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Abstract

Quality management is a critical aspect of the management of manufacturing pro-
cesses, particularly in industries where product reliability and safety are paramount.
With increased digitization and automation, there is growing potential for analytical
tools combined with ubiquitous data to aid the transition from quality management
practices based on expert intuition and qualitative insights to more data-driven deci-
sion making. To assist in bridging the gap between this potential and current imple-
mentation practices, this thesis develops new methods for analytics-enabled quality
and safety management.

Chapter 2 focuses on the problem of detecting clinically-relevant quality variation
in pharmaceutical manufacturing of biologic drugs. Currently, both pre-market clin-
ical trials and post-marketing studies focus on variability in safety outcomes due to
individual patient-drug factors. However, the inherent complexity of biologic drug
manufacturing and distribution raises potential risks that temporal variability in
these systems could also impact clinical outcomes. The chapter describes a data-
driven signal detection method using Hidden Markov models designed to monitor
for manufacturing lot-dependent changes based on reported clinical outcomes. The
method is tested on three lot sequences from a major biologic drug. The results sug-
gest correlated lot-to-lot variability in two of the three, possibly related to changing
manufacturing and supply chain conditions that may impact the per lot AE rates.

Chapter 3 explores the problem of creating structured access to unstructured
quality data captured in free-text documents. Though operator reports and logs are
ubiquitous in many manufacturing processes, one of the main barriers to their effective
use in decision making is that unstructured data are often unclassified, which makes
trend identification and other actionable analyses challenging. This chapter describes
a machine learning and optimization-driven methodology to classify unstructured
text in process environments into a known taxonomy of categories without access to
an existing labeled training set. To accomplish this, the proposed method leverages
information from existing reference documentation and formulates a linear program to
select a set of key words that distinguish the categories from each other. Results from
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three test datasets with ground-truth labels indicate that the method delivers strong
classification accuracy, both in absolute terms and relative to alternative methods.

Chapter 4 focuses on a quality test for an optical transceiver module, a high-tech
hardware product, manufactured by an industrial partner. Currently, human experts
review all test logs for quality problems. This chapter proposes a two-stage machine
learning classification model that is able to automatically pass the vast majority of
tested products and drastically reduces the need for manual review. Assessment on
out of sample real test result data suggests that the two-stage model is able to reduce
the manual review burden on the operator by 75-99% while on average satisfying the
requirement to limit the number of passed defective modules.

Thesis Supervisor: Retsef Levi
Title: J. Spencer Standish (1945) Professor of Operations Management
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Chapter 1

Introduction

Quality management is a critical aspect of the management of manufacturing pro-

cesses, particularly in industries where product reliability and safety are paramount.

With increased digitization and automation, there is growing potential for analytical

tools combined with ubiquitous data to aid the transition from quality management

practices based merely on expert intuition and qualitative insights to more data-driven

decision making [58]. Furthermore, data-driven quality management is becoming a

competitive necessity in the face of increasing product and supply chain complexity

and growing pressure to reduce time-to-market [21].

Yet a large gap remains between the potential for data-driven quality manage-

ment practices and its current implementation scope in the field. According to a

2015 survey by the consultancy AT Kearney including experts and executives in the

industrial, automotive, and complex consumer goods industries, 72% of respondents

believed in the benefits of innovative quality management initiatives, but only 22% of

companies were actually applying such methods [21]. More broadly, a recent 2020 sur-

vey of 1,320 manufacturing executives found that 62% of companies have not scaled

analytics initiatives beyond a single manufacturing line, and the most frequently cited

reason (26% of executives) was a lack of skills and capabilities [4]. To assist in bridg-

ing the implementation gap, this thesis develops new methods for analytics-enabled

quality and safety management that integrate tools from optimization, statistics and

machine learning and apply them to available data from both outside and inside the
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manufacturing plant.

Chapter 2 of this thesis focuses on the problem of detecting clinically-relevant

quality variation in pharmaceutical manufacturing of biologic drugs. The regulatory

approval of biologics products also includes the approval of a manufacturing pro-

cess with tight specifications and control limits. However, approval of the processes

and control limits is typically based on clinical trials that rely on results from very

few manufacturing lots. In particular, lot-to-lot, manufacturing-related variability

that affects patient outcomes is difficult to detect before the drug goes to market.

Additionally, post-marketing research on drug safety is concentrated on uncovering

novel drug-adverse event combinations with a particular focus on product-patient in-

teraction [15, 22, 19, 39]. However, the inherent complexity of the manufacturing,

distribution, and overall handling systems of biologic drugs raises potential risks that

temporal variability in manufacturing and supply chain conditions also could impact

clinical outcomes.

Chapter 2 aims to augment existing post-marketing surveillance efforts by ad-

dressing the challenge of monitoring the patient impact of manufacturing and supply

chain variability. The chapter describes a data-driven signal detection method, called

HMMScan, designed to monitor for manufacturing lot-dependent changes based on

currently reported clinical outcomes, specifically the rate of adverse events (AEs)

per final product lot. The proposed method posits that in the absence of clinically

meaningful manufacturing and supply chain variability, it is expected that the vari-

ability in per lot AE rates is due solely to patient-drug interaction, and therefore is

expected to be statistically independent across lots. In contrast, if temporal variabil-

ity of the manufacturing and supply chain conditions impacts patient outcomes, then

it is expected that the per lot AE rates will show temporal correlation between lots

packaged at similar times. Thus, detecting the latter could signal that the underlying

manufacturing and supply chain conditions potentially impact the observed AEs.

The HMMScan method takes as input a sequence of lots ordered based on their

packaging (manufacturing) dates and models the respective sequence of per lot AE

rates using a set of candidate probabilistic models. The candidate models, which fall
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in the family of Hidden Markov models, span a range of hypotheses that cover both

a scenario in which per lot AE rates are independent across lots, as well as scenarios

with temporal correlation across sequential lots. The best-fitting model is determined

using the Bayesian Information Criterion that balances between model explanatory

power and complexity. Whether there exists a positive signal of temporal correlation is

determined based on the selected model. The method was applied to three distinct lot

sequences of a major biologic drug using datasets readily available to manufacturers

and regulators, and potential manufacturing and supply chain variation was detected

in two of the three.

Chapter 3 of this thesis shifts the focus to data collected from the manufacturing

line and explores the problem of creating structured access to unstructured quality

data captured in free-text deviation report documents. Though operator reports and

logs are ubiquitous in many manufacturing processes, particularly in highly regulated

industries, companies are often unable to fully utilize these reports and logs to inform

data-driven quality management decisions. One of the main barriers is that unstruc-

tured data are often unclassified, which makes analysis of trends and identification

of underlying repeated root causes challenging. Indeed, in many practical use cases,

the taxonomy of categories naturally arises from the process context and is known by

the operator, but there is no seamless way to classify unstructured documents into

this taxonomy without extensive manual review and annotation. For example, in a

manufacturing context, the categories could naturally correspond to different process

steps or pieces of equipment, and unstructured documents might capture deviation

reports that occur during the course of the manufacturing process.

Chapter 3 describes a machine learning and optimization-driven methodology to

classify unstructured text in process environments into a known taxonomy of cat-

egories without access to an existing labeled training set. To accomplish this, the

proposed method, called the Document Classification with Reference Information

(DCRI) method, leverages information from existing reference documentation called

category descriptions. The category descriptions are integrated into a classification

model via a novel optimization formulation. This formulation selects key words that
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distinguish the categories from each other in both the input documents and the cate-

gory descriptions, accounting for the fact that word usage in the category descriptions

could be different than word usage in the documents. The ultimate category predic-

tions place higher weight on these key words.

Across three datasets, including a pharmaceutical quality deviation dataset and

two known datasets from news websites, the DCRI method is able to deliver high

classification accuracy (84 - 89%). The DCRI method’s accuracy approaches (within

1.5%) the accuracy of a supervised classifier trained on the ground truth labels for two

of the three datasets. Additionally, the DCRI method is significantly more accurate

(4-20% improvement) than other unsupervised methods for incorporating category

descriptions into document classification predictions. In the two of three datasets

with the most informative category descriptions, the DCRI method also outperforms

a semi-supervised benchmark method by 1.4-5.7%. Moreover, the optimized key word

selection within the DCRI method demonstrates consistent benefit across all datasets

and drives an improvement in prediction accuracy ranging from 0.7-2.5%. Finally,

the results show that a substantial labeling effort, of at least 15-30% of the dataset,

is necessary to achieve classification performance equivalent to the DCRI method,

and the number of required labels is even higher to achieve statistically equivalent

accuracy on unseen documents.

Chapter 4 also focuses on quality data from inside the manufacturing plant, specif-

ically related to a quality test for an optical transceiver module, a high-tech hardware

product. While this quality test is conducted using dedicated machines and equip-

ment, the final determination of whether the test results signal a quality problem

is performed by highly skilled human experts. The use of highly skilled personnel

to conduct repetitive tasks is not only costly, but potentially leads to inconsistent

outcomes that could depend on specific individuals and their respective knowledge,

training and expertise. This motivates the need to develop machine learning enabled

automation to aid review of the test results.

This chapter proposes a two-stage machine learning classification model that is

able to automatically pass the vast majority of tested products and drastically reduces
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the need for manual review of test logs. The proposed approach codifies the operator’s

qualitative observation that some modules are much easier to classify than others in

a custom, rules-based classifier with thresholds set by data-driven optimization. A

second stage random forest classifier is trained to specifically identify passing modules

that are not handled by the rules-based classifier, and modules that cannot be passed

by either stage are designated for manual inspection.

Assessment on out of sample real test result data suggests that the two-stage

model is able to reduce the manual review burden on the operator by 75-99% while

on average satisfying the requirement to limit the number of passed defective modules.

Compared to existing state-of-the-art tree-based algorithms, the two-stage model is

superior in reducing manual review at the expense of slightly inferior error control.
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Chapter 2

Surveillance of Adverse Event

Variability across Manufacturing Lots

in Biologics

2.1 Introduction

Methods for detecting post-marketing safety signals have long been the subject of ac-

tive pharmacovigilance academic research, as well as regulatory and industrial work.

These efforts have primarily focused on uncovering novel drug-adverse event com-

binations [15, 22, 19, 39], and specifically on the product-patient interaction as the

primary source of variability in clinical outcomes.

However, there are also known examples of serious adverse events (AEs), including

fatalities of patients, caused by pharmaceutical products with root causes linked to

manufacturing and supply chain sources [3]. The inherent complexity of manufac-

turing, distribution, and overall handling systems of biologic drugs underscores the

importance of risks related to temporal variability in manufacturing and supply chain

conditions that could potentially impact clinical outcomes.

The manufacturing process and related control mechanisms are specified in de-

tail during the regulatory assessment and approval and are expected to be closely
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followed during the post-approval phase. However, in 2019 the U.S. Food and Drug

Administration (FDA) stated that monitoring the impact of manufacturing and sup-

ply chain variability on patients remains an open challenge for the pharmacovigilance

community [45].

This chapter aims to augment existing post-marketing surveillance frameworks,

specifically by addressing this challenge. The paper describes a new data-driven signal

detection method, called HMMScan, inspired by the family of Hidden Markov models

(HMMs) [33]. Relying on standard reported clinical outcomes and manufacturing

attributes, it is designed to monitor for manufacturing and supply chain lot-dependent

changes. Specifically, the newly proposed method relies on the rate of reported AEs

per final product lot to flag potential safety signals that could be related to variability

in manufacturing and supply chain conditions.

The detection method posits the hypothesis that in the absence of clinically mean-

ingful variability in manufacturing and supply chain-related processes, the variability

in per lot AE rates is expected to be driven solely by patient-drug interaction, and

therefore is statistically independent across lots. In contrast, if temporal variability of

the manufacturing and supply chain conditions impacts patient outcomes, then it is

expected that the per lot AE rates will show temporal, or serial, correlation between

lots manufactured at similar times. Thus, detecting statistical evidence supporting

the latter could signal that the underlying manufacturing and supply chain conditions

potentially impact the observed AEs.

The newly proposed method relies on a probabilistic modeling framework that

can be used to signal when the AE rates in a collection of lots seem to show serial

correlation. The serial correlation is assessed with respect to the series of lots or-

dered by packaging date, which is used as a proxy for the manufacturing timing of

the respective lots. Specifically, the model provides an indication that the underly-

ing manufacturing or supply chain condition might have ‘safe’ (baseline) and risky

states. Beyond providing a statistical signal regarding the presence of serial corre-

lation, the model also indicates which particular lots are more likely to be related

to risky states of the manufacturing or supply chain condition. This can help guide

18



further investigation of potential causal factors that drive the risky states.

The HMMScan method is applied to a single product at a time and takes as input

a sequence of final product lots with their respective reported AE rates. HMMScan

considers multiple competing probabilistic candidate models, each fitted to these in-

put data, and selects the model that best explains the observed data of the sequenced

lots and their respective AE rates.

One of the main challenges in identifying the manufacturing or supply chain re-

lated impact on the per lot AE rates is the fact that conditions of the manufacturing

or supply chain systems may not be fully observable. This motivates the use of can-

didate models that fall into the broad category of Hidden Markov models (HMMs),

each consisting of two major elements. The first element is the number of underlying

hidden (unobserved) states, and the respective transition probabilities from each state

to all other states. The model assumes that each lot is manufactured and handled

under a hidden state that corresponds to a different state of the underlying manufac-

turing or supply chain conditions. The second element is a state-dependent binomial

mixture distribution that captures the probabilistic pattern of the AEs per lot man-

ufactured under the respective state. The dynamic transition between hidden states

in the HMMs captures the potential variability in the underlying manufacturing or

supply chain conditions, and their impact on the number of reported AEs per lot is

captured through the respective state-dependent binomial mixture distribution.

The candidate models capture a range of hypotheses including independent AE

rates across lots (i.e., a single state), as well as serial correlation of AE rates be-

tween lots produced at similar times (multiple states, each with state-dependent mix-

ture distribution). The ‘best’ model is selected using Bayesian Information Criteria

(BIC) [41], which weighs the explanatory power of the model with respect to the

observed data against the complexity of the model (number of parameters).

To illustrate the application of the approach, data available from the FDA Adverse

Event Reporting System (FAERS) database were used to analyze a biologic drug

currently on the market.

The rest of the chapter is organized as follows. Section 2.2 below reviews the
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existing literature. Section 2.3 details the HMMScan method described above, and

Section 2.4 characterizes the accuracy of HMMScan under various simulated scenarios.

Section 2.5 describes the input data used to demonstrate these methods and provides

the results of the case studies. To conclude, Section 2.6 discusses aspects related to

the application of the methods and directions for future data gathering and analysis.

2.2 Literature Review

Several papers have designed statistical approaches that take as input a time series

of monthly AE reports and identify points where either temporary or systematic

changes in the rate of AE reports occur [12, 17]. However, these approaches operate

on aggregated monthly AE data and are not designed to specifically identify sequences

of lots with unusually high AE rates. Additionally, in practice multiple lots may be

used in parallel to treat patients, and the overall AE rates capture the aggregated

number of AEs across all lots that are on the market.

Mahaux et al. [24] apply a hierarchical statistical scanning method to simulated

batch genealogy data to identify intermediate process steps that are associated with

excess adverse events. The method relies on data that capture relationships between

final product batches that share bulk intermediate product batches. Whereas this

method could be used by manufacturers, particularly for detailed root cause analysis,

it would likely be impractical for use by a regulator that does not often have access

to such granular data consistently across multiple different products.

2.3 HMMScan Method Description

The goal of the HMMScan method is to provide an alert when the pattern of per

lot AE rates in a time-ordered sequence of lots suggests that there might exist serial

correlation in consecutive lots. In this chapter, the temporal ordering is determined

based on the packaging date of each lot. However, more generally, the specific order

of lots could be further refined using information about the source of the intermediate
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materials for each lot. As already discussed, the presence of such serial correlation

points to a potential impact of changing underlying manufacturing and supply chain

conditions on the observed per lot AE rates.

2.3.1 Modeling Approach

The per lot AE rates of an ordered sequence of 𝐿 manufacturing lots, each with 𝐷

doses, is assumed to vary as a function of two unobserved factors. The first factor

is the heterogeneity of the patient population, and the second factor is changes in

manufacturing and supply chain conditions. To capture the effects of these factors,

the method leverages a stochastic model called the Hidden Markov model (HMM).

In particular, let 𝒞 = {1, 2, . . . , 𝐶} be the set of patient subpopulations that are

exposed to a given sequence of drug lots. Additionally, let 𝒮 = {1, 2, . . . , 𝑆} be the

set of possible states of the underlying manufacturing and supply chain conditions.

For each state 𝑠 ∈ 𝒮 and subpopulation 𝑐 ∈ 𝒞, let 𝑝𝑠𝑐 be the average probability

per dose of incurring an AE. Let 𝑤𝑠𝑐 be the likelihood that a lot in state 𝑠 is used

within a subpopulation 𝑐 ∈ 𝒞. For simplicity of exposition, it is assumed that each

dose generates either zero or one AE. The state of each lot ℓ ∈ {1, 2, . . . , 𝐿}, which is

unobserved (or hidden), is a random variable denoted by 𝐻ℓ. The number of observed

AEs for lot l where 𝐻ℓ = 𝑠 is captured through a state-dependent mixture of binomials

(MB) distribution. That is, for each integer 𝑎 ∈ {1, 2, . . . , 𝐷}:

𝑃 (𝐴ℓ = 𝑎|𝐻ℓ = 𝑠) =
𝐶∑︁
𝑐=1

(︀
𝑤𝑠𝑐 · Binomial(𝑎;𝐷, 𝑝𝑠𝑐)

)︀
For the remainder of the chapter, the state with the lowest (highest) mean AE

rate will be referred to as the "low-risk" ("high-risk") state. Additionally, the se-

quence of states {𝐻ℓ}ℓ∈{1,2,...,𝐿} evolves according to a Markov transition matrix that

captures the probability of moving from each state to any other state. Specifically,

the transition matrix identifies, for each pair of states 𝑠, 𝑠′ ∈ 𝒮, the probability

𝑃 (𝐻ℓ+1 = 𝑠|𝐻ℓ = 𝑠′). Finally, note that the transition matrix induces a stationary

distribution over the states that represents the long-run frequency of each state if the
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hidden Markov process were run on an infinitely long lot sequence.

2.3.2 Input Data

The input data of the HMMScan method include, for each lot in the sequence, the

observed AE rates, i.e., the number of AEs per 𝒟 doses. These AE rates are denoted

by the vector a = (𝑎1, 𝑎2, . . . , 𝑎𝐿). When the lots have different numbers of doses, the

AE rate is normalized accordingly.

It is important to acknowledge concerns regarding censoring of reported AEs. Un-

derreporting of AEs to spontaneous reporting systems has been a well-documented

but not well-understood concern, with some estimates of the underreporting rate over

90% [16]. More recent research by Alatawi and Hansen continues to find wide dispari-

ties in the estimated underreporting rate across products, though the authors notably

do not find any statistically significant underreporting for biologics [1]. Regardless,

the HMMScan method does not require a precise estimate of AE underreporting rates.

In particular, if the reporting rate is constant over time or known in terms of relative

magnitude over time, the ability for the HMMScan method to detect serial correlation

is unaffected by the absolute level of this rate. Moreover, while sudden, short-term

changes in the reporting rate could be mistaken as state transitions that affect the

results of the HMMScan method, long-term, moderate trends, either positive or neg-

ative, should not meaningfully affect the ability of the method to detect local serial

correlation.

2.3.3 Model Selection Procedure

This section describes how the HMMScan method selects the HMM model structure

with the best fit to the observed sequence of per lot AE rates from a set of candidate

model structures. The HMMScan model selection procedure in Figure 2-1 takes as

input the observed sequence of AE rates, a, and a set of candidate HMM models.

The candidate models are obtained by varying the assumed number of states and

subpopulations (i.e., the size of S and C) over a grid of potential values from 1 to
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𝑆𝑚𝑎𝑥 and 𝐶𝑚𝑎𝑥, respectively.

Figure 2-1: HMMScan model selection procedure

Generally, the range of plausible HMM models in the typical use-cases considered

in this paper can be covered by using small values for 𝑆𝑚𝑎𝑥 and 𝐶𝑚𝑎𝑥 (i.e., less than

10). The reason is that the number of relevant subpopulations is typically relatively

small, and the manufacturing conditions can typically be aggregated into high-level

states that capture the respective risk level for quality variation. Additionally, com-

plex HMM structures with many hidden states and mixture components tend to

overfit. Each candidate model corresponds to a hypothesis regarding the number of

hidden states and patient subpopulations that best describes the observed AE rate

sequence.

The HMMScan model selection procedure applies two sequential steps. The first

step involves Parameter Estimation to calibrate the parameters of each candidate

model. In the second step, BIC Model Fit Evaluation is used to determine which

candidate models provide the best fit to the sequence of observed per lot AE rates.
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During the Parameter Estimation step, maximum likelihood estimates for the

HMM parameters are obtained via the Expectation Maximization (EM) algorithm [10].

For HMMs with 𝑆 = 1, the EM algorithm uses closed form equations to iteratively

optimize the binomial mixture weights and probabilities until convergence [27]. For

HMMs with 𝑆 > 1, the Baum-Welch algorithm, a variation of EM, optimizes both the

transition probabilities and the state-specific distribution parameters [2]. The HMM-

Scan implementation referenced in this paper relies on the implementations of EM

and Baum-Welch in the pomegranate Python package [40]. Further details regarding

parameter initialization can be found in Appendix A.1.

The second step of the HMMScan model selection procedure, BIC Model Fit

Evaluation, compares the fitted candidate models using BIC and selects the model

with the minimum BIC value. The BIC captures a tradeoff between the explanatory

power of the model with respect to the data, and the complexity of the model in

terms of the number of parameters. A detailed description of the BIC can be found

in Appendix A.2, and a full derivation can be found in [34]. Pairwise differences

in BIC values can also be translated into a more interpretable metric, the relative

odds that one model fits the observed data better than the other. In [34], Raftery

calculates that, for models fit on long input data sequences, a BIC difference of 10

or more indicates a greater than 99% probability that the model with the lower BIC

value provides a stronger fit to the observed data.

2.3.4 Method Output

The HMMScan method outputs the best-fitting model according to the BIC, and this

model can be used to detect whether there is statistical evidence in favor of serial

correlation in the AE rates in the input lot sequence. If an HMM with 𝑆 > 1 provides

the best fit to the observed AE rates according to the BIC, then the HMMScan method

signals that there is evidence in favor of serial correlation in AE rates for the input lot

sequence. This is considered as a positive HMMScan signal for a serial correlation. On

the other hand, if 𝑆 = 1 provides the best fit, this is considered a negative HMMScan

signal, i.e., no evidence of serial correlation.
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In addition to indicating the potential presence of clinically relevant variation in

manufacturing and supply chain conditions, the best-fitting HMM is used to identify

the most likely sequence of hidden states associated with the input lot sequence.

The mostly likely state sequence is calculated using the well-known and efficient

Viterbi algorithm [33], which returns the path of hidden states that maximizes the

joint likelihood of the hidden state sequence and the observed AE rates given the

estimated maximum likelihood parameter values. These predicted hidden states can

provide important temporal information as to what lots have been produced under

high risk states, and this could be used to inform subsequent root cause analysis, as

discussed in Section 2.5.4.

2.4 Method Validation

This section describes a validation and performance assessment of the HMMScan

method through simulated synthetic data that capture different conditions and data

input attributes. The selected conditions for the accuracy assessment are motivated

by practical scenarios for true manufacturing and supply chain conditions. The spe-

cific instances for each respective scenario are captured through corresponding ground

truth HMM models used to generate the synthetic data. Specifically, the scenarios

vary in the number of hidden states, the degree of similarity of the state-dependent

mixtures of binomial distributions, and the structure of the underlying transition

matrix of the hidden states.

HMMScan is evaluated for its ability to detect the correct model structure for

sample sequences of varying length generated by each ground truth model. For each

sample sequence, the HMMScan method is applied according to the description in Sec-

tion 2.3 above. Specifically, it fits a collection of candidate HMMs, each corresponding

to a hypothesis about the structure of the ground truth HMM. This collection con-

tains single-state models with up to six mixture components, two-state models with

up to three mixture components, and three- and four-state models with up to two

mixture components. Models with additional states and components did not provide
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the best BIC for any of the simulated sample sequences.

The performance of the HMMScan method is evaluated according to two metrics.

The first metric is detection accuracy, which compares the structure of the lowest

BIC model to the ground truth model. The second metric is state prediction ac-

curacy, which evaluates the hidden state predictions. For a given sample sequence,

the HMMScan method is deemed to have correctly detected the model structure if

that sample is generated by a multiple-state (single-state) model and the model with

the lowest BIC also has multiple states (a single state). The detection accuracy of

HMMScan is defined for a particular ground truth model structure as the fraction of

samples for which HMMScan correctly detects the model structure.

The state prediction accuracy for a single sample sequence is defined as the bal-

anced accuracy of the per lot hidden state predictions from the model with the lowest

BIC. Balanced accuracy is defined as the equally weighted average of the hidden state

prediction accuracies for each hidden state. This metric is used to correct for imbal-

ance in the ground truth frequency of the hidden states in a sample sequence. In

instances with a ground truth model with multiple states, and where the model with

the lowest BIC, selected by the HMMScan method, has a single-state structure, the

ground truth state with the lowest mean AE rate (the low-risk state) will be pre-

dicted for all lots in the sequence. The state prediction accuracy for HMMScan for a

particular ground truth model structure is defined as the mean of the state prediction

accuracies across the samples generated by that model structure.

2.4.1 Simulated Scenario Instances

The primary accuracy assessment is performed using instances with ground truth

HMMs models of one state or two states (low-risk and high-risk). The one-state

ground truth HMMs have two binomial mixture components. The transition ma-

trices associated with the two-state ground truth models are defined by three input

parameters. The first parameter is the number of hidden states. The second param-

eter is the stationary probability of the low-risk state. Finally, the third parameter is

the average number of consecutive lots in the high-risk state, often called the mean
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high-risk sojourn length. The different combinations of these inputs can be mapped

to the following five practical motivating scenarios:

1. No High-Risk Sojourns. Sequences are generated by single-state HMMs,

reflecting a process where per lot AE rates are not affected by manufacturing

and supply chain variation.

2. Short and Frequent High-Risk Sojourns. The lots oscillate rapidly be-

tween the low-risk state and the high-risk state, simulating a manufacturing

process that lacks proper control.

3. Short and Infrequent High-Risk Sojourns. The process primarily operates

in the low-risk state and occasionally moves into a high-risk state for a short

period of time. The low sojourn time of the high-risk state indicates that the

initially unobserved, or hidden, manufacturing or supply chain issues driving the

differences in AE risk are resolved promptly, but the recurrence of the high-risk

state indicates that the root cause is not fully resolved.

4. Long and Frequent High-Risk Sojourns. The process experiences many

hidden issues that take an extended period of time to detect and resolve.

5. Long and Infrequent High-Risk Sojourns. The process experiences few

hidden issues that take an extended period of time to detect and resolve.

Within each scenario, both the length of the sample sequence and the similarity

between the mixture components (one-state models) or state-dependent distributions

(two-state models) are varied. The similarity between two distributions is controlled

by setting the binomial parameters to induce a particular value of the overlapping

coefficient (OVL) [9, 52]. The OVL, which ranges between 0 and 1, measures the

probability mass that is intersected by two probability mass functions. The length of

the sample sequences is varied between 50 to 500. This range covers the sequences

lengths observed in the use case data described in Section 2.5 (114-460 lots). Table

2.1 lists the specific parameter values used to define the ground truth models and

sequences lengths.
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Parameter Description Parameter Values
All HMMs

Sequence Length Length of sample sequences {50,100,150,...,500}
One-State, Two-Component HMMs

Overlapping Coefficient
Overlap between binomial
components of the
mixture distribution

{0.05, 0.25, 0.50}

Two-State, One-Component HMMs

Overlapping Coefficient Overlap between state-specific
binomial distributions {0.05, 0.25, 0.50}

Low-Risk State
Stationary Probability

Long-term frequency
of lots in low-risk state {0.50, 0.75, 0.90}

High-Risk State Mean
Sojourn Length (lots)

Average number of consecutive
high-risk lots in an infinitely
long sample

{1.25, 2, 4, 10, 25}

Table 2.1: Input parameters for two-state model validation simulated instances.

2.4.2 Method Validation Results

The results of the single-state model simulations, provided in Appendix A.3.1, show

HMMScan detection accuracies above 0.97 for all sequence lengths and all degrees

of mixture component overlap, indicating that HMMScan is able to detect sequences

generated by Scenario 1 with very high sensitivity. The two-state simulation re-

sults (Figure 2-2) indicate that the HMMScan method has high detection accuracy

for sequence lengths of 100-450 lots where both the low-risk and high-risk states

have approximately the same long-term frequency (Scenarios 2 and 4) and are well-

separated. The highest accuracy simulations for short sequences are characterized

by either medium length sojourns in the high-risk state or rapid oscillation between

low-risk and high-risk states. High detection accuracy on well-separated states is im-

portant for identifying large differences between high-risk and low-risk states that are

likely to correspond to high-priority investigations.

Similarly, the state prediction accuracy for the simulated instances with two-state

models is also highest for long samples generated from Scenario 2 and 4 models with

well-separated states. Detailed state prediction accuracy results can be found in

Appendix A.3.2.
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Figure 2-2: Method validation simulation results for HMMs with two states and
one mixture component. Each point represents the HMMScan detection accuracy
calculated on 100 sample sequences with the same length as denoted on the x-axis.
The panels are organized in columns based on the low-risk state stationary probability
and in rows by the mean high-risk state sojourn length. Each column value represents
the expected fraction of lots from the low-risk state in a sample. Each row value
represents the expected number of consecutive high-risk state lots observed each time
the system moves to the high-risk state.
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For the shorter sequence lengths, detection and prediction accuracy declines for

very long high-risk sojourn lengths (Scenario 5) as the number of observed state

transitions diminishes. Similarly, when the long-term frequencies of the hidden states

are highly imbalanced (Scenario 3), transitions become more infrequent and accuracy

declines. These results are unsurprising because these detecting the existence of

multiple states is objectively more difficult in these scenario, particularly with shorter

sequences.

Additional multiple-state simulations using instances with three- and four-state

models and multiple mixture components directionally support the results described

above, and the results can be found in Appendix A.3.3, Appendix A.3.4, and Ap-

pendix A.3.5. As expected, if two of the three states are very similar in a three-state

generating model, the HMMScan method is frequently unable to distinguish between

the similar states. Crucially, this does not impact HMMScan’s ability to detect that

these samples were drawn from a multiple-state model.

2.5 Use Case Data and Results

In this section, the HMMScan method is applied to real field data for three sequences

of lots, each consisting of a different dose form of the same drug. The three dose

forms each have different manufacturing and supply chain attributes and different

mean levels of AEs. The lots for each dose form were considered as a temporal

sequence based on the packaging date.

2.5.1 Data

The data regarding the packaging dates was provided by the corresponding industry

partner. The industry partner also provided the number of doses for each lot. The re-

ported AE counts per lot were obtained from the U.S. FDA Adverse Event Reporting

System (FAERS) database [48], which aggregates spontaneous AE reports from man-

ufacturers, patients, and health care providers primarily based in the United States.

Each AE report consists of one or more reactions for a single patient incident. The
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industry partner data were matched to the AE information from FAERS using the

lot numbers provided in both sources.

Table 2.2 summarizes the effects of applying a set of inclusion and exclusion criteria

on the AE reports from FAERS. First, AE reports with a missing lot number in

FAERS are excluded from the analysis, as are reports with an invalid lot number

that does not appear in the industrial partner’s records. AEs related solely to drug

administration reactions (e.g., "wrong dose administered") or unrelated reactions

(e.g., "dog bite") that are highly unlikely to reflect product quality issues are also

excluded. A full list of excluded reactions can be found in Appendix A.4.

Dose Form A
(463 lots)

Form B
(271 lots)

Form C
(119 lots)

Missing
Lot Num.

Invalid
Lot Num.

Raw AEs
from FAERS 71,890 13,582 2,789 283,888 8,653

Excluding drug
administration AEs 67,402 13,184 2,562

Relevant (known +
other serious) AEs 21,628 4,950 884

Expedited
AEs 7,798 2,051 437

Table 2.2: Count of adverse event reports by inclusion/exclusion criteria.

The primary analysis further limits the set of relevant AEs to those with at least

one reaction that is either known to be associated with the drug or involves a serious

reaction. These restrictions reflect a desire to minimize the number of included AEs

that are not directly related to the product without omitting any very serious AEs.

A list of known reactions is obtained from the drug’s package label. Chest pains,

pneumonia, fungal infections, malignancies, and relapse of prescribed indications are

examples of known reaction categories included in the analysis. This list is augmented

with the following serious reactions: loss of consciousness, arrythmia, hospitalization,

and death.

A secondary robustness analysis is conducted using only AEs from expedited re-

ports, which were deemed both serious and unexpected by the manufacturers that

reported the events. Rather than minimizing the number of AEs unrelated to the
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product, the expedited reports capture events that are most likely to be concerning

to manufacturers and regulators.

After restricting the set of eligible AEs, the raw AE counts and the number of

doses per lot provided by the manufacturer are used to create per lot AE rates based

on a normalized lot size of 𝐷 = 100, 000 doses. The final preprocessing step removes

17 lots (1.9%) with outlier AE rates from the dataset1. When the outlier lots are

removed from a lot sequence, the lots on either side of the outliers are treated as

consecutive, a method known as "gluing". Prior research indicates that applying

the gluing procedure with less than 8% of lots designated as missing does not affect

the likelihood or magnitude of HMM parameter estimates [32]. Table 2.3 shows the

distribution of the AE rates per lot for each modeled dose form.

All Lots Outliers Removed
Dose

Form A
Dose

Form B
Dose

Form C
Dose

Form A
Dose

Form B
Dose

Form C
Min 0 0 0 0 0 0
25th 27 9 3 27 9 2
50th 41 18 11 41 18 10
75th 63 29 19 62 28 18
95th 85 44 47 84 39 23
Max 151 280 248 113 51 30

Mean 45 22 21 44 18 11
Lot Count 463 271 119 459 264 113

Table 2.3: Adverse event rates per lot. 25th, 50th, 75th, and 90th refer to percentiles.

In addition to the use case discussed in this section, the HMMScan method was

applied to several vaccine products using only publicly available AE information from

the U.S. Vaccine Adverse Events Reporting System (VAERS) database [47], a similar

dataset to the FAERS database. Since lot sizes and packaging dates were not avail-

able for these products, the vaccine analysis required additional assumptions before

applying the HMMScan method. These assumptions and the results of the vaccine

HMMScan analysis are provided in Appendix A.6.

1An outlier is defined as an AE rate less than the 25th percentile minus 1.5 times the interquartile
range (IQR) or greater than the 75th percentile plus 1.5 times the IQR [50].
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2.5.2 Detection Results

For each dose form, the grid of candidate model structures is constructed by setting

𝑆𝑚𝑎𝑥 = 4 and 𝐶𝑚𝑎𝑥 = 9. The BIC values decline monotonically outside the chosen

hyperparameter ranges, indicating that the complexity penalty is outweighing the

likelihood gains and the models are overfitting the data. Each of the candidate models

is fit with 50 random initializations and the results corresponding to the parameter

estimates with the highest likelihood are retained. The BIC values for the fitted

candidate models are shown in Figure 2-3.

Figure 2-3: BIC values for the candidate HMMs for each dose form. Each tile indicates
the BIC value for a fitted HMM with the number of states denoted on the x-axis and
the number of binomial components per state-specific mixture distribution on the
y-axis. Lower BIC values indicate a better fit of the model to the data.

Dose Forms A and B. Multiple state HMMs have the best fit as measured by

BIC for dose forms A and B (𝑆 = 3, 𝐶 = 2 for dose form A and 𝑆 = 3,𝐶 = 3 for

dose form B). The BIC difference between the best-fitting multiple state model and
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the best-fitting single state model is larger than 10 for both dose forms, suggesting

significantly stronger fit for a multiple state model and related serial correlation in

the per lot AE rates.

Dose Form C. A multiple-state HMM with 𝑆 = 2 and 𝐶 = 3 provides the lowest

BIC for dose form C, but the BIC difference between this model structure and a

single state model with 𝐶 = 3 is lower than 10, indicating weaker evidence of serial

correlation in the per lot AE rates.

2.5.3 Identifying States with High AE Risk

Figure 2-4 and Table 2.4 illustrate the maximum likelihood estimated parameters for

the HMM with the lowest BIC value for dose forms A and B. This includes the state

transition matrix, the stationary distribution of the time spend in each state, and the

state-dependent mixture distribution. Due to the relatively weak evidence in favor of

a multiple-state state model for dose form C, the maximum likelihood parameters are

included in Appendix A.5. In Figure 2-4, a clear separation exists for dose form A

between state 3, where the lots tend to be associated with a high number of AEs, and

state 1 where AE rates are lower on average. State 2 represents a medium-risk state.

