PHASE VARIABILITY OF
STRUCTURAL TRANSFER FUNCTIONS

by

Robert Gould Gibson

B.S.E., Princeton University

(1984)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE
IN MECHANICAL ENGINEERING
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1986 .
© Massachusetts Institute of Technology 1986

Signature of Author

Department,of MeCﬁEﬁical‘Eﬁh;geéF?ﬁg
< Februaxy 273 1986

7N Rickard H. Lyon
Thesis Supervisor

Certified by

Accepted by

Ain Sonin
MASSACHUSETTS INSTITUTE Chairman, Graduate Commitee
OF TECHNOLOGY

JUL 28 1986
LIBRARIES Archives



PHASE VARIABILITY OF STRUCTURAL TRANSEFER EUNCTIONS

by
ROBERT GOULD GIBSON

Submitted to the Department of Mechanical Engineering
on February 27, 1986 in partial fulfillment of the
requirements for the Degree of Master of Science in
Mechanlcal Englneering

ABSTRACT

Transfer functions have been measured on a large number of
machine structures in order to study the feasibllity of a robust
inverse fllter for use In fault diagnosis in machinery. The
structures consisted of fully assembled diesel engines, engines
on an assembly line, and engine castings. Transfer functions
were determined by applying a force from a mechanical shaker to
one polnt on a structure and measuring the acceleration at
another point. Simple ensemble statistics were applied to the
data to assess the amount of varlability in the magnitude and
phase of the transfer functions of identical machines.

Using previously developed thecries for the frequency dependence
of transfer functlon phase, a random walk model was developed to
explaln phase behavior and to predict the level of phase
varlability. Although the data seem relatively consistent with
the exlsting theory, especially when compared to previously
measured transfer functions, the model cannot predict values of
unwrapped phase or levels of varliability with much precision.

It appears that the level of phase variability is too high for a
single Inverse filter to be successfully applied to a group of
ldentical machines.

In an attempt to account for the deviation between theory and
data, the phase features of individual transfer functions were

examined. Some evidence was found to suggest the possibility of
non-minimum-phase behavior of structural transfer functions.
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CHAPTER 1

AN INTRODUCTION TO MACHINERY DIAGNOSTICS

A common technique for identifying flaws in structures or
machinery is the analysis of vibration. Any operating machine
or structure exclted by an applied force will have certain
natural vibration characteristics which can be measured either
on the surface or in the radiated sound field. A mechanic,
experlienced in observing the operation of a particular
machine, can often diagnose an operating fault after notlicing
a change in the machine's sound or vibration. The situation
is similar in the case of non-operating structures; an |
experienced founder can detect mistunings or locate cracks in
a bell by applying a force, such as a bléw from the bell's
clapper, and observing the resulting sound. This method of
evaluation is particularly v%luable because through its use
faults can be detected lnexpensively and without disassembling

the machine.




1.1 INVERSE FILTERING

In an effort to automate these diagnostic techniques,
vibration can be measured at a single point on the structure
and compared to a force input. Wnhen the data are examined in
the spectral form, or frequency domain, the ratio of output to
input 1is known as a transfer function, or alternatively, a
frequency response:

H@) = 0(w) / I(v) (1.1)
where I(w) is the input spectrum, O(w) 1s the output spectrum,
and H(w) 1is the transfer function. In machinery, the input
force usually originates at an interior point, inaccesslble to
an observer or to measuring instruments. Thus the transfer
function, once it has been determined, provides a simple
relationship between easily measurable vib%ation data and

internal operating characteristics.

The primary value of the transfer function is Iin its use

as an inverse filter. When Equation 1.1 is rewritten as
Ow) = I() x H(w) (1.2)

it states that the output vibration spectrum is equal to the
input force spectrum multiplied by the transfer functlon,
which acts as a filter. The ‘transfer function can be
determined by simultaneously measuring force and vibration on
a speclally instrumented machine. Once these filter
characteristics are known, the input force need not be
measured agaln since its spectrum can be determined from the

product of the vibration spectrum and the inverse transfer

function:

\O




I(w) = 0w) x H () {1.3)
With successful inverse filtering, internal fcrces can be
monitored simply by menitoring external vibrations, a much

less expensive measurement.

