
Simple, Fast, Scalable, and Reliable Multiprocessor Algorithms
by

Siddhartha Visveswara Jayanti
సిదా్ధ ర్థ విశే్వశ్వర జయంతి
िसद्धाथर् िवश्वेश्वर जयिन्त

B.S.E., Princeton University (2017)
S.M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author. .
Department of Electrical Engineering and Computer Science

November 27, 2022

Certified by .
Julian Shun

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Simple, Fast, Scalable, and Reliable Multiprocessor Algorithms
by

Siddhartha Visveswara Jayanti
సిదా్ధ ర్థ విశే్వశ్వర జయంతి
िसद्धाथर् िवश्वेश्वर जयिन्त

Submitted to the Department of Electrical Engineering and Computer Science
on November 27, 2022, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract
In this thesis, I identify simplicity, speed, scalability, and reliability as four core design goals for
multiprocessor algorithms, and design and analyze algorithms that meet these goals.

I design the first scalable algorithm for concurrent union-find. Our algorithm provides almost-
linear speed-up, performing just Θ

(
m ·

(
log
(np
m + 1

)
+ α

(
n, m

np

)))
work when p processes execute

a total of m operations on an instance with n nodes. I furnish the algorithm with a rigorous,
machine-verified proof of correctness, and prove that its work-complexity is optimal amongst a
class of symmetric algorithms, which captures the complexities of all known concurrent union-
find algorithms. The algorithm is lightning quick in practice: it has improved the state-of-the-art
in model checking [23] and spatial clustering [208], and is the fastest algorithm for computing
connected components on both CPUs and GPUs [51, 95].

I introduce concurrent fast arrays, which are linearizable wait-free arrays that support all opera-
tions, including initialization, in just constant time. As an application, I design the first fixed-length
fast hash table, which supports constant time initialization, insertions, and queries.

I define సామాన్య జాగృతి (generalized wake-up), which generalizes the information propagation
problem called wake-up. I prove fundamental hardness results about this problem, and through
reductions, show that any linearizable queue, stack, priority queue, counter, or union-find object’s
work complexity must increase with process count; these lower bounds are robust to both random-
ization and amortization. This thesis includes the original results in Telugu with Sanskrit abstract,
along with their English translation.

I design optimal complexity locks for real-time and persistent memory systems. Our abortable
queue lock is the first abortable lock to achieve O(1) amortized RMR complexity for both cache-
coherent (CC) and distributed shared memory (DSM) systems. It additionally provides “abortable
first-come-first-served” fairness and supports “fast aborts”. Our recoverable queue lock is the first
recoverable lock to achieve the optimal O(log p/ log log p) worst-case RMR complexity on both CC
and DSM persistent memory systems. Both locks are innovations on our newly devised standard
lock, whose design simplifies and unifies several previously known techniques.

This thesis also emphasizes rigorous guarantees for concurrent algorithms. I devise a novel
universal, sound, and complete “tracking” technique for proving linearizable and strong linearizable
correctness of concurrent algorithms. My collaborators and I have used this technique to give
machine-verified proofs of correctness for multicore queue, union-find, and snapshot algorithms.

Finally, I prove and experimentally validate that asynchronous “HOGWILD!” Gibbs Sampling,
a technique born from machine learning practice, can be used to accurately estimate expectations
of polynomial and other statistics of graphical models satisfying Dobrushin’s condition.

i

Thesis Supervisor: Julian Shun
Title: Professor of Electrical Engineering and Computer Science

ii

Acknowledgment

రామేశ్వరసు్త తి
అసురాపహారసతా్యరకφ క సతా్యవర్త నజీవనహరి్ష త
కీφ రాబి్ధ జాసీ్వకరశీχ ధర శీχ కరవరదాసదాసోహం ||

Foremost, I thank my Ph.D. advisor Julian Shun. When I met Julian in my first few days at

MIT, I was embarking on a new line of research into statistical learning, and I had little idea then,

that I would end up finishing my Master’s thesis at the intersection of algorithms and economics

and soon thereafter pursue my Ph.D. under his guidance. But sure enough, our shared love for

multiprocessing, particularly our linked lines of research on the multicore algorithms for fast graph

processing, brought us together. When I started with Julian, my research spanned fields, but all

with a strong theoretical bent. Julian was pivotal to expanding my outlook to encompass both

theory and experiment. The results of this thesis which span theory, experiment, and formal

methods are a result of that expansion, which started in Julian’s signature seminar Algorithms

Engineering, and continued through our research together. On a more personal level, I am also

grateful to Julian for his openness and caring. He has been there whenever I have needed his advice;

whether it’s something small or large, I could always count on Julian to answer my questions swiftly

and thoughtfully. Julian was also incredibly supportive throughout my job search, from the advice

he gave me on career options, to his careful critiques on my essays and talks, to the incredible

freedom he gave me during that time period—allowing me full liberty to set aside research for

months, so I could focus fully on my job search. Thank you Julian! I am fortunate to have had a

Ph.D. advisor, who valued me both as a scientist and as a person.

I am incredibly grateful to my undergraduate advisor and Ph.D. committee member, Bob

Tarjan. Bob introduced me to the joy and fulfillment of research while I was an undergraduate

student at Princeton, and ever since then, he has been a close mentor, collaborator, and friend.

Many important results in this thesis are joint work with Bob, and a large amount of the other

work would not have happened had it not been for my studying under Bob. It is hard to overstate

the impact that Bob has had on my life as a computer scientist.

I would also like to thank my final thesis committee member, Charles Leiserson. I have learned

a lot about technical writing from him—lessons that have played a significant role in the writing

of this thesis. I have also had long discussions with him about computing, and hope that someday

we will get to collaborate on a research project.

I would like to thank Costis Daskalakis, my Master’s advisor. Costis’s clear, insightful, and

iii

engaging lectures lured my interest towards machine learning, and our work together on machine

learning, economics, and statistics—some of which appears in this thesis—played a foundational

role in my growth as a researcher.

I want to extend a special thank you to Manjul Bhargava for introducing me to the beautiful

intersections between mathematics and language through ancient Sanskrit texts. Manjul has been

a close friend and mentor to me since my undergraduate years.

I am grateful to the several professors that welcomed me into their groups and were there for

me whenever I went to them for advice. Thanks in particular to Srini Devadas, Nancy Lynch,

Aleksander Madry, Silvio Micali, Vinod Vaikuntanathan, and Virginia Williams. Thanks also to

the wonderful staff in the department for their friendship and support: Alicia Duarte, Janet Fischer,

Debbie Goodwin, Joanne Hanley, Lynda Lynch, Patrice Macaluso, and Rebecca Yadegar.

I would like to thank the several teachers and professors who impacted me in the classroom, espe-

cially: my grade school teachers Thomas Cochran, Stephen Hackman, Jody Horan, John Kitzmiller,

Amy Kono, Matt Prince, and Bill Murphy; my undergrad professors Emmanuel Abbe, Moses

Charikar, Robert Gunning, and Bob Tarjan; and my grad school professors Costis Daskalakis,

David Karger, Pablo Parrilo, Yury Polyanskiy, Julian Shun, and Ryan Williams.

I would like to thank all my collaborators and co-authors without whom this thesis would

not have been possible: Marcos Aguilera, Naama Ben-David, Enric Boix, Yuval Dagan, Costis

Daskalakis, Nishanth Dikkala, Ben Edelman, Lizzie Hernandez, Prasad Jayanti, Sucharita Jayanti,

Anup Joshi, Srini Raghuraman, Siddhartha Sen, Julian Shun, Ankur Taly, Bob Tarjan, Nikhil Vyas,

and Ugur Yavuz. It was a joy to work together—talking about problems over games, impromptu

meetings and whiteboard jam-sessions, random 2am message threads with research breakthroughs,

and sleepless nights before deadlines—and enjoy together—chatting about politics, playing ping

pong or Goofspiel, or just chatting for hours in Stata.

Whether we were playing soccer, hitting up the Cheesecake Factory, eating late-night ice cream,

or going rock climbing, some of my fondest memories from grad school have been with my friends.

Thanks to the Gaarus, the Board Game Beasts, the Zoom Lords, Theory Group (including Theory

Lunch, Tea and Retreat), Hindu Students Council, and MIT Samskritam. Thank you to: Aviv

Adler, Josh Alman, Prabhanjan Ananth, Yamin Arefeen, Venkat Arun, Arjun Balasingam, Saketh

Bhamidipati, Enric Boix, Justin Chen, Yuval Dagan, Mina Dalirrooyfard, Laxman Dhulipala, Nis-

hanth Dikkala, Ben Edelman, Alireza Fallah, Max Fischelson, Rahul Ilango, Andrew Ilyas, Farnaz

Jahanbakhsh, Samvit Jain, Ravi Jaishankar, Matthew Jin, Shreyas Joshi, Gautam Kamath, Ar-

iv

nav Kejriwal, Jonathan Kenkle, Priya Kollipara, Niels Torben Kühlert, Allen Liu, Quanquan Liu,

Alexander Madry, Frederik Mallmann, Dylan McKay, Slobodan Mitrovic, Vaikkunth Mugunthan,

Akshay Narayan, Anand Natarajan, Vikram Nathan, Parimarjan Negi, Ravi Netravali, Parth Pari-

har, Soya Park, Peter Park, Riddhi Patel, Sarath Pattathil, Aniruddh Raghu, Govind Ramnarayan,

Luke Schaeffer, Adam Sealfon, Abhin Shah, Sohil Shah, Jessica Shi, Sandeep Silwal, Nalini Singh,

Sohini Sircar, Vibhaa Sivaraman, Jennifer Tang, Kapil Vaidya, Nikhil Vyas, and Nicole Wein.

Thanks to Parasara Duggirala for collaborating with me on TeluguTeX.

Lots of people have made foundational contributions to my intellectual, cultural, and spiritual

growth. I fondly recall Senthil Periaswamy and Srdjan Petrovic for kindling my early interest in

logical thinking through puzzles and chess. I offer my pranāms to Natarajan (Sethuraman) Uncle

and Kamala (Natarajan) Aunty, and Sriram Annayya for passing on to me the traditional knowledge

of the Vedā. Thanks also to Hindu Students Council (HSC), the Dartmouth Shanti community and

Saraswati Mandiram, Samskrita Bharati, Vyoma Labs, and MIT Samskritam for adding color and

culture to my Ph.D. journey.

I have shared an apartment with my sister, Sucharita Jayanti, since the beginning of grad

school, and also with my brother-in-law, Siddharth Agrawal, in my final year. During the COVID

lock-down, my parents (Aparna and Prasad Jayanti), my sister and brother-in-law, and I got to

spend over a year together at home in Hanover. Our time together—playing 2-v-3 basketball,

writing joint research papers, and just enjoying family time—I will cherish forever.

Thanks to the United States Department of Defense for supporting my graduate studies through

the NDSEG Fellowship (National Defense Science and Engineering Graduate Fellowship).

I would also like to recall the efforts of my family in getting me to where I am today. If it

were not for the endless hours that my parents spent teaching me since my childhood, I would

not have gotten to MIT or this place in my life. My mother taught me to speak, read, and write

Telugu before kindergarten and was my first guru. My father has been my single most significant

educational mentor since my childhood. My sister is three years older than me, and I have benefited

immensely from her caring advice and guidance as I navigated each stage in life: school, college, and

beyond. My family’s unique concoction of playing, learning, watching movies, and contemplating

the world has been the biggest influence on both my educational and personal life. I am fortunate

to be supported always by the unyielding love of my family—my parents, my wife, my sister and

brother-in-law, my grandparents, my parents-in-law and brother-in-law, uncles, aunts, cousins and

beyond. I recall my late grandfathers. Āmpa, my paternal grandfather Visveswara Sarma Jayanti,

v

was a deeply intellectual man, and I know he would have been very proud that I pursued a Ph.D.

Thāthatha, my maternal grandfather Sundara Ramaiah Malladi, held a Ph.D. himself, and I know

he dreamed of the same education for me. The sacrifices and encouragement of my family, including

those that are no longer with us, were pivotal to my happiness and successes, and to the overall

well-being of the family; this, I will always remember in my heart.

Finally, the single most significant event during my Ph.D. was my marriage. I dedicate this

acknowledgement to my wife, Soundarya Jayanti.

vi

सत्यमेव जयते नानृतं सत्येन पन्था िवततो देवयानः ।
येनाक्रमन्त्यृषयो ह्याप्तकामा यत्र तत् सत्यस्य परमं िनधानम् ॥

Truth alone triumphs; not falsehood. Truth, itself, unfurls the divine path

by which sages conquer their desires and ascend to the abode of supreme Truth.

मुण्डकोपिनषद् ३.१.६
Mudakopanishad 3.1.6

vii

Contents

I Overview and Preliminaries 1

1 Introduction 2

1.1 Motivation . 2

1.2 A Brief Illustration: Union-Find . 3

1.3 Algorithmic Design Goals . 7

1.4 Broadening Participation in STEM . 11

2 Contributions 14

2.1 Summary of Contributions . 14

2.2 Contributions to Mutual Exclusion Locks . 17

2.3 Contributions to Lock-Free Data Structures . 20

2.4 Contributions to Machine Verification . 25

2.5 Contributions to Machine Learning . 28

3 Preliminaries 32

3.1 Model . 32

3.2 Data Objects . 33

3.3 Complexity Measures . 37

II Mutual Exclusion Locks 39

4 Standard Mutual Exclusion 40

4.1 Introduction . 40

4.2 Main Algorithm . 45

4.3 Instantiations . 56

5 Abortable Mutual Exclusion 61

viii

5.1 Introduction . 61

5.2 Line Numbering Convention . 67

5.3 An O(1) Algorithm for CC . 67

5.4 Correctness and Efficiency of the CC Algorithm . 71

5.5 An Amortized O(1) RMR Algorithm for CC and DSM 78

5.6 Proof of Correctness . 82

5.7 Complexity Analysis . 90

5.8 Model Checking . 94

5.9 Concluding Remarks . 95

6 Recoverable Mutual Exclusion 97

6.1 Introduction . 97

6.2 A Signal Object . 103

6.3 The Algorithm . 104

Appendices 112

6.A Issues with Golab and Hendler’s [76] Algorithm . 112

6.B Illustration for Repair . 114

6.C Proof of correctness . 116

6.D Proof of correctness of Signal object . 126

6.E Proof of invariant . 127

III Lock-Free Data Structures 148

7 Concurrent Union Find 149

7.1 Introduction . 149

7.2 Concurrency Model . 152

7.3 Data Structure and Sequential Algorithms . 154

7.4 Concurrent Linking and Splitting . 157

7.5 Concurrent Linking by Rank . 164

7.6 Indirection and Helping . 171

7.7 Our Algorithm with Randomized Compare-and-Swap 174

7.8 Upper Bounds . 177

ix

7.9 Lower Bounds . 185

7.10 Remarks and Open Problems . 193

8 Fast Arrays and their Applications 195

8.1 Introduction . 195

8.2 Model . 198

8.3 Folklore Sequential Algorithm . 199

8.4 Our Concurrent Fast-Array . 200

8.5 Correctness of Fast Array Algorithm . 209

8.6 A Concurrent Fast Generalized Array . 214

8.7 Correctness of Fast Generalized Array Algorithm . 218

8.8 Experiments . 222

8.9 Application: Fixed Size Hash Table . 224

8.10 Algorithm . 225

8.11 Discussion and Future Work . 230

9 The Generalized Wake-up Lower Bounds 232

9.1 Introduction . 232

9.2 Concurrency Model and the Wake-Up Problem . 234

9.3 Union-Find Lower Bound . 240

9.4 Other Lower Bounds . 246

10 సామాన్య జాగృతిపరిషా్కరం 250
10.1 ఉపోదా్ఘ తము . 251
10.2 యంత్ర ప్ర తికృతి మరియు పూరా్వంశాలు . 251
10.3 సామాన్య-జాగృతి-పరిషా్కర సమస్య . 253
10.4 అధోబంధాలు . 255
10.5 ఉద్బంధాలు . 257
10.6 సమాపి్త . 260

x

IV Machine Verification 261

11 A Univeral, Sound, and Complete Technique for Machine-Verifiable Proofs of

Linearizability 262

11.1 Introduction . 262

11.2 Related Work . 266

11.3 Model and Definitions . 267

11.4 Our Proof Technique for Linearizability . 272

11.5 (Partial) Trackers . 281

11.6 Proving Strong Linearizability . 282

11.7 Example: The Union Find Object . 285

11.8 Conclusion and Remarks . 294

V Machine Learning 295

12 Hogwild Gibbs Sampling 296

12.1 Introduction . 296

12.2 The Model and Preliminaries . 299

12.3 Bounding The Expected Hamming Distance Between Coupled Executions of HOG-

WILD! and Sequential Gibbs Samplers . 303

12.4 Estimating Global Functions Using HOGWILD! Gibbs Sampling 310

12.5 Experiments . 319

VI Conclusion 322

13 Summary 323

14 Future Directions 326

Bibliography 329

xi

Part I

Overview and Preliminaries

1

Chapter 1

Introduction

In this dissertation, I design efficient multicore algorithms, which exploit and showcase the power

of modern multiprocessors by efficiently solving fundamental problems across disciplines. I identify

four core design goals: simplicity, speed, scalability, and reliability, and I use these goals as guiding

posts as I solve problems ranging the traditional areas of data structures, concurrency, formal

methods, and machine learning. In my algorithms and analyses, I bring together techniques and

ideas from several fields, such as fault-tolerance, asynchrony, and partial knowledge from distributed

computing; communication, amortization, and randomization from algorithms; model specification,

simulation, and invariance from machine-verification; and statistics, measure concentration, and

Markov models from probability. My thesis is that, by leveraging powerful technical tools across

fields, we can design simple, fast, scalable, and reliable multiprocessor algorithms for fundamental

problems across disciplines.

1.1 Motivation

Speeding up computation enables us to develop novel technologies in all spheres of life, thus the

design of efficient multicore algorithms is a key to current and future technological advancement.

In the past, the exponential scale-down of transistors (Moore’s Law [160]) under constant power

density (Dennard Scaling [50]) permitted hardware manufacturers to drastically increase clock

speeds, by about 30% per year [139], thereby enabling more computation per second in each new

generation of the single-core microprocessor. In recent years however, fundamental physical barriers

marked the end of Dennard Scaling, thereby resulting in an upper limit on clock speeds; in short,

clock frequencies beyond around 5GHz melt chips [139]. This stop on increasing clock speeds in the

2

face of the world’s ever growing computational needs sparked the multicore revolution [88, 139]. For

the past two decades, hardware manufacturers have produced shared-memory multiprocessors with

steadily increasing core-counts. Today, personal laptops and mobile phones are, almost universally,

shipped with multiple processing cores, commodity machines run to over 200 cores [190], and cloud

machines with up to 224-cores (448 logical processors with hyperthreading) and 24 terabytes of

memory can even be rented on the Amazon Cloud [8]. To effectively transform the abundance of

powerful multicores into efficient computation, we need fast multiprocess algorithms.

Multicore algorithms have traditionally come in two flavors: asynchronous and synchronous.

Natively, a multicore machine is asynchronous, meaning that the many threads running on a

machine can interleave arbitrarily. However, the difficulty inherent to designing asynchronous

algorithms that behave correctly in all interleavings has spurred a lot of gainful research into syn-

chronous parallelism, such as Fork-Join [167], PRAM (Parallel RAM) [101], and Cilk [26]. A lot

of beautiful and efficient synchronous parallel algorithms have been discovered in the past decade

[185]. However, synchronizing processes means that faster processes must often wait for slower

processes to catch up before they can move on to their next task, thereby causing a synchroniza-

tion overhead [73]. Furthermore, many multicore problems, such as those in multi-tenant systems

[133]—in which each processor represents a different user—require efficient coordination between

concurrent processes that may be solving fundamentally different problems, rather than working

together to solve some single problem quickly; such problems of concurrency also need efficient

algorithmic solutions. These considerations led to the formulation of the APRAM (Asynchronous

Parallel RAM) model of computation [73], which models multiprocessors with their inherent asyn-

chronicity and allows for the direct design of asynchronous algorithms for multiprocessors. In this

thesis, I focus on such asynchronous algorithms for multiprocessors, thereby taking on the burden

of designing algorithms that are robust to arbitrary interleavings, and simultaneously striving to

squeeze out all the efficiency available in multiprocessors.

1.2 A Brief Illustration: Union-Find

Before expanding further on the design goals, challenges, and problems addressed, let me illustrate

the flavor of this thesis, and how techniques across fields come together in addressing a specific

problem I worked on: the union-find object. The collection of work on the concurrent union-find

object presented in this thesis starts with a simple question: can we use multiprocessors to speed up

3

some of the most fundamental and ubiquitous graph computations, such as connected components,

strongly connected components, and clustering? My research leverages recent developments in

sequential data structures, such as the use of fixed randomized identifiers instead of changing

ranks to ensure data structure efficiency [75]; recent developments in formal methods, such as

the Temporal Language of Actions Proof System (TLAPS) [153]; and develops several new ideas

on top of these to overcome fundamental barriers in distributed systems such as asynchrony and

communications limits. The main algorithmic result is the first union-find object that provides

“almost linear speed-up” as the number of processors available increases, which we prove is optimal

by a mathematical information propagation bound that shows that fully linear speed-up cannot be

achieved. In practice, the algorithm has led to improvements in the state-of-the-art in the speeds

of model checking [23], spatial clustering [208], and computing connected and strongly connected

components [51, 95, 23].

Background Social network, Web, and road graphs are humongous, and applications ranging

from navigation to image segmentation rely on efficient graph analysis. A fundamental problem

in graph analysis is computing connected components (CC). In fact, a recent study by Sahu et al.

published in VLDB found that computing connected components is one of the most fundamental

subroutines in graph processing and consequently the most popular graph computation in industry

[177]. One of the fastest solutions to computing connected components is via the set union (a.k.a.

union-find) object. In fact, the entire algorithm to compute the components of a graph is a single

one-line loop that calls the object’s “Unite” method on each pair of incident vertices. Consequently,

a fast sequential set union algorithm implies a fast sequential CC algorithm, and a fast concurrent

union-find algorithm yields a fast parallel CC algorithm.

The design and analysis of the fast “compressed forest” sequential set union data structure is

one of the grandest accomplishments in data structure history. In fact, Tarjan’s proof that m set

union operation could be performed in just O(m · α(n)) time—where α(·) is the extremely slow

growing, almost constant, inverse-Ackermann function—is cited as a key contributor to his winning

the Turing Award [129].

While concurrent set union was introduced in STOC 1991 [12], solutions were inefficient. The

fastest concurrent algorithm previous to ours requiresO(m·(α(n)+p)) work to performm operations

when p processes are run in parallel. While the inverse-Ackermann term is effectively constant in

practice, the p that multiplies m indicates that the work per operation increases linearly in the

4

number of processors. This linear increase in work per operation, in effect means that using more

processors does not reduce the time per operation.

I took on the concurrent set union problem with the aim of designing an algorithm that achieves

a large speed-up.

Simplicity Collaborating with Prof. Bob Tarjan, I used randomization techniques to develop a

family of simple concurrent union-find algorithms, in which each of the two operations, union and

find, are implemented in under ten lines (see the pseudocode below, where the input parameters x

and y are nodes and CAS is the atomic “compare-and-swap” instruction).

1: procedure Find(x)
2: v ← x
3: while true do
4: u← v
5: do twice
6: v ← u.p
7: w ← v.p
8: Cas(u.p, v, w)
9: if v = w return v

1: procedure Unite(x, y)
2: u← x
3: v ← y
4: while true do
5: if u = v then return
6: else if u < v and Cas(u.p, u, v) then return
7: else if u > v and Cas(v.p, v, u) then return
8: u← Find(u)
9: v ← Find(v)

Our algorithms are robust to asynchronous scheduling, i.e., they remain correct even if the speeds

of the various processors are vastly different and vary adversarially.

Scalability Using potential functions, we rigorously proved that the amortized work complexity

of each data structure operation is merely O

(
α
(
n, m

np

)
+ log

(np
m + 1

))
in expectation, when m

operations are done by p processes on a union-find instance of n nodes. Here, α(·, ·) is the extremely

slow growing two-term inverse-Ackermann function; in fact, α grows so slowly, that it is bounded

by four in any conceivable application of the data structure [40]. Furthermore, we prove that

the algorithm does at most O(m logn) work over any m operations with high probability. Thus,

our algorithms are the first scalable algorithms for the problem, and since our algorithms’ work

complexity scales only logarithmically with the number of processors, they achieve almost linear

speed-up. Furthermore, we show that our high probability result extends to the sequential random

index compressed forest data structure, thereby resolving (affirmatively) the tree-height conjecture

of Goel, Khanna, Larkin, and Tarjan [75].

Speed Our algorithms are lightning quick in practice. An MIT research group independently

implemented hundreds of parallel algorithms for connected components and revealed that our al-

gorithms are consistently the fastest on CPUs [51] and the fastest on GPUs [95]. As an illustration,

5

our algorithms were used to compute the components of the largest publicly available graph, the

Hyperlink2012 graph of 128 billion edges, in just 8.2 seconds on a standard 72 core machine; this

is 3.1× faster than the previous state-of-the-art in any computational setting [51]. Our algorithms

have also improved the state-of-the-art in computing strongly connected components for model

checking [23], and spatial clustering [208].

Reliability Our implementation is furnished with a machine-verified proof of correctness. Con-

current data structures are extremely difficult to prove correct, as it must be shown that every

run of an algorithm using the data structure satisfies a consistency condition known as lineariz-

ability. Linearizability has been the long standing gold standard for consistency in multiprocess

data structures, since it ensures that operations appear to take place instantaneously even in the

face of tremendous concurrency and asynchrony. Yet, proving linearizability is notoriously difficult.

Proofs of linearizability can be long and intricate, hard to produce, and extremely time consuming

even to verify. To address this issue, my collaborator Prof. Prasad Jayanti and I designed a uni-

versal, sound, and complete proof method for producing machine-verifiable proofs of linearizability.

Universality means that our method works for any object type; soundness means that an algorithm

can be proved correct by our method only if it is linearizable; and completeness means that any lin-

earizable implementation can be proved so using our method. Using this technique, I gave a proof

of correctness, for our union-find implementation that is human readable, and machine-verified by

TLAPS (the temporal logic of actions proof system) [153].

Further Investigation Inspired by the impact of the algorithms, I questioned whether I could

design an even faster union-find algorithm with fully linear speed-up—the algorithmic dream. This

line of inquiry led me to show some sharp impossibility results. I demonstrated that several con-

current objects such as union-find, queues, and stacks are each powerful enough to solve generalized

wake-up—a fundamental communication task that I defined and proved to be computationally hard.

In particular, I showed that fully linear speed-up is not achievable for any of these data structures.

With a finer mathematical analysis, I proved that our union-find object’s work complexity is asymp-

totically optimal for the class of symmetric algorithms, which captures the complexities of all known

concurrent union-find algorithms, by deriving a matching Ω

(
α
(
n, m

np

)
+ log

(np
m + 1

))
lower bound

for all such algorithms. All my lower bounds are unconditional and cannot be breached by the use

of randomization or amortization.

6

In the remainder of this chapter, I will abstract away from the union-find example, and discuss

the four design goals, their interplay, and the challenges inherent to achieving them. I describe the

problems studied in this thesis, and my main contributions in the next chapter, and wrap-up the

introductory part in the subsequent chapter on preliminary notation and definitions.

1.3 Algorithmic Design Goals

In this dissertation, I identify four algorithmic goals to facilitate in the design of efficient multicore

algorithms, namely, speed, scalability, reliability, and simplicity. The individual goals are well

established, in the sense that most, if not all, computer scientists will immediately agree to their

importance. However, it can be difficult to achieve them simultaneously. Designing multicore

algorithms that simultaneously achieve all these goals is the primary pursuit of this thesis.

Speed Finishing a computation in as small an amount of time as possible, is a fundamental goal

of the algorithmist. Tangibly, lowering running times can correspond to faster response times and

refresh rates in end-user applications, lower rental costs when using cloud machines—such as AWS

(Amazon Web Services) machines, for which cost is proportional to rental time—and greater energy

efficiency for a given computation. In other words, faster amounts to cheaper, greener, and more

user-friendly. The fundamental algorithms and data structures that I discuss in this thesis—such as

arrays, union-find, hash tables, mutual exclusion locks, and Gibbs Sampling—are used ubiquitously.

Thus, speed-ups to these computations percolate to all spheres of software. Traditionally, the

“speed” of an algorithm, has been measured both mathematically, as time complexity (a.k.a. work

complexity), and practically, by measuring the wall clock time an algorithm takes to compute on

inputs of interest on actual modern hardware. In this thesis, I emphasize the importance of both

theoretical and practical speed.

Scalability As the world is looking to process larger and larger data sets and, simultaneously, the

multicore revolution is rapidly driving up core counts, it is important to design algorithms whose

theoretical complexity scales well in both data size and core-count; in this dissertation, we call such

algorithms scalable. The importance of theoretical scalability is well illustrated by history. The

abstract of Bob Tarjan’s celebrated Ph.D. thesis, published in 1971, reads

“ An efficient algorithm is presented for determining whether a graph G can be embedded in the plane. Depth-first

search, or backtracking, is the most important of the techniques used by the algorithm. If G has V vertices, the

7

algorithm requires O(V) space and O(V) time when implemented on a random access computer. An implementation

on the Stanford IBM 36067 successfully analyzed graphs with as many as 900 vertices in less than 12 seconds.” [195]

The abstract makes two statements about the algorithm’s efficiency: one about its practical speed

on a modern machine, and one about its scalability with respect to the input size. Just 50 years

after this publication, we live in a world where a single mobile phone processsor can do three billion

operations per second, rendering the practical speed statement about seven orders of magnitude

out of date. Its scalability guarantee however, is what has immortalized the linear time planarity-

testing algorithm, which has remained a fast solution throughout generations of computational

hardware.

Sharply rising core-counts are the hallmark of the multicore revolution. Still in its infancy, this

revolution has already driven core-counts up to the hundreds (incidentally, similar to the graph

input size Tarjan mentioned fifty years ago). Simultaneously, we continue to live in the age of big

data. So, lasting algorithms in the multicore era must remain efficient as input sizes get larger and

exploit the parallelism presented by growing core-counts. That is, they must exhibit scalability

both with respect to input size and core-count.

Reliability Mutiprocessors are our technological present and future, however designing correct

algorithms for multiprocessors is notoriously hard. While a deterministic single-process algorithm

has exactly one possible run, due to asynchrony, even a t step concurrent algorithm with just

two processes has 2t possible runs depending on how the steps of the processes interleave. When

we consider algorithms with an infinite horizon, even a deterministic concurrent algorithm has

uncountably many possible infinite runs. Designing algorithms that are correct in all of these

executions is a grueling task, and programmers often fail to account for some of these executions,

leading to subtle and dangerous bugs, known as races. Races are pernicious, since they can easily

be missed in testing but have harsh consequences when deployed in practice. For example:

• Mars Rover: a priority inversion bug in its concurrent code crashed the Pathfinder Rover

days after its deployment on Mars and jeopardized the entire multi-million dollar NASA space

mission [124, 123].

• Northeast Blackout of 2003: a race in the power grid’s energy management system stalled

the alarm system for an hour, by which time it was too late to stop a cascading electrical

outage that affected an estimated 55 million people in eight U.S. states and the province of

Ontario, Canada [170].

8

• Therac-25: the software of the radiation therapy machine, Therac-25, suffered from races

that caused it to administer radiation doses that were over a hundred times as potent as the

intended dose, which caused the deaths of at least three people and several more injuries [140,

142, 139].

These illustrations show just how fatal the consequences can be, if critical multiprocessor code

is not correct. But which pieces of code should we consider critical when developing algorithms?

Two foremost guiding principles in the design of software technology are modularity and top-down

design. Together, these principles state that larger applications should be broken down into smaller

well-specified components, i.e., methods, data structures, and algorithms, and that these modular

components should be developed independently and efficiently, so they can be called and used in

several high-level applications. A strength of this prevalent design strategy is that each core modular

component can be built and developed in just one place, and the same well-built component can

be trusted and used freely in a range of applications today and even the unforeseen applications

of tomorrow. The flip-side of this advantage is a corresponding failure mode, which I term error

proliferation. Namely, if a core component such as a data structure or algorithm has an uncaught

error, it runs the risk of being used in innumerable applications, and ultimately crashing critical

systems. Even if the component was developed with a low-risk application in mind, the principles

of software design make it very easy for the same component to later be integrated into a critical

application. Thus, I argue that, for all intents and purposes, all fundamental data structures

and algorithms should be considered critical, and rigorous mathematical proofs of correctness are

indispensible as we develop multicore algorithms.

Guarantees of efficiency and other properties of algorithms are often also pivotal to end-user

applications. Thus, in this thesis, I emphasize reliability to constitute rigorous demonstrations of

correctness, efficiency, and any other relevant properties.

Simplicity A principle that is synergistic with all of the goals we have just seen is simplicity.

Simple algorithms, which use few variables and few lines of code to achieve their specification, have

several advantages.

• First, simple algorithms are easier to reason about, making the algorithmist’s job of clearly

specifying and proving-correct the algorithm easier. Simpler and more straight-forward rea-

soning in proofs of correctness and efficiency, in turn, makes proof verification easier for

reviewers and end-users. Thus, simplicity aids reliability.

9

• Second, simple algorithms are easier for a software engineer to understand and integrate

correctly into production code. A proved algorithm is of little significance, if the final code

in production systems does not replicate the algorithm faithfully. Thus, keeping the pipeline

between algorithm design and the end-user in mind, we note that simplicity aids deployability.

• Third, a simple algorithm generally has lower constant factors and overheads. Thus, simplicity

aids speed and scalability.

Overcoming Challenges While all four design goals are highly desirable, they can be hard

to achieve together: famously, many beautiful, theoretically scalable algorithms are not fast in

practice (such as fast matrix multiplication [6, 39] and near-linear max-flows [33, 130]); likewise,

many simple, and practically fast algorithms are not reliable (perhaps most notoriously, neural

networks [14, 203]). In this dissertation however, I work hard to design multicore solutions—

like the concurrent union-find object of the previous section—that satisfy all four design criteria

simultaneously. I end this section with a couple more examples.

• Reliability is particularly hard to achieve in multiprocess algorithms due to asynchrony. Per-

haps striking, the rigorous mathematical proofs backing a sequential algorithm can break

entirely even when the algorithms are adapted, just slightly, for multiple processors. In

Chapter 12 of this thesis, I study a simple, fast, and scalable asynchronous Gibbs Sampling

algorithm born out of Machine Learning practice [187]. With a thirst for speed, the practi-

tioners simply replace the sequential for-loop of the standard Gibbs sampling algorithm with

a parallel for to allow all the processors in a multicore to achieve maximum throughput in

parallel. However, this technique immediately gives rise to a heap of race conditions that

invalidate all proofs about the sampling procedure’s convergence, rendering it de facto unre-

liable. The goal of the practitioners is to use Gibbs sampling to get samples x1, . . . , xn from

a specified distribution D, and use these samples to estimate statistics of D. Our analysis

of the resultant multicore algorithm reveals that the samples computed by it may not be

accurate, i.e., the parallel-for introduces a bias. However, leveraging recently proved measure

concentration bounds for high temperature graphical models and novel filtration based cou-

pling arguments, we derive mathematical bounds on the bias that reveal that the algorithm’s

samples can be used to reliably compute approximately correct statistics in many applications

of interest (see Chapter 12 for details).

10

• Several problems have solutions in the literature that offer a trade-off between the various

design criteria. For instance, this was the case for the abortable mutual exclusion problem,

which is to design a multicore lock that additionally allows for a process to abort, i.e. abandon

the lock and switch to another task, in real-time (see Chapter 5 for details). Abortable locks

are designed for two different types of machines called Cache-coherent (CC) and Distributed

Shared Memory (DSM); their efficiency is measured in, so called, Remote Memory Reference

(RMR) complexity. The literature offered three beautiful, yet incomparable solutions for the

problem: Jayanti’s “tree lock” [104], Lee’s “procession lock”, and Giakkoupis and Woelfel’s

“array lock” [72]. The tree lock is simple and offered the most robust scalability guarantee of

O(logn) RMR complexity, but just for DSM machines. The procession lock was practically

fast and had simple code, but its analysis offered only a weak O(n) RMR complexity bound,

and that too just for CC machines (we have subsequently improved this bound in our work,

see Lee Alg 2 in Figure 5.1 in Chapter 5). The array lock has an impressive amortized O(1)

RMR complexity guarantee for CC machines, but the guarantee is only against oblivious

schedules. Furthermore, its high code complexity and large space complexity make it hard

to implement practically. I sought out this problem to try and design a single, simple and

scalable solution that can be reliably deployed on both types of machine and is robust to

even adversarial schedules. In Chapter 5, I present our abortable queue lock. This lock is fast,

simple to code (see Figure 8 in Chapter 5), guarantees an amortized O(1) RMR complexity

for both CC and DSM machines, and additionaly, is the first lock to guarantee aborts in just

six lines of code. All our claims are proved via rigorous mathematics: correctness is proved via

invariants, liveness via distance measures, and efficiency via potential functions. In addition,

I have modeled checked our implementation for CC machines via the TLC [59] model checker.

In this thesis, I design several such simple, fast, scalable, and reliable multiprocessor algorithms.

1.4 Broadening Participation in STEM

Contributions Along with the several technical contributions to multiprocessor algorithms, a

significant, and very different contribution of this thesis is towards broadening participation in

STEM (Science, Technology, Engineering, and Mathematics). In particular, I contribute, to the

best of my knowledge, the first computer science research paper (presented in Chapter 10) in

the Telugu language. Telugu is the thirteenth largest language in the world with over 80 million

11

native speakers [189], and the fastest growing language in the United States according to the

World Economic Forum and US Census Data [21, 199]. At the beginning of the Telugu chapter, I

present an additional abstract for the work in Sanskrit. Sanskrit is the principal source of technical

vocabulary across Indian languages and many other languages around the world, thereby making

this abstract accessible to an even larger group of people. The technical research contributions of

this chapter, which pertain to concurrent data structure lower bounds, are also reproduced with

some extensions in English (Chapter 9), making them equally accessible to the large community

of English language researchers. I hope that this initiative can lay the foundation for many more

works that make scientific discovery more available to people of various languages.

Motivation Spreading the joy of learning, especially scientific and technical learning, has been a

passion of mine since my childhood. As a child, I was touched to hear of my father’s lived-experience

of how his education and hard work pulled our family out of the poverty and hopelessness of 1960s

India and brought us to the USA. Inspired by our family’s journey and many more like it, I recog-

nized that a good education paves the way to a prosperous and joyful future, especially for those

who come from a socially or economically disadvantaged background. Unfortunately, as I learned

first-hand in my time volunteering as a teacher of mathematics, robotics, and English in cities and

towns in New Hampshire, New Jersey and some small villages in India, a good education is not easy

to come by. Many children around the world go to underfunded schools, lack committed teachers,

have unfortunate home environments that make studying difficult or impossible, or struggle to

learn in a second language since their native language lacks adequate educational resources. I am

passionate about creating learning opportunities for students at all levels of education and around

the world, and am keen on encouraging students of diverse backgrounds and identities in varied

circumstances to pursue the joys of learning, science, and even furthering science through their

curiosity and discovery.

In spite of several commendable large scale efforts to promote scientific and technological ed-

ucation throughout the world, language remains a great barrier to scientific learning. Enabling

progress through scientific education has been a core tenet of many prominent institutions. No-

tably in the United States, we have the National Science Foundation, which “is committed to

expanding the opportunities in STEM to people of all racial, ethnic, geographic and socioeconomic

backgrounds, sexual orientations, gender identities and to persons with disabilities.” [29] In India,

the government recently undertook a gargantuan initiative to write a new educational policy from

12

pre-K to university to better serve a billion people. One of their major findings was that education

in general, and science in particular, are easier for people to grasp in their mother tongues. Yet,

several hundreds of millions of people in India alone are currently unable to receive quality educa-

tion in their mother tongues due to lack of educational resources [82]. The new educational policy

observes that there are “students going to school to classes that are being conducted in a language

that they do not understand, causing them to fall behind before they even start learning,” and

that “textbooks (especially science textbooks) written in India’s vernaculars at the current time

are generally not nearly of the same quality as those written in English. It is important that local

languages, including tribal languages, are respected and that excellent textbooks are developed in

local languages, when possible, and outstanding teachers are deployed to teach in these languages”

[126] (P4.5.0). In short, the unavailability and under-availability of science in local languages is

disadvantaging hundreds of millions of children.

Impact My article on multiprocessor algorithms in Telugu, which, to my knowledge, is the first

computer science research paper in the language, aims to serve as a starting point to ameliorating

this situation for speakers of Telugu and other languages alike. After publishing the original article

on arχiv [215, 120], I was touched to receive several communications from researchers and scientists

from across institutions, including Princeton, CMU, University of Chicago, Google Research, and

IIT-Delhi, seeking to learn more about this initiative and expressing interest in both translating

some of their work into other languages and creating other resources for scientific learning in

several world languages. In the thesis, I include an abstract in Sanskrit—the language in which the

technical terms of most Indian languages and several other world languages are derived (like Latin

and Greek for English and Romance languages). I hope this inclusion captures the imagination of

even more people, and spurs science-availability in even more language communities. (I share some

more thoughts and concrete proposals in the final chapter.)

Knowledge is universal, brings joy, opens doors to new opportunities, and has the power to

enlighten and bring people of diverse backgrounds closer together in pursuit of a better world. My

scientific learnings and discoveries, some of which are presented in this dissertation, have been a

great joy to me, have brought me in contact with great minds around the world, and have served

as a conduit to reveal some of the infinite possibilities this universe has to offer. I hope that at

least some of my work can open up such a gateway for a few more people in the world.

13

Chapter 2

Contributions

In this thesis, I design and mathematically analyze simple, fast, scalable and reliable multiprocess

algorithms. I also develop rigorous proof methods and machine verification techniques to prove the

correctness of subtle concurrent algorithms. In the remainder of this section, I describe the specific

contributions of this thesis.

2.1 Summary of Contributions

1. Part II focuses on efficient mutual exclusion locks, including stardard mutex locks (Chapter 4),

abortable locks for real-time systems (Chapter 5), and recoverable locks for modern persistent

memory such as Intel Optane (Chapter 6).

2. Part III focuses on multiprocess data structures that are lock-free—i.e., do not make use of

mutual exclusion locks—and linearizable—i.e., appear to perform each data structure opera-

tion atomically.

(a) In Chapter 7, we design and analyze concurrent multiprocessor algorithms for the set-

union (i.e., union-find) data structure. Our data structures have led to significant prac-

tical speed-ups in computing connected components, model checking, and clustering.

(b) In Chapter 8, we design and analyze the first algorithms for concurrent fast arrays and

fast generalized arrays. Fast arrays support constant time initialization (of the whole

array!), and constant time reads and writes. Fast generalized arrays additionally support,

in constant time, every atomic operation offered by the underlying hardware, such as

compare-and-swap (CAS), fetch-and-store (FAS/swap), etc. As an example application

14

of these arrays, we design a concurrent fixed-size hash table that supports expected

constant time initialization, insertion, and search.

(c) In Chapter 9, I define a new information propagation problem called generalized wake-

up, show its hardness, and through reductions show that many common data structures

such as stacks, queues, priority queues, and union-find objects cannot be implemented

for multiple processes without a concurrency overheard, i.e., a work complexity that

grows with the number of processes, even in the amortized sense.

(d) Chapter 10 (truly, అధా్యయము 10) is clearly special, as it is written entirely in Telugu.

The chapter is actually an authentic reproduction of my original article on generalized

wake-up (జాగృతిపరిషా్కరం, Jāgr�tipariṣkāram)̇ lower bounds. Due to the prevalence of

English readers in the computer science research community, I translated the work into

English, and composed Chapter 9.

3. Part IV has a single chapter, Chapter 11, in which we derive a technique for writing machine

verifiable proofs of linearizability and strong linearizability of concurrent data structures.

We have employed our techniques using the TLAPS (Temporal Language of Actions Proof

System) to produce machine-verified proofs of the linearizability and strong linearizability of

our union-find data structures.

4. Part V has a single chapter, Chapter 12, in which we discuss a technique called HOGWILD!

Gibbs Sampling, which uses an asynchronous multiprocessor to improve the speed of sam-

pling certain high dimensional probability distributions that are of great interest in Machine

Learning applications. The statistical analysis we develop justifies the use of HOGWILD!

Gibbs sampling, a technique born out of practice that uses asynchronous multiprocessors to

speed up the simulation of Gibbs sampling, in spite of its severe race conditions.

The chapters of this thesis are based on several of my co-authored publications. I list these

publications below, classified as Journal Articles, Conference Publications, and Articles to be Pub-

lished.

Journal Articles

1. Siddhartha Jayanti and Robert Tarjan. Concurrent Disjoint Set Union. In Distributed Com-

puting 2021. [119]

15

2. Prasad Jayanti and Siddhartha Jayanti. Deterministic Constant-Amortized-RMR Abortable

Mutex for CC and DSM. In ACM Transactions on Parallel Computing 2021. [107]

Conference Publications

1. Siddhartha Jayanti and Julian Shun. Fast Arrays: Atomic Arrays with Constant Time Ini-

tialization. International Symposium on Distributed Computing (DISC) 2021. [116]

2. Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. Towards an Ideal Queue Lock.

International Conference on Distributed Computing and Networking (ICDCN) 2020. [108]

Invited to the spotlight session of the conference

3. Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. A Recoverable Mutex Algorithm with

Sub-logarithmic RMR on Both CC and DSM. ACM Symposium on Principles of Distributed

Computing (PODC) 2019. [110]

Invited to a special issue of the journal Distributed Computing

4. Prasad Jayanti and Siddhartha Jayanti. Constant Amortized RMR Complexity Determinis-

tic Abortable Mutual Exclusion Algorithm for CC and DSM Models. ACM Symposium on

Principles of Distributed Computing (PODC) 2019. [113]

5. Siddhartha Jayanti, Robert Tarjan, and Enric Boix-Adserà. Randomized Concurrent Set

Union and Generalized Wake-Up. ACM Symposium on Principles of Distributed Computing

(PODC) 2019. [117]

Invited to a special issue of the journal Distributed Computing

6. Constantinos Daskalakis, Nishanth Dikkala, and Siddhartha Jayanti. HOGWILD!-Gibbs can

be PanAccurate. Neural Information Processing Systems (NeurIPS) 2018. [44]

7. Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. Optimal Recoverable Mutual Exclusion

using only FASAS. International Conference on Networked Systems (NETYS) 2018. [111]

8. Siddhartha Jayanti and Robert Tarjan. A Randomized Concurrent Algorithm for Disjoint

Set Union. ACM Symposium on Principles of Distributed Computing (PODC) 2016. [118]

Invited to a special issue of the journal Distributed Computing

16

Articles to be Published

1. సిధార్థ విశే్వశ్వర జయంతి. సామాన్య జాగృతిపరిషా్కరం. [215]

2. Siddhartha Jayanti and Prasad Jayanti. A Univeral, Sound, and Complete Technique to

Facilitate Machine-Verifiable Proofs of Linearizability.

For completeness, I also list the other co-authored and single-author articles I have written as a

Ph.D. student.

Articles not part of this Thesis

1. Enric Boix-Adserà, Benjamin L. Edelman, and Siddhartha Jayanti. The Multiplayer Colonel

Blotto Game. In Games and Economic Behavior 2021. [28]

2. Siddhartha Jayanti, Srinivasan Raghuraman, and Nikhil Vyas. Efficient Constructions for

Almost-everywhere Secure Computation. International Conference on the Theory and Appli-

cations of Cryptographic Techniques (EUROCRYPT) 2020. [115]

3. Enric Boix-Adserà, Benjamin L. Edelman, and Siddhartha Jayanti. The Multiplayer Colonel

Blotto Game. ACM Conference on Economics and Computation (EC) 2020. [27]

4. Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, and Siddhartha Jayanti. Learning

from Weakly Dependent data under Dobrushin’s Condition. Conference on Learning Theory

(COLT) 2019. [43]

5. Siddhartha Jayanti. Nash Equilibria of The Multiplayer Colonel Blotto Game on Arbitrary

Measure Spaces. [114]

In the succeeding sections, I describe the contributions of each part of the thesis in more detail.

2.2 Contributions to Mutual Exclusion Locks

Key to most shared multiprocess algorithms are mutual exclusion (mutex) locks, which allow a

process to gain exclusive access to a shared resource. Such exclusive access control can be pivotal

to ensuring consistency of data streams, such as printers, in the face of asynchronous concurrency.

Mutex locks also facilitate the use of arbitrary sequential data structures by concurrent processes

by allowing at most one process, i.e. the owner of the lock, to access the data structure at a given

17

time. Since sequential data structures are easier to design in practice than specialized concurrent

ones, locks are ubiquitous in practice, and the design of efficient mutex locks is a cornerstone of

efficient concurrent computation.

In Part II of this thesis, we design several efficient and performant mutual exclusion locks for

standard, real-time, and persistent shared-memory multiprocessor systems, as described in the

remainder of the section.

A new queue lock for standard mutual exclusion

My contributions to standard mutual exclusion locks are presented in Chapter 4.

The MCS lock (Mellor-Crummey Scott lock) was the first mutual exclusion lock to support

an arbitrary number of processes with unknown identities such that each process can acquire and

release the lock in a constant number of RMRs (Remote Memory References)1 on both Cache-

Coherent2 and Distributed Shared Memory3 multiprocessors. Additionally, this lock is stateless, i.e.,

a process does not have to remember any information after it releases the lock, and it has adaptive

space complexity, i.e., the size of shared and local memory required by the algorithm depends only

on the number of active processes. The MCS algorithm, however, has two shortcomings: its Exit

section (i.e., unlock code) is not bounded and it requires more than one special instruction, namely,

Fetch-and-Store and Compare-and-Swap. Many MCS-style algorithms were subsequently designed

to overcome these shortcomings, but to the best of our knowledge they either lack some of the other

desirable properties of the MCS lock or introduce a new shortcoming. In this chapter, we present a

new MCS-style algorithm that has all of the desirable properties and no ostensible shortcoming. We

also provide an invariant-based proof of correctness. As far as we know, ours is the first among the

MCS-style algorithms to be accompanied by a rigorous invariant-based proof, which is important

given how popular these locks are in practice. To realize a bounded Exit section, all prior MCS-style

algorithms use either the “node-switching” or the “node-toggling” strategy. Our work unifies these

two strategies: we present a single algorithm which, when appropriately instantiated, yields both

a node-switching and a node-toggling algorithm. Moreover, the two algorithms so derived are the

simplest in their respective classes among all known MCS-style algorithms. Table 2.1 compares our
1RMR complexity is the standard metric for measuring the efficiency of mutual exclusion locks. In essence, it

counts the number of instructions performed on memory that is expensive to access.
2In the Cache-Coherent model, cached variables can be read at no cost, but all other instructions cost a single

unit.
3In the Distributed Shared Memory model, shared memory is partitioned amongst the processors. instructions

performed on memory in a processes’s own part are at no cost, and instructions performed on shared memory in any
other part cost a single unit.

18

algorithm with previous works.

Table 2.1: Comparison of Existing Mutual Exclusion Algorithms

O(1) RMR
for DSM

Bounded
Exit FCFS Stateless Space

Frugal

Supports
Arbitrary
Set of
Processes

Number
Special
Instruction

Other
Drawbacks

Anderson [13] No No No 1
Graunke, Thakkar [83] No 1
MCS [152] No 2
Craig [41] 1 not memory safe
Magnusson et al. [147] No 1
Rhee [176] No No No 1
Lee Alg 1 [138] No No No 1 uses Θ(N2) space
Lee Alg 2 [138] No No No No 1
Anderson, Kim [10] No No No 1
Dvir et al. Alg 1 [56] No No 2
Dvir et al. Alg 2 [56] 2
This thesis (main) 1
This thesis (toggling) No No 1
This thesis (switching) 1

The fast abortable queue lock

My contributions to abortable mutual exclusion locks are presented in Chapter 4.

The Abortable mutual exclusion problem, proposed by Scott and Scherer in response to the

needs in real time systems and databases, is a variant of mutual exclusion that allows processes to

abort from their attempt to acquire the lock. Worst-case constant remote memory reference (RMR)

algorithms for mutual exclusion using hardware instructions such as Fetch-and-Add or Fetch-and-

Store have long existed for both Cache Coherent (CC) and Distributed Shared Memory (DSM)

multiprocessors, but no such algorithms are known for abortable mutual exclusion. Even relaxing

the worst-case requirement to amortized, algorithms are only known for the CC model.

In this chapter, we improve this state-of-the-art by designing a deterministic algorithm that

uses Fetch-and-Store (FAS) to achieve amortized O(1) RMR in both the CC and DSM models.

Our algorithm supports Fast Abort (a process aborts within six steps of receiving the abort signal),

and has the following additional desirable properties: it supports an arbitrary number of processes

of arbitrary names, requires only O(1) space per process, and satisfies a novel fairness condition

that we call “Airline FCFS”. Our algorithm is short with fewer than a dozen lines of code. Table 2.2

compares our algorithm with previous abortable locks.

The sublogarithmic recoverable lock

My contributions to recoverable mutual exclusion locks are presented in Chapter 6.

19

Algorithm Primitive RMRs WC / Amrt Det. Space DSM Fairness Fast Abort
Scott et al. [180] FAS,Cas ∞ WC ✓ ∞ ✓
Scott CLH-NB [179] FAS,Cas ∞ WC ✓ ∞ ✓
Scott MCS-NB [179] FAS,Cas ∞ WC ✓ ∞ ✓
Jayanti [104] Cas Θ(logn) WC ✓ Θ(n) ✓ FCFS
Lee Alg 1 [138] None Θ(logn) WC ✓ Θ(n logn) ✓
Lee Alg 2 [138] FAS,Cas Θ(n)/Θ(1) WC/Amrt ✓ Θ(n) AFCFS
Lee Alg 3 [138] FAS Θ(n2) WC ✓ ∞ FCFS
Lee Alg 4 [138, 137] FAS Θ(n2) WC ✓ Θ(n2) FCFS
Woelfel et al. [169] Cas O(logn

log logn) WC Θ(n)

Giakkoupis et al. [72] Cas Θ(1) Amrt ∞
Alon et al. [7] F&A,Cas O(logn

log logn) WC ✓ O(n2)

This thesis (CC) FAS Θ(1) Amrt ✓ Θ(n) AFCFS ✓
This thesis (DSM & CC) FAS Θ(1) Amrt ✓ Θ(n) ✓ AFCFS ✓

Table 2.2: Comparison with existing abortable locks. The columns describe: RMR complexity;
whether the complexity is worst case (WC) or amortized (Amrt); whether the algorithm is De-
terministic (Det.) or randomized; space complexity; whether the RMR bound holds for the DSM
model; what fairness condition (if any) the algorithm satisfies; and whether the algorithm supports
Fast Abort.

In light of recent advances in non-volatile main memory technology, Golab and Ramaraju re-

formulated the traditional mutex problem into the novel Recoverable Mutual Exclusion (RME)

problem. In the best known solution for RME, due to Golab and Hendler from PODC 2017, a

process incurs at most O
(logn

log logn

)
remote memory references (RMRs) per passage, where a pas-

sage is an interval from when a process enters the Try section to when it subsequently returns to

Remainder. Their algorithm, however, guarantees this bound only for cache-coherent (CC) multi-

processors, leaving open the question of whether a similar bound is possible for distributed shared

memory (DSM) multiprocessors.

We answer this question affirmatively by designing an algorithm that satisfies the same com-

plexity bound as Golab and Hendler’s for both CC and DSM multiprocessors. Our algorithm has

some additional advantages over Golab and Hendler’s: (i) its Exit section is wait-free, (ii) it uses

only the fetch-and-store (i.e., swap) instruction, and (iii) on a CC machine our algorithm needs

each process to have a cache of only O(1) words, while their algorithm needs O(n) words.

A recent result of Chan and Woelfel, shows that our algorithm’s RMR complexity is optimal

(up to constant factors) for both the CC and DSM machine models [32].

2.3 Contributions to Lock-Free Data Structures

While locks facilitate the concurrent use of data structures, they do not allow parallel access. Thus,

distributed computing researchers design specialized data structures that guarantee consistency

20

(linearizability), while guaranteeing that all interested processes can perform operations on the

data structure simultaneously (wait-freedom). The design of correct linearizable wait-free data

structures is notoriously difficult due to asynchrony between processes, and the design of efficient

such data structures is harder yet. However, scalable wait-free concurrent data structures and

algorithms promise great computational speed-ups in this age of multiprocessors.

In Part III, we design and analyze efficient lock-free data structures for the union-find object,

fast arrays, and fixed-size hash tables. We also prove lower bounds on the efficiency of several data

structures, such as: stacks, queues, union-find objects, priority queues, and counters.

Concurrent disjoint set union algorithms

My algorithmic work on concurrent disjoint set union is presented in Chapter 7.

The disjoint set union or union-find problem is to maintain a collection of disjoint sets, each

containing a unique element called its leader, under two operations:

Find(x): return the leader of the set containing element x.

Unite(x, y): if elements x and y are in different sets, unite these sets into a single set and

designate some element in the new set to be its leader; otherwise, do nothing.

Each initial set is a singleton, whose leader is its only element. Note that the implementation

is free to choose the leader of each new set produced by a unite.

In this chapter, we develop fast linearizable wait-free concurrent algorithms for union-find. In

particular, we design a randomized concurrent implementation of unite using the read, write, and

CAS instructions. We also give two concurrent implementations of path splitting, one-try and

two-try splitting. The former is simpler, but we are able to prove slightly better bounds for the

latter, bounds that we think are tight for the problem. We prove that any of our linking methods

in combination with one-try splitting does set union in O

(
m ·
(
log
(
np2

m + 1
)
+ α

(
n, m

np2

)))
work,

where m is the total number of operations across all processes, n is the number of nodes, and p is the

number of processes. Our algorithm with two-try splitting does O
(
m ·
(
log
(np
m + 1

)
+ α

(
n, m

np

)))
expected work. Each set operation takes O(logn) steps4 with (very) high probability. The O(logn)

step bound per operation holds even without path splitting; without splitting, the high probability

total work bound is O(m logn). The work and step bounds for randomized linking by rank hold

even for an adversarial scheduler, provided that scheduling is based only on information sent to the
4Each primitive instruction (i.e., read, write, or another synchronization instruction like CAS) executed by a

process is considered a step.

21

scheduler, or we allow a form of CAS that writes a random bit.

Our work is theoretical, but Alistrah et al. [3], Dhulipala et al. [51], Hong et al. [95] have

implemented some of our algorithms on CPUs and GPUs and experimented with them. On many

realistic data sets, our algorithms run as fast or faster than all others [51, 95].

Concurrent Fast Arrays

My work on concurrent fast arrays is presented in Chapter 8.

Arrays are the most fundamental data structure in computer science. Semantically, an array of

length m is an object that supports the following interface:

• Initialize(m, f): return an array O initialized to O[i] = f(i) for each i ∈ [m].5

• O.Read(i): return O[i], if i ∈ [m].

• O.Write(i, v): update O[i]’s value to v, if i ∈ [m].

Here, Initialize() is the constructor method that creates the object, and Read() and Write()

are the regular operations an array supports. Ordinarily, initialization is achieved by allocating an

array of length m and looping through to initialize its entries, while reads and writes simply use the

hardware load and store instructions. This standard implementation achieves a space complexity

of O(m), and time complexities of O(m) for initialization and O(1) for reads and writes. A fast

array is an array that support all three operations—Read(), Write(), and even Initialize()—in

just O(1) worst-case time. Perhaps surprisingly, sequential fast array implementations have been

known for decades, and have been used in implementations of van Emde Boas trees [40, 161], hash

tables [127, 131], and adjacency matrices for sparse graphs; but, to the best of our knowledge,

concurrent implementations did not previously exist.

In this thesis, we propose and design algorithms for two variants of concurrent fast arrays:

• Fast Array: This is an implementation of an array which supports the operations—Initialize(m, f),

Read(i), and Write(i, v)—and satisfies two conditions. First, each operation is linearizable,

i.e., it appears to take effect at some instant between its invocation and response [93]. Sec-

ond, each operation is not only wait-free [89], but the process that executes the operation

completes it in a constant number of its steps. The first condition ensures atomicity, and the

second condition ensures efficiency.
5For a positive integer m, we use the notation [m] ≜ {0, 1, . . . ,m− 1}.

22

• Fast Generalized Array: Besides load and store, modern architectures like x86 commonly sup-

port read-modify-write (RMW) primitives, such as compare-and-swap (CAS), fetch-and-add

(FAA), and fetch-and-store (FAS) [98]. In fact, some of these primitives are indispensible for

efficiency and even solvability of problems that arise in concurrent systems. For instance,

implementing a wait-free queue is impossible using only loads and stores [89]. Mutex locks

can be implemented using loads and stores, but constant RMR (remote memory reference)

complexity implementations are impossible using only loads and stores [17, 42, 152].

Since RMW primitives are supported by hardware and are essential for concurrent algorithms,

it would be ideal if the components of the fast array can be manipulated using these primitives.

For instance, when implementing a fast array O on a multiprocessor that supports CAS and

FAS in hardware, a process π should not only be able to read O[i] and write to O[i], but

should also be able to apply CAS to O[i] and apply FAS to O[i]. We term such an array,

which allows all hardware-supported operations to be applied to its components, a generalized

array.

Let S be the set of hardware-supported RMW primitives. A fast generalized array is an

implementation that not only supports O(1)-time linearizable Initialize(m, f), Read(i),

and Write(i, v) operations, but also supports O(1)-time linearizable operations from the set

S.

In addition to defining the two types of concurrent fast arrays, our thesis makes the following

four principal contributions:

• We design an algorithm for the (standard) fast array. If p processes share a fast array of

length m, our algorithm uses only O(m+ p) space. More generally, to instantiate and use k

fast arrays (for any k) of lengths m1, . . . ,mk, our algorithm uses only O(M + p) space, where

M =
∑k

j=1mj .

• We enhance the above algorithm to design a fast generalized array. Its space complexity is

the same as the previous algorithm’s—O(m+p) for a single array of length m, and O(M +p)

for multiple arrays of combined length M .

• Based on the fast generalized array, we design a concurrent linearizable wait-free fixed-size

hash table that supports expected constant time instantiation, insertion, and search.

• We benchmark the performance of the fast arrays.

23

Our algorithms require hardware support for read, write, and CAS; these instructions are available

on most, if not all, modern hardware.

Efficiency lower bounds for concurrent data structures

My work on concurrent data structure lower bounds is present in Chapter 9.

We define a fundamental problem called Generalized Wake-Up—which captures the complexity

of certain types of communication in shared memory systems that are fundamental to designing

strongly consistent (linearizable) data structures—and show a lower bound on the number of shared

memory instructions that need to be performed in order to solve this problem. Via reductions

to generalized wake-up, we demonstrate that linearizable algorithms for fundamental objects like

counters, queues, stacks, and priority queues must perform at least Ω(log p) work per operation—

even if the algorithms are randomized and even if the guarantees are amortized. For the union-

find object, we show an Ω(logmin{n, p}) expected work lower bound on the cost of the single

worst operation. Furthermore, we identify a class of “symmetric algorithms” that captures the

complexities of all the known algorithms for the disjoint set union problem, and prove an Ω(m ·

(α(n,m/(np)) + log(np/m + 1))) expected total work lower bound on algorithms of this class,

thereby showing that our algorithm has optimal total work complexity for this class. Finally, we

prove that any randomized algorithm, symmetric or not, cannot breach an Ω(m · (α(n,m/n) +

log log(np/m+ 1))) expected total work lower bound.

Original exposition on lower bounds in Telugu

Chapter 10 contributes, to the best of my knowledge, the first computer science research originally

presented in the Telugu language. At the beginning of the chapter, I also present an abstract for

the work in Sanskrit. In technical content, Chapter 10 is simply the Telugu original of Chapter 9.

Producing a scientific article in a new language required overcoming a unique set of challenges,

including devising new terms for established and novel scientific concepts, and developing a XeLa-

TeX template to typeset mathematics and algorithms in Telugu. Scientific writing is fraught with

technical terms, and even long established technical terms in English, had no equivalent in Telugu,

a language in which computer science research papers have not previously been published. To over-

come this barrier to expression, I had to develop terms in Telugu’s mother language, Sanskrit—

terms that were built from Sanskrit roots (dhātu), prefixes (upasarga), suffixes (pratyaya), and

compounds (samāsa). Sanskrit terms can be immediately used in Indian Languages, including

24

Telugu, with standard, well-established alterations to their endings. Telugu is a technologically

under resourced language, so I faced an additional roadblock occurred at the stage of typesetting

the results. Out-of-the-box XeLaTeX—the variant of LaTeX that is used for typesetting non-Latin

scripts—was not readily equipped to handle mathematical formulae and various environments in

Telugu. Therefore, I developed a specialized TeluguTeX template in XeLaTeX that allowed for Tel-

ugu characters to appear in the mathematics environment, supported bold and emphasized text,

and allowed for Telugu macros, citations, etc. I believe that these linguistic and technological so-

lutions can have far reaching consequences in expressing other scientific work in Telugu and other

languages. I present a greater discussion and specific future directions at the end of Chapter 14.

My article on multiprocessor algorithms in Telugu, which I reproduce with a Sanskrit abstract in

Chapter 10, is to my knowledge, the first modern computer science research article in the language,

which is spoken by over 80 million [189] and is the fastest growing language in America [21, 199]. I

hope that this effort will spur more like it in Telugu and other languages, and that eventually, top

quality scientific literature in native languages will affirm and enable many many more people to

pursue their dreams of learning and contributing to the never ending corpus of science.

2.4 Contributions to Machine Verification

Data structures that organize, store, and quickly recall important pieces of information are the

fundamental building-blocks behind fast algorithms. Thus, efficient and rigorously proved data

structures are fundamental to reliable algorithm design. The task of designing such data structures

for shared-memory multiprocessors, however, is notoriously difficult. Due to asynchrony, a t step

algorithm for even just two processes has 2t, i.e. exponentially many, possible executions depend-

ing on how the steps of the processes interleave. In fact, even deterministic concurrent algorithms

have uncountably many possible infinite executions, as opposed to the single possible execution of

a deterministic sequential algorithm. Designing algorithms that are correct in all of these execu-

tions is a grueling task, and thus, even mission critical concurrent code often suffers from subtle

race conditions. For example: a subtle priority inversion bug in its concurrent code crashed the

Pathfinder Rover days after its deployment on Mars and jeopardized the entire multi-million dollar

NASA space mission [124]; a race in the power grid’s energy management system stalled the alarm

system for an hour, by which time it was too late to stop a cascading electrical outage that affected

an estimated 55 million people in eight U.S. states and the province of Ontario, Canada [170]; and

25

the software of the radiation therapy machine, Therac-25, suffered from races that caused it to

administer radiation doses that were over a hundred times as potent as the intended dose, which

caused the deaths of at least three people and several more injuries [140, 142, 139]. Examples of

errors in published concurrent data structures are also not left wanting [37, 53]. In this part, I

develop techniques to obtain machine-verified correctness guarantees for concurrent algorithms; in

particular, data structures.

In Part IV, we discuss our contributions to machine verification of multiprocess algorithms.

Particularly, we focus on proofs of linearizability and strong linearizability.

Machine-Verifiable Proofs of Linearizability

My work on machine-verifiable proofs of linearizabilty and strong linearizability is presented in

Chapter 11.

An object O is linearizable, if for all finite runs R of any algorithm A that uses O, and every

operation op that is performed onO in the run R, there exists a point in time between op’s invocation

and return where it “appears to take place instantaneously”. This definition, in particular the non-

constructive existential quantifier “there exists” inside the universal quantification, makes it difficult

to prove linearizability. This difficulty is only exacerbated, if the proof is to be provided in a way

simple enough for a machine to verify. In fact, if approached naïvely, the prover would need to map

each run of the algorithm to a linearization, i.e., a description of where in its invocation-response

time interval each operation “appears to take place instantaneously”, and then prove that each such

mapping is legitimate. This is a difficult task, given that it is known that proving even a single

fixed run R linearizable is NP-hard [74].

In this chapter, we devise a method for proving linearizability that not only works for a single

implementation, or even a single type, but to devise a method that is universal and complete. By

universal, we mean that our method should be powerful enough to allow for a proof of linearizability

for implementations of any object type. By complete, we mean that any linearizable implemen-

tation, regardless of how complex its expression or linearization structure, must be provable by

our method. Of course, our method will also be sound, meaning that any argument that is given

using our method is indeed a correct mathematical proof of linearizability. Finally, we ensure that

our method enables machine verifiable proofs by currently available proof assistants, which are

generally built to verify proofs of simple program invariants.

26

1. We develop a rigorous universal, sound, and complete method for proving linearizability. In

particular, we define a universal transformation that takes an arbitrary implementation O,

and outputs an algorithm A∗, called the tracker, and a simple invariant I∗, and prove a

theorem that:

O is a linearizable if and only if I∗ is an invariant of A∗.

(Thus, we can produce a machine verified proof that I∗ is an invariant of A∗ to establish that

O is linearizable.)

2. In fact, we give a whole family of transformations that each output different algorithms A′,

called partial trackers, with associated invariants I ′, and prove that for any of these partial

trackers:

O is a linearizable if I ′ is an invariant of A′.

3. A close cousin of linearizability is strong linearizability [80], which ensures that even the

hyper-properties of the data structure match those of an atomic object has also garnered a

lot of recent interest [16]. We develop a rigorous universal, sound, and complete method for

proving strong linearizability. In particular, we show that for each partial tracker A′, there

is an alternate associated invariant I ′′, and we prove that:

O is strongly linearizable if and only if some partial tracker A′ has its associated I ′′ as an invariant.

4. Finally, we demonstrate the power of our methods by producing machine-verified proofs of

linearizability and strong linearizability for some notable data structures. In particular, we

prove the linearizability and strong linearizability of our union-find object from Chapter 7,

which is known to be the fastest algorithm for computing connected components on CPUs

and GPUs [51, 95]. Our proof is verified by the proof assistant TLAPS (temporal logic of

actions proof system) [153], and is publicly available on GitHub.6 We and our collaborators

have also used our method to produce TLAPS-verified publicly available linearizability proofs

[211, 210, 94] of the Herlihy-Wing queue [93], and of Jayanti’s single-writer single-scanner

snapshot [105].
6proof available at: https://github.com/visveswara/machine-certified-linearizability

27

https://github.com/visveswara/machine-certified-linearizability

2.5 Contributions to Machine Learning

Machine learning is notorious for running very expensive computations on huge amounts of data,

and thereby benefits extensively from fast and scalable parallel algorithms. We address the problem

of speeding up Gibbs Sampling using multiprocessors in this thesis.

In Part V, we discuss our contributions to machine learning.

Asynchronous Gibbs Sampling

My work on asynchronous “HOGWILD!” Gibbs sampling is presented in Chapter 12.

Classical theories for data science generally model data sets as independent and identically

distributed (iid) draws from a modelling distribution. However, many interesting real world data

sets can be much too correlated to be treated under the iid assumption. Data provided by users

from a social network is often correlated by the relations between the agents in the network,

and data obtained from real-world sensors can be correlated depending on the proximity of the

physical sensors and the time it was collected. In this work, we develop theoretical techniques to

understand such types of non-independent data. In particular, we focus on high dimensional data

and the question of distribution sampling.

The distribution sampling problem is a classical problem in computational statistics that sees

applications in machine learning. The problem is to efficiently produce a sample (X1, . . . , Xn) from

a specified joint-distribution p. In the simplest case p is a distribution over {−1,+1}n, with a

probability mass function (pmf) of the form p(x1, . . . , xn) =
1
Z

∏
i,j e

θi,jxixj for some constants θi,j ,

where Z is chosen to make the sum of the masses equal to 1. (Such a distribution is called an Ising

Model.) The problem sounds vexingly simple at first. The difficulty however arises since explicitly

computing Z by summing takes exponential time.

The classical solution to the problem is sampling via Markov Chains. The idea is to run the

Gibbs Sampling Markov Chain (Algorithm 1) of the distribution p to mixing, and use the resultant

state vector s = (s1, . . . , sn) as an approximate sample. The efficiency of the process depends on

the mixing time, T , of the Markov Chain. It is well known that the chain will be fast mixing (with

T = O(n logn)) if the distribution satisfies a certain condition known as Dobrushin’s Uniqueness.

28

Algorithm 1 Gibbs Sampling
1: Input: Set of variables V , Configuration x0 ∈ S|V |, Distribution π initialization

2: for t = 1 to T do

3: Sample i uniformly from {1, 2, . . . , n};

4: Sample Xi ∼ Prπ [.|X−i = x−i] and set xi,t = Xi;

5: For all j ̸= i, set xj,t = xj,t−1;

While the T = O(n logn) mixing time is fast, there has recently been increased interest towards

developing techniques for parallelizing this method to get even faster sampling times. Smola and

Narayanamurthy proposed HOGWILD!-Gibbs, a lock-free asynchronous multiprocessor variant of

Gibbs sampling [186]. The benefit of the HOGWILD! method is that each process needs to perform

only T/p updates to the state vector in shared-memory. The algorithm however suffers from race

conditions, and thus does not have the same strong guarantees as sequential Gibbs Sampling.

More recently, De Sa et al. [48] proposed the study of HOGWILD!-Gibbs under a stochastic model

of asynchrony in discrete graphical models. Most importantly, they show that the asynchronous

Gibbs sampler accurately estimates events on any subset of the variables {Xi} of size at most

O(εn/ log(n)), where ε is the total variational distance. Unfortunately, this result says nothing

about statistics that depend on all the variables in a graphical model. Our results focus on this

regime.

We push the understanding of HOGWILD!-Gibbs to new frontiers by proving that HOGWILD!-

Gibbs samples can be used to estimate functions of all the variables in a graphical model. Under the

same Dobrushin condition used in [48], and under a stochastic model of asynchrony with weaker

assumptions, we show that one can do better than the bounds implied by [48] even for functions

with bad Lipschitz constants. In particular, we show the following in our thesis:

• Starting at the same initial configuration, the executions of the sequential and the asyn-

chronous Gibbs samplers can be coupled so that the expected Hamming distance between the

multivariate samples that the two samplers maintain is bounded by O(τ logn), where n is

the number of variables in the graphical model, and τ is a measure of the average contention

in the asynchrony model. More generally, the expectation of the d-th power of the Hamming

distance is bounded by C(d, τ) logd n, for some function C(d, τ).

• It follows that, if a function f of the variables of a graphical model is K-Lipschitz with respect

to the d-th power of the Hamming distance, then the bias in the expectation of f introduced

29

by HOGWILD!-Gibbs is bounded by K · C(d, τ) logd n.

• Next, we improve the bounds for functions that are degree-d polynomials of the variables

of the graphical model. Low-degree polynomials on graphical models are a natural class

of functions which are of interest in many statistical tasks performed on graphical models

(see, for instance, [46]). For simplicity we show these improvements for the Ising model, but

our results are extendible to general graphical models. We show that the bias introduced

by HOGWILD!-Gibbs in the expectation of a degree-d polynomial of the Ising model is

bounded by O((n logn)(d−1)/2). This bound improves upon the Lipschitz bound by a factor

of about (n/ logn)(d−1)/2, as the Lipschitz constant with respect to the Hamming distance

of a degree-d polynomial of the Ising model can be up to O(nd−1). Importantly, the bias

of O((n logn)(d−1)/2) that we show is introduced by the asynchrony is of a lower order of

magnitude than the standard deviation of degree-d polynomials of the Ising model, which is

O((n)d/2) and is already experienced by the sequential sampler. Moreover, we also show that

the asynchronous Gibbs sampler is not adding a higher order variance to its sample. Thus,

our results suggest that running Gibbs sampling asynchronously leads to a valid bias-variance

tradeoff.

Our bounds for the expected Hamming distance between the sequential and the asynchronous

Gibbs samplers follow from coupling arguments, while our improvements for polynomial func-

tions of Ising models follow from a combination of our Hamming bounds and recent concen-

tration of measure results for polynomial functions of the Ising model [45, 71, 81].

• We also illustrate our theoretical findings by performing experiments on a multicore machine.

We experiment with graphical models over two kinds of graphs. The first is the
√
n×
√
n grid

graph (which we represent as a torus for degree regularity) where each node has 4 neighbors,

and the second is the clique over n nodes.

First, we study how valid the assumptions of the asynchrony model are. The main assumption

in the model was that the average contention parameter τ does not grow as the number of

nodes in the graph grows. It is a constant which depends on the hardware being used and

we observe that this is indeed the case in practice. The expected contention grows linearly

with the number of processors on the machine but remains constant with respect to n. Next,

we look at quadratic polynomials over graphical models associated with both the grid and

clique graphs. We estimate their expected values under the sequential Gibbs sampler and

30

HOGWILD!-Gibbs and measure the bias (absolute difference) between the two. Our theory

predicts that this should scale at
√
n and we observe that this is indeed the case.

31

Chapter 3

Preliminaries

3.1 Model

In this thesis, we consider algorithms for shared-memory multiprocess systems. Such a system

consists of a set Π of processes running programs concurrently on a machine with a shared random

access memory. In addition to the shared memory, processes have private local registers. We model

the processes as running asynchronously, meaning that we make no assumptions about the speeds

at which individual processes take steps. More formally, asynchronicity is modeled as an adversarial

scheduler, which decides which process gets to execute its next line of code at each time step of the

concurrent system.

Synchronization Primitives Traditionally, registers in random access memory are known to

support two atomic operations: load and store. Loading, a.k.a. reading, a shared memory register

x returns the value of the register, and storing, a.k.a. writing, a value v to the register x changes

its value to v. Modern multiprocessors offer several other atomic operations on shared memory

registers. In this thesis, we use two of these operations: FAS (fetch-and-store a.k.a. swap) and CAS

(compare-and-swap).

• Given a shared memory register x, a value v, and a private register r:

r ← FAS(x, v) instantaneously stores the current value of x to r and updates the value of x

to v.

• Given a shared memory register x, two values u and v, and a private register r:

r ← Cas(x, u, v) instantaneously executes the following code. If the register x currently holds

32

the value u, then the CAS updates the value of x to v and sets r to true; otherwise, if x holds

any other value, then the CAS does not affect the value of x and sets r to false.

Algorithm Execution In a concurrent algorithm, the system starts in some initial configuration

C0 and each process is given a program to execute, and the processes concurrently execute the

steps of their individual programs as interleaved by the adversarial scheduler. In this context, some

important terms of note are the following.

Definition 3.1.1 (step, event, run, history).

• A step of an algorithm is a triple (C, (π, ℓ), C ′) such that C is a configuration, π is a process,

ℓ is the line of code pointed to by π’s program counter in C, and C ′ is a configuration that

results when π executes line ℓ from C.

• The event corresponding to a step (C, (π, ℓ), C ′) is (π, ℓ), i.e., process π executing line ℓ.

• A run of an algorithm is a finite sequence C0, (π1, ℓ1), C1, (π2, ℓ2), C2, . . . , (πk, ℓk), Ck or an

infinite sequence C0, (π1, ℓ1), C1, (π2, ℓ2), C2, . . . such that C0 is an initial configuration and

each triple Ci−1, (πi, ℓi), Ci is a step.

• The history corresponding to a run is the subsequence of events in the run.

3.2 Data Objects

Many of the algorithms that I discuss in this thesis are for implementing concurrent data objects.

Each data object is an implementation of some data type. Informally, the type specification de-

scribes the states a data type can be in, the set of operations the data type supports, and what state

change and return value are prompted by each operation being performed in each state. Formally,

a data type can be specified as follows.

Definition 3.2.1 (data type). A data type τ consists of the following components:

• a set of states Σ that the object can be in.

• a set of operations OP that can be invoked on the object.

• for each op ∈ OP , a set of arguments ARGop that the operation op can be called with.

• a set of responses RES, a.k.a. return values.

33

• a transition function δ(σ, π, op, arg) that outputs the new state σ′ and the return value res

that result when the operation op with argument arg is performed by process π while the

object is in state σ. Formally, the transition function is

δ : Σ×Π× {(op, arg) | op ∈ OP, arg ∈ ARGop} → Σ×RES

Remark 3.2.2. Operations that require “no argument” (i.e., read), are modeled as taking an

argument from a singleton set (i.e., ARGread = {⊥}). Similarly, operations that return “no result”

(i.e., write), are modeled as returning the result ack.

Remark 3.2.3. Our definition of δ (as a function) can be modified to a relation to allow various

generalizations of the concept of object type—types that are non-deterministic, types where not

every process is allowed to perform every operation (e.g., single writer snapshot), and types where

an operation’s behavior can depend on which process executes the operation (e.g., load-linked/store-

conditional a.k.a., LL/SC).

Implementing complex objects, such as hash tables and union-find objects, from primitive ob-

jects supported by the underlying hardware (registers supporting read, write, CAS, etc.) is a

central problem in multiprocessor programming. Below, we describe what an implementation en-

tails. Later on, we will define what it means for an implementation to be correct, in the sense of

linearizability.

Definition 3.2.4 (implementation). An implementation O of an object of type τ initialized to state

σ0 for a set of processes Π specifies

• A set of objects Ω called the base objects along with their types and initial states.

• A set of procedures O.opπ(arg) for each π ∈ Π, op ∈ τ.OP , and arg ∈ τ.ARGop. The objects

accessed in the code of the procedures must all be in Ω.

To execute an operation op with argument arg on the implemented object O, a process π

invokes the method O.opπ(arg) (and executes the code in the procedure). The value returned by

the method is deemed O’s response to this operation invocation.

Implementation Behaviors Consider an object implementation O, and a run R in which pro-
cesses invoke operations on O, execute the corresponding procedures of O, and receive responses.
By the definition of a run, R is an alternating sequence of configurations and events. Some of the

34

events are invocation events, i.e. calls to O’s procedures, and some are response events, i.e. the
execution of return statements of O’s procedures. (Of course, there are other events, such as the
execution of other lines between the call and return of a procedure.) We call the subsequence of R
that includes only the invocation and response events the behavior in R. For example, if O is an
initially empty queue, a behavior can be

(π1, invoke enqπ1(5)), (π2, invoke deqπ2()), (π3, invoke enqπ3(7)), (π2, response return 7), (π2, invoke enqπ2(9))

Every possible behavior of an implementation O can be generated by the generator algorithm in the

following figure, where each process repeatedly chooses an operation non-deterministically, invokes

it by calling the corresponding procedure, and executes the procedure until it returns (receives a

response). The next definition captures this discussion.

Initial Configurations:

• ω is an object of type τ , in its initial state σ0.

• Each process π ∈ Π is assigned the program mainπ(); i.e. pcπ is initialized to the first line

of main.

• Every other private register of each π ∈ Π is initialized arbitrarily.

program mainπ()

1: while true do choose any (op, arg) ∈ {(o, a) | o ∈ τ.OP, a ∈ τ.ARGo} and invokeO.opπ(arg)

Figure 3-1: Generator algorithm A(O) that generates all behaviors of an implemented object O of
type τ . Code shown for process π ∈ Π.

Definition 3.2.5 (implementation runs and behaviors). Let O be an implementation of a type

τ initialized to σ0 for a set Π of processes. We define the runs of O to be the set of all runs of

the generator algorithm, A(O). Let R be the set of all runs of O. For any run R ∈ R, we define

behavior(R) to be the subsequence of all the invocation and response events in R. The set of all

behaviors of O is {behavior(R) | R ∈ R}.

The Atomic Implementation Implementing an object from base objects of other types is often

challenging, but implementing an object O from a base object ω of the same type is trivial: each

procedure O.opπ(arg) is implemented simply by executing ω.opπ(arg) and returning the received

response. We call this implementation the atomic implementation.

35

Definition 3.2.6 (atomic implementation). The atomic implementation of an object O of type τ ,

initialized to σ0, is the implementation presented in the following figure. (On line 2, the implemen-

tation resets rπ to ⊥ as soon as it returns the value.)

Base Object: ω is an object of type τ , initialized to state σ0.

procedure O.opπ(arg ∈ τ.ARGop) ▷ for each op ∈ τ.OP

1: rπ ← ω.opπ(arg)

2: return rπ

rπ ← ⊥

Figure 3-2: : Atomic implementation of O of an object of type τ initialized to state σ0 ∈ τ.Σ.

Linearizability We are now ready to define linearizability. Intuitively, an object implementation

is linearizable if it behaves like an atomic object of the same type. Formally:

Definition 3.2.7 (linearizability). For a set Π of processes, let O be an implementation of an

object of type τ initialized to σ0, and let Oatomic be the atomic implementation of an object of

type τ initialized to σ0. Furthermore, let R be the set of all runs of A(O) and Ratomic be the set

of all runs of A(Oatomic). We say a run Ratomic ∈ Ratomic is a linearization of a run R ∈ R if

behavior(R) = behavior(Ratomic). Correspondingly, we say that a run R ∈ R is linearizable if it

has a linearization Ratomic ∈ R; equivalently, if behavior(R) is also a behavior of Oatomic. We say

that the implementation O is linearizable if every finite run R ∈ R is linearizable. Equivalently, O

is linearizable if every finite behavior of O is a behavior of Oatomic.

Strong Linearizability In general, a run R of a linearizable implementation can have multiple

linearizations. Intuitively, a linearizable object implementation satisfies strong linearizability if for

any run of the implementation R the object can “commit to a specific linearization” L(R), such

that the linearization of any extension of the run R is an extension of L(R).

Definition 3.2.8. For a set Π of processes, let O be an implementation of an object of type τ

initialized to σ0, and let Oatomic be the atomic implementation of an object of type τ initialized to

σ0. Furthermore, letR be the set of all runs ofA(O) andRatomic be the set of all runs ofA(Oatomic).

An implementation is strongly linearizable, if there is a linearization function L : R→ Ratomic that

36

maps each run R of the implementation to an atomic run L(R) of the atomic implementation that

is a linearization of it, such that if Rpre is a prefix of R, then L(Rpre) is a prefix of L(R).

Not all linearizable implementations are strongly linearizable, since, for some implementations,

we need to extend a different linearizations of a run R to linearize different extensions of R. This

notion of strong linearizability is subtle, but has been shown important in preserving hyperproperties

of composed algorithms, such as output probability distributions [80, 16].

3.3 Complexity Measures

Work Complexity The most prevalent efficiency measure for sequential algorithms is time com-

plexity. The classic analog of this efficiency measure in multiprocess computing is work complexity.

Specifically, we say that each atomic instruction executed by a process costs one unit of work . The

work done by a process π is the number of units of work performed by π, and the total work done

by all processes is the sum of the work done by a process over all processes. Work complexity in

multiprocessors is so analogous to time complexity in uniprocessors, that colloquially people refer

to “work” as “time” and “work complexity” as “time complexity”.

RMR (Remote Memory Reference) Complexity While work complexity accounts for all

instructions performed, sometime we wish to only account for the particularly expensive instructions

that are performed on remote memory. Whether a given instruction is a Remote Memory Reference

(RMR) or not, depends on the machine model. There are two machine models: Cache Coherent

(CC) and Distributed Shared Memory (DSM).

In the CC model, all shared variables reside in memory, which is considered remote to all

processes. Additionally, each process has a local cache where copies of shared variables can reside.

When a process π reads a shared variable x, x’s copy is brought into π’s cache if it is not already

there. When π performs a non-read operation on x, copies of x in all caches are deleted. Thus, a

read operation by π on a shared variable that is in π’s cache has no need to access the network,

but every other read operation and every non-read operation accesses the network and is counted

as a remote memory reference (RMR).

In the DSM model (aka NUMA) there are no caches, but the shared memory is partitioned

so that each process is assigned one part that resides locally at that process. A shared variable x

resides permanently in some process’ partition, but every process π can perform operations on x,

37

regardless of whether x resides in π’s partition or not. A (read or a non-read) operation by π on x

is counted as an RMR if and only if x does not reside in π’s partition of shared memory.

38

Part II

Mutual Exclusion Locks

39

Chapter 4

Standard Mutual Exclusion

4.1 Introduction

Mutual Exclusion calls for the design of an algorithm by which multiple asynchronous processes can

compete with each other to acquire a lock and release it. It is the oldest and a fundamental problem

in distributed computing [52], and is modeled as follows. Each process repeatedly cycles through

four sections of code—Remainder, Try, Critical, and Exit. A process stays in the Remainder when

it does not need the lock and, when it wants it, it executes the Try section, concurrently with

others that are also competing for the lock. When the Try section terminates, the process enters

the Critical Section (CS), where it has the exclusive ownership of the lock. When the process

no longer needs the lock, it gives the lock up by executing the Exit section and moves back to

Remainder.

The mutual exclusion problem consists of designing the code for the Try and Exit sections so

that the first property and one of the two versions of the next property in the following list are

satisfied. The last two in the list are desirable, but not always required.

• Mutual Exclusion: At most one process is in the CS at any time.

• Live-Lock Freedom (resp. Starvation-Freedom): Suppose that each process that enters the

CS eventually leaves the CS, and no process stops taking steps while in the Try or Exit

sections. Then, (i) if a process p is in the Try section, some process (resp. process p) will be

in the CS at a later time, and (ii) if a process p is in the Exit section, some process (resp.

process p) will be in the Remainder at a later time.

40

• Bounded Exit: There is a bound b such that each process in the Exit section completes that

section in at most b of its own steps.

• First-Come-First-Served (FCFS): The Try section code is split into a bounded doorway,

followed by a waiting room. If a process p completes the doorway before a process q enters

the doorway, then q does not enter the CS before p.

For the first two decades following Dijkstra’s original paper on this topic, algorithms were

designed for the time sharing uniprocessors of that era [174]. It was later recognized that, to perform

well on multiprocessors, the traffic that an algorithm generates on the interconnection network that

connects processors and memory modules should be minimized. This observation spurred research

on designing efficient algorithms for multiprocessors, which are commonly modeled as either Cache

Coherent (CC) machines or Distributed Shared Memory (DSM) machines.

In the CC model, all shared variables reside in memory, which is considered remote to all

processes. Additionally, each process has a local cache where copies of shared variables can reside.

When a process p reads a shared variable x, x’s copy is brought into p’s cache if it is not already

there. When p performs a non-read operation on x, copies of x in all caches are deleted. Thus, a

read operation by p on a shared variable that is in p’s cache has no need to access the network, but

every other read operation and every non-read operation accesses the network and is counted as a

remote memory reference (RMR).

In the DSM model (aka NUMA) there are no caches, but the shared memory is partitioned so

that each process is assigned one partition that resides locally at that process. A shared variable x

resides permanently in some process’ partition, but every process p can perform operations on x,

regardless of whether x resides in p’s partition or not. A (read or a non-read) operation by p on x

is counted as an RMR if and only if x does not reside in p’s partition of shared memory.

With either model, the worst-case RMR complexity of an algorithm is the maximum number

of RMRs incurred by a process between the times of leaving and subsequently re-entering the

Remainder section. The amortized RMR complexity of an algorithm is the maximum value of x/y,

where x is the total number of RMRs performed by all processes and y is the total number of times

the Try section was entered by any process. In general, the RMR complexity is function of n, which

is the maximum number of processes that execute the algorithm. Unless otherwise specified, we

use “RMR complexity” to refer to “worst-case RMR complexity”.

It is well known that the RMR complexity is crucially dependent on the set of hardware atomic

41

instructions available to manipulate the shared memory. Modern multiprocessors support instruc-

tions, besides read and write, such as Compare-And-Swap (CAS) and Fetch-And-Store (FAS). The

instruction CAS(X,u, v) compares memory word X’s value with u. If X’s value is u, it changes X’s

value to v and returns true; otherwise it returns false, without changing X’s value. The instruction

FAS(X, v) applied to the memory word X that contains some value u, stores v in X and returns u.

It turns out that CAS is not a suitable primitive to design constant RMR locks: if only read,

write, and CAS may be used, Cypher proved that constant RMR complexity is not achievable

[42], and more recently, Attiya et al. proved that not even sub-logarithmic RMR complexity is

achievable [17]. Thus, it is imperative that any algorithm that aspires to achieve O(1) RMR

complexity employs some instruction different from CAS.

4.1.1 The MCS lock and its advantages

An ideal mutual exclusion algorithm would have O(1) RMR complexity, i.e., the number of RMRs

performed by a process in Try and Exit sections is a constant, independent of how many processes

contend for the lock. Anderson’s algorithm was the first to meet this ideal, but it has O(1) RMR

complexity only for the CC model [13]. The watershed moment came subsequently when Mellor-

Crummey and Scott designed an algorithm [152], popularly known as the MCS lock, that not only

achieves O(1) RMR complexity for both CC and DSM models, but also has the following wonderful

properties:

• Support for an arbitrary set of processes: The MCS algorithm can be executed concurrently

by an arbitrary number of processes with arbitrary names, in contrast to some algorithms

that support only N processes, where N is fixed at the time of designing the algorithm.

• Space frugality: When N processes share an MCS lock, the total memory requirement is only

O(N) words. In fact, the MCS algorithm satisfies the following stronger property that we

call space frugality.

The MCS algorithm can be used to implement L locks, shared by N processes, using only

O(L + N) words, provided that no process holds on to more than one lock at a time (i.e.,

each process relinquishes its ownership of a lock before acquiring the ownership of another

lock). It is noteworthy that only L+N words are needed, and not LN words.

• Statelessness: The MCS algorithm is stateless, i.e., once a process executes Try, CS, and Exit

42

and returns to Remainder, there is nothing about the lock that the process needs to remember

while in the Remainder section.

Table 4.1: Comparison of Existing Mutual Exclusion Algorithms

O(1) RMR
for DSM

Bounded
Exit FCFS Stateless Space

Frugal

Supports
Arbitrary
Set of
Processes

Single
Special
Instruction

Other
Drawbacks

Anderson [13] No No No
Graunke, Thakkar [83] No
MCS [152] No FAS & CAS
Craig [41] not memory safe
Magnusson et. al [147] No
Rhee [176] No No No
Lee Alg.1 [138] No No No uses Θ(N2) space
Lee Alg.2 [138] No No No No
Anderson, Kim [10] No No No
Dvir et. al Alg.1 [56] No No FAS & CAS
Dvir et. al Alg.2 [56] FAS & CAS
This chap (main)
This chap (toggling) No No
This chap (switching)

4.1.2 A shortcoming of the MCS lock

The MCS algorithm does not satisfy the important Bounded Exit property: a process in the Try

section can cause an exiting process to wait, which is undesirable because there is no intrinsic reason

why a process should be obstructed by others from giving up the lock.

4.1.3 Overcoming shortcomings: node-switching and node-toggling strategies

The MCS algorithm maintains a queue of nodes, one for each waiting process. When a process p

leaves the CS, it checks if its node x is the last in the queue. If the answer is no because some

other process q enqueued its node y behind x, p waits until q communicates to p its “spin-location”

(the location where q will wait for p’s permission to enter the CS). This waiting by p is the reason

that the MCS Exit section is not bounded. Craig eliminated this waiting by requiring each exiting

process to deposit in its node a “token” that will be picked up by the next process in the queue

[41]. Thus, as p leaves the CS, instead of waiting for q, p deposits a token in x and lets x remain in

the queue. When depositing the token, if p sees that q has already left behind its spin location in

x, p will simply go to that location and inform q that it can enter the CS. This coordination, since

it involves only two processes p and q, is possible using only FAS (there is no need for CAS). All

is well with this strategy except that p, which owned x when it entered the protocol, had to leave

x behind in the queue when exiting the protocol. To prevent each process from having to use a

43

new node each time it executed the protocol, Craig made a clever observation: once q, the process

that enqueues y behind x consumes the token in x, x is no longer needed in the queue. So, when q

exits the protocol, even as it leaves y behind in the queue (having deposited a token in y), it grabs

the node x and uses x the next time it executes the protocol. We call this the “node-switching”

strategy because q came in with node y and switched to x as it left the protocol.

An alternative is the “node-toggling” strategy introduced by Rhee [176]. Here too the idea

is for p to deposit a token in its node x and leave x behind in the queue when returning to the

Remainder section. However, unlike in the previous strategy, p won’t grab x’s predecessor. Instead,

each process owns two nodes (the same two nodes at all times) and, when p executes the protocol

the next time, it simply uses the other node that it owns—the one different from x. We call this

the “node-toggling” strategy as each process toggles between its two nodes each time it executes

the protocol.

4.1.4 Our contribution

Queue lock is a generic term that refers to any mutual exclusion algorithm, such as MCS, that

organizes the waiting processes in a FIFO queue. Since the time MCS lock was introduced, many

queue locks were proposed to overcome its shortcoming, but they either lacked some strengths of

MCS or introduced a new drawback, as we explain in the next section.

In this chapter, we present a queue lock that we believe is the first to have all of the advantages

of the MCS lock and eliminate its shortcoming, without introducing any new undesirable features.

In particular, our algorithm has a bounded Exit section, while still ensuring O(1) RMR complexity

on both CC and DSM models, support for an arbitrary number of processes with arbitrary names,

space-frugality and statelessness. Moreover, unlike MCS, which requires hardware support for both

CAS and FAS instructions, our algorithm requires support for only FAS.

A further highlight is that, through two simple instantiations of our algorithm, we derive both

a node-switching algorithm and a node-toggling algorithm that are the simplest in their respective

classes among the known algorithms.

Our algorithm is also accompanied by a rigorous, invariant-based proof of correctness.

4.1.5 Comparison to prior research

The MCS lock is an example of a “queue lock,” which is a generic term for any mutual exclusion

algorithm in which waiting processes organize themselves in a queue. In the table below, we compare

44

all the queue locks of O(1) RMR complexity that we are aware of, starting from the earliest one by

Anderson [13] to the recent one by Dvir and Taubenfeld [56], against the criteria discussed above.

We note that array based algorithms [13] and node-toggling algorithms [176, 138, 56] are inherently

not space adaptive. Some of the node-switching algorithms, as described in their papers, are not

space adaptive, but since they can be easily modified to be space adaptive, we have counted them

as satisfying this property.

Craig designed the earliest algorithm that satisfies all of the good properties we have listed

[41], but as pointed out by Dvir and Taubenfeld [56] and as we explain now, his algorithm has one

undesirable feature. When each node in the queue points to the next node, Craig’s algorithm needs

to pack a control bit together with the “next” pointer into the same memory word. Consequently,

the full width of memory words is not made available to store pointers.

The second algorithm in Dvir and Taubenfeld’s work also satisfies all of the good properties we

have listed [56]. However, unlike our algorithm, which requires support for only FAS, their algorithm

relies on both FAS and CAS. More importantly, their use of four fields per node, compared to just

a single field in our algorithm, led to a more complex, 15-line algorithm. In comparison, our

node-switching algorithm is only 8 lines long.

4.2 Main Algorithm

4.2.1 Informal Description

The lock described in our algorithm is a queue lock, i.e. all k processes that have passed through

the doorway will queue in the order in which they finished the doorway p1, . . . , pk. p1 will be

called the head process and pk the tail process. For a given process pi in the queue, pi−1 is its

predecessor and pi+1 its successor. If such processes do not exist we will say that pi does not have

a predecessor/successor in the queue.

We will implement this queue ordering by giving each process p two associated variables:

mynodep, which points to process p’s node in shared memory, and prevp. For the ordering above,

for all i ∈ [2, k], prevpi = mynodepi−1 and prevp1 points to the anchornode, a special node that is no

active process’s mynode. The shared variable tail maintains a pointer to the tail node, mynodepk ,

to allow new entering processes to find the end of the queue to extend it. In general, the head

process p1 is in the CS (or enabled to enter the CS). When it wishes to exit, it frees the current

anchornode, enables its successor, and leaves for the Remainder Section. So, the old mynodep1

45

Algorithm 2 Our Main Algorithm
Shared Variables

sentinel: a pointer, initialized to any non-nil value
tail: holds a pointer, initially tail = sentinel
When a process p joins the protocol it allocates memory for:

nodep: holds a pointer, arbitrarily initialized
gop: a boolean in p’s partition of shared memory, arbitrarily initialized

Local Variables
For each process p:

mynodep: holds a pointer (to a node), initially mynodep = &nodep

prevp: holds a pointer (to a node), arbitrarily initialized
gop: holds a pointer to gop

next_gop: holds a pointer (to a go variable), arbitrarily initialized

1: mynodep ← malloc(shared word) ; gop ← malloc(shared boolean in p’s partition)
2: ∗mynodep ← nil
3: ∗gop ← false
4: prevp ← FAS(tail,mynodep) ▷ Doorway Ends
5: if FAS(∗prevp, gop) = nil then
6: wait till ∗gop = true

CRITICAL SECTION
7: free(prevp); free (gop)
8: if (next_gop ← FAS(∗mynodep,nonnil)) ̸= nil then ▷ nonnil can be any value not equal

to nil
9: ∗next_gop ← true

becomes the new anchornode, and for each i ∈ [2, k], pi becomes pi−1.

A new process p that is interested in entering the CS enters the protocol by allocating itself a

node—a single word in shared memory—that is pointed to by its local variable mynodep, and a go

variable—a single boolean in shared memory—that is pointed to by its local variable gop (Line 1).

It initializes ∗mynodep to nil and ∗gop to false (Line 2+3), and then enters the queue by swapping

mynodep, into tail and assigning prevp the result, the previous last node in the queue (Line 4). If

the queue was previously empty, making p the head process, the swap would return the anchornode

which would hold a non-nil value, otherwise, prevp would point to p’s predecessor’s mynode which

would hold nil. The simplest algorithm therefore would make p busy-wait until ∗prevp ̸= nil,

and an exiting process q would simply write a non-nil value to ∗mynodeq to enable its successor.

However, prevp points to a node of another process and thus busy-waiting on its value would lead

to unbounded RMR on a DSM machine. So, instead of reading ∗prevp multiple times, p FASs

∗prevp with gop (Line 5). We call this the entry-swap. If the entry-swap returns a non-nil value, p

46

knows it is the head and can thus proceed into the CS, otherwise it busy-waits on ∗gop which is in

its own partition of shared memory (Line 6). Reciprocally, an exiting process q will free the current

anchor node (Line 7) and will then perform an exit-swap—it will FAS ∗mynodeq with a non-nil

value. If the exit-swap returns nil, q knows that its successor has not attempted its entry-swap yet

and is thus enabled. Otherwise, the return value of the exit-swap will be the go boolean on which

q’s successor is busy-waiting; so, q simply sets that boolean to true before going to the Remainder

Section (Line 8-9).

4.2.2 Invariant

In this section we will prove the algorithmic invariant—a statement about the algorithm that holds

true in any configuration of the multiprocess system. The invariant will be a key building block in

proving the various properties of the algorithm, i.e., mutual exclusion, starvation freedom, FCFS,

etc.

First, we define the following sets that will need to be referred to repeatedly.

P = {p | PCp ∈ [2, 9]} (Active Processes)

R = {p | PCp ∈ [5, 9]} (Registered Processes)

N = {mynodep | p ∈ P} (Nodes of Active Processes)

A = N ∪ {prevp | PCp ∈ [5, 7]} ∪ {tail} (Allocated Nodes)

P is the set of all active processes, while R is the subset of these processes that have already

registered themselves in the wait-queue by performing the first FAS instruction on the tail. N is

the set of nodes owned by the active processes. We have also defined a set of nodes A. Our invariant

will prove that A is the set of allocated nodes, i.e., the set of nodes that have been allocated by a

malloc, but that have not yet been deallocated by a free. (We consider sentinel to be initially

allocated.)

We now present the rigorous mathematical statement of the invariant in Figure 4-1. To aid

readability, we also provide below an informal description of the invariant.

1. Every active process p ∈ P has a unique non-nil variable mynodep.

2. If there are no processes in the wait-queue (i.e. |R| = 0), then tail holds a special node that

is no active process’s node. And, ∗tail holds a non-nil value. (So, the first process to register

47

itself can go to the Critical Section.)

3. If there are k > 0 registered processes in the wait-queue they can be ordered p1, . . . , pk from

first to last such that

(a) If p1 is still in the waiting room, then its predecessor node prevp1 is non-nil and is not

any process q’s mynodeq.

(b) p1 is either in the Critical Section, Exit Section, or enabled to enter the Critical Section

and in the waiting room.

(c) If p1 is on line 9, then there is at least one more process in the wait-queue, p1 has its

successor p2’s go variable in its next_gop1 field, and p2 is on line 6, waiting for gop2 to

become true.

(d) If p2 is waiting on line 6 for its go variable to become true, then either p1 is already on

line 9, or it will get to line 9 and obtain p2’s go address, since ∗mynodep1 = gop2 .

(e) For i ∈ [2, k]

i. The processes in the wait-queue form a chain with prevpi = mynodepi−1 .

ii. Process pi is not enabled since ∗gopi = false.

iii. Process pi is in the waiting room (on line 5 or 6).

iv. If pi is on line 5, it is not enabled since ∗mynodepi−1 = nil.

v. If pi is on line 6, then it has swapped its go address into its predecessor’s node

contents.

(f) tail points to mynodepk the last node in the wait-queue of nodes.

(g) ∗tail holds nil.

4. The mynode and go variables are correctly initialized to nil and false by lines 3 and 4.

5. A is the set of nodes that have been allocated by malloc and not yet deallocated by free.

(We consider sentinel to be initially allocated.)

Lemma 4.2.1. The invariant I presented in Figure 4-1 holds at each step of the algorithm.

Proof of Lemma 4.2.1. The proof is by induction on the steps taken by the multiprocess system.

48

1. ∀p, q ∈ P, ((p ̸= q =⇒ mynodep ̸= mynodeq) ∧ (mynodep ̸= nil))

2. If R = ∅, then (∗tail ̸= nil ∧ tail ̸∈ N ∪ {nil})

3. If k = |R| > 0, there is an order p1, p2, . . . , pk of the processes in R such that

(a) PCp1 ∈ [5, 7] =⇒ prevp1 ̸∈ N ∪ {nil}
(b) (PCp1 ∈ [7, 9]) ∨ (PCp1 = 6 ∧ ∗gop1 = true) ∨ (PCp1 = 5 ∧ ∗prevp1 ̸= nil)

(c) PCp1 = 9 =⇒ (k ≥ 2 ∧ PCp2 = 6 ∧ next_gop1 = gop2)

(d) (k ≥ 2 ∧ PCp2 = 6) =⇒ ((PCp1 ̸= 9 ∧ ∗mynodep1 = gop2) ∨ (PCp1 = 9))

(e) ∀i ∈ [2, k]:
i. prevpi = mynodepi−1

ii. ∗gopi = false
iii. PCpi ∈ [5, 6]

iv. PCpi = 5 =⇒ (∗mynodepi−1 = nil)
v. [(i > 2 ∧ PCpi = 6) =⇒ (∗mynodepi−1 = gopi)] ∧

[(PCp1 ̸= 9 ∧ PCp2 = 6) =⇒ (∗mynodep1 = gop2)]

(f) tail = mynodepk

(g) ∗tail = nil

4. ∀p, (PCp = 3 =⇒ ∗mynodep = nil) ∧ (PCp = 4 =⇒ (∗gop = false ∧ ∗mynodep = nil))

5. A is the set of nodes that have been allocated but not yet freed.

Figure 4-1: Invariant I is the main invariant of Algorithm 2.

Base Case: In the initial state, all processes are in the Remainder Section, so P = R = N = ∅.

Since tail = sentinel initially, A = {tail} = {sentinel}. Each part of the invariant I holds

for the following reasons.

1. I1 holds trivially since P = ∅.

2. I2 holds since tail = sentinel ̸∈ {nil} = N ∪ {nil} and since ∗tail is initialized to

nonnil.

3. I3 holds trivially since |R| ̸> 0.

4. I4 holds trivially since PCp ̸∈ {3, 4} for every process p.

5. I5 holds since A = {tail} = {sentinel} initially and the sentinel is the only node that

has been allocated and not yet freed.

Induction Step: We now assume that the invariant holds in a given configuration of the

multiprocess system, and prove that it will hold after exactly one more step is executed by

49

some process. Namely, we consider what happens when a process π executes line l. We use

unprimed names to denote sets before π’s execution of l and primed variables to denote the

same sets after the line execution.

line 1: We notice that π ̸∈ P before the line execution, and by definition P ′ = P ∪ {π},

N′ = N ∪ {mynodeπ}, A′ = A ∪ {mynodeπ}, and R = R′.

• I2, I3, and I4 continue to hold since R′ = R and the set of processes p with PCp ∈

[3, 4] are unaffected by the line execution.

• Let p, q ∈ P ′, and p ̸= q. If p, q ∈ P , then mynodep ̸= mynodeq since I1 held before

the execution of l. If p = π, then mynodep ̸= mynodeq since malloc returns a

shared word that is currently unallocated, and mynodeq is in the set of allocated

nodes A before the execution of l. Furthermore, mynodep ̸= nil since I1 held before

the execution of l and mynodeπ is guaranteed to be non-nil by malloc. Therefore,

I1 continues to hold.

• A′ = A ∪ {mynodeπ} and π’s line execution newly allocated mynodeπ and freed

nothing.

line 2: • I1, I2, I3, and I5 continue to hold as they are unaffected by this line.

• I4 continues to hold since (i) every process p ∈ [3, 4] and p ̸= π already satisfied

the invariant and is unaffected by π’s execution of line 2, and (ii) PCπ = 3, and

∗mynodeπ = nil by the execution of line 2.

line 3: • I1, I2, I3, and I5 continue to hold as they are unaffected by this line.

• I4 continues to hold since (i) every process p ∈ [3, 4] and p ̸= π already satisfied

the invariant and is unaffected by π’s execution of line 3, and (ii) PCπ = 4, and

∗mynodeπ = nil by the I4 before the execution of line 3, and ∗goπ = false by π’s

execution of line 3.

line 4: π ̸∈ R, and R′ = R ∪ {π} by definiton.

• I1, I4, and I5 continue to hold as they are unaffected by this line.

• I2 continues to hold as it is now trivial (since |R′| ≥ 1)

• We now turn our attention to I3 the only remaining part of the invariant to be

proved. Let k = |R′|, and note that |R| = k − 1. Note that π = pk in the process

ordering. I3f holds in all cases since the FAS operation in the executed line 4 made

50

tail = mynodeπ and pk = π. I3g holds since ∗mynodeπ was nilbefore the line

execution by I4, and tail = mynodeπ by I3f .

We now consider three cases, k = 1, k = 2, and k > 2 to show the rest of the parts

of I3.

k = 1 PCp1 = PCπ = 5.

I3c holds since PCp1 ̸∈ [7, 9]. I3d, and I3e hold trivially since k < 2.

I3a holds since prevp1 is the old value of tail, which was not in N ∪ {nil} by

I2 (since |R| = 0).

I3b holds since PCp1 = 5 and ∗prevp1 ̸= nil since the old value of ∗tail was

non-nil by I2.

k = 2 I3a, and I3b continue to hold since they were unaffected by the execution of the

line.

I3c continues to hold since PCp1 could not have been 9 before the line execution—

since |R| was 1—and the value of p1’s program counter did not change.

I3d holds since PCp2 = PCπ = 5 ̸= 6.

We remind ourselves that π = p2. The five subparts of I3e hold since:

i. tail was mynodep1 by I3f and that value was swapped into prevp2 .

ii. ∗gop2 = ∗goπ = false since PCπ was 4 before the execution of the line, and

therefore I4 imposed this condition.

iii. PCp2 = 5 ∈ [5, 6].

iv. Since PCp2 = 5, I3c shows that PCp1 ̸= 9, and therefore I3d imposes that

∗mynodep1 = nil. Since prevp2 = mynodep1 by I3ei, the proof is complete.

v. Holds trivially since PCp2 = 5 ̸= 6.

k > 2 I3a, I3b, I3c, I3d, and the five subparts of I3e for i < k are unaffected by the line

execution.

The five subparts of I3e hold when i = k since:

i. tail was mynodepk−1
by I3k and that value was swapped into prevpk by the

execution of line 4 by π = pk.

ii. ∗gopk = ∗goπ = false since PCπ was 4 before the execution of the line, and

therefore I4 imposed this condition.

iii. PCpk = 5 ∈ [5, 6].

51

iv. ∗mynodepk−1
= nil by I3g, since tail was equal to nodepk−1

before the line

execution.

v. Holds trivially since PCpk = 5 ̸= 6.

line 5: • I1, I2, I4, and I5 continue to hold as they are unaffected by this line.

• To prove I3, we consider the cases π = p1, π = p2, and π = pi, where i > 2.

π = p1 By I3b before the execution of the line, ∗prevp1 ̸= nil so p1 will enter the CS

and be at line 7 after the execution.

I3a holds since prevp1 is unaffected by the line.

I3b, and I3c hold since PCp1 = 7 ̸= 9 after the line.

I3d holds since k ≥ 2 ∧ PCp2 = 6 implies that ∗mynodep1 = gop2 by I3ev.

I3e, I3f , and I3g continue to hold as they are unaffected by this line execution.

π = p2 By I3eiv and I3ei the comparison will succeed since ∗prevp2 = ∗mynodep1 = nil

and gop2 will be successfully placed into ∗mynodep1 . Furthermore, PCp2 will

become 6.

I3a, I3b, I3c, I3f, I3g, and all subparts apart from (v) are unaffected by the line.

I3ev will hold since ∗mynodep1 = gop2 by the FAS operation in the line, and this

will result in I3d holding since either PCp1 = 9, or PCp1 ̸= 9∧∗mynodep1 = gop2 .

π = pi Here we have assumed i > 2, so I3eiv and I3ei once again show that the compar-

isoin will fail and gopi will be successfully placed into ∗mynodepi−1 . Furthermore,

PCpi will become 6. This proves that I3ev continues to hold. No other part of

I3 is effected by the line execution.

line 6: By one execution of line 6, we mean that ∗goπ will be read once. If trueis returned by

the read π will enter the CS, otherwise π will stay at line 6.

• I1, I2, I4, and I5 continue to hold as they are unaffected by this line.

• To prove I3, we consider the cases π = p1 and π = pi, where i > 1.

π = p1 By I3b before the execution of the line, ∗gop1 = true so p1 will enter the CS and

be at line 7 after the execution.

I3a holds since prevp1 is unaffected by the line.

I3b, and I3c hold since PCp1 = 7 ̸= 9 after the line.

I3d holds since k ≥ 2 ∧ PCp2 = 6 implies that ∗mynodep1 = gop2 by I3ev.

I3e, I3f , and I3g continue to hold as they are unaffected by this line execution.

52

π = pi Here we have assumed i > 1, so I3eii states that the read will return false. Thus,

the configuration is unchanged and I3 continues to hold.

line 7: We remark that π = p1 since all other processes in R are at lines [5, 6] by I3eiii.

• I1, I2, I3, and I4 continue to hold as they are unaffected by this line.

• We observe that I3f states that tail ∈ N, and I3a states that prevp1 ̸∈ N ∪ {nil}.

So we have shown that A′ = A − {prevp1}, since prevp1 was freed in the executed

line.

line 8: We remark that π = p1 since all other processes in R are at lines [5, 6] by I3eiii.

• I1, I4 and I5 continue to hold as they are unaffected by this line.

• We now split the proof into two cases, depending on whether p1 is the only registered

process.

|R| = 1 In this case I3f shows that tail = mynodep1 , and I3g then implies that ∗mynodep1 =

nil before the line execution. So, ∗tail will become non-nil and p1 will leave

the protocol making tail ̸∈ N ∪ nil by I5 and R′ = ∅. This shows that I2

continues to hold.

I3 continues to hold since it is now trivial.

|R| > 1 In this case, it is possible for the comparison to succeed, thus we further subdi-

vide into two cases depending on the value of PCp2—there are only two cases

due to I3eiii.

PCp2 = 5: By I3eiv the comparison on line 8 will succeed, and π = p1 will

proceed to the remainder section. After the line execution the new p′i is the

old pi+1 for each i. In particular, p′1 is the old p2, and thus is on line 5 with

∗prevp′1 ̸= nil and prevp′1 ̸∈ N ∪ {nil}. So I3a, I3b, and I3c hold.

I3f and I3g continue to hold by the renaming.

If |R′| = 1, then the I3d and I3e hold trivially. Otherwise, I3d holds since PCp′2
=

6 =⇒ ∗mynodep′1 = gop′2 by I3ev. I3e is unaffected for all i > 2. For i = 2, we

notice that I3ev continues to hold since the hypothesis was only strengthened,

and the remaining subparts continue to hold since they were unaffected.

PCp2 = 6: By I3ev next_gop1 will now hold gop2 , and the comparison will

succeed, leading to PCp1 = 9. This proves I3c will continue to hold. The

remaining parts of I3 are unaffected and thus continue to hold.

53

line 9: We remark that π = p1 since all other processes in R are at lines [5, 6] by I3eiii. By I3c we

know that there are at least two process in R, and that PCp2 = 6 and next_gop1 = gop2 .

So, the execution of the line makes: (i) p1 leaves P and R, and mynodep1 leaves N, (ii)

The process p′i ∈ R′ is the old pi ∈ R, (iii) ∗gop′1 is now true. I3a now holds since

prevp′1 = mynodep1 (by I3ei) is no longer in N. I3b now holds since PCp1 = 6 and

∗gop′1 = true. I3c holds trvially since PCp1 = 6 ̸= 9. I3f and I3g hold by the renumbering

of processes in R′.

If |R′| = 1, then the I3d and I3e hold trivially. Otherwise, I3d holds since PCp′2
= 6 =⇒

∗mynodep′1 = gop′2 by I3ev. I3e is unaffected for all i > 2. For i = 2, we notice that

I3ev continues to hold since the hypothesis was only strengthened, and the remaining

subparts continue to hold since they were unaffected.

4.2.3 Proof of Properties

The crisp invariant I identified in Figure 4-1 allows us to prove all of the properties of Algorithm 2

easily. Since the algorithm allocates and de-allocates shared memory nodes, we first demonstrate

memory safety.

Lemma 4.2.2 (memory safety). A process never accesses a node or a go variable that has already

been freed.

Proof. For nodes: A process p only dereferences two shared nodes: its mynodep and its prevp.

The algorithm guarantees that mynodep is only dereferenced when PCp ∈ [2, 8], and prevp is only

dereferenced when PCp = 5. So, mynodep and prevp are in A when they are dereferenced, and I5

thus guarantees that they are allocated and not yet freed when dereferenced.

For go variables: Process p itself does not act on gop outside of line 3 and 6. The only other

reference to a go variable is on line 9; but I3eiii guarantees that p1 is the only process that can be at

line 9, and I3c implies that next_gop1 = gop2 and p2 in turn is on line 5 or 6 by I3eiii. In particular,

we have shown that gop is only accessed when PCp ∈ [3, 6], strictly between its allocation (on line

1) and deallocation (on line 7).

We now demonstrate the various safety and liveness properties of the algorithm in sequence.

54

Lemma 4.2.3 (mutual exclusion). There is at most one process p in the CS (with PCp = 7) at a

given time.

Proof. A process p with PCp = 7 is in the set R by definition. I3eiii guarantees that all the pi with

i ≥ 2 are not in the CS. So, p1 is the only process that can be in the CS.

Lemma 4.2.4 (FCFS). Algorithm 2 satisfies the FCFS property.

Proof. I3f and I3ei together guarantee that the ordering p1, . . . , pk of process in R is unique. So,

each process q ∈ R has a unique identity i ∈ [1, k] in each configuration such that q = pi; we call

this identity its current position in the process wait-queue. If process q completes line 4 before

process q′, the current position of q is smaller than the current position of q′. Since the relative

order of current positions does not change for processes in the try section, the current position of

q′ is larger than the current position of q until q finishes the Critical Section and executes the Exit

Section.

Lemma 4.2.5 (starvation freedom). Algorithm 2 is starvation free.

Proof. Assume that no process is in the CS or Exit and that at least one process is in the waiting

room. By definition |R| ≥ 1. I3b guarantees that p1 is either in the CS, the Exit, or will enter the

CS after its next step. So, by our assumption, p1 will eventually enter the CS if each process in the

try section continues to take steps. This shows that under our assumption, as long as a process in

the CS eventually leaves the Exit, another process will eventually enter the CS. Since Algorithm 2

satisfies FCFS, Starvation-Freedom follows.

Lemma 4.2.6 (bounded exit). The Exit Section is bounded.

Proof. The Exit Section finishes in at most two steps.

4.2.4 RMR and Space Complexity

In this section, we analyze the efficiency of our main algorithm when it is used in a system with N

processes. In order to express the tightest possible bounds and compare them to previous work we

define n = |P | ≤ N as the total number of active processes.

Lemma 4.2.7. Algorithm 2 is stateless and memory adaptive, i.e., it uses only O(n) space.

55

Proof. Since the algorithm requires no process to remember any variables in the Remainder Section,

the algorithm is stateless. Since each process p frees gop in the Exit Section, at most one such

variable is allocated per active node. Invariant I5 states that A = N ∪{prevp|PCp ∈ [5, 7]}∪{tail}

is the set of allocated nodes. We now use invariant I3ei to see that all but one of the prevp’s must

be in the set N, and use I3f to see that tail ∈ N unless both N and {prevp|PCp ∈ [5, 7]} are empty.

So, we see that in all cases |A| ≤ n+ 1.

We now show that RMR complexity of the algorithm is constant.

Lemma 4.2.8. Algorithm 2 has RMR complexity O(1) in both the DSM and CC model.

Proof. The algorithm has only a single line that can be run more than once, namely line 6 which

contains a wait till statement. In the DSM model, this line is reading a variable in p’s partition

of memory and thus costs zero RMRs. In the CC model, this line process p is repeatedly reading

∗gop. Since, true is the only value ever written to ∗gop by another process, p can incur at most two

RMRs on this line: the first to read it the first time, and if it is false, another to read it after it’s

modified to true.

We summarize the results on Algorithm 2 in a theorem.

Theorem 4.2.9. The main algorithm has the following properties: mutual exclusion, starvation

freedom, FCFS, bounded exit, O(1) RMR complexity in both DSM and CC models, O(n) space

complexity, space-frugality, and statelessness.

4.3 Instantiations

In each attempt of the main algorithm, the attempting process p allocates its mynodep in the

Try Section and frees its prevp in the Exit Section. The original algorithm is written for a shared

memory machine with a linearizable memory allocator. We now show two simple ways to implement

a memory allocator for this particular algorithm that lead to useful variations of the main algorithm.

4.3.1 Deriving a Node Toggling Algorithm

In order to prove that this is a valid implementation of a memory allocator for the presented

algorithm, we must show that each time a node is being given out by malloc, it is a node that is

not currently allocated. In order to show this, we define ITp , the toggle invariant for process p:

56

Algorithm 3 Our Node Toggle Algorithm Memory Allocator
For each process p:

mynodep[0],mynodep[1]: hold pointers to nodes
tp ∈ {0, 1}: arbitrarily initialized

1: mallocp(shared word)
2: tp ← 1− tp
3: return mynodep[tp]
4: freep(nodeptr) ▷ do nothing

ITp := (p ∈ P =⇒ mynodep = mynodep[tp]) ∧

(PCp ∈ {8, 9, 1} =⇒ mynodep[1− tp] ̸∈ A)

We now prove the toggle invariant IT := ∀p, ITp

Theorem 4.3.1. IT is an invariant of the toggle instantiation of the main algorithm.

Proof. The proof is by induction on steps of the multiprocess system.

Base Case: Consider any process p in the initial configuration, we see that p ̸∈ P and

mynodep[0],mynodep[1] ̸∈ A. So, IT holds in the initial configuration.

Induction Step: Assume IT holds in a given configuration, and consider what happens when

some process π takes the next step.

– If π executes a line other than 1 and 7, IT is unaffected and thus continues to hold after

the step.

– If the next step of π is line 1, then mynodeπ[1 − tπ] is not allocated before the line

execution by IT . So, when tπ is complemented andmynodeπ[tπ] is returned, ITπ continues

to hold. ITp is unaffected for other processes p ̸= π, so IT continues to hold after the

step.

– If the next step of π is line 7, then A = N after the free operation, since I3g shows that

tail ∈ N, I3ei shows that {prevp|PCp ∈ [5, 7] } ⊂ N. Since N = {mynodep|p ∈ P} and

mynodeπ = mynodeπ[tπ] we conclude that mynodeπ[1− tπ] ̸∈ A.

Corollary 4.3.2. The toggle allocator can be used with the main algorithm.

57

Proof. IT shows that nodes returned by malloc are never in A, and I5 shows that A is the set

of allocated and not yet freed nodes. So, the toggle allocator always mallocs only unallocated

nodes.

Now that we have proved the correctness of the toggle allocator, we notice that we can actually

inline the toggle allocation process to simplify the main algorithm to the toggle algorithm, presented

below as Algorithm 4. In line 7 of this algorithm, nonnil can be any value that is not equal to

nil.

Algorithm 4 Our Node Toggle Algorithm: Derived by Instantiation from Our Main Algorithm
1: tp ← 1− tp
2: gop ← false
3: nodep[tp]← nil
4: prevp ← FAS(tail,&nodep[tp]) ▷ Doorway Ends
5: if FAS(∗prevp,&gop) = nil then
6: wait till gop = true

CRITICAL SECTION
7: if (goptrp ← FAS(nodep[tp],nonnil)) ̸= nil then
8: ∗goptrp ← true

4.3.2 Deriving a Node Switching Algorithm

Algorithm 5 Our Node Switching Memory Allocator
For each process p: previousp is initially &nodep

1: mallocp(shared word)

2: return previousp

3: freep(nodeptr)

4: previousp ← nodeptr

We now show that the node switch allocator will only allocate unallocated nodes. To do this, we

ISp , the node switch invariant for process p:

ISp := p ∈ [2, 7] ⇐⇒ previousp ∈ A

We wish to show the node switch invariant IS := ∀p, ISp

Theorem 4.3.3. IS is an invariant of the node switch instantiation of the main algorithm.

58

Proof. The proof is by induction on steps of the multiprocess system.

Base Case: Consider any process p in the initial configuration, PCp = 1 and previousp ̸∈ A.

So, IS holds initially.

Induction Step: Assume IS holds in a given configuration, and consider what happens when

some process π takes the next step.

– If π executes a line other than 1 and 7, IS continues to hold since no node is allocated

or freed on the line and I5 states that A will therefore be unaffected by the step.

– If the next step of π is line 1, by inductive hypothesis previousπ ̸∈ A before line 1 and

previousπ = mynodeπ ∈ A after line 1. Therefore, ISπ holds after the step. For p ̸= π, ISp

is unaffected by the step, so IS holds after the step.

– If the next step of π is line 7, by inductive hypothesis prevπ ∈ A before the step and

prevπ (which is also the new value of previousπ) is not in A after it is freed by I5. So,

ISπ holds after the step. For p ̸= π, ISp is unaffected by the step, so IS holds after the

step.

Corollary 4.3.4. The node switch allocator can be used with the main algorithm.

Proof. IS shows that nodes returned by malloc are never in A, and I5 shows that A is the set of

allocated an not yet freed nodes. So, the node switch allocator always mallocs only unallocated

nodes.

Inlining the node switch allocator into the main algorithm yields the node switch algorithm,

presented below as Algorithm 6. In line 7 of this algorithm, nonnil can be any value that is not

equal to nil.

59

Algorithm 6 Our Node Switching Algorithm: Derived by Instantiation from Our Main Algorithm
1: mynodep ← prevp
2: ∗mynodep ← nil
3: ∗gop ← false
4: prevp ← FAS(tail,mynodep) ▷ Doorway Ends
5: if FAS(∗prevp, gop) = nil then
6: wait till ∗gop = true

CRITICAL SECTION
7: if (next_gop ← FAS(∗mynodep,nonnil)) ̸= nil then
8: ∗next_gop ← true

60

Chapter 5

Abortable Mutual Exclusion

5.1 Introduction

The Mutual exclusion problem, proposed by Dijkstra, is an abstraction of a lock that is owned

by at most one process at any time [52]. The abortable mutual exclusion problem, proposed by

Scott and Scherer [180] in response to the needs in real time systems and databases, is the variant

that allows processes to abort from their attempt to acquire the lock. Worst-case constant remote

memory reference (RMR) algorithms for mutual exclusion using hardware instructions such as

Fetch-and-Add or Fetch-and-Store have long existed for both Cache Coherent (CC) and Distributed

Shared Memory (DSM) multiprocessors [13, 83, 152, 41, 148, 10, 56], but no such algorithms are

known for abortable mutual exclusion. Even relaxing the worst-case requirement to amortized,

algorithms are only known for the CC model—Lee’s deterministic algorithm [138] and Giakkoupis

and Woelfel’s randomized algorithm [72]. In this chapter, we improve this state-of-the-art by

designing a deterministic algorithm that uses Fetch-and-Store (FAS) to achieve amortized constant

RMR in both the CC and DSM models. A further highlight of our algorithm is that a process can

abort in O(1) steps in the worst-case, a property that neither Lee’s nor Giakkoupis and Woelfel’s

algorithm has. In the rest of this section, we specify the problem, the RMR complexity metric, and

describe our contribution in the context of prior research.

5.1.1 Specification of Abortable Mutual Exclusion

In the abortable mutual exclusion problem, each process is modeled by five sections of code—

Remainder, Try, Critical, Exit, and Abort sections. A process stays in the Remainder section when

61

it does not need the lock and, once it wants the lock, it executes the Try section concurrently with

others that are also competing for the lock. Anytime a process is outside the Remainder section, the

environment can send an “abort” signal to the process (how the environment sends this signal to a

process does not concern us). From the Try section, a process jumps either to the Critical Section

(CS) or to the Abort section, with the proviso that a process may jump to the Abort section only

if it receives the “abort” signal from the environment while in the Try section. While in the CS,

a process has exclusive ownership of the lock. When it no longer needs the lock, the process gives

it up by executing the Exit section to completion and then moving back to the Remainder section.

If a process enters the Abort section from the Try section, upon completing the Abort section the

process moves back to the Remainder section.

The abortable mutual exclusion problem consists of designing the code for the Try, Exit, and

Abort sections so that the following properties are satisfied [104].

• Mutual Exclusion: At most one process is in the CS at any time.

• Bounded Exit: There is a bound b such that each process in the Exit section completes that

section in at most b of its own steps.

• Bounded Abort: There is a bound b such that, once a process receives the abort signal from

the environment, it will enter the CS or the Remainder section in at most b of its own steps.

We call this bound b the abort-time.

• Starvation-Freedom: Under the assumption that no process stays in the CS forever and no

process stops taking steps while in the Try, Exit, or Abort sections, if a process in the Try

section does not abort, it subsequently enters the CS.

We now state another desirable property that has never been proposed or investigated earlier.

In any application, the environment sends the abort signal to a process only when there is some

urgent task that the environment needs the process to attend to. In such a situation, we would

want the process to “quickly” abort from its attempt to acquire the lock. Accordingly, we define

abort-time as the worst-case number of steps that a process takes between receiving an abort signal

and subsequently entering the CS or the Remainder section. So, we would like the abort time to

be a constant independent of the number of processes:

• Fast Abort: The abort-time is an absolute constant.

62

Next, we define a novel fairness property called Airline First Come First Served (AFCFS),

which is a natural relaxation of the standard First Come First Served (FCFS) property for the

abortable setting. For intuition, imagine you are waiting to check-in in a long airline queue. You

will not mind if someone who was ahead of you but left for the restroom (i.e. aborted) comes

back to their old position in the queue. However, you will not allow a newcomer to take a position

ahead of you in the queue. Before formalizing this property below, recall that FCFS for standard

mutual exclusion (i.e. without the abort feature) is formalized using either the notion of a bounded

Doorway [135], or more directly by the following condition: there is a bound b such that if a process

p1 performs b steps of the Try section before a process p2 enters the Try section, then p2 does not

enter the CS before p1.

Turning our attention back to the abortable problem, we say a process begins a passage when

it first enters the Try section or when it first enters the Try section after the end of its previous

passage, and the passage ends when the process completes the Exit section. Note that a process

can abort arbitrarily many times within each of its passages. Let π1 be a passage of p1 and π2 a

passage of p2. We say that π1 b-precedes π2 if p1 executes b steps s1, s2, . . . , sb of the Try section in

π1 before the start of π2 and p1 does not abort in π1 after step s1.

• Airline First Come First Served (AFCFS): There is a bound b such that if a passage π1 by

process p1 b-precedes a passage π2 by process p2, then p2 does not enter the CS in π2 before

p1 enters the CS in π1.

Note that if no aborts are ever performed, then AFCFS coincides identically with standard

FCFS.

5.1.2 RMR Complexity

In a cache-coherent (CC) machine each process has a cache. A read operation by a process p on a

shared variable X fetches a copy of X from shared memory to p’s cache, if a copy is not already

present. Any non-read operation on X by any process invalidates copies of X at all caches. An

operation on X by p counts as a remote memory reference (RMR) if either the operation is not a

read or X’s copy is not in p’s cache. In a distributed shared memory (DSM) machine, instead of

caches, shared memory is partitioned, with one partition residing at each process, and each shared

variable resides in exactly one partition. Any operation (read or non-read) by a process p on a

shared variable X is counted as an RMR if X is not in p’s partition.

63

The worst-case RMR complexity of an algorithm is the maximum number of RMRs incurred

by a process between the times of leaving and subsequently re-entering the Remainder section, not

counting any RMRs incurred in the CS. The amortized RMR complexity of an algorithm is the

maximum value of x/y, where x is the total number of RMRs performed in the Try, Abort, and

Exit sections by all processes and y is the total number of times the Try section was entered by

any process. In general, the RMR complexity is a function of n, which is the maximum number of

processes that execute the algorithm.

5.1.3 The Impact of Synchronization Primitives on RMR Complexity

The RMR complexity of the mutual exclusion problem is well known to depend on the synchro-

nization primitives available for use in algorithms. A long standing lower bound due to Cypher

[42], and an even stronger lower bound due to Attiya, Hendler, and Woelfel [17] establish that con-

stant RMR complexity is unachievable even for standard mutual exclusion using read, write, and

Compare-and-Swap (Cas). In fact, sub-logarithmic deterministic RMR complexity is unachievable

even with amortization using only read, write, and Cas [17]. On the other hand, it has long been

known that standard mutual exclusion has constant RMR algorithms using non-conditional prim-

itives, such as Fetch-and-Add (F&A) [13, 10] or Fetch-and-Store (FAS) [83, 152, 41, 148, 56, 108]

(the constant bound holds only on CC machines for some of these algorithms, and for both CC and

DSM machines for the others). Thus, FAS or F&A can be more effective than Cas when solving

mutual exclusion and related problems. Our algorithm is based on the FAS primitive.

There is another sense in which FAS and F&A are stronger than Cas: unlike FAS and F&A,

Cas admits a deterministic O(1) RMR implementation using read and write operations [79]. Con-

sequently, any algorithm A that uses read, write, and Cas can be transformed into an algorithm A′

that uses only read and write by replacing each instance of Cas in A with its implementation via

reads and writes. The resulting algorithm A′ would have the same asymptotic RMR complexity

as A, and may appear to solve the same problem as A does. However, the latter is not always

the case because the Cas implementation via reads and writes is blocking. As a result, if A is a

mutual exclusion algorithm that uses Cas in the Exit section, A′ may not satisfy the Bounded Exit

property even if A does. If A is an abortable mutual exclusion algorithm that uses Cas in its Try

section, A′ no longer solves the problem because the Cas implementation via reads and writes is

not abortable.

64

5.1.4 Our Contribution

We investigate whether O(1) RMR complexity is feasible for abortable mutual exclusion in the

CC and DSM models. If the goal is O(1) worst case RMR complexity, the problem has been and

continues to be open. On the other hand, for O(1) amortized RMR complexity, there has been some

progress, albeit only for the CC model. In light of the lower bound described above, it follows that

any algorithm that aspires for O(1) amortized RMR complexity must either use synchronization

primitives other than Cas or use randomization. The former approach was taken by Lee [138], and

the latter by Giakkoupis and Woelfel [72]. Lee’s algorithm (the second one in his thesis [138]) is

deterministic and uses FAS and Cas, but its amortized RMR complexity of O(1) was unproven

and even unobserved. Giakkoupis and Woelfel’s algorithm, uses Cas and randomization, but has

expected O(1) amortized RMR complexity only against an oblivious scheduler. Their algorithm

uses infinite arrays but they also sketch how to keep the memory use bounded to a polynomial (of

unknown constant degree).

For the DSM model, there are no algorithms using common synchronization primitives of even

sub-logarithmic amortized RMR complexity, let alone O(1). In fact, only two algorithms of bounded

RMR complexity are known: Jayanti’s algorithm [104] and the first algorithm in Lee’s thesis [138],

both of which have logarithmic worst-case RMR complexity.

In this work, we design a deterministic algorithm that uses FAS and guarantees O(1) amortized

RMR complexity for both the CC and DSM models.1 Our algorithm supports Fast Abort: a

process aborts within 6 steps of receiving the abort signal. The algorithms of Lee and Giakkoupis

and Woelfel do not have the fast abort property, making ours the first to support Fast Abort and

have O(1) amortized RMR complexity in either model. (To the familiar reader, Lee’s algorithm

does not satisfy fast abort because an aborting process p may find as many as Θ(n) aborted nodes

ahead of its node. In this case, p removes each of these nodes from the wait-queue, taking Θ(n)

steps, before aborting.)

Our algorithm has the following additional desirable properties: It satisfies AFCFS, requires

only O(1) space per active or aborted process, and supports an arbitrary number of processes of

arbitrary names. It is also succinct with fewer than a dozen lines of code.

Our algorithm is inspired by a long line of research on queue locks, especially of the MCS variety

[152], where waiting processes are organized as a linked list. The MCS lock uses both FAS and
1The Fetch-and-Store (FAS) instruction is a read-modify-write instruction that behaves as follows: FAS(X, v)

changes shared variable X’s value to v and returns X’s previous value.

65

Cas, and does not satisfy Bounded Exit. Craig refines this algorithm to use only FAS and bound

the exit section [41]. A further simplification of Craig’s algorithm is presented by Jayanti et. al.

[108]. These locks use only O(1) space per active process and support an arbitrary number of

processes which Lee’s algorithm as well as ours inherit. The second algorithm in Lee’s Thesis [138]

builds on Craig’s algorithm to implement the abort feature on CC machines. Lee’s clever insight is

that an aborting process could leave its node in the queue and try to reclaim that position the next

time it attempts to capture the lock (thereby realizing AFCFS). Our algorithm builds on those of

Jayanti et. al. and Lee with two further insights. The first concerns what actions a process takes

upon receiving the abort signal. In Lee’s algorithm, an aborting process—even as it leaves its own

node in the queue—kicks out all contiguous aborted nodes in front of it. In contrast, our algorithm

kicks out at most one node. This idea makes the proof of starvation freedom more complex, but

is crucial to achieving Fast Abort. Second, our algorithm incorporates the requisite indirection

to ensure constant RMR complexity even on DSM machines. This indirection is algorithmically

subtle because, even though it “falsely” wakes waiting processes multiple times, neither correctness

nor the constant amortized bound is broken. We prove mutual exclusion through invariants, and

starvation-freedom and complexity analysis through potential functions.

5.1.5 Prior Research

Algorithm Primitive RMRs WC / Amrt Det. Space DSM Fairness Fast Abort
Scott et al. [180] FAS,Cas ∞ WC ✓ ∞ ✓
Scott CLH-NB [179] FAS,Cas ∞ WC ✓ ∞ ✓
Scott MCS-NB [179] FAS,Cas ∞ WC ✓ ∞ ✓
Jayanti [104] Cas Θ(logn) WC ✓ Θ(n) ✓ FCFS
Lee Alg 1 [138] None Θ(logn) WC ✓ Θ(n logn) ✓
Lee Alg 2 [138] FAS,Cas Θ(n)/Θ(1) WC/Amrt ✓ Θ(n) AFCFS
Lee Alg 3 [138] FAS Θ(n2) WC ✓ ∞ FCFS
Lee Alg 4 [138, 137] FAS Θ(n2) WC ✓ Θ(n2) FCFS
Woelfel et al. [169] Cas O(logn

log logn) WC Θ(n)

Giakkoupis et al. [72] Cas Θ(1) Amrt ∞
Alon et al. [7] F&A,Cas O(logn

log logn) WC ✓ O(n2)

This Chapter Alg 7 FAS Θ(1) Amrt ✓ Θ(n) AFCFS ✓
This Chapter Alg 8 FAS Θ(1) Amrt ✓ Θ(n) ✓ AFCFS ✓

Table 5.1: Summary of abortable locks. The columns describe: RMR complexity; whether the
complexity is worst case (WC) or amortized (Amrt); whether the algorithm is Deterministic (Det.)
or randomized; space complexity; whether the RMR bound holds for the DSM model; what fairness
condition (if any) the algorithm satisfies; and whether the algorithm supports Fast Abort.

We list previous algorithms for abortable mutual exclusion and their properties in Table 5.1.

66

Scott and Scherer were the first to formulate the abortable mutual exclusion problem [180], but

their algorithm and Scott’s subsequent algorithm [179] have unbounded RMR complexity. Jayanti

presented the first algorithm of bounded RMR complexity [104]. His algorithm uses Cas and has

O(logn) RMR complexity which is optimal by the aforementioned lower bound [17]. Giakkoupis

and Woelfel gave a Cas-based randomized abortable lock of O(1) expected amortized RMR com-

plexity [72], which contrasts positively with the lower bound [17] that deterministic sub-logarithmic

complexity is infeasible even with amortization. Another Cas-based algorithm by Woelfel and Pa-

reek [169] uses randomization yet again to beat the lower bound and attain a sub-logarithmic,

albeit non-constant, expected RMR complexity.

Lee’s dissertation has four FAS based deterministic algorithms with worst-case RMR com-

plexities of Θ(logn), Θ(n), Θ(n2), and Θ(n2) [138]. The second algorithm has O(1) amortized

RMR complexity and satisfies AFCFS, although neither of these facts is proved by him. Alon and

Morrison [7] designed a deterministic Fetch-and-Add based algorithm with sub-logarithmic, but

non-constant RMR complexity.

Of the above, only two algorithms have bounded RMR complexity in the DSM model—Jayanti’s

[104] and Lee’s first algorithm [138].

5.2 Line Numbering Convention

We adopt the standard model in which an execution of an algorithm is a sequence of atomic steps,

where a step consists of any one process performing an instruction on a shared variable and a

bounded number of instructions on its local variables. Accordingly, we label each shared memory

instruction in an algorithm with a distinct line number, and a step consists of performing that

shared memory instruction as well as all the subsequent instructions on local variables, up to and

excluding the next numbered shared memory instruction.

5.3 An O(1) Algorithm for CC

In this section, we describe a very succinct algorithm that is designed to have the O(1) Amortized

RMR complexity guarantee only on CC machines. Our algorithm uses ideas that are similar to

Lee’s [138], but it is simpler and it uses only the FAS synchronization primitive; additionally, we

furnish it with a proof of correctness via invariants and an amortized complexity analysis.

67

Algorithm 7 : Amortized constant RMR abortable lock for CC machines. Code shown for process
p. Process p jumps to the Abort Section if the abort signal is on and p is at Line 4 or 5.

Variables
• A node is a single shared memory word that can hold a pointer, or nil, or token.
• tail: shared variable that points to a node. Initially, it points to a node that is allocated

and initialized to token.
• When a process p first participates in the algorithm:

– It allocates two local variables mynodep and predp both of which point to the same
freshly allocated node initialized to nil.

– It allocates an uninitialized local variable vp that can hold a pointer, nil, or token.

Section Try(p)
1: if FAS(∗mynodep, nil) ̸= predp then
2: predp ← FAS(tail,mynodep)
3: vp ← FAS(∗predp, nil)

if vp ̸∈ {nil, token} then predp ← vp
while vp ̸= token do

4: if (vp ← ∗predp) ̸∈ {nil, token} then
5: vp ← FAS(∗predp, nil)

if vp ̸∈ {nil, token} then predp ← vp

Section Exit(p)
6: ∗mynodep ← token

mynodep ← predp

Section Abort(p)
7: ∗mynodep ← predp

Remark 5.3.1. The algorithm only requires that token is different from every value that mynodep
could take on; so we can use the address &tail as token.

5.3.1 Informal Description

We present our abortable lock as Algorithm 7. To build intuition about the algorithm, we start by

describing how the lock would work if processes do not abort. Then, we describe the parts of the

code that facilitate efficient aborting.

Fundamentally, our lock is a queue lock, i.e. all k processes that have finished the doorway but

not yet the Exit section form a process wait-queue, Q = q1, . . . , qk. We call the first process in the

queue, q1, the head process and the last process qk the tail process. Furthermore, for each process

qi, the process qi−1 is its predecessor and qi+1 is its successor—apart from the head process which

has no predecessor and the tail process which has no successor.

68

In the algorithm, the wait-queue is represented as follows. Each process p has two associated

local variables mynodep and predp, which stands for predecessor of p. Each of these variables holds

the address of a node—a single word in shared memory—that stores either nil, the address of

another node, or the special value token. The abstract wait-queue q1, . . . , qk is represented by the

list mynodeq1 , . . . ,mynodeqk ; this list is linked by the predecessor pointers, with predqi pointing

to the same node that mynodeqi−1 points to, for each i ∈ [2, k]. Furthermore, predq1 points to a

node that is not any process p’s mynodep; we call this node the anchor node and let a0 denote its

address. For brevity, we let ai denote mynodeqi , and define the node wait-queue to be the linked list

of node addresses a0, a1, . . . , ak. In the remainder of the description, we use the term wait-queue to

refer to either the process or node wait-queue as disambiguated by context. The final important

component of the queue representation is the shared variable tail which holds the address ak of

the tail node. When a process that is not currently in the wait-queue wishes to join, it simply

needs to apply an atomic FAS on tail to secure its predecessor node’s address and simultaneously

insert its node as the new tail of the wait-queue.

Each process uses its node to signal to its successor whether or not it has permission to enter

the CS. In particular, when qi leaves the CS, it replaces the nil in its node ai with token, thereby

signaling its successor qi+1 that it may enter the CS. Accordingly, qi+1 simply spins on the shared

variable ∗predqi+1 , and enters the CS only after it finds token there. The algorithm ensures that

∗a0 = token and ∗ai = nil for i ∈ [1, k] so that the head process is in the CS while all others wait.

In an execution of the Try Section, a process p performs the doorway by swapping nil into

mynodep to initialize (Line 1), and joining the queue by swapping the address mynodep with tail

and storing the result in predp (Line 2). Then p spins, repeatedly reading ∗predp into vp (Line 4)

until it becomes token (the condition of the while loop right before Line 4), at which point p

proceeds to the CS. We ignore Line 3 for now, until we get to describing aborting.

Our protocol ensures that the anchor node a0 holds token, which implies that q1 is either

already in the CS or enabled to enter the CS2. As q1 exits, it enables its successor by writing token

to ∗a1 at Line 6. This ties up a1 since its successor needs to read the token inside it in order to

acquire the CS; however, it frees up the old anchor node a0 which was the node that q1 got the

token from when it entered the CS. So, q1 relinquishes its ownership of a1 to let it become the new

anchor node, and claims ownership of a0 as its new mynode; this node assignment also happens on
2When we say process p is enabled to enter the CS, we mean that there is a bound b such that p will enter the CS

if it takes b steps, regardless of how its steps interleave with the steps of other processes.

69

the same line, Line 6, since it is a local action.

We now describe aborting. In our algorithm, even if a process p receives the abort signal from

the environment at or before Line 3, it is allowed to jump to the Abort section only after completing

Line 3 (which, as already highlighted in Section 5.2, includes completing all local actions associated

with Line 3). It follows that any aborting process must be in the wait-queue at Line 4 or Line 5.

When a process qi in the wait-queue wishes to abort, it simply replaces the nil in its node

ai with the pointer predqi (Line 7), and moves to the Remainder Section. However, the node

ai that qi owns is still a part of the linked list, so we continue to regard ai as a member of the

wait-queue. In fact, if qi executes the Try Section immediately after aborting, it will notice that

∗mynodeqi = predqi in the comparison at Line 1, and thereby skip Line 2 and reclaim its old

position in the wait-queue. On the other hand, if qi continues to stay in the Remainder section,

process qi+1, which is continually reading the value of ∗predqi+1 (i.e. ∗ai) at Line 4, will notice that

∗ai has a non-nil, non-token value. Thus, qi+1 will perform the FAS at Line 5 that splices ai out

of the linked list, by simultaneously setting predqi+1 to ai−1 and ∗ai to nil. If qi attempts the Try

Section now, it will immediately discover that it has been removed from the queue, since nil has

replaced predqi in ∗mynodeqi (Line 1).

Next we turn our attention to Line 3, the only line that we have not described yet. Notice

that this line is identical to Line 5, yet, its placement at Line 3 is pivotal to ensuring Starvation

Freedom. To see this, consider a scenario where processes q1 and q2 are both at Line 4 of the Try

Section, and the following sequence of two actions repeats an unbounded number of times:

1. The anchor node a0 has token. However, rather than finding this token and entering the CS,

q1 aborts by executing Line 7. As soon as it aborts, q1 executes Lines 1 and 2 of the Try

Section and regains its position at the front of the wait-queue. If Line 3 were not there, q1
would find itself back at Line 4 of the algorithm.

2. q2 executes Line 4. Since ∗mynodeq1 = nil, the condition of the if-statement and while-loop

both fail and q2 remains at Line 4.

In the above scenario, neither process ever stops taking steps and q2 does not abort, yet q2 never

enters the CS, thereby violating Starvation Freedom.

The essence of the problem is that process q1 is enabled to get into the CS every time it enters

the Try Section, but it is never taking enough steps to reach the CS before aborting. Line 3

alleviates this problem by forcing every process to examine the node in front of it each time it

70

enters the Try Section. Thus, the process is forced to make progress by entering the CS when

it is enabled, or by splicing out its predecessor node if it is aborted. In our analysis, we give

a rigorous argument by potential function that this small modification yields an algorithm that

satisfies Starvation Freedom.

The following theorem summarizes the properties of Algorithm 7.

Theorem 5.3.2. Algorithm 7 solves Abortable Mutual Exclusion for an unbounded number of

processes of arbitrary names using the FAS synchronization primitive. In particular, the algo-

rithm satisfies Mutual Exclusion, Bounded Exit (O(1) steps), Fast Abort, Starvation-Freedom, and

AFCFS. It uses only O(1) space per process, and in the CC model has O(1) amortized RMR

complexity.

In the next section, we prove this theorem via an invariant which specifies precisely, what values

the variables of the algorithm take on and when, including when each node takes on each of the

three values—nil, token, or pointer to another node.

5.4 Correctness and Efficiency of the CC Algorithm

We define P to be the set of processes, and N to be the set of |P | + 1 nodes that are allocated

initially, as described in the “Variables” section of Algorithm 7.

Theorem 5.4.1. I ≜
∧13

j=1 Ij is an invariant of Algorithm 7.

Proof. We will prove the invariant by induction on steps of the multiprocess system. In particular,

we consider what happens when a process π executes its next step.

Base Case: At the beginning k = 0 and a0 is the node pointed to by tail. This initialization

ensures that a0 ∈ N and a0 ̸= mynodep for each p ∈ P .I1, and I4 hold true since tail = a0.

I2, I3, I8, and I12 hold trivially since k = 0. I5 holds since predp = mynodep ∈ N for every

p ∈ P . I6, and I10 hold since ∗mynodep = nil ̸= predp for every p ∈ P and since Q = ∅.

I7, I8, I9, I12, and I13 hold trivially since PCp = 1 for every p ∈ P . I11 holds since ∗a0 is

initialized to token.

Induction Step: We assume that invariant holds in a particular configuration, and consider

what happens if the next step is taken by some process π executing one of the six possible

lines.

71

There is an integer k ≥ 0, and a sequence A = a0, . . . , ak of k + 1 distinct nodes and a sequence
Q = q1, . . . , qk of k distinct processes such that

I1) tail = ak

I2) ∀i ∈ [1, k],mynodeqi = ai

I3) ∀i ∈ [1, k], predqi = ai−1

I4) N = {a0} ∪ {mynodep | p ∈ P}

I5) ∀p ∈ P, predp ∈ N

I6) ∀p ∈ P, (PCp = 1) =⇒ (∗mynodep = predp ⇐⇒ p ∈ Q)

I7) ∀p ∈ P, (PCp ̸= 1) =⇒ (∗mynodep = nil)

I8) ∀p ∈ P, (PCp = 2) =⇒ (p ̸∈ Q)

I9) ∀p ∈ P, (PCp ̸∈ {1, 2}) =⇒ (p ∈ Q)

I10) ∀p ∈ P, ∗mynodep ∈ {nil, token, predp}

I11) ((k = 0) ∨ (k ≥ 1 ∧ PCq1 ̸= 6)) =⇒ (∗a0 = token)

I12) (k ≥ 1 ∧ PCq1 = 6) =⇒ (∗a0 ∈ {nil, token})

I13) ∀p ∈ P, p ̸= q1 =⇒ PCp ̸= 6

Note: by I1, I2, I3, and I4, the queue of nodes starts with the tail and ends with the unique node
a0 that is no process p’s mynodep. This immediately implies that k and the sequences A and Q
are unique.

Figure 5-1: Invariant of Algorithm 7.

line 1: We consider two cases: ∗mynodeπ = predp and ∗mynodeπ ̸= predp.

If ∗mynodeπ = predp, then π = qi for some i ∈ [1, k] by I6. So, the comparison on line

1 will fail and PC ′
π will become 3. The swap on line 1 will guarantee I7 and I10 after

the execution and π will continue to be qi so I9 will continue to hold. The rest of the

invariant continues to hold trivially since it is unaffected by the execution.

If ∗mynodeπ ̸= predp, then π ̸= qi for any i ∈ [1, k] by I6. So, the comparison on line 1

will succeed and PC ′
π will become 2. The swap on line 1 will guarantee I7 and I10 after

the execution and π will continue to not be any of the qi, and therefore I8 will continue

to hold. The rest of the invariant continues to hold trivially since it is unaffected by the

execution.

line 2: Due to the execution of line 2, the value k′ will become k + 1, q1, . . . , qk will

72

remain the same and π will become qk′ and mynodeπ will become ak′ , and PC ′
π = {3}.

π was not in Q before the step by I8, and and mynodeπ was not in A before the step

since I2 and I4 guarantee that the k+1 nodes that were in A before were either mynodeq

of some q ∈ Q or a0 ̸∈ {mynodep | p ∈ P}. I1 will continue to hold due to the FAS

on line 2, I2 and I3 will hold for i = k′ also due to the FAS (and will continue to hold

for the other values of i as they are unaffected). I9 will hold since π = pk′ . I12 will

continue hold since PC ′
π ̸= 6. The remaining invariants will continue to hold since they

are unaffected.

line 3: I9 shows us that π = qi for some i ∈ [1, k]. So, predπ = ai−1 by I3. We consider

three cases: ∗ai−1 = nil, ∗ai−1 = token, and ∗ai−1 = predqi−1 . (I10 guarantees that

this is a complete list of cases.) I10 continues to hold in all cases since nil was the new

value written into the node.

If ∗ai−1 = nil, the if-condition fails and the while-condition fails and π goes to line 4.

All invariants are unaffected and therefore continue to hold.

If ∗ai−1 = token, we can infer that i = 1, since I6 and I7 guarantee that every aj with

j > 1 holds either nil or predpj , and predpj ̸= token by I5. We observe that the if-

condition fails and the while-condition succeeds and π = p1 goes into the CS. ∗a0 = nil,

so I12 continues to hold. PC ′
π becomes 6, but π = q1, so I13 continues to hold. The

remaining invariants are unaffected and thus continue to hold.

If ∗ai−1 = predqi−1 , then ∗ai−1 ̸∈ {nil, token}. So, the if-condition succeeds, pred′π
becomes predqi−1 , the while-condition succeeds, and PC ′

π becomes 4. Effectively, the

old qi−1 has been removed from the wait-queue Q, so k becomes k − 1; qi, . . . , qk be-

come q′i−1, . . . , q
′
k−1 and ai, . . . , ak become a′i−1, . . . , a

′
k−1. (q1, . . . , qi−2 and a0, . . . , ai−2

remain the same; note that I11 and I12 imply that i ≥ 2.) I3 continues to hold since

predq′i−1
= predqi−1 = ai−2 = a′i−2. The old qi−1 was removed from the Q, however the

contrapositive of I7 implies that PCqi−1 = 1, and thus since ∗mynode′qi−1
= nil, I6 and

I9 continue to hold. The remaining invariants continue to hold since they are unaffected.

line 4: I9 shows us that π = qi for some i ∈ [1, k]. So, predπ = ai−1 by I3. We consider

three cases: ∗ai−1 = nil, ∗ai−1 = token, and ∗ai−1 = predqi−1 . (I10 guarantees that

this is a complete list of cases.)

If ∗ai−1 ∈ {nil, token}, the same arguments as for line 3 apply and the invariant

73

continues to hold.

If ∗ai−1 = predqi−1 , the if-condition fails, and PC ′
π = 5, the invariant is unaffected and

thus continues to hold.

line 5: The argument is identical to that for line 3.

line 6: Since PCπ = 6, I13 implies that π = q1. Line 6 therefore removes q1 from Q, thus

k′ = k − 1. q2, . . . , qk become q′1, . . . , q
′
k′ , and a1, . . . , ak become a′0, . . . , a

′
k′ . a0 becomes

mynodeπ, and therefore, a1 = a′0 ̸∈ {mynode′p | p ∈ P}. I1, I2, and I3 continue to hold

since they are simply translated to i′ = i−1. I4 continues to hold since the old nodes are

the same as the new nodes, just mynodeπ become a′0 and a0 became mynode′π. Since,

∗a0 ∈ {nil, token}, we see that ∗mynode′π ̸= predπ ∈ N and I6 and I10 continue to

hold. I9 continues to hold since PC ′
π = 1. ∗a′0 = token, so I11, I12 hold. The remainder

of the invariant is unaffected and thus continues to hold.

line 7: Since PCπ > 2, I9 implies that π ∈ Q. So, let i ∈ [1, k], such that π = qi.

PC ′
π = 1, but ∗mynode′π = predπ so I6 and I10 continue to hold. The remainder of the

invariant is unaffected and thus continues to hold.

Corollary 5.4.2. Algorithm 7 satisfies mutual exclusion.

Proof. I13 states that only process q1 can be in the critical section.

Theorem 5.4.3. Algorithm 7 satisfies AFCFS where the doorway constitutes Lines 1 and 2 of the

Try Section.

Proof. In order to show this property, we prove the following stronger statement by induction: if

process p = qi in the queue and process p′ = qj in the queue with j > i, then p started its passage

before p′ finished its doorway. This statement is true initially since Q is empty. The statement

continues to hold inductively whenever any process leaves Q from any position. Thus, we are left

with the case where a new process p enters Q. Since this case occurs only if p executes Line 2,

and thereby just finishes the doorway, it is clear that every other process in Q has started its

passage before p finished its doorway in its current passage. Now in conjunction with our inductive

statement, we observe that by I13, only the first process in Q, q1 , can be in the CS; that finishes

the proof.

74

In order to show starvation freedom, we will define a distance δq for each process q that is in

Q but not yet in the Exit Section. δq represents how far process q is from reaching the Critical

Section, and it will attain its minimum value, one, if and only if q is in the Critical Section. To

show that q will eventually reach the CS, we will prove that δq will decrease if q is not already

in the CS by demonstrating: (1) δq is non-increasing; (2) There is a non-empty set C(q) ∈ P of

critical processes with respect to q, such that if any q′ ∈ C(q) takes a step δq will decrease, and

if δq does not decrease in the next step, then the set of critical processes will remain unchanged.

Thus, since every process in the try section must eventually take a step, δq will eventually decrease

to one (if q does not abort) at which point point q will reach the Critical Section.

Before defining δq, we define the function f(pc) that maps a program counter value pc ∈

{1, 3, 4, 5, 6, 7} to a single digit: f(6) = 1, f(5) = 2, f(3) = 3, f(1) = 4, f(7) = 5, f(4) = 6. If

q = qi, δq will be an i digit number, specified as follows. Let j = min({j′ ≤ i|PCqj′ ̸= 1} ∪ {i}),

then the ℓth digit (from most to least significant) of δq is f(PCℓ) for ℓ ≤ j and zero for ℓ > j. For

example, if i = 4, PCq1 = PCq2 = 1 and PCq3 = 5, δq = 4420. (We have omitted the possibility of

pc = 2, since no process in q ∈ Q has PCq = 2.)

Lemma 5.4.4. Let q ∈ Q be any process in the wait-queue, δq = 1 if and only if q is in the Critical

Section.

Proof. If δq = 1, then it has only one digit and thus q = q1. So, j = 1 and PCq = 6, meaning that

p is in the Critical Section.

If q is in the Critical Section, it must be the case that q = q1 by I13. So, δq = 1 since j = 1 and

PCq1 = PCq = 6.

We now show that δq will eventually go down if q does not abort.

Lemma 5.4.5. Let q = qi ∈ Q not be in the Try Section, and let j = min({j′ ≤ i|PCqj′ ̸= 1}∪{i}).

Let π be the next process to take a step. We define the critical set C(q) = {qℓ | ℓ ∈ [1, j]}.

• If π is not in the critical set, then δq does not increase and the critical set remains unchanged

after π’s step.

• If π is in the critical set, then δq strictly decreases.

Proof. We show each of the subparts of the lemma

75

• If π ̸∈ C(q) = {q1, . . . , qj}, then it it cannot change PCqℓ for ℓ ∈ [1, j], so the first j digits of

δq are unchanged. Furthermore, we observe from the proof of Theorem 5.4.1, that the index

i such that q = qi cannot increase. So, δq cannot increase and the critical set is unchanged.

• If π ∈ C(q), then we consider cases. If π = qℓ ∈ {q1, . . . , qj−1}, then PCqℓ = 1 before the

step by definition of δq and ∗mynodeqℓ = predqℓ by I6. So, PCqℓ will become three and thus

ℓth digit of δq will change from four to three. The remaining preceding digits will remain the

same and the subsequent digits will become zero, so δq will decrease in value. The remaining

case is π = qj . If PCqj ∈ {3, 5, 6}, then qj ’s step will make qi become qi−1 since PCqj−1 = 1

and thus holds ∗mynodeqj−1 = predqj−1 by I6. This will abortable-mutex:reduce the number

of digits in δq and thereby make it strictly smaller. If PCqj ∈ {4, 7}, then the jth digit of

δq—f(PCqj)—will decrease due to the step, and all the higher order digits will remain the

same. So, δq will strictly decrease in all cases.

Starvation freedom follows directly from the above two lemmas.

Theorem 5.4.6. Algorithm 7 satisfies starvation freedom.

Proof. Let q be a process that starts an attempt that it will not abort. It will join the process

wait-queue Q in at most two steps (by the time it is in line 3) by I9. Let m be the minimum value

that δq attains. m cannot be greater than one, since qj ∈ C(q) is in the Try or Critical Section and

thus will eventually take a step thereby reducing δq further by Lemma 5.4.5. Therefore, m = 1 and

q does reach the Critical Section by Lemma 5.4.4.

It is clear from the algorithm that both the Exit and Abort Section take worst case constant

time to execute. We want to further show that All three sections of code, Try, Exit, and Abort

take only amortized constant time. To show this, we use a potential function Φ. Since lines 4 and

5 are in a while-loop, we must ensure that they have zero amortized cost. An execution of line 5

by a process p always costs one RMR for the FAS, so we define the indicator 1{PCp=5}, and will

include it in the potential function. If ∗predp is not in the cache, an execution of line 4 costs one

RMR and may also lead to an execution of line 5, otherwise it costs nothing. So, we define the

function Cp which indicates whether ∗predp is not in p’s cache. Finally, we observe that if p’s node

is aborted, i.e., if ∗mynodep = predp, then this increases the potential. So, we define Ap to be an

76

indicator that p’s node is aborted. We now define the potential function as:

Φ ≜
∑
p∈P

(2Ap + 1{PCp=5}) +
∑

i∈[1,k]

2Cqi

Lemma 5.4.7. Let α(ℓ) be the amortized cost of line ℓ ∈ [1, 7]. Then, α(ℓ) is bounded by a constant

for lines [1, 3] ∪ [6, 7], and α(ℓ) ≤ 0 for ℓ ∈ [4, 5].

Proof. We will prove the invariant by induction on steps of the multiprocess system. In particular,

we consider what happens when a process π executes its next step.

line 1: The real cost of the line is one due to the FAS. If π ∈ Q and it has at most one successor

by the invariant, and thus the change in potential is at most 2 due to the C function. So,

amortized cost is α(1) ≤ 3.

line 2: The real cost of the line is one due to the FAS, and the potential function is unchanged

because the newly joining process has no successor. So, the amortized cost is α(2) = 1.

line 3: The real cost of this line is one due to the FAS. The potential function may increase by

two, since swapping into ∗predπ ensures that Cπ is true. So, the amortized cost is α(3) ≤ 3.

line 4: There are two cases for this line. If ∗predπ is already in the cache, then this line costs

nothing, and there is no change to the potential. If ∗predπ is not in the cache, then the real

cost of the line is 1. We know however that π = qi for some i ∈ [1, k] by I9. So, the two

units of potential that are assigned to qi since ∗predqi was not in its cache can be utilized to

pay for the real cost, and for (possibly) entering line 5. So, the amortized cost of this line is

α(4) ≤ 0.

line 5: The real cost of this line is one due to the FAS. However, one unit of potential is

released since π will no longer be on line 5; it will go to line 6 if the while condition fails, and

4 or 7 otherwise.

We now show that the rest of the potential function is unchanged by the line. In particular,

if ∗predπ was previously cached, then we know that ∗predqi = predqi−1 since its value was

read on line 4, and I10 imposes that there this is the only non-nil and non-token value of

∗predqi (when combined with I2, I3). So, it must be the case that Aqi−1 was true before line

5 but not after, and the net potential change is zero Otherwise, if ∗predπ was not cached,

there is no other change to the potential function.

77

So, the amortized cost of this line is α(5) = 0.

line 6: The real cost of this line is one due to the write. Since π is bound to go to the

Remainder at the conclusion of this line by the mutual exclusion property, there is no other

change to the potential function. So the amortized cost of this line is α(6) = 1.

line 7: The real cost of this line is one for the write operation. The change in potential is up to

four, since the write makes Aπ true, and possibly causes Cqi+1 to become true if π = qi ∈ Q.

So, the amortized cost of this line is α(7) ≤ 5.

We use the above Lemma to prove the main RMR efficiency theorem about the CC algorithm.

Theorem 5.3.2. Algorithm 7 solves Abortable Mutual Exclusion for an unbounded number of

processes of arbitrary names using the FAS synchronization primitive. In particular, the algo-

rithm satisfies Mutual Exclusion, Bounded Exit (O(1) steps), Fast Abort, Starvation-Freedom, and

AFCFS. It uses only O(1) space per process, and in the CC model has O(1) amortized RMR

complexity.

Proof. All claims except for RMR complexity are immediate from the prior lemmas. To show that

the amortized RMR complexity is O(1), we simply observe that the amortized cost of an execution

of the protocol is bounded by the sum of
∑

ℓ∈{1,2,3,6,7}

α(ℓ), since the two lines (line 4 and 5) in the

loop have zero amortized cost by Lemma 5.4.7. This quantity is constant, also by Lemma 5.4.7.

5.5 An Amortized O(1) RMR Algorithm for CC and DSM

In this section, we present our abortable mutual exclusion algorithm that has O(1) amortized RMR

complexity for both the CC and DSM models. To help the reader understand the algorithm, below

we first present the high level ideas and only later point the reader to the actual algorithm and our

line-by-line commentary.

5.5.1 Intuitive Description of the Main Ideas and Their Representation

Our algorithm, once again, is essentially a queue lock: in the Try section, as processes wait to

acquire the lock, they wait in a queue. When a process enters the Try section, it adds itself to

78

the end of the queue. The process that is at the front of this queue is the one that enters the CS.

When a process leaves the CS, it removes itself from the queue, and lets the next process, which

is now at the front of the queue, enter the CS. In our informal description and in the statement of

our invariant, we let Q denote this abstract “process-queue”, k ≥ 0 denote the number of processes

in Q, and q1, q2, . . . , qk denote the sequence of processes in Q, where q1 is the front process and qk

is the tail process.

This abstract process-queue Q is represented in the algorithm by a list of nodes. A node is

simply a single word of shared memory. If a set P consisting of n processes participate in the

algorithm (some of which are in the Remainder section and the others active in Try, Critical, Exit,

or Abort sections), then the algorithm employs a total of n+1 nodes, of which n nodes are owned

by the n processes and the remaining node is not owned by any process. Thus, at any point, each

process owns one node, with different processes owning different nodes. However, the node that a

process owns and the node that is not owned by any process change with time. In the algorithm,

each process p has a local variable mynodep that holds the address of the node that p owns. We

let N denote the set of addresses of the n+ 1 nodes.

Turning our attention back to the abstract process-queue Q of length k, it is represented in the

algorithm by a list of k+ 1 nodes whose addresses we denote by a0, a1, . . . , ak, where a1, a2, . . . , ak

are the addresses of the nodes owned by q1, q2, . . . , qk, respectively, and a0 is the address of the

node that is not owned by any process. Thus, for all i ∈ [1, k], ai = mynodeqi . We call the list

a0, a1, . . . , ak the “node-queue”, which closely corresponds to but is distinct from the process-queue

Q. We say qi+1 is qi’s successor process and qi−1 is qi’s predecessor process. Similarly, we call ai+1

is qi’s successor node and ai−1 is qi’s predecessor node. Process qk has no successor node, but q1

has a0 as its predecessor node. Henceforth, we simply use the terms successor and predecessor, and

let it be inferred from the context whether we are referring to the process or to the node.

In the algorithm, each process p has another local variable predp through which p remembers

the address of its predecessor node. In particular, for all i ∈ [1, k], predqi = ai−1. There is also

a shared variable tail, which holds ak, the address of the last node in the node-queue. When a

process p enters the Try section, it performs a FAS(tail,mynodep) and stores the return value in

predp so as to both add itself to the end of the queue and simultaneously remember its predecessor.

The node a0 is the only node that may contain a special value denoted token. Once a process

p enters the Try section and adds itself to the queue, it checks if its predecessor node contains

token. If it does, p knows it is q1 and enters the CS. Otherwise, p busywaits until its predecessor

79

will inform p that p’s turn to the enter the CS has come up. In the algorithm, there is a shared

variable called gop for this purpose—it is on this variable that p busywaits. For p’s predecessor to

later inform p that it may enter the CS, the predecessor needs to know the address of gop, so p

deposits gop’s address in its predecessor node before busywaiting.

The final high level idea concerns how a process aborts. When a process qi in the Try section

wishes to abort, it leaves its node ai in the queue, but marks the node as “aborted” by writing the

address of its predecessor node into its node, i.e., by writing ai−1 into ∗ai. By doing this writing

with a FAS, qi simultaneously learns the address of goqi+1 , where its successor busy-waits, and

wakes up the successor. The successor qi+1 then reads its predecessor node ai, where it sees the

address ai−1 and infers that qi has aborted, so splices out ai from the queue by writing nil in ∗ai,

and henceforth regarding ai−1 as its predecessor.

Suppose that after qi aborted, it decides to invoke the Try section in a bid to acquire the lock.

Since it is possible that its node is not yet spliced out of the queue by its successor, qi tries to

reclaim its old spot in the queue by simply switching the value in its node from ai−1 to nil. If it

notices that its node was already spliced out, the process adds its node to the end of the queue as

in the normal course. Otherwise, it has happily reclaimed its old spot in queue.

5.5.2 The algorithm and line-by-line commentary

Having elaborately described the main ideas and how they are represented and implemented by

the local and shared variables, we now refer the reader to the precise algorithm (Algorithm 8) and

informally explain how it works by going over the code of an arbitrary process p line by line. A

note about our convention on how lines are numbered: in a single step of the execution, a process

performs an operation on a single shared variable, but can perform any number of local actions.

Therefore, in the figure, we numbered only those lines where an operation is performed on a shared

variable.

Being at Line 1 amounts to being in the Remainder section. At Line 1, p is unsure whether it

had aborted its previous attempt, but if it had aborted, p knows that it would have left predp in

its node. So, to reclaim its old spot in the queue (in the event that it aborted its previous attempt

and its node has not yet been spliced out of the queue by its successor), p performs a FAS on its

node (Line 1). If the FAS returns predp, p is sure it has reclaimed its old spot in the queue and

proceeds to Line 3. Otherwise, p realizes that either it didn’t abort its previous attempt or its

aborted node has since been spliced out, so p appends its node afresh to the queue and records its

80

predecessor node in predp (Line 2). Once in the queue, p performs a FAS on its predecessor node to

simultaneously inform the predecessor of the address of its busy-wait variable and learn the value

vp in the predecessor node (Line 3). If vp is token, p infers that it is q1, the front process in the

wait-queue, so it terminates the Try section and proceeds to the CS. If vp is non-nil and not the

address of p’s busy-wait variable, then it must be the case that the predecessor aborted and vp has

the address of the predecessor’s predecessor. In this case, p knows that it spliced its predecessor out

of the queue, and updates its predecessor (this shortens the queue by one node, which is crucial to

proving starvation-freedom). Having updated its predecessor, p proceeds to Line 6 to check what is

in store at this new predecessor. In the remaining case (when vp is either nil or the address of its

busy-wait variable), p understands it has no option but to wait until woken by its predecessor. So,

it busy-waits (Line 4) and, once woken by its predecessor, resets gop to prepare it for any busy-wait

in the future (Line 5), and then moves on to inspect the predecessor node (Line 6) to determine

why the predecessor woke it up.

Once p leaves the CS, it deposits the token in its node to signal its successor that it may enter

the CS (Line 7). If the FAS operation at Line 7 returns a non-nil value, p knows that the value

must be the address where the successor is busy-waiting. So, p wakes up its successor (Line 8).

Importantly, the moment p deposits token in its node at Line 7, that node becomes the new a0,

the token holding node that does not belong to any process, and p grabs its predecessor node (the

old a0) as its own node.

Before describing the Abort section, we note that in our algorithm, after p receives the abort

signal from the environment, it is allowed to jump to the Abort section only after performing Line 3,

or any iteration of Line 4, or Line 5, or Line 6. In particular, if the abort signal comes from the

environment when p is at Line 3, it is required to execute Line 3 and all local actions associated

with Line 3 before jumping to the Abort section. Furthermore, if the abort signal comes while p

is looping at Line 4, p does not have to wait until the wait-till loop terminates before jumping to

the Abort section; it can jump to the Abort section immediately (i.e., regardless of whether gop is

true or false).

At the start of the Abort section, p erases the address of its busy-wait variable from its predeces-

sor node because p is on the way out and no longer wants to be woken by the predecessor (Line 9).

However, if p observes the token in the predecessor node, p knows that it has the permission enter

the CS now. However, since p wishes to abort, it will sidestep CS and proceed directly to the Exit

section (and complete its abort by executing the Exit section and returning to the Remainder from

81

there). Another possibility is that vp ̸= &gop, which means that p’s predecessor aborted, in which

case p updates its predecessor to vp, which holds p’s predecessor’s predecessor. At this point, p

marks its node as aborted by writing in it p’s predecessor (Line 10). A non-nil return value would

be the address where p’s successor is busy-waiting, so p informs the successor of its departure by

setting the successor’s busy-wait variable (Line 11).

5.6 Proof of Correctness

We state the invariant of Algorithm 8 in Figure 5-2, and prove its correctness below.

Theorem 5.6.1. The statement I, which is the conjunction of I1, I2, . . . , I12 in Figure 5-2, is an

invariant of Algorithm 8. Furthermore, the quantities k, A, and Q in the invariant I are unique.

Proof. We will prove the invariant by induction on steps of the multiprocessor system. In particular,

we consider what happens when a process π executes its next step.

Base Case: At the beginning k = 0 and a0 is the address of the node that initially belongs

to no process. I1, and I4 hold true since tail = a0. I2, I3, I7, I10, and I11 hold trivially since

k = 0. I6 holds trivially since PCp = 1 for every p ∈ P . I5 holds since predp = mynodep ∈ N

for every p ∈ P . I8 holds since PCp = 1 and ∗mynodep = nil ̸= mynodep = predp for every

p ∈ P . I9 holds since k = 0 and ∗a0 = token.

Induction Step: We assume that invariant holds in a particular configuration, and consider

what happens if the next step is taken by some process π executing one of the eleven possible

lines. We use primed variables to reflect the truth after the step, and unprimed variables

before when there is ambiguity.

line 1: We consider two cases: ∗mynodeπ = predπ and ∗mynodeπ ̸= predπ.

If ∗mynodeπ = predπ, then π ∈ Q by the contrapositive of I8. So let π = qi. So, the

comparison on line 1 will fail and PCπ will become 3. I7 will hold since ∗mynodeqi = nil.

The rest of the invariants will continue to hold since they are unaffected.

If ∗mynodeπ ̸= predπ, then π ̸∈ Q by I7. So, the comparison on line 1 will succeed and

PCπ will become 2. I6 and I8 continue to hold since π ̸∈ Q and ∗mynodeπ = nil. The

rest of the invariants will continue to hold since they are unaffected.

82

line 2: By I6 we know π ̸∈ Q before the line execution. After the execution, q1, . . . , qk
and a0, . . . , ak will remain unchanged. The value of k′ will be k + 1, with π = qk′ and

mynodeπ = ak′ . Finally, PC ′
π = 3. I1, I2, and I3 will continue to hold by the FAS on

line 2. I5 continues to hold since predπ = aK ∈ N by I4. I7 continues to holds for

qk′ since ∗mynodeqk′ = nil; I7 continues to hold for the other qi’s since their program

counters are unaffected, and we notice that nil ∈ {nil,&goqi+1}. I9 continues to hold

since if k′ = 1, the k = 0 before line 2, and otherwise it is unaffected by the line. The

rest of the invariants will continue to hold since they are unaffected.

line 3: By the contrapositive of I8, we establish that π ∈ Q. So, let π = qi for i ∈ [1, k].

I7 and I9 imply that there are three cases:

1. Assume i = 1 and ∗a0 = token. In this case, ∗a0 becomes &goq1 , and PC ′
π =

PC ′
q1 = 7 after π notices that the while-loop condition after line 3 (which is a local

action) fails. This immediately implies I9 continues to hold. I10 continues to hold

since q1 was unchanged by the execution of line 3. The rest of the invariants continue

to hold since they are unaffected.

2. Assume i > 1 and ∗ai−1 ∈ {nil,&goqi}. This means that line 3, will simply replace

the initial contents of ∗ai−1 with &goqi , and PC ′
π = 4. I11 continues to hold since

(∗ai−1 = &goqi). All invariants continue to hold since they are unaffected.

3. Assume i > 1 and ∗ai−1 = predqi−1 . This means that line 3, will result in replacing

the contents of ∗ai−1 with &goqi . This will also trigger the if-condition inside the

while loop and predπ will become predqi−1 = ai−2. PC ′
π becomes 6. This action

removes the old qi−1 from Q by the uniqueness established through I1, I2, I3, I4,

making k′ = k−1, and we rename qi, . . . , qk to q′i−1, . . . , q
′
k−1. I1, I2 and I3 continue

to hold by the renaming. By I6 and I7 we establish that the old qi−1 had PCqi−1 ∈

{1, 11}; so we notice that I8 continues to hold for qi−1. The rest of the invariants

continue to hold since they are unaffected.

line 4: If goπ = false, then PC ′
π remains at 4. If goπ = true, then PC ′

π becomes 5. In

both cases, all invariants continue to hold as they are unaffected.

line 5: go′π becomes false regardless of its initial value and PC ′
π becomes 6. All invariants

continue to hold as they are unaffected.

line 6: The analysis of this line is precisely identical to that of line 3.

83

line 7: By I10 we establish that π = q1. Since, the local instruction mynodeπ ← predπ

completes atomically along with the shared instruction, by π ̸∈ Q′ by the uniqueness

of Q′ established by I1, I2, I3, I4. The old mynodeπ = mynodeq1 becomes the new a′0,

k′ = k− 1 and the old q2, . . . , qk and renamed to q′1, . . . , q
′
k−1, and I1, I2 and I3 continue

to hold by the renaming. I4 continues to hold since a0 = mynode′π and mynodeπ = a′0;

the names were simply permuted. I9 continues to hold since ∗a0 = token. By I9,

∗mynode′π = ∗a0 ∈ {nil, goπ}, and so I8 continues to hold true.

I7 shows that ∗mynodeπ could have either been nil or &goq2 . We consider three cases.

1. Assume k = 1. In this case, I7 establishes that v′π would surely have become nil

and thus π would go to the Remainder Section (PC ′
π = 1). The rest of the invariants

continue to hold since they are unaffected or become trivial since k′ = 0.

2. Assume k > 1 and ∗mynodeπ = nil. π goes to the Remainder Section (PC ′
π =

1), since v′π = nil. By I11 on i = 2, we establish that PCq′1
̸= 4 currently; so,

I11 continues to hold. The rest of the invariants continue to hold since they are

unaffected.

3. Assume k > 1 and ∗mynodeπ = &goq2 = &goq′1 . This is the only case in which

v′π = &goq′1 ̸= nil. This in turn implies that I11 will continue to hold since PC ′
π = 8.

The rest of the invariants continue to hold since they are unaffected.

line 8: I11 is self inducting in this case, since if it were true that (PCq1 = 4∧goq1 = false)

and π were indeed the process p ∈ P that had (PCp = 8∧vp = &goq1); then, by executing

line 8, π would ensure that goq1 = true ̸= false. The rest of the invariants continue to

hold since they are unaffected.

line 9: By the contrapositive of I8, we establish that π ∈ Q. So, let π = qi for i ∈ [1, k].

I7 and I9 imply that there are three cases:

1. Assume i = 1 and ∗a0 = token. In this case, ∗a0 becomes nil, and PC ′
π = PC ′

q1 = 7

after π notices that the while-loop condition after line 3 (which is a local action)

fails. This immediately implies I9 continues to hold. I10 continues to hold since q1

was unchanged by the execution of line 3. The rest of the invariants continue to

hold since they are unaffected.

2. Assume i > 1 and ∗ai−1 ∈ {nil,&goqi}. This means that line 3, will simply replace

the initial contents of ∗ai−1 with nil, and PC ′
π = 10. All invariants continue to

84

hold since they are unaffected.

3. Assume i > 1 and ∗ai−1 = predqi−1 . This means that line 3, will result in replacing

the contents of ∗ai−1 with nil. This will also trigger the else-if-condition and predπ

will become predqi−1 = ai−2. PC ′
π becomes 10. This action removes the old qi−1

from Q by the uniqueness established through I1, I2, I3, I4, making k′ = k−1, and we

rename qi, . . . , qk to q′i−1, . . . , q
′
k−1. I1, I2 and I3 continue to hold by the renaming.

By I6 and I7 we establish that the old qi−1 had PCqi−1 ∈ {1, 11}; so we notice that

I8 continues to hold for qi−1. The rest of the invariants continue to hold since they

are unaffected.

line 10: The contrapositive of I8 implies π ∈ Q. Let π = qi for i ∈ [1, k]. I7 will continue

to hold since PC ′
π ∈ {1, 11}, π ∈ Q, and ∗mynodeπ = predπ. I7 shows that ∗mynodeπ

could have either been nil or &goqi+1 . We consider three cases.

1. Assume k = 1. In this case, I7 establishes that v′π would surely have become nil

and thus π would go to the Remainder Section (PC ′
π = 1). The rest of the invariants

continue to hold since they are unaffected.

2. Assume k > 1 and ∗mynodeπ = nil. In this case, v′π would surely have become

nil and thus π would go to the Remainder Section (PC ′
π = 1). The rest of the

invariants continue to hold since they are unaffected.

3. Assume k > 1 and ∗mynodeπ = &goqi+1 . This is the only case in which v′π =

&goqi+1 ̸= nil. This in turn implies that I11 will continue to hold since (∗ai =

predqi) ∧ (PC ′
qi = 11) ∧ (vqi = &goqi−1). The rest of the invariants continue to hold

since they are unaffected.

line 11: I11 is self inducting in this case, since if it were true that (PCqi = 4∧goqi = false)

and π were indeed the process qi+1 that had (∗ai = predqi) ∧ (PC ′
qi = 11) ∧ (vqi =

&goqi−1); then, by executing line 11, π would ensure that goqi = true ̸= false. The rest

of the invariants continue to hold since they are unaffected.

Corollary 5.6.2. Algorithm 8 satisfies mutual exclusion.

Proof. I10 states that only process q1 can be in the critical section.

85

Theorem 5.6.3. Algorithm 8 satisfies AFCFS where the doorway constitutes Lines 1 and 2 of the

Try Section.

Proof. In order to show this property, we prove the following stronger statement by induction: if

process p = qi in the queue and process p′ = qj in the queue with j > i, then p started its passage

before p′ finished its doorway. This statement is true initially since Q is empty. The statement

continues to hold inductively whenever any process leaves Q from any position. Thus, we are left

with the case where a new process p enters Q. Since this case occurs only if p executes Line 2,

and thereby just finishes the doorway, it is clear that every other process in Q has started its

passage before p finished its doorway in its current passage. Now in conjunction with our inductive

statement, we observe that by I10, only the first process in Q, q1 , can be in the CS; that finishes

the proof.

5.6.1 Proof of starvation freedom

To prove starvation freedom, we define a distance function δ that maps each process p in the Try

section to a positive integer δ(p) that represents how far away p is from entering the CS. By our

definition of δ, the minimum value possible for δ(p) is 1, and it is attained exactly when p is in the

CS. To show that p will eventually enter the CS if it does not abort, we prove that if δ(p) > 1, there

is a nonempty set Ψ(p) of “promoter” processes in the Try, Exit, or Abort sections such that (i) if

a process from Ψ(p) takes the next step, δ(p) decreases, and (ii) if a process not in Ψ(p) takes the

next step, δ(p) does not increase and the promoters set Ψ(p) remains unchanged. Since a process

from Ψ(p) must eventually take a step, δ(p) is guaranteed to eventually decrease. By repeatedly

applying this argument, we see that δ(p) eventually attains the minimum value of 1, at which point

p enters the CS.

Our distance function δ is based on a carefully crafted auxiliary function f that maps each

process r ∈ Q to a decimal digit, based on r’s program counter PCr and the value of its gor

variable, as follows.

86

There is an integer k ≥ 0, and a sequence A = a0, . . . , ak of k+1 addresses of distinct nodes and a
sequence Q = q1, . . . , qk of k distinct processes such that

I1) tail = ak

I2) ∀i ∈ [1, k], mynodeqi = ai

I3) ∀i ∈ [1, k], predqi = ai−1

I4) N = {a0} ∪ {mynodep | p ∈ P}

I5) ∀p ∈ P, predp ∈ N

I6) ∀p ∈ P, PCp ∈ {2, 8} =⇒ p ̸∈ Q

∀p ∈ P, PCp = 2 =⇒ ∗mynodep = nil
∀p ∈ P, PCp = 8 =⇒ ∗mynodep ∈ {nil,&gop}

I7) If k ≥ 1, then:
PCqk ∈ {3, 4, 5, 6, 7, 9, 10} =⇒ ∗mynodeqk = nil
PCqk ∈ {1, 11} =⇒ ∗mynodeqk = predqk

If k ≥ 2, then for all qi ∈ {q1, . . . , qk−1}:
PCqi ∈ {3, 4, 5, 6, 7, 9, 10} =⇒ ∗mynodep ∈ {nil,&goqi+1}
PCqi ∈ {1, 11} =⇒ ∗mynodeqi = predqi

I8) ∀p ∈ P, p ̸∈ Q =⇒ (PCp ∈ {1, 2, 8, 11} ∧ ∗mynodep ̸= predp)

I9) If (k = 0 ∨ PCq1 ̸= 7) then ∗a0 = token, else ∗a0 ∈ {nil, goq1}

I10) ∀p ∈ P, p ̸= q1 =⇒ PCp ̸= 7

I11) (PCq1 = 4 ∧ goq1 = false) =⇒ ∃p ∈ P, (PCp = 8 ∧ vp = &goq1)

∀i ∈ [2, k], ((PCqi = 4 ∧ goqi = false) =⇒
((∗ai−1 = &goqi) ∨ ((∗ai−1 = predqi−1) ∧ (PCqi−1 = 11) ∧ (vqi−1 = &goqi))))

∀p ∈ P, PCp ∈ {8, 11} =⇒ vp ∈ {&gop | p ∈ P}

I12) ∀p ∈ P, PCp = 5 =⇒ gop = true

Note: by I4, the queue of node addresses starts with the unique node address a0 that is no process
p’s mynodep and by I1 ends with tail. This together with I2 and I3, implies that k, A, and Q are
uniquely defined.

Figure 5-2: Invariant of Algorithm 8.

f(r) =



3 ifPCr = 1

2 ifPCr = 3

8 ifPCr = 4 ∧ gor = true

9 ifPCr = 4 ∧ gor = false

7 ifPCr = 5

2 ifPCr = 6

1 ifPCr = 7

6 ifPCr = 9

5 ifPCr = 10

87

Since a process in Q cannot be at Lines 2 or 8 (by I6), we didn’t specify f(r) for PCr ∈ {2, 8}.

For a process p in the Try section, we are now ready to define p’s distance from CS δ(p), and p’s

promoters set Ψ(p).

Definition 5.6.4 (Distance function δ and Promoters set Ψ). Let p be a process in the Try section

or CS (i.e., PCp ∈ {3, 4, 5, 6, 7}). It follows from I8 that p ∈ Q. Let i ≥ 1 be p’s position in Q (i.e.,

p = qi), and let m = min{j | 1 ≤ j ≤ i, PCqj ̸= 1}. (Since PCqi ∈ {3, 4, 5, 6, 7}, m is well defined.)

Then:

• p’s distance from CS, δ(p), is defined as the i-digit decimal number d1d2 . . . di, where each

digit dj , for 1 ≤ j ≤ i, is specified as follows:

dj =


f(qj) = 3 if j < m

f(qm) if j = m

0 if j > m

For example, if i = 4, m = 3, and PCq3 = 5, then δp = 3370.

• p’s set of promoters, Ψ(p), is defined by

Ψ(p) =

{r ∈ P | PCr ∈ {8, 11} ∧ vr = &goqm} ifPCqm = 4 ∧ goqm = false

{qm} otherwise

The next lemma follows easily from the definition of δ(p).

Lemma 5.6.5. For any process p ∈ Q in the Try section or CS, δ(p) ≥ 1, and δ(p) = 1 if and only

if p is in the CS.

The values of δ(p), Ψ(p), and PCp can change from one configuration to the next. So, in contexts

such as the next lemma where we need to refer to these values in more than one configuration,

we add a configuration C as an extra parameter and denote these values as δ(p, C), Ψ(p, C), and

PCp(C).

Lemma 5.6.6. Suppose that a process p ∈ Q is in the Try section in a configuration C (i.e.,

PCp(C) ∈ {3, 4, 5, 6}) and some process π (possibly the same as p) takes a step from C. Let C ′

denote the configuration immediately immediately after π’s step.

88

1. If π ∈ Ψ(p, C), then δ(p, C ′) < δ(p, C).

2. If π ̸∈ Ψ(p, C), then either δ(p, C ′) < δ(p, C) or (δ(p, C ′) = δ(p, C) ∧ Ψ(p, C ′) = Ψ(p, C)).

Proof. Since PCp(C) ∈ {3, 4, 5, 6}, it follows from I8 that p ∈ Q(C). Let p = qi(C), and δ(p, C) be

the i-digit decimal number d1d2 . . . di, where the digits dj are as defined above. Let m = min{j |

1 ≤ j ≤ i, PCqj (C) ̸= 1}.

We prove Part (1) of the lemma in two cases:

• Suppose that PCqm(C) = 4 ∧ goqm(C) = false. Then, since π ∈ Ψ(C), it follows that

PCπ(C) ∈ {8, 11} ∧ vπ(C) = &goqm . Therefore, π’s step writes true in goqm , making

f(qm, C ′) = 8 (note that f(qm, C) was 9). Thus, themth digit is less in δ(p, C ′) than in δ(p, C),

while the other digits of δ(p) remain unchanged from C to C ′. Therefore, δ(p, C ′) < δ(p, C).

• Suppose that it is not the case that PCqm(C) = 4 ∧ goqm(C) = false. Since π ∈ Ψ(C), it

follows that π = qm.

Suppose that m = 1 and PCqm(C) ∈ {3, 6}. Then, it follows from I9 that q1’s step causes it

jump to Line 7. So, the first digit of δ(p) changes from f(q1) in C (which is 2) to f(q1) in C ′

(which is 1); therefore, δ(p, C ′) < δ(p, C).

Suppose that m > 1 and PCqm(C) ∈ {3, 6}. Since PCqm−1 = 1, it follows from the second

part of I7 that *mynodeqm−1 = predqm−1 . Therefore, qm’s step shortens the queue by one,

causing p’s position in Q to change from i in C to i − 1 in C ′. Thus, δ(p, C ′) has one fewer

digit than δ(p, C). Therefore, δ(p, C ′) < δ(p, C).

Suppose that PCqm(C) = 7. Then, m must be 1 (by I10) and q1’s step causes q1(C) to be

no longer in Q in C ′, thereby causing p’s position in Q to change from i in C to i− 1 in C ′.

Thus, δ(p, C ′) has one fewer digit than δ(p, C). Therefore, δ(p, C ′) < δ(p, C).

If PCqm(C) is anything else (i.e., PCqm(C) ∈ {4, 5, 7, 9, 10, 11}), the function f is so defined

that because of the changed value of qm’s program counter, f(qm) is less in C ′ than in C.

Thus, the mth digit of δ(p, C ′) is less than the mth digit of δ(p, C) (while all other digits of

δ(p, C ′) are respectively the same as those of δ(p, C)). Therefore, δ(p, C ′) < δ(p, C).

For the proof of Part (2) of the lemma, we consider the same two cases.

• Suppose that PCqm(C) = 4 ∧ goqm(C) = false, and π ̸∈ Ψ(C).

89

If π = qm, qm’s step will not change the configuration (i.e., C ′ = C); therefore, δ(p, C ′) =

δ(p, C) and Ψ(p, C ′) = Ψ(p, C).

If π = qj for some j < m, then qj ’s PC changes from 1 to 3. So, by the definition of f , the

jth digit of δ(p) changes from 3 in C to 2 in C ′, while all more significant digits of δ(p, C ′)

are respectively the same as those of δ(p, C). Therefore, δ(p, C ′) < δ(p, C).

If π is different from all of q1, q2, . . . , qm, then δ(p, C ′) = δ(p, C) and Ψ(p, C ′) = Ψ(p, C).

• Suppose that it is not the case that PCqm(C) = 4 ∧ goqm(C) = false, and π ̸∈ Ψ(C). Then

π ̸= qm. If π = qj for some j < m, then qj ’s PC changes from 1 to 3 and, as just argued,

δ(p, C ′) < δ(p, C). If π is different from all of q1, q2, . . . , qm, then δ(p, C ′) = δ(p, C) and

Ψ(p, C ′) = Ψ(p, C).

The previous lemma helps us prove that the algorithm is starvation free.

Theorem 5.6.7 (Starvation Freedom). If a process p ∈ Q is in the Try section (i.e., PCp ∈

{3, 4, 5, 6}) and does not abort, it eventually enters the CS.

Proof. Let C be a configuration where PCp ∈ {3, 4, 5, 6}. Since p is not in the CS in C, , it follows

from Lemma 5.6.5 that δ(p) > 1 in C. By Lemma 5.6.6, as processes take steps from C, δ(p) never

increases. It cannot remain the same forever because some process in Ψ(p, C) eventually takes a

step, causing δ(p) to decrease (by Lemma 5.6.6). Thus, δ(p) keeps decreasing as the execution

progresses, until eventually hitting the minimum possible value of 1, at which point p is in the CS

(by Lemma 5.6.5).

5.7 Complexity Analysis

In this section we analyze the space and RMR complexities of Algorithm 8.

Theorem 5.7.1. Algorithm 8 uses O(1) space plus O(1) additional space per process that partici-

pates in the algorithm.

Proof. Clear from inspection of the “Variables” description at the start of the algorithm.

We now wish to show that a process p performs only an amortized constant number of RMRs

per attempt in Algorithm 8 in both the CC and DSM cost models. (An attempt by a process lasts

90

from when it leaves the Remainder to when it re-enters the Remainder.) We analyze complexity

by the potential method, by defining two different potential functions ΦCC and ΦDSM .

We start by motivating the definition of ΦDSM , the simpler of the functions. Since we are

proving a constant bound, we must show that each iteration of p’s while-loop (lines 4, 5, and 6) is

paid for by some other action. Since, gop is in p’s partition of memory, lines 4 and 5 have no cost in

the DSM model, so we focus on line 6. The two ways that p can get to line 6 are: (1) gop becomes

true when p is busy-waiting on line 4, and (2) a FAS on either line 3 or 6 successfully removes an

aborted node from the linked list. So, we charge the executions of line 6 to processes that write

true to gop or abort a node by writing predp in ∗mynodep. This gives rise to the definition:

ΦDSM =
∑
p∈P

1{PCgop=true=5} + 1{PCPCp=6=5} + 1{PC∗mynodep=predp=5}

In this definition 1{PCprop=5} is an indicator—it equals one if prop is true and zero otherwise. Note

that ΦDSM is a proper potential function, since it is zero in the initial configuration and always

non-negative. We now state and prove a lemma that bounds the amortized cost in the DSM model

of line ℓ, αDSM (ℓ), for each ℓ ∈ [1, 11].

Lemma 5.7.2. αDSM (ℓ) ≤ 1 for lines ℓ ∈ [1, 3]∪{7, 9}, αDSM (ℓ) ≤ 2 for lines ℓ ∈ {8, 10, 11}, and

αDSM (ℓ) ≤ 0 for ℓ ∈ [4, 6].

Proof. We will prove the invariant by induction on steps of the multiprocessor system. In particular,

we consider what happens when a process π executes its next step.

line 1: The real cost of the line is zero or one depending on whether ∗mynodep is in π’s parti-

tion. This line can only decrease the potential (by decreasing the indicator 1{PC∗mynodep=predp=5}).

So, amortized cost is αDSM (1) ≤ 1.

line 2: The real cost of the line is one due to the FAS, and the potential function is unchanged.

So, αDSM (2) = 1.

lines 3,7, and 9: The real cost of the line is zero or one depending on whether the FAS is on

a node in π’s partition. This line can only decrease the potential (by decreasing the indicator

1{PC∗mynodep=predp=5}). So, αDSM (3), αDSM (7), αDSM (9) ≤ 1.

line 4: The real cost of this line is zero since gop is in p’s partition. The potential change is

also zero. So, αDSM (4) = 0.

91

line 5: The real cost of this line is zero since gop is in p’s partition. When this line is executed,

1{PC
goπ=true=5} indicator must decrease by one due to I12 and 1{PCPCπ=6=5} must increase

by one. So, the potential change is zero. So, αDSM (5) = 0.

line 6: The real cost of the line is zero or one depending on whether ∗predp is in π’s partition.

Here we have two cases. If ∗predπ = mynodep for some process p and ∗mynodep = predp,

then we use the indicator 1{PC∗mynodep=predp=5} to pay for the real cost (since PCπ will become

6 again). Otherwise, PCπ will end up at some other line, and we pay for the real cost using

the potential drop caused by the indicator 1{PCPCπ=6=5}. So, in either case the amortized

cost of this line is αDSM (6) ≤ 0.

line 8, and 11: The real cost of the line is zero or one depending on whether ∗vπ is in π’s

partition. The potential change is at most one, since at most one indicator 1{PC
goπ=true=5}

can go high. So, αDSM (8), αDSM (11) ≤ 2.

line 10: The real cost of the line is zero or one depending on whether the FAS is on a node

in π’s partition. The potential can go up by at most one since ∗mynodeπ = predπ after the

line. So, αDSM (10) ≤ 2.

The CC model is more complicated to analyze than the DSM model since: (1) line 4 can now

have a real cost if gop is not in p’s cache, and (2) line 5 always has a real cost, since it is a write

operation, and causes gop to become uncached. To deal with (1), we define Cp to be the predicate

that gop is not in p’s cache, and add the indicator 1{PCCp
=5} to ΦCC . To deal with (2), we simply

multiply the weight of the indicator that gop = true, to pay for the additional costs incurred on

line 5. This results in the definition:

ΦCC =
∑
p∈P

(
3× 1{PCgop=true=5} + 1{PCPCp=6=5}+

1{PC∗mynodep=predp=5} + 1{PCCp
=5}
)

At the cost of charging one unit to a process that is newly joining the protocol, we think of gop
as initially residing in p’s cache; so, ΦCC is also a proper potential function. We define αCC(ℓ) as

the amortized cost in the CC model of line ℓ of Algorithm 8, and state and prove a lemma below

(analogous to Lemma 5.7.2) for the CC model.

92

Lemma 5.7.3. αCC(ℓ) is bounded by a constant for all ℓ ∈ [1, 11] − [4, 6], and αCC(ℓ) ≤ 0 for

ℓ ∈ [4, 6].

Proof. We will prove the invariant by induction on steps of the multiprocessor system. In particular,

we consider what happens when a process π executes its next step.

line 1: The real cost of the line is one due to the FAS. The change in potential is non-positive.

So, amortized cost is α(1) ≤ 1.

line 2: The real cost of the line is one due to the FAS, The change in the potential is zero.

So, the amortized cost is α(2) = 1.

lines 3, 7, and 9: The real cost of this line is one due to the FAS. The change in potential is

once again non-positive. So, the amortized cost is αCC(3), αCC(7), αCC(11) ≤ 1.

line 4: There are two cases for this line: either goπ is in π’s cache, or not. If goπ is cached,

then both the real and amortized costs are zero. If goπ is not cached, then the real cost is

one, but is cancelled out by the drop in potential caused by the fact that goπ becomes cached.

So, the amortized cost of this line is αCC(4) ≤ 0.

line 5: The real cost of this line is one due to the writing of false. Additionally, goπ becomes

uncached (if it was previously cached), thereby causing a one unit potential increase; and

PCπ becomes 6, causing the corresponding indicator to become one. However, by I12, there

is a three unit potential drop due to goπ becoming false. So, the amortized cost of this line

is αCC(5) = 0.

line 6: The real cost of the line is one due to the FAS. Here we have two cases. If

∗predπ = mynodep for some process p, and ∗mynodep = predp, then we use the indica-

tor 1{PC∗mynodep=predp=5} to pay for the real cost (since PCπ will become 6 again). Otherwise,

PCπ will end up at some other line, and we pay for the real cost using the potential drop

caused by the indicator 1{PCPCπ=6=5}. So, in either case the amortized cost of this line is

αCC(6) ≤ 0.

lines 8 and 11: The real cost of this line is one for the write operation. Since ∗vπ is a go-

variable (by I11) being set to true, this line can cause a potential increase of three units. So,

the amortized cost of this line is αCC(8), αCC(11) ≤ 4.

93

line 10: The real cost of the line is one due to the FAS. Since ∗mynodeπ becomes predπ due

to this line, there is a possible potential increase of one unit. So, the amortized cost of this

line is αCC(10) ≤ 2.

The following theorem summarizes the properties of Algorithm 8.

Theorem 5.7.4 (Main Theorem). Algorithm 8 solves Abortable Mutual Exclusion for an unbounded

number of processes of arbitrary names using the FAS synchronization primitive. In particular, the

algorithm satisfies Mutual Exclusion, Bounded Exit (O(1) steps), Fast Abort, Starvation-Freedom,

and AFCFS. It uses only O(1) space per process and, in both the CC and the DSM models, has

O(1) amortized RMR complexity.

Proof. All claims except for RMR complexity and Fast Abort are immediate from the prior lemmas.

In both the CC and DSM models, all the lines (4, 5, and 6) that appear in the while-loop of

Algorithm 8 have zero amortized cost, and the remaining lines have constant amortized cost in the

DSM model (by Lemma 5.7.2), and in the CC model (by Lemma 5.7.3). Since lines that are not in

the loop are executed at most once per attempt, the amortized cost of an attempt is O(1) in both

the CC and DSM models.

Regardless of when the environment sends an abort signal to process p, process p can reach

either the Exit or Abort section within three shared memory instructions, and either of these

sections takes at most three more shared memory instructions. So, aborting happens within six

shared instructions, thereby the algorithm satisfies Fast Abort.

5.8 Model Checking

In addition to our rigorous mathematical proofs, we have also modeled checked Algorithm 7. That

is, we modeled the algorithm in the Temporal Language of Actions (TLA), and used the TLA+

toolbox’s model checker, TLC, to confirm via brute-force search that the algorithm indeed satisfies:

mutual exclusion, AFCFS, Starvation Freedom, and type correctness. We model checked Mutual

exclusion and type correctness for systems of up to five processes, and AFCFS and Starvation

Freedom for systems of up to three processes. The first test resulted in searching through a state

graph with over 20 million distinct states, and the second resulted in analyzing a graph of over 85

94

thousand distinct states. The original TLA file is publicly accessible at: https://github.com/

visveswara/machine-certified-linearizability/blob/master/AbortableQueueLockCC.tla

5.9 Concluding Remarks

In this chapter, we have shown how the well known ideas behind a queue lock can be enhanced to

efficiently implement an abortable lock for both the CC and DSM models. However, the constant

RMR complexity that we achieved applies only in the amortized case and not in the worst-case. A

natural open problem is to find or refute the existence of a deterministic worst-case constant RMR

abortable lock, or of even a randomized constant expected RMR abortable lock, using common

synchronization primitives such as FAS, CAS, and Fetch-and-Add.

95

https://github.com/visveswara/machine-certified-linearizability/blob/master/AbortableQueueLockCC.tla
https://github.com/visveswara/machine-certified-linearizability/blob/master/AbortableQueueLockCC.tla

Algorithm 8 : Amortized constant RMR abortable lock for CC and DSM machines. Code shown
for process p. p jumps to the Abort Section if the abort signal is on and p is at Line 4 or 5 or 6.

Variables
• A node is a single shared memory word that can hold a pointer, or nil, or token.
• tail: shared variable that points to a node. Initially, it points to a node that is allocated

and initialized to token.
• When a process p first participates in the algorithm:

– It allocates two local variables mynodep and predp both of which point to the same
freshly allocated node initialized to nil.

– It allocates a shared boolean gop initialized to false; on a DSM machine, this variable
must be in p’s partition of shared memory.

– It allocates an uninitialized local variable vp that can hold a pointer, nil, or token.

Section Try(p)
1: if FAS(∗mynodep, nil) ̸= predp then
2: predp ← FAS(tail,mynodep)
3: vp ← FAS(∗predp,&gop)

while vp ̸= token do
if vp ̸∈ {nil,&gop} then

predp ← vp
else

4: wait till gop = true
5: gop ← false
6: vp ← FAS(∗predp,&gop)

Section Exit(p)
7: vp ← FAS(∗mynodep, token)

mynodep ← predp
if vp ̸= nil then

8: ∗vp ← true

Section Abort(p)
9: vp ← FAS(∗predp, nil)

if vp = token then
goto Exit (line 7)

else
if vp ̸∈ {nil,&gop} then

predp ← vp
10: if (vp ← FAS(∗mynodep, predp)) ̸= nil then
11: ∗vp ← true

Remark 5.5.1. As with the previous algorithm, we can use the address &tail as token.

96

Chapter 6

Recoverable Mutual Exclusion

6.1 Introduction

In light of recent advances in non-volatile main memory technology, Golab and Ramaraju reformu-

lated the traditional mutex problem into the novel Recoverable Mutual Exclusion (RME) problem.

The best known algorithm for RME, due to Golab and Hendler [76], has sub-logarithmic remote

memory reference (RMR) complexity for Cache-Coherent (CC) multiprocessors, but unbounded

RMR complexity for Distributed Shared Memory (DSM) multiprocessors. In this chapter, we

present an algorithm that ensures the same sublogarithmic bound as theirs for both CC and DSM

multiprocessors, besides possessing some additional desirable properties. In the rest of this section,

we describe the model, the RME problem, the complexity measure, and then describe this chapter’s

contribution in the context of prior work.

6.1.1 The Model

The advent of Non-Volatile Random Access Memory (NVRAM) [172][188][200] — memory whose

contents remain intact despite process crashes — has led to a new and natural model of a multipro-

cessor and spurred research on the design of algorithms for this model. In this model, asynchronous

processes communicate by applying operations on shared variables stored in an NVRAM. A process

may crash from time to time. When a process π crashes, all of π’s registers lose their contents:

specifically, π’s program counter is reset to point to a default location ℓ in π’s program, and all other

registers of π are reset to ⊥; however, the shared variables stored in the NVRAM are unaffected

by a crash and retain their values. A crashed process π eventually restarts, executing the program

97

beginning from the instruction at the default location ℓ, regardless of where in the program π might

have previously crashed.

When designing algorithms for this model, informally the goal is to ensure that when a crashed

process restarts, it reconstructs the lost state by consulting the shared variables in NVRAM. To

appreciate that this goal can be challenging, suppose that a process π crashes when it is just about

to perform an operation such as r ← FAS(X, 5), which fetches the value of the shared variable

X into π’s register r and then stores 5 in X. If a different process π′ performs FAS(X, 10) and

then π restarts, π cannot distinguish whether it crashed immediately before or immediately after

executing its FAS instruction.

6.1.2 The Recoverable Mutual Exclusion (RME) problem

In the Recoverable Mutual Exclusion (RME) problem, there are n asynchronous processes, where

each process repeatedly cycles through four sections of code—Remainder, Try, Critical, and Exit

sections. An algorithm (for RME) specifies the code for the Try and Exit sections of each process.

Any process can execute a normal step or a crash step at any time. In a normal step of a process

π, π executes the instruction pointed by its program counter PCπ. We assume that if π executes

a normal step when in Remainder, π moves to Try; and if π executes a normal step when in CS, π

moves to Exit. A crash step models the crash of a process and can occur regardless of which section

of code the process is in. A crash step of π sets π’s program counter to point to its Remainder

section and sets all other registers of π to ⊥.

A run of an algorithm is an infinite sequence of steps. We assume every run satisfies the following

conditions: (i) if a process is in Try, Critical, or Exit sections, it later executes a (normal or crash)

step, and (ii) if a process enters Remainder because of a crash step, it later executes a (normal or

crash) step.

An algorithm solves the RME problem if all of the following conditions are met in every run of

the algorithm (Conditions (1), (3), (4) are from Golab and Ramaraju [78], and (2) and (5) are two

additional natural conditions from Jayanti and Joshi [112]):

1. Mutual Exclusion: At most one process is in the CS at any point.

2. Wait-Free Exit: There is a bound b such that, if a process π is in the Exit section, and executes

steps without crashing, π completes the Exit section in at most b of its steps.

98

3. Starvation Freedom: If the total number of crashes in the run is finite and a process is in the

Try section and does not subsequently crash, it later enters the CS.

4. Critical Section Reentry (CSR) [78]: If a process π crashes while in the CS, then no other

process enters the CS during the interval from π’s crash to the point in the run when π next

reenters the CS.

5. Wait-Free Critical Section Reentry (Wait-Free CSR) [112]: Given that the CSR property above

mandates that after a process π’s crash in the CS no other process may enter the CS until π

reenters the CS, it makes sense to insist that no process should be able to obstruct π from

reentering the CS. Specifically:

There is a bound b such that, if a process crashes while in the CS, it reenters the CS before

completing b consecutive steps without crashing.

(As observed in [112], Wait-Free CSR, together with Mutual Exclusion, implies CSR.)

6.1.3 Passage Complexity

In a CC machine each process has a cache. A read operation by a process π on a shared variable

X fetches a copy of X from shared memory to π’s cache, if a copy is not already present. Any

non-read operation on X by any process invalidates copies of X at all caches. An operation on

X by π counts as a remote memory reference (RMR) if either the operation is not a read or X’s

copy is not in π’s cache. When a process crashes, we assume that its cache contents are lost. In

a DSM machine, instead of caches, shared memory is partitioned, with one partition residing at

each process, and each shared variable resides in exactly one partition. Any operation (read or

non-read) by a process on a shared variable X is counted as an RMR if X is not in π’s partition.

A passage of a process π in a run starts when π enters Try (from Remainder) and ends at the

earliest later time when π returns to Remainder (either because π crashes or because π completes

Exit and moves back to Remainder).

A super-passage of a process π in a run starts when π either enters Try for the first time in the

run or when π enters Try for the first time after the previous super-passage has ended, and it ends

when π returns to Remainder by completing the Exit section.

The passage complexity (respectively, super-passage complexity) of an RME algorithm is the

worst-case number of RMRs that a process incurs in a passage (respectively, in a super-passage).

99

6.1.4 Our contribution

The passage complexity of an RME algorithm can, in general, depend on n, the maximum number

of processes the algorithm is designed for. The ideal of course would be to design an algorithm

whose complexity is independent of n, but is this ideal achievable? It is well known that, for

the traditional mutual exclusion problem, the answer is yes: MCS and many other algorithms

that use FAS and CAS instructions have O(1) passage complexity [41][56][152]. For the RME

problem too, algorithms of O(1) passage complexity are possible, but they use esoteric instructions

not supported on real machines, such as Fetch-And-Store-And-Store (FASAS) and Double Word

CAS, which manipulate two shared variables in a single atomic action [76][109]. The real question,

however, is how well can we solve RME using only operations supported by real machines.

With their tournament based algorithm, Golab and Ramaraju showed that O(logn) passage

complexity is possible using only read and write operations [78]. In fact, in light of Attiya et al’s

lower bound result [17], this logarithmic bound is the best that one can achieve even with the

additional support of comparison-based operations such as CAS. However in PODC ’17, by using

FAS along with CAS, Golab and Hendler [76] succeeded in breaching this logarithmic barrier for

CC machines: their algorithm has O(logn
log logn) passage complexity for CC machines, but unbounded

passage complexity for DSM machines. In this work, we close this gap with the design of an

algorithm that achieves the same sub-logarithmic complexity bound as theirs for both CC and

DSM machines. Some additional advantages of our algorithm over Golab and Hendler’s are:

1. Our algorithm satisfies the Wait-Free Exit property.

2. On a CC machine, Golab and Hendler’s algorithm requires a cache of Θ(n) words at each

process, but our algorithm needs a cache of only O(1) words. (We explain the reason in the

next subsection.)

3. Our algorithm needs only the FAS instruction (whereas Golab and Hendler’s needs both FAS

and CAS).

4. Our algorithm eliminates the race conditions present in Golab and Hendler’s algorithm that

cause processes to starve.1 (We describe these issues in detail in Appendix 6.A.)
1We communicated the issues described in Appendix 6.A with the authors of [76] who acknowledged the bugs and

after a few weeks informed us that they were able to fix them.

100

6.1.5 Comparison to Golab and Hendler [76]: Similarities and differences

Golab and Hendler [76] derived their sublogarithmic RME algorithm in the following two steps, of

which the first step is the intellectual workhorse:

• The first step is the design of an RME algorithm, henceforth referred to as GH, of O(n)

passage complexity and O(1+ fn) super-passage complexity, where f is the number of times

that a process crashes in the super-passage. The exciting implication of this result is that,

in the common case where a process does not fail in a super-passage, the process incurs only

O(1) RMRs in the super-passage.

• The second step is the design of an RME algorithm where the n processes compete by working

their way up on a tournament tree. This tree has n leaves and each of the tree nodes is

implemented by an instance of GH in which logn/ log logn processes compete. (thus, the

degree of each node is logn/ log logn, which makes the tree’s height O(logn/ log logn)). The

resulting algorithm has the desired O(logn
log logn) passage complexity and O((1+f) logn

log logn) super-

passage complexity.

The GH algorithm is designed by converting the standard MCS algorithm [152] into a recov-

erable algorithm. As we now explain, this conversion is challenging because MCS uses the FAS

instruction to insert a new node at the end of a queue. The queue has one node for each process

waiting to enter the CS, and a shared variable Tail points to the last node in the queue. When a

process π enters the Try section, it inserts its node x into the queue by performing FAS(Tail, x).

The FAS instruction stores the pointer to x in Tail and returns Tail’s previous value prev to π

in a single atomic action. The value in prev is vital because it points to x’s predecessor in the

queue. Suppose that π now crashes, thereby losing the prev pointer. Further suppose that a few

more processes enter the Try section and insert their nodes behind π’s node x. If π now restarts,

it cannot distinguish whether it crashed just before performing the FAS instruction or just after

performing it. In the former case, π will have to perform FAS to insert its node, but in the latter

case it would be disastrous for π to perform FAS since x was already inserted into the queue. Yet,

there appears no easy way for π to distinguish which of the scenarios it is in. Notice further that,

like π, many other processes might have failed just before or after their FAS, causing the queue to

be disconnected into several segments. All of these failed processes, upon restarting, have to go

through the contents of the shared memory to recognize whether they are in the queue or not and,

101

if they are in, piece together their fragment with other fragments without introducing circularity

or other blemishes in the queue. Since concurrent “repairing” by multiple recovering processes can

lead to races, Golab and Hendler make the recovering processes go through an RME algorithm

RLock so that at most one recovering process is doing the repair at any time. This RLock does

not have to be too efficient since it is executed by only a failing process, which can afford to perform

O(n) RMRs. Thus, this RLock can be implemented using one of the known RME algorithms.

However, while a process is trying to repair, correct processes can be constantly changing the queue,

thereby making the repair task even more challenging.

The broad outline of our algorithm is the same as what we have described above for GH, but

our algorithm differs substantially in important technical details, as we explain below.

• In GH a recovering process raises a fail flag only after confirming that there is evidence that

its FAS was successful. This check causes GH to deadlock (see Scenario 1 in Appendix 6.A).

Our algorithm eliminates this check.

• Since the shared memory can be constantly changing while a repairing process π is scanning

the memory to compute the disjointed fragments (so as to connect π’s fragment to another

fragment), the precise order in which the memory contents are scanned can be crucial to

algorithm’s correctness. In fact, we found a race condition in GH that can lead to segments

being incorrectly pieced together: two different nodes can end up with the same predecessor,

leading to all processes starving from some point on (see Scenario 2 in Appendix 6.A).

• When a repairing process explores from each node x, GH does a “deep” exploration, meaning

that the process visits x’s predecessor x1, x1’s predecessor x2, x2’s predecessor x3, and so

on until the chain is exhausted. Our algorithm instead does a shallow exploration: it simply

visits x’s predecessor and stops there. The deep exploration of GH from each of the n nodes

leads to O(n2) local computation steps per passage and requires each process to have a large

cache of O(n) words in order to ensure the desired O(n) passage-RMR-complexity. With our

shallow exploration, we reduce the number of local steps per passage to O(n) and the RMR

complexity of O(n) is achieved with a cache size of only O(1) words.

• How an exiting process hands off the ownership of CS to the next waiting process is done

differently in our algorithm so as to ensure a wait-free Exit section and eliminate the need

for the CAS instruction.

102

6.1.6 Related research

Beyond the works that we discussed above, Golab and Hendler [77] presented an algorithm at last

year’s PODC that has the ideal O(1) passage complexity, but this result applies to a different model

of system-wide crashes, where a crash means that all processes in the system simultaneously crash.

Ramaraju [171] and Jayanti and Joshi [112] design RME algorithms that also satisfy the FCFS

property [135]. These algorithms have O(n) and O(logn) passage complexity, respectively. Attiya,

Ben-Baruch, and Hendler present linearizable implementations of recoverable objects [15].

6.2 A Signal Object

Our main algorithm, presented in the next section, relies on a “Signal” object, which we specify and

implement in this section. The Signal object is specified in Figure 6-1, which includes a description

of two procedures — set and wait — through which the object is accessed.

X.State ∈ {1, 0}, initially 0.
• X.set() sets X.State to 1.
• X.wait() returns when X.State is 1.

Figure 6-1: Specification of a Signal object X.

6.2.1 An implementation of Signal Object

It is trivial to implement this object on a CC machine using a boolean variable Bit, initialized to

0. To execute set(), a process writes 1 in Bit, and to execute wait(), a process simply loops until

Bit has 1. With this implementation, both operations incur just O(1) RMRs on a CC machine.

Realizing O(1) RMR complexity on a DSM machine is less trivial, especially because the identity

of the process executing wait() is unknown to the process executing set(). Figure 6-2 describes

our DSM implementation X of a Signal object X, which assumes that no two processes execute the

wait() operation concurrently on the Signal object. Our implementation provides two procedures:

X .set() and X .wait(). Process π executes X .set() to perform X.set() and X .wait() to perform

X.wait(). Our implementation ensures that a call to X .set() and X .wait() incur only O(1) RMR.

When π invokes X .set(), at Line 1 it records for future X .wait() calls that X.State = 1, hence

those calls can return without waiting. Thereafter, π finds out if any process is already waiting

for X.State to be set to 1. It does so by checking if any waiting process has supplied the address

of its own local-spin variable to π on which it is waiting (Lines 2-3). If π finds that a process is

103

Shared variables (stored in NVMM)
Bit ∈ {1, 0}, initially 0.
GoAddr is a reference to a boolean, initially NIL.

procedure X .set()
1. Bit← 1
2. addrπ ← GoAddr
3. if addrπ ̸= NIL then
4. ∗addrπ ← true

procedure X .wait()
5. goπ ← new Boolean
6. ∗goπ ← false
7. GoAddr← goπ
8. if Bit == 0 then
9. wait till ∗goπ == true

Figure 6-2: Implementation of a Signal object specified in Figure 6-1. Code shown for a process π.

waiting (i.e., addrπ ̸= NIL), then it writes true into that process’s spin-variable to wake it up from

the wait loop (Line 4).

When a process π′ invokes X .wait(), at Line 5 it creates a new local-spin variable that it hosts

in its own memory partition (Line 5). It initializes that variable for waiting (Line 6) and notifies

the object about its address (Line 7) so that the caller of X .wait() can wake π′ up as described

above. Then π′ checks if Bit == 1 (Line 8), in which case X.State = 1 already and π′ can return

without waiting. Otherwise, π′ waits for ∗goπ′ to turn true (Line 9).

Theorem 6.2.1. X .set() and X .wait() described in Figure 6-2 implement a Signal object X

(specified in Figure 6-1). Specifically, the implementation satisfies the following properties provided

no two executions of X .wait() are concurrent: (i) X .set() is linearizable, i.e., there is a point in

each execution of X .set() when it appears to atomically set X .State to 1, (ii) When X .wait()

returns, X .State is 1, (iii) A process completes X .set() in a bounded number of its own steps,

(iv) Once X .State becomes 1, any execution of X .wait() by a process π completes in a bounded

number of π’s steps, (v) X .set() and X .wait() incur O(1) RMR on each execution.

6.3 The Algorithm

Our RME algorithm for k ports is presented in Figures 6-3-6-4. We assume that all shared variables

are stored in non-volatile main memory, and process local variables (subscripted by π) are stored in

respective processor registers. We assume that if a process uses a particular port during its super-

passage in a run, then no other process will use the same port during that super-passage. The

process decides the port it will use inside the Remainder section itself. Therefore, the algorithm

presented in Figures 6-3-6-4 is designed for use by a process π on port p.

104

Types
QNode = record{Pred : reference to QNode,

NonNil_Signal : Signal object,CS_Signal : Signal object } end record
Shared objects (stored in NVMM)

Crash, InCS, and Exit are distinct QNode instances, such that,
Crash.Pred = &Crash, InCS.Pred = &InCS, and Exit.Pred = &Exit.

SpecialNode is a QNode instance, such that, SpecialNode.Pred = &Exit,
SpecialNode.NonNil_Signal = 1, and SpecialNode.CS_Signal = 1.

RLock is a k-ported starvation-free RME algorithm
that incurs O(k) RMR per passage on CC and DSM machines.

Shared variables (stored in NVMM)
Tail is a reference to a QNode, initially &SpecialNode.
Node is an array[0 . . . k − 1] of reference to QNode. Initially, ∀i,Node[i] = NIL.

Try Section
10. if Node[p] = NIL then
11. mynodeπ ← new QNode
12. Node[p]← mynodeπ
13. mypredπ ← FAS(Tail,mynodeπ)
14. mynodeπ.Pred← mypredπ
15. mynodeπ.NonNil_Signal.set()
16. else
17. mynodeπ ← Node[p]
18. if mynodeπ.Pred = NIL then mynodeπ.Pred← &Crash
19. mypredπ ← mynodeπ.Pred
20. if mypredπ = &InCS then go to Critical Section
21. if mypredπ = &Exit then
22. Execute Lines 28-29 of Exit Section and go to Line 10
23. mynodeπ.NonNil_Signal.set()
24. Execute RLock
25. mypredπ.CS_Signal.wait()
26. mynodeπ.Pred← &InCS

Exit Section
27. mynodeπ.Pred← &Exit
28. mynodeπ.CS_Signal.set()
29. Node[p]← NIL

Figure 6-3: k-ported n-process RME algorithm for CC and DSM machines. Code shown for a
process π that uses port p ∈ {0, . . . , k − 1}. (Code continued in Figure 6-4.)

6.3.1 Informal description

The symbol & is the usual “address of” operator, prefixed to a shared object to obtain the address

of that shared object. The symbol “.” (dot) dereferences a pointer and accesses a field from the

record pointed to by that pointer. When invoked on a path σ in a graph, the functions start(σ)

and end(σ) return the start and end vertices of the path σ. We assume that a process π is in the

Remainder section when PCπ = 10 and is in the CS when PCπ = 27.

Our algorithm uses a queue structure as in the MCS lock [152] and QNode is the node type

used in such a queue. We modify the node structure in the following way to suit our needs. The

node of a process π has, apart from a Pred pointer, two instances of a Signal object: CS_Signal

and NonNil_Signal. π’s successor process will use the CS_Signal instance from π’s node to

105

Critical Section of RLock
30. if mypredπ ̸= &Crash then go to Exit Section of RLock
31. tailπ ← Tail; Vπ ← ϕ; Eπ ← ϕ; tailpathπ ← NIL; headpathπ ← NIL
32. for iπ ← 0 to k − 1
33. curπ ← Node[iπ]
34. if curπ = NIL then continue
35. curπ.NonNil_Signal.wait()
36. curpredπ ← curπ.Pred
37. if curpredπ ∈ {&Crash,&InCS,&Exit} then Vπ ← Vπ ∪ {curπ}
38. else Vπ ← Vπ ∪ {curπ, curpredπ};Eπ ← Eπ ∪ {(curπ, curpredπ)}
39. Compute the set Pathsπ of maximal paths in the graph (Vπ, Eπ)
40. Let mypathπ be the unique path in Pathsπ that contains mynodeπ
41. if tailπ ∈ Vπ then let tailpathπ be the unique path in Pathsπ that contains tailπ
42. for each σπ ∈ Pathsπ
43. if end(σπ).Pred ∈ {&InCS,&Exit} then
44. if start(σπ).Pred ̸= &Exit then
45. headpathπ ← σπ

46. if tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit} then
47. mypredπ ← FAS(Tail, start(mypathπ))
48. else if headpathπ ̸= NIL then mypredπ ← start(headpathπ) else mypredπ ← &SpecialNode
49. mynodeπ.Pred← mypredπ

Figure 6-4: (Code continued from Figure 6-3.) k-ported n-process recoverable mutual exclusion
algorithm for CC and DSM machines. Code shown for a process π that uses port p ∈ {0, . . . , k−1}.
Vertex names in Vπ are node references, hence the “.” symbol dereferences the address and accesses
the members of the node. The functions start(σ) and end(σ) used at Lines 43, 44, 46-48 return
the start and end vertices of the path σ.

wait on π before entering the CS. The NonNil_Signal instance is used by any repairing process

to wait till π sets the Pred pointer of its node to a value other than NIL. Every node has a unique

instance of these Signal objects. We ensure that the call to CS_Signal.wait() happens from a

single predecessor and the call to NonNil_Signal.wait() is made in a mutually exclusive manner,

thus ensuring that no two executions of wait() are concurrent on the same object instance. We

also use an array of references to QNodes called Node[]. This is a reference to a QNode that is

used by some process on port p to complete a passage. In essence Node[p] binds a process π to

the port p through the QNode π uses for its passage.

We first describe how π would execute the Try and Exit section in absence of a crash as follows,

and then proceed to explain the algorithm if a crash is encountered anywhere. When a process

π wants to enter the CS through port p from the Remainder section, it starts executing the Try

section. At Line 10 it checks if any previous passage ended in a crash. If that is not the case, π

finds Node[p] = NIL. It then executes Line 11 which allocates a new QNode for π in the NVMM,

such that the Pred pointer holds NIL, and the objects CS_Signal and NonNil_Signal have

State = 0 (i.e., their initial values). At Line 12 the process stores a reference to this new node

in Node[p] so that it can reuse this node in future in case of a crash. π then links itself to the

106

queue by swapping mynodeπ into Tail (Line 13) and stores the previous value of Tail (copied

in mypredπ) into mynodeπ.Pred (Line 14). The value of mypredπ, from Line 13 onwards, is an

address of π’s predecessor’s node. At Line 15 π announces that it has completed inserting itself

in the queue by setting mynodeπ.NonNil_Signal to 1 (more later on why is this announcement

important). π then proceeds to Line 25 where it waits for mypredπ.CS_Signal to become 1. If

the owner of the node pointed by mypredπ has already left the CS, then mypredπ.CS_Signal

is 1; otherwise, π has to wait for a signal from its predecessor (see description of Signal object in

previous section). Once π comes out of the call to mypredπ.CS_Signal.wait(), it makes a note

in mynodeπ.Pred that it has ownership of the CS (Line 26). π then proceeds to the CS.

When π completes the CS, it first makes a note to itself that it no longer needs the CS by

writing &Exit in mynodeπ.Pred (Line 27). It then wakes up any successor process that might be

waiting on π to enter the CS (Line 28). π then writes NIL into Node[p] at Line 29, which signifies

that the passage that used this node has completed.

When π begins a passage after the previous passage ended in a crash, π starts by checking

Node[p] at Line 10. If it has the value NIL, then π crashed before it put itself in the queue,

hence it treats the situation as if π didn’t crash in the previous passage and continues as described

above. Otherwise, π moves to Line 17 where it recovers the node it was using in the previous

passage. If π crashed while putting itself in the queue (i.e., right before executing Lines 13 or 14),

it treats the crash as if it performed the FAS at Line 13 and crashed immediately. Hence, it makes

a note to itself that it crashed by writing &Crash in mynodeπ.Pred (Line 18). It then reads

the value of mynodeπ.Pred into mypredπ (Line 19). At Line 20 π checks if it crashed while in

the CS, in which case it moves to the CS. At Line 21 it checks if it already completed executing

the CS, in which case recovery is done by executing Lines 28-29 and then re-executing Try from

Line 10. If π reaches Line 23, it is clear that it crashed before entering the CS in the previous

passage. In that case repairing the queue might be needed if π didn’t set mynodeπ.Pred to point

to a predecessor node. In any case, π announces that mynodeπ.Pred no longer has the value NIL

setting mynodeπ.NonNil_Signal to 1. π then goes on to capture RLock so that it gets exclusive

access to repair the queue if it is broken at its node.

High level view of repairing the queue after a crash

Before diving into the code commentary of the CS of RLock, where π repairs the queue broken

at its end, we describe how the repairing happens at a high level. π uses the RLock to repair

107

the queue, if it crashed around the FAS operation (Lines 13-14) in the Try section. A crash by a

process on Lines 13-14 can give rise to the following scenarios: (i) the queue is not affected by the

crash (crash at Line 13 or at Line 14 but the queue was already broken), (ii) the queue is broken

due to the crash (crash at Line 14). Therefore consider the following configuration2. Assume there

is a node x that was used by some process in its passage and the process has completed that passage

succesfully so that x.Pred = &Exit. Process π1, π3, and π5 have crashed at Line 14. Process

π2, π4, and π6 are executing the procedure wait() at Line 25, such that, π2’s predecessor is π1,

π4’s predecessor is π3, and π6’s predecessor is π5. Process π7 and π8 have crashed at Line 13. We

describe the repair by each of these crashed processes as follows.

Each of the crashed processes executes the RLock and waits for its turn to repair the queue in

a mutually exclusive manner. Assume that the repair is performed by the processes in the order:

(π1, π7, π5, π8, π3). When π1 performs the repair, it first scans the Node array and notices that

the queue is broken at process π4 and π5’s nodes (it notices that by reading &Crash in the Pred

pointer of the process nodes). Node array also gives an illusion to π1 that queue is broken at π7
and π8’s node although these processes didn’t perform a FAS prior to their crash. π1 also notices

that no node has a predecessor node whose Pred pointer is set to &InCS or &Exit, hence, no

process is in the CS or is poised to enter it. Therefore π1 sets its own node’s predecessor to be

SpecialNode (from Figure 6-3, SpecialNode.Pred = &Exit). Note, no other crashed process

will set their own node’s Pred pointer to point to SpecialNode simultaneously because repair

operation is performed in a mutually exclusive manner by π1. Also, the Pred pointer of each

node has a non-NIL value (if not, then π1 waits till it sees a non-NIL value before doing the actual

repair). This way π1 completes the repair operation on the queue and is now poised to enter the

CS.

When π7 (crashed at Line 13) performs the repair, it first scans the Node array and notices

that the queue is broken at process π4, π5, π7, and π8’s nodes. Since it notices that no process

points to π2, it sets the Pred pointer of its own node to point to π2’s node. Thereby π7 finishes

the repair by placing itself in the queue, without ever performing the FAS, and gives up its control

over RLock to return to the Try section.

When π5 (crashed at Line 19) performs the repair, it follows an approach similar to that of π7’s.

It sees that the queue is broken at process π3, π5, and π8. It then notices that no process points to

π7 and therefore sets the Pred pointer of its own node to point to π7’s node. This way π5 and π6

2Please refer to Figure 6.B.1 of Section 6.B in the Appendix for a visual illustration.

108

are now attached to the queue in a way that there is a path from their node to a node containing

the address &Exit. Also, Tail points to π6’s node, so it appears as if the queue is unbroken if a

traversal was done starting at the Tail pointer.

Now that a traversal from Tail would lead to a node used by a process that is in Critical section

(π1 in this case), the queue is partially in place. In order to fix the remaining broken fragments the

queue might need to be broken somehow to fit the remaining fragments. However, π3 and π8 can

do the repair from here on without affecting the existing structure of the queue. π8 can put itself

in the queue by performing the FAS operation on the Tail with its own node. Whereas π3 first

identifies the fragment its node is part of, and thereby all the nodes that are part of its fragment.

It then performs a FAS one more time on Tail with the last node in its own fragment (i.e., π4’s

node) and sets the Pred pointer of its own node to the previous value of Tail that is returned by

the FAS (address of π8’s node). This ends the repair operation for π3 and thereby the repair for

all the process.

Informal description of CS of RLock

We proceed to give a description of the CS of RLock that does the above mentioned repair. At

Line 30 π checks if it was already in the queue before its last crash (such a situation may occur

either when π crashes after executing the CS of RLock to completion but before executing the

Exit section of RLock, or when π crashes in the Try after performing Line 14). If so, it notices

that there is no need for repair, hence, it goes to the Exit section of RLock. Otherwise, at

Line 31 π reads the reference to the node pointed to by Tail into the variable tailπ and initializes

other variables used during the repair procedure. Thereafter π constructs a graph that models

the queue structure. To this purpose, it reads each node pointed to by the Node array in order

to construct the graph (Lines 32-38). The graph is constructed as follows. First a cell from the

Node array is read into curπ (i.e., Node[iπ]) at Line 33 and checked if it is a node of some process

(Line 34). If Node[iπ] = NIL, π moves on to the next cell in the array. Otherwise, at Line 35 π

waits till Node[iπ].Pred assumes a non-NIL value (i.e., wait for the owner of that node to have

executed either Line 15 or 23). Once curπ’s Pred pointer has a non-NIL value, that value is

read into curpredπ (Line 36). There are now two possibilities: (i) the Pred pointer points to one

of &Crash, &InCS, or &Exit, or (ii) the Pred pointer points to another node. The purpose

of waiting for curπ.NonNil_Signal = 1 is simple: we want to be sure which of the above two

cases is true about curπ. In the first case only curπ is added as a vertex to the graph (the name

109

of that vertex is the value of curπ). In the second case curπ and curpredπ are added as vertices

and a directed edge (curπ, curpredπ) is added to the graph (we consider this as a simple graph, so

repeated addition of a vertex counts as adding it once). This process is repeated until all cells from

the Node array are read. Once all the nodes are read from the cells of Node array, including nodes

not yet in the queue (π7 and π8 in the above example), we have the graph (Vπ, Eπ) that models the

broken queue structure such that each maximal path in the graph models a broken queue fragment.

Note, such a graph is a directed acyclic graph. At Line 39 set Pathsπ of maximal paths in the

graph (Vπ, Eπ) is created and at Line 40 a path mypathπ is picked from Pathsπ such that mynodeπ

appears in it. At Line 41 a path tailpathπ containing the node tailπ is picked from Pathsπ if tailπ
appears in the graph. In Lines 42-45 we try to find a path in the graph such that its start vertex

belongs to a process that has not finished the critical section but a traversal on that path leads to

a node holding one of the addresses &InCS or &Exit (i.e., it leads to a node in or out of CS). If

such a path is found, headpathπ is set to point to that path, otherwise, headpathπ remains NIL.

In Line 46 we first check if the queue is already partially repaired (e.g., if the repair was being

performed by π8 or π3 in the example above). If so, at Line 47 the fragment containing mynodeπ

is inserted into the queue by performing a FAS on Tail with the last node in that fragment (i.e.,

start(mypathπ) would give the address of last node appearing in mynodeπ’s fragment). We note

the previous value of Tail into mypredπ so that we can update mynodeπ.Pred later. Otherwise,

π needs to connect its own fragment to the queue. To this purpose it needs to be ensured that

the queue is not broken at its head and some active process is poised to enter or is in the Critical

section. Line 48 does this by checking if Lines 42-45 found a path in the graph such that its start

vertex belongs to a process that has not finished the Critical section but a traversal on that path

leads to a node out of CS (i.e., is headpathπ ̸= NIL). If headpathπ ̸= NIL, then π’s predecessor

is set to be the start node on the path headpathπ (π7, π5 in the example above). Otherwise, the

queue is broken at its head, therefore, at Line 48, π’s predecessor is set to be SpecialNode (π1
in example above). At Line 49, π has the correct address to its predecessor node in mypredπ (as

noted in Lines 46-48) which is written into mynodeπ.Pred. This completes the CS of RLock and

the repair of π’s fragment. π then proceeds back to Line 25 after completing the Exit section of

RLock.

6.3.2 Main theorem

The correctness properties of the algorithm are captured in the following theorem.

110

Theorem 6.3.1. The algorithm in Figures 6-3-6-4 solves the RME problem for k ports on CC and

DSM machines and additionally satisfies the Wait-free Exit and Wait-free CSR properties. It has

an RMR complexity of O(1) for a process that does not crash during its passage, and O(fk) for a

process that crashes f times during its super-passage.

6.3.3 O((1 + f) logn/ log logn) RMRs Algorithm

To obtain a sub-logarithmic RMR complexity algorithm on both CC and DSM machines, we use the

arbitration tree technique used by Golab and Hendler (described in Section 5 in [76]). Therefore,

the following theorem follows from Theorem 6.3.1.

Theorem 6.3.2. The arbitration tree algorithm solves the RME problem for n processes on CC

and DSM machines and additionally satisfies the Wait-free Exit and Wait-free CSR properties. It

has an RMR complexity of O((1+ f) logn/ log logn) per super-passage for a process that crashes f

times during its super-passage.

111

Appendix

6.A Issues with Golab and Hendler’s [76] Algorithm

In this section we describe two issues with Golab and Hendler’s FAS and CAS based algorithm.

The Algorithm in question here appears in Figures 6, 7, 8 in [76] and we use the exact line numbers

and variable names as they appear in the thesis.

6.A.1 Scenario 1: Process deadlock inside Recover

The first issue with the GH algorithm is that processes deadlock waiting on each other inside the

Recover section. This issue is described as below:

1. Process P4 requests the lock by starting a fresh passage, goes to the CS, completes the Exit,

and then goes back to Remainder.

2. Process P2 starts a fresh passage, executes the code till (but not including) Line 26 and

crashes.

3. Remainder section puts P2 into Recover, P2 starts executing IsLinkedTo(2) from Line 44

because mynode.nextStep = 26 and mynode.prev =⊥ for P2.

4. P2 sleeps at Line 68 with i = 0.

5. Process P4 starts another passage, executes till (but not including) Line 26 and crashes.

6. Thereafter, P4 goes to Recover, starts executing IsLinkedTo(4) from Line 44 because

mynode.nextStep = 26 and mynode.prev =⊥ for P4.

7. P2 starts executing procedure IsLinkedTo() where it left and executes several interations

until i = 4. Now it waits on lnodes[4].prev (P4’s mynode) to become non-⊥.

112

8. P4 starts executing procedure IsLinkedTo() where it left and executes several iterations until

i = 2 and now it waits on lnodes[2].prev (P2’s mynode) to become non-⊥.

9. From now on no process including P2 and P4 ever crash. Therefore P2 and P4 are then waiting

on each other and no one ever sets mynode.prev to a non-⊥ value. This results in violation

of Starvation freedom property.

6.A.2 Scenario 2: Starvation Freedom Violation

The second issue with their algorithm is a process may starve even though it never crashed. The

issue is as described below:

1. Process P0 initiates a new passage, goes to CS, and no other process comes after it, so tail is

pointing to P0’s node.

2. P1 initiates a new passage, performs FAS on tail and goes behind P0, and sets its own

mynode.prev field to point to P0’s node.

3. P2 initiates a new passage, performs FAS on tail and goes behind P1, but crashes immediately,

hence losing its local variable prev before setting its own mynode.prev field.

4. P2 performs isLinkedTo(2), which returns true because tail is pointing to P2’s mynode.

5. P3 initiates a new passage, performs FAS on tail and goes behind P2, and sets its own

mynode.prev field to point to P2’s node.

6. P2 acquires rLock in order to recover from the crash, and performs iterations with i = 0, 1, 2, 3

of the for-loop on Line 76. At this point the relation R maintained in the rlock contains (0,

1), (2, 3), (3, TAIL).

7. P4 initiates a new passage, performs FAS on tail and goes behind P3, but loses its local

variable prev before setting its own mynode.prev field.

8. P5 initiates a new passage, performs FAS on tail and goes behind P4, and sets its own

mynode.prev field to point to P4’s node.

9. P2 resumes and performs iterations with i = 4, 5 of the for-loop at Line 76, adding (4,5) to

R.

113

At this point R = (0, 1), (2, 3), (3, TAIL), (4,5). Therefore, process 2 identifies

• (0,1) as the non-failed fragment (segment 1),

• (4,5) as the middle segment (segment 2), and

• (2,3), (3,TAIL) as the tail segment (segment 3).

10. On Line 93 P2 sets mynode.prev to point to P5’s node and tail still points to P5’s node.

11. P6 initiates a new passage, performs FAS on tail and goes behind P5, and sets its own

mynode.prev field to point to P5’s node. Note, at this point, both P2 and P6 set their

respective mynode.prev field to point to the P5’s node and tail points to P6’s node.

12. Thereafter P6 executes the remaining lines of Try section setting P5’s mynode.next to point

to its own node at Line 30, and then continues to busy-wait on Line 31.

13. P2 then comes out of the rlock, continues to Line 28 in Try, sets P5’s mynode.next to point

to its own node at Line 30, and continues to busy-wait on Line 31.

14. Hereafter, assume that no process fails, we have that all the processes coming after P6 in-

cluding P6 itself forever starve. This is because P5 was supposed to wake P6 up from the

busy-wait, but it would wake up P2 instead. P2 never wakes any process up because it is not

visible to any process. This violates Starvation Freedom.

6.B Illustration for Repair

Figure 6.B.1 illustrates the bird’s eye view of queue repair performed by crashed processes. Refer

to Section 6.3.1 for a detailed description.

114

Node used by π:

π

mynodeπ.Pred

With π1, π3, π5, π7, and π8 crashed, initial state of the queue
(π1, π3, π5 crashed at Line 14 and π7, π8 crashed at Line 13):

Tail :

π8 π7 π6 π5 π4 π3 π2 π1

Node out of CS:

x

π1 performs repair:

Tail :

π8 π7 π6 π5 π4 π3 π2 π1

Node out of CS:

x

π7 performs repair:

Tail :

π8 π6 π5 π4 π3 π7 π2 π1

Node out of CS:

x

π5 performs repair:

Tail :

π8 π4 π3 π6 π5 π7 π2 π1

Node out of CS:

x

π8 performs repair:

Tail :

π4 π3 π8 π6 π5 π7 π2 π1

Node out of CS:

x

π3 performs repair:

Tail :

π4 π3 π8 π6 π5 π7 π2 π1

Node out of CS:

x

Figure 6.B.1: Queue states after repair is performed by different processes in a sequence. Ex-
plosion symbol in place of a Pred pointer on a node denotes the said process has crashed without
updating the Pred pointer of its node.

115

6.C Proof of correctness

In this section we present a proof of correctness for the algorithm presented in Figures 6-3-6-4. We

prove the algorithm by giving an invariant for the algorithm and then proving correctness using

the invariant. Figures 6.C.3-6.C.6 give the invariant satisfied by the algorithm. The proof that the

algorithm satisfies the invariant is by induction and is presented in Appendix 6.E.

We begin with some notation used in the proof and the invariant. A process may crash several

times during its super-passage, at which point all its local variables get wiped out and the program

counter is reset to 10 (i.e. first instruction of Try). In order to prove correctness we maintain a

set of hidden variables that help us in the arguments of our proof. Following is the list of hidden

variables for a process π and the locations that the variables are updated in the algorithm:

p̂ortπ: This variable stores the port number that π uses to complete its super-passage. The

Remainder section decides which port will be used by π for the super-passage. When π

is not active in a super-passage, we assume that p̂ortπ = NIL.

P̂Cπ: This variable takes line numbers as value according to the value of program counter, i.e.,

PCπ. Figures 6.C.1-6.C.2 show the annotated versions of our code from Figures 6-3-6-4

(annotations in <>) where we show the value that P̂Cπ takes at each line. We assume

that the change in P̂Cπ happens atomically along with the execution of the line. P̂Cπ

remains the same as before a line is executed for those lines in the figure that are not

annotated (for example, Lines 10, 16-21).

n̂odeπ: This variable is used to denote the QNode that π is using in the current configuration

for the current passage. Detailed description of the values that n̂odeπ takes appears in

the Definitions section of Figure 6.C.3.

116

Try Section
10. if Node[p] = NIL then
11. mynodeπ ← new QNode; < P̂Cπ ← 12 >

12. Node[p]← mynodeπ; < P̂Cπ ← 13 >

13. mypredπ ← FAS(Tail,mynodeπ); < P̂Cπ ← 14 >

14. mynodeπ.Pred← mypredπ; < P̂Cπ ← 15 >

15. mynodeπ.NonNil_Signal.set(); < P̂Cπ ← 25 >
16. else
17. mynodeπ ← Node[p]
18. if mynodeπ.Pred = NIL then mynodeπ.Pred← &Crash
19. mypredπ ← mynodeπ.Pred
20. if mypredπ = &InCS then go to Critical Section
21. if mypredπ = &Exit then
22. Execute Lines 28-29 of Exit Section and go to Line 10; < P̂Cπ ← 11 >
23. mynodeπ.NonNil_Signal.set()
24. Execute RLock
25. mypredπ.CS_Signal.wait(); < P̂Cπ ← 26 >

26. mynodeπ.Pred← &InCS; < P̂Cπ ← 27 >

Exit Section
27. mynodeπ.Pred← &Exit; < P̂Cπ ← 28 >

28. mynodeπ.CS_Signal.set(); < P̂Cπ ← 29 >

29. Node[p]← NIL; < P̂Cπ ← 11 >

Figure 6.C.1: Annotated version of code from Figure 6-3. p̂ortπ = p.

Critical Section of RLock
30. if mypredπ ̸= &Crash then

go to Exit Section of RLock;
< P̂Cπ ← 25 >

31. tailπ ← Tail; Vπ ← ϕ; Eπ ← ϕ; tailpathπ ← NIL; headpathπ ← NIL
32. for iπ ← 0 to k − 1
33. curπ ← Node[iπ]
34. if curπ = NIL then continue
35. curπ.NonNil_Signal.wait()
36. curpredπ ← curπ.Pred
37. if curpredπ ∈ {&Crash,&InCS,&Exit} then Vπ ← Vπ ∪ {curπ}
38. else Vπ ← Vπ ∪ {curπ, curpredπ};Eπ ← Eπ ∪ {(curπ, curpredπ)}
39. Compute the set Pathsπ of maximal paths in the graph (Vπ, Eπ)
40. Let mypathπ be the unique path in Pathsπ that contains mynodeπ
41. if tailπ ∈ Vπ then let tailpathπ be the unique path in Pathsπ that contains tailπ
42. for each σπ ∈ Pathsπ
43. if end(σπ).Pred ∈ {&InCS,&Exit} then
44. if start(σπ).Pred ̸= &Exit then
45. headpathπ ← σπ

46. if tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit} then
47. mypredπ ← FAS(Tail, start(mypathπ)); < P̂Cπ ← 14 >
48. else

if headpathπ ̸= NIL then mypredπ ← start(headpathπ) else mypredπ ← &SpecialNode ;
< P̂Cπ ← 14 >

49. mynodeπ.Pred← mypredπ ; < P̂Cπ ← 25 >

Figure 6.C.2: Annotated version of code from Figure 6-4. p̂ortπ = p.

117

We say that a process is in the CS if and only if P̂Cπ = 27. If π is not active in a super-passage

and hence in the Remainder section, PCπ = 10, P̂Cπ = 15, and the values of the rest of the hidden

variables are as defined above. We assume that initially all the local variables take arbitrary values.

Assumptions:
• Algorithm in Figures 6-3-6-4 assumes that every process uses a single port throughout its super-passage and no two

processes execute a super-passage with the same port when their super-passages overlap. The Remainder section
ensures that this assumption is always satisfied. Therefore, when a process continues execution after a crash,
it uses the same port it chose at the start of the current super-passage. Hence, the Remainder section guarantees
that the following condition is always met for active processes:

∀π ∈ Π, ∃p ∈ P, (p̂ortπ = p ∧ ∀p′ ∈ P, p ̸= p′)⇒ p̂ortπ ̸= p′.
Definitions (Continued in Figure 6.C.4):
• P is a set of all ports.
• Π is a set of all processes.
• N is a set containing the node SpecialNode and any of the QNodes created by any process at Line 11

during the run so far.
• N ′ = {&qnode | qnode ∈ N} is a set of node addresses from the nodes in N .

• n̂odeπ =


Node[p̂ortπ], if P̂Cπ ∈ [13, 15] ∪ [25, 29],
mynodeπ, if PCπ = 12,
NIL, otherwise (i.e., P̂Cπ ∈ [11, 12] ∧ PCπ ∈ [10, 11]).

Conditions (Continued in Figures 6.C.4-6.C.5):

1. ∀π ∈ Π, (P̂Cπ ∈ {11, 12} ⇔ Node[p̂ortπ] = NIL) ∧ (P̂Cπ ∈ {13, 14} ⇔ n̂odeπ.Pred ∈ {NIL,&Crash})
∧ (P̂Cπ ∈ {15, 25, 26} ⇔ n̂odeπ.Pred ∈ N ′) ∧ (P̂Cπ = 27⇔ n̂odeπ.Pred = &InCS)
∧ (P̂Cπ ∈ {28, 29} ⇔ n̂odeπ.Pred = &Exit)

2. ∀π ∈ Π, (PCπ ∈ [13, 15] ∪ [18, 29] ∪ [30, 48]⇒ mynodeπ = Node[p̂ortπ])
∧ (PCπ ∈ {15} ∪ [20, 24] ∪ [25, 26] ∪ [30, 48] ⇒ mypredπ = Node[p̂ortπ].Pred)
∧ ((PCπ ∈ [20, 24] ∪ [30, 48] ∧ P̂Cπ ∈ {13, 14})⇒ mypredπ = &Crash)

3. ∀π ∈ Π,Node[p̂ortπ] ̸= NIL⇒ (Node[p̂ortπ] ∈ N ′

∧ ((∃π′ ∈ Π, π ̸= π′ ∧Node[p̂ortπ].Pred = Node[p̂ortπ′])

∨ (Node[p̂ortπ].Pred ∈ N ′ ∧Node[p̂ortπ].Pred.Pred = &Exit)
∨ Node[p̂ortπ].Pred ∈ {NIL,&Crash,&InCS,&Exit})

∧ (∀π′′ ∈ Π, π ̸= π′′ ⇒
((Node[p̂ortπ] = Node[p̂ortπ′′]⇒ Node[p̂ortπ] = NIL)
∧ (Node[p̂ortπ].Pred = Node[p̂ortπ′′].Pred ⇒

Node[p̂ortπ].Pred ∈ {NIL,&Crash,&Exit}))))

4. ∀π, π′ ∈ Π, (π ̸= π′ ⇒ (n̂odeπ ̸= n̂odeπ′ ∨ n̂odeπ = n̂odeπ′ = NIL))
∧ ((π ̸= π′ ∧ n̂odeπ ̸= NIL ∧ n̂odeπ′ ̸= NIL) ⇒

(n̂odeπ.Pred ̸= n̂odeπ′ .Pred ∨ n̂odeπ.Pred ∈ {NIL,&Crash,&Exit}))
∧ (∃b ∈ N, (1 ≤ b ≤ k ∧ n̂odeπ .Pred.Pred · · · .Pred︸ ︷︷ ︸

b times

∈ {NIL,&Crash,&InCS,&Exit}))

5. ∀ qnode ∈ N , qnode.Pred ∈ {NIL,&Crash,&InCS,&Exit} ∪ N ′

∧ ((∀π ∈ Π, n̂odeπ ̸= &qnode)⇔ (∀p′ ∈ P,Node[p] ̸= qnode ∧ ∀π′ ∈ Π,mynodeπ′ ̸= &qnode))

∧ (qnode.CS_Signal = 1⇒ (qnode.Pred = &Exit ∧ (∀π ∈ Π, n̂odeπ = qnode⇒ P̂Cπ = 29)))
∧ (qnode.NonNil_Signal = 1 ⇒

(qnode.Pred ̸= NIL ∧ (∀π ∈ Π, n̂odeπ = qnode⇒ P̂Cπ ∈ [13, 15] ∪ [25, 29])))
∧ (qnode.CS_Signal = 0⇒ qnode.Pred ∈ {NIL,&Crash,&InCS})
∧ (qnode.NonNil_Signal = 0⇒ qnode.Pred = NIL)

Figure 6.C.3: Invariant for the k-ported recoverable mutual exclusion algorithm from Figures 6-
3-6-4. (Continued in Figures 6.C.4-6.C.5.)

118

Definitions (Continued from Figure 6.C.3):
• For a QNode instance n̂odeπ used by a process π ∈ Π, fragment(n̂odeπ) is a sequence of

distinct QNode instances (n̂odeπ1 , n̂odeπ2 , . . . , n̂odeπj) such that:
– ∀i, n̂odeπi ∈ N ,

– ∀i ∈ [1, j − 1], n̂odeπi+1 .Pred = n̂odeπi (e.g., n̂odeπ2 .Pred = n̂odeπ1),

– n̂odeπ1 .Pred ∈ {NIL,&Crash,&InCS,&Exit},

– ∀q ∈ P,Node[q].Pred ̸= n̂odeπj ,

– head(fragment(n̂odeπ)) = n̂odeπ1 and tail(fragment(n̂odeπ)) = n̂odeπj ,

– |fragment(n̂odeπ)| = j.
For example, for the initial state of the queue in Figure 6.B.1, (π1, π2), (π3, π4), (π5, π6), (π7), (π8) are
distinct fragments. After π3 performs repair in the illustration of Figure 6.B.1, the only fragment of the queue
is: (π1, π2, π7, π5, π6, π8, π3, π4). Note, in this example a node assumes the name of its process for
brevity (i.e., π1 should be read as n̂odeπ1). The set membership symbol ∈ used on the sequence denotes
membership of a node in the fragment. For example, π2 ∈ fragment(π1) in both examples discussed above.
Note, for simplicity we define fragment(NIL) = NIL and |fragment(NIL)| = 0. Conditions of the invariant
assert that the set of nodes in shared memory operated by the algorithm satisfy this definition of fragment.

• Q = {π ∈ Π | (P̂Cπ ∈ {15, 25, 26} ∧ head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit}) ∨ P̂Cπ = 27}
is a set of queued processes.

Conditions (Continued from Figure 6.C.3):

6. ∀π ∈ Π, (PCπ = 10⇒ P̂Cπ ∈ [11, 15] ∪ [25, 29]) ∧ (PCπ = 11⇒ P̂Cπ ∈ [11, 12])
∧ (PCπ ∈ [12, 15] ∪ {25} ⇒ P̂Cπ = PCπ) ∧ (PCπ ∈ [16, 20]⇒ P̂Cπ ∈ [13, 15] ∪ [25, 29])
∧ (PCπ = 21⇒ P̂Cπ ∈ [13, 15] ∪ [25, 26] ∪ [28, 29]) ∧ (PCπ = 22⇒ P̂Cπ ∈ [28, 29])
∧ (PCπ ∈ [23, 24] ∪ {30} ⇒ P̂Cπ ∈ [13, 15] ∪ [25, 26]) ∧ (PCπ ∈ [31, 48]⇒ P̂Cπ ∈ [13, 14])
∧ (P̂Cπ = 11⇒ PCπ ∈ {10, 11}) ∧ (P̂Cπ = 12⇒ PCπ ∈ [10, 12])
∧ (P̂Cπ ∈ {13, 14} ⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16, 21] ∪ {23, 24} ∪ [30, 48]))
∧ (P̂Cπ ∈ {15, 25, 26} ⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16, 21] ∪ {23, 24} ∪ {30}))
∧ (P̂Cπ = 27⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16, 20]))
∧ (P̂Cπ ∈ {28, 29} ⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16, 22]))

7. ∀π, π′ ∈ Π, fragment(n̂odeπ) ̸= fragment(n̂odeπ′)⇒
(∀π′′ ∈ Π, n̂odeπ′′ ∈ fragment(n̂odeπ)⇒ n̂odeπ′′ /∈ fragment(n̂odeπ′))

∧ head(fragment(n̂odeπ)).Pred = &InCS ⇒ ((π ̸= π′ ∧ head(fragment(n̂odeπ′)).Pred = &InCS) ⇒
n̂odeπ′ ∈ fragment(n̂odeπ))

∧ head(fragment(n̂odeπ)).Pred = &Exit ⇒ (P̂Cπ ∈ [28, 29] ∨
(π ̸= π′ ∧ head(fragment(n̂odeπ′)).Pred = &Exit ∧ P̂Cπ′ /∈ [28, 29]) ⇒

n̂odeπ′ ∈ fragment(n̂odeπ))
∧ (|fragment(n̂odeπ)| > 1 ⇒

((n̂odeπ′ ∈ fragment(n̂odeπ) ∧ n̂odeπ′ ̸= head(fragment(n̂odeπ)))⇒ P̂Cπ′ ∈ {15, 25}))
8. ∀π ∈ Π, PCπ ∈ {12, 13} ⇒ (mynodeπ ∈ N ′ ∧ (∀q ∈ P,Node[q] ̸= mynodeπ ∧Node[q].Pred ̸= mynodeπ)

∧ mynodeπ.CS_Signal = 0 ∧ mynodeπ.NonNil_Signal = 0
∧ mynodeπ = head(fragment(mynodeπ)) ∧ |fragment(mynodeπ)| = 1
∧ fragment(mynodeπ) ̸= fragment(Tail) ∧ mynodeπ.Pred = NIL)

Figure 6.C.4: (Continued from Figure 6.C.3.) Invariant for the k-ported recoverable mutual
exclusion algorithm from Figures 6-3-6-4. (Continued in Figure 6.C.5.)

Lemma 6.C.1 (Mutual Exclusion). At most one process is in the CS in every configuration of

every run.

Proof. Suppose there are two processes πi and πj that are both in CS in a configuration C. There-

119

Conditions (Continued from Figure 6.C.4):

9. ∀π ∈ Π, PCπ = 14⇒ (n̂odeπ ∈ N ′ ∧ n̂odeπ.Pred = NIL ∧ n̂odeπ = head(fragment(n̂odeπ))
∧ n̂odeπ.CS_Signal = 0 ∧ n̂odeπ.NonNil_Signal = 0
∧ (∀π′ ∈ Π, (π′ ̸= π ∧ n̂odeπ′ ∈ fragment(n̂odeπ))⇒ P̂Cπ′ ∈ {15, 25})
∧ mypredπ ∈ N ′ ∧ mypredπ = tail(fragment(mypredπ))
∧ (mypredπ.CS_Signal = 1

∨ (∃π′ ∈ Π, π ̸= π′ ∧ n̂odeπ′ = mypredπ ∧ P̂Cπ′ ∈ {14, 15} ∪ [25, 28]))
∧ (mypredπ.Pred = &InCS⇒ (∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ = 27 ∧mypredπ = n̂odeπ′))

∧ (mypredπ.Pred = &Exit⇒ (((∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ ∈ [28, 29]
∧ mypredπ = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] ̸= mypredπ)) ∧ |Q| = 0))

∧ (mypredπ.Pred /∈ {&InCS,&Exit} ⇒
(∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ ∈ [14, 15] ∪ [25, 26] ∧mypredπ = n̂odeπ′))

∧ (head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} ⇒ (∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ = 14
∧ mypredπ = tail(fragment(n̂odeπ′)) ∧ n̂odeπ′ = head(fragment(n̂odeπ′))))

∧ fragment(n̂odeπ) ̸= fragment(mypredπ))

10. ∀π ∈ Π, ((P̂Cπ ∈ {13, 14} ∧ n̂odeπ.Pred = NIL)⇒ (PCπ = P̂Cπ ∨ PCπ ∈ {10} ∪ [16, 18]))
∧ ((P̂Cπ ∈ {13, 14} ∧ n̂odeπ.Pred = &Crash)⇒ PCπ ∈ {10} ∪ [16, 21] ∪ [23, 24] ∪ [30, 48])

11. ∀π ∈ Π, (PCπ ∈ [19, 21] ∪ [23, 24] ∪ [30, 48] ∧ P̂Cπ ∈ {13, 14}) ⇒ n̂odeπ.Pred = &Crash

12. ∀π ∈ Π, (P̂Cπ = 13⇒ |fragment(n̂odeπ)| = 1)

∧ (P̂Cπ ∈ {13, 14} ⇒ (n̂odeπ = head(fragment(n̂odeπ)) ∧ fragment(n̂odeπ) ̸= fragment(Tail)))
∧ (P̂Cπ = 14⇒ (∀π′ ∈ Π, (π′ ̸= π ∧ n̂odeπ′ ∈ fragment(n̂odeπ))⇒ P̂Cπ′ ∈ {15, 25}))

13. ∀π ∈ Π, PCπ ∈ {15, 25} ⇒ (n̂odeπ ∈ N ′ ∧ n̂odeπ.Pred = mypredπ ∧mypredπ ∈ N ′)

14. ∀π ∈ Π, P̂Cπ ∈ {15, 25} ⇒ (n̂odeπ ∈ N ′ ∧ n̂odeπ.Pred ∈ N ′

∧ (n̂odeπ.Pred.CS_Signal = 1
∨ (∃π′ ∈ Π, π ̸= π′ ∧ n̂odeπ′ = n̂odeπ.Pred ∧ P̂Cπ′ ∈ {14, 15} ∪ [25, 28]))

∧ (n̂odeπ.Pred.Pred = &InCS⇒
(∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ = 27 ∧ n̂odeπ.Pred = n̂odeπ′))

∧ (n̂odeπ.Pred.Pred = &Exit⇒ (((∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ ∈ [28, 29]
∧ n̂odeπ.Pred = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] ̸= n̂odeπ.Pred)) ∧ |Q| = 0))

∧ (n̂odeπ.Pred.Pred /∈ {&InCS,&Exit} ⇒
(∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ ∈ [14, 15] ∪ [25, 26] ∧ n̂odeπ.Pred = n̂odeπ′)))

15. ∀π ∈ Π, (P̂Cπ ∈ {15, 25} ∧ head(fragment(n̂odeπ)).Pred ∈ {NIL,&Crash})⇒
(∃π′ ∈ Π, π′ ̸= π ∧ P̂Cπ′ = 14 ∧ n̂odeπ′ = head(fragment(n̂odeπ))
∧ (∀π′′ ∈ Π, (π′′ ̸= π′ ∧ n̂odeπ′′ ∈ fragment(n̂odeπ))⇒

(P̂Cπ′′ ∈ {15, 25} ∧ n̂odeπ′′ .CS_Signal = 0)))
Figure 6.C.5: (Continued from Figure 6.C.4.) Invariant for the k-ported recoverable mutual
exclusion algorithm from Figures 6-3-6-4. (Continued in Figure 6.C.6.)

fore, P̂Cπi = 27 and P̂Cπj = 27 in C. By definition of Q, πi ∈ Q and πj ∈ Q. Therefore, by

Condition 19 of the invariant, one of the two processes is not π1 in the ordering of processes in Q.

Without loss of generality, let πi = π1 and πj be a process coming later in the ordering. Therefore,

by Condition 19(d)i, P̂Cπj ∈ {15, 25}, a contradiction.

Lemma 6.C.2 (Starvation Freedom). If the total number of crashes in the run is finite and a

process is in the Try section and does not subsequently crash, it later enters the CS.

120

Conditions (Continued from Figure 6.C.5):
16. Tail ∈ N ′ ∧ Tail = tail(fragment(Tail)) ∧ (∃i ∈ [0, k − 1],Tail = Node[i] ∨Tail.Pred = &Exit)

∧ (Tail.CS_Signal = 1
∨ (∃π′ ∈ Π, π ̸= π′ ∧ n̂odeπ′ = Tail ∧ P̂Cπ′ ∈ {14, 15} ∪ [25, 28]))

∧ (Tail.Pred = &InCS⇒ (∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ = 27 ∧Tail = n̂odeπ′))

∧ (Tail.Pred = &Exit⇒ (((∃π′ ∈ Π, P̂Cπ′ ∈ [28, 29] ∧ Tail = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] ̸= Tail))
∧ |Q| = 0))

∧ (Tail.Pred /∈ {&InCS,&Exit} ⇒ (∃π′ ∈ Π, P̂Cπ′ ∈ [14, 15] ∪ [25, 26] ∧Tail = n̂odeπ′)))

∧ (head(fragment(Tail)).Pred ∈ {NIL,&Crash} ⇒ (∃π′ ∈ Π, P̂Cπ′ = 14
∧ Tail = tail(fragment(n̂odeπ′)) ∧ n̂odeπ′ = head(fragment(n̂odeπ′))))

∧ ((∃π ∈ Π, P̂Cπ ∈ [14, 15] ∪ [25, 29]) ⇔ (∃π′ ∈ Π,Tail = n̂odeπ′ ∧ P̂Cπ′ ∈ [14, 15] ∪ [25, 29]))

17. ∀π ∈ Π, ((PCπ ∈ [24, 29] ∪ [30, 49] ∨ P̂Cπ ∈ [25, 29])⇒ n̂odeπ.NonNil_Signal = 1)
∧ (P̂Cπ = 29⇒ n̂odeπ.CS_Signal = 1)

18. |Q| = 0⇒ ((Tail.Pred = &Exit ∨ ∃π ∈ Π, (P̂Cπ = 14 ∧Tail = tail(fragment(n̂odeπ))
∧ n̂odeπ = head(fragment(n̂odeπ))))

∧ (∀π′ ∈ Π, PCπ′ ∈ [11, 15] ∪ {25} ∪ [28, 29]))
19. If |Q| = l > 0, then there is an order π1, π2, . . . , πl of distinct processes in Q such that:

(a) P̂Cπ1 ∈ {15} ∪ [25, 27]

(b) (∃π ∈ Π, P̂Cπ ∈ [28, 29] ∧ n̂odeπ1 .Pred = n̂odeπ)

∨ (n̂odeπ1 .Pred ∈ N ′ − {n̂odeπ′ |π′ ∈ Π ∧ n̂odeπ′ ̸= NIL})

(c) P̂Cπ1 ∈ {15, 25} ⇒ (n̂odeπ1 .Pred.CS_Signal = 1 ∨
(∃π′ ∈ Π, π1 ̸= π′ ∧ n̂odeπ′ = n̂odeπ1 .Pred ∧ P̂Cπ′ = 28))

(d) ∀i ∈ [2, l]:

i. P̂Cπi ∈ {15, 25}
ii. n̂odeπi .Pred = n̂odeπi−1

Observation: n̂odeπi ∈ fragment(n̂odeπ1).

(e) n̂odeπl = tail(fragment(n̂odeπ1))

(f) n̂odeπ1 = head(fragment(n̂odeπ1)) ∨ n̂odeπ1 .Pred.Pred = &Exit

(g) ∀π ∈ Π, π ̸= π1 ⇒ P̂Cπ ∈ [11, 15] ∪ {25} ∪ [28, 29]

(h) ∀π ∈ Π, (π ̸= π1 ∧ n̂odeπ ̸= NIL ∧ n̂odeπ.Pred ∈ N ′)⇒ (n̂odeπ.Pred.CS_Signal = 0)

Observation: ∀π ∈ Π, π ̸= π1 ⇒ P̂Cπ ̸= 27.
Proof: If π ∈ Q, then by Condition 19(d)i, P̂Cπ ̸= 27. If π /∈ Q, then, P̂Cπ ̸= 27, by definition of Q.

Figure 6.C.6: (Continued from Figure 6.C.5.) Invariant for the k-ported recoverable mutual
exclusion algorithm from Figures 6-3-6-4.

Proof. As noted in the statement of the claim, we assume that the total number of crashes in the

run is finite.

A process π using a port p would not enter the CS during its passage if PCπ is forever stuck at

a certain line in the algorithm before entering the CS. Hence, in order to prove starvation freedom

we have to argue that PCπ advances to the next line for every step in the algorithm. An inspection

of the Try section reveals that π has procedure calls at Lines 15, 23, and 25, and inside the CS

of RLock at Line 35. Since we require the RLock to be a recoverable starvation-free mutual

121

exclusion lock, any process that executes Line 24 is guaranteed to eventually reach Line 30 of

the Critical section of RLock (and hence reaches Line 35). Particularly, Golab and Ramaraju’s

read-write based recoverable extension of Yang and Anderson’s lock (see Section 3.2 in [78]) is one

such lock that also guarantees a wait-free exit. Of these procedure calls, only the ones at Lines 25

and 35 concern us in the proof, since their implementation involves a wait loop. Therefore, if all

the calls to wait are shown to complete, π is guaranteed to enter the CS eventually.

We comment on a few other steps in the algorithm as follows before diving into the proof. The

for loop at Line 32 executes for k iterations, therefore, Lines 32-38 execute a bounded number

of times. Computing the set of maximal paths at Line 39 is a local computation step and has

a bounded time algorithm, therefore, the step is executed a bounded number of times. The set

Pathsπ is a finite set and finding the path mypathπ at Line 40 is a local computation step which has

a bounded time algorithm, therefore, the step is executed a bounded number of times. Similarly,

Line 41 is a local computation step which has a bounded time algorithm, therefore, the step is

executed a bounded number of times. As observed above, Pathsπ is a finite set, therefore the

loop at Line 42 iterates a finite number of times. Hence, Lines 42-45 execute a bounded number

of times. Note, since our algorithm has a wait-free exit (see Lemma 6.C.3), π goes back to the

Remainder section in a bounded number of normal steps once it finishes the CS. From the above

it follows that π executes wait loops inside the calls for wait only at Lines 25 and 35. Therefore,

we consider these two cases where π could potentially loop as follows and ensure that it eventually

gets past these lines.

Case 1: π completes the step at Line 35.

When PCπ = 35, by Condition 30, curπ.NonNil_Signal = 1 or (∃π′ ∈ Π, π ̸= π′∧curπ = n̂odeπ′∧

P̂Cπ′ ∈ [13, 15]). Suppose curπ.NonNil_Signal = 1. curπ.NonNil_Signal is an instance of

the Signal object from Section 6.2.1, it follows that the call to curπ.NonNil_Signal.wait() on

Line 35 returns in a wait-free manner. Therefore, π completes the step at Line 35.

Assume curπ.NonNil_Signal ̸= 1 and (∃π′ ∈ Π, π ̸= π′ ∧ curπ = n̂odeπ′ ∧ P̂Cπ′ ∈ [13, 15]).

Suppose PCπ′ = P̂Cπ′ and there are no crash steps by π′ before completing Line 15. In that case π′

executes curπ.NonNil_Signal.set() to completion at Line 15 and sets curπ.NonNil_Signal =

1 in a wait-free manner. It follows that the call to curπ.NonNil_Signal.wait() on Line 35 returns

subsequently in a wait-free manner. Therefore, assume that PCπ′ ̸= P̂Cπ′ . By Conditions 6, 17 and

the fact that curπ.NonNil_Signal ̸= 1, PCπ′ ∈ {10} ∪ [16, 21] ∪ {23}. Therefore, π′ eventually

executes curπ.NonNil_Signal.set() to completion at Line 23 and sets curπ.NonNil_Signal =

122

1 in a wait-free manner. It follows that the call to curπ.NonNil_Signal.wait() on Line 35

returns subsequently in a wait-free manner. Note, in case of a crash by π′ before executing

curπ.NonNil_Signal.set() to completion, π′ starts at Line 10 and reaches Line 23. This is

because P̂Cπ′ ∈ [13, 15] implies Node[p̂ortπ′] ̸= NIL and n̂odeπ′ .Pred /∈ {&InCS,&Exit}. There-

fore, the if conditions at Lines 10, 20, and 21 are not met and π′ reaches Line 23. From the above

it follows that π completes the step at Line 35. ■

Case 2: π completes the step at Line 25.

In order to argue that π completes the step at Line 25, we consider two cases. For the first

case we have head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit} and the second occurs when

head(fragment(n̂odeπ)).Pred ∈ {NIL,&Crash}. The first case occurs when π ∈ Q and the

second occurs when π /∈ Q, both because of the value of head(fragment(n̂odeπ)).Pred. We argue

both the cases as follows.

Case 2.1: head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit}.

By definition of Q, π ∈ Q. By Condition 19, there is an ordering π1, π2, . . . , πl

of the processes in Q, and π appears somewhere in that ordering. Assume for

a contradiction that there is a run R in which π never completes the step at

Line 25. Therefore, in R there are some processes (including π) in Q that ini-

tiate the passage but never enter the CS. Since the processes never enter the

CS, after a certain configuration they are forever stuck at Line 25. Let πj ∈ Q

be the process in R that forever loops at Line 25, such that it has the least

index j according to the ordering defined by Condition 19. Let C be the ear-

liest configuration in R such that all the processes appearing before πj in the

ordering defined by Condition 19 have gone back to the Remainder section after

completing the CS and πj is still stuck at Line 25. Since those processes are

no more queued processes, πj appears first in the ordering, i.e., πj = π1. Since

PCπ = 25, by Condition 19c, n̂odeπj .Pred.CS_Signal = 1 or (∃π′ ∈ Π, πj ̸=

π′ ∧ n̂odeπ′ = n̂odeπj .Pred ∧ P̂Cπ′ = 28). If n̂odeπj .Pred.CS_Signal = 1,

then πj returns from the call to n̂odeπj .Pred.CS_Signal.wait() at Line 25

completing the step. Otherwise, suppose n̂odeπj .Pred.CS_Signal ̸= 1 and

(∃π′ ∈ Π, πj ̸= π′ ∧ n̂odeπ′ = n̂odeπj .Pred ∧ P̂Cπ′ = 28). If PCπ′ = P̂Cπ′ ,

then π′ eventually executes n̂odeπ′ .CS_Signal.set() to completion at Line 28

and sets n̂odeπ′ .CS_Signal = 1 in a wait-free manner. It follows that the call

123

to n̂odeπj .Pred.CS_Signal.wait() at Line 25 returns subsequently in a wait-

free manner. If PCπ′ ̸= P̂Cπ′ , then, by Condition 6, PCπ ∈ {10} ∪ [16, 22]. By

Condition 1, Node[p̂ortπ′] ̸= NIL and n̂odeπ′ .Pred = &Exit. Therefore, the

if conditions at Lines 10 and 20 are not met, but the one at Line 21 is met

and π′ executes Line 28 as written in Line 22. Therefore, π′ eventually executes

n̂odeπ′ .CS_Signal.set() to completion at Line 28 and sets n̂odeπ′ .CS_Signal =

1 in a wait-free manner. It follows that the call to n̂odeπj .Pred.CS_Signal.wait()

at Line 25 returns subsequently in a wait-free manner. Thus πj eventually enters

the CS by completing the remaining Try section at Line 26. This contradicts the

assumption that πj is a process in Q with the least index j defined by the order-

ing by Condition 19. Therefore, we conclude that π itself completes the step at

Line 25 and eventually enters the CS.

Case 2.2: head(fragment(n̂odeπ)).Pred ∈ {NIL,&Crash}.

Let C be a configuration when P̂Cπ = 25 and head(fragment(n̂odeπ)).Pred ∈

{NIL,&Crash}. By Condition 15, ∃πi1 ∈ Π, πi1 ̸= π ∧ P̂Cπi1
= 14 ∧ n̂odeπi1

=

head(fragment(n̂odeπ)). Suppose n̂odeπi1
.Pred = NIL. By Condition 10, PCπi1

=

P̂Cπi1
(or PCπi1

∈ {10} ∪ [16, 18]), we cover this case later). By Condition 13,

mypredπi1
∈ N ′. If πi1 takes normal steps at Line 14, then it sets n̂odeπi1

.Pred =

mypredπi1
and sets P̂Cπi1

= 15. We hold the argument for the current case when

n̂odeπi1
.Pred = NIL briefly and argue the case when n̂odeπi1

.Pred = &Crash as

follows and then join the two arguments (i.e., n̂odeπi1
.Pred ∈ {NIL,&Crash})

later. So now assume that n̂odeπi1
.Pred = &Crash (this covers the case when

n̂odeπi1
.Pred = NIL and PCπi1

∈ {10}∪ [16, 18]), since n̂odeπi1
.Pred = &Crash

at Line 18 eventually). By Condition 10, PCπi1
∈ {10}∪ [16, 21]∪ [23, 24]∪ [30, 48].

For every value of PCπi1
, it follows that πi1 eventually executes Line 49 (note,

by Case 1 above, πi1 completes all steps at Line 35). Once πi1 executes Line 49,

it sets P̂Cπi1
= 25. Hence, in both cases (i.e., n̂odeπi1

.Pred ∈ {NIL,&Crash})

P̂Cπi1
= 25 eventually. Let C ′ be the earliest configuration after C when P̂Cπi1

=

25, by Condition 1, n̂odeπi1
.Pred ∈ N ′ in C ′. If head(fragment(n̂odeπ)).Pred ∈

{&InCS,&Exit} in C ′, then by the same argument as in Case 2.1 we are done.

Otherwise, again by Condition 15, ∃πi2 ∈ Π, πi2 ̸= π ∧ P̂Cπi2
= 14 ∧ n̂odeπi2

=

124

head(fragment(n̂odeπ)).

We now show as follows that head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit}

eventually. Assume to the contrary that head(fragment(n̂odeπ)).Pred /∈ {&InCS,&Exit}

forever. We know there are k active processes, and by Conditions 3, 4, and 7, there

are a finite number of distinct fragments. Applying the above argument about π

and πi1 inductively on these fragments, the fragments increase in size monoton-

ically and we get to a configuration such that each process satisfies one of three

cases as follows: (i) the process has its node appear in fragment(n̂odeπ), (ii) there

is a process πi3 such that head(fragment(n̂odeπi3
)).Pred ∈ {&InCS,&Exit} and

the process has its node appear in fragment(n̂odeπi3
), or (iii) the process is in the

Remainder section after completing the super-passage. Let C ′′ be the earliest

such configuration. In C ′′ we have ∃πi4 ∈ Π, πi4 ̸= π ∧ P̂Cπi4
= 14 ∧ n̂odeπi4

=

head(fragment(n̂odeπ)). We can now apply the above argument about π and πi1

on π and πi4 . We continue to do so until we get to a configuration where each

process satisfies one of the following two cases: (i) the process has its node appear

in fragment(n̂odeπ), (ii) the process forever remains in the Remainder section af-

ter completing the super-passage. Let C ′′′ be earliest such configuration where we

have ∃πi5 ∈ Π, πi5 ̸= π∧P̂Cπi5
= 14∧n̂odeπi5

= head(fragment(n̂odeπ)). Note, we

have P̂Cπi5
= 14 in C ′′′, and every other process π′ has either P̂Cπ′ = 11 (for being

in the Remainder section) or P̂Cπ′ ∈ {15, 25} (for being in fragment(n̂odeπ) =

fragment(n̂odeπi5
)) for all configurations after C ′′′. We can apply the above ar-

gument about π and πi1 on π and πi5 so that ∃πi6 ∈ Π, πi6 ̸= π ∧ P̂Cπi6
=

14∧n̂odeπi6
= head(fragment(n̂odeπ)). This contradicts the above conclusion that

only P̂Cπi5
= 14 in all configurations after C ′′′. Therefore we conclude that our

assumption that head(fragment(n̂odeπ)).Pred /∈ {&InCS,&Exit} forever is in-

correct and head(fragment(n̂odeπ)).Pred ∈ {&InCS,&Exit} eventually. Hence,

by the same argument as in Case 2.1 we are done.

From the above it follows that π completes the step at Line 25. ■

From the above it follows that π completes the steps at Lines 25 and 35 whenever it encounters

them during the passage. Therefore, the algorithm satisfies starvation freedom.

Lemma 6.C.3 (Wait-free Exit). There is a bound b such that, if a process π is in the Exit

125

section, and executes steps without crashing, π completes the Exit section in at most b of its steps.

Proof. An inspection of the algorithm reveals that Lines 27-29 do not involve repeated execution of

any steps. The implementation of the Signal object from Figure 6-2 shows that the code for X .set()

does not involve a loop, Hence, the call to mynodeπ.CS_Signal.set() at Line 28 terminates.

Hence the claim.

Lemma 6.C.4 (Wait-Free CSR). There is a bound b such that, if a process crashes while in the

CS, it reenters the CS before completing b consecutive steps without crashing.

Proof. Suppose π crashes while in the CS, i.e., when P̂Cπ = 27, π crashes. By Condition 1,

Node[p̂ortπ] ̸= NIL and n̂odeπ.Pred = &InCS. Therefore, when π restarts from the crash and

starts executing at Line 10, it finds that the if conditions at Lines 10 and 18 are not met. It

therefore reaches Line 20 with mypredπ = n̂odeπ.Pred (by Condition 2) by executing Lines 10,

16-19 (none of which are repeatedly executed). The if condition at Line 20 is met and π is put

into the CS in a wait-free manner. Hence the claim.

Lemma 6.C.5 (Critical Section Reentry). If a process π crashes inside the CS, then no other

process enters the CS before π reenters the CS.

Proof. This is immediate from Lemma 6.C.1 and Lemma 6.C.4 as observed in [112].

6.D Proof of correctness of Signal object

Proof of Theorem 6.2.1. Let α be the earliest event where some process performed Line 1 and β

be the earliest event where some process π′ performed Line 8 and does not subsequently fail.

Case 1: α occurs before β.

In this case we linearize the execution as follows:

• every execution of X .set() is linearized to its Line 1,

• every execution of X .wait() is linearized to its Line 8, where X .State is 1 (since α precedes

β).

Since α occurs before β, π′ notices that Bit = 1 at Line 8 and hence returns from the call to

wait().

126

Case 2: β occurs before α.

Consider the execution of X .set() that is the first to complete. Let π be the process that performs

this execution of X .set(). At Line 2 π reads goπ′ from GoAddr into addrπ. Since β occurs before

α, addrπ ̸= NIL, therefore, at Line 4 π sets ∗goπ′ to true. This releases π′ from its busy-wait at

Line 9. We linearize the call to X .set() by π to its Line 4, and every other complete execution of

X .set() in the run to its point of completion. Note, β is the earliest event where some process π′

performed Line 8 and does not subsequently fail and we assume that no two executions of X .wait()

are concurrent. Therefore, every other execution of X .wait(), happens after the call considered in

α sets Bit to 1. This implies that such a call would complete because the calling process would

read Bit = 1 at Line 8 and return.

RMR Complexity: It is easy to see that the RMR Complexity of X .set() is O(1) since there

are a constant steps in any execution of X .set(). For any execution of X .wait() by a process π,

π creates a new boolean at Line 5 that resides in π’s memory partition. Therefore, the busy-wait

by π at Line 9 incurs a O(1) RMR and the rest of the lines in X .wait() (Lines 5-8) incur a O(1)

RMR.

6.E Proof of invariant

In this section we prove that our algorithm from Figures 6-3-6-4 satisfies the invariant described in

Figures 6.C.3-6.C.6. In order to prove that we need support from a few extra conditions that we

present in Figures 6.E.1-6.E.3. Therefore, we prove that our algorithm satisfies all the conditions

described in Figures 6.C.3-6.E.3.

Lemma 6.E.1. The algorithm in Figures 6-3-6-4 satisfies the invariant (i.e., the conjunction of

the 39 conditions) stated in Figures 6.C.3-6.E.3, i.e., the invariant holds in every configuration of

every run of the algorithm.

Proof. We prove the lemma by induction. Specifically, we show (i) base case: the invariant holds

in the initial configuration, and (ii) induction step: if the invariant holds in a configuration C and

a step of a process takes the configuration C to C ′, then the invariant holds in C ′.

In the initial configuration, we have Tail = &SpecialNode, ∀π ∈ Π, PCπ = 10, P̂Cπ = 11,

and Node[p̂ortπ] = NIL. Note, |Q| = 0 by definition of Q. Since all processes are in the Remainder

section, Condition 1 holds because of the value of the Node array as noted above. Since n̂odeπ =

127

Definitions (Continued from Figure 6.C.4):
• owner(qnode) denotes the process that created the qnode at Line 11.
Conditions (Continued from Figure 6.C.6):

20. ∀π ∈ Π, (PCπ = 31 ∧ head(fragment(Tail)).Pred ∈ {&InCS,&Exit})⇒
fragment(n̂odeπ) ̸= fragment(Tail)

21. ∀π ∈ Π, (PCπ ∈ [32, 41]⇒ tailpathπ = NIL) ∧ (PCπ ∈ [32, 41]⇒ headpathπ = NIL)
∧ (PCπ = 32⇒ iπ ∈ [0, k]) ∧ (PCπ ∈ [33, 38]⇒ iπ ∈ [0, k − 1])
∧ (PCπ ∈ [39, 49]⇒ iπ = k) ∧ (PCπ ∈ [32, 49]⇒ tailπ ∈ N ′)

22. ∀π ∈ Π, PCπ ∈ [32, 49]⇒ (tailπ ∈ Vπ ∨ (∃i ∈ [iπ, k − 1], tailπ = Node[i]) ∨ (tailπ.Pred = &Exit))
23. ∀π ∈ Π, if PCπ ∈ [32, 49], then:

(a) (Vπ, Eπ) is a directed acyclic graph,
(b) Maximal paths in (Vπ, Eπ) are disjoint.

24. ∀π ∈ Π, if PCπ ∈ [32, 49], then one of the following holds (i.e., (a) ∨ (b) ∨ (c) ∨ (d)):

(a) head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}
(b) there is a unique maximal path σ in the graph (Vπ, Eπ), such that, end(σ).Pred ∈ {&InCS,&Exit}

and start(σ).Pred ̸= &Exit
(c) iπ < k and ∃i′ ∈ [iπ, k − 1],Node[i′].Pred.Pred ∈ {&InCS,&Exit}

∧ tail(fragment(Node[i′])).Pred ̸= &Exit
(d) |Q| = 0

25. ∀π ∈ Π, (PCπ ∈ [32, 39] ∧ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit})⇒
∀n̂odeπ′ ∈ fragment(n̂odeπ), ((∃iπ < i′ < k,Node[i′] = n̂odeπ′) ∨
(n̂odeπ′ ∈ Vπ ∧ (n̂odeπ ̸= n̂odeπ′ ⇒ (n̂odeπ′ , n̂odeπ′ .Pred) ∈ Eπ)))

26. ∀π ∈ Π, If PCπ ∈ [32, 41] and there is a maximal path σ in (Vπ, Eπ) such that end(σ).Pred ∈ {&InCS,&Exit},
then, for an arbitrary vertices v and v′ on the path σ,

∀n̂ode ∈ fragment(v), ((∃iπ < i′ < k,Node[i′] = n̂ode) ∨ (n̂ode ∈ Vπ

∧ (n̂ode.Pred /∈ {&InCS,&Exit} ⇒ (n̂ode, n̂ode.Pred) ∈ Eπ))),
and (fragment(v) ̸= fragment(v′)⇒

(v.Pred ∈ {&InCS,&Exit} ∨ v′.Pred ∈ {&InCS,&Exit}))
Figure 6.E.1: (Continued from Figure 6.C.6.) Invariant for the k-ported recoverable mutual
exclusion algorithm from Figures 6-3-6-4. (Continued in Figure 6.E.2.)

NIL by definition, Condition 4, 7 holds. Since Tail = &SpecialNode, Condition 16 holds. Since

|Q| = 0, Tail = &SpecialNode as noted above, hence, Condition 18 holds. All of the remaining

conditions of the invariant hold vacuously in the initial configuration. Hence, we have the base

case.

To verify the induction step, Let C be an arbitrary configuration in which the invariant holds,

π be an arbitrary process, and C ′ be the configuration that results when π takes a step from C.

In the following, we enumerate each possible step of π and argue that the invariant continues to

hold in C ′, even though the step changes the values of some variables. Since our invariant involves

universal quantifiers for all the conditions, we have only argued it thoroughly as it is applicable to

π and wherever necessary for another process for the sake of brevity. We also skip arguing about

conditions that hold vacuously, are easy to verify, are argued before in a similar way, or need not be

128

Conditions (Continued from Figure 6.C.6):
27. ∀π ∈ Π, if PCπ ∈ [32, 49], then:

(a) ∀v ∈ Vπ, v ∈ N ′ ∧ (iπ > p̂ortπ ⇒ mynodeπ ∈ Vπ)

(b) ∀ 0 ≤ i′ < iπ, (Node[i′] ∈ fragment(n̂odeπ) ∧ fragment(tailπ) ̸= fragment(n̂odeπ))⇒ Node[i′] ∈ Vπ

(c) ∀ 0 ≤ i′ < iπ, ∀v ∈ Vπ, (̂portowner(v) = i′ ∧ v ̸= Node[i′])⇒ (v.Pred = &Exit ∧ ∀p′ ∈ P,Node[p′] ̸= v)

(d) ∀ 0 ≤ i′ < iπ, (Node[i′].Pred /∈ {&Crash,&InCS,&Exit} ∧Node[i′] ∈ Vπ)⇒
(Node[i′],Node[i′].Pred) ∈ Eπ

(e) ∀ 0 ≤ i′ < iπ, ((∀v ∈ Vπ,Node[i′] ̸= v) ⇒
((head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∧Node[i′] ∈ fragment(tailπ))

∨ head(fragment(Node[i′])).Pred ∈ {NIL,&Crash}))
(f) ∀v ∈ Vπ, end(v).Pred = &Crash⇒ head(fragment(v)).Pred = &Crash
(g) ∀v ∈ Vπ, If there is a pair (v, u) ∈ Eπ, then u ∈ Vπ and (v.Pred = u ∨ v.Pred ∈ {&InCS,&Exit})
(h) ∀(u, v) ∈ Eπ, (∃i ∈ [0, k − 1],Node[i] = u) ∨ (∀i′ ∈ [0, k − 1],Node[i′].Pred ̸= v)

(i) ∀(v, w) ∈ Eπ, (v.Pred ∈ {w,&InCS,&Exit}) ∧ (v.Pred ∈ {&InCS,&Exit} ⇒ w.Pred = &Exit)
(j) ∀(u, v) ∈ Eπ, u ̸= mynodeπ

(k) iπ > p̂ortπ ⇒ there is a path σ in the graph (Vπ, Eπ), such that, end(σ) = mynodeπ.

28. ∀π ∈ Π, (PCπ ∈ [32, 47] ∧ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit})⇒
fragment(n̂odeπ) ̸= fragment(Tail)

∧ ((PCπ ∈ [39, 47]) ∧ tailπ /∈ Vπ)⇒ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit})
∧ ((PCπ ∈ [42, 47]) ∧ tailpathπ ̸= NIL)⇔ tailπ ∈ Vπ)

29. ∀π ∈ Π, (PCπ ∈ [32, 49] ∧ head(fragment(tailπ)).Pred /∈ {&InCS,&Exit})⇒
head(fragment(Tail)).Pred /∈ {&InCS,&Exit}

30. ∀π ∈ Π, (PCπ = 34⇒ (curπ = NIL ∨ (curπ ∈ N ′ ∧ (curπ = Node[iπ] ∨ curπ.Pred = &Exit))))
∧ (PCπ = 35⇒ (curπ.NonNil_Signal = 1 ∨ (∃π′ ∈ Π, π ̸= π′ ∧ curπ = n̂odeπ′ ∧ P̂Cπ′ ∈ [13, 15])))
∧ (PCπ ∈ [35, 38]⇒ (curπ ∈ N ′ ∧ (curπ = Node[iπ] ∨ curπ.Pred = &Exit)))
∧ (PCπ ∈ [36, 37]⇒ curπ.Pred ∈ {&Crash,&InCS,&Exit} ∪ N ′) ∧ (PCπ = 38⇒ curpredπ ∈ N ′)

31. ∀π ∈ Π, ((PCπ ∈ [42, 47] ∧ tailpathπ ̸= NIL ∧ end(tailpathπ).Pred /∈ {&InCS,&Exit}) ∨ PCπ = 48)⇒
head(fragment(tailπ)).Pred /∈ {&InCS,&Exit}

32. ∀π ∈ Π, if PCπ ∈ [39, 41] and head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}, then there is a maximal path
σ in the graph (Vπ, Eπ) such that:

(a) end(σ) = mynodeπ

(b) start(σ) = tail(fragment(mynodeπ))

33. ∀π ∈ Π, if PCπ ∈ [41, 49], then mypathπ is the unique path in Pathsπ such that mynodeπ appears in mypathπ

34. ∀π ∈ Π, if PCπ = 39 and for every maximal path σ in (Vπ, Eπ), ¬(end(σ).Pred ∈ {&InCS,&Exit}
∧ start(σ).Pred ̸= &Exit), then (head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∨ |Q| = 0)

Figure 6.E.2: (Continued from Figure 6.E.1.) Invariant for the k-ported recoverable mutual
exclusion algorithm from Figures 6-3-6-4. (Continued in Figure 6.E.3.)

argued if the step does not affect the condition. Induction step due to a crash step of π is argued

in the end. To aid in reading we have numbered each step according to the value of the program

counter wherever possible. For the purpose of this proof we assume that π executes the algorithm

using the port p, hence p̂ortπ = p.

10 (a). π executes Line 10 when P̂Cπ ∈ {11, 12}.

129

Conditions (Continued from Figure 6.C.6):
35. ∀π ∈ Π, if PCπ = 39 and there is a maximal path σ in (Vπ, Eπ), such that,

end(σ).Pred ∈ {&InCS,&Exit} ∧ start(σ).Pred ̸= &Exit, then
(head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}
∨ ∃n̂ode ∈ N , (n̂ode = start(σ) ∧ n̂ode = tail(fragment(n̂ode))
∧ head(fragment(n̂ode)).Pred ∈ {&InCS,&Exit}
∧ fragment(n̂odeπ) ̸= fragment(n̂ode)))

36. ∀π ∈ Π, (PCπ ∈ {44, 45} ⇒ end(σπ).Pred ∈ {&InCS,&Exit})
∧ (PCπ = 45⇒ (|σπ| > 1 ∧ start(σπ) = tail(fragment(start(σπ)))))

37. ∀π ∈ Π, (PCπ ∈ [40, 48] ∧ headpathπ = NIL) ⇒
(head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∨ |Q| = 0
∨ (There is a maximal path σ in (Vπ, Eπ), such that,

end(σ).Pred ∈ {&InCS,&Exit} ∧ start(σ).Pred ̸= &Exit, and
∃n̂ode ∈ N , (n̂ode = start(σ) ∧ n̂ode = tail(fragment(n̂ode))

∧ head(fragment(n̂ode)).Pred ∈ {&InCS,&Exit}
∧ fragment(n̂odeπ) ̸= fragment(n̂ode))))

38. ∀π ∈ Π, (PCπ ∈ [40, 48] ∧ headpathπ ̸= NIL) ⇒
((∃σ ∈ Pathsπ, headpathπ = σ) ∧ head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}
∨ ∃n̂ode ∈ N , (n̂ode = start(headpathπ) ∧ n̂ode = tail(fragment(n̂ode))
∧ (n̂ode.Pred = &InCS⇒ (∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ = 27 ∧ n̂ode = n̂odeπ′))

∧ (n̂ode.Pred = &Exit ⇒ |Q| = 0)

∧ (n̂ode.Pred /∈ {&InCS,&Exit} ⇒
(∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ ∈ {15} ∪ [25, 26] ∧ n̂ode = n̂odeπ′))

∧ head(fragment(n̂ode)).Pred ∈ {&InCS,&Exit}
∧ fragment(n̂odeπ) ̸= fragment(n̂ode)))

39. ∀π ∈ Π, PCπ = 49⇒ (P̂Cπ = 14 ∧ mypredπ ∈ N ′ ∧ mypredπ = tail(fragment(mypredπ))

∧ (mypredπ.Pred = &InCS⇒ (∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ = 27 ∧mypredπ = n̂odeπ′))

∧ (mypredπ.Pred = &Exit⇒ (((∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ ∈ [28, 29]
∧ mypredπ = n̂odeπ′) ∨ (∀p′ ∈ P,Node[p′] ̸= mypredπ)) ∧ |Q| = 0))

∧ (mypredπ.Pred /∈ {&InCS,&Exit} ⇒
(∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ ∈ [14, 15] ∪ [25, 26] ∧mypredπ = n̂odeπ′))

∧ (head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} ⇒ (∃π′ ∈ Π, π ̸= π′ ∧ P̂Cπ′ = 14
∧ mypredπ = tail(fragment(n̂odeπ′)) ∧ n̂odeπ′ = head(fragment(n̂odeπ′))))

∧ fragment(n̂odeπ) ̸= fragment(mypredπ))

Figure 6.E.3: (Continued from Figure 6.E.2.) Invariant for the k-ported recoverable mutual
exclusion algorithm from Figures 6-3-6-4.

In C, PCπ = 10 and P̂Cπ ∈ {11, 12}. By Condition 1, Node[p̂ortπ] = NIL.

The if condition at Line 10 evaluates to true. Therefore, this step changes PCπ and P̂Cπ to

11.

Condition 1: As argued above, P̂Cπ = 11 and Node[p̂ortπ] = NIL in C ′. Therefore the

condition holds in C ′.

10 (b). π executes Line 10 when P̂Cπ /∈ {11, 12}.

In C, PCπ = 10 and P̂Cπ /∈ {11, 12}. By Condition 1, Node[p̂ortπ] ̸= NIL.

The if condition at Line 10 evaluates to false. Therefore, this step changes PCπ to 16.

130

The step does not affect any condition, so the invariant continues to hold in C ′.

11. π executes Line 11.

In C, PCπ = 11. By Condition 6, P̂Cπ ∈ [11, 12] in C. By definition, n̂odeπ = NIL in C.

This step creates a new QNode in the shared memory which gets included in the set N . The

node gets a unique address and the variablemynodeπ holds the address of this new node. This

step also initializes this new node so thatmynodeπ.Pred = NIL,mynodeπ.NonNil_Signal =

0, and mynodeπCS_Signal = 0. The step then changes PCπ and P̂Cπ to 12.

Condition 4: As argued above, the step creates a new QNode in shared memory that n̂odeπ
is pointing to in C ′. The step also initializes n̂odeπ.Pred to NIL. Therefore, the condition

holds in C ′.

Condition 8: Since the step creates a new node in shared memory, no process has a reference

to the node except for π in C ′. Therefore, ∀q ∈ P ,Node[q] ̸= mynodeπ ∧Node[q].Pred ̸=

mynodeπ. Since the nothing except mynodeπ has a reference to the new node, mynodeπ =

head(fragment(mynodeπ)), |fragment(mynodeπ)| = 1, and fragment(mynodeπ) ̸= fragment(Tail)

holds. Also, as observed above,mynodeπ.NonNil_Signal = 0, andmynodeπCS_Signal =

0 in C ′. Therefore, the condition holds in C ′.

12. π executes Line 12.

In C, PCπ = 12 and P̂Cπ = 12. By Condition 8, mynodeπ ∈ N ′, ∀q ∈ P ,Node[q] ̸=

mynodeπ ∧ Node[q].Pred ̸= mynodeπ, mynodeπ.Pred = NIL, fragment(mynodeπ) ̸=

fragment(Tail), mynodeπ = head(fragment(mynodeπ)), and |fragment(mynodeπ)| = 1.

This step sets Node[p̂ortπ] to mynodeπ and updates PCπ and P̂Cπ to 13.

Condition 3: As argued above,mynodeπ ∈ N ′,mynodeπ.Pred = NIL, and |fragment(mynodeπ)| =

1 in C ′. The step sets Node[p̂ortπ] to mynodeπ, it follows from the above that only

Node[p̂ortπ] = mynodeπ and ∀q ∈ P , q ̸= p̂ortπ ⇒ Node[q] ̸= mynodeπ in C ′. There-

fore, the condition holds in C ′.

Condition 4: By the same argument as for Condition 3 above, we have ∀q ∈ P , q ̸= p̂ortπ ⇒

Node[q] ̸= mynodeπ in C ′. Also, mynodeπ.Pred = NIL, therefore, from the definition of

n̂odeπ it follows that the condition holds in C ′.

Condition 12: As discussed above,|fragment(mynodeπ)| = 1, fragment(mynodeπ) ̸= fragment(Tail),

and mynodeπ = head(fragment(mynodeπ)) in C, which continues to hold in C ′. Therefore,

the condition holds in C ′.

131

13. π executes Line 13.

In C, PCπ = 13 and P̂Cπ = 13.

This step performs a FAS operation on the Tail pointer so that Tail now points to the same

node as pointed by mynodeπ, and sets mypredπ to the value held by Tail in C. It updates

PCπ and P̂Cπ to 14.

Condition 9: Applying Condition 16 to C we note that what holds true for Tail in C, holds

true for mypredπ in C ′. Also applying Condition 8 to C we note that mynodeπ ∈ N ′,

mynodeπ.Pred = NIL, mynodeπ = head(fragment(mynodeπ)), |fragment(mynodeπ)| = 1,

fragment(mynodeπ) ̸= fragment(Tail),mynodeπ.CS_Signal = 0, andmynodeπ.NonNil_Signal =

0 in C. In C ′ it holds that fragment(mynodeπ) ̸= fragment(mypredπ). It follows that the

condition holds in C ′.

Condition 12: The truth value of the condition follows from the reasoning similar to Condi-

tion 9 as argued above.

Condition 16: By Condition 8,mynodeπ ∈ N ′, |fragment(mynodeπ)| = 1, andmynodeπ.Pred =

NIL in C. It follows from the same condition that tail(fragment(mynodeπ)) = mynodeπ.

Since the step sets Tail = mynodeπ in C ′ and P̂Cπ = 14 in C ′, it follows that Condition 16

holds in C ′.

Condition 18: Suppose |Q| = 0 in C. By the condition, ∀π′ ∈ Π, PCπ′ ∈ [11, 15]∪{25}∪[28, 29]

in C, which continues to hold in C ′. As argued above, mynodeπ = head(fragment(mynodeπ))

and |fragment(mynodeπ)| = 1, therefore, mynodeπ = tail(fragment(mynodeπ)) in C and

C ′. Since Tail = mynodeπ in C ′, the condition holds in C ′.

14. π executes Line 14.

In C, PCπ = 14 and P̂Cπ = 14.

The step sets mynodeπ.Pred = mypredπ and updates PCπ and P̂Cπ to 15.

Condition 1: By Condition 9, mypredπ ∈ N ′ in C. Since the step sets mynodeπ.Pred =

mypredπ, Node[p̂ortπ].Pred ∈ N ′ in C ′. Therefore, the condition holds in C ′.

Condition 3: By Condition 9, mypredπ = tail(fragment(mypredπ)). Therefore, ∀q ∈

P,Node[q].Pred ̸= mypredπ in C. It follows that ∀q ∈ P , p̂ortπ ̸= q ⇒ Node[q].Pred ̸=

mypredπ in C ′. Again from Condition 9 we observe the following about mypredπ. Either

mypredπ.Pred = &Exit or ∃π′ ∈ Π, π ̸= π′ ∧mypredπ = n̂odeπ′ ∧ P̂Cπ′ ∈ [14, 15] ∪ [25, 27]

(i.e., Node[p̂ortπ].Pred = Node[p̂ortπ′]). Thus the condition holds in C ′.

Condition 4: By Condition 4, |fragment(n̂odeπ)| = b1 ≤ k and |fragment(n̂odeπ)| = b2 ≤ k

132

in C. By Condition 7, for a process π′, it can not be the case that n̂odeπ′ ∈ fragment(n̂odeπ)

and n̂odeπ′ ∈ fragment(mypredπ) in C. Therefore, b1 + b2 ≤ k in C. It follows that in C ′

|fragment(n̂odeπ)| = b1 + b2 ≤ k. Therefore, the condition holds in C ′.

Condition 7: fragment(mypredπ) = fragment(n̂odeπ) in C ′. Therefore, the condition holds

in C ′ as it held and applied to fragment(mypredπ) in C.

Condition 9: Applying the condition to fragment(n̂odeπ) in C, we get that ∀π′ ∈ Π, π′ ̸=

π ∧ n̂odeπ′ ∈ fragment(n̂odeπ)⇒ P̂Cπ′ ∈ {15, 25}, which holds in C ′. We have P̂Cπ = 15 in

C ′. Suppose there is a π′′ ∈ Π, π′′ ̸= π such that head(fragment(mypredπ)) = n̂odeπ′′ and

PCπ′′ = 14 in C. It follows that ∀π′ ∈ Π, π′ ̸= π′′ ∧ n̂odeπ′ ∈ fragment(n̂odeπ′′) ⇒ P̂Cπ′ ∈

{15, 25} in C ′. Therefore, the condition holds for π′′ and vacuously for other processes in C ′.

Condition 13: Since n̂odeπ.Pred = mypredπ in C ′ and invoking the Condition 9 on C and

mypredπ, it follows that the condition holds in C ′.

Condition 14: This condition holds by an argument similar to Condition 13 as argued above.

Condition 15: Suppose head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} in C. It follows

that ∃π′ ∈ Π, π′ ̸= π ∧ P̂Cπ′ = 14 ∧ n̂odeπ′ = head(fragment(n̂odeπ)) ∧ (∀π′′ ∈ Π, (π′′ ̸=

π′ ∧ n̂odeπ′′ ∈ fragment(n̂odeπ)) ⇒ P̂Cπ′′ ∈ {15, 25}) in C ′. Therefore, the condition holds

in C ′.

Condition 19: If head(fragment(mypredπ)).Pred ∈ {NIL,&Crash} in C, it follows that π /∈

Q in C ′. Therefore, it is easy to see that the condition holds in C ′. If head(fragment(mypredπ)).Pred ∈

{&InCS,&Exit} in C, it follows that π ∈ Q in C ′. We have two cases to consider, |Q| > 0 or

|Q| = 0 in C. If |Q| > 0 in C, Conditions 19d and 19e are the only ones affected. It is easy to

see from the definition of a fragment that these conditions continue to hold in C ′, therefore,

the whole condition would hold in C ′. Suppose |Q| = 0 and mypredπ.Pred = &Exit in C. It

follows that π = π1 according to the ordering defined by the condition. Condition 19a holds in

C ′ since P̂Cπ = 15 in C ′. Condition 19b holds in C ′ since mypredπ.Pred = &Exit in C and

C ′. Applying Condition 14 to mypredπ, and by the fact that mypredπ.Pred = &Exit,

it follows that Condition 19c holds in C ′. Conditions 19d, 19e, and 19f hold in C ′ by

the definition of fragment(mynodeπ) and the fact that mypredπ.Pred = &Exit. Since

|Q| = 0 in C, invoking Condition 18 on C we see that Condition 19g holds in C ′. Lastly,

∀π′ ∈ Π, π′ ≠ π ∧ n̂odeπ′ ̸= NIL ∧ n̂odeπ′ .Pred ∈ N ′ we have P̂Cπ′ ∈ {15, 25} from Condi-

tion 1. Since |Q| = 0 in C, head(fragment(n̂odeπ′)).Pred ∈ {NIL,&Crash} by definition

of Q. Therefore, by Condition 15, n̂odeπ′ .CS_Signal = 0 in C, which continues to hold in

133

C ′.

15. π executes Line 15.

In C, PCπ = 15 and P̂Cπ = 15.

The step executes mynodeπ.NonNil_Signal.set() so that mynodeπ.NonNil_Signal = 1

as a result of the step. It also updates PCπ and P̂Cπ to 25.

Condition 17: As discussed above, mynodeπ.NonNil_Signal = 1 and P̂Cπ = 25 in C ′.

Therefore, the condition holds in C ′.

16. π executes Line 16.

In C PCπ = 16 and P̂Cπ ∈ [13, 15] ∪ [25, 29].

This step changes PCπ to 17.

The step does not affect any condition, so the invariant continues to hold in C ′.

17. π executes Line 17.

In C PCπ = 16 and P̂Cπ ∈ [13, 15] ∪ [25, 29].

This step sets mynodeπ to Node[p̂ortπ] and changes PCπ to 17.

Condition 2: Since mynodeπ = Node[p̂ortπ] in C ′, the condition holds in C ′.

18 (a). π executes Line 17 when P̂Cπ ∈ {13, 14}.

In C, PCπ = 18 and P̂Cπ ∈ {13, 14}. By Condition 1, n̂odeπ.Pred ∈ {NIL,&Crash}.

This step checks if n̂odeπ.Pred = NIL and sets it to &Crash, if so. It then changes PCπ to

19.

Condition 1: By the step, n̂odeπ.Pred = &Crash. Therefore, the condition holds in C ′.

Condition 10: Since P̂Cπ ∈ {13, 14}, n̂odeπ.Pred = &Crash, and PCπ = 19, the condition

holds in C ′.

Condition 11: The condition holds by the same argument as for Condition 10 above.

18 (b). π executes Line 17 when P̂Cπ /∈ {13, 14}.

In C, PCπ = 18 and P̂Cπ /∈ {13, 14}. By Condition 1, n̂odeπ.Pred /∈ {NIL,&Crash}.

The if condition at Line 18 is not met, hence the step changes PCπ to 19.

The step does not affect any condition, so the invariant continues to hold in C ′.

19. π executes Line 19.

In C PCπ = 19.

134

This step sets mypredπ to Node[p̂ortπ].Pred and changes PCπ to 20.

Condition 2: Since mypredπ = Node[p̂ortπ].Pred in C ′, the condition holds in C ′.

20 (a). π executes Line 20 when P̂Cπ = 27.

In C PCπ = 20 and P̂Cπ = 27. By Condition 1, n̂odeπ.Pred = &InCS. By Condition 2,

mypredπ = n̂odeπ.Pred in C.

In this step the if condition is met, therefore, π moves to the CS and updates PCπ to 27.

The step does not affect any condition, so the invariant continues to hold in C ′.

20 (b). π executes Line 20 when P̂Cπ ̸= 27.

In C PCπ = 20 and P̂Cπ ̸= 27. By Condition 1, n̂odeπ.Pred ̸= &InCS. By Condition 2,

mypredπ = n̂odeπ.Pred in C.

In this step the if condition is not met, therefore, π updates PCπ to 21.

The step does not affect any condition, so the invariant continues to hold in C ′.

21 (a). π executes Line 21 when P̂Cπ ∈ {28, 29}.

In C PCπ = 21 and P̂Cπ ∈ {28, 29}. By Condition 1, n̂odeπ.Pred = &Exit. By Condition 2,

mypredπ = n̂odeπ.Pred in C.

In this step the if condition is met, therefore, π updates PCπ to 22.

The step does not affect any condition, so the invariant continues to hold in C ′.

21 (b). π executes Line 21 when P̂Cπ /∈ {28, 29}.

In C PCπ = 21 and P̂Cπ /∈ {28, 29}. By Condition 1, n̂odeπ.Pred ̸= &Exit. By Condition 2,

mypredπ = n̂odeπ.Pred in C.

In this step the if condition is not met, therefore, π updates PCπ to 23.

The step does not affect any condition, so the invariant continues to hold in C ′.

22. π executes Line 22.

In C PCπ = 22 and P̂Cπ ∈ {28, 29}.

π sets P̂Cπ = 28, then executes Lines 28 and 29 as part of the Try section, and then changes

PCπ to 10 and P̂Cπ to 11.

For the correctness of the invariant, refer to the induction steps for Lines 28 and 29, since the

execution of the step is same as executing the two lines and then executing a“go to Line 10”.

23. π executes Line 23.

In C PCπ = 23. By Condition 6, P̂Cπ ∈ [13, 15] ∪ [25, 26].

135

The step executes mynodeπ.NonNil_Signal.set() so that mynodeπ.NonNil_Signal = 1

as a result of the step. It also updates PCπ to 24.

Condition 17: As discussed above, mynodeπ.NonNil_Signal = 1 and PCπ = 24 in C ′.

Therefore, the condition holds in C ′.

24. π executes Line 24.

In C PCπ = 24. By Condition 6, P̂Cπ ∈ [13, 15] ∪ [25, 26] in C.

The step executes the Try section of RLock in order to access the Critical Section of RLock

starting at Line 30. Since the RLock is assumed to be satisfying Starvation Freedom, π

reaches Line 30 eventually. Hence, the step changes PCπ to 30. Note, we can use Golab

and Ramaraju’s [78] read-write based recoverable extension of Yang and Anderson’s lock (see

Section 3.2 in [78]) as RLock for this purpose.

The step does not affect any condition, so the invariant continues to hold in C ′.

25. π executes Line 25

In C, PCπ = 25 and P̂Cπ = 25. We have n̂odeπ ̸= NIL and n̂odeπ.Pred ∈ N ′ by Condition 1

in C. By Condition 14, either n̂odeπ.Pred.CS_Signal = 1, or ∃π′ ∈ Π, π ̸= π′ ∧ n̂odeπ′ =

n̂odeπ.Pred ∧ P̂Cπ′ ∈ {14, 15} ∪ [25, 28] in C.

The step executes mypredπ.CS_Signal.wait() so that the procedure call returns when

mypredπ.CS_Signal = 1. The step also updates PCπ and P̂Cπ to 26 when it returns

from the procedure call.

Condition 19: Suppose n̂odeπ.Pred.CS_Signal = 1 in C. By Condition 19h, π = π1 in

C. It follows that the condition continues to hold in C ′ as it held in C. Therefore, assume

n̂odeπ.Pred.CS_Signal ̸= 1 in C. Since mypredπ.CS_Signal.wait() returns and the step

completes, by the specification of the Signal object, mypredπ.CS_Signal = 1 in C ′. By Con-

dition 5, mypredπ.Pred = &Exit in C ′. Therefore, head(fragment(n̂odeπ)).Pred = &Exit

in C ′. It follows that π ∈ Q in C ′ by the definition of Q. By Condition 7, ∀π′ ∈ Π, (π ̸=

π′∧head(fragment(n̂odeπ′)).Pred = &Exit∧P̂Cπ′ /∈ [28, 29])⇒ n̂odeπ′ ∈ fragment(n̂odeπ).

We now proceed to prove that Condition 19 holds in C ′ as follows. We have mypredπ.Pred =

&Exit and mypredπ.CS_Signal = 1 in C ′. Therefore, ∀π′ ∈ Π, n̂odeπ′ = mypredπ ⇒

P̂Cπ′ = 29 in C ′ by Condition 5. Since n̂odeπ.Pred.Pred = &Exit, Condition 19f holds

and it follows that π = π1. Since P̂Cπ = 26, Condition 19a holds in C ′. We also note from

the above that Conditions 19b and 19c hold in C ′. By the definition of fragment(n̂odeπ) and

136

Condition 7 it follows that Conditions 19d and 19e hold. For any process π′, if n̂odeπ′ .Pred =

&Exit, then by Condition 1, P̂Cπ′ ∈ {28, 29}. If n̂odeπ′ ̸= head(fragment(n̂odeπ′)), then

by Condition 7, P̂Cπ′ ∈ {15, 25}. If n̂odeπ′ .Pred ∈ {NIL,&Crash}, then by Condition 1,

P̂Cπ′ ∈ {13, 14}. By Condition 7 there is only one fragment whose head node has its Pred

pointer set to &Exit. It follows that Condition 19g holds from the above. From Conditions 5,

9, 14, and 15 it follows that Condition 19h holds in C ′. Therefore, the entire condition holds

in C ′.

26. π executes Line 26.

In C PCπ = 26.

The step sets n̂odeπ.Pred = &InCS, updates PCπ and P̂Cπ to 27, and goes to the CS.

Condition 1: As argued above, n̂odeπ.Pred = &InCS and P̂Cπ = 27 in C ′. Therefore, the

condition holds in C ′.

Condition 9: Suppose there is a π′′ ∈ Π, π′′ ̸= π such that mypredπ′′ = n̂odeπ in C. It follows

that n̂odeπ.Pred = &InCS and P̂Cπ = 27 in C ′. Therefore, the condition holds for π′′ and

vacuously for other processes in C ′.

27. π executes Line 27.

In C PCπ = 27.

The step sets n̂odeπ.Pred = &Exit, and updates PCπ and P̂Cπ to 28.

Condition 1: As argued above, n̂odeπ.Pred = &Exit and P̂Cπ = 28 in C ′. Therefore, the

condition holds in C ′.

Condition 9: Suppose there is a π′′ ∈ Π, π′′ ̸= π such that mypredπ′′ = n̂odeπ in C. It follows

that n̂odeπ.Pred = &Exit and P̂Cπ = 28 in C ′. Therefore, the condition holds for π′′ and

vacuously for other processes in C ′.

Condition 18: If |Q| > 1 in C, the condition holds vacuously in C ′. If Tail ̸= n̂odeπ, then by

Condition 7 and 16, the condition holds in C ′. Otherwise, suppose |Q| = 1 and Tail = n̂odeπ

in C. Tail.Pred = &Exit in C ′ by the step. Therefore, the condition holds in C ′.

Condition 19: Applying the condition to π in C, π = π1 according to the ordering of the

condition. If |Q| = 1, the condition holds vacuously in C ′. Therefore, suppose |Q| > 1 in C.

There is a process π′ ∈ Π such that π′ = π2 according to the ordering and mypredπ′ = n̂odeπ

in C. By Condition 19d, P̂Cπ′ ∈ {15, 25} in C which continues to hold in C ′. Therefore, it

follows that Conditions 19a, 19b, and 19c hold for π′ in C ′. It is easy to see that the rest of

137

the sub-conditions hold in C ′ as a result of the step. Therefore, the condition holds in C ′.

28. π executes Line 28.

In C PCπ = 28 and P̂Cπ = 28.

The step executes mynodeπ.CS_Signal.set() so that mynodeπ.CS_Signal = 1 as a result

of the step. It also updates PCπ and P̂Cπ to 29.

Condition 17: As discussed above, mynodeπ.CS_Signal = 1 and P̂Cπ = 29 in C ′. There-

fore, the condition holds in C ′.

29. π executes Line 29.

In C PCπ = 29 and P̂Cπ = 29.

The step sets Node[p̂ortπ] to NIL, sets PCπ to 10, and P̂Cπ to 11.

Condition 1: As argued above, Node[p̂ortπ] = NIL and P̂Cπ = 11 in C ′. Therefore, the

condition holds in C ′.

Condition 5: By Condition 3 implies that ∀π′ ∈ Π, π′ ̸= π ⇒ n̂odeπ′ ̸= n̂odeπ in C. By Condi-

tion 1, n̂odeπ.Pred = &Exit in C which holds in C ′. By Condition 17, n̂odeπ.CS_Signal =

1 and n̂odeπ.NonNil_Signal = 1 in C, which holds in C ′. Since n̂odeπ = NIL in C ′, it

follows that for the QNode pointed to by n̂odeπ in C the condition holds in C ′.

Condition 9: Suppose there is a π′′ ∈ Π, π′′ ̸= π such that mypredπ = n̂odeπ′′ and PCπ′′ = 14

in C. It follows that ∀p′ ∈ P ,Node[p′] ̸= mypredπ in C ′. Therefore, the condition holds for

π′′ and vacuously for other processes in C ′.

30 (a). π executes Line 30 when P̂Cπ ∈ {13, 14}.

In C, PCπ = 30 and P̂Cπ ∈ {13, 14}. By Condition 10, n̂odeπ.Pred = &Crash. By

Condition 2, mypredπ = n̂odeπ.Pred in C.

The if condition at Line 30 is not met since n̂odeπ.Pred = &Crash, therefore, PCπ changes

to 31.

Condition 6: Since PCπ = 31 and P̂Cπ ∈ {13, 14} in C ′, the condition is satisfied.

Condition 20: Suppose head(fragment(Tail)).Pred ∈ {&InCS,&Exit} in C. We have

n̂odeπ.Pred = &Crash, i.e., head(fragment(n̂odeπ)).Pred = &Crash. It follows that

fragment(n̂odeπ) ̸= fragment(Tail) in C, which holds in C ′. Therefore, the condition holds

in C ′.

30 (b). π executes Line 30 when P̂Cπ /∈ {13, 14}.

138

In C, PCπ = 30 and P̂Cπ /∈ {13, 14}. By Condition 6, P̂Cπ ∈ {15} ∪ {25, 26}. By Condi-

tion 10, n̂odeπ.Pred ∈ N ′. By Condition 2, mypredπ = n̂odeπ.Pred in C.

The if condition at Line 30 is met since n̂odeπ.Pred ̸= &Crash, therefore, π executes the

Exit section of RLock. π then changes PCπ and P̂Cπ to 25.

Condition 17: Applying Condition 17 to C, we have n̂odeπ.NonNil_Signal = 1 since

PCπ = 30 in C. Therefore, the condition holds in C ′.

31. π executes Line 31.

In C PCπ = 31.

The step initializes tailπ to Tail, the set Vπ and Eπ as empty sets, tailpathπ to NIL, and

headpathπ to NIL. Since the invariant requires that iπ be between [0, k] when PCπ = 32, we

assume that the step implicitly initializes iπ to 0, although not noted in the code. Finally,

the step sets PCπ to 32.

Condition 21: Follows immediately from the description of the step above.

Condition 22: This condition follows immediately from Condition 16.

Condition 23: Since (Vπ, Eπ) are initialized to be empty sets, the condition follows.

Condition 24: Consider the fragments formed from the nodes pointed to by the cells in

the Node array. If all the fragments have the Pred pointer of their head node to be

in {NIL,&Crash}, then by definition of Q it is an empty set. Hence, Condition 24d

holds. Otherwise, there is a fragment whose head node has its Pred pointer to be one

of {&InCS,&Exit}. It follows that Condition 24c holds.

Condition 25: By Condition 12 it follows that ∀n̂odeπ′ ∈ fragment(n̂odeπ), ∃i ∈ [0, k −

1],Node[i] = n̂odeπ′ . Therefore, the condition holds in C ′.

Condition 26: Since (Vπ, Eπ) is an empty set in C ′, the condition holds vacuously.

Condition 27: All the conditions holds vacuously since the graph is empty and iπ = 0.

Condition 28: Suppose head(fragment(tailπ)).Pred ∈ {&InCS,&Exit}. Since n̂odeπ.Pred =

&Crash in C ′, it follows that the condition holds in C ′.

Condition 29: Immediate from the description of the step above.

32 (a). π executes Line 32 when iπ < k.

In C, PCπ = 32 and iπ < k.

In this step the correctness condition of the for loop (i.e., iπ ∈ [0, k − 1]) evaluates to true

and PCπ is updated to 33.

139

Since no shared variables are changed and no condition of the invariant is affected by the

step, all the conditions continue to hold in C as they held in C ′.

32 (b). π executes Line 32 when iπ = k.

In C, PCπ = 32 and iπ = k.

In this step the correctness condition of the for loop (i.e., iπ ∈ [0, k − 1]) evaluates to false

and PCπ is updated to 39.

Condition 28: From Condition 22 it follows that either tailπ ∈ Vπ ∨ tailπ.Pred = &Exit in

C ′. In either case the condition holds in C ′.

Condition 32: This follows immediately from Conditions 23, 25, 27 and the definition of

fragment.

Condition 34: Follows immediately from Condition 24 and the fact that iπ = k.

Condition 35: Follows from Conditions 23, 24, 26, 27, the definition of fragment, and the fact

that n̂odeπ.Pred = &Crash.

33. π executes Line 33.

In C, PCπ = 33. By Condition 21, iπ ∈ [0, k − 1].

In this step, π sets curπ to Node[iπ]. It then updates PCπ to 35.

Condition 30: Node[iπ] either has the value NIL or it does not. If it is the first case, we are

done. In the second the condition follows from Condition 3.

34 (a). π executes Line 34 when curπ = NIL.

In C, PCπ = 34. and curπ = NIL.

Since the if is met, π is required to break the current iteration of the loop and start with its

next iteration. Therefore, π increments iπ by 1 and changes PCπ to 32.

Since no shared variables are changed and no condition of the invariant is affected by the

step, all the conditions continue to hold in C as they held in C ′.

34 (b). π executes Line 34 when curπ ̸= NIL.

In C, PCπ = 34 and curπ ̸= NIL.

Since the if is not met, π changes PCπ to 35.

Condition 30: The condition holds in C ′ as it held in C.

35. π executes Line 35.

In C PCπ = 35.

140

The step executes curπ.NonNil_Signal.wait() so that the procedure call returns when

curπ.NonNil_Signal = 1. The step also updates PCπ to 36 when it returns from the

procedure call.

Condition 30: Since curπ.NonNil_Signal = 1 as a result of the step, by Condition 5,

curπ.Pred ∈ {&Crash,&InCS,&Exit} in C ′. Therefore, the condition holds in C ′.

36. π executes Line 36.

In C PCπ = 36.

The step sets curpredπ to curπ.Pred and updates PCπ to 37.

Since no shared variables are changed and no condition of the invariant is affected by the

step, all the conditions continue to hold in C as they held in C ′.

37 (a). π executes Line 37 when curpredπ ∈ {&Crash,&InCS,&Exit}.

In C, PCπ = 37 and curpredπ ∈ {&Crash,&InCS,&Exit}.

The if condition at Line 37 is met, therefore, the step adds curπ to the set Vπ. It then

increments iπ by 1 and updates PCπ to 32.

Condition 23: Since the step adds only a vertex to the graph, the condition remains unaffected

by the step.

Condition 24: If curπ.Pred = &InCS, then Condition 24b is satisfied by the addition of

curπ to Vπ. Otherwise, the condition holds as it held in C ′.

Condition 26: If curπ.Pred = &Crash, then the condition holds vacuously. Otherwise,

curπ.Pred ∈ {&InCS,&Exit} and it follows that the condition holds in C ′.

Condition 27: All sub-conditions are easy to argue, hence it follows that the condition holds

in C ′.

37 (b). π executes Line 37 when curpredπ /∈ {&Crash,&InCS,&Exit}.

In C, PCπ = 37 and curpredπ /∈ {&Crash,&InCS,&Exit}.

The if condition at Line 37 is not met, therefore, π updates PCπ to 38.

Condition 28: Since curpredπ /∈ {&Crash,&InCS,&Exit}, curpredπ was initialized from

curπ.Pred at Line 36. It follows that curpredπ ∈ N ′. Therefore the condition holds in C ′.

38. π executes Line 38.

In C PCπ = 38.

The step adds the elements curπ and curpredπ to the set Vπ and the edge (curπ, curpredπ)

141

to the set Eπ. It then increments iπ by 1 and updates PCπ to 32.

Condition 23: If curπ.Pred /∈ Vπ in C, then the condition holds in C ′. Hence, assume

curπ.Pred ∈ Vπ in C (note, curπ.Pred = curpredπ in C). We have to argue that after the

addition of the edge (curπ, curpredπ) in Eπ, the graph (Vπ, Eπ) still remains directed and

acyclic and the maximal paths in it remain disjoint in C ′. During the configuration C, let σ1
be the path in the graph (Vπ, Eπ) containing curπ and σ2 be the path containing curpredπ.

If σ1 ̸= σ2, then the graph (Vπ, Eπ) continues to be directed and acyclic in C ′. We argue that

the maximal paths are disjoint as follows. Suppose for a contradiction that after adding the

edge (curπ, curpredπ) there are two maximal paths σ and σ′ that are not disjoint. It follows

that this situation arises due to the addition of the edge (curπ, curpredπ), hence σ and σ′

either share curπ or curpredπ. Suppose they share curπ as a common vertex. In C there is

an edge (curπ, u) ∈ Eπ (and therefore in the path σ1) such that u ̸= curpredπ. Applying

Condition 27i to C, curπ.Pred = u or curπ.Pred ∈ {&InCS,&Exit} which is impossible

since curπ.Pred = curpredπ. Hence, assume that they share curpredπ as a common vertex. It

follows that there is an edge (v, curpredπ) ∈ Eπ appearing in the path σ2 in the configuration

C. By Condition 27c, ∃i′ ∈ [0, iπ−1], v = Node[i′] or v.Pred = &Exit∧∀p′ ∈ P ,Node[p′] ̸=

v. If ∃i′ ∈ [0, iπ−1], v = Node[i′], then Node[i′].Pred = Node[iπ].Pred, which contradicts

Condition 3. Otherwise, by Condition 27h, ∀i′ ∈ [0, k − 1],Node[i′].Pred ̸= curpredπ, a

contradiction (since Node[iπ].Pred = curpredπ in C). Hence, it holds that if σ1 ̸= σ2 in C,

the maximal paths are disjoint in the graph in C ′.

Otherwise, σ1 = σ2. It follows that start(σ1) = start(σ2) = curpredπ and end(σ1) =

end(σ2) = curπ (i.e., there is a path from curpredπ to curπ) in C. Applying Condition 27i

inductively we see that curpredπ.Pred ̸= &Exit, otherwise it would imply curπ.Pred =

&Exit. It follows by the contrapositive of Condition 27c that there is a distinct i′ ∈ [0, iπ−1]

for every vertex w in the path σ1 such that Node[i′] = w in C. That is, every vertex

w in the path σ1 is also a node n̂odeπ′ for some π′ ∈ Π. However, since curπ.Pred /∈

{NIL,&Crash,&InCS,&Exit} (because there is a cycle with the presence of σ1 and the

pointer curπ.Pred), we have a contradiction to Condition 4 since there is no b ∈ N for which

the condition is satisfied. Therefore, σ1 ̸= σ2 in C.

From this argument it follows that the condition holds in C ′.

Condition 24: If Condition 24a holds in C, it continues to hold in C ′ and therefore the

142

condition is satisfied. Similarly for Condition 24b, because curπ.Pred ̸= &Exit and if

curπ = end(σ) for some maximal path which satisfied the condition, then it continues to

satisfy the condition in C ′. If iπ < k − 1 and the condition held in C due to Condition 24c,

then it continues to hold in C ′ for the new value of iπ. If iπ = k − 1 and the condition

held in C due to Condition 24c, it follows that Node[k − 1].Pred ̸= &Exit (by assumption

above) and Node[k− 1].Pred.Pred ∈ {&InCS,&Exit}. Therefore, by the step (Node[k−

1],Node[k − 1].Pred) is added as an edge in the graph and we have a path that satisfies

Condition 24b in C ′. If Condition 24d holds in C, then it holds in C ′ as well.

Condition 25: This condition holds by the definition of fragment and since the edge gets

added to the graph.

Condition 26: It is easy to see that the second part of the condition holds because one of the

nodes among v and v′ was used up to enter the CS and hence even though the path runs

through that node in the graph, the fragment is cut. Therefore, we argue the first part as

follows. Suppose there is a i < iπ such that Node[i] = n̂ode for a n̂ode ∈ fragment(v).

In a previous iteration the node was added in the graph, and if n̂ode.Pred was an actual

node, then it also got added to the graph along with an edge between them. Therefore, the

condition holds in C ′.

Condition 27: As argued above, curπ.Pred ∈ N ′ (i.e., curpredπ ∈ N ′), it follows that ∀v ∈

Vπ, v ∈ N ′ in C ′. It is easy to see that the rest part of Condition 27a holds. Condition 27i holds

because if curπ.Pred ∈ {&InCS,&Exit}, then the owner of curpredπ already completed

Line 28 to let the owner of curπ into CS. Condition 27h holds from Condition 3. It is easy

to see that the remaining sub-conditions hold in C ′.

39. π executes Line 39.

In C, PCπ = 39.

The step computes the maximal paths in the graph (Vπ, Eπ) and the set Pathsπ contains

every such maximal path. The step then sets PCπ to 40.

Condition 37: If there is a maximal path σ in (Vπ, Eπ) such that end(σ).Pred ∈ {&InCS,&Exit}

and start(σ).Pred ̸= &Exit, then the condition holds vacuously. Otherwise there is no

maximal path σ for which end(σ).Pred ∈ {&InCS,&Exit} and start(σ).Pred ̸= &Exit.

By Condition 34, head(fragment(tailπ)).Pred ∈ {&InCS,&Exit} ∨ |Q| = 0 in C, which

continues to hold in C ′. Since Pathsπ is a set of all maximal paths in (Vπ, Eπ), there is no

path σ ∈ Pathsπ for which end(σ).Pred ∈ {&InCS,&Exit} and start(σ).Pred ̸= &Exit.

143

Therefore, the condition holds in C ′.

40. π executes Line 40.

In C, PCπ = 40. By Condition 27a, n̂odeπ ∈ Vπ and by Condition 2, n̂odeπ = mynodeπ.

By Condition 23b, all maximal paths in the graph are disjoint, therefore, every vertex in Vπ

appears in a unique path in Pathsπ.

As argued above, mynodeπ ∈ Vπ in C, therefore, there is a path σ in Pathsπ such that

mynodeπ ∈ σ. The step sets mypathπ to be the unique path in Pathsπ in which mynodeπ

appears. It then updates PCπ to 41.

Condition 33: As argued above, in C ′ mypathπ is the unique path in Pathsπ in which

mynodeπ appears. Therefore, the condition holds in C ′.

41. π executes Line 41.

In C, PCπ = 41. By Condition 21, tailpathπ = NIL in C. By Condition 23b, all maximal

paths in the graph are disjoint, therefore, every vertex in Vπ appears in a unique path in

Pathsπ.

In this step π checks if tailπ ∈ Vπ. If so, it sets tailpathπ to be the unique path in Pathsπ in

which tailπ appears. Otherwise, it just updates PCπ to 42.

Condition 28: As argued above, the step sets tailpathπ to be the unique path in Pathsπ in

which tailπ appears. Therefore, the condition holds in C ′.

Condition 31: If tailpathπ ̸= NIL and end(tailpathπ).Pred /∈ {&InCS,&Exit}, it from

Condition 27 that head(fragment(tailπ)).Pred /∈ {&InCS,&Exit}. Hence, the condition

follows from Condition 29.

42 (a). π executes Line 42 when there is a path in Pathsπ not iterated on already.

In C, PCπ = 42 and there is a path in Pathsπ not iterated on already.

In this step π picks a path σπ from Pathsπ that it didn’t iterate on already in the loop on

Lines 42-45. It then sets PCπ to 43.

Since no shared variables are changed and no condition of the invariant is affected by the

step, all the conditions continue to hold in C as they held in C ′.

42 (b). π executes Line 42 when there is no path in Pathsπ not iterated on already.

In C, PCπ = 42 and there is no path in Pathsπ not iterated on already.

144

In this step π finds that it has already iterated on all the paths from Pathsπ hence it just

updates PCπ to 46.

Since no shared variables are changed and no condition of the invariant is affected by the

step, all the conditions continue to hold in C as they held in C ′.

43. π executes Line 43.

In C, PCπ = 43.

In this step, π checks if end(σπ).Pred ∈ {&InCS,&Exit}. If so, it updates PCπ to 44;

otherwise it updates PCπ to 42.

Condition 36: If PCπ = 44 in C ′, it is because of the if condition at Line 43 succeeded. From

the description of the step given above, it follows that the condition holds in C ′.

44. π executes Line 44.

In C, PCπ = 44.

In this step, π checks if start(σπ).Pred ̸= &Exit. If so, it updates PCπ to 45; otherwise it

updates PCπ to 42.

Condition 36: If PCπ = 45 in C ′, it is because of the if condition at Line 44 succeeded.

Therefore, end(σπ).Pred ∈ {&InCS,&Exit} and start(σπ).Pred ̸= &Exit. It follows

that the length of the path is more than 1 and start(σπ) = tail(fragment(start(σπ))).

Therefore, from the description of the step given above, it follows that the condition holds in

C ′.

45. π executes Line 45.

In C, PCπ = 45.

The step sets headpathπ = σπ and updates PCπ to 46.

Condition 38: This condition follows as a result of Conditions 1, 34, 35 and since the step

sets headpathπ = σπ.

46 (a). π executes Line 46 when tailpathπ ̸= NIL ∧ end(tailpathπ).Pred /∈ {&InCS,&Exit}.

In C, PCπ = 46 and tailpathπ ̸= NIL ∧ end(tailpathπ).Pred /∈ {&InCS,&Exit}.

In this step π checks for the if condition at Line 46 to be met. Since tailpathπ ̸= NIL ∧

end(tailpathπ).Pred /∈ {&InCS,&Exit}, the if condition is not met, hence, π updates PCπ

to 48.

Since no shared variables are changed and no condition of the invariant is affected by the

145

step, all the conditions continue to hold in C as they held in C ′.

46 (b). π executes Line 46 when tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit}.

In C, PCπ = 46 and tailpathπ = NIL ∨ end(tailpathπ).Pred ∈ {&InCS,&Exit}.

In this step π checks for the if condition at Line 46 to be met. Since tailpathπ = NIL ∨

end(tailpathπ).Pred ∈ {&InCS,&Exit}, the if condition is met, hence, π updates PCπ to

47.

Since no shared variables are changed and no condition of the invariant is affected by the

step, all the conditions continue to hold in C as they held in C ′.

47. π executes Line 47.

In C, PCπ = 47.

In this step π performs a FAS on Tail with the node start(mypathπ) and stores the returned

value of the FAS into mypredπ. It then updates P̂Cπ to 14 and PCπ to 49.

Condition 39: By Condition 28, fragment(n̂odeπ) ̸= fragment(Tail) in C. Applying Condi-

tion 16 to C and Tail we see that the condition holds in C ′.

48. π executes Line 48.

In C, PCπ = 48.

If headpathπ ̸= NIL then the step sets mypredπ = start(headpathπ); otherwise it sets

mypredπ = &SpecialNode. The step then updates P̂Cπ = 14 and PCπ = 49.

Condition 39: For any value thatmypredπ takes in the step, we note that head(fragment(mypredπ)).Pred ∈

{&InCS,&Exit}. If headpathπ ̸= NIL, then all the parts of the condition are satisfied

in C ′ which can be verified from Condition 38 holding in C. Also, fragment(n̂odeπ) ̸=

fragment(first(headpathπ)) in C ′, since head(fragment(first(headpathπ))).Pred ∈ {&InCS,&Exit}.

If headpathπ = NIL then mypredπ = &SpecialNode in C ′ and it is easy to verify again

that the condition holds in C ′. Therefore, the condition holds in C ′.

49. π executes Line 49.

In C PCπ = 49.

As a result of the step, mynodeπ.Pred to mypredπ and updates P̂Cπ to 25 in C ′. π also

executes the Exit section of RLock, hence PCπ = 25 in C ′.

The argument for correctness for this step is similar to that of the argument given for execution

of Line 14. Therefore, we refer the reader to those arguments above.

146

Crash. π executes a crash step.

This step changes PCπ to 10 and sets the rest of the local variables to arbitrary values. The

values of the shared variables remain the same as before the crash.

The step does not affect any condition, so the invariant continues to hold in C ′.

Thus, by induction it follows that the invariant holds in every configuration of every run of the

algorithm.

147

Part III

Lock-Free Data Structures

148

Chapter 7

Concurrent Union Find

7.1 Introduction

As data sets get bigger and bigger, it becomes more and more important to harness the potential

of parallelism to solve computational problems - even linear time is too slow. In the late twentieth

century, many beautiful and efficient algorithms were developed in the PRAM (parallel random

access machine) model, which assumes a memory shared among many synchronized processors.

In practice, however, synchronization is expensive or may not be possible. A weaker model that

has attracted much attention in the distributed systems community is the APRAM (asynchronous

parallel random access machine) model, in which a common memory is shared among many unsyn-

chronized processors. In the most general version of this model, any processor can be arbitrarily

slow compared to any other.

Obtaining efficiency bounds in the APRAM model is extremely challenging: the use of locks,

for example, seems to make it impossible to guarantee efficiency, since one process could set a

lock and then go to sleep indefinitely, blocking progress by any other process that needs access to

the same resource. To overcome this problem, systems researchers have invented synchronization

primitives that do not use locks, notably CAS (compare and swap) [89], transactional memory [90],

and others. These primitives allow at least the possibility of obtaining good efficiency bounds for

asynchronous concurrent algorithms. Yet, except for “embarrassingly parallel” computations, this

possibility is almost unrealized. Indeed, we know of only one example of a concurrent data structure

(other than our work, to be described) for which a work bound without a term at least linear in

the number of processes has been obtained. This is an implementation by Ellen and Woefel [57] of

a fetch-and-increment object.

149

An important problem in data structures that could benefit from an efficient concurrent algo-

rithm is disjoint set union, also known as the union-find problem. The simplest version of this

problem requires maintaining a collection of disjoint sets, each containing a unique element called

its leader, under two operations:

find(x): return the leader of the set containing element x.

unite(x, y): if elements x and y are in different sets, unite these sets into a single set and

designate some element in the new set to be its leader; otherwise, do nothing.

Each initial set is a singleton, whose leader is its only element. Note that the implementation is

free to choose the leader of each new set produced by a unite. This freedom simplifies concurrent

implementation, as we discuss in Section 7.4. Other versions of the problem add operations for

initializing singleton sets and for maintaining and retrieving information about the sets such as

names or sizes. We study the simplest version but comment on extensions in Section 7.10.

Applications of sequential disjoint set union include storage allocation in compilers [136], finding

minimum spanning trees using Kruskal’s algorithm [134], maintaining the connected components

of an undirected graph under edge additions [198, 51, 95], testing percolation [181], finding loops

and dominators in flow graphs [194, 193, 63], and finding strong components in directed graphs.

Some of these applications, notably finding connected components [192, 184, 121, 86, 173, 144]

and finding strong components, are on immense graphs and could potentially benefit from the

use of concurrency to speed up the computation. For example, model checking requires finding

strong components in huge, implicitly defined directed graphs [209, 22, 24]. There are sequential

linear-time strong components algorithms [192, 183], but these may not be fast enough for this

application. The sequential algorithms use depth-first search [192], which apparently cannot be

efficiently parallelized [175]. If one had an efficient concurrent disjoint set union algorithm one

could use it in combination with breadth-first search to potentially speed up model checking. This

application, described to the second author by Leslie Lamport, was the original motivation for our

work.

The classical sequential solution to the disjoint set union problem is the compressed tree data

structure [67, 62, 97, 198, 196]. With appropriate tree linking and path compaction rules, m oper-

ations on sets containing a total of n elements take O(α(n,m/n)) time [198, 196, 75], where α is a

functional inverse of Ackermann’s function, defined in Section 7.3. Three linking rules that suffice

are linking by size [198], linking by rank [196], and linking by random index [75]; three compaction

rules that suffice are compression [198, 196, 75], splitting [196, 75], and halving [196, 75].

150

Perhaps surprisingly, there has been almost no previous research on wait-free concurrent disjoint

set union. We have found only one such effort, that of Anderson and Woll [12]. Their work contains

a number of significant ideas that are the genesis of our results, but it has many flaws that reveal

the subtlety of the problem. We use their concurrency model. In one of our linking algorithms we

use DCAS (double compare and swap), as a synchronization primitive, whereas they used only the

weaker CAS (compare and swap) primitive.

Anderson and Woll considered an alternative formulation of the problem in which sets do not

have leaders and the two operations are same-set(x, y), which returns true if x and y are in the

same set and false otherwise, and unite(x, y), which combines the sets containing x and y into a

single set if these sets are different. (We discuss same-set further in Section 7.4.) They attempted

to develop an efficient concurrent solution that combines linking by rank with a concurrent version

of path halving. They claimed a bound of O(m · (p + α(m, 1)) on the total work, where p is the

number of processors. (They did not treat n as a separate parameter.). Their linking method

can produce paths of Ω(p) nodes of equal rank. The O(mp) term in their work bound accounts

for such paths. Their proof of their upper bound is not correct, because they did not consider

interference among different processes doing halving on intersecting paths. Whether or not their

bound is correct, it is easy to show that their algorithm can take Ω(np) work to do n − 1 unite

operations, compared to the O(nα(n, 1)) time required by one process. Thus in the worst case their

work bound gives essentially no speedup.

Anderson and Woll also claimed a work bound of O(m · (α(m, 1) + log∗ p)) for a synchronous

PRAM algorithm that uses deterministic coin tossing [36] to break up long paths of equal-rank

nodes. They provided no details of this algorithm and no proof of the work bound. We think that

their bound is incorrect and that the work bound of their algorithm is Ω(n log p), since it is easy

to construct sets of operations that do linking by rank exactly but such that concurrent finds with

halving take Ω(log p) steps per find, even on a PRAM. See Section 7.9. Deterministic coin tossing

does seem to be a good idea, however: we conjecture that it can give an efficient (but complicated)

deterministic set union algorithm in the APRAM model using only CAS for synchronization, at

the cost of a multiplicative log∗ p factor in the work bound.

In this chapter, we apply the ideas of Anderson and Woll and some additional ones to develop

several efficient concurrent algorithms for disjoint set union. We give three concurrent implemen-

tations of unite, one deterministic and the other two randomized. The deterministic method uses

DCAS to do linking by rank. The randomized methods use only CAS: one does linking by random

151

index, the other does randomized linking by rank. We also give two concurrent implementations

of path splitting, one-try and two-try splitting. The former is simpler, but we are able to prove

slightly better bounds for the latter, bounds that we think are tight for the problem.

We prove that any of our linking methods in combination with one-try splitting does set union

in O

(
m ·
(
log
(
np2

m + 1
)
+ α

(
n, m

np2

)))
work, and in combination with two-try splitting in O

(
m ·(

log
(np
m + 1

)
+ α

(
n, m

np

)))
work. Each set operation takes O(logn) steps. These bounds are

worst-case for deterministic linking and high-probability for randomized linking. The O(logn)

step bound per operation holds even without path splitting; without splitting, the work bound is

O(m logn). The work and step bounds for randomized linking by rank hold even for an adversarial

scheduler, provided that scheduling is based only on information sent to the scheduler, or we allow

a form of CAS that writes a random bit. The work and step bounds for linking by random index

hold provided that the randomization is independent of the order in which the unite operations are

executed, or, more precisely, independent of the “linearization order” of the unite operations. (We

define linearization order in Section 7.2.) We also show that Ω

(
m ·

(
log
(np
m + 1

)
+ α

(
n, m

np

)))
work is needed in the worst case for any algorithm satisfying a symmetry assumption, which implies

that our work bound for two-try splitting is best possible for such algorithms.

Our work is theoretical, but others [3, 51, 95] have implemented some of our algorithms on

CPUs and GPUs and experimented with them. On many realistic data sets, our algorithms run as

fast or faster than all others.

The remainder of our chapter contains 8 sections. Section 7.2 describes our concurrency model.

Section 7.3 describes the compressed tree data structure and sequential algorithms for disjoint set

union. Section 7.4 presents concurrent linking by index, a special case of which is concurrent linking

by random index, and one-try and two-try splitting. Section 7.5 presents preliminary versions of

deterministic and randomized linking by rank. These versions rely on some simplifying assumptions

that we eliminate in Section 7.6. Section 7.8 gives upper bounds on the total work of our algorithms.

Section 7.9 presents lower bounds. Section 7.10 contains some final remarks and open problems.

7.2 Concurrency Model

Our concurrency model is the same as that of Anderson and Woll: a shared memory multiproces-

sor, otherwise known as an asynchronous random-access machine (APRAM). We assume that p

processes run concurrently but asynchronously, each doing a different set operation. Each process

152

has a private memory. In addition, all processes have access to a shared memory that supports

concurrent reads but not concurrent writes.

To provide synchronization of writes to shared memory, we use the compare and swap primitive

CAS(x, y, z). Given the address x of a block of shared memory and two values y and z, this

operation tests whether block x holds value y; if so, it stores value z in block x (overwriting y)

and returns true; if not, it returns false. We also consider the two-block extension DCAS(u, v, w,

x, y, z). Given the addresses u and x of two blocks of shared memory and four values v, w, y,

and z, this operation tests whether block u holds value v and block x holds value y; if both are

true, it stores value w in block u and value z in block x and returns true; if not, it returns false.

These operations are atomic: once one starts, it completes before any other operation can read,

write, CAS, or DCAS the affected block or blocks. Although both CAS and DCAS return a value

indicating success or failure, many of our algorithms do not actually use these values.

In one version of our randomized linking algorithm we use the following randomized version of

CAS: atomic operation CAS(x, y, $) tests whether the value of x is y and, if so, sets the value of

x equal to true or false, each with probability 1/2. Such a randomized atomic write operation has

been used in algorithms for achieving consensus [34].

Many current hardware designs include CAS as an instruction; DCAS was supported on the

Motorola 68030 [162] but not on any current hardware, as far as we know. As we demonstrate in

Section 7.5, it is straightforward to implement linking by rank using DCAS, but much harder using

only CAS.

We study concurrent algorithms for disjoint set union that are linearizable [93] and bounded

wait-free [89]. To be linearizable means that (i) the outcome of a concurrent execution is the same

as if each set operation were executed instantaneously at some distinct time (its linearization time)

during its actual execution and (ii) the sequential execution sequence given by the linearization

times is correct; that is, all find operations produce answers that are correct at their linearization

times. The linearization times define a total order of the operations, called the linearization order.

Although we focus on linearizable algorithms, some applications of disjoint set union may not

require linearizability for correctness. We briefly discuss this issue in Section 7.10, and leave further

investigation as an open problem.

To be bounded wait-free means that every operation finishes in a bounded number of its own

steps. The total work done by a concurrent solution is the total number of steps done by all

processes to complete all operations.

153

Two weaker progress properties than bounded wait-freedom are wait-freedom and lock-freedom

[91]. A concurrent solution is wait-free if every process is guaranteed to finish. It is lock-free if

every operation can execute its next step when it chooses to do so, and at least one process is

guaranteed to finish its operation. In general a lock-free solution need not be wait-free, and a

wait-free solution need not be bounded wait-free. In our version of disjoint set union, the number

of elements is fixed, which makes it easy to guarantee bounded wait-freedom. This remains true if

we add an operation that allows the creation of singleton sets containing new elements, as long as

the total number of set operations is bounded. If we allow an unbounded number of singleton sets

to be created, then our solutions are no longer wait-free, but they remain lock-free. In this case

there are no meaningful work bounds.

7.3 Data Structure and Sequential Algorithms

Our concurrent disjoint set union algorithms use the same data structure as the best sequential

algorithms: a compressed forest. This forest contains one rooted tree per set, whose nodes are the

elements of the set and whose root is the set leader. Each node x has a pointer x.p, to its parent

if it has a parent or to itself if it is a root. The root of the tree is the leader of the set.

In this section we explain the sequential set union algorithms. We present pseudo-code for the

same-set and find procedures as Algorithm 9, and procedures for unite and its helper-method link

as Algorithm 10. The sequential algorithm pseudo-code we present is not optimized for brevity.

Rather, we take care to present pseudo-code that is as similar to the forthcoming concurrent

algorithms as possible, thereby highlighting the key observations and distinctions that arise in the

concurrent code.

The sequential algorithm for find(x) follows parent pointers from x until reaching a node u that

points to itself, optionally compacts the find path (the path of ancestors from x to u) by replacing

the parent of one or more nodes on the find path by a proper ancestor of its parent, and returning

u. Naïve find does no compaction. Three good compaction rules are compression, splitting, and

halving. Compression replaces the parent of every node on the find path by the root u. Splitting

replaces the parent of every node on the find path by its grandparent. Halving replaces the parent

of every other node on the find path by its grandparent, starting with x. Figure 7.3.1 illustrates

how these algorithms restructure a path of nodes when find is called on node 8, the bottom-most

node.

154

The sequential implementation of same-set(x, y) does find(x) and find(y), returning the roots

u and v of the trees containing x and y, respectively, and returns true if u = v, false otherwise.

Algorithm 9 is the pseudo-code for same-set and the variations of find.

Algorithm 9 Sequential same-set algorithm with alternative implementations of find. The pseudo-
code is written to match the forthcoming concurrent version as closely as possible, so that the key
differences are more clear.

1: procedure same-set(x, y)
2: u← find(x)
3: v ← find(y)
4: return u = v

5: procedure findNaïve(x)
6: u← x; v ← u.p
7: while v ̸= u do
8: u← v; v ← u.p

9: return v

10: procedure findCompress(x)
11: root← findNaïve(x)
12: u← x
13: while u ̸= root do
14: v ← u.p; u.p← root; u← v

15: return root

16: procedure findSplit(x)
17: u← x; v ← u.p; w ← v.p
18: while v ̸= w do
19: u.p← w; u← v; v ← u.p; w ← v.p

20: return v

21: procedure findHalve(x)
22: u← x; v ← u.p; w ← v.p
23: while v ̸= w do
24: u.p← w; u← w; v ← u.p; w ← v.p

25: return v

The sequential implementation of unite(x, y) does find(x) and find(y), returning the roots u

and v of the trees containing x and y, respectively, and tests whether u = v. If u ̸= v, it links u and

v by making one the parent of the other. Three good linking rules are linking by size, linking by

rank, and linking by random index. Linking by size maintains the size (number of nodes) of each

tree in its root, and makes the root of the tree of larger size the parent of the other, breaking a

tie arbitrarily. Linking by rank maintains a non-negative integer rank for each root, initially zero,

and makes the root of larger rank the parent of the other, breaking a tie by adding one to the rank

of one of the roots. In the pseudo-code, we use u.r to represent node u’s rank. Linking by index

chooses a fixed total order of the nodes and makes the root of larger index the parent of the other.

Linking by random index is the special case of linking by index that chooses the total order of nodes

uniformly at random. Algorithm 10 is the pseudo-code for unite and the variations of link.

155

Figure 7.3.1: The results of running find(8) on the original path with the three different types
of compaction: compression links all the nodes on the find path directly to the root, thereby
“compressing” the path; halving links alternating nodes on the find path to their grandparents,
thereby creating a path of “half” the length with nodes hanging off; splitting links every node on
the find path to its grandparent, thereby “splitting” one path in two.

Algorithm 10 Sequential unite algorithm, with multiple implementations of link. The pseudo-
code is written to match the forthcoming concurrent version as closely as possible so that the key
differences are more clear.

1: procedure unite(x, y)
2: u← find(x)
3: v ← find(y)
4: if u ̸= v then link(u, v)

5: procedure linkByRank(u, v)
6: r ← u.r; s← v.r
7: if r < s then u.p← v
8: else if r > s then v.p← u
9: else

10: v.r ← v.r + 1
11: u.p← v

12: procedure linkByIndex(u, v)
13: if u < v then u.p← v
14: else v.p← u

15: procedure linkBySize(u, v)
16: if u.size ≤ v.size then
17: u.p← v
18: v.size← v.size+ u.size
19: else
20: v.p← u
21: u.size← u.size+ v.size

156

Linking by size, rank, or random index combined with naïve find, compression, splitting or

halving gives an algorithm that takes O(logn) time for an operation on a set or sets containing

n elements, worst-case for deterministic linking, high-probability for linking by random index.

Use of compaction improves the amortized time per operation: any combination of compression,

splitting, or halving with linking by size, rank, or random index gives an algorithm that takes

O(m · α(n,m/n)) time to do m operations on sets containing a total of n elements. The bound

is worst-case for linking by size or rank, average-case for linking by randomized index. Here is

a functional inverse of Ackermann’s function defined as follows. We recursively define Ak(n) for

non-negative integers k and n as follows:

A0(n) = n + 1; Ak(0) = Ak–1(1) if k > 0; Ak(n) = Ak – 1(Ak(n – 1)) if k > 0 and n > 0.

For a non-negative integer n and non-negative real-valued d,

α(n, d) = min{k > 0 | Ak(⌊d⌋) > n}

Lemma 7.3.1. Ak(n) < min{Ak+1(n), Ak(n+ 1)}, i.e., Ak(n) is strictly increasing in k and n.

Proof. The proof is by double induction on k and n. A0(n) = n + 1 < n + 2 = A0(n + 1), and

A0(0) = 1 < 2 = A1(0). Let k > 0. Suppose the lemma holds for k’ < k and all n. Then Ak(0) <

Ak(0) + 1 = A0(Ak(0)) Ak–1(Ak(0)) = Ak(1) = Ak+1(0). Thus the lemma also holds for k and n

= 0. Let k > 0 and n > 0. Suppose the lemma holds for k’ < k and all n, and for k and n – 1.

Then Ak(n) < Ak(n) + 1 = A0(Ak(n)) Ak–1(Ak(n)) = Ak(n + 1), and Ak(n) = Ak(A0(n – 1)) <

Ak(Ak+1(n – 1)) = Ak+1(n).

Corollary 7.3.2. α(n, d) is non-decreasing in n and non-increasing in d.

Our goal is to extend at least one sequential set union algorithm to the concurrent model of

Section 7.2 and to obtain an almost-linear work bound that grows sublinearly with p, the number

of processes. For convenience in stating bounds, we assume that 2 ≤ p ≤ n ≤ m, and that there is

at least one unite of different elements. We denote the base-two logarithm by lg.

7.4 Concurrent Linking and Splitting

Concurrency significantly complicates the implementation of the set operations. One complication

is that processes can interfere with each other by trying to update the same field at the same time,

requiring our algorithms to be robust to such interference. Consider doing unites concurrently.

157

To do unite(x,y), we can start as in the sequential case by finding the roots u and v of the trees

containing x and y, respectively. Then we can try to link u and v by doing a CAS to make v the

parent of u or vice-versa. But we must allow for the possibility that the CAS can fail, for example

if it tries to make v the parent of u but in the meantime some other process makes another node

the parent of u. If this happens we must retry the unite. When retrying, we start the new finds at

u and v rather than at x and y, to avoid revisiting nodes. Anderson and Woll [12] proposed this

method; the following pseudocode implements it. Method link(u, v), to be defined, tries to make

one of two roots u and v the parent of the other.

Algorithm 11 : Concurrent unite algorithm.
1: procedure unite(x, y)
2: u← find(x); v ← find(y)∗
3: while u ̸= v do
4: link(u, v)∗
5: u← find(u); v ← find(v)∗

In this and subsequent implementations, asterisks denote linearization points. The linearization

point of a unite is the linearization point of the successful link if there is one, or the linearization

point of the last find if no link is successful.

Concurrency also imposes constraints on the linking rule. We need to prevent concurrent links

from creating a cycle of parent pointers other than a loop at a root. For example, three concurrent

links might make v the parent of u, w the parent of v, and u the parent of w. The simplest way to

prevent such cycles is to do linking by index, which we can implement using CAS. We denote the

total order of nodes by “<” . The following pseudocode implements linking by index:

Algorithm 12 : Concurrent linking by index algorithm.
1: procedure link(u, v)
2: if u < v then CAS(u.p, u, v)∗
3: else CAS(v.p, v, u)∗

The linearization point of the link is its CAS. A link is successful if its CAS returns true. For

any total order, linking by index guarantees acyclicity. Linking by random index is the special case

of linking by index that chooses the total order uniformly at random.

With this implementation of link, a link can succeed even though the new parent itself becomes

a child of another node at the same time. Fortunately this affects neither correctness nor efficiency.

158

We could prevent this anomaly by using DCAS to do links, which allows us to guarantee that the

new parent remains a root. But this has two drawbacks. First, it uses DCAS, whereas our goal is

to use only CAS if possible. Second, if all links are done using DCAS, the total work can be linear

in p, as we discuss in Section 7.5.1.

Next we consider finds. Concurrent naïve finds do not interfere with each other, since such finds

do not change the data structure. Thus we can do such finds exactly as in the sequential case. The

following pseudocode implements concurrent naïve find:

Algorithm 13 : Concurrent Naïve find algorithm.
1: procedure find(x)
2: u← x; v ← u.p∗

3: while v ̸= u do
4: u← v; v ← u.p∗

5: return u

The linearization point of a find is the last update of v.

Concurrent finds with compaction can interfere with each other. Consider a sequential find

with splitting. Let u be the current node visited by the find. One step of the find consists of setting

v = u.p; setting w = v.p; and, if v ̸= w, replacing u.p by w and then setting u = v. Steps continue

until v = w, when the find finishes by returning v. The only update to the data structure in a

step is the replacement of u.p by w. We obtain a concurrent version of splitting by using CAS(u.p,

v, w) to do the update. The following pseudocode implements this method, which we originally

presented in [118] and which is based on Anderson and Woll’s version of find with halving:

Algorithm 14 : Concurrent Find with One-Try Splitting algorithm.
1: procedure find(x)
2: u← x; v ← u.p; w ← v.p∗

3: while v ̸= w do
4: CAS(u.p, v, w); u← v; v ← u.p; w ← v.p∗

5: return v

The linearization point of a find is the last update of w. We call this method one-try splitting

because it tries once to update u.p and then changes the current node from u to v, whether or not

the update of u.p has succeeded.

Concurrent splits can produce anomalies that are not possible if splits are sequential, as a simple

159

example shows. (See Figure 2.) Suppose a, b, c, d, e is a path in a tree built by linking by index,

and that four processes, 1, 2, 3, and 4 begin concurrent finds with one-try splitting starting at a, a,

b, and b, respectively. We denote the local variables of process i by ui, vi, wi. First, process 1 sets

u1 = a, v1 = a.p = b, and w1 = b.p = c. Second, process 3 sets u3 = b, v3 = c, w3 = d, and replaces

b.p by d. Third, process 4 sets u4 = b, v4 = d, w4 = e, and replaces b.p by e. Fourth, process 2

sets u2 = a, v2 = b, and w2 = d. Fifth, process 1 replaces a.p by c. Sixth, process 2 attempts to

replace a.p by d but fails, because process 1 changed a.p after process 2 read it. Observe that just

before process 1 replaces a.p by c, c is not an ancestor of a, even though it was when process 1

read it. This threatens correctness. Furthermore, even though the failure of process 2 to update

a.p guarantees that a.p has changed since process 2 read it, the new value of a.p, namely c, is not

an ancestor of the current grandparent of a, namely e, violating a property used in the analysis

of sequential splitting. Finally, even though the new parent c of a is higher in index than the old

parent b of a (as we prove in Theorem 7.4.1), the new grandparent d of a is lower than the old

grandparent e of a.

Figure 7.4.1: Interference in concurrent splitting: process 1 updates a’s parent to a node that is
not its ancestor; process 2’s CAS fails. These difficulties do not occur in the sequential setting.

Fortunately, correctness requires only a weak property of compaction, one that holds for one-try

splitting and many other methods. We introduce an analytic tool called the union forest in order

to explain the property. We assume that if a compaction changes the parent w.p of a node w by a

CAS, w.p ̸= w just before the change; that is, w is not a root. Equivalently, only a link can change

the parent of a root. Suppose we do linking by index. Consider a fixed history, i.e. a concurrent

execution of several unite, same-set, and find operations by different processes up to some time t.

For this fixed history, the union forest is the set of trees such that the parent of a node w is the

first value, other than w, that w.p takes on during the history; if w.p = w throughout the history,

then w is a root in the union forest.

160

Claim 1. The union forest is a forest.

Proof. Since linking is by index, when a link changes the parent of a root w from w to z, z > w.

Hence the union forest contains no cycles of parent pointers other than loops. Thus the union forest

is indeed a forest.

We call a compaction method valid if it visits nodes on a single path in the union forest, each

vertex visit takes O(1) steps, each replacement of a parent w by another node z (of which there

may be none) is such that z is a proper ancestor of w in the union forest, and the linearization

point of the find doing the compaction is the last read of a parent that returns the node itself. The

parent update requirements are only with respect to the fixed union forest, not with respect to the

dynamically changing actual forest maintained by the data structure. In particular, although find

with splitting can change the parent w.p of a node w to a non-ancestor of w in the actual forest

(see Figure 7.4.1), it cannot do so in the union forest. Indeed, splitting is valid.

The following theorem states the correctness of linking by index with finds that do valid com-

pactions.

Theorem 7.4.1. Any disjoint set union algorithm that does linking by index in combination with

finds that do valid compaction is linearizable. The parent of any non-root node has higher index

than the node, and the parents define a set of trees that partition the nodes into the correct disjoint

sets. Furthermore each set operation stops in O(h) steps, where h is the height (maximum number

of edges on a path) of the union tree, so the algorithm is bounded wait-free.

Proof. An induction on the number of parent changes using the transitivity of “<” shows that the

parent of any node never has smaller index than the node. This implies that the only cycles are

loops at roots. Parent changes done during compactions do not change the node partition defined

by the trees. A link that makes v the parent of u must be such that u is a root before the link, u

< v, and u and v are in the trees containing the two nodes x and y that are the inputs to the unite

that does the link. It follows by induction on the number of parent changes that at all times the

trees correctly partition the nodes: a find cannot change this partition, and a link unites the trees

containing the nodes that are the inputs to the corresponding unite. Correctness of the linearization

points follows in a straightforward way by induction on the number of parent changes: When a

find reads the parent of a root, that root at that moment is the leader of the set containing the

input to the find; when a unite does a link, the partition remains correct; when a test ”u ̸= v” in

unite returns false, the inputs to the unite are in the same set.

161

Since the nodes visited during a find are on a single path in the union forest, and each node

visit takes O(1) steps, each find stops in O(h) steps. (Our assumption that there is at least one

unite of different elements implies h > 0.) The nodes visited during a unite are on two paths in the

union forest. Consider the node visits in the order they occur. Each node visit takes O(1) steps,

but a node can be visited many times. This can only happen while it is a root; once it becomes

a child, it can only be visited once more (as the input to a find). Consider the nodes u and v just

before an execution of the test “u ̸= v” in unite. Each of u and v was a root at some time during

the find that computed it. If the test “u ̸= v” succeeds, whichever of u and v is smaller in the total

order will be a child after the next link (whether or not the link succeeds). Suppose without loss of

generality it is u. We charge the next visits to u and v to u becoming a child. There are at most 2h

such events. It follows that the total number of node visits during the unite, and hence the total

number of steps, is O(h).

Having dealt with correctness, we discuss concurrent compaction in more detail. The monotonic-

ity of parents (each new parent is higher in index than the old one) allows us to extend the analysis

of sequential splitting to one-try splitting, although the extension is not straightforward. On the

other hand, the analysis of sequential halving relies on monotonicity of grandparents, which fails in

the concurrent setting, as our example above shows. Anderson and Woll [12] claimed a good work

bound for their concurrent version of halving, but they overlooked the problem of non-monotonicity.

We see no way to get a good work bound for their method.

Even though we can prove good efficiency bounds for one-try splitting, we can prove slightly

better bounds for a related compaction method that tries to change each parent pointer twice

instead of once. We call this method two-try splitting. The following pseudocode implements find

with two-try splitting:

Algorithm 15 : Concurrent Find with Two-Try Splitting algorithm.
1: procedure find(x)
2: u← x; v ← u.p; w ← v.p∗

3: while v ̸= w do
4: CAS(u.p, v, w); v ← u.p; w ← v.p
5: CAS(u.p, v, w); u← v; v ← u.p; w ← v.p∗

6: return v

The linearization point of a find is the last assignment to w. If every attempted parent change

succeeds, the effect of a single two-try split is to replace the parent of every other node on the find

162

path by its great-grandparent. This splits the original path into two paths, each containing half

the nodes on the original path, but the split is different from that produced by one-try splitting:

if the nodes on the original path are numbered consecutively from 1, the latter produces a path of

nodes 1, 3, 5, 7. . . and another path of nodes 2, 4, 6, 8. . . ; the former produces a path of nodes 1,

4, 5, 8, 9. . . and another path of nodes 2, 3, 6, 7, 10, 11. . .

A variant that has the same work bounds as two-try splitting is conditional two-try splitting,

in which the second try occurs only if the first one fails. We omit a detailed discussion of this

variant, since its pseudocode is a bit longer and it is unclear whether avoiding extra parent changes

improves efficiency.

Both one-try and two-try splitting are valid compaction methods, so Theorem 7.4.1 holds for

both of them.

We conclude this section by presenting Anderson and Woll’s concurrent implementation of

same-set, which gives an extension of our algorithms to their formulation of the problem. It is easy

to do same-set(x, y) in the sequential setting: find the root u of the tree containing x, find the root

v of the tree containing y, and test whether u = v. As Anderson and Woll observed, this does not

suffice in the concurrent setting, because u might no longer be a root when the equality test occurs,

possibly invalidating the test. Their solution has three cases. If u = v, return true: x and y are in

the same tree when the test occurs, and remain in the same tree. If u ̸= v, test whether u is still a

root. If so, return false: x and y were in different trees when v was computed, since u and v were

different roots. If not, redo the computation: do new finds from u and v, and repeat the test or

tests. The following pseudocode implements this method:

Algorithm 16 : Concurrent same-set algorithm.
1: procedure same-set(x, y)
2: u← find(x); v ← find(y)∗
3: while u ̸= v do
4: w ← u.p
5: if u = w then return false
6: u← find(u); v ← find(v)∗

7: return true

The linearization point of a same-set is the last assignment to v. All our analyses of find and

unite extend to include same-set as an allowed operation.

163

7.5 Concurrent Linking by Rank

To obtain a good work bound, we combine one-try or two-try splitting with a good linking method.

Linking by random index is one such method, but our analysis of it assumes that the scheduling

of CAS instructions is independent of the random node order. This assumption is questionable;

if it fails, the work bound becomes much worse as a function of p, as we show in Section 7.9. To

overcome this, we develop two concurrent versions of linking by rank, one deterministic and one

randomized, both of which have good work bounds. To simplify our descriptions, we assume for

the moment that the rank and parent of a node can be stored in a single block of memory that is

updatable by one CAS instruction. In Section 7.6 we show how to eliminate this assumption.

Both of our versions of linking by rank are refinements of a generic method. The generic method

links roots of different ranks using CAS, and links roots of the same rank using method elink, to be

defined. The rank of node u is u.r, initially zero. The following pseudocode implements the generic

method:

Algorithm 17 : Concurrent linking by rank algorithm.
1: procedure link(u, v)
2: r ← u.r; s← v.r
3: if r < s then CAS((u.p, u.r), (u, r), (v, r))∗
4: else if r > s then CAS((v.p, v.r), (v, s), (u, s))∗
5: else elink(u, v, r)∗

Given two roots u and v with ranks r and s, respectively, this method compares r to s. If r < s,

it uses a CAS to make v the parent of u while guaranteeing that neither the parent nor the rank

of u changes in the meantime. If r > s, it proceeds symmetrically. If r = s, it does an elink to

link u and v. A link is successful if its CAS returns true or its elink is successful, in which case the

linearization point of the link is its CAS or that of its elink. Our two versions of linking by rank

differ only in their implementation of elink.

7.5.1 Linking by Rank via DCAS

A simple way to do elink(u, v, r) is to use a DCAS to make v the parent of u and increment the

rank of v while guaranteeing that the ranks and parents of u and v do not change in the meantime..

The following pseudocode implements this idea:

164

Algorithm 18 : Concurrent linking by DCAS algorithm.
1: procedure elink(u, v, r)
2: DCAS((u.p, u.r), (u, r), (v, r), (v.p, v.r), (v, r), (v, r + 1))∗

An elink is successful if its DCAS returns true, in which case the linearization point of the elink

is its DCAS.

Our first version of linking by rank uses this implementation of elink. The rank of a node can

never decrease, and can increase only while the node is a root. It follows that the rank of a child

is always strictly less than that of its parent. Linking by rank is an implicit form of linking by

index: the successful links respect any total order consistent with the final ranks of nodes. Thus

Theorem 7.4.1 holds for this method.

The following lemma and theorem extend known bounds on sequential linking by rank [196] to

linking by rank via DCAS:

Lemma 7.5.1. With linking by rank via DCAS, the sum of ranks is at most n− 1, the number of

nodes of rank k is at most n/2k, and the maximum rank and the height of the union forest are at

most lgn.

Proof. For a node to increase in rank by 1, it must be a root, and another root must become its

child at the same time. It follows that the number of rank increments, and hence the sum of ranks,

is at most n – 1, one per root that becomes a child. An induction on k shows that at most n/2k

nodes can ever attain rank k. The bounds on the maximum rank and the height of the union forest

follow, since no node can have rank exceeding lgn.

Theorem 7.5.2. Linking by rank via DCAS in combination with any valid compaction method

maintains the invariant that the parents define a set of trees that partition the nodes into the correct

disjoint sets, and the rank of a child is less than that of its parent. Furthermore each set operation

stops in O(logn) steps, so the algorithm is bounded wait-free.

Proof. The first half of the theorem follows by induction on the number of steps as in the proof

of the first half of Theorem 7.4.1. A find takes O(logn) steps by the argument in the proof of

Theorem 7.4.1, since the height of the union forest is O(logn) by Lemma 7.5.1. We prove the

bound for unites by an extension of the argument in the proof of Theorem 7.4.1. The nodes visited

during a unite are on two paths in the union forest, and on each path they are visited in increasing

order by rank. Each node visit takes O(1) steps, but roots can be visited many times. We charge

165

each repeated visit to a root either to a root becoming a child or to a root increasing in rank.

Consider the nodes u and v just before an execution of the test “u ̸= v” in unite. Each of u and

v was a root at some time during the find that computed it. Suppose the test “u ̸= v” succeeds.

The next execution of link sets r to the rank of u and s to the rank of v. If r < s, then after the

CAS either the rank of u has increased or u has become a child, whether or not the CAS succeeds.

We charge the next visits to u and v to the rank increase of u or to u becoming a child. The

symmetric argument applies if r > s. If r = s, at least one of u and v has increased in rank or

become a child after the elink. We charge the next visits to u and v to whichever of these events has

occurred. There are at most 2 lgn roots that become children and at most 2 lgn rank increases by

Lemma 7.5.1, since for each of the two paths in the union forest the rank increases sum to at most

lgn. It follows that the total number of node visits during the unite, and hence the total number

of steps, is O(logn).

The efficiency of this linking method (though not its correctness) depends critically on using

CAS to link nodes of different ranks, reserving DCAS for the equal-rank case. An attempted link

of equal-rank nodes u and v using DCAS fails only if some other process makes u or v a non-root,

or increases the rank of u or v. In the proof of Theorem 7.5.2 we charge extra node visits resulting

from the failure of the DCAS to whichever of these events occurs. If we were to use DCAS to try to

make a node v the parent of a node u of lower rank, the DCAS could fail because another process

made v the parent of another node w. This changes neither the parent nor rank of u, nor of v,

leaving us with no event to charge for extra node visits. In the worst case, O(n) such links could

produce Ω(pn) failures, resulting in total work linear in p. Using CAS to link nodes of different

ranks eliminates these failures. Although we can avoid such interference in the disjoint set union

problem as we have defined it, this is much harder to do in some extensions of the problem, as we

discuss in Section 7.10.

7.5.2 Randomized Linking by Rank

To link equal-rank nodes using CAS, we need to do the parent change and the rank increment

separately. The question is which one to do first. Making this decision randomly gives an approx-

imation to linking by rank that produces few enough rank ties that we are able to get good work

bounds. Since this method allows rank ties, we use linking by index to break such ties, in order

to prevent the creation of non-trivial cycles of parent pointers. Assume that ‘‘<” is an arbitrary

166

total order of the nodes. To link two equal-rank roots u and v such that u < v, we flip a fair coin.

If it comes up heads, we attempt to make v the parent of u; if it comes up tails, we attempt to

increase the rank of u. The following pseudocode implements this idea. Random Boolean method

flip returns true with probability 1/2 and false otherwise, independent of all other flips.

Algorithm 19 : Concurrent randomized linking by rank algorithm.
1: procedure elink(u, v, r)
2: if u < v then
3: if flip then CAS((u.p, u.r), (u, r), (v, r))∗
4: else CAS((u.p, u.r), (u, r), (u, r + 1))
5: else
6: if flip then CAS((v.p, v.r), (v, r), (u, r))∗
7: else CAS((v.p, v.r), (v, r), (v, r + 1))

An elink is successful if it does a CAS that changes a parent pointer, in which case the lin-

earization point of the elink is its CAS.

Our second version of linking by rank uses this implementation of elink. Observe that the CAS

done after a flip is almost the same whether the flip returns true or false, the only difference being

the updated field (parent or rank, respectively). In our analysis we shall assume that the success

or failure of the CAS following a flip is independent of the outcome of the flip. In Section 7.6 we

describe how to modify the implementation to eliminate the need for this independence assumption.

Randomized linking by rank is an implicit form of linking by index: links respect the total order

defined by final node ranks with ties broken by ‘‘<” .

Lemma 7.5.3. With randomized linking by rank, (i) any node x has O(1) ancestors of the same

rank, in expectation; (ii) the sum of ranks is at most n in expectation and n+O(n1/2) with probability

1−1/nc for any constant c > 0, where the constant factor in the ‘‘O” depends on c; (iii) the expected

number of nodes of rank at least k is at most n/2k, and with probability at least 1−n/2k, all nodes

have rank less than k; (iv) the maximum rank is at most lgn + 3 in expectation and is at most

(c+ 1) lgn with probability at least 1− 1/nc for any positive constant c; (v) the depth of the union

forest is at most 3 lgn + 9 in expectation and O(logn) with probability at least 1 − 1/nc for any

constant c > 0, where the constant factor inside the ‘‘O” depends on c; and (vi) for a large enough

constant c and any k > 0, the expected number of nodes of rank less than k and height at least ck

in the union forest is at most n/2k.

Proof. Consider only flips that result in successful CAS operations. Each such flip produces a rank

167

increment with probability 1
2 ; otherwise, it makes a root into a child.

(i) The probability that a node has k ancestors of the same rank is at most 1/2k–1. Summing

gives the bound.

(ii) There are at most n – 1 flips that make a root into a child. The sum of ranks, which is

the number of rank increments, is thus at most the number of heads in a sequence of coin flips

containing at most n tails, which is at most n in expectation, and at most n + O(n1/2) with

probability 1 – nc for any constant c > 0 by a Chernoff bound [35], with the constant factor in the

‘‘O” depending on c.

(iii) The rank of a given node is at least k with probability at most 1/2k. The expected number

of nodes of rank at least k is thus at most n/2k. By a union bound, all nodes have rank less than k

with probability at least 1 – n/2k.

(iv) For c > 0, the probability that the maximum rank is at least lgn + c is at most n/2lgn + c

= 1/2c. It follows that the expected maximum rank is at most lgn +
∑∞

i=1 i/2
i lgn + 2 lgn + 3,

and the probability that the maximum rank exceeds (c + 1)lgn is at most 1/2clgn = 1/nc.

(v) A node gains a proper ancestor of the same rank with probability at most 1/2. Thus the

expected number of proper ancestors of the same rank as that of a given node is at most
∑∞

i=1 i/2
i

= 2, which implies by (ii) that the expected depth of the union forest is at most 3lgn + 9. Let c >

0. By (ii) the maximum node rank is at most (c + 3)lgn with probability at least 1 – 1/nc+2. For

any node, the probability that it has at least (b + c + 3)lgn proper ancestors in the union forest

is at most the probability that a sequence of fair coin flips containing at most (c + 3) lgn heads

contains at least blgn tails. By a Chernoff bound, for b sufficiently large, this probability is at most

1 – 1/nc+2. The probability that at least one of the n nodes has more than (b + c + 3)lgn proper

ancestors in the union forest is at most 2n/nc+2 ≤ 1/nc.

(vi) Let x be any node. We claim that for some c > 0 the probability that x has an ancestor

y of rank less than k such that the path from x to y contains ck edges is at most 1/2k. Part (vi)

follows from the claim by a union bound. To prove the claim, consider the edges on the path from

x to y in the union forest. Call such an edge good if its ends have different ranks and bad otherwise.

Each edge has probability at least 1/2 of being good, independent of the status of all other edges.

The claim follows by a Chernoff bound.

Theorem 7.5.4. Randomized linking by rank in combination with any valid compaction method

maintains the invariant that the parents define a set of trees that partition the nodes into the correct

168

disjoint sets. The parent of any non-root node has rank no less than that of the node, and if

the ranks are equal, the parent has larger index. Each set operation stops in O(logn) steps with

probability 1−1/nc for any c > 0, where the constant factor in the “O” depends on c. The algorithm

is bounded wait-free.

Proof. Except for the fact that the algorithm is bounded wait-free, the theorem follows from parts

(iv) and (v) of Lemma 7.5.3 by a proof like those of Theorems 7.4.1 and 7.5.2.

To prove that the algorithm is bounded wait-free, we observe that for a node to increase in rank

some larger node must have the same rank. It follows by induction that the ith largest node has

rank at most i− 1, so the maximum rank is at most n− 1.

7.5.3 Linking by Random Index

With an appropriate definition of rank, Lemma 7.5.3 and Theorem 7.5.4 hold for linking by random

index, under a strong independence assumption. We define the rank of node x to be lgn – lg(n

– x + 1). Thus node n has rank lgn, nodes n – 1 and n – 2 have rank lgn – 1, and so on. The

rank of a child is no greater than that of its parent. We use these ranks only in the analysis; the

implementation of the algorithm does not use them.

We assume that the random node order is independent of the linearization of the unite oper-

ations. More precisely, we assume that the node order and linearization are generated together

in the following way. The implementation maintains a set U of unordered pairs {u, v} that are

candidates for linking, initially empty, and a partial order P of the nodes, initially empty, that is a

total order on the nodes of any set defined by the links done so far, and that leaves any two nodes

in different sets unordered. To do link(u, v), a process adds the unordered pair {u, v} to U.

The scheduler sequentially removes pairs from U in arbitrary order. When removing a pair

{u, v} from U, the scheduler performs three actions. First, it modifies P by merging the total

orders of the sets containing u and v, with each possible merged order equally likely. Second, if u

< v it sets u.p = v, if v < u it sets v.p = u. This unites the sets containing u and v. The link

corresponding to the pair {u, v} succeeds. Third, the scheduler deletes from U all other pairs

containing u or v. Each link corresponding to such a pair fails. When a pair is deleted from U, the

process that added the pair to U proceeds with its next operations, which are the recomputing of

its u and v.

The updating of P maintains the invariant that the total order of the nodes in any set defined

by the links done so far is uniformly random. If there is more than one set after all unites have

169

been done, we can extend the final partial order to a total order by merging the total orders on

the final sets, with each possible merged order equally likely. The result is a uniformly random

permutation of the nodes, equivalent to a uniformly random numbering of the nodes from 1 to n.

Thus this implementation does linking by random index, subject to the restriction imposed on the

scheduler. The execution does not change if we initially number the nodes uniformly at random

but reveal to the scheduler only the total order within each set formed so far.

This implementation restricts the behavior of linking by random index in at least two different

ways: in the actual implementation, the CAS operation for a link is defined by an ordered pair, not

an unordered pair, so the scheduler gets information about the node order before it needs to decide

which such CAS to do next. Also, in the actual implementation a link can make a root the child

of a non-root, which cannot happen with the scheduler constraint. We think the latter restriction

is inconsequential, but the former is significant. We thus view our analysis of linking by random

index as suggestive, not definitive.

Lemma 7.5.5. With linking by random index, if the scheduler restriction holds, then parts (i), (v),

and (vi) of Lemma 7.5.3 are true, as well as the following strengthened versions of parts (ii), (iii),

and (iv): (ii) the sum of ranks is at most n, (iii) the number of nodes of rank at least k is at most

n/2k, and (iv) the maximum node rank is at most lgn.

Proof. Parts (ii), (iii), and (iv) are immediate from the definition of ranks. Parts (i), (v), and (vi)

follow as in the proof of Lemma 7.5.3 from the following claim:

(*) Given a node x, each successive ancestor of x in the union forest has probability at least ½

of having higher rank then its parent, independent for each ancestor.

To prove (*), consider a node x. Given an execution of the algorithm, we modify the linearization

by delaying links uniting sets not containing x until such a set is a subset of a set about to be united

with x. That is, let S be the current set containing x, let {u, v} be the next pair deleted from U

with u but not v in S, and let S’ be the current set containing v. We modify the schedule to delay

all the links forming S’ until just before the link of u and v. This does not change the steps done

by the execution, only their linearization order. We generate the partial order P by generating a

numbering of the nodes incrementally and revealing to the scheduler only the total order within

each set constructed so far. Initially we assign a number uniformly at random to x. Subsequently

when the scheduler removes a pair {u, v} from U, if u and/or v is unnumbered we assign it a number

chosen uniformly at random from the numbers not yet assigned.

170

Suppose the scheduler removes a pair {u, v} from P with u the root of the tree containing x,

and v in another tree, and that the corresponding link succeeds. Let S and S’, respectively, be the

sets containing u and v just before {u, v} is removed from U. Just before the links forming S’ are

done, the only numbered nodes are those in S, and u has the largest number. Among the numbers

larger than that of u, at least half have rank larger than that of u. When S’ is formed, its nodes

are numbered uniformly at random from among the unassigned numbers. Given that a number

assigned to a node in S’ is larger than that of u, it has probability at least 1/2 of being larger than

the rank of u. Since v has largest number among the nodes in S’, if the link makes v the parent

of u the rank of v is greater than that of u with probability at least 1/2. The claim (*) follows by

induction on the number of steps.

Theorem 7.5.6. Theorem 7.5.4 holds for linking by random index if the scheduler restriction holds.

Proof. The theorem follows from parts (iv) and (v) of Lemma 7.5.5 in the same way that Theo-

rem 7.5.4 follows from parts (iv) and (v) of Lemma 7.5.3.

7.6 Indirection and Helping

The algorithms in Sections 5.1 and 5.2 require that CAS (and DCAS in 5.1) support testing and

updating of storage blocks able to store both the parent and the rank of a node. In this section we

present two ways to eliminate the need for blocks to contain multiple fields. Both methods increase

the number of steps per operation, but by at most a constant factor. We also discuss how to modify

the implementation of the randomized linking algorithm of Section 7.5.2 to eliminate the need for

an unrealistic independence assumption in its analysis.

The first method to reduce the block size, proposed by Anderson and Woll [12] is to use indirec-

tion. Specifically, each node contains only one field, a pointer to a ledger that contains the parent

and rank of the node. To do a link via a CAS, a process creates a new ledger containing the updated

information for the node being linked and then uses a CAS to attempt to replace the old ledger of

the node by the new one. A link via a DCAS is similar, except that the process creates two new

ledgers and uses a DCAS to replace the old ledgers of the two affected nodes. Parent updates done

by splitting are done directly on the appropriate ledgers, without allocating new ones. The ledger

method requires a way to allocate ledgers, and care must be taken to avoid the reuse of ledgers.

The algorithm of Section 7.5.1 needs at most 3n − 2 + 2p = O(n) ledgers, one per initial set plus

at most two per successful link plus at most two per process. The algorithm of Section 7.5.2 needs

171

O(n) ledgers with high probability. If ledgers are used to implement randomized linking by rank,

the independence assumption needed by the analysis becomes much weaker and quite realistic: the

success or failure of a CAS can depend on all inputs to the CAS, in particular the ledger addresses,

but not on the contents of the ledgers.

Allocating ledgers efficiently is itself a challenging problem, which Anderson and Woll ignored.

One way to do it is to use the concurrent fetch and increment method of Ellen and Woelfel [57].

If ledgers are allocated individually, the number of steps to allocate a ledger is O(log p). If ledgers

are allocated in groups of O(log p), the amortized time per allocation is O(1) and the number of

ledgers used will be O(n) provided p = O(n/ logn). If we are willing to use O(n + p2) memory,

hazard pointers [154] and related techniques [1] can be used.

The second method is helping, as described for example in [87]. The idea is to allow processes

to complete the tasks of other processes. We number the processes from 1 to p. Each node u has

an extra field, u.process, which can hold a process number or 0, and is initially 0. Each process

has a descriptor in which it records a sequence of steps it wants to perform. To update a node, a

process writes appropriate instructions into its descriptor and then does a CAS or DCAS to write

its process number into the process field of the affected node or nodes. Any other process that

wants to update a node containing a non-zero process number must first execute the instructions

in the corresponding descriptor. When the last instruction is executed, the process number in the

affected node or nodes is reset to 0, allowing further updates to the node or nodes. As long as the

number of instructions needed to do an update is bounded by a constant, the use of descriptors

increases the total work by only a constant factor.

In using helping to link nodes of equal rank, we have to solve the ABA problem: A helping

process, having completed the instructions in a descriptor, resets the process number in the relevant

node to zero, but in the meantime the process being helped has reset the process number to zero,

initiated a new update, and set the process number to its own number again. The helping process

has no way to detect that a new update has been initiated by the process that initiated the old

one. In our application, we can solve the ABA problem by using the monotonicity of ranks. This

requires that a CAS be able to update the rank and the process number of a node as an atomic

operation. Since ranks are small and in any realistic application p≪ n, we think this is a reasonable

assumption.

The deterministic algorithm of Section 7.5.1 does links using helping as follows. Each descriptor

contains two nodes and a rank. To link root x of rank r to root y, a process, say process i, writes x,

172

y, and r into its descriptor. If y has rank greater than r, it uses a CAS to write i into node x while

verifying that the process number of x is 0 and the rank of x is r. If y has rank r, it uses a DCAS to

write i into both x and y while verifying that the process numbers of x and y are 0 and the ranks

of x and y are r. A process wanting to update a node that finds a non-zero process number i in the

node reads the corresponding descriptor. Suppose the descriptor contains nodes x and y and rank

r. The process sets z = y.p and does a CAS to set the parent of x to z while verifying that x was a

root before the update. It then tests whether y is a root of rank r. If so, it does a CAS to change

the rank of y to r + 1 and the process number of y to 0 while verifying that the rank and process

number of y were r and i before the update.

This method uses a couple of optimizations. It does not reset the process number of a node

that becomes a non-root, since no subsequent link will try to change its parent or rank. Instead of

making y the parent of x, it makes y.p the parent of x. The reason to do the link this way is that

some other process can make y a non-root just before process i does its CAS or DCAS to write i

into x, or into x and y. If this happens, y.p will have rank greater than r when x becomes its child,

preserving the invariant that ranks strictly increase from child to parent. If this does not happen

and the rank of y is r, the helping process adds one to the rank of y and resets the process number

of y to 0.

The randomized algorithm of Section 7.5.2 does helping using descriptors containing a node y,

a rank r, and a flag whose value is null, true, or false. A flag of true indicates that y should become

the parent of the root containing the process number of the descriptor; a flag of false indicates that

the rank of this node should be changed from r to r + 1. If process i wants to link root x of rank

r to root y, it writes y and r into its descriptor. If y has rank greater than r, it sets the flag to

true; if the rank of y equals r, it flips a fair coin and sets the flag correspondingly. Then it uses a

CAS to set the process number of x equal to i while verifying that the rank and process number

of x were r and 0 before the update. A process wanting to update a node x that finds a non-zero

process number i in x reads the corresponding descriptor. If the flag is true it does a CAS to set

the parent of x to y while verifying that x was a root before the update. If the flag is false it does a

CAS to set the rank and process number of x to r + 1 and 0 while verifying that they were r and

i before the update.

The analysis of this method relies on the same independence assumption as the method using

ledgers: scheduling decisions are independent of the contents of descriptors. A variant of the method

is to set the flag after the process number of the descriptor is written into x: the first step of a

173

helping process is to change the flag from null to true or false using the randomized CAS operation

mentioned in Section 7.2. If this operation is available, no independence assumption is needed. In

the next section, we give pseudo-code for an implementation using randomized CAS, alonging with

a line-by-line explanation of the implementation. This implementation of randomized linking by

rank satisfies the Anderson-Woll requirement that a randomized algorithm be efficient even if the

scheduler knows the outcome of previous random choices. We think, though, that it is reasonable to

assume that the scheduler makes its decisions only on the basis of the inputs to the CAS operations,

or that it cannot read the private memories of the processes. If either of these assumptions hold,

we do not need randomized CAS.

7.7 Our Algorithm with Randomized Compare-and-Swap

There are several ways of implementing randomized linking by rank using randomized CAS. We

present what we think is the clearest and most concise implementation below. Our implementation

uses a compressed tree structure, just as do the other sequential and concurrent algorithms we have

presented, but with a small modification discussed below. The forest contains one rooted tree per

set, whose nodes are the elements of the set and whose root is the set leader. We assume that the

nodes have indices 1 through n and thus can be compared via ‘<’. Each node x has a field x.p to

store the address of a parent node, a field x.r to store a non-zero integer rank, and a field x.b to store

a single root-bit signifying whether or not x is the root of its tree. Initially, x.p = x, x.r = 0, and

x.b = 1. The rank is never more than n, and thus needs only ⌈logn⌉ bits of storage. We shall assume

that all three fields of a node are stored in a single word in memory, as a triple x.f = [x.p, x.r, x.b].

The memory words are of size 2⌈logn⌉ + 1 = O(logn) in this representation. In fact, with high

probability the maximum rank is O(logn), and each node requires only logn+O(log logn) bits.

A note about our representation: If the root-bit x.b is set to 1, x is a root, in which case

our implementation ignores the value of the parent field x.p. In this way our representation differs

from the classic representation, in which the parent field x.p = x for a root node x. This fact is

crucial to understanding the pseudo-code.

In the pseudo-code, $ represents a random bit, i.e. a value with Bernoulli(1/2) distribution.

Algorithm 20 is the pseudo-code for unite and link. The implementation of the find(x) procedure

used in the code is discussed in the next subsection. To do unite(x, y), we start as in the sequential

case by finding the roots u and v of the trees containing x and y, respectively (Line 2). If u = v,

174

then x and y are already in the same set and no work needs to be done (Line 3). Otherwise, x

and y are in different trees, so we can try to link u and v by doing a CAS to make v the parent

of u, or vice-versa (Line 4). We mark the link on Line 4 and subsequent linearization points with

an asterisk in the code. Further explanation of the pivotal link procedure is in the next paragraph.

But we must allow for the possibility of the CAS failing, which can happen for example if it tries to

make v the parent of u but in the meantime some other process makes another node the parent of

u. Notably, the CAS fails if the other process does exactly the same CAS and makes v the parent

of u. A solution that works in either case is to simply continue walking up the tree from the present

u and v (Line 5), until the paths intersect or another attempt at linking is necessary. This method

was first proposed by Anderson and Woll [12] and was subsequently used by Jayanti and Tarjan

[118].

Algorithm 20 : Pseudo-code to unite x and y.
1: procedure unite(x, y)
2: u← find(x); v ← find(y)∗
3: while u ̸= v do
4: link(u, v)∗
5: u← find(u); v ← find(v)∗

6: procedure link(u, v)
7: [up, r, ub]← u.f
8: [vp, s, vb]← v.f
9: if r < s then CAS(u.f, [up, r, 1], [v, r, 0])∗

10: else if s < r then CAS(v.f, [vp, s, 1], [u, s, 0])∗
11: else
12: if u < v then CAS(u.f, [up, r, 1], [v, r + 1, $])∗
13: else CAS(v.f, [vp, s, 1], [u, s+ 1, $])∗

An explanation of our Linking heuristic: Link initially reads the fields of u and v (Lines 7-

8). If r, the rank of u, is less than s, the rank of v, the link attempts to change the parent of u

to v and the root-bit of u to 0 (“not a root”), while leaving the rank of u unchanged (Line 9). If

s is less than r, the link proceeds symmetrically (Line 10). The interesting case is r = s: if u < v

(check on Line 12 succeeds), the algorithm tries to change the parent of u to v and increment the

rank of u, and set the root-bit of u randomly (Line 12). This case deviates from our presentation

in Algorithm 19, so we now explain why the algorithm tries to change both the parent and rank

fields. If the update succeeds and the root-bit, u.b, gets set to 1, then u continues to be a root, and

thus the parent field is disregarded by the algorithm, so it does not matter that it was changed to

175

v. On the other hand, if the update succeeds and root-bit gets set to 0, then u is no longer a root,

and the rank field is subsequently disregarded by the algorithm, so it does not matter that it was

changed to r+1. Therefore, although syntactically the algorithm changes both the parent and the

rank fields, semantically only the parent or the rank changes. Thus the implementation matches

the idea in Algorithm 19. Line 13 acts symmetrically in the case that u.r = v.r and v < u.

Note: for the purpose of the analysis only, we think of the rank as not incremented if Line 12

or 13 makes a root a non-root.

7.7.1 The Find Procedure

We present the two different implementations of find(x), namely naïve and two-try splitting in

Algorithm 21. These procedures reproduce Algorithm 13 and Algorithm 15 using the node repre-

sentation with three fields (parent, rank, and root-bit) per node.

An explanation of Naïve find: Naïve find uses an auxiliary variable u (Line 2) that follows

parent pointers up the tree (Line 4) until it reaches a root (Line 3). find(x) returns this node as

the leader (Line 5). The linearization point of this procedure is the time at which u is discovered

to be a root.

Algorithm 21 : Find algorithms naïve and two-try splitting, respectively
1: procedure find(x)
2: u← x
3: while not u.b∗ do
4: u← u.p

5: return u

6: procedure find(x)
7: u← x;
8: while not u.b∗ do
9: [v, r, ub]← u.f ; [w, s, vb]← v.f∗

10: if vb then return v

11: CAS(u.f, [v, r, 0], [w, r, 0])
12: [v, r, ub]← u.f ; [w, s, vb]← v.f∗

13: if vb then return v

14: CAS(u.f, [v, r, 0], [w, r, 0])
15: u← v

16: return u

An explanation of the two-try splitting find pseudo-code: Find uses an auxiliary variable

u to walk up the tree (Line 7). If u is not a root (Line 8), its parent v, and grandparent v.p = w

176

are read (Line 9). If v is a root, Find has succeeded and can return v (Line 10); otherwise, an

improvement is attempted on Line 11. A successful CAS on Line 11 changes only the parent of

u, without modifying the other fields of u. After a second attempt to improve the same node u

(Lines 12-14), u is replaced by its parent v, in order to keep walking up the tree (Line 15). Finally,

if u becomes the root (Line 8), it is returned on Line 16. The linearization point of the procedure

is the time when the root-bit of the returned node is read, since this is the time when the returned

node is surely the root of the tree.

Note: Removing the second attempt to improve u (Lines 12-14) from the pseudo-code of find

with two-try splitting produces pseudo-code for find with one-try splitting.

7.8 Upper Bounds

The results of Sections 7.5 and 7.6 give us the following theorem:

Theorem 7.8.1. With any of the three linking methods of Section 7.5 combined with any valid

compaction method, the total work is O(m logn). This bound is worst-case for the deterministic

linking method, high-probability for the randomized methods. If randomized linking by rank is

implemented as described in Section 7.6, the bound is valid even for an adversarial scheduler.

Proof. The theorem is immediate from the results of Sections 5 and 6.

The use of splitting instead of naïve find improves the total work bounds significantly if p≪ n.

We show this by extending the analysis of sequential splitting [196, 75] to one-try and two-try

splitting.

We define the density d of a set union problem instance to be m/(np) if splitting is two-try,

m/(np2) if splitting is one-try. We shall obtain a bound of O(m · (α(n, d) + log(1 + 1/d))) on the

total work if either kind of splitting is used in combination with any of the three linking methods.

The main obstacle we encounter in extending the sequential analysis to the concurrent setting is

accounting for unsuccessful CAS operations. Accounting for such operations adds the logarithmic

term to the work bound.

We call a problem instance sparse if d < 1 and dense otherwise. The logarithmic term in the

work bound dominates only in sparse instances. We start with the analysis of dense instances,

which is simpler than that of sparse ones.

177

We call a child a zero child if its rank is the same as that of its parent. Zero children only exist

if a randomized linking method is used.

With deterministic linking by rank or linking by random index, ranks are at most is lgn. With

randomized linking by rank, they are at most n− 1, although large ranks occur with exponentially

small probability (Lemma 7.5.3 part (iii)).

7.8.1 The Dense Case

Throughout this section we assume d ≥ 1.

Lemma 7.8.2. The number of finds is O(m), worst-case unless randomized linking by rank is used,

in which case the bound is with high probability.

Proof. There are at most two finds per unite plus at most two per process per root that increases

in rank or becomes a child, for a total of O(m+ np) = O(m). For randomized linking, this bound

follows from part (ii) of Lemmas 7.5.3 and 7.5.5 and is high-probability for randomized linking by

rank, worst case for linking by random index.

We call a node low if its rank is less than d and high otherwise. All nodes have rank at most

n− 1. During a find, a visit to a node is an iteration of the find loop in which the node is the value

of u. (See the pseudocode in Section 7.4.)

Lemma 7.8.3. The number of visits to low nodes during finds is O(m), worst-case if linking is

deterministic, expected if randomized.

Proof. Consider three successive visits to low nodes during a find, to u, v, and w. Let I be the

interval of time between the visits of u and w. We claim that at least one of the following events

occurs during I : u or v becomes a child, u.p.r increases, or u or v loses an ancestor of the same

rank. The number of such events for fixed u and v is O(d): a node only becomes a child once, its

parental rank can increase at most d times before it exceeds d and its parent is not low; a node has

O(1) ancestors of the same rank in expectation by part (i) of Lemmas 7.5.3 and 7.5.5. We charge

the visit to u to the corresponding event (or any such event if there is more than one). Each event

is charged for at most 2p visits, at most two per process. (The factor of two comes from the two

nodes associated with a visit, the node itself and the next node visited.) Summing over all nodes,

we obtain a bound of O(npd) = O(m) on visits to low nodes.

178

Suppose the claim is false. Then u and v are children when u is visited. After the CAS following

the visit to u, the parent of u has changed; after the CAS following the visit to v, the parent of

v has changed. If either u or v is a zero child when u is visited, at least one of them becomes a

non-zero child or loses an ancestor of the same rank during I. Thus neither u nor v is a zero child

when u is visited. But then the rank of the parent of u increases by the time the CAS after the

visit to u finishes, making the claim true.

Bounding visits to high nodes is more complicated. For each high child x, we measure the

progress of compaction by keeping track of an increasing function of the rank of the parent of x,

called the count of x. We define counts using Ackermann’s function. Our formulation is an extension

of that of Kozen [132]. We define the level x.a of a high node x, and the index x.b and count x.c of

a high child x, as follows:

x.a = min{k| Ak(x.r) > x.p.r} ;

x.b = max{i| Ax.a(i) ≤ x.p.r} ;

x.c = x.r · x.a + x.b.

We bound the range of levels, indices, and counts by using the properties of Ackermann’s

function:

Lemma 7.8.4. If x is a high node, 0 ≤ x.a ≤ α(n, d) and x.a = 0 if and only if x.r = x.p.r. If

x is a high child, 0 ≤ x.b < x.r and 0 ≤ x.c < (α(n, d) + 1)x.r. The values of x.a and x.c never

decrease, and if x.a or x.b increases, x.c increases by at least as much.

Proof. Since A0(x.r) = x.r + 1, x.a = 0 if and only if x.r = x.p.r, and x.a ≥ 0 if it is defined.

If x is a high node, Aα(n,d)(x.r) ≥ Aα(n,d)(⌊d⌋) > n > x.p.r. Thus x.a is defined and is at most

α(n, d). (Here for randomized linking by rank we use the assumption that all ranks are less than

n.) Suppose x is a high child. If x.a = 0, x.b = x.r – 1 since x.r ≥ d ≥ 1. If x.a > 0, Ax.a(0) =

Ax.a–1(1) ≤ Ax.a–1(x.r) ≤ x.p.r, so x.b is defined. Since Ax.a(x.r) > x.p.r, x.b < x.r. The bounds on

x.c follow from those on x.a and x.b. While x is a root, x.a = 0. Once x is a child, x.r is constant and

x.p.r cannot decrease, so x.a cannot decrease by Lemma 7.3.1. While x.a is constant, x.b cannot

decrease for the same reason. If x.a increases by one, x.b can decrease by at most x.r – 1, resulting

in an increase of at least one in x.c. If x.a increases by more than k, x.c increases by at least (k –

1)x.r + 1.

Lemma 7.8.5. The sum of the counts of all high children is O(nα(n, d)), worst-case unless linking

is randomized by rank, in which case the bound is high-probability.

179

Proof. By Lemma 7.8.4, the sum of the counts of high children is O(α(n, d)) times the sum of the

ranks of all nodes. By Lemmas 7.5.1 and 7.5.5, the sum of ranks is less than n for deterministic

linking by rank and linking by random index. For randomized linking by rank, it is O(n) with high

probability by Lemma 7.5.3.

The following lemma is the key to the analysis of splitting.

Lemma 7.8.6. Consider a time t at which u is a high child whose parent v is also a (high) child.

Let w the parent of v at time t, and let u.a, v.a, and w.r be the levels of u and v and the rank of w

at time t, respectively. Suppose that at time t or later the parent of u changes from v to a node x

of rank at least w.r. If v.a > u.a, the parent change increases u.a and u.c by at least v.a – u.a; if

v.a = u.a, the parent change increases u.c by at least 1 or causes u to lose an ancestor of the same

rank.

Proof. Let u.r and v.r be the ranks of u and v at time t, respectively. Let x.r be the rank of x

when it becomes the parent of u. Since Av.a–1(u.r) < Av.a–1(v.r) ≤ w.r ≤ x.r, the level of u after

the parent change is at least v.a. If v.a > u.a, the parent change increases the level and hence the

count of x by at least v.a – u.a by Lemma 7.8.4. Suppose v.a = u.a. If u.a = 0, the parent change

causes u to lose v as an ancestor. Suppose u.a > 0. Since Au.a(u.b + 1) = Au.a–1(Au.a(u.i)) ≤

Au.a–1(v.r) ≤ w.r ≤ x.r, the parent change increases either the level or the index of u and hence

increases the count of u.

To count visits to high nodes, we use a credit argument. One credit pays for one high-node visit.

We allocate a certain number of credits to each find when it starts, and additional credits when

high nodes increase in count or lose ancestors of the same rank. We show via a credit invariant

that these credits suffice to pay for all the high-node visits. A bound on the total number of credits

gives a bound on the number of high-node visits.

We begin by analyzing two-try splitting: even though it is more complicated than one-try

splitting, its analysis is simpler. We call a find active while it is being executed. When a find starts,

we allocate it α(n, d) + 1 credits. When the count of a high child increases by k, we allocate 2k

credits to each active find, for a total of at most 2pk. When a high child loses an ancestor of the

same rank, we allocate one credit to each active find, for a total of at most p.

Lemma 7.8.7. With two-try splitting, the number of allocated credits is O(mα(n, d)), worst-case

if linking is deterministic, average-case if randomized.

180

Proof. By Lemma 7.8.2, the number of credits allocated to finds when they start is O(mα(n, d)).

By Lemma 7.8.5, the number of credits allocated to finds as a result of increases in count is

O(npα(n, d)) = O(mα(n, d)). By Lemmas 7.5.3 and 7.5.5, the expected number of credits allocated

to finds as a result of nodes losing ancestors of the same rank is O(np) = O(m).

Lemma 7.8.8. With two-try splitting, just after a high node u is visited by a find, the find has at

least u.a credits.

Proof. We prove the lemma by induction on the number of high-node visits done by a find. When

the find starts, it has O(α(n, d)+1 credits. The first visit costs one, leaving α(n, d), which is enough

to make the lemma true just after this visit. Suppose the lemma holds just after u is visited, and

let v be the next node visited. We denote by unprimed and primed values their values just after the

visit to u and just before the visit to v, respectively. The lemma holds after the visit to v provided

that the find accrues at least v.a’ – u.a + 1 credits between the visits to u and v. To show that this

happens, we need the following crucial inequality, which follows from Lemma 7.8.6:

(*) u.a′ ≥ v.a

To prove (*), we refer to the implementation of two-try splitting. Let t be the first time u.p =

v. Time t is after the visit to u, since u.p changes between the first and second times that the find

sets its variable v after the visit to u, as a result of the first CAS during the visit to u succeeding

or failing. Let w be the parent of v at time t. Consider the change to u.p resulting from the second

CAS after the visit to u. This change satisfies the hypothesis of Lemma 7.8.5, since the new parent

of u must have been the parent of v at time t or later. By Lemma 7.8.6, just after this change to

u.p, the level of u is at least the level of v at time t. Since levels are non-decreasing, (*) holds.

Between the visits to u and v, the find accrues at least 2(u.a’ – u.a + v.a’ – v.a) = (v.a’ –

u.a) + (u.a’ – u.a) + (v.a’ – v.a) + (u.a’ – v.a) credits as a result of level increases.. Each of the

last three terms is non-negative, the last one by (*). Thus the find accrues at least v.a’ – u.a + 1

credits between the visits, unless the levels of u and v are equal and unchanging between the visits.

Suppose the levels of u and v are equal and unchanging between the visits. By Lemma 7.8.6, the

find accrues at least one credit when the parent of u changes from v.

Lemma 7.8.9. With two-try splitting, the number of visits to high nodes is O(mα(n, d)), worst-case

if linking is deterministic, average-case if randomized.

Proof. The lemma is immediate from Lemmas 7.8.7 and 7.8.8.

181

Now we extend the analysis to one-try splitting. The proof of Lemma 7.8.8 fails for one-try

splitting, because a CAS done by one process, say process 1, can fail as a result of a successful

CAS done by another process, say process 2, that sets its value of v before process 1’s most recent

high-node visit. That is, time t in the proof of Lemma 7.8.6 can precede the visit. This invalidates

the use of Lemma 7.8.6 in the proof.

To overcome this problem, we allocate additional credits to node count increases, and we allow

active finds to shift some of their credits to the other active finds. Specifically, when a find starts,

we allocate it α(n, d) + 1 normal credits. When a high child loses an ancestor of the same rank, we

allocate one normal credit to each active find. When the count of a high node increases by k, we

allocate 2k normal credits and 2k(p − 1) extra credits to each active find. When a CAS in a find

succeeds, we shift a 1/(p− 1) fraction of the find’s extra credits to each other active find. Shifted

extra credits become normal; that is, we shift a credit at most once.

Lemma 7.8.10. With one-try splitting, the number of allocated credits is O(mα(n, d)), worst-case

if linking is deterministic, average-case if randomized.

Proof. The bound holds for normal credits by the proof of Lemma 7.8.7. By Lemma 7.8.5, the

number of extra credits allocated to finds as a result of increases in count is O(np2α(n, d)) =

O(mα(n, d)) since d = m/(np2).

Lemma 7.8.11. With one-try splitting, just after a high node u is visited by a find, the find has

at least u.a normal credits.

Proof. The proof is an extension of that of Lemma 7.8.8. Consider a find, say find 1. The credits

allocated to the find when it starts make the lemma true just after its first high-node visit. Suppose

the lemma holds just after find 1 visits u, and let v be the next node it visits. We consider three

cases. If the CAS during the visit of find 1 to u succeeds, the lemma holds just after the visit to

v by an argument like that in the proof of Lemma 7.8.8. (This case does not use shifted credits.)

Suppose this CAS fails, because a CAS done by another find, say find 2, changes u.p from v to

another value. Let t be the last time that find 2 set its variable v before its successful CAS. If t is

after find 1 visits u, the lemma holds just after the visit to v by an argument like that in the proof

of Lemma 7.8.8, again without the use of shifted credits.

The third, new case is if t precedes the visit of find 1 to u. Let t’, t’’, and t’’’ be the times find

1 visits u, find 2 does its CAS, and find 1 visits v, respectively. We denote by unprimed, primed,

double-primed, and triple-primed values their values at times t, t’, t’’, and t’’’, respectively. Applying

182

Lemma 7.8.5 to time t and the successful CAS of find 2 gives u.a’’ ≥ v.a; and, if u.a ≤ v.a, the

count of u increases by at least 1 or u loses an ancestor of the same rank when find 2 does its CAS.

At time t’, find 1 has at least u.a’ normal credits by the induction hypothesis. Between times

t’ and t’’’, it accrues at least 2(u.a’’’ – u.a’ + v.a’’’ – v.a’) normal credits. Between times t and

t’’, find 2 accrues at least 2(p – 1)(u.a’’ – u.a + v.a’’ – v.a) ≥ 2(p – 1)(u.a’ – u.a + v.a’ – v.a)

extra credits, of which at least 2(u.a’ – u.a + v.a’ – v.a) are shifted to find 1 and become normal at

time t’’: find 1 is active at t’’ since its CAS fails as a result of the CAS by find 2 succeeding. Thus

between t’ and t’’’ find 1 accrues at least 2(u.a’’’ – u.a + v.a’’’ – v.a) ≥ (v.a’’’ – u.a’) + (u.a’’’ –

u.a) + (v.a’’’ – v.a) + (u.a’’ – v.a) normal credits. Since u.a’’ ≥ v.a, this is at least v.a’’’ – u.a’

+ 1, enough to make the lemma true for the visit to v, unless u and v have equal and unchanging

levels from t to t’’’, in which case find 1 accrues a normal credit when find 2 does its CAS.

Lemma 7.8.12. With one-try splitting, the number of visits to high nodes is O(mα(n, d)), worst-

case if linking is deterministic, average if randomized.

Proof. The lemma is immediate from Lemmas 7.8.10 and 7.8.11.

7.8.2 The Sparse Case

In this section we modify the analysis of Section 7.8.1 to handle sparse instances. Throughout this

section we assume d < 1. We need to change the definition of low and high nodes, add an additional

node type, middle, and (for the purpose of the analysis only) redefine the ranks of nodes.

Let l = lg(1 + 1/d). Since d < 1, l > 1. A node is low if its rank is less than l and its height

is less than cl, where c is the constant in part (vi) of Lemmas 7.5.3 and 7.5.5; middle if its rank

is less than l but its height is at least cl, and high if its rank is at least l. Middle nodes can exist

only if linking is randomized.

Lemma 7.8.13. The number of non-low nodes is at most 2nd, as is the sum of the ranks of such

nodes. This bound is worst-case if linking is deterministic, average-case if randomized.

Proof. By part (vi) of Lemmas 7.5.3 and 7.5.5, the expected number of middle nodes is at most

n/2l ≤ n/2lg(1/d) = nd if linking is randomized. (It is zero if not.). By Lemma 7.5.1 or part (iii)

of Lemma 7.5.3 or 7.5.5 depending on the linking method, the number of high nodes is also at

most n/2l ≤ nd, worst-case if linking is deterministic or by randomized index, average-case if by

randomized rank. The bound on the sum of ranks follows from the node bound by the argument in

183

the proof of Lemma 7.5.1 if linking is deterministic, by that in the proof of part (ii) of Lemma 7.5.3

or 7.5.5 if randomized.

Lemma 7.8.14. The number of finds that visit at least one non-low node is O(m), worst-case if

linking is deterministic, average-case if randomized.

Proof. Consider the finds during unites that visit at least one non-low node. At most two per unite

also visit a low node. Of those that visit only non-low nodes, there are at most two per unite plus

at most 2p per non-low node that becomes a child or has a rank increase, two per process doing

a unite while the event in question takes place. By Lemma 7.8.13, the number of such finds is

O(npd) = O(m).

Lemma 7.8.15. The number of visits to low nodes is O(ml), worst-case.

Proof. The analysis of node visits in the proof of Theorem 7.5.2 restricted to nodes of rank less

than l and height less than cl gives a bound of O(l) low-node visits for each find and unite.

Lemma 7.8.16. If linking is randomized, the expected number of visits to middle nodes is O(ml).

Proof. By Lemma 7.8.14, the expected number of finds that visit middle nodes is O(m). During

such a find, each visit to a middle node except the last two is followed by a middle node losing a

child of the same rank or the parent of a middle node x increasing in rank. The latter can only

happen l times before x has a parent that is not a middle node; subsequently, x can only be the last

middle node visited during a find. We charge each visit to a middle node other than the last two

of a find to the corresponding event. The charge per event is at most p, and the expected number

of events is at most ndl rank increases and O(nd) losses of same-rank ancestors, the latter by part

(i) of Lemma 7.5.3 or 7.5.5. Such events account for O(npdl) = O(ml) visits. Adding the last two

per find gives the lemma.

To count visits to high nodes, we define the effective rank of a high node x to be x.er = x.r – l

+ 1. We define levels of high nodes and indexes and counts of high children, using effective ranks

in place of ranks. Since the effective rank of a high node is at least one, levels of high nodes and

indices and counts of high children are well-defined. We allocate credits exactly as in Section 7.8.1.

Lemmas 7.8.4 and 7.8.6 remain true. By Lemma 7.8.13, the sum of counts of high children is

O(ndα(n, d)), worst-case if linking is deterministic, high-probability if randomized. We allocate

credits exactly as in Section 7.5.1. Lemmas 7.8.8 and 7.8.11 remain true. If splitting is two-try, the

184

number of allocated credits is O((m+ ndp)α(n, d)) = O(mα(n, d)) since d = m/(np); if splitting is

one-try, it is O((m+ ndp2)α(n, d)) = O(mα(n, d)) since d = m/(np2). We conclude that Lemmas

7.8.7, 7.8.9, 7.8.10, and 7.8.12 hold in the sparse case (with the new definition of a high node).

7.8.3 The Total Work Bound

Combining the results of Sections 7.1 and 7.2, we obtain the following theorem:

Theorem 7.8.17. With any of the three linking methods of Section 7.5 and either one-try or two-

try splitting, the total work is O(m(α(n, d) + log(1 + 1/d))), worst-case if linking is deterministic,

average-case if randomized, where d = m/(np2) if splitting is one-try, d = m/(np) if splitting is

two-try.

Proof. The theorem follows from Lemmas 7.8.3, 7.8.9, 7.8.12, 7.8.15, and 7.8.16.

7.9 Lower Bounds

In this section, we derive lower bounds on the worst-case and amortized efficiency of set union

algorithms. In the first subsection, we prove lower bounds on the work efficiency of the algorithms

by explicitly providing worst-case executions—both the operations and the adversarial schedules.

At a high level, our executions are constructed by the following observations and steps. For each

algorithm, we describe operations that build a tree of logarithmic height using unite operations. We

observe that shadowing schedules in which all processes are scheduled in lock-step while performing

the same expensive find operations result in worst-case behavior. We apply a shadowing schedule

to processes performing a find on the deepest node in the aforementioned tree to prove that the

logarithmic term in our upper bounds is tight. Then, we combine the idea of shadowing schedules

with previous sequential lower bounds of Tarjan et al. and Fredman et al. [196, 64] to show that

the inverse-Ackermann term in our upper bounds is tight. Our algorithmic lower bounds section

proves that our amortized upper bound analyses are tight when find operations are done with

two-try splitting.

In the second subsection, we show general lower bounds that apply to the concurrent set union

problem. First, we prove that, in the worst-case, any concurrent set-union algorithm must do at

least Ω(logmin{n, p}) work in expectation for a single operation. When p = n
ω(1

log log n
), this lower

bound is stronger than the sequential lower bound of Ω
(

logn
log logn

)
given by Fredman and Saks [64]

185

in the cell probe model. It also shows a separation in work complexity between the sequential

and concurrent versions of the set-union problem, since Blum [25] presented an algorithm that

does at most O
(

logn
log logn

)
work per operation in the sequential setting. Furthermore, whenever

log p = Θ(logn), i.e. when p = nϵ, this lower bound establishes that randomized linking with

any form of compaction yields an algorithm with optimal expected work per operation. Finally,

we generalize the worst-case lower bound using shadowing schedules to show that our algorithm

obtained by combining randomized linking with two-try splitting is optimal amongst a class of

symmetric algorithms that includes all known algorithms for the concurrent disjoint set union

problem.

7.9.1 Algorithmic Lower Bounds

In order to prove the tightness of the inverse-Ackermann term in our upper bounds, we recall a

sequential cell probe lower bound on the set union problem given by Fredman and Saks.

Lemma 7.9.1 ([64]). Let A be any randomized algorithm that solves the sequential set union

problem. For any fixed number of nodes n, and any M ≥ n, there is a sequence of operations σM ,

that makes A perform Ω(Mα(n,M/n)) expected work.

We use Lemma 7.9.1 to establish a concurrent lower bound.

Lemma 7.9.2. Let A be any of the algorithms we have described for concurrent set-union. There

is some sequence of m operations using p processes on n nodes that requires

Ω
(
m · α

(
n, m

np

))
work in expectation.

Proof. Any concurrent algorithm is also a sequential algorithm if it is run by a single process. So,

for any given M ≥ n, we can take a worst-case sequence σM of operations from Lemma 7.9.1. That

is, a single process running the sequence of operations σM will perform Ω(Mα(n,M/n)) work in

expectation. In the remainder of the proof, we use shadowing schedules, in which processes run in

lock-step with each other and thereby do not gain locally from any compaction attempts of other

processes, to get the lower bound.

We consider two cases for m:

Case 1: If m ≥ np, then we choose M = m/p ≥ n. If each of the p processes runs σM and

is scheduled in lock-step (so that the processes all walk up find sequences together and do

not benefit from each other’s compaction attempts), then the total number of operations is

pM = m and the total amount of work is Ω(pMα(n,M/n)) = Ω
(
mα
(
n, m

np

))
.

186

Case 2: If m < np, we choose M = n. Then, σM performed by a single process takes

Ω(nα(n, 1)) expected work. We observe thatm/n < p and assignm/n processes the operation

sequence σM , thus assigning m operations. If the processes are scheduled in lock-step, the

total expected work performed by them is Ω(m/n · nα(n, 1)) = Ω
(
mα
(
n, m

np

))
.

We can also show that the logarithmic term log(npm + 1) is an amortized lower bound for all

our algorithms. The schedule that builds binomial trees with a single process and makes all the

processes shadow each other up the longest branch of these trees yields the lower bound.

Lemma 7.9.3. For randomized linking by rank and linking by DCAS, regardless of what type of

compaction is used in find operations, and for any positive integer k ∈ [1, n], there is a sequence of

k − 1 unite operations that will build a tree with k nodes with height Ω(log k).

Proof. For simplicity, we initially assume that k is a power of 2. Let Bj be the binomial tree of

height j. All the nodes are initially in singleton trees, i.e. B0 trees. We proceed in lg k rounds. In

round r, we start with k
2r−1 trees of type Br−1, and simply unite their roots pairwise. After lg k

rounds we end up with a single tree of type Blg k. If k were not a power of 2, we perform the above

procedure with the largest power of 2 less than k and simply unite the remaining nodes to the root

of the main tree.

A slightly more complex construction allows us to prove a similar lemma for linking by index.

Lemma 7.9.4. For randomized linking by index, regardless of what type of compaction is used in

find operations, and for any positive integer k ∈ [1, n], there is a sequence of k− 1 unite operations

by a single process that will build a tree with k nodes in which the depth of a uniformly randomly

picked node is Ω(log k) in expectation.

Proof. The proof is constructive. The construction of these trees is inspired by binomial trees, and

is done in multiple rounds such that each round fully finishes before the next round starts. Without

loss of generality let k be a power of 2, as otherwise we could just use the greatest power of 2 less

than k in the following construction. Initially, we let the nodes be in singleton trees T1,1, . . . , Tk,1.

In each round we will combine pairs of trees, and each tree T will have a designated node ν(T). In

the initial trees the designated node is the only node. In the first round we combine pairs of trees

187

by performing

unite(ν(T1,1), ν(T2,1)), unite(ν(T3,1), ν(T4,1)), . . . , unite(ν(Tk−1,1), ν(Tk,1))

to produce tree T1,2, . . . , Tk/2,2. The designated node ν(Ti,2) is chosen to be one of the designated

nodes of the subtrees that formed Ti,2. We call this process of picking the new designated nodes as

a subset of the old ones refining. The subsequent rounds are done similarly by combining pairs of

trees from the previous round and refining designated nodes, until only the tree T1,lg k remains.

We now make the following observations about this process:

1. All trees Ti,r of a given round r have the same number of nodes 2r.

2. A designated node always has depth at most 2. (This follows from the way find does com-

pactions.)

3. A node of depth δ in any of the trees Ti,r has at most
(
1
2

)δ · |Ti,r| successors.

The links in the rounds raise the depth of half the nodes due to (1), and the compactions in the

find operations of the rounds reduce the average depth of a node in the forest by at most 1
4 due

to (2) and (3). Thus, each round increases the average depth of a node in the forest by at least
1
2 −

1
4 = 1

4 . Since there are log(k) rounds, the proof is complete.

Combining the previous lemmas yields our best algorithmic lower bound result.

Lemma 7.9.5. Let A be a concurrent disjoint set union algorithm obtained by combining linking

by DCAS, randomized linking by rank, or linking by random index with find with no compaction,

one-try splitting, or two-try splitting. There is a schedule of m operations on n nodes by p processes

that forces A to perform Ω
(
m log

(np
m + 1

))
work. The bound holds in expectation for the linking

by random index algorithm even under the independence assumption.

Proof. We prove the theorem for linking by the DCAS and randomized linking by rank algorithms

first. The lower bound is non-trivial only when m/p < n. In this case, we describe a particular

sequence of operations and schedule that performs the requisite work. Divide the nodes into m/p

groups of size n/(m/p) = np/m. Lemma 7.9.3 allows us to link each group of nodes into a tree of

height Ω
(
m log

(np
m + 1

))
. For each such tree, perform find(x) on the deepest node x of that tree

simultaneously with each of the processes. Now consider the schedule in which processes shadow

each other in all the finds. In this schedule, each process does Ω
(
m log

(np
m + 1

))
work per find,

188

and one find per group. The total number of operations is m/p× p = m, and the total amount of

work is Ω
(
m log

(np
m + 1

))
.

In the case of the linking by random index algorithm under the independence assumption, we

modify the above argument by replacing the use of Lemma 7.9.3 with Lemma 7.9.4, and performing

find(x) on a uniformly randomly picked node x in the tree.

Combining the previous lemmas yields our best algorithmic lower bound result.

Theorem 7.9.6. Let A be a concurrent disjoint set union algorithm obtained by combining linking

by DCAS, randomized linking by rank, or linking by random index with find with no compaction,

one-try splitting, or two-try splitting. There is a schedule of m operations on n nodes by p processes

that forces A to perform Ω
(
m
(
log
(np
m + 1

)
+ α

(
n, m

np

)))
work. The bound holds in expectation

for the linking by random index algorithm even under the independence assumption.

Proof. Combine the results of Lemmas 7.9.2 and 7.9.5.

As the final algorithmic lower bound, we prove that the independence assumption we have been

using to analyze the linking by random index algorithm is indeed necessary. In particular, we

present a super-logarithmic work lower bound for the algorithm if the independence assumption

does not hold.

Lemma 7.9.7. Concurrent set union via the linking by random index algorithm performs Ω(m
√
p)

expected work to do m = n
√
p operations if √p ≤ n, regardless of which compaction rule the find

operations use.

Proof. We will show an explicit example. Assume √p < n, and pick a set S of √p nodes. Let p/2

processes attempt to do unite(x, y) where each pair of x, y in S is tried by at least one process.

The scheduler can wait to see the outcomes of the node comparisons and decide to schedule the

processes so that the nodes of S get linked into a linear path of length √p. If the remaining p/2

processes all perform find(x) where x is chosen randomly from S, and are scheduled in lock-step,

they will perform, in expectation, Ω(√p) work each, since the expected depth of x is √p/2.

Performing the same process on each of the ⌊ n√
p⌋ sets of nodes leads to Ω(np) work to do

m = n
√
p operations. The average operation takes Ω(√p) work.

189

7.9.2 Problem Lower Bounds

In this subsection, we prove that any concurrent set-union algorithm must do Ω(logmin{n, p}) work

for a single operation in the worst case. Furthermore, we build on the worst-case lower bound to

show an Ω(log(np/m+1)) amortized work lower bound for all symmetric algorithms, where we say

an algorithm is symmetric if:

1. The algorithm’s code for the unite and find procedures does not use process ids.

2. The algorithm does not use the return values of CAS operations.

All our algorithms and all algorithms known to us can be made symmetric without effecting the

upper bound analyses of the algorithms. For instance, this can be done if we assume that all CAS

operations return false. This does not effect the correctness of our algorithms since we only use the

return value of a CAS operation in the unite operation to determine if a link has been successful.

However, if we do not perform this check atomically, our algorithms remain correct, since a process

that has successfully united two trees together will realize this shortly afterwards when its u and

v pointers meet at the root of the united tree. The work efficiency analysis increases by at most

a factor of two, because we can always imagine the case where processes work in pairs (p, q), and

each pair performs operations together and are always scheduled in lock-step. In this case, if p

ever performs a successful link CAS(u.p, u, v) and returns, then q’s attempt to perform the same

link will fail; thus q will only return after it traverses the whole tree and discovers that some other

process has already finished the link it wanted to do. The modification we propose to symmetrize

the algorithm will simply make p do the same work as q.

Our lower bounds make use of a result on a problem called “wake-up”. The wake-up problem on

k processes asks for a wait-free algorithm with two properties: (i) every process returns a boolean

value and at least one process returns true, and (ii) a process may return true only if every process

has already executed at least one step. The following lemma is a lower bound on the complexity

of wake-up that follows straightfowardly from Jayanti’s lower bound in [103].

Lemma 7.9.8 ([102, 103]). For any k process wake-up algorithm that uses variables support-

ing read, write, and CAS, there is a schedule in which some process performs Ω(log k) steps in

expectation.

We solve wake-up via set-union to get our lower bounds below.

190

Lemma 7.9.9. The reduction (below) solves the wake-up problem for k processes using a disjoint set

union instance with k+ 1 nodes, in which each process executes one unite and two find operations.

Proof. Let q1, . . . , qk be the k processes and let the nodes be labelled 0, . . . , k. The reduction below

correctly solves wake-up because:

Reduction qj ’s code in wake-up solution.
1: procedure WakeUp
2: unite(j − 1, j); x← find(0); y ← find(k); return x = y

(i) the last process to complete unite finds that the leaders of nodes 0 and k are the same and

thus returns true, and (ii) no process returns true before all processes have completed unite, since

no leader of k can be the same as any leader of 0 until they are in the same set, i.e. until the last

of the unite operations is linearized.

Theorem 7.9.10. Let A be a linearizable wait-free concurrent disjoint set union algorithm using

read, write, and CAS. There is a schedule of m operations on n nodes by p processes that forces A

to perform Ω(logmin{n, p}) work in expectation.

Proof. Instantiate Lemma 7.9.9 with k = min{n− 1, p}. The most expensive of the three set union

operations of the process that performs the most work in the adversarial schedule of Lemma 7.9.8

must do Ω(logmin{n, p}) expected work.

Corollary 7.9.11. The disjoint set union algorithm obtained by combining randomized linking

with any form of find described in this chapter gives an algorithm with optimal worst-case work per

operation up to constant factors when log p = Θ(logn).

Remark 7.9.12. Theorem 7.9.11 shows that our set union algorithms with randomized linking

have optimal work per operation when p = nε for constant ε.

Remark 7.9.13. Theorem 7.9.10 establishes a separation in worst-case work complexity between

sequential and concurrent set-union when p = n
ω(1

log log n
) since Blum’s sequential set-union algo-

rithm has a worst-case work complexity of O(logn
log logn) [25].

Lemma 7.9.14. Let A be a linearizable wait-free symmetric concurrent disjoint set union algorithm

using read, write, and CAS. There is a schedule of m operations on n nodes by p processes that

forces At to perform Ω(m log(np/m+ 1)) work.

191

Proof. Divide the n nodes into g = m
p groups of size k+1, where k = np

8m (disregard any additional

nodes); label the groups G1, . . . , Gg. Note that m ≥ p and m ≥ n
2 , so k ≤ p

4 . We divide the p
2 (out

of the p) processes into two sets A = {q1, . . . , qk} and B = {qk+1, . . . , qp/2}. Note that |B| ≥ p
4 and

|A ∪B| = p
2 .

Consider running the wake-up algorithm of Lemma 7.9.9 on the k processes in A using the

k + 1 nodes in G1. By Lemma 7.9.8 there is a schedule σ1 in which some process qi performs

Ω(log k) steps. Assign to each process in B the same sequence of three set union operations that

qi performs, and define schedule σ′
1 to be the schedule σ1, with the processes of B interleaved in

to run in lockstep with qi. In this schedule, the processes q1, . . . , qp/2 perform Ω(p log k) work to

do p set union operations. Repeating this procedure on each group Gj produces schedules σ′
j ,

each of which performs Ω(p log k) work. Therefore, in the concatenated schedule of σ′
1σ

′
2 · · ·σ′

g, the

processes q1, . . . , qp/2 perform a total of Ω(gp log(k + 1)) = Ω(m log(np/m+ 1)) work to do a total

of gp = m operations.

Theorem 7.9.15. Let A be any linearizable wait-free symmetric concurrent disjoint set union

algorithm using read, write, and CAS. There is a schedule of m operations on n nodes by p

processes that forces A to perform Ω
(
m
(
log
(np
m + 1

)
+ α

(
n, m

np

)))
work in expectation.

Proof. Combine the results of Lemma 7.9.2, whose argument applies to all symmetric algorithms,

with Lemma 7.9.14.

Remark 7.9.16. Theorem 7.9.15 shows that the set union algorithm obtained by combining ran-

domized linking with two-try splitting has optimal amortized work efficiency amongst all symmetric

algorithms (up to a constant factor).

The ideas behind our collection of upper and lower bounds lead us to make the following

conjecture about the expected work complexity of concurrent disjoint set union.

Conjecture 1. The expected work complexity of the concurrent set union problem is

Θ

(
m ·

(
log
(np
m

+ 1
)
+ α

(
n,

m

np

)))
.

In light of Theorem 7.8.17, which shows that randomized linking with two-try splitting satisfies

the conjectured upper bound, a refutation of Conjecture 1 would imply a more efficient algorithm

than randomized linking with two-try splitting. On the other hand, a demonstration of the conjec-

ture would involve proving a universal lower bound; namely, showing that Theorem 7.9.15 holds

192

for all algorithms (as opposed to only symmetric ones). While this chapter proves a universal lower

bound on the worst-case complexity of a single operation, it does not prove any universal lower

bounds on the total work complexity of m operations. The only such lower bound that is known

for the problem is exponentially weaker than the conjectured one. We state this bound, by Jayanti

et al., below.

Theorem 7.9.17 ([117]). Let A be any linearizable wait-free concurrent disjoint set union algo-

rithm using read, write, and CAS. There is a schedule of m operations on n nodes by p processes

that forces A to perform Ω
(
m
(
log log

(np
m + 1

)
+ α

(
n, mn

)))
work in expectation.

7.10 Remarks and Open Problems

We have presented three linking methods and two splitting methods for concurrent disjoint set

union. With any of the linking methods, with or without compaction, the number of steps per

operation is O(logn), worst-case if linking is deterministic, high-probability if randomized. With

any of the linking methods and either of the splitting methods, the total work is O(m(α(n, d) +

log(1+1/d))), worst-case if linking is deterministic, average-case if randomized, where the problem

density d is m/(np2) if splitting is one-try, m/(np) if splitting is two-try. No matter what the

density, the cost of concurrency is at most a factor of log p, making our algorithms truly scalable.

The proofs of the bounds for linking by random index require assuming that the scheduler is non-

adversarial, as discussed in Section 7.5.3. The bounds differ for the two splitting methods only for a

narrow range of densities: if m/n = O(1) or m/n = Ω(p2), the bounds are the same; if m/n = ω(1)

and m/n = o(p2), the bounds differ by a factor of at most log p.

The O(logn) step bound is tight for all our algorithms. The work bounds for splitting are almost

tight: any symmetric algorithm (as defined in Section 7.9) has a work bound of

Ω

(
m ·

(
log
(np
m + 1

)
+ α

(
n, m

np

)))
. We conjecture that the same lower bound can be shown for

asymmetric algorithms also (Conjecture 1), but leave the proof or refutation of this statement as

an open problem.

Our results leave open the question of whether there is an efficient deterministic algorithm that

uses only CAS: our deterministic algorithm uses DCAS. Recently we have developed a surprisingly

simple algorithm that answers this question positively. The algorithm combines two ideas: the use

of latent links, which represent unites started but not finished, and deterministic coin tossing [36],

which provides a deterministic way to break ties. The worst-case and amortized time bounds for

193

finds are the same as those in the present work; the bounds for unites are larger by a factor of lg∗ n,

reducible to lg∗ p. We shall describe this result in a forthcoming paper.

In some applications of disjoint set union, such as computing flow graph information [193, 194]

each set has a name or some other associated value, such as the number of elements in the set.

We can extend the compressed tree date structure to support set values by storing these in the set

roots. In the sequential setting, it is easy to update set value information in O(1) time during a

link. But in the concurrent setting, updating the value in the new root during a link requires a

DCAS or some more-complicated implementation using CAS. Updating root values using DCAS

invalidates our analysis. Consider n singleton sets {1}, {2}, . . . , {n}. Suppose p = n, and unite(1,

n), unite(2, n),. . ., unite(n – 1, n) are performed concurrently using linking by rank via DCAS.

Assume the tie-breaking total order is numeric. At most one link will succeed initially, say the link

of 1 and n. After this link, all nodes except n will still have rank 0, and n will have rank 1. The

algorithm of Section 7.5.1 does all the remaining links concurrently using CAS, since none affects

node n. But if each such link needs to update the value in node n, the remaining links must be

done one-at-a-time, resulting in overall work Ω(np).

We think this problem can be overcome, and that the concurrent set union problem with set

values can be solved in a work bound that is quasi-linear in m and poly-logarithmic in p. But doing

so may well require relaxing the linearization requirement: instead of continuing to try to link each

node i and n, suppose the algorithm does a different set of links that reduce the contention. For

example, the algorithm could link roots in pairs, then the remaining roots in pairs, and so on. The

set resulting from all the links would be the same, but the intermediate sets would not correspond

to any linearization of the original unites. Even though it violates linearization, such an algorithm

might suffice in many if not all applications.

An algorithm of this kind needs a mechanism to restructure the links. We think some sort

of binary tree structure, like the one used by Ellen and Woelfel [57] in their fetch-and-increment

algorithm but more dynamic, may suffice. We leave open the development of this idea or some

other idea to solve the problem of concurrent sets with values.

Although our results are for a shared memory model, we think they will fruitfully extend to a

distributed-memory, message-passing setting.

Our work is theoretical, but others [3, 51, 95] have implemented some of our algorithms on

CPUs and GPUs and experimented with them. On many realistic data sets, our algorithms run as

fast or faster than all others.

194

Chapter 8

Fast Arrays and their Applications

8.1 Introduction

Arrays are the most fundamental data structure in computer science. Semantically, an array of

length m is an object that supports the following interface:

• Initialize(m, f): return an array O initialized to O[i] = f(i) for each i ∈ [m].1

• O.Read(i): return O[i], if i ∈ [m].

• O.Write(i, v): update O[i]’s value to v, if i ∈ [m].

Here, Initialize() is the constructor method that creates the object, and Read() and Write()

are the regular operations an array supports. Ordinarily, initialization is achieved by allocating an

array of length m and looping through to initialize its entries, while reads and writes simply use the

hardware load and store instructions. This standard implementation achieves a space complexity

of O(m), and time complexities of O(m) for initialization and O(1) for reads and writes. These

time complexities are good for applications that eventually access most of the entries of the array.

But, some applications—such as adjacency matrix representations of sparse graphs, van Emde

Boas trees, and certain hash tables—need to allocate a large array when only a small fraction of

the array will eventually be accessed. The time complexities of such algorithms would improve

drastically if we had fast arrays: arrays that support all three operations—Read(), Write(),

and even Initialize()—in just O(1) worst-case time. Perhaps surprisingly, sequential fast array

implementations have been known for decades, but, to the best of our knowledge, concurrent

implementations do not exist. We design the first algorithms for concurrent fast arrays in this
1For a positive integer m, we use the notation [m] ≜ {0, 1, . . . ,m− 1}.

195

chapter.

8.1.1 Sequential fast arrays: history and applications

Sequential algorithms for fast arrays date back to at least the 1970s [2, 151, 19]. In fact, the well

known folklore algorithm for the problem (which we will revisit in Section 8.3) was alluded to in an

exercise of the celebrated text by Aho, Hopcroft, and Ullman [2] and further described by Mehlhorn

[151] and Bentley [19]; it achieves a deterministic worst-case time complexity of O(1) for each of

the three operations, while using only 3m+ 1 memory words. Fast arrays have been important to

the efficiency of several algorithms. Notably:

• Fast arrays are used in implementations of van Emde Boas trees [40, 161]—associative arrays

that store keys from a universe {1, 2, . . . , u} and support insert, get, and delete with a time

complexity of just O(log logu).

• Katoh et al. [127] note that Knuth employs fast arrays in the implementation of the hash

table in his Simpath algorithm [131], which enumerates all simple paths between two vertices

in a graph. Knuth uses the hash table to efficiently implement a certain data structure called

ZDD (Zero-suppressed binary Decision Diagram) [157], which has many applications besides

Simpath [191, 156, 100, 155, 212, 131].

• When a sparse graph of n vertices and m ≪ n2 edges is represented using an adjacency

matrix, mere initialization can take Θ(n2) time with a traditional array. With a fast array

however, the graph can be stored in just O(m) time. Consequently, for a constant degree

graph, storing the graph takes O(n) time instead of Θ(n2) time.

More generally, fast arrays can increase the asymptotic efficiency of algorithms that have higher

space complexity than time complexity—just allocate all the space in one huge block in O(1) time.

This range of applications has spurred a lot of research into fast arrays in recent years. A string

of papers, starting with Navarro’s work in 2012 and culminating in three back to back papers in

2017 by Hagerup and Kammer, Loong et al., and Katoh and Goto, have brought down the space

complexity from 3m+1 to m+1 using complex bit-packing and chaining techniques [163, 164, 85,

146, 127]. Fredriksson and Kilpeläinen recently studied the empirical running times of the more

practical implementations of these sequential fast arrays [65].

196

8.1.2 Concurrent fast arrays

In contrast to sequential fast arrays, which have been well studied, there has been no prior work

on concurrent fast arrays, to the best of our knowledge. In this chapter, we propose and design

algorithms for two variants of concurrent fast arrays:

• Fast Array: This is an implementation of an array which supports the standard operations—

Initialize(m, f), Read(i), and Write(i, v)—and satisfies two conditions. First, each oper-

ation is linearizable, i.e., it appears to take effect at some instant between its invocation and

response [93]. Second, each operation is not only wait-free [89], but the process that executes

the operation completes it in a constant number of its steps. The first condition ensures

atomicity, and the second condition ensures efficiency.

• Fast Generalized Array: Besides load and store, modern architectures like x86 commonly sup-

port read-modify-write (RMW) primitives, such as Compare-and-Swap (CAS), Fetch-and-

Add (FAA), and Fetch-and-Store (FAS) [98]. In fact, some of these primitives are indispen-

sible for efficiency and even solvability of problems that arise in concurrent systems. For

instance, implementing a wait-free queue is impossible using only loads and stores [89]. Mu-

tex locks can be implemented using loads and stores, but constant RMR (remote memory

reference) complexity implementations are impossible using only loads and stores [17, 42,

152].

Since RMW primitives are supported by hardware and are essential for concurrent algorithms,

it would be ideal if the components of the fast array can be manipulated using these primitives.

For instance, when implementing a fast array O on a multiprocessor that supports CAS and

FAS in hardware, a process π should not only be able to read O[i] and write to O[i], but

should also be able to CAS O[i] and FAS O[i]. We term such an array, which allows all

hardware-supported operations to be applied to its components, a generalized array.

Let S be the set of hardware-supported RMW primitives. A fast generalized array is an

implementation that not only supports O(1)-time linearizable Initialize(m, f), Read(i),

and Write(i, v) operations, but also supports O(1)-time linearizable operations from the set

S.

197

8.1.3 Our contributions

In addition to defining the two types of concurrent fast arrays, our work makes the following two

principal contributions:

• We design an algorithm for the (standard) fast array. If p processes share a fast array of

length m, our algorithm uses only O(m+ p) space. More generally, to instantiate and use k

fast arrays (for any k) of lengths m1, . . . ,mk, our algorithm uses only O(M + p) space, where

M =
∑k

j=1mj .

• We enhance the above algorithm to design a fast generalized array. Its space complexity is

the same as the previous algorithm’s—O(m+p) for a single array of length m, and O(M +p)

for multiple arrays of combined length M .

Both of the above algorithms require hardware support for read, write, and CAS.

8.2 Model

We work in the standard asynchronous shared memory multiprocessor model where p processes,

numbered 0, . . . , p− 1 run concurrently but asynchronously, and each process is either performing

an initializable array operation or is idle. The computation proceeds in steps, where an adversarial

scheduler decides which process π takes the next step.

To provide synchronization, we assume the hardware compare-and-swap (CAS) synchronization

primitive. The CAS operation on a memory wordX with arguments old and new is called as follows:

Cas(X, old, new). The operation is atomic and has the following behavior. If X = old, then X’s

value is updated to new and true is returned to indicate that the operation successfully changed the

value; otherwise, if X ̸= old, the value of X is not changed and false is returned. On modern x86

architectures, individual memory words are 64-bits, and so any hardware primitive can be applied

on a standard 64-bit word. Usefully however, CAS can also be executed on 128-bit double-words,

i.e., two adjacent words of memory [98]. We will make use of this feature. (Note that this 128-bit

CAS operation is not DCAS—a primitive that does CAS on two non-adjacent memory locations,

which is not supported in modern architectures.)

A data structure is linearizable if each operation can be assigned a unique linearization point

between its invocation and return, and the return values of the operations are consistent with those

of a sequential execution in which operations are executed in the order of linearization points [93].

198

Operations are bounded wait-free if there exists a bound b such that every invocation by a process

π returns within b of π’s own steps [89]. In the literature, data structures that are both linearizable

and wait-free are called atomic.

We measure the efficiency of an algorithm by its worst-case work and space complexities. The

space complexity of an algorithm is the total number of memory words that the algorithm uses. The

work complexity of an operation by a process π, is the total number of steps executed by π between

the invocation and return of that operation. Since work complexity is the natural generalization

of time complexity to multiprocessors, it is often called time complexity in the literature; we adopt

this convention and use the two terms interchangeably. Furthermore, as is standard [2, 151, 19,

163, 164, 161, 182], we assume that it takes constant time to allocate an uninitialized array of any

size n. We call an object implementation fast if every operation on that object takes only O(1)

time to execute in the worst-case. Our work focuses on fast algorithms for arrays and generalized

arrays.

8.3 Folklore Sequential Algorithm

Our concurrent algorithms are inspired by the folklore sequential algorithm, and so we present the

pseudo-code for a folkore fast array object O in Algorithm 23, and describe it below.

Algorithm 23 The folklore algorithm for a sequential fast array.
procedure Initialize(m, f)

1: A← new array[m]
2: B ← new array[m]
3: C ← new array[m]
4: finit ← f
5: X ← 0

procedure Read(i)
6: if 0 ≤ B[i] < X and C[B[i]] = i then return A[i] else return finit(i)

procedure Write(i, v)
7: A[i]← v
8: if B[i] < 0 or B[i] ≥ X or C[B[i]] ̸= i then
9: C[X]← i

10: B[i]← X
11: X ← X + 1

The method Initialize(m, f) instantiates a new fast array O of length m. The implementation

of the fast array uses three un-initialized arrays A, B, and C, each of length m, an integer X, and

199

stores a pointer finit to the function f . We call A the principal array and use A[i] to hold the

current value of the abstract element O[i] for each index i that has been initialized, i.e., written to

at least once. The elements of A[i] corresponding to uninitialized indices of O[i] hold their initial,

arbitrary values. B, C, and X are used to keep track of which indices i have already been initialized

(as we describe later).

Using the mechanism described above, implementing read and write becomes simple. Read(i)

just returns A[i] if i has been initialized, and f(i) otherwise. Correspondingly, Write(i, v) simply

writes A[i]← v, and ensures that index i is marked as initialized.

The main difficulty of the algorithm lies in efficiently remembering which set of indices i have

been initialized. We use the array C and the integer X to maintain this set as follows. If k indices

have already been initialized, then we ensure thatX = k and that the sub-array C[0, . . . , X−1] holds

the values of these initialized indices. Correspondingly, we spend constant time in the Initialize()

method to set X ← 0. Terminologically, we call C the certification array, call the elements of the

array certificates, call the elements of the sub-array C[0, . . . , X − 1] valid, and say that an index i

is certified when it appears in the valid sub-array.

Maintaining A, C, and X is sufficient to get a correct implementation of an array, but not an

efficient one. For efficiency, we need to distinguish between certified and un-certified indices in

constant time. We use the array B for this purpose. In particular, whenever we certify a new index

i in an element C[j], we set B[i]← j to maintain the invariant that

I ≡ ∀i ∈ [m], (0 ≤ B[i] < X and C[B[i]] = i if and only if index i is initialized).

The check that 0 ≤ B[i] < X ensures that C[B[i]] is valid, while the check that C[B[i]] = i ensures

that this valid element of the certification array, indeed, certifies that index i is initialized.

8.4 Our Concurrent Fast-Array

The goal of this section is to design a linearizable wait-free fast-array that is both time and space

efficient. We do so by building on the ideas of the folklore algorithm.

The folklore algorithm is built on two pillars: (1) the principal array A, which stores the values

of initialized indices, and (2) the certification mechanism constituted by B, C, andX, which ensures

that initialized indices can be identified in constant time by invariant I. The principal array can

easily be maintained in the concurrent setting, however the certification mechanism, which is the

main workhorse of Algorithm 23, must be redesigned to cope with concurrency.

200

The difficulty of using the sequential certification mechanism with multiple processors stems

from the contention on the variable X, and on the next available slot in the certification array,

C[X]. In particular, if all p processors are concurrently performing different write operations on

different un-initialized indices i0, . . . , ip−1, then the old certification mechanism will direct all of

them to the same location C[X] in the certification array. Regardless of how the contention is

resolved, only one index can fit into C[X], meaning that p − 1 processes will fail to certify their

index by placing it in C[X] and will thereby need to find an alternate location in the certification

array. So, in the worst-case, only one process will finish its operation after all p processes do one

unit of work each, meaning the algorithm will do O(p) work per operation rather than O(1).

We overcome this difficulty of adapting the certifying mechanism posed by contention on C

and X by introducing four ideas that we detail below. Our first idea will eliminate the contention,

thereby enabling constant time certifications and look-ups; however, it bloats the space complexity

to Ω(m · p). Our second and third ideas, in combination, eliminate this space overhead and bring

the space complexity down to just O(m+p), while ensuring that the time complexities of operations

remain at just O(1). Our fourth idea describes how to share resources in order to minimize the

space complexity when multiple fast arrays are instantiated.

Individual certification arrays: our first idea is to eliminate the universal C and X, and

instead equip each process π with its own certification array cπ and a corresponding control variable

X[π]. Here, X is a one-dimensional array of length p that is indexed by process ids, and each cπ is

an array of length m. Thus, process π certifies a new index i by performing three steps: (1) writing

cπ[X[π]]← i, (2) setting X[π]← X[π] + 1, and (3) writing B[i]← (π,X[π]− 1). (While it will not

yet be clear to the reader at this stage, the relative order of steps 2 and 3 is very important for the

correctness of later ideas. We expand on this thought in the forthcoming Remark 8.4.1.) Unlike the

act of certifying a new index which involves modifying certification arrays and control variables,

the act of checking whether a given index i is certified only requires reading. We allow process

π to freely read the arrays of other processes while checking if an index is certified. This idea of

individual certification arrays by itself would lead to a concurrent fast-array algorithm; however,

the space complexity of this algorithm is inherently super-linear. In particular, if all p processes

concurrently write to a previously un-initialized location i, an adversarial scheduler can force each

of them to certify that location in its own certification array; if this happens for each of the m

indices, then each cπ must store m indices, leading to a total space complexity of Θ(mp).

Synchronization and walk-back: to reduce the space complexity induced by individual

201

certification arrays, we must ensure that each index i is certified by at most one process, even

if multiple processes perform concurrent writes to the same un-initialized index. To do this, we

introduce two related ideas: synchronization on B and walk-back. That is, each processor π that

wishes to certify an index i attempts to Cas (rather than write) the pair (π,X[π]− 1)—indicating

the location in its certification array where i is certified—into B[i]. We orchestrate the update to

B[i] using Cas to ensure that at most one process gets a return value of true, indicating that it is the

process that succeeded in certifying i. Each other process π, whose Cas to B[i] fails, “walks back”,

i.e., it reclaims the location cπ[X[π]− 1] that it was going to use to certify i by decrementing X[π].

Since each index is certified by at most one process, and each process has at most one certification

location that it will walk back on at any given time, the total space used across all cπ arrays is

O(m+ p).

Array doubling: our synchronization and walk-back scheme guarantees that at most O(m+p)

space is used across all of the cπ arrays, but we do not a priori know how many locations each

process π will use in its cπ array. To ensure that we allocate only as much space as we use, we

employ the classic idea of array-doubling from sequential algorithms. We initially allocate constant

sized cπ arrays. Each time cπ fills up, we replace it with a newly allocated array c′π of length

2 · cπ.len and copy over the old cπ.len elements from cπ to c′π. Note that we do not de-allocate the

old array cπ when we switch to c′π, since other processes could be accessing it; yet, since the sum of

a geometric series is proportional to the largest term in the series, our total memory allocation for

the cπ arrays is proportional to the amount of space we end up using. (Note that it is important

to have a mechanism by which other processes can get access to the current array cπ, since the

location of the array is changing whenever we double. We describe this detail when we discuss the

pseudo-code in a later sub-section. We will also describe how to implement array doubling with

worst-case, rather than amortized, constant time per operation in the same sub-section.)

Sharing the certification mechanism: Array doubling allows us to share a single certifica-

tion mechanism across all fast-array objects that we initialize. In particular, if we have multiple

fast-arrays O1, . . . ,Ok, each Oj can simply maintain the two instance variables Oj .A and Oj .B,

and share the certification mechanism—∀π ∈ [p], (X[π], cπ). All we need to do to enable this shar-

ing is store a pointer &(Oj .A[i]) as the certificate that i is initialized in fast-array Oj , rather than

just store the index i. Since all fast array objects can share one certification mechanism, the space

complexity of maintaining k fast-arrays O1, . . . ,Ok of sizes m1, . . . ,mk is just O(M + p), where

M ≜
∑k

j=1mj .

202

Remark 8.4.1 (the relative order of synchronizing and incrementing). When a process π, with

next available certification location xπ = X[π], is certifying a new index i, we described that our

algorithm follows three logical steps (not including potential walk-back): (1) writing the certificate:

cπ[xπ] ← i, (2) incrementing X[π]: X[π] ← xπ + 1, and (3) synchronizing on B[i]: attempting to

CAS the value (π, xπ) into B[i]. At first glance, it may appear that step (3) can be executed before

step (2). Indeed, if this were possible, then we could simplify our algorithm by avoiding walk-backs

altogether, since a process π that fails the CAS could simply not increment X[π]. However, as we

mentioned earlier, the relative order of steps (2) and (3) is pivotal to correctness. We now explain

why.

Consider a scenario where two processes π and τ are each performing the operation Write(i, new)

on a previously un-initialized location O[i] whose initial value is O[i] = f(i) = old, with the order

of steps (2) and (3) swapped. Then the following sequence of events can occur:

1. Both process π and τ write A[i]← new, read the same old value b← B[i] (in anticipation of

having to Cas B[i] in step (3)), and start the certification process.

2. π completes steps (1) and (3) and thereby successfully changes B[i]’s value to (π, xπ). How-

ever, i is still not certified since step (2) is yet to be done, and X[π] ̸> xπ.

3. τ completes steps (1) and (3), but because τ ’s Cas in step (3) fails, it does not need to execute

step (2), and it returns from its write operation.

4. Having finished its write operation, τ performs Read(i), but sees that i is not yet certified

(since π has not yet finished step (2)), and returns f(i) = old.

• This execution is not linearizable, since τ reads the value old in O[i] even after it finishes

writing new.

Remark 8.4.1 establishes that a process π must increment X[π] before it synchronizes at B[i]

in the certification process. This means that we must indeed implement walk-back to achieve

space efficiency. However, if walk-back is not implemented very carefully, it can lead to a nasty

race condition. We describe this possible race condition, and how to overcome it, in the next

subsection.

203

8.4.1 A tricky race condition that must be avoided

Until now, we have described the main ideas that propel our space-efficient fast-array implementa-

tion at a high-level. Of these ideas, individual certification arrays are straightforward to implement

as suggested, and array-doubling requires only mild adaptation to work in the face of asynchronous

concurrency. The idea of walk-back however can lead to a nasty race-condition if it is not imple-

mented correctly. We describe this potential race, and how we overcome it below.

In order to understand the race condition, let us consider the following set-up. We have a freshly

initialized fast-array O with just two locations O[0, 1], and initialization function f(i) = old. There

are three processors π, τ , and ρ with: X[π] = 0, X[τ] = 0, and X[ρ] = 0. The processes will perform

the following operations:

• π will perform O.Write(0, new) followed by O.Write(1, new)

• τ will perform O.Write(0, new)

• ρ will perform O.Read(0) followed by another O.Read(0)

By design, both locations initially hold the value old and at some point in time will take on the

value new and hold that value forever. However, the race condition will be that ρ’s first read of

index 0 will return new, while its second read will return old. The initial value of B[0]—which can

be arbitrary by design of the algorithm—is pivotal to achieving the race. In particular, we consider

the initial value B[0] = (π, 0). The initial values of A[0, 1] and B[1] can be arbitrary.

We describe the offending run below in a sequence of bullet points. When the relative order of

certain operations do not matter, we may describe them all in the same bullet point.

• Recall thatB[0] = (π, 0), π is performing Write(0, new), and τ is performing Write(0, new).

1. π and τ both write A[0] ← new, and both read the initial value b of B[0]. (They will need

this value b when they attempt to certify index 0 and do a Cas on B[0] later.)

2. π and τ both conclude that index 0 is not certified yet, and thus wish to certify the location.

• Recall that X[π] = 0.

3. π’s next open certification location is 0, thus π writes cπ[0] ← 0, and increments X[π] ← 1.

π now stalls (before attempting to Cas its certification location (π, 0) into B[0]).

• Notice that while π is not finished with its certification process, index 0 is already certified,

since B[0] = (π, 0) initially, and location cπ[0] is valid and holds the value 0.

204

4. ρ does its first Read(0) operation. That is, it reads B[0] = (π, 0), checks that cπ[0] is valid

and that cπ[0] = 0 and thereby returns the value A[0] = new.

5. ρ starts its second Read(0) operation. It starts its verification by reading B[0] = (π, 0), and

then stalls.

6. τ ’s next open certification location is 0, thus τ writes cτ [0] ← 0, increments X[τ] ← 1, and

successfully Cases its certification location (τ, 0) into B[0].

• Notice that index 0 is now certified by two certificates cπ[0] and cτ [0]. B[0] = (τ, 0) identifies

only the new certificate, but process ρ is about to check for the old certificate cπ[0].

7. π attempts to finish its certification process by Casing (π, 0) into B[0]. However, its Cas

fails. Thus, π walks-back, and resets X[π]← 0. This completes π’s write operation to index

0.

8. π does its entire Write(1, new) operation. That is, it writes A[1] ← new, writes cπ[0] ← 1,

increments X[π] to 1, successfully Cases (π, 0) into B[1], and returns.

9. ρ now finishes its operation. Since it had previously read B[0] = (π, 0) and X[π] = 1 > 0,

it checks cπ[0], finds the value 1 there, concludes that index 0 is not certified, and thereby

returns f(0) = old.

• This run cannot be linearized since O[0] was initially old and became new, but ρ reads its

value to be new and subsequently re-reads the value to be old.

We observe that the cause of this race condition is the coincidental initial value of B[0]. In

particular, B[0]’s (potentially arbitrary) initial value, happened to coincide with the exact location

that process π would use to certify index 0 and later have to walk-back on. This coincidence, in

turn, caused B[0] to become certified during step (3), before π finished its certification operation

by updating B[0] with a Cas.

Tombstoning: since we have only constant time to initialize O, we cannot control the initial

values of all the elements B[i]. However, we can control which location in the certification array

π uses to certify B[i]. Therefore, we eliminate this nasty race condition as follows. If the initial

value of B[i] is (π, k), then we ensure that that particular process π does not attempt to use its

certificate cπ[k] to certify index i. If it so happens that cπ[k] is the next available certificate for

process π when process π is attempting to certify i, then we simply tombstone that location by

writing a special null-value cπ[k]← ⊥, and use the next location cπ[k+1] to certify i. This ensures

correctness.

205

Furthermore, observe that for each location i, there is exactly one initial value B[i] = (π, k)

that references exactly one process π and one specific location k. Thus, at most m locations get

tombstoned by our method across all processes, and the space complexity bound of O(M + p)

continues to hold true even in the worst-case. (We expect that tombstoning will occur only very

rarely in practice.)

8.4.2 The pseudo-code and its description

Having described individual certification arrays, synchronization and walk-back, array-doubling,

and tombstoning, we are ready to describe our fast-array algorithm. We present the pseudo-code

as Algorithm 24, and describe it below.

Naming conventions: In order to distinguish between variables of different processes and

operations that are performed by a particular process π, we use subscripts. For example, we denote

a local variable x of process π by xπ, and denote a Read() operation by process π as Readπ().

We use captial letters, such as A and X, to refer to arrays that all processes have the address of

by default. Importantly, note that the pointer to the current certification arrays, cπ, follows the

above convention, and by default only process π has access to the array. In order to allow other

processes to access these arrays, our implementation stores a pair in the control variable X[π]. So,

initially X[π] = (0, cπ) (rather than X[π] = 0).

In order to implement array doubling, we maintain a next certification array c′π alongside the

current array cπ. As such, initially X[π] = (0, cπ) and no process other than π has access to the array

pointed to by c′π. When cπ fills up entirely, we maintain the invariant that c′π[0, . . . , cπ.len − 1] =

cπ[0, . . . , cπ.len − 1] and thus, we can simply replace X[π] = (xπ, cπ) by X[π] = (xπ, c
′
π); we also

rename c′π as cπ because it has become the current array, and allocate a new (un-initialized) c′π

that is twice the length of the new current array. In order to ensure that c′π[0, . . . , cπ.len − 1] =

cπ[0, . . . , cπ.len − 1] by the time cπ gets entirely full, we transfer two values from cπ to c′π each

time a new value is appended to cπ. We note that we do not de-allocate the old certification

arrays because other processes could potentially be reading from them—this does not change the

asymptotic space complexity. However, each process can store pointers to all of its arrays so that

they can be de-allocated when the fast array is no longer needed. In our algorithm, we choose to

start with a cπ of length 2. (Any other constant length would have sufficed.)

A line-by-line description of the code is as follows. O.Initializeπ(mπ, fπ) simply allocates the

unintialized arrays A and B of length mπ (Lines 1 and 2), and stores the initialization function fπ

206

Algorithm 24 Atomic fast array for p processes. Pseudo-code shown for an arbitrary process π.
Variables:

For each process π ∈ [p] the following variables are shared across all fast-arrays O:
• cπ[0, 1] is a pointer to an allocated un-initialized array of length 2.
• c′π[0, . . . , 3] is a pointer to an allocated un-initialized array of length 4.
• kπ is a non-negative integer that is initialized to 0.
• X[π] is a pair that is initialized to (0, cπ).

Each object O has three instance variables instantiated by Initializeπ(mπ, fπ):
• A and B are arrays of length mπ.
• finit stores the initial value function.

Each process π ∈ [p] uses the following arbitrarily initialized temporary local variables:
• bπ, boldπ : hold (process id, array index) pairs.
• xπ: holds an array index.
• cotherπ : holds an array pointer.

procedure O.Initializeπ(mπ, fπ)
1: A← new array[mπ]
2: B ← new array[mπ]
3: finit ← fπ

procedure O.Writeπ(iπ, vπ)
4: A[iπ]← vπ
5: Certifyπ(iπ)

procedure O.Readπ(iπ)
6: if IsCertifiedπ(iπ) then
7: return A[iπ]
8: else return finit(iπ)

9: procedure O.IsCertifiedπ(iπ)
10: bπ ← B[iπ]
11: if 0 ≤ bπ.pid < p then
12: (xπ, c

other
π)← X[bπ.pid]

13: if 0 ≤ bπ.loc < xπ and cotherπ [bπ.loc] = &A[iπ] then return true
14: return false

15: procedure O.Certifyπ(iπ)
16: boldπ ← B[iπ]
17: if IsCertifiedπ(iπ) then return
18: (xπ,−)← X[π]
19: if xπ ≥ cπ.len then
20: cπ ← c′π
21: c′π ← new array[2 · cπ.len]
22: kπ ← 0
23: if boldπ .pid = π and boldπ .loc = xπ then
24: cπ[xπ] = ⊥
25: xπ ← xπ + 1
26: cπ[xπ]← &A[iπ]
27: X[π]← (xπ + 1, cπ)
28: while kπ < 2xπ − cπ.len do
29: c′π[kπ]← cπ[kπ]
30: kπ ← kπ + 1
31: if not Cas(B[iπ], b

old
π , (π, xπ)) then

32: X[π]← (xπ, cπ)

207

as finit for future use (Line 3). The elements of A[i] will be used to hold the values of the abstract

elements O[i]. The elements of B[i] will be used to hold process-index pairs (π, j); as a matter of

convention, we call the first element in the pair B[i].pid (process id) and the second element B[i].loc

(location).

Writeπ(iπ, vπ) first updates A[iπ] to the new value vπ (Line 4). Since index iπ may not yet be

certified, it calls Certifyπ(iπ) (Line 5). As we describe below, Certifyπ(iπ) only creates a new

certificate for iπ if the index is not already certified.

Since Certifyπ(iπ) creates a new certificate (if necessary), and must perform the synchronization-

CAS on B[iπ] after creating a certificate, it must read the old value of B[iπ]. Thus, Certifyπ(iπ)

starts by reading boldπ ← B[i] (Line 16). Certification should only be done if iπ is not already cer-

tified, and so it calls IsCertifiedπ(iπ) and returns immediately if location iπ is already certified

(Line 17). Otherwise, it fetches the next location xπ that is free for creating a certificate (Line 18).

Certification proceeds in five steps:

1. If the current certification array is full (check on Line 19), then the next array becomes the

current one (Line 20), and a new (un-initialized) next array is allocated (Line 21). Finally,

the local variable kπ—which is used to keep track of how many elements in the current array

have already been transferred to the next array—is reset to 0 (Line 22).

2. At this point, we are sure that location cπ[xπ] exists, and is free to certify a new index. Lines

23–25 tombstone this location and increment xπ if B[i]’s initial value happens to already hold

the value (π, xπ). (This step eliminates the nasty race condition described earlier.)

3. Lines 26–27 certify location A[iπ], by writing a pointer to &A[iπ] in cπ[xπ] and updating the

current array pointer and the length of the valid sub-array values in X[π].

4. Since a new location has been filled up in cπ, we must transfer values from cπ to c′π. If there

were no walking-back (described in the next step), then we would need to transfer exactly

two values. However, because of potential walk-backs (in previous operations), it is possible

that no values need to be transferred in this operation. Lines 28–30 orchestrate this transfer

by maintaining kπ’s progress relative to xπ.

5. Finally, π performs the synchronization step: it tries to finish its certification process with a

Cas on Line 31. If the Cas fails, then it walks-back on Line 32.

That completes the description of Certifyπ(iπ).

Readπ(iπ) simply checks whether element iπ is certified (Line 6), and returns A[iπ] or finit(iπ)

208

accordingly (Lines 7–8).

Like the read operation, IsCertifiedπ(iπ) is also short. However, its code highlights an im-

portant point. The operation starts by reading bπ ← B[iπ] which would hold the location of a

certificate if iπ was initialized (Line 10). This is where it must be careful. The values in the pair

bπ = (bπ.pid, bπ.loc) are directly read from B[iπ], and are thus potentially un-initialized ill-formed

values. Thus, before the operation proceeds, it must check that bπ.pid is indeed a real process id

(Line 11). If so, it reads the control information in X[bπ.pid] to get a pointer to cotherπ = cbπ .pid

and the length of its valid sub-array xπ. After checking that bπ.loc is indeed in the valid portion of

cotherπ , it verifies that the location cotherπ [bπ.loc] certifies A[iπ] (Line 13). The careful well-formedness

checks are necessary to avoid accessing un-allocated portions of memory. Of course, the operation

returns true only if all of the checks pass (Line 13); if any checks fail (well-formedness or otherwise),

it simply returns false (Line 14).

Remark 8.4.2 (old certification arrays). A process π that is performing IsCertifiedπ(iπ) may

hold a reference cotherπ that is no longer the current array of any process. That is, after π reads

(xπ, c
other
π)← X[bπ.pid], the process bπ.pidmay have certified more elements and updated its current

certification array. However, our algorithm remains correct, since the old certification arrays are

not de-allocated, and the value of cotherπ [bπ.loc] is guaranteed to be equal to cbπ .pid[bπ.loc]—the

corresponding value in the current array.

The preceding discussion is summarized in the theorem below.

Theorem 8.4.3. Algorithm 24 is a linearizable wait-free fast array implementation for p processes.

That is, it supports Initializeπ(mπ, fπ), Readπ(iπ), and Writeπ(iπ, vπ) each with a time com-

plexity of O(1). The total space complexity of the algorithm for supporting k fast-arrays of sizes

m1, . . . ,mk is O(M + p), where M =
∑k

j=1mj.

8.5 Correctness of Fast Array Algorithm

In this section, we will argue the correctness of Algorithm 24, for a fast-array object O of length m

and initialization function finit = f . In particular, we must show that the algorithm is linearizable

and bounded wait-free. Bounded wait-freedom with a constant bound simply means that each of

the operations runs in a constant number of steps—this is apparent from the pseudo-code. Thus,

we immediately have the following lemma:

209

Lemma 8.5.1. Algorithm 24 is bounded wait-free, and each operation runs in O(1) time.

The entire difficulty of the proof rests in showing linearizability of Readπ() and Writeπ(). As

we have seen, the certification process is the workhorse of the algorithm. Analogously, formalizing

and precisely stating the definition of the informal statement, “index i is certified” as a formal

predicate Cert(i) will enable the entire proof. We will define this formal predicate after writing

down some quick definitions.

8.5.1 Some terminology

We will need the following definitions for our proof:

• For each index i, define αi to be initial value of A[i], and βi to be the initial value of B[i].

• Each X[π] holds a pair (xπ, cπ); we call the first index X[π].valid-len (because it is the length

of the certification array that is valid) and the second index X[π].arr (because it points to

the array).

8.5.2 Formalizing Certification: the essence of the proof

For a given index i ∈ [m], we formalize the notion of index i being certified, by defining the predicate

Cert(i):

Cert(i) ≡ ∃π ∈ [p], j ∈ N, (B[i] = (π, j) ̸= βi) ∧ (j < X[π].valid-len) ∧ (cπ[j] = &A[i])

Verbally, our definition means that an index is certified if three things hold true simultaneously:

(1) B[i] has changed from its initial value, (2) the certification location j in the array cπ that

B[i] indicates is valid, and (3) that certification location cπ[j] indeed certifies index i. Notice that

conjunct (1) implies that initially Cert(i) is false for all indices i ∈ [m]. Notice that point number

(1) is the principal difference between this definition and the analogous expression in the invariant

I of the folklore algorithm.

We now prove a sequence of lemmas, whose end goal is to establish the correctness of Certify(i)

and IsCertified(i). By this, we mean that any call to Certify(i) will ensure that Cert(i)

becomes true; we will also show that Cert(i) is monotonic, i.e., if it ever becomes true during

210

an execution, then it will stay true forever thereafter; finally, we will show that IsCertified(i)

returns the value of Cert(i) (at some point during its execution).

Once we establish the correctness of the certification mechanism, the linearization points of

Read() and Write() are easy to identify and prove correct.

8.5.3 The intermediate lemmas

Lemma 8.5.2. Initially, Cert(i) is false for every index i ∈ [m]

Proof. The first conjunct in Cert(i) states that B[i] ̸= βi. Since ∀i ∈ [m], B[i] = βi initially by

definition, we have proved the lemma.

Lemma 8.5.3. For any given i ∈ [m], if B[i] ̸= βi at some point in time, then this implies that

Cert(i). Furthermore, it implies that the value of B[i] = (π, j), and the value of cπ[j] = &A[i] will

never change in the future.

Proof. We show this lemma by induction on the number of steps of the execution. As such, the

base case is clear.

The crux of the inductive step is the following. A process π can only change the value of B[i]

by successfully executing the Cas on Line 31. π’s Cas will only succeed if B[i] = bπ. Since bπ is

read at the beginning of the Certifyπ(i) procedure on Line 16, and π will only get past Line 17

if bπ did not point to a certificate that certifies index i, so the inductive hypothesis would imply

that bπ = βi. So, there are only two cases: either (1) bπ = βi and the Cas will succeed, or (2)

bπ ̸= βi and the Cas will fail. Case (2) requires no further proof since it does not change the state

of B[i] and thus the inductive hypothesis directly implies the inductive step. In case (1), we must

establish that if the Cas succeeds, then Cert(i) becomes true and that the values of B[i] = (π, j)

and cπ[j] = &A[i] that hold at this point in time will never change. For this, we observe that Lines

26-27 create a certificate for index i and increase X[π].valid-len so that the certificate is valid by

the time B[i] = (π, j) is established. Furthermore, since the Cas on Line 31 succeeds, walk-back

will not take place on Line 32. Therefore, this certificate will never be altered while the current

array remains cπ. Even when the current array gets updated to the next array, we know that

c′π[0 . . . cπ.len−1] = cπ at the time that the next array becomes current. So, the certificate remains

valid forever. Finally, B[i] will not change in the future, since any process τ that reads bτ ← B[i]

on Line 16, will notice that the index i is already certified in the check on Line 17, and thereby will

211

not even attempt to change B[i] on Line 31. We have finished the proof in both cases, and have

thus established the lemma.

The previous lemma establishes that for any given index i, the value of B[i] changes at most

once. Furthermore, if it does change, then the point of its change is precisely the point at which

Cert(iπ) goes from being false to being true, and this exact certificate will certify i forever on.

Equipped with this lemma, we are ready to establish that the two helper methods are correct.

Lemma 8.5.4. A call to IsCertifiedπ(iπ) by process π returns the value of Cert(iπ) at some

time t during its execution. We call this time t the actualization point of the IsCertifiedπ(iπ)

operation.

Proof. The first step by IsCertifiedπ(iπ) is to read and store the value bπ ← B[iπ] on Line 10.

If Cert(iπ) is true at this point in time, then bπ = (π, j) must point to a valid certificate at the

point in time that Line 10 is executed and all future times by Lemma 8.5.3. Thus, if π is able to

verify that cπ[j] is a valid certificate and indeed certifies index i, i.e. cπ[j] = &A[iπ], then it can

validly return true; because, it must be the case that Cert(iπ) is true at the time of execution of

Line 10 by Lemma 8.5.3.

On the other hand, if one of the checks on Lines 11-13 fails, then we can surely conclude that

Cert(iπ) was false at the time of Line 10—by Lemma 8.5.3 and the definition of Cert).

So, regardless of what value IsCertifiedπ(iπ) returns, we know it must be the value of Cert(iπ)

at some point during the methods execution. That concludes the proof.

Lemma 8.5.5. A call to Certifyπ(iπ) by process π will ensure that index iπ is certified before it

returns.

Proof. By Lemma 8.5.3 we must only establish that Cert(iπ) is true at some point during the

method.

The first step of Certifyπ(iπ) is to read the value bπ ← B[iπ]. If index iπ is already certified

at this time, or if the call to IsCertifiedπ(iπ) returns true on Line 17, then by Lemma 8.5.3, we

conclude that Cert(iπ) will continue to be true hereafter, by Lemma 8.5.4 we conclude that the

method will return after Line 17.

Otherwise, we can conclude from Lemma 8.5.3 that bπ = βiπ , when we start Line 18. In this

case, the Certifyπ(iπ) method will continue and write and validate a certificate for index i at Lines

26–27, and attempt to place a pointer to this certificate at Line 31. If the Cas on Line 31 succeeds,

212

we conclude that Cert(iπ) must be true at that point and conclude by Lemma 8.5.3. Otherwise,

we conclude that B[iπ] ̸= bπ = βiπ . This once again implies by Lemma 8.5.3 that Cert(iπ) is true

by the end of the method.

That concludes the proof.

8.5.4 Linearizability of Read() and Write()

Now that we have established the workings of the certification mechanism, the linearization points

of the Readπ() and Writeπ() operations become apparent. The linearization points are as follows:

• A Writeπ(iπ, vπ) operation by process π linearizes at Line 4 if Cert(iπ) is true at that

time. Otherwise, it linearizes at the first time that Cert(iπ) becomes true. The linearization

points of all completed writes are well defined and within the invocation-response interval by

Lemmas 8.5.5, which establishes that Cert(iπ) becomes true before the end of Line 5. If

several writes take effect at the same point in time, then we order them by the order in which

they execute Line 4.

• A Readπ(iπ) operation that returns finit(iπ) at Line 8 linearizes at the actualization point of

its IsCertifiedπ(iπ) call at Line 6. A Readπ(iπ) that returns A[iπ] at Line 7 linearizes at

Line 7.

Lemma 8.5.6. Algorithm 24 is linearizable, with Readπ() and Writeπ() operations linearizing

at the points presented in the itemized list above, and at all times ∀i,Cert(i) =⇒ O[i] = A[i]

according to the claimed linearization.

Proof. The itemized list justifies that the claimed linearization points exist and occur within the

invocation-response intervals of the given operations. The remainder of the proof is by induction

over the number of linearization points. The base case is trivially true, and the inductive hypothesis

assumes that all previous linearization points are consistent.

The linearization points of the Write(i, v) operations are justified because they maintain the

invariant that Cert(i) =⇒ O[i] = A[i] that we claim in the theorem statement.

By the given linearization points, no Write(i) operation linearizes before Cert(i) becomes

true. Thus, a Read(i) that returns finit(i) is justified in linearizing at the actualization point of

the IsCertified(i) call on Line 6, since Cert(i) = false at that point by Lemma 8.5.4. Similarly,

a Read(i) that returns A[i] on Line 7 is justified in linearizing at the same line, since A[i] = O[i]

once iπ is initialized by the linearization points of previous write operations.

213

Lemma 8.5.1 and Lemma 8.5.6 together establish the correctness of the main theorem about

our fast-array Algorithm 24. Thus we have justified Theorem 8.4.3.

8.6 A Concurrent Fast Generalized Array

In this section, we implement fast generalized arrays, which we motivated in Section 8.1.2.

Recall that, if S is the set of hardware-supported RMW primitives, then a fast generalized array

is an implementation that not only supports O(1)-time linearizable Initialize(m, f), Read(i), and

Write(i, v) operations, but also supports O(1)-time linearizable operations from the set S. To

this end, we consider the operation:

• O.Apply(i, op, args): perform operation op with arguments args on O[i], and return the

response.

Here op can be any RMW operation—such as Write, CAS, FAA, or FAS—that is supported

in hardware, and args are the arguments that the primitive requires. For example, if O[5] = 17,

then a call to O.Apply(5,Cas, (17, 35)) changes the value of O[5] to 35 and returns true. We term

an array that supports Initialize(m, f), Read(i), and Apply(i, op, args), a generalized array,

and an implementation that runs each operation in O(1) time, a fast generalized array. Note that

a Write(i, v) can be executed as Apply(i,Write, v). While Read(i) can similarly be executed

using Apply(i,Read), we design a simpler read method that circumvents the certification overhead

for locations that are only read and never updated.

The goal of this section is to design a fast generalized array. We will achieve this goal by building

on our ideas from Algorithm 24 for concurrent fast arrays. Therefore, we will continue to use the

ideas of individual certification arrays, synchronization and walk-back, array doubling, sharing of

certification arrays, and tombstoning. Even so, supporting arbitrary RMW operations poses yet

new challenges. We first describe these challenges, and then explain how we overcome them.

Recall that at a high level, our fast array algorithm represents each abstract array element O[i]

by the value of A[i], along with the certification mechanism which keeps track of whether i has

been initialized. Thus, Read(i) simply returns A[i] if i is initialized and f(i) otherwise. Write

operations, on the other hand, follow an apply-then-certify scheme. That is, Write(i, v) blindly

applies its operation by writing A[i]← v, and subsequently certifies i if necessary.

A natural idea for implementing an RMW operation on O[i] would be to mimic the apply-then-

certify scheme used by writes in Algorithm 24. For example, O.Apply(i,Cas, (old, new)) would

214

blindly apply r ← Cas(A[i], old, new), and then certify i if necessary, and finally return r. Indeed,

this idea would work if i were already initialized, since, in that case, A[i] would hold the value

of O[i]. However, if i were not already initialized, then the abstract element O[i] has the value

f(i), while A[i] has some arbitrary value. In particular, if f(i) = old, but A[i] = some-other-value

(not equal to old), then O.Apply(i,Cas, (old, new)) should change O[i]’s value to new and return

true, but the proposed scheme would keep the value the same (at O[i] = A[i] = some-other-value),

certify index i, and return false. Thus, both the final value of O[i] and the return value of the

operation would be incorrect.

From the example above, we see that RMW operations are difficult to apply before index i is

initialized and certified, but easy to apply after the certification process. So, our idea is to reverse

the scheme, rather than apply-then-certify, we will implement certify-then-apply. Since this new

scheme will ensure that i is always certified first, the actual application of the RMW primitive

can be realized as a hardware primitive applied directly to A[i]. Consequently, we can apply any

primitive operation that hardware supports, not just the select few that we listed at the beginning

of the section.

Certifying first poses a new challenge. When we applied writes to A[i] before certifying, we

were guaranteed that A[i] would hold a valid (linearizable) value by the time i was certified. Since

a reader will return A[i] as the value of O[i] any time after i is certified, we still need to guarantee

that A[i] = O[i] at the time of certification. This seems to be a difficult requirement with our

current setup, since our previous certification process did not touch A[i], but rather linearized at

the time that a Cas was performed on B[i]. To overcome this challenge, we introduce the idea of

fusing as described below.

Fusing: The values stored in each A[i] correspond to the values stored in the corresponding

abstract element O[i]. So, it is important to allow these values to take up a full-pointer sized word,

e.g., a 64-bit full-word in a modern 64-bit architecture. The pairs (π, j) that we are storing in

B[i] however, are just an internal representation used by our algorithm. Furthermore, it is entirely

reasonable to assume that this pair can be stored in a single full-word. For example, allocating

14-bits for the process id π would allow for over 16,000 processors, and the remaining 50-bits would

be enough to index an array with a thousand-trillion indices (i.e., an array taking up 8000 terabytes

of memory). Therefore, we modify our representation by, intuitively, “absorbing the array B into

A”. Now, each element of our array A[i] will hold a triple (A[i].val, A[i].pid,A[i].loc), where the

value A[i].val is stored in the first word and the process id A[i].pid and the location A[i].loc are

215

Algorithm 25 Atomic fast generalized array for p processes. Pseudo-code shown for an arbitrary
process π.

Variables:
For each process π ∈ [p] the following variables are shared across all fast-arrays O:
• cπ[0, 1] is a pointer to an allocated un-initialized array of length 2.
• c′π[0, . . . , 3] is a pointer to an allocated un-initialized array of length 4.
• kπ is a non-negative integer that is initialized to 0.
• X is an array, where each X[π] stores pair that is initialized to (0, cπ).

Each object O has two instance variables instantiated by Initializeπ(mπ, fπ):
• A is an array of double words.
• finit stores the initial value function.

Each process π ∈ [p] uses the following arbitrarily initialized temporary local variables:
• aπ, a

old
π : hold (value, process id, array index) triples.

• xπ: holds an array index.
• cotherπ : holds an array pointer.

procedure O.Initializeπ(mπ, fπ)
1: A← new double-width-array[mπ]
2: finit ← fπ

procedure O.Applyπ(iπ, opπ, argsπ)
3: Certifyπ(iπ)
4: return opπ(A[iπ].val, argsπ)

procedure O.Readπ(iπ)
5: if IsCertifiedπ(iπ) then return A[iπ].val else return finit(iπ)

6: procedure O.IsCertifiedπ(iπ)
7: aπ ← A[iπ]
8: if 0 ≤ aπ.pid < p then
9: (xπ, c

other
π)← X[aπ.pid]

10: if 0 ≤ aπ.loc < xπ and cotherp [aπ.loc] = &A[iπ] then return true
11: return false

12: procedure O.Certifyπ(iπ)
13: aold

π ← A[iπ]
14: if IsCertifiedπ(iπ) then return
15: (xπ,−)← X[π]
16: if xπ ≥ cπ.len then
17: cπ ← c′π
18: c′π ← new array[2 · cπ.len]
19: kπ ← 0
20: if aold

π .pid = p and aold
π .loc = xπ then

21: cπ[xπ] = ⊥
22: xπ ← xπ + 1
23: cπ[xπ]← &A[iπ]
24: X[π]← (xπ + 1, cπ)
25: while kπ < 2xπ − cπ.len do
26: c′π[kπ]← cπ[kπ]
27: kπ ← kπ + 1
28: if not Cas(A[iπ], a

old
π , (finit(iπ), π, xπ)) then

29: X[π]← (xπ, cπ)

216

packed into the second word of a double-width word. Modern architectures, such as x86-64, allow

us to perform double-width Cas operations on the full double-word A[i], while also allowing all

the standard single-width hardware primitives (Cas, Faa, Fas, Write, etc.) on the first word

A[i].val. Using this feature of hardware, we can safely implement the “certify” portion of the

certify-then-apply scheme. In particular, if process π reads a0 ← A[i] in its “un-initialized” state,

and creates a certificate for it in cπ[j], it can perform the certify step via: Cas(A[i], a0, (f(i), π, j)).

8.6.1 The pseudo-code and its description

The pseudo-code for a process π’s operations on our fast generalized array is presented as Algo-

rithm 25. The algorithm is built on all of the ideas from the previous section—individual certifica-

tion arrays, synchronization and walk-back, concurrent array-doubling, tombstoning, and certifica-

tion mechanism sharing—along with the ideas introduced above—fusing, and the certify-then-apply

scheme. We proceed to briefly describe the pseudo-code below.

The code of the three operations in the interface is simple to understand. O.Initializeπ(mπ, fπ)

simply instantiates a single new un-initialized array A (Line 1), and stores the initialization function

(Line 2). O.Applyπ(iπ, opπ, argsπ) executes certify-then-apply by simply certifying at Line 3 and

applying (and returning) at Line 4. O.Readπ(iπ) simply returns A[iπ]’s value field val if iπ is

certified and finit(iπ) otherwise (Line 5).

Once again, the main workhorse of the algorithm is the certification mechanism. O.Certifyπ(iπ)

returns early if iπ is already certified (Lines 13–14). Otherwise, it loads the next available certifica-

tion location xπ from X[π] at Line 15, and follows the same logical steps as our earlier certification

method: (1) update current arrays if necessary (Lines 16–19), (2) tombstone the location if the

nasty race condition might arise (Lines 20–22), (3) create a certificate for A[iπ] (Lines 23–24), (4)

transfer values to the next array (Lines 25–27), and (5) synchronize, and walk-back if necessary

(Lines 28–29). The most noteworthy difference from Algorithm 24 is Line 28, where we perform the

double-width Cas operation to simultaneously update A[iπ].val to finit(iπ) and (A[iπ].pid,A[iπ].loc)

to (π, xπ).

O.IsCertifiedπ(iπ) now reads a triple aπ (rather than the pair bπ) at Line 7, but performs the

same logical function as in the standard fast array. It returns true only if aπ.pid and caπ .pid[aπ.loc]

are valid, and if so certifies A[iπ] (Lines 8–10). Otherwise, it returns false (Line 11).

The preceding discussion is summarized in the theorem below.

217

Theorem 8.6.1. Algorithm 25 is a linearizable wait-free fast generalized array implementation

for p processes. That is, for each process π ∈ [p], it supports Initializeπ(mπ, fπ), Readπ(iπ),

and Applyπ(iπ, opπ, argsπ) each with a time complexity of O(1). The total space complexity of

the algorithm for supporting k fast generalized arrays of sizes m1, . . . ,mk is O(M + p), where

M =
∑k

j=1mj, given that each memory word has at least log2M + log2 p bits.

8.7 Correctness of Fast Generalized Array Algorithm

In this section, we will argue the correctness of Algorithm 25, for a fast generalized array object O

of length m and initialization function finit = f . In particular, we must show that the algorithm

is linearizable and bounded wait-free. Bounded wait-freedom with a constant bound simply means

that each of the operations runs in a constant number of steps—this is apparent from the pseudo-

code. Thus, we immediately have the following lemma:

Lemma 8.7.1. Algorithm 25 is bounded wait-free, and each operation runs in O(1) time.

The entire difficulty of the proof rests in showing linearizability of Readπ() and Applyπ(). As

we have seen, the certification process is the workhorse of the algorithm. Analogously, formalizing

and precisely stating the definition of the informal statement, “index i is certified” as a formal

predicate Cert(i) will enable the entire proof. We will define this formal predicate after writing

down some quick definitions.

8.7.1 Some terminology

We will need the following definitions for our proof:

• For each index i, define αi to be initial value of A[i].

• Each X[π] holds a pair (xπ, cπ); we call the first index X[π].valid-len (because it is the length

of the certification array that is valid) and the second index X[π].arr (because it points to

the array).

8.7.2 Formalizing Certification: the essence of the proof

For a given index i ∈ [m], we formalize the notion of index i being certified, by defining the predicate

Cert(i):

218

Cert(i) ≡ ∃π ∈ [p],j ∈ N,

((A[i].pid,A[i].loc) = (π, j) ̸= (αi.pid, αi.loc))

∧ (j < X[π].valid-len)

∧ (cπ[j] = &A[i].val)

Verbally, our definition means that an index is certified if three things hold true simultaneously:

(1) the (A[i].pid,A[i].loc) has changed from its initial value, (2) the certification location j in the

array cπ that (A[i].pid,A[i].loc) indicates is valid, and (3) that certification location cπ[j] indeed

certifies index i. Notice that conjunct (1) implies that initially Cert(i) is false for all indices

i ∈ [m].

We now prove a sequence of lemmas, whose end goal is to establish the correctness of Certify(i)

and IsCertified(i). By this, we mean that any call to Certify(i) will ensure that Cert(i)

becomes true; we will also show that Cert(i) is monotonic, i.e., if it ever becomes true during

an execution, then it will stay true forever thereafter; finally, we will show that IsCertified(i)

returns the value of Cert(i) (at some point during its execution).

Once we establish the correctness of the certification mechanism, the linearization points of

Read() and Apply() are easy to identify and prove correct.

8.7.3 The intermediate lemmas

Lemma 8.7.2. Initially, Cert(i) is false for every index i ∈ [m]

Proof. The first conjunct in Cert(i) states that (A[i].pid,A[i].loc) ̸= (αi.pid, αi.loc). Since ∀i ∈

[m], (A[i].pid,A[i].loc) = (αi.pid, αi.loc) initially by definition, we have proved the lemma.

Lemma 8.7.3. For any given i ∈ [m], if (A[i].pid,A[i].loc) ̸= (αi.pid, αi.loc) at some point in time,

then this implies that Cert(i). Furthermore, it implies that the value of (A[i].pid,A[i].loc) = (π, j),

and the value of cπ[j] = &A[i] will never change in the future.

Proof. We show this lemma by induction on the number of steps of the execution. As such, the

base case is clear.

The crux of the inductive step is the following. A process π can only change the value of

(A[i].pid,A[i].loc) by successfully executing the Cas on Line 28. π’s Cas will only succeed if

219

A[i] = aπ. Since aπ is read at the beginning of the Certifyπ(i) procedure on Line 13, and π will only

get past Line 14 if bπ did not point to a certificate that certifies index i, so the inductive hypothesis

would imply that (A[i].pid,A[i].loc) = (αi.pid, αi.loc). So, there are only two cases: either (1)

aπ = αi and the Cas will succeed, or (2) aπ ̸= αi and the Cas will fail. Case (2) requires no further

proof since it does not change the state of A[i] and thus the inductive hypothesis directly implies

the inductive step. In case (1), we must establish that if the Cas succeeds, then Cert(i) becomes

true and that the values of (A[i].pid,A[i].loc) = (αi.pid, αi.loc) and cπ[j] = &A[i] that hold at this

point in time will never change. For this, we observe that Lines 23–24 create a certificate for index

i and increase X[π].valid-len so that the certificate is valid by the time (A[i].pid,A[i].loc) = (π, j)

is established. Furthermore, since the Cas on Line 28 succeeds, walk-back will not take place on

Line 29. Therefore, this certificate will never be altered while the current array remains cπ. Even

when the current array gets updated to the next array, we know that c′π[0 . . . cπ.len − 1] = cπ at

the time that the next array becomes current. So, the certificate remains valid forever. Finally,

(A[i].pid,A[i].loc) will not change in the future, since any process τ that reads aτ ← A[i] on Line

13, will notice that the index i is already certified in the check on Line 14, and thereby will not

even attempt to change A[i] on Line 28. We have finished the proof in both cases, and have thus

established the lemma.

The previous lemma establishes that for any given index i, the value of (A[i].pid,A[i].loc)

changes at most once. Furthermore, if it does change, then the point of its change is precisely the

point at which Cert(i) goes from being false to being true, and this exact certificate will certify i

forever on. Equipped with this lemma, we are ready to establish that the two helper methods are

correct.

Lemma 8.7.4. A call to IsCertifiedπ(iπ) by process π returns the value of Cert(iπ) at some

time t during its execution. We call this time t the actualization point of the IsCertifiedπ(iπ)

operation.

Proof. The first step by IsCertifiedπ(iπ) is to read and store the value aπ ← A[iπ] at Line 7.

If Cert(iπ) is true at this point in time, then (A[i].pid,A[i].loc) = (π, j) must point to a valid

certificate at the point in time that Line 10 is executed and all future times by Lemma 8.5.3. Thus,

if π is able to verify that cπ[j] is a valid certificate and indeed certifies index i, i.e. cπ[j] = &A[iπ],

then it can validly return true; because, it must be the case that Cert(i) is true at the time of

execution of Line 10 by Lemma 8.5.3.

220

On the other hand, if one of the checks on Lines 8-10 fails, then we can surely conclude that

Cert(iπ) was false at the time of Line 7—by Lemma 8.5.3 and the definition of Cert).

So, regardless of what value IsCertifiedπ(iπ) returns, we know it must be the value of Cert(iπ)

at some point during the methods execution. That concludes the proof.

Lemma 8.7.5. A call to Certifyπ(iπ) by process π will ensure that index iπ is certified before it

returns.

Proof. By Lemma 8.7.3 we must only establish that Cert(iπ) is true at some point during the

method.

The first step of Certifyπ(iπ) is to read the value aπ ← A[iπ]. If index iπ is already certified

at this time, or if the call to IsCertifiedπ(iπ) returns true on Line 14, then by Lemma 8.7.3, we

conclude that Cert(iπ) will continue to be true hereafter, by Lemma 8.7.4 we conclude that the

method will return after Line 14.

Otherwise, we can conclude from Lemma 8.7.3 that bπ = βi, when we start Line 15. In this case,

the Certifyπ(iπ) method will continue and write and validate a certificate for index i at Lines

23–24, and attempt to place a pointer to this certificate at Line 28. If the Cas on Line 28 succeeds,

we conclude that Cert(iπ) must be true at that point and conclude by Lemma 8.7.3. Otherwise,

we conclude that A[i] ̸= aπ = αi. This once again implies by Lemma 8.7.3 that Cert(iπ) is true

by the end of the method.

That concludes the proof.

8.7.4 Linearizability of Read() and Apply()

Now that we have established the workings of the certification mechanism, the linearization points

of the Readπ() and Applyπ() operations become apparent. The linearization points are as follows:

• An Applyπ(iπ, opπ, argsπ) operation linearizes at Line 4.

• A Readπ(iπ) operation that returns finit(iπ) at the actualization point of its IsCertifiedπ(iπ)

call at Line 5. A Readπ(iπ) that returns A[iπ] linearizes exactly when it returns.

Lemma 8.7.6. Algorithm 25 is linearizable, with Readπ() and Applyπ() operations linearizing

at the points presented in the itemized list above, and at all times ∀i,Cert(i) =⇒ O[i] = A[i].val

according to the claimed linearization.

221

Proof. The itemized list justifies that the claimed linearization points exist and occur within the

invocation-response intervals of the given operations. The remainder of the proof is by induction

over the number of linearization points. The base case is trivially true, and the inductive hypothesis

assumes that all previous linearization points are consistent.

The linearization points of the Apply(i, op, args) operations are justified because they maintain

the invariant that Cert(i) =⇒ O[i] = A[i] that we claim in the theorem statement. And return

the result of calling the operation op with arguments args on O[i] = A[i], by making the call and

return on Line 4.

By the given linearization points, no Apply(i) operation linearizes before Cert(i) becomes

true. Thus, a Read(i) that returns finit(i) is justified in linearizing at the actualization point of

the IsCertified(i) call, since Cert(i) = false at that point by Lemma 8.7.4. Similarly, a Read(i)

that returns A[i] on Line 5 is justified in linearizing at the same time, since A[i] = O[i] once i is

certified by the linearization points of previous apply operations.

Lemma 8.7.1 and Lemma 8.7.6 together establish the correctness of the main theorem about

our fast-array Algorithm 25. Thus we have justified Theorem 8.6.1.

8.8 Experiments

We perform experiments using two 8-core Intel Xeon E5-2670 CPUs with two-way hyper-threading.

The machine has 64GB of DRAM. Our machine ran 64-bit Ubuntu 12.04 with Linux kernel 3.13.0-

143. All algorithms were coded in C++ and without any optimizations or specific algorithmic

engineering to increase the speeds from the pseudo-code presented. We used std::threads to

implement our concurrent fast array, and we compiled our code with g++ version 4.8.4 with the

-std=c++11, -pthread, and -mcx16 options set. We experiment with four different algorithms:

1. standard: a classic array, where initialization is performed by a linear-time for-loop through

the indices of the array.

2. memset: a classic array, where initialization is performed by the C++ memset primitive. The

memset operation can only be used to initialize an array to all 0s. In particular, it cannot be

used to initialize it to an arbitrary function f .

3. folklore: the sequential folklore fast array algorithm (i.e., Algorithm 23). This algorithm

can only be used by a single process; it is not a concurrent algorithm, but it can serve as a

222

(a) (b)

Figure 8.8.1: Figure 8.8.1a is a log-log plot charting the time to initialize arrays of various lengths
for a single process. Figure 8.8.1b is a plot charting the times to initialize fast arrays of length one
billion for various numbers of processes.

baseline.

4. fast array: our concurrent fast array (i.e., Algorithm 24).

Our experiments focus on measuring the speeds of the three operations—Initialize(), Read(),

and Write(). We present the results below.

1. To compare the speed of Initialize() across all four algorithms, we measure the time to

initialize arrays to all zeroes. The array lengths we test are m = 10k for k ∈ {3, 4, 5, 6, 7, 8, 9}

with each entry being 4 bytes, i.e., arrays of size 4KB to 4GB. As predicted by the algorithmic

analysis, the folklore and fast array algorithms take only constant time to initialize, while

initializing by for-loop and memset take linear time.

As shown in Figure 8.8.1a, initializing an array with memset is 1.2–4.7 times faster than

initializing with a for-loop, however initializing a fast array of length one billion is more than

14,000 times faster than initializing with memset. As the length of the array gets smaller,

the initialization time advantage of fast arrays reduces. Fast array initialization and memset

initialization become equally fast at an array length between 104 and 105, and fast array

initialization and for-loop initialization become equally fast at an array length between 103

and 104. We consistently observe that initializing a fast array takes only as much time as

initializing a folklore array. As shown in Figure 8.8.1b, it takes only 3.3 times more time to

initialize a 4GB fast array for 30 processes rather than one for a single process.

2. While fast arrays are much faster to initialize than standard arrays, read and write operations

are slower on these arrays at all levels of concurrency. In order to measure exactly how much

223

Figure 8.8.2: This plot compares the time to read from one million indices of a standard array
versus a fast array for various numbers of concurrent processes. For the fast array, both reads from
uninitialized and initialized indices are compared.

slower fast array reads are, we measure the cumulative time to perform one million reads

using each type of array. Since the fast array Read() algorithm is different for indices that

have been “initialized”—i.e., written to at least once after initialization—versus those that

are “uninitialized”, we measure the two types of reads separately (see Figure 8.8.2).

The main takeaways of the experiment are as follows: (1) the two different types of reads—

initialized and uninitialized—on fast arrays are of comparable speed; (2) fast array reads are

2.1–4.3 times slower than reads to standard arrays.

3. Algorithm 24 suggests that writes to “initialized” indices should be faster than those to “un-

initialized” indices. This is also confirmed by our experiment shown in Figure 8.8.3. In

particular, fast array writes to un-initialized indices are 6–21 times slower than standard

writes, but writes to initialized indices are only 2.2–4.9 times slower. It is noteworthy here

that the slower speed only occurs once per index, and all subsequent writes to that index

happen at the faster speed.

4. Writing to a new index in a fast array is 6–21× slower than writing to a new index in a naive

array. So, fast arrays maintain their initial advantage over standard arrays as long as only

4–17% of the array indices are written to.

8.9 Application: Fixed Size Hash Table

To illustrate the power of the fast arrays, we present an implementation of a provably efficient

fixed-size concurrent hash table built using fast generalized array as Algorithm 26.

224

Figure 8.8.3: This plot compares the time to write to one million indices of a standard array
versus a fast array for various numbers of concurrent processes. For the fast array, both writes to
uninitialized and initialized indices are compared.

8.10 Algorithm

Theorem 8.10.1. Let H be a fixed size hash table, whose code is described by Algorithm 26. Then,

the worst-case time complexity of Initializeπ is O(1) if the Array is a fast-generalized-array and

O(mπ) if the array is a standard array. With an oblivious scheduler, the expected time complexity

of each of Insertπ and Getπ is O(1) if the total number of different keys inserted into H over the

history is at most λmπ for any fixed constant load factor λ < 1.

Proof. Let n ≤ λm (we will use the notation m = mπ for simplicity hereafter), be the total number

of distinct keys inserted into the hash table over the entire history of the object. Once a key k

is inserted, k’s position in the array is unique and unchanging over time, i.e. there is exactly one

position in the array that has the key k and that position never changes. Thus, we can consider

the state of the array A = H.A after all the distinct keys have been inserted. We consider an array

component A[i] occupied if A[i].Exit ̸= ⊥, and we consider it empty otherwise. Thus, once the n

keys have been inserted into A, the array will have certain contiguous sequences of array components

that are occupied that are preceded and succeeded by empty components; we call these contiguous

sequences chunks. For the purposes of chunks, we consider A to be circular and all array indices

we refer to in the analysis are mod m. We define the (probabilistic) event Chunk(i, ℓ) to mean

that there is a chunk of length ℓ starting at index i, i.e., A[i], . . . , A[i+ ℓ− 1] are occupied and both

A[i− 1] and A[i+ ℓ] are empty.

Now consider the first time (by linearization) that a key k is inserted into H. k will occupy a

new location in A during this insertion, and the time taken by the insertion will be at most the

length of the chuck that contains the index h(k) (if there is such a chunk) plus O(1). Thus, using

225

Algorithm 26 Fixed size linear probing hash table using fast arrays.
procedure H ← Initializeπ(mπ, hπ) ▷ mπ is the size of the table. hπ is the hash function.

1: A← new Array(mπ, (⊥,⊥))
2: h← hπ

procedure H.Insertπ(kπ, vπ)
3: iπ ← h(kπ)
4: while true do
5: xπ ← A[iπ]
6: if xπ.Exit = kπ then Cas(A[iπ], xπ, (kπ, vπ)); return
7: else if xπ.Exit = ⊥ then
8: if Cas(A[iπ], xπ, (kπ, vπ)) then return
9: else if A[iπ].Exit = kπ then return

10: iπ ← ((iπ + 1) mod A.len)

procedure H.Getπ(kπ)
11: iπ ← h(kπ)
12: while true do
13: xπ ← A[iπ]
14: if xπ.Exit = kπ then return xπ.val
15: else if xπ.Exit = ⊥ then return ⊥
16: else iπ ← ((iπ + 1) mod A.len)

procedure H.Deleteπ(kπ)
17: Insertπ(kπ,⊥)

1(prop) to refer to the indicator variable of proposition prop, we see that the time, T (k), taken to

insert k is bounded by:

T (k) ≤ O(1) +
m∑
i=1

n∑
ℓ=1

ℓ · 1(Chunk(i, ℓ) ∧ h(k) ∈ [i, i+ ℓ))

Given that the chunk [i, i + ℓ) exists, the probability of a new (never before inserted) key k

hashing into the chunk is ℓ/m. Thus, we can bound the expected insertion time as follows:

226

EhT (k) ≤ O(1) + Eh

m∑
i=1

n∑
ℓ=1

ℓ · 1(Chunk(i, ℓ) ∧ h(k) ∈ [i, i+ ℓ))

= O(1) +

m∑
i=1

n∑
ℓ=1

ℓ · Eh1(Chunk(i, ℓ) ∧ h(k) ∈ [i, i+ ℓ))

= O(1) +

m∑
i=1

n∑
ℓ=1

ℓ · Ph(Chunk(i, ℓ) ∧ h(k) ∈ [i, i+ ℓ))

= O(1) +

m∑
i=1

n∑
ℓ=1

ℓ · Ph(Chunk(i, ℓ)) · Ph(h(k) ∈ [i, i+ ℓ) | Chunk(i, ℓ))

= O(1) +

m∑
i=1

n∑
ℓ=1

ℓ · Ph(Chunk(i, ℓ)) · ℓ
m

= O(1) +

n∑
ℓ=1

ℓ2 · Ph(Chunk(i, ℓ))

In order to bound the terms of the form P (Chunk(i, ℓ)), we observe that Chunk(i, ℓ) implies

that at least ℓ of the n keys hash to values in the range [i, i + ℓ). Thus, defining Hits(i, ℓ) to be

the event that at least ℓ of the keys hash into the range [i, i+ ℓ), we observe

EhT (k) ≤ O(1) +

n∑
ℓ=1

ℓ2 · Ph(Hits(i, ℓ))

Here, we observe that by the uniformity of the hash value of a given key and the mutual

independence of the hash values of the n distinct keys, the random variables X =
∑n

i=1Xi where

each Xi indicates whether the ith key hashes to the range [i, i+ℓ) is a sum of independent indicators.

Thus, Ph(Hits(i, ℓ)) = Ph(X ≥ ℓ). Since EhX =
∑n

i=1 EhXi =
nℓ
m ≤ λℓ. We use Chernoff’s bound

(Theorem 3.2 from [35]) to evaluate that:

227

Ph(Hits(i, ℓ)) = Ph(X ≥ ℓ)

≤ exp

(
− (1− λ)2ℓ2

2λℓ+ 2(1−λ)ℓ
3

)

= exp

(
− (1− λ)2ℓ

2λ+ 2(1−λ)
3

)

= exp

(
−3(1− λ)2

2 + 4λ
· ℓ
)

= e−const·ℓ

Thus, in total we get a summation over ℓ of a polynomial term divided by an exponential

term, which—of course—yields a constant even if the summation is over all natural numbers.

Quantitatively, we see:

EhT (k) ≤ O(1) +
n∑

ℓ=1

ℓ2 · Ph(Hits(i, ℓ))

≤ O(1) +
n∑

ℓ=1

ℓ2

econst·ℓ

= O(1)

That completes the proof for first insertions. Since subsequent insertions take exactly the same

time as the first insertion, the argument is complete for all insertions. Since getting a key also

costs at most a constant more than the length of the chunk that the key hashes into, the same

argument suffices for gets also. The time bounds for initialization are evident. Thus, the proof is

complete.

8.10.1 Lower Bound

A natural question, is whether we can get a provably efficient concurrent re-sizing hash table by

enhancing the Algorithm 26 to expand and contract. In the following lower bound argument, we

prove that due to a phenomenon called “randomness leaking”, it is difficult to obtain such a result.

Theorem 8.10.2 (Randomness Leak). Let H be a concurrent hash table designed for one or more

processes, run with an adaptive scheduling adversary, and satisfying the following properties:

228

1. From its current state, H allows at least m inserts without changing the current hash function

h.

2. H.Getπ(k) reads the hash-value h(k) at some point in its execution.

3. There is a monotonically increasing function f : N → R, such that if n ∈ N distinct keys

k1, . . . , kn with the same hash value ι = h(k1) = h(k2) = · · · = h(kn) are inserted into H,

then a subsequent H.Getπ(k) for any key k ̸∈ {k1, . . . , kn} with h(k) = ι will take time at

least f(n).

Then, the following statement holds:

• For every n ≤ m, and any length ℓ = Ω(n ·m), assuming there are at least mn + 1 keys in

the universe (i.e. key-space), there is a sequence of O(ℓ) Get and exactly n Insert operations

that results in Ω(ℓ · f(n)) work, i.e., Ω(f(n)) work per operation on average.

Proof. Fix the parameters m, n, and ℓ. The adversarial scheduler can produce the described work-

heavy execution as follows. First, the scheduler chooses mn + 1 distinct keys κ1, . . . , κmn+1. In

order to discover their hash values, the scheuduler asks process π to perform Getπ(κi) for each

i ∈ [1,mn + 1]. By the second assumption, the get-queries reveal all the hash-values h(κi) to

the adversarial scheduler. Since there are only m values in the range of the hash function, by

the pigeonhole principle, some subset of n + 1 distinct keys must hash to the same value. Let

k0, k1, . . . , kn be such a subset of keys and let ι = h(k0) = h(k1) = · · · = h(kn) be their hash value.

The adversarial scheduler now makes π perform Insertπ(k1,⊥), . . . , Insertπ(kn,⊥) in sequence.

Finally, the adversarial scheduler makes π query Getπ(k0) repeatedly ℓ times.

The procedure above is sound, since by the first assumption the hash function h does not change

as this procedure is executed. By construction, the total number of insertions is exactly n. The

total number of Get operations is mn + 1 + ℓ = O(ℓ), since ℓ = Ω(mn). Finally, by the third

assumption, each of the final ℓ query operations takes at least f(n) time; thereby leading to a total

work complexity of Ω(ℓ · f(n)).

Our lower bound shows that many concurrent hash tables require super-constant work per

operation in the worst-case [182, 84, 60].2

2The paper on the “split-ordered hash table” [182] states that “under any scheduling adversary our new algorithm
provides a lock-free extensible hash table with O(1) average cost per operation” (page 383; re-expressed as Theorem
3.15 in that paper). However, from an inspection of the code, it is clear that the algorithm satisfies the hypotheses
of Theorem 8.10.2 with f(n) = n, thus, in the worst-case operations require Ω(n) work. In particular, the original

229

8.11 Discussion and Future Work

In this work, we designed the first algorithms for concurrent fast arrays and fast generalized arrays.

We have also presented some brief experiments to measure the empirical efficiency of our fast arrays.

Just as sequential fast arrays have found several applications, we envisage future work that

explores applications of these concurrent fast arrays. The following directions seem promising.

• The concurrent union-find data structure of Jayanti and Tarjan [118], which is used in the

fastest parallel algorithms for computing connected components and spanning forests on CPUs

and GPUs [95, 51], requires a generalized array of n nodes, with each node initially pointing

to itself, i.e., f(i) = i. So, any concurrent union-find object on which only o(n) operations

are performed benefits from the use of our fast generalized array.

• A concurrent (standard) fast array is useful for implementing an adjacency matrix, E, of a

mutable sparse graph. In particular, adding or removing an edge (i, j) is implemented by

writing 1 or 0 (respectively) in E[i, j], and querying an edge (i, j) is a simple read of E[i, j].

The real saving lies in storing the graph initially. To store a sparse graph of m ≪ n2 edges,

we initialize the matrix E with all-zero entries in just O(1) time, and then add the m edges,

one at a time. Thus, the entire graph is stored in just O(m) time, instead of the usual Θ(n2)

time.

• Kanellakis and Shvartsman introduced the write-all problem, a version of which is stated as

follows: given an array A of length m such that each entry A[i] has an arbitrary initial value,

devise an algorithm for p asynchronous processes to initialize each entry A[i] to 0, such that

no process returns before the initialization is complete. This problem has attracted a lot of

research [125, 150, 31, 11, 84], especially since a write-all solution is a critical subroutine in

some implementations of concurrent hash tables [68, 69, 182].

Although the two problems are different, fast arrays and write-all share the quest to achieve

“fast initialization”. The difference is that write-all insists on physically initializing each array

element, whereas a fast array promises only to create the illusion of initializing each element.

analysis does not account for randomness leaks, i.e., it assumes that a hash function mapping individual keys inde-
pendently and uniformly when it first sees them implies that specific user-specified keys (which could be adversarially
correlated through the hash function, if the program picks keys dynamically as in the lower bound) will be uniformly
distributed. I believe the constant bound could hold for schedulers which cannot orchestrate randomness leaks.

230

Thus, initialization takes only O(1) time with fast arrays, while it takes at least linear time

in any solution of write-all. Consequently, if an algorithm that uses a write-all solution can

instead be satisfied with a fast array, then the algorithm’s speed can potentially improve.

• Allocating a hash table of size n requires Θ(n) time using conventional arrays (because of

initialization). As a result, it has been difficult to implement efficient re-sizable lock-free hash

tables [68, 69, 182]. Using fast arrays however, a new table of any size can be allocated in just

O(1) time. Exploiting this feature, we are in the process of designing a re-sizeable wait-free

hash table that guarantees O(1) average time for find and insert operations.

We look forward to the further development and deployment of these ideas by algorithmists

and practioners alike.

231

Chapter 9

The Generalized Wake-up Lower

Bounds

9.1 Introduction

Data structures are the fundamental building-blocks behind algorithms. In asynchronous shared

memory computing, linearizable wait-free data structures based on registers and universal primitives

(such as compare-and-swap and LL/SC) have become the gold standard, since they are essentially

equivalent to atomic data structures [93, 89]. A good metric for data structure efficiency is step

complexity, the total number of shared memory steps executed to complete a data structure opera-

tion. While researchers have developed very efficient sequential data structures for stacks, queues,

priority-queues, union-find etc., designing similarly efficient shared memory data structures has

remained an elusive task. Even the simplest data structures such as counters and fetch-and-inc

suffer from logarithmic overheads in the number of processes, p.

Worst-case lower bounds have been shown for many data types (stacks, queues, fetch-and-add,

etc.) [103]. However, analysis of sequential data types tells us that amortized complexity can often

be very different from worst-case complexity: for example, the single operation worst-case cost of a

union-find operation on an instance of size n is Θ(logn/ log logn) [25, 64], while its amortized cost

is only Θ(α(n,m/n)) (inverse-Ackermann function) [198, 196, 64]. Yet amortized lower bounds for

concurrent data types remain a largely under-studied area.

In this work we propose a new technique, which we term the generalized wake-up technique,

for proving lower bounds on the amortized complexities of operations on linearizable data types

232

that are built from primitive variables supporting read, write, and compare-and-swap (Cas). Our

technique is developed by generalizing Jayanti’s wake-up problem, and extending his lower bound

analysis to our generalized version of the problem [103]. Our main theorem deals with a situation

in which p processes are executing in an asynchronous shared memory system, trying to collect

information about how many other processes are “waking up” by taking at least one step. Given

a decreasing sequence of numbers less than p s = s1, . . . , sp, our main theorem shows that any

algorithm for p asynchronous processes that uses variables supporting only read, write, and Cas,

and guarantees that at least si processes figure out that at least i processes have taken one step

for each 1 ≤ i ≤ p must have an asynchronous schedule that forces the total number of steps by all

processes to be at least Ω(
∑p

i=1 log si). Our lower bound holds even for randomized algorithms.

The main contribution of our work is the use of our generalized wake-up lower bound in several

reductions showing lower bounds on the amortized step complexities of various data types. In

particular, we show that the following amortized lower bounds hold against all deterministic and

randomized algorithms for asynchronous shared memory systems with p processes that use variables

supporting read, write, and compare-and-swap:

1. m operations on any union-find object with n items take Ω(m log log(np/m)) steps in expec-

tation.

Remark: this is the first non-trivial lower bound for the concurrent Union-Find data type,

and is the most involved of our reductions. We consider this the highlight of our work.

2. Define an r-relaxed counter as a fetch-and-increment object whose “fetch” returns a value that

is within an additive r of the correct counter value. m operations on a ((1 − ε)p/2)-relaxed

counter take Ω(m log p) steps in the worst case.

Remark: Our lower bound shows that Ellen and Woelfel’s implementation of fetch-and-

increment [57] and Jayanti’s implementation of a counter [106] have optimal amortized step

complexity. Furthermore, the Ω(log p) overhead for counting in an asynchronous system

is unassailable even for randomized algorithms, and even if the counter needs to be only

approximately accurate.

3. Define an r-relaxed priority queue as an object that returns one of the top r items in priority

order. For r > 1, this is a relaxation of the standard priority queue–which corresponds to the

1-relaxed priority queue. m deleteMin operations on a ((1− ε)p)-relaxed priority queue take

233

Ω(m log p) steps in the worst case. We also prove analagous results for the r-relaxed stack

and r-relaxed queue objects.

The remainder of this chapter contains three sections. In Section 9.2 we discuss the specifics

of our concurrency model, define the wake-up problem and our generalized version of it, and state

our main theorem used to prove amortized lower bounds. In Section 9.3 we discuss the Union-Find

data structure and prove an Ω(m log log(np/m)) lower bound on the expected step complexity of

any concurrent implementation of it. Finally, in Section 9.4 we present our lower bounds for fetch-

and-increment objects, counters, approximate counters, stacks, queues, priority queues, and the

relaxed versions thereof.

9.2 Concurrency Model and the Wake-Up Problem

We consider the shared memory asynchronous multiprocessor model of computing with p processes

P = π1, . . . , πp. We allow an infinite set of arbitrarily initialized shared variables V , each of which

can have arbitrarily large size (even infinite size). In this model, each of the p processes has its

own local memory and also has access to the collective shared memory. A step of the algorithm

by a process πi consists of an arbitrary sequence of primitive operations by πi involving only local

variables ended by a single primitive operation involving a shared memory variable. Exactly one

process executes an operation in every discrete time step; the particular process πi to execute a

primitive operation at time step t is chosen by an adversarial scheduling function σ : N → P . σ

gets to decide which process in P executes at time t by looking only at the past (including past

randomness).

In our model we allow three atomic primitive operations on each variable x ∈ X: read(x):

returns the value of x, write(x, v): updates x’s value to v, Cas(x, v, v′): checks if x = v, if so it

updates x’s value to v′ and returns true;otherwise it does not change x’s value, and returns false.

We allow additional strength in the model by allowing the write and Cas primitives to update

x’s value to a random value. That is, we allow v to be a random variable that is resolved to a

realization at the execution time of the operation.

In this work, we will be interested in concurrent algorithms. A concurrent algorithm A assigns

code to each process πi. For a particular algorithm A and a schedule σ, we say that A runs under

σ if processes execute the primitive shared memory steps of their algorithms in the order assigned

by the scheduler σ. The history of a process πi up to time t is the entire sequence of operations

234

performed by πi and return values received by πi up to time t. In particular, if the history of a

particular process πi is the same if t1 steps of algorithm A are executed under schedule σ1 or if t2
steps of algorithm A are executed under schedule σ2, then the two scenarios are indistinguishable

to πi.

9.2.1 Wake-Up

In his work [103], Jayanti proved worst and expected case step complexity lower bounds for various

data types such as queues, stacks, or fetch-and-adds. His proof proceeds in two steps. First, he

defines a simple problem called wake-up, and shows that any solution to this problem has a worst-

case schedule that forces some process to take Ω(log p) steps. Second, he reduces the wake-up

problem to the various different data structure problems.

In the asynchronous scheduling model, no process knows when it and other processes will be

given their first step. Jayanti’s wake-up problem [103], requires one of the p processes to discover

that all processes have been given at least one step. Formally, the problem is to give code for the

p processes such that the following conditions are met:

1. (termination) Each process πi returns either 0 or 1 in a bounded number of its own steps.

2. (truthfulness) If some process πi returns a 1 at time t, then {σ(1), . . . , σ(t)} = P .

3. (non-triviality) At least one process must return a 1.

Jayanti’s work implies the following theorem

Theorem 9.2.1 (Theorem 6.1 in [103]). Let A be a randomized algorithm that solves the wake-up

problem for the processes in set P of size p = |P |. Then, there is a schedule σ, such that the

processes of P executing A under schedule σ results in some process performing Ω(log p) steps in

expectation.

Jayanti uses Theorem 9.2.1 to show some process must take Ω(log p) steps in a worst-case

schedule of any solution to wake-up, and uses reductions to prove that worst-case step complexities

of various objects is Ω(log p). If it were in fact the case that the total step complexity—total

steps taken by all p processes—in a solution to wake-up is ω(p), then his reductions would imply

non-trivial amortized lower bounds as well. Unfortunately, we show that this is not true by giving

Algorithm 27, which solves wake-up in O(p) total steps—a constant number per process—using the

idea of a tournament.

235

We first present the algorithm when p is a power of 2; the generalization is immediate to those

familiar with binary trees. Let B be a complete binary tree with p leaves, that initially has a value

0 in every node. Each process pi has a current node xi (initially the ith leaf, ℓi, of the tree). The

algorithm is recursive, and at each current node πi tries to Cas a 1 into its current node. If the

Cas succeeds, πi changes its current node to xi.parent if xi.sibling = 1; otherwise, it terminates

and returns 0. A process that successfully gets to the root of the tree returns a 1 to indicate the

all processes are up.

Algorithm 27 The tournament tree algorithm to solve wake-up (code for process i).
1: procedure WakeUp(x = ℓi)
2: if x is the root then return 1

3: if Cas(x.value, 0, 1) then
4: if x.sibling.value = 1 then return WakeUp(x.parent)
5: return 0

Informally, the algorithm works since a node that makes its current node x can infer that every

process with a leaf in x’s subtree must have taken at least one step. Thus, a process that has the

root as its current node can return that all processes have woken up. The O(p) step complexity

results since at most O(1/2h) fraction of the processes ever set their current node at height h in

the tree. We state and prove the correctness and work complexity of Algorithm 27 below.

Lemma 9.2.2. The tournament tree algorithm (Algorithm 27) solves wake-up in O(p) total steps.

Proof. We argue correctness of the algorithm by showing each of the three conditions separately,

and then derive the step complexity.

1. (termination) Termination of the algorithm follows from the fact that the tree has bounded

depth.

2. (truthfulness) Induction on the number of steps shows that the tournament maintains the

invariant that if a process πi’s current node is xi, then no descendant of xi contains the

value 0 in it. The base case is trivial since all processes start at the leaves, and the leaves

have no descendants. The induction step follows since πi makes xi.value = 1 and checks

that xi.sibling.value = 1 before updating its current node to xi.parent. In particular, the

invariant implies that every πj is awake for every leaf ℓj in the subtree of xi, since πj alone

can set ℓj .value = 1. Thus, when a process’s current node is the root, it can safely return 1.

236

3. (non-triviality) The proof is trivial if p = 1. Otherwise, consider any internal node y in the

tree. Induction on the height of the subtree at y shows that exactly one process successfully

performs a Cas into the each of y’s children nodes. We see that the latter of these processes

to successfully perform its Cas on a child of y will surely make y its current node at some

point in the algorithm. Since the root is an internal node, some process returns 1.

4. (efficiency) To show efficiency, we notice that half the processes that make it to height h in

the tree fail to make it to height h+1. Since the work of a process is proportional to its final

height in the tree, the total work is bounded up to a constant by p+
∑∞

h=1 ph/2
h = O(p).

Remark 9.2.3. If p is not a power of two, it suffices to use the almost complete binary tree of

height ⌈log p⌉ and start some of the processes at leaves that are at depth ⌈log p⌉ − 1.

9.2.2 Generalized Wake-Up

The O(p) step complexity solution to wake-up in Algorithm 27 implies that the wake-up problem

and reductions from it cannot be used to prove amortized lower bounds. But we dig deeper into

the proof idea of Theorem 9.2.1 to reveal that a generalization of the wake-up problem can lead to

a strengthening of Theorem 9.2.1 that is strong enough to show powerful amortized lower bounds.

We give an informal description of this proof method below.

Consider the setting where the processes in the set P are running a randomized algorithm A

which uses variables in the set V . At any point of time, we can define a knowledge-set for each

process πi. πi’s knowledge set at time t is the set of processes that πi can infer to have woken

up, i.e. taken at least one step, based on its history–its sequence of operations on shared memory

and the values it received in return. Similarly, we can define a knowledge-set for each variable

x ∈ V . x’s knowledge set represents the set of processes that a process could infer to have woken

up if it reads x. Since a process can return 1 only after it is sure that every other process has

woken-up, the process that returns 1 must have a knowledge-set of size p before it returns. Jayanti

proves his theorem by constructing a special schedule σ∗ and a sequence of “knowledge” functions

parametrized by round r: Kr : (P ∪ V)→ 2P , and shows that:

1. According to σ∗, each process that is yet to return takes exactly one step in each round r.

2. |Kr(Ψ)| is an upper bound on the knowledge set of entity Ψ ∈ (P ∪ V) after round r.

237

3. |Kr(Ψ)| ≤ 4r for any round r.

By the last inequality, Jayanti shows that when the algorithm A is run under schedule σ∗, there

must be at least one process who does not return until round r = log4 p.

In order to get the correct generalization of the wake-up problem, we interpret the above schema

in the following way.

Observation 1. The step complexity lower bound for wake-up comes about because a single

process must reveal that it has a large knowledge set.

Therefore, in order to get a stronger lower bound, we define a generalization of wake-up which

forces multiple processes to reveal that they have large knowledge sets. Thus motivated, we define

the generalized wake-up problem below.

The Generalized Wake-Up (GWU) family of problems for p processes is parametrized by a mono-

tonically non-increasing sequence s1, . . . , sp of values between 1 and p. The problemGWU(s1, . . . , sp)

is to design an algorithm for the p processes such that each process πi returns an integer in the

range [1, p] (a lower bound on the the number of processes it knows to have woken up), which

satisfies the following conditions:

1. (termination) Each process πi must return a value in the range [1, p].

2. (truthfulness) If πi returns k at time t, then |{σ(1), . . . , σ(t)}| ≥ k.

3. (non-triviality) At least k processes must return a value greater than sk.

Informally, generalized wake-up specifies a sequence of values, and the algorithm must ensure that

the processes demonstrate at least as much knowledge as the sequence requests.

Observe, that Jayanti’s wake-up problem is the instance GWU(p, 1, 1, . . . , 1). Also, note that

there is no algorithm with bounded step complexity for instances of generalized wake-up where

si > p − i + 1, since the scheduler can wait for an unbounded amount of time before letting the

(p − i)th process wake up. So, we call the instance GWU(p, p − 1, p − 2, . . . , 1) the Strong Wake-

Up (SWU) problem, and in general require that the sequence s be majorized by the sequence of

descending numbers from p.

The following is our main theorem about Generalized Wake-Up.

Theorem 9.2.4. Let A be a randomized algorithm that solves GWU(s1, . . . , sp) for processes

π1, . . . , πp. There is an asynchronous schedule σ such that when algorithm A is run under schedule

σ, the total number of steps performed by all the processes is Ω(p+
∑p

i=1(log si)).

238

Our proof of Theorem 9.2.4 is built off the work of Jayanti in [103]. We therefore summarize

the important steps from Jayanti’s work on the wake-up problem in the following discussion and

then proceed to prove Theorem 9.2.4.

Consider the setting where the processes in the set P are running algorithm A which uses

variables in the set V . Jayanti constructs a schedule σ∗ and a sequence of “knowledge” functions

parametrized by round r: Kr : (P ∪ V)→ 2P , and shows the following theorem.

Theorem 9.2.5 (Jayanti’s Theorem: Lemma 5.1 and Lemma 5.2 from [103]). Let the processes P

be running some algorithm A:

1. σ∗ operates in rounds where each process gets to take a step in every round, i.e., for each

non-negative value r ∈ {0} ∪ N, {σ∗(rp+ 1), . . . , σ∗(rp+ p)} = P .

2. Knowledge is initially small and grows at most exponentially: ∀α ∈ V ∪ P, |Kr(α)| ≤ 4r.

3. Knowledge is maximal (Indistinguishability): If the current time t ∈ [rp + 1, rp + p] (we are

in the rth round), then for each process π, there is an alternate schedule σπ,t and an alternate

time t′ such that {σπ,t(1), . . . , σπ,t(t′)} = Kr(π), and running the same algorithm A with

schedule σπ,t for t′ time steps as opposed to with σ∗ for t time steps would yield the same

history for process π. So, π cannot distinguish whether all process have taken steps or only

those in the set Kr(π).

An informal interpretation of Jayanti’s Theorem is as follows: At any point of time, we can

define a knowledge-set for each process πi. πi’s knowledge set at time t is the set of processes

that πi can infer to have woken up, i.e., taken at least one step, based on its history–its sequence

of operations on shared memory and the values it received in return. Similarly, we can define a

knowledge-set for each variable x ∈ V . x’s knowledge set represents the set of processes a process

could infer to have woken up if it reads x. Theorem 9.2.5 upper bounds the sizes of these knowledge

sets as follows. Kr(Ψ) is entity Ψ’s knowledge set after round r, where Ψ is either a process in P

or a variable in V . At the beginning of the algorithm each process only knows that it has woken

up, and nothing about the rest of the processes; similarly, the variables are in their initial states

and therefore do not indicate any information about which processes have woken up and taken a

step. So, |K1(Ψ)| ≤ 1 for all Ψ ∈ (P ∪ V). The crux of the theorem is the last part, which states

that Jayanti’s schedule, σ∗, ensures that the amount of knowledge of any given entity Ψ at most

quadruples per round.

239

We use Jayanti’s Theorem to prove the lower bound of Theorem 9.2.4 on the total number of

steps to solve the GWU(s1, . . . , sp) problem.

Proof of Theorem 9.2.4. If a process πi returns a value v after r rounds of σ∗, its return value can be

at most v ≤ |Kr(πi)| ≤ 4r, since otherwise by the indistinguishability clause of Jayanti’s Theorem,

it would also return the same value v in σπi,t and violate the safety condition of generalized wake-

up. Since the return values of the processes must majorize the sequence s1, . . . , sp, the process with

the jth largest return value cannot return before log4(sj) rounds. So, the total number of steps by

all the processes must be at least the sum
∑p

i=1 log4(si) = Ω(
∑p

i=1 log si). Moreover, every process

must take at least one step in order to satisfy termination, and thus the total step complexity is

also at least Ω(p). Combining the two bounds proves the theorem.

The next corollary shows that this theorem is sufficient to get a non-trivial total step complexity

for Strong Wake-Up.

Corollary 9.2.6. The total number of steps by all processes to solve Strong Wake-Up is Ω(p log p).

Proof.
p∑

i=1

log(p− i+ 1) = log p! = Ω(p log p).

While it relies on a simple observation, Theorem 9.2.4 yields powerful amortized lower bound re-

sults. In the remainder of this chapter, we describe some important data types and show amortized

lower bounds on their operation step complexities.

9.3 Union-Find Lower Bound

The Union-Find object maintains a set, S, of n elements as a collection of equivalence classes, under

dynamic unions. Initially, each element of the set is in its own individual equivalence class, and the

single element is the representative of its equivalence class. The object supports three operations,

defined as follows (where x, y ∈ S):

(1) Unite(x, y): combine the equivalence classes containing x and y into a single equivalence

class, and fix some element of this class to be the new representative;

(2) Find(x): return the representative of x’s equivalence class;

(3) SameSet(x, y): return true if x and y are currently in the same equivalence class, and false

otherwise.

240

The exact formulations of the object semantics have varied. Usually, sequential data type literature

has focused on objects requiring support for only the Unite and Find operations [67, 97, 198, 196,

64, 75], while concurrent data type literature has focused on Unite and SameSet [11, 118]. We will

follow this convention without restatement as we discuss the literature. Notably, our lower bound

holds even if the concurrent implementation only supports Unite and SameSet. We also note that

the various formulations of the problem are closely related. For instance, SameSet(x, y) can be

implemented trivially in the sequential setting by simply checking if Find(x) = Find(y). While it

is more difficult in the concurrent setting, Anderson and Woll show a very efficient implementation

of SameSet from Find in [11].

The Union-Find object spurred the genesis of many sophisticated algorithmic and complexity

analysis techniques. In 1964, Galler and Fisher designed a compression heuristic to improve the

performance of the simple tree algorithm for the Union-find problem [67]. This algorithm spurred

a decades-long investigation into the amortized complexity of operations on the union-find data

type which produced fascinating advances in algorithmic analysis and lower bound techniques [67,

97, 198, 196, 25, 64, 11, 75, 118]. Amortized analysis has focused on the time complexity of

performing m operations on a problem instance with n nodes. In 1973 Hopcroft and Ullman

showed that the compressed-trees algorithm has a complexity of O(m log∗ n) [97], where log∗ is

the iterated logarithm. In a breakthrough result, Tarjan showed tight bounds on the complexity of

the same algorithm; his bound—Θ(mα(n,m/n))—related the simple problem of equivalence class

maintenance to the complicated inverse-Ackermann function “α” [198]. Tarjan’s analysis however,

left open the question of whether there was some other better algorithm for the union-find problem.

In attempts to refute such a possibility, Tarjan showed that no algorithm in a large class of separable

pointer machine algorithms could beat the Ω(α(n,m/n)) lower bound [197], and Tarjan and van

Leeuwen also proved that many variants of the original compressed tree algorithm matched the

lower bound [196]. In 1984, Blum showed that while Tarjan and van Leeuwen’s algorithms were

possibly optimal in their amortized complexity, the worst-case complexity of Union-Find algorithms

could be improved from O(logn) to O(logn/ log logn) [25]; he also gave a matching lower bound in a

restricted model of computation. Time complexity questions on both the amortized and worst-case

time complexities of the union-find object were resolved in 1989 by Fredman and Saks. They gave

lower bounds of Ω(α(n,m/n)) and Ω(logn/ log logn) for the amortized and worst-case complexities

of Union-Find operations in the cell probe model of computation (which is stronger than standard

RAM model) [64].

241

Investigation into the complexity of the linearizable wait-free shared memory union-find object

was started by Anderson and Woll. Complexity of the concurrent algorithms has been measured

in amortized work, the total number of primitive steps required for m operations divided by the

number of operations m. In 1991, Anderson and Woll gave an algorithm with an amortized work

complexity of Θ(p+ α(n,m/n)) [11]. In 2016, Jayanti and Tarjan showed a randomized algorithm

(that under certain scheduling assumptions) reduced the overhead per operation in the number

of processes from Ω(p) down to O(log p) in expectation [118]. In concurrent work, Jayanti and

Tarjan have showed the same expected work upper bound without any scheduling assumptions

[personal communication]. The amortized complexity of an operation in Jayanti and Tarjan’s

algorithm is O(log(np/m)+α(n,m/(np))). Compared to the sequential algorithm, their algorithm

has logarithmic overhead in the number of processes p, but before this work a lower bound on the

amortized complexity of the concurrent union-find data type (beyond the sequential lower bound

of Fredman and Saks) was unknown.

In the subsequent subsection, we give the first non-trivial lower bound on the amortized work

complexity of the concurrent union-find data type. In particular, we show the existence of a set of

m union-find operations performed across p processes and a schedule σ such that any linearizable

algorithm for concurrent union-find must perform at least Ω(m log log(np/m)) steps to perform the

operations.

9.3.1 Amortized Lower Bound

In order to prove a lower bound, we must find a way of leveraging the generalized wake-up lower

bound. That is, processes must leverage the Unite and SameSet operations to get information

about how many other processes have woken up and taken at least one step. Our high-level idea

for gaining this information is to leverage path lengths in graphs. That is, let V be a set of vertices,

and E ⊆ V × V be a set of edges (generally not including all possible edges). A process p can

dynamically “add the edge (u, v) ∈ E” into the graph by performing Unite(u, v). After some

processes have added some edges, there is a resultant graph H = (V, F), where F ⊆ E is the set

of edges that have already been added to the graph. A process p′ can “check if vertices u′ and

v′ are connected” in the resultant graph H by performing SameSet(u′, v′). We observe that if

SameSet(u′, v′) is true, then at least δ(u′, v′) edges must have been added to the graph, where δ

is the shortest paths function on the original graph G = (V,E). In particular, if each process is

somehow restricted to add at most one edge, then SameSet(u′, v′) = true implies that at least

242

δ(u′, v′) have woken up. On the flip side, also note that if SameSet(u′, v′) is false, then that gives

us no wake-up information. So, in order to get an amortized bound, we must design a procedure to

ensure that many processes will get non-trivial wake-up information, so that we can leverage the

generalized wake-up lower bound.

We will see as the proof unfolds that ensuring many SameSet operations return true amounts

to picking a highly connected graph G. However, the length of the shortest paths become smaller

as connectivity goes up. For instance, in the best connected graph–the complete graph–all shortest

paths are of length one, and thus even when SameSet operations return true, only trivial wake-

up information is gained. This inherent trade-off between connectivity and long paths makes the

graph we pick very pivotal to the proof. We formalize the notion of graph connectivity that we will

require:

Definition 9.3.1. The edge expansion constant h(G) of a graph G = (V,E) is defined as

h(G) ≜ min
S⊂V

|S|≤|V |/2

|Eout(S)|
|S|

,

where Eout(S) is the set of edges that have one vertex in S, and one vertex in V − S.

The edge expansion constant measures the connectivity of a graph – the higher the constant,

the more connected the graph is. Sparse graphs with a high edge expansion constant are called

expanders, and are known to have many applications in computer science [96]. The following result

implied by Friedman [66] states that good expanders exist for any number of vertices:

Lemma 9.3.2 (By Friedman [66]). For every large-enough n, there is a 4-regular expander graph

Gn = (V,E) with |V | = n, |E| = 2n, and h(Gn) > 0.2.

In the following lemma, we prove that all subgraphs of an expander with sufficiently many edges

have large connected components.

Lemma 9.3.3. There are constants a < 1 and b > 0 such that the following holds for any large

enough n. Let H = (V, F) be a subgraph of Gn = (V,E). If |F | ≥ a|E|, then the largest connected

component of H has size at least b|V |.

Proof. Let C1, . . . , Cℓ ⊂ V be the connected components of H. Assume none of the components

are larger than |V |/2 in size. Then, by the definition of h(·), at least h(Gn) · |Ci| edges of E go

243

between Ci and V − Ci. Thus,

|E| − |F | ≥ 1

2

ℓ∑
i=1

|Eout(Ci)| ≥
1

2

ℓ∑
i=1

h(G)|Ci| =
h(G)|V |

2
=

h(G)|E|
4

.

So |F | ≤ |E|(1− h(G)/4) < 0.95|E| if maxi |Ci| ≤ 0.5|V |.

Set a = 0.95 and b = 0.5, and the result follows.

We will now construct a reduction from Union Find to Generalized Wake-Up. For any integer

t > 0 and large enough n so that Gn has the properties of Lemma 9.3.2 and Lemma 9.3.3, let

p = 2n3t and m = 2p. We will now describe an algorithm on p processes that performs m

operations of concurrent disjoint set union on n nodes.

Work with Gn = (V,E). Define a process type to be a triple (e = (u, v), x, y) where e ∈ E and

u, v, x, y ∈ V . Since |E| = 2|V | = 2n, there are a total of 2n3 = p/t process types, so we can create

t processes of each type. The type ((u, v), x, y) process performs the steps in Algorithm 28.

Algorithm 28 A reduction to generalized wake-up
1: procedure GWU(((u, v), x, y))
2: Unite(u, v)
3: return max(δ(x, y), 1)× SameSet(x, y)

Order the processes as π1, . . . , πp based on the linearization points of completing the Unite

operation on line 2. We denote the type of πi by T (πi) = (ei = (ui, vi), xi, yi). Let I = [1, ℓ],

be the indices of the first ℓ processes to linearize their Unite operations; and define H = (V, F)

where F =
⋃

i∈I{ei} is the set of edges. The constant ℓ will be defined by the schedule to be the

smallest constant that ensures a “large” connect component in H by Lemma 9.3.3. In particular,

pick ℓ to be the minimum number such that |F | ≥ a|E|. Let C be the set of vertices in the largest

connected component of H. Let P ≜ {πi : ei ̸∈ F} be the set of processes whose Unite operation

in Algorithm 28 will not attempt to add an edge in F . Finally, let a, b be the constants from Lemma

9.3.3.

We will now prove a series of short lemmas that have the following informal meanings:

1. The largest connected component in H = (V, F), i.e. C, contains a constant fraction of the

vertices of V . Furthermore, the set of processes in P which will attempt to unite edges not

in F , is at least a constant fraction of the total number of processes.

244

2. If x and y are random vertices in V , then with constant probability they will be in the

connected component C and the distance between them will be Ω(logn).

3. The first two lemmas imply that a constant fraction of the processes will return a value that

is Ω(logn).

4. The previous lemma implies an Ω(log logn) amortized lower bound.

Lemma 9.3.4. |C| ≥ bn = Ω(n) and |P | ≥ (1− a)p− p/|E| = Ω(p).

Proof. |C| ≥ b|V | = bn by Lemma 9.3.3, since |F | ≥ a|E|.

Since there are p/|E| processes that are trying to perform a union involving the vertices of any

given edge in G, |P | ≥ (|E| − ⌈a|E|⌉) · p
|E| ≥ p(1− a)− p/|E|.

Lemma 9.3.5. Let (x, y) be a random pair of vertices from V .

P(x, y ∈ C and δ(x, y) > (1/2) log4 n) ≥ b2(1− 2/(b
√
n)).

Proof. P(x, y ∈ C) ≥ b2 because |C| ≥ b|V | by Lemma 9.3.4. And P(δ(x, y) > (1/2) log4 n | x, y ∈

C) > 1 − 2/(b
√
n), since by the 4-regularity of Gn, the radius r > 1 neighborhood of vertex x has

size at most 2 · 4r. So, the r = (1/2) log4 n neighborhood of x has at most 2
√
n vertices.

Lemma 9.3.6. A constant fraction of the processes return a value that is Ω(logn).

Proof. All the processes πi ∈ P for which xi, yi ∈ C and δ(xi, yi) ≥ (1/2) logd n, return at least

(1/2) logd n = Ω(logn) = Ω(log p), since i > ℓ by the definition of P . By Lemma 9.3.5, the fraction

of such processes returning Ω(logn) is at least b2(1−2/b
√
n). So the total number of such processes

is at least |P |b2(1− 2/b
√
n) ≥ Ω(p), by Lemma 9.3.4.

Lemma 9.3.7. Algorithm 28 solves GWU(s1, . . . , sp) where s1 = · · · = sκ = Ω(logn), sκ+1 =

· · · = sp = 1 and κ = Ω(p).

Proof. We argue each of the GWU conditions. Termination follows by wait-freedom of the Union

Find data structure. Truthfulness follows since every process adds at most a single edge to the

graph through its unite operation on line 2, so a successful SameSet(x, y) operation indicates that

at least min(1, δ(x, y)) processes have woken up. And non-triviality follows by Lemma 9.3.6.

245

We now translate the lower bound from Lemma 9.3.7 into a lower bound parametrized by the

number of operations m, the number of processes p, and the size of the Union-Find object n,

through a combinatorial argument.

Theorem 9.3.8. Consider any randomized algorithm for p-process shared memory Union Find on

an instance with n nodes. Let m > n and m > 2p. Then, there is a sequence of m Union Find

operations on the p processes and n nodes that takes Ω(m log log(np/m)) shared memory steps.

Proof. Divide the n nodes into groups of size s = ⌊2np/m⌋. Have g = ⌊m/2p⌋ groups V1, . . . , Vg,

ignoring extra nodes.

For each group Vi, do not use all the nodes in the group, but only use s′ = Θ(s1/3) = O(p1/3) of

the nodes, so that we can choose t so that p′ ≜ 2(s′)3t = Ω(p) and p′ ≤ p, and can run Algorithm

28 on p′ processes, where there are t processes of each type. By Lemma 9.3.7 and the GWU

lower bound (Theorem 9.2.4), running Algorithm 28 with these parameters takes Ω(p′ log log s′) =

Ω(p log log(np/m)) shared memory operations in the worst case.

We therefore run Algorithm 5 as above for each group of nodes, in a series of g rounds, letting

all operations from the previous round complete before starting the next one. The total worst-case

cost is Ω(gp log log(np/m)) = Ω(m log log(np/m)), the total number of processes used is ≤ p, the

total number of nodes used is ≤ n, and the total number of Union Find operations invoked is at

most 2p′ · g ≤ 2p ·m/(2p) = m.

9.4 Other Lower Bounds

The complexity of a linearizable concurrent data structure is, in general, bounded below by the

complexity of its sequential counterpart since the concurrent data structure must deal with coor-

dinating between the multiple processes. Lots of recent algorithmic work has focused on designing

concurrent data structures with low concurrency overheads. Two notable examples of concurrent

data structures that have been incredibly successful in reducing concurrency overhead to a term

that is merely logarithmic in the number of processes are: Ellen and Woelfel’s algorithm for imple-

menting the fetch-and-increment object [57], and Jayanti’s algorithm for implementing concurrent

counters [106]. Both of these works have produced concurrent data structures with worst-case and

amortized step complexities of merely O(log p). Jayanti’s lower bound in [103] is sufficient to show

that these implementations have optimal worst-case complexities. In this section, for the first time,

we show that the amortized time complexities of these implementations are also optimal.

246

Where research has failed to produce concurrent data structures with low concurrency over-

heads, researchers have attempted to produce fast data structures for relaxed versions of the same

data structures. For example, an h-relaxed Priority Queue is a version of a priority queue where

the deleteMin operation is required to return an element in the smallest h elements in the prior-

ity queue, rather than just the smallest element. A notable recent work in this direction is the

SprayList, a probabilistic implementation of a O(p log3 p)-relaxed priority queue, which supports

deleteMin in O(log3 p) expected steps [4, 5]. In this section, we show amortized step complexity

lower bounds for relaxed priority queues as well as for queues and stacks.

We start by giving descriptions of the data types of interest.

1. Counters: objects that enable incrementing (or decrementing) and reading the current value.

(a) fetch-and-inc: holds a single value v (initially 0) and supports the single operation

F&Inc, which simultaneously returns the current value of v of the object and updates

v ← v + 1.

(b) counter: holds a single value v (initially 0), and supports two operations Inc(), which

updates v ← v + 1, and Read, which returns the current value v.

(c) h-approx-counter: A counter whose Read operation is allowed to return a value in the

range [v − h, v + h].

2. Ordered Collections: objects that allow insertion and deletion according to a standard

order. Examples include Queues, Stacks, and Priority queues. We always let Insert be the

insert operation (enqueue, push, insert) and Remove the removal operation (dequeue, pop,

deleteMin).

An h-relaxed Ordered Collection is an ordered collection object whose Remove operation

is allowed to return one of the top h items in the standard order (as opposed to just the

top one).

We give amortized lower bounds for counters and ordered collections in this section. When

appropriate, we also remark on algorithms with matching or near-matching step complexities.

Theorem 9.4.1 (Counters).

(1) Let A be any linearizable randomized algorithm for fetch-and-inc. For every m ≥ p, there is

a sequence of m operations and a schedule that forces A to take Ω(m log p) steps to perform

the operations.

247

(2) Let A be any linearizable randomized algorithm for a p(1− ε)/2-approx-counter, where ε > 0

is a constant. For every m ≥ 2p, there is a sequence of m operations and a schedule that

forces A to take Ω(m log p) steps to perform the operations.

Proof. To prove (1) in the case thatm = p, we observe that the p processes can solve strong wake-up

using fetch-and-increment, by each returning x.F&Inc on a fetch-and-increment object initialized

to 0. If m > p, we repeat the procedure in phases. That is, the p processes use p operations to solve

SWU in each phase, and there is a break in between phases to ensure that all processes complete

their operations from the previous phase. Simply running for m/p phases yields the lower bound

when m > p.

We prove (2) in the specific case of the h = p/3 approx-counter for concreteness. The proofs

for all ε are exactly analagous. First, let m = 2p. We consider the algorithm where each process

πi does: x.Inc followed by x.Read, on an h-approx-counter object x. If a process reads a value

of at least p/2, it knows for sure that at least p/2− p/3 = p/6 processes have woken up, and thus

can return p/6. Every process after the p/2 + p/3 = 5p/6th process to perform increment, must

read a value of at least p/2 by linearizability, and thus at least p/6 processes return a value of at

least p/6 thereby solving GWU(s), where si = p/6 if i ≤ p/6 and si = 1 otherwise. Theorem 9.2.4

gives an Ω(p log p) step complexity lower bound for this GWU instance. If m > 2p, simply run in

phases.

Remark 9.4.2. Theorem 9.4.1 shows the tightness of two algorithms: (1) Ellen and Woelfel give

a O(m log p) linearizable wait-free fetch-and-increment construction in [57], and (2) Jayanti gives

a O(m log p) construction for a counter in [106]. (A counter is obtained by f -arrays when f is the

operation “+”.)

The argument in Theorem 9.4.1 also shows that maintaining the size of a shared memory

data structure (such as a stack, queue, or set), even up to an additive approximation, is impossible

without at least an amortized-logarithmic step complexity in either the Insert or Remove method.

The following theorem shows that if the collection is ordered, then just the Remove method must

have a logarithmically high amortized complexity even if size does not need to be maintained.

Theorem 9.4.3. Let A be any linearizable randomized algorithm for an h-relaxed Queue, h-relaxed

Stack, or h-relaxed Priority Queue for h = (1− ε)p, where ε > 0 is a constant. For every m ≥ p,

there is a set of m Remove operations and a schedule that forces A to take Ω(m log p) steps to

perform the operations.

248

Proof. For simplicity of exposition, we start with the case of ε = 1/2 and m = p, so that h = p/2

and consider the h-relaxed priority queue. Let Q be the priority queue, and let it initially be

filled with the items {1, . . . ,m = p}, and consider the algorithm in which each process πi simply

performs Q.Remove. If a process receives a value greater than 3p/4, then it must be the case that

at least p/4 processes have already succeeded in performing their Remove operation—otherwise,

3p/4 would not be among the p/2 smallest items. Since there are only p items in Q and there

are p removals, every item is removed by some process. It follows that the p processes can solve

GWU(s) with si = p/4 if i ≤ p/4 and si = 1 otherwise. This yields a lower bound of Ω(p log p) by

Theorem 9.2.4.

If m > p, then simply start with a priority queue with the items {1, . . . ,m}, and run in m/p

phases as in the proof of Theorem 9.4.1. Note that in this case it is possible that the item “1” will

remain in Q until the final phase, since it may never be picked by a removal due to the relaxation,

and thus it cannot be guaranteed that the p items that are removed by the processes in phase r

are (r − 1)p + 1, . . . , rp. However, the processes can communicate “out of band” between phases,

and thus know exactly which items are remaining in Q at the beginning of each phase.

If ε is not 1/2 but is some other constant, the proof proceeds similarly. The main difference

is that the instance of GWU(s) that is solvable now has si = εp/2 for i ≤ εp/2 and si = 1 for

i > εp/2.

If the object Q is not a priority queue, but is instead a stack or a queue, then we simply start

with the items {1, . . . ,m} in last-in-first-out (LIFO) / first-in-first-out (FIFO) order.

249

అధా్యయము 10

సామాన్య జాగృతిపరిషా్కరం

జాగరితసాథ్ నో బహిషʬజఞ్ః సపాత్ ఙగ్ ఏకోనవింశతిముఖః సూథ్లభుగౖెɿశావ్నరః పర్థమః పాదః[201]

सङ्क्षेपः एतसिमन् लेखे समकािलक िवनाप्रतीक्ष रखेीय दत्तांशसंिवधानानाम् संश्रमाधोबन्धाः परीक्षामहे । वाङ्ग्मये समका-
िलक दत्तांशसंिवधानानाम् प्रितकूलतम श्रमिवषमताधोबन्धाः स्थापनाथर्म् प्रसाद् जयिन्तवयर्स्य जागृितपिरष्कारम् एकम् मुक्यप-
िरकरम् । िकन्तु, ताम् जागृितपिरष्कारसमस्याम् n संसाधकािनO(n) संश्रमेण पूरियतरम् िविधकल्पम् प्रदृश्य, ततः तेन पिरकरणे
संश्रमाधोबन्धिनरूपणम् दुलर्भम् इित प्रदशर्यामहे । संश्र्माधोबन्धिनरूपणाथर्म् सामान्यजागृितपिरष्कारम् इित नव पारिमितक स-
मस्यस्रेिणम् पिरभाष्य, तम् पिरशील्य, श्र्रेण्यौ प्रितसमस्यायाम् संश्रमाधोबन्धम् स्थापयामः । श्रेणौ कष्टतमसमस्याम् पूरणाथर्म्
n-संसाधकसंिवधानस्य Ω(n logn) संश्रम आवश्यकम् । एतत् प्रमेयम् उपयुज्य, न्यूनीकरणद्वार िविवध बहुसंसाधकवस्तूपिवधेः
संश्रमाधोबन्धाः िनरूपयामः । तदनन्तरम्, श्रेणौ कािनचन मुख्यसमस्यानाम् अधोबन्धाः एव उद्बन्धाः इित िनरूपयामः ।

సారాంశం ఈ లేఖలో సమకాలిక వినా-ప్ర తీకφ రేఖీయ దతా్త ంశసంవిధానాల (కృతి్ర మాణు వసు్త వుల) సంశχ మ
అధోబంధాలను పరికిసా్త ం. వాఙ్మయములో, సమకాలిక ప్ర తికూలతమ శχ మవిషమత అధోబంధాలను సా్థ పించυ -
డానికి జయంతి జాగృతి పరిషా్కరం ఒక ముఖ్య పరికరం. కానీ జయంతి జాగృతి-పరిషా్కర సమస్యను n సంసాధ-
కాలు O(n) సంశχ మతో పూరించే విధికల్పమును ప్ర దరి్శంచి, తదా్వరా ఆ పరికరంతో సంశχ మ అధోబంధ నిరూపణ
దుర్ల భం అని ప్ర దరి్శసా్త ం. సంశχ మ అధోబంధాలను నిరూపించυ డానికి తోడ్పడే సామాన్య-జాగృతి-పరిషా్కరం అనే
కొχ త్త పారమితిక సమస్య సే్ర ణిని నిర్వచించి, దాని్న పరిశీలించి, శేχ ణిలోని ప్ర తీ సమస్యకు సంశχ మ అధోబంధాని్న
నిరూపిసా్త ం. శేχ ణిలో కష్ట తమమైన సమస్యను n సంసాధకాల సంవిధానము పూరించాυ లంటే Ω(n logn) సం-
శχ మ ఆవశ్యకం. ఈ సిదా్ధ ంతాని్న ఉపయోగించి, నూ్యనీకరణలదా్వరా వివిధ బహుసంసాధక వసు్త ఉపవిధులకు
సంశχ మ అధోబంధాలను నిరూపిసా్త ం. ఆ పై, శేχ ణిలో కొని్న ముఖ్యసమస్యలకు మా అధోబంధాలే ఉద్బంధాలని
రచనాత్మకంగా నిరూపించి, తదా్ద ϯరా మా ఆ అధోబంధాలను బలపరచుυ ట అసాధ్యమని గమనిసా్త ం.

250

10.1 ఉపోదా్ఘ తము

వేగమైన విధికలా్పలకు వెనె్నముకలు దతా్త ంశసంవిధానాలు. సమకాలికసంగణనములో CASతో కలి్పంచిυ న రేఖీయ
[93] వినా-ప్ర తీకφ [89] దతా్త ంశాలు సువర్ణ ప్ర మాణాలు. అందున, ఇలాంటి కృతి్ర మాణుదతా్త ంశాల శχ మవిషమత-
ను నిరా్ధ రించుυ ట ఒక ముఖా్యంశం. శχ మవిషమత ఉద్బంధాలను విధికల్ప పరిశీలనతో గχ హించυ చు్చ. శχ మవిషమత
అధోబంధాలను నిరా్ధ రించుυ టకు ఉపకరించే ఒక ప్ర ధాన ఆధునిక సాధనం జాగృతి-పరిషా్కర సమస్య.
జాగృతి-పరిషా్కరసంసాధక సమన్వయ కర్త ϯమును జయంతి 1998లో ప్ర వేశపెటా్ట రు [103]. జాగృతి-పరిషా్కరం

ఒక n సంసాధక అసమకాలిక సంవిధానంలో నిర్వచింపబడినది. దీనిలో కేంద్ర బిందువు, ఉన్న n సంసాధకాలలో
ఒకటి మిగతా అని్న సంసాధకాలు లేచి కనీసం ఒక అడుగు వేసాయని గχ హించాυ లి.

ఈ జాగృతి-పరిషా్కర సమస్యను కేవలం పఠ (read), లిఖ (write),పోలి్చవా్ర తలతో (CAS) మాత్ర ం పూరించే
ప్ర తి విధికల్పములో ఏదో ఒక సంసాధకం ప్ర తికూలతమ చలనలో Ω(logn) శχ మిసు్త ందని జయంతి నిరూపించాυ -
రు. ఈ సిదా్ధ ంతాని్న బటి్ట నూ్యనీకరణల దా్వరా వివిధ సమకాలిక-దతా్త ంశ-సంవిధాన విధికలా్పల ప్ర తికూలతమ
ఉపవిధులకు అధోబంధాలు నిరూపించυ గలిగారు.

ఈ లేఖలో, మేము సమకాలికదతా్త ంశసంవిధానాల ప్ర తికూలతమ సంశχ మవిషమతను విచారిసా్త ం. ఈ వి-
చారణలో ప్ర థమాంశముగా, జాగృతి-పరిషా్కరపు సంశχ మను విశే్ల షించి, ఈ సమస్యను కేవలం O(n) సంశχ మతో
పూరించచ్చని విధికల్పనదా్వరా నిరూపిసా్త ం. పరిణామతః, జాగృతి-పరిషా్కర నూ్యనీకరణలదా్వరా దతా్త ంశసం-
విధానాల సంశχ మవిషమతలకు అధోబంధాలు సా్థ పించుυ ట దుర్ల భం. ఈ తడను అధిగమించుυ టకు, జాగృతి-
పరిషా్కరమును సామాన్యపరచి, సామాన్య-జాగృతి-పరిషా్కరం అనే కొχ త్త సమస్య శేχ ణిని ప్ర వేశపెడతాం. ఈ శేχ ణిలో
జయంతి నిర్వక్త జాగృతి-పరిషా్కరం సులభతరమైన సమస్య, అందుచేత దని్న సులభ జాగృతి-పరిషా్కరమని
పునరా్నమకరణం చేసా్త ం. జయంతి సులభ సమస్య విశే్ల షణను విస్త రించి, శేχ ణిలోని ప్ర తి సమస్యకు అధోబంధా-
ని్న సా్థ పిసా్త ం. ఉదాహరణకు, శేχ ణిలోని కష్ట తమమైన కఠిన జాగృతి-పరిషా్కర సమస్యకు సంశχ మ అధోబంధం
Ω(n logn). అధోబంధ సా్థ పనానంతరం, నూ్యనీకరణల దా్వరా వివిధ దతా్త ంశసంవిధానాలకు సంశχ మ అధో-
బంధాలను నిరూపిసా్త ం. లేఖ తుది అంశముగా, అధోబంధాల దృఢీకరణశక్యతను విశే్ల షిసా్త ం. ఈ దిశలో, ము-
ఖ్యముగా కఠిన జాగృతి-పరిషా్కరణ సంశχ మ అధోబంధానికి సమమైన ఉద్బంధాని్న విధికల్ప ప్ర మాణముగా ని-
రూపిసా్త ం.

10.2 యంత్ర ప్ర తికృతి మరియుపూరా్వంశాలు
ఈ లేఖలో సంవిభక్త -స్మϑతి గల అసమకాలిక బహుసంసాధకమును ప్ర సు్త తిసా్త ం. అటి్ట సంగణక-సంవిధంలో
స1, . . . ,సn అనే n సంసాధకాలు, అసమకాలికముగా (అనగా వేరువేరు వేగాలతో అడుగులేసుకుంటూ)విధికల్పమును
నిర్వరి్త సా్త యి. ప్ర తి సంసాధకం సi మొద్ద టి్ట అడుగు వేసినపు్పడు అది లేచిందని (అనగా జాగృతం అని) గణి-
సా్త ము. లేచిన తరువాత, ప్ర తి సంసాధకము విధికల్పములో దానికివ్వబడిన ఉపవిధిని కాలబంధము అవ-

251

కాశమిచి్చనపు్పడల్ల ఒక అడుగు వేసూ్త తిరుగిచే్చదాక నిర్వరి్త సు్త ంది. సంవిధము అసమకాలికము కనక, రిపు-
కాలబంధం ఏ సంసాధకము ఎపు్పడు మరుసటి అడుగు వెయా్యలో నిరే్ద శిసు్త ంది. అనగా, కాలబంధం Nలోని
ప్ర తికాలమాత్ర కి, ఆ మాత్ర లో ఏ సంసాధకము అడుగువేసు్త ందో నిశ్చయిసు్త ంది. కాలబంధం రిపువు కనక వివిధ
సంసాధకాల అడుగుల మిశχ మ-కχ మము ఏ విధముగానైనా ఉండచుυ ్చ. ప్ర తీ మాత్ర లో సరిగా్గ ఒక సంసాధకము
మాత్ర ం అడుగు వేసు్త ంది కనక సంవిధములో ప్ర తి సంసాధక అడుగుకు ఒక సంవిధకాలమాత్ర అని లెక్క. అలా-
గే, ఆ అడుగు వేసిన సంసాధకము సiకి ఒక శχ మ పడినటు్ట లెక్క. సంసాధకాల శχ మలను కూడితే ఒచే్చ సంఖ్యని
సంవిధముయొక్క సంశχమ అని ప్ర సు్త తిసా్త ము. బహుసంసాధక సంగణక పరిభాషలో, ఒక ప్ర తే్యక కాలబంధాను-
సారం సంసాధకాలచే నిర్వహింపబడ్డ విధికల్పమును చలన అంటారు.

ఈ భాషలో సుతథ్యముగా ప్ర సాద్ జయంతియొక్క జాగృతి-పరిషా్కరాని్న ఇలా నిర్వచించచు్చ.

నిర్వచనం 10.2.1 (జాగృతి-పరిషా్కరం). ఒక n సంసాధక సంవిధానంలోజాగృతి-పరిషా్కరం చేసే విధికల్పము-
నకు మూడు గుణములుండాలి:

1. సమాపి్త : ప్ర తి సంసాధకము ఒక సదసతు్త (అనగా సత్, లేదా అసత్ ను) తిరుగివా్వలి.

2. సత్యవాకు్క: అని్న సంసాధకాలు లేచేదాకా (ఒక అడుగు వేసేదాక), ఏ సంసాధకము సతు్త ను తిరుగివ్వ-
కూడదు.

3. అవితండం: అని్న సంసాధకాలు అసతు్త ను తిరుగివ్వకూడదు.

ఆయన ఈ సమస్యను గురించి నిరూపించిన రెండు అధోబంధాలను ఇక్కడ పునఃస్మరిదా్ద ం:

సిదా్ధ ంతం 10.2.2 (అవిచకφ ణీయత [103]లో Lemma 5.2). P అనే గణం లోని సంసాధకాలకు జాగృతి-పరిషా్కరాని్న
వ అనే యాదృచి్ఛకవిధికల్పం కేవలం పఠ, లిఖ, పోలి్చవా్ర తలు భరించే V అనే గణం వికారులతో పూరిసు్త ందని
భావిదా్ద ం. అపు్పడు కిχ ంది గుణాలను పూరి్త (అనగా 1) సంబవతతోగల కాలబంధం క ఉండితీరాలి:

1. క అనే కాలబంధం కలా్పలో్ల చలిసు్త ంది. ప్ర తి కల్పంలో తిరుగివ్వని ప్ర తి సంసాధకము సరిగా్గ ఒక అడుగు
వేసు్త ంది.

2. అ ∈ P ∪ V అనే ప్ర తి వసు్త వుకు, ప్ర తి కల్పం k లో జా్ఞ
k
(అ) ⊆ P అనే సంసాధక ఉపగణం జోడింపబడి

ఉంటుంది. ఈ గణాలను జా్ఞ న గణాలని సంబోధిసా్త ం.

3. స అనే సంసాధకాని్న ధుό వపరుదా్ద ం. క కాలబంధ కχ మములో అని్న సంసాధకాలు చలించినా, క కాల-
బంధ కχ మములో జా్ఞ

k
(స) లోని సంసాధకాలు మాత్ర ము చలించినా స దృషి్ట లో కనీసం kవ కల్పం వరకు

అవిచకφ ణీయం.

4. |జా్ఞ
k
(స)| ≤ 4k

252

పై సిదా్ధ ంతాని్న అనుసరించి వచే్చ అధోబంధము:

సిదా్ధ ంతం 10.2.3 (జయంతి ప్ర తికూలతమ అధోబంధ సిదా్ధ ంతం [103]లో Theorem 6.1). P అనే గణం లోని
సంసాధకాలకు జాగృతి-పరిషా్కరాని్న వ అనే యాదృచి్ఛకవిధికల్పం కేవలం పఠ, లిఖ, పోలి్చవా్ర తలతో పూరిసు్త ం-
దని భావిదా్ద ం. |P | = n ఐన, అపు్పడు, ఏదో ఒక కాలబంధం క ని అనుసరించి వ చలించినపు్పడు, ఏదో ఒక
సంసాధకము స ∈ S చలనలో Ω(logn) శχ మిసు్త ంది.

ఈ లేఖలో అధోబంధాలే కాక ఉద్బంధాలను కూడా పరిశీలిసా్త ం. ఆ ఉద్బంధాలను ప్ర తిషి్ట ంచే విధికలా్పలకు
ఉపకరించే ఇంకొక ముఖ్యమైన పరికరం f -పీఠిక.

నిర్వచనం 10.2.4. ఒక n కోషా్ట లు గల f-పీఠిక అనే వసు్త వుకు క1, . . . , కn అనే కోషా్ట లుంటాయి. పైగ, కిχ ంది
ఉపవిధులను భరిసు్త ంది:

1. పీఠికలోని ప్ర తి కోష్ట ము పఠ, లిఖ, పోలి్చమారు్చ అనే నియోజా్యలను సాధారణరీతిలో భరిసు్త ంది

2. ప్ర తి ప అనే f -పీఠిక, ఏదో ఒక ప్ర తే్యకమైన నియోజ్యం fతో సా్థ పింపబడి ఉంటుంది (ఉదా. f = సంపర్కం,
అనగా కూడిక). వసు్త వుమీద మీద ప.f() ని పిలిసే్త , అది f(క1, . . . , కn)ను తిరుగిసు్త ంది.

లేఖలో f -పీఠికలగురించిన ఒక ముఖ్యమైన సిదా్ధ ంతాని్న వాడతాము.

సిదా్ధ ంతం 10.2.5 (f -పీఠికలు [106]లో Theorem 6). f అనే నియోజ్యం లఘుతమ (min), బృహత్త మ (max),
లేదా సంపర్క (sum) ఐనచో, f -పీఠిక సమస్యకు ప్ర తి సాధారణ నియోజ్యం (పఠ, లిఖ, పోలి్చమారు్చ) O(logn)

శχ మతో, f -నియోజ్యమును O(1) శχ మతో పూరి్త చేసే విధికల్పము కలదు.

10.3 సామాన్య-జాగృతి-పరిషా్కర సమస్య
ఈ భాగంలో జయంతి జాగృతి-పరిషా్కరాని్న సామాన్యపరుసా్త ం. మా సామాన్య-జాగృతి-పరిషా్కర సమస్య శేχ ణి-
లోని ప్ర తి సమస్యను ఒక అహాϋ సక (దుర్బల వర్ధ న) శేχ ధి పరిమితి s1, . . . , sn దా్వరా విశదీకరిసా్త ం. సామాన్య-
జాగృతి-పరిషా్కర సమస్య జ(s1, . . . , sn) అనగా, సుతథ్యముగా:

నిర్వచనం 10.3.1 (జాగృతి-పరిషా్కరం). ప్ర తి వర్ధ న శేχ ధి 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ n కి సంవాదిగా
జ(s1, . . . , sn) అనే n సంసాధక సంవిధానపు సామాన్య-జాగృతి-పరిషా్కర సమస్య ఉంటుంది. ఆసమస్యను
పూరించే విధికల్పమునకు మూడు గుణములుండాలి:

1. సమాపి్త : ప్ర తి సంసాధకము [1, n]లో పూర్ణ సంఖ్య తిరుగివా్వలి.

2. సత్యవాకు్క: ఏ సంసాధకము k సంసాధకాలు లేచేముందు, kను తిరుగివ్వకూడదు.

3. అవితండం: k, లేదా యెకు్కవ, సంసాధకాలు sk కంటే తకు్కవ సంఖ్యను తిరుగివ్వకూడదు.

253

ఈ శేχ ణిలో జ(1, 1, . . . , 1, n) సమస్యనుసులభజాగృతి-పరిషా్కరం (సులభ సమస్య)అని జ(1, 2, . . . , n−
1, n) సమస్యను కఠిన జాగృతి-పరిషా్కరం (కఠిన సమస్య) అని వ్యవహరిసా్త ం.

సులభ జాగృతి-పరిషా్కరము జయంతి జాగృతి-పరిషా్కరానికి ప్ర తిరూపం, యెందునంటే ఈ రెండు సమస్య-
లమధ్య సులభతరమైన పరస్పర నూ్యనీకరణ సాధ్యము. వివరముగా, వ అనే విధికల్పము జయంతి జాగృతి-
పరిషా్కరాని్న పూరిసే్త , వ ఎక్కడెక్కడ అసతు్త ను తిరుగిసు్త ందో, అక్కడక్కడ 1ని, వ ఎక్కడెక్కడ సతు్త ను తిరిగిసు్త ందో,
అక్కడక్కడ nను తిరుగిచే్చ వ′ అనే విధికల్పము సులభ జాగృతి-పరిషా్కరాని్న పూరిసు్త ంది. ప్ర తిదిశలో, వ అనే వి-
ధికపము సులభ జాగృతి-పరిషా్కరాని్న పూరిసే్త , వ ఎక్కడెక్కడైతే n కంటే తకు్కవ సంఖ్యను తిరుగిసు్త ందో, అక్కడ-
క్కడ అసతు్త ను, వఎక్కడెక్కడైతే nను తిరుగిసు్త ందో, అక్కడక్కడ సతు్త ను తిరుగిచే్చ వ′ సులభ జాగృతి-పరిషా్కరాని్న
పూరిసు్త ంది. అందుచేత, ఇప్పటినుంచి జయంతి జాగృతి-పరిషా్కర సమస్యని కూడా సులభ సమస్యగానే వ్యవ-
హరిసా్త ం.

సిదా్ధ ంతం 10.3.2 (సామాన్య జాగృతిపరిషా్కర సిదా్ధ ంతం). స1, . . . ,సn సంసాధకాల మధ్య సామాన్య జాగృతిప-
రిషా్కర సమస్య
జ(s1, . . . , sn) ని వ అనే వినా-ప్ర తీకφ విధికల్పం పూరిసు్త ందని భావిదా్ద ం. అపు్పడు నిశ్చయముగా, ఏదోవొక కాల-
బంధం క ప్ర కారం వ చలిసే్త , చలనకు Ω(n+

∑n
i=1 log si) సంశχ మ ఖరౌ్చతుంది.

నిరూపణ. జ(s1, . . . , sn) ని వ అనే వినా-ప్ర తీకφ విధికల్పం పూరిసు్త ందని భావిదా్ద ం. సిదా్ధ ంతం 10.2.2 లో ప్ర -
సు్త తింపబడ్డ క అనే కాలబంధాని్న పరీకిφ దా్ద ం. ఈ కాలబంధ కχ మంలో చలిసే్త ఏ స అనే సంసాధకము త అనే
సంఖ్యను log4 త కలా్పల ముందు తిరుగివ్వలేదని విరోధోకి్త నా్యయం దా్వర నిరూపిదా్ద ం.

స సంసాధకము క కాలబంధంలో అని్న సంసాధకాలు చలిసు్త న్నపు్పడు ట < log4 త అనే పూర్వ కల్పంలోనే త
ను తిరుగిచి్చందని భావిదా్ద ం. అవిచకφ ణీయత ప్ర కారం జా్ఞ నగణంలో ఉన్న, అనగా జా్ఞ ట(స) లో ఉన్న, సంసాధ-
కాలు మాత్ర ం క కχ మములో చలించినచో స సంసాధకము త ను ట కల్పంలో తిరుగిసు్త ంది. కానీ, సిదా్ధ ంతం 10.2.2
నలగవ అంశం ప్ర కారం |జా్ఞ ట(స)| ≤ 4ట < 4log4త = త, అందుచేత ఈ తిరుగిచి్చన సంఖ్య సత్యవాకు్కను
వ్యతిరేకిసు్త ంది. విరోధోకి్త సంపూర్ణ ం. తద్పϭమాణముగ, త లేదా ఎకు్కవ సంఖ్యను తిరుగిచి్చన ప్ర తి సంసాధకము
కనీసం log4 త శχ మిసు్త ందని గురు్త ంచుυ కుందాం.

అవితండం వలన జ(s1, . . . , sn) ని పూరించే ప్ర తి విధికల్పంలో కనీసం ఒక సంసాధకము snకి తకు్కవకాని
సంఖ్యను, కనీసం ఇంకొక సంసాధకము sn−1కి తకు్కవకాని సంఖ్యను, ఇతా్యది. తిరుగివా్వలి కనక, సంశχ మ
≥
∑n

i=1 log4 si = Ω(
∑n

i=1 log si) అని తేలింది.

ఉపసిదా్ధ ంతం 10.3.1 (కఠిన సమసా్యధోబంధం). n సంసాధకాల సంవిధానంలో కఠిన సమస్యను పూరించే ప్ర తి
విధికల్పము ప్ర తికూలతమ చలనలో Ω(n logn) సంశχ మిసు్త ంది.

ఉపసిదా్ధ ంతం 10.3.2 (సులభ సమసా్యధోబంధం). n సంసాధకాల సంవిధానంలో సులభ సమస్యను పూరించే
ప్ర తి విధికల్పము ప్ర తికూలతమ చలనలో Ω(n) సంశχ మిసు్త ంది.

254

పై నిరూపించిన అధోబంధాలను ఆసరాగా తీసుకొని నూ్యనీకరణలదా్వరా కొని్న చυ క్కటి కొχ త్త ఫలాలను నిరూ-
పిసా్త ం.

10.4 అధోబంధాలు
సమకాలిక కృతి్ర మాణు దతా్త ంశసంవిధానాల శχ మవిషమతను తగి్గ ంచే దిశలో ఈ మధ్య చాυ లా పని జరిగింది.
ఈ ప్ర గతిలో రెండు కీలకోదాహరణాలు జయంతియొక్క గణత్ర ము [106], ఎలెన్ వోల్ఫల్ ల తెచి్చమారు్చ వసు్త వు
[57]. ఇరువసు్త వులు ప్ర తికూలతమశχ మలో సరో్వత్కϑషు్ట లని జయంతి అధోబంధాని్నబటి్ట తేలుతున్నది [103].
కాని, సర్వసాధారణముగ ఒక్కటే వసు్త ఉపవిధిని పిలవడంకన్న చాυ లా వసూ్త పవిధులను పిలవడం సంభవి-
సు్త ంది. అందుకని ఒక్క ఉపవిధియొక్క ప్ర తికూలతమశχ మతో పాటు (ప్ర తికూలతమ) సంశχ మను గణించυ డము
ముఖ్యము. పై పేరొ్కన్న రెండు వసు్త వులు సంశχ మవిషమతలో సరో్వత్కϑషు్ట లని మా సామాన్య జాగృతిపరిషా్కర
అధోబంధం దా్వరా మొదటి్ట సారిగా ఈ లేఖలో ప్ర దరి్శసా్త ం.

పరిశోధనలో అల్పవిషమత గల దతా్త ంశసంవిధానాలను తయారు చేయలేని పకాφ లలో, సమీప-దతా్త ంశసంవిధానాలు
(తకు్కవ ఆవశ్యకతలు పాటించే దతా్త ంశసంవిధానాలు) సృజింపబడా్డ యి. ఉదాహరణకు, h-సమీప పా్ర ధాన్య-
తాపంకి్త అనగా పా్ర ధాన్యతాపంకి్త లోని నూ్యనతమనిషా్కస ఉపవిధిలో, నూ్యనతమ పా్ర ధాన్యతగల సంఖే్యగాక h

నూ్యనతమ పా్ర ధాన్యతలుగల సంఖ్యలలో ఏదైనా తిరుగివ్వచు్చ. ఆధునికముగ, నూ్యనతమనిషా్కస ని O(log3 n)

అపేకిφ త అడుగులలో నిర్వహించే సే్పϭలిస్్ట అనే O(n log3 n)-సమీప పా్ర ధాన్యతాపంకి్త ని ఆలిసా్ట ϭ ఇతా్యదులు
కలి్పంచారు [4, 5]. ఈ లేఖాభాగంలో అటువంటి సమీప-దతా్త ంశసంవిధానాలనుదేశించే అధోబంధాలను కూడ
ప్ర దరి్శసా్త ము.

సమీప-దతా్త ంశసంవిధానలగురించిన సిదా్ధ ంతాలను వ్యకీ్త కరించυ డానికి కిχ ంది పరిభాషానిర్వచనాలు ఉపక-
రిసా్త యి.

నిర్వచనం 10.4.1 (సమీప దతా్త ంశసంవిధానాలు).

1. h-సమీప గణత్ర ంకి సామాన్య గణత్ర మువోలెనే 0-విలువతో మొదలుగొని పెంచుυ (), విలువ() అనే ఉపవి-
ధులను భరిసు్త ంది. కానీ, విలువను తిరుగిచు్చనపుడు అసలు విలువకు h వరకు యెకు్కవైనా, తకు్కవైనా
గల సంఖ్యను తిరుగివ్వవచుυ ్చ.

2. h-సమీప పంకి్త , రాశి, పా్ర ధాన్యతాపంకి్తలు ఆ ఆ సామన్య వసు్త వులువోలే ఉంటాయి. కానీ, కχ మములో
మొదటి్ట సంఖ్యను నిశ్చయముగ తిరుగివ్వకుండ, కχ మములో మొదటి h సంఖ్యలలో ఒకటి తిరుగిసా్త యి.

సిదా్ధ ంతం 10.4.2 (గణత్ర అధోబంధాలు). గణత్ర సదృశ వసు్త వులు గురించిన కొని్న సతా్యలు కిχ ంది ఇవ్వబడా్డ యి:

1. గ అనే విధికల్పము n సంసాధకాలకు కృతి్ర మాణు తెచి్చపెంచు వసు్త వని భావిదా్ద ం. ప్ర తి m ≥ nకి ఏదో ఒక
m ఉపవిధుల అనుకχ మము Ω(m logn) సంశχ మను (ప్ర తికూలతమములో) కలిగిసు్త ంది.

255

2. గ అనే విధికల్పము n సంసాధకాలకు కృతి్ర మాణు గణత్ర మని భావిదా్ద ం. ప్ర తి m ≥ nకి ఏదో ఒక 2m

ఉపవిధుల అనుకχ మము Ω(m logn) సంశχ మను (ప్ర తికూలతమములో) కలిగిసు్త ంది.

3. గ అనే విధికల్పము n సంసాధకాలకు కృతి్ర మాణు (1− ε)n/2-సమీప గణత్ర మని భావిదా్ద ం; యత్ర ε > 0

ఐన అచలం. ప్ర తి m ≥ nకి ఏదో ఒక 2m ఉపవిధుల అనుకχ మము Ω(m logn) సంశχ మను (ప్ర తికూలత-
మములో) కలిగిసు్త ంది.

నిరూపణ. వాకా్యలను కχ మముగా నిరూపిసా్త ం.

1. గ తొలి సి్థ తిలో 1 విలువతో ఉంటుంది. m = n ఐతే, ప్ర తి సంసాధకము తెచి్చపెంచుυ () ను పిలిచి, వచి్చన
తిరుగువిలువను తిరుగిసే్త , కఠిన సమస్యకు పూరణౌతుంది. అందున, నిరూపణ సిదా్ధ ంతం 10.3.1 దా్వరా
సమాప్త ము. వేరొక పూర్ణ సంఖ్య kకు m = kn ఐతే, పై ఉపాయమును కలా్పలలో పునస్కరించచు్చ. అనగా,
కలా్పలచివరల తడులు పెటి్ట ఆగుతూ, ప్ర తి కల్పములో కఠిన సమస్యను పూరిసే్త k మాటు్ల కఠిన సమస్యను
పూరించినందుకు Ω(kn logn) = Ω(m logn) సంశχ మ తధ్యం. ఒకటే జాగχ తే్త మిటంటే, hవ మాటు పు-
న్సϓరించిυ నపు్పడు విలువనుంచి (h− 1)nను తీసివేసి [1, n]లో సంఖ్యను తిరుగివా్వలి. (m అనే సంఖ్య n
అనే సంఖ్యచేత భాగింపబడకపోతే, n×లబ్ధ ం మాటు్ల పై మార్గ మును అనుసరించి, శేషము మాటు్ల ఉటి్ట నే
ఉపవిధిని పిలిసే్త సరిపోతుంది.)

2. ప్ర తి సంసాధకము గ.పెంచుυ ()ని పిలిచి, తరువాత గ.విలువ()ను తిరుగిసే్త కఠిన సమస్య పూరింపబడు-
తుంది. (ఈ విషయాని్న విధికల్పం 30 ని ప్ర సు్త తించినపు్పడు వివరిసా్త ం.) అందుచేత m = n ఐతే నిరూ-
పణ సిదా్ధ ంతం 10.3.1 దా్వరా సమాప్త ము. k అనే పూర్ణ సంఖ్యకు m = kn ఐతే, పై యుకి్త ని k మాటు్ల ,
మధ్యన తడులు పెటి్ట ఆగుతూ, అవలంబిసే్త సరిపోతుంది. ఒకటే జాగχ తే్త మిటంటే, hవ మాటు అవలం-
బించిυ నపు్పడు విలువనుంచి (h− 1)nను తీసివేసి [1, n]లో సంఖ్యను తిరుగివా్వలి.

3. ముందుm = n అని భావించి పరిశీలిదా్ద ం. సమీప-గణత్ర మునకు కూడా విధికల్పములో మొదట్ట గ.పెంచుυ ()ని
పిలవడం, తరువాత గ.విలువ()ను పిలవడం ఉంటాయి. కానీ వచి్చన సంఖ్యను సరాసరి తిరుగివ్వకుండా,
రాబోయే మారు్ప చేసా్త ము. తిరిగొచి్చన విలువ త ఐనచోυ , తప్పకుండ కనీసం, త − (1 − ε)n/2 సంసాధ-
కాలు లేచాయని నిరా్ధ రించυ చు్చ. అందున, ఆ సంఖ్యను (ఆ సంఖ్య ఒకటికంటే తకు్కవైతే 1ని) తిరుగిసా్త ం.
మొదటి n/2 + (1 − ε)n/2 = (1 − ε/2)n సంసాధకాలు గను పెంచిన తరువాత, గ యొక్క అసలు
విలువ (1 − ε/2)nను దాటి వుంటుంది. అందుకని చివరి εn/2 సంసాధకాలు సమీప-గణత్ర మైననూ
n/2ను మించిన విలువలను చూυ సి, n/2 − (1 − ε)n/2 = εn/2 ను మించిన విలువలను తిరుగిసా్త యి.
అందుకని, ఈ వివరించిన విధికల్పము s1 = 1, . . . , sn−εn/2 = 1, sn−εn/2+1 = ε

2n, . . . , sn = ε
2n

పరిమితితో గల జ(s1, . . . , sn) సమస్యను పూరిసు్త ంది. అందుచేత ∑n
i=1 log si = εn/2 log(εn/2) =

Ω(n logn) = Ω(m logn) సంశχ మ వ్యయపరుసు్త ంది (ప్ర తికూలతమ చలనలో).

m = kn ఐనచో, కలా్పలలో పునస్కరిసే్త సరిపోతుంది.

256

ఉపవాక్యం. సిదా్ధ ంతం 10.4.2 ప్ర కారం జయంతి గణత్ర ము [106], ఎలెన్ వోల్ఫల్ల తెచి్చపెంచుυ వసు్త వు [57] సం-
శχ మవిషమతలో సరో్వత్కϑషు్ట లు.

సిదా్ధ ంతం 10.4.3. వ అనే విధికల్పము కృతి్ర మాణు h-సమీప పంకి్త కాని, రాశి కాని, పా్ర ధాన్యతాపంకి్త కాని కా-
నివ్వండి; యత్ర h = (1 − ε)n మరియు ε > 0 ఐన అచలం. ప్ర తి m ≥ nకి, ఏదో ఒక కాలబంధములో m

నిషా్కసనోపవిధుల అనుకχ మము Ω(m logn) సంశχ మను వ్యయపరుసు్త ంది.

నిరూపణ. ముందు వ అనే వసు్త వు పంక్త ని భావిదా్ద ం; అలాగే m = n అని భావిదా్ద ం. తొలి సి్థ తిలో వలో కχ -
మముగా 1,2,…,n ని ఉంచుυ దాం. అపు్పడు ప్ర తి సంసాధకము ఒక మాటు నిషా్కసిసే్త , దానికి ఏదో ఒక సం-
ఖ్య లభిసు్త ంది. కనీసం ε

2n సంసాధకాలు నిషా్కసించే దాక h-సమీపత ప్ర కారం, ఏ సంసాధకానికి 1−ε
2 n ను

మించిన సంఖ్య తిరుగురాదు. అలాగే ప్ర తి సంసాధకానికి ఒక సంఖ్య వసు్త ంది కాబటి్ట , కనీసం ε
2n సంసా-

ధకాలకు 1−ε
2 n ను మించిన సంఖ్య వసు్త ంది. అందుచేత, నిషా్కసించినపు్పడు 1−ε

2 n ను మించిన తిరుగు-
సంఖ్య వచి్చన ప్ర తి సంసాధకము ε

2nను తిరుగిచి్చ, ఇతర సంసాధకాలని్నయు 1ని తిరుగిచే్చ విధికల్పము s1 =

1, . . . , sn−εn/2 = 1, sn−εn/2+1 = ε
2n, . . . , sn = ε

2n పరిమితితో గల జ(s1, . . . , sn) సమస్యను పూరిసు్త ంది.
అందుచేత ∑n

i=1 log si = εn/2 log(εn/2) = Ω(n logn) = Ω(m logn) సంశχ మ వ్యయపరుసు్త ంది (ప్ర తికూ-
లతమ చలనలో). ఎప్పటిలాగే, m > n ఐనచో, కలా్పలలో పునస్కరిసే్త సరిపోతుంది.

పా్ర ధాన్యతాపంకు్త లకు పా్ర ధాన్యతలు సంఖ్యలు ఒకటే అయే్యడటు్ట పెడితే ఇదే నిరూపణ సరిపోతుంది. రా-
శులకి కχ మమును తిరగేసే్త సరిపోతుంది.

ఉపవాక్యం. పై ప్ర దరి్శంచిన దతా్త ంశసంవిధాన అధోబంధాలతో సైతం, ప్ర సు్త తపు రచయిత జయంతి ఇతా్య-
దు్యలు గోషి్ట పత్ర ములో గణ-సంధి (set union) అనే వసు్త వుకు కడు దుష్కరమైన నూ్యనీకరణాధోబంధాని్న సా్థ -
పించాυ రు [117]. అలాగే, ఆ పత్ర ములో సూచింపబడ్డ కొని్న సిదా్ధ ంతాలకు నిరూపణలు ఈ భాగంలో ఇప్పటికే
విస్త ϑతింపబడి ఉనా్నయి.

10.5 ఉద్బంధాలు

10.5.1 సులభ సమస్య

ఈ లేఖలో మొట్ట మొదటి కొχ త్త ఉద్బంధ-యోగదానముగా సులభ సమస్యకు అల్పసంశχ మ విధికల్పమిసు్త నా్నము.
అవగమనార్థ ం, m అనే పూర్ణ సంఖ్యకు n = 2m అని భావిదా్ద ం. మా విధికల్పము (సంవిభక్త)స్మϑతిలో ఒక n

పరు్ణ లు గల 2n − 1 గχ ంథులు గల సమగχ ది్వమయ వృకాφ ని్న సా్థ పించి, ప్ర తి గχ ంథిలో 0సంఖ్యను తొలిసి్థ తిలో
వా్ర సి ఉంచుυ తుంది. ఆ పిమ్మట, సi సంసాధకము, కిχ ంది ఉపవిధిని k = 1, x = iవ పర్ణ ం అనే పరిమితులతో
నిర్వహిసు్త ంది:

257

విధికల్పం 29 సరళ సమస్యను పూరించే విధికల్పములో వృకోφ పవిధి.
ఉపవిధి వృకోφ పవిధి(k, x)

యదీ పోలి్చమారు్చ(x, 0, k)
యదీ x మూలం తరీ్హ తిరుగివు్వ 2k
అన్యథాయదీ x.సోదర ̸= 0 తరీ్హ తిరుగివు్వ వృకోφ పవిధి(2k, x.పితృ)

అన్యథా తిరుగివు్వ k

సిదా్ధ ంతం 10.5.1. వృకోφ పవిధి సరళ సమస్యను O(n) సంశχ మతో పూరిసు్త ంది.

నిరూపణ. ముందు వృకోφ పవిధి సరళ సమస్యను పూరిసు్త ందని ప్ర తిషి్ట సా్త ం. సరళ సమస్య సమాధానానికి మూ-
డు గూణాలు. ప్ర తి గుణాని్న విడిగా నిరూపిసా్త ం.

1. సమాపి్త : ప్ర తి సంసాధకము దరి్శంచిన ప్ర తి గχ ంథి వద్ద O(1) శχ మ మాత్ర ం ఖరు్చచేసు్త ంది. ప్ర తి సంసా-
ధకము అధికతమముగా వృకోφ న్నతి, అనగా logn, గχ ంథులని దరి్శసు్త ంది కాబటి్ట , సమాపి్త నిశ్చయం.

2. సత్యవాకు్క: ప్ర తిషా్ట పన దా్వరా h ఉన్నతిలో ఉన్న గ గχ ంథిలో 0 లేకపోతే, ఆ గχ ంథికిχ ందున్న పరా్ణ లలో మొ-
దలైన 2h సంసాధకాలు లేచాయని నిరూపిసా్త ం. విధికల్పం తొలిసి్థ తిలో అని్న గχ ంథులో్ల 0 ఉంటుందికాబటి్ట
ప్ర తిషా్ట పన మూలం నిలుసు్త ంది. ప్ర తి సంసాధకము సi వేరే పర్ణ ం పiతో మొదలిడుతుంది కాబటి్ట , ప్ర తి
పర్ణ ం పi దగ్గ ర ప్ర తిషా్ట పన నిలుసు్త ంది. సంసాధకములు ఇరు పుత్ర గχ ంథులు 0 కాదని సా్థ పించుυ కున్న
తరవాతే పితృ గχ ంథిని 0-కాని సంఖ్యకు పోలి్చమార్చడానికి ప్ర యతి్నసా్త యి కాబటి్ట ప్ర తిషా్ట పనపదం నిలు-
సు్త ంది.

సంసాధకము h ఉన్నతికి చేరిన తరువాతే k = 2h తిరుగిసు్త ంది కాబటి్ట , సత్యవాకు్క నిశ్చయం.

3. అవితండం: ప్ర తిషా్ట పన దా్వరా ప్ర తీ గχ ంథి xని ఏదో ఒక సంసాధకం పోలి్చమార్చడానికి ప్ర యతి్నసు్త ందని
నిరూపిసా్త ం. ప్ర తీ పర్ణ ము ఒక సంసాధక మూల సా్థ నము కాబటి్ట ప్ర తీ పర్ణ మువద్ద ప్ర తిషా్ట పన నిలుసు్త ంది.
x పరే్ణ తర గχ ంథైతే, దాని పుత్ర గχ ంథులమీద పోలి్చమారు్పలు జరిపిన సంసాధకాలలో చివర పోలి్చమారు్ప-
లో ఉతి్త ర్ణ మైన సంసాధకమును సi అని, పోలి్చమారి్చన పుత్ర గχ ంథిని గఅని అనా్ద ం. ఆ సంసాధకము
గ.సోదర ̸= 0 అనే పరీకφ చేసినపు్పడు సతు్త వసు్త ంది. కావున ప్ర తిషా్ట పనపదం నిలుసు్త ంది.

వృకφ మూలము కూడ ఒక గχ ంథి కాబటి్ట కనీసం ఒక సంసాధకమైన మూలాని్న పోలి్చమార్చడానికి ప్ర యతి్న-
సు్త ంది. మూలాని్న మారి్ఛన ప్ర తి సంసాధకము n ని తిరుగిసు్త ంది. అందున అవితండం నిశ్చయం

శχ మవిషమతను నిరూపించυ డం జా్యమితిక శేχ ఢి సంపర్కము దా్వరా శులభం. ప్ర తి గχ ంథిని ఏదో ఒక సంసాధక-
ము మాత్ర ము పోలి్చమార్చగలదు. పోలి్చమారు్పను ప్ర యతి్నంచి ఉతీ్త ర్ణ మవ్వని సంసాధకము వెంటనే తిరుగిసు్త ం-
ది. కాబటి్ట , పోలి్చమారు్ప ప్ర యతా్నలు గχ ంథులసంఖ్యకు సంసాధకాలసంఖ్యను కలిపినకంటే ఉండలేవు. కావున,

258

పోలి్చమారు్ప ప్ర యతా్నలు అధికతమముగ 2n − 1 + n = 3n − 1. ఉపవిధిని పిలిచిన ప్ర తిసారి పోలి్చమారు్ప
ప్ర యత్నమౌతుంది కాబటి్ట , సంశχ మ O(n).

పై సిదా్ధ ంతాని్న సులభ సమసా్యధోబంధంతో జోడించిన, వచే్చ ఉపసిదా్ధ ంతం మిగుల సుళువుగా ఉత్పన్నమౌ-
తుంది:

ఉపసిదా్ధ ంతం 10.5.1. సులభ సమస్యయొక్క సంశχ మ Θ(n).

10.5.2 కఠిన సమస్య

సులభ సమస్యను సమూహఖేలన-వృకోφ పవిధిదా్వరా తకు్కవ సంశχ మతో పూరించυ గలిగాము. ఇపు్పడు కఠిన
సమస్య మీదకు దృషి్ట సారిదా్ద ం. ఈ సమస్యకు ఇథఃపూర్వం నిరూపించిన సిధాంతప్ర కారం అధోబంధం Ω(n logn).
ఈ సమస్యను సరో్వత్త మ సంశχ మతో, అనగా O(n logn) సంశχ మతో, పూరించచυ ్చని f -పీఠికల దా్వర విధికల్ప ప్ర -
మాణముగా నిరూపిసా్త ం.

ఊహ సులభమైనదే. f = సంపర్కం గా కల గఅనే f -పీఠికను పెటు్ట కోని, కిχ ంది విధికలా్పని్న ప్ర తి సంసాధకము
నిర్వహిసే్త చాυ లు:

విధికల్పం 30 కఠిన సమస్యను పూరించే విధికల్పములో గణితో్ర పవిధి.
ఉపవిధి గణితో్ర పవిధి()

గ.పెంచుυ ()
తిరుగివు్వ గ.విలువ()

సిదా్ధ ంతం 10.5.2. గణితో్ర పవిధి కఠిన సమస్యను O(n logn) సంశχ మతో పూరిసు్త ంది.

నిరూపణ. గ కృతి్ర మాణువసు్త వు కనక సమాపి్త నిశ్చయం. గని ప్ర తి సంసాధకము ఒక్కమాటే పెంచుυ తుంది కనక
గ విలువ ఎపు్పడు లేచిన సంసాధక సంఖ్యను అధిగమించυ దు; దాంతో సత్యవాకు్క నిశ్చయం. kవ సా్థ నము-
లో మొదటి పంకి్త ని పూరి్త చేసిన (రేఖింపబడ్డ) సంసాధకము కనీసం kని తిరుగిసు్త ంది; అందున అవితండము
నిశ్చయం.

f -పీఠికల పూరా్వంశ సిదా్ధ ంత ప్ర కారం ప్ర తి సంసాధకము విషమతమ చలనలోకూడా O(logn + 1) =

O(logn) శχ మిసు్త ంది. అందున, సంశχ మ O(n logn).

పై నిరూపించిυ న ఉద్బంధము అధోబంధముతో కలుసు్త ంది. అందుచేత కిχ ంది దృఢ పరిబంధం ఉత్పన్నమౌ-
తుంది:

ఉపసిదా్ధ ంతం 10.5.2. కఠిన సమస్యయొక్క సంశχ మ Θ(n logn).

259

10.6 సమాపి్త
ఈ లేఖలో కృతి్ర మాణుదతా్త ంశసంవిధానాల సంశχ మ విషమతను నిరూపించుυ టకు ఉపకరించే సామాన్య జాగృతి-
పరిషా్కరమనే సమసా్యశేχ ణిని నిర్వచించి పరిశీలించాము. పరిశీలనలో ముఖ్యభాగాలుమూడు, (1) శేχ ణిలోని ప్ర తి
సమస్యకు ఒక అధోబంధాని్న నిరూపించυ డం, (2) నూ్యనీకరణల దా్వరా గణత్ర ము, పంకి్త , రాశి, పా్ర ధాన్యతాపం-
కి్త వంటి దతా్త ంశసంవిధానాలకు అధోబంధాలను సా్థ పించυ డం, (3) జాగృతి-పరిషా్కర కఠిన సమస్యకు ఉద్బం-
ధమును నిరూపించి, ఆ దా్వరా ఈ పద్ధ తికి గల పరిమితులను కూడా ప్ర దరి్శంచυ డం. మా జాగృతి పరిషా్కర
విధానము దా్వరా తొలి సారిగా, ఎలెనో్వల్ఫల్ల తెచి్చపెంచుυ దతా్త ంశము [57], అలాగే జయంతి గణత్ర ము [106] సం-
శχ మ సరో్వత్కϑషు్ట లని నిరూపించυ గలిగాము. మా పద్ధ తి ఈ ప్ర సు్త త లేఖలోని సిదా్ధ ంతాలకేగాక, జయంతా్యదుల
చేత మరింత దుష్కరమైన గణ-సంధి అధోబంధానికి [117] దారితీయడం గమనార్హ ం. గణ-సంధికి ఇంకా దృఢ-
మైన అధోబంధాని్న ఇవ్వడం (లేదా ఉద్బంధాని్న దృఢపరచడం) కృతి్ర మాణువసు్త వులలో ఒక ముఖ్య ఉతా్ఘ టిత
సమస్యగా నిలచివుంది. జాగృతి-పరిష్కరణ దా్వరా ఇతర వసు్త వులకు అధోబంధాలను నిరూపించυ డము కూడా
ఆకర్ష ణీయమైన దిశే.

శికφ ణాత్మకముగా చూసినచోυ , మా ఈ లేఖ తెలుగుభాషలో తొలి ఆధునిక సంగణక శాసȈ పరిశోధన పతి్ర కని మా
నమ్మకము. కానీ, సంస్కϑతములో విలువైన గణిత, సంగణక శాసȈ సంపదగలదని ప్ర సిద్ధ ము. ఆ సంప్ర దాయమే
తెలుగు శాసȈ మునకు, ప్ర తే్యకముగా ఈ లేఖకు సూ్ఫరి్త . తదానుసారం, లేఖలోని పారిభాషికపదాలు చాυ లా మటుకు
సంస్కϑతరూపాంతరాలు; అందున సరళముగా సంస్కϑతములోకి, ఇతర భారతీయభాషలలోకి, అలాగే భారతే-
తరభాషలలోకి అనువదింపశక్యముగా వుండునని మా ఊహ. తెలుగుభాషలోను, సంస్కϑతభాషలోను నూతన
ఆధునిక శాసȈ పూరోగమన లేఖలు ఇతా్యదిగా కొనసాగాలని, ఆ లేఖల వలన ఎందరో సూ్ఫరి్త నీ శాసȈ జా్ఞ నమును
పొందగలరని, ఆత్మసె్థ ౖరా్యని్న పెంపొందిచుυ ్చకొనగలరని మా అభిలాష.

260

Part IV

Machine Verification

261

Chapter 11

A Univeral, Sound, and Complete

Technique for Machine-Verifiable

Proofs of Linearizability

11.1 Introduction

Data structures that organize, store, and quickly recall important pieces of information are the

fundamental building-blocks behind fast algorithms. Thus, efficient and rigorously proved data

structures are fundamental to reliable algorithm design. The task of designing such data structures

for shared-memory multiprocessors, however, is notoriously difficult. Due to asynchrony, a t step

algorithm for even just two processes has 2t, i.e. exponentially many, possible executions depend-

ing on how the steps of the processes interleave. In fact, even deterministic concurrent algorithms

have uncountably many possible infinite executions, as opposed to the single possible execution of

a deterministic sequential algorithm. Designing algorithms that are correct in all of these execu-

tions is a grueling task, and thus, even mission critical concurrent code often suffers from subtle

race conditions. For example, a subtle priority inversion bug in its concurrent code crashed the

Pathfinder Rover days after its deployment on Mars and jeopardized the entire multi-million dollar

NASA space mission [124]. Examples of errors in published concurrent data structures are also not

left wanting [37, 53].

262

11.1.1 Understanding the Problem

Rigorously proving the correctness of a concurrent data structure implementation O consists of two

steps:

1. A prover, often the algorithm designer, deeply studies the implementation O and produces a

proposed proof P .

2. A verifier evaluates the proposed proof P by confirming that each claim made in the proof

is mathematically justified, and that the resultant chain of reasoning constitutes a legitimate

proof of O’s correctness.

In general, proving any type of correctness of any algorithm can be inherently intellectually difficult

and time consuming, since it requires the prover to contemplate the algorithm deeply, understand

why it is correct, and express this understanding in the methodical language of mathematics.

Verifying many types of proofs can be rather easier, since it is in its essence a mechanical check.

In this work, we focus on concurrent data structures for asynchronous shared-memory multipro-

cessors. In particular, linearizability [93], which states that data structure operations must appear

to take place atomically even in the face of tremendous concurrency, has been the longstanding

gold standard for concurrent data structure correctness. Its close cousin strong linearizability [80],

which ensures that even the hyper-properties of the data structure match those of an atomic object

has also garnered a lot of recent interest [16].

When the correctness condition being proved is linearizability, we observe, in practice, that even

the verification step can be taxing and time-consuming. Firstly, the proposed proof P can often run

for several tens of pages of a dense research paper. For example, the original paper on linearizability

[93] contains a short seven line implementation of a queue. To prove its linearizability, the authors

propose an eighteen line invariant. The proof of correctness of this invariant and its entailment

of the queue’s linearizability are presented in a 14 page technical report. Those familiar with this

queue implementation know that it, like many linearizable algorithms is inherently “very tricky” to

prove correct, and thus it is commendable that the authors, Herlihy and Wing, were able to design

this algorithm and give a proof of it. Nevertheless, the subtlety and sheer length of the proof P ,

makes the job of a conscientious verifier quite hard.

In general, depending on the length of an algorithm and its proof, the mere process of verifying

the mathematical validity of the linearizability proof can take hours, days, or even weeks. In some

cases, due to the difficulty inherent to writing such long and intricate proofs, provers resort to

263

making high-level “hand-wavy” arguments, or omit proofs altogether. This makes the verifier’s job

more difficult to impossible. In other cases, the verifier may be a conference reviewer who does

not have the time to verify a long proof and thus must skim the details of the proof which may

contain errors; or the end-user of the algorithm may not be a verifier, but an engineer who does not

have the time or the mathematical preparation to independently verify the algorithm’s correctness

before using it in a deployed system.

For all of these reasons, it is not shocking that mistakes in concurrent algorithms are so prevalent,

even in mission critical deployed code. To avoid such critical errors, we propose designing concurrent

data structures whose correctness is machine-verified to limit the scope for human error.

11.1.2 Our Work

Informally, an object O is linearizable, if for all finite runs R of any algorithm A that uses O, and

every operation op that is performed on O in the run R, there exists a point in time between op’s

invocation and return where it “appears to take place instantaneously”. This definition, in particular

the non-constructive existential quantifier “there exists” inside the universal quantification, makes

it difficult to prove linearizability. This difficulty is only exacerbated, if the proof is to be provided

in a way simple enough for a machine to verify. In fact, if approached naïvely, the prover would need

to map each run of the algorithm to a linearization, i.e. a description of where in its invocation-

response time interval each operation “appears to take place instantaneously”, and then prove that

each such mapping is legitimate. This is a difficult task, given that it is known that proving even

a single fixed run R linearizable is NP-hard [74].

Our goal however, is to devise a method for proving linearizability that not only works for

a single implementation, or even a single type, but to devise a method that is universal and

complete. By universal, we mean that our method should be powerful enough to allow for a

proof of linearizability for implementations of any object type. By complete, we mean that any

linearizable implementation, regardless of how complex its expression or linearization structure,

must be provable by our method. Of course, our method will also be sound, meaning that any

argument that is given using our method is indeed a correct mathematical proof of linearizability.

Finally, we ensure that our method enables machine verifiable proofs by currently available proof

assistants, which are generally built to verify proofs of simple program invariants.

264

Our Contributions

1. We develop a rigorous universal, sound, and complete method for proving linearizability. In

particular, we define a universal transformation that takes an arbitrary implementation O of

an arbitrary type τ , and outputs an algorithm A∗, called the tracker, and a simple invariant

I∗, and prove a theorem that:

O is a linearizable implementation of type τ if and only if I∗ is an invariant of A∗.

(Thus, we can produce a machine verified proof that I∗ is an invariant of A∗ to establish that

O is linearizable.)

2. In fact, we give a whole family of transformations that each output different algorithms A′,

called partial trackers, with associated invariants I ′, and prove that for any of these partial

trackers:

O is a linearizable implementation of type τ if I ′ is an invariant of A′.

3. We develop a rigorous universal, sound, and complete method for proving strong linearizabil-

ity. In particular, we show that for each partial tracker A′, there is an alternate associated

invariant I ′′, and we prove that:

O is strongly linearizable if and only if some partial tracker A′ has its associated I ′′ as an invariant.

4. Finally, we demonstrate the power of our methods by producing machine-verified proofs of

linearizability and strong linearizability for some notable data structures. In particular, we

prove the linearizability and strong linearizability of the Jayanti-Tarjan union-find object,

which is known to be the fastest algorithm for computing connected components on CPUs

and GPUs [51, 95]. Our proof is verified by the proof assistant TLAPS (temporal logic of

actions proof system) [153], and is publicly available on GitHub1. We and our collaborators

have also used our method to produce TLAPS-verified publicly available linearizability proofs

[211, 210, 94] of (1) the aforementioned Herlihy-Wing queue, which is notorious for being hard

to prove correct [178]; and (2) Jayanti’s single-writer, single-scanner snapshot algorithm, in

which processes play asymmetric roles [105].
1The proofs are available at: https://github.com/visveswara/machine-certified-linearizability

265

https://github.com/visveswara/machine-certified-linearizability

11.2 Related Work

There have been innumerable works on the design and analysis of linearizable and strongly lineariz-

able objects over the years. Here, we will focus only on works whose principal aim is to produce

proofs of linearizability.

Herlihy and Wing’s landmark 1990 paper that introduced linearizability also seeded the dis-

cussion on how to prove implementations linearizable [93]. In particular, their paper introduced

the concept of possibilities, i.e. the notion that we can imagine several different orders in which

partially completed operations could return in the future, and consider linearizations that are con-

sistent with such possibilities. They expanded on this framework in a related publication [92]. Their

initial ideas in these papers saw fruition in their proof of linearizability of the tricky Herlihy-Wing

queue implementation.

Using the power of machine proof assistants in order to partially or fully prove the correctness

of linearizable algorithms is a more recent advent. The results in these categories can generally be

classified into three types: model checking, ad hoc proofs of particular data structures, and more

general techniques.

First, there are several works that model check algorithms [30, 145, 207]. Model checking does

not prove correctness; rather, it mechanically searches through small runs of the algorithm with a

few processes, and returns a counter-example if it finds one.

Second, there are semi machine-verified and fully machine-verified proofs of linearizability for

several specific data structures. For instance, Doherty et al. proved the linearizability of Scott’s

famous lock-free queue implementation [54], Gao et al. spent several years proving the correctness

of their concurrent open addressing hash table [69], and Colin et al. proved the correctness of a

certain list-based set algorithm [38]. Various other algorithms have also been proved linearizble

using shape analyses that examine the pointer structures within an object [205, 20, 9]. These

works prove the correctness of some important and interesting concurrent algorithms. However,

they are aimed at producing proofs of specific algorithms rather than presenting widely applicable

techniques.

Third, there are general purpose techniques. Most of these techniques, such as [204, 206], are

sound but not complete or universal. That is, they are targeted at showing the linearizability

of a limited class of algorithms, rather than any linearizable implementation of any type. To

our knowledge, the only previous sound and complete technique is by Schellhorn et al. [178].

266

This technique mechanizes Herlihy and Wing’s original possibilities proof strategy through the

technology of observational refinement mappings and backward simulations. The authors give a

single example demonstration of their technique—a mechanized proof of the Herlihy-Wing queue

verified by the proof assistant KIV. In contrast to Schellhorn et al.’s technique, our method for

proving linearizability only requires familiarity with the notion of an invariant.

Dongol and Derrick wrote an extensive survey on machine assisted proofs of (standard) lineariz-

ability [55]. To the best of our knowledge, we are the first to introduce a general machine verifiable

proof method for strong linearizability.

11.3 Model and Definitions

A concurrent system consists of a set of asynchrounous processes, Π, that communicate through

operations on a set of shared objects, Ω. Each process has a distinct name and a set of private

registers, including a program counter. Each object has a distinct name and a type, which specifies

the operation’s supported by the object and how these operations behave, i.e. how each operation

changes the object’s state and what response it returns. An algorithm specifies a program for each

process, and an initial state for each object. An algorithm’s execution proceeds in steps. In a step,

any one process atomically executes the line pointed to by its program counter. It is common for

algorithms to restrict each line in a program to apply at most one operation on a shared object;

however, to ensure that our results apply to a wider class of algorithms, we do not impose such

a restriction. In an asynchronous execution of the algorithm, a (possibly) adversarial scheduler

decides which process π ∈ Π will execute the next step in its algorithm at each discrete time step.

We formalize and expound these notions below.

Definition 11.3.1 (object type). An object type τ consists of the following components:

• a set of states Σ that the object can be in.

• a set of operations OP that can be invoked on the object.

• for each op ∈ OP , a set of arguments ARGop that the operation op can be called with.

• a set of responses RES, a.k.a. return values.

• a transition function δ(σ, π, op, arg) that outputs the new state σ′ and the return value res

that result when the operation op with argument arg is performed by process π while the

267

object is in state σ. Formally, the transition function is

δ : Σ×Π× {(op, arg) | op ∈ OP, arg ∈ ARGop} → Σ×RES

Remark 11.3.2. Operations that require “no argument” (i.e. read), are modeled as taking an

argument from a singleton set (i.e. ARGread = {⊥}). Similarly, operations that return “no result”

(i.e. write), are modeled as returning the result ack.

Remark 11.3.3. Our definition of δ (as a function) can be modified to a relation to allow various

generalizations of the concept of object type—types that are non-deterministic, types where not

every process is allowed to perform every operation (e.g., single writer snapshot), and types where

an operation’s behavior can depend on which process executes the operation (e.g., LL/SC).

To exemplify this definition of an object type, we present the formal description of an integer

valued register that supports the Read and CAS operations in the figure Object Type 11.3.4.

Object Type 11.3.4 (Read/CAS register). For a Read/CAS register type that stores integer
values, we have:

• Σ = Zp

• OP = {Read,Cas}
• ARGRead = {⊥}, ARGCas = Zp ×Zp

• RES = Zp ∪ {true, false}
• Transition function δ is defined as follows:

– δ(u, π,Read,⊥) = (u, u)

– δ(u, π,Cas, (x, y)) =
{
(y, true), if x = u

(u, false), otherwise

Definition 11.3.5 (algorithm). A (concurrent) algorithm is a tuple (Π,Ω, C0), where:

• Π is a set of processes, where each process π ∈ Π has a program and private registers, including

a program counter pcπ which points to the line in the program that should be executed next.

A process’s state at any point in time is described by the values of its private registers.

• Ω is a set of objects, where each object has a type, and is in one of its states at any point in

time.

268

• C0 is a non-empty set of configurations, called initial configurations, where a configuration is

an assignment of a state to each object ω ∈ Ω and an assignment of values to the private

registers of each process π ∈ Π.

Definition 11.3.6 (step, event, run).

• A step of an algorithm is a triple (C, (π, ℓ), C ′) such that C is a configuration, π is a process,

ℓ is the line of code pointed to by π’s program counter in C, and C ′ is a configuration that

results when π executes line ℓ from C.

• The event corresponding to a step (C, (π, ℓ), C ′) is (π, ℓ), i.e., process π executing line ℓ.

• A run of an algorithm is a finite sequence C0, (π1, ℓ1), C1, (π2, ℓ2), C2, . . . , (πk, ℓk), Ck or an

infinite sequence C0, (π1, ℓ1), C1, (π2, ℓ2), C2, . . . such that C0 is an initial configuration and

each triple Ci−1, (πi, ℓi), Ci is a step.

11.3.1 Implementation of an Object

Implementing complex objects, such as queues and snapshots, from primitive objects supported

by the underlying hardware (registers supporting read, write, CAS etc.) is a central problem in

multiprocessor programming. Below, we describe what an implementation entails. Later on, we

will define what it means for an implementation to be correct, in the sense of linearizability.

Definition 11.3.7 (implementation). An implementation O of an object of type τ initialized to

state σ0 for a set of processes Π specifies

• A set of objects Ω called the base objects along with their types and initial states.

• A set of procedures O.opπ(arg) for each π ∈ Π, op ∈ τ.OP , and arg ∈ τ.ARGop. The objects

accessed in the code of the procedures must all be in Ω.

To execute an operation op with argument arg on the implemented object O, a process π

invokes the method O.opπ(arg) (and executes the code in the procedure). The value returned by

the method is deemed O’s response to this operation invocation.

Notice that this definition only captures the syntactic aspect of an implementation. We will

now build up to defining the correctness of an implementation.

Intuitively, the implemented object is correct if it behaves like an atomic object of the same

type. To formally capture correctness, we define behavior, the notion of an atomic implementation,

and the correctness condition of linearizability.

269

11.3.2 Behaviors of an Implementation

Consider an object implementation O, and a run R in which processes invoke operations on O,
execute the corresponding procedures of O, and receive responses. By the definition of a run, R
is an alternating sequence of configurations and events. Some of the events are invocation events,
i.e. calls to O’s procedures, and some are response events, i.e. the execution of return statements
of O’s procedures. (Of course, there are other events, such as the execution of other lines between
the call and return of a procedure.) We call the subsequence of R that includes only the invocation
and response events the behavior in R. For example, if O is an initially empty queue, a behavior
can be

(π1, invoke enqπ1(5)), (π2, invoke deqπ2()), (π3, invoke enqπ3(7)), (π2, response return 7), (π2, invoke enqπ2(9))

Every possible behavior of an implementationO can be generated by the algorithm of Figure 11.3.1,

where each process repeatedly chooses an operation non-deterministically, invokes it by calling the

corresponding procedure, and executes the procedure until it returns (receives a response). The

next definition captures this discussion.

Initial Configurations:
• ω is an object of type τ , in its initial state σ0.
• Each process π ∈ Π is assigned the program mainπ(); i.e. pcπ is initialized to the first line

of main.
• Every other private register of each π ∈ Π is initialized arbitrarily.

program mainπ()
a: while true do choose any (op, arg) ∈ {(o, a) | o ∈ τ.OP, a ∈ τ.ARGo} and invokeO.opπ(arg)

Figure 11.3.1: Generator algorithm A(O) that generates all behaviors of an implemented object O
of type τ . Code shown for process π ∈ Π.

Definition 11.3.8 (implementation runs and behaviors). Let O be an implementation of a type

τ initialized to σ0 for a set Π of processes. We define the runs of O to be the set of all runs of the

generator algorithm, A(O), presented in Figure 11.3.1. Let R be the set of all runs of O. For any

run R ∈ R, we define behavior(R) to be the subsequence of all the invocation and response events

in R. The set of all behaviors of O is {behavior(R) | R ∈ R}.

270

11.3.3 The Atomic Implementation

Implementing an object from base objects of other types is often challenging, but implementing an

object O from a base object ω of the same type is trivial: each procedure O.opπ(arg) is implemented

simply by executing ω.opπ(arg) and returning the received response. We call this implementation

the atomic implementation.

Definition 11.3.9 (atomic implementation). The atomic implementation of an object O of type τ ,

initialized to σ0, is the implementation presented in Figure 11.3.2. (On line 2, the implementation

resets rπ to ⊥ as soon as it returns the value.)

Base Object: ω is an object of type τ , initialized to state σ0.
procedure O.opπ(arg ∈ τ.ARGop) ▷ for each op ∈ τ.OP

1: rπ ← ω.opπ(arg)
2: return rπ

rπ ← ⊥

Figure 11.3.2: Atomic implementation of O of an object of type τ initialized to state σ0 ∈ τ.Σ.

11.3.4 Linearizability

We are now ready to define linearizability. Intuitively, an object implementation is linearizable if

it behaves like an atomic object of the same type. Formally:

Definition 11.3.10 (linearizability). For a set Π of processes, let O be an implementation of an

object of type τ initialized to σ0, and let Oatomic be the atomic implementation of an object of

type τ initialized to σ0. Furthermore, let R be the set of all runs of A(O) and Ratomic be the set

of all runs of A(Oatomic). We say a run Ratomic ∈ Ratomic is a linearization of a run R ∈ R if

behavior(R) = behavior(Ratomic). Correspondingly, we say that a run R ∈ R is linearizable if it

has a linearization Ratomic ∈ R; equivalently, if behavior(R) is also a behavior of Oatomic. We say

that the implementation O is linearizable if every finite run R ∈ R is linearizable. Equivalently, O

is linearizable if every finite behavior of O is a behavior of Oatomic.

11.3.5 Strong Linearizability

In general, a run R of a linearizable implementation can have multiple linearizations. Intuitively, a

linearizable object implementation satisfies strong linearizability if for any run of the implementation

271

R the object can “commit to a specific linearization” L(R), such that the linearization of any

extension of the run R is an extension of L(R).

Definition 11.3.11. For a set Π of processes, let O be an implementation of an object of type τ

initialized to σ0, and let Oatomic be the atomic implementation of an object of type τ initialized to

σ0. Furthermore, letR be the set of all runs ofA(O) andRatomic be the set of all runs ofA(Oatomic).

An implementation is strongly linearizable, if there is a linearization function L : R→ Ratomic that

maps each run R of the implementation to an atomic run L(R) of the atomic implementation that

is a linearization of it, such that if Rpre is a prefix of R, then L(Rpre) is a prefix of L(R).

Not all linearizable implementations are strongly linearizable, since, for some implementations,

we need to extend a different linearizations of a run R to linearize different extensions of R. This

notion of strong linearizability is subtle, but has been shown important in preserving hyperproperties

of composed algorithms, such as output probability distributions [80, 16].

11.4 Our Proof Technique for Linearizability

Our goal is to devise a scheme by which algorithmists can produce machine verifiable proofs that

complex concurrent object implementations are linearizable. To prove linearizability of an imple-

mentation O, our technique is to augment O’s code to produce an augmented implementation O

in such a way, that O is linearizable if and only if the generator of O, i.e. A(O), satisfies a cer-

tain simple invariant. In the following, we describe the rules for augmentation, and some specific

augmentations of interest.

11.4.1 Augmenting an Implementation

Informally, an augmented implementation O has all the code of O, and more. In particular, O may

employ additional auxiliary base objects, and at each line manipulate these auxiliary objects along

with performing the code of that line in the original implementation.

Definition 11.4.1 (augmentation). Let O be an implementation of type τ with initial state σ0

from base objects Ω for processes Π. An augmentation O of O is also an implementation of type τ

with initial state σ0 for processes Π, with the following properties:

• O may employ an additional set of auxiliary base objects Ωaux; thus, O is an implementation

from Ω = Ω ∪ Ωaux.

272

• For each line ℓ of each procedure O.opπ(arg), the augmented procedure has a bijectively

corresponding line ℓ of O.opπ(arg), such that; ℓ contains all the code of the corresponding

line ℓ and, optionally, some additional code that only changes objects in Ωaux.

Since the additional code has no impact on the original base objects of O or the private registers

of any π ∈ Π (including pcπ), we note that O and O have identical behaviors as summarized below.

Observation 2. If O is an augmentation of O, then the set of behaviors of O is identical to the

set of behaviors of O.

When we have two implementations O and O, we will often be interested in analyzing coupled

runs of these implementations as defined below:

Definition 11.4.2 (coupled runs). Let O and O be implementations of the same object type

τ for the same set of processes Π, with bijectively corresponding lines. We say a run Rk =

C0, (π1, ℓ1), C1, (π2, ℓ2), . . . , Ck of A(O) and a run Rk = C0, (π1, ℓ1), C1, (π2, ℓ2), . . . , Ck of A(O)

are coupled, if C0 and C0 share an initialization for all their common variables, and each ℓi and ℓi

are corresponding lines for each 1 ≤ i ≤ k.

11.4.2 The Full Tracker Augmentation

In this section, we consider an implementation O of an object type τ , and we define a specific

augmentation O∗ called the full tracker of O, which aims to keep track of all possible linearizations

of a run R of O, as the run unfolds. Recall that by definition, a linearization Ratom of a run R is a

run of the atomic implementation Oatom of type τ whose behavior matches that of R. In practice,

O will actually maintain just the final configuration Catom of each linearization Ratom, rather than

the whole linearization, thus we now take a closer look at these atomic configurations.

After any run Ratom, the final configuration can be characterized by the state σ ∈ τ.Σ of the

atomic object, and the states of each of the processes π ∈ Π. For each process π, there are three

types of possible states:

1. either π is idle, meaning π has no currently invoked but un-returned operation, i.e. pcπ points

at the single line (line a) of the generator algorithm and rπ = ⊥.

2. or π has invoked an operation operπ(argu) which is yet-to-linearize, i.e. pcπ points to line 1

of procedure oper’s code and rπ = ⊥.

273

3. or π has linearized its operation operπ(argu) with some response resp, i.e. pcπ points to line 2

of procedure oper’s code and rπ = resp.

We capture the states of the processes with a function f(π) = (f(π).op, f(π).arg, f(π).res), which

maps each process π to a triple, where

1. if π is idle, then f(π) = (⊥,⊥,⊥)

2. if π has invoked an operation operπ(argu) which is yet-to-linearize, then f(π) = (oper, argu,⊥)

3. and if π has linearized its operation operπ(argu) with some response resp, then f(π).op =

operation, f(π) = (oper, argu, resp)

Thus, we identify each atomic configuration Catom, i.e. configuration of A(Oatom), as an object-

state, process-states pair (Catom.σ, Catom.f) as described above. Here on, we will refer to these

pairs as the atomic configurations.

For the full tracker, we augment the implementation O with an objectM∗ that stores the set

of all final configurations of linearizations of the implemented object’s run thus far. We call M∗

the meta-configuration of the tracker, since it “contains all the atomic configurations in which a

corresponding atomic run can be in”. The meta-configuration set is, in fact, the only auxiliary

object we use in the tracker augmentation, thus Ωaux = {M∗}.

Next, we complete the description of O∗ by describing how the meta-configuration M∗ is ini-

tialized and manipulated by the full tracker. Initially, all processes are idle, and O is in its initial

state σ0; thus we initializeM∗ = {(σ0, f0)}, where f0(π) = (⊥,⊥,⊥) for all process π ∈ Π.

There are three types of lines in a procedure O.opπ(arg): invocation, return, and intermediate

lines. The augmenting code at each line ℓ updatesM∗, based on ℓ’s type. Specifically,

• Case: ℓ is the invocation of opπ(arg). We will maintain the invariant thatM∗ stores all final

configurations of linearizations of the implemented object’s current run. Thus, every config-

uration C ∈ M∗ will reflect that π is idle before the invocation. In the augmentation to the

invocation line, we will update each C ∈M∗ to a C ′ which reflects that π invokes a pending

operation op with argument arg, and then further evolve C ′ to reflect that any arbitrary sub-

set of processes with pending operations (possibly including π) can linearize after π invokes

its operation. Before formally stating the augmenting code to the invocation line, we develop

some helpful notation.

274

– For an atomic configuration C = (C.σ,C.f) in which π is idle, we define:

invoke(C, π, opπ(arg)) ≜ C ′

where C ′.σ = C.σ, C ′.f(π) = (op, arg,⊥), and for each π̄ ̸= π, C ′.f(π̄) = C.f(π̄).

– For an atomic configuration C, and a process π ∈ Π, we define the predicate

pending(π,C) ≡ C.f(π).op ̸= ⊥ ∧ C.f(π).res = ⊥

to capture whether π has a pending operation in C. We further define

pending(C) ≡ {π ∈ Π | pending(π,C.f)}

to be the set of all processes with pending operations in C.

– For any S ⊆ pending(C) of processes with pending operations, and a permutation

of those processes α = (α1, . . . , α|S|) ∈ Perm(S), we define the transition function

δ∗(C,α) recursively below. (Informally, δ∗(C, (α1, . . . , αk)) = C ′ if applying the pending

operations of processes α1, . . . , αk, in that order, updates the configuration C to C ′.)

• δ∗(C, ()) = C, where () is the empty sequence

• δ∗(C, (α1, . . . , αk)) = δ∗(C ′, (α2, . . . , αk)), where

∃r ∈ RES : (C ′.σ, r) = δ(C.σ, α1, C.f(α1).op, C.f(α1).arg)

∧ ∀π ̸= α1, C
′.f(π) = C.f(π)

∧ C ′.f(α1) = (C.f(α1).op, C.f(α1).arg, r)

Formally, the augmenting code at line ℓ is: M∗ ← EvolveInv(M∗, opπ(arg)), where EvolveInv(M)

is defined by

EvolveInv(M) ≜

C ′′

∣∣∣∣∣∣∣∣∣
∃C ∈M, C ′ :

C ′ = invoke(C, π, opπ(arg)) ∧

∃S ⊆ pending(C ′), α ∈ Perm(S) : C ′′ = δ∗(C ′, α)

 (11.4.1)

We say configuration C ′′ results from π invoking opπ(arg) and α1, . . . , αk linearizing after

275

configuration C.

• Case: ℓ is an intermediate line of opπ(arg). The augmenting code for this line reflects that

any time any process executes an intermediate line, it presents an opportunity for an arbitrary

subset of pending operations to linearize in an arbitrary order. Formally, the augmenting code

at line ℓ is: M∗ ← Evolve(M∗), where Evolve is defined by

Evolve(M) ≜ {C ′ | ∃C ∈M,S ⊆ pending(C), α ∈ Perm(S) : C ′ = δ∗(C,α)} (11.4.2)

We say configuration C ′ results from α1, . . . , αk linearizing after configuration C.

• Case: ℓ is a return res statement from a procedure opπ(arg). Those atomic configurations

that do not reflect that the operation has linearized with a response of res are no longer

tenable, and thus these are filtered out of M∗. On the other hand, the configurations that

show this response of res are retained and updated to reflect that π becomes idle after the

return. Furthermore, any arbitrary subset of pending processes can linearize after π returns.

Before formally stating the augmenting code to the invocation line, we develop some helpful

notation.

– For an atomic configuration C = (C.σ,C.f) in which π has linearized its operation

opπ(arg) with return value res, we define:

return(C, π, res) ≜ C ′

where C ′.σ = C.σ, C ′.f(π) = (⊥,⊥,⊥), and for each π̄ ̸= π, C ′.f(π̄) = C.f(π̄).

Formally, the augmenting code at line ℓ is: M∗ ← EvolveRet(M∗, return res), where

EvolveRet is defined by

EvolveRet(M)←


C ′′

∣∣∣∣∣∣∣∣∣∣∣∣

∃C ∈M, C ′ :

C.f(π).ret = res ∧

C ′ = return(C, π, return res) ∧

∃S ⊆ pending(C ′), α ∈ Perm(S) : C ′′ = δ∗(C ′, α)


(11.4.3)

We say configuration C ′′ results from π returning res and α1, . . . , αk linearizing after config-

276

uration C.

Definition 11.4.3 (full tracker). For any implementation O, O∗ is the full tracker as specified

above with the single auxiliary meta-configuration variableM∗.

11.4.3 Main Theorem

The crafting of the tracking augmentation yields a powerful technique for producing machine ver-

ified proofs of linearizability. This technique falls out from the main theorem of this section, which

reduces the complex question of whether an implementation O is linearizable to the verification of

a simple invariant. In particular, O is linearizable if and only if M∗ ̸= ∅ is an invariant of A(O∗).

Exploiting the if direction of this theorem, we can obtain machine verified proofs of lineariz-

ability by proving the invariant in a software system such as TLAPS (Temporal Logic of Actions

Proof System) or Coq. The only if direction of the theorem assures us that this proof technique is

complete.

Theorem 11.4.4. Let O be an implementation of an object of type τ initialized to state σ0 for a

set of processes Π, O is linearizable if and only ifM∗ ̸= ∅ is an invariant of A(O∗).

(Recall that O∗ is the full tracker of O with meta-configurationM∗, and A(O∗) is the algorithm

from Figure 11.3.1 in which processes repeatedly make calls to procedures of O∗.)

The remainder of the section develops the necessary machinery and proves Theorem 11.4.4.

Let O be an implementation of an object of type τ initialized to σ0 for a set of processes Π, and

let O be an atomic object with the same type and initialization, and for the same set of processes.

Finally, recall that O∗ is the full tracker of O with meta-configuration variableM∗.

For a generic variable V of any given implementation I, and a run RI of the generator A(I),

we let V (RI) denote the value of V in the final configuration of A(I). We will be particularly

interested in the meta-configurationsM∗(R∗) for runs R∗ of A(O∗).

By Observation 2, O is linearizable if and only if the finite behaviors of O∗ are behaviors of O.

Our strategy to prove the main theorem thereby, will be to show that for any run R∗ of O∗, the

set of atomic runs sharing its behavior will have exactly the final configurationsM∗(R∗).

To effectively express the above statement, we develop a bit more notation. For any behavior B,

we let AtomicRuns(B) be the set of atomic runs that exhibit behavior B. Further, for run R, we

let C(R) denote the final configuration of R, and for a set of runs R, we let C(R) = {C(R) | R ∈ R}

denote the set of final configurations of all those runs. For a given run R∗ of the implementation, we

277

define Linearizations(R∗) ≜ AtomicRuns(behavior(R∗)) to be the set of all possible linearizations

of R∗.

We are now ready to prove the key lemma that will propel the proof of Theorem 11.4.4.

Lemma 11.4.5. Let R∗ be any finite run of O∗, then the following equality holds:

M∗(R∗) = C(Linearizations(R∗))

Proof. The proof is by induction on the number of events in the run R∗.

• Base Case: Every implementation run R∗ with zero events is simply an initial configuration

C∗
0 of algorithm A(O∗). In this case, behavior(R∗) is the empty behavior, and thus only the

empty atomic run is in Linearizations(R∗) = AtomicRuns(behavior(R∗)). The final (and

only) configuration of this run is the unique initial atomic configuration C0 = (σ0, f0); thus

C(Linearizations(R∗)) = {(σ0, f0)} which is the definition ofM∗(C∗
0).

• Induction Step: Let R∗
k = C∗

0 , . . . , C
∗
k−1, (πk, ℓk), C

∗
k be run with k ≥ 1 events. We consider

the prefix-run R∗
k−1 = C∗

0 , . . . , C
∗
k−1, and note that the induction hypothesis states that:

M∗(R∗
k−1) = C(Linearizations(R∗

k−1))

For notational convenience, we define Bk = behavior(R∗
k) and Bk−1 = behavior(R∗

k−1). The

last line executed in R∗, i.e. ℓk, can be one of three types of lines: invocation, intermediate,

or return.

– Case: ℓk is an invocation opπ(arg). First, we show that RHS ⊆ LHS. That is, let Lk ∈

Linearizations(R∗
k); we must first prove that C(Lk) ∈ M∗(R∗

k). To this effect, define

Lk−1 to be the longest prefix of Lk, such that behavior(Lk−1) = Bk−1. By definition of

atomic runs, Lk results when Lk−1 is followed immediately by the invocation opπ(arg)

and subsequently by a (possibly empty) sequence of linearization steps by processes

α = α1, . . . , αh that are yet to linearize in invoke(C(Lk−1), π, opπ(arg)). In particular,

no other invocation or return events are possible, since behavior(Lk) = Bk which has

just the single invocation more than Bk−1. Thus, by definition C(Lk) results from π in-

voking opπ(arg) and α1, . . . , αh linearizing after configuration C(Lk−1). Since C(Lk−1) ∈

M∗(R∗
k−1) by the inductive hypothesis, C(Lk) ∈ EvolveInv(M∗(R∗

k−1), π, opπ(arg)) =

278

M∗(R∗
k).

Second we prove that LHS ⊆ RHS. That is, let Ck ∈M∗(R∗
k), we must prove that there

is a linearization Lk of R∗
k with final configuration C(Lk) = Ck. To this effect, we note

that M∗(R∗
k) = EvolveInv(M∗(R∗

k−1), π, opπ(arg)). That is, there is a configuration

Ck−1 ∈M∗(R∗
k−1) such that Ck results from π invoking opπ(arg) and some sequence of

processes α = α1, . . . , αh linearizing after Ck−1. By the inductive hypothesis, there is

a linearization Lk−1 of R∗
k−1 whose final configuration is C(Lk−1) = Ck−1 in which π is

idle and α1, . . . , αh are yet-to-linearize in invoke(Ck−1, π, opπ(arg)). Thus, the atomic

run Lk that extends Lk−1 with π invoking and α linearizing after Ck−1 is a linearization

of R∗
k whose final configuration is C(Lk) = Ck, which concludes the proof of the case.

– Case: ℓk is an intermediate line. Since behavior(R∗
k) = behavior(R∗

k−1), we invoke the

inductive hypothesis to get the equality:

M∗(R∗
k−1) = C(Linearizations(R∗

k−1)) = C(Linearizations(R∗
k))

Now, we observe that when M∗(R∗
k−1) is already the full set of final configurations of

linearizations with the behavior Bk−1 = Bk, evolving does not change the set, that is:

M∗(R∗
k) = Evolve(M∗(R∗

k−1)) = Evolve(C(Linearizations(R∗
k))) = C(Linearizations(R∗

k))

Thus, we conclude the proof of the case.

– Case: ℓk is a return return res. This case is very similar to the first case. Once again,

we first show that RHS ⊆ LHS. That is, let Lk ∈ Linearizations(R∗
k); we must first

prove that C(Lk) ∈ M∗(R∗
k). To this effect, define Lk−1 to be the longest prefix of Lk,

such that behavior(Lk−1) = Bk−1. By definition of atomic runs, Lk results when Lk−1

is followed immediately by the return of res and subsequently by a (possibly empty)

sequence of linearization steps by processes α = α1, . . . , αh that are yet to linearize in

return(C(Lk−1), π, return res). In particular, no other invocation or return events are

possible, since behavior(Lk) = Bk which has just the single return more than Bk−1.

Thus, by definition C(Lk) results from π returning res and α1, . . . , αh linearizing after

configuration C(Lk−1). Since C(Lk−1) ∈M∗(R∗
k−1) by the inductive hypothesis, C(Lk) ∈

EvolveRet(M∗(R∗
k−1), π, return res) =M∗(R∗).

279

Second we prove that LHS ⊆ RHS. That is, let Ck ∈ M∗(R∗
k), we must prove that

there is a linearization Lk of R∗
k with final configuration C(Lk) = Ck. To this effect,

we note that M∗(R∗
k) = EvolveRet(M∗(R∗

k−1), π, return res). That is, there is a

configuration Ck−1 ∈ M∗(R∗
k−1) such that Ck results from π returning res and some

sequence of processes α = α1, . . . , αh linearizing after Ck−1. By the inductive hypoth-

esis, there is a linearization Lk−1 of R∗
k−1 whose final configuration is C(Lk−1) = Ck−1

in which π has linearized with return value res and α1, . . . , αh are yet-to-linearize in

return(Ck−1, π, return res). Thus, the atomic run Lk that extends Lk−1 with π re-

turning and α linearizing after Ck−1 is a linearization of R∗
k whose final configuration is

C(Lk) = Ck, which concludes the proof of the case.

We are now ready to prove the main theorem.

Theorem 11.4.4. Let O be an implementation of an object of type τ initialized to state σ0 for a

set of processes Π, O is linearizable if and only ifM∗ ̸= ∅ is an invariant of A(O∗).

(Recall that O∗ is the full tracker of O with meta-configurationM∗, and A(O∗) is the algorithm

from Figure 11.3.1 in which processes repeatedly make calls to procedures of O∗.)

Proof. We will prove the theorem by showing the forward and reverse directions separately:

• For the forward direction: assumeM∗ ̸= ∅ is an invariant of A(O∗). Thus, for any finite run

R∗ of A(O∗), we note M∗(R∗) is non-empty. So, by Lemma 11.4.5, there is a linearization

L of R∗. Since, an arbitrary finite run R∗ of A(O∗) is linearizable, we conclude that O∗ is

linearizable. Since O∗ has the same behaviors as O, thus O is linearizable.

• For the reverse direction: assume that O is linearizable. This implies O∗ is linearizable.

So, every finite run R∗ of A(O∗) has at least one linearization L. Thus, by Lemma 11.4.5,

M∗(R∗) is non-empty. Since,M∗(R∗) is non-empty for an arbitrary finite run R∗ of A(O∗),

we conclude thatM∗ ̸= ∅ is an invariant of A(O∗).

280

11.5 (Partial) Trackers

The proof of Theorem 11.4.4 demonstrates that, for an implementation O, the full tracker O∗, in

essence, tracks “all possible linearizations” in its meta-configuration. To show that O is linearizable

however, it suffices to show the existence of a single linearization. That is, we need not track all

linearizations, but just ensure that we track at least one. In practice, tracking a subset of lineariza-

tions can be easier for a prover, especially one who knows the structure of the implementation

well. Thus, in general, we will be interested in a (partial) tracker, whose meta-configuration M′

maintains a subset of the full meta-configurationM∗. We define such trackers.

Definition 11.5.1 (trackers). Let O be an implementation of a type τ in the initial state σ0 for a

set of processes Π. We say an augmentation O′ is a (partial) tracker of O, if the following conditions

are met:

• The auxiliary variable set Ωaux of O′ contains a meta-configuration variableM′ that holds a

set of atomic configurations. (Ωaux may also contain other additional variables.)

• M′ is initialized to {(σ0, f0)}, where f0(π) = (⊥,⊥,⊥) for every π ∈ Π.

• For each type of line ℓ (whether invocation, intermediate, or return) in the original algorithm,

the augmented line ℓ′ updates the tracker to ensure the new value of M′ is a subset of the

configurations that would arise by evolvingM′ according to the rules of the full tracker. That

is, if the update rule of the tracker at line ℓ′ isM′ ← Evolveℓ(M′), then:

– Case: ℓ is the invocation of opπ(arg).

Evolveℓ(M′) ⊆ EvolveInv(M′, π, opπ(arg)) (11.5.1)

– Case: ℓ is an intermediate line of opπ(arg).

Evolveℓ(M′) ⊆ Evolve(M′) (11.5.2)

– Case: ℓ is a return res statement from a procedure opπ(arg).

Evolveℓ(M′) ⊆ EvolveRet(M′, π, return res) (11.5.3)

281

Theorem 11.5.2. Let O be an implementation of an object of type τ initialized to state σ0 for

a set of processes Π, and O′ be any partial tracking augmentation of O with meta-configuration

variable M′. If M′ ̸= ∅ is an invariant of A(O′), then O is linearizable.

Proof. LetM∗ be the meta-configuration of the full trackerO∗. Consider any runR∗ = C∗
0 , (π1, ℓ

∗
1), C

∗
1 , (π2, ℓ

∗
2), . . .

of A(O∗), and recall that we say the run R′ = C ′
0, (π1, ℓ

′
1), C

′
1, (π2, ℓ

′
2), . . . of A(O′) is coupled with

R∗, if C ′
0 has the same initialization for the private registers and objects in τ.Ω, and for each i, ℓ′i is

the line in O′ that corresponds to ℓ∗i in O∗, i.e., these are augmentations of corresponding lines in

O. Since O∗ and O′ augment the same implementation, all runs of A(O∗) and A(O′) are coupled as

(R∗, R′) in this way. For coupled runs R∗ and R′, by definition of a partial tracking augmentation,

it is clear that M′ ⊆ M∗ throughout the coupled run. Thus, M′ ̸= ∅ being an invariant of O′

impliesM∗ ̸= ∅ is an invariant of O∗. So, by Theorem 11.4.4, the proof is complete.

11.6 Proving Strong Linearizability

In the previous section, we motivated partial trackers as simpler ways to prove standard lineariz-

ability. In this section, we will show how to use partial trackers to obtain a sound and complete

method for proving strong linearizability.

The pivotal difference between strong linearizability and (standard) linearizability, is that the

former consistency condition requires that we should be able to commit to a single linearization L(R)

for any run R, such that the linearization of every extension of R will be an extension of L(R). Our

key insight lies here. The full tracker’s meta-configuration M∗ maintains the final configurations

of every possible linearization of R hoping to extend whichever ones may work as the future of the

run unfolds; thus, it effectively ensures that “no linearization will be missed” thereby yielding a

complete method for proving linearizability. However, informally speaking, by maintaining every

possible linearization, it does exactly the opposite of committing to single linearization, which is

the key to showing strong linearizability.

Our idea therefore, is to demonstrate strong linearizability by demonstrating a partial tracker O′

whose meta-configurationM′ holds precisely one configuration at any point in time. The intuition

is that maintaining a single configurationM′(R′
k) = {Ck} at the end of a run R′

k of length k is akin

to committing to a single linearization Lk (with C(Lk) = Ck) for this run, and that this unique

linearization is getting extended as the run gets extended. Of course, there is a small catch. The

configuration Ck could be the final configuration of many different linearizations, which all happen

282

to have the same final configuration. Nevertheless, we will resolve this hiccup, by proving that a

cleverly chosen particular one of these linearizations can be picked as L(R′
k).

Theorem 11.6.1. Let O be an implementation of an object of type τ initialized to state σ0 for a

set of processes Π, O is strongly linearizable if and only if there exists a partial tracker O′ such that

A(O′) satisfies the invariant |M′| = 1.

(Recall that O′ is the partial tracker of O with meta-configurationM′, and A(O′) is the algorithm

from Figure 11.3.1 in which processes repeatedly make calls to procedures of O′.)

Proof. We split the proof into two parts, proving the only if direction, and then proving the if

direction.

1. To prove the only if direction, we assume there is a linearization function L that maps each

finite run Rk = C0, (π1, ℓ1), C1, . . . , (πk, ℓk), Ck of A(O) to a linearization L(Rk). We claim

there is a tracker O′ which maintains a meta-configuration M′, whose value M′(R′
k) after

any run R′
k that is coupled with run Rk of O is equal toM′(R′

k) = {L(Rk)}. We prove this

claim by induction.

Base Case: note that if Rk = R0 is a zero-event run, then its only linearization is the

zero-event atomic run L0 = C0 that (starts and) ends in the initial atomic configuration

(σ0, f0), thus L(R0) = L0 and M′’s initialization is indeed {(σ0, f0)}, which concludes

the base case.

Induction Step: ifM′(R′
k) = {L(Rk)} for some k ≥ 0, and the run Rk extends to Rk+1 in

a single step, then by assumption Lk+1 = L(Rk+1) is an extension of Lk = L(Rk). Here,

we break the argument into cases, depending on which type of line ℓk+1 is (invocation,

intermediate, or return):

(a) Case: ℓ is the invocation of opπ(arg). C(Lk+1) must result from some processes

α1, . . . , αh1 linearizing, then πk+1 invoking opπ(arg) then αh1+1, . . . , αh2 lineariz-

ing after C(Lk) for some 0 ≤ h1 ≤ h2. However, since linearizing an operation

before or after an invocation makes no difference to the final configuration, we can

obtain the same C(Lk+1) after C(Lk) by π invoking opπ(arg) and then linearizing

α1, . . . , αh2 . Thus, C(Lk+1) ∈ EvolveInv(M′(R′
k), π, opπ(arg)).

(b) Case: ℓ is an intermediate line of opπ(arg). C(Lk+1) must result from linearizing

some sequence of processes α1, . . . , αh after C(Lk). Thus, C(Lk+1) ∈ Evolve(M′(R′
k)).

283

(c) Case: ℓ is a return res statement from a procedure opπ(arg). C(Lk+1) must result

from some processes α1, . . . , αh1 linearizing, then πk+1 returning res then αh1+1, . . . , αh2

linearizing after C(Lk) for some 0 ≤ h1 ≤ h2. However, since linearizing an operation

before or after a return makes no difference to the final configuration, we can obtain

the same C(Lk+1) after C(Lk) by π returning res and then linearizing α1, . . . , αh2 .

Thus, C(Lk+1) ∈ EvolveRet(M′(R′
k), π, return res).

That completes the proof of the only if direction.

2. To prove the if direction, we assume that there is a trackerO′ that always maintains a singleton

meta-configurationM′. We now recursively define a prefix preserving linearization function

L on runs of A(O), such that for coupled runs R of O and R′ of O′,M′(R′) = C(L(R)):

• If R0 is a zero event run of A(O), define L(R0) ≜ (σ0, f0). (This is clearly a (indeed the

only) linearization of R0.)

• If Rk is a k event run for k ≥ 0, consider the prefix run Rk−1 such that Rk =

Rk−1, (πk, ℓk), C(Rk). Also consider the corresponding k− 1 and k event coupled runs of

O′: R′
k−1 and R′

k, and their meta-configurations: M′(R′
k−1) = {Ck−1} and M′(R′

k) =

{Ck}. We now finish the definition with three cases:

(a) Case: ℓ is the invocation of opπ(arg). Ck must result from π invoking opπ(arg) and

some sequence of processes α1, . . . , αh linearizing after Ck−1 = L(Rk−1). We define

L(Rk) to be the run resultant from L(Rk−1) being extended by that invocation and

those linearization events.

(b) Case: ℓ is an intermediate line of opπ(arg). Ck must result from some sequence of

processes α1, . . . , αh linearizing after Ck−1 = L(Rk−1). We define L(Rk) to be the

run resultant from L(Rk−1) being extended by those linearization events.

(c) Case: ℓ is a return res statement from a procedure opπ(arg). Ck must result from

π returning res and some sequence of processes α1, . . . , αh linearizing after Ck−1 =

L(Rk−1). We define L(Rk) to be the run resultant from L(Rk−1) being extended by

that return and those linearization events.

By construction, we see that L is a prefix preserving linearization function of the runs of

implementation O. That concludes the proof.

284

11.7 Example: The Union Find Object

In this section, we consider Jayanti and Tarjan’s concurrent union-find implementation [118, 119],

and describe how we wrote the machine verified proof that it is linearizable, in fact strongly lin-

earizable, using TLAPS (the Temporal Logic of Actions Proof System) [153]. We chose Jayanti

and Tarjan’s algorithm since it is simple (both to understand and in length of code) and highly

practical—it is the fastest algorithm for computing connected components of a graph on CPUs [51]

and GPUs [95], and has several other applications [3].

11.7.1 The Union Find Type

The union find type maintains a partition of the elements in [n] = {1, 2, . . . , n} and supports two

operations.

• Find(x) returns the maximum element in element x’s part of the partition.

• Unite(x, y) merges the parts containing x and y if they are different and returns ack.

Formally, we specify the partition as a function σ : [n] → P([n]) from the set of elements to the

powerset of the set of elements, such that σ(x) is the part containing element x. Of course, if two

elements x and y are in the same part of the partition, then σ(x) = σ(y). We give the full formal

specification of the union-find type in the figure Object Type 11.7.1.

Object Type 11.7.1 (Union Find Object). A union find type of n elements [n] = {1, . . . , n} is
described as follows:

• Σ =
{
σ : [n]→ P([n])

∣∣∣ {σ(x) | x ∈ [n]} is a partition of [n], and ∀x ∈ [n] : x ∈ σ(x)
}

• OP = {Unite,Find}
• ARGUnite = [n]× [n], ARGFind = [n]

• RES = {ack} ∪ [n]

• Transition function δ is defined by:
– δ(σ, π,Find, x) = maxσ(x)

– δ(σ, π,Unite, (x, y)) =


(σ, ack), if σ(x) = σ(y)

(σ′, ack), if σ(x) ̸= σ(y)

where ∀z /∈ σ(x) ∪ σ(y), σ′(z) = σ(z)

and ∀z ∈ σ(x) ∪ σ(y), σ′(z) = σ(x) ∪ σ(y)

285

11.7.2 The Jayanti Tarjan Union Find Implementation

We present Jayanti and Tarjan’s implementation of union-find in Figure 11.7.1. Each numbered

line in the implementation requires the performance of at most one shared memory instruction,

and is performed atomically.

Base Objects: x.par is a Read/CAS register initialized to x.par = x, for each node x ∈ [n].

1: procedure O.Findπ(xπ)

uπ ← xπ

2: while uπ ̸= uπ.par do uπ ← uπ.par

3: return uπ

4: procedure O.Uniteπ(xπ, yπ)

uπ ← xπ; vπ ← yπ

while true do

5: if uπ = vπ then goto line 8

else if uπ < vπ then if Cas(uπ.par, uπ, vπ) then goto line 8

else if uπ > vπ then if Cas(vπ.par, vπ, uπ) then goto line 8

6: while uπ ̸= uπ.par do uπ ← uπ.par

7: while vπ ̸= vπ.par do vπ ← vπ.par

8: return ack

Figure 11.7.1: : Jayanti and Tarjan’s implementation of a union find object on n nodes {1, 2, . . . , n}
each initially in its own singleton part of the partition, i.e., the initial state is σ0 : [n] → P([n])
defined by ∀x ∈ [n], σ0(x) = x.

There are two goals to this section: (1) to convince the reader (our current verifier) that the

implementation in Figure 11.7.1 is strongly linearizable; (2) to describe the process by which we

prove this strong linearizability. Meeting goal (1) is very simple: the reader simply needs to

verify that Figure 11.7.2 is indeed a partial tracker of this implementation with meta-configuration

variableM, and then to go to:

https://github.com/visveswara/machine-certified-linearizability/blob/master/UnionFindTracker.tla

where we give a machine verified proof that |M| = 1 is an invariant of the partial tracker. Done!

In particular, the reader does not need to read or understand the proof of the invariant; in fact,

286

https://github.com/visveswara/machine-certified-linearizability/blob/master/UnionFindTracker.tla

the reader does not even need to understand the code of the implementation! It simply suffices to

check that the machine has verified the invariant. Thus, the rest of this section is primarily aimed

at meeting goal (2), that is, describing the process by which we—the designers of the proof—

went about constructing the partial tracker and what work is involved in producing a proof of the

invariant |M| = 1 that the TLAPS proof assistant is able to machine-verify. We start by describing

the union-find implementation.

In the implementation, each element is represented by a node, and each node x has a parent

pointer field x.par that points to another node. Each part of the partition is represented as a

single parent pointer tree, so σ(x) = σ(x.par), and we maintain the invariant that the parent of

x is always greater than or equal to x (i.e. x.par ≥ x). Thus, the roots of the trees are the

largest elements in their respective partition; if u is a root of its tree than u.par = u. In the initial

state σ0, all elements are in their own singleton part of the partition, i.e. ∀x ∈ [n], σ0(x) = {x}.

Correspondingly, the implementation starts with ∀x ∈ [n], x.par = x.

With this representation, a process π performs Findπ(xπ) by starting a node uπ at xπ (line 1),

walking uπ up the parent pointers until it reaches a root (line 2), and returning that root, which

must be the maximum element in the set (line 3).

A process π performs Uniteπ(xπ, yπ) by starting a node uπ at xπ and another node vπ at yπ

(line 4). The implementation ambitiously hopes that the current nodes uπ and vπ are roots. If so,

and if uπ = vπ then unite has no work to do and proceeds to return (first part of line 5); otherwise,

if uπ < vπ, then unite tries to merge the two separate trees by linking uπ under vπ via a CAS

(second part of line 5); in the remaining case that uπ > vπ it tries to make the link in the other

direction (third part of line 5). If a link gets made, then there is no more work to do so π proceeds

to return. Otherwise, the links may have failed since uπ or vπ was not a root. In this case, the

implementation walks uπ up the tree until it is a root (line 6), and does the same for vπ (line 7)

and tries again (while true loop). Once one of the three cases on line 5 eventually occurs, π returns

ack (line 8).

11.7.3 The Tracker

Having been given the implementation in Figure 11.7.1, we can blindly write down the full tracker

for the implementation, and could prove its linearizability by showing the invariance of M∗ ̸= ∅

by appealing to Theorem 11.4.4. However, we will instead go the route of constructing a partial

tracker for two reasons: (1) we would like to prove strong linearizability, rather than just lineariz-

287

ability, and (2) the full tracker exhaustively maintains the set of all possible linearizations of every

run by maintaining atomic configurations that arise by every possible set of processes linearizing

in every order after every step of the run. We however, will demonstrate a more insightful under-

standing of exactly when and how the implemented object linearizes operations. By embedding

this understanding into the partial tracker, we will make our job of proving the invariant easier.

Our key insight into the implementation is our ability to identify a unique linearization point

for each operation, as described in the following observation:

Observation 3. For a Find, the last iteration of the loop at line 2 is when π discovers that

uπ is its own parent and thereby the root and maximum value node in its tree; we posit this to

be the linearization point of the operation. For a Unite, the last execution of line 5 is when π

either discovers that uπ and vπ are already in the same tree or when π successfully links their trees

together with a CAS; so we posit this to be the linearization point.

For now, the linearization points in Observation 3 are simply an expression of our intuition

from an informal understanding of the algorithm. However, we will use this intuition to design our

partial tracker presented in Figure 11.7.2, and the proof of our tracker’s invariants, which we will

discuss later, will formalize this understanding.

We ensure that our implementation in Figure 11.7.2 meets the definition of a tracker, by ensuring

that the meta-configuration variableM meets the initialization, invocation, intermediate line, and

return line criteria. In particular:

288

Base Objects:

• x.par is a Read/CAS register initialized to x.par = x, for each node x ∈ [n].

• M initialized to {(σ0, f0)} is a meta-configuration, where σ0 maps each x ∈ [n] to {x} and

f0 maps each π ∈ Π to (⊥,⊥,⊥).

1: procedure O.Findπ(xπ)

uπ ← xπ

M← {C ′ |∃C ∈M : C ′ = invoke(C, π,Findπ(xπ))}

2: while uπ ̸= uπ.par do uπ ← uπ.par

if uπ = uπ.par then M←
{
C ′
∣∣∣ ∃C ∈M : C ′ = δ∗(C, π)

}
3: return uπ

M← {C ′ |∃C ∈M : C ′ = return(C, π, return uπ)}

4: procedure O.Uniteπ(xπ, yπ)

uπ ← xπ; vπ ← yπ

M← {C ′ |∃C ∈M : C ′ = invoke(C, π,Uniteπ(xπ, yπ))}

while true do

5: if uπ = vπ then goto line 8

else if uπ < vπ then if Cas(uπ.par, uπ, vπ) then goto line 8

else if uπ > vπ then if Cas(vπ.par, vπ, uπ) then goto line 8

if (uπ = vπ) ∨ (uπ < vπ ∧ uπ = uπ.par) ∨ (uπ > vπ ∧ vπ = vπ.par) then

M← {C ′ |∃C ∈M : C ′ = δ∗(C, π)}

6: while uπ ̸= uπ.par do uπ ← uπ.par

7: while vπ ̸= vπ.par do vπ ← vπ.par

8: return ack

M← {C ′ |C ′ = return(C, π, return ack)}

Figure 11.7.2: : Tracker O for the union find implementation O presented in Figure 11.7.1.

0. Our meta-configuration is initialized to M = {(σ0, f0)}, where σ0 is the initial state of the

union-find object, and f0 describes each process as initially idle.

1. In each invocation line by a process π, by the definition of a partial tracker, we can updateM

289

to contain any configurations C ′ that result from the invocation and an arbitrary sequence of

processes that have pending operations linearizing after any C ∈M. Observation 3 suggests

that we need not think of any operations as linearizing at this line, thus we update M to

contain exactly the subset of configurations which result from the invocation occurring (and

the empty sequence of processes linearizing) after some C ∈ M. This can be confirmed by

inspecting the augmentations at line 1 (for Find) and line 4 (for Unite).

2. In each intermediate line by a process π, by the definiton of a partial tracker, we can update

M to contain any configurations C ′ that result from an arbitrary sequence of processes that

have pending operations linearizing after any C ∈ M. Observation 3 suggests that we can

consider at most one process linearing after each line of code. In particular, the observation

suggests that for Find, we need to only π linearizing at line 2 if uπ = uπ.par at the time of

that line’s execution. Similarly, for Unite, we need to only consider π linearizing at line 5,

and that too only if either uπ = vπ or if the conditions are such that one of the two CAS

operations will succeed on that line. We correspondingly designM to be updated according

to these rules at these particular lines. Otherwise, we update M to contain exactly the set

of configurations which result from the empty sequence of processes linearizing, i.e., we leave

M unchanged. Thus, a simple inspection of the augmentations to lines 2,5,6, and 7 reveals

that our augmentation satisfies the intermediate line condition for a tracker.

3. Finally, in each return line, the definition of a tracker allows us to update M to contain

any configurations C ′ that result from the return and an arbitrary sequence of processes

with pending operations linearizing after any configuration C ∈ M. Once again, we respect

Observation 3, and choose all configurations C ′ that result from the return (and the empty

sequence of processes linearizing thereafter) after each C ∈ M. This is easily confirmed by

inspecting the augmentations to lines 3 and 8.

By simple inspections, we have verified that the augmentation in Figure 11.7.2 is indeed a

tracker of the union find implementation in Figure 11.7.1. Notably, we did not need to look at

or understand the code of the original implementation (beyond mechanically verifying that it was

copied-and-pasted to the augmentation properly). Even so, by Theorem 11.6.1, seeing a certification

of the invariant |M| = 1 from a mechanical proof verifier, suffices as a reliable and rigorous proof

that the union-find implementation is Strongly Linearizable (and thereby also Linearizable)!

In the remainder of the section, we will describe how we went about proving that invariant.

290

11.7.4 Proving The Invariant

Our task is to prove prove that IL ≡M ̸= ∅ and IS ≡ |M| = 1 are invariants of A(O′) in order to

deduce that O is linearizable and strongly linearizable. Obviously, IS implies IL, so in this example

we will focus on IS , i.e. strong linearizability, alone.

IS clearly holds in the initial configuration of the algorithm, so it suffices to show that it

will continue to hold in subsequent configurations; we will accomplish this task by induction. Of

course, IS ’s validity in subsequent configurations of the algorithm relies not only on its validity in

the current state, but also on the design of the algorithm, i.e. other invariants of the algorithm

that capture the states of the various program variables (objects and registers). Thus, in order

to go through with our strategy, we must strengthen IS to a stronger invariant I that meets two

conditions: (1) I is inductive and (2) I implies IS . This task of strengthening IS to an I that

meets the conditions is the main intellectual work that the prover must do. Of course, the prover

must subsequently prove that I is inductive and implies IS ; but our experience through proving

several algorithms suggests that this latter step, while potentially time-taking due to the length

of the proof, is generally intellectually easier once the correct I is identified. In particular, the

identification of I requires an understanding of “why the algorithm works”, and thus the prover

(unlike the verifier) must still, in general, understand the algorithm well in order to give the proof.

In the case of our union find implementation, we present the strengthened invariant I in Fig-

ure 11.7.3. I is a conjuction, and two of the conjuncts are IS and IL. Thus, when we prove its an

invariant, we clearly have IS and IL by implication. The remaining conjuncts can be understood

as follows:

• The conjuncts Ipar, Ix, Iy, Iu, Iv, Ipc, IM express type safety. That is, the various variables

in the algorithm always take on values that we would expect satisfy their types. For instance,

Ipar expresses that for each node z ∈ [n], z.par is also a node.

• The conjucts Ia, Ib, Ic express general truths about our union find implementation. Namely,

that every node z shares a part in the partition with its parent z.par; that if z and w are

different roots, then they are different parts of the partition; and that parent pointers never

point to smaller valued nodes.

• The conjuncts I1,4, I2, I3, I5,6,7, I8 express truths that pertain to a process π when its program

counter pcπ has a particular value. For instance, I5,6,7 expresses that if pcπ ∈ {5, 6, 7}, then

291

the pairs of elements xπ, uπ and yπ, vπ are each in the same part of the partition and that π

is yet-to-linearize a Unite operation with argument (xπ, yπ).

292

Figure 11.7.3: Invariant I of A(O), where O is the implementation of the union find tracker in
Figure 11.7.2.

I ≡ IL ∧ IS

∧ Ipar ∧ Ix ∧ Iy ∧ Iu ∧ Iv ∧ Ipc ∧ IM

∧ Ia ∧ Ib ∧ Ic

∧ I1,4 ∧ I2 ∧ I3 ∧ I5,6,7 ∧ I8

In the above expression, the various conjuncts on the right hand side are defined below.

• IL ≡M ̸= ∅

• IS ≡ |M| = 1

• Ipar ≡ ∀z ∈ [n] : z.par ∈ [n]

• Ix ≡ ∀π ∈ Π : xπ ∈ [n]

• Iy ≡ ∀π ∈ Π : yπ ∈ [n]

• Iu ≡ ∀π ∈ Π : uπ ∈ [n]

• Iv ≡ ∀π ∈ Π : vπ ∈ [n]

• Ipc ≡ ∀π ∈ Π : pcπ ∈ [8]

• IM ≡M ⊆ AtomicConfigurations

• Ia ≡ ∀(σ, f) ∈M : ∀z ∈ [n] : z.par ∈ σ(z)

• Ib ≡ ∀(σ, f) ∈M : ∀w, z ∈ [n] : (w ̸= z ∧ w.par = w ∧ z.par = z) =⇒ σ(w) ̸= σ(z)

• Ic ≡ ∀z ∈ [n] : z.par ≥ z

• I1,4 ≡ ∀π ∈ Π : ∀(σ, f) ∈M : pcπ ∈ {1, 4} =⇒ f(π) = (⊥,⊥,⊥)

• I2 ≡ ∀π ∈ Π : ∀(σ, f) ∈M : pcπ = 2 =⇒ (σ(uπ) = σ(xπ) ∧ f(π) = (Find, xπ,⊥))

• I3 ≡ ∀π ∈ Π : ∀(σ, f) ∈M : pcπ = 3 =⇒ f(π) = (Find, xπ, uπ)

• I5,6,7 ≡ ∀π ∈ Π : ∀(σ, f) ∈M : pcπ ∈ {5, 6, 7} =⇒ (σ(uπ) = σ(xπ)∧ σ(vπ) = σ(yπ)∧ f(π) =

(Unite, (xπ, yπ),⊥))

• I8 ≡ ∀π ∈ Π : ∀(σ, f) ∈M : pcπ = 8 =⇒ f(π) = (Unite, (xπ, yπ), ack)

293

Our intricate proof that I is indeed an inductive invariant of the system and proofs of the

straightforward deductions that I’s invariance implies the invariance of IL and IS , thereby proving

the strong linearizability of the union find implementation can be found at:

https://github.com/visveswara/machine-certified-linearizability/blob/master/UnionFindTracker.tla

11.8 Conclusion and Remarks

In this work, we have shown a novel technique by which machine-verified proofs of linearizability and

strong linearizability can be produced for concurrent object implementations. In Theorems 11.4.4

and 11.6.1, we have proven the powerful guarantee that our technique is universal, sound, and

complete. That is, any linearizable (resp. strongly linearizable) implementation—regardless of

what type it implements and how complex the linearization structure is—can be proved lineariz-

able (resp. strongly linearizable) via our techniques. Furthermore, our technique lends itself to

machine-verified proofs. We have demonstrated this machine-verifiability by providing proofs of

linearizability and strong linearizability of Jayanti and Tarjan’s union-find implementation that

have been certified correct by TLAPS. This result is particularly significant, since the union-find

implementation has been noted for its speed and practical applicability [51, 95, 3]. In other works,

we and our collaborators have used our technique to give machine-verified linearizability proofs

of several other algorithms including the Herlihy-Wing queue, and Jayanti’s single-writer single-

scanner snapshot object [211, 210, 94]. We look forward to many more algorithms being successfully

machine-verified, both by us and others in the community.

We are part-way through extending our proof technique to incorporate other variants of lin-

earizability, such as durable linearizability for recoverable data structures designed for non-volatile

random access memory (NVRAM). We believe an interesting related open problem is the develop-

ment of such proof methods for consistency criteria that are weaker than linearizability, such as

sequential consistency.

294

https://github.com/visveswara/machine-certified-linearizability/blob/master/UnionFindTracker.tla

Part V

Machine Learning

295

Chapter 12

Hogwild Gibbs Sampling

12.1 Introduction

The increasingly ambitious applications of data analysis, and the corresponding growth in the

size of the data that needs to processed has brought important scalability challenges to machine

learning algorithms. Fundamental methods such as Gradient Descent and Gibbs sampling, which

were designed with a sequential computational model in mind, are to be applied on datasets of

increasingly larger size. As such, there has recently been increased interest towards developing

techniques for parallelizing these methods. However, these algorithms are inherently sequential

and are difficult to parallelize.

HOGWILD!-SGD, proposed by Niu et al. [165], is a lock-free asynchronous execution of stochas-

tic gradient descent that has been shown to converge under the right sparsity conditions. Several

variants of this method, and extensions of the asynchronous execution approach have been recently

proposed, and have found successful applications in a broad range of applications ranging from

PageRank approximation, to deep learning and recommender systems [213, 166, 158, 149, 143, 143,

49].

Similar to HOGWILD!-SGD, lock-free asynchronous execution of Gibbs sampling, called HOGWILD!-

Gibbs, was proposed by Smola and Narayanamurthy [186], and empirically shown to work well on

several models [214]. Johnson et al. [122] provide sufficient conditions under which they show

theoretically that HOGWILD!-Gibbs produces samples with the correct mean in Gaussian models,

while Terenin et al. [202] propose a modification to the algorithm that is shown to converge under

some strong assumptions on asynchronous computation.

296

Algorithm 31 Gibbs Sampling
Input: Set of variables V , Configuration x0 ∈ S|V |, Distribution π

for t = 1 . . . T do

Sample i uniformly from {1, 2, . . . , n};

Sample Xi ∼ Prπ [.|X−i = x−i] and set xi,t = Xi;

For all j ̸= i, set xj,t = xj,t−1;

In a more recent paper, De Sa et al. [48] propose the study of HOGWILD!-Gibbs under a

stochastic model of asynchronicity in graphical models with discrete variables. Whenever the

graphical model satisfies Dobrushin’s condition, they show that the mixing time of the asynchronous

Gibbs sampler is similar to that of the sequential (synchronous) one. Moreover, they establish that

the asynchronous Gibbs sampler accurately estimates probabilities of events on a sublinear number

of variables, in particular events on up to O(εn/ logn) variables can be estimated within variational

distance ε, where n is the total number of variables in the graphical model (Lemma 2, [48]).

Our Results. Our goal in this work is to push the theoretical understanding of HOGWILD!-

Gibbs to estimate functions of all the variables in a graphical model. In particular, we are interested

in whether HOGWILD!-Gibbs can be used to accurately estimate the expectations of such func-

tions. Results from [48] imply that an accurate estimation is possible whenever the function under

consideration is Lipschitz with a good Lipschitz constant with respect to the Hamming metric. Un-

der the same Dobrushin condition used in [48] (see Definition 12.2.3), and under a stochastic model

of asynchronicity with weaker assumptions (see Section 12.2.1), we show that you can do better than

the bounds implied by [48] even for functions with bad Lipschitz constants. For instance, consider

quadratic functions on an Ising model, which is a binary graphical model, and serves as a canonical

example of Markov random fields [141, 159, 61, 47, 70, 58]. Under appropriate normalization, these

functions take values in the range [−n2, n2] and have a Lipschitz constant of n. Given this, the

results of [48] would imply we can estimate quadratic functions on the Ising model within an error

of O(n). We improve this error to be of O(
√
n). In particular, we show the following in this chapter:

• Starting at the same initial configuration, the executions of the sequential and the asyn-

chronous Gibbs samplers can be coupled so that the expected Hamming distance between the

multivariate samples that the two samplers maintain is bounded by O(τ logn), where n is

the number of variables in the graphical model, and τ is a measure of the average contention

297

in the asynchronicity model of Section 12.2.1. See Lemma 12.3.1. More generally, the ex-

pectation of the d-th power of the Hamming distance is bounded by C(d, τ) logd n, for some

function C(d, τ). See Lemma 12.3.2.

• It follows from Lemmas 12.3.1 and 12.3.2 that, if a function f of the variables of a graphical

model is K-Lipschitz with respect to the d-th power of the Hamming distance, then the bias

in the expectation of f introduced by HOGWILD!-Gibbs under the asynchronicity model of

Section 12.2.1 is bounded by K · C(d, τ) logd n. See Corollary 12.4.2.

• Next, we improve the bounds of Corollary 12.4.2 for functions that are degree-d polynomials

of the variables of the graphical model. Low degree polynomials on graphical models are

a natural class of functions which are of interest in many statistical tasks performed on

graphical models (see, for instance, [46]). For simplicity we show these improvements for

the Ising model, but our results are extendible to general graphical models. We show, in

Theorem 12.4.4, that the bias introduced by HOGWILD!-Gibbs in the expectation of a degree-

d polynomial of the Ising model is bounded by O((n logn)(d−1)/2). This bound improves upon

the bound computed by Corollary 12.4.2 by a factor of about (n/ logn)(d−1)/2, as the Lipschitz

constant with respect to the Hamming distance of a degree-d polynomial of the Ising model

can be up to O(nd−1). Importantly, the bias of O((n logn)(d−1)/2) that we show is introduced

by the asynchronicity is of a lower order of magnitude than the standard deviation of degree-d

polynomials of the Ising model, which is O((n)d/2)—see Theorem 12.2.8, and which is already

experienced by the sequential sampler. Moreover, in Theorem 12.4.7, we also show that the

asynchronous Gibbs sampler is not adding a higher order variance to its sample. Thus, our

results suggest that running Gibbs sampling asynchronously leads to a valid bias-variance

tradeoff.

Our bounds for the expected Hamming distance between the sequential and the asynchronous

Gibbs samplers follow from coupling arguments, while our improvements for polynomial func-

tions of Ising models follow from a combination of our Hamming bounds and recent concen-

tration of measure results for polynomial functions of the Ising model [45, 71, 81].

• In Section 12.5, we illustrate our theoretical findings by performing experiments on a multi-

core machine. We experiment with graphical models over two kinds of graphs. The first is

298

the
√
n ×
√
n grid graph (which we represent as a torus for degree regularity) where each

node has 4 neighbors, and the second is the clique over n nodes.

We first study how valid the assumptions of the asynchronicity model are. The main assump-

tion in the model was that the average contention parameter τ doesn’t grow as the number

of nodes in the graph grows. It is a constant which depends on the hardware being used and

we observe that this is indeed the case in practice. The expected contention grows linearly

with the number of processors on the machine but remains constant with respect to n (see

Figures 12.5.1 and 12.5.2).

Next, we look at quadratic polynomials over graphical models associated with both the grid

and clique graphs. We estimate their expected values under the sequential Gibbs sampler

and HOGWILD!-Gibbs and measure the bias (absolute difference) between the two. Our

theory predicts that this should scale at
√
n and we observe that this is indeed the case

(Figure 12.5.3). Our experiments are described in greater detail in Section 12.5.

12.2 The Model and Preliminaries

In this work, we consider the Gibbs sampling algorithm as applied to discrete graphical models.

The models will be defined on a graph G = (V,E) with |V | = n nodes and will represent a

probability distribution π. We use S to denote the range of values each node in V can take. For

any configuration X ∈ S|V |, πi(.|X−i) will denote the conditional distribution of variable i given

all other variables of state X.

In Section 12.4, we will look at Ising models, a particular class of discrete binary graphical

models with pairwise local correlations. We consider the Ising model on a graph G = (V,E) with

n nodes. This is a distribution over Ω = {±1}n, with a parameter vector θ⃗ ∈ R|V |+|E|. θ⃗ has a

parameter corresponding to each edge e ∈ E and each node v ∈ V . The probability mass function

assigned to a string x is

P (x) = exp

∑
v∈V

θvxv +
∑

e=(u,v)∈E

θexuxv − Φ(θ⃗)

 ,

where Φ(θ⃗) is the log-partition function for the distribution. We say an Ising model has no external

field if θv = 0 for all v ∈ V . For ease of exposition we will focus on the case with no external field

in this work. However, the results extend to Ising models with external fields when the functions

299

under consideration (in Section 12.4) are appropriately chosen to be centered. See [45].

Throughout this work we will focus on bounded functions defined on the discrete space S|V |. For

a function f , we use ∥f∥∞ to denote the maximum absolute value of the function over its domain.

We will use [n] to denote the set {1, 2, . . . , n}. In Section 12.4, we will study polynomial functions

over the Ising model. Since x2i = 1 always in an Ising model, any polynomial function of degree d

can be represented as a multilinear function of degree d and we will refer to them interchangeably

in the context of Ising models.

Definition 12.2.1 (Polynomial/Multilinear Functions of the Ising Model). A degree-d polynomial

defined on n variables x1, . . . , xn is a function of the following form

∑
S⊆[n]:|S|≤d

aS
∏
i∈S

xi,

where a : 2[n] → R is a coefficient vector.

When the degree d = 1, we will refer to the function as a linear function, and when the degree

d = 2 we will call it a bilinear function. Note that since Xu ∈ {±1}, any polynomial function of

an Ising model is a multilinear function. We will use a to denote the coefficient vector of such a

multilinear function and ∥a∥∞ to denote the maximum element of a in absolute value. Note that

we will use permutations of the subscripts to refer to the same coefficient, i.e., aijk is the same as

ajik. Also we will use the term d-linear function to refer to a multilinear function of degree d.

At times, for simplicity we will instead consider degree d polynomials of the form

fa(x) =
∑

i1i2,...,id

ai1i2...idxi1xi2 . . . xid

This form involves multiplicity in the terms, i.e. each monomial might appear multiple times. We

can map from degree d polynomials without multiplicity of terms to functions of the above form

in a straightforward manner by dividing each coefficient ai1i2...id by an appropriate constant which

captures how many times the term appears in the above notation. This constant lies between d!

and dd.

We now give a formal definition of Dobrushin’s uniqueness condition, also known as the high-

temperature regime. First we define the influence of a node j on a node i.

Definition 12.2.2 (Influence in Graphical Models). Let π be a probability distribution over some

300

set of variables V . Let Bj denote the set of state pairs (X,Y) which differ only in their value at

variable j. Then the influence of node j on node i is defined as

I(j, i) = max
(X,Y)∈Bj

∥∥πi(.|X−i)− πi(.|Y −i)
∥∥
TV

Now, we are ready to state Dobrushin’s condition.

Definition 12.2.3 (Dobrushin’s Uniqueness Condition). Consider a distribution π defined on a

set of variables V . Let

α = max
i∈V

∑
j∈V

I(j, i)

π is said to satisfy Dobrushin’s uniqueness condition is α < 1.

We have the following result from [48] about mixing time of Gibbs sampler for a model satisfying

Dobrushin’s condition.

Theorem 12.2.4 (Mixing Time of Sequential Gibbs Sampling). Assume that we run Gibbs sampling

on a distribution that satisfies Dobrushin’s condition, α < 1. Then the mixing time of sequential-

Gibbs is bounded by

tmix−seq(ε) ≤
n

1− α
log
(n
ε

)
.

Definition 12.2.5. For any discrete state space S|V | over the set of variables V , The Hamming

distance between x, y ∈ S|V | is defined as dH(x, y) =
∑

i∈V 1{xi ̸=yi}.

Definition 12.2.6 (The greedy coupling between two Gibbs Sampling chains). Consider two in-

stances of Gibbs sampling associated with the same discrete graphical model π over the state space

S|V |: X0, X1, . . . and Y0, Y1, The following coupling procedure is known as the greedy coupling.

Start chain 1 at X0 and chain 2 at Y0 and in each time step t, choose a node v ∈ V uniformly at

random to update in both the chains. Without loss of generality assume that S = {1, 2, . . . , k}.

Let p(i1) denote the probability that the first chain sets Xt,v = i1 and let q(i2) be the probability

that the second chain sets Yt,v = i2. Plot the points
∑i

j=1 p(j) = P (i), and
∑i

j=1 q(j) = Q(i) for

all i ∈ [k] on the interval from [0, 1]. Also pick P (0) = Q(0) = 0 and P (k + 1) = Q(k + 1) = 1.

Couple the updates according to the following rule:

301

Draw a number x uniformly at random from [0, 1]. Suppose x ∈ [P (i1), P (i1 + 1)] and x ∈

[Q(i2), Q(i2 + 1)]. Choose Xt,v = i1 and Yt,v = i2.

We state an important property of this coupling which holds under Dobrushin’s condition, in

the following Lemma.

Lemma 12.2.7. The greedy coupling (Definition 12.2.6) satisfies the following property. Let

X0, Y0 ∈ S|V | and consider two executions of Gibbs sampling associated with distribution π and

starting at X0 and Y0 respectively. Suppose the executions were coupled using the greedy coupling.

Suppose in the step t = 1, node i is chosen to be updated in both the models. Then,

Pr [Xi,1 ̸= Yi,1] ≤
∥∥πi(.|X−i

0)− πi(.|Y −i
0)
∥∥
TV

(12.2.1)

12.2.1 Modeling Asynchronicity

We use the asynchronicity model from [165] and [48]. Hogwild!-Gibbs is a multi-threaded algorithm

where each thread performs a Gibbs update on the state of a graph which is stored in shared memory

(typically in RAM). We view each processor’s write as occuring at a distinct time instant. And

each write starts the next time step for the process. Assuming that the writes are all serialized,

one can now talk about the state of the system after t writes. This will be denoted as time t.

HOGWILD! is modeled as a stochastic system adapted to a natural filtration Ft. Ft contains

all events thast have occured until time t. Some of these writes happen based on a read done

a few steps ago and hence correspond to updates based on stale values in the local cache of the

processor. The staleness is modeled in a stochastic manner using the random variable τi,t to denote

the delay associated with the read performed on node i at time step t. The value of node i used

in the update at time t is going to be Yi,t = Xi,(t−τi,t). Delays across different node reads can be

correlated. However delay distribution is independent of the configuration of the model at time

t. The model imposes two restrictions on the delay distributions. First, the expected value of

each delay distribution is bounded by τ . We will think of τ as a constant compared to n in this

work. We call τ the average contention parameter associated with a HOGWILD!-Gibbs execution.

[48] impose a second restriction which bounds the tails of the distribution of τi,t. We do not need

to make this assumption in this work for our results. [48] need the assumption to show that the

HOGWILD! chain mixes fast. However, by using coupling arguments we can avoid the need to

have the HOGWILD! chain mix and will just use the mixing time bounds for the sequential Gibbs

302

sampling chain instead. Let T denote the set of all delay distributions. We refer to the sequential

Gibbs sampler associated with a distribution π as Gπ and the HOGWILD! Gibbs sampler together

with T associated with a distribution p by HT
p . Note that Hπ is a time-inhomogenuous Markov

chain and might not converge to a stationary distribution.

12.2.2 Properties of Polynomials on Ising Models satisfying Dobrushin’s condi-
tion

Here we state some known results about polynomial functions on Ising models satisfying Dobrushin’s

condition.

Theorem 12.2.8 (Concentration of Measure for Polynomial Functions of the Ising model, [45, 71,

81]). Consider an Ising model p without external field on a graph G = (V,E) satisfying Dobrushin’s

condition with Dobrushin parameter α < 1. Let fa be a degree d-polynomial over the Ising model.

Let X ∼ p. Then, there is a constant c(α, δ), such that,

Pr [|fa(X)−E [fa(X)]| > t] ≤ 2 exp
(
− (1− α)t2/d

c(α, d) ∥a∥2/d∞ n

)
.

As a corollary this also implies,

Var [fa(X)] ≤ C3(d, α)n
d.

Theorem 12.2.9 (Marginals Bound under Dobrushin’s condition, [45]). Consider an Ising model

p satisfying Dobrushin’s condition with Dobrushin parameter α < 1. For some positive integer d,

let fa(x) be a degree d polynomial function. Then we have that, if X ∼ p,

|E [fa(X)]| ≤ 2

(
4nd logn
1− α

)d/2

.