Similarly, there is clear separation between the high-risk state 3 and the low-risk state

1 for dose form B.

Dose Form A Dose Form B
Transition Probs.
(from row state
to column state)

Transition Probs.
(from row state
to column state)

Hidden
State

To:
State 1

To:
State 2

To:
State 3

Mean AE Rate
(90% CI)

Stat.
Prob.

To:
State 1

To:
State 2

To:
State 3

Mean AE Rate
(90% CI)

Stat.
Prob.

1 0.76 0.19 0.05 9.8
(9.4-12.8) 0.14 0.92 0.08 0.00 6.9

(0.0-8.3) 0.25

2 0.06 0.90 0.04 32.9
(29.4-32.6) 0.43 0.06 0.85 0.09 14.5

(9.1-17.8) 0.30

3 0.02 0.03 0.95 66.4
(60.2-64.5) 0.43 0.00 0.06 0.94 26.4

(23.0-30.3) 0.45

Table 2.4: Estimated transition matrix and state-specific mean AE rates for best-
fitting HMMs, with mean AE rate 90% CIs (confidence intervals) estimated via para-
metric bootstrap [35, 49]
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Figure 2-4: Fitted state-specific binomial mixture distributions for the best-fitting
HMMs for dose forms A and B. Each panel shows the distribution for the state-
specific distribution associated with each hidden state.

2.5.4 Interpreting the Use Case Results

The estimated state-specific mean AE rates in Table 2.4 demonstrate that the ordering

of the states by AE risk is robust. The estimated transition matrices both have high

probabilities on the diagonal, indicating that the hidden states are all very persistent.

This suggests that high-risk and low-risk AE states tend to form long contiguous

regions.

In fact, these regions are observable in Figure 2-5 for both dose form A and dose

form B. This figure orders the lots by packaging date for both dose forms and colors

the AE rate for each lot by its most likely hidden state. Both dose forms have two

clearly identifiable regions of high-risk lots as well as multiple low-risk regions at the

beginning and end of the sequences (Figure 2-5a and Figure 2-5b). Furthermore,

when the HMMScan method is performed using AE rates based solely on expedited

reports, the best-fitting HMMs indicate nearly identical high-risk regions (Figure 2-

5d and Figure 2-5e). These regions are visually reasonable despite the presence of

occasional lots with low AE rates in the high-risk regions.

Similar persistent high-risk regions are visible for dose form C in Figure 2-5c.

However, the results on the expedited AE reports indicate that a single-state model

has the lowest BIC, further suggesting only weak evidence in favor of multiple states
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in the ground truth model for this lot sequence.

Figure 2-5: Per lot AE rates. The top row of plots calculates per lot AE rates based
on the known and serious definition, while the bottom row includes only expedited
AE reports. The lots are shaded by most likely hidden state according to the HMM
with the lowest BIC.

2.5.5 Use Case Method Validation

This section applies a similar approach to the one described in Section 4 to gauge

the likelihood that HMMScan method has accurately identified the correct model

structures for the use case datasets. Specifically, the goal is to estimate the proba-

bility than an HMM with structure (𝑆𝐵𝐼𝐶 , 𝐶𝐵𝐼𝐶), i.e., 𝑆𝐵𝐼𝐶 states and 𝐶𝐵𝐼𝐶 mixture

components, would have been chosen if the observed lot sequence were generated by

an HMM with a different structure.

To obtain this estimate, 100 sample sequences with the same length as the observed
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sequence are generated from each fitted candidate HMM not selected by the BIC.

Consider a sample sequence generated by a specific candidate HMM with structure

(𝑆𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, 𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔). A sample sequence is considered misidentified if an HMM with

structure (𝑆𝐵𝐼𝐶 , 𝐶𝐵𝐼𝐶) has the lowest BIC of all candidate models fit to that sequence.

The fraction of misidentified sample sequences gives an estimate of the probability

of misidentifying a sequence generated by a (𝑆𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, 𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔) HMM as a sequence

from a (𝑆𝐵𝐼𝐶 , 𝐶𝐵𝐼𝐶) HMM.

Figure 2-6 shows the estimated misidentification probability for each candidate

model structure for each of the three lot sequences in the use case. First, note that

across all three lot sequences, the sample sequences generated by less complex HMMs

than the BIC-selected HMM (i.e., 𝑆𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ≤ 𝑆𝐵𝐼𝐶 and 𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ≤ 𝐶𝐵𝐼𝐶) are rarely

misidentified. Furthermore, only a small fraction of sample sequences generated by

single-state HMMs are identified as having 𝑆𝐵𝐼𝐶 states and 𝐶𝐵𝐼𝐶 mixture components

by HMMScan. This result implies that the observed HMMScan signals for these dose

forms are reliable.

Figure 2-6: Estimated misidentification probabilities for the use case method valida-
tion. Each tile indicates the misidentification probability for a given sampling model
with respect to 𝑆𝐵𝐼𝐶 and 𝐶𝐵𝐼𝐶 . For dose form A, 𝑆𝐵𝐼𝐶 = 3 and 𝐶𝐵𝐼𝐶 = 2, for dose
form B, 𝑆𝐵𝐼𝐶 = 3 and 𝐶𝐵𝐼𝐶 = 3, and for dose form C, 𝑆𝐵𝐼𝐶 = 2 and 𝐶𝐵𝐼𝐶 = 3.
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2.6 Discussion and Conclusions

This paper presents HMMScan, a novel pharmacovigilance method for detecting pat-

terns in AE rates across manufacturing lots using probabilistic modeling techniques.

HMMScan is a method that could be utilized by both manufacturers and regula-

tors to automate lot variability monitoring and inform targeted root cause analysis.

Specifically, HMMScan provides: (1) a reliable signal when serial correlation is de-

tected in an observed AE rate sequence, and (2) a model to identify individual lot

subsequences where variation in manufacturing and supply conditions may have con-

tributed to higher AE rates. In a case study of three lot sequences corresponding

to three dose forms of a major biologic, the strong evidence of serial correlation was

detected for two of three dose forms.

The HMMScan method is proposed as an initial signal detection tool to identify

lot sequences where serial correlation in AE rates suggests the potential presence of

clinically relevant variation in manufacturing and supply chain conditions. Root cause

analysis utilizing additional, and likely proprietary, features of the manufacturing lots

would be essential to confirm a causal relationship between manufacturing and supply

chain conditions and AE rate variation. An investigator could start by examining

the lots in the vicinity of hidden state transitions, since these are periods during

which the HMMScan method suggests clinically meaningful changes to manufacturing

and supply chain conditions might have occurred. Only via this detailed root cause

analysis can an investigator rule out other factors unrelated to manufacturing and

supply chain conditions and determine if a truly causal relationship between such

conditions and safety outcomes actually exists.

An implementation of the HMMScan method in R and Python is available as a

GitHub repository [53]. This repository includes a tutorial for generating results for a

new use case, as well as instructions for reproducing the use case and simulation results

presented in this paper. The relevant data are also stored in a public repository [54].

A possible direction for future methodological research is to increase the com-

plexity of the candidate model structures that HMMScan considers by allowing the
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hidden state of lot ℓ to depend on a prior history of states before lot ℓ−1. Limited de-

pendence on only the most recent hidden state is useful because it yields the fast and

well-understood Baum-Welch algorithm for maximum likelihood parameter estima-

tion. However, EM-based parameter estimation algorithms for variable length HMMs,

which allow state dependence on history prior to the most recent state, have been

proposed [11]. More recently, a Bayesian model for variable length Markov chains was

introduced [20], though this model has not been studied in a hidden Markov setting.

In principle, a primary benefit of HMMScan is the potential to apply the method

broadly across a range of pharmaceutical products. Such broad application of HMM-

Scan would rely on a well-developed data input pipeline to gather the following in-

formation for each lot: packaging date, relevant AE counts, number of doses, and

dose form. This is the minimum required data input for the method as currently con-

structed, though in principle the model could take additional information about the

distribution patterns by lot, including more granular regional distribution information

and patient characteristics. Additional information about the lot-to-lot differences in

patient populations could be used to adjust the AE counts to account for these dif-

ferences. In this case, a positive signal of serial correlation in AE rates would be even

more likely to correspond to variation in manufacturing and supply chain conditions.

Further collaboration between regulators, manufacturers, and academics to collect

and format these data is the first step toward realizing this opportunity to augment

drug safety monitoring to improve patient outcomes.
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Chapter 3

Unsupervised Text Classification with

Reference Information

3.1 Introduction

Quality control and quality assurance are critical in manufacturing and service oper-

ations. With increasing digitization and automation, these processes generate more

data than ever, which creates opportunities to enhance the process quality. That said,

much of the relevant data are still generated by human operators and customers and

are often kept as unstructured text. For example, on manufacturing lines operator

reports and logs often include exclusive and important information that are not cap-

tured elsewhere. These documents include updates regarding line operations, as well

as records of quality deviations, their investigations, and resolution. More broadly,

creating structured access to a large corpus of documents is also important for en-

hancing the scope and quality of operations in a variety of service-related settings. A

frequent barrier to tapping the potential of these unstructured data is the lack of a

labeled training set, that is, a set of documents that have already been assigned to a

topic or category within a structured taxonomy.

In many use practical use cases, the taxonomy of categories naturally arises from

the process context and is known to the operator. For example, in the manufacturing

use case, categories could correspond to different process steps or pieces of equip-
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ment. Moreover, in these use cases, written documents that describe each category

and provide side information are often easily obtained. Yet there is often no seamless

way to classify unstructured documents into the taxonomy without extensive manual

review and annotation. This chapter describes an innovative machine learning and

optimization-driven methodology to classify unstructured data in process environ-

ments without access to an existing labeled training set.

The newly proposed approach developed in this chapter is illustrated through a

primary use case in a manufacturing setting, and it is further validated on two datasets

from news websites with known classification labels, which shows the potential for

the method to be used in other document classification applications. The primary

use case concerns categorizing documents related to quality deviation reports on an

existing pharmaceutical manufacturing line for biologic drugs. The deviation reports

and associated investigation notes, provided by an industrial partner, are recorded as

free text without much detailed structured metadata to identify the specific process

step where the deviation occurs.

Current state-of-the-art approaches implemented by the industry partner leverage

unsupervised clustering methods to group similar deviations together for the purposes

of trend analysis and automated searches for similar deviations. However, these ap-

proaches do not enable the user to pre-specify the content of each of the clusters and

ensure that the deviations associated with specific process steps are indeed grouped

together. Moreover, the ability to classify any new deviations into a pre-specified

taxonomy of categories corresponding to process steps is important to enable more

actionable and targeted deviation tracking methods. This use case has natural analogs

in other industrial manufacturing processes, such as automotive and aircraft manufac-

turing or oil and gas refining, where extensive text logs and detailed written process

documentation are common and sometimes even required by regulatory authorities.

In addition to the primary manufacturing use case, the newly developed approach

is validated on two news-related datasets commonly used to test automated docu-

ment classification algorithms. The validation datasets include a subset of the 20

Newsgroups dataset [36], a collection of online comments on news topics, and the
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BBC News dataset [14], which includes online news stories related to five specified

topics. The documents in these datasets have assigned topic (category) labels, which

can be used to evaluate the predictive accuracy of the described approach relative to

other benchmark methods. Furthermore, similar to process steps in a manufacturing

environment, the topics in these datasets (e.g., sports, technology, automobiles) can

be described objectively using easily obtained outside factual sources like encyclope-

dias. These datasets demonstrate the potential utility of the proposed approach in

service applications, such as classification of customer feedback reports, automated

organization of legal documents, or medical diagnosis prediction from physician notes.

This chapter proposes a method called Document Classification with Reference

Information (DCRI) to classify unlabeled input documents into a prespecified taxon-

omy of categories without the use of a labeled training set. Unlike standard existing

unsupervised methods like Latent Dirichlet Allocation (LDA) [5], the DCRI method

predicts document labels within the context of a prespecified taxonomy of categories.

Instead of relying on manually labeled training documents within a supervised algo-

rithmic approach to make these predictions, the DCRI method uses existing reference

information in the form of category descriptions to distinguish between the categories.

These category descriptions are assumed to be rich enough to describe each category

of the taxonomy. As already discussed, in many practical settings such documenta-

tion is often readily accessible. For example, in the pharmaceutical manufacturing

use case, all process steps are described in detailed written standard operating pro-

cedures (SOPs). For the news datasets, reference information about common news

topics is accessible via encyclopedia sources such as Wikipedia.

Crucially, the DCRI method does not require that the category descriptions are

written by the same author or for the same purpose as the unlabeled input documents.

The DCRI method uses an optimization model to select key words that distinguish the

categories from each other in both the input documents and the category descriptions,

and the ultimate category predictions place higher weight on these words. This

explicit adjustment for the differences between the input documents and category

descriptions differentiates the DCRI method from existing semi-supervised methods

43



such as semi-supervised Multinomial Naive Bayes [30].

3.1.1 Contributions and Key Results

This chapter describes a novel approach that enables document classification into a

prespecified taxonomy without a labeled training set. Instead, the approach leverages

available reference information in the form of category descriptions. A naïve approach

could use all the significant words appearing in the input documents and reference

category descriptions to make document classification predictions. However, to miti-

gate the impact of word usage differences between the category descriptions and the

documents, the DCRI method utilizes a new linear programming-based optimiza-

tion formulation that ensures the predictions are robust to these differences. More

specifically, the linear program guides the selection of a sparser subset of important

words.

The DCRI method is tested on three datasets, including a dataset from the pri-

mary manufacturing use case with manually-assigned ground truth category labels

and two validation news datasets described above. The method delivers consistently

high classification accuracy (84 - 89%) across all three datasets. For the manufactur-

ing and Newsgroups datasets, the DCRI method’s accuracy approaches (within 1.5%)

the accuracy of a supervised classifier trained on the ground truth labels.

Additionally, the DCRI method is compared to several benchmark approaches.

The DCRI method is significantly more accurate (4-20% improvement) compared

to alternative, LDA-based methods for incorporating category descriptions into doc-

ument classification predictions. The DCRI method outperforms semi-supervised

Multinomial Naive Bayes by 1.4-5.7% on the two of three datasets with the most in-

formative category descriptions. A critical driver of the DCRI method’s performance

improvement is optimized key word selection, which directly improves predictive ac-

curacy across all three datasets by up to 2.5% compared to the naïve approach.

Furthermore, the results show that to achieve classification performance equivalent

to the DCRI method requires a substantial labeling effort, 15-30% of the dataset,

and the number of required labels is even higher to achieve statistically equivalent
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accuracy on unseen documents.

The rest of the chapter is organized as follows. Section 3.2 details the experi-

mental datasets, Section 3.3 describes the DCRI method, Section 3.4 provides the

experimental results, and Section 3.5 concludes.

3.2 Data Description

This section introduces the three datasets considered in this chapter to motivate the

development of the DCRI method. Section 3.2.1 describes the primary manufacturing

use case dataset and Section 3.2.2 details the news-related datasets.

3.2.1 Pharmaceutical Deviation Dataset

The input documents for the primary use case dataset, referred to as the Pharma

dataset in this chapter, consist of a corpus of unlabeled free text descriptions of

deviations from standard operating procedures that occurred at a pharmaceutical

manufacturing plant for biologic drugs between 2011 and 2016. While this dataset

was compiled in collaboration with a specific industrial partner, such deviation data

are common across the pharmaceutical industry because U.S. Food and Drug Asso-

ciation regulations require that all product deviations from established specifications

and standards are recorded [46]. The deviation descriptions contain short and long de-

scriptions of the deviation event, as well as any root cause analysis and recommended

follow-up actions from subsequent investigation. A description of the deviation de-

scription components can be found in Appendix B.1.

The Pharma dataset consists of 563 deviations, representing a small subset of

over 10,000 major and minor deviations that the industrial partner might wish to

categorize. The deviations in the Pharma dataset all relate to the production biore-

actor stage at a single manufacturing facility. These deviations were identified using

existing structured metadata, which are detailed enough to determine the high-level

manufacturing stage of the deviation, such as the production bioreactor, but not de-

tailed enough to establish the precise process step. Only the production bioreactor

45



deviations were included in the Pharma dataset in order to make manual labeling of

each input document feasible. The availability of ground truth labels allows for eval-

uation of the predictive performance of the DCRI method and comparison to other

benchmark methods.

The category taxonomy of the production bioreactor process steps is described

below. A production bioreactor is a vessel where specially cultivated living cells, called

inoculum, are mixed with a growth medium for the purpose of producing a particular

pharmaceutical ingredient. A schema of five categories of process steps was developed

in collaboration with process experts at the industrial partner. The categories include

bioreactor additions, process monitoring, sample processing, maintenance, and filter

integrity testing. This schema was designed to be specific enough to enable meaningful

analysis without introducing categories likely to be sparsely populated by deviations.

The manually assigned labels indicate significant class imbalance in the document

dataset. In descending order, the distribution of document labels across the five

categories is 0.50, 0.19, 0.18, 0.9, and 0.04. The category descriptions were compiled

from relevant excerpts from over 30 standard operating procedures that describe

the production bioreactor process. A further description of the categories, including

examples of typical deviations, can be found in Appendix B.2.

3.2.2 News-Related Datasets

In addition to the Pharma dataset, the DCRI algorithm was evaluated on two news-

related datasets, 20 Newgroups and BBC News. These datasets are included to assess

how the performance of the algorithm generalizes to other service-related applications,

such as classification of customer feedback reports. Both datasets are are widely used

in the natural language processing community for document classification research

because true topic labels have been manually assigned to the documents.

The Newsgroups (NG) dataset is a collection of labeled documents, which con-

sist of free text online comment posts that have each been classified by topic cat-

egory [36]. The dataset consists of 3,314 documents that span four categories: re-

ligion (alt.atheism), computer graphics (comp.graphics), cars (rec.autos), and space
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(sci.space). The BBC dataset consists of 1,490 labeled documents from the BBC News

website corresponding to news stories in five topical categories: Business, Entertain-

ment, Politics, Sports, and Technology [14]. For both datasets, Wikipedia articles

associated with the headline topics for each category are used as category descrip-

tions. The Wikipedia entries for the BBC categories correspond exactly to the titles

of the categories, while the Wikipedia entries for the NG categories are Atheism and

Religion, Computer Graphics and Pixel, Automobile and Cars, and Astronomy and

Spacecraft, respectively. Both the NG and BBC documents are approximately evenly

balanced across classes.

