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Abstract
This thesis presents an in-depth investigation on characterization of optical fiber preform
core manufacturing and the identification of underlying trends in measured production data.
While walking through the different operations involved in the process, we explained the chal-
lenges associated with insuring refractive index profile precision and glass purity. Starting
with unsupervised learning, process by process, we applied linear and non linear dimensional-
ity reduction algorithms (PCA and t-sne) to features matrices created from time series data
and have been able to connect data clusters with context information like machines or month
of the year. Then considering the core fabrication process as a whole, we studied the propa-
gation of trends in the data sets up to quality measurements using Dice’s statistic to gauge
similarities between samples sets. Finally, we developed some data-driven regression models
in order to predict the refractive index measured at the end using data from all processes.
As a result, Kernel algorithms performed the best and almost as well on raw statistics from
all processes as on encoded information about machine sequences and dates. This super-
vised approach demonstrated some great potential for the development of prediction tools
which could help design the optimized production line. An underlying objective is to support
Sterlite Technologies Limited in using data-driven approach applied to process control for its
plant in Waluj and Shendra starting by implementing good practices for variables measure-
ment, logging and tracking.

Thesis Supervisor: Dr. Brian W. Anthony
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Motivation for Industry 4.0 in Optical Fiber Manu-

facturing

The increasing demand for scalable, dependable, and fast communication infrastructure is

one of the leading market drivers of optical fiber manufacturing. Currently, fibre optics is

the only technology that can effectively meet this need. Standard cables are ten times slower

than fibre optic cables. Additionally, it carries more data than copper cables. In addition,

fibre optics ensures high bandwidth connectivity for emerging technologies such as 5G and

the internet of things (IoT). Despite the fact that 5G offers wireless connectivity, fibre optics

are required to manage the massive backhaul traffic that 5G generates.

The fiber optics market is characterized by strong competition, with a few major worldwide

competitors owning a significant market share. Some key players operating in the fiber op-

tics market include Corning Incorporated (USA), Optical Cable Corporation (USA), Sterlite

Technologies Limited (India), OFS Fitel (USA), LLC (USA), Prysmian Group (Italy), AFL

(USA), Birla Furukawa Fiber Optics Limited (Japan) and Finolex Cables Limited (India). [5]
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Most of those companies have been producing optical fiber for decades and manufacturing

lines, representing a huge initial capital investment, haven’t evolved much. One big limitation

is how labor intensive the process still is. Indeed, fiber optic needs to remain affordable and

versatile and to do so, modernization of manufacturing line at low cost is the key. Industry

4.0 technology helps manage and optimize all aspects of the manufacturing processes and

supply chain. With a wiser usage of already acquired real-time data but also the installation

of new smart sensors, there is strong opportunity for better monitoring and control which

will ultimately boost process efficiency and reduce labor intensity.

1.1.1 Sterlite

Sterlite Technologies Limited (Formerly Sterlite Tech) is an Indian multinational technology

company, headquartered in Mumbai. It is listed on Bombay Stock Exchange and National

Stock Exchange of India. It has 636 patents [6] and is active in over 150 countries. The com-

pany is specialized in optical fiber and cables, hyper-scale network design, and deployment

and network software. As presented on figure 1.1, Sterlite Technologies Limited has been

manufacturing optical fiber for over 25 years.

STL has also partnered with other industry entities to design, build and manage such cloud-

native software-defined network. It also has offices in China, US, SEA, Europe and MEA.

It has facilities in India, Italy, China and Brazil and two software-development centres. To

give a boost to Indian government make in India initiative, STL recently invested in 5G

assembling an ecosystem of partners.
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Figure 1.1: Sterlite Technology Limited (STL) history as presented in their Getting BSS on
Cloud Strategy slides deck. [1]

This project has been initiated by Dr. Badri Gomatam who is actually the Group Chief

Technology Officer and concerned the manufacturing plants Waluj and Shendra based in

India. Those plants are mainly dedicated to manufacturing single mode optical fiber trans-

mitting 1490nm wavelength signal in accordance with internet communication standards.

The project is currently managed by Ankush Bansal, Head of Product Management and

directly involves Sudhakar Eddula and Vivek Singh, plants Engineers.

1.2 Process Overview

1.2.1 General Workflow

Sterlite manufactures single mode fibers with a step index which presents thinner core than

multimode equivalents. Optical fiber manufacturing involves three distinct stages: core man-

ufacturing, clad manufacturing and fiber draw. Those three layers insure the mechanical

properties of the fiber, the clad being responsible for the mechanical strength but also for

containing the light within the fiber due to its refractive index difference. Core and clad
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manufacturing are regrouped in the glass department since fiber draw is done in another

location in the plant. As the name suggests, core refers to the core of the glass cylinder, id

est the first layer deposited on a mandrel since clad refers to the envelope which is deposited

afterward. Together they form a preform which will then be drawn to make the bare fiber

(125µm diameter). A fine layer of acrylic coating is also added bringing the final diameter

of the fiber to 250µm.

The goals of those three manufacturing processes are different in various aspects. For ex-

ample, purity and acquisition is what matters the most in core manufacturing since clad

manufacturing is all about volumes and scalability (how do you ensure it? How fast can you

make it happen?). Geometrical control and thermal control are the most important in fiber

draw. Geometrical control involves conserving the ratio between core and clad layers while

drawing (125/8.7 = 14.4) so that the optical properties of the fiber stay within the limits.

Thermal control involves ensuring a proper cooling of the fiber without adding any stresses

to prevent it from breaking during the process as hundreds of kilometers of fiber need to be

drawn without interruption. All in all, the three layers insure the mechanical properties of

the fiber, the clad being responsible for the mechanical strength but also for containing the

light within the fiber due to its refractive index difference. Ideally, 1kg of glass (including

core, clad and coating) is equivalent to 37km of fiber drawn but actual yield is smaller.

The general workflow of the fiber manufacturing process is illustrate in the figure 1.2. This

work focuses on the operations related to the fabrication of the preform core.
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Figure 1.2: Optical fiber manufacturing general process workflow.[2]

1.2.2 Core Process

The core process workflow is presented in the following figure 1.3:

Figure 1.3: Core Process Workflow. [2]
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Core Deposition The first step of the core process is the mandrel preparation. Typically,

the mandrel is a reinforced rod made of ceramic on which material is deposited. It will

typically have a diameter from 7mm to 8mm and be about 1.3 meters long. It is important

that the mandrel is crystal clean and smooth and presents enough mechanical strength so

that it can hold a weight of approximately 14kg to 15kg at temperature reaching up to 900°C.

Once the mandrel is held in the chucks of the deposition machine at both ends, the Outside

Vapor Deposition (OVD) can start. Although it is called vapor deposition, the terms refer

to a reaction which is taking place during combustion of the input particles at about 800°C:

those particles agglomerate and almost form a jet of vapor stream that is captured by the

spinning mandrel. Basically, a mandrel mounted on a traverse will from left to right over a

stationary burner to enable a slow formation of the layers of soot. For information, about

half of the synthesize material (precursor chemical) goes into the exhaust and doesn’t get

captured. The process is controlled by stage according to the number of passes done by the

traverse and but deposition won’t stop until the weight specified in the recipe is reached.

Each core deposition machines has two spindles which means that two preforms are created

simultaneously. Nevertheless, performance varies from on spindle to another.

Note: Sterlite chooses OVD over other conventional methods as Modified Chemical Vapor

Deposition (MCVD) because it enables more freedom on the final diameter of the soot preform.

Indeed, in the case of MCVD, chemicals are passed through the inside of a rotating glass tube

made of pure synthetic SiO2 and deposition happens inside the tube from the sides to the

center. Thus, preform diameter is limited by the size of the tube. [7]

Cooling and Mandrel Removal Once the deposition is done, the next step is cooling

which happens in a separate cooling cabinet. Now cooled down, the soot preform goes for

mandrel removal. This step is critical because any disturbance that could happen during the

mandrel removal will disturb the soot and create uneven gaps in the core of the preform,

which defect will propagate through the next stage of the process and in fine cause light path

defects. This explain why the surface properties of the mandrel are so important. Actually,
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it is usually covered with a very thin layer of carbon obtained from burning Acetylene which

acts as a lubricant. Also, at this stage, the soot is highly porous with a density of about

0.4− 0.5g/cm3.

