
Diffusion Probabilistic Modeling of Protein
Backbones in 3D for the Motif-Scaffolding problem

by

Jason Yim
B.S., Johns Hopkins University (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

January 9, 2023
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tommi S. Jaakkola
Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Regina Barzilay
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Diffusion Probabilistic Modeling of Protein Backbones in 3D

for the Motif-Scaffolding problem

by

Jason Yim

Submitted to the Department of Electrical Engineering and Computer Science
on January 9, 2023, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Construction of a scaffold structure that supports a desired motif, conferring protein
function, shows promise for the design of vaccines and enzymes. But a general solution
to this motif-scaffolding problem remains open. Current machine-learning techniques
for scaffold design are either limited to unrealistically small scaffolds (up to length
20) or struggle to produce multiple diverse scaffolds. We propose to learn a distri-
bution over diverse and longer protein backbone structures via an E(3)-equivariant
graph neural network. We develop SMCDiff to efficiently sample scaffolds from this
distribution conditioned on a given motif; our algorithm is the first to theoretically
guarantee conditional samples from a diffusion model in the large-compute limit. We
evaluate our designed backbones by how well they align with AlphaFold2-predicted
structures. We show that our method can (1) sample scaffolds up to 80 residues and
(2) achieve structurally diverse scaffolds for a fixed motif.
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Chapter 1

Introduction

The ability to engineer novel proteins holds promise in developing bio-therapeutics

towards global health challenges such as SARS-COV-2 [Arunachalam et al., 2021]

and cancer [Quijano-Rubio et al., 2020]. Unfortunately, efforts to engineer proteins

requires substantial domain knowledge and laborious trial and error. As reviewed

in Kuhlman and Bradley [2019], advancements in deep learning have paralleled im-

provements in protein engineering by automating knowledge acquisition from data

and improving efficiency in designing proteins. The present work addresses a deep

learning method for an important task in protein design called motif-scaffolding.

1.1 Motif-scaffolding

A central task in protein design is creation of a stable scaffold to support a target

motif. Here, motifs are structural protein fragments imparting biological function

while scaffolds stabilize the motif’s structure. Vaccines and enzymes have already

been designed by solving certain instances of this motif-scaffolding problem [Procko

et al., 2014, Correia et al., 2014, Jiang et al., 2008, Siegel et al., 2010]. However,

successful solutions to this problem in the past have necessitated substantial expert

involvement and laborious trial and error. Machine learning (ML) offers the hope to

automate, and better direct this search. But existing ML approaches face one of two

major roadblocks. First, many method do not build scaffolds longer than about 20
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residues. For many motif sizes of interest, the resulting proteins would be smaller

than the shortest commonly-studied simple protein folds (35–40 residues) [Gelman

and Gruebele, 2014]. Second, while other methods may generate longer scaffolds

using stochastic search techniques, they require hours of computation to generate a

single plausible scaffold [Wang et al., 2022, Anishchenko et al., 2021, Tischer et al.,

2020]. Moreover, when a plausible scaffold is found, it remains to be experimentally

validated. Therefore, it is desirable to return not just a single scaffold but rather a

set of scaffolds exhibiting diverse sequences and structural variation to increase the

likelihood of success in practice.

1.2 Conditional sampling with diffusion models

In the present work, we demonstrate the promise of a particular generative mod-

eling approach within ML for efficiently returning a diverse set of motif-supporting

scaffolds. Generative models have been shown to capture a distribution over diverse

protein structures [Lin et al., 2021]. But it is not clear how to handle conditioning

(on the motif) using these approaches. Diffusion probabilistic models (DPMs) of-

fer a potential alternative; not only do they provide a more straightforward path to

handling conditioning, but they have also enjoyed success generating small-molecules

in 3D [Hoogeboom et al., 2022]. Extending DPMs to protein structures, though, is

non-trivial; since proteins are larger than small molecules, modeling proteins requires

handling the sequential ordering of residues and long-range interactions. Finally,

while existing models often generate distance matrices [Anand and Huang, 2018, Lin

et al., 2021], we instead focus on generating a full set of 3D coordinates, which should

improve designability in practice. Our resulting model, ProtDiff, is similar to con-

current work on E(3)-equivariant diffusion models for molecules [Hoogeboom et al.,

2022], but with modifications specific to protein structure. Moreover, we develop a

novel motif-scaffolding procedure based on Sequential Monte Carlo, SMCDiff, that

repurposes an unconditionally trained DPM for conditional sampling. We prove that

if a DPM matches the data distribution, SMCDiff is guaranteed to provide exact
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conditional samples in a large-compute limit; this property contrasts with previous

methods [Song et al., 2021, Zhou et al., 2021], which we show introduce non-trivial

approximation error that impedes performance. Our final motif-scaffolding generative

framework, then, has two steps (Fig. 1-1): first we train ProtDiff to learn a distri-

bution over protein backbones, and then we use SMCDiff with ProtDiff to inpaint

arbitrary motifs. Using sequence design and protein folding methods, we evaluate the

quality of our backbone samples.

Ours is the first machine-learning method to construct scaffolds longer than 20

residues around motifs — we build up to 80 residues scaffolds on a test case. Beyond

our progress on the motif-scaffolding problem, we provide the following technical

contributions: (1) we introduce a protein-backbone generative model in 3D – with

the ability to generate backbone samples that structurally agree with AlphaFold2

predictions, and (2) we develop a novel conditional sampling algorithm for inpainting.
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Figure 1-1: Overview of the conditional generative modeling approach to the motif-
scaffolding problem. We train our new protein backbone diffusion model, ProtDiff,
to generate realistic protein backbone structures. Next, we run SMCDiff, our con-
ditional sampling algorithm, with ProtDiff to generate scaffolds (colored in red)
conditioned on the motif (colored in blue). For self-consistency evaluation, we use
a pretrained fixed-backbone sequence-design model (ProteinMPNN [Dauparas et al.,
2022]) to generate the scaffold sequence from a sampled backbone. We then input
the sequence to a structure prediction model, in our case AlphaFold2 (AF2) [Jumper
et al., 2021], to generate the full protein structure from the generated sequence. We
compare the backbone of the predicted structure with the original backbone struc-
ture using TM-score [Xu and Zhang, 2010] and root-mean-square-distance (RMSD)
for the motif.

1.3 Related work

Motif-scaffolding. Past approaches have sought to scaffold a motif with native or

prespecified protein fragments, but are limited to finding a suitable match in the

Protein Data Bank (PDB) and cannot adapt the scaffold to compensate for slight

structural mismatches [Cao et al., 2022, Silva et al., 2016, Yang et al., 2021, Sesterhenn

et al., 2020, Linsky et al., 2020]. More recently Wang et al. [2022] used pre-trained

protein structure prediction networks to recapitulate native scaffolds, but this method
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failed to generate scaffolds longer than 20 residues and can output only a single

candidate scaffold rather than a diverse set. By contrast, our goal is to sample

diverse, long scaffolds.

Diffusion models for molecule generation. Several concurrent works have

extended equivariant diffusion models to molecule generation. Anand and Achim

[2022] extended diffusion models for generation of protein backbone frames and se-

quences conditioned on secondary structure adjacency matrices. Similarly, Luo et al.

[2022] focused on CDR-loop generation using diffusion models conditioned on non-

CDR regions of the antibody-antigen. Our method does not require conditioning and

is applicable to general proteins. Lee and Kim [2022] approach the same problem as

our work but build diffusion models over 2D distances matrices that requires post-

processing to produce 3D structures through Rosetta minimization. We demonstrate

capability of diffusion models to directly model 3D coordinates of proteins. Hooge-

boom et al. [2022] developed an equivariant diffusion model (EDM) for generating

small molecules in 3D. However, because EDM does not enforce a spatial ordering

of the atoms that compose small molecules, as we describe in Chapter 3, it does not

learn a coherent chain structure as needed in proteins.

Inpainting and conditional sampling in diffusion models. Point-Voxel Dif-

fusion (PVD) [Zhou et al., 2021] is a 3D diffusion model for generating shapes from

the ShapeNet dataset. Though trained to generate shapes unconditionally, PVD com-

pletes (or inpaints) full shapes when a partial point cloud is fixed during inference.

For general diffusion models, Song et al. [2021] proposed an alternative inpainting ap-

proach and remarked that this approach produces approximate conditional samples.

However, these methods do not provide theoretical guarantees, and when we com-

pare them to SMCDiff, we find that their approximation error impedes performance

when applied to motif-scaffolding. Saharia et al. [2021] developed an inpainting dif-

fusion model by training a diffusion model to denoise randomly generated masked

regions while unmasked regions were unperturbed. However, their approach requires

a detailed data augmentation strategy that does not exist for proteins.
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Generative models of proteins. Following the success of deep language models,

Ferruz et al. [2022] developed protein sequence models to generate new proteins, but

these models do not allow specification of structural motifs. Another class of meth-

ods, referred to as fixed backbone sequence design [Fleishman et al., 2011, Ingraham

et al., 2019, Xiong et al., 2020, McPartlon et al., 2022, Hsu et al., 2022], attempts to

solve the problem of identifying a sequence that folds into any given designable back-

bone structure. In the present work, we utilize a particular sequence design method,

ProteinMPNN [Dauparas et al., 2022], but in principle any other fixed-backbone se-

quence design method could be used in its place. Anand and Huang [2018], Lin

et al. [2021], Wu et al. [2021] propose generative adversarial networks, variational

autoencoders, and energy-based models, respectively, on distance matrices, but these

approaches (1) do not generate backbones compatible with a specified motif and (2)

rely on an unwieldy optimization step to translate the distance matrix into back-

bone coordinates. Other authors use neural net [Tischer et al., 2020, Anishchenko

et al., 2021, Wang et al., 2022, Huang et al., 2022, Wu et al., 2021], but require a

computationally challenging conformational landscape exploration.
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Chapter 2

Preliminaries

2.1 Problem formulation

A protein can be represented by its amino acid sequence and backbone structure.