Inverse filtering has been used very successfully to
reconstruct input time signatures from vibration data. In
experiments by Ordubadil, the combustion pressure signal within
an englne cylinder has been recovered solely from engine
casing vibration [1]. Vibration has also been used to
differentliate a faulty valve impact from a proper one [2].
Ordubadi showed that, of the two parts of a transfer function,
the phase 1is much more important than the magnitude for use as
a signature inverse filter. Therefore this study concentrates

on the phase of transfer functions.

A disadvantage of inverse filtering 1s that the transfer
function must be known quite accurately in order to correctly
reproduce the input. Ordubadi's work shows that sufficient
accuracy can be easily obtained when only one machine 1s
consldered. However, 1t is deslirable to be able to apply that
same transfer function to all machines made to the same
specifications since the determination of the transfer
function 1s an expensive process. The goal of much current
research is to determine how to generallze the Inverse
filtering process from one machine to an ensemble of identical
machines. A filter that 1s applicable to a large number of

machines is called a robust filter.



Recent research by Murville [3] examined 2 lsrye group of
new machines, 1ldentically manufactured diesel engines. These
englnes were not run at the time of test, but were treated as
non—-operating structures. To each engine, an external force
was applied and a transfer function measured. A sample
transfer function 1is shown in Figure 1.1. It was found that
both the magnitude and the phase of the transfer functions
varied considerably from structure to structure, even under
controlled experimental conditions. Murville's work suggests
that a single inverse filter cannot be applied to an ensemble

of machines.

The goal of this thesis is to examine further the
varlabllity phenomena observed by Murville, especially the
variations in the transfer function phase. Additional
experiments have been conducted and some statlstics applied to
quantify the variability of structures. Although no slgnature
inverse filtering was attempted, the examination of transfer
functions has implications for diagnostics as well. A flawed
structure, such as a cracked engine block, would hopefully
have a transfer function which would deviate congiderably from
those of a group of sound structures. The variability of the
transfer functions of structﬁres which are known to be éound
can provide a standard against which the transfer function of
a sample structure can be measured. The knowledge obtained
from the study of varliabllity of identical machine structures
may help in the identification of faulty machines, since a

simple transfer functlen measurement could then be used as a
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method for fault identification.

1.2 FREQUENCY DOMAIN ANALYSIS

Progress has been rapid in acoustics and vibrations
research over the last decade largely on account of the
arrival on the market of low—cost circuiltry for performing
rapid Fourler Analysis. Some important aspects of Fourler

Analysis are reviewed here.

Vibration data are commonly examined in two forms: the
time domain, in which the signal is often called a time
history or a signature, and the frequency domain, where
_spectral content is presented. A time signal 1is converted
into a frequency spectrum through the Fourier Transform

X (@) = F{x(t)} (1.4)
where
- jwt

T {x(t)} = jmx(t) e dt (1.5)

- o
A computerized analyzer employs the Discrete Fourlier
Transform, in which the frequency spectrum is divided into a
certain anumber, n, of discrete frequency bands, commonly

called points or lines. The n-polnt Fourler transform ls

computed from a sampled version of the time signal.

The spectrum which results from a Fourler Transform l1ls a
complex quantity; that is, it must be represented by real and
imaginary components, or equivalently by magnitude and phase.
Magnitude data is commonly used in engineering and 1s

generally well understood. It represents the amplitude or



signal strength at each frequency and is easily used for
detecting resonances, harmenic content, and the like. Phase
spectra, however, are generally poorly understood and
therefore rarely employed in engineering work. However, since
phase has been shown to be essentlal to inverse filtering for

diagnostics, it needs to be studlied more closely.

1.3 THE PHASE OF TRANSFER EUNCTIONS

The phase of a transfer function represents the delay
between input and output responses, expressed in angulaf
frequency. Spectrum analyzers generally display only the
principle value of the phase, a value between —-pl and +pi
radians. Unfortunately, this version of the phase is not
particularly useful in signal processing applications due to
an ambiguity inherent in knowledge of only the principle
value. Phase delay often progresses beyond +/—pi in a
physical system, but this information is ignored in analyzer
circuitry. As an example, phase values are shown for a wave

travelling down a string, in Figure 1.2.
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FIGCURE 1.2 - Phase of wave in String

The actual phase value provides some informatlon about the
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system that the principle value does not. The process of
restoring the ilnteger multiples c¢f 2 x pi that the analyzer
has discarded is known as phase unwrapping. The process
transforms the often jagged, discontinuous phase plot into a

continuous function, a smocth unwrapped phase curve.