Table 3.1 below shows the summary statistics for the three experimental datasets,

where 𝐷 denotes the number of documents, 𝐶 is the number of categories, and 𝑉 the

number of unique terms (single words and two-word phrases) that appear in at least

one document and at least one category description. The datasets vary in terms of the

number of documents and size of the vocabulary, but in all cases the average category

description is long, more than 1,800 words after removing stop words. In contrast,

the average unlabeled document is shorter than the average category description by

at least one order of magnitude. This discrepancy is consistent with the assumption

that the category descriptions are rich and detailed enough to provide meaningful

term frequency estimates in lieu of labeled input documents.

𝐷 𝐶 𝑉 Mean Document
Length (words)

Mean Category Desc.
Length (words)

Pharma 563 5 1924 129 3585
NG 3314 4 1684 46 3660

BBC 1490 5 1485 94 1806

Table 3.1: Dataset summary statistics. 𝐷 denotes the number of documents, 𝐶 is
the number of categories, and 𝑉 the number of terms (single words and two-word
phrases) that appear in at least one document and at least one category description.
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3.3 DCRI Method Description

This thesis chapter studies the general problem of classifying an input set of 𝐷 free

text unlabeled documents into a pre-specified set of 𝐶 categories. Each category is

associated with a separate category description containing reference information that

details the content and themes related to the category.

This section describes the Document Classification with Reference Information

(DCRI) method, beginning with a high-level description of the proposed method and

providing more details in Sections 3.3.1 - 3.3.3. Figure 3-1 below illustrates the three

primary algorithmic steps of the DCRI method, Vectorization, Preliminary Labeling,

and Label Augmentation. These steps ultimately produce a predicted category label

for each of the 𝐷 input documents. The Vectorization step converts the input raw text

into numerical features that represent the frequency count of each term in each doc-

ument. Additionally, the terms in the category descriptions are assigned importance

scores that indicate how unique each term is to each category. In the Preliminary

Labeling step, an initial category prediction is produced, for each document, by cal-

culating document-category scores from a linear combination of the document term

frequencies weighted by the category importance scores. The Label Augmentation

step uses optimization and machine learning to intelligently revise the preliminary la-

bels and output a final predicted category label for each document. Importantly, this

step also provides weights for the terms that can be used to classify future documents

not included in the initial set of input documents.

3.3.1 Vectorization

The Vectorization procedure (Figure 3-2) takes as an input the raw text of the 𝐷

documents and 𝐶 category descriptions. The procedure outputs numerical feature

matrices that encode these text inputs using a bag of words (BoW) representation [26].

The BoW model, which has been used for decades in the natural language processing

community [42], represents a corpus of documents using a feature for each term in

a prespecified vocabulary. Each feature captures the frequency of occurrence of the
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Figure 3-1: Document Classification with Reference Information (DCRI). Blue cir-
cles indicate the primary steps of the document classification procedure. The green
rectangles indicate the vectorized inputs to the label prediction task used to generate
predicted category labels. Preliminary and final predicted label outputs are denoted
by orange rectangles.

respective term in each document in the corpus.

After removing English stop words, dates, times, and purely numerical terms, the

vocabulary is formed by including all single words (unigrams) that appear in at least

one category description and at least one input document, as well as the top 30%

of two-word phrases (bigrams) with the highest category importance scores. The

vocabulary dimension is denoted by 𝑉 . The input document feature matrix, denoted

F ∈ Z𝐷×𝑉 , consists of the respective frequencies of the terms in the vocabulary,

and each entry 𝑓𝑑𝑣 corresponds to the count of term 𝑣 in document 𝑑. The term

frequencies are adjusted to account for the presence of both unigrams and bigrams

in the vocabulary by decrementing the frequency of each unigram by the number of

appearances in bigrams included in the vocabulary. The details of this term frequency

adjustment can be found in Appendix B.3.

The category description vectorization forms a similar matrix S ∈ R𝐶×𝑉 where

each entry represents the importance score of each term to each category. The ele-

ments of S are term frequency inverse document frequency (TF-IDF) scores [38], a

transformation of raw term frequencies common in information retrieval and natural

language processing. The TF-IDF score 𝑠𝑐𝑣 is high when the term 𝑣 represents both
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Figure 3-2: Vectorization step of the DCRI method. During Vectorization, the raw
text of the documents and category descriptions are transformed into feature matrices
F and S, respectively. F represents the raw count of each term in each document,
while S represents the TF-IDF importance score of each term to each category.

a high fraction of the terms used in the category 𝑐 description and is also used in

few other category descriptions. The specific TF-IDF version used in this chapter,

which is based on a version with demonstrated favorable document classification per-

formance [37] and incorporates additional normalization to account for the presence

of bigrams, is detailed in Appendix B.4. A high TF-IDF score indicates that a term

is specific to a particular category and therefore is an important feature for document

classification.

3.3.2 Preliminary Labeling

In the Preliminary Labeling step (Figure 3-3), the input consists of the category

importance scores and document term frequencies, which are used to calculate a

preliminary category label for each input document. First, preliminary document-

category scores, denoted P𝐴𝑇 ∈ R𝐷×𝐶 , are obtained using all the terms. Specifically,

the preliminary score for each document 𝑑 and category 𝑐 is obtained via the dot

product between the document’s term frequency vector and the log of the category 𝑐
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Figure 3-3: Preliminary Labeling step of DCRI method. During the Preliminary
Labeling step, the document term frequencies (F) and the category importance scores
(S) are combined to form preliminary document-category scores (P𝐴𝑇 ), with rows
p𝐴𝑇
𝑑 , and labels (𝑦𝐴𝑇 ), where 𝑦𝐴𝑇

𝑑 = argmax𝑐∈{1,2,...,𝐶} p𝐴𝑇
𝑑 .

term importance score vector:

P𝐴𝑇 = F · log(S𝑇 ) (3.1)

For a given document, the preliminary label corresponds to the category with the

highest preliminary document-category score. Specifically, the output of the Prelimi-

nary Labeling step is a category label vector 𝑦𝐴𝑇 , where each element 𝑦𝐴𝑇
𝑑 represents

the category with the maximum score in the row vector of document-category scores

p𝐴𝑇
𝑑 ∈ R𝐶 :

𝑦𝐴𝑇
𝑑 = argmax𝑐∈{1,2,...,𝐶} p𝐴𝑇

𝑑 (3.2)

3.3.3 Label Augmentation

The linear document-category scoring function in equation (3.1) above is related to

the well-known Multinomial Naive Bayes (MNB) classification algorithm [23]. In the

MNB setting, the category term importance score parameters S are learned from a

training set of labeled documents. Without access to such a labeled training set, the

preliminary labels are obtained by effectively assuming that each category description

is the only labeled training document associated with its respective category. This

is a strong assumption since the category descriptions are assumed to be written
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as reference material, so their purpose, authorship, and writing style likely differ

substantially from the documents.

This section describes the Label Augmentation step, which revises the preliminary

labels to minimize the number of classification errors that might be induced by sta-

tistical differences between the category descriptions and documents. This step takes

as input the preliminary labels 𝑦𝐴𝑇 , the category-term importance scores S, and the

document-term frequencies F, and outputs a new set of improved category labels.

The step consists of two sequential procedures, Key Term Labeling and Supervised

Labeling.

The Key Term Labeling procedure calculates document-specific category scores

that rely on a sparse set of key terms rather than the full vocabulary. The set of key

terms is selected to induce category predictions that are more robust to differences in

word usage between the category descriptions and document corpus. These differences

arise from the fact that, in most cases, the category descriptions and documents have

been written for entirely different purposes, though both refer to the same underlying

activities. The connection between sparsity (and other regularization methods) in

linear models and robustness to data noise has been well-documented [56, 55], though

this existing literature primarily focuses on noise generated by measurement error or

mislabeling.

To this end, the Key Term Labeling procedure leverages a suitably designed opti-

mization model. The primary decision variables are denoted by a vector x ∈ [0, 1]𝑉 ,

where 𝑥𝑣 corresponds to a weight assigned to each term in the vocabulary. Auxiliary

decision variables are denoted by the matrix P ∈ R𝐷×𝐶 represent weighted document-

category scores with the weights x applied to the terms. Each score in P is denoted

𝑝𝑑𝑐 for document 𝑑 and category 𝑐, and in particular 𝑝𝑑,𝑦𝐴𝑇
𝑑

represents the score for

document 𝑑 corresponding to the preliminary category label 𝑦𝐴𝑇
𝑑 . Additionally, each

element ℎ𝑑 of the auxiliary variable vector h ∈ R𝐷 represents the highest weighted

document-category score for document 𝑑 corresponding to any category other than

𝑦𝐴𝑇
𝑑 . Finally, the input data in the optimization problem consist of document-term

frequencies F ∈ Z𝐷×𝑉 and category-term importance scores S ∈ R𝐶×𝑉 .
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Using these decision variables and data, the following linear program is formulated:

max
x,h,P

𝐷∑︁
𝑑=1

(︁
𝑝𝑑,𝑦𝐴𝑇

𝑑
− ℎ𝑑

)︁
s.t. 𝑝𝑑𝑐 =

𝑉∑︁
𝑣=1

𝑓𝑑𝑣 · 𝑥𝑣 · log(𝑠𝑐𝑣), ∀𝑑 ∈ [𝐷], 𝑐 ∈ [𝐶]

ℎ𝑑 ≥ 𝑝𝑑𝑐, ∀𝑑 ∈ [𝐷], ∀𝑐 ̸= 𝑦𝐴𝑇
𝑑

x ∈ [0, 1]𝑉 ,h ∈ R𝐷,P ∈ R𝐷×𝐶

(3.3)

The constraints in problem (3.3) enforce the interpretation of the auxiliary vari-

ables described above. The objective, called the maximum separation objective, is

designed to place high weights on terms that increase the confidence of the prelimi-

nary category predictions, i.e., the score of the preliminary predicted category is much

higher than the scores of the other categories.

The maximum separation objective incentivizes high weights on terms with both

of the following properties. First, the maximum category-term importance score

should be significantly higher than the remaining category-term importance scores.

This property measures a term’s specificity to a single category based on the category

descriptions. Second, a high-weight term should appear primarily in documents where

the preliminary label matches the category associated with the maximum category-

term importance score. This second property measures the consistency of a term’s

usage when comparing the document corpus to the category descriptions.

Terms that are both specific and consistent tend to increase 𝑝𝑑,𝑦𝐴𝑇
𝑑

relative to the

scores for other categories, thereby increasing the positive separation between 𝑝𝑑,𝑦𝐴𝑇
𝑑

and ℎ𝑑. However, terms that are either specific or consistent, but do not have both

properties, are less likely to receive high weights. Terms with low specificity are not

able to meaningfully add to the difference between 𝑝𝑑,𝑦𝐴𝑇
𝑑

and ℎ𝑑 for any document,

and terms with low consistency may meaningfully decrease the separation objective

for certain documents.

A critical aspect of the formulation of problem (3.3) is that 𝑝𝑑,𝑦𝐴𝑇
𝑑

is not required to

be the highest score for document 𝑑. In order to increase the separation objective for
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the majority of documents, the optimal term weights may induce category predictions

for the remaining documents that do not agree with the preliminary labels. For

these documents, the difference 𝑝𝑑,𝑦𝐴𝑇
𝑑

− ℎ𝑑 would be negative, suggesting that the

preliminary label for document 𝑑 should be revised to the category associated with

the score ℎ𝑑. The premise of the Key Term Labeling procedure is that the revised

label predictions, based primarily on specific and consistent terms, are more likely to

reflect the ground truth than the preliminary label predictions.

If the optimal term weights obtained by solving problem (3.3), denoted x̃, are

integral, then this solution vector has a clear interpretation. Any term 𝑣 where

𝑥̃𝑣 = 1 is chosen for inclusion in the revised document-category predictions, and the

rest of the terms are excluded. Since integrality is not guaranteed, x̃ is converted to

an integral solution x* by setting all non-integral values equal to 0.

The choice of x* enables the calculation of key term category scores P𝐾𝑇 ∈ R𝐷×𝐶

and the vector of revised label predictions 𝑦𝐾𝑇 (Figure 3-4a):

P𝐾𝑇 = F · 𝑑𝑖𝑎𝑔(x*) · log(S𝑇 ) (3.4)

𝑦𝐾𝑇 = argmax𝑐 P
𝐾𝑇 (3.5)

In the second stage of the Label Augmentation step, a supervised classifier is fit

using 𝑦𝐾𝑇 as labels for the input documents and F as the feature matrix. The final

predicted labels from the Label Augmentation step are the “in-sample” predictions

of the supervised classifier on F, which we denote 𝑦𝐾𝑇−𝐶 . Additionally, the fitted

supervised classifier could be used to make category predictions for a new batch of

unseen input documents. This scenario would be most relevant when the original

input documents used to fit the supervised classifier are unavailable, and thus the

DCRI method cannot be rerun on a combined dataset of the original and unseen

documents.

Note that any classification algorithm could be employed during the Supervised

Labeling stage. The specific one used in the proposed algorithm is the linear Com-

plement Naive Bayes algorithm [37]. This classifier has been shown to exhibit per-
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formance competitive with other standard classifiers on document classification tasks

with the added benefit of providing particularly strong performance on datasets with

class imbalance [37]. Though the key term predicted labels are likely to contain er-

rors, existing literature has shown Naive Bayes classifiers to be highly robust to label

noise [28]. Therefore, it is reasonable to expect that the accuracy of the final pre-

dicted labels 𝑦𝐾𝑇−𝐶 could approach the accuracy of a supervised classifier trained on

F and the (unavailable) true category labels for the input documents.

(a) Key Term Labeling

(b) Supervised Classification

Figure 3-4: Label Augmentation step of the DCRI method. Label Augmentation
consists of two sequential procedures. Figure 3-4a illustrates the first procedure, Key
Term Labeling, which generates a new set of category predictions for each document
(𝑦𝐾𝑇 ) based on an optimized subset of key terms from the vocabulary. Figure 3-4b
shows the second procedure, which yields the final category predictions (𝑦𝐾𝑇−𝐶) by
training a supervised classifier on the document term frequencies and estimated labels
𝑦𝐾𝑇 .

To provide further intuition regarding the value of the Label Augmentation step,
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it is instructive to consider the NG dataset in detail. Figure 3-5 plots each term

in the vocabulary of the NG dataset as a point. The x-axis value estimates the

“true” specificity of each term within the document corpus using a metric called

the document corpus importance score. Similar to the category-term importance

scores (S), the document corpus importance scores are TF-IDF scores calculated

for each term and for each category. However, instead of the category descriptions,

the document corpus importance scores utilize as the text for each category 𝑐 the

concatenated set of documents whose ground-truth label is 𝑐. The x-axis value for

a term 𝑣 is the difference between the highest document corpus importance score,

which corresponds to category 𝑐*𝑣, and the second highest score, which corresponds

to category 𝑐
′
𝑣. The y-axis value for term 𝑣 measures the difference between the

category-term importance score (from S) for category 𝑐*𝑣 and the highest remaining

category-term importance score, corresponding to category 𝑐𝑣.

Figure 3-5 demonstrates that some words in the NG vocabulary are much more

useful for making category predictions than others due to differences between the

category descriptions and the document corpus. To show this, three types of terms

are highlighted in Figure 3-5. Terms with high positive values on both axes are both

highly specific to category 𝑐*𝑣, since this category has a much higher importance score

than the other categories, and also highly consistent, since 𝑐*𝑣 has the highest score

in both the document corpus and the category descriptions. Examples of such terms,

which are called simply specific terms, are highlighted in blue. For these examples,

𝑐* = space, and qualitatively it is clear the presence of any of these terms in a

document strongly indicates that the document discusses a space-related topic.

Alternatively, y-axis values close to zero, such as the terms highlighted in green,

are called low-signal terms. The lack of separation in category-term importance scores

means that these terms do not contribute meaningfully to category predictions. Fi-

nally, terms with negative y-axis values are called misleading terms. These terms are

not consistent, since the category with the highest importance score differs between

the category descriptions and the document corpus. Misleading terms, such as the

examples highlighted in orange, pose a problem for the category predictions since
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Figure 3-5: Term specificity and consistency between documents and category de-
scriptions in the NG dataset. Each point represents a term 𝑣 in the vocabulary.
Examples of specific and consistent terms for the space category are highlighted in
blue. Examples of low-signal terms are highlighted in green, and misleading terms
are shown in orange.
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they appear to provide a signal for a particular category based on the category de-

scriptions, but this signal is not correct. These terms are often not easily qualitatively

associated with a particular category, and the apparent specificity of the category-

term importance scores occurs due to random variation in word choice across category

description authors.

The goal of the Label Augmentation step, and the Key Term Labeling procedure in

particular, is to remove the impact of misleading terms from the category predictions

while retaining the specific terms. Figure 3-6 shows an example of how this strategy

can strictly improve upon the preliminary label predictions for two documents in

the NG dataset, both of which have space as the ground-truth category label. The

figure shows the difference between the space category importance score and the cars

category importance score for a subset of words that have been manually identified as

specific, low-signal, and misleading. The last row indicates the net difference summed

across all words, so the sign of this difference indicates the preliminary category label

for the document. In Figure 3-6a, the effect of specific terms outweighs the effect of

the misleading terms, leading to a correct preliminary label. However, in Figure 3-6b,

several very misleading terms are present, and the cumulative impact is large enough

to induce an incorrect preliminary label. Note that if the category prediction were

made based on the specific terms alone, both category predictions would have been

correct.

3.4 DCRI Performance Evaluation

This section presents the experimental results on the three datasets described in

Section 3.2. Recall that these datasets contain ground-truth labels for the documents

that allow for evaluation of the classification accuracy of the DCRI method and

competing methods. The results presented in this section test the following aspects

of the DCRI method:

1. Classification accuracy of the final DCRI method category predictions

58



(a) Document 7: Correct Preliminary Label (b) Document 770: Incorrect Prelim. Label

Figure 3-6: Impact of specific, low-signal, and misleading terms on the preliminary
label predictions. In both examples, the true label is space. The Total row in each
subfigure indicates the difference in the preliminary label category scores for the space
and cars categories. A positive value indicates that the preliminary category score for
space is highest, and a negative value indicates that the preliminary category score
for cars is highest.