Let 𝒜 be the set of 20 genetically-encoded amino acids. We denote the sequence

of an 𝑁 -residue protein by 𝑠 ∈ 𝒜𝑁 and its C-𝛼 backbone coordinates in 3D by

x = [x1, . . . ,x𝑁 ]
𝑇 ∈ R𝑁,3. We describe a protein as having a fixed structure that is

a function of its sequence, so we may write x(𝑠). We divide the 𝑁 residues into the

functional motifℳ and the scaffold 𝒮, such thatℳ∪𝒮 = {1, 2, . . . , 𝑁}. The goal is

to identify, given the motif structure xℳ, sequences 𝑠 whose structure recapitulates

the motif to high precision x(𝑠)ℳ ≈ xℳ. Our problem formulation makes some

assumptions and heuristics that we describe next.

Protein sequence-structure relationship. Generally speaking, a protein’s se-

quence encodes an ensemble of conformations, populated to different degrees at bio-

logical temperatures. Anfinsen’s hypothesis states that the ground state conformation

is thermodynamically accessible [Anfinsen, 1973], providing a mapping from sequence

to a unique (ground state) structure. In practice, the ground state structures make up

the vast majority of experimentally determined protein conformations, as over 95% of

structures in the Protein Data Bank (PDB) are collected at cryogenic temperatures

[Fraser et al., 2011]. Thus we simplify our problem by saying that a sequence uniquely
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maps to a static structure (i.e. the ground state structure). However, violations of

this assumption arise in some PDB structures as a result of (1) of context specific

determinants of structure such as post-translational modifications and environmen-

tal factors including pH, binding partners, and salts, as well as (2) thermodynamic

inaccessibility of the ground state.

Motif sequence and side-chains. We assume we may represent a functional motif

by the coordinates of its C-𝛼 atoms. However, the biochemical functions of proteins

depend not only on backbone structure, but also on side-chains. For example, the

activity of many enzymes is imparted by triplets of residues, known as catalytic triads,

whose ability to catalyze reactions depends on the spatial organization of side-chain

atoms. Our problem statement and subsequent evaluation scheme are agnostic to

the amino acid identity of motif residues, let alone side-chain positioning. A more

complete representation of a motif would include the side-chain identities (i.e. the

amino acid sequence) and side-chain atom coordinates.

Scaffold length and motif placement. We have additionally assumed that the

size of scaffolds and the indices of motif residues within the backbone chain, ℳ,

are known a priori. However, in practice satisfactory scaffolds could have different

lengths and different motif placements, and typically it is not known a priori what

lengths and placements will be best. Previous works have addressed this challenge

through brute force by sampling multiple lengths and placements, and relied on post-

hoc filtering to identify the most promising scaffolds [Wang et al., 2022, Yang et al.,

2021]. Subsequent work on ML methods could potentially generalize beyond this

assumption to efficiently sample appropriate scaffold lengths and motif placements.

Sequence and side-chain modeling. ProtDiff models only the backbone coor-

dinates and leaves sequence design to a subsequent stage, for which we have used

ProteinMPNN. A more complete representation of a proteins could include both se-

quence and structure (where structure can be divided into the backbone and side-

chain atom coordinates). To model sequence, we rely on a separately trained neural
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network, ProteinMPNN, but this is not ideal. Unless ProtDiff produces perfect back-

bones, one would expect the backbone samples of ProtDiff to present a substantial

domain shift when used as input for ProteinMPNN.

3D backbone representation. In this work, we represent a protein structure using

the C-𝛼 coordinates of every residue along the backbone. However, this representation

is coarse-grained and ignores additional backbone atomic coordinates, namely the

backbone carbon and nitrogen atoms. Dauparas et al. [2022] observed additionally

modeling the heavy atoms of the backbone nitrogen and carbon atoms along with

the C-𝛽 of every residue (to capture side-chain information) improved performance

(by sequence recovery) for fixed-backbone sequence design. We hypothesize modeling

additional coordinates of every residue would also improve designability performance

of ProtDiff. Constraining ProtDiff to place the remaining atoms in the correct

orientation could help enforce correct chirality and mitigate chain breaks.

2.2 Diffusion probabilistic models

Our approach to the motif-scaffolding problem builds on denoising diffusion proba-

bilistic models (DPMs) [Sohl-Dickstein et al., 2015]. We follow the conventions and

notation set by Ho et al. [2020], which we review here. DPMs are a class of genera-

tive models based on a reversible, discrete-time diffusion process. The forward process

starts with a sample x(0) from an unknown data distribution 𝑞, with density denoted

by 𝑞(x(0)), and iteratively adds noise at each step 𝑡. By the last step, 𝑇 , the distri-

bution of x(𝑇 ) is indistinguishable from an isotropic Gaussian: x(𝑇 ) ∼ 𝒩 (x(𝑇 ); 0, I).

Specifically, we choose a variance schedule 𝛽(1), 𝛽(2), . . . , 𝛽(𝑇 ), and define the transition

distribution at step 𝑡 as 𝑞(x(𝑡) | x(𝑡−1)) = 𝒩 (x(𝑡);
√︀

1− 𝛽(𝑡)x(𝑡−1), 𝛽(𝑡)I).

DPMs approximate 𝑞 with a second distribution 𝑝𝜃 by learning the transition

distribution of the reverse process at each 𝑡, 𝑝𝜃(x
(𝑡−1) | x(𝑡)). We follow the conven-

tions set by Ho et al. [2020] in our parameterization and choice of objective. In

particular, we take 𝑝𝜃(x
(𝑡−1) | x(𝑡)) = 𝒩 (x(𝑡−1);𝜇𝜃(x

(𝑡), 𝑡), 𝛽(𝑡)I) with 𝜇𝜃(x
(𝑡), 𝑡) =
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1√
𝛼(𝑡)

(︂
x(𝑡) − 𝛽(𝑡)√

1−�̄�(𝑡)
𝜖𝜃(x

(𝑡), 𝑡)

)︂
, 𝛼(𝑡) := 1−𝛽(𝑡), and �̄�(𝑡) :=

∏︀𝑡
𝑠=1 𝛼

(𝑡). We implement

𝜖𝜃(x
(𝑡), 𝑡) as a neural network. For training, we marginally sample x(𝑡) ∼ 𝑞(x(𝑡) | x(0))

from the forward process as x(𝑡) =
√
�̄�(𝑡)x(0) +

√
1− �̄�(𝑡)𝜖 and minimize the objective

𝑇−1
∑︀𝑇

𝑡=1 E𝑞(x(0),x(𝑡))

[︀
‖𝜖− 𝜖𝜃(x

(𝑡), 𝑡)‖2
]︀

by stochastic optimization [Ho et al., 2020, Al-

gorithm 1]. To generate samples from 𝑝𝜃(x
(0)), we simulate the reverse process. That

is, we sample noise for time 𝑇 as x(𝑇 ) ∼ 𝒩 (0, I), and then for each 𝑡 = 𝑇 − 1, . . . , 0,

we simulate progressively “de-noised” samples as x(𝑡) ∼ 𝑝𝜃(x
(𝑡) | x(𝑡+1)).
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Chapter 3

ProtDiff: A diffusion model of

protein backbones in 3D

Implementation of diffusion probabilistic models requires choosing an architecture for

the neural network 𝜖𝜃(x
(𝑡), 𝑡) introduced abstractly in Section 2.2. In this section we

describe ProtDiff, which corresponds to the choice of 𝜖𝜃(x(𝑡), 𝑡) as a translation and

rotation equivariant graph neural network tailored to modeling protein backbones.

3.1 Equivariant neural network of protein backbones

The properties and functions of proteins are dictated by the relative geometry of

their residues, and are invariant to the coordinate system chosen to encode them.

Recent work on neural network modeling of 3D data has found, both theoretically

and empirically, that neural networks constrained to satisfy geometric invariances can

provide inductive biases that improve generalization and training efficiency [Batzner

et al., 2022]. Motivated by this observation, we parameterize 𝜖𝜃 by an equivariant

graph neural network (EGNN) [Satorras et al., 2021], which in 3D is equivariant to

transformations in the Euclidean group. Xu et al. [2022] proved that if 𝜖𝜃 is equivariant

to a group then 𝑝𝜃 is invariant to the same group.
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Tailoring EGNN to protein backbones. We now describe our EGNN implemen-

tation, which we tailor to protein backbones and DPMs through the choice of edge

and node features. To model every pairwise residue interaction, we represent back-

bones by a fully connected graph. Each node in the graph is indexed by 𝑛 = 1, . . . , 𝑁,

and corresponds to a residue. We associate each node with coordinates x𝑛 ∈ R3 and

𝐷 features ℎ𝑛 ∈ R𝐷. For each pair of nodes 𝑛, 𝑛′ we define an edge and associate it

with edge features.

We construct our EGNN by stacking 𝐿 equivariant graph convolutional layers

(EGCL). Each layer 𝑙 = 1, . . . , 𝐿 defines an update as (x𝑙, ℎ𝑙) = EGCL[x𝑙−1, ℎ𝑙−1]

where for each node 𝑛

x𝑙
𝑛 = x𝑙−1

𝑛 +
∑︁
𝑛′ ̸=𝑛

�⃗�𝑛𝑛′ · 𝜑x(ℎ
𝑙−1
𝑛 , ℎ𝑙−1

𝑛′ , 𝑑𝑛𝑛′ , 𝑎𝑛𝑛′) and ℎ𝑙
𝑛 = 𝜑ℎ(ℎ

𝑙−1
𝑛 ,𝑚𝑛), for

�⃗�𝑛𝑛′ =
x𝑙−1
𝑛 − x𝑙−1

𝑛′√
𝑑𝑛𝑛′ + 𝛾

, 𝑚𝑛 =
∑︁
𝑛′ ̸=𝑛

𝜑𝑒(ℎ
𝑙−1
𝑛 , ℎ𝑙−1

𝑛′ , 𝑑𝑛𝑛′ , 𝑎𝑛𝑛′), and 𝑑𝑛𝑛′ = ‖x𝑙−1
𝑛 − x𝑙−1

𝑛′ ‖22.

𝜑𝑒, 𝜑ℎ, and 𝜑x are fully connected neural networks, and 𝛾 is a small positive con-

stant included for numerical stability. The first EGCL layer takes in initial node

embeddings, ℎ0 while edge embeddings, 𝑎𝑛𝑛′ , are kept fixed throughout.