Phase unwrapping is a standard procedure which is most
commonly required when cepstral analysls, a non-linear signal
processing technique, is used [4]. In fact, cepstral analysis
has played an important role in the development of successful

machinery diagnostics [5].

The algorithm employed to unwrap phase 1s called adaptive
numerical integration [6]. In adaptive Iintegration, real and
lmaginary transfer function data are used to compute both the
principle value of the phase and the phase derivative at each
frequency point. Then a set of permissible phase values 1s
defined for each frequency by adding multiples of 2 x pil to
the principle value. An estimate for the phase at each
frequency 1s then found by numerlcally Iintegrating the phase
derivative using an arbitrary frequency step slze. The step
interval 1s then adapted (narrowed) until the estimate agrees,
to within a predefined threshold of accuracy, with one of the
permissible phase values. The unwrapping ls consldered
successful when this operation can be performed at every

frequency point.



The success of phase unwrapping depends in a large part
on the frequency resolution of the original data. The
frequency line spacing of the data must be smaller than the
frequency range over which phase fluctuates by pl radlans. 1If
this condition 1s not met, then either the unwrapping
algorithm will fall to yleld a result or the unwrapped phase
curve will not accurately represent all the phase fluctuations
of the true system response. This lssue of frequency
resolution is an important one in experimental considerations,

and--is-addressed-later-in-this thesis. .. .
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CHAPTER 2
THE VIBRATION OF STRUCTURES

Since the vibration of a machine in ressponse to some
force input results from the propagation of waves through the
structure, it 1s necessary to glve some attention to

structural wave dynamics. 1

2.1 ELEMENTARY WAVE PROPERTIES

A structure such as a diesel engine is most easily
modeled, for vibration analysis, as a two—-dimensional
structure. That is, an engine could be ldeailized as a metal
plate formed in the proper shape., rather thain as a solid
three—-dimenslonal block. Although most sources of impact
excitation occur on the machine's interlor, the impact energy
is readily transmitted to the structural shell, which vibrates
and radlates sound as waves propagate across the machine's

surface.

T'The material in thls chapter is a review of previous work
by Lyon. More thorough explanation can be found in references
7, 8, and 9. The discussion 1is included here because the
material in these papers forms the theoretical basls for much

of the work in this thesis.




Of the wave tyoes possible in a structure, the type most
important in nolse and vibration analysis is the bending wave,
in which structural motion 1s perpendicular to the direction
of wave propagation. An elastic structure, when excited in
bending, will behave like the string previously shown in
Figure 1.2; that i1s, a wave of any frequency will travel
along the beam, and phase delay will increase with distance
from the polnt of exciltation. If the structure is finite in
extent, then Infinlte wave propagation is not possible, and
the vibration will only occur at certain resonant frequencies,
determined by the structure's geometry and material
properties. For a string, a dynamic system governed by the
classlcal wave equation, the string's length must be an

integer number of half-wavelengths, or

nx (A/2)=1L (2.1)
If we introduce the wave number k, where
k=2xpl /A (2.2)
then
k = n x pi /L (2.3)

is the condition for resonance. Since k= W/c, where c is the
speed of free wave propagation, then resonance will occur
whenever

W =nxplxc/L (2.4)
In this case, resonant modes occur at regular frequency
intervals. Modes can be presented schematically on a
frequency axis, as in Figure 2.1, where the x's represent

resonances.

18
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This condition 1s described as constant modal spacing.

Bending waves in a beam are not governed by the classical
wave equation, but rather exhibit dispersive behavior, in
which wave speed is dependent on frequency. The fundamental
physical condition for resonance, expressed in Equation 2.3,
must still be met, but dispersion introduces a non—linear
relationship between frequency and wavenumber,

2 2w /K x c) (2.5)

where X 1s the radius of gyration of the structural

k

cross-sectlion, proportional to the beam thickness. Since
wavenumber increases as the square root of frequency, there
are fewer allowable resonant wavelengths at any gliven
frequency. Therefore modal spacing increases as the square

root of frequency in one-dimenslional bending.

19



2.2 TWO DIMENSIONAL STRUCTURES

The simplest example of a two-dimensional structure is a
simply supported plate. The same dispersion relation exists,
but the boundary conditions now require that both plate
dimensiocns meet the wavelength criterion (Equation 2.1). This
means that, for a square plate of side L bounded on two sides
by axes x1 and x2, the trace wavenumbers, k1l and k2, being the
wavenumber components in the x1 and x2 directions, must both
satisfy Equation 2.3, Modes are then described by number
pairs (nl,n2), rather than by single integers, and are most
easlly shown as points on a two—-dimensional modal lattice, as

in Figqure 2.2.

sz

(52)5< . x % oS

X X x
Yz,1)

>k.

FIGURE 2.2 = Modal Lattice for Two-Dimensional Resonances

The greater the distance from the origin of the lattice that a

20



point is located, the higher that mode's resonant frequency.
As frequency 1s increased, mcdes on the lattice do not appear
in a regular pattern, especially 1f the structure is
irregularly shaped; therefore the modal spacing for a

two—dimensional structure 1s not constant.

The trend toward increasing modal spacing inherent in the
one—-dimensional dispersive system is counteracted in the plate
by the fact that the number of modes allowable in a plate of
dimensions LxL at a frequency w 1is the square of the number
of modes allowable in a beam of length L at the same
frequency. Therefore as frequency increases in a
two—dimensional system, the number of allowable modes
Increases rapidly. The net effect is that, as frequency is
increased, the average modal spacing is constant even though
the actual spacing is irregular. It 1s often more convenient
to refer to the reciprocal of average modal spacing, known as
the modal density, Qhere
/q(w) = number of modes / frequency interval (2.6)

The modal density of a two-dimenslonal plate structure is
constant and, when frequency is expressed in cyclic units, 1is
equal to

M(f) =A /(4% pl x X x C) (2.7)

where A 1s the surface area of the plate.

2.3 STRUCTURAL TRANSFER FUNCTIONS

In a transfer function measurement, two polnts on a
structure are considered, a source and an observer. The

two-point transfer function is used to acquire magnitude and

21



phase Information for diagnostic purposes.

2.3.1 Resonances And Antiresonances

In a simple system excited at a resonant frequency,
vibraticn of relatively large amplitude willl occur throughout
the structure. This 1s because the energy from the input
force is readily stored in vibrational modes, so the magnitude
of the response at any observation point will greatly exceed
that of the input. Therefore, structural resonances can be
identified by locating the maxima of the transfer function
magnitude. If resonant vibration cannot occur at the
excitation frequency, then the response vibration will be
small. The condition known as antiresonance, where the
magnitude of the response is very much smaller than that of
the input, 1s easy to visualize in a one-dimensional system.
It occurs when the observation location is at a nodal point, a
point of zero vibration, of the structure. This condition is

presented schematlcally in Figure 2.3.

Sevgece

OBssrRvER

FIGURE 2.3 = One-Dimersional Antiresonance

Antiresonances of a transfer function are very sensitive to

the locations of the source and the observer.
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The phase of a one-dimensional transfer function 1s easy
to determine, as the phase difference between source and
observer should be a simple function of distance and
wavenumber,

qb = k (xo-xs) (2.8)
known as the propagation phase. Here xo and xs indicate the

locations of the observer and the source.

The behavior of a two—cdimensional system is more
complicated since resonances do not occur in a regularly
defined pattern and since antiresonances are difficult to
predict analytlcally. Phase does not change at the same rate
as one—dimensional propagation phase, since the nodes of a
structure do not move in as orderly a fashion as in one
dimension. In fact, experimental evlidence shows that phase
increases much more rapidly with frequency than propagation
theory would suggest. A cloéer examination of transfer

function properties can shed light on this paradox.

2.3.2 Poles And Zeros Of Transfer Functions

A common method used in dynamic systems analysis for
representing a transfer function 1s a polynomial model in the

frequency domain,
_ (- W) (-3 - -
H(U)\ band (w_w'\(w..wz)... (2.9)

where the roots of the numerator represent zeros of the
function, frequencies for which the function equals zero, and
the roots of the denominator represent poles, frequencies for

which the function approaches infinity. The poles are

23




resonant frequencies, and the zeros are antirescnances of the

transfer function.

Poles and zeros can be plotted in the complex frequency
plane, as shown in Figure 2.4, where poles are represented by

x's and zeros by o's.

FIZURZ 2.4 - Poles and Zeres in ihe. Complex Freqguency Plane

It 1s necessary to define frequency with real and imagilnary
components due to the complex frequency dependence of the

Fourler Transform relationship, as in Equation 1.5. Locations
of poles in the frequency plane (analogous to the "s—plape"
often used in the analysis of Laplace Transforms) are
restricted by the requirement that physical systems obey
causallty and sfability. The distance of a pole above the
real frequency axls 1s proportional to the damping inherent in
that resonant mode. Therefore, a pole cannot have a negatlive

imaginary part since negative damping would imply an unstable

system. Damping ratlos in a metal structure tend to be very
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small, on the order of 1077, so poles tend «c be very close to
the real axis. Thers is no comparable physical restriction
regarding the sign of the imaginary part of a zero: however,
it is theorized that zeros have positive imaginary parts, thus
satisfying the minimum phase condition. Thils is a topic of

current research addressed in Chapter 6.

2.3.3 Determination Of Magnitude And Phase

If the locations of all zeros and poles: are known for a
given transfer function, then the value of t'he function can be
computed at every real frequency value. The value of the
complex function is represented by a magnitude and a phase,
which are most easily determined by the analwysls of phasors,

or vectors in the complex plane.

The magnitude of the function given in Equation 2.9 is
equal to the product of the phasor lengths firom all the zeros
to the frequency of interest divided by the product of the
corresponding pole phasor lengths. Phasors are dlagrammed in

Figure 2.5.
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FIGURE 2.5 (a) ~ Phasors in the Zomplex Frecuency Plane
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Therefore 1f the test frequency 1s very near a pole, there
will be a very small factor, arising from a very short phasor,
in the denominator, making the value of the function very
large. Conversely, 1f the test frequency 1is very near a ze.o,
the small factor in the numerator will make the function very

small.

Phase 1is computed by determining the sum of the angles of
the phasors from the zeros to the test frequency and
subtracting the sum of the angles of the phasors frcm the
poles, also shown in Figure 2.5. Since peles and zeros are
generally very close to the real axis, their contributions to
the phase of the system tend to be approximately equal to
+/-pl. When the test frequency passes a pole, the net phase
decreases by pl and when the frequency passes a zero (above
the real axls), phase is increased by pi. In this manner, the

unwrapped phase can be calculated by determining how many

polés and zeros occur between the origin and the frequency of

interest. Assuming the phase equals zero at zero frequency,
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the phase at any frequency should be
¢ = -(Np-Nz) x pi (2.10)
where Np and Nz are the numbers of poles and zeros that exist

up to that frequency.

2.3.4 The Occurence Of Zeros

As indicated before, the number of poles, equal to the
number of modes, up to a given frequency can be determined
from the modal density of the structure. However, since the
number of zeros is not known from any physical measurements,
the phase cannot be predicted from these formulas alone. To
understand how zeros occur in a structural system, 1t is
helpful to expand the transfer function polynomial in terms of
partial fractions. The function is then a modal summation,

with each term corresponding to a resonance;

Poa(Xs) - YA (Xo)
Hey = A Z sz_u':\, (2.11)
™M

The factors in the numerator represent normalized modeshapes.

Each term in the expansion has a shape as in Figure 2.6,
although the sign of each term can be positive or negative.
To simplify the analysls, the éummation at any frequency can
be represented by the two dominant terms, those corresponding
to the nearest poles, and a single remainder term representing
the sum of all other modal terms. If the remainder term 1is
assumed to be negligibly small, then if two adjacent terms
have the same sign they will add to zero at some point between
the two resonances. If they have opposite signs, they ﬁill

not add to zero. These two conditions are shown in Figure 2:6.
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Unless the remainder term is large compared to the two
dominant modal terms, then the existence of a remainder will
only serve to shift the location of the zero slightly, but
will not effect the existence of the zero. It can be shown
that elther sign is equally likely for any term in the sum, -
but that there is no pattern in the sign changes. Theféfore a
sign change should occur on average between every other'pair
of resonances, so the density of zeros should be half that of
poles. Up to any frequency, the net phase should be

| (p ==(Np / 2) x pi (2.12)

in a two—-dimensional structural system.

28



CHAPTER 3
EXPERIMENTAL TECHNIQUE

Transfer functions have been measured on partially
completed diesel engines on two occaslons, first in 1983 and
then in March 1985. Both experiments were conducted at the
mant._acturing facllity of the Cummins Engline Company in
Columbus, Indiana. The results of the first experliment were
originally reported in the thesls of Murville [3]. Those data
are reviewed and the results from the second set of

experiments are presented in this thesis.