Sintering Sintering is a two stages process (drying and then sintering) where the soot gets

consolidated and the snow like preform turns into a crystal clear glass. Drying is done to

remove any OH- from the deposited soot, it happens at 1050°C. Helium is used as a thermal

medium to exchange the heat powdered material into the preform (from the outside to the

inside) to a temperature below the melting point and enable the consolidation of the soot

which diffuses and forms one solid piece. Dehydration also prevent from nuisance caused by

moisture as change in refractive index and viscosity. Sintering happens in a quartz sinter

tube at 1583°C. The centerline of soot formed by the mandrel removal is collapsed using

vacuum torr (150 torr).

Soaking Soaking is used to purge the entrapped helium into the glass and relieve preform

thermal stress. It is done at about 1100°C for around 15h to 16h. It is again very important

not to have any bubbles of helium remaining that could pop up afterward in the draw process.

Rod Draw Rod Draw is similar to fiber draw and consists of stretching the preform which

is about 1.2 meters long, 10 centimeters wide and weights about 13-14kg into very precise

rods of around 25mm in diameter. The reason why the preform is cut is subsection is mostly

a matter of bulk in the plant. About 7 core rods are sectioned from a mother preform. One

constraint on the rod is that it needs to be perfectly straight. Unfortunately, the break energy

(a notch is made and then the extremities are pulled until a break) often transfers back along

the rods and can introduce some bends in the rods. Approximately, 35% of the rods will go

to scrap at this stage of the process. It should be noted that, sometimes, the bend can be

corrected using a flame but the rod cannot be touched with the flame more than three times

otherwise it will damage it.
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A 4mm piece from rod 1 and rod 5 are sampled and stretched in order to do profile measure-

ments.

Quality Final step, the rods go to the Quality Department which task is to ensure their

quality using various angles from various parameters. For example, rod diameter will be

measured in order to estimate the core/clad ratio. As well, the refractive index profile across

the rod section will be drawn and used to extract some profile indicator as the Center Line

width and Center Line dip.

The timeline of each stage of the process are described in figure 1.4.

Figure 1.4: Time that takes at each stage of the core process. [3]

1.3 Project Scope

1.3.1 Previous Work

The collaboration between Device Realization Laboratory and Sterlite started in 2020. As

data were the most consistently acquired during fiber drawing, it was decided to start with

improving control of this stage of the process. As part of his master thesis, George C. Chen [8]

worked on an in-depth investigation on modeling and simulation of one of Sterlite’s drawing

30



tower and its controllers. With measured production data during the fiber drawing process, a

long short-term memory (LSTM) neural network has been created, implemented and trained

to model the process dynamics and obtain the correlation between inputs (furnace power,

preform speed, capstan speed and helium cooling temperature) and outputs (bare fiber di-

ameter and fiber tension) of the fiber drawing process. The ultimate goal being to obtain

an emulator of the tower and its controllers and use simulation results to train a smart con-

troller which could adapt to shifts in the process happening throughout time. Indeed, once

implemented in hardware, this new generation of controllers could replace laborious, iterative

tuning process associated with conventional ones.

Because the current pre-processing pipeline restricts the training data by the upper and lower

thresholds of the bare fiber diameter, George Chen’s approach placed more emphasis on the

steady-state region of the production data. As a consequence, the trained model learns and

predicts the steady-state process dynamics with higher accuracy.

However, critical (and potentially nonlinear) dynamics happen each time the controllers is

once again engaged after having been turned off because of a fiber break. Those breaks are

the main reason for manufacturing efficiency loss during fiber drawing. If training the model

on those regions where the bare fiber diameter starts with different initial conditions and is

brought to steady-state could make it more robust to disturbances in simulated dynamics,

question can be asked about the nature of those breaks and why they happen.

The reasons for those breaks are typically mechanical defects which origins are various: at a

macroscopic level, little bubbles can appear during densification (liquid to solid) of the fiber.

Handling scratches can also occur at the end of the process and moisture in the air can create

crack propagation. At a microscopic level, we know for example that presence of un-sintered

particles at the interface between clad and core could create a defect. Using Sterlite’s rule of

thumb, for one preform (from 20kg to 60kg), you don’t want to have defects that are bigger

than about half a micrometer because those defects propagate under tension leading to larger
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crack and inevitably breaks. One way to fight that is to exposed the preform to a laser beam

and count the deflections. Using look up table, this number can give an estimation of the

number of breaks per kilometers and decide if the preform should be scraped or send back

to the draw. This time addressing root causes for fiber breaks, Sterlite is offering Device

Realization Lab to investigate on the core manufacturing process. The project started in

May 2022.

1.3.2 Thesis Overview

Problem Statement There are two important factors in core manufacturing: precision

in how layers of material are deposited in order to achieve the kind of profile looked for and

making sure that no impurity is introduced during deposition. Taking care of the first one

prevents from optical and diameter defects since the second one prevents from mechanical

defects, id est the breaks described in the previous section.

This thesis investigates the feasibility of a data-driven approach on the core deposition process

in order to identify and improve efficiency losses.

Challenges Several challenges associated with the question this work tackles have been

identified:

– Delay: In terms of control, we are talking about hours timescale even affecting feedback

loops. For example, the bend introduced by a cut will show up many hours later.

– Control checkpoints: No irregularities detection is implemented from mandrel prepa-

ration to rod draw which makes the all core deposition process pretty opaque. The first

physical inspection happens with the profile measurement after rod draw (ninth step

of the process).

– New to data-driven methods Beside conventional feedback control, Sterlite is rela-

tively new to data-driven approach and is willing to learn with Device Realization Lab.
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Even though significant variables are being measured for control purposes, no consis-

tent data logging and data tracking has been implemented yet. All data are pulled

manually by an engineer on site each time using a method specific to the stage of the

process. More over, IT network architecture differs from Waluj to Shendra plants.

– Extreme operation condition Currently, the quality of the acquisition is varying

from one sensor to another to the extend that sometimes data can’t be used. Also,

machines being pretty old, bulky and required to be isolated from any kind of impurities

and operating conditions being at very high temperature makes it hard to introduce

new generation of sensors (specifically for sintering and soaking).

Approach Our work will mainly focus on the 35% rod going to scrap at the end of the

core deposition process. Is this scrap the result only of cutting or can we identify reasons for

this high scrap proportion upstream in the process ? (see subsection 1.2.2)

Our approach can be divided in two stages:

– Stage 1: Investigation using the base case system only

1. Draw the systems base case: analysis of the current situation.

2. Experiment using current available data. Test repeatability and parameter sensi-

tivity with the current hardware.

3. Run analysis on data from current hardware. Instrument characterization of

trends, relationships. Start data driven models.

– Stage 2: Investigation using results from phase 1, introduction of more sensors and

strengthening of data collection

1. Update the super instrumented base case.

2. Run experiments including parameters set beyond normal limits of range or rate.
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3. Extend model to new data. Implement test and validation. Try data/physics

combination models.
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Chapter 2

System Base

2.1 Current Situation Analysis

2.1.1 IT Architecture Networks for Data Acquisition and Storage

The exact description of the data available to us for each process are detailed in the Annex

section 6.1.

In this subsection is presented the example of deposition and sintering IT network architec-

tures for data logging and storage. The storage is done is two steps: first time series runs

are acquired by a PLC (Programmable Logic Controller), then, at the end of the run, those

data are aggregated on a computer using an application from the family of the SAP software

products (Systems Application and Products in data processing) called SAP-MII (Manufac-

turing Integration and Intelligence) which basically synchronizes manufacturing operations

with both back-office business processes and standardized data. Both run data and aggre-

gated data are stored on a cloud from where they can be pulled in csv or excel formats which

is the type of files Sterlite is sharing with us.

Figures 2.1 and 2.2 illustrate the architecture just described which is specific to Shendra

plant.

Architecture information regarding sintering, rod draw and IPQ haven’t been shared for the
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plant in Shendra specifically but are similar to the one just presented.

Figure 2.1: IT network architecture for
core deposition process.[2]

Figure 2.2: IT network architecture for
sintering process.[2]

Here is an exhaustive list of variables captured during the two steps of acquisition.
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For deposition operations, we have:

The PLC captures the data of variables

during running operation till the end of

operation i.e. till 18 hrs.

• ID: Preform ID, Recipe ID, Machine

ID

• Time: Deposition Date, Elapsed

Time, Deposition time

• Physical: weight deposited, Density

and Soot Diameter

• Process stages: As per the recipe

• Chamber: Pressure and Temp of

SIcl4 and Gecl4 Hotbox

• Pressure: Suction pressure

• Flows: H2, O2, SiCl4, GeCl4,

C2H2, gases flows

• Position: Traverse movement

SAP MII data aggregates data at the end of core

deposition operation.