We write the output of EGNN after 𝐿 layers as x̂ = EGNN[x, ℎ]. In the context of

diffusion models, we predict the noise at time 𝑡 with the following parameterization:

𝜖𝜃(x
(𝑡), 𝑡) = x̂− x(𝑡), x̂ = EGNN[x(𝑡), ℎ(𝑡)]. (3.1)

3.2 Feature initialization

We now describe our choice of node and edge features. Our choice is motivated by the

linear chain structure of protein backbones; residues close in sequence are necessarily

close in 3D space. To allow this chain constraint to be learned more easily, we fix an

ordering of nodes in the graph to correspond to sequence order. We include as edge

features positional offsets as done in Ingraham et al. [2019], which we represent using
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sinusoidal positional encoding features [Vaswani et al., 2017]. For node features, we

similarly use a sinusoidal encoding of sequence position as well as of the diffusion time

step 𝑡 following Kingma et al. [2021]. We additionally process the time encoding to

be orthogonal to the positional encoding.

Initial node and edge embeddings. Each edge between two residues indexed in

the sequence by (𝑛, 𝑛′) is featurized with 𝐷 features obtained through a sinusoidal

encoding of its relative offset:

𝑎𝑛𝑛′ =

⎡⎢⎢⎢⎣
𝜙(𝑛− 𝑛′, 1)

...

𝜙(𝑛− 𝑛′, 𝐷)

⎤⎥⎥⎥⎦ , where 𝜙(𝑥, 𝑘) =

⎧⎪⎨⎪⎩sin
(︀
𝑥 · 𝜋/𝑁2·𝑘/𝐷)︀ , 𝑘 mod 2 = 0

cos
(︀
𝑥 · 𝜋/𝑁2·(𝑘−1)/𝐷

)︀
, 𝑘 mod 2 = 1.

For node features, we similarly use a sinusoidal encoding of sequence position as well

as of the diffusion time step 𝑡 as

ℎ𝑛(𝑡) =

⎡⎢⎢⎢⎣
𝜙(𝑛, 1)

...

𝜙(𝑛,𝐷)

⎤⎥⎥⎥⎦+𝑅

⎡⎢⎢⎢⎣
𝜙(𝑡, 1)

...

𝜙(𝑡,𝐷)

⎤⎥⎥⎥⎦ ,

where 𝑅 is a 𝐷 × 𝐷 orthogonal matrix chosen uniformly at random. Intuitively,

applying 𝑅 transforms the time encoding to be orthogonal to the positional encoding.

Coordinate scaling While protein structures are typically parameterized in

Angstroms, we transform the input protein coordinates to be in nanometers rather

by dividing by 10. This scaling brings the backbones to a spatial scale similar to

the reference distribution at which the forward noising process is stationary, a unit

variance isotropic Gaussian. Importantly, the distribution of the final step 𝑇 is indis-

tinguishable from an isotropic Gaussian ( Fig. 3-1.)
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Figure 3-1: Distribution of 𝑥(𝑇 ) after centering and scaling 𝑥(0) to nanometers.
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Chapter 4

SMCDiff: Conditional sampling in

diffusion models by particle filtering

The second stage of our generative modeling approach to the motif-scaffolding prob-

lem is to sample scaffolds x
(0)
𝒮 from 𝑝𝜃(x

(0)
𝒮 | x(0)

ℳ). Section 4.1 discusses the in-

tractability of sampling from 𝑝𝜃(x
(0)
𝒮 | x(0)

ℳ) exactly and the limitations of a simple

approximation introduced by [Song et al., 2021]. In Section 4.2, we then formulate

computation of 𝑝𝜃(x
(0)
𝒮 |x

(0)
ℳ) as a sequential Monte Carlo (SMC) problem [Doucet

et al., 2001] and approximate it with a particle filtering algorithm (Algorithm 2).

Notation. In the following, we require notation that is more precise than in previous

sections. For each 𝑡 = 0, . . . , 𝑇, we let 𝑞𝑡(·) and 𝑝𝑡(·) denote the density functions of

x(𝑡) according to the forward process and to our neural network approximation of the

reverse process, respectively. We denote densities restricted to the motif and scaffold

with subscripts ℳ and 𝒮. For example, we here write 𝑝ℳ,𝑡(x
(𝑡)
ℳ), whereas we wrote

𝑝𝜃(x
(𝑡)
ℳ) in the main text. We write (random) conditional densities as 𝑞ℳ,𝑡(· | x(𝑡−1)

ℳ )

and write the (deterministic) conditional density for an observation x
(𝑡−1)
ℳ = 𝑥ℳ as

𝑞ℳ,𝑡(· | x(𝑡−1)
ℳ = 𝑥ℳ).

An object of interest will be the Kullback-Leibler (KL) divergence. We write

KL [𝑞𝑡(·)‖𝑝𝑡(·)] :=
∫︀
𝑞𝑡(𝑥) log

𝑞𝑡(𝑥)
𝑝𝑡(𝑥)

𝑑𝑥, where log(·) is the natural (base 𝑒) logarithm.

We will also encounter the expected KL between conditional densities, which we will
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write as EKL
[︀
𝑞𝑡(· | x(𝑡−1))‖𝑝𝑡(· | x(𝑡−1))

]︀
:=

∫︀
𝑞𝑡−1(𝑥)KL

[︀
𝑞𝑡(· | x(𝑡−1) = 𝑥)‖𝑝𝑡(· | x(𝑡−1) = 𝑥)

]︀
𝑑𝑥,

where the outer expectation is taken with respect to the unconditional density asso-

ciated with first argument of EKL [·‖·] .

4.1 Challenge of conditional sampling

The conditional distributions of a DPM are defined implicitly through the steps of

the reverse process. We may write the conditional density explicitly as

𝑝𝜃(x
(0)
𝒮 | x

(0)
𝑀 ) ∝ 𝑝𝜃(x

(0)
𝒮 ,x

(0)
𝑀 ) = 𝑝𝜃(x

(0)) =

∫︁
𝑝𝜃(x

(𝑇 ))
𝑇−1∏︁
𝑡=0

𝑝𝜃(x
(𝑡) | x(𝑡+1))𝑑x(1:𝑇 ).

However, the high-dimensional integral on the right-hand side above is intractable

(both analytically and numerically) to compute.

To overcome this intractability, we build on the work of Song et al. [2021], who

introduced a practical algorithm that generates approximate conditional samples.

This strategy is to (1) forward diffuse the conditioning variable to obtain x
(1:𝑇 )
ℳ ∼

𝑞(x
(1:𝑇 )
ℳ | x(0)

ℳ), and then (2) for each 𝑡, sample x
(𝑡)
𝒮 ∼ 𝑝𝜃(x

(𝑡)
𝒮 | x

(𝑡+1)
ℳ ,x

(𝑡+1)
𝒮 ). We call

this approach the replacement method (following Ho et al. [2022]).

Although Song et al. [2021] notes that this approach can be understood as ap-

proximate conditional sampling, they provide no discussion of approximation error.

We here show that the replacement method introduces irreducible error that is in-

herent to the forward process. Algorithm 1 provides an explicit description of the

replacement method.

The first return of Algorithm 1, x(0)
𝒮 , is used as a putative inpainting solution or

approximate conditional sample. But Algorithm 1 additionally returns subsequent

time steps, x(1:𝑇 ).
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Algorithm 1 Replacement method for approximate conditional sampling
1: Input: x

(0)
ℳ (motif)

2: // Forward diffuse motif
3: x̆

(1:𝑇 )
ℳ ∼ 𝑞(x

(1:𝑇 )
ℳ | x(0)

ℳ)
4:
5: // Reverse diffuse scaffold
6: x(𝑇 ) ∼ 𝑝𝜃(x

(𝑇 ))
7: for 𝑡 = 𝑇, . . . , 1 do
8: // Replace with forward diffused motif
9: x(𝑡) ← [x̆

(𝑡)
ℳ,x

(𝑡)
𝒮 ]

10:
11: // Propose next step
12: x(𝑡−1) ∼ 𝑝𝜃(x

(𝑡−1) | x(𝑡))
13: end for
14: Return x

(0)
𝒮 , x(1:𝑇 )

We denote the approximation over all steps implied by the generative procedure

in Algorithm 1 by 𝑝Repl
1:𝑇 (· | x(0)

ℳ = 𝑥ℳ) and compare it to the exact conditional,

𝑞1:𝑇 (· | x(0)
ℳ = 𝑥ℳ). We here consider error in KL divergence because it permits an

analytically tractable and transparent analysis. We additionally consider the idealized

scenario where 𝑝0:𝑇 (·) perfectly captures the reverse process. Under this condition,

the forward KL takes a surprisingly simple form.

Proposition 4.1.1. Suppose that 𝑝0:𝑇 (·) exactly matches the forward diffusion process

such that for every 𝑥, 𝑝𝑡(· | x(𝑡+1) = 𝑥) = 𝑞𝑡(· | x(𝑡+1) = 𝑥). Then for any motif 𝑥ℳ,

KL
[︁
𝑞1:𝑇 (· | x(0)

ℳ = 𝑥ℳ)‖𝑝Repl
1:𝑇 (· | x(0)

ℳ = 𝑥ℳ)
]︁

=
𝑇−1∑︁
𝑡=1

EKL
[︁
𝑞𝒮,𝑡(· | x(𝑡+1),x

(0)
ℳ = 𝑥ℳ)‖𝑞𝒮,𝑡(· | x(𝑡+1))

]︁
.

(4.1)

Proof. The result obtains from recognizing where the replacement method approx-

imation agrees with the forward process, using conditional independences in both

processes, and applying the chain rule for KL divergences. We make this explicit in
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the derivation below, with comments explaining the transition to the following line.

KL
[︁
𝑞1:𝑇 (· | x(0)

ℳ = 𝑥ℳ)‖𝑝Repl
1:𝑇 (· | x(0)

ℳ = 𝑥ℳ)
]︁

=

∫︁
𝑞1:𝑇 (𝑥

(1:𝑇 ) | x(0)
ℳ = 𝑥ℳ) log

𝑞1:𝑇 (𝑥
(1:𝑇 ) | x(0)

ℳ = 𝑥ℳ)

𝑝Repl
1:𝑇 (𝑥(1:𝑇 ) | x(0)

ℳ = 𝑥ℳ)
𝑑𝑥(1:𝑇 )

// By the chain rule of probability.