3.1 THE INITIAL EXPERIMENT (1983)

In the original set of experimenfs, the test apparatus
was set up beside an engine assembly line at a point whére the
engines were nearly complete. The engines being assembled
were large elght-cylinder diesels designed for trucks or
agricultural equipment. As each englne passed on the llne, a
transfer function was measured and recorded using a
Hewlett~Packard 5423A two-channel spectrum analyzer. The 128

engines analyzed were of three types, distingulished by the

Al
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size of the cams and the oll pans. In additlon, one engine
type was tested in two different manners. The engines could
therefore be divided into four ensembles, as follows:

BIGCAM large cams, accelerometers attached with wax
43 engines

BCTAPE large cams, accelerometers attached wilth tape
23 englnes

SMCAM  small cams, small oll pans
28 engines

SMCAMO small cams, large oll pans
34 englnes

The engines were not cperating at the time of tThe test. The
force input was provided by a mechanical shaker, and the
vibration output at another point on the structure was
measured by an accelerometer. A sample transfer function is
shown in Figure 3.1. Magnitude was determined, in decipel
measure, by computing

|[HE)] = 10 x log(v/(re® + in?)) (3.1)

Here, re represents the real component of the transfer
function, and im represents the imaginary part. The
dimensions of magnitude are accelerance, or acceleration
divided by force. Phase, in radlans, is determined by
q) = arctan (im / re) (3.2)

and was computed using the unwrapping algorithm.

One can easlly ldentify the resonances and antiresonances
from the magnitude spectrum of the transfer function. Also
one notices the continually decreasing value of phase.
‘Measurements were performed from O to 25.6 khz. This broad

range was chosen because 1t was deslired to include high

30




MAGNA T UDE

3k 282

q ﬂ[ [ 'L
=] e

-60. 283

¥ T A 1 l

e.e HZ s ece X
BIG CAMS ¥/ TAPE SAWALE RZA

UNWRAPPED PHASE BCTAPE SAMPLE 2’

-163.

S -189. \\ '

{ 1 L | !

0.0 5.0 10. 3 15.0 20.0 25. 9 33,0
FREGUENCY KHZ

RADIAMS

-2€0.

FIGURE 3.1 - Sample Engine Transfer Function (1983)
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frequency information, often valuable in sigral
reconstruction. However, since the spectrum analyzer only
records 256 frequency lines in its Fast Fourlier Transform,

data polnts were only recorded every 100 Hz.

The varlablility of these transfer functions was assessed
as part of Murville's work. For each ensemble of engines, the
mean and standard deviation of beth log magnitude and phase
were computed at every frequency point. It was found that the
standard deviations were quite high, especially for thé phase
spectra. Thls was not encouraging, since the engines in each
ensemble were as ldentical to each other as any machlines can
reasconably be. High phase variabllity suggests that inverse
flltering cannot be successfully applied to a group of similar

machines.

The major reason suspected for the high variability was
the large line spacing. Phase spectra tend to change much
more rapildly than every 100 Hz, so with this spacing, the
unwrapping algorithm misses some of the phase features. If
the resolutlion is not sufficient to track the changes in the

phase derivative, then the phase curves will not be accurate.’

3.2 THE SECOND EXPERIMENT (1985)

The second set of experiments was desligned to perform
similar measurements, but with Increased frequency resoluticn
and with simpler structures. The ltems analyzed were to be

bare englne castings, structures even more ldentlcal than the
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assembled engines. The experlment was desigried to test
whether the varliability arose in the engine assembly process
or was irherent in the structures themselve In addition to
the castings, transfer function measurement was repeatéd on
partlally assembled englnes and also performed on completed
engines both before and after thelir flrst test run. These
data were céllected to show how variability changed through

the process of building and operating a machine.

The castings actually supplied for analysis were not
completely bare, but had a set of bearing caps loosely
fastened with assembly bolts. The castings were stacked on
wooden pallets, or skids, on the shop floor. The engines
analyzed in 1985 were all of the same design and were all
measured at the same location on the assembly line. The
completed engines were mounted on test stands on the shop
floor. The pretest engines had just come off the assembly
line. The posttest engines had just been operating in a test
bay: therefore they were slightly warmer than the pretest
engines and presumably had lubricants evenly distrilbuted
throughout the moving parts. The points for force input and
acceleration output were arbitrarily chosen, but were kept the
same for all structures measured. The major ensembles of the

1985 experliment are as follows:

CASTINGS 45 castings with bearling caps

ENGINES 43 englnes on the assembly line

PRETEST 12 assembled engines before first operation
POSTTEST 12 assembled engines after first operatlon



The new experiment was conducted using a different
analyzer, a Bruel & Kjaer Model 2032 buai Cﬁaﬁﬁel Anélyzéf;
This instrument has the capacity to store 801 lines of
frequency information. The transfer functions were only

‘measured from O to 3.2 khz, improving the frequency spacing to
4 Hz. The high frequencles studied in the first experliment
vere 1gnorea since actual inverse filtering was not to be

per formed, and their inclusion would have only served to

degrade the resolution.

The force input was from a Bruel & Kjaer Model 4810
one-pound mechanical shaker. It was exclted with
pseudo-random noise suppllied from the signal generator of the
analyzer. The noise signal was amplified viaa a Macintosh
power amplifier. Attached to the shaker was a Wilcoxon F9
impedance head which provided the lnput force signal to the
analyzer. The shaker was hand-held in use. The force
spectrum alone was measured before any transfer functions were
attempted. An MXR 31-band equalizer was used to modify the

input until a flat force spectrum was obtained.

The accelerometer used was a BBNiﬁodel.
attached to the structure magnetically. The signals from both
the accelerometer and impedance head were low-pass filtered
before being passed to the analyzer. Although the analyzer 1is
equipped with internal input filters and preampliflers, the
extra filtering was performed to guard agalnst allasing.
Allasing occurs when a signal frequency 1s hilgher than the

Nyquist frequency, equal to one-half the sampling frequency of
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the analyzer. If allasing exlsts, the spurious high frequency

signal components are not properly measured in the Fourier
Transform. Instead, they contaminate the spectrum, taking on

the 'allias' of lower frequency ccmponents.

For each transfer function, the shaker and accelerometer
were held in place until the analyzer completed ten averages.
The transfer function data, in the form of real and imaginary
parts, were then transferred to cassette tape via a Bruel &
Kjaer 7400 cassette recorder before the next transfer function

was measured.

Once in the laboratory, a data transfer routine was
written using a Digital Equipment PDP-11/44 computer. The
real and imaginary data were passed to the computer for
storage and all additional analysis. On account of some
faulty cassettes, a few transfer functions could not be saved.
However, thls loss did not significantly degrade the sample

size for any portion of the experiment.
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CHAPTER 4

A REVIEW OF VARIABILITY DATA

In this chapter, the results of the transfer function
measurements from both the 1983 and 1985 experiments are
presented. The varliability of both the magnitude and phase

spectra ls assessed by applying simple statistical analysis.

4.1 THE 1983 DATA

The first data, presented in Figures 4.1 through 4.4, are
the mean phase and magnitude curves for the four ensembles of
engilnes in the 1983 experiment. The curves above and below
each mean curve represent variabllity 'envelopes,' marking the
standard deviation of the data at each frequency. Standard
deviation, 6, of magn;tude or phase, represented here by the
variable x, was computed using the formula

% = Ef(x - E(x1)F] = EpRY - (Ep)R (4.1)
where E[] denotes the expected value of the quantlty within the
bradkets. (For normally distributed, or Gausslan, random
variables, approximately 68% of the data points lie within one

standard devlation of the mean.)

36



The ensembles of transfer functions look quite similar in
both magnitude and phase behavior. The magnitude curves all
show the same general shape, and the standard deviation of
magnitude in each ensemble remains approximately constant at 8
to 10 declbels across the frequency range. The mean unwrapped
phase curves are all very nearly linear, with a value of
approximateiy -160 radians at 25.6 kHz. The standard devliation
of phase tends to increase with frequency, rather than remain
approximately constant as in the case of magnitude. However,
the deviation does not seem to increase in a strictly linear
fashlon, but more slowly at higher frequencies. The large cam
engines, shown in Figures 4.1 and 4.2, tend to have somewhat
greater varliabllity than the small cam engines, Figures 4.3 and
4.4, as the standard deviation in the 'Bigcam' ensembles<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>