other and (b,e) 𝑟 = 0.1 or (c,f) 𝑟 = 0.01. Dashed lines in (a-c) show the
growth rate and dashed lines in (d-f) show the half-ascent length 𝑏. The domain
length is 𝐿 = 8𝜋 and the grid spacing is ∆𝑥 = 0.13. Note that the standard two-layer
configuration has positive upper-layer PV gradient (𝑞1𝑦 > 0) and negative lower-layer
PV gradient (𝑞2𝑦 < 0) which corresponds to the upper-left quadrants in (b,c,e, and
f).

growing (𝜎 < 0.09) are counted as stable. The results of this classification are shown

in Fig. 2-9 along with the growth rate 𝜎 in Fig. 2-9 a-c and half-ascent length 𝑏 in

Fig. 2-9 d-f.

We begin by focusing on the equally-tilted case 𝛼1 = 𝛼2 = 𝛼 for which 𝑞1𝑦 =

−𝑞2𝑦 = 1 − 𝛼. We let 0 ≤ 𝛼 ≤ 2 which includes the classic untilted regime with

𝑞1𝑦 = 1 and 𝑞2𝑦 = −1 at 𝛼 = 0, the no PV gradient regime 𝑞1𝑦 = 𝑞2𝑦 = 0 from

the previous section at 𝛼 = 1, and a reversed PV gradient regime 𝑞1𝑦 = −1 and

𝑞2𝑦 = 1 at 𝛼 = 2. For 𝛼 < 1, a DRV emerges as the fastest growing solution when the

magnitudes of the upper and lower PV gradients are weaker than a threshhold 𝑞𝑦𝑐𝑟𝑖𝑡
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of roughly 0.7 such that 𝑞1𝑦 = −𝑞2𝑦 < 𝑞𝑦𝑐𝑟𝑖𝑡 as shown in Fig. 2-9a.6 When instead

the magnitudes of the upper and lower PV gradients are greater than the critical

threshold (𝑞1𝑦 = −𝑞2𝑦 > 𝑞𝑦𝑐𝑟𝑖𝑡), the periodic wave emerges as the fastest growing

solution for all values of 𝑟. For the cases with 𝛼 > 1 where the PV gradients are

reversed from their usual directions, a DRV is the fastest growing solution but it is

necessary for 𝑟 to be sufficiently low for the solution to be unstable, consistent with

the dry solutions (𝑟 = 1) being Fjørtoft stable (Fjørtoft 1950, Pedlosky 1964) due

to the mismatch between the directions of the shear and PV gradients. Evidently,

this mismatch is also sufficient to inhibit the growth of the moist modes unless 𝑟 is

sufficiently low such that the dynamics is dominated by latent heating. Overall, these

results confirm that the emergence of isolated DRV modes in the tilted model is not

an artifact of having exactly zero PV gradients — though this is a useful limit to

consider for theory — but rather generalizes to more realistic configurations that do

include PV gradients. Again, we have repeated the calculations using a linear drag

acting on the relative vorticity in the lower layer with a damping time scale of either

10 days (weak drag) or 2.5 days (strong drag). The wave-vortex transition persists,

with the precise boundary largely unaffected by drag. Length scales are similar, but

the growth rates are reduced (not shown).

Surprisingly, Fig. 2-9a suggests that the transition from wave to DRV regime in

the two-layer model with equal and opposite PV gradients is independent of 𝑟 (the

boundary at 𝑞𝑦𝑐𝑟𝑖𝑡 is entirely horizontal) but does rely on weakening or reversing the

PV gradients compared to the classic untilted two-layer model. We investigate this

result further by repeating the calculations with PV gradients that are not equal and

opposite, but rather allowed to vary independently from each other, for two example

values of 𝑟 (Fig. 2-9 b, c). We observe that lowering of 𝑟, as expected in a warmer

climate whose stratification is closer to moist adiabatic, does make a difference since

it produces DRVs as the fastest growing solution for a larger range of PV gradients,

6Note that the solutions classified as DRVs at 𝑟 = 1 could instead be considered to be waves.
From the dry dispersion relation, the wavelength of these most unstable dry modes becomes infinite
(not shown), and thus one maximum in 𝑤 is found numerically in the domain no matter how large
of a domain is chosen. Note also that the pure DRV solution with 𝑞1𝑦 = 𝑞2𝑦 = 0 at 𝑟 = 0.9 is shown
to be stable but would grow weakly on a larger domain.
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particularly away from the diagonal line where the PV gradients are exactly equal

and opposite. We also recall from the analytical solutions the existence of an upper

bound on 𝑟 for DRVs to occur in an infinite domain when the PV gradients are zero

(Fig. 2-6). Overall, we find that both weak PV gradients and weak moist static

stability (small r) can favor DRVs.

2.5 Comparison to storms at finite amplitude

Our two-layer theory for DRV modes and the warm-climate DRV mode in the idealized

GCM calculation of O’Gorman et al. (2018) are both based on an assumption of small

amplitude disturbances. In this section, we analyze DRV storms in reanalysis and

a warm-climate simulation of the idealized GCM to see how finite amplitude affects

storm structure. We are particularly interested in the question of whether finite-

amplitude effects can weaken the upper-level anticyclonic PV anomaly and possibly

lead to DRVs that propagate but do not grow strongly due to the lower PV anomaly

not having a strong enough upper PV anomaly with which to interact. Differences

in the vertical structure of PV anomalies are expected at finite amplitude for two

reasons. First, diabatic PV generation is weaker at finite amplitude in anticyclonic

regions, an effect that is captured in semigeostrophic models (Hoskins, 1975; Emanuel

et al., 1987). Second, vertical advection of PV at finite amplitude can significantly

offset negative diabatic generation at upper levels because positive PV anomalies at

lower levels are advected upwards.

We compare the structure of the warm climate DRV mode (Fig. 2-1a) to a finite-

amplitude DRV storm in the same idealized GCM and climate (Fig. 2-1c) and to two

finite-amplitude storms from reanalysis. The first storm from reanalysis is the east-

coast winter storm (Fig. 2-10a), that was identified as a propagating and moderately

growing DRV by Moore et al. (2008). It later experienced explosive growth through

interaction with a prexisting upper PV anomaly, but we consider the earlier diabatic

phase. The second storm from reanalysis is an example midlatitude summer cyclone

(Fig. 2-10 c) from an updated version of the DRV climatology of Boettcher and Wernli
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Figure 2-10: PV structure and PV generation rate due to latent heating of the (a,b)
2005 winter storm (latitude 37 ∘ at 0000UTC 25 Feb 2005) which was identified as a
DRV in Moore et al. (2008), and (c,d) an example summer cyclone (latitude 41.25 ∘ at
0500UTC 10 Jul 2009) which was identified as a DRV in the climatology of Boettcher
and Wernli (2013). Shading shows PV anomalies with respect to a 4-day moving
average (using 6-hourly fields). Contours show (a,c) the diabatic PV generation (the
first term on the right-hand-side of Eq. (2.30)) and (b,d) the generalized diabatic
PV generation including both diabatic PV generation and diabatic vertical advection
as in Eq.(2.29). In all cases only diabatic effects from latent heating are included.
Red contours are positive and blue contours are negative, and the contour interval
is 0.44 pvu h−1 for (a,b) and 0.10 pvu h−1 for (c,d). The zero contour line is not
shown. All fields are calculated from ERA5 reanalysis, and PV is calculated using
the hydrostatic approximation to Ertel’s PV.
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(2013) that is based on ERA5 reanalysis (Hersbach et al. 2020). It was identified

as a DRV by a tracking algorithm, selecting for substantial baroclinicity, sufficient

moisture, fast propagation, and weak upper-level forcing. These example storms are

meant to illustrate some of the variations in the constellation of PV anomalies and

diabatic generation in observed DRVs.

Ertel PV anomalies are defined with respect to a zonal mean for the idealized GCM

(using once daily fields for the mode and 6 hourly for the macroturbulent state) and

with respect to a 4-day moving average for the 6-hourly fields from ERA5 reanalysis

forecasts. The forecast mode is chosen because it provides the temperature tendencies

necessary for the calculation of latent heating. The fields are first interpolated from

model to pressure levels, for both GCM and reanalysis fields, prior to calculating the

PV and PV generation rates.

In addition to considering the usual diabatic PV generation rate, we also consider

the diabatic source of PV in isentropic coordinates according to Eq.(74a) in Hoskins

et al. (1985)

�̇�diab = 𝑄2𝜕(𝜃𝑄
−1)

𝜕𝑝

(︂
𝜕𝜃

𝜕𝑝

)︂−1

(2.29)

which we refer to as the generalized PV generation. Here 𝑄 is the potential vorticity,

𝜃 is the potential temperature, 𝜃 is the potential temperature tendency, and we have

re-expressed the vertical derivatives with respect to pressure rather than potential

temperature. Equation 2.29 may also be written as

�̇�diab = 𝑄
𝜕𝜃

𝜕𝑝

(︂
𝜕𝜃

𝜕𝑝

)︂−1

− 𝜃
𝜕𝑄

𝜕𝑝

(︂
𝜕𝜃

𝜕𝑝

)︂−1

, (2.30)

which shows that the generalized PV generation combines diabatic PV generation

(first term on the right hand side) and diabatic vertical advection of PV (second term

on the right hand side).7 Including vertical advection of PV is important because it

7An alternative approach of including vertical advection of PV in pressure coordinates (rather
than diabatic vertical advection) gives similar results except that there can be additional vertical
advection of PV in the upper troposphere and stratosphere in regions where latent heating is small.
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can strongly offset diabatic PV generation (Büeler and Pfahl 2017, Lackmann 2002,

Martínez-Alvarado et al. 2016, Stoelinga 1996, Persson 1995, Pfahl et al. 2015, Wernli

and Davies 1997), and its inclusion clearly improves the match between the vertical

structures of PV anomalies and PV generation for the small-amplitude DRV mode in

the idealized GCM (compare Fig. 2-1a,b). In addition, considering diabatic vertical

advection as part of the diabatic source of PV makes a closer connection to our QG

theory in which the pseudo-PV is not advected in the vertical.

We only consider diabatic effects due to latent heating. For the idealized GCM,

we have confirmed that there is no convective precipitation in the region of the finite-

amplitude DRV storm, and 𝜃 was inferred from the large-scale condensation tendency

of specific humidity which was saved as an output field. For the reanalysis fields, 𝜃

was calculated from the ERA5 temperature tendency from all parameterizations in

the forecast mode minus the contributions from longwave and shortwave radiation.

Radiative contributions to PV generation were separately evaluated and found to be

negligible.

The finite-amplitude DRVs from reanalysis (Fig. 2-10) do not extend as high in

the atmosphere as the DRV in the warm climate of the idealized GCM, and this

is as expected given that they occur in the current climate in which tropopause is

lower and latent heating occurs lower in the troposphere. The generalized diabatic

PV generation (contours in Fig. 2-10b,d) is noticeably smaller in magnitude for the

upper-level negative generation rates as compared to lower-level positive generation

rates. From the point of view of Eq. (2.30), the magnitude of diabatic PV generation

is reduced in the upper anticylonic region as compared to the lower cyclonic region in

which 𝑄 is larger, an effect that has been seen before in the context of warm conveyor

belts (Joos and Wernli 2012), and the negative diabatic PV generation is also offset

by upward diabatic advection of positive PV from the positive PV anomaly lower in

the atmosphere. Alternatively, from the point of view of Eq. (2.29), the factor of

𝑄2 tends to be much smaller in magnitude in anticyclonic regions as compared to

cyclonic regions of a finite-amplitude storm. As a result, the upper-level negative PV

anomaly is weaker in magnitude than the lower-level positive PV anomaly, especially
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in the case of the winter storm in which it is difficult to clearly identify a negative

upper-level PV anomaly that is diabatically generated.

The reason the winter storm has a greater asymmetry between lower and upper

PV anomalies as compared to the summer storm seems to be because it is a stronger

storm (which emphasizes the finite amplitude effects) but also because of more subtle

effects related to its vertical profile of 𝜃 being more bottom heavy. The absence of a

clear upper-level negative PV anomaly in the winter storm may reduce its growth rate

at this point in its evolution, but further work would be needed to definitively link the

observed growth rates and PV structures, especially given that moist baroclinic waves

in the semigeostrophic Eady model have weak upper-level negative PV anomalies but

can still grow strongly (Emanuel et al., 1987).

The finite-amplitude DRV in the warm-climate simulation of the idealized GCM

(Fig. 2-1c,d) shows some similarities to the corresponding small amplitude mode

(Fig. 2-1a,b), although the upper-level negative PV anomaly and the generalized

diabatic PV generation are considerably reduced in the storm compared to the mode

for vertical levels between 300hPa and 500hPa and the positive PV anomaly extends

higher, both as a result of diabatic vertical advection of PV. Negative generation

of PV is nonetheless strong in the upper troposphere near the tropopause, and this

seems to be because of diabatic vertical advection up the mean vertical PV gradient

at those levels.

Overall, our analysis of finite-amplitude DRV storms shows that finite-amplitude

effects must be taken into account to relate the structure of PV anomalies and diabatic

generation in observed DRVs particularly for the upper-level PV anomalies. Our

results also show the value of combining diabatic PV generation and diabatic vertical

advection in a generalized diabatic PV generation diagnostic (following Hoskins et al.

(1985)), especially when trying to connect to simpler QG models and modal solutions.
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2.6 Conclusions

We have analyzed a moist two-layer QG model with conditional latent heating and

tilted boundaries and shown that it is capable of producing a DRV mode. The

emergence of a DRV solution in a minimal model retaining the essential physics of

baroclinicity and moisture clarifies the physical mechanisms involved and allows us to

derive the first analytical expressions for the growth rate and horizontal length scale

of DRVs.

A key step in our approach is the tilting of the model boundaries at a slope equal

to the mean isentropes which makes the two-layer model an analog of the interior

of the Eady model in which dry-baroclinic instability has been shut off but moist

instabilities are still possible. This allowed us to obtain a pure DRV solution within

a conceptually simple two-layer model. PV-budget analysis revealed two distinct

dynamical regimes. In the ascending branch, growth of the anomalies was maintained

by diabatic heating partly offset by zonal advection, while in the descending branch

growth was maintained solely by zonal advection.

We went on to derive the analytical dispersion relation for the growth rate and

horizontal length scale of a DRV on an infinite domain, a significant novelty of this

paper. The governing equation for the vertical velocity in the DRV is similar to the

equation for the vertical velocity of moist baroclinic waves (Emanuel et al., 1987;

Zurita-Gotor, 2005) except for the presence of two extra terms which lead to isolated

rather than periodic solutions – a distinctive characteristic of the DRV. Analytic so-

lutions to the dispersion equations were found in the limit of small static-stability

reduction factor (i.e., in the limit in which the stratification is neutral to moist con-

vection). While the ascent length remains the same for the DRV as for the moist

wave solutions of Emanuel et al. (1987) in this limit, the DRV grows faster by 54% as

compared to the moist wave. This faster growth is consistent with the fact that the

DRV emerged as the fastest growing solution in the moist baroclinic instability simu-

lations of O’Gorman et al. (2018) in a warm climate with small moist static stability.

Root-solving of the dispersion equations for a larger range of 𝑟 values showed that
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physical solutions cease to exist when 𝑟 > 0.38. This is an indication that isolated

DRV disturbances cannot exist on an infinite domain when the moist static stability

is not small enough.

Including non-zero meridional PV gradients in the tilted two-layer model and

varying their strengths and varying the moist static stability (as represented by the

reduction factor 𝑟), we showed that isolated DRV solutions emerge even in more

realistic model setups and are not an artifact of the assumption of zero PV gradi-

ents in our simplest version of the tilted two-layer model. The most unstable mode

transitions from periodic waves to isolated DRVs when the magnitude of the PV gra-

dients is weakened or entirely reversed compared to the standard two-layer setup.

This suggests that the vertical structure of meridional PV gradients may be an im-

portant additional factor that helps to determine DRV genesis zones in addition to

small moist static stability. Weak QG PV gradients can be found particularly at

polar latitudes in the current climate, which could help strengthen the links that

have been previously established between the growth mechanism of DRVs and po-

lar lows (Montgomery and Farrell 1991, Montgomery and Farrell 1992, Moore and

Montgomery 2005, Moreno-Ibáñez et al. 2021).

The stark transition from periodic wave solutions to isolated DRV disturbances

when diabatic heating becomes more important than meridional PV advection was

also explained qualitatively using ‘PV-thinking’: in a diabatically dominated regime,

the asymmetry of the diabatic heating regenerates only positive PV anomalies in the

lower layer and negative PV anomalies in the upper layer. However, a series of like-

signed PV anomalies in each layer leads to weaker meriodional flow between the PV

anomalies than occurs for a single PV dipole consisting of one anomaly in each layer.

Thus the single PV dipole has stronger ascent and latent heating and emerges as the

fastest growing mode of the system.

Finally, we compared the structure of small-amplitude DRV modes with finite-

amplitude storms from reanalysis in winter and summer and from a warm-climate

simulation in an idealized GCM. The finite-amplitude storms have similarities with

the small-amplitude DRV modes but also some differences. In the storms from re-
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analysis, the upper-level negative PV anomaly is substantially weaker than the lower-

level positive PV anomaly. This asymmetry arises because diabatic PV generation is

weaker in anticyclonic regions at finite amplitude, and also because upward PV advec-

tion from the positive PV anomaly at lower levels can offset the upper-level negative

PV generation. For the finite-amplitude DRV in the warm climate of the idealized

GCM, vertical advection of the mean vertical PV gradient near the tropopause meant

there was still a strong upper-level negative PV anomaly. In the case of the winter

storm, the upper-level PV anomaly was sufficiently weak that it was difficult to iden-

tify, and we hypothesize that a weak upper-level PV anomaly may explain why some

DRV storms in the current climate propagate but do not grow strongly. This hypoth-

esis could be tested in future work with a semigeostrophic model that has sufficient

vertical levels to accurately resolve vertical PV advection, and by tracking DRVs

across a range of climates in idealized GCM simulations to study the relationship

between growth rates and the structure of the PV anomalies.

Future work could also investigate whether a DRV solution and wave-vortex tran-

sition can also be isolated within a continous Eady model in which dry baroclinic

instability is eliminated by removing the upper lid. This setup is likely no longer

tractable analytically (because solutions are no longer separable in the presence of

nonlinear heating (Zurita-Gotor 2005)), but a numerical analysis would make for a

useful extension of this work, in which realistic features such as near surface temper-

ature advection, vertically dependent drag and vertically dependent static stability

reduction factor could be more readily incorporated.

2.7 Appendix

2.7.1 Derivation of the Tilted Two-Layer Model

We discretize the moist-quasigeostrophic equations on an f-plane (Eqs. 2.1,2.2) in the

vertical taking into account the tilted boundaries ℎ1(𝑦) and ℎ2(𝑦) through a modified

boundary condition on 𝑤 at the top and bottom (Fig. 2-11). For the vorticity
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equations in the two layers we obtain

𝜕𝑡∇2𝜓1 + 𝐽(𝜓1,∇2𝜓1)−
𝑓

𝐻
(𝐽(𝜓1, ℎ1)− 𝑤) = 0, (2.31)

𝜕𝑡∇2𝜓2 + 𝐽(𝜓2,∇2𝜓2)−
𝑓

𝐻
(𝑤 − 𝐽(𝜓2, ℎ2)) = 0. (2.32)

Adding and subtracting gives vorticity equations in terms of the barotropic stream-

function 𝜑 and baroclinic streamfunction 𝜏

𝜕𝑡∇2𝜑+ 𝐽(𝜑,∇2𝜑) + 𝐽(𝜏,∇2𝜏)− 𝑓

2𝐻
𝐽(𝜑, ℎ1 − ℎ2)−

𝑓

2𝐻
𝐽(𝜏, ℎ1 + ℎ2) = 0,

(2.33)

𝜕𝑡∇2𝜏 + 𝐽(𝜑,∇2𝜏) + 𝐽(𝜏,∇2𝜑) +
𝑓

𝐻
𝑤 − 𝑓

2𝐻
𝐽(𝜑, ℎ1 + ℎ2)−

𝑓

2𝐻
𝐽(𝜏, ℎ1 − ℎ2) = 0.