=

∫︁
𝑞1:𝑇 (𝑥

(1:𝑇 ) | x(0)
ℳ = 𝑥ℳ)

[︁
log

𝑞ℳ,1:𝑇 (𝑥
(1:𝑇 )
ℳ | x(0)

ℳ = 𝑥ℳ)

𝑝Repl
1:𝑇 (𝑥

(1:𝑇 )
ℳ | x(0)

ℳ = 𝑥ℳ)
+

log
𝑞𝒮,1:𝑇 (𝑥

(1:𝑇 )
𝒮 | x(0:𝑇 )

ℳ = 𝑥
(0:𝑇 )
ℳ )

𝑝Repl
𝒮,1:𝑇 (𝑥

(1:𝑇 )
𝒮 | x(0:𝑇 )

ℳ = 𝑥
(0:𝑇 )
ℳ )

]︁
𝑑𝑥(1:𝑇 )

// By the agreement of 𝑞 and 𝑝Repl on the motif, and the chain rule of probability.

=

∫︁
𝑞1:𝑇 (𝑥

(1:𝑇 ) | x(0)
ℳ = 𝑥ℳ)

[︁
log

𝑞𝒮,𝑇 (𝑥
(𝑇 )
𝒮 | x(0:𝑇 )

ℳ = 𝑥
(0:𝑇 )
ℳ )

𝑝Repl
𝑇 (𝑥

(𝑇 )
𝒮 | x(0:𝑇 )

ℳ = 𝑥
(0:𝑇 )
ℳ )

+

𝑇−1∑︁
𝑡=1

log
𝑞𝒮,𝑡(𝑥

(𝑡)
𝒮 | x

(𝑡+1)
𝒮 = 𝑥

(𝑡+1)
𝒮 ,x

(0:𝑇 )
ℳ = 𝑥

(0:𝑇 )
ℳ )

𝑝Repl
𝒮,𝑡 (𝑥

(𝑡)
𝒮 | x

(𝑡+1)
𝒮 = 𝑥

(𝑡+1)
𝒮 ,x

(0:𝑇 )
ℳ = 𝑥

(0:𝑇 )
ℳ )

]︁
𝑑𝑥(1:𝑇 )

// Because 𝑞𝒮,𝑇 (·) = 𝑝Repl
𝒮,𝑇 (·) = 𝒩 (·; 0, 𝐼) and the assumption that 𝑝𝜃 matches 𝑞.

=

∫︁
𝑞1:𝑇 (𝑥

(1:𝑇 ) | x(0)
ℳ = 𝑥ℳ)

[︁ 𝑇−1∑︁
𝑡=1

log
𝑞𝒮,𝑡(𝑥

(𝑡)
𝒮 | x(𝑡+1) = 𝑥(𝑡+1),x

(0)
ℳ = 𝑥

(0)
ℳ)

𝑞𝒮,𝑡(𝑥
(𝑡)
𝒮 | x(𝑡+1) = 𝑥(𝑡+1))

]︁
𝑑𝑥(1:𝑇 )

=
𝑇−1∑︁
𝑡=1

EKL
[︁
𝑞𝒮,𝑡(· | x(𝑡+1),x

(0)
ℳ = 𝑥

(0)
ℳ)‖𝑞𝒮,𝑡(· | x(𝑡+1))

]︁
.

Proposition 4.1.1 reveals that the replacement method introduces approximation

error that is intrinsic to the forward process and cannot be eliminated by making

𝑝0:𝑇 (·) more expressive. Although the individual terms in the right hand side of

Equation (4.1) are not analytically tractable in general, in the following corollary we

show that this approximation error can be non-trivial by considering a special case.

For this following example, we depart from the earlier assumption that x is in 3D,

and consider scalar valued x𝑀 and x𝒮 .

Corollary 4.1.1. Suppose [x
(0)
ℳ ,x

(0)
𝒮 ] is bivariate normal distributed with mean zero,

unit variance, and covariance 𝜌. Further suppose that 𝑞𝒮,𝑡(· | x(0)
𝒮 ) = 𝒩 (·;

√
�̄�(𝑡)x

(0)
𝒮 , 1−
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�̄�(𝑡)) and 𝑞𝒮,𝑡+1(· | x(𝑡)
𝒮 ) = 𝒩 (·;

√︀
1− 𝛽(𝑡+1)x

(𝑡)
𝒮 , 𝛽(𝑡+1)) as in Section 2.2, where 𝛽(𝑡+1)

and �̄�(𝑡) are between 0 and 1. Then

EKL
[︁
𝑞𝒮,𝑡(· | x(𝑡+1)

𝒮 ,x
(0)
ℳ)‖𝑞𝒮,𝑡(· | x(𝑡+1)

𝒮 )
]︁
≥ −1

2

(︀
log(1− 𝛽(𝑡+1)�̄�(𝑡)𝜌2) + 𝛽(𝑡+1)�̄�(𝑡)𝜌2

)︀
.

The proof of the corollary relies of on a lemma on the variances of the two rel-

evant conditional distributions. For notational simplicity, we drop the scripts and

annotations on �̄�(𝑡) and 𝛽(𝑡+1), and instead write 𝛼 and 𝛽, respectively.

Lemma 4.1.1. Suppose x
(0)
ℳ ,x

(𝑡)
𝒮 , and x

(𝑡+1)
𝒮 are distributed as in Corollary 4.1.1.

Then Var[x
(𝑡)
𝒮 | x

(𝑡+1)
𝒮 ] = 𝛽 and Var[x

(𝑡)
𝒮 | x

(𝑡+1)
𝒮 ,x

(0)
ℳ ] ≤ 𝛽(1− 𝛽𝜌2𝛼).

Proof. That Var[x
(𝑡)
𝒮 | x

(𝑡+1)
𝒮 ] = 𝛽 follows immediately from that [x

(𝑡)
𝒮 ,x

(𝑡+1)
𝒮 ] is

marginally bivariate normal distributed with covariance
√
1− 𝛽.

The upper bound on Var[x
(𝑡)
𝒮 | x

(𝑡+1)
𝒮 ,x

(0)
ℳ ] is trickier. Observer that [x

(𝑡)
𝒮 ,x

(𝑡+1)
𝒮 ] |

x
(0)
ℳ is bivariate Gaussian and that

Var

⎡⎣⎡⎣ x
(𝑡)
𝒮

x
(𝑡+1)
𝒮

⎤⎦ | x(0)
ℳ

⎤⎦ =

⎡⎣ 1− 𝜌2𝛼
√
1− 𝛽(1− 𝜌2𝛼)

√
1− 𝛽(1− 𝜌2𝛼) 1 + 𝛽𝜌2𝛼− 𝜌2𝛼

⎤⎦ .

As such, the conditional variance may be computed in closed form as Var[x
(𝑡)
𝒮 |

x
(𝑡+1)
𝒮 ,x

(0)
ℳ ] = 𝛽(1 − 𝜌2𝛼) + (1 − 𝛽)(1 − 𝜌2𝛼) (1− (1− 𝜌2𝛼)/(1− 𝜌2𝛼 + 𝛽𝜌2𝛼)) . But

since (1 − 𝜌2𝛼)/(1 − 𝜌2𝛼 + 𝛽𝜌2𝛼) ≥ 1 − (𝛽𝜌2𝛼)/(1 − 𝜌2𝛼) and therefore 1 − (1 −

𝜌2𝛼)/(1− 𝜌2𝛼 + 𝛽𝜌2𝛼) ≤ (𝛽𝜌2𝛼)/(1− 𝜌2𝛼) we can write

Var[x
(𝑡)
𝒮 | x

(𝑡+1)
𝒮 ,x

(0)
ℳ ] = 𝛽(1− 𝜌2𝛼) + (1− 𝛽)(1− 𝜌2𝛼)

(︂
1− 1− 𝜌2𝛼

1− 𝜌2𝛼 + 𝛽𝜌2𝛼

)︂
≤ 𝛽(1− 𝜌2𝛼) + (1− 𝛽)(1− 𝜌2𝛼)

𝛽𝜌2𝛼

1− 𝜌2𝛼
)

= 𝛽(1− 𝜌2𝛼) + (1− 𝛽)𝛽𝜌2𝛼

= 𝛽(1− 𝛽𝜌2𝛼).
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Now we provide a proof of Corollary 4.1.1.

Proof. First recall that

KL
[︀
𝒩 (𝜇1, 𝜎

2
1)‖𝒩 (𝜇2, 𝜎

2
2)
]︀
=

1

2

(︂
log

𝜎2
2

𝜎2
1

+
𝜎2
1 + (𝜇1 − 𝜇2)

2

𝜎2
2

− 1

)︂
≥ 1

2

(︂
log

𝜎2
2

𝜎2
1

+
𝜎2
1

𝜎2
2

− 1

)︂

and observe that this lower bound is monotonically decreasing in 𝜎2
1 for 𝜎2

1 ≤ 𝜎2
2.

Therefore

EKL
[︁
𝑞𝒮,𝑡(· | x(𝑡+1)

𝒮 ,x
(0)
ℳ)‖𝑞𝒮,𝑡(· | x(𝑡+1)

𝒮 )
]︁

=

∫︁
𝑞ℳ,0(𝑥

(0)
ℳ)𝑞𝒮,𝑡+1(𝑥

(𝑡+1)
𝒮 | 𝑥(0)

ℳ)
[︁

KL
[︁
𝑞𝒮,𝑡(· | x(𝑡+1)

𝒮 = 𝑥
(𝑡+1)
𝒮 ,x

(0)
ℳ = 𝑥

(0)
ℳ ])‖𝑞𝒮,𝑡(· | x(𝑡+1)

𝒮 = 𝑥
(𝑡+1)
𝒮 ])

]︁
]︁
𝑑𝑥

(0)
ℳ𝑥

(𝑡+1)
𝒮

≥
∫︁

𝑞ℳ,0(𝑥
(0)
ℳ)𝑞𝒮,𝑡+1(𝑥

(𝑡+1)
𝒮 | 𝑥(0)

ℳ)
[︁

KL
[︁
𝒩 (0,Var[x

(𝑡)
𝒮 | x

(𝑡+1)
𝒮 = 𝑥

(𝑡+1)
𝒮 ,x

(0)
ℳ = 𝑥

(0)
ℳ ])‖𝒩 (0,Var[x

(𝑡)
𝒮 | x

(𝑡+1)
𝒮 = 𝑥

(𝑡+1)
𝒮 ])

]︁
]︁
𝑑𝑥

(0)
ℳ𝑥

(𝑡+1)
𝒮

≥ KL
[︀
𝒩 (0, 𝛽(1− 𝛽𝜌2𝛼))‖𝒩 (0, 𝛽)

]︀
≥ 1

2

(︂
log

𝛽

𝛽(1− 𝛽𝜌2𝛼)
+

𝛽(1− 𝛽𝜌2𝛼)

𝛽
− 1

)︂
= −1

2

(︀
log(1− 𝛽𝜌2𝛼) + 𝛽𝜌2𝛼

)︀
where the second inequality follows from Lemma 4.1.1, and the monotonicity of the

KL in 𝜎2
1.