• ID: Preform ID, Operator ID, Product

type, Si and Ge type

• Time: Prod date, Elapsed Time, Deposi-

tion time

• Physical: Actual Dep wt, Actual Core

wt, targeted core wt, Density, Mandrel se-

quence and No, Soot diameter

• Process parameters: Dep rate, Recipe,

GeCl4 Passes

• Chamber: Pressure and Temp of Sicl4 and

Gecl4 Hotbox

• Consumption: H2, O2, GeCl4, SiCl4,

C2H2 total consumption

• Any observation during or after operation

• Status: Final status of Preform
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For sintering operations, we have:

The PLC captures the data of variables

during running operation till the end of

operation.

• ID: Preform ID, Recipe ID, Machine

ID

• Time: Elapsed Time

• Process stages: As per the recipe

• Pressure: Vacuum pressure

• Temperature: Main furnace, Zone-

wise temperatures

• Flows: He, Cl2, N2 gases flows

• Position: Distance remaining

SAP MII aggregates data at the end of sintering

operation.

• ID: Preform ID, Operator ID, Product

type, core soak machine no

• Time: Production date, Elapsed Time,

Deposition time

• Physical: Preform weight, Sintered pre-

form diameter (max,min),Sinter length

• Process parameters: Column speed,

vacum, drying time, speed in different

zone, position in different furnaces

• Pressure: He, Cl2, Air, scrubber suction

• Consumption and flows: He, Cl2, N2

• Temperature: Main furnace, Zone wise

temperatures

• Any observation during or after operation

(preform, centerline, cone, Bubbles, Top

open capillary)

• Status: Final status of Preform

It should be noted that those lists describe the theoretically overall data availability, but in

reality, we haven’t had access yet to the ones in italic.
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2.1.2 Relevant Parameters Identified

Through our exchanges with Sterlite team, we have been able to do a brief summary of the

most relevant variables per operation:

Core deposition

Input: gaz flow rate into the burners (H2, O2, SiCl4, GeCl4).

Process parameters: scrubber suction pressure, H2 pressure, O2 pressure, N2 pressure, SiCl4

line temperature, GeCl4 line temperature.

Machine parameters: mandrel rotation, number of burner (here only one).

Output: SiO2 and GeO2 soot.

Data measured: weight is measured with a load-cell mounted on the spindle. Mass flow

controllers (MFC) acquire the different gaz flow rates cited above. Vaporizer pressure and

temperature are measured. Two servo mortors give the traverse position.

Sintering

Input: He, CL2 and N2 flow rates.

Process parameters: drying furnace temperature, sintering furnace temperature, He and Cl2

pressures, vacuum to collapse central hole during starting and final stage of sintering and

suction for chlorine and helium gaz.

Machines parameters: mandrel rotation, time in drying and sintering section (approximately

1hour changeover between both).

Output: glass preform.

Data measured: gaz/liquid flow rates through MFC, furnace temperature zone-wise, pressure

into the sinter machine, traverse motors and rotational motors.

Soaking

Input: N2 flow rate.
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Process parameters: soak furnace temperature, nitrogen pressure.

Machine parameters: preform rotation.

Output: bubble free glass preform.

Data measured: N2 flow rate and zone-wise temperatures.

Rod draw

Input: N2 and Argon consumption.

Process parameters: zone-wise temperature, rod drawing time, vacuum.

Machines parameters: preform speed feed.

Outputs: 6 to 7 glass rods.

Data measured: N2 and Argon flow rates (MFC), diameter measurement gauge, tempera-

ture, servo motors.

IPQ testing

Profile parameters: 1. Profile shape 2. Difference between core and clad refractive index

(delta) 3. Core diameter over clad diameter ration (D/d).

Physical Parameters: 1. Length 2. Diameters 3. Bubble/ Un- Collapsed 4. Scratches 5. Rod

Weight 6. Bend 7. Ovality

2.2 Previous Work Done by Sterlite

Sterlite has limited experience in data-driven approach applied to improving control and yield

beside conventional controllers. Some investigations using data they currently have access to

enabled to highlight some irregularities in the process but greater potential lies and should

be exploited. Even so, it should be noted that Sterlite engineering team has worked in the

past on developing some physics and chemistry models from various steps involved in the
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deposition process with the goal to improve preform characterisation based on the measure-

ments they do. For example, some work on rod profile fitting using measurement points and

parameters has been shared with us.

More relevant to this project, investigation were done a few years ago on uncontrolled weight

gain in core deposition. By studying side by side traverse velocity and deposited weight,

some discontinuities in weight acquisition by the load cell have been highlighted. Indeed,

steps in the data can be observed. Using picks finder tools, the root cause has been identi-

fied: load cell measurement is made at the same moment the traverse is changing direction

what necessarily disturbs the measurement. As a consequence, core deposition runs present

weight control issues especially at the beginning of the run when the assembly weight is rela-

tively low (signal is very noisy with negative excursions). Then initial offsets propagate and

telemetry on end-points is lost. Additionally, some differences between the two spindles from

the same machine have been observed and it is likely that, by improving weight control stage

by stage (e.g. reducing weight fluctuation or using gentler and slower process set-points),

both spindle will be able to perform equally well.

Those issues have not been addressed by the on-site team yet even though they are likely

significantly impacting core radius uniformity. Therefore, knowing about those investigation

has been very helpful as we will observe those irregularities throughout the first experiments.

[9]

Comments: It was also pointed out that, in core deposition operation, the diameter acqui-

sition is not consistent and is not taken into account for control.
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2.3 Data Supply

2.3.1 Data Availability Overview

It took several try and fail iterations for the engineer on site to adjust the way the data were

pulled and aggregated from each operation so that we receive consistent data sets. The overall

process still have a lot of room for improvement. Until September 2022, only deposition data

were available. Today, we have access to the following:

– Aggregated data per preform for deposition, sintering, soaking, rod draw and IPQ

processes from (approximately) January 2021 to June 2022. Deposition, sintering and

rod draw datasets are time series data for each preform run (each preform run being

stored in an individual file) since soaking and IPQ datasets are directly aggregated

results (only one file which each row corresponds to a preform/rod run).

– Some examples of rod profile measurements.

– One example of recipe file for deposition.

– Some examples of draw tower data and bobbin level data.

Comments Some context explanations and data dictionaries are still pending. We asked

to get as least processed data as possible so to stay close to what on site acquisition looks like,

therefor, the datasets present a mixed between process parameters (set points) and sensor

outputs.

2.3.2 Ability to Track Preforms

In order to study irregularities propagation throughout process stages, it is necessary to be

able to track a preform from deposition to IPQ measurement. As described in table 2.1, we

reached a reasonable preforms overlap between data sets:
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Number of preforms

in both datasets
Deposition Sintering Soaking Rod draw IPQ

Deposition 2145 / / / /

Sintering 1953 (91%) 3724 / / /

Soaking 1997 (93%) 3462 (93%) 3964 / /

Rod draw 1914 (89%) 3335 (89%) 3446 (87%) 3677 /

IPQ 2090 (97%) 3652 (98%) 3864 (97%) 3632 (99%) 3816

Table 2.1: Two by two comparison between datasets: counting number of preforms present
in both

Now when we look at the intersection between every process datasets, the number of preforms

decreases to 1647 and after cleaning rows with missing values in the IPQ table, it shrinks to

964 (minus 40%). Therefor, improving the data logging during IPQ process could significantly

increase the number of preforms that could be studied. This is particularly relevant when it

comes to train models.

2.4 Partial Conclusion

The base case system analysis has shown great potential in data Sterlite is already acquiring

without considering adding any sensors yet. However, work needs to be done in order to

improve how those sets of data are logged, merged and conveyed to our team. Nevertheless,

our weekly exchanges with the team on site have already lead to significant improvement in

terms of data cleaning, organization and documentation. Good practices should be set up in

order to maximize the success of this project.
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Chapter 3

Experiments

For about half of the project, only core deposition data were available to us. Therefor, the

first experiments aimed to familiarize ourselves with this specific operation.

3.1 Time Series Data from Deposition Operation

3.1.1 Zoom in Core Deposition Process

Doped Silica Deposition The aim of core deposition operation is to deposit GeO2 and

SiO2 particles on the mandrel. Doping Silica with Germanium enables to modify refractive

index of glass in order to obtain the desire cross sectional refractive index profile needed to

guide the light through the fiber. For the recall, two preforms are deposited simultaneously

inside one deposition machine which are called dual spindles machine. Three operations are

involved in the process:

Step 1: The SiCl4 and GeCl4 vapours are formed in separate vaporizers (at respectively

75°C and 100°C) maintained at controlled temperature close to the saturating vapor pressure

of the particles.

Step 2: Using O2 carrier gas, these vapours pass through a heated line and are finally in-
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jected in the center region of an annular H2/O2 burner. There is a gas flow rates controller

to respect to the requirements.

Step 3: The temperature obtained from the reaction between H2 and O2 leads to the oxida-

tion/hydrolysis of the Silica vapours, resulting in the formation of SiO2 particles and GeCl4

vapours resulting in the formation of GeO2 particles as described by the following reaction

equations:

SiCl4(g) +O2(g) −→ SiO2(s) + 2Cl2(g)

SiCl4(g) + 2H2O(g) −→ SiO2(s) + 4HCl(g)

GeCl4(g) + 2H2O(g) −→ GeO2(s) + 4HCl(g)

For a normal process, the recipe starts with the Mandrel Flame Polish Mode. An aluminum

mandrel of size of 67 mm with the length of almost 1.5 meter is used. Hydrogen auctions is

provided during the flame polishing to avoid defects points on the mandrel. After that is done

carbon coating through acetylene to maintain the smoothness of the mandrel post deposition

process (5 to 6 passes). Then flame polishing is done again with hydrogen flow. The reason is

that the mandrel got saturated in CO2 during the previous passes so for sticking purpose this

operation is redone. Last but not least, deposition starts during the Centerline Mode with

few passes of SiCl4 only again to enable the mandrel to be smoothly removed afterwards.

One pass corresponds to one movement of the traverse in one direction. To give an idea,

during Core Deposition Mode, 350 to 400 passes are equivalent to 1kg deposited. Now the

mandrel is ready for core deposition.

Deposition is splitted into two sections/layers: one is core and the other is clad, but here the

clad refers to the clad of the preform core and not the preform clad that will be deposited

after in the Clad Deposition Process (see figure 1.2).

Each passes enable to split the core into layers so to slightly change the refractive index each
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time and obtain the bell curve we see on the refractive index profile on figure 3.11.

Throughout the different passes, the suction may vary. So, out of the total quantity of SiO2

and GeO2 generated, maybe only 50-60% actually get deposited (the rest goes to scrap). So,

because of these fluctuations, the last stage of core deposition Core J Mode is based on the

weight of the preform and runs until the about 900g is reached. So it is a close loop on the

weight considering the index profile calculated. Number of passes during this mode can vary

from 50 to 100. All in all, out of 14kg, 1kg will be SiO2 and GeO2 for the core and the rest

(13kg) will be SiO2 only for the clad.

Finally, Clad Mode is divided in 2 different sections to increase the deposition rate because

there should be a gradual increment of the flow rate over this period of time.

The recipe sets up 17 stages which are the following:

Core Deposition Recipe Structure

– Mandrel Flame Polish Mode

– Carbon Coating Mode (Acetylene)

– Carbon Flame Polish Mode

– Centerline Mode (SiCl4 only)

– Core Deposition Mode (350-400 passes modes)

– Core A to I Modes (GeCl4 + SiCl4)

– Core J Mode (SiCl4 + GeCl4) controlled on Weight

– Clad Mode Oscillation 1 (SiCl4 only)

– Clad Mode Oscillation 2 (SiCl4 only)

Data are time series data acquired approximately every 5 seconds. Every pass is about less

than 20 seconds so about three to four data points are acquired per pass.
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Figure 3.1 describes the inside of the deposition machine and figure 3.2 the gaz flow before

being injected into the burners head.

Figure 3.1: Schema of the inside of the deposition machine. [3]

Figure 3.2: Schema of SiCl4 flow before being injected into the deposition machine. The
schema is the same for GeCl4 flow. [3]

3.1.2 Some Plots

Time Series Throughout Stages Figures 3.3 and 3.4 present some time series run plots

of the data communicated by Sterlite team. We can see the proportional importance of each

stages one compared to each other.
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Figure 3.3: Weight, GeCl4 gaz flow (gpm), SiCl4 gaz flow (gpm) and H2 gaz flow (Lpm)
plotted against Elapsed Time (min) showing the different stages of the deposition process.

Figure 3.4: O2 gaz flow (Lpm), GeCl4 Vapouriser Head Pressure (Torr), GeCl4 Vaporiser
Finger Temperature (°C) and SiCl4 Head Pressure (Torr) plotted against Elapsed Time (min)
showing the different stages of the deposition process.

Correlation Matrices A way to study linear interdependence between measurements is

to compute the Kendall’s correlation coefficients between all pairs of variables in our data

table. The function corrplot from MATLAB also returns tables for the correlation matrix R
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and matrix of p-values. Some examples are shown in figures 3.5, 3.6 and 3.7 when comparing

all measurements with the same physical dimensionality one with each other.

Figure 3.5: Kendall’s correlation coeffi-
cients matrix between the time series vari-
ables SiCl4 Head Pressure, GeCl4 Head
Pressure, Fume Pressure, Hood Pressure,
SiCl4 Supply Pressure, GeCl4 Supply Pres-
sure.

Figure 3.6: Kendall’s correlation coeffi-
cients matrix between the time series vari-
ables SiCl4 Liquid Temperature, GeCl4
Liquid Temperature, SiCl4 Hotbox Tem-
perature, GeCl4 Hotbox Temperature,
GeCl4 Hot Finger Temperature and SiCl4
Hot Finger Temperature.

For example, on figure 3.6, we can observe that SiCl4 (resp. GeCl4) Hot Finger Temper-

ature and SiCl4 (resp. GeCl4) Liquid Temperature are linearly related which makes sense

considering the liquid SiCl4 is directly heated by the hot finger coil (see schema 3.2). On

figure 3.5, we can see all pressure measurements are linearly independent one from each other.

Figure 3.7 focuses on every variables related to mass flow. We can first observe that O2

(resp. H2) flow rate at the tail and at the head of the end burner are behaving exactly

the same which matches the fact that they are subject to the same controller. We can also

validate that weight and diameter are linearly correlated (for recall, density of the preform is

homogeneous and about 2.2kg/m3). Last but not least, we observe some strong correlation

between the weight and the reactives of the oxidation/hydrolysis of SiCl4. We cannot see

this correlation for GeCl4 since it is deposited only during specific staged of the process and
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in less quantity.

Of course, this type of analysis should be applied to all the other core operations.

Figure 3.7: Kendall’s correlation coefficients matrix between the time series variables Weight,
O2 flow, H2 flow, SiCl4 flow, GeCl4 flow, Diameter, C2H2 flow, Make O2 flow, Tail End
Burner H2 flow, Head End Burner H2 flow, Tail End Burner O2 flow, Head End Burner O2
flow and Inner O2 flow.

Traverse Position and Weight Acquisition Some work on traverse control and weight

acquisition has also been done and has lead to the same conclusion as the study previously

done by Sterlite (see section 2.2. As the deficiencies have already been identify but won’t be

attested for now, those results are not presented in this work and weight measurement will

be used as it is.
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3.1.3 Deposition Rate/Efficiency

Core Deposition efficiency calculation Sterlite references for deposition rate and effi-

ciency calculation are described in the Annex section 6.2. Through our exchanges, we also

learned that overall deposition efficiency of SiCl4 should about 50%-60%. Overall deposition

efficiency results shown in figure 3.8 show slightly smaller values because they have been

calculated for total GeCl4 and SiCl4 since GeCl4 is know to be a bit less effective.

Figure 3.8: Overall SiCl4 and GeCl4 deposition efficiency associated to its preform (preforms
are sorted chronologically) for deposition machines CD1, CD2, CD3 and CD4.

When looking at the evolution of the deposition efficiency throughout time (all data set are

from Jan 2021 to June 2022), we can see in figure 3.8 that the process gets out of control
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during multiple periods. It also seems like machine 3 presents the worst results in terms of

efficiency and regularity. It should also be noted that it happens that for certain periods of

time, both spindles are able to perform almost equally (red and blue lines are confunded on

the graph). Extending those periods so that they become majority is so a reachable goal for

the future.

Now zooming on the periods of time where the process seems under control, we can observe

in figure 3.9 the deposition efficiency/rate in function of the stage. Note: Efficiency is not

plotted against diameter because diameter acquisition is known to be unreliable.

Figure 3.9: Deposition efficiency calculated
per stage according to Sterlite guide 6.2.

Figure 3.10: Comparison of predicted
thermophoretic deposition efficiency as a
function of target diameter with exper-
iments of Bautista et al. (1990) and
Bautista and Atkins (1991) [4].

Starting at Core Deposition, we can observe the same trend as expected in the literature

when considering OVD process [4]: the deposition efficiency grows with the diameter of the

preforms. Also, we can see that the big difference in deposition efficiency between the first

and the second spindle happens during the core deposition phases (from Core Mode A to

Core Mode I). As expected, we observed that Core Weight Mode ’J’ re-establishes the balance

between the two spindles. Indeed, after this mode, deposition efficiencies are equal.
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Note: Figure 3.9 has been plotted for a preform which is in the stable zone identified in

figure 3.8. When we plotted this graph for different preforms one next to each other, we can

observe a large disparity between the plots which again suggests a lack of process control.

3.2 Experiments on Rod Profile data

3.2.1 Refractive Index Profile

The refractive index profile shows how the refractive index changes across the geometry of the

fiber or preform. It is generally measured across the central axis of the end face, indicating

the extent of core and cladding.

How is it measured? Preform Analyzer measures the deflection angle of a narrow laser

beam when it refracts through a cross-section of the preform. As the beam scans across the

preform, it encounters different index features in the preform causing its deflection angle to

change.

Once the entire cross-section of the preform has been scanned by the beam, a mathematical

transformation (the Abel transformation) is used to determine the index structure in the

preform that created the measured deflection function. Sterlite also stretches a portion of

the rod to be analysed in order to produce less deflection angle distortions. More explanation

about rod profile measurement can be found in the documents Core Profiler and Methods

[10] and STL-OF core manufacturing [2].

3.2.2 Spatial Characterisation of Rod Profile Variation

Using rod profile data, we attempted to define a metric to characterized the homogeneity of

rods from the same mother preform. The idea is to compare profile curves point by point

and for each point to compute the standard deviation between the rods. It gives the kind

of profile we can observe on figure 3.12. For example, top right preform seems to present a
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greater homogeneity in rod profiles than top left preform.

There is no follow up on this method for now.

Figure 3.11: Rod profile (refractive index)
plotted against position in the rod cross
section. 4 rods from one preform are plot-
ted each time.

Figure 3.12: Standard deviation between
rods refractive index in function of the po-
sition in the rod cross section.

3.3 Partial Conclusion

As explained in section 2.2, it seems like the control instabilities encountered by Sterlite are

mainly related to inconsistent weight and diameter acquisition. In the case of weight for

example, load cells measurement takes are disturbed by the extreme temperature inside the

deposition machine (because the calibration is done at room temperature) and the movement

of the traverse. Before even considering changing the sensors (which should not be taken

lightly considered that the deposition is sealed and operating at very high temperature), one

significant improvement could be increasing the data acquisition frequency. Indeed, more

sample points could give better insight on the dynamics underlying during the acquisition.

Also, if those dynamics can be fully characterized, there is a chance that they can be filtered

out.

Last but not least, we know that some manual adjustments are done on site by directly

modifying the recipe in order to balance performances over the machines since the 8 spindles
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should perform the same. Having access to the recipe for each preform could help understand

those habits and their impact on the process variables measured.
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Chapter 4

Analysis

The reception of new sets of data covering the entire process from deposition to IPQ motivated

a new approach: to zoom out times series and study overall patterns and trends in the data.

The goal is to demonstrate relationship between preform to IPQ measurements and even

preform to fiber draw measurements.

4.1 Feature Engineering

4.1.1 Data Pre-processing

The first problematic was to translate times series data into feature vectors specific to each

preform. To do so, the initial strategy was to consider that the more features the better.

Thus, for each preform, we started by calculating the mean and variance of every variable

measured per stage. So, one run of one variable measurements will be characterized by

twice the number of stages in the process (mean and variance) and one preform run will be

characterized by a feature vector of size being twice the number of stages time the number

of variables acquired during the run. Then all those feature vectors are concatenated in a

feature matrix in which each row is associated to one preform. One limit of this strategy is

the large size the feature vectors can get which makes it hard to track back which feature is
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originally calculated using which stage/variable. This is especially limiting when doing Prin-

cipal Component Analysis on the feature matrix. One way to fix this would be to document

in a string array the name of each feature column.

Comments: If the process doesn’t present any stages (rod draw for example), we average on

the entire run. Sintering and IPQ data set are not time series so already consist of a sort of

feature matrix once non numerical and process set up columns are removed. In general, some

cleaning has been necessary in order to only consider varying measured variables relevant

to the course of the operation. Last but not least, each column (corresponding to one

feature over all preforms) is standardized so that, in the following steps, each of the variables

contributes equally to the analysis.

4.1.2 Feature Wise Correlation Analysis

Linear dimensionality reduction Once feature matrices are obtained, we can learn

about implicit trends in the data. One way to start is by applying Principal Component

Analysis (PCA) which is a dimensionality reduction method that helps transform a large set

of variable into a smaller one without losing information (variation).

How does PCA work? In short, the PCA algorithm first compute the covariance matrix

of the data set (i.e. how the variables of the input data set are varying from the mean with

respect to each other), then, the eigenvectors and eigenvalues of the covariance matrix are

computed to identify the principal components. The principal components are new variables

(axes) that are constructed as linear combinations or mixtures of the initial variables (axes).

Those combinations are such that the new variables/axes (i.e., principal components) are

uncorrelated and most of the information within the initial variables is ‘captured by’ the first

components.

For example, a 10-dimensional data gives you 10 principal components, but PCA orders the
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new components/axes to put maximum information (variation) in the first component, then

maximum remaining information (variation) in the second and so on. The algorithm also

gives you the percentage of variation in the data set explained by each of the component so

that you can chose only the components with the greater variation explanation in order to

reduce dimensionality without losing much information. It should be noted that principal

components may be less directly interpretable than the original individual variables but will

have meaning relative to physical process.

Now that non significant axes are removed, the eigenvectors associated to the selected com-

ponents form the new feature axes. Finally, we use the new feature axes to reorient the data

from the original axes and are able to visualize variations in a lower dimensionality space.

As mentioned above, the larger the feature matrix is, the less interpretable the PCA analysis

is going to be. For our case, it gave interesting insights on soaking operation and IPQ data.

Anyway, first proceeding to a PCA dimensionality reduction before any other manipulation

helped reducing significantly computation time.

Comments PCA confirmed that both mean and variance are relevant in capturing vari-

ation among the run measurements. Also, since PCA uses the global covariance matrix to

reduce data, you can get that matrix and apply it to a new set of data with the same result.

That’s helpful when you need to try to reduce your feature list and reuse matrix created from

train data.

Results The strategy for principal components selection was to chose eigenvectors explain-

ing more than 0.5% of the data set variations. The results are describe in the table 4.1. We

will use those dimensionality reduced space for the rest of our analysis in order to decrease

computing time.

The soaking data set should be considered as an exception as only two of its columns (Soak-

ing Time and N2) are independent. The other columns are either proportional or constant.
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Therefor, there is no need to apply PCA for dimensionality reduction. Also, plotting soaking

variation on the two independent axis hasn’t given any satisfying results.

The IPQ data set presenting only 11 variables, it has been interesting to visualize the eigen-

vector coefficients associated to each initial variable. On figure 4.1, you can see for example

that DELTPLUS (refractive index, cf annex dictionary 6.1) alone is explaining about 8%

of the overall variations observed in the data set. This highlights the refractive index as a

strong IPQ feature.

Before PCA After PCA

Deposition 720 30

Sintering 289 33

Soaking / /

Rod draw 76 40

IPQ 11 8

Table 4.1: Data reduction after PCA for deposition, sintering, rod draw adn IPQ.
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Figure 4.1: PCA results on IPQ data set.

4.2 Consistent Labeling Mapping

4.2.1 Non-Linear Dimensionality Reduction

PCA being limited to linear dimensionality reduction (which is likely not the best fit for the

data we have access to), it can be interesting to use an algorithm that deals with linearly

non-separable data.

t-distributed stochastic neighborhood embedding (t-SNE) t-distributed stochastic

neighborhood (t-SNE) was developed by Laurens van der Maaten and Geoffrey Hinton in

2008. This probabilistic algorithm is mostly used to understand high-dimensional data and

project it into low-dimensional space (like 2D or 3D). Specifically, it models each high-

dimensional object by a two- or three-dimensional point in such a way that similar objects

are modeled by nearby points and dissimilar objects are modeled by distant points with high
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probability. t-SNE is iterative so, unlike PCA, it cannot apply on another dataset.