(2.34)

Discretizing the thermodynamic equation in the vertical, we obtain

𝜕𝑡𝜏 + 𝐽(𝜑, 𝜏) +
𝑁2𝐻

2𝑓
𝑟(𝑤)𝑤 =

𝑁2𝐻

2𝑓
𝑟(𝑤)𝑤. (2.35)

We non-dimensionalize using 𝑥, 𝑦 ∼ 𝐿𝐷 where 𝐿𝐷 = 𝑁𝐻√
2𝑓

is the deformation radius

with individual layer height H, 𝑧 ∼ 𝐻, 𝑢, 𝑣 ∼ 𝑈 , 𝑤 ∼ 𝑈2𝐻
𝑓𝐿2

𝐷
, 𝜑 = 𝜏 ∼ 𝑈𝐿𝐷, 𝑡 ∼ 𝐿𝐷

𝑈
,

and ℎ1, ℎ2 ∼ 𝑈𝐻
𝑓𝐿𝐷

to obtain

𝜕𝑡∇2𝜑+ 𝐽(𝜑,∇2𝜑) + 𝐽(𝜏,∇2𝜏)− 1

2
𝐽(𝜑, ℎ1 − ℎ2)−

1

2
𝐽(𝜏, ℎ1 + ℎ2) = 0, (2.36)

𝜕𝑡∇2𝜏 + 𝐽(𝜑,∇2𝜏) + 𝐽(𝜏,∇2𝜑) + 𝑤 − 1

2
𝐽(𝜑, ℎ1 + ℎ2)−

1

2
𝐽(𝜏, ℎ1 − ℎ2) = 0, (2.37)

𝜕𝑡𝜏 + 𝐽(𝜑, 𝜏) + 𝑟(𝑤)𝑤 = 𝑟(𝑤)𝑤 (2.38)

where all variables are now non-dimensional. We next assume small amplitude per-

turbations about the basic state 𝜏0 = −𝑦 and 𝜑0 = 0 corresponding to a shear flow

𝑢1 = 1 and 𝑢2 = −1, such that the advection terms are linearized. Note however

that the thermodynamic equation remains nonlinear because of the nonlinear depen-

dence of 𝑟(𝑤) on 𝑤. Finally, using the tilted boundary conditions ℎ1 = ℎ2 = 𝑦 and
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Figure 2-11: Schematic of the tilted two-layer model in the x-z plane.

assuming that the perturbations are independent of 𝑦 gives the perturbation Eqs.

(2.4-2.6). If instead we assume ℎ1 = 𝛼1𝑦 and ℎ2 = 𝛼2𝑦, we obtain the perturbation

Eqs. (2.26-2.28).

2.7.2 Derivation of the equation for w

Starting from Eqs. (2.9-2.11), we first take two derivatives of Eq. (2.11) and subtract

Eq. (2.10) to get

(𝑟(𝑤)𝑤)𝑥𝑥 − 𝑤 = 2𝜑𝑥𝑥𝑥 − 𝜑𝑥. (2.39)

Multiplying Eq. (2.9) by 𝜎 and taking one derivative, and substituting for 𝜏𝑥𝑥 and

𝜏𝑥𝑥𝑥𝑥 using Eq. (2.10) we find

𝑤 − 𝑤𝑥𝑥 + 𝜎2𝜑𝑥𝑥𝑥 − 𝜑𝑥𝑥𝑥𝑥𝑥 + 2𝜑𝑥𝑥𝑥 − 𝜑𝑥 = 0, (2.40)

where the last two terms 2𝜑𝑥𝑥𝑥 − 𝜑𝑥 can be substituted using Eq. (2.39) to give

(𝑟(𝑤)𝑤)𝑥𝑥 − 𝑤𝑥𝑥 = 𝜑𝑥𝑥𝑥𝑥𝑥 − 𝜎2𝜑𝑥𝑥𝑥. (2.41)
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Double integration of Eq. (2.41) yields the relation

𝑟(𝑤)𝑤 − 𝑤 = 𝜑𝑥𝑥𝑥 − 𝜎2𝜑𝑥 + 𝑟(𝑤)𝑤, (2.42)

where we have used mass conservation (𝑤 = 0) to choose the integration constant

(this relation will be necessary as a substitution at the end of the derivation). Taking

two derivatives of Eq. (2.39) and subtracting Eq. (2.41) twice gives

(𝑟(𝑤)𝑤)𝑥𝑥𝑥𝑥 − 2(𝑟(𝑤)𝑤)𝑥𝑥 + 𝑤𝑥𝑥 = 2𝜎2𝜑𝑥𝑥𝑥 − 𝜑𝑥𝑥𝑥. (2.43)

Subtracting Eq. (2.39) multiplied by 𝜎2 from Eq. (2.43) we get

(𝑟(𝑤)𝑤)𝑥𝑥𝑥𝑥 − (2 + 𝜎2)(𝑟(𝑤)𝑤)𝑥𝑥 + 𝑤𝑥𝑥 + 𝜎2𝑤 = −𝜑𝑥𝑥𝑥 + 𝜎2𝜑𝑥. (2.44)

Using Eq. (2.42) allows us to substitute the last 𝜑 terms in Eq. (2.44) to finally

obtain Eq. (2.12) which is an equation in 𝑤 only.

2.7.3 Mass conservation for a DRV on an infinite domain

Imposing mass conservation
∫︀ 𝐿
0
𝑤𝑑𝑥 = 0 on the solution defined by Eqs. (2.13) and

(2.14) and using Eq. (2.17) yields

𝑎𝑏

𝑟 + 𝜎2 − 1
+
𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏) +
𝑎

𝜎2
(𝐿− 𝑏) +

𝑎

𝜎2
(𝑒−(𝐿−𝑏) − 1)

+𝑑2

(︂
− 1

𝜎
(𝑒−𝜎(𝐿−𝑏) − 1) + (𝑒−(𝐿−𝑏) − 1)

)︂
= 0.

(2.45)

We are interested in the infinite-domain limit 𝐿 → ∞. It is important that we took

the integral in 𝑥 to obtain Eq. (2.45) prior to taking the limit 𝐿→ ∞ (i.e., taking the

limit of the statement of mass conservation) because the order of taking the limit and

integral affects the result. As shown in section 2.32.3.3, the definition of 𝑎 together

with mass conservation implies that 𝑎 = 1
𝐿

∫︀ 𝑏
0
(𝑟− 1)𝑤↑𝑑𝑥 such that 𝑎→ 0 if we want
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solutions for which 𝑏 and 𝑤↑ remain bounded. This leaves us with the indeterminate

term 𝑎𝐿 in the mass conservation equation (Eq. 2.45). We can eliminate this term

by using

𝑎𝐿 =

∫︁ 𝑏

0

(𝑟 − 1)𝑤↑𝑑𝑥 = (𝑟 − 1)

(︂
𝑎𝑏

𝑟 + 𝜎2 − 1
+
𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏)

)︂
, (2.46)

to arrive at a form of the mass conservation condition that does not involve 𝑎𝐿:

𝑎𝑏

𝜎2 + 𝑟 − 1
+
𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏) +
𝑟 − 1

𝜎2

(︂
𝑎𝑏

𝜎2 + 𝑟 − 1
+
𝑐1
𝑘1

sin(𝑘1𝑏) +
𝑐2
𝑘2

sin(𝑘2𝑏)

)︂
−𝑎𝑏
𝜎2

+
𝑎

𝜎2

(︀
𝑒−(𝐿−𝑏) − 1

)︀
+ 𝑑2

(︂
− 1

𝜎
(𝑒−𝜎(𝐿−𝑏) − 1) + (𝑒−(𝐿−𝑏) − 1)

)︂
= 0.

(2.47)

We can now take the limit 𝐿 → ∞ and 𝑎 → 0 to arrive at Eq. (2.21) in the main

text. For completeness we note that by substituting Eq. (2.21) into Eq. (2.46), and

taking the limit 𝐿→ ∞ and 𝑎→ 0, we obtain the expression

𝑎𝐿 = 𝑑2
(𝑟 − 1)𝜎(𝜎 − 1)

𝑟 + 𝜎2 − 1
. (2.48)

2.7.4 Derivation of the dispersion relation

To derive the dispersion relation from the constraints (Eqs. 2.18-2.21), we write the

constraints solely in terms of equations for 𝑐1 and 𝑐2. Writing Eq. (2.18) and (2.20)

as

⎛⎝ 1 1

𝑘21 𝑘22

⎞⎠⎛⎝𝑐1 cos(𝑘1𝑏)
𝑐2 cos(𝑘2𝑏)

⎞⎠ = 𝑑2

⎛⎝ 0

1−𝜎2

𝑟

⎞⎠ , (2.49)

and inverting, we obtain
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⎛⎝𝑐1 cos(𝑘1𝑏)
𝑐2 cos(𝑘2𝑏)

⎞⎠ =
𝑑2

𝑘22 − 𝑘21

⎛⎝ 𝑘22 −1

−𝑘21 1

⎞⎠⎛⎝ 0

1−𝜎2

𝑟

⎞⎠ . (2.50)

Similarly, writing Eq. (2.19) and (2.21) as

⎛⎝ 𝑘1 𝑘2

1/𝑘1 1/𝑘2

⎞⎠⎛⎝𝑐1 sin(𝑘1𝑏)
𝑐2 sin(𝑘2𝑏)

⎞⎠ = 𝑑2

⎛⎝ 𝜎−1
𝑟

𝜎(𝜎−1)
𝜎2+𝑟−1

⎞⎠ , (2.51)

and inverting, we obtain

⎛⎝𝑐1 sin(𝑘1𝑏)
𝑐2 sin(𝑘2𝑏)

⎞⎠ =
𝑑2𝑘1𝑘2
𝑘21 − 𝑘22

⎛⎝ 1/𝑘2 −𝑘2
−1/𝑘1 𝑘1

⎞⎠⎛⎝ 𝜎−1
𝑟

𝜎(𝜎−1)
𝜎2+𝑟−1

⎞⎠ (2.52)

Dividing the equations for 𝑐𝑖 sin 𝑘𝑖𝑏 and 𝑐𝑖 cos 𝑘𝑖𝑏, with 𝑖 = 1, 2, by each other, we

obtain the two tan equations that form the dispersion relation (Eqs. 2.22 and 2.23)

in section 2.32.3.3.

2.7.5 Asymptotic expressions for growth rate and half-ascent

length

In the limit 𝑟 ≪ 1, the wavenumbers can be simplified to 𝑘1 = 1√
𝑟
+ 𝑂(

√
𝑟) and

𝑘2 =
√
𝜎2 − 1 + 𝑂(𝑟) where we assume that 𝜎 = 𝜎0 is an 𝑂(1) quantity to be

determined. Plugging these expressions into the two tangent Eqs. (2.22-2.23) that

form the dispersion relation we obtain to leading order:

tan

(︂
𝑏√
𝑟

)︂
= − 1√

𝑟(1 + 𝜎0)
, (2.53)

tan

(︂
𝑏
√︁
𝜎2
0 − 1

)︂
=

√︀
𝜎2
0 − 1(1− 𝜎2

0 + 𝜎0)

(1 + 𝜎0)(𝜎2
0 − 1)

. (2.54)
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The right-hand side of Eq. (2.53) tends to minus infinity as 𝑟 becomes small. To

balance it, we use the ansatz 𝑏√
𝑟
= 𝜋

2
+ 𝜖 where 𝜖→ 0 as 𝑟 → 0, from which we obtain

that

tan
(︁𝜋
2
+ 𝜖
)︁
≈ −1/𝜖 = − 1√

𝑟(1 + 𝜎0)
, (2.55)

which gives 𝜖 =
√
𝑟(1 + 𝜎0) and 𝑏 = 𝜋

2

√
𝑟 + 𝑟(1 + 𝜎0) such that to leading order

𝑏 =
𝜋

2

√
𝑟. (2.56)

Linearizing the tangent in Eq. (2.54) we obtain:

𝑏 =
1− 𝜎0(𝜎0 − 1)

(1 + 𝜎0)(𝜎2
0 − 1)

. (2.57)

Since 𝑏 is 𝑂(
√
𝑟) but the right-hand side of Eq. (2.57) is 𝑂(1), the right hand side

must vanish. Thus 1 − 𝜎0(𝜎0 − 1) = 0, which implies for growing solutions 𝜎0 > 0

that

𝜎0 =
1 +

√
5

2
= 1.62. (2.58)
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Chapter 3

Asymmetry of the Distribution of

Vertical Velocities in the

Extratropical Atmosphere in Theory,

Models and Reanalysis

3.1 Abstract

The vertical velocity distribution in the atmosphere is asymmetric with stronger up-

ward than downward motion. This asymmetry has important implications for the

distribution of precipitation and its extremes and for an effective static stability that

has been used to represent the effects of latent heating on extratropical eddies. Ide-

alized GCM simulations show that current moist dynamical theories greatly overesti-

mate the increase of the asymmetry of the vertical velocity distribution with climate

warming. Here, we first analyze the changes in asymmetry with warming using nu-

merical inversions of a moist quasigeostrophic omega equation applied to output from

an idealized GCM. The inversions show that changes in the asymmetry are primarily

related to changes in moist static stability on the left-hand side of the moist omega

equation, whereas the dynamical forcing on the right-hand side of the omega equation
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is unskewed and contributes little to the asymmetry of the vertical velocity distribu-

tion. We distill these insights into a toy model of the moist omega equation that is

solved for a given moist static stability and wavenumber of the dynamical forcing.

The toy model reproduces the slow increase of the asymmetry with climate warming

in the idealized GCM simulations and over the seasonal cycle from winter to summer

in reanalysis. The toy model also predicts that the asymmetry increases with increas-

ing wavenumber. Consistent with this prediction, we show that simulations of moist

quasigeostrophic turbulence produce highly asymmetric vertical velocity distributions

in the strong latent heating regime despite unskewed dynamical forcing because the

wavenumber is large compared to the inverse of the deformation radius. Thus we

can understand the asymmetry of the vertical velocity distribution given the moist

stability and wavenumber of the dynamical forcing in the omega equation, but further

work is needed to understand this wavenumber.

3.2 Introduction

Many different meteorological variables - from geopotential height, to vorticity, to

horizontal and vertical winds - show significant departures from Gaussianity in their

climatology (Perron and Sura (2013)). Understanding how these skewed distributions

arise from some of the underlying physical asymmetries of the atmosphere (planetary

rotation, uneven insolation, irreversible fall-out of particles during precipitation) is

one of the fundamental challenges of dynamical meteorology. Our focus here is on

the large-scale vertical velocity field which has stronger upward than downward mo-

tion (Perron and Sura (2013),Tamarin-Brodsky and Hadas (2019)). We measure its

asymmetry following O’Gorman (2011) by the factor

𝜆 =
𝜔′𝜔↑′

𝜔′2
(3.1)
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where 𝜔↑ = 𝜔 for upward motion and 𝜔↑ = 0 otherwise, and primes denote deviations

from horizontal averages. Assuming a vertical velocity distribution with zero mean,

𝜆 = 0.5 corresponds to upward and downward velocities that are of the same mag-

nitude, and 𝜆 → 1 corresponds to the limit in which upward motions are infinitely

fast and occur over a vanishing ascent region.1 The asymmetry parameter takes on

typical values of 𝜆 ≈ 0.6 in the midlatitudes, is larger in cyclones than anticyclones,

and increases over the seasonal cycle between winter and summer storms (O’Gorman

2011,Tamarin-Brodsky and Hadas 2019). The asymmetry of the vertical velocity dis-

tribution has been of key interest in studies of precipitation and its extremes (Sardesh-

mukh et al. 2015, Pendergrass and Gerber 2016) because the intensity of precipitation

is closely associated with the strength of upward motion. Furthermore, much research

on moist midlatitude dynamics has relied upon an effective static stability to capture

the modifying effects of latent heating on the circulation (O’Gorman 2011, Levine

and Schneider 2015,Booth et al. 2015, Pfahl et al. 2015, Dwyer and O’Gorman 2017).

While this effective static stability has proven a useful tool to convert dry into moist

theories in a number of applications, it is not a closed theory since it directly depends

on the asymmetry parameter 𝜆 which is not known from theory and must be inferred

from reanalysis or simulation data. One of the key problems is thus to understand

what sets the value of the asymmetry and how it responds as the climate warms.

The variation of the asymmetry parameter with warming was investigated in a

previous study by O’Gorman et al. (2018) using an idealized aquaplanet GCM in

which large changes in climate and in the extent of the nonlinearity of the flow can

be simulated relatively easily. While the asymmetry factor 𝜆 increased strongly with

warming for the most unstable modes of moist baroclinic instability, the asymmetry

increased only slightly with warming in fully nonlinear simulations (O’Gorman et al.

2018, their Fig. 3b). This distinction is significant for our dynamical understanding

since the atmosphere is in a macroturbulent state more akin to that of the fully

nonlinear simulations, even if insights into cyclogenesis can be obtained from the

1If the mean 𝜔 is zero, then the asymmetry parameter 𝜆 and the skewness=− 𝜔′3

(𝜔′2)3/2
increase

together. However, 𝜆 is a lower order statistic that tends to be more robust in calculations and is
more closely related to the updraft area fraction (cf. discussion in O’Gorman et al. 2018).
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study of unstable modes. Here, macroturbulence refers to the turbulence of large-scale

eddies in the troposphere following Held (1999). We will refer to the small-amplitude

unstables modes as the ‘modal regime’ and the fully nonlinear simulations as the

‘macroturbulent regime’ from here on. The slight increase in 𝜆 with warming in the

macroturbulent regime of the idealized GCM over a wide range in climates is also

consistent with what has been found for the projected changes for the representative

concentration pathway 8.5 emission scenario of MPI-ESM-LR (Tamarin-Brodsky and

Hadas 2019).

In O’Gorman et al. (2018), the simulations of moist baroclinic instability dif-

fered from the fully nonlinear simulations by their small-amplitude disturbances but

also by assuming that upward motion is saturated and by only taking into account

moist diabatic tendencies from the large-scale condensation scheme and not from the

moist convection scheme. To exclude the differences in the representation of moist

processes as a cause for the different behavior of the asymmetry with warming, the

authors performed a second set of simulations in which both large-scale condensation

and moist convection scheme were turned off and the effects of latent heating were

parameterized simply by reducing the dry static stability in the region of ascent by

a factor 0 < 𝑟 ≤ 1 in the spirit of simple moist dynamical theories (e.g. Emanuel

et al. 1987, Zurita-Gotor 2005). Here, 𝑟 = 1 corresponds to a fully dry simulation

and 𝑟 → 0 corresponds to an increasingly warm and moist climate with weak moist

static stability. The mean state of the simulations was held close to that of a control

simulation by using a strong relaxation. From here on, we will refer to these simula-

tions as ‘reduced stability simulations’ to distinguish them from the ‘global warming

simulations’ that include convection and large scale condensation schemes. Even with

this greatly simplified representation of moist physics, a similar distinction between

modal and macroturbulent regimes emerged: while 𝜆 approaches one corresponding

to highly asymmetric vertical velocities as 𝑟 → 0 in the modal regime, 𝜆 increases

only slightly before equilibrating to a much lower value of about 𝜆 = 0.71 in the

macroturbulent regime (O’Gorman et al. 2018, their Fig. 9). The different represen-

tation of moist physics are thus not a likely contributor to the different behavior of
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𝜆. Instead, the authors concluded that nonlinear equilibration to a macroturbulent

state leads to a significant reduction of skewness particularly in warm climates.

While simple theoretical scalings laws for the asymmetry of moist baroclinic waves

exist (Emanuel et al. 1987, Zurita-Gotor 2005, Pendergrass and Gerber 2016), these

do not carry over to the macroturbulent regime (O’Gorman et al. 2018, their Fig. 9)

making it desirable to develop a theory for the asymptotic value of 𝜆 that is reached

in the macroturbulent regime. To this end, we place ourselves in the framework of

moist quasigeostrophic (QG) theory and more specifically a moist QG omega equation

in which the effects of moisture are represented as an internal rather than external

process. We show in section 3.3 that the moist QG omega equation captures the

behavior of 𝜆 in the idealized GCM simulations of O’Gorman et al. (2018) when

the dynamical forcing of vertical motion as represented by the right-hand side of the

moist omega equation is taken as given from the output of the idealized GCM. The

advantage of studying the vertical velocity field through the framework of the moist

omega equation is that it allows us to tease apart the contributions to the vertical

velocity and its asymmetry coming from the dynamical forcing versus those coming

from the moist static stability. We go on to show that changes in 𝜆 in the modal regime

are related to changes in both the moist static stability and the dynamical forcing,

while changes in 𝜆 in the macroturbulent regime are primarily related to changes in

moist static stability with the dynamical forcing not becoming very skewed.