We note two takeaways of Corollary 4.1.1. First, as we might intuitively expect,

this error can be large when significant correlation in the target distribution is present.

Second, we see that the approximation error can be larger at earlier time steps, when

�̄�(𝑡) is closer to 1.
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4.2 Conditional sampling is a sequential Monte Carlo

problem

We next frame approximation of 𝑞(x(0)
𝒮 | x

(0)
ℳ) as a sequential Monte Carlo problem

that we may solve by particle filtering. Intuitively, particle filtering addresses a lim-

itation of the replacement method: the failure at each time 𝑡 to look beyond the

current step to the less-noised motif x(𝑡−1)
ℳ when sampling x

(𝑡)
𝒮 ∼ 𝑝𝜃(x

(𝑡)
𝒮 | x(𝑡+1)). Our

key insight is that because 𝑝𝜃(x
(𝑡−1)
ℳ | x(𝑡)) provides a mechanism to assess the like-

lihood of x(𝑡−1)
ℳ , we can prioritize noised scaffolds that are more consistent with the

motif. Particle filtering leverages this mechanism to provide a sequence of discrete

approximations to each 𝑝𝜃(x
(𝑡)
𝒮 | x

(𝑡−1:𝑇 )
ℳ ) that look ahead by this extra step. Finally,

at 𝑡 = 0 we have an approximation to 𝑝𝜃(x
(0)
𝒮 | x

(0:𝑇 )
ℳ ). Then, using Proposition 4.2.1

below, we can obtain an approximate sample from 𝑞(x
(0)
𝒮 | x

(0)
ℳ). This framing permits

the application of standard particle filtering algorithms [Doucet et al., 2001]. Algo-

rithm 2 summarizes an implementation of this procedure that uses residual resampling

[Doucet and Johansen, 2009] to mitigate the collapse of the sequential approximations

into point masses.
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Algorithm 2 SMCDiff: Particle filtering for conditionally sampling from uncondi-
tional diffusion models
1: Input: x

(0)
ℳ (motif), 𝐾 (# particles)

2: // Forward diffuse motif
3: x̆

(1:𝑇 )
ℳ ∼ 𝑞(x

(1:𝑇 )
ℳ | x(0)

ℳ)
4:
5: // Reverse diffuse particles
6: ∀𝑘, x

(𝑇 )
𝑘

𝑖.𝑖.𝑑.∼ 𝑝𝜃(x
(𝑇 ))

7: for 𝑡 = 𝑇, . . . , 1 do
8: // Replace motif
9: ∀𝑘, x

(𝑡)
𝑘 ← [x̆

(𝑡)
ℳ,x

(𝑡)
𝒮,𝑘]

10:
11: // Re-weight based on x̆

(𝑡−1)
ℳ

12: ∀𝑘, 𝑤
(𝑡)
𝑘 ← 𝑝𝜃(x̆

(𝑡−1)
ℳ | x(𝑡)

𝑘 )

13: ∀𝑘, �̃�
(𝑡)
𝑘 ← 𝑤

(𝑡)
𝑘 /

∑︀𝐾
𝑘′=1𝑤

(𝑡)
𝑘′

14: x̃
(𝑡)
1:𝐾 ∼ Resample(�̃�(𝑡)

1:𝐾 ,x
(𝑡)
1:𝐾)

15:
16: // Propose next step
17: ∀𝑘, x

(𝑡−1)
𝑘

𝑖𝑛𝑑𝑒𝑝.∼ 𝑝𝜃(x
(𝑡−1) | x̃(𝑡)

𝑘 )
18: end for
19: Return x

(0)
𝒮,1:𝐾

SMCDiff provides a tunable trade-off between computational cost and statistical

accuracy through the choice of the number of particles 𝐾. In our next proposition

we make this trade-off explicit.

Proposition 4.2.1. Suppose that 𝑝𝜃 exactly matches the forward diffusion process

such that for every x(𝑡+1), 𝑝𝜃(x
(𝑡) | x(𝑡+1)) = 𝑞(x(𝑡) | x(𝑡+1)) and consider any motif

x
(0)
ℳ . Let x𝒮,𝐾 be a particle chosen at random from the output of Algorithm 2 with 𝐾

particles. Then x𝒮,𝐾 converges in distribution to 𝑞(x
(0)
𝒮 | x

(0)
ℳ) as 𝐾 goes to infinity.

The significance of Proposition 4.2.1 is that it guarantees Algorithm 2 can pro-

vide arbitrarily accurate conditional samples provided an accurate diffusion model

and large enough compute budget (determined by the number of particles). To our

knowledge, SMCDiff is the first algorithm for asymptotically exact conditionally sam-

pling from unconditional DPMs.
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Our proof of the proposition is obtained from an application of standard asymp-

totics for particle filtering [Chopin and Papaspiliopoulos, 2020, Proposition 11.4]. The

proof will proceed by first discussing technical details of Algorithm 2 then reducing

the proof down to proving a lemma.

The idea behind the SMCDiff procedure in Algorithm 2 is to break sampling of

x
(0)
𝒮 ∼ 𝑞𝒮,0(· | x(0)

ℳ) into three stages:

1. Draw x
(1:𝑇 )
ℳ ∼ 𝑞ℳ,1:𝑇 (· | x(0)

ℳ).

2. Draw x
(1:𝑇 )
𝒮 ∼ 𝑞𝒮,1:𝑇 (· | x(0:𝑇 )

ℳ ).

3. Draw x
(0)
𝒮 ∼ 𝑞𝒮,0(· | x(0:𝑇 )

ℳ ,x
(1:𝑇 )
𝒮 )

If all three steps were performed exactly, by the law of total probability x
(0)
𝒮 in step (3)

would (marginally) be an exact sample from 𝑞𝒮,0(· | x(0)
ℳ). As such, SMCDiff aims to

perform step (1) and approximate steps (2) and (3). Step (1) corresponds to forward

diffusing the motif in lines 2–3 and is exact because we diffuse according to 𝑞.

Step (3) corresponds to line 17 in the last iteration (when 𝑡 = 1). Specifically,

to sample from 𝑞𝒮,0(· | x(0:𝑇 )
ℳ ,x

(1:𝑇 )
𝒮 ) we make three observations. (i) The Markov

structure of the forward process implies that 𝑞𝒮,0(· | x(0:𝑇 )
ℳ ,x

(1:𝑇 )
𝒮 ) = 𝑞𝒮,0(· | x(0:1)

ℳ ,x
(1)
𝒮 ).

(ii) By the assumption that the forward and approximated reverse process agree, we

have 𝑞𝒮,0(· | x(0:1)
ℳ ,x

(1)
𝒮 ) = 𝑝𝒮,0(· | x(0:1)

ℳ ,x
(1)
𝒮 ). (iii) Finally, because 𝑝𝑡(· | x(𝑡+1))

factorizes across ℳ and 𝒮 for each 𝑡, 𝑝𝒮,0(· | x(0:1)
ℳ ,x

(1)
𝒮 ) = 𝑝𝒮,0(· | x(1)

ℳ ,x
(1)
𝒮 ). As

a result, under the assumptions of the proposition, we may sample from 𝑞𝒮,0(· |

x
(0:𝑇 )
ℳ ,x

(1:𝑇 )
𝒮 ), and perform step (3) exactly as well.

Step (2) is the only non-trivial step, and cannot be performed exactly. The chal-

lenge is that although the reverse process approximation, 𝑝𝒮,1:𝑇 (· | x(0:𝑇 )
ℳ ), is well-

defined, computing it explicitly involves an intractable, high-dimensional integral.

The sequential Monte Carlo approach of SMCDiff, then, is to circumvent this in-

tractability by constructing a sequence of approximations. For each 𝑡 = 𝑇, 𝑇−1, . . . , 1,

we approximate 𝑝𝒮,𝑡(· | x(𝑡−1:𝑇 )
ℳ ) (and thereby 𝑞𝒮,𝑡(· | x(𝑡−1:𝑇 ))) with 𝐾 weighted atoms

(the particles). We denote these approximations (which are implicit in Algorithm 2)
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by P(𝑡)
𝐾 (·) :=

∑︀𝐾
𝑘=1 �̃�

(𝑡)
𝑘 𝛿(·;x(𝑡)

𝒮,𝑘), where each �̃�
(𝑡)
𝑘 and x

(𝑡)
𝒮,𝑘 are as in Algorithm 2,

and 𝛿(·;x) denotes a Dirac mass at x. In particular, P(1)
𝐾 (·) is an approximation to

𝑝𝒮,1(· | x(0:𝑇 )
ℳ ).

Proving the proposition amounts to showing that in the limit as 𝐾 goes to infinity,

each P(1)
𝐾 (·) converges weakly to 𝑝𝒮,1(· | x(0:𝑇 )

ℳ ), which by assumption is equal to

𝑞𝒮,1(· | x(0:𝑇 )
ℳ ). This weak convergence follows from standard asymptotics for particle

filters [Chopin and Papaspiliopoulos, 2020, Proposition 11.4], which we make explicit

in Lemma 4.2.1. As a result, if we perform step (3) with x
(1)
𝒮 ∼ P(1)

𝐾 (·), then this

lemma implies that x(0)
𝒮 converges in distribution to 𝑞𝒮,0(x

(0)
𝒮 | x

(0)
ℳ), since (i) 𝑞𝒮,0(x

(0)
𝒮 |

x
(1)
ℳ ,x

(1)
𝒮 ) is continuous in x

(1)
𝒮 and (ii) x(0)

𝒮 is independent of x(0)
ℳ conditional on x(1).