How does t-SNE work? The t-SNE algorithm comprises two main stages. First, t-SNE

constructs a probability distribution over pairs of high-dimensional objects in such a way

that similar objects are assigned a higher probability while dissimilar points are assigned a

lower probability. Second, t-SNE defines a similar probability distribution over the points in

the low-dimensional map, and it minimizes the Kullback–Leibler divergence (KL divergence)

between the two distributions with respect to the locations of the points in the map. While

the original algorithm uses the Euclidean distance between objects as the base of its similar-

ity metric, this can be changed as appropriate.

t-SNE has been used for visualization in a wide range of applications, including genomics,

computer security research, natural language processing, music analysis, cancer research,

bioinformatics and biomedical signal processing.

While t-SNE plots often seem to display clusters, the visual clusters can be influenced strongly

by the chosen parameterization (e.g. perplexity, number of steps, learning rate, distance) and

therefore a good understanding of the parameters for t-SNE is necessary1. Such "clusters" can

be shown to even appear in non-clustered data, and thus may be false findings. Interactive

exploration is thus necessary to choose parameters and validate results [11]. If it has been

demonstrated that t-SNE is often able to recover well-separated clusters, it should be used

for visualisation only and rather not for clustering afterwards.

Comments t-SNE might be less useful when wanting to perform dimensionality reduction

for ML training (cannot be reapplied in the same way). It’s not deterministic and iterative

so each time it runs, it could produce a different result.
1See MATLAB documentation
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4.2.2 Examples of Visualization

First attempts on deposition data per variable The idea behind visualizing data sets

in a 2-dimensional space is to test if we can visually identify some clusters/trends. In addition

to that, we want to colorize each point (representing a preform feature vector reduced in a

2D space) according to some labels we know and see if this underlying knowledge can explain

the clusters observed or not. For example, figures 4.2 and 4.3 show the machine 1 statistics

associated with Head Endburner Hydrogen Flow for each preform reduced in a 2D space.

We can see that both chronology and spindles can explain the clusters observed.

Figure 4.2: t-sne applied to Head End-
burner Hydrogen Flow measurements (dis-
tance: cosine, perplexity:50) with opera-
tion dates labeling.

Figure 4.3: t-sne applied to Head Endburner
Hydrogen Flow measurements (distance: co-
sine, perplexity:50) with spindle number la-
beling.

We iterated the methods on every variables for the four deposition machines and summarized

the observation results in figure 4.4. Each time the name of a machine is written in a cell, it

means that, for the corresponding row variable, clusters have been observed to be correlated

to the column corresponding label (if clusters have been identified). We can observe that,

overall, pressure and temperature variable from machine 1 are controlled more uniformly as,

most of the time, no cluster have been identified in the variable data.
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Figure 4.4: Summary of trends observed in deposition data (per variable) which match known
labels (like time, machines, recipes and so).

Extending the method to each process Since the ultimate goal is to compare clusters

process by process, we apply the same methodology to every process feature matrix. In what

we call a process feature matrix, the information of the variable is lost as all variables feature

matrix have been concatenated side by side. Note: soaking data set presenting very few

variation i.e. information, it has been left on the side for now.

When looking at process data from deposition in figure 4.5 and 4.6, we can see both strong

correlation with time of the year and with the machine, even the spindle use. Indeed, it ap-

pears that the cluster in the center corresponds almost exclusively to preforms manufactured

between January 2021 and December 2021 since the five clusters around it would correspond
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to the period from January 2022 to June 2022. We can also observe a strong correlation

between clusters and spindles especially for machines 1 and 4 where the separation is clear.

Figure 4.5: t-sne visualization of month la-
beling for deposition data set.

Figure 4.6: t-sne visualization of spindle la-
beling for deposition data set.

Figure 4.7: t-sne visualization of machines
labeling for sintering data set.

Figure 4.8: t-sne visualization of machines
labeling for rod draw data set.

Comments Other methods have been experimented for dimensionality reduction like SPCA,

LDA and UMAP but results have not been successful enough to be presented in this work.
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4.3 Clusters Counting for Detecting Changes

4.3.1 Approach: to Study Clusters Overlap Between Processes

The figure 4.9 bellow shows the approach as it has been presented to Sterlite team. As

we just explained the two first steps (base data frame and dimensionality reduction) in the

previous sections, this section focuses on the strategy to actually cluster the data and study

the overlap between clusters from one process to another.

Figure 4.9: Approach presented to Sterlite team for demonstrating relation between Preform-
to-Test data.

Clustering It is a good thing to know that there are underlying trends and clusters in the

data set and to be able to partially explain them with intuitive labeling but for the sake

of the analysis, we need to be able to partition the data according to those clusters using

clustering algorithms. We started with the most common one: k-means clustering.

k-means clustering is a method of vector quantization, originally from signal processing, that

aims to partition n observations into k clusters in which each observation belongs to the
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cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of

the cluster. The input taken by the algorithm is the number of clusters k that should be

identified. Choosing k is one of the most challenging task of this clustering algorithm. One

way to do it could be to use the intuition from the t-sne observations but more conventionally,

we prefer to use conventional clusters evaluation methods as the Elbow Method and the

Silhouette Method. The two methods are equivalent and should be used in combination the

one with the other. However, the Elbow Method is not directly implementable in MATLAB

so, in a first approach, we used the Silhouette Method only.

Silhouette Method for Clusters Evaluation This technique is based on the calculation

of the silhouette coefficient which measures how similar a data point is within a cluster

(cohesion) compared to other clusters (separation). S(i) being the silhouette coefficient pf

the data point i, it can be expressed in function of a(i) the average distance between i and all

the other data points in the cluster to which i belongs and b(i) the average distance between

i and all clusters to which i does not belong the following way: S(i) = b(i)−a(i)
max(a(i),b(i))

. The

coefficient is between [-1,1]. A score of 1 denotes the best meaning that the data point i is

very compact within the cluster to which it belongs and far away from the other clusters.

The worst value is -1. Values near 0 denote overlapping clusters.

To find the optimal number of clusters, we first select a range of values of k and then

the overall average silhouette coefficient for each value of k. Thus, the optimal k is the

one maximizing the average silhouette coefficient. The figure 4.10 shows the evaluation for

deposition, sintering, rod draw and IPQ data sets. We chose cosine for the distance as it was

the one giving the best results in term of data partitioning when using t-sne visualization

(i.e. clearest separation of clusters the one from the others).
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Figure 4.10: Clusters evaluation using Silhouette method for deposition, sintering, rod draw
and IPQ data (distance cosine)

Now that we have k for each data set, we can directly apply the k-means algorithm which

will produce an array that assigns each preform to a cluster.

Metrics to study overlaps between clusters The Dice’s coefficient and the Jaccard

coefficient are statistic used to gauge the similarity of two samples. In our case, we will use

them to estimate the overlap between clusters from process 1 (e.g. deposition) and clusters

from process 2 (e.g. sintering) and so on following the process chain until IPQ measurements.

Given two sets of data X and Y, the Dice’s coefficient equals twice the number of elements

common to both sets divided by the sum of the number of elements in each set: DSC = 2|X∩Y |
|X|+|Y |

where |X| and |Y| are the cardinalities of the two sets (i.e. the number of preforms in each

cluster). Whereas the Jaccard coefficient is defined as the size of the intersection divided by

the size of the union of the sample sets. Both are equivalent with a close difference: Dice does

not satisfy the triangle inequality, hence 1−DSC can not properly be used as a metric, while

1 − J can. However, Dice’s coefficient is used more often because it gives bigger coefficient

than Jaccard’s. For the same reason, we chose to present results in the form of a Dice’s

coefficient matrix.
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4.3.2 Results

First thing we can observe especially on figure 4.12 is that, although the silhouette method

indicated a number of clusters that matches the ones visualized with t-sne, k-means identified

some out layers which haven’t been considered as so by the cosine metrics. This created some

single points clusters (clusters 3, 5 and 6) which are inconvenient for our approach. All in

all, we don’t observe any strong overlap between clusters from deposition and from sintering.

Figure 4.11: t-sne visualization of k-means
clustering for deposition data set.

Figure 4.12: t-sne visualization of k-
means clustering for sintering data set.

Figure 4.13: Dice’s coefficient matrix showing
the overlap between clusters from deposition
and sintering data sets.
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Comparing each process clusters to IPQ clusters (figures 4.14, 4.16 and 4.15) also gave in-

conclusive results as none of the Dice’s coefficients observed have greater value than 0.4.

Figure 4.14: Dice’s coefficient matrix
showing the overlap between clusters from
deposition and IPQ data sets.

Figure 4.15: Dice’s coefficient matrix
showing the overlap between clusters from
sintering and IPQ data sets.

Figure 4.16: Dice’s coefficient matrix
showing the overlap between clusters from
rod draw and IPQ data sets.

Figure 4.17: t-sne visualization of k-
means clustering for IPQ data set.

One last tentative was to concatenate all stats from all processes together and compare those

clusters (figure 4.18) to the ones from IPQ (figure 4.19). This time, we made sure to adjust

the number of clusters suggested by the silhouette method in order to limit single point

clusters. This way, we have been able to obtain slightly greater Dice’s coefficients up to 0.46.
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Figure 4.21 shows the results of considering not only the clusters from all processes data set

but also their intersection when computing the Dice’s coefficient. This highlights again no

particular trend in clusters overlap.

Figure 4.18: t-sne visualization of k-
means clustering for IPQ data set.

Figure 4.19: t-sne visualization of k-
means clustering for IPQ data set.

Figure 4.20: Dice’s coefficient matrix
showing the overlap between clusters from
rod draw and IPQ data sets.

Figure 4.21: Dice’s coefficient matrix
showing the overlap between clusters and
their intersections from all processes con-
catenated data set and IPQ data sets.
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Comments Results from this approach are mixed as we would have expected less mix

match between the clusters and more strong coefficients standing out in the Dice’s coefficient

matrix. Dice’s coefficient may also not be the best suited metric for this type of exercise.

Indeed, coefficient order of magnitude is dependant from the relative sizes of the two clusters,

so it is hard to compare between each other coefficients on the same row or column.

However, this method was initially applied to the entire set of preforms available (i.e. not

the preforms only present in every operation data sets) and has helped to identify and track

disappearance of group of preforms throughout the processes.

4.3.3 Approach: to Study Clustering Algorithms Known Informa-

tion Capturing

The reception of hardware change history for deposition machines has created new oppor-

tunities for the cluster overlap comparison methodology. In fact, Dice’s coefficient matrices

can be used for studying how well clustering algorithms can capture know information about

the data.

In figure 4.22, we studied the performance differences between k-mean algorithm and k-

medoids algorithm. To do so, we compared clusters corresponding to different hardware

periods (those have been assigned by hand) to the clusters found by the algorithm. An ideal

case would be a matrix with only one coefficient equal to 1 in each row and each column.
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Figure 4.22: Example of studying how coherent clusters identified by k-means/k-medoids
algorithms are with know deposition machines hardware changes.

4.4 Regression

Now that we have a better understanding about the underlying trends in the data sets and

what seem to be the sources of influence, we can start developing predictive models using

those existing data to identify and model relationships between input controls and material

and output properties.

4.4.1 Input Data Preparation

First, we want to create matching size input and output data sets. Indeed, all processes

information are logged per preform since IPQ measurements are logged per rod. To do so,

we choose to consider each rod measurement as an output observation for the associated

mother preform. So we will replicate the mother preform row in the input the number of

times a measurement on one of its rod has been logged. The approach is illustrated in figure

4.23.
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Figure 4.23: Input data preparation for IPQ measurements prediction using regression.

Input We will consider several data sets as inputs in order to compare regression perfor-

mances when fed with different types of data. Those are the following:

– All statistics from all processes concatenated in a big matrix (1061 variables). Raw

data are used but also PCA reduced data.

– Sequence of machines the preform has been going through and deposition dates encoded

in hot-ones vectors.

– Sintering and deposition recipes encoded in hot-ones vectors.

– Rod number (measurements being always made in the same order) encoded in hot-ones

vectors.

Output At first we have considered predicting all IPQ measurements at one time (11

variables), then only the first principal component (using PCA) and finally each variable

individually. Only predicting DELTPLUS (refractive index) alone gave significantly good

results so that is the direction we chose to take.

Performance Metric To compare the different models, we will compute the coefficient of

correlation between test output and predicted output generated using test input and trained

network.
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4.4.2 Regression Experiments

We built and trained different families of algorithm (neural networks, regression tree and

random forest, kernel, lasso regressor, support vector machines) on several combinations of

the inputs and outputs cited above, the best results are summarized in the following tables

4.2, 4.3, 4.4 and 4.5.

"PC" refers to the fact that only the principal components have been selected (i.e. explaining

more than 1% of the variations).

Neural Network

Input Output
Output test vs predicted

correlation coefficient

all_processes_stat_PC Machines Dates DELTPLUS 0.64

all_processes_stats Machines Dates Recipes DELTPLUS 0.61

all_processes_stats DELTPLUS 0.60

all_processes_stat_PC DELTPLUS 0.60

all_processes_stats_PC Machines Dates Recipes DELTPLUS 0.58

all_processes_stats Machines Dates DELTPLUS 0.52

all_processes_stat_PC all_IPQ_PC no convergence when training

all_processes_stats all_IPQ no convergence when training

Table 4.2: Regression testing results when training a 6 layers Neural Network (FullyConnect-
edLayer - 500 - 300 - 150 - 100 hidden units - FullyConnectedLayer).

Regression Tree
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Input Output
Output test vs predicted

correlation coefficient

all_processes_stats Machines Dates Recipes DELTPLUS 0.75

all_processes_stats DELTPLUS 0.75

Machines DELTPLUS 0.73

all_processes_stats Machines Dates DELTPLUS 0.72

all_processes_stats_PC DELTPLUS 0.71

all_processes_stats_PC Machines Dates Recipes DELTPLUS 0.70

all_processes_stat_PC Machines Dates Recipes all_IPQ_PC 0.11

all_processes_stats all_IPQ_PC 0.01

Table 4.3: Regression testing results when training a Regression Tree (MATLAB automatic
hyperparameters optimization).

Random Forest

Input Output
Output test vs predicted

correlation coefficient

all_processes_stats DELTPLUS 0.73

all_processes_stats Machines Dates DELTPLUS 0.73

all_processes_stats_PC DELTPLUS 0.73

all_processes_stats Machines Dates Recipes DELTPLUS 0.73

all_processes_stats_PC all_IPQ 0.147

Table 4.4: Regression testing results training a Random Forest (80 trees).

Kernel
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Input Output
Output test vs predicted

correlation coefficient

all_processes_stats DELTPLUS 0.75

all_processes_stats Machines Dates DELTPLUS 0.75

all_processes_stats Machines Dates Recipes DELTPLUS 0.75

Machines Dates Recipes DELTPLUS 0.73

Machines Dates all_IPQ 0.73

Machines Dates Rod Numbers DELTPLUS 0.73

Table 4.5: Regression testing results training a Kernel (automatic hyperparameters optimiza-
tion).

Comments Rod number have been introduced after that this first serie of experiment has

been done, therefor this data set doesn’t appear in the table. However, different combination

with encoded machines sequence and dates but also raw data were tried for Kernel training

and gave slightly worst results for predicting DELTPLUS than when training without this

additional information about the rods. However, influence on training of rods number as an

input has not been tried yet for predicting other variables than DELTPLUS.

Results We obtain best prediction results (in terms of correlation coefficient and robust-

ness) when applying a Kernel algorithm on raw statistics data from all processes to predict

the refractive index with a correlation coefficient of 0.75. Kernel algorithm is all the more

interesting as it is the only algorithm which has been able to predict all IPQ measurement

at once with a good correlation coefficient of 0.73.

In addition to this, the main takeaways are the following:

– For almost every algorithm used, we obtain similar results when predicting the refractive

index DELTPLUS using the raw data directly or only the encoded information about

the machines sequence the preform has seen and the fabrication date. This opens the
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way for input ablation strategy. Indeed, we could train the algorithm only on certain

sequences to see if it increase the correlation coefficient and in fine develop some tool

to suggest the best machines sequence for a desired refractive index.

– Adding information about the recipes doesn’t seem like to improve DELTPLUS pre-

diction. It is still to be tested for other IPQ variables.

– DELTPLUS is the only variable which we are able to "predict" for now (expect with

Kernel). Some other strategies should be considered for the rest of the variables.

Nevertheless, it is great news to already see some signal in the data even though data mea-

surement, logging and tracking have room for improvement.

4.5 Partial Conclusion

Several strategies have been implemented in order to analyse existing data:

– Dimensionality reduction with linear and non linear algorithms

– Unsupervised learning using clustering algorithms

– Supervised learning using regression algorithms to predict IPQ data

This way, we have been able to identified strong trends (especially for deposition) in the data

sets with data behaviours mainly explained by the information of the machine and the date.

This statement has been demonstrated using each of the three strategies listed above.

Last but not least, regression gave the most promising results by attesting to a signal in the

data mainly in machines sequence and date information which opens the door to the design

of a large variety of predictive tools.

Note: another approach to regression for predicting IPQ measurement could be to do classi-

fication using IPQ identified clusters as a label.
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Chapter 5

Conclusion

5.1 Conclusion

This thesis demonstrated the feasibility of a data-driven approach on core deposition process

in order to identify and improve efficiency losses. Indeed, we pointed out the potential of the

current data sets available with the example of an in-depth investigation into core deposition

operations. Unsupervised learning methods, zooming out time series data and create features

statistics associated with each process, led to the most promising results: we learned about

underlying trends in the process which are mainly time (month) dependencies and machine

sequence dependencies. We also defined some methods to track trends throughout the process

following the path the preform has taken. All in all, those analyses have set the pavement

for quality measurement prediction using intelligently chosen input data sets and kernel

regression algorithm. We are definitely able to identify some signal in the data beside we are

still in the very early phase which looks good for the future of this project.

5.2 Room for Improvement

Considering our results, we are about to reach the end of the stage 1 described in the thesis

approach. However, even before considering introducing new sensors in the process, several
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area of improvement have been identified. The overall priority is in fact to strengthen the

data acquisition pipeline which can be presented in three categories:

Data Measurements

– Desynchronize measurements from disturbance sources (e.g. weight measurement vs

traverse movement).

– Increase measurement frequency (= decrease sampling time) especially for nosy vari-

ables (it would help having a better understanding of the underlying dynamics and

possibly help filter noise out).

– Develop new protocols for calibration based on the data.

– Acquire better sensors (diameter, rod profile).

Data Logging

– Make sure that sampling time is constant.

– Codify everything that falls under comments in data set (so it can be used as categorical

labeling).

– Log more information about where the measurement has been made (especially for

rods) and the overall context (e.g. hardware changes).

Data Tracking

– Dedicate one person to verify that all data acquired are coming through up to the cloud

until the pipeline is robust enough.

– Create consistent protocols for pulling request. Same for merging data sets.

– Document more (e.g. operation recipes).
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The scope of this project could also be extended by collaborating with Sterlite R&D teams

who worked on physics modeling of the process (COMSOL, Fluent/CFD) as well as by

having access hot stage microscope images from quality measurement (open the way to vision

machine learning).

5.3 Future Work

While waiting for more data (or cleaner data set), the following tasks can be attested:

– Study each process in-depth as it has been presented for deposition operations (see

chapter 3). Map data with new type of labelling like hardware changes, operators

comments or information from IPQ. A way to keep track of the statistics origin (e.g.

mean of which variable during which stage) when creating the features vectors could

be very helpful.

– For regression, develop ablation strategy for training set: split dataset according to

hardware changes, narrow down to only certain machines combinations.

– Try out reverse approach using supervised learning: train algorithm to predict from

which machines the raw data have been acquired.

With more data, we could:

– Develop models for nanoscale structure (i.e. porosity) using hot stage microscope (be-

cause for now we can know only by destructive methods used one the preform is done),

the idea would be to characterize the right temperature and then control it (deposition

process).

– Identify, for sintering process, sensors which could be put inside the quartz tube to

get temperature profile during sintering (it is more important than better temperature

acquisition during deposition).
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Chapter 6

Annexes

6.1 Data Dictionaries

6.1.1 Soaking

Figure 6.1: Dictionary for soaking operation data set.
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6.1.2 Sintering

Figure 6.2: Dictionary for sintering operation data set.
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6.1.3 Deposition

Figure 6.3: Dictionary for deposition operation data set.
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6.1.4 Rod Draw

Figure 6.4: Dictionary for rod draw operation data set.
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6.1.5 IPQ

Figure 6.5: Dictionary for IPQ measurements data set.

6.2 Deposition Efficiency Calculation

Calculation of Dep Rate and Dep Efficiency of the Core Preform Deposition

Process at STL Waluj:

1. Raw runtime Data from the Maintenance Department is collected in the form of .xlsx

or .csv format.

2. Data sets/Columns that needs to considered for calculating Deposition Rate:

(a) DEP TIME (in mins)

(b) Process Stage (name of the stages)

(c) S1/S2 weight (in Kg)

3. Deposition Rate (in grams per minute or gpm):

Deposition Rate of the soot preform is the rate of increase in the weight of the preform
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per unit time. It is calculated in two different ways: Stage-wise and Overall Deposition

Rate.

(A) Calculation of Stage-wise Deposition rate:

(a) Select the desired Process Stage by filtering out the rest.

(b) Note down the initial and final Dep time and S1/S2 weight.

(c) Depo Mode wise Dep Rate is calculated as follows:

DepoModeDepRate =
(S1Weightfinalpass − S1Weightinitialpass) ∗ 1000

DepT imefinalpass −DepT imeinitialpass

Multiplying by 1000 is done to convert the Kg values to gm values.

(d) Cumulative Deposition Rate based on the Depo Mode Dep Rate:

CummDepRate =

∑Clad2Mode
CenterlineMode S1Weightineachpass∑

DepT imeineachpass

(B) Calculating Overall Deposition Rate:

Overall Deposition Rate of the Preform is calculated as follows:

OverallDepRate =
S1WeightendofCladMode2

DepT imeendofCladMode2

Cumulative and Overall deposition rates are very close to each other with an error pc.

of 0.16%. For accurate calculations, stage-wise Dep rate may be considered.

4. Deposition Efficiency (in %)

Deposition efficiency is the percentage of soot that is deposited on the rotating mandrel

as compared to the stoichiometric quantity of soot generated from the burner. It is

also calculated in 2 different ways: Stage-wise and overall deposition efficiency.
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(A) Calculation of stage-wise Deposition Efficiency:

Data sets/Columns that needs to be considered for calculating:

• DEP TIME (in mins)

• Process Stage (name of the stages)

• S1/S2 weight (in Kg)

• S1/S2 SiCl4 1 (in grams/min)

• S1/S2 GeCl4 (in grams/min)

(a) Select the desired Process Stage by filtering out the rest.

(b) Note down the initial and final Dep time and S1/S2 weight.

(c) Note down the average S1/S2 SiCl4 weight over that stage (=X).

(d) Note down the average S1/S2 GeCl4 weight over that stage (=Y).

(e) Depo Mode wise Dep Efficiency is calculated as follows:

D =
(S1Weigthfinalpass − S1Weightinitialpass) ∗ 1000 ∗ 100

(X ∗ 60
170

+ Y ∗ 104
214

) ∗ (DepT imefinalpass −DepT imeinitialpass)

Multiplying by 1000 is done to convert the Kg values to gm values and by 100 is

done to convert into percentage values.

(f) Cumulative Deposition Efficiency based on the Depo Mode wise Dep Eff:

CD =
S1WeightendofCladMode2 ∗ 100 ∗ 1000∑Clad2Mode

CenterlineMode(AvgGeCl4flowrate ∗ 104
214

+ AvgSiCl4flowrate ∗ 60
170

) ∗DepT ime

(B) Calculating overall Deposition Efficiency:

OD =
S1WeightendofCladMode2 ∗ 100

(AvgGeCl4in1run ∗ 104
214

+ AvgSiCl4in1run ∗ 60
170

) ∗DepT imeendofCladMode2
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NOTE:Here we have not multiplied the numerator by 1000 as the final weight is already

given in the gram unit.

Cumulative and Overall deposition efficiency are very close to each other with an error

pc. of 1.84%. For accurate calculations, stage-wise Dep Efficiency may be considered.

Glossary:

• The entire deposition process of the preform is divided into 14 steps where called depo-

sition modes or deposition stages. In each of the stages, the flow rate of the Germanium

and Silica varies. This causes a change in the Deposition rate and deposition efficiency.

• Dep Rate = Deposition Rate (in grams/minute)

• Dep Eff = Deposition Efficiency (%)

• The factor (60/170) is multiplied in the deposition efficiency term to incorporate the

SiCl4 to SiO2 molecular weight conversion factor.

• The factor (104/214) is multiplied in the deposition efficiency term to incorporate the

GeCl4 to GeO2 molecular weight conversion factor.
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