In section 3.4, we use a two-layer moist quasigeostrohpic model to better under-

stand the role of the moist static stability and dynamical forcing in setting 𝜆. We

show how a feedback between the dynamical forcing in the moist omega equation and

the vertical velocity leads to an increase in asymmetry of the vertical velocity field

in the modal regime. We then distill the insights from the macroturbulent inversions

in section 3.3 into a simple toy-model of the moist omega equation in the macrotur-

bulent phase that is solved for a given moist static stability and wavenumber of the

dynamical forcing. In contrast to moist baroclinic theory, we show that the toy model

reproduces the slow increase of the asymmetry with climate warming in the idealized

GCM simulations. We also show that the toy model predicts that the asymmetry
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increases as the wavenumber of the dynamical forcing increases. This implies the

existence of strongly asymmetric states even for unskewed right-hand side forcing so

long as the wavenumber of the dynamical forcing is sufficiently large.

In section 3.5, we apply moist baroclinic theory and our simple toy model to the

change of asymmetry seen over the seasonal cycle in reanalysis. We show that while

moist baroclinic theory overpredicts the increases in the asymmetry from winter to

summer, the toy model does better at capturing the change of the asymmetry seen

over the seasonal cycle.

In section 3.6, we run simulations of moist quasigeostrophic turbulence in a two-

layer model and confirm the existence of highly asymmetric states when latent heating

is strong in the simulations (by setting 𝑟 to be small) despite unskewed dynamical

forcing. As predicted by the toy-model, such states are possible because the wavenum-

ber of the dynamical forcing is high compared with the inverse of the deformation

radius. In this regime, the simulations have transitioned from a state of beta-plane

turbulence with jets and vortices to a state dominated entirely by diabatic vortices.

Thus while moist quasigeostrophic theory can explain much of the controls on the

asymmetry of the vertical velocity field, higher-order effects beyond QG must also

be taken into account to produce realistic wavenumbers of the dynamical forcing and

thus asymmetry of the vertical velocity distribution.

In section 3.7, we summarize our results and discuss future work.

3.3 Moist QG Omega Equation Inversions applied to

the Idealized GCM Simulations

The goal of this section is to understand the different sensitivity of 𝜆 to warming be-

tween modal and macroturbulent regimes by applying the moist QG omega equation

in pressure coordinates,

88



∇2(𝑟(𝜔)𝜎𝜔) + 𝑓 2
0𝜔𝑝𝑝 = RHS, (3.2)

to the idealized GCM output. A derivation is given in the appendix 3.8.1. Here, 𝜔

is the vertical velocity in pressure coordinates, ∇ is the horizontal gradient, 𝑓0 is the

Coriolis parameter evaluated at the center of the domain used for the inversion, 𝜎 =

−𝑅𝑇
𝑝𝜃
𝜃𝑝 is the static stability parameter with temperature 𝑇 , potential temperature

𝜃, pressure 𝑝, and gas constant for dry air 𝑅, and the right-hand side (RHS) of the

moist omega equation is given by the dynamical forcing

RHS = −2∇ ·Q+ 𝑓0𝛽
𝜕𝑣𝑔
𝜕𝑝

. (3.3)

where 𝛽 is the meridional derivative of the Coriolis parameter, ∇ is the horizontal

gradient, and the Q-vector Q is given by

Q ≡ (𝑄1, 𝑄2) =

(︂
−𝑅
𝑝

𝜕ug

𝜕𝑥
· ∇𝑇,−𝑅

𝑝

𝜕ug

𝜕𝑦
· ∇𝑇

)︂
(3.4)

following the form in Holton (2004), where ug ≡ [𝑢𝑔, 𝑣𝑔] is the geostrophic wind vector.

In the definition of the RHS, we have ignored the contributions from radiation and

friction. The static stability reduction factor 𝑟(𝜔) is given by

𝑟(𝜔) =

⎧⎪⎨⎪⎩𝑟, 𝜔 ≤ 0

1, 𝜔 > 0

(3.5)

where 𝑟 takes the form

𝑟 =
𝜃

𝜃*
Γ𝑚
Γ𝑑

𝜕𝜃*

𝜕𝑝

𝜕𝜃
𝜕𝑝

, (3.6)
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under the assumption of saturated ascent (Fantini 1995). Here, 𝜃* is the saturated

equivalent potential temperature, Γ𝑚 is the moist adiabatic lapse rate and Γ𝑑 is the

dry adiabatic lapse rate. The nonlinear character of the 𝑟(𝜔) factor expresses the

fundamental asymmetry that is introduced by considering the effects of moisture on

the dynamics: while the ascending air is assumed saturated, releases latent heat upon

condensation, and feels a reduced static stability, the descending air after irreversible

fall-out of condensate during precipitation is subsaturated and feels the full static sta-

bility. This parametrization has been used in theoretical studies with semigeostrophic

equations in Emanuel et al. (1987) and subsequently with quasigeostrophic equations

by Fantini (1995) and Zurita-Gotor (2005) to study the modifying effects of moisture

on canonical dynamical examples such as baroclinic waves and fronts. The reduction

factor 𝑟 calculated from Eq. (3.6) is a strong function of the vertical coordinate and

approaches values of 1 in the upper troposphere (Whitaker and Davis 1994). We refer

to the combined product of 𝑟(𝜔)𝜎 as the moist static stability, and to the RHS as the

dynamical forcing or right-hand side of the moist omega equation.

We leave the time-evolution of the flow to the higher order dynamics of the ide-

alized GCM of O’Gorman et al. (2018) and use the GCM output of the moist static

stability and the dynamical forcing at every time step to invert Eq. (3.2) for 𝜔. For

the reduced stability simulations, 𝑟 was imposed. It is a function of the vertical only

and follows the profile given on page 215 in O’Gorman et al. (2018), which makes 𝑟

constant throughout most of the troposphere but allows it to smoothly transition to

1 in the stratosphere. For the global warming simulations, 𝑟 is calculated from the

temperature and pressure fields using Eq. (3.6) and varies horizontally, vertically and

in time. As the climate warms, 𝑟 gets smaller because the thermal stratification in

the midlatitudes approaches a moist adiabat. At each vertical level, we set 𝑟 = 0 if

𝑟 < 0 and 𝑟 = 1 if 𝑟 > 1 to ensure the inversions are well posed.

Applying the inversion to both the most unstable modes and macroturbulent

state of the idealized GCM simulations then allows us to assess the magnitude of the

contributions from the moist static stability and dynamical forcing to the asymmetry

parameter and to identify which contribution is weaker in the macroturbulent state
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leading to a reduced asymmetry.

The GCM is based on a spectral version of the Geophysical Fluid Dynamics Lab-

oratory (GFDL) atmospheric dynamical core (see Frierson et al. 2006, Frierson 2007

and O’Gorman and Schneider 2008). The default resolution is T85 (≈ 1, 4∘) with 30

vertical levels, which is the resolution used for both the global warming and reduced

stability simulations. A thermodynamic mixed-layer ocean of depth 0.5m forms the

lower boundary condition and no horizontal heat transport or sea ice is included.

Moist convection is parametrized using the scheme of Frierson (2007). For the ‘global

warming simulations’, long-wave radiation is modelled using a two-stream grey scheme

with no seasonal or diurnal cycles of short-wave radiation and with no cloud or water

vapour radiative effects. The climate is varied by changing the absorption coefficient

𝛼 (𝛼 = 1.0 corresponds to the control climate with 𝑇𝑠𝑢𝑟𝑓 ≈ 287K) modifying the op-

tical thickness of the atmosphere. The most unstable modes were calculated through

repeated rescaling of perturbations to small amplitude, assuming upward motion to

be saturated, and using a basic state equal to the zonal and time-mean of a fully

nonlinear simulation for that climate (but with mean meridional and vertical winds

set to zero). As mentioned, for the reduced stability simulations, radiation, large

scale condensation and moist convection scheme were turned off and latent heating

was parametrized by reducing the static stability in updrafts and not downdrafts.

The mean state of the simulations was held close to that of the control simulation

(𝛼 = 1.0) by using a strong relaxation. The most unstable mode was calculated under

the reduced stability parametrization following the small-amplitude approach for the

global warming simulations. Further details can be found in O’Gorman et al. 2018.

3.3.1 Numerical Approach to Inverting the Moist Omega Equa-

tion

The moist quasigeostrophic omega equation (Eq. 3.2) has been solved before in the

context of small amplitude baroclinic modes in a quasigeostrophic model (Fantini

1995). Here, we go further and solve the moist omega equation using output from a
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GCM both in the regime of small-amplitude modes and fully macroturbulent flows.

Solving Eq. (3.2) is a difficult task due to the nonlinearity of 𝑟(𝜔) which represents

latent heating as an internal part of the dynamics rather than as an external forcing

in the dry omega equation. We solve the equation iteratively as

∇2(𝜎(𝑝)𝜔𝑛+1) + 𝑓 2
0𝜔

𝑛+1
𝑝𝑝 = RHS +∇2((1− 𝑟(𝜔𝑛))𝜎(𝑝)𝜔𝑛) (3.7)

where 𝜔𝑛 is the solution at iteration 𝑛. We start with the dry solution obtained for

𝑟(𝜔) = 1 everywhere as an initial guess. The domain spans latitudes 25∘-65∘ with

Dirichlet boundary conditions 𝜔 = 0 on all boundaries, except at the lower boundary

where we use 𝜔 = 𝜔𝐺𝐶𝑀 with 𝜔𝐺𝐶𝑀 the vertical velocity taken from the idealized

GCM. We continue iterating until rms(𝜔𝑛+1−𝜔𝑛) ≤ 10−4. At each iteration step, the

equation is inverted using a 3-D variant (Zedan and Schneider 1983, Ferziger and Perić

2002) of the strongly implicit method (Stone 1968). The iterative scheme behind Eq.

(3.7) has been written in such a way as to suggest a similarity to the repeated applica-

tion of an omega-equation with explicit heating term −𝜅
𝑝
∇2𝐽 = ∇2((1− 𝑟(𝜔𝑛))𝜎𝜔𝑛)

on the RHS where 𝐽 is the latent heating, and 𝜅 is the ratio of the gas constant to

specific heat capacity at constant pressure (see also Eq. 3.23). We have found that

this form improves convergence of the inversions. While 𝜎 can in general be a func-

tion of the horizontal and vertical, we have found it useful for numerical stability to

average 𝑇 and 𝜃 horizontally before calculating 𝜎 (this is not done when calculating 𝑟

in the global warming simulations). Hence, the background stratification that enters

Eq. (3.2) for our inversions is only allowed to vary in the vertical. It is recalculated

at each time-step and so can vary in time. Because the moist static stability is a

product of 𝑟(𝜔)𝜎(𝑝), and 𝜔 is a three dimensional field, the moist static stability will

also remain a three-dimensional field. The equation is solved on a sphere.

Horizontal winds, vertical velocity, and temperature from the GCM output were

interpolated from sigma to pressure coordinates and replaced with NaN wherever the

interpolated pressure was below the surface pressure. Inversions were started at the
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lowest pressure level where no NaN values were encountered in the domain. The

geostrophic component of the wind was calculated as the rotational part of the full

horizontal wind field, to minimize the influence of gravity waves (Nielsen-Gammon

and Gold 2008), by inverting the relative vorticity on a global spherical grid in pressure

coordinates.

Inversions with random initial guesses were also tried and the solutions were found

to be insensitive to the choice of the initial guess. We have found it necessary to

include 𝜔 = 𝜔𝐺𝐶𝑀 as the lower boundary condition to better capture the macro-

turbulent values of 𝜆 in the global warming simulations, which were underestimated

with the simpler boundary condition 𝜔 = 0. We do so for the modal inversions and

for the macroturbulent inversions in the reduced stability simulations for consistency,

even though it did not substantially improve the agreement in these cases. Stricter

convergence criteria rms< 10−6 have also been experimented with but the solutions

and values of 𝜆 were visually indistinguishable. Although the GCM domain is peri-

odic in the zonal direction, the 𝜔 = 0 boundary condition in the zonal direction has

been adopted for implementational simplicity since the solver was developed from

a pre-existing code with Dirichlet boundary conditions used in Li and O’Gorman

(2020). Since we are interested in the statistics of 𝜆 and are considering averages

over a large domain, the statistics are expected to be insensitive to what happens

near the horizontal boundaries. The goodness of the agreement between the inverted

and GCM vertical velocities and their asymmetries calculated over the domain (see

section 3.3.2) give us confidence that the periodic boundary effects can be neglected

for the purpose of this study.

3.3.2 Results of the Inversions

We begin by comparing the GCM and inverted vertical velocity field at 500hPa for

the most unstable mode and macroturbulent regime of the global warming simulation

at a global-mean surface air temperature of 288K (the reference simulation that is

most similar to the current climate) at a single instant in time. A midtroposphere

level is chosen because that is roughly where the vertical velocity is strongest. Two-
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dimensional fields are shown in Fig. (3-1) and cross sections at 50∘ N latitude in

Fig. (3-2). Focusing on the modes, we observe that inverted and GCM vertical

velocity field are in near perfect agreement, except close to the boundaries where

a different boundary condition was implemented (see Fig. 3-2a). Focusing on the

macroturbulent fields, we observe that the agreement between inverted and GCM

vertical velocity field is less good, and this is as expected since the flow is in a larger

Rossby number state and was calculated without assuming upward motion to be

saturated. Nevertheless, the inverted vertical velocity is able to capture most of the

large scale ascent and descent patterns well, as confirmed by the cross section shown

in Fig. (3-2b). Similar results were found in the reduced stability simulations (not

shown).

We now compare the statistics of the asymmetry parameter 𝜆 for inverted and

GCM vertical velocities in both the reduced stability and global warming simulations

(Fig. 3-3). The basic behavior of the idealized simulations that we are trying to

capture and understand is that in response to increasing global-surface temperature

or decreasing reduction factor 𝜆 increases strongly for the most unstable modes but

increases only slightly in the macroturbulent regime (Figure 3-3 a and c).

We show results for full inversions that include latent heating through 𝑟(𝑤) and

thus the asymmetry can result from both latent heating and the RHS (Fig. 3-3 a,c).

This is shown to confirm that the moist QG omega equation is able to capture the

behavior of 𝜆 in the idealized GCM. We also show inversions in which we artificially

set 𝑟(𝑤) = 1 and hence the asymmetry in the inverted vertical velocity must only come

from the RHS (Fig. 3-3 b, d). This is shown to reveal differences in the dynamical

contributions to 𝜆 in the modal and macroturbulent regime. 𝜆 was calculated between

40∘ − 60∘ latitude for the global warming simulations and between 25∘ − 65∘ in the

reduced stability simulations and then averaged in time, meridionally over the latitude

band and vertically over the troposphere. Following O’Gorman et al. (2018), a wider

latitude band is chosen for the reduced stability simulations because the unstable

modes are not necessarily localized in the 40∘ − 60∘ latitude band. The tropopause

was defined as the highest level at which the domain-mean lapse rate is greater than
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2Kkm−1.

We focus first on the results of the full inversion that includes latent heating

through 𝑟(𝑤) (Fig. 3-3 a, c). We see that 𝜆 of the inverted vertical velocity field

(which we will refer to as QG 𝜆) is in close to perfect agreement with 𝜆 of the

GCM vertical velocity field for the modes in both types of simulations. For the

macroturbulent regime, QG and GCM 𝜆 are in reasonably good agreement, with

QG 𝜆 becoming slightly larger than the GCM 𝜆 at low values of 𝑟 and high global-

mean surface air temperatures. In the dry limit of 𝑟 = 1, 𝜆 = 0.5 for the modes

indicating a symmetric vertical velocity distribution, whereas 𝜆 is slightly greater

than 0.5 for the macroturbulent regimes, indicating that even a dry flow has up-

down asymmetry at finite amplitude (cf. discussion in O’Gorman et al. (2018)).

Despite the limitations in applying the QG omega equation to finite amplitude flows

with a simplified representation of moist physics, we conclude that the QG omega

equation is able to capture the different behavior of 𝜆 between unstable modes and

macroturbulence in the idealized GCM.

Focusing next on the inversions in which 𝑟(𝑤) = 1 (Fig. 3-3 b, d), we see that

while the vertical velocity field remains asymmetric in the modal regime, the vertical

velocity field is close to symmetric in the macroturbulent regime in both types of

simulations. The difference in 𝜆 between modal and macroturbulent regimes becomes

more pronounced in the limit of high temperature or low values of 𝑟. For example,

for small values of 𝑟 in the reduced stability simulations, we find 𝜆 ∼ 0.8 for the

modes versus 𝜆 ∼ 0.53 in the macroturbulent regime. For reference, the value of the

vertically averaged skewness of -RHS is equal to skewness= 0.1 in the macroturbulent

phase, and skewness=5.9 in the modal phase at 𝑟 = 0.01. We conclude that while

both 𝑟(𝜔) and RHS contribute to the asymmetry of the vertical velocity distribution

in the modal phase leading to large asymmetries, 𝑟(𝜔) is the primary contributor

to the asymmetry of the vertical velocity distribution in the macroturbulent phase

leading to substantially reduced asymmetries.
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Figure 3-1: Comparison of the instantaneous GCM vertical velocity field to the in-
verted vertical velocity field (−𝜔, red indicates upward motion), obtained from in-
version of Eq. (3.2), at 500hPa. Results are shown for unstable modes (a,b) and the
macroturbulent regime (c,d) of the global warming simulations of O’Gorman et al.
(2018) at a global-mean surface air temperature of 288K. The modes were calculated
by O’Gorman et al. (2018) through repeated rescaling of the equations to small ampli-
tude and hence their magnitude is arbitrary. The time instant chosen for comparison
was arbitrary.
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Figure 3-2: Cross section of the GCM (black) and inverted (blue) vertical velocity
fields shown in Fig. (3-1) at latitude 50∘ for the modes (a) and the macroturbulent
regime (b). The amplitude of the mode is arbitrary.

96



Figure 3-3: Comparison of the asymmetry parameter 𝜆 for GCM vertical velocities
(solid lines) and the inverted vertical velocities (dashed lines), calculated from the
inversion of Eq. (3.2). Results are shown for the modal (red) and macroturbulent
(blue) regimes in the reduced stability simulations (a,b) and global warming simu-
lations (c,d) from O’Gorman et al. (2018). In (a,c) 𝑟(𝜔) was used in the inversion
of Eq. (3.2), whereas in (c,d) 𝑟(𝜔) = 1 was used in the inversions. Hence, in (a,c)
the asymmetry of the vertical velocity distribution comes from both 𝑟(𝜔) and the
RHS, whereas in (c,d) the asymmetry only comes from the RHS. 𝜆 was calculated
between 40∘ − 60∘ latitude for the global warming simulations and between 25∘ − 65∘

in the reduced stability simulations and then averaged in time and vertically over the
troposphere.
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3.4 Understanding Asymmetry Behavior using 2-layer

moist QG

We next use a 2-layer moist QG framework to better understand the asymmetry

behavior in the modal and macroturbulent regimes. We begin by developing an un-

derstanding for why the RHS is skewed in the modal regime in section 3.4.1, before

distilling the insights of the 3-D inversions into a toy-model for 𝜆 in the macroturbu-

lent regime in section 3.4.2.

The two-layer moist QG equations on an 𝑓 -plane with equal layer height take the

nondimensional form

𝜕𝑡∇2𝜑+ 𝐽(𝜑,∇2𝜑) + 𝐽(𝜏,∇2𝜏) = 0, (3.8)

𝜕𝑡∇2𝜏 + 𝐽(𝜑,∇2𝜏) + 𝐽(𝜏,∇2𝜑) + 𝑤 = 0, (3.9)

𝜕𝑡𝜏 + 𝐽(𝜑, 𝜏) + 𝑟(𝑤)𝑤 = 0, (3.10)

with barotropic and baroclinic stream function 𝜑 = 𝜓1+𝜓2

2
and 𝜏 = 𝜓1−𝜓2

2
where

𝜓1 refers to the streamfunction in the upper layer and 𝜑2 to the streamfunction in

the lower layer, and with Jacobian 𝐽(𝐴,𝐵) = 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥. These equations are

obtained from Eqs. (2.36-2.38)after setting the boundaries at top and bottom to be

horizontal ℎ1 = ℎ2 = 0 and neglecting the radiative cooling term. The equations have

been nondimensionalized assuming an advective time scale and with the deformation

radius 𝐿𝐷 = 𝑁𝐻/(
√
2𝑓) as the length scale where 𝐻 is the layer height.2 The 𝛽

effect is neglected here for simplicity.

3.4.1 Behavior of RHS for Moist Unstable Modes

To study the asymmetry of the vertical velocity in the limit of small amplitude per-

turbations growing on a basic state, we linearize the advective terms of the two layer

2Discretizing the continous thermodynamic equation leads to a deformation radius involving 𝑁 ,
rather than a reduced gravity, at the mid-tropospheric level.
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moist QG equations around a zonally uniform basic shear state in thermal wind bal-

ance 𝜏0 = −𝑦, 𝜑0 = 0, 𝑤0 = 0. We also assume the perturbations to be independent

of the 𝑦 direction. This yields the equations

𝜕𝑡𝜑𝑥𝑥 + 𝜏𝑥𝑥𝑥 = 0, (3.11)

𝜕𝑡𝜏𝑥𝑥 + 𝜑𝑥𝑥𝑥 + 𝑤 = 0, (3.12)

𝜕𝑡𝜏 − 𝜑𝑥 + 𝑟(𝑤)𝑤 = 0, (3.13)

where 𝜏 , 𝜑 and 𝑤 now refer to small-amplitude perturbations about the basic state.

Eqs. (3.11, 3.13, 3.14) have been studied in quasigeostrophic (Zurita-Gotor 2005)

and semigeostrophic (Emanuel et al. 1987) form to analyze the effects of latent heat-

ing on the growth rate and length scale of the most unstable modes of baroclinic

instability. It was found that latent heating increases the growth rate and shifts the

most unstable mode to smaller length scales. Here, we focus on the effect of latent

heating on the asymmetry of the vertical velocity of the most unstable moist modes.

To calculate the fastest growing modes for a given static-stability reduction factor

0 ≤ 𝑟 ≤ 1, we solve Eqs. (3.11-3.13) numerically. To this end, we discretize the

equations using second-order central finite differences in a periodic domain in 𝑥 of

size 𝐿 = 8𝜋 with grid spacing ∆𝑥 = 0.13. The equations are solved using the

same procedure as outlined in section (2.3.2) but noting that here we do not tilt the

upper and lower boundaries. We refer the reader to the paper for more detail and

only summarize the basics here. The barotropic and baroclinic vorticity equations

(Eqs. 3.11,3.12) are integrated forward in time and the system of equations is closed

by calculating the vertical velocity 𝑤 at each time step from the nonlinear omega

equation,

(𝑟(𝑤)𝑤)𝑥𝑥 − 𝑤 = 2𝜑𝑥𝑥𝑥, (3.14)

which is formed by eliminating the time derivatives between Eq. (3.12) and (3.13).
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The dynamical fields are rescaled to avoid large numbers, which could cause problems

with the numerical representations, and the equations are run forward in time until

the solution has converged to a normal mode.

An example vertical velocity profile of the most unstable moist mode in this system

at 𝑟 = 0.1 is shown in Fig. (3-4b). The solution consists of a periodic wave whose

ascent length is reduced compared to the descent length. This is consistent with the

structure of the most unstable mode that was found in the idealized GCM calculations

(see Fig. 3-2a).

We repeat the calculation for different values of 𝑟 and compare the asymmetry of

the most unstable mode in this 1-D system to the asymmetry for the modes of the

3-D reduced stability GCM simulations in O’Gorman et al. (2018) (see Fig. 3-4a).

The reduced stability simulations are chosen for ease of comparison to our two-layer

model, since a constant reduction factor is applied throughout the troposphere in

these simulations. In the global warming simulations, 𝑟 varies with altitude which is

more difficult to capture in a two-layer setting.

Looking at Fig. (3-4a), we see that the asymmetry of the most unstable modes

of the 1-D theory agrees remarkably well with that found in the idealized GCM

experiments given the simplicity of the two-layer setup. The modes become very

skewed as 𝑟 → 0 which can also be confirmed by looking at the 𝑤 profile of the most

unstable mode from the 1-D theory at 𝑟 = 0.1 (Figure 3-4b). The ascent length is

greatly reduced compared to the descent length, in line with the results of Emanuel

et al. (1987) and Zurita-Gotor (2005). The skewness of -RHS in 1-D theory is equal

to skewness= 2.1.

We can now use the two-layer moist QG framework to explain why the RHS of

the moist omega equation imparts so much asymmetry during the modal regime, as

discussed in section 3.3. Combining Eqs. (3.11-3.12), it is possible to write an explicit

equation for the RHS= 2𝜑𝑥𝑥𝑥 of the moist omega equation in the modal regime

𝜕𝑡𝑡2𝜑𝑥𝑥𝑥 = (2𝜑𝑥𝑥𝑥)𝑥𝑥 + 2𝑤𝑥𝑥, (3.15)
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which forms a complete set of equations together with the moist omega equation (Eq.

3.14). We consider an initial value problem which is solved in time until the solution

converges to a mode starting from initial conditions in which the RHS is unskewed

initially. We observe from Eq. (3.15) that the RHS satisfies a wave-equation in the

modal regime with 2𝑤𝑥𝑥 as its source term. When the atmosphere is dry and thus

𝑟 = 1, 2𝑤𝑥𝑥 is of the same magnitude in ascending and descending regions. If the RHS

is unskewed initially, it will thus remain so in time by Eqs. (3.14, 3.15). However,

when the atmosphere is moist and thus 𝑟 < 1, the moist omega equation implies

that 𝑤𝑥𝑥 becomes different in magnitude between ascending and descending regions

even if the RHS is unskewed. An example of a 𝑤 profile in this situation is given by

solutions to the moist omega equation with an unskewed RHS that will be considered

in the next section (see Fig. 3-5b). For brevity, from now on we will refer to the

extent to which 𝑤𝑥𝑥 is greater in magnitude in the ascent region compared to the

descent region as the asymmetry of 𝑤𝑥𝑥, and similarly for the asymmetry of RHS.

By Eq. (3.15) the asymmetry of 𝑤𝑥𝑥 is imparted to the RHS such that RHS also

becomes more asymmetric. The smaller 𝑟, the more asymmetric 𝑤𝑥𝑥 and hence the

RHS, which explains the increased asymmetry imparted to the vertical velocity by the

RHS in warm climates or for low values of 𝑟 in section 3.3. Since the RHS forces the

omega equation, its asymmetry will be imparted to the asymmetry of 𝑤 and hence

also that of 𝑤𝑥𝑥. A feedback is established. For an initial value problem starting

with a symmetric RHS, the asymmetry of the RHS is thus expected to grow before

equilibrating to a constant value eventually when the modal structure is reached and

all terms in Eq. (3.15) grow exponentially at the same rate.

3.4.2 Toy model for Moist Macroturbulence

In the macroturbulent phase, the full nonlinearities in Eqs. (3.8-3.10) are retained

and the moist QG omega equation is instead given by
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(a) (b)

Figure 3-4: (a) Comparison of the asymmetry parameter 𝜆 for the most unstable
modes predicted by 1-D moist baroclinic theory in a two-layer QG model, and for
the most unstable modes calculated using a reduced stability parameterization for
the GCM simulations of O’Gorman et al. (2018). The 𝜆 of the modes in the reduced
stability GCM simulations is averaged over the tropophere and was also shown in
Fig. (3-3a). (b) Vertical velocity profile of the most unstable mode of 1-D moist
baroclinic theory at 𝑟 = 0.1. The two-layer moist baroclinic modes were calculated
by time-marching Eqs. (3.11, 3.12, 3.14) on a periodic domain of size 𝐿 = 8𝜋 with
grid spacing ∆𝑥 = 0.13.

∇2(𝑟(𝑤)𝑤)− 𝑤 = 2𝐽(𝜏,∇2𝜑)− 2𝐽(𝜑𝑥, 𝜏𝑥)− 2𝐽(𝜑𝑦, 𝜏𝑦), (3.16)

which can be derived by eliminating time derivatives in Eqs. (3.9-3.10). It is hard

to make any general theoretical statements about the RHS of this equation given the

macroturbulent nature of the flow. Unlike in modal theory, scrambling by the nonlin-

ear advective terms means that a simple amplifying feedback between the asymmetry

of the RHS and 𝑤 is no longer expected, and this is supported empirically by both

the inversions for the reduced stability and global warming simulations which showed

that the RHS was unskewed and made only negligible contributions to the asymmetry

of the vertical velocity distribution. Motivated by this result, we study a simple 1-D

toy-model of the moist two-layer QG omega equation in the macroturbulent phase

given by
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(a) (b) (c)

Figure 3-5: (a) Asymmetry parameter 𝜆 for the vertical velocity field predicted by the
1-D toy model (Eq. 3.17) for different wavenumbers 𝑘 as a function of the reduction
factor 𝑟 along with the asymmetry parameter for the reduced stability GCM runs
and the 3-D moist QG omega inversions (gray lines, same as in Fig. 3-3a). (b) Corre-
sponding vertical velocity profiles at 𝑘 = 1.8 for different values of 𝑟. (c) Asymmetry
parameter 𝜆 for the vertical velocity field predicted by the 1-D toy model for different
values of the reduction factor 𝑟 as a function of 𝑘.

(𝑟(𝑤)𝑤)𝑥𝑥 − 𝑤 = sin(𝑘𝑥), (3.17)

with the dynamical forcing on the RHS described by an unskewed sinusoidal function

with non-dimensional wavenumber 𝑘. Since we currently do not possess a theory for

the power spectrum of the RHS, the wavenumber 𝑘 is taken here as an externally

imposed parameter in addition to the reduction factor 𝑟. Although the sinusoidal

forcing is clearly a gross simplification of the true RHS forcing, we argue that it is

nonetheless useful to illustrate some of the controls on 𝜆 implied by the moist omega

equation with an unskewed RHS forcing at different length scales.

We invert Eq. (3.17) numerically for a given wavenumber 𝑘 and reduction factor

𝑟 on a domain of length L= 2𝜋/𝑘 using 300 evenly-spaced grid points. The solution

technique for the moist omega equation is the same as that outlined in section 3.4.1.

Results for 𝜆 are shown in Fig. (3-5a), and a selection of vertical velocity profiles

at fixed 𝑘 = 1.8 and varying 𝑟 are shown in Fig. (3-5b). The value of 𝑘 = 1.8 has

been chosen here for comparison to the reduced stability GCM simulations since it

is corresponds to the typical wavenumber found for these simulations at 𝑟 = 0.01.

The typical wavenumber was estimated by calculating the centroid wavenumber of
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the 1-D zonal 𝑤 power spectrum 𝑃 (𝑘) at 500hPa,

𝑘𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =

∑︀
𝑘′ 𝑘

′𝑃 (𝑘′)∑︀
𝑘′ 𝑃 (𝑘

′)
, (3.18)

averaging 𝑘𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 across the latitude band 25∘ − 65∘ of the reduced stability simu-

lation, and nondimensionalizing by the deformation radius 𝐿𝐷 =
√
𝜎500∆𝑝/(2

√
2𝑓),

where 𝜎500 is the static stability factor in pressure coordinates estimated from the

reduced stability simulations at 500 hPa, and ∆𝑝 = 800 hPa and 𝑓 = 10−4s−1 were

chosen as typical values for the tropopause height and Coriolis parameter, respec-

tively.3 Focusing on the vertical velocity profile at 𝑘 = 1.8 (see Fig. 3-5b), we see

that although the ascent length shrinks as 𝑟 becomes smaller, the ascent length does

not collapse and the vertical velocity profiles do not become very asymmetric, espe-

cially compared to the profile of the mode predicted by 1-D theory at 𝑟 = 0.1 (see

Figure 3-4b). Looking at the corresponding behavior of 𝜆(𝑟) at 𝑘 = 1.8 in Fig. (3-5a),

we confirm that the toy model asymptotes to 𝜆 ≃ 0.80 as 𝑟 → 0 and has a value of

𝜆 = 0.76 at 𝑟 = 0.01. By comparison the 1-D modal theory asymptotes to 𝜆 = 1 as

𝑟 → 0 (this limit is known from the theory of moist baroclinic modes which predicts

vanishing updraft length in this limit Emanuel et al. 1987, Zurita-Gotor 2005) and

has a value of 𝜆 = 0.95 at 𝑟 = 0.01 (see Fig. 3-4a). Thus the asymmetries are much

higher for modal theory than for the toy-model. The value of 𝜆 = 0.76 predicted by

the toy-model at this wavenumber is in reasonably good agreement with that found

for the reduced stability GCM simulations 𝜆 = 0.71, and the slight overestimate is

consistent with the overestimate found for the 3-D moist QG omega equation inver-

sions in the reduced stability simulations which gave 𝜆 = 0.80 for 𝑟 = 0.01 (Fig. 3-5a,

gray lines). We note however that the agreement between the toy-model and GCM

asymmetry is not exact. In particular, the toy-model underestimates the GCM asym-

metry at large 𝑟 values (𝑟 > 0.1), and the toy-model asymmetry does not equilibrate

3Note the extra factor of 2 in the definition of the deformation radius because 𝐻 in our two-layer
theory is the layer height and not the tropopause height.
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as quickly as 𝑟 is lowered4. The underestimate at larger 𝑟 values is likely a result of

the simplified nature of the RHS forcing (completely unskewed, and single sinusoid)

since the full 3-D inversion does a good job at reproducing the GCM asymmetry in

this range. The slower equilibration of 𝜆 as 𝑟 is lowered in the toy-model points to a

potential deficiency of the moist QG omega framework at capturing all the controls on

the vertical velocity field in the GCM, since the full 3-D moist QG omega inversions

also show lack of complete equilibration at 𝑟 = 0.01.

Interestingly, looking at Fig. (3-5c), we also note that for a fixed value of 𝑟 the

toy-model implies that 𝜆 increases as the wavenumber 𝑘 is increased (i.e. the forcing

moves to smaller length scales), particularly at low values of 𝑟. Hence, while the

asymmetry parameter asymptotes in the low 𝑟 limit to values of 𝜆 similar to those

in the idealized GCM simulations for values of 𝑘 that are roughly consistent with

those found in the simulations, the toy model surprisingly predicts that high values of

𝜆 ∼ 0.9 comparable to the modal regime could be reached even in the macroturbulent

flow with unskewed RHS provided that 𝑟 is sufficiently low and the wavenumber of

the forcing is sufficiently large (𝑘 > 6). This intriguing implication will be pursued

further in section 3.6 where we present moist simulations with a highly asymmetric

vertical velocity field in the macroturbulent regime despite a near symmetric RHS.

But first, we will apply the toy-model theory to the seasonal cycle of 𝜆 observed in

the current climate and contrast it with the predictions from moist baroclinic modes.

3.5 Applying the Toy-Model to the Seasonal Cycle

of 𝜆 in Reanalysis

We compare the theoretical predictions from the 1-D modal theory and the 1-D

toy model to the seasonal cycle of 𝜆 found in ERA5 reanalysis at 500hPa in both

the Northern Hemisphere (NH) and Southern Hemisphere (SH) (Fig. 3-6). The

vertical velocity and temperature data used are 6-hourly fields with grid spacing 0.25∘

4As a result we chose to plot the asymmetry for the toy-model down to smaller 𝑟 = 0.001 values
than were simulated in the idealized GCM.
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spanning the latitude band 30∘− 70∘ and years 2009− 2018. For comparison, we also

show the seasonal cycle of 𝜆 in ERAI and NCEP2 reanalysis, with a grid spacing

of 0.75∘ and 2.5∘ respectively, since the amplitude of the seasonal cycle was found

to increase with increasing reanalysis resolution. The asymmetry parameter 𝜆 in

reanalysis has been calculated at each latitude based on zonal averages and averaged

over the latitude band and over the 10 years for each month. For the theoretical

predictions, 𝑟 was calculated from the ERA5 temperature field at 500hPa using Eq.

(3.6), and then averaged over the horizontal domain and over the 10 years for each

month. The wavenumber 𝑘 was calculated again as the centroid wavenumber of the 1-

D zonal power spectrum of 𝑤 in ERA5 at 500hPa using Eq. (3.18), and then averaged

over the latitude band and over the ten year period for each month. The wavenumber

𝑘 was then nondimensionalized by the deformation radius 𝐿𝐷 =
√
𝜎500∆𝑝/(2

√
2𝑓),

where 𝜎500 was estimated as the domain and 10-year average from ERA5 at 500 hPa

for each month, and ∆𝑝 = 800 hPa and 𝑓 = 10−4s−1 were again chosen to reflect

typical values of the tropopause depth and Coriolis parameter, respectively. Using

the values of 𝑟 and 𝑘 for each month, the 1-D toy model and 1-D modal theory was

solved as described in section 3.4 to produce the theoretical predictions seen in Fig.

(3-6).

Looking at Fig. (3-6a, b), we see that 𝜆 in ERA5 reanalysis has a seasonal cycle

that peaks during summer in each hemisphere. This is as expected given that 𝑟

decreases as the stratification becomes closer to moist adiabatic in summer (Stone

and Carlson 1979), and it is also consistent with the result that 𝜆 is larger in summer

compared to winter in extratropical cyclones (Tamarin-Brodsky and Hadas 2019).

The seasonal cycle is more pronounced in the NH varying between values of 𝜆 = 0.59

and 𝜆 = 0.69, than in the SH where it varies between 𝜆 = 0.62 and 𝜆 = 0.64.

Comparing the behavior of 𝜆 in ERA5 to ERAI and NCEP2 reanalysis, we note that

𝜆 decreases in both the northern and southern hemispheres as we go to reanalysis

products with coarser resolution, and this is most pronounced during the hemispheric

summer. As a consequence, the amplitude of the seasonal cycle decreases with coarser

resolution and this is particularly evident in the NH. While a seasonal cycle is still
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(a) (b)

Figure 3-6: (a) Comparison of the seasonal cycle of the asymmetry parameter 𝜆 at
500hPa in the Northern Hemisphere (NH) from ERA5 reanalysis which has a grid
spacing of 0.25∘, to the predictions from the 1-D toy model and 1-D modal theory. For
comparison, we also show the seasonal cycle of 𝜆 in ERAI reanalysis which has a grid
spacing of 0.75∘, and NCEP2 reanalysis which has a grid spacing of 2.5∘. 6-hourly
fields were used for all reanalysis data. (b) Same but for the Southern Hemisphere
(SH).

found for ERAI, 𝜆 remains close to constant throughout the year for NCEP2. A

dependence of 𝜆 on resolution has also been found in the idealized GCM simulations

O’Gorman et al. (2018), but in those simulations it was found that vertically averaged

𝜆 was already converged at a resolution of T127, which is coarser than the ERAI

resolution of T255. The discrepancy in convergence resolution may arise because

different numerical details (e.g., use of a semi-Lagrangian scheme in ERAI) lead to a

coarser effective resolution in reanalysis versus the GCM, and additionally there may

be more sensitivity to resolution of 𝜆 at 500hPa compared to the vertical average 𝜆

(Booth et al., 2015). The question still remains whether future reanalysis products

with much higher resolution than ERA5 could show a substantially larger seasonal

cycle of 𝜆. We do not anticipate this to be the case because Booth et al. (2015) found

that vertically averaged 𝜆 did not increase from a grid spacing of 50km to 3.125km in

simulations of a moist baroclinic lifecycle, and 𝜆 at 𝑧 = 5km only increased slightly

over this range of grid spacings.

Even though a seasonal cycle of 𝜆 can be found in ERA5, its magnitude remains

small in both hemispheres from the point of view of modal theory given that 𝑟 un-
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Figure 3-7: Seasonal cycle of the static stability reduction factor 𝑟 in the northern
(solid) and southern (dashed) hemisphere at 500hPa in ERA5 reanalysis. The reduc-
tion factor has been averaged between latitudes 30∘ − 70∘. 𝑟 = 1 corresponds to a
dry atmosphere, and 𝑟 = 0 corresponds to a moist atmosphere with a moist adiabatic
lapse rate. In both hemispheres 𝑟 is smallest during the summer, but the seasonal
cycle is more pronounced in the NH.

dergoes large variations between winter and summer months (0.12 < 𝑟 < 0.5 in the

NH and 0.32 < 𝑟 < 0.43 in the SH, Fig. 3-7). Indeed, 1-D modal theory consistently

overpredicts 𝜆 in both hemispheres reaching peak values of 𝜆 = 0.80 in the NH and

𝜆 = 0.71 and in the SH. This is in line with the results of the idealized GCM simu-

lations which showed that variations of 𝜆 in the macroturbulent state with warming

are considerably smaller than what moist modal theory predicts. In contrast to the

modal theory, the seasonal cycle in reanalysis is better captured by the 1-D toy model,

particularly in the NH. From the point of view of the 1-D toy model, the seasonal

cycle in 𝜆 is primarily from the variations in 𝑟 because variations of 𝑘 (between 5.6

and 7.7 in the NH, and between 4.2 and 4.8 in the SH) only have substantial effect

on 𝜆 at smaller values of 𝑟 (compare the variations of 𝜆 with 𝑘 predicted by the

toy-model at 𝑟 = 0.01 and 𝑟 = 0.4 in Fig. 3-5a).5

Although the close quantitative agreement in the NH is likely a bit serendipitous

given the simplicity of the model and the sinusoidal RHS, we argue that the toy

model, in contrast to moist modal theory, better captures the moderate sensitivity of

𝜆 to warming that is characteristic of the macroturbulent regime.

5This was further checked by calculating 𝜆 from the toy modal keeping 𝑘 fixed over the seasonal
cycle. The results in Fig. 3-6 were unaffected.
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3.6 High 𝜆 States in Moist QG Turbulence

The 1-D toy model of the moist omega equation predicts that the vertical velocity

field can become very asymmetric even for an unskewed RHS forcing in the low 𝑟

limit provided that the wavenumber of the RHS forcing is sufficiently large. In this

section, we show that such flow regimes are indeed achievable by presenting results

from moist two-layer QG simulations.

We solve the moist two-layer QG Eqs. (3.8-3.10) on a doubly-periodic domain

of size 𝐿 = 12𝜋 with 512x512 grid points using Dedalus, a flexible framework for

numerical simulations with spectral methods (Burns et al. 2020). The system is

allowed to go moist baroclinically unstable about a mean temperature gradient in

thermal wind balance, which corresponds to 𝜏 = −𝑦, 𝜑 = 0 and �̄� = 0. We set

𝜏 = 𝜏 + 𝜏 ′, 𝜑 = 𝜑′, 𝑤 = 𝑤′, and add additional terms for dissipation and 𝛽 as

described below. Eqs. (3.8-3.10) take the form

𝜕𝑡∇2𝜑+ 𝐽(𝜑,∇2𝜑) + 𝐽(𝜏,∇2𝜏) + 𝛽𝜑𝑥 = −∇2𝜏𝑥 −
𝑅

2
∇2(𝜑− 𝜏)− 𝜇∇4(∇2𝜑)

(3.19)

𝜕𝑡∇2𝜏 + 𝐽(𝜑,∇2𝜏) + 𝐽(𝜏,∇2𝜑) + 𝑤 + 𝛽𝜏𝑥 = −∇2𝜑𝑥 +
𝑅

2
∇2(𝜑− 𝜏)− 𝜇∇4(∇2𝜏)

(3.20)

𝜕𝑡𝜏 + 𝐽(𝜑, 𝜏) + 𝑟(𝑤)𝑤 = 𝜑𝑥 − 𝜇∇4𝜏 + 𝜈∇−2𝜏

(3.21)

where we have dropped all the primes for notational simplicity, and 𝜑, 𝜏 and 𝑤

represent perturbations about the mean state. The equations have been nondimen-

sionalized with the deformation radius 𝐿𝐷 (as before) and the velocity scale 𝑈 which

is the basic state velocity in each layer (𝑈 in the top layer, and −𝑈 in the bot-

tom layer). Eqs. (3.19-3.21) include the effects of a linear drag on the vorticity

in the lower layer with nondimensional drag coefficient 𝑅 = 𝑅𝑑𝑖𝑚𝐿𝐷/𝑈 where 𝑅𝑑𝑖𝑚

is the dimensional drag coefficient; the 𝛽-effect with 𝛽 = 𝛽𝑑𝑖𝑚𝐿
2
𝐷/𝑈 where 𝛽𝑑𝑖𝑚 is
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the dimensional 𝛽 parameter; small-scale dissipation parametrized by a fourth-order

hyper-diffusion with coefficient 𝜈; and a large-scale radiative damping parametrized

by a hypo-diffusion made up of an inverse diffusion operator with coefficient 𝜈. The

large-scale radiative damping was found to be necessary for simulations with 𝑟 < 0.4

and thus large energy input from latent heating because the linear drag term was not

enough to remove the energy at large scales and stabilize the simulations. The means

of the stream functions 𝜑 and 𝜏 , and the mean of 𝑤 are all enforced to be zero.

The system of equations differs from the moist QG equations of Lapeyre and

Held (2004) primarily by always assuming upward motion to be saturated. Thus, no

prognostic moisture equation is needed, and the effects of latent heating are captured

in terms of a single parameter 𝑟. So far the 𝑟 parametrization has been used in

studies of moist baroclinic instability (Emanuel et al. 1987, Montgomery and Farrell

1991, Montgomery and Farrell 1992, Fantini 1995, Moore and Montgomery 2004,

Kohl and O’Gorman 2022) with the exception of O’Gorman et al. (2018) which also

considered a macroturbulent state. To our knowledge, this is the first time that

the 𝑟-parametrization has been applied to macroturbulent simulations in a 2-layer

model. We choose this system here for its simplicity and ease of comparison to moist

baroclinic theories, but acknowledge that having a prognostic moisture equation, like

in Lapeyre and Held (2004), allows for conservation properties that are more desirable

when developing closure theories for PV fluxes (which is not our focus here).

We show result for simulations with 𝑟 = 1 (a dry simulation) and 𝑟 = 0.01 (a moist

simulation with strong latent heating). We fix 𝛽 = 0.78 equal to the value of Lapeyre

and Held (2004).6 This corresponds to a moderate supercriticality of 𝜒 = 𝛽−1 = 1.28,

where 𝜒 > 1 is required for the inviscid dry model to go unstable. We pick 𝑅 = 0.11,

𝜇 = 10−5, and 𝜈 = 0 for 𝑟 = 1 and 𝜈 = 5 for 𝑟 = 0.01. The simulations are started

using random initial conditions for the stream functions 𝜑 and 𝜏 , where we have

filtered out all wavenumbers with 𝑘 =
√︀
𝑘2𝑥 + 𝑘2𝑦 > 3 to avoid having to integrate a

lot of small scale noise in the initial phase of the simulation. After an initial phase of

6Please note that compared to Lapeyre and Held (2004), our deformation radius is defined as
𝐿𝐷 = 𝑁𝐻/(

√
2𝑓) instead of 𝐿𝐷 = 𝑁𝐻/𝑓 but the magnitude of our mean flow is 𝑈 instead of their

𝑈/2 so that the definition of 𝛽 = 𝛽𝑑𝑖𝑚𝐿2
𝐷/𝑈 is equivalent.
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modal instability, the simulations settle into a macroturbulent state. This happens

more quickly at 𝑟 = 0.01 because the growth rate of the modes is increased by latent

heating.

We begin by comparing the structure of the flow field in the two simulations.

The relative vorticity in the upper and lower layer, alongside the vertical velocity are

shown in Fig. (3-8).

Looking at the dry simulation (Fig. 3-8a,c,e), we see that the flow settles into the

well known state of 𝛽-plane turbulence: wavy jets interspersed with vortices. The

relative vorticity is weaker in the lower than upper layer because of the low level drag.

The vertical velocity field has large-scale ascending and descending regions of similar

size that are mostly confined to the latitudes of the jets.

In contrast to the dry simulation, we see that the flow in the moist simulation

(Fig. 3-8 b,d,f) has transitioned to a state that is entirely dominated by small scale

vortices, despite the presence of low level drag and 𝛽, with greatly reduced ascent

lengths and strong ascending motion. In fact when 𝛽 was changed down to 𝛽 = 0

and up to 𝛽 = 1.5 in the moist simulations at 𝑟 = 0.01, there was no noticeable effect

on the overall flow field or the asymmetry of the vertical velocity field (not shown).7

The vortices propagate northwards in our simulations through nonlinear advection

and the trails of this propagation can be seen in the form of tendrilly north-south

structures in the vertical velocity field. The PV structure of the vortices consists of

dipoles of positive PV anomalies in the lower layer and negative PV anomalies in the

upper layer maintained by diabatic generation with meridional PV advection playing

a negligbe role (not shown - discussed in section 4.2) like in a diabatic Rossby vortex

(e.g., Kohl and O’Gorman 2022). A similar transition to a vortex dominated state has

first been observed by Lapeyre and Held (2004) in a moist-two layer QG system using

prognostic moisture. However, unlike here the authors found that the vortices had

a barotropic vertical structure, and the vorticity field had a much stronger tendency

towards cyclones in the lower layer, than towards anticyclones in the top layer while

7As explored in the next chapter, baroclinic tendencies in the PV budget are dominated by
diabatic effects in these simulations so that making small changes to 𝛽 like this are unimportant.
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Figure 3-8: Snapshots of relative vorticity in the upper layer (a,b) and lower layer
(c,d), and vertical velocity (e,f) in the moist two-layer QG simulations at 𝑟 = 1.0
(a,c,e) and 𝑟 = 0.01 (b,d,f). Note that vorticity in (c) has a different colobar scale
from (a,b,d) and that the vertical velocity has a very different colorbar scale in (f)
compared to (e). The flow transitions from a wavy jet state interspersed with vortices
at 𝑟 = 1.0 to a vortex dominated flow at 𝑟 = 0.01. The vortices migrate poleward
over time leaving a trail that can be seen in the vertical velocity.
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it is roughly similar in our simulations (not shown). Although we only show the

results at 𝑟 = 0.01, we note that the transition to a vortex dominated flow happens

at values of roughly 𝑟 = 0.4. This is also the threshold that was found for DRVs to be

the most unstable mode in the tilted moist 2-layer model on an infinite domain Kohl

and O’Gorman (2022), but that might be coincidental because that result assumed

no PV gradients in the basic state.8 For values of 𝑟 lower than 0.4, the main effect

of decreasing 𝑟 is to reduce the length scale of the vortices and the length scale of

ascending motion.

Although much could be explored about the properties of the moist turbulent

simulations in future work, our focus here is on the asymmetry of the vertical velocity

field in the 𝑟 = 0.01 simulation. Fig. (3-9) shows the value of 𝜆 versus time for the

vertical velocity field, and the vertical velocity field 𝑤𝑅𝐻𝑆 which results from solving

the moist omega equation

∇2(𝑟(𝑤)𝑤)− 𝑤 = RHS (3.22)

specifying 𝑟(𝑤) = 1 such that the asymmetry only comes from the RHS. Here

RHS=2∇2𝜑𝑥+2𝐽(𝜏,∇2𝜑)− 2𝐽(𝜑𝑥, 𝜏𝑥)− 2𝐽(𝜑𝑦, 𝜏𝑦) + 𝛽𝜏𝑥 and we have neglected dis-

sipative terms. The transition from modal to macroturbulent state of the simulations

can be seen in the asymmetry of the 𝑤𝑅𝐻𝑆. After the asymmetry of 𝑤𝑅𝐻𝑆 increases

in the modal phase and reaches its peak (𝑡 = 5), it decreases and 𝑤𝑅𝐻𝑆 becomes close

to symmetric in the macroturbulent state of the simulation (𝑡 > 5). This is consistent

with the decrease of the RHS contribution to the vertical-velocity asymmetry that has

been observed in the idealized GCM simulations of O’Gorman et al. (2018) discussed

in section 3.3. Furthermore the skewness of -RHS decreases from 9.0 to 0.4 consistent

with the assumption that has been made in the development of the simple 1-D toy

8For the moist two-layer QG model with PV gradients no obvious threshold from wave to vortex
modes was found at 𝑟 = 0.4 (see Fig. 2-9a). However, it is possible that the finite amplitude vortices
are different from the modes in this regard because meridional advection was found to be stronger
relative to latent heating for the modes than the storms (not shown). This could make the fully
tilted model - without PV gradients - a better analogy for the fully turbulent simulations.
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Figure 3-9: Asymmetry parameter of the vertical velocity field 𝑤 versus time in the
moist QG turbulent simulations at 𝑟 = 0.01. Also shown is the asymmetry parameter
for the vertical velocity field that is contributed just by the RHS of the moist omega
equation Eq. (3.22) with 𝑟(𝑤) = 1.

model for the macroturbulent regime in section (3.4.2). Even though the RHS makes

little contributions to the asymmetry of 𝑤 in the macroturbulent regime, the asym-

metry remains very large in the macroturbulent phase at 𝜆 = 0.94 (Fig. 3-9). This

is also confirmed by looking at the vertical velocity snapshot in Fig. 3-8f in which

there are very small updraft areas and very strong updraft speeds. Diagnosing the

value of the wavenumber 𝑘 in these simulations from the centroid of the meridionally

and time averaged zonal power spectrum of 𝑤 using Eq. (3.18), we find that 𝑘 = 6.6

which leads to a toy model prediction of 𝜆 = 0.84 for 𝑟 = 0.01. This is a high value

of 𝜆, albeit lower than the value of 𝜆 = 0.94 found in the simulation. For 𝑘 = 6.6 and

𝑟 → 0, the toy-model predicts 𝜆 ≃ 0.97 implying highly asymmetric vertical velocity

distributions are possible at high values of 𝑘 and low values of 𝑟.

Consistent with the predictions of the toy model, we find that high asymmetry

states are indeed achievable in the macroturbulent state even for unskewed RHS

forcings so long as the wavenumber of the forcing is sufficiently large. Our moist

QG simulations suggest that such a flow regime is characterized by a ‘vortex world’

which is quite different from that observed in the idealized GCM which retains a

predominantly wave-like structure even in warm and moist climates. We will address
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this discrepancy in the next chapter.

3.7 Conclusions

Idealized GCM simulations of moist macroturbulence show that the asymmetry of

the vertical velocity distribution is considerably smaller than what moist baroclinic

instability theory predicts. This is significant given that the atmosphere is constantly

in a state more akin to that of the macroturbulent simulations. Meanwhile, our

theoretical understanding is based around moist modal theory which is not applicable

in this regime. This makes the development of a theory for the asymmetry in the

macroturbulent state desirable.

To bridge this gap in understanding, we have applied inversions of a moist QG

omega equation to the idealized GCM output to identify why the asymmetry is re-

duced in the modal compared to macroturbulent regime. The inversions showed that

while the RHS of the omega equation remains very skewed in the modal regime, it

contributes negligibly to the asymmetry in the macroturbulent phase which is almost

entirely determined by the reduction in static stability in ascending air on the left

hand side of the moist omega equation.

The two-layer moist QG framework was then used to understand asymmetry be-

havior. We showed that in the modal regime, a feedback between the dynamical

forcing on the RHS and 𝑤 leads to large asymmetries contributed by the RHS consis-

tent with what was found in the idealized GCM simulations. Such a feedback is not

expected for the macroturbulent phase because of advective nonlinearities in the RHS

of the moist omega equation. We then distilled the insights from the moist omega

inversions and in particular the unskewed RHS in the macroturbulent phase, into a

simple 1-D toy model of the moist QG omega equation. The toy model was solved

for a given wavenumber of the dynamical forcing on the RHS of the omega equation

and for a given static stability reduction factor 𝑟. In contrast to the 1-D moist modal

theory, the toy model was able to reproduce the weak increase of the asymmetry with

warming that has been observed in the macroturbulent regime of the idealized GCM
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simulations.

The asymmetry parameter 𝜆 increases from winter to summer in reanalysis and

this seasonal cycle forms a useful test ground for asymmetry theories, since the moist

static stability varies a lot between seasons, particularly in the NH. We showed that

whilst moist baroclinic theory overpredicts the change in 𝜆, the toy-model better

reproduces the slow change of 𝜆 over the seasonal cycle in ERA5 reanalysis. The

interpretation is once again that asymmetry changes in macroturbulent flows in re-

sponse to changes in moist static stability are much smaller than what moist unstable

baroclinic modes suggest. The seasonal cycle of 𝜆 is considerably weaker in earlier

generations of reanalysis products at coarser resolution. Results from modeling stud-

ies of resolution dependence suggest that 𝜆 should be converged or close to converged

with respect to increases in resolution for the ERA5 reanalysis, but further study of

the resolution dependence of 𝜆 would be helpful.

While the dynamical forcing (RHS) assumed in the toy model is highly idealized,

we argue that it is nonetheless useful to illustrate the controls on the asymmetry

implied by the moist QG omega equation. In particular we showed that the toy

model predicts that high macroturbulent asymmetries are possible even for unskewed

RHS forcing provided that 𝑟 is sufficiently low and the length scale of the RHS is

sufficiently small compared to the dry deformation radius. We showed that this

prediction is borne out by macroturbulent simulations of the moist QG equations.

When the flow is sufficiently moist, the system transitions from classic beta plane

turbulence with jets and vortices, to a vortex dominated regime with highly skewed

vertical velocity fields. Taking into account the shift of the dynamical forcing of the

moist omega equation to smaller length scales, the vertical-velocity asymmetry in the

simulation were consistent with those predicted by the toy model.

Our toy model theory is not closed since it does not predict the length scale of the

RHS but rather treats it as an externally imposed parameter. Understanding what

sets this length scale thus remains an important outstanding problem for future work.

Progress on this question could be made by running simulations of moist primitive

equations at different Rossby number and studying how higher order terms beyond
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QG affect the length scale of the forcing.

3.8 Appendix

3.8.1 Derivation of the Moist QG Omega Equation

We start from the omega equation with external diabatic heating,

∇2(𝜎𝜔) + 𝑓 2
0𝜔𝑝𝑝 = RHS − 𝜅

𝑝
∇2𝐽, (3.23)

where 𝐽 is the diabatic heating and 𝜅 is the ratio of the gas constant to specific heat

capacity at constant pressure (Holton 2004). Using the 𝑟 parameterization for latent

heating and neglecting other diabatic heating, the thermodynamic equation is given

by

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 − 𝑟(𝜔)𝑆𝑝𝜔 = 0 (3.24)

where 𝑆𝑝 = −𝑇
𝜃
𝜃𝑝. Rearranging the thermodynamic equation to make the heating

term explicit, we obtain

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 − 𝑆𝑝𝜔 = −(1− 𝑟(𝜔))𝑆𝑝𝜔 ≡ 𝐽

𝑐𝑝
(3.25)

from which it follows that

𝐽 = −(1− 𝑟(𝜔))𝑐𝑝𝑆𝑝𝜔 = −𝑝
𝜅
(1− 𝑟(𝜔))𝜎𝜔, (3.26)

where we have used the relation 𝑐𝑝𝑆𝑝 =
𝑝
𝜅
𝜎 to obtain the second equality. Plugging

this expression for 𝐽 into Eq. (3.23) and combining the heating term on the RHS
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with the static stability term on the LHS of Eq. (3.23), we obtain the moist omega

equation (Eq. 3.2) in the text in which latent heating is now represented as an internal

process.
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Chapter 4

Diabatic Rossby Vortex World:

Finite Amplitude Effects in Moist

Cyclogenesis

4.1 Introduction

The theory for the growth rate, length scale and wave-vortex transition of Diabatic

Rossby Vortices (DRVs) in Kohl and O’Gorman (2022) is based around assumptions

of small-amplitude disturbances. It is not clear a priori to what extent the results are

able to fully describe the dynamics of DRVs throughout their life cycle from genesis

to mature storms, and the conditions under which macroturbulent flows transition

to a DRV dominated regime, referred to as DRV world from here on. Comparisons

between DRV modes and DRV storms at finite amplitude revealed similarities but

also important differences in the structure of the PV anomalies and PV generation.

Most notably the negative PV anomaly and negative diabatic generation were found

to be much weaker than their positive counterparts in observed storms compared to

the moist-quasigeostrophic DRV modes, where positive and negative PV anomaly and

generation are the same magnitude. This asymmetry in magnitude could be recon-

ciled by taking into account higher order terms in the PV dynamics, most notably
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vertical advection of perturbation PV and stretching of relative vorticity which leads

to the absolute, rather than the planetary vorticity, multiplying the heating gradient.

In this chapter, we explore the role of finite amplitude effects in moist cyclogenesis

in a hierarchy of different models including a simple 1d model for the vertical struc-

ture of PV in DRVs, simulations of moist macroturbulence using the quasigeostrophic

equations and simulations of moist macroturbulence using the primitive equations.

The spirit of the simulations is to keep the representation of moist physics as simple

as possible by sticking to the reduced stability parametrization from modal theory,

while gradually introducing higher order terms in the PV dynamics beyond that of

small-amplitude modal theory. In section 4.2, we begin by analyzing the PV structure

and PV budget of the storms in the strong latent heating regime of the moist quasi-

geostrophic (QG) simulations presented in thesis chapter 3. In the next section 4.3,

we study moist primitive equation simulations at a high and a low Rossby number

regime to study the effect that higher-order effects beyond QG have on the structure

of diabatically driven storms, and the overall character of the macroturbulent circu-

lation. In section 4.4, we distill higher order effects into a toy model of the vertical

structure of PV in DRVs that is solved to reproduce much of the variety of the PV

structure of DRV storms that has been seen in reanalysis in chapter 2 and idealized

simulations from this chapter. We summarize our results in section 4.5 and discuss

future work.

4.2 DRVs in Simulations of Moist Quasigeostrophic

Turbulence

A natural extension of the 2-layer moist quasigeostrophic theory of DRV modes is

to run simulations of moist quasigeostrophic turbulence. The simulations have been

described in thesis chapter 3, and only some of the salient results will be repeated

here. As the reduction factor is decreased, or the latent heating is increased, the

flow transitions from the well-known state of beta plane turbulence with wavy jets
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Figure 4-1: Storm composite of the PV anomaly (shading) in (a) the lower layer, and
(b) the upper layer of the moist QG turbulence simulations at 𝑟 = 0.01. The vertical
velocity is also shown (dashed contour). Composites were created by averaging over
the 10 strongest vertical velocity maxima at each simulation output between 𝑡 =
22 − 71 (41 outputs in total) when the simulation had reached a macroturbulent
state.

interspersed with vortices to an entirely vortex dominated flow in which the vortices

propagate poleward without being confined to a particular latitude band. In this vor-

tex regime, the vertical velocity field is characterized by strong and narrow updrafts

with significant asymmetry despite a nearly unskewed dynamical forcing on the RHS

of the moist omega equation. Changes in the 𝛽-parameter had no significant effect

on the dynamics in the strong latent heating regime that we investigated (𝑟 = 0.01).

Here we take a closer look at the PV structure and dynamical balances of the vortices

in the strong latent heating regime.

Fig. 4-1 shows the storm composite of PV anomaly and vertical velocity field

in the upper and lower layer of the moist QG runs at 𝑟 = 0.01. Composites were

created by averaging over the 10 strongest vertical velocity maxima at each simulation

output between 𝑡 = 22− 71 (41 outputs in total) when the simulation had reached a

macroturbulent state. The PV takes on the typical dipole structure of DRV modes

with a positive PV anomaly in the lower layer and a negative PV anomaly in the

top layer. The PV anomalies are displaced horizontally such that the updraft occurs

east of the low level positive PV anomaly and west of the upper level negative PV

anomaly.

Further insights into the dynamical balances maintaining the storms can be ob-
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tained by studying the tendencies in the PV budget. In the lower layer, the PV

budget is given by

𝜕𝑡𝑞2 = 𝑞2𝑥 − 𝑣2𝑞2𝑦 − 𝐽(𝜓2, 𝑞2) + (1− 𝑟(𝑤))𝑤 −𝑅∇2𝜓2, (4.1)

where 𝑞2 = ∇2𝜓2+0.5(𝜓1−𝜓2) is the potential vorticity in the lower layer (total, not

the deviation from the zonal mean), 𝜕𝑡𝑞2 is the time tendency of the PV in the lower

layer, 𝑞2𝑥 is PV advection by the mean zonal wind, −𝑣2𝑞2𝑦 is the advection of the

mean PV gradient by the meridional wind (𝑞2𝑦 includes contributions from both the

mean temperature gradient and 𝛽), −𝐽(𝜓2, 𝑞2) is the nonlinear advection, (1−𝑟(𝑤))𝑤

is the diabatic PV tendency, and −𝑅∇2𝜓2 is the drag term. We have ignored the

large scale radiative forcing and hyperdiffusion terms which were found to be small.

The composite of the PV tendencies in the lower layer are shown in Fig. 4-2 centered

on the vertical velocity maximum. The PV tendencies are dominated by mean zonal

PV advection, nonlinear advection and diabatic heating. Both the drag term, and the

meridional advection of mean meridional PV gradients play a negligible role. This

confirms the strong diabatic character of the storms in this regime of the simulations.

We note that the updraft velocity becomes very large compared to horizontal

geostrophic velocities for the simulations at 𝑟 = 0.01, and the ratio 𝑤/𝑣 of nondi-

mensional velocities is of the order of 𝒪(50). This is inconsistent with QG scaling

𝑢𝑎𝑔/𝑢𝑔 = 𝜖𝑤/𝑣, where 𝑢𝑎𝑔/𝑢𝑔 is the ratio of dimensional ageostrophic to geostrophic

horizontal winds, unless the Rossby number 𝜖 is very small so that 𝑢𝑎𝑔/𝑢𝑔 << 1.

However, a transition to DRV world in the moist QG system is also found at 𝑟 = 0.1,

in which case it is found that 𝑤/𝑣 = 𝒪(5) which would allow for a reasonable Rossby

number.

Fig. 4-3 also shows a cross-section through the PV tendencies of Fig. 4-2 averaged

between −0.2 < 𝑦 < 0.2. From left to right, we observe that in the descending part

of the solution to the west (−1 < 𝑥 < −0.3), where the diabatic generation is zero,

the PV tendency is given by the sum of mean zonal and nonlinear advection (with
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Figure 4-2: Composite of the PV tendencies in the lower layer showing (a) PV ten-
dency 𝑞2𝑡, (b) mean zonal advection 𝑞2𝑥, (c) mean meridional advection −𝑣2𝑞2𝑦, (d)
nonlinear advection −𝐽(𝜓2, 𝑞2), (e) diabatic generation (1−𝑟(𝑤))𝑤, (f) drag −𝑅∇2𝜓2

for the storms in the 2-layer moist QG turbulent simulation at 𝑟 = 0.01. Also shown
are (g) the low-level PV 𝑞2, (h) midlevel vertical velocity 𝑤, and (i) low-level merid-
ional velocity 𝑣2 to help interpretation. In this latent heating drive regime of the
simulations, diabatic effects dominate over mean meridional advection, which remains
small. This is also true in the upper level where the mean PV gradient is stronger
(not shown). Composites were created by averaging over the 10 strongest vertical
velocity maxima at each simulation output between 𝑡 = 22− 71 (41 outputs in total)
when the simulation had reached a macroturbulent state.
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Figure 4-3: Slice through the PV tendencies shown in Fig. (4-2) averaged between
−0.2 < 𝑦 < 0.2.

nonlinear advection the slightly more dominant contribution). In the ascending part

of the solution (−0.3 < 𝑥 < 0.3), the PV tendency is the result of a three way balance

between diabatic generation, zonal and nonlinear advection. Here mean zonal PV

advection plays a more dominant role than nonlinear advection. To the east of the

ascent area (0.3 < 𝑥 < 1), a negative PV tendency is caused by nonlinear advection

with all other terms being negligible.

The dynamical balances governing the storms in this regime of the simulation

are very similar to that of the DRV mode, with the additional effect of nonlinear

advection, which leads us to the conclusion that they are indeed DRVs. Looking

at the structure of the nonlinear advective tendency in Fig. 4-2d, we see that it

propagates the solutions poleward. This strong poleward self advective tendency

breaks the latitudinal confinement and is not found as strongly for the DRV storms

in the current climate, which have a more zonal propagation. However, it is found for

the DRV storm in the warm climate regime of idealized simulations (its PV structure

was discussed in chapter 2). Self-advection relies on the interaction between lower

and upper positive PV anomalies.1 We speculate that such poleward self-advection
1The self-advection by two opposite signed QG PV anomalies in different layers is like that of

‘hetons’ as discussed in Hogg and Stommel (1985).
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is weaker in DRVs in the current climate, because of reduced upper level negative PV

anomalies.

Similar results for the vertical PV structure and the dynamical balances have been

found by compositing on the low level PV anomaly, rather than the vertical velocity,

with the exception that the upper level negative PV anomaly is weakened compared

to the low level PV anomaly, and the PV tendency points northwestward instead of

northward (not shown).

4.3 DRVs in Turbulent Simulations of Moist Primi-

tive Equation

We now investigate strong diabatic storms in a set of more realistic simulations using

the moist primitive equations. After nondimensionalization, the governing parameter

that will be investigated is the Rossby number. Switching between high and low

Rossby number regimes, while maintaining strong latent heating, will allow us to

investigate the role of higher order terms in the PV dynamics beyond QG.

4.3.1 Model Formulation

The moist primitive equations in Boussinesq form, with constant planetary vorticity

and 𝑟-parametrization take the form
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𝐷u

𝐷𝑡
+ 𝜇𝑢∇2∇2u+ 𝑓0k× u = −∇𝜑−𝑅u, (4.2)

𝐷𝜃

𝐷𝑡
+ 𝜇𝜃∇2∇2𝜃 = (1− 𝑟)𝑤𝜃𝑧 − 𝛼 (𝜃 − 𝜃𝑟), (4.3)

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0, (4.4)
𝑔

𝜃0
𝜃 = 𝜑𝑧, (4.5)

𝐷

𝐷𝑡
= 𝜕𝑡 + 𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝑤𝜕𝑧, (4.6)

𝜃𝑟 =
𝑧𝜃0𝑁

2

𝑔
− 𝜃0

𝑔

𝑓𝑈

𝐻

𝐿𝑦
2𝜋

cos

(︂
2𝜋

𝐿𝑦
𝑦

)︂
, (4.7)

where u = (𝑢, 𝑣) is the horizontal velocity field, 𝑤 is the vertical velocity field, 𝜑 is

the geopotential height, 𝜃 is the potential temperature, 𝜃0 is the reference potential

temperature, 𝜃𝑟 is a zonally uniform reference state that is constant in time, 𝑓0 is

the constant rotation rate, 𝑟(𝑤) is the nonlinear reduction factor, 𝛼 is a relaxation

constant, 𝑔 is the gravitational constant, 𝐻 is the tropospheric height, 𝑈/𝐻 is the

shear implied by thermal wind for the reference 𝜃𝑟 profile, 𝑁 is a constant static

stability, 𝐿𝑦 is the domain length in the meridional direction, and 𝜇 are coefficients

for horizontal hyperdiffusion.

The equations are being forced by relaxing 𝜃 at a rate 𝛼 to a reference state 𝜃𝑟

which corresponds to a constant static stability in the vertical and a cosinusoidal

function in the meridional direction. The cosinusoidal forcing is chosen to allow

the equations to be solved on a doubly periodic domain in the horizontal using the

spectral solver Dedalus (Burns et al. 2020). In the vertical, the domain is bounded by

vertical plates at 𝑧 = 0, 𝐻 with boundary condition 𝑤 = 0, where 𝐻 now represents

the full tropospheric depth. A linear drag and small-scale dissipation is applied in the

momentum equations. The 𝛽-plane term is neglected here, since it would introduce

a linear term in the momentum equations that cannot be represented by the doubly-

periodic solver. While it would be possible to solve a system of equations with the

solver where the Coriolis parameter 𝑓 ∝ sin(2𝜋𝑦) is allowed to vary fully with latitude,

we stick to the 𝑓 = 𝑓0 configuration for simplicity, and to avoid introducing Hadley

126



cells.

Anticipating that the average stratification does not scale in the same way as the

deviations from it, we let

𝜃 = 𝜃(𝑧) + 𝜃′(𝑥, 𝑦, 𝑧, 𝑡) (4.8)

𝜃𝑟 = 𝜃𝑟(𝑧) + 𝜃′𝑟(𝑦) (4.9)

with 𝜃(𝑧) = 𝜃𝑟(𝑧) =
𝑧𝜃0𝑁2

𝑔
and 𝜃′𝑟 = − 𝜃0

𝑔
𝑓𝑈
𝐻

𝐿𝑦

2𝜋
cos
(︁

2𝜋
𝐿𝑦
𝑦
)︁
.2 This gives

𝐷𝜃′

𝐷𝑡
+ 𝑤𝜃𝑧 + 𝜇𝜃∇2∇2𝜃′ = (1− 𝑟)𝑤𝜃𝑧 + (1− 𝑟)𝑤𝜃′𝑧 − 𝛼 (𝜃′ − 𝜃′𝑟). (4.10)

We then let 𝜑 = 𝜑+ 𝜑′ where 𝜑 is hydrostatically balanced by 𝜃, and the hydrostatic

equation becomes

𝑔

𝜃0
𝜃′ = 𝜑′

𝑧. (4.11)

Next, we nondimensionalize the equations using QG scaling but keeping all terms

𝑥, 𝑦 ∼ 𝐿𝐷 with deformation radius 𝐿𝐷 = 𝑁𝐻/𝑓0
3, 𝑧 ∼ 𝐻, 𝑡 ∼ 𝐿𝐷/𝑈 , u,v ∼ 𝑈 , 𝑤 ∼

𝜖𝑈𝐻/𝐿𝐷 where 𝜖 = 𝑈/𝑓0𝐿𝐷 is the Rossby number, 𝜑 ∼ 𝑓0𝑈𝐿𝐷, 𝜃′ ∼ 𝜃0𝑓0𝑈𝐿𝐷/𝑔𝐻

to obtain the nondimensionalized equations

2An alternative decomposition based on 𝜃 = 𝜃(𝑧, 𝑡) + 𝜃′(𝑥, 𝑦, 𝑧, 𝑡), which is closer in spirit to the
work of Solomon and Stone (2001), is given in appendix (4.6.1) for future reference.

3The definition of the deformation radius is different here from the QG system discussed in
sections 3.6, 4.2 because 𝐻 now refers to the full tropospheric height, and we have dropped the

√
2.
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𝜖
𝐷u

𝐷𝑡
+̃︁𝜇𝑢∇2∇2u+ k× u = −∇𝜑′ − ̃︀𝑅u, (4.12)

𝐷𝜃′

𝐷𝑡
+ 𝑤 + ̃︀𝜇𝜃∇2∇2𝜃′ = (1− 𝑟)𝑤 + 𝜖(1− 𝑟)𝜃′𝑧 − ̃︀𝛼 (𝜃′ − 𝜃′𝑟), (4.13)

𝑢𝑥 + 𝑣𝑦 + 𝜖𝑤𝑧 = 0, (4.14)

𝜃′ = 𝜑′
𝑧, (4.15)

𝐷

𝐷𝑡
= 𝜕𝑡 + 𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝜖𝑤𝜕𝑧, (4.16)

𝜃′𝑟 = −
̃︁𝐿𝑦
2𝜋

cos

(︃
2𝜋̃︁𝐿𝑦 𝑦

)︃
, (4.17)

with nondimensional numbers 𝜖 = 𝑈
𝑓0𝐿𝐷

= 𝑈
𝑁𝐻

, ̃︀𝑅 = 1
𝑓0
𝑅, ̃︀𝛼 = 𝐿𝐷

𝑈
𝛼, ̃︁𝐿𝑦 = 1

𝐿𝐷
𝐿𝑦,̃︁𝜇𝑢 = 1

𝑓0𝐿4
𝐷
𝜇𝑢, ̃︀𝜇𝜃 = 1

𝑈𝐿3
𝐷
𝜇𝜃.4 The equations are solved using a spectral solver with

adaptive time stepping (Burns et al. 2020) on a doubly periodic square domain of

side ̃︁𝐿𝑦 = 6𝜋, with vertical plates at 𝑧 = 0 and 𝑧 = 1 and 128× 128× 10 grid points.

Chebyshev polynomials are used as basis functions in the vertical (the grid spacing is

uniform in the interior but slightly smaller towards the boundaries). The simulations

are initialized with random conditions for all fields, after filtering out all wavenumbers

with 𝑘 =
√︀
𝑘2𝑥 + 𝑘2𝑦 > 3 to avoid having to integrate a lot of small scale noise in the

initial phase of the simulation. The relaxation coefficient is fixed at 𝛼 = 0.2, and the

diffusion coefficients at 𝜇𝑢 = 𝜇𝜃 = 5× 10−5. In the following simulations, we explore

a high Rossby number regime with 𝜖 = 0.4 and a low Rossby number regime with

𝜖 = 0.01 while keeping the latent heating strong at 𝑟 = 0.01. For the high Rossby

number runs we choose the drag to be 𝑅 = 0.11 and for the low Rossby number runs

we choose 𝑅 = 0.0018. The drag needs to be smaller in the low Rossby regime so that

the ratio of 𝑡 ∼ 𝜖/𝑅 remains approximately constant, and the QG limit is properly

4We will see from the numerical simulations that scaling the length scales like the deformation
radius remains a reasonable choice for the size of the potential vorticity anomalies even in the
presence of strong latent heating. This can be intuited theoretically by remembering from DRV
theory that while the ascent length vanishes as 𝑟 → 0 for the DRV modes, the DRV PV anomaly in
the descent area is sustained by a balance of growth and zonal advection leading to an exponential
decay length 𝐿𝐷/𝜎 (section 2.3.3). But since the growth rate 𝜎 = 1.62 remains finite in the limit of
𝑟 → 0, the size of the PV disturbance also remains finite in this limit, at roughly 0.62𝐿𝐷 which is
close to 𝐿𝐷.
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Figure 4-4: Snapshots of the relative vorticity and vertical velocity at midlevel for
(a,c) a high Rossby number (𝜖 = 0.4), and (b,d) a low Rossby number (𝜖 = 0.01) run
in the moist primitive equation simulations at 𝑟 = 0.01. As the Rossby number is
lowered, the wave-like pattern of the flow gets disrupted by vorticity dipoles which
propagate poleward and are associated with isolated vertical velocity maxima.

recovered as 𝜖 tends to zero.

4.3.2 Simulation Results

Fig. 4-4 shows snapshots of the relative vorticity and vertical velocity at midlevel

(𝑧 = 0.5) in the macroturbulent phase of the simulations for the high and low Rossby

number regime. The reference potential temperature in both simulations is at a

maximum at 𝑦 = 3𝜋 and minimum at 𝑦 = 0 and 𝑦 = 6𝜋. This gives rise to two

baroclinic zones centered on 𝑦 = 1.5𝜋 and 𝑦 = 4.5𝜋, that are associated with an

easterly and a westerly jet respectively. The jets are unstable due to the condition
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that vertical shear and meridional PV gradients are of the same sign at the lower

boundary. As a result vortices form within the two baroclinic zones.

In the high Rossby number regime (Fig. 4-4 a and c), the flow is organized along

the baroclinic zones taking on a wave-like pattern both in terms of vorticity and

vertical velocity. The vertical velocity field is made up of large scale frontal bands,

interspersed with isolated maxima, that resembles the midlatitude vertical velocity

field. The vertically averaged asymmetry parameter is 𝜆 = 0.75 which is similar to

what was found in the reduced stability simulations of O’Gorman et al. (2018) at

𝑟 = 0.01. The flow does not show signs of transition to a vortex dominated regime

despite the fact that latent heating is strong.

In the low Rossby number regime on the other hand (Fig. 4-4 b,d), the character

of the flow changes dramatically. The vorticity fields loses its wave-like structure and

becomes disrupted by vorticity dipoles, associated with strong isolated vertical veloc-

ity maxima, which continuously spawn and propagate poleward (towards 𝑦 = 0, and

𝑦 = 6𝜋). Similarly, the vertical velocity field breaks up into isolated vertical velocity

maxima, associated with the vorticity dipoles, and is characterized by a large asym-

metry 𝜆 = 0.88. The simulations show clear signs of transition to a vortex dominated

regime similar to the strong latent heating regime of the moist QG simulations.

Next we turn to the PV structure of the storms for the high and low Rossby

number simulations. We calculate the Ertel PV

𝑄 = [1 + 𝜖(𝑣𝑥 − 𝑢𝑦)]𝜃𝑧 − 𝜖2𝑣𝑧𝜃𝑥 + 𝜖2𝑢𝑧𝜃𝑦, (4.18)

with 𝜃𝑧 = 1 + 𝜃′𝑧, and subtract the zonal mean to define the PV anomalies. We also

calculate the PV tendency from latent heating

𝑄𝑡 = 𝜖(1 + 𝜖𝜁)𝜃𝑧, (4.19)

where 𝜁 = 𝑣𝑥 − 𝑢𝑦 and 𝜃 = [(1 − 𝑟(𝑤))𝑤𝜃𝑧], and we have ignored contributions due
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Figure 4-5: Storm composite of Ertel PV anomaly (shading) and PV tendency from
latent heating (contours) (a) the high Rossby number simulations and (b) the low
Rossby number simulations. The contour interval is (a) 2.30, and (b) 0.14. The zero
contour line for the PV tendencies is not shown. Composites were made over the 10
strongest vertical velocity maxima for each simulation output between 𝑡 = 28− 63.

to horizontal gradients of the heating profile. The nondimensional form of the PV

and PV tendency from latent heating are derived in the appendix (4.6.2). We then

composite PV anomalies and PV tendencies over the 10 strongest vertical velocity

maxima between 𝑦 = 3𝜋 − 6𝜋 at each simulation output between 𝑡 = 29 − 64 (for a

total of 25 outputs). The results are shown in Figure 4-5 for the high and low Rossby

number runs.

While the low Rossby number storms show a clear dipole structure both in terms

of PV anomaly and PV tendency, the high Rossby number storms are made up of a

strong low level positive PV anomaly only. No strong negative PV anomaly is vis-

ible at the location of negative diabatic PV generation, although a weaker positive

and negative PV anomaly signal is visible at the top boundary. Negative diabatic

generation is weaker compared to positive diabatic generation. If vertical PV ad-

vection is added to the diabatic PV generation, the negative generation in the high

Rossby number storms is entirely cancelled, while a clear negative generation persists

for the low Rossby number storms (not shown). While diabatic generation extends

throughout the entire model domain in the low Rossby number runs, it remains con-

fined to the lower part of the domain at high Rossby number. Interestingly, the PV

structure of the low Rossby number storms resembles that of the DRV mode from

theory, and the DRV mode and storm from warm climate simulations (Figs. 2-3,
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2-7)5, while the PV structure of the high Rossby number storms resemble that of

DRVs from reanalysis in the current climate (Fig. 2-10). The Rossby number is low

for small-amplitude modes, and high for storms in reanalysis and hence a similarity

between low Rossby numbers storms and DRV modes in warm climate simulations,

and between high Rossby number storms and DRV storms in reanalysis is expected.

The similarity between the low Rossby number storm and the DRV storm in warm

climate simulations has less to do with the Rossby number6, and more to do with the

vertical profile of heating being less bottom heavy in the small-Rossby number runs

(as discussed further in section 4.4).

4.3.3 Discussion

The simulations give a clear indication that changes in the Rossby number bring

about important changes both in terms of the PV structure of individual storms and

in terms of the overall state of the moist macroturbulent simulation. In particular,

low Rossby numbers appear to make the simulations more like DRV world in which

diabatically maintained PV dipoles continuously spawn and propagate meridionally

disrupting the zonal confinement of the flow.

The Rossby number in these simulations also has an effect on the mean stratifi-

cation, which becomes strongly bottom intensified at higher Rossby number. This

raises the question of whether the different dynamical behavior comes about directly

through higher-order terms in the PV dynamics becoming more important, or indi-

rectly through changes in the mean state. In a second set of experiments, we tested

this hypothesis by relaxing the zonal mean of the thermodynamic equation at 20𝛼,

while keeping the relaxation at 𝛼 for the non-zonal mean thermodynamic equation.

Bottom intensification of the mean stratification was prevented, but we found that
5For the warm climate DRV storm, the negative PV anomaly is stronger than the low level

positive PV anomaly and concentrated at the tropopause (unlike in Fig. 4-5b). However, this
asymmetry is likely due to the fact that the background static stability, and hence the background
PV profile, increases strongly towards the tropopause in the real atmosphere, whereas the reference
stratification in our simulations is taken to be constant. This modifies the PV structure due to the
possibility of advection of mean vertical PV gradients. For further discussion see section (4.4).

6The Rossby number is much larger for the DRV storm than the DRV mode in the ideaelized
GCM.
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the transition to a vortex dominated flow still persists at low Rossby numbers (not

shown). We therefore conclude that higher order terms in the PV dynamics are the

main cause behind the different behavior of the two simulations.

4.4 Vertical Structure of PV in Finite Amplitude

DRVs

We study a 1-D toy model for the vertical structure of PV in the ascent region of

a DRV in order to understand why the PV structure is different at high versus low

Rossby number. This will help to bridge the gap between the theory of DRV modes

and storms, although we emphasize that it is not a full model because the ascent

profile 𝑤 will be taken as given. The model is inspired by the work of Schubert

and Alworth (1987) on the PV evolution within tropical cyclones and consists of the

thermodynamic equation with reduced stability parametrization of latent heating and

the PV equation

𝜃′𝑡 + 𝑤𝜃𝑧 + 𝜖𝑟𝑤𝜃′𝑧 = 𝜃, (4.20)

𝑄𝑡 = 𝜖
𝑄𝜃𝑧

𝜃𝑧 + 𝜖𝜃𝑧
− 𝜖𝑤𝑄𝑧, (4.21)

where 𝜃𝑧 represents a background stratification that is assumed constant in time,

𝜃 = (1 − 𝑟)𝑤𝜃𝑧 + 𝜖(1 − 𝑟)𝑤𝜃′𝑧 is the heating rate, and we focus on a single vertical

column in a region of maximum heating 𝜃𝑥 = 𝜃𝑦 = 0, approximate the PV as 𝑄 =

(1 + 𝜖𝜁)𝜃𝑧, which ignores the terms 𝜖2𝑣𝑧𝜃𝑥 and 𝜖2𝑢𝑧𝜃𝑦, and ignore any horizontal PV

transport. A derivation is given in the appendix (4.6.2). The toy model is solved

in time choosing a constant Rossby number of 𝜖 = 0.4 for the storms and 𝜖 = 0.01

for the modes. The integration is started from the initial conditions 𝜃 = 0 and

𝑄 = 𝜃𝑧, where we consider separately the case of a constant background stratification

𝜃𝑧 = 1 and an exponential stratification 𝜃𝑧 = 1 + 9𝑒
(𝑧−1)
0.1 which is close to one at
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(a) (b) (c)

Figure 4-6: Vertical profiles of (a) the vertical velocity 𝑤, (b) the background strati-
fication 𝜃𝑧 and (c) the reduction factor 𝑟 used for integration of the toy model. The
bottom heavy vertical velocity profile is representative of storms in the current cli-
mate, and the symmetric vertical velocity profile is representative of storms in the
warm climate. In the case of a constant background stratification, a constant reduc-
tion factor is chosen with values of 𝑟 = 0.1 for the current climate and 𝑟 = 0.01 for
the warm climate (global mean surface air temperature of 311K). In the case of an
exponential stratification, 𝑟 is the same as for a constant stratification at lower levels,
but is allowed to transition smoothly towards 𝑟 = 1 at 𝑧𝑇 = 0.6 in the current climate
and 𝑧𝑇 = 0.8 in the warm climate.

the surface (𝑧 = 0) and is equal to 10 at the tropopause (𝑧 = 1). The constant

stratification case is chosen to represent the set-up considered in the small-amplitude

DRV theory in section (2.3), and the moist primitive equation simulations in section

(4.3). The exponential stratification case is chosen to allow for closer comparison to

the idealized GCM simulations of O’Gorman et al. (2018), and the DRV storms in

reanalysis where the stratification increases strongly towards the tropopause leading

to an important role for vertical advection of the mean PV profile. The vertical

velocity profile is fixed in time, and we consider a symmetric profile 𝑤 = sin(𝜋𝑧)

and a bottom heavy profile 𝑤 = sin(𝜋𝑧)𝑒−(𝑧−1)/0.4 that we normalize by its maximum

value. The symmetric profile is meant to be representative of a warm climate (global

mean surface temperature of 311K) and the bottom heavy profile representative of

the current climate, as was found for the DRV storms in idealized simulations in a

warm climate and in ERA5 that were discussed in section (2.5). The two profiles are

shown in Fig. 4-6a.
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For the calculations with a constant background stratification, a vertically con-

stant profile is chosen for 𝑟 with a value of 𝑟 = 0.01 for the warm climate and 𝑟 = 0.1

for the current climate. For the calculations with an exponential stratification, we

let the reduction factor vary vertically 𝑟(𝑧) = 𝑟 + 0.5(1 − 𝑟)(1 − tanh[(𝑧𝑇 − 𝑧)/𝛿𝑧])

such that 𝑟 tends smoothly towards 1 over a vertical distance ∆𝑧 = 0.1 as 𝑧𝑇 is

approached. For the warm climate we choose 𝑧𝑇 = 0.8 and for the current climate we

choose 𝑧𝑇 = 0.6 to represent the fact that the moist static stability is closer to moist

neutral over a larger vertical extent in a warm climate. The different vertical profiles

of stratification and reduction factor are shown in Fig. 4-6b,c. It is necessary to choose

a more realistic vertically varying reduction factor in the case of a more realistic ex-

ponential stratification because the definition of 𝑟 (Eq. 3.6) involves a normalization

by 𝜃𝑧 (otherwise the latent heating would maximize near the tropopause). With the 𝑟

profile chosen, even though the stratification increases towards the tropopause, 𝑟 → 1

such that the heating rate remains small.

The equations are solved in time until 𝑡 = 0.6, which corresponds roughly to

𝑡 = 0.6𝐿𝐷/𝑈 = 17h using typical scales 𝐿𝐷 = 1000km and 𝑈 = 10m/s. The resulting

PV anomaly profiles are shown in Fig. 4-7 where we have defined PV anomalies with

respect to the initial PV profile. We focus first on the case of a constant background

stratification (Fig. 4.20a-c). The warm climate mode forms the typical PV dipole

structure of the small amplitude DRV theory (Fig. 4-7a). It is antisymmetric about

the altitude of maximum ascent 𝑧 = 0.5. In contrast to that, the PV anomalies for the

warm climate storm have stronger positive than negative PV anomaly (Fig. 4-7b).

This is because of the nonlinear feedback between the PV and the heating gradient

in the first term on the right-hand side of Eq. (4.21) which amplifies the generation

of positive PV anomalies but weakens the generation of negative PV anomaly. For

the mode, this feedback is negligible because the PV anomalies are too weak, but

for the storm it is important because the magnitude of the PV anomalies is larger.

We also note that vertical advection has begun to move the positive PV anomaly

upwards so that the change from positive to negative PV anomaly no longer occurs

at about 𝑧 = 0.5 but instead at 𝑧 = 0.6. If the integration is continued, the positive
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Figure 4-7: PV anomaly profiles produced by integrating the toy-model Eqs. (4.20-
4.21) for (a,b,c) a constant background stratification, and (d,e,f) an exponential strat-
ification until 𝑡 = 0.6. For the warm climate, 𝑟 = 0.01 and the symmetric w-profile
shown in Fig. 4-6 were chosen. For the current climate, 𝑟 = 0.1 and the bottom
heavy profile from Fig. 4-6 were chosen. A Rossby number of 𝜖 = 0.4 is chosen for
the storms and 𝜖 = 0.01 for the modes. The PV anomalies are defined with respect
to the initial conditions corresponding to a constant PV profile for a,b,c and an ex-
ponential PV profile for d,e,f.
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PV anomaly would keep being advected vertically and gradually begin to fill up the

entire vertical column until no negative PV anomaly is left (not shown). This limit is

spurious however, since the assumption of a sustained vertical velocity profile would

break down. Looking at the storm in the current climate (Fig. 4-7c), we notice

that the positive PV anomaly has grown even larger than for the storm in the warm

climate. The PV structure is highly asymmetric in magnitude between positive and

negative PV anomalies with the surface PV anomaly about 14 times stronger than

the negative PV anomaly aloft. This is because the bottom heavy vertical velocity

profile implies a bottom heavy heating rate. The vertical gradient of the heating

rate, tied to PV generation, will be larger below the heating maximum, leading to

stronger positive generation, and weaker above the heating maximum, leading to

weaker negative PV generation. This signal then gets amplified by the nonlinear

feedback between PV and the heating gradient. We note that due to the nonlinearity

of this feedback, the strength of the low level PV anomaly that is reached at the end of

the integration is very sensitive to the magnitude of the Rossby number, the bottom-

heaviness of the heating rate and the time over which the heating acts (here given

by the integration time). For the current climate storm for instance, doubling of the

Rossby number to 𝜖 = 0.8 leads to a surface PV anomaly that is about 8 times larger

(not shown). This sensitive dependence of the PV asymmetry on the Rossby number

and the bottom-heaviness of the heating profile explains very well the differences

found between the PV structure of the winter and summer DRV example discussed

in section (2.5). In that case, the winter storm was found to be more asymmetric in

terms of the magnitude of positive versus negative PV anomalies (no clear negative

PV identifiable) because it was a stronger storm, implying a higher Rossby number,

and it had a more bottom heavy heating profile.

We now turn to the calculations with an exponential background stratification

(Fig. 4-7d-f). Looking at the warm climate mode (Fig. 4-7a), we note that the

negative PV anomaly is now stronger than the positive PV anomaly even in the low

Rossby number case. This is because of vertical advection of mean PV which is

zero in the case of a constant background stratification but nonzero in the case of
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an exponential stratification. Low PV air is advected vertically into a region that

had strong PV initially, and hence a strong negative anomaly is produced. In the

small-amplitude moist QG theory of Kohl and O’Gorman (2022), vertical advection

of mean PV is not included and hence positive and negative PV anomalies are of

the same magnitude. Looking at the structure of the warm climate DRV storm (Fig.

4-7e), we notice that unlike in the constant stratification case positive PV anomalies

are now weaker than negative PV anomalies. Again the reason is vertical advection

of mean PV which concentrates a strong negative PV anomaly at the tropopause,

similar to what has been found for the DRV storm in the warm climate simulations

of O’Gorman et al. (2018). This highlights the importance of taking into account

the reference state in the definition of the PV anomalies when making comparisons

of the PV structure. If we integrate further in time, the positive PV anomaly in

the warm climate storm will eventually outgrow the negative PV anomaly again (not

shown). Looking at the storm in the current climate, we notice that the presence of

an exponential stratification has not altered the PV structure significantly. We still

find a strong positive low level PV anomaly with weak upper level negative anomaly.

This is because bottom heaviness of the vertical velocity profile, and shallower depth

𝑧𝑇 of the reduction factor leave the upper levels quasi undisturbed. Increasing 𝑧𝑇 , it

is possible to produce slightly stronger negative PV anomalies at the tropopause but

these anomalies remain small compared to the surface anomaly for the parameters

explored (not shown).

4.5 Conclusions

Finite amplitude effects for DRVs were explored in simulations of moist macroturbu-

lence using the QG and primitive equations and an attempt at synthesis in the form

of a toy model of the vertical structure of PV was made.

Moist QG simulations with a reduced stability parametrization transition from a

state of wavy jets interspersed with vortices to a vortex dominated state as latent

heating is increased. PV budget analysis revealed that the vortices in the strong
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latent heating regime were DRVs with diabatic generation dominating over merid-

ional PV advection. The solutions were maintained by a balance between mean zonal

advection, nonlinear advection and diabatic generation. This is very similar to the

balances maintaining the DRV mode from theory, with the additional effect of non-

linear advection which now leads to poleward self advection. Simulations of the moist

primitive equations in a simple doubly periodic configuration without beta effect were

run for high and low Rossby number regimes while keeping latent heating strong. The

simulations provided evidence that changes in the Rossby number brought about im-

portant changes both in terms of the state of the macroturbulence simulations and

the PV structure of strong diabatic storms. At low Rossby number the zonal flow

became disrupted by isolated vorticity dipoles which continously spawned and self-

advected poleward. The vertical velocity field broke up into isolated maxima with a

strong asymmetry between upward and downward motion. At high Rossby number

the flow maintained a wave-like structure and a transition to vortex world was not

found. While the PV structure of strong diabatic storms in the low Rossby num-

ber simulations resembled that of DRV modes and DRV storms from warm climate

simulations, the PV structure of storms in the high Rossby number simulations was

more asymmetric and bottom confined and resembled that of DRVs from the current

climate. We concluded that higher order terms in the PV dynamics beyond QG might

play an important role in preventing transition to DRV world.

Finite amplitude effects beyond the small-amplitude QG DRV theory were ex-

plored within a simple toy model of the moist thermodynamic and PV equations.

The toy model was solved for a low and high Rossby number, to transition from a

modal solution to a storm, and for a bottom heavy and symmetric vertical velocity

profile, to transition between a current and a warm climate . The toy model was able

to reproduce much of the variety that has been observed in terms of the PV struc-

ture of DRV modes and DRV storms in current and warm climates. In particular,

it was found that a high Rossby number coupled with bottom heavy heating profiles

can lead to rapid generation of strong low level PV anomalies with much smaller

upper level negative anomaly - as is often found for DRVs in the current climate.
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Strong sensitivity of the asymmetry of the magnitude of negative versus positive PV

anomalies was found to the degree of bottom heaviness of the heating rate and the

magnitude of the Rossby number. In particular, symmetric vertical velocity profiles,

more characteristic of a warm climate, produced stronger upper level negative PV

anomaly compared to bottom heavy vertical velocity profiles when vertical advection

of mean PV was important because of an exponential background stratification. The

resulting solutions showed close resemblance to warm climate DRV storms in the

idealized GCM simulations.

Given that strong negative PV anomaly is required for diabatic growth and pole-

ward self-advection, the results lead us to the following speculation. In the current

climate, where heating rates are more bottom heavy, diabatic generation leads to the

rapid genesis of low level positive PV anomalies. The negative PV anomaly is quickly

eroded away capping growth and poleward self advection. Meanwhile the diabatically

generated positive PV anomaly has become sufficiently large in amplitude to be able

to undergo nonlinear interaction with upper level PV anomalies in a later secondary

growth process (Wernli et al. 2002). In the warm climate, where the vertical ve-

locity profile is more symmetric between the upper and lower troposphere, diabatic

generation leads to the generation of PV with more of a dipole structure. Negative

anomalies are also stronger due to vertical advection of the mean PV profile towards

the tropopause. The sustained presence of a negative anomaly leads to continous

growth and poleward self-advection over a longer period of time allowing the DRV

solutions to be more disruptive to the midlatitude flow, and facilitating a transition

to DRV world.

The Rossby number in our simulations is given by 𝜖 = 𝑈/𝑓0𝐿𝐷 = 𝑈/𝑁𝐻. Hence,

smaller Rossby numbers could be achieved by weaker shear or stronger static stability

both of which are key parameters of interest in a warming midlatitude climate. Future

work could investigate the transition to DRV world in GCMs, e.g. by varying the

strength of the midlatitude jet, to confirm whether the dependence of DRV world

transition on the Rossby number holds in models with a more realistic representation

of moist physics and to characterize the state of the midlatitude circulation once DRV
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world has been reached.

4.6 Appendix

4.6.1 Rewriting the 𝜃 Equation in an Alternative Form

We rewrite the full dimensional 𝜃 equation (Eq. 4.2) by splitting 𝜃 = 𝜃(𝑧, 𝑡) +

𝜃′(𝑥, 𝑦, 𝑧, 𝑡) and 𝜃𝑟 = 𝜃𝑟(𝑧) + 𝜃′𝑟(𝑦), where (...) refers to a horizontal average, to give

𝐷𝜃′

𝐷𝑡
+ 𝜕𝑡𝜃 + 𝑤𝜃𝑧 = (1− 𝑟)𝑤𝜃𝑧 + (1− 𝑟)𝑤𝜃′𝑧 − 𝛼(𝜃 − 𝜃𝑟)− 𝛼(𝜃′ − 𝜃′𝑟), (4.22)

where 𝜃𝑟(𝑧) = 𝑧𝜃0𝑁2

𝑔
and 𝜃′𝑟(𝑦) = −𝑓𝜃0𝑈

𝑔𝐻

𝐿𝑦

2𝜋
cos(2𝜋𝑦

𝐿𝑦
), and we have neglected the hyper-

diffusion terms. Next we nondimensionalize the mean temperature like 𝜃, 𝜃𝑟 ∼ 𝐻𝜃0𝑁2

𝑔

and perturbations like 𝜃′, 𝜃′𝑟 ∼
𝜃0𝑓𝑈𝐿𝐷

𝑔𝐻
to obtain the nondimensionalized equation

𝐷𝜃′

𝐷𝑡
+

1

𝜖
𝜕𝑡𝜃 + 𝑤𝜃𝑧 = (1− 𝑟)𝑤𝜃𝑧 + 𝜖(1− 𝑟)𝑤𝜃′𝑧 −

̃︀𝛼
𝜖
(𝜃 − 𝜃𝑟)− ̃︀𝛼(𝜃′ − 𝜃′𝑟), (4.23)

where 𝜃𝑟(𝑧) = 𝑧 and 𝜃′𝑟(𝑦) = −̃︁𝐿𝑦

2𝜋
cos(2𝜋𝑦̃︁𝐿𝑦

). Now taking the horizontal average of this

equation we obtain

1

𝜖
𝜕𝑡𝜃 + �̄�𝜃𝑧 = −(𝑢′𝜃′𝑥 + 𝑣′𝜃′𝑦 + 𝜖𝑤′𝜃′𝑧) +

¯̇𝜃 − ̃︀𝛼
𝜖
(𝜃 − 𝜃𝑟), (4.24)

where 𝜃 = (1− 𝑟)𝑤𝜃𝑧 + 𝜖(1− 𝑟)𝑤𝜃′𝑧. Using the fact that the flow is nondivergent so

that the horizontal transport vanishes we obtain

1

𝜖
𝜕𝑡𝜃 = −𝜖

(︀
𝑤′𝜃′

)︀
𝑧
+ ¯̇𝜃 − ̃︀𝛼

𝜖
(𝜃 − 𝜃𝑟), (4.25)

141



for the mean state equation. Subtracting this equation from the full equation we

obtain

𝐷𝜃′

𝐷𝑡
+ 𝑤𝜃𝑧 = 𝜖

(︀
𝑤′𝜃′

)︀
𝑧
+ 𝜃 − ¯̇𝜃 − ̃︀𝛼(𝜃′ − 𝜃′𝑟), (4.26)

for the perturbation equation. This decomposition is more similar in spirit to that of

Solomon and Stone (2001) and is kept here for future reference.)

4.6.2 Nondimensional form of the PV equation

Eqs. (4.2-4.5) can be combined into an equation for the PV 𝑄 (Vallis 2017, his Eq.

4.96)

𝐷𝑄

𝐷𝑡
= (𝑓 + 𝜁)𝜃𝑧 − 𝑣𝑧𝜃𝑥 + 𝑢𝑧𝜃𝑦, (4.27)

where

𝑄 = (𝑓 + 𝜁)𝜃𝑧 − 𝑣𝑧𝜃𝑥 + 𝑢𝑧𝜃𝑦, (4.28)

𝜃 = (1− 𝑟)𝑤𝜃𝑧, (4.29)

𝜃𝑧 = 𝜃𝑧 + 𝜃′𝑧, (4.30)
𝐷

𝐷𝑡
= 𝜕𝑡 + 𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝑤𝜕𝑧 (4.31)

and we have ignored the drag, relaxation and hyperdiffusion terms in Eq. (4.27).

Nondimensionalizing 𝜃𝑧, 𝜃𝑧 ∼ 𝜃0𝑁
2/𝑔, the PV like 𝑄 ∼ 𝑓0𝜃𝑧 = 𝑓𝜃0𝑁

2/𝑔 and the rest

of the variables with scales as outlined in section (4.3), we obtain the nondimensional

PV equation

𝐷𝑄

𝐷𝑡
= 𝜖(1 + 𝜖𝜁)𝜃𝑧 − 𝜖2𝑣𝑧𝜃𝑥 + 𝜖2𝑢𝑧𝜃𝑦, (4.32)
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where

𝑄 = (1 + 𝜖𝜁)𝜃𝑧 − 𝜖2𝑣𝑧𝜃𝑥 + 𝜖2𝑢𝑧𝜃𝑦, (4.33)

𝜃 = (1− 𝑟)𝑤𝜃𝑧, (4.34)

𝜃𝑧 = 𝜃𝑧 + 𝜖𝜃′𝑧, (4.35)
𝐷

𝐷𝑡
= 𝜕𝑡 + 𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝜖𝑤𝜕𝑧 (4.36)

and all variables are now nondimensional. The first term on the rhs of Eq. (4.32)

corresponds to Eq. (4.19) in the text if we let 𝜃𝑧 = 1 (i.e. a constant stratification).

If we place ourselves at the location of the heating maximum 𝜃𝑥 = 𝜃𝑦 = 0, neglect

all horizontal transport of PV, and neglect the higher order vertical shear terms in

the PV (Eq. 4.33), we obtain

𝜕𝑡𝑄+ 𝜖𝑤𝑄𝑧 = 𝜖(1 + 𝜖𝜁)𝜃𝑧 (4.37)

𝑄 = (1 + 𝜖𝜁)𝜃𝑧 (4.38)

which we can rewrite as

𝜕𝑡𝑄 = 𝜖
𝑄𝜃𝑧

𝜃𝑧 + 𝜖𝜃′𝑧
− 𝜖𝑤𝑄𝑧 (4.39)

which is the form of the PV equation (Eq. 4.21) used in the simple 1D toy-model in

section (4.4.
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Chapter 5

Conclusion and Future Directions

Water and its change of phase have profound effects on the dynamics of the midlati-

tude atmosphere challenging us to extend our theoretical understanding of baroclinic

instability and macroturbulence beyond dry-adiabatic theory. Two specific phenom-

ena in which latent heating plays a key role and that have challenged our theoretical

understanding formed the central focus of this thesis: 1.) the asymmetry of the

distribution of the vertical velocity field, which has important implications for the

distribution of precipitation and its extremes 2.) Diabatic Rossby Vortices, which

are a special class of midlatitude storm that derives its energy from latent heating

rather than baroclinic effects and as such goes beyond the traditional understanding

of midlatitude storm formation.

In the following we will review key contributions made in this thesis and discuss

future directions of research.

5.1 Key Contributions

5.1.1 A Theory for the Asymmetry of the Vertical Velocity

Distribution in Moist Macroturbulence

Previous work showed that changes in the asymmetry with climate warming is much

smaller in moist macroturbulent simulations than what is predicted from the theory
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of moist baroclinic modes. This distinction is significant since the atmosphere is

constantly in a state of moist macroturbulence, but scalings for moist baroclinic

modes have formed the basis for understanding skewness changes with warming in

the literature (Pendergrass and Gerber 2016). This made the development of a theory

for the asymmetry reached in the macroturbulent regime desirable.

In chapter 3, we applied inversions of a moist-QG omega equation to the GCM

output of O’Gorman et al. 2018 in both the modal and macroturbulent regime and

diagnosed the contributions to the asymmetry coming from the dynamical forcing

versus the contributions coming from the moist static stability. We showed that while

both the dynamical forcing and reductions in the moist static stability contributed

to the asymmetry for the moist baroclinic modes, reductions in moist static stability

were the main contributor to the asymmetry in the macroturbulent regime. The

dynamical forcing was shown to be practically unskewed. An important dynamical

difference between modal and macroturbulent state was hereby identified. Using 2-

layer moist QG theory to explain asymmetry changes, we showed that the strong

asymmetry contributions from the dynamical forcing in the modal regime were due

to a feedback between the vertical velocity and the dynamical forcing which does not

exist in the macroturbulent regime due to advective nonlinearties. Furthermore, we

distilled the insights from the three-dimensional inversions into a toy-model of the

moist omega equation that was solved for a given reduction factor and wavenumber

of an unskewed dynamical forcing to reproduce the slow increase of the asymmetry

with warming both in the idealized GCM simulations and from winter to summer

in reanalysis. Finally, we showed using simulations of moist QG turbulence that,

consistent with the toy-model prediction, high asymmetry states are still possible

despite unskewed dynamical forcing so long as the wavenumber of the dynamical

forcing is sufficiently large. Unlike the classic states of dry beta plane turbulence with

wavy-jets interspersed with vortices, the high asymmetry states in the strong latent

heating regime of the simulations corresponded to ‘DRV world’ - a macroturbulent

flow dominated entirely by DRVs.
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5.1.2 Small and Finite Amplitude Theories for Diabatic Rossby

Vortices

Past research has identified a special class of midlatitude storm, dubbed the Diabatic

Rossby Vortex (DRV), which derives its energy from the release of latent heat as-

sociated with condensation of water vapor, and as such goes beyond the traditional

understanding of midlatitude storm formation. While we have a good theoretical

understanding of classic cyclogenesis, both in terms of simple conceptual models

of baroclinic instability and potential vorticity (PV) dynamics of finite-amplitude

storms, our understanding of DRV formation and propagation, the controls on their

growth rates and length scales and their response under climate change is poor. This

makes the development of an equivalent theoretical understanding for DRVs desirable.

In chapter 2, we developed a simple moist 2-layer QG model with tilted boundaries

and showed that it was capable of producing an isolated DRV mode. PV budget anal-

ysis revealed that the DRV mode is maintained by zonal advection in the downdrafts,

and by a combination of zonal advection and latent heating in the updrafts. Having

isolated the DRV mode within a simple model, we derived the dispersion relation for

the growth rate and ascent length scale of the disturbance analytically retaining the

full complexity of nonlinear heating - a major novelty of this work. In the limit of

a convectively neutral stratification, asymptotic expressions for the growth rate and

ascent length were found. In this limit, the DRV was shown to grow faster than

the dry baroclinic wave and faster than the moist baroclinic wave consistent with its

emergence as the most unstable mode with warming in idealized GCM calculations.

The ascent length scaled the same between DRV and moist baroclinic waves. We then

solved the dispersion relation numerically for the entire range of 𝑟 values and showed

mathematically that isolated solutions on an infinite domain cease to exist above

values of 𝑟 > 0.4. Reintroducing meridional PV gradients into the two-layer model

and varying the strength of latent heating and meridional PV gradients, we created

a phase diagram for when the most unstable mode was a DRV vs. a moist-baroclinic

wave. DRVs were shown to emerge when both the PV gradients and latent heating
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were sufficiently weak, and an explanation for the wave-vortex transition was given in

terms of a simple PV argument. Finally, we compared the structure of DRV modes

to DRV storms at finite amplitude and showed, using a generalized diabatic tendency

that includes the effects of diabatic vertical and ageostrophic horizontal advection,

that finite amplitude effects must be taken into account to relate the structure of PV

anomalies and PV generation in observed storms.

In chapter 4, we went beyond DRV modes and studied the role of finite amplitude

effects in the dynamics of individual DRV storms and the transition to DRV world in

simulations of moist macroturbulence using the moist QG and primitive equations.

We began by exploring the vortex world of the strong latent heating regime of the

moist QG simulations. Using PV budget analysis we showed that the vortices in this

regime were maintained by a balance between mean horizontal advection, nonlinear

advection, and diabatic generation from latent heating, with meridional PV advec-

tion playing a negligible role. The PV budget showed strong similarity to that of the

DRV mode from theory with the additional effect of nonlinear terms now leading to a

poleward self-advection of the disturbances. In order to better understand the role of

finite amplitude effects beyond QG, moist primitive equation simulations were run at

a high Rossby number regime and a low Rossby number regime while keeping latent

heating strong. As the Rossby number was lowered, a drastic change was observed

both in terms of the dynamics of individual storms and in terms of the character

of the overall macroturbulent circulation. The wave-like pattern of midlatitude flow

observed in the high Rossby number runs started to become disrupted by vorticity

dipoles that continously spawned and propagated polewards through self-advection.

Similarly, the vertical velocity field broke up into strong isolated maxima and showed

elevated skewness. While storms in the high Rossby number regime were dominated

by low-level positive PV anomaly with weak upper-level negative PV anomaly, remi-

nescent of DRVs in the current climate, storms in the low Rossby number regime were

characterized by dipoles in PV and diabatic PV generation that extended vertically

throughout the whole domain, reminescent of DRVs in warm climate simulations. We

ended this chapter by distilling finite amplitude effects into a simple 1d toy-model
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that was solved using a high and low Rossby number, and a current and warm climate

configuration to reproduce much of the observed variety of PV structure in DRVs in

idealized simulations and reanalysis. The 1d model showed that the strength of the

low level PV anomaly relative to the upper PV anomaly was very sensitive to the size

of the Rossby number and the bottom-heaviness of the heating profile.

5.2 Future Directions

Moist midlatitude dynamics is a largely unsolved field of research which offers many

fresh challenges of which only a few have been treated in this thesis. We would like

to end by spelling out interesting future directions of research that are motivated by

the findings in this thesis.

5.2.1 Towards a general theory of the vertical velocity asym-

metry in moist macroturbulence

Our theory for the asymmetry of the vertical velocity distribution in moist macrotur-

bulence is based on a toy-model. While the toy-model is good at highlighting some

of the key controls on the asymmetry implied by the moist omega equation, it cannot

amount to being fully exact or complete. It cannot be exact because it is based on

a heavily truncated representation of the dynamical forcing in the form of a single

sinusoid. It cannot be complete because it depends on knowledge of the wavenumber

of the dynamical forcing which is not known a priori and must be inferred. Future

work could improve on the exactness front by taking into account the full spectral

slope of the dynamical forcing in the toy model inversions. Concerning completeness,

better understanding is required for what sets the wavenumber of the dynamical forc-

ing in moist macroturbulent flows. Although this is certainly a hard problem, this

thesis suggests that there might be an important dependence on the Rossby number

to exploit - high Rossby number flows had a larger wavenumber than small Rossby

number flows. Based on our toy model, this leads to the unexplored consequence
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that increasing the Rossby number decreases rather than increases the vertical veloc-

ity asymmetry in moist macroturbulence - a highly counterintuitive result from the

point of view of dry theory!

5.2.2 Towards a general classification of moist disturbances

In this thesis, we have begun the work of classifying moist instabilities in a two-layer

model retaining the full complexity of nonlinear heating and variable meridional PV

gradients. In the spirit of earlier work (De Vries et al. 2010, Cohen and Boos 2016)

which attempted a classification of moist disturbances in the Eady model albeit with

linearized representation of latent heating, the next steps would be to extend the

phase diagram for the two-layer model to include the full vertical structure of the

heating profile, the meridional PV gradient profile, and the shear profile. Further-

more, it would also be interesting to include horizontal shear since moist barotropic

instabilities have been found to be relevant for monsoon depressions (Diaz and Boos

2021). The ultimate goal would be to arrive at a general classification of moist distur-

bances including moist baroclinic waves, DRVs, monsoon depressions and polar lows

in terms of shear, latent heating and meridional PV gradients.

5.2.3 Mean meridional PV gradients as an important metric

to analyze in models and reanalysis

While DRVs have previously been understood as mostly latent heating driven phe-

nomena, this work suggests that meridional PV gradients also have an important part

to play in determining the conditions under which transition from moist baroclinic

waves to DRV modes of instability occur. In fact, meridional PV gradients had to

be only slightly weakened with respect to the classic two-layer Phillip’s model set-up

to transition to isolated DRV solutions. This suggests that meridional PV gradients

would be an important metric to analyze, besides latent heating, when trying to un-

derstand the environments conducive to DRV formation in models and reanalysis. In

the two-layer model, diabatic generation co-occured in regions of weakened meridional
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PV gradients by construction. However, in an atmosphere continous in the vertical

this does not have to be the case - e.g. meridional PV gradients could be weakened

aloft under climate warming, without diabatic generation yet reaching high enough

to co-occur. Based on this argument, analyzing and understanding changes in the

vertical structure of the latent heating and meridional PV gradient field under warm-

ing would be very fruitful. Models would have to get the phasing between both fields

right in order to capture the dynamics of moist disturbrance accurately - a difficult

task.

5.2.4 Understanding the limitations of the reduced stability

parametrization in moist macroturbulent simulations

Throughout this thesis we have worked within the reduced stability framework which

assumes that all ascending motions are saturated. While this framework is marvelous

because it allows us to boil down much of the complexity of latent heating processes

into a single nonlinear parameter 𝑟(𝑤) and gain great theoretical insights, it has its

limitations particularly when it is employed in simulations of moist macroturbulence

since it presumes an infinite reservoir of moisture and neglects horizontal moisture

advection. Simple moist two-layer QG systems with prognostic moisture variable

exist (Lapeyre and Held 2004), and it would be useful to compare the two systems

more closely, both when it comes to the growth of moist baroclinic modes and moist

macroturbulent states. In the case of synoptic scale monsoonal disturbances, hav-

ing a separation between the area of maximum ascent and the area of maximum

precipitation has been found to be key in theoretical descriptions (A. Adames 2018,

Adames 2021). Relaxing the assumption of co-occurence of maximum ascent and

maximum precipitation might therefore be important in order to reason about moist

disturbances across different latitudes.
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5.2.5 Understanding the impact of finite amplitude effects on

the growth rate of DRVs

One of the open mysteries is whether finite amplitude effects merely distort the PV

structure of DRV modes or also affect their growth rate. At first glance, the simple 1d

model for understanding PV structure in storms suggests that DRVs can grow both

in high and low Rossby number environments - and that they might actually do so

particularly fast at high Rossby number especially when the heating rate is bottom

heavy, as is often the case in the current climate. This result raises the possibility that

the reason the DRVs in the low Rossby number runs of the primitive equations are

more ‘disruptive’ to the overall macroturbulent flow is not because they are growing,

but rather because they have sufficient upper level negative PV anomaly to strongly

propagate poleward through self-advection. However, the drawback with the 1d model

is that it assumes a constant vertical velocity profile in time and it is unclear to

what extent it can be used to reason about the effects of finite amplitude effects

on the growth rates. Future work should therefore test the relation between finite

amplitude effects and growth rates in DRVs either with a semigeostrophic model that

has sufficient vertical levels to accurately resolve effects such as vertical PV advection,

or by tracking DRVs across a range of climates in idealized GCM simulations.

5.2.6 Understanding the different frequency of DRVs in the

Northern and Southern Hemisphere

DRVs occur more frequently in the Northern (10 systems per month) compared to

the Southern Hemisphere (4 systems per month) and this difference is important to

understand (Boettcher and Wernli 2013, Boettcher and Wernli 2015). The work in

chapter 3 on asymmetries showed that the seasonal cycle of 𝜆 is more pronounced in

the Northern compared to the Southern Hemisphere, and this difference is because the

reduction factor 𝑟 decreases more strongly in summer in the Northern Hemisphere.

Small reduction factors favor DRVs, and this could be a possible explanation for the

differences in DRV frequencies between the two hemispheres. Further work should
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look into this hypothesis and take into account possible hemispheric differences in the

structure of meridional PV gradients.

5.2.7 Simulating Diabatic Rossby Vortex Worlds in GCMs

The moist primitive equation simulations give a clear indication that changes in the

Rossby number bring about important changes both in terms of the PV dynamics

of individual storms and in terms of the state of the overall moist macroturbulent

circulation. The Rossby number in these simulations is given by 𝜖 = 𝑈/𝑓𝐿𝑑 = 𝑈/𝑁𝐻,

where 𝑈 is the strength of the jet, 𝑓 is the planetary vorticity, 𝐿𝑑 = 𝑁𝐻/𝑓 is the

deformation radius, 𝑁 is the static stability and 𝐻 is the height of the tropopause. In

physical terms, lower Rossby number regimes could be achieved by weaker shear or

stronger static stability - both of which are key parameters of interest in a warming

midlatitude climate. It would be very interesting to simulate different Rossby number

regimes in a moist GCM in order to see if the transition to DRV world persist in

models with a more realistic representation of latent heating, and to characterize the

state of the simulation in terms of its precipitation field and heat transport.1

5.2.8 Need for problem sets, review articles, and textbook

chapters on theories of moist midlatitude dynamics

A significant obstacle to the further development of moist midlatitdue dynamics,

besides the inherent complexity of the subject, lies in the lack of adequate textbook

coverage of key theoretical developments in the field over the last thirty years that

would allow students to have an accessible pedagogical introduction, as is the case

for dry dynamics. The greatest recognition that research work can receive is if it is

both published and taught. We hope this thesis inspires the reader to use some of

its material and that on which it builds, particularly the great theoretical work from

1The moist primitive equation simulations had a nondimensional domain of length 𝐿 = 6𝜋 and
𝑛 = 128 gridpoints. Choosing a typical scale of 𝐿𝐷 = 1000km for the deformation radius, this gives
us an estimate for the resolution of Δ𝑥 = 𝐿/𝑛 × 𝐿𝐷 = 6𝜋/128 × 1000km = 147km that is at least
necessary to simulate DRV world in a GCM.
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the 90s that has not received the credit it deserves, towards pedagogical purposes -

be it for problem sets, lectures, and, if feeling particularly ambitious, review articles

and textbook chapters on moist dynamics.
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Appendix A

Alternative Definition for the

Reduction Factor

We can rewrite the definition of 𝑟 shown in Eq. (1.4) using

𝜕𝜃

𝜕𝑝
=
𝜕𝜃

𝜕𝑝

⃒⃒⃒
𝜃*
+

𝜕𝜃

𝜕𝜃*

⃒⃒⃒
𝑝

𝜕𝜃*

𝜕𝑝
, (A.1)

and the relationship

𝜕𝜃

𝜕𝜃*

⃒⃒⃒
𝑝
=

Γ𝑚
Γ𝑑

𝜃

𝜃*
, (A.2)

derived in Emanuel et al. (1987) to arrive at the alternative expression for 𝑟

𝑟 =
𝜃

𝜃*
Γ𝑚
Γ𝑑

𝜕𝜃⋆

𝜕𝑝

𝜕𝜃
𝜕𝑝

. (A.3)
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