Recall that to show the proposition, it was to sufficient to show that P(1)
𝐾 converged

weakly to 𝑞𝒮,1(· | x(0:𝑇 )
ℳ ); this implied that the 𝐾 particle returned by Algorithm 2

would then converge in distribution to 𝑞𝒮,0(· | x(0:𝑇 )
ℳ ) which, by the law of total prob-

ability, implied that they marginally converge to 𝑞𝒮,0(· | x(0)
ℳ). However, while the

particles return by Algorithm 2 may be treated as exchangeable, they are not inde-

pendent, because they depend on shared randomness in x
(1:𝑇 )
ℳ . To obtain approximate

samples that are independent, it is necessary to run Algorithm 2 multiple times.

Residual resampling. Line 14 of Algorithm 2 indicates a Resample step. In par-

ticle filtering, resampling steps (or branching mechanisms [Doucet et al., 2001, Chap-

ter 2]) filter out particles with very small weights, and replace them with additional

copies of particles with large weights. Notably, the resampling step is the only point of

departure of Algorithm 2 from the replacement method; without resampling, the al-

gorithms behave identically. While a variety of possible branching mechanisms exist,

we use residual resampling (Algorithm 3) in our implementation for its simplicity.
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Algorithm 3 Residual Resample
1: Input: 𝑤1:𝐾 (weights), x1:𝐾 (particles)
2: ∀𝑘, (𝑐𝑘, 𝑟𝑘)← (⌊𝐾𝑤𝑘⌋, 𝐾𝑤𝑘 − ⌊𝐾𝑤𝑘⌋)
3: x̃𝐶 = [x1, . . . ,x1⏟  ⏞  

𝑐1

, . . . ,x𝐾 , . . . ,x𝐾⏟  ⏞  
𝑐𝐾

]

4: 𝑅← 𝐾 −
∑︀𝐾

𝑘=1 𝑐𝑘
5: [𝑖1, . . . , 𝑖𝑅] ∼ Multinomial(𝑟1:𝐾 , 𝑅)
6: x̃𝑅 ← [x𝑖1 , . . . ,x𝑖𝑅 ]
7: x̃ = concat(x𝑅,x𝐶)
8: Return x̃

Lemma 4.2.1. Consider P(1)
𝐾 :=

∑︀𝐾
𝑘=1 �̃�𝑘𝛿(·;x(1)

𝒮,𝑘), where �̃�𝑘 and x
(1)
𝒮,1:𝐾 are as con-

structed in Algorithm 2. Assume the conditions of Proposition 4.2.1. Then P(1)
𝐾

converges weakly to 𝑝𝒮,1(· | x(0:𝑇 )
ℳ ) as 𝐾 goes to infinity. That is, for any Borel

measurable 𝐴, lim𝐾→∞ P(1)
𝐾 (𝐴) =

∫︀
𝐴
𝑝𝒮,1(𝑥 | x(0:𝑇 )

ℳ )𝑑𝑥.

Proof. The proof of the lemma follows from an application of standard asymptotics for

particle filtering [Chopin and Papaspiliopoulos, 2020, Proposition 11.4]. In particular,

to apply Proposition 11.4 we use the formalism of Feynman–Kac (FK) models, follow-

ing the notation of [Chopin and Papaspiliopoulos, 2020, Chapter 5]. Though typically

(and in [Chopin and Papaspiliopoulos, 2020]) FK models are defined via a sequence

of approximations at increasing time steps, we consider decreasing time steps because

we are approximating the reverse time process. We take the initial distribution as

M𝑇 (x
(𝑇 )
𝒮 ) = 𝑝𝒮,𝑇 (x

(𝑇 )
𝒮 ), the transition kernel as 𝑀𝑡(x

(𝑡+1)
𝒮 ,x

(𝑡)
𝒮 ) = 𝑝𝒮,𝑡(x

(𝑡)
𝒮 | x(𝑡+1)),

and the potential functions as 𝐺𝑡(x
(𝑡)
𝒮 ) = 𝑝ℳ,𝑡−1(x

(𝑡−1)
ℳ | x(𝑡)). The sequence of FK

models, Q𝑡, then correspond to

Q𝑡(x
(𝑡:𝑇 )
𝒮 ) = 𝐿−1

𝑡 M𝑇 (x
(𝑇 )
𝒮 )𝐺𝑇 (x

(𝑇 )
𝒮 )

𝑡∏︁
𝑖=𝑇−1

𝑀𝑖(x
(𝑖+1)
𝒮 ,x

(𝑖)
𝒮 )𝐺𝑖(x

(𝑖)
𝒮 )

for each 𝑡, where 𝐿𝑡 is a normalizing constant.
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By substituting in our choices of 𝑀𝑡 and 𝐺𝑡, we can rewrite and simplify Q𝑡 as

Q𝑡(x
(𝑡:𝑇 )
𝒮 ) = 𝐿−1

𝑡 𝑝𝒮,𝑇 (x
(𝑇 )
𝒮 )𝑝ℳ,𝑇−1(x

(𝑇−1)
ℳ | x(𝑇 ))

𝑡∏︁
𝑖=𝑇−1

𝑝𝒮,𝑖(x
(𝑖)
𝒮 | x

(𝑖+1))𝑝ℳ,𝑖−1(x
(𝑖−1)
ℳ | x(𝑖))

= 𝐿−1
𝑡 𝑝𝒮,𝑇 (x

(𝑇 )
𝒮 )𝑝𝑡:𝑇−1(x

(𝑡:𝑇−1) | x(𝑇 ))𝑝ℳ,𝑡−1(x
(𝑡−1)
ℳ | x(𝑡))

∝ 𝑝𝑡:𝑇 (x
(𝑡:𝑇 ) | x(𝑡−1)

ℳ )

∝ 𝑝𝒮,𝑡:𝑇 (x
(𝑡:𝑇 )
𝒮 | x(𝑡−1:𝑇 )

ℳ ),

where lines 3 and 4 drop multiplicative constants that do not depend on x
(𝑡:𝑇 )
𝒮 . From

the above derivation, we see that each Q𝑡(x
(𝑡)
𝒮 ) = 𝑝𝒮,𝑡(x

(𝑡)
𝒮 | x

(𝑡−1:𝑇 )
ℳ ), and in particular

that Q1(x
(1)
𝒮 ) = 𝑝𝒮,1(x

(1)
𝒮 | x

(0:𝑇 )
ℳ ). As such, the desired convergence in the statement

of the lemma is equivalent to that P(1)
𝐾 converges to Q1.

Chopin and Papaspiliopoulos [2020, Proposition 11.4] provide this result for the

generic particle filtering algorithm (see Chopin and Papaspiliopoulos [2020, Algorithm

10.1], which is written in the FK model form described above). More specifically,

Proposition 11.4 proves almost sure convergence of all Borel measurable functions of

P(𝑡)
𝐾 , which implies the desired weak convergence.

Although the proof provided in Chopin and Papaspiliopoulos [2020] is restricted

to the simpler, but higher variance, case where the resampling step uses multinomial

resampling, the authors note that Chopin [2004] proves it holds in the case of residual

resampling (which we use in our experiments) as well.
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Chapter 5

Experiments

We empirically demonstrate the ability of our method to scaffold motifs and sample

protein backbone structures. We train a single instance of ProtDiff and use it across

all of our experiments. For simplicity, we limited our training data to single chain

proteins taken from PDB that are no longer than 128 residues. We describe training

details in Section 5.1. We describe our procedure for evaluating backbone designs

in Section 5.2. We demonstrate the promise of our method for the motif-scaffolding

problem in Section 5.3. And we investigate our method’s strengths and weaknesses

via experiments in unconditional sampling in Section 5.4.4. Finally, we demonstrate

the applicability of SMCDiff outside of proteins by applying it to MNIST inpainting

in Section 5.5.

Baselines. As mentioned in Section 1.3, Wang et al. [2022] is the only prior ma-

chine learning work to address the motif-scaffolding problem. We do not compare

against this as a baseline because no stable implementation was available at the time

of writing. The most closely related method for unconditional sampling with avail-

able software is trDesign [Anishchenko et al., 2021], but this method does not allow

specification of a motif. The ML method most similar to ProtDiff is the concur-

rently developed equivariant diffusion model (EDM) proposed by Hoogeboom et al.

[2022]. Like ProtDiff, EDM uses a densely connected EGNN architecture but with-

out sequence-distance edge features. Consequently, it does not impose any sequence
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order, and therefore does not yield a way to relate generated coordinates to a back-

bone chain.

5.1 ProtDiff training details

ProtDiff uses 4 equivariant graph convolutional layers (EGCL) with 256 dimensions

for node and edge embeddings. The training data was restricted to single chain pro-

teins (monomers) found in PDB and lengths in the range [40, 128]. We additionally

filtered out PDB with >5Å atomic resolution. This amounted to 4269 training ex-

amples. Training was performed using the Adam optimizer with hyperparameters

learning_rate=1e-4, 𝛽1 = 0.9, and 𝛽2 = 0.999. We trained for 1,000,000 steps using

batch size 16. We used a single Nvidia A100 GPU for approximately 24 hours. We

implemented all models in PyTorch. We used the same linear noise schedule as Ho

et al. [2020] where 𝛽0 = 0.0001, 𝛽𝑇 = 0.02, and 𝑇 = 1024. We did not perform

hyperparameter tuning.

5.2 In silico evaluation of designed backbones

While experimental validation via X-ray crystallography remains the gold standard

for evaluating computationally designed proteins, recent work [Wang et al., 2022,

Lin et al., 2021] has proposed to leverage highly accurate protein structure prediction

neural networks as an in silico proxy for true structure. More specifically, Wang et al.

[2022] jointly design protein sequence and structure, and validate by comparing the

design and AlphaFold2 (AF2) [Jumper et al., 2021] predicted structures. Here, our

goal is to assess the quality of scaffolds generated independent of a specific sequence,

so we treat fixed backbone sequence design as a downstream step as in Lin et al.

[2021].