2. Classification performance relative to alternative methods for incorporating cat-

egory description information, specifically Latent Dirichlet Allocation (LDA)

and semi-supervised Multinomial Naive Bayes (MNB)

3. The value of the Key Term Labeling optimization procedure, measured by the

accuracy of the revisions that the key term label predictions make to the pre-

liminary label predictions

4. The degree of manual labeling effort required for a fully supervised approach to

achieve equivalent classification accuracy to the DCRI method

3.4.1 DCRI Method Classification Accuracy

Figure 3-7 shows that the final DCRI method category predictions are highly accurate

with respect to the ground-truth labels for the three datasets. To put these results in

context, the DCRI method is compared to a theoretical supervised classifier trained on

the input documents and the ground truth category labels, referred to as the Oracle

classifier. The form of the Oracle classifier is an L2-regularized logistic regression,

and 5-fold cross validation is used to obtain an out-of-sample predicted label for each
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Figure 3-7: DCRI accuracy, relative to the supervised Oracle classifier. The super-
vised Oracle classifier is a logistic regression trained on the ground-truth labels. The
out-of-sample accuracies are shown in this figure, calculated using 5-fold cross vali-
dation.

document in the dataset. The out-of-sample classification accuracy of the Oracle is

shown in Figure 3-7, and this accuracy can be thought of as an approximate upper

bound on the accuracy that a user could expect from an unsupervised method like the

DCRI method. For the Pharma and NG datasets, the accuracy of the DCRI method

is within 1.5% of the Oracle accuracy, while the gap is larger, approximately 8%, on

the BBC dataset.

3.4.2 Benchmark Method Comparison

In this section, the DCRI method is compared to several alternative machine learn-

ing methods based on either the unsupervised Latent Dirichlet Allocation (LDA)

model [5] or the semi-supervised Multinomial Naive Bayes (SSMNB) model [31].

The standard unsupervised LDA model is unable to consistently partition the

documents into clusters that represent the desired categories, highlighting the need for

the category descriptions. Two LDA-based approaches that incorporate the category

descriptions are considered, Matched LDA and Informed LDA, but the classification

accuracies of these approaches underperform the DCRI method’s accuracy by between

4-20% across the three datasets. The DCRI method also outperforms SSMNB by 1.4-

5.7% on the two datasets with the most informative category descriptions, though the

accuracy of SSMNB is 8% higher on the BBC dataset where the category descriptions

are less informative.
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Latent Dirichlet Allocation

LDA is an unsupervised probabilistic method for document clustering which takes an

unlabeled corpus of input documents and a prespecified number of topics 𝑘 as input.

The underlying generative model assumes the existence of 𝑘 unobserved topics param-

eterized by topic-specific multinomial models over the words in the vocabulary, and

each input document is represented as a mixture over these topics. Each word in each

input document is assumed to be sampled independently from this document-specific

mixture distribution. Therefore, the LDA model parameters consist of the multino-

mial parameters for each topic as well as the topic mixture weights for each input

document. The parameters are typically estimated using variational methods [18],

and the maximum topic mixture weight can be used to assign a topic prediction to

each document after fitting.

The drawback of LDA for the settings studied in this chapter is that LDA is unable

to incorporate prior knowledge about the content of the topics into the standard

parameter estimation procedure. This deficiency is evident when LDA is performed

on the documents in the Pharma dataset, specifying 𝑘 = 5 to match the known

number of categories. Ideally, each of the five topics would correspond to a unique

category. However, Figure 3-8 shows that topics 1, 2, and 3 contain a meaningful

fraction of documents from at least two different categories. Furthermore, topics

4 and 5 are both primarily comprised of documents from the process monitoring

category. This example shows that the topics obtained by the standard LDA model

are not guaranteed to map one-to-one onto the desired categories, a general problem

that renders unsupervised clustering approaches unsuitable for this setting.

Matched and Informed LDA

Instead of a fully unsupervised approach, two alternative methods that incorporate

the category description information into the LDA model, Matched LDA and Informed

LDA, are proposed as benchmarks for the DCRI method. Matched LDA performs a

post-processing step on the fitted LDA parameters and matches the topic-term multi-
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Figure 3-8: Distribution of documents across true category labels for each LDA pre-
dicted topic in the Pharma dataset. LDA topics 1, 2, and 3 contain documents from
multiple categories, while topics 4 and 5 both primarily contain documents from the
process monitoring category.

nomial distributions to the empirical category-term distributions estimated from the

category descriptions. Every topic-category assignment is considered and the match-

ing with the lowest root mean squared error (RMSE) is retained. Note that while

this matching step forces a one-to-one correspondence between the topics and cate-

gories, the LDA parameter estimation procedure remains divorced from the category

definitions, so there is no guarantee that a high-quality matching exists.

Informed LDA, which was proposed in [25], incorporates the category informa-

tion directly into the LDA parameter estimation procedure, alleviating the need for

the post-processing step in Matched LDA. The Informed LDA method proposes to

use the empirical category-term distributions from the category descriptions as priors

for the topic-term multinomial distributions, creating the necessary one-to-one corre-

spondence between the LDA topics and the categories. These priors are incorporated

directly into the variational procedure for parameter estimation.

In the experimental results, the Matched LDA and Informed LDA category pre-

dictions are considered as benchmarks for the key term label predictions made by the

DCRI method during the Label Augmentation step before applying the Supervised
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Figure 3-9: DCRI accuracy comparison to benchmarks. Each cell represents the
prediction accuracy for a particular model on a particular dataset relative to the
ground-truth labels. The Preliminary Labels, Key Term Labels, and Final DCRI
columns represent the accuracies of the initial, intermediate, and final predictions of
the DCRI method, respectively. Bold cells indicate the predictions with the highest
accuracy. All accuracy differences within a delineated section for a single dataset are
statistically significant with 𝑝 < 0.001. Additionally, the accuracy differences between
the Final DCRI and emi-supervised MNB predictions are also statistically significant
with 𝑝 < 0.001.

Labeling procedure. The first four columns of Figure 3-9 demonstrate that Matched

LDA and Informed LDA perform poorly relative to the DCRI method predictions.

Both LDA methods consistently underperform the key term label predictions by a

margin of at least 5% and up to 57%, and the classification accuracy of both methods

varies massively across the three datasets. In fact, the LDA methods also underper-

form the preliminary label predictions made by the DCRI method before the Label

Augmentation step. Note that all accuracy differences between the the LDA-based

methods and the DCRI method are statistically significant with 𝑝 < 0.001 calculated

from 30 bootstrap samples [13].

Recall that the final label predictions from the DCRI method are obtained from

a CNB supervised classifier trained using the document term frequencies as features

and the key term label predictions as labels. The classification accuracy of the DCRI

method’s final predictions is shown in the seventh column of Figure 3-9. The fifth and

sixth columns of Figure 3-9 represent the accuracies of the CNB supervised classifier

trained using label predictions from Matched LDA and Informed LDA, respectively,

during training. Though the CNB classification layer is almost universally beneficial,

the LDA methods still exhibit meaningful accuracy variation and underperform the

DCRI method across all three datasets. After the application of the CNB classifier,
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the accuracy differences between the LDA-based methods and the DCRI method

remain statistically significant with 𝑝 < 0.001.

Semi-Supervised Multinomial Naive Bayes

The Multinomial Naive Bayes (MNB) classifier is a popular document classification

algorithm that can be applied in a supervised or semi-supervised setting. The under-

lying generative model for the MNB classifier assumes that each input document has

a single associated category, and each word in each document is sampled indepen-

dently according to a category-specific multinomial distribution. In the supervised

setting, the maximum likelihood estimates for the multinomial parameters yield a lin-

ear classifier that motivates the form of the DCRI preliminary label scores (equation

3.1).

In a semi-supervised setting with both labeled and unlabeled input documents,

the iterative Expectation Maximization (EM) algorithm can be used to obtain max-

imum likelihood parameter estimates [31]. SSMNB is implemented as a benchmark

algorithm for the DCRI method by treating the category descriptions as individual

labeled documents along with the unlabeled input documents. SSMNB is similar to

the DCRI method in its initial treatment of the category descriptions as labeled input

documents. However, the DCRI method explicitly corrects for the difference between

the category descriptions and input documents in the Label Augmentation step, while

SSMNB relies on the EM iterations to converge to parameter estimates that represent

the input documents. An empirical comparison demonstrates the relative efficacy of

these two correction mechanisms.

The DCRI method outperforms the SSMNB predictions on the Pharma and NG

datasets, but SSMNB exhibits the best performance on the BBC dataset (Figure 3-9,

second to last column). These mixed results can be attributed to two factors, (1)

the quality of the category descriptions is higher for the Pharma and NG datasets,

and (2) the effect of the EM procedure on classification accuracy is inconsistent and

highly sensitive to violations of the underlying MNB model assumptions. The two

factors are discussed in more detail below.
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First, the Pharma and NG category descriptions provide superior information for

document classification relative to the BBC dataset. This claim is substantiated by

calculating the document corpus importance scores referred to in Section 3.3.3, which

are TF-IDF scores for each term and each category calculated using the document

corpus and the true labels. The document corpus importance scores are compared

to S, the category term importance scores based on the category descriptions. Also

recall from Section 3.3.3 that a term is denoted as consistent if the category with

the maximum true category importance score matches the category with the highest

importance score based on the category descriptions. The fraction of consistent terms

is substantially higher for the Pharma and NG datasets (0.44 and 0.51, respectively)

than the BBC dataset (0.31). The relative consistency between the documents and

category descriptions in the Pharma and NG datasets enables the DCRI method to

achieve accuracy close to that of the Oracle classifier, as discussed previously.

Second, the EM procedure is detrimental to classification accuracy for the Pharma

and NG datasets but useful on the BBC dataset. The inconsistency of EM is a draw-

back of the SSMNB algorithm that has been observed in prior literature, particularly

when a latent sub-category structure exists in the true document-generating distri-

bution at a higher level of granularity than the categories that are modeled [30]. This

sub-category structure is a violation of the assumed MNB generative model, which

posits that the only latent category structure in the true document-generating dis-

tribution is the structure that is modeled. If the latent sub-categories span multiple

modeled categories, then the EM procedure can yield poor classification results when

measured against the modeled categories.

While the presence of latent sub-categories is difficult to measure directly, a high

degree of separation between the modeled categories suggests that any latent sub-

categories are unlikely to span multiple modeled categories. To test the separation

between the modeled categories in each dataset, the documents are assigned to clus-

ters based on their ground-truth category labels. According to the Calinski-Harabasz

Index (CHI) [7], a clustering evaluation metric that measures the ratio of between-

category document distances to within-category document distances, the BBC cat-
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egories are more than twice as well-separated (CHI = 24.7) than the Pharma (CHI

= 10.5) and NG (CHI = 11.4) categories. The high cluster separation for the BBC

dataset is likely associated with the relative success of EM on this dataset.

3.4.3 Value of Key Term Optimization

This section specifically illustrates the value of the Key Term Labeling optimization

procedure within the DCRI method. Figure 3-10 shows the difference in accuracy

between the preliminary label predictions 𝑦𝐴𝑇 and the key term label predictions

𝑦𝐾𝑇 made before the Supervised Labeling procedure is applied. Overall, the key term

predicted labels outperform the preliminary labels on all three datasets by 2.3-8.6%.

The key term predictions achieve this performance improvement by revising a modest

fraction of observations, 5-12%, with a very meaningful increase in predictive accuracy

(31 - 73%) on these revisions.

Figure 3-10: Accuracy difference between preliminary predicted labels using all terms
and the revised key terms predictions after the Key Terms Labeling procedure. The
second column indicates the accuracy difference on only the documents where the
predictions differ. The third column is the product of the first and second columns.

To illustrate that the Key Term Labeling procedure achieves these improvements

by retaining specific terms and ignores misleading generic terms as desired, Figure

3-11 revisits document 770 from the NG dataset discussed in Section 3.3.3. The

Preliminary Labeling procedure predicts the incorrect label (cars) for this document

due to the effects of misleading generic terms (Figure 3-11a). After applying the

Key Terms Labeling procedure, Figure 3-11b shows that three of the four misleading

generic terms, “small”, “died”, and “keeping” are ignored, while the terms specific to

the correct category (space), “lunar”, ”moon”, and “environment”, are retained. Thus,

the key term label prediction for document 770 is correct.
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(a) Preliminary Category Scores (b) Key Terms Category Scores

Figure 3-11: Preliminary vs Key Terms Category Scores for Document 770 in the NG
dataset. The true label is sci.space. This figure shows that the Key Terms Labeling
procedure successfully retains all specific terms while discarding four of five misleading
generic terms.

Finally, Figure 3-12 compares the confusion matrices for the preliminary and key

term predictions across the three datasets. Figures 3-12b and 3-12c indicate that Key

Term Labeling yields a broad-based accuracy improvement across all categories for

the NG and BBC datasets. For the Pharma dataset (Figure 3-12a) the accuracy im-

provement is narrowly concentrated in distinguishing the process monitoring category

from the maintenance and sample processing categories.

Further examination of the key terms selected by the key term optimization in

the Pharma dataset indicates that the optimization ignores the names of sensors

and sample collection equipment. This is expected because the names of the sen-

sors and sample collection equipment are not used consistently. Among the category

descriptions, the sensors are specifically referenced by name primarily in the process

monitoring description. However, the sensor names are mentioned in the documents

associated with both maintenance and process monitoring. Similarly, sample collec-

tion equipment is referenced primarily in the sample processing category description,

but since sample processing and process monitoring both occur while the bioreac-

tor is running, references to sampling equipment can appear in process monitoring

documents.

Similar confusion matrices analyzing the impact of the Supervised Classification

procedure can be found in Appendix B.5.
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(a) Pharma dataset

(b) NG dataset

(c) BBC News dataset

Figure 3-12: Confusion matrices for the Preliminary Labels and Key Terms (KT) label
predictions. Each cell of the confusion matrix contains the number of documents in
the first row, and the second row gives the fraction with respect to the row total and
then the fraction with respect to the column total.
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3.4.4 Manual Labeling Comparison

The natural alternative to using category descriptions to inform label predictions is

a more manual approach. Specifically, a subset of the input documents is manually

labeled and used to train a supervised classification algorithm, which can subsequently

predict the labels for the remaining documents. To construct the supervised classifier,

a subset of documents is sampled uniformly at random from the document corpus.

The documents in this subset are assumed to be labeled correctly by an expert and

are used to fit a supervised CNB classifier. In this section, the manual labeling burden

necessary to generate a supervised classifier with superior performance to the DCRI

method is quantified.

The performance of the supervised classifier is compared to the DCRI method in

two settings. First, the accuracy of the supervised classifier and the DCRI method are

evaluated on the full corpus of input documents, which is denoted the “fixed corpus”

setting. This comparison is designed to determine the fraction of documents that

must be manually labeled so that the accuracy of the supervised classifier on the full

document corpus is statistically equivalent to the accuracy of the DCRI method. This

setting is the appropriate comparison if the metric of interest is classification accuracy

on the documents available at the time of training. Alternatively, a “dynamic corpus”

setting is considered, where the metric of interest is classification accuracy on new

documents not available when training the supervised classifier. In this setting, only

the documents not chosen for expert labeling are relevant for the accuracy comparison.

Table 3.2 shows that, in the fixed corpus setting, an expert must label 25-30% of

documents to train a classifier with equivalent performance to the DCRI method on

the Pharma and NG datasets. This fraction is slightly lower for the BBC dataset at 15-

20%, though this still translates to a nontrivial labeling effort of 223-298 documents.

In the dynamic corpus setting, the subset of expert-labeled documents would need to

be large for the Pharma and NG datasets, over 90% and 60-70% of the documents

respectively, while 15-20% of the input documents remains sufficient for the BBC

dataset.
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Fixed Corpus Dynamic Corpus

Pharma 25− 30% > 90%
NG 25− 30% 60− 70%
BBC 15− 20% 15− 20%

Table 3.2: Minimum required percentage of documents that would need to be manu-
ally labeled for a supervised classifier to outperform the unsupervised pipeline. Fixed
corpus setting gives credit for a correct “prediction” to all manually labeled docu-
ments. Dynamic corpus setting only evaluates performance on the documents that
are actually predicted, providing a sense of performance on unseen data.

3.5 Conclusions

The DCRI method proposed in this chapter offers a method for automatically cate-

gorizing documents in a setting where the categories are known but a labeled training

set of documents is unavailable. The standard approach in this setting is to manually

label some or all of these documents, training a supervised classification algorithm to

predict the labels of the remaining documents. The DCRI method effectively replaces

the training set of labeled documents, which is often difficult and expensive to obtain,

with written reference information about the document categories that is assumed to

be easily accessible. The Label Augmentation step in the DCRI method explicitly

adjusts for the fact that the reference descriptions of the categories are not written

by the same authors or for the same purpose as the unlabeled input documents.

Empirical results on three datasets demonstrate that a significant manual label-

ing effort, between 15-30% of the dataset, is required to match the accuracy of the

DCRI method on a fixed corpus of documents. A larger set of labeled documents is

generally required to create a supervised classifier that is competitive on new batches

of unlabeled input documents, indicating that DCRI method is more scalable than

manual labeling.

This chapter demonstrates that the DCRI method performs well in comparison

to other benchmark approaches for integrating category description information into

document classification algorithms. The Key Term Labeling optimization procedure

imposes sparsity that effectively corrects for differences between the input documents
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and category descriptions, an adjustment that is not possible when existing clustering

or topic modeling algorithms such as LDA. SSMNB is unable to consistently outper-

form the DCRI method, though SSMNB does offer superior performance for one of

the three datasets.

The empirical results demonstrate that the DCRI method can effectively substi-

tute existing reference documentation in place of a labeled training set in certain

unsupervised document classification settings.
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Chapter 4

A Two-Stage Machine Learning

Model for Defect Detection in Optical

Transceiver Manufacturing

4.1 Introduction

Quality control is a critical aspect of the management of manufacturing lines, par-

ticularly of high-tech products that require high reliability. To obtain the desired

quality, the design and operations of manufacturing lines include a variety of tests

throughout the production process with the goal of identifying and hopefully elim-

inating quality problems at early stages. Many of these tests are conducted using

dedicated machines and equipment, but the final determination of whether the test

results signal a quality problem is often performed by highly skilled human experts.

The use of highly skilled personnel to conduct repetitive tasks is not only costly, but

potentially leads to inconsistent outcomes that could depend on specific individuals

and their respective knowledge, training and expertise. This motivates the need to

develop machine learning-enabled automation of the review of quality tests results.

However, methods for optimally designing the interactions between advanced ma-

chine learning algorithms and human experts remains an open question. Specifically,
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while machine learning algorithms can leverage massive amounts of historical data,

in many cases, the subject matter expertise of human experts and their awareness of

contextual factors is still critical.

This work is based on collaborative work with an industry partner, a manufac-

turer of optical communication equipment. One of the products manufactured by this

partner is a optical transceiver called a Quad Small Form factor Pluggable (QSFP)

that interfaces between fiber optic cables and network hardware, such as servers. The

key role of the QSFP is to convert between electrical and optical signals using lasers

and photo diodes to transmit and receive optical signals, respectively. This work

focuses on a critical laser quality test that is run near the end of the manufacturing

process to evaluate the reliability of the transceiver when operating at high tempera-

tures. While standard supervised classification algorithms have been applied broadly

to quality test review [43, 51, 57, 29], the machine learning approach developed in this

work explicitly integrates the operator process knowledge into the underlying models

and algorithms.

This chapter proposes a two-stage machine learning classification model, called R-

RF, that is able to make automated pass/fail decisions for the laser quality test and

drastically reduces the need for manual review of test logs. The proposed approach

codifies the operator’s qualitative observation that some modules are much easier to

classify than others. Thus, in the first stage, a simple rules-based classifier with data-

driven thresholds is applied to all modules to identify the clearly passing modules

with very high accuracy. These thresholds are determined through a data-driven

optimization model. Any module that cannot be passed in the first stage is advanced

to a second stage random forest classifier [6] trained specifically to make pass/fail

predictions on modules that cannot be classified in the first stage. Modules that are

not passed by the second stage are routed to the operator for manual inspection.

Motivated by the specific manufacturing setting, the performance of the proposed

model is measured by its ability to minimize the fraction of modules that require

manual review subject to a maximum false omission rate (FOR) upper bound (max-

imal fraction of modules predicted to pass that actually fail). Assessment on out-of-
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sample real data suggests that the model is able to reduce the manual review burden

on the operator by 75-99% while on average satisfying the FOR upper bound. As a

benchmark, the performance of the newly proposed two-stage classifier is compared

to existing state-of-the-art tree-based algorithms, and R-RF is superior in reducing

manual review at the expense of slightly inferior false omission rate (FOR) control.

Section 4.2 provides background on the QSFP manufacturing process and the

MBI test, and describes the data generated during a MBI test run. Section 4.3

details the structure and training of the two-stage R-RF model, including training and

hyperparameter optimization procedures. Section 4.4 describes experimental results

run on two datasets from our industrial partner and compares the R-RF model to

several benchmark models, and Section 4.5 concludes.

4.2 Setting and Data Description

4.2.1 QSFP Manufacturing and Quality Testing

A QSFP transceiver, also known as a module, consists of three primary subassembly

components, a transmitting component (TOSA) that outputs an optical signal via

lasers, a receiving component (ROSA) capable of reading an input optical signal via

photo diodes, and a programmable control unit (PCBA). The TOSA unit has four

output channels, called waveguides, each with its own laser that outputs an optical

signal at a specific wavelength when electrical current is applied. Similarly, the ROSA

unit has four input waveguides, each with a distinct photo diode that can read an

incoming laser signal.

Figure 4-1a illustrates the process flow diagram for the QSFP manufacturing pro-

cess. In the first stage of the QSFP manufacturing process, the TOSA, ROSA, and

PCBA are manufactured and tested independently. The second stage of the process

involves assembly of these three components, followed by a series of final tests of the

assembled module. This final functional testing sequence includes the module burn-in

(MBI) test, the focus of our failure modeling, as well as a collection of other qual-
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ity tests. After final functional tests, the QSFP is calibrated and receives a quality

control inspection before shipment.

(a) Process Flow Diagram

(b) Module Configuration for Burn-In (c) Module Burn-In Test Rack

Figure 4-1: QSFP Manufacturing and Testing Process

The MBI test is the key test of post-assembly laser quality. During the test, the

TOSA output waveguides are connected to the ROSA input waveguides (Figure 4-

1b). By running the lasers at a high temperature (70 degrees Celsius) for an extended

period of time (24-44 hours), the test operator determines if both the lasers and

receiving diodes are able to function reliably under stressful conditions. Figure 4-1c

shows a MBI test oven, which can test up to 120 lasers in parallel during a single run.

During the MBI test, automated sensors record readings approximately once every

six minutes for each module. These sensors measure the electrical current applied and

the resulting optical power output at each of the four TOSA lasers, the power at each

receiving ROSA photo diode, the voltage level at the TOSA and ROSA, and the

module temperature. The objective of the MBI test is to ensure that all of the power,

voltage, and current measurements are stable when the module is run for an extended
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period under high temperature conditions. A module fails the MBI test when one of

the following occurs:

1. High variability in either the power output readings from the TOSA lasers

or the power received readings from the ROSA photo diodes indicates that the

module is not performing reliably under the stressed conditions. Variability in

the voltage and current readings is also a concern, though this rarely leads to

test failures.

2. Divergence between the power readings of four laser positions indicates a

problem with a subset of the lasers.

3. Very low power readings near the beginning of the test run.

Currently, a skilled engineer manually reviews the logs of sensor data for each

individual module test run (∼60,000 per year) to determine if the module should pass

the MBI test, a process that requires between 2-10 hours per week. The engineer

employs a set of heuristically-derived thresholds on four features as well as visual

inspection of the logs to determine which modules are defective. Specifically, the

engineer passes modules that satisfy the thresholds on all four features with minimal

review and then closely inspects the modules that do not satisfy these thresholds. The

underlying assumption that motivates this approach is that some of the modules can

be easily identified as passing via a small set of simple rules, while for the remaining

modules the pass/fail decision is more difficult and requires additional inspection of

the logs.

4.2.2 Module Burn-In Test Data

Two experimental datasets are used to test the proposed R-RF method, a dataset from

September 2019 - May 2020 consisting of 21,577 test runs and a dataset from August

2020 - June 2021 consisting of 32,065 test runs. These datasets consist of all runs

that exhibit no significant measurement errors. Runs with abnormally infrequent

measurements, a high fraction of missing values, zero variability in TOSA optical
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power (indicating test setup failure), or unstable module temperature are excluded

from the dataset. In an automated test review setting, these module runs could be

identified and designated for retesting before applying the R-RF model using the

same simple screening rules applied in this chapter.

Each test run has a record of the associated Pass or Fail label that was assigned

manually by the operator. In practice, the operator may have determined that an

MBI result was inconclusive and run the MBI test again for this module. In this

chapter, the eventual Pass or Fail label is assigned to the initial MBI test run for each

module, regardless of whether the module was retested. A machine learning classifier

that is able to accurately determine the correct final label using only features from

the first test adds additional value by reducing the need for module retests.

Both datasets exhibit a significant class imbalance due to low failure rates. The

failure rate in the 2020-2021 dataset is even lower than the 2019-2020 dataset is due

to the addition of a new quality control test at the laser supplier for lasers in the 2020-

2021 modules. Since this change was known to our industrial partner and marked a

clear regime switch, the two datasets were modeled separately.

The raw feature data for each module consists of the time series sensor readings,

as mentioned in Section 4.2.1. Based on these sensor readings, 𝑑 = 20 scalar features

are created. These features represent summary statistics of the time series and serve

as the input to our classification model. For convenience when training the R-RF

model, these features are scaled such that a high value of the feature indicates an

increased likelihood of MBI test failure.

The features are designed to capture the MBI test failure modes documented in

the preceding section. For example, there are features that measure the range of

TOSA power for each of the four lasers and use the maximum range as an indication

of overall variability in TOSA power for the test. Most of the features, including the

TOSA power range, ignore the beginning and end of the test period when the oven

temperature is warming up and cooling down. The intervening steady temperature

period is identified using a simple threshold on the change in module temperature.

For more details on the steady temperature period calculation and summary statistics
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for the full list of features, please see Appendix C.

4.2.3 Examples of Easy and Complex Pass/Fail Decisions

Figure 4-2 illustrates the motivation for a two-stage classification approach by consid-

ering three instances of MBI test runs. In Figure 4-2a, the TOSA and ROSA power

readings show almost no variation through the steady temperature period, indicating

no variability in operating performance. Module runs with this profile could be easily

identified with a strict threshold on the maximum range of the power readings during

the steady temperature period.

However, Figure 4-2b shows the power readings for another passing module where

the decision is not as obvious. This module has some noise in the ROSA power

readings and slight variation in TOSA power for laser 1, but the variation was deemed

tolerable and the power readings for all lasers are tightly correlated, so the module

was passed. The module in Figure 4-2c exhibits very little noise, but laser 3 deviates

from the trend of the other lasers in both the TOSA and ROSA readings, so this

laser is deemed defective and the module fails the MBI test. The example in Figure

4-2c is illustrative because subtle variation in laser 3’s power readings in either the

TOSA or the ROSA plot might be attributed to measurement noise, but the presence

of the same signal in both plots yields the failure result. The failure decision in this

case involves the interaction between multiple features, which is better captured by

a tree-based machine learning model than a set of simple rules.

These examples motivate the use of a simple, rules-based classifier to separate

modules with little to no variability from the rest of the modules, and a more complex

classifier to distinguish borderline passing modules from the ones that should fail.

4.3 R-RF Model Description

The R-RF model is a two-stage classification model that takes as input a module’s raw

log data from the MBI test and designates a subset of modules to be automatically

passed. The modules marked for Automatic Pass are considered to have passed the
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(a) MBI Result: Pass. Easily identified due to lack of variability during steady temper-
ature period.

(b) MBI Result: Pass. Borderline decision.

(c) MBI Result: Fail. Borderline decision.

Figure 4-2: Examples of Easy and Complex MBI Decisions. Dotted black lines indi-
cate the boundaries of the steady temperature period.
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MBI test and do not receive further manual review, while the remaining modules are

directed to the operator for a final Pass or Fail decision. The model also takes as

input a FOR target, which specifies an acceptable fraction of the Automatic Pass

modules that would have been marked Fail by the operator. The objective of the

R-RF model is to satisfy the FOR target while minimizing the number of manually

reviewed modules that the operator marks as Pass.

Figure 4-3 demonstrates how the trained R-RF model makes a prediction for a

single MBI test run once the raw log data has been converted to the feature vector

introduced in Section 4.2.2. The first step is to apply the Stage 1 classifier, which

consists of a threshold on each of the features. If every feature value is below its asso-

ciated threshold, then the Stage 1 classifier labels the test run as an Automatic Pass.

However, if any of the thresholds is violated, then the Stage 1 classifier designates the

test run for review by the Stage 2 classifier.

The Stage 2 classifier is a random forest model consisting of 125 decision trees,

each with access to a random selection of four input features. For every test run that

is not automatically passed by the Stage 1 classifier, the Stage 2 classifier assigns a

probability that the test run should be automatically passed. A decision threshold

for this probability, calibrated during training to the prespecified FOR target, is used

to determine which of the remaining modules should be marked as Automatic Pass

and which should be retained for manual review.

Figure 4-3: R-RV Model Prediction
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4.3.1 Model Training

The R-RF model is trained using a nested cross validation procedure [44] consisting

of random outer cross validation splits to estimate the accuracy of the predictions and

an inner 𝑘-fold cross validation procedure to optimize model hyperparameters. For

each outer split, 75% of the module runs are sampled without replacement and used

for training and validation of the classifiers. This dataset is denoted 𝒟𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙. The

remaining 25% of the module runs are reserved as a held-out test set, denoted 𝒟𝑡𝑒𝑠𝑡.

The test set is used to evaluate the performance of the R-RF model according to the

realized FOR rate, manual review rate (fraction of modules that are not marked as

Automatic Pass), and precision (fraction of predicted Manual Review modules where

the true operator label is Fail). Additionally, 100 outer splits are performed to analyze

the variability of these metrics due to sampling noise.

Figure 4-4 illustrates the training procedure for the R-RF model on a single outer

cross validation split. First, a 𝑘-fold inner cross validation split is performed on

𝒟𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙. Each inner split consists of a training set (80% of the training and validation

set) denoted 𝒟𝑡𝑟𝑎𝑖𝑛 and a validation set (20%) denoted 𝒟𝑣𝑎𝑙. The purpose of the

inner cross validation is to perform hyperparameter optimization via grid search on

the maximum tree depth and decision threshold for the Stage 2 random forest, a step

that is detailed in the next section.

Once the optimal hyperparameter values have been chosen, the Stage 1 and 2

classifiers are trained on 𝒟𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙. The parameters of the Stage 1 classifier, the feature

thresholds, are trained first using a greedy optimization algorithm detailed in Section

4.3.3. The algorithm sets the thresholds to maximize the number of Automatic Pass

predictions under the strict constraint that no run can be labeled as an Automatic

Pass if the true operator label is Fail. The modules that are labeled as Automatic Pass

using the trained thresholds are removed from 𝒟𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙, and the remaining modules

are used to build the decision trees that compose the Stage 2 random forest.

Finally, the trained Stage 1 and 2 classifiers are used to make final Automatic

Pass predictions for runs in 𝒟𝑡𝑒𝑠𝑡. These test set predictions are used to calculate the
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Figure 4-4: R-RV Model Nested Cross Validation

FOR rate, manual review rate, and precision for the outer split.

4.3.2 Hyperparameter Optimization

Figure 4-5 illustrates the hyperparameter optimization procedure for a single inner

split with training dataset 𝒟𝑡𝑟𝑎𝑖𝑛 and validation dataset 𝒟𝑣𝑎𝑙. The hyperparameter

optimization uses a grid search to optimize the maximal tree depth and decision

threshold for the Stage 2 random forest by maximizing precision subject to a con-

straint on the FOR rate. In addition to the datasets, hyperparameter tuning takes in

the FOR upper bound and a grid of feasible hyperparameter values defined by a range

on each hyperparameter. The ranges are set such that the optimal hyperparameter

values lie in the interior of the ranges.

Using 𝒟𝑡𝑟𝑎𝑖𝑛, the Stage 1 feature thresholds are obtained using the greedy opti-

mization procedure described in Section 4.3.3. Then, the modules labeled for Stage

2 review are used to train a Stage 2 random forest model for each each combination

of hyperparameters in the input hyperparameter grid. The resulting collection of

Stage 2 classifiers, along with the Stage 1 thresholds, is evaluated on the 𝒟𝑣𝑎𝑙 using

a metric denoted in this chapter as conditional precision. Conditional precision is

equal to precision if the FOR is below the target rate and −𝑘 if the FOR is not
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below the target. A classifier only gets credit for its achieved precision if the FOR is

well-controlled. Additionally, the condition precision for each hyperparameter combi-

nation is calculated for each inner split and the hyperparameter selection step chooses

the combination of hyperparameters that maximizes the mean conditional precision

across the 𝑘 inner splits. Therefore, a hyperparameter combination will have a nega-

tive mean conditional precision score across all 𝑘 folds and should never be chosen if

any of the folds misses the FOR target.

Figure 4-5: R-RV Model Hyperparameter Optimization

4.3.3 Stage 1 Greedy Optimization

The choice of the Stage 1 classifier thresholds can be formulated as a constrained opti-

mization problem with the threshold vector, denoted 𝜏 ∈ R𝑑, as the decision variables.

The objective is to maximize the number of modules that are labeled as Automatic

Pass, that is the number of modules with all feature values strictly below their respec-

tive thresholds. The choice of 𝜏 is constrained such that the FOR falls below a target

value, and the R-RF model sets this FOR target to zero. The input data for this

optimization problem include a training dataset of 𝑛 module runs, denoted 𝑋 ∈ R𝑛×𝑑

and the operator labels for these runs, denoted 𝑦 ∈ {Pass,Fail}𝑛. 𝑋𝑗 denotes the

column vector of 𝑋 associated with feature 𝑗 ∈ [𝑑], where [𝑑] = {1, 2, . . . , 𝑑}. While

this optimization problem could be formulated as a nonconvex nonlinear program or
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as a mixed integer linear program, the proposed greedy approximation is significantly

more tractable at the problem sizes in our examples (15,000 module runs or more).

The proposed Algorithm 1 below takes a greedy approach to obtain a tractable

optimization procedure to set 𝜏 . To begin, note that the the FOR constraint implies a

minimum target number of true positives, modules failed by the operator that do not

pass the thresholds, that must be delivered by any feasible choice of 𝜏 . For example,

if the maximum allowable FOR is zero, then the target number of true positives,

denoted TP𝑡𝑎𝑟𝑔𝑒𝑡, is equal to the number of modules labeled Fail in 𝑦. Additionally,

note that it is possible to limit the choice of 𝜏 to a discrete set of values 𝒮, which

consists of the values that appear in 𝑋 as well as a value that is slightly higher than

the maximum feature value in 𝑋. To see this, observe that for any threshold vector

𝜏 containing values that do not appear in 𝑆, a vector 𝜏
′ can be constructed using

only values in 𝑆 with the same the number of Automatic Pass modules and the same

FOR. Based on these observations, Algorithm 1 takes as input (1) TP𝑡𝑎𝑟𝑔𝑒𝑡, and (2)

a matrix of potential thresholds 𝑇 ∈ R(𝑛+1)×𝑑 with elements 𝑡𝑖𝑗. Each column 𝑇𝑗 sets

𝑡1𝑗 = max(𝑋𝑗) + 1, and the rest of the column contains the values in 𝑋𝑗 sorted in

descending order.

The procedure starts by setting 𝜏𝑗 = 𝑡1𝑗, such that all runs in 𝑋 are initially

predicted as Automatic Pass. Clearly, the number of true positives under this initial-

ization is zero, so the thresholds must be adjusted. The procedure progresses toward

a feasible set of thresholds that achieves TP𝑡𝑎𝑟𝑔𝑒𝑡 by iteratively reducing 𝜏𝑗 for some

feature 𝑗 such that at least one incremental true positive is generated. The nota-

tion ∆TP(𝜏, 𝑗, 𝑎) indicates the number of incremental true positives introduced by

changing the threshold of feature 𝑗 from 𝜏𝑗 to 𝑎 while leaving all other elements of 𝜏

unchanged. Of course, a threshold reduction may also induce incremental false posi-

tives, modules that do not pass the thresholds but are labeled Pass by the operator,

similarly denoted as ∆FP(𝜏, 𝑗, 𝑎).

During each iteration, a threshold reduction is considered for each feature indepen-

dently holding 𝜏 constant for the other features. The threshold reduction considered

is the minimum reduction necessary to induce one or more incremental true positives.
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The threshold reduction that induces the smallest number of incremental false posi-

tives per true positive is implemented. If the number of true positives has not reached

TP𝑡𝑎𝑟𝑔𝑒𝑡, then the algorithm proceeds to the next iteration.

Algorithm 1: Greedy Rules Threshold Optimization
Input : TP𝑡𝑎𝑟𝑔𝑒𝑡; matrix 𝑇 of potential thresholds with elements 𝑡𝑖𝑗
Output: Feature thresholds 𝜏 ∈ R𝑑

Initialize row index of 𝑇 for feature 𝑗, 𝑖𝑗 = 1 ∀𝑗 ∈ [𝑑];
Initialize thresholds 𝜏𝑗 = 𝑡1,𝑗 ∀𝑗 ∈ [𝑑];
Initialize current true positives 𝑇𝑃 = 0;
while 𝑇𝑃 < 𝑇𝑃𝑡𝑎𝑟𝑔𝑒𝑡 do

𝑖
′
𝑗 = max𝑖 {𝑖 ∈ [𝑛] : ∆TP(𝜏, 𝑗, 𝑡𝑖𝑗) > 0} ∀𝑗 ∈ [𝑑];

𝒵 =
{︁
𝑗 ∈ [𝑑] : ∆FP(𝜏, 𝑗, 𝑡𝑖′𝑗 ,𝑗) = 0

}︁
;

if |𝒵| > 0 then
𝑗* = argmax𝑗∈𝒵

{︁
∆TP(𝜏, 𝑗, 𝑡𝑖′𝑗 ,𝑗)

}︁
;

else
𝑗* = argmin𝑗∈[𝑑]

{︁
∆FP(𝜏, 𝑗, 𝑡𝑖′𝑗 ,𝑗)/∆TP(𝜏, 𝑗, 𝑡𝑖′𝑗 ,𝑗)

}︁
;

end
TP = TP +∆TP(𝜏, 𝑗*, 𝑡𝑖′

𝑗* ,𝑗
*);

𝜏𝑗 = 𝑡𝑖′
𝑗* ,𝑗

* ;

end
return 𝜏

4.4 Results

This section compares the R-RF models to several standard classification model

benchmarks as well as alternative two-stage model formulations. The R-RF model is

compared to the benchmarks by measuring test set FOR, manual review rate, and

precision on 100 outer cross validation splits on the 2019-2020 and 2020-2021 datasets.

4.4.1 Benchmark Models

The performance of the R-RF model is compared to two state-of-the-art existing tree-

based classification algorithms, a gradient boosted decision tree [8] (denoted XGB

in the results) and a random forest (denoted RF). These benchmarks are used to
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determine whether the custom rules-based classifier provides better performance than

existing classifiers on the easy pass predictions, and whether existing single stage

classifiers are able to learn effective decision rules for both easy and difficult passing

modules.

Both of these algorithms were trained using the same nested cross validation

procedure described in Section 4.3.1. In addition to tuning the decision threshold as

a hyperparameter, the number of estimators was optimized as well as the maximum

delta step for the gradient boosted tree and the maximum tree depth for the random

forest. The grid search over these additional parameters is coarse, with a choice of 5

or 7 for the maximum tree depth, a choice of 100 or 125 for the number of estimators,

and a choice of 0 or 1 for the maximum delta step.

The benchmark analysis also included two alternative two-stage classifier models.

The first is a version of the R-RF that replaces the random forest with a gradient

boosted tree, denoted as R-XGB. This benchmark enables comparison of the perfor-

mance of the Stage 2 random forest against an alternative Stage 2 algorithm. The

second benchmark, denoted R-RF-All, uses the same Stage 1 and Stage 2 classifier

models as R-RF, but R-RF-All changes the training procedure for the random forest

to include all training data, rather than just the training runs not passed by Stage

1. The hyperparameter grids for the maximum delta step, number of estimators,

and maximum tree depth are the same as the grids described above for the RF and

XGB models. The difference between R-RF-All and R-RF isolates the impact of the

decision to remove the obvious passing modules from the RF training set.

4.4.2 Prediction Performance

Figure 4-6 shows the predictive performance for the R-RF model and the four bench-

marks described above for the 2019-2020 and 2020-2021 datasets using a FOR target

of 1 per 1000. Overall, the R-RF model is able to reduce the manual review burden

of the operator by, on average, 75% in the 2019-2020 data and 99% in the 2020-2021

data while achieving the FOR target in the average case. When comparing the R-

RF model to the benchmarks, the results show a tradeoff between the ability of a
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particular model to control the FOR below the target and the fraction of modules

that require manual review. In both datasets, the R-RF model offers a statistically

significant (𝑝 < 0.05) lower manual review rate compared to the benchmark models

by providing higher precision, but the R-RF model carries greater risk of a violation

of the target FOR rate. The benchmark models, in particular the XGB model, are

able to offer better control over the FOR in exchange for the higher manual review

rate (lower precision).

(a) 2019-2020 Dataset

(b) 2020-2021 Dataset

Figure 4-6: Prediction Results

The tradeoff between FOR control and the manual review rate is particularly

relevant in the 2019-2020 dataset, where the fraction of modules labeled Fail by the

operator is higher by a factor of ten. The R-RF model flags 25% of the module runs

for manual review versus 35% for the XGB model, but the 95th percentile of the FOR
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rate is 1.82 modules per 1000 for the R-RF model and only 1.06 for XGB. Both of the

alternative two-stage models, R-XGB and R-RF-All, offer manual review rates and

FORs between R-RF and XGB. The RF model also falls between R-RF and XGB,

but the R-XGB model has a lower FOR and lower manual review rate.

In the 2020-2021 dataset, the tradeoff between the R-RF and XGB models still

exists, but the practical difference in the performance of these models is very small. All

of the models are able to automatically label 98% of the dataset or more on average,

and the difference in average manual review rates across models is less than 0.5%,

though the R-RF model still exhibits the lowest manual review rate. The difference

in average FOR between the models is also smaller, though the 95th percentile FOR

is highest for the R-RF model. The results suggest that the pass/fail decision for

nearly all modules in the 2020-2021 dataset can be made accurately using a simple

set of thresholds, since 95% of 2020-2021 modules are passed automatically in Stage

1 of the R-RF model compared to 59% of 2019-2020 modules.

Figure 4-7 illustrates why the R-RF model is able to achieve lower manual review

rates while sacrificing some FOR control. In Figure 4-7a, model performance is shown

only for the module runs marked Automatic Pass by the Stage 1 rules classifier. The

rules classifier used by R-RF, R-RF-All, and R-XGB has a slightly higher FOR rate

on these modules than XGB or RF, but the overall accuracy of the rules classifier is

much higher on the 2019-2020 dataset. This means that the rules created by the Stage

1 classifier are able to automatically pass many modules that are flagged for manual

review according to the XGB and RF models. This result is directionally the same for

the 2020-2021 dataset, but the accuracy difference is minuscule in comparison (0.02

- 0.04%).

Figure 4-7b shows the FOR and precision for the modules classified by Stage 2 of

the R-RF model. Overall, the same tradeoff exists between FOR and precision for this

subset of modules. In particular, note that the R-RF practice of training the Stage 2

random forest on a restricted dataset does not offer strictly better performance than

training on the full dataset (R-RF-All). The Stage 2 precision of R-RF is higher than

R-RF-All, but this higher precision comes at the cost of an increase in the FOR.
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(a) Prediction Results on Modules Classified by R-RF Stage 1

(b) Prediction Results on Modules Classified by R-RF
Stage 2

Figure 4-7: Prediction Results
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These results demonstrate that the R-RF model is successful at meaningfully

reducing the manual review burden for the MBI test at the cost of introducing a

small degree of additional error in its automated pass decisions. In relative terms,

the R-RF model may be preferred to the benchmark models in binary classification

scenarios when two criteria are met. Namely, (1) a subset of the data distribution

defined by a single threshold on each feature can be classified into one category with

high accuracy, and (2) the remainder of the data distribution requires a more complex

decision rule to accurately distinguish between the classes. If condition 1 is not met,

then the Stage 1 rules classifier would not perform well, and if condition 2 is not met,

then, as is evident in the 2020-2021 dataset, a single standard tree-based classifier

is able to learn an accurate decision rule for the entire dataset. If both conditions

are met, then the R-RF model can offer substantial performance benefits for a user

who places a high cost on manual review relative to the cost of a mistakenly passed

module.

4.5 Conclusions

This chapter describes a model to automate review of sensor data from the MBI test,

a key quality control test in an optical transceiver manufacturing process where the

pass/fail decision is currently made via manual review of the sensor data. Specifically,

the chapter describes a two-stage classification model, R-RF, that reduces the fraction

of manually reviewed test results by 75% on one test dataset and by 99% on a second

while automatically passing approximately 1 defective module per 1000 automatic

passes. The experimental results illustrate that the R-RF model achieves a superior

reduction in the need for manual test review by taking on a slightly increased risk of

passing a defective module relative to existing benchmarks and alternative two-stage

model formulations.

The R-RF model is a demonstration of a quality test automation method that

integrates state-of-the-art general machine learning algorithms with subject matter

expertise. The success of the two-stage model illustrates that despite the power of

91



general purpose machine learning tools, informing an automation approach with the

guidance of human experts can lead to superior problem-specific algorithms.
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Appendix A

Appendix for Chapter 2

A.1 Initialization for HMM Parameter Estimation

While EM estimation approaches are widely used for parameter estimation in mixture

and HMM models, these approaches are sensitive to parameter initialization because

they are only guaranteed to find estimates that locally maximize the likelihood func-

tion. This issue is addressed by employing a standard technique of running the EM

algorithms with multiple random initializations.

In the use case results, the binomial parameters for the state-specific MB dis-

tributions are initialized uniformly at random in the range [0, 0.02]. The transition

probabilities are initialized with each element on the diagonal of the transition matrix

equal to 0.6 and the rest of the probability mass for each row distributed evenly.

A.2 Description of the BIC

The form of the BIC is motivated by the notion that finding the best-fitting HMM

structure for the observed data is equivalent to maximizing the likelihood of the data

given the HMM hyperparameters 𝑆 and 𝐶, 𝑃 (a|𝑆,𝐶), over all possible combinations

of 𝑆 and 𝐶. The BIC approximates this likelihood, which is not observable, using

the maximum likelihood parameter estimates. The approximation consists of two

terms, a negative term that depends on the likelihood of the model evaluated at the
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maximum likelihood parameter values, and a positive complexity term that penalizes

the number of estimated parameters (i.e., hidden states and mixture components) in

the model. Therefore, a lower BIC value indicates increased plausibility of the model

after accounting for model complexity.
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A.3 Method Validation Simulation Results

A.3.1 One-State, Two-Component Generating HMMs

Figure A-1: Method validation simulation results for HMMs with one state and two
mixture components. Each point represents the HMMScan detection accuracy calcu-
lated on 100 sample sequences with the same length as denoted on the x-axis. The
probability for the first binomial mixture component is set to 0.01, and the proba-
bility for the second component is set to the value greater than 0.01 that induces
the desired OVL value. The two mixture components are equally weighted for every
instance.

Binomial Probability
OVL Component 1 Component 2
0.05 0.01 0.026
0.25 0.01 0.019
0.50 0.01 0.015

Table A.1: One-state generating HMM state-specific binomial probabilities by OVL
value.
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A.3.2 Two-State, One-Component Generating HMMs

Table A.2 provides the transition matrices used to generate the model validation

simulation results found in the body of the paper. The binomial probabilities for

the single component state-specific distributions are the same as the probabilities

presented in Table A.1.

State 1 Stat. Prob. = 0.90 State 1 Stat. Prob. = 0.75 State 1 Stat. Prob. = 0.50
Transition

Probabilities
Transition

Probabilities
Transition

Probabilities
State 2 Mean
Sojourn Time

Hidden
State

To:
State 1

To:
State 2

Stat.
Probs

To:
State 1

To:
State 2

Stat.
Probs

To:
State 1

To:
State 2

Stat.
Probs.

1.25 1 0.91 0.09 0.90 0.73 0.27 0.75 0.20 0.80 0.50
2 0.80 0.20 0.10 0.80 0.20 0.25 0.80 0.20 0.50

2.00 1 0.94 0.06 0.90 0.83 0.17 0.75 0.50 0.50 0.50
2 0.50 0.50 0.10 0.50 0.50 0.25 0.50 0.50 0.50

4.00 1 0.97 0.03 0.90 0.92 0.08 0.75 0.75 0.25 0.50
2 0.25 0.75 0.10 0.25 0.75 0.25 0.25 0.75 0.50

10.00 1 0.99 0.01 0.90 0.97 0.03 0.75 0.90 0.10 0.50
2 0.10 0.90 0.10 0.10 0.90 0.25 0.10 0.90 0.50

25.00 1 1.00 0.00 0.90 0.99 0.01 0.75 0.96 0.04 0.50
2 0.04 0.96 0.10 0.04 0.96 0.25 0.04 0.96 0.50

Table A.2: Two-state, one-component generating HMM transition matrices.
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Figure A-2 shows the state prediction accuracy results for the two-state, one-

component simulations.

Figure A-2: Method validation simulation results for HMMs with two states and
one mixture component. Each point represents the HMMScan mean state prediction
accuracy calculated on 100 sample sequences with the same length as denoted on the
x-axis. The panels are organized in columns based on the low-risk state stationary
probability and in rows by the mean high-risk state sojourn length.
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A.3.3 Two-State, Two-Component Generating HMMs

Figure A-3: Simulation results comparing the two-state, two-component generating
HMMs with two-state, one-component HMMs. One-component results are identical
to the results presenting in the body of the paper with OVL set to 0.25. The binomial
probabilities for the two-component HMMs are set such that the OVL value between
the states is 0.25 and the OVL value between the mixture components within each
state is set to 0.50. The panels are organized in columns based on the low-risk state
stationary probability and in rows by the mean high-risk state sojourn length. The
results show that when the stationary probabilities are evenly balanced, the one-
component and two-component results are very similar. However, when the high-
risk state is observed less frequently, the additional variance in the state-specific
distributions makes detecting the multiple-state nature of the generating distribution
more difficult.
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A.3.4 Three-State, One-Component Generating HMMs

Figure A-4: Simulation results comparing three-state, one-component HMMs and
two-state, one-component HMMs. The three-state transition matrices are created
by splitting the high-risk state into two states with similar properties. The OVL
value between state-specific distributions is 0.25 for all models shown. The panels
are organized in columns based on the low-risk state stationary probability and in
rows by the mean high-risk state sojourn length. For the three-state models, both the
medium- and high-risk states are assigned the same mean sojourn length. The results
indicate that at lower sequence lengths and shorter high-risk sojourns, the HMMScan
accuracy is higher for the three-state models because there is more separation between
the highest-risk state and the lowest-risk state.
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State 1 Stat. Prob. = 0.90 State 1 Stat. Prob. = 0.75 State 1 Stat. Prob. = 0.50
Transition

Probabilities
Transition

Probabilities
Transition

Probabilities
States 2+3 Mean

Sojourn Time
Hidden
State

To:
State 1

To:
State 2

To:
State 3

Stat.
Probs

To:
State 1

To:
State 2

To:
State 3

Stat.
Probs

To:
State 1

To:
State 2

To:
State 3

Stat.
Probs.

1.25 1 0.91 0.05 0.05 0.90 0.73 0.14 0.14 0.75 0.20 0.40 0.40 0.50
2 0.80 0.19 0.01 0.05 0.80 0.19 0.01 0.125 0.80 0.19 0.01 0.25
3 0.80 0.01 0.19 0.05 0.80 0.01 0.19 0.125 0.80 0.01 0.19 0.25

2.00 1 0.94 0.03 0.03 0.90 0.83 0.08 0.08 0.75 0.50 0.25 0.25 0.50
2 0.50 0.48 0.03 0.05 0.50 0.48 0.03 0.125 0.50 0.48 0.03 0.25
3 0.50 0.03 0.48 0.05 0.50 0.03 0.48 0.125 0.50 0.03 0.48 0.25

4.00 1 0.97 0.01 0.01 0.90 0.92 0.04 0.04 0.75 0.75 0.13 0.13 0.50
2 0.25 0.71 0.04 0.05 0.25 0.71 0.04 0.125 0.25 0.71 0.04 0.25
3 0.25 0.04 0.71 0.05 0.25 0.04 0.71 0.125 0.25 0.04 0.71 0.25

10.00 1 0.99 0.01 0.01 0.90 0.97 0.02 0.02 0.75 0.90 0.05 0.05 0.50
2 0.10 0.86 0.05 0.05 0.10 0.86 0.05 0.125 0.10 0.86 0.05 0.25
3 0.10 0.05 0.86 0.05 0.10 0.05 0.86 0.125 0.10 0.05 0.86 0.25

25.00 1 0.996 0.002 0.002 0.90 0.987 0.007 0.007 0.75 0.96 0.02 0.02 0.50
2 0.04 0.91 0.05 0.05 0.04 0.91 0.05 0.125 0.04 0.91 0.05 0.25
3 0.04 0.05 0.91 0.05 0.04 0.05 0.91 0.125 0.04 0.05 0.91 0.25

Table A.3: Three-state, one-component generating HMM transition matrices for the
“split high-risk state” scenario.
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Figure A-5: Simulation results for three-state, one-component generating HMMs cor-
responding to the “split low-risk state” scenario. The transition matrices for these
HMMs were generated by splitting the low-risk state from the two-state generating
HMMs found in Table E2. The panels are organized in columns based on the low-
risk state stationary probability and in rows by the mean highest-risk state sojourn
length. In this case, the stationary probability for states 1 and 2 sum to the inputted
low-risk stationary probability. The equal stationary probabilities between states 1
and 2 contributes to the high detection probabilities seen in this figure and reinforces
the conclusion that HMMScan has high accuracy on multiple-state generating models
when at least two of these states have reasonably high long-term frequencies. Note
that for the (2, 0.25) and (2, 0.5) panels all three states have similar probabilities
of returning to the highest-risk state. The similarity in the transition matrix rows
makes the detection problem generally more difficult.
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State 3 Stat. Prob. = 0.10 State 3 Stat. Prob. = 0.25 State 3 Stat. Prob. = 0.50
Transition

Probabilities
Transition

Probabilities
Transition

Probabilities
State 3 Mean
Sojourn Time

Hidden
State

To:
State 1

To:
State 2

To:
State 3

Stat.
Probs

To:
State 1

To:
State 2

To:
State 3

Stat.
Probs

To:
State 1

To:
State 2

To:
State 3

Stat.
Probs.

1.25 1 0.87 0.05 0.09 0.45 0.70 0.04 0.27 0.375 0.19 0.01 0.80 0.25
2 0.05 0.87 0.09 0.45 0.04 0.70 0.27 0.375 0.01 0.19 0.80 0.25
3 0.40 0.40 0.20 0.10 0.40 0.40 0.20 0.250 0.40 0.40 0.20 0.50

2.00 1 0.90 0.05 0.06 0.45 0.79 0.04 0.17 0.375 0.48 0.03 0.50 0.25
2 0.05 0.90 0.06 0.45 0.04 0.79 0.17 0.375 0.03 0.48 0.50 0.25
3 0.25 0.25 0.50 0.10 0.25 0.25 0.50 0.250 0.25 0.25 0.50 0.50

4.00 1 0.92 0.05 0.03 0.45 0.87 0.05 0.08 0.375 0.71 0.04 0.25 0.25
2 0.05 0.92 0.03 0.45 0.05 0.87 0.08 0.375 0.04 0.71 0.25 0.25
3 0.13 0.13 0.75 0.10 0.13 0.13 0.75 0.250 0.13 0.13 0.75 0.50

10.00 1 0.94 0.05 0.01 0.45 0.92 0.05 0.03 0.375 0.86 0.05 0.10 0.25
2 0.05 0.94 0.01 0.45 0.05 0.92 0.03 0.375 0.05 0.86 0.10 0.25
3 0.05 0.05 0.90 0.10 0.05 0.05 0.90 0.250 0.05 0.05 0.90 0.50

25.00 1 0.95 0.05 0.004 0.45 0.94 0.05 0.01 0.375 0.91 0.05 0.04 0.25
2 0.05 0.95 0.004 0.45 0.05 0.94 0.01 0.375 0.05 0.91 0.04 0.25
3 0.02 0.02 0.96 0.10 0.02 0.02 0.96 0.250 0.02 0.02 0.96 0.50

Table A.4: Three-state, one-component generating HMM transition matrices for the
“split low-risk state” scenario.
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Figure A-6: Simulation results for three-state, one-component generating HMMs cor-
responding to the “graduated response” scenario. In this scenario, the highest-risk
state is infrequent (low stationary probability) and not very persistent, and it has a
high probability of returning to the lowest-risk state. The panels are organized in
columns based on the lowest-risk state stationary probability. This transition matrix
structure corresponds to a practical scenario where the lowest-risk state is most com-
mon and there is an increasing urgency of remedying problems as the number of AEs
increases. The results show that HMMScan has a very high probability of accuracy
multiple-state detection (>96% for OVL = 0.25) at lot sizes greater than 150 lots if
the highest-risk state is prevalent enough.
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State 1 Stat. Prob. = 0.90 State 1 Stat. Prob. = 0.75
Transition Probabilities Transition Probabilities

Hidden
State

To State:
1

To State:
2

To State:
3

Stat.
Prob.

To State:
1

To State:
2

To State:
3

Stat.
Prob.

1 0.95 0.05 0.01 0.90 0.85 0.14 0.02 0.750
2 0.40 0.55 0.05 0.09 0.41 0.55 0.04 0.225
3 0.90 0.01 0.10 0.01 0.80 0.01 0.19 0.025

Table A.5: Three-state, one-component generating HMM transition matrices for the
“graduated response” scenario.
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Figure A-7: Simulation results for three-state, one-component generating HMMs cor-
responding to the “equal stationary probabilities” scenario. In this scenario, the sta-
tionary probabilities and mean sojourn times of the states are all equal, and the
transition probabilities are set such that the following transition path is most likely:
low-risk, medium-risk, high-risk, low-risk. The panels are organized in rows based on
the mean hidden state sojourn length. This transition matrix structure corresponds
to a practical scenario where the lowest-risk state is most common and the urgency
to remedy manufacturing issues increases as the number of observed AEs increases.
The results show that HMMScan has a very high probability of accuracy multiple-
state detection (>96% for OVL =0.25) at lot sizes greater than 150 lots if the mean
high-risk sojourn is not too short.
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Transition Probabilities
Mean

Sojourn Time
Hidden
State

To State:
1

To State:
2

To State:
3

Stat.
Prob.

2.00 1 0.50 0.48 0.03 0.33
2 0.02 0.50 0.48 0.33
3 0.48 0.03 0.50 0.33

4.00 1 0.75 0.24 0.01 0.33
2 0.01 0.75 0.24 0.33
3 0.24 0.01 0.75 0.33

10.00 1 0.90 0.10 0.01 0.33
2 0.005 0.900 0.095 0.33
3 0.095 0.005 0.900 0.33

25.00 1 0.96 0.04 0.002 0.33
2 0.002 0.960 0.038 0.33
3 0.038 0.002 0.960 0.33

Table A.6: Three-state, one-component generating HMM transition matrices for the
“equal stationary probabilities” scenario.
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A.3.5 Four-State, One-Component

Figure A-8: Simulation results for four-state, one-component generating HMMs cor-
responding to the “equal stationary probabilities” scenario. In this scenario, the sta-
tionary probabilities and mean sojourn times of the states are all equal. Besides
self-transitions, transitions to the states with the next lowest AE risk and the next
highest risk are most likely. The panels are organized in rows based on the mean
hidden state sojourn length. The results show that the detection accuracy is very
high with a long enough sojourn period even at high overlap with sequences of 100
lots or longer, particularly at medium high-risk sojourn lengths.
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Transition Probabilities
Mean

Sojourn Time
Hidden
State

To State:
1

To State:
2

To State:
3

To State:
4

Stat.
Prob.

2.00 1 0.50 0.23 0.05 0.23 0.25
2 0.23 0.50 0.23 0.05 0.25
3 0.05 0.23 0.50 0.23 0.25
4 0.23 0.05 0.23 0.50 0.25

4.00 1 0.75 0.11 0.02 0.11 0.25
2 0.11 0.75 0.11 0.02 0.25
3 0.02 0.11 0.75 0.11 0.25
4 0.11 0.02 0.11 0.75 0.25

10.00 1 0.90 0.05 0.01 0.05 0.25
2 0.05 0.90 0.05 0.01 0.25
3 0.01 0.05 0.90 0.05 0.25
4 0.05 0.01 0.05 0.90 0.25

25.00 1 0.96 0.02 0.004 0.02 0.25
2 0.02 0.96 0.02 0.004 0.25
3 0.004 0.02 0.96 0.02 0.25
4 0.02 0.004 0.02 0.96 0.25

Table A.7: Four-state, one-component generating HMM transition matrices for the
“equal stationary probabilities” scenario.
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A.4 Administrative and Unrelated Reactions

Figure A-9: Administrative and unrelated reactions
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A.5 Use Case Dose Form C Best-Fitting HMM Model

Parameters (Two-State, Three-Component)

Figure A-10: Fitted state-specific binomial mixture distributions for the best-fitting
HMMs for dose form C. Each panel shows the distribution for the state-specific dis-
tribution associated with each hidden state.

Dose Form C
Transition Probabilities

(from row state to column state)
Hidden State To State 1 To State 2 Mean AE Rate Stat. Prob.

1 0.94 0.06 4.3 0.17
2 0.01 0.99 12.2 0.83

Table A.8: Estimated transition matrix and state-specific mean AE rates for dose
form C best-fitting HMM.
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A.6 Application of HMMScan to Vaccines

To illustrate the applicability of the HMMScan method to products beyond the use

case described in Chapter 2, the method is applied to nine lot sequences across eight

vaccine products. The raw AE counts and lot numbers for these applications are taken

from the U.S. Vaccine Adverse Events Reporting System (VAERS) database [47].

However, without access to the lot metadata from the manufacturers of these prod-

ucts, crucial information is missing, such as the exhaustive list of all lots packaged

during a particular time period and the sizes and packaging dates of these lots. The

remainder of this section describes the additional assumptions made to construct se-

quences of per lot AE rates for each product without these metadata and summarizes

the HMMScan results.

A.6.1 Obtaining and Ordering the Lot Sequences

For each product considered in the VAERS analysis, the set of alphanumeric lot

numbers that appear in the VAERS dataset between January 1, 2000 and May 14,

2020 were compiled. Within each set of lot numbers, a subset of lot numbers was

retained where the lexicographical order of the lot numbers appeared to be strongly

related to date when the first AE report associated with each lot was filed. The third

column of Figure A-11 shows the Spearman rank correlation between the first AE

report dates and the lexicographical order of the lot numbers for each lot sequence.

These correlations are very high (0.74 - 0.97), suggesting that lexicographical ordering

is a reasonable proxy for packaging date ordering in these sequences. Note that two

subsets of lots are compiled for the Prevnar vaccine, one spanning lots with first

AE reports between 2000 and 2005, and a second spanning 2008-2010. These two

sequences are treated separately because the structure of the lot numbers changes in

the interim period, and the intervening lots do not have a strong positive Spearman

correlation between lot order and first AE report date.
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A.6.2 Unobserved Lot Numbers

Once the sequence of observed lot numbers has been established and ordered, the

problem of potentially unobserved lots remains. The set of observed lot numbers from

the VAERS data represents a censored sample of the full list of all lot numbers that

were produced during the time period of interest for each product. An assumption is

required to determine which of the lot numbers in each sequence should be associated

with valid lots that were packaged and distributed, and which of the lot numbers are

invalid, i.e., did not correspond to packaged and distributed lots. The assumption

is made that lot numbers contained in small gaps (after lexicographical ordering)

between observed lots were valid lot numbers, and therefore should be assigned zero

AEs. All lot numbers that are contained in large gaps are assumed to be invalid.

Once the small gaps between observed lots are filled, the result is a collection of

ordered lot sequences for each product. This collection of sequences is modeled as a set

of independent samples from an HMM, an assumption that enables straightforward

parameter estimation via the Baum-Welch algorithm as described in Section 2.3.3.

The HMMScan method is run on each product, using the same set of candidate

models as described in Section 2.5.2 (𝑆𝑚𝑎𝑥 = 4, 𝐶𝑚𝑎𝑥 = 9). The fourth column of

Figure A-11 shows the number of hidden states in the best-fitting HMM model for

each product. In these results, a gap size of 5 lot numbers or fewer is considered

small, though a gap size of 2 lots or fewer is also tested. The gap size assumption

does not change the fundamental conclusions of the analysis, except in two cases that

are noted in the figure.

Two of the nine lot sequences (MMR2 and the earlier Prevnar sequence) exhibit

strong evidence in favor of temporal correlation in AE rates, where the difference

in the BIC score between the best-fitting two-state model is greater than 10. Two

other lot sequences (the later Prevnar sequence and the Prevnar13 sequence) exhibit

weak evidence of temporal correlation in AE rates. In the latter two cases, the BIC

difference is less than 10 between the best one-state and the best two-state models.

Furthermore, when the gap size assumption is changed from 5 to 2, one-state models
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provide the best fit for these products.

Figure A-11: HMMScan results on VAERS data. The lot sequences where the HMM-
Scan method indicates strong evidence in favor of serial correlation in the AE rates
are highlighted in blue.
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Appendix B

Appendix for Chapter 3

B.1 Pharma Dataset Deviation Descriptions

Each deviation description is the concatenation of four component text fields, the

short description, the long description, the root cause analysis, and the corrective and

preventative action description. These text fields are generated during the life-cycle

of a deviation, which can be described as having three primary stages: Reporting,

Investigation, and Action Determination.

During the Reporting stage, the deviation is first documented by an operator

who notices a problem. The deviation is documented in the short description field,

which contains a short (1-2 sentence) summary of the problem that occurred. A more

detailed description (1-4 paragraphs) is included in the long description field. The

deviation is then turned over to an investigator.

During the Investigation stage, the investigator attempts to understand the sever-

ity of the deviation and performs a root cause analysis for serious deviations with

potential product impact. During the course of the investigation process, the in-

vestigator may add details to the long description. For deviations deemed to have

potential product impact, the investigator documents the determined root causes of

the deviation in the root cause analysis field.

Finally, during the Action Determination stage, the investigator collaborates with

other colleagues to determine any corrective and preventative actions that must be
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taken in response to the deviation and root cause analysis. These actions are docu-

mented in the corrective and preventative action description.

B.2 Pharma Dataset Categories

The Pharma dataset categories are described below with examples of typical associ-

ated deviations.

1. Bioreactor Additions: The bioreactor process is initiated when inoculum

and growth media are added to the bioreactor tank. Additions of feed media

and other inputs also occur while the process is running. A departure from

procedures regarding the amount or timing of additions is an example of a

potential deviation in this category.

2. Process Monitoring: While the bioreactor is running and producing the de-

sired product, the internal state of the vessel is monitored in real time by various

probes and sensors. These sensors measure conditions such as temperature and

pH. Sensor measurements that flag conditions outside of expected ranges con-

stitute the majority of process monitoring deviations.

3. Sample Processing: In addition to real time monitoring, samples are taken

from the bioreactor at regular intervals. These samples are prepared and ana-

lyzed using separate equipment to provide additional detailed information about

the composition of the bioreactor contents at a particular time. Any deviations

from sample handling protocols or standard operating procedures for the sample

processing equipment would be included in this category.

4. Maintenance: This category consists of all cleaning and equipment main-

tenance tasks that are performed on the bioreactor before, during and after

production. Incorrect or missed cleaning steps and broken equipment are devi-

ations that would be associated with the maintenance category.
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5. Filter Integrity Testing: Filter integrity is critical to the proper function of

the production bioreactor, so testing occurs regularly before, during and after

production. Failure to complete filter integrity testing at the appropriate time

is an example of a deviation that would be classified in this category.

B.3 Term Frequency Adjustment

Some relevant terms in the document datasets, such as "user interface", consist of

pairs of words (bigrams) with specific meanings that are different from the meanings

of the component unigrams. Therefore, both bigrams and unigrams are incorporating

into the vocabulary, and a term frequency adjustment procedure is applied such that

the term frequencies for the unigrams consist only of the appearances that occur

outside of valid bigrams. Consider an illustrative example of the term frequency

adjustment with a vocabulary that consists of the following terms: “lives”, “united”,

“states”, “united states” and a document that reads "He states that he lives in the

United States". In this document, the word “states” appears twice, but one of these

appearances is in the context of a bigram. Therefore, our term frequency adjustment

procedure reduces the raw count of the unigram “states” from 2 to 1.

Note that this counting procedure is not useful if the vocabulary contains every

bigram and unigram that appears in the corpus, since no unigram would have a

positive frequency count. Therefore, only the 30% of bigrams that have the highest

category-term importance scores appear in the DCRI method vocabulary.

B.4 Category-Term Importance Score Calculation

The category-term importance score calculation procedure takes as input the term

frequency 𝑓𝑐𝑣, which is the count of term 𝑣 in the category description for category 𝑐

after making the bigram adjustment described in Appendix B.3. An additional input

based on 𝑓𝑐𝑣 is 𝛿𝑐𝑣, which is equal to 1 if 𝑓𝑐𝑣 > 0 for term 𝑣 and category 𝑐 and 0

otherwise.
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As an intermediate step, the category-term importance score calculation presented

below outputs the category-term importance score matrix S ∈ R𝐶×𝑉 that is intro-

duced in Section 3.3.1. These scores can be used directly in the Preliminary Labeling

and Label Augmentation steps of the DCRI method if the vocabulary is restricted

to unigrams only. To integrate bigrams into the vocabulary, several additional nor-

malization steps are required. The final output of these normalization steps yields a

nonnegative transformation of log(S), which is denoted here as S̃ ∈ R𝐶×𝑉
≥0 and has

elements 𝑠𝑐𝑣 for each term 𝑣 and each category 𝑐. The implementations of the DCRI

method for the use cases described in Chapter 3 substitute S̃ directly in place of

log(S).

The category-term importance scores are calculated separately for the set of uni-

grams in the vocabulary, denoted 𝒰 , and the set of bigrams, denoted ℬ. The calcu-

lation procedure for the unigrams is described below. Steps 1-3 and 5 are adopted

from steps 1-3 and 5 in Table 4 of the Transformed Weight-Normalized Complement

Naive Bayes (TWCNB) importance scores from [37]. Step 4 replaces the complement

calculation in step 4 of the TWCNB procedure with a parameter estimation calcula-

tion that is analogous to Multinomial Naive Bayes (MNB). Steps 6-8 are additional

normalization procedures that scale the bigram and unigram importance scores sepa-

rately. The bigram calculation procedure is identical to the unigram calculation after

substituting ℬ for 𝒰 , with a few exceptions that are noted.

1. 𝑠𝑐𝑣 = log(𝑓𝑐𝑣 + 1) (term frequency transformation)

2. 𝑠𝑐𝑣 = 𝑠𝑐𝑣 · log
(︁

𝐶+1∑︀
𝑐∈[𝐶] 𝛿𝑐𝑣

)︁
(inverse document frequency transformation)

3. 𝑠𝑐𝑣 =
𝑠𝑐𝑣√∑︀

𝑣∈𝒰 (𝑠𝑐𝑣)
2

4. 𝑠𝑐𝑣 =
𝑠𝑐𝑣+1∑︀

𝑣∈𝒰 (𝑠𝑐𝑣+1)

The output of step 4 is the matrix S, which can be used directly in the DCRI

method if the vocabulary is limited to unigrams as described above. The following

steps involve additional normalization necessary for incorporating bigrams into the

vocabulary:
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5. 𝑠𝑐𝑣 = log(𝑠𝑐𝑣)

6. 𝑠𝑐𝑣 = 𝑠𝑐𝑣 +min𝑐∈[𝐶],𝑣∈𝒰 {𝑠𝑐𝑣} (nonnegativity transformation)

7. 𝑠𝑐𝑣 =
𝑠𝑐𝑣

max𝑐∈[𝐶],𝑣∈𝒰{𝑠𝑐𝑣} (normalizes importance scores the range [0, 1])

8. 𝑠𝑐𝑣 = 𝑏 · 𝑠𝑐𝑣 (𝑏 is a scaling term equal to 1 for unigrams and 2 for bigrams)

The final scaling step is performed to increase the value of each bigram appearance

in the input documents relative to each unigram appearance. This scaling reflects

the hypothesis that bigrams retained in the vocabulary are more likely to be useful

features for classification than the unigrams.

B.5 KT vs KT-C Classification Performance
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(a) Pharma dataset

(b) NG dataset

(c) BBC dataset

Figure B-1: Confusion matrices comparing the category predictions during the Label
Augmentation step before (KT) and after (KT-C) the CNB supervised classification
layer is applied.
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Appendix C

Appendix for Chapter 4

C.1 MBI Test Features Summary Statistics

C.2 Steady Temperature Period Calculation

The start of the steady temperature period comes at the final time point in the first

half of the module run where the module temperature changes by more than 0.75

degrees Celsius. The end of the steady temperature period comes at the first time

point in the second half of the module run where the module temperature changes

by more than 0.75 degrees Celsius.
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Figure C-1: List of Engineered MBI Test Features
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