12.3 Bounding The Expected Hamming Distance Between Cou-

pled Executions of HOGWILD! and Sequential Gibbs Sam-

plers

In this Section, we show that under the greedy coupling of the sequential and asynchronous chains,

the expected Hamming distance between the two chains at any time t is small. This will form the

303

basis for our accurate estimation results of Section 12.4. We begin by showing that the expected

Hamming distance between the statesXt and Yt of a coupled run of the sequential and asynchronous

executions respectively, is bounded by a (τα logn)/(1 − α). At a high level, the proof of Lemma

12.3.1 proceeds by studying the expected change in the Hamming distance under one step of the

coupled execution of the chains. We can bound the expected change using the Dobrushin parameter

and the property of the greedy coupling (Lemma 12.2.7). We then show that the expected change

is negative whenever the Hamming distance between the two chains was above O(logn) to begin

with. This allows us to argue that when the two chains start at the same configuration, then the

expected Hamming distance remains bounded by O(logn).

Lemma 12.3.1. Let π denote a discrete probability distribution on n variables (nodes) with Do-

brushin parameter α < 1. Let Gπ = X0, X1, . . . , Xt, . . . denote the execution of the sequential Gibbs

sampler on π and HT
π = Y0, Y1, . . . , Yt, . . . denote the HOGWILD! Gibbs sampler associated with π

such that X0 = Y0. Suppose the two chains are running coupled in a greedy manner. Let Kt denote

all events that have occured until time t in this coupled execution. Then we have, for all t ≥ 0,

under the greedy coupling of the two chains,

E [dH(Xt, Yt)|K0] ≤
τα logn
1− α

Proof. We will show the statement of the Lemma is true by induction over t. The statement is

clearly true at time t = 0 since X0 = Y0. Suppose it holds for some time t > 0. The state of the

system at time t, Kt includes the choice of nodes the two chains chose to update at each time step,

the delays τi,t′ for each node i and time step t′ ≤ t and the states {Xt′}t≥t′≥0 and {Yt′}t≥t′≥0 under

the two chains. We let It′ denote the node that was chosen to be updated in the two chains at time

step t′. As a shorthand, we use Lt to denote dH(Xt, Yt). We will first compute a bound on

E [Lt+1|Kt] (12.3.1)

The induction hypothesis implies that E[Lt|K0] ≤ τα
1−α . Given the delays for time t+ 1, denote by

Y ′
t the following state

Y τ
i,t = Yi,t−τi,t+1 ∀ i.

We partition the set of nodes into the set where Xt and Yt have the same value and the set where

304

they don’t. Define V =
t and V ̸=

t as follows.

V =
t = {i ∈ [n] s.t. Xi,t = Yi,t}

V ̸=
t = {i ∈ [n]s.t.Xi,t ̸= Yi,t} .

When the two samplers proceed to perform their update for time step t + 1, in addition to

the nodes in the set V ̸=
t some additional nodes might appear to have different values under the

asynchronous chain. This is because of the delays τi,t+1. We use Dt+1 to denote the set of nodes

in V =
t whose values read by the asynchronous chain are different from those under the sequential

chain.

Dt+1 =
{
i ∈ [n]

∣∣Xi,t ̸= Yi,t−τi,t+1

}
(12.3.2)

Next, we proceed to obtain a bound on the expected size of Dt+1 which we will use later. Let

τ1,t, τ2,t, . . . , τn,t denote the delays at time t. Let δi,t denote the last index before t when the node

i’s value was updated. Observe that the δi,ts have to all be distinct. Then

E [|Dt+1||Kt] ≤
∑
i∈V =

t

Pr [τi,t > δi,t] ≤
∑
i∈V =

t

τ

δi,t
≤ τ

|V =
t |∑

j=1

1

i

 ≤ τ logn. (12.3.3)

Suppose a node i from the set V =
t was chosen at step t + 1 to be updated in both the chains.

Now, Lt+1 is either Lt or Lt + 1. The probability that it is Lt + 1 is bounded above by the total

variation between the corresponding conditional distributions.

Pr [Xi,t+1 ̸= Yi,t+1 | Kt, i ∈ V =
t chosen in step t+ 1] ≤

∥∥∥πi(.|X−i
t)− πi(.|Y τ−i

t)
∥∥∥
TV

(12.3.4)

≤
∑

j∈V ̸=
t ∪Dt+1

I(j, i). (12.3.5)

where (12.3.4) follows from the property of the greedy coupling (Lemma 12.2.7) and (12.3.5) follows

from the triangle inequality because total variation distance is a metric.

Now suppose that i was chosen instead from the set V ̸=
t . Now Lt+1 is either Lt or Lt − 1. We

305

lower bound the probability that it is Lt − 1 using arguments similar to the above calculation.

Pr
[
Xi,t+1 = Yi,t+1

∣∣∣Kt, i ∈ V ̸=
t was chosen in step t+ 1

]
≥ 1−

∥∥∥πi(.|X−i
t)− πi(.|Y τ−i

t)
∥∥∥
TV

(12.3.6)

≥ 1−
∑

j∈V ̸=
t ∪Dt+1

I(j, i). (12.3.7)

where (12.3.6) follows from the property of the greedy coupling (Lemma 12.2.7) and (12.3.7) follows

from the triangle inequality because total variation distance is a metric.

Now the expected change in the Hamming distance

E [Lt+1 − Lt|Kt] =
1

n
E

∑
i∈V =

t

∑
j∈V ̸=

t ∪Dt+1

I(j, i)−
∑
i∈V ̸=

t

1−
∑

j∈V ̸=
t ∪Dt+1

I(j, i)

 |Kt


≤ 1

n
E

 ∑
j∈V ̸=

t ∪Dt+1

∑
i∈V

I(j, i)− Lt

∣∣∣∣∣∣∣Kt

 ≤ (Lt + E [|Dt+1||Kt])α

n
≤ (Lt + τ logn)α− Lt

n
.

where we used the fact that
∑

i∈V I(j, i) ≤ α for any j.

Now,

E [Lt+1|K0] = E [E [Lt+1|Kt]|K0] (12.3.8)

≤ E
[
Lt +

(Lt + τ logn)α− Lt

n

∣∣∣∣K0

]
≤ τα logn

1− α

(
1− 1− α

n

)
+

τα logn
n

(12.3.9)

=
τα logn
1− α

. (12.3.10)

Next, we generalize the above Lemma to bound also the dth moment of the Hamming distance

between Xt and Yt obtained from the coupled executions. The proof of Lemma 12.3.2 follows a

similar flavor as that of Lemma 12.3.1. It is however more involved to bound the expected increase

in the dth power of the Hamming distance and it requires some careful analysis to see that the

bound doesn’t scale polynomially in n.

306

Lemma 12.3.2 (dth moment bound on Hamming). Consider the same setting as that of Lemma 12.3.1.

We have, for all t ≥ 0, under the greedy coupling of the two chains,

E
[
dH(Xt, Yt)

d|K0

]
≤ C(τ, α, d) logd n,

where C(.) is some function of the parameters τ, α and d.

Proof. Again we will employ the shorthand Lt = dH(Xt, Yt). The proof is structured in the following

way. We will show the statement of the Lemma is true by induction over t and d. To show the

statement for a certain values of t, d we will use the inductive hypotheses of the statement for all

t′, d where t′ < t and for all t, d′ where d′ < d. Lemma 12.3.1 shows the statement for all values of

t for d = 1. We will assume the statement holds for all t for d′ < d.

Now, we proceed to show it is true for d. Clearly for t = 0 it holds because dH(X0, Y0)
d = 0.

Suppose it holds for some time t > 0. The state of the system at time t, Kt includes the choices of

nodes the two chains chose to update at each time step, the delays τi,t′ for each node i and time

step t′ ≤ t and the states {Xt′}t≥t′≥0 and {Yt′}t≥t′≥0 under the two chains. We let It′ denote the

node that was chosen to be updated in the two chains at time step t′. We will proceed in a similar

way as we did in Lemma 12.3.1. We first compute a bound on

E
[
Ld
t+1|Kt

]
(12.3.11)

as a function of Lt. The induction hypothesis implies that E[Ld
t |K0] ≤ C(τ, α, d) logd n. We

partition the set of nodes into the set where Xt and Yt have the same value and the set where they

don’t. Define V =
t and V ̸=

t as follows.

V =
t = {i ∈ [n] s.t. Xi,t = Yi,t}

V ̸=
t = {i ∈ [n]s.t.Xi,t ̸= Yi,t} .

When the two samplers proceed to perform their update for time step t + 1, in addition to

the nodes in the set V ̸=
t some additional nodes might appear to have different values under the

asynchronous chain. This is because of the delays τi,t+1. We use Dt+1 to denote the set of nodes

in V =
t whose values read by the asynchronous chain are different from those under the sequential

307

chain.

Dt+1 =
{
i ∈ [n]

∣∣Xi,t ̸= Yi,t−τi,t+1

}
(12.3.12)

Next, we use the bound on the expected size of Dt+1 which was derived in Lemma 12.3.1.

E [|Dt+1||Kt] ≤ τ logn. (12.3.13)

Suppose a node i from the set V =
t was chosen at step t + 1 to be updated in both the chains.

Now, Lt+1 is either Lt or Lt + 1. The probability that it is Lt + 1 is bounded above by the total

variation between the corresponding conditional distributions.

Pr [Xi,t+1 ̸= Yi,t+1|Kt, i ∈ V =
t chosen in step t+ 1] ≤

∥∥∥πi(.|X−i
t)− πi(.|Y τ−i

t)
∥∥∥
TV

(12.3.14)

≤
∑

j∈V ̸=
t ∪Dt+1

I(j, i). (12.3.15)

(12.3.15) follows again due to the property of greedy coupling (Lemma 12.2.7) and the metric prop-

erty of the total variation distance.

Now suppose that i was chosen instead from the set V ̸=
t . Now Lt+1 is either Lt or Lt − 1. The

probability that it is Lt − 1 is bounded below by the following.

Pr
[
Xi,t+1 = Yi,t+1

∣∣∣Kt, i ∈ V ̸=
t chosen in step t+ 1

]
≥ 1−

∥∥∥πi(.|X−i
t)− πi(.|Y τ−i

t)
∥∥∥
TV

(12.3.16)

≥ 1−
∑

j∈V ̸=
t ∪Dt+1

I(j, i). (12.3.17)

(12.3.15) follows again due to the property of greedy coupling (Lemma 12.2.7) and the metric prop-

erty of the total variation distance.

308

Now the expected change in the value of the dth power of the Hamming distance is

E
[
Ld
t+1 − Ld

t |Kt

]
(12.3.18)

=
1

n
E

∑
i∈V =

t

∑
j∈V ̸=

t ∪Dt+1

I(j, i)
(
(Lt + 1)d − Ld

t

)
−
∑
i∈V ̸=

t

1−
∑

j∈V ̸=
t ∪Dt+1

I(j, i)

(Ld
t − (Lt − 1)d

)
|Kt


(12.3.19)

≤ 1

n

(
(Lt + 1)d − Ld

t

)
E

 ∑
j∈V ̸=

t ∪Dt+1

∑
i∈V

I(j, i)

− Lt

n

(
Ld
t − (Lt − 1)d

)
(12.3.20)

≤ 1

n

(
(Lt + 1)d − Ld

t

)
(Lt + E [Dt+1|Kt])α−

Lt

n

(
Ld
t − (Lt − 1)d

)
(12.3.21)

≤ 1

n

(
(Lt + 1)d − Ld

t

)
(Lt + τ logn)α− Lt

n

(
Ld
t − (Lt − 1)d

)
(12.3.22)

Now, suppose E
[
Ld
t

∣∣K0

]
≤ C(τ, α, d) logd n − c3(d)C(τ, α, d − 1) logd−1 n for an appropriate

constant c3(d).Then,

E
[
Ld
t+1 − Ld

t

∣∣∣K0

]
= E

[
(Lt+1 − Lt)

(
d−1∑
i=0

Ld
t+1 − i− 1Li

t

)]
(12.3.23)

≤ E
[
d−1∑
i=0

Ld−i−1
t+1 Li

t

]
≤ c3(d)C(τ, α, d− 1) logd−1 n (12.3.24)

=⇒ E
[
Ld
t+1

]
≤ C(τ, α, d) logd n, (12.3.25)

where (12.3.24) follows because

E
[
Ld−i−1
t+1 Li

t

]
≤ E

[
Li
t(Lt + 1)d−i−1

]
≤ E

[
Ld−1
t

]
+ c(d)o

(
E
[
Ld−1
t

])
. (12.3.26)

Suppose instead that E
[
Ld
t

∣∣K0

]
was larger than C(τ, α, d) logd n− c3(d)C(τ, α, d− 1) logd−1 n. We

want to show that for C(τ, α, d) appropriately large in d, E
[
Ld
t+1

∣∣K0

]
doesn’t exceed C(τ, α, d).

309

E
[
Ld
t+1|K0

]
= E

[
E
[
Ld
t+1

∣∣∣Kt

]∣∣∣K0

]
(12.3.27)

≤E
[
Ld
t +

(Lt + τ logn)α
n

(
(Lt + 1)d − Ld

t

)
− Lt

n

(
Ld
t − (Lt − 1)d

)∣∣∣∣K0

]
(12.3.28)

=E
[
Ld
t +

(Lt + τ logn)α
n

(
d∑

i=1

(
d

i

)
Ld−i
t

)
− Lt

n

(
d∑

i=1

(
d

i

)
Ld−i
t (−1)i

)∣∣∣∣∣K0

]
(12.3.29)

≤C(τ, α, d) logd n− 1

n

(
E[Ld

t](1− α)−
d∑

i=2

(
d

i

)
Ld−i+1
t (1 + α)−

d∑
i=1

(
d

i

)
Ld−i
t τα logn

)
(12.3.30)

≤C(τ, α, d) logd n, (12.3.31)

where (12.3.31) holds because for C(τ, α, d) sufficiently large compared to the values of C(τ, α, d′),

where d′ < d, we can have C(τ, α, d) logd n−c3(d)C(τ, α, d−1) logd−1 n dominating all the remaining

terms in the two summations. Hence, by induction we have the desired Lemma statement.

12.4 Estimating Global Functions Using HOGWILD! Gibbs Sam-

pling

To begin with, we observe that our Hamming moment bounds from Section 12.3 imply that we

can accurately estimate functions or events of the graphical model if they are Lipschitz. We show

this below as a Corollary of Lemma 12.3.2. Before we state the Corollary, we will first state the

following simple Lemma which quantifies how large a t is required to have an accurate estimate

from the Gibbs sampler.

Lemma 12.4.1. Let π be an graphical model on n nodes satisfying Dorbushin’s condition with

Dobrushin parameter α < 1. Let X0, X1, . . . , Xt denote the steps of a Gibbs sampler running on π.

Let X ∼ π. Also let f(x) be a bounded function on the graphical model. Then for t > 0,

|E[fa(Xt)]−E[fa(X)]| ≤ ∥f∥∞ n exp
(
−(1− α)t

n

)
.

310

Proof. We have from Theorem 12.2.4 that dTV(Xt, X) ≤ n exp
(
(1−α)t

n

)
. This implies

|E[fa(Xt)]−E[fa(X)]| ≤
∣∣∣max

x
fa(x)

∣∣∣n exp
(
(1− α)t

n

)
≤ ∥a∥∞ nd+1 exp

(
−(1− α)t

n

)
. (12.4.1)

Now, we state Corollary 12.4.2 which quantifies the error we can attain when trying to estimate

expectations of Lipschitz functions using HOGWILD!-Gibbs.

Corollary 12.4.2. Let π denote the distribution associated with a graphical model over the set

of variables V (|V | = n) taking values in a discrete space Sn. Assume that the model satisfies

Dobrushin’s condition with Dobrushin parameter α < 1. Let f : S|V | → R be a function such that,

for all x, y ∈ S|V |,

|f(x)− f(y)| ≤ KdH(x, y)d.

Let X ∼ π and let Y0, Y1, . . . , Yt denote an execution of HOGWILD!-Gibbs sampling on π with

average contention parameter τ . For t > n
1−α log (2 ∥f∥∞ n/K),

|E[f(Yt)]−E[f(X)]| ≤ K.(C(τ, α, d) logd n+ 1).

where C(.) is the function from Lemma 12.3.2.

Proof. Consider an execution X0, X1, . . . , Xt, where X0 = Y0, of the synchronous Gibbs sampling

associated with π coupled greedily with the HOGWILD! chain. We have from 12.2.4 and 12.4.1

that, for t > n
1−α log (2 ∥f∥∞ n/K),

|E [Xt]−E[X]| ≤ K. (12.4.2)

Next, we have,

E [f(Xt)− f(Yt)] ≤ E
[
KdH(Xt, Yt)

d
]
≤ K.C(τ, α, d) logd n. (12.4.3)

Putting (12.4.2) and (12.4.3) together we get the statement of the Corollary.

We note that the results of [48] can be used to obtain Corollary 12.4.2 when the function is

311

Lipschitz with respect to the Hamming distance. The above corollary provides a simple way to

bound the bias introduced by HOGWILD! in estimation of Lipschitz functions. However, many

functions of interest over graphical models are not Lipschitz with good Lipschitz constants. In many

cases, even when the Lipschitz constants are bad, there is still hope for more accurate estimation.

As it turns out Dobrushin’s condition provides such cases. We will focus on one such case which

is polynomial functions of the Ising model. Our goal will be to accurately estimate the expected

values of constant degree polynomials over the Ising model. Using the bounds from Lemmas 12.3.1

and 12.3.2, we now proceed to bound the bias in computing polynomial functions of the Ising model

using HOGWILD! Gibbs sampling.

We first remark that linear functions (degree 1 polynomials) suffer 0 bias in their expected values

due to HOGWILD!-Gibbs. This is because under zero external field Ising models E[
∑

i aiXi] = 0

since each node individually has equal probability of being ±1. This symmetry is maintained by

HOGWILD!-Gibbs since the delays are configuration-agnostic. Hence the delays when a node is

+1 and when it is −1 can be coupled perfectly leaving the symmetry intact. More interesting

cases start happening when we go to degree 2 polynomials. Therefore, we start our investigation

at quadratic polynomials. Theorem 12.4.3 states the bound we show for the bias in computation

of degree 2 polynomials of the Ising model.

Theorem 12.4.3 (Bias in Quadratic functions of Ising Model computed using HOGWILD!-Gibbs).

Consider the quadratic function fa(x) =
∑

i,j:i<j aijxixj. Let p denote an Ising model on n nodes

with Dobrushin parameter α < 1. Let {Xt}t≥0 denote a run of sequential Gibbs sampler and

HT
p = {Yt}t≥0 denote a run of HOGWILD!- Gibbs on p, such that X0 = Y0. Then we have, for

t > 6n
1−α log(2 ∥a∥∞ n), under the greedy coupling of the two chains,

|E[fa(Xt)− fa(Yt)]| ≤ c2 ∥a∥∞
τα logn
(1− α)3/2

(n logn)1/2.

312

Proof. Under the greedy coupling, we have that,

|E[fa(Xt)− fa(Yt)]| = (12.4.4)∣∣∣∣∣∣E
 ∑
i,Xi,t ̸=Yi,t

∑
j>i,Xj,t=Yj,t

aij (Xi,tXj,t − Yi,tYj,t)

+ E

 ∑
i,Xi,t=Yi,t

∑
j>i,Xj,t ̸=Yj,t

aij (Xi,tXj,t − Yi,tYj,t)

∣∣∣∣∣∣
(12.4.5)

=

∣∣∣∣∣∣E
∑

i

(Xi,t − Yi,t)
∑

j>i,Xj,t=Yj,t

aijXj,t

+ E

 ∑
i,Xi,t=Yi,t

Xi,t

∑
j>i,Xj,t ̸=Yj,t

aij (Xj,t − Yj,t)

∣∣∣∣∣∣
(12.4.6)

=

∣∣∣∣∣∣E
∑

i

(Xi,t − Yi,t)
∑
j>i

aijXj,t

−E

∑
i

(Xi,t − Yi,t)
∑

j>i,Xj,t ̸=Yj,t

aijXj,t


+ E

∑
i

Xi,t

∑
j>i

aij (Xj,t − Yj,t)

−E

 ∑
i,Xi,t ̸=Yi,t

Xi,t

∑
j>i

aij (Xj,t − Yj,t)

∣∣∣∣∣∣ (12.4.7)

=

∣∣∣∣∣∣E
∑

i

(Xi,t − Yi,t)
∑
j

aijXj,t

+ E

∑
i

(Xi,t − Yi,t)
∑

j,Xj,t ̸=Yj,t

Xj,t

∣∣∣∣∣∣ (12.4.8)

≤

∣∣∣∣∣∣E
∑

i

(Xi,t − Yi,t)
∑
j

aijXj,t

∣∣∣∣∣∣+ E
[
dH(Xt, Yt)

2
]
. (12.4.9)

where (12.4.5) is based on the observation that if Xi,tXj,t = Yi,tYj,t then the difference associated

with this monomial vanishes, (12.4.7) and (12.4.8) follow via rearrangement of terms, and (12.4.9)

follows because
∣∣∣∑j,Xj,t ̸=Yj,t

Xj,t

∣∣∣ ≤ dH(Xt, Yt).

We bound each term in (12.4.9) seperately. First let us consider the term
∣∣∣E [∑i(Xi,t − Yi,t)

∑
j aijXj,t

]∣∣∣.
We will employ concentration of measure of linear functions of the Ising model to bound this term.

Intuitively when t is large enough, Xt is very close to a sample from the true Ising model and hence

Xt will have the properties of a true sample from the Ising model. In particular, we can employ

313

Theorem 12.2.8 to argue that if X ∼ p, then

Pr

∣∣∣∣∣∣
∑
j

aijXj

∣∣∣∣∣∣ > r

 ≤ 2 exp
(
−r2(1− α)

8 ∥a∥2∞ n

)
∀ i

=⇒ Pr

∣∣∣∣∣∣
∑
j

aijXj

∣∣∣∣∣∣ ≤ c ∥a∥∞

√
n logn
1− α

∀ i

 ≥ 1− 1

n3
(12.4.10)

=⇒ Pr

∣∣∣∣∣∣
∑
j

aijXj,t

∣∣∣∣∣∣ ≤ c ∥a∥∞

√
n logn
1− α

∀ i

 ≥ 1− 2

n3
(12.4.11)

where (12.4.10) holds for a large enough constant c and (12.4.11) holds via an application of

Lemma 12.4.1 for bilinear functions of the Ising model on the fact that t > 6n
1−α log(2 ∥a∥∞ n).

Denote by the set Gi, the following set of states

Gi =

x ∈ Ω

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

aijxj

∣∣∣∣∣∣ ≤ c ∥a∥∞

√
n logn
1− α

 (12.4.12)

Now,

E

∑
i

(Xi,t − Yi,t)
∑
j

aijXj,t

 (12.4.13)

≤ E
[∑

i

(Xi,t − Yi,t)(c ∥a∥∞

√
n logn
1− α

)

∣∣∣∣∣ ∀ i,Xt ∈ Gi

]
+ ∥a∥∞ n2 Pr [∃ i : Xt /∈ Gi] (12.4.14)

≤ c ∥a∥∞

√
n logn
1− α

E [dH(Xt, Yt)|∀ i Xt ∈ Gi] +
2

n3
. (12.4.15)

where in (12.4.14) we used the fact that
∑

i(Xi − Yi)
∑

j aijXj ≤ ∥a∥∞ n2 and (12.4.15) follows

because . Now,

E [dH(Xt, Yt)|∀ i Xt ∈ Gi] ≤
E [dH(Xt, Yt)]

Pr [∀ i Xt ∈ Gi]
≤ 2E [dH(Xt, Yt)] ≤

2τα logn
1− α

, (12.4.16)

where we have used that Pr[∀ i Xt ∈ Gi] ≥ 1 − 2/n3 ≥ 1/2 and employed Lemma 12.3.1. Hence,∣∣∣E [∑i(Xi,t − Yi,t)
∑

j aijXj,t

]∣∣∣ ≤ (c+1) ∥a∥∞
√

n logn
1−α

2τα logn
1−α . The second term we need to bound

is

E
[
dH(Xt, Yt)

2
]
≤ C(τ, α, 2) log2 n (12.4.17)

314

which follows from Lemma 12.3.2. Putting the two bounds together we get the statement of the

Theorem.

The main intuition behind the proof is that we can improve upon the bound implied by the

Lipschitz constant by appealing to strong concentration of measure results about functions of

graphical models under Dobrushin’s condition [45, 71, 81].

We extend the ideas in the above proof to bound the bias introduced by the HOGWILD!-Gibbs

algorithm when computing the expected values of a degree d polynomial of the Ising model in high

temperature. Our main result concerning d-linear functions is Theorem 12.4.4.

Theorem 12.4.4 (Bias in degree d polynomials computed using HOGWILD!-Gibbs). Consider a

degree d polynomial of the form fa(x) =
∑

i1i2,...,id
ai1i2...idxi1xi2 . . . xid. Consider the same setting

as that of Theorem 12.4.3. Then we have, for t > n(d+1)
1−α logn, under the greedy coupling of the two

chains,

|E[fa(Xt)− fa(Yt)]| ≤ c′ ∥a∥∞ (n logn)(d−1)/2.

To show Theorem 12.4.4, we will use the following helper Lemmas: 12.4.5 and 12.4.6. We will

state them first.

For simplicity, here we consider degree d polynomials of the form fa(x) =
∑

i1i2,...,id
ai1i2...idxi1xi2 . . . xid .

Lemma 12.4.5. Consider a degree d polynomial fa(x) =
∑

i1i2,...,id
ai1i2...idxi1xi2 . . . xid. Let p

denote a high temperature Ising model on a graph G = (V,E) with |V | = n nodes with Dobrushin

parameter α < 1. Let Gp = X0, X1, . . . , Xt, . . . denote the synchronous Gibbs sampler on p and

HT
p = Y0, Y1, . . . , Yt, . . . denote the HOGWILD! Gibbs sampler associated with p such that X0 = Y0.

Then we have, for t > n(d+1)
1−α logn, under the greedy coupling of the two chains, for all 0 ≤ k ≤ d,

∣∣∣∣∣∣E
∑

i1

(Xi1,t − Yi1,t)

. . .

∑
ik

(Xik,t − Yik,t)
∑

ik+1,...,id

ai1...id

d∏
l=k+1

Xil

∣∣∣∣∣∣
≤ C(τ, α, k) logk nC2(α, d− k)(n logn)(d−k)/2.

Proof. We will employ the bound we have on the moments on the Hamming distance 12.3.2 together

with concentration of measure for polynomial functions of the Ising model 12.2.8 to show the

statement. We have from Theorems 12.2.8 and 12.2.9 and Lemma 12.4.1, that for every choice of

315

i1, i2, . . . ik ∈ V , and for t > n(d+1)
1−α logn,

Pr

∣∣∣∣∣∣
∑

ik+1,...,id

ai1...id

d∏
l=k+1

Xil,t

∣∣∣∣∣∣ > c4(α, d− k)

(
∥a∥∞ n logn

1− α

)(d−k)/2
 ≤ 1

nd+2 ∥a∥∞
(12.4.18)

=⇒ Pr

∃{i1, i2, . . . ik ∈ V }

∣∣∣∣∣∣
∑

ik+1,...,id

ai1...id

d∏
l=k+1

Xil,t

∣∣∣∣∣∣ > c4(α, d− k)

(
n logn
1− α

)(d−k)/2


(12.4.19)

≤ 1

nd−k+2 ∥a∥∞
, (12.4.20)

where we used the fact that when t is large, the distribution of Xt is close to p (Lemma 12.4.1) and

(12.4.19) follows from a union bound. Define the set of states Gi1i2...ik as follows.

Gi1i2...ik =

x ∈ Ω

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

ik+1,...,id

ai1...id

d∏
l=k+1

xil

∣∣∣∣∣∣ ≤ c4(α, d− k)

(
n logn
1− α

)(d−k)/2

∀ {i1, i2, . . . ik ∈ V }


(12.4.21)

Then we have,∣∣∣∣∣∣E
∑

i1

(Xi1,t − Yi1,t)

. . .

∑
ik

(Xik,t − Yik,t)
∑

ik+1,...,id

ai1...id

d∏
l=k+1

Xil,t

∣∣∣∣∣∣ (12.4.22)

≤ E

∑
i1

|Xi1,t − Yi1,t|

. . .

∑
ik

|Xik,t − Yik,t|

∣∣∣∣∣∣
∑

ik+1,...,id

ai1...id

d∏
l=k+1

Xil,t

∣∣∣∣∣∣
 (12.4.23)

≤ c4(α, d− k)

(
n logn
1− α

)(d−k)/2

E

(∑
i

|Xi,t − Yi,t|

)k
∣∣∣∣∣∣Xt ∈ Gi1...ik ∀ {i1, . . . , ik ∈ V }

+
1

n2

(12.4.24)

≤ c4(α, d− k)

(
n logn
1− α

)(d−k)/2

2kE
[
dH(Xt, Yt)

k
∣∣∣Xt ∈ Gi1...ik ∀ {i1, . . . , ik ∈ V }

]
+

1

n2

(12.4.25)

≤ c4(α, d− k)

(
n logn
1− α

)(d−k)/2

2k.2C(τ, α, k) logk n ≤ C(τ, α, k) logk nC2(α, d− k)(n logn)(d−k)/2.

(12.4.26)

where we have used the fact that
∑

i |Xi − Yi| = 2dH(X,Y) for X,Y ∈ Ω, and (12.4.26) follows

from Lemma 12.3.2 and the observation that Pr [Xt ∈ Gi1...ik ∀ {i1, . . . , ik ∈ V }] ≥ 1− 1
nd−k+2∥a∥∞

≥

316

1/2.

Lemma 12.4.6. Consider a degree d polynomial fa(x) =
∑

i1i2,...,id
ai1i2...idxi1xi2 . . . xid. Let p

denote a high temperature Ising model on a graph G = (V,E) with |V | = n nodes with Dobrushin

parameter α < 1. Let Gp = X0, X1, . . . , Xt, . . . denote the synchronous Gibbs sampler on p and

HT
p = Y0, Y1, . . . , Yt, . . . denote the HOGWILD! Gibbs sampler associated with p such that X0 = Y0.

Then we have, for t > n(d+1)
1−α logn, under the greedy coupling of the two chains, for all 0 ≤ k ≤ d,

∣∣∣∣∣∣E
∑

i1

(Xi1,t − Yi1,t)

. . .

∑
ik

(Xik,t − Yik,t)
∑

ik+1,...,id

ai1...id

(
d∏

l=k+1

Xil,t −
d∏

l=k+1

Yil,t

)∣∣∣∣∣∣
≤ C(τ, α, k) logk nC2(α, d− k)(n logn)(d−k)/2.

Proof. We prove this by inducting backwards on k. When k = d, we get the desired statement

from Lemma 12.3.2. Assume the statement holds for some k + 1 < d. We will show it holds for k

as well. In the following calculations, we will, for a while, drop the subscript t from Xt and Yt for

brevity. We have,∣∣∣∣∣∣E
∑

i1

(Xi1 − Yi1)

. . .

∑
ik

(Xik − Yik)
∑

ik+1,...,id

ai1...id

(
d∏

l=k+1

Xil −
d∏

l=k+1

Yil

)∣∣∣∣∣∣ (12.4.27)

=

∣∣∣∣∣∣∣∣∣E
∑

i1

(Xi1 − Yi1)

. . .

∑
ik

(Xik − Yik)
∑

ik+1...id
Xik+1

...Xid
̸=Yik+1...Yid

ai1...id

(
2

d∏
l=k+1

Xil

)


∣∣∣∣∣∣∣∣∣ .

(12.4.28)

The last summation of (12.4.28) is over indices ik+1, . . . , id such that the product of values in X

at these indices disagrees with the corresponding product of values in Y . This can happen due

to a disagreement between X and Y at one of the indices ik+1, . . . , id, say j, and an agreement

of the product over the rest of the indices. That is, Xj ̸= Yj and
∏j−1

l=k+1Xij

∏d
l=j+1Xij =∏j−1

l=k+1 Yij
∏d

l=j+1 Yij . This leads to the last summation in (12.4.28) being bounded above by the

sum of d− k terms of the form

∑
ij

(Xij − Yij)
∑

ik+1,...,ij−1,ij+1,...,id

ai1...id

 j−1∏
l=k+1

Xil

d∏
l=j+1

Xil −
j−1∏

l=k+1

Yil

d∏
l=j+1

Yil

 . (12.4.29)

317

Replacing the last summation of (12.4.28) with d−k terms of the above form we see that the whole

quantity decomposes into d− k terms such that the inductive hypothesis can be applied over each

of the terms. It is a fairly simple calculation to see that then we get the desired bound of the

Theorem by induction (by keeping in mind that the quantity of focus here is the dependence on n

and we treat d as a constant).

Given Lemma 12.4.6, Theorem 12.4.4 follows. Proof of Theorem 12.4.4: The Theorem follows

directly from Lemma 12.4.6 applied to the case k = 0.

Next, we show that we can accurately estimate the expectations above by showing that the

variance of the functions under the asynchronous model is comparable to that of the functions

under the sequential model.

Theorem 12.4.7 (Variance of degree d polynomials computed using HOGWILD!-Gibbs). Consider

a high temperature Ising model p on n nodes with Dobrushin parameter α < 1. Let fa(x) be a degree

d polynomial function Let Y0, Y1, . . . , Yt denote a run of HOGWILD! Gibbs sampling associated with

p. We have, for t > (d+1)n
1−α log

(
n2
)
,

Var [f(Yt)] ≤ ∥a∥2∞C(d, α, τ)nd.

Proof.

Var [fa(Yt)] = E
[
fa(Yt)

2
]
−E [fa(Yt)]

2 (12.4.30)

≤ E
[
fa(Yt)

2
]
+ E [fa(Yt)]

2 (12.4.31)

First, we proceed to bound E
[
fa(Yt)

2
]
. Consider a coupled execution of synchronous Gibbs sam-

pling X0, X1, . . . , Xt where X0 = Y0 coupled using the greedy coupling. We have,

E
[
fa(Yt)

2
]
≤ E

[
fa(Xt)

2
]
+
∣∣E [fa(Xt)

2 − fa(Yt)
2
]∣∣ (12.4.32)

≤ C1(2d, α) (n logn)d + C2(2d, α, τ) (n logn)(2d−1)/2 ≤ C3(d, α, τ) (n logn)d (12.4.33)

where we used the fact that f(x)2 is a degree 2d polynomial and then applied Theorem 12.4.4 for

318

degree 2d polynomials, in addition to Theorem 12.2.9. Now we look at the second term of (12.4.31).

E [fa(Yt)]
2 ≤ E [fa(Xt)]

2 +
∣∣∣E [fa(Yt)]

2 −E [fa(Xt)]
2
∣∣∣ (12.4.34)

≤ E [fa(Xt)]
2 + |(E [fa(Yt)]−E [fa(Xt)]) (E [fa(Yt)] + E [fa(Xt)])| (12.4.35)

≤ C2
1 (d, α) (n logn)d + C2(d, α, τ) (n logn)(d−1)/2 (|2E [fa(Xt)]|+ |E [fa(Yt)]−E [fa(Xt)]|)

(12.4.36)

≤ C4(d, α, τ) (n logn)(2d−1)/2 , (12.4.37)

where again we employ Theorem 12.2.9 and Theorem 12.4.4 for degree d polynomials. Combining

(12.4.33) and (12.4.37), we get the desired bound.

12.4.1 Going Beyond Ising Models

We presented results for accurate estimation of polynomial functions over the Ising model. How-

ever, the results can be extended to hold for more general graphical models satisfying Dobrushin’s

condition. A main ingredient here was concentration of measure. If the class of functions we look

at has dth-order bounded differences in expectation, then we indeed get concentration of measure

for these functions (Theorem 1.2 of [81]). This combined with the techniques in our work would

allow similar gains in accurate estimation of such functions on general graphical models.

12.5 Experiments

We show the results of experiments run on a machine with four 10-core Intel Xeon E7-4850 CPUs

to demonstrate the practical validity of our theory. In our experiments, we focused on two Ising

models—Curie-Weiss and the Grid. The Curie-Weiss CW (n, α) is the Ising model corresponding

to the complete graph on n vertices with edges of weight β = α
n−1 . The Grid(k2, α) model is the

Ising model corresponding to the k-by-k grid with the left connected to the right and top connected

to the bottom to form a torus—a four-regular graph; the edge weights are α
4 . The total influence of

each of these models is at most α, so we chose α = 0.5 to ensure Dobrushin’s condition. To generate

samples, we start at a uniformly random configuration and run Markov chains for T = 10n log2(n)

steps to ensure mixing.

In our first experiment (Figure 12.5.1) we validate the modeling assumption that the average

delay of a read τ is a constant. Computing the exact delays in a real run of the HOGWILD! is not

319

possible, but we approximate the delays by making processes log read and write operations to a lock-

free queue as they execute the HOGWILD!-updates. We present two plots of the average delay of

a read in a HOGWILD! run of the CW (n, 0.5) Markov chain with respect to n. Four asynchronous

processors were used to generate the first plot, while twenty were used for the second. We notice

that the average delay depends on the number of asynchronous processes, but is constant with

respect to n as assumed in our model.

Figure 12.5.1: Average delay of reads for CW (n, 0.5) model. Four asynchronous processors were
used on the left, while twenty were used on the right.

Next, we plot (in Figure 12.5.2) the relationship between the number of asynchronous processors

used in a HOGWILD! execution and the delay parameter τ . For this plot, we estimated τ by the

average empirical delay over HOGWILD! runs of CW (n, 0.5) models, with n ranging from 100 to

1000 in increments of one hundred. The plot shows a linear relationship, and suggests that the

delay per additional processor is approximately 0.4 steps.

The primary purpose of our work is to demonstrate that polynomial statistics computed from

samples of a HOGWILD! run of Gibbs Sampling will approximate those computed from a sequential

run. Our third experiment demonstrates exactly this fact. We plot (in Figure 12.5.3 on the left)

the empirical expectations of the complete bilinear function f(X1, . . . , Xn) =
∑

i ̸=j XiXj as we vary

the number of nodes n in a Curie-Weiss model graph. Each red point is the empirical mean of

the function f computed over 5000 samples from the HOGWILD! Markov chain corresponding to

CW (n, 0.5), and each blue point is the empirical mean produced from 5000 sequential runs of the

same chain. Our theory (Theorem 12.4.3) predicts that the bias, the vertical difference in height

between red and blue points, at any given value of n will be on the order of the standard deviation

divided by
√
n (standard deviation is Θ(n) and bias is O(

√
n)). We plot error bars of this order,

and find that the HOGWILD! means fall inside the error bars, thus corroborating our theory. We

320

Figure 12.5.2: Average delay of reads for CW (n, 0.5) model as the number of processors used varies.

show that theory and practice coincide even for sparse graphs, by making the same plot for the

Grid(n, 0.5) model on the right of the same figure.

Figure 12.5.3: Means (with appropriately scaled error bars) of the complete bilinear function com-
puted over 5000 sequential and hogwild runs of CW (n, 0.5) (left) and Grid(n, 0.5) (right).

321

Part VI

Conclusion

322

Chapter 13

Summary

In this thesis, I presented multiprocess algorithms for a range of problems spanning concurrency,

data structures, parallel algorithms and machine learning. Throughout the process, I emphasized

the themes of simplicity, speed, scalability, and reliability.

In Part II, we saw how the process of lock design started out with simplifying the queue lock

to its core. This effort, presented in Chapter 4 resulted in the short, eight-line JJJ Lock algorithm,

which is a most efficient lock in each of the CC and DSM models, unifies the node-switching and

node-toggling methods, and supports the union of all desirable properties we know for queue locks,

such as first-come-first-served and bounded exit. In particular, the JJJ Lock is retains all the

key structures in past queue locks, while remaining minimalist. Thus, it set the foundation for the

design of our abortable and recoverable locks. Our abortable locks are the most efficient ones known

to date, with just constant remote memory reference (RMR) complexity per passage. They are also

the first to achieve the coveted, fast abort property, of worst-case constant RMRs to abort. The

simplicity of our queue lock structure was also key to our provably optimally efficient recoverable

mutual exclusion locks.

Along with achieving efficiency, i.e. speed and scalability, our locks come with rigorous proofs of

their correctness and other properties. Notably, we give induction proofs of the key invariants of all

of our lock algorithms. While these invariant proofs may seem tedious at times, their importance

is particularly well illustrated in the case of recoverable mutual exclusion, where we showed that a

previous state-of-the-art algorithm, thought to be correct, actually has subtle bugs and races that

sometimes result in starvation and, worse yet, deadlock. Particularly novel in our proof methods,

is our proof of starvation freedom of our abortable mutex. To the best of our knowledge, we are

323

the first to introduce the distance function method for proving progress occurs in all fair runs of

a mutual exclusion lock. The efficiency analysis for the same algorithm is somewhat novel in its

use of a multiprocess potential function, a technique we also used in our union-find data structure

efficiency analysis.

Moving past locks, in Part III, we investigated lock-free data structures, both from a perspective

of efficient algorithms and from a perspective of fundamental lower bounds. Our main algorith-

mic results in this part were a family of fast algorithms for concurrent union-find, fast arrays,

fast generalized arrays, and fixed size hash tables. In our analysis, we revealed the importance

of accounting for possible randomness leaks when trying to prove any efficiency claims about a

randomized concurrent algorithms. Randomness leaks, which result when the adversary is able to

discover more about the algorithm’s random bits through clever scheduling, are a key difficulty

in getting good efficiency results in the asynchronous model. They have also been significantly

overlooked in some previous analyses, including the analysis of some hash tables. The highlight

of our algorithmic results, is our efficient wait-free concurrent union-find object, which has work

complexity O(α(n) + log p) even against the adaptive scheduling adversary. This algorithm is the

first provably scalable algorithm for union-find, and indeed any common data structure we are

aware of (other than Ellen and Woelfel’s fetch-and-increment construction).

For arrays, we showed the surprising result that we can present the interface of initializing an

entire m-length array in just O(1) time, while still performing read, write, and indeed every other

primitive operation supported by hardware (such as CAS, FAS, etc.) in just O(1) time each. This

result fascinated me at first, since it seems to counteract the powerful super-linear lower bounds

that researchers have shown for the write-all problem—essentially the problem of initializing an

array of length m to all zeros. In our work, we showed how to use these fast arrays to develop

a provably efficient fixed-length hash table. I believe that this result maybe a hotbed of future

algorithmic development, since arrays are so fundamental, and the problem of initializing arrays in

the face of concurrency is an even more difficult task than initializing sequentially.

On the lower bounds side of our work, we showed that the tight upper bounds we prove for our

family of union-find data structures are actually optimal among the class of symmetric data struc-

tures for union-find and that a less power Ω(log log p) lower bound holds on all data structures for

union-find. This leaves a small gap, that a potentially faster non-symmetric algorithm or a stronger

lower bound must eventually fill. Our conjecture is that the lower bound is the one that can be

improved, and that the union-find algorithm is likely optimal. We also showed that many common

324

data structures such as stacks, queues, and priority queues cannot have concurrent linearizable

implementations without a Ω(log p) amortized work overhead of concurrency per operation. These

lower bounds lead us to argue that the goal of future concurrent data structures should be to derive

algorithms whose work complexities scale polylogarithmically in data set size n and process-count

p.

Part IV contains our most significant work focused on improving the reliablility of multiprocessor

algorithms. In particular, we identify that linearizability has been the gold standard for multipro-

cessor data structure correctness for decades, but proofs of linearizability continue to be hard to

pharse, hard to verify, and thus many times lead to unproved or even wrong published algorithms.

We mitigate this state of affairs by introducing a simple, universal, sound, and complete method

for enabling machine-verified proofs of the linearizability, and even the strong linearizability, of any

implementation (that is indeed linearizable or strong linearizable). As a crowning result, we prove

the linearizability and strong linearizability of our union-find algorithm using our method, and have

made the proof publicly available on GitHub to be independently verified by whomsoever wishes

to do so. My collaborators and I have also designed publicly available machine-verified proofs of

several other data structures in related work. I certainly hope that more and more multiprocessor

algorithms will become provably reliable through this system of publicly available machine-verified

proofs of correctness.

Finally, in Part V, we turned to an efficiency problem that traditionally belonged solely to ma-

chine learning—sampling high dimensional probability distributions, which are supplied as graphi-

cal models. In this part, we introduced the stochastic scheduling model of asynchronous computing,

and under this model, whose validity we bolstered experimentally, we proved statistical guarantees

of an extremely simple, race-condition heavy, lock-free multiprocessor-algorithm. The powerful

results of this part, that show that HOGWILD! Gibbs Sampling can be pan-accurate, i.e., gener-

ate accurate statistics about functions of all variables of a graphical model, required an analysis

that mixes traditional asynchronous computing techniques with concepts from probability theory,

such as markov chains and filtering, and techniques from machine learning, such as Dobrushin’s

coefficient.

Along with its technical contributions, this thesis also pioneered a new direction in broadening

the participation in STEM across linguistic communities. by presenting, to my knowledge, the

first modern computer science research originally penned in Telugu, which as accompanied by an

abstract in Sanskrit—which is aimed to reach an even larger number of people.

325

Chapter 14

Future Directions

Any thesis of this length naturally opens the doors to hundreds of open directions. Rather than

make a hopeless attempt at listing all of these, I will put forth just a few future directions for

technical work.

• Fast and Scalable Wait-Free Linearizable Data Structures: The principle goal of this thesis

was to design, and aid in the design of, fast and scalable multiprocess algorithms. Design of

such efficient algorithms is propelled by the design of efficient wait-free data structures. The

lower bounds of Chapter 9 show that we simply cannot design linearizable stacks and queues

without a concurrency overhead of at least Ω(log p) per operation. I believe an important open

direction is designing scalable lock-free linearizable data-structures for fundamental problems

like stacks, queues, priority queues, and dictionaries. As I argued in this thesis, I believe

the goal should be to achieve algorithms whose work complexity is at most polylogarithmic

in both n, the number of items in the data structure, and p the total number of processes

that use the shared data structure. As we demonstrated with union-find, such algorithms

are likely to have far-reaching consequences in fast parallel algorithms for several problems

of interest.

• Closing the Complexity Gap for Union-Find: It is well known that the analysis of the sequen-

tial union-find data structure [198] and the lower bounds work on the sequential union-find

problem [64] were foundational in the fields of algorithmic analysis. I believe a deep probe into

the computational limits of concurrent union-find can give us a similar deep understanding.

I conjecture that the gap between our upper and lower bound will be resolved in favor of the

algorithm, i.e., a better lower bounding technique is what is left to be discovered. Thus, I

326

believe this is an open direction that is mainly of theoretical interest.

• Machine Verification Techniques: The machine-verifiable proof techniques that we introduced

in the work of Chapter 11 are, in my opinion, our biggest contribution towards reliability of

multiprocessor algorithms. I believe that many of the proofs we have seen in this thesis

apart from just the linearizability proofs—for instance, the proofs of correctness of the mutex

lock invariants—can be made machine-verifiable. Perhaps more significantly, I want to move

beyond simply focusing on correctness, but also focusing on efficiency. My future goal is to de-

velop techniques and generate machine-verified proofs of efficiency properties of multiprocess

algorithms—for instance, giving machine-verified proofs of results like the inverse-Ackermann

efficiency of our concurrent union-find object or the amortized constant RMR complexity of

our abortable locks.

Future directions towards broadening linguistic diversity in STEM

The productive grammar of Sanskrit [168] served as an incredibly powerful tool in deriving technical

vocabulary to make mathematical and scientific research exposition possible in Telugu. In fact, I

have found that deriving Sanskrit vocabulary for technical terms in scientific exposition comes with

at least three significant, positive consequences:

1. Sanskrit is the progenitor of the technical vocabulary in innumerable languages across the

world, including but not limited to most Indian and South Asian languages. Thus, terms

derived in Sanskrit’s grammar serve as a unifying vocabulary for billions of people. In the

same way that an English speaker can largely understand a mathematical work in French

without a deep background in the French language due to the etymological similarity between,

for instance, the French intégrale and the English integral, speakers of Sanskrit-descendant

languages can communicate across language barriers with shared Sanskrit vocabulary.

2. Sanskrit has an ancient yet still thriving tradition of formal grammar, expressed in an algo-

rithmic form in Pānini’s celebrated Ashtādhyāyī [168]. This grammar offers a unique oppor-

tunity for building a long lasting vocabulary, where the semantic meaning of technical words

can drive their morphological form, thereby embedding these words in a framework that has

lasted over two millennia. (On a personal note: as an algorithmist, I also find the aesthetic

beauty of an algorithmic treatise driving not just the content, but also the form of scientific

327

terminology appealing.)

3. New scientific and technical vocabulary is currently the principal barrier to enabling the writ-

ing of scientific texts in many languages. Thus, developing Sanskrit vocabulary ameliorates

this principal barrier for many language communities simultaneously.

Proposal: I thus propose the Samskrtam Technical Lexicon Project. As I envision it, the project

should aim to use Pānini’s productive grammar of Sanskrit to create a dictionary of modern techni-

cal terms along with their etymological derivations (व्युत्पित्त, vyutpatti) from Sanskrit roots (dhātu),

prefixes (upasarga), suffixes (pratyaya), and compounds (samāsa), and a description of how to use

these words in the many languages—including for instance Telugu—that derive vocabulary from

Sanskrit. To achieve the best possible outcomes, I propose forging a close collaboration between

scholars of STEM fields and scholars of Sanskrit and other vernaculars to implement this vision.

A final note I am glad to have worked on the TeluguTeX template, built with XeLaTeX, to

overcome the lack of software to easily typeset scientific text in Telugu. Telugu and various other

languages continue to suffer from technological under-availability in several areas. To address this

concern, I support making more rapid progress on existing technological initiatives that empower

linguistic diversity, such as Unicode [18], XeLaTeX [128], and Internet Internationalization [99].

328

Bibliography

[1] Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. “Making Objects Writable.” In:

Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing. Associa-

tion for Computing Machinery, 2014. doi: 10.1145/2611462.2611483.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[3] Dan Alistarh, Alexander Fedorov, and Nikita Koval. “In Search of the Fastest Concurrent

Union-Find Algorithm.” In: 23rd International Conference on Principles of Distributed Sys-

tems, OPODIS 2019. 2019. doi: 10.4230/LIPIcs.OPODIS.2019.15.

[4] Dan Alistarh et al. “The SprayList: A Scalable Relaxed Priority Queue.” In: SIGPLAN Not.

(2015). doi: 10.1145/2858788.2688523.

[5] Dan Alistarh et al. “The SprayList: A Scalable Relaxed Priority Queue.” In: Proceedings of

the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

2015. doi: 10.1145/2688500.2688523.

[6] Josh Alman and Virginia Vassilevska Williams. “A Refined Laser Method and Faster Ma-

trix Multiplication.” In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms

(SODA). 2021. doi: 10.1137/1.9781611976465.32.

[7] Adam Alon and Adam Morrison. “Deterministic Abortable Mutual Exclusion with Sublog-

arithmic Adaptive RMR Complexity.” In: Proceedings of the 37th ACM Symposium on

Principles of Distributed Computing. 2018.

[8] Amazon EC2 High Memory Instances. https://aws.amazon.com/ec2/instance-types/

high-memory/. Accessed: November 1, 2022.

329

https://doi.org/10.1145/2611462.2611483
https://doi.org/10.4230/LIPIcs.OPODIS.2019.15
https://doi.org/10.1145/2858788.2688523
https://doi.org/10.1145/2688500.2688523
https://doi.org/10.1137/1.9781611976465.32
https://aws.amazon.com/ec2/instance-types/high-memory/
https://aws.amazon.com/ec2/instance-types/high-memory/

[9] Daphna Amit et al. “Comparison Under Abstraction for Verifying Linearizability.” In: Com-

puter Aided Verification CAV 2007. Springer, 2007. doi: 10.1007/978- 3- 540- 73368-

3_49.

[10] James H. Anderson and Yong-Jik Kim. “Local-spin Mutual Exclusion Using Fetch-and-\phi

Primitives.” In: International Conference on Distributed Computing Systems (ICDCS) 2003).

2003. doi: 10.1109/ICDCS.2003.1203505.

[11] Richard J. Anderson and Heather Woll. “Algorithms for the Certified Write-All Problem.”

In: SIAM J. Comput. 26.5 (1997), pp. 1277–1283.

[12] Richard J. Anderson and Heather Woll. “Wait-free Parallel Algorithms for the Union-Find

Problem.” In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing.

1991. doi: 10.1145/103418.103458.

[13] T. E. Anderson. “The performance of spin lock alternatives for shared-money multiproces-

sors.” In: IEEE Transactions on Parallel and Distributed Systems (1990). doi: 10.1109/71.

80120.

[14] Anish Athalye et al. “Synthesizing Robust Adversarial Examples.” In: Proceedings of the

International Conference on Machine Learning (ICML). PMLR, 2018.

[15] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. “Nesting-Safe Recoverable Lineariz-

ability: Modular Constructions for Non-Volatile Memory.” In: PODC. ACM, 2018. doi:

10.1145/3212734.3212753.

[16] Hagit Attiya and Constantin Enea. “Putting Strong Linearizability in Context: Preserving

Hyperproperties in Programsthat Use Concurrent Objects.” In: International Symposium

on Distributed Computing, DISC 2019. Ed. by Jukka Suomela. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.DISC.2019.2.

[17] Hagit Attiya, Danny Hendler, and Philipp Woelfel. “Tight RMR Lower Bounds for Mutual

Exclusion and Other Problems.” In: Proc. of the Fortieth ACM Symposium on Theory of

Computing. 2008.

[18] Joseph D Becker. Unicode 88. 1988.

[19] Jon Louis Bentley. Programming pearls. Addison-Wesley, 1986.

[20] Josh Berdine et al. “Thread Quantification for Concurrent Shape Analysis.” In: Computer

Aided Verification, (CAV). Springer, 2008. doi: 10.1007/978-3-540-70545-1_37.

330

https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1109/ICDCS.2003.1203505
https://doi.org/10.1145/103418.103458
https://doi.org/10.1109/71.80120
https://doi.org/10.1109/71.80120
https://doi.org/10.1145/3212734.3212753
https://doi.org/10.4230/LIPIcs.DISC.2019.2
https://doi.org/10.1007/978-3-540-70545-1_37

[21] Ananya Bhattacharya. This is America’s fastest growing language. Clue: It might not be

what you expect. 2018. url: https://www.weforum.org/agenda/2018/10/america-s-

fastest-growing-foreign-language-is-from-south-india.

[22] Vincent Bloemen. “On-The-Fly Parallel Decomposition of Strongly Connected Components.”

MA thesis. University of Twente, 2015.

[23] Vincent Bloemen. “Strong Connectivity and Shortest Paths for Checking Models.” PhD

thesis. University of Twente, 2019. doi: 10.3990/1.9789036547864.

[24] Vincent Bloemen, Alfons Laarman, and Jaco van de Pol. “Multi-Core on-the-Fly SCC De-

composition.” In: Association for Computing Machinery, 2016. doi: 10.1145/3016078.

2851161.

[25] Norbert Blum. “On the single-operation worst-case time complexity of the disjoint set union

problem.” In: Annual Symposium on Theoretical Aspects of Computer Science (STACS).

1985.

[26] Robert D. Blumofe et al. “Cilk: An Efficient Multithreaded Runtime System.” In: Proceedings

of the Fifth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming

(PPOPP). 1995. doi: 10.1145/209936.209958.

[27] Enric Boix-Adserà, Benjamin L. Edelman, and Siddhartha Jayanti. “The Multiplayer Colonel

Blotto Game.” In: EC ’20: The 21st ACM Conference on Economics and Computation. 2020.

doi: 10.1145/3391403.3399555.

[28] Enric Boix-Adserà, Benjamin L. Edelman, and Siddhartha Jayanti. “The Multiplayer Colonel

Blotto Game.” In: Games and Economic Behavior (2021). doi: 10.1016/j.geb.2021.05.

002.

[29] Broadening Participation in STEM. https://beta.nsf.gov/funding/initiatives/broadening-

participation. 2022.

[30] Sebastian Burckhardt et al. “Line-up: a complete and automatic linearizability checker.”

In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI. ACM, 2010. doi: 10.1145/1806596.1806634.

[31] Jonathan F. Buss et al. “Parallel Algorithms with Processor Failures and Delays.” In: Journal

of Algorithms (1996).

331

https://www.weforum.org/agenda/2018/10/america-s-fastest-growing-foreign-language-is-from-south-india
https://www.weforum.org/agenda/2018/10/america-s-fastest-growing-foreign-language-is-from-south-india
https://doi.org/10.3990/1.9789036547864
https://doi.org/10.1145/3016078.2851161
https://doi.org/10.1145/3016078.2851161
https://doi.org/10.1145/209936.209958
https://doi.org/10.1145/3391403.3399555
https://doi.org/10.1016/j.geb.2021.05.002
https://doi.org/10.1016/j.geb.2021.05.002
https://doi.org/10.1145/1806596.1806634

[32] David Yu Cheng Chan and Philipp Woelfel. “Tight Lower Bound for the RMR Complexity

of Recoverable Mutual Exclusion.” In: (2021). doi: 10.1145/3465084.3467938.

[33] Li Chen et al. “Maximum Flow and Minimum-Cost Flow in Almost-Linear Time.” In: (2022).

doi: 10.48550/ARXIV.2203.00671.

[34] Benny Chor, Amos Israeli, and Ming Li. “On Processor Coordination Using Asynchronous

Hardware.” In: Proceedings of the ACM Symposium on Principles of Distributed Computing

(PODC). Association for Computing Machinery, 1987. doi: 10.1145/41840.41848.

[35] Fan Chung and Linyuan Lu. “Concentration Inequalities and Martingale Inequalities: A

Survey.” In: Internet Mathematics Vol. 3, No. 1: 79-127. Internet Mathematics, 2005. url:

http://people.math.sc.edu/lu/papers/concen.pdf.

[36] Richard Cole and Uzi Vishkin. “Deterministic Coin Tossing with Applications to Optimal

Parallel List Ranking.” In: Inf. Control (1986). doi: 10.1016/S0019-9958(86)80023-7.

[37] Robert Colvin and Lindsay Groves. “Formal Verification of an Array-Based Nonblocking

Queue.” In: 10th International Conference on Engineering of Complex Computer Systems

(ICECCS 2005), 16-20 June 2005, Shanghai, China. IEEE Computer Society, 2005. doi:

10.1109/ICECCS.2005.49.

[38] Robert Colvin et al. “Formal Verification of a Lazy Concurrent List-Based Set Algorithm.”

In: Computer Aided Verification, 18th International Conference, CAV. Springer, 2006. doi:

10.1007/11817963_44.

[39] D. Coppersmith and S. Winograd. “On the asymptotic complexity of matrix multiplication.”

In: Annual Symposium on Foundations of Computer Science (SFCS). 1981. doi: 10.1109/

SFCS.1981.27.

[40] Thomas H. Cormen et al. Introduction to Algorithms, Third Edition. 3rd. The MIT Press,

2009. isbn: 0262033844.

[41] Travis S. Craig. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap. Tech.

rep. TR-93-02-02. Department of Computer Science, University of Washington, 1993.

[42] Robert Cypher. “The Communication Requirements of Mutual Exclusion.” In: Proceedings

of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures. 1995.

doi: 10.1145/215399.215434.

332

https://doi.org/10.1145/3465084.3467938
https://doi.org/10.48550/ARXIV.2203.00671
https://doi.org/10.1145/41840.41848
http://people.math.sc.edu/lu/papers/concen.pdf
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1109/ICECCS.2005.49
https://doi.org/10.1007/11817963_44
https://doi.org/10.1109/SFCS.1981.27
https://doi.org/10.1109/SFCS.1981.27
https://doi.org/10.1145/215399.215434

[43] Yuval Dagan et al. “Learning from Weakly Dependent Data under Dobrushin’s Condition.”

In: Conference on Learning Theory, COLT 2019. 2019.

[44] Constantinos Daskalakis, Nishanth Dikkala, and Siddhartha Jayanti. “HOGWILD!-Gibbs

can be PanAccurate.” In: Advances in Neural Information Processing Systems 31: Annual

Conference on Neural Information Processing Systems 2018, NeurIPS 2018. 2018.

[45] Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. “Concentration of Mul-

tilinear Functions of the Ising Model with Applications to Network Data.” In: Advances in

Neural Information Processing Systems 30. NIPS ’17. Curran Associates, Inc., 2017.

[46] Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. “Testing Ising Models.”

In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

SIAM, 2018.

[47] Constantinos Daskalakis, Elchanan Mossel, and Sébastien Roch. “Evolutionary Trees and

the Ising Model on the Bethe Lattice: A Proof of Steel’s Conjecture.” In: Probability Theory

and Related Fields (2011).

[48] Christopher De Sa, Kunle Olukotun, and Christopher Ré. “Ensuring rapid mixing and low

bias for asynchronous Gibbs sampling.” In: JMLR workshop and conference proceedings. NIH

Public Access. 2016.

[49] Christopher M De Sa et al. “Taming the wild: A unified analysis of hogwild-style algorithms.”

In: Advances in neural information processing systems. 2015.

[50] R.H. Dennard et al. “Design of ion-implanted MOSFET’s with very small physical dimen-

sions.” In: Solid-State Circuits, IEEE Journal of (1974). doi: http://dx.doi.org/10.

1023/A:1008373903657.

[51] Laxman Dhulipala, Changwan Hong, and Julian Shun. “ConnectIt: A Framework for Static

and Incremental Parallel Graph Connectivity Algorithms.” In: Proc. VLDB Endow. (2020).

doi: 10.14778/3436905.3436923.

[52] E. W. Dijkstra. “Solution of a Problem in Concurrent Programming Control.” In: Commu-

nications of the ACM (1965). doi: 10.1145/365559.365617.

[53] Simon Doherty. “Modelling and verifying non-blocking algorithms that use dynamically

allocated memory.” In: Victoria University of Wellington. 2003.

333

https://doi.org/http://dx.doi.org/10.1023/A:1008373903657
https://doi.org/http://dx.doi.org/10.1023/A:1008373903657
https://doi.org/10.14778/3436905.3436923
https://doi.org/10.1145/365559.365617

[54] Simon Doherty et al. “Formal Verification of a Practical Lock-Free Queue Algorithm.” In:

Formal Techniques for Networked and Distributed Systems - (FORTE). Springer, 2004. doi:

10.1007/978-3-540-30232-2_7.

[55] Brijesh Dongol and John Derrick. “Verifying linearizability: A comparative survey.” In: CoRR

abs/1410.6268 (2014). arXiv: 1410.6268. url: http://arxiv.org/abs/1410.6268.

[56] R. Dvir and G. Taubenfeld. “Mutual exclusion algorithms with constant RMR complexity

and wait-free exit code.” In: International Conference on Principles of Distributed Sys-

tems (OPODIS). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi: 10.4230/

LIPIcs.OPODIS.2017.17.

[57] Faith Ellen and Philipp Woelfel. “An Optimal Implementation of Fetch-and-Increment.” In:

Proceedings of the International Symposium on Distributed Computing (DISC). 2013. doi:

10.1007/978-3-642-41527-2_20.

[58] Glenn Ellison. “Learning, Local Interaction, and Coordination.” In: Econometrica (1993).

[59] Urban Engberg, Peter Grønning, and Leslie Lamport. “Mechanical Verification of Concur-

rent Systems with TLA.” In: Proceedings of the International Workshop on Larch. Springer,

1992.

[60] Panagiota Fatourou, Nikolaos D. Kallimanis, and Thomas Ropars. “An Efficient Wait-Free

Resizable Hash Table.” In: Proceedings of the on Symposium on Parallelism in Algorithms

and Architectures (SPAA). Association for Computing Machinery, 2018. doi: 10.1145/

3210377.3210408.

[61] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates Sunderland, 2004.

[62] Michael J Fischer. “Efficiency of equivalence algorithms.” In: Complexity of Computer Com-

putations. Springer, 1972.

[63] Wojciech Fraczak et al. “Finding dominators via disjoint set union.” In: Journal of Discrete

Algorithms (2013).

[64] Michael L. Fredman and Michael E. Saks. “The Cell Probe Complexity of Dynamic Data

Structures.” In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing

(STOC). 1989. doi: 10.1145/73007.73040.

[65] Kimmo Fredriksson and Pekka Kilpeläinen. “Practically efficient array initialization.” In:

Softw. Pract. Exp. (2016).

334

https://doi.org/10.1007/978-3-540-30232-2_7
https://arxiv.org/abs/1410.6268
http://arxiv.org/abs/1410.6268
https://doi.org/10.4230/LIPIcs.OPODIS.2017.17
https://doi.org/10.4230/LIPIcs.OPODIS.2017.17
https://doi.org/10.1007/978-3-642-41527-2_20
https://doi.org/10.1145/3210377.3210408
https://doi.org/10.1145/3210377.3210408
https://doi.org/10.1145/73007.73040

[66] Joel Friedman. “A proof of alon’s second eigenvalue conjecture.” In: the Proceedings of the

annual ACM symposium on Theory of computing (STOC). 2003.

[67] Bernard A Galler and Michael J Fisher. “An improved equivalence algorithm.” In: Commu-

nications of the ACM (1964).

[68] Hui Gao, Jan Friso Groote, and Wim H. Hesselink. “Almost Wait-Free Resizable Hashtable.”

In: International Parallel and Distributed Processing Symposium. 2004.

[69] Hui Gao, Jan Friso Groote, and Wim H. Hesselink. “Lock-free dynamic hash tables with

open addressing.” In: Distributed Computing (2005). doi: 10.1007/s00446-004-0115-2.

[70] Stuart Geman and Christine Graffigne. “Markov Random Field Image Models and their

Applications to Computer Vision.” In: Proceedings of the International Congress of Mathe-

maticians. American Mathematical Society, 1986.

[71] Reza Gheissari, Eyal Lubetzky, and Yuval Peres. “Concentration inequalities for polynomials

of contracting Ising models.” In: arXiv preprint arXiv:1706.00121 (2017).

[72] George Giakkoupis and Philipp Woelfel. “Randomized Abortable Mutual Exclusion with

Constant Amortized RMR Complexity on the CC Model.” In: Proceedings of the ACM

Symposium on Principles of Distributed Computing. 2017. doi: 10.1145/3087801.3087837.

[73] P. B. Gibbons. “A More Practical PRAM Model.” In: Proceedings of the First Annual ACM

Symposium on Parallel Algorithms and Architectures. 1989. doi: 10.1145/72935.72953.

[74] Phillip B. Gibbons and Ephraim Korach. “Testing Shared Memories.” In: SIAM Journal on

Computing (1997). doi: 10.1137/S0097539794279614.

[75] Ashish Goel et al. “Disjoint Set Union with Randomized Linking.” In: Proceedings of the

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2014. doi: 10.1137/1.

9781611973402.75.

[76] Wojciech Golab and Danny Hendler. “Recoverable Mutual Exclusion in Sub-logarithmic

Time.” In: Proceedings of the ACM Symposium on Principles of Distributed Computing.

2017.

[77] Wojciech Golab and Danny Hendler. “Recoverable Mutual Exclusion Under System-Wide

Failures.” In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Com-

puting. ACM, 2018.

335

https://doi.org/10.1007/s00446-004-0115-2
https://doi.org/10.1145/3087801.3087837
https://doi.org/10.1145/72935.72953
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1137/1.9781611973402.75
https://doi.org/10.1137/1.9781611973402.75

[78] Wojciech Golab and Aditya Ramaraju. “Recoverable Mutual Exclusion: [Extended Ab-

stract].” In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Com-

puting. 2016.

[79] Wojciech Golab et al. “Constant-RMR Implementations of CAS and Other Synchronization

Primitives Using Read and Write Operations.” In: Proceedings of the Twenty-sixth Annual

ACM Symposium on Principles of Distributed Computing. 2007. doi: 10.1145/1281100.

1281105.

[80] Wojciech M. Golab, Lisa Higham, and Philipp Woelfel. “Linearizable implementations do

not suffice for randomized distributed computation.” In: Proceedings of the ACM Symposium

on Theory of Computing (STOC). ACM, 2011. doi: 10.1145/1993636.1993687.

[81] Friedrich Götze, Holger Sambale, and Arthur Sinulis. “Higher order concentration for func-

tions of weakly dependent random variables.” In: arXiv preprint arXiv:1801.06348 (2018).

[82] Ministry of Human Resource Development Government of India. “National Education Policy

2020.” In: (2020).

[83] G. Graunke and S. Thakkar. “Synchronization algorithms for shared-memory multiproces-

sors.” In: IEEE Computers (1990). doi: 10.1109/2.55501.

[84] Jan Groote, Wim Hesselink, and Sjouke Mauw. “An Algorithm for the Asynchronous Write-

All problem based on process collision.” In: Distributed Computing 14 (Apr. 2001), pp. 75–

81.

[85] Torben Hagerup and Frank Kammer. “On-the-Fly Array Initialization in Less Space.” In:

International Symposium on Algorithms and Computation. 2017.

[86] Shay Halperin and Uri Zwick. “Optimal Randomized EREW PRAM Algorithms for Finding

Spanning Forests.” In: Journal of Algorithms (2001). doi: https://doi.org/10.1006/jagm.

2000.1146.

[87] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. “A Practical Multi-word Compare-and-

Swap Operation.” In: Proceedings of the 16th International Conference on Distributed Com-

puting. Springer-Verlag, 2002.

[88] Maurice Herlihy. “The Multicore Revolution.” In: FSTTCS 2007: Foundations of Software

Technology and Theoretical Computer Science. 2007.

[89] Maurice Herlihy. “Wait-free Synchronization.” In: ACM Trans. Program. Lang. Syst. (1991).

336

https://doi.org/10.1145/1281100.1281105
https://doi.org/10.1145/1281100.1281105
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1109/2.55501
https://doi.org/https://doi.org/10.1006/jagm.2000.1146
https://doi.org/https://doi.org/10.1006/jagm.2000.1146

[90] Maurice Herlihy and J. Eliot B. Moss. “Transactional Memory: Architectural Support for

Lock-free Data Structures.” In: SIGARCH Comput. Archit. News (1993). doi: 10.1145/

173682.165164.

[91] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2008. isbn: 0123705916.

[92] Maurice Herlihy and Jeannette M. Wing. “Axioms for Concurrent Objects.” In: Conference

Record of the ACM Symposium on Principles of Programming Languages (POPL). ACM

Press, 1987. doi: 10.1145/41625.41627.

[93] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: A Correctness Condition for

Concurrent Objects.” In: ACM Trans. Program. Lang. Syst. (1990).

[94] Lizzie Hernandez. “Formal Verification of a Snapshot Algorithm.” Department of Computer

Science: Dartmouth College, May 2023.

[95] Changwan Hong, Laxman Dhulipala, and Julian Shun. “Exploring the Design Space of Static

and Incremental Graph Connectivity Algorithms on GPUs.” In: Proceedings of the ACM

International Conference on Parallel Architectures and Compilation Techniques (2020). doi:

10.1145/3410463.3414657.

[96] Shlomo Hoory, Nathan Linial, and Avi Wigderson. “Expander graphs and their applications.”

In: Bulletin of the American Mathematical Society (2006).

[97] J. E. Hopcroft and J. D. Ullman. “Set Merging Algorithms.” In: SIAM Journal on Computing

(1973). doi: 10.1137/0202024.

[98] Intel. Intel 64 and IA-32 Architectures Software Developer Manuals. 2020. url: https:

//software.intel.com/content/www/us/en/develop/articles/intel-sdm.html.

[99] Internationalized Domain Names for Applications (IDNA). 2003.

[100] Masakazu Ishihata, Shan Gao, and Shin-ichi Minato. “Fast Message Passing Algorithm Using

ZDD-Based Local Structure Compilation.” In: Proceedings of the Workshop on Advanced

Methodologies for Bayesian Networks. 2017.

[101] Joseph F. JaJa. “PRAM (Parallel Random Access Machines).” In: Encyclopedia of Parallel

Computing. 2011. doi: 10.1007/978-0-387-09766-4_23.

337

https://doi.org/10.1145/173682.165164
https://doi.org/10.1145/173682.165164
https://doi.org/10.1145/41625.41627
https://doi.org/10.1145/3410463.3414657
https://doi.org/10.1137/0202024
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://doi.org/10.1007/978-0-387-09766-4_23

[102] Prasad Jayanti. “A Complete and Constant Time Wait-Free Implementation of CAS from

LL/SC and Vice Versa.” In: International Symposium on Distributed Computing (DISC).

1998. doi: 10.1007/BFb0056485.

[103] Prasad Jayanti. “A Time Complexity Lower Bound for Randomized Implementations of

Some Shared Objects.” In: Proceedings of the Annual ACM Symposium on Principles of

Distributed Computing (PODC). ACM, 1998. doi: 10.1145/277697.277735.

[104] Prasad Jayanti. “Adaptive and Efficient Abortable Mutual Exclusion.” In: Proceedings of the

Annual Symposium on Principles of Distributed Computing (PODC). 2003. doi: 10.1145/

872035.872079.

[105] Prasad Jayanti. “An optimal multi-writer snapshot algorithm.” In: Proceedings of the Annual

ACM Symposium on Theory of Computing (STOC). ACM, 2005. doi: 10.1145/1060590.

1060697.

[106] Prasad Jayanti. “F-arrays: Implementation and Applications.” In: Proceedings of the Annual

Symposium on Principles of Distributed Computing (PODC). 2002. doi: 10.1145/571825.

571875.

[107] Prasad Jayanti and Siddhartha Jayanti. “Deterministic Constant-Amortized-RMRAbortable

Mutex for CC and DSM.” In: 2021. doi: 10.1145/3490559.

[108] Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. “Towards an Ideal Queue Lock.”

In: International Conference on Distributed Computing and Networking (ICDCN). 2020. doi:

10.1145/3369740.3369784.

[109] Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. “Optimal Recoverable Mutual Exclu-

sion using only FASAS.” In: The 6th Edition of The International Conference on Networked

Systems. Springer, Cham, 2018.

[110] Prasad Jayanti, Siddhartha V. Jayanti, and Anup Joshi. “A Recoverable Mutex Algorithm

with Sub-logarithmic RMR on Both CC and DSM.” In: Proceedings of the ACM Symposium

on Principles of Distributed Computing (PODC). 2019. doi: 10.1145/3293611.3331634.

[111] Prasad Jayanti, Siddhartha V. Jayanti, and Anup Joshi. “Optimal Recoverable Mutual Ex-

clusion Using only FASAS.” In: International Conference on Networked Systems (NETYS).

2018. doi: 10.1007/978-3-030-05529-5_13.

338

https://doi.org/10.1007/BFb0056485
https://doi.org/10.1145/277697.277735
https://doi.org/10.1145/872035.872079
https://doi.org/10.1145/872035.872079
https://doi.org/10.1145/1060590.1060697
https://doi.org/10.1145/1060590.1060697
https://doi.org/10.1145/571825.571875
https://doi.org/10.1145/571825.571875
https://doi.org/10.1145/3490559
https://doi.org/10.1145/3369740.3369784
https://doi.org/10.1145/3293611.3331634
https://doi.org/10.1007/978-3-030-05529-5_13

[112] Prasad Jayanti and Anup Joshi. “Recoverable FCFS mutual exclusion with wait-free recov-

ery.” In: International Symposium on Distributed Computing (DISC). 2017.

[113] Prasad V. Jayanti and Siddhartha Jayanti. “Constant Amortized RMR Abortable Mutex

for CC and DSM.” In: Proceedings of the 2019 ACM Symposium on Principles of Distributed

Computing. 2019. doi: 10.1145/3293611.3331592.

[114] Siddhartha Jayanti. “Nash Equilibria of The Multiplayer Colonel Blotto Game on Arbitrary

Measure Spaces.” In: CoRR (2021).

[115] Siddhartha Jayanti, Srinivasan Raghuraman, and Nikhil Vyas. “Efficient Constructions for

Almost-Everywhere Secure Computation.” In: Advances in Cryptology - EUROCRYPT 2020

- 39th Annual International Conference on the Theory and Applications of Cryptographic

Techniques. 2020. doi: 10.1007/978-3-030-45724-2_6.

[116] Siddhartha Jayanti and Julian Shun. “Fast Arrays: Atomic Arrays with Constant Time

Initialization.” In: 35th International Symposium on Distributed Computing, DISC 2021.

2021. doi: 10.4230/LIPIcs.DISC.2021.25.

[117] Siddhartha Jayanti, Robert E. Tarjan, and Enric Boix-Adserà. “Randomized Concurrent Set

Union and Generalized Wake-Up.” In: Proceedings of the ACM Symposium on Principles of

Distributed Computing (PODC). 2019. doi: 10.1145/3293611.3331593.

[118] Siddhartha V. Jayanti and Robert E. Tarjan. “A Randomized Concurrent Algorithm for

Disjoint Set Union.” In: Proceedings of the ACM Symposium on Principles of Distributed

Computing (PODC). ACM, 2016. doi: 10.1145/2933057.2933108.

[119] Siddhartha V. Jayanti and Robert E. Tarjan. “Concurrent disjoint set union.” In: Distributed

Computing (2021). doi: 10.1007/s00446-020-00388-x.

[120] Siddhartha Visveswara Jayanti. “Generalized Wake-Up: Amortized Shared Memory Lower

Bounds for Linearizable Data Structures.” In: (). url: https://arxiv.org/abs/2207.

07561.

[121] Donald B Johnson and Panagiotis Metaxas. “Connected Components inO (log3/2 n) Parallel

Time for the CREW PRAM.” In: journal of computer and system sciences (1997).

[122] Matthew Johnson, James Saunderson, and Alan Willsky. “Analyzing hogwild parallel gaus-

sian gibbs sampling.” In: Advances in Neural Information Processing Systems. 2013.

[123] Mike Jones. What really happened on Mars Rover Pathfinder. cs.cornell.edu. 1997.

339

https://doi.org/10.1145/3293611.3331592
https://doi.org/10.1007/978-3-030-45724-2_6
https://doi.org/10.4230/LIPIcs.DISC.2021.25
https://doi.org/10.1145/3293611.3331593
https://doi.org/10.1145/2933057.2933108
https://doi.org/10.1007/s00446-020-00388-x
https://arxiv.org/abs/2207.07561
https://arxiv.org/abs/2207.07561

[124] Mike Jones. What really happened to the software on the Mars Pathfinder spacecraft?

https://www.rapitasystems.com/blog/what-really-happened-software-mars-pathfinder-spacecraft.

2013.

[125] Paris C. Kanellakis and Alex A. Shvartsman. “Efficient Parallel Algorithms Can Be Made

Robust.” In: Proceedings of the ACM Symposium on Principles of Distributed Computing

(PODC). 1989.

[126] K Kasturirangan et al. Draft National Education Policy 2019. 2019.

[127] Takashi Katoh and Keisuke Goto. “In-Place Initializable Arrays.” In: CoRR abs/1709.08900

(2017).

[128] Jonathan Kew. XeTeX - Unicode-based TeX Code. 2018.

[129] V. King. A.M. Turing Award: Robert (Bob) Endre Tarjan with John E Hopcroft, for fun-

damental achievements in the design and analysis of algorithms and data structures. url:

https://amturing.acm.org/award_winners/tarjan_1092048.cfm.

[130] Erica Klarreich. Researchers Achieve ‘Absurdly Fast’ Algorithm for Network Flow. 2022.

[131] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks

& Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 2009.

[132] Dexter C. Kozen. The Design and Analysis of Algorithms. Berlin, Heidelberg: Springer-

Verlag, 1992.

[133] Rouven Krebs, Christof Momm, and Samuel Kounev. “Architectural Concerns in Multi-

tenant SaaS Applications.” In: Proceedings of the International Conference on Cloud Com-

puting and Services Science (CLOSER). 2012.

[134] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and the Traveling Sales-

man Problem.” In: Proceedings of the American Mathematical Society (1956).

[135] Leslie Lamport. “A New Solution of Dijkstra’s Concurrent Programming Problem.” In: Com-

mun. ACM (1974). doi: 10.1145/361082.361093.

[136] Chris Lattner and Vikram Adve. “Automatic Pool Allocation for Disjoint Data Structures.”

In: SIGPLAN Not. (2002). doi: 10.1145/773039.773041.

[137] Hyonho Lee. “Fast Local-Spin Abortable Mutual Exclusion with Bounded Space.” In: Prin-

ciples of Distributed Systems OPODIS. 2010. doi: 10.1007/978-3-642-17653-1_27.

340

https://amturing.acm.org/award_winners/tarjan_1092048.cfm
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/773039.773041
https://doi.org/10.1007/978-3-642-17653-1_27

[138] Hyonho Lee. Local-spin mutual exclusion algorithms on the DSM model using fetch & store

objects [microform]. 2018.

[139] Charles Leiserson and Ilya Mirman. “How to Survive the Multicore Revolution.” In: Cilk

Arts, Inc, 2008.

[140] N.G. Leveson and C.S. Turner. “An investigation of the Therac-25 accidents.” In: Computer

(1993). doi: 10.1109/MC.1993.274940.

[141] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times.

American Mathematical Society, 2009.

[142] Joanne Lim. An Engineering Disaster: Therac-25. 1998.

[143] Ji Liu et al. “An asynchronous parallel stochastic coordinate descent algorithm.” In: The

Journal of Machine Learning Research (2015).

[144] Sixue Liu and Robert E. Tarjan. “Simple Concurrent Labeling Algorithms for Connected

Components.” In: 2nd Symposium on Simplicity in Algorithms (SOSA 2019). Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2018. doi: 10.4230/OASIcs.SOSA.2019.3.

[145] Yang Liu et al. “Model Checking Linearizability via Refinement.” In: Formal Methods (FM).

Springer, 2009. doi: 10.1007/978-3-642-05089-3_21.

[146] Jacob Teo Por Loong, Jelani Nelson, and Huacheng Yu. “Fillable arrays with constant time

operations and a single bit of redundancy.” In: CoRR abs/1709.09574 (2017).

[147] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent multiprocessors.

Tech. rep. Swedish Institute of Computer Science, 1994. doi: 10.1109/IPPS.1994.288305.

[148] Peter S. Magnusson, Anders Landin, and Erik Hagersten. “Queue Locks on Cache Coherent

Multiprocessors.” In: Proceedings of the 8th International Symposium on Parallel Processing.

1994. doi: 10.1109/IPPS.1994.288305.

[149] Horia Mania et al. “Perturbed iterate analysis for asynchronous stochastic optimization.”

In: arXiv preprint arXiv:1507.06970 (2015).

[150] C. Martel, R. Subramonian, and A. Part. “Asynchronous PRAMs are (almost) as good as

synchronous PRAMs.” In: Proceedings of the IEEE Symposium on Foundations of Computer

Science. 1990.

[151] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Vol. 1. EATCS

Monographs on Theoretical Computer Science. Springer, 1984.

341

https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.4230/OASIcs.SOSA.2019.3
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1109/IPPS.1994.288305
https://doi.org/10.1109/IPPS.1994.288305

[152] John M. Mellor-Crummey and Michael L. Scott. “Algorithms for Scalable Synchronization

on Shared-memory Multiprocessors.” In: ACM Trans. Comput. Syst. (1991).

[153] Stephan Merz. “Proofs and Proof Certification in the TLA+ Proof System.” In: Proceedings

of the International Workshop on Proof Exchange for Theorem Proving (PxTP). CEUR-

WS.org, 2012.

[154] M. M. Michael. “Hazard pointers: safe memory reclamation for lock-free objects.” In: IEEE

Transactions on Parallel and Distributed Systems (2004).

[155] Shin-ichi Minato. “Counting by ZDD.” In: Encyclopedia of Algorithms. Springer Publishing

Company, 2016.

[156] Shin-ichi Minato. “Power of Enumeration—Recent Topics on BDD/ZDD-Based Techniques

for Discrete Structure Manipulation.” In: IEICE Trans. Inf. Syst. (2017).

[157] Shin-ichi Minato. “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems.”

In: Proceedings of the International Design Automation Conference. 1993.

[158] Ioannis Mitliagkas et al. “FrogWild!: fast PageRank approximations on graph engines.” In:

Proceedings of the VLDB Endowment (2015).

[159] Andrea Montanari and Amin Saberi. “The Spread of Innovations in Social Networks.” In:

Proceedings of the National Academy of Sciences (2010).

[160] Gordon E. Moore. “Cramming more components onto integrated circuits.” In: Electronics

(1965).

[161] Dana Moshkovitz and Bruce Tidor. Lecture Notes 15: van Emde Boas Data Structure.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-

analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf. May 2021.

[162] Motorolla. Programmer’s Reference Manual. https : / / www . nxp . com / files - static /

archives/doc/ref_manual/M68000PRM.pdf. Accessed: 2018-09-07.

[163] Gonzalo Navarro. “Constant-time array initialization in little space.” In: Proceedings of the

International Conference of the Chilean Computer Science Society (SCCC). 2012.

[164] Gonzalo Navarro. “Spaces, Trees, and Colors: The algorithmic landscape of document re-

trieval on sequences.” In: ACM Comput. Surv. (2013).

[165] Feng Niu et al. “Hogwild: A lock-free approach to parallelizing stochastic gradient descent.”

In: Advances in neural information processing systems. 2011.

342

https://www.nxp.com/files-static/archives/doc/ref_manual/M68000PRM.pdf
https://www.nxp.com/files-static/archives/doc/ref_manual/M68000PRM.pdf

[166] Cyprien Noel and Simon Osindero. “Dogwild!-Distributed Hogwild for CPU & GPU.” In:

NIPS Workshop on Distributed Machine Learning and Matrix Computations. 2014.

[167] Linus Nyman and Mikael Laakso. “Notes on the History of Fork and Join.” In: IEEE Annals

of the History of Computing (2016). doi: 10.1109/MAHC.2016.34.

[168] Pānini. Ashtādhyāyī. Around the 6th Century BCE.

[169] Abhijeet Pareek and Philipp Woelfel. “RMR-Efficient Randomized Abortable Mutual Ex-

clusion.” In: CoRR (2012). url: http://arxiv.org/abs/1208.1723.

[170] Kevin Poulsen. “Software Bug Contributed to Blackout.” In: (2004).

[171] Aditya Ramaraju. “RGLock: Recoverable mutual exclusion for non-volatile main memory

systems.” MA thesis. University of Waterloo, 2015. url: https://uwspace.uwaterloo.ca/

handle/10012/9473.

[172] Simone Raoux et al. “Phase-change random access memory: A scalable technology.” In: IBM

Journal of Research and Development (2008).

[173] Vibhor Rastogi et al. “Finding Connected Components on Map-reduce in Logarithmic

Rounds.” In: Proceedings - International Conference on Data Engineering (Mar. 2012). doi:

10.1109/ICDE.2013.6544813.

[174] M. Raynal and D. Beeson. Algorithms for Mutual Exclusion. MIT Press, 1986.

[175] John Reif. “Depth First Search is Inherently Sequential.” In: Information Processing Letters

20 (1985).

[176] I. Rhee. “Optimizing a FIFO, scalable spin lock using consistent memory.” In: 17th IEEE

Real-Time Systems Symposium. 1996. doi: 10.1109/REAL.1996.563705.

[177] Siddhartha Sahu et al. “The ubiquity of large graphs and surprising challenges of graph

processing: extended survey.” In: VLDB J. (2020). doi: 10.1007/s00778-019-00548-x.

[178] Gerhard Schellhorn, John Derrick, and Heike Wehrheim. “A Sound and Complete Proof

Technique for Linearizability of Concurrent Data Structures.” In: (2014). doi: 10.1145/

2629496.

[179] Michael L. Scott. “Non-blocking timeout in scalable queue-based spin locks.” In: Proceedings

of the Twenty-First Annual ACM Symposium on Principles of Distributed Computing, PODC

2002. 2002. doi: 10.1145/571825.571830.

343

https://doi.org/10.1109/MAHC.2016.34
http://arxiv.org/abs/1208.1723
https://uwspace.uwaterloo.ca/handle/10012/9473
https://uwspace.uwaterloo.ca/handle/10012/9473
https://doi.org/10.1109/ICDE.2013.6544813
https://doi.org/10.1109/REAL.1996.563705
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1145/2629496
https://doi.org/10.1145/2629496
https://doi.org/10.1145/571825.571830

[180] Michael L. Scott and William N. Scherer III. “Scalable queue-based spin locks with timeout.”

In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP). doi: 10.1145/379539.379566.

[181] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011.

[182] Ori Shalev and Nir Shavit. “Split-ordered lists: Lock-free extensible hash tables.” In: Journal

of the ACM (2006).

[183] M. Sharir. “A strong-connectivity algorithm and its applications in data flow analysis.” In:

Computers & Mathematics with Applications (1981). doi: https://doi.org/10.1016/

0898-1221(81)90008-0.

[184] Yossi Shiloach and Uzi Vishkin. “An O(logn) parallel connectivity algorithm.” In: Journal

of Algorithms (1982). doi: https://doi.org/10.1016/0196-6774(82)90008-6.

[185] Julian Shun. Shared-Memory Parallelism Can Be Simple, Fast, and Scalable. Association

for Computing Machinery and Morgan & Claypool, 2017.

[186] Alexander Smola and Shravan Narayanamurthy. “An architecture for parallel topic models.”

In: Proceedings of the VLDB Endowment (2010).

[187] Alexander J. Smola and Shravan M. Narayanamurthy. “An Architecture for Parallel Topic

Models.” In: Proc. VLDB Endow. (2010). doi: 10.14778/1920841.1920931.

[188] Dmitri B Strukov et al. “The missing memristor found.” In: nature (2008).

[189] “Summary by language size.” In: (2022). url: https://www.ethnologue.com/statistics/

size.

[190] Supermicro 8-Socket Intel Xeon 7U Rack Server. https : / / happyware . com / uk - en /

supermicro/sys-7089p-tr4t. Accessed: August 1, 2022.

[191] Hirofumi Suzuki and Shin-ichi Minato. “Fast Enumeration of All Pareto-Optimal Solutions

for 0-1 Multi-Objective Knapsack Problems Using ZDDs.” In: IEICE Trans. Fundam. Elec-

tron. Commun. Comput. Sci. (2018).

[192] Robert Tarjan. “Depth first search and linear graph algorithms.” In: Siam Journal on Com-

puting 1.2 (1972).

[193] Robert Tarjan. “Finding dominators in directed graphs.” In: SIAM Journal on Computing

3.1 (1974), pp. 62–89.

344

https://doi.org/10.1145/379539.379566
https://doi.org/https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/https://doi.org/10.1016/0196-6774(82)90008-6
https://doi.org/10.14778/1920841.1920931
https://www.ethnologue.com/statistics/size
https://www.ethnologue.com/statistics/size
https://happyware.com/uk-en/supermicro/sys-7089p-tr4t
https://happyware.com/uk-en/supermicro/sys-7089p-tr4t

[194] Robert Tarjan. “Testing flow graph reducibility.” In: Proceedings of the annual ACM sym-

posium on Theory of computing (STOC). 1973.

[195] Robert E. Tarjan. “An efficient planarity algorithm.” PhD thesis. Stanford University, USA,

1971.

[196] Robert E. Tarjan and Jan van Leeuwen. “Worst-case Analysis of Set Union Algorithms.” In:

J. ACM (1984). doi: 10.1145/62.2160.

[197] Robert Endre Tarjan. “A Class of Algorithms which Require Nonlinear Time to Maintain

Disjoint Sets.” In: J. Comput. Syst. Sci. (1979). doi: 10.1016/0022-0000(79)90042-4.

[198] Robert Endre Tarjan. “Efficiency of a Good But Not Linear Set Union Algorithm.” In: J.

ACM (1975). doi: 10.1145/321879.321884.

[199] Reality Check Team and BBC Telugu. “Do you speak Telugu? Welcome to America.” In:

(2018). url: https://www.bbc.com/news/world-45902204.

[200] Saied Tehrani et al. “Magnetoresistive random access memory using magnetic tunnel junc-

tions.” In: Proceedings of the IEEE (2003).

[201] ఆప్త వక్త . మాణూ్డ కో్యపనిషత్. ధర్మపరంపర, అనాది.

[202] Alexander Terenin, Daniel Simpson, and David Draper. “Asynchronous Gibbs Sampling.”

In: arXiv preprint arXiv:1509.08999 (2015).

[203] Florian Tramer et al. “On adaptive attacks to adversarial example defenses.” In: Advances

in Neural Information Processing Systems (2020).

[204] Viktor Vafeiadis. “Automatically Proving Linearizability.” In: International Conference on

Computer Aided Verification (CAV). Springer, 2010. doi: 10.1007/978-3-642-14295-

6_40.

[205] Viktor Vafeiadis. “Shape-Value Abstraction for Verifying Linearizability.” In: International

Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI). Springer,

2009. doi: 10.1007/978-3-540-93900-9_27.

[206] Viktor Vafeiadis et al. “Proving Correctness of Highly-Concurrent Linearisable Objects.” In:

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming. Association for Computing Machinery, 2006. doi: 10.1145/1122971.1122992.

[207] Martin Vechev and Eran Yahav. “Deriving linearizable fine-grained concurrent objects.” In:

2008. doi: 10.1145/1379022.1375598.

345

https://doi.org/10.1145/62.2160
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1145/321879.321884
https://www.bbc.com/news/world-45902204
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-540-93900-9_27
https://doi.org/10.1145/1122971.1122992
https://doi.org/10.1145/1379022.1375598

[208] Yiqiu Wang, Yan Gu, and Julian Shun. “Theoretically-Efficient and Practical Parallel DB-

SCAN.” In: Proceedings of the 2020 International Conference on Management of Data,

SIGMOD Conference 2020. 2020. doi: 10.1145/3318464.3380582.

[209] Pierre Wolper. “Lectures on Formal Methods and Performance Analysis.” In: Lectures on

Formal Methods and Performance Analysis. Springer-Verlag New York, Inc., 2002. Chap. Con-

structing Automata from Temporal Logic Formulas: A Tutorial.

[210] Ugur Yavuz. “A Machine-Verified Proof of Linearizability for a Queue Algorithm.” Code

available at: https://github.com/uguryavuz/easy-to-verify-linearizability. Department of Com-

puter Science: Dartmouth College, May 2022.

[211] Ugur Yavuz. “Easy-to-verify-linearizability.” Department of Computer Science: Dartmouth

College, June 2021.

[212] Ryo Yoshinaka et al. “Finding All Solutions and Instances of Numberlink and Slitherlink by

ZDDs.” In: Algorithms (2012).

[213] Hsiang-Fu Yu et al. “Scalable coordinate descent approaches to parallel matrix factorization

for recommender systems.” In: International Conference on Data Mining (ICDM). IEEE,

2012.

[214] Ce Zhang and Christopher Ré. “Dimmwitted: A study of main-memory statistical analytics.”

In: Proceedings of the VLDB Endowment (2014).

[215] సిదా్ధ ర్థ విశే్వశ్వర జయంతి. సామాన్య జాగృతిపరిషా్కరం. ఆరైϓవ్, ౨౦౨౨.

346

https://doi.org/10.1145/3318464.3380582

	I Overview and Preliminaries
	Introduction
	Motivation
	A Brief Illustration: Union-Find
	Algorithmic Design Goals
	Broadening Participation in STEM

	Contributions
	Summary of Contributions
	Contributions to Mutual Exclusion Locks
	Contributions to Lock-Free Data Structures
	Contributions to Machine Verification
	Contributions to Machine Learning

	Preliminaries
	Model
	Data Objects
	Complexity Measures

	II Mutual Exclusion Locks
	Standard Mutual Exclusion
	Introduction
	Main Algorithm
	Instantiations

	Abortable Mutual Exclusion
	Introduction
	Line Numbering Convention
	An O(1) Algorithm for CC
	Correctness and Efficiency of the CC Algorithm
	An Amortized O(1) RMR Algorithm for CC and DSM
	Proof of Correctness
	Complexity Analysis
	Model Checking
	Concluding Remarks

	Recoverable Mutual Exclusion
	Introduction
	A Signal Object
	The Algorithm

	Appendices
	Issues with Golab and Hendler's Algorithm
	Illustration for Repair
	Proof of correctness
	Proof of correctness of Signal object
	Proof of invariant

	III Lock-Free Data Structures
	Concurrent Union Find
	Introduction
	Concurrency Model
	Data Structure and Sequential Algorithms
	Concurrent Linking and Splitting
	Concurrent Linking by Rank
	Indirection and Helping
	Our Algorithm with Randomized Compare-and-Swap
	Upper Bounds
	Lower Bounds
	Remarks and Open Problems

	Fast Arrays and their Applications
	Introduction
	Model
	Folklore Sequential Algorithm
	Our Concurrent Fast-Array
	Correctness of Fast Array Algorithm
	A Concurrent Fast Generalized Array
	Correctness of Fast Generalized Array Algorithm
	Experiments
	Application: Fixed Size Hash Table
	Algorithm
	Discussion and Future Work

	The Generalized Wake-up Lower Bounds
	Introduction
	Concurrency Model and the Wake-Up Problem
	Union-Find Lower Bound
	Other Lower Bounds

	సామాన్య జాగృతిపరిష్కారం
	ఉపోద్ఘాతము
	యంత్రప్రతికృతి మరియు పూర్వాంశాలు
	సామాన్య-జాగృతి-పరిష్కార సమస్య
	అధోబంధాలు
	ఉద్బంధాలు
	సమాప్తి

	IV Machine Verification
	A Univeral, Sound, and Complete Technique for Machine-Verifiable Proofs of Linearizability
	Introduction
	Related Work
	Model and Definitions
	Our Proof Technique for Linearizability
	(Partial) Trackers
	Proving Strong Linearizability
	Example: The Union Find Object
	Conclusion and Remarks

	V Machine Learning
	Hogwild Gibbs Sampling
	Introduction
	The Model and Preliminaries
	Bounding The Expected Hamming Distance Between Coupled Executions of HOGWILD! and Sequential Gibbs Samplers
	Estimating Global Functions Using HOGWILD! Gibbs Sampling
	Experiments

	VI Conclusion
	Summary
	Future Directions
	Bibliography