Our evaluation with AF2 is as follows. For each generated scaffold we use a C-𝛼

only version of ProteinMPNN [Dauparas et al., 2022] with a temperature of 0.1 to

sample 8 amino acid sequences likely to fold to the same backbone structure. We
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then run AF2 with the released CASP141 weights and 15 recycling iterations. We do

not include a multiple sequence alignment as an input to AF2. Our choice of utilizing

ProteinMPNN and AF2 (without MSAs) is motivated by their empirical success in

various de novo protein design tasks and the ability to recapitulate native proteins

[Dauparas et al., 2022, Bennett et al., 2022]. To assess unconditionally sampled

scaffolds, we then evaluate the agreement of our backbone sample with the AF2

predicted structures using the maximum TM-score [Zhang and Skolnick, 2005] across

all generated sequences which we refer to as scTM, for self-consistency TM-score. To

assess whether prospective scaffolds generated support a motif, we compute the root

mean squared distances (RMSD) of the desired and predicted motif coordinates after

alignment and refer this metric as the motif RMSD. Algorithm 4 outlines the exact

steps.

Because a TM-score > 0.5 indicates that two structures have the same fold [Zhang

and Skolnick, 2005], we say that a backbone is designable if scTM > 0.5. The ability

for AF2 to reproduce the same backbone from an independently designed sequence

is evidence a sequence can be found for the starting structure. To verify this is

a reasonable cutoff, we analyzed scTM over our training set and found 87% to be

designable.

Algorithm 4 Self-consistency calculation
Input: x ∈ R𝑁,3

1: for 𝑖 ∈ 1, . . . , 8 do

2: 𝑠𝑖 ← ProteinMPNN(x)

3: x̂𝑖 ← AF2(𝑠𝑖)

4: end for

5: sc_tm ← max𝑖∈1,...,8TMscore(x̂𝑖,x)

Output: , sc_tm

1Biannual protein folding competition where AF2 achieved first place. Weights available under
Apache License 2.0 license.
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5.3 Motif-scaffolding via conditional sampling

We evaluated our motif-scaffolding approach (combining SMCDiff and ProtDiff) on

motifs extracted from existing proteins in the PDB and found that our approach can

generate long and diverse scaffolds that support these motifs.

We chose to first evaluate on motifs extracted from proteins present in the training

set because we knew that at least one stabilizing scaffold exists. We considered 2

examples taken from the PDB with IDs 6exz and 5trv, which are 69 and 118 residues

long, respectively. We chose these examples due to their high secondary structure

composition while being representative of the shortest and longest lengths seen during

training. For each structure, we chose a 15–25 residue helical segment as the motif (see

Figure 5-1 and Table 5.1). The remainder of each protein is one possible supporting

scaffold. We sought to assess if we could recover this and other scaffolds with the

same size and motif placement.

Figure 5-1: Structures used for motif-scaffolding test cases. Native structures (grey)

and their motifs (orange) that were used for the motif-scaffolding task are shown.
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Table 5.1: Motif-scaffolding test case details.

Origin/ Protein Total length Motif size (residue range)

6exz 72 15 (30–44)

5trv 118 21 (42–62)

RSV (PDB-ID: 5tpn) 62 19 (16–34)

EF-hand (PDB-ID: 1PRW) 53 5 (0–4), 13 (31–43)

Based on prior work [Wang et al., 2022], we expected that building larger scaffolds

around a motif would be more challenging than building smaller scaffolds. To assess

this length dependence, we expanded the segment of used as the motif when running

SMCDiff by including additional residues on each side. In each case, though, we

compute the motif RMSD over the minimal motif. In Figure 5-2B, we present motif-

scaffolding performance and its dependence on scaffold size for 5trv, the longer of

the two test proteins. For the 5trv test case, the lower quartile of the motif RMSD

for SMCDiff is below 1Å for scaffolds up to 80 residues. Since 1Å is atomic-level

resolution, we conclude that our approach can succeed in this length range.

Figure 5-2A provides a visualization of our method’s capacity to generate long

and diverse scaffolds. The figure depicts two dissimilar scaffolds of lengths 34 and

54 produced by SMCDiff with 64 particles. Both scaffolds are designable and agree

with AF2 (scTM > 0.5). Diversity is particularly evident in the different orderings of

secondary structures.

Figure 5-2B compares SMCDiff to two naive inpainting methods, fixed and

replacement. In fixed, the motif is fixed for every timestep 𝑡, and the reverse

diffusion is applied only to the scaffold (as done by Zhou et al. [2021]); replacement

is the method described in Section 4.1. In contrast to SMCDiff, these baselines fail

to generate a successful scaffolds longer than 50 residues on 5trv, as determined by

the location of their lower quartiles.

We next applied these three inpainting methods to harder targets in order to

measure generalization to out-of-distribution and more difficult motifs comprising of

dis-contiguous regions and loops. We consider a motif obtained from the respiratory
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Figure 5-2: Motif-scaffolding case studies. (A) Example of two scaffold structures
generated around a segment of 5trv. Orange: desired input motif, Grey: AlphaFold-
predicted structure of two scaffolds, with the motif highlighted (purple). Both scaf-
folds were sampled using SMCDiff with scTM > 0.5. (B,C) Motif RMSD for 5trv and
6exz test cases, its dependence on scaffold size, and comparison of SMCDiff to two
naive inpainting methods (fixed, replacement).

syncytial virus (RSV) protein and calcium binding EF-hand motif, both of which are

not in the training dataset. RSV is known to be difficult due to its composition of

helical, loop, and sheet segments, while EF-hand is a dis-contiguous loop motif found

in a calcium binding protein. More details about both motifs can be found in Wang

et al. [2022]; there the authors report the only known successful scaffold of these

motifs but they attain it with a computationally intensive hallucination approach.

We found that our method failed to generate scaffolds predicted to recapitulate the

motif (Figure 5-3); however, SMCDiff provided smaller median motif RMSDs than

the other two inpainting methods.

Compute cost. The computation of SMCDiff with 64 particles is approximately

2 minutes per independent sample, while alternative methods fixed and replacement

can produce 64 independent samples in the same time. By contrast, the hallucination

approach of Wang et al. [2022] involves running a Markov chain for thousands of steps,

and has runtime on the order of hours for a single sample [Anishchenko et al., 2021].
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Figure 5-3: Additional inpainting results on a more challenging motif extracted from
the respiratory syncytial virus (RSV) and EH-hand motif. The three inpainting
methods are evaluated as described in Section 5.3.

5.4 Unconditional sampling

We next investigate the origins of the diversity seen in Figure 5-2 by analyzing the

diversity and designability of ProtDiff samples without conditioning on a motif.

We first check that ProtDiff produces designable backbones. To do this, we gen-

erated 10 backbone samples for each length between 50 and 128 and then calculated
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Figure 5-4: Protein backbone samples from ProtDiff. (A) Density plot of scTM for
different length categories (50–70, 70–128). The dashed line at scTM = 0.5 indicates
the threshold of “designability”, points to the right are considered “designable” (see
text). (B) Scatter plot of scTM and the highest TM-score of each sample to all of PDB.
Points represented as a grey “×” are detected to contain an (invalid) left-handed helix.
Dashed lines indicate thresholds scTM = 0.5. (C) Example of a designable backbone
sample (rainbow) with scTM > 0.5 (boxed in red in panel B) to its closest PDB
example (6c59, grey) with a TM-score of 0.54.

scTM for each sample. In Fig. 5-4A, we find that 11.8% of samples have scTM >

0.5. However, the majority of backbones do not pass this threshold. We also observe

designability has strong dependence on length since we expect that longer proteins

are harder to model in 3D and design sequences for. We separated the lengths below

128 residues into two categories and refer to them as short (50–70) and long (70–

128). Our results in Figure 5-4A indicate 17% of designs in the short category are

designable vs. 9% in the long category.

We next sought to evaluate the ability of ProtDiff to generalize beyond the

training set and produce novel backbones. In Figure 5-4B each point represents a

backbone sample from ProtDiff. The horizontal coordinate of a point is the scTM,

and the vertical coordinate is the minimum TM-score across the training set. We

found a strong positive correlation between scTM and this minimum TM-score, in-

dicating that many of the most designable backbones generated by ProtDiff were

a result of training set memorization. However, if the model were only memorizing

the training set, we would see TM-scores consistently near 1.0; the range of scores in

Figure 5-4B indicate this is not the case – and the model is introducing a degree of

variability. Figure 5-4C gives an example of backbone with scTM > 0.5 that appears
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to be novel. Its closest match in the PDB has TM-score = 0.54.

5.4.1 Sample diversity analysis

To measure diversity of our designed samples, all 92 samples with scTM > 0.5 were

compared and clustered using MaxCluster Herbert and Sternberg [2008]. Structures

were compared in a sequence independent manner, using the TM-score of the max-

imal subset of paired residues. They were subsequently clustered using hierarchical

clustering with average linkage, 1 - TM-score as the distance metric and a TM-score

threshold of 0.5 (Figure 5-5).

Figure 5-5: Clustering of self-consistent ProtDiff samples. The distance matrix is
1 - TM-score between pairs of samples, and ranges from 0 (exact matach) to 1 (no
match). Dendrograms are from hierarchical clustering using the average distance
metric. Designs on the right are cluster centroids. Gray lines connect larger clusters
with more than one member to its centroid, while the remaining designs are from
a random selection of the remaining single-sample clusters. Protein backbones are
colored from blue at the N-terminus to red at the C-terminus.
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5.4.2 Failure mode analysis

Fig. 5-4B illustrates a limitation of our method: many of our sampled backbones are

not designable. One contributing factor is that ProtDiff does not handle chirality.

Hence ProtDiff generates backbones with the wrong handedness, which cannot be

realized by any sequence. Fig. 5-4B shows that 45% of all backbone samples had at

least one incorrect, left-handed helix. Of these, most have scTM < 0.5. We additionally

find chain breaks to be a common failure case of our samples. Visualizations of our

failure cases are seen in Figure 5-6.

Figure 5-6: Failure modes in ProtDiff backbone samples. (A) Backbone clashes and
chain breaks. The C-𝛼 atoms can be spaced further than the typical 3.8Å between
neighbors, resulting in a chain break (dashed lines). Additionally, backbone segments
can be too close to each other, resulting in obvious overlaps and clashes. (B) Back-
bones with a mixture of left (circled in red) and right (circled in green) handed helices.
These chirality errors cannot be corrected simply by mirroring the sampled backbone.

5.4.3 Noise interpolation analysis

Figure 5-7 and Figure 5-8 illustrates an interpolation between two samples, showing

how ProtDiff’s outputs change as a function of the noise used to generate them. To

generate these interpolations, we pick two backbone samples that result in different

folds. For independent samples generated with noise 𝜖(0:𝑇 ) and 𝜖(0:𝑇 ) we interpolate

with noise set to
√
𝛼𝜖(0:𝑇 ) +

√
1− 𝛼𝜖(0:𝑇 ) for 𝛼 between 0 and 1. The depicted values
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of 𝛼 are chosen to highlight transition points. A future direction is to exploit the

latent structure of ProtDiff to control backbone topology.

Figure 5-7: Latent interpolation of length 89 backbone sample from 𝛼 = 0 to 1.
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Figure 5-8: Latent interpolation of length 63 backbone sample from 𝛼 = 0 to 1.

5.4.4 Qualitative analysis of scTM in different ranges

In this section, we give intuition for backbone designs and AF2 predictions associated

with different values of scTM to aid the interpretation of the scTM results. Figure 5-

9 examines a possible categorization of scTM in three ranges. The first two rows

correspond to backbone designs that achieve scTM > 0.9. We see the backbone designs

in the first column closely match the AF2 prediction in the second column. A closely

related PDB example can be found when doing a similarity search of the highest PDB

chain with the highest TM-score to the AF2 prediction. We showed in Figure 5-4B

that scTM > 0.9 is indicative of a close structural match being found in PDB.

The middle two rows correspond to designs that achieve scTM ∼ 0.5. These are

examples of backbone designs on the edge of what we deemed as designable (scTM >

0.5). In these cases, the AF2 prediction shares the same coarse shape as the backbone

design but possibly with different secondary-structure ordering and composition. In

the length 69 example, we see the closest PDB chain has a TM-score of only 0.65 to the
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AF2 prediction but roughly the same secondary-structure ordering as the backbone

design. The length 100 sample is a similar case of AF2 producing a roughly similar

shape to the backbone design, but has no matching monomer in PDB.

The final category of scTM < 0.25 reflects failure cases when scTM is low. The

AF2 predictions in this case have many disordered regions and bear little structural

similarity with the original backbone design. Similar PDB chains are not found. We

expect that improved generative models of protein backbones would not produce any

samples in this category.
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Figure 5-9: Qualitative analysis of unconditional backbone samples from ProtDiff.
The first column displays backbone designs from ProtDiff and their sequence lengths.
The second column displays the highest scTM scoring AF2 predictions from the
ProteinMPNN sequences of the corresponding backbone design in the first column.
The third column displays the closest PDB chain to the AF2 prediction in the second
column with the PDB ID and TM-score written below. The third column is blank
for the last two rows since no PDB match could be found.
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5.5 Applicability of SMCDiff beyond proteins: MNIST

inpainting

Our goal in this section is to study the applicability of SMCDiff beyond motif-

scaffolding, by applying it to inpainting on the MNIST digits dataset. We compare

SMCDiff with the replacement method on the task of sampling the remaining half

of MNIST digits. We first train DDPM with 𝛽1 = 10−4, 𝛽𝑇 = 0.2, 𝑇 = 1000 using

a small 8-layer CNN on MNIST with batch size 128 and ADAM optimizer for 100

epochs until it is able to generate reasonable MNIST samples (Figure 5-10). We then

selected 3 random MNIST images and occluded the right half. The left half would

then serve as the conditioning information to the diffusion model (Figure 5-11).

Figure 5-10: Unconditional

MNIST samples.

Figure 5-11: Full MNIST images and their

occluded halves used for inpainting exper-

iments.

For each occluded image, we fixed a single forward trajectory and sampled 16

images from each method: replacement method and SMCDiff with 16 or 64 particles

(𝐾). Results are shown in Fig. 5-12. We observe the replacement method can some-

times produce coherent samples as a continuation of the conditioning information,

but more often it attempts to produce incoherent digits. SMCDiff on the other hand

tends to produce digits that compliment the conditioning information. For more diffi-

cult occlusions, such as 5 and 0, SMCDiff can still fail although increasing the number
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of particles (𝐾 = 64) tends to produce samples that are more visually coherent.

It is important to note SMCDiff has additional computation overhead based on

the number of particles. It can be more expensive than replacement method but

result in higher quality samples. Investigating SMCDiff in more difficult datasets

with improved architectures is a direction of future research.

Figure 5-12: MNIST inpainting results for replacement and SMCDiff. See text for

explanation.
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Chapter 6

Conclusion

The motif-scaffolding problem has applications ranging from medicine to material

science [King et al., 2012], but remains unsolved for many functional motifs. We

have created the first generative modeling approach to motif-scaffolding by develop-

ing ProtDiff, a diffusion probabilistic model of protein backbones, and SMCDiff, a

procedure for generating scaffolds conditioned on a motif. Although our experiments

were limited to a small set of proteins, our results demonstrate that our procedure is

the first capable of generating diverse scaffolds longer than 20 residues with computa-

tion time reliably on the order of minutes or less. Our work demonstrates the potential

of machine learning methods to be applied in realistic protein design settings.

General conditional sampling. SMCDiff is applicable to generic DPMs and is

not limited to only proteins and motif-scaffolding. While we do not make claims of

SMCDiff outperforming state-of-the-art conditional diffusion models on other tasks

such as image generation, we demonstrate a clear advantage of SMCDiff over the

replacement method on a toy task of inpainting MNIST images in Section 5.5. Ex-

tending SMCDiff outside of motif-scaffolding is outside the scope of the present work,

but the advantages of a single model for both unconditional and conditional genera-

tion warrants additional research.
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Modeling limitations. Our present results do not indicate our procedure can gen-

eralize to motifs that are not present in the training set. We believe improvements in

protein modeling could provide better inductive biases for generalization. ProtDiff,

based on EGNN, is reflection equivariant since it only sees pairwise distances between

3D C-𝛼 coordinates. Additionally, ProtDiff does not explicitly model primary se-

quence or side-chains. Hoogeboom et al. [2022] demonstrate the benefits of modeling

sequence information in small molecules; joint modeling sequence and structure in a

single model could improve the designability of protein scaffolds and backbones as

well.

Data limitations. We remarked our training set is small due to filtering based on

length and oligometry (using only monomeric proteins). Scaling up to longer proteins

opens up thousands more examples from the PDB, but in preliminary experiments

has proven challenging. Lastly, further development and comparison of methods for

motif scaffolding will benefit from standard evaluation benchmarks. Developing a

benchmark proved to be difficult since motifs are not labeled in protein databases.

It will be important to gather motifs of biological importance in order to guide ML

method development towards real-world applications. Because no such benchmarks

exist, developing them is a valuable direction for future work.

52



Bibliography

N. Anand and T. Achim. Protein structure and sequence generation with equivariant
denoising diffusion probabilistic models. arXiv preprint arXiv:2205.15019, 2022.

N. Anand and P. Huang. Generative modeling for protein structures. In Advances in
Neural Information Processing Systems, volume 31, 2018.

C. B. Anfinsen. Principles that govern the folding of protein chains. Science, 181
(4096):223–230, 1973.

I. Anishchenko, S. J. Pellock, T. M. Chidyausiku, T. A. Ramelot, S. Ovchinnikov,
J. Hao, K. Bafna, C. Norn, A. Kang, A. K. Bera, F. DiMaio, L. Carter, C. M.
Chow, G. T. Montelione, and D. Baker. De novo protein design by deep network
hallucination. Nature, 600(7889):547–552, 2021.

P. S. Arunachalam, A. C. Walls, N. Golden, C. Atyeo, S. Fischinger, C. Li, P. Aye,
M. J. Navarro, L. Lai, V. V. Edara, et al. Adjuvanting a subunit covid-19 vaccine
to induce protective immunity. Nature, 594(7862):253–258, 2021.

S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari,
T. E. Smidt, and B. Kozinsky. E(3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials. Nature Communications, 13, 2022.

N. Bennett, B. Coventry, I. Goreshnik, B. Huang, A. Allen, D. Vafeados, Y. P. Peng,
J. Dauparas, M. Baek, L. Stewart, , F. DiMaio, S. De Munck, S. N. Savvides, and
D. Baker. Improving de novo protein binder design with deep learning. bioRxiv,
2022.

L. Cao, B. Coventry, I. Goreshnik, B. Huang, J. S. Park, K. M. Jude, I. Marković,
R. U. Kadam, K. H. G. Verschueren, K. Verstraete, S. T. R. Walsh, N. Bennett,
A. Phal, A. Yang, L. Kozodoy, M. DeWitt, L. Picton, L. Miller, E.-M. Strauch,
N. D. DeBouver, A. Pires, A. K. Bera, S. Halabiya, B. Hammerson, W. Yang,
S. Bernard, L. Stewart, I. A. Wilson, H. Ruohola-Baker, J. Schlessinger, S. Lee,
S. N. Savvides, K. C. Garcia, and D. Baker. Design of protein binding proteins
from target structure alone. Nature, 605(7910):551–560, 2022.

N. Chopin. Central limit theorem for sequential Monte Carlo methods and its appli-
cation to Bayesian inference. The Annals of Statistics, 32(6):2385–2411, 2004.

53



N. Chopin and O. Papaspiliopoulos. An Introduction to Sequential Monte Carlo.
Springer, 2020.

B. E. Correia, J. T. Bates, R. J. Loomis, G. Baneyx, C. Carrico, J. G. Jardine, P. Ru-
pert, C. Correnti, O. Kalyuzhniy, V. Vittal, M. J. Connell, E. Stevens, A. Schroeter,
M. Chen, S. Macpherson, A. M. Serra, Y. Adachi, M. A. Holmes, Y. Li, R. E. Kle-
vit, B. S. Graham, R. T. Wyatt, D. Baker, R. K. Strong, J. E. Crowe, Jr, P. R.
Johnson, and W. R. Schief. Proof of principle for epitope-focused vaccine design.
Nature, 507(7491):201–206, 2014.

J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M.
Wicky, A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pel-
lock, D. Tischer, F. Chan, B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K.
Bera, N. P. King, and D. Baker. Robust deep-learning based protein sequence
design using ProteinMPNN. Science, 378(6615):49–56, 2022.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of Nonlinear Filtering, 12(656-704):3, 2009.

A. Doucet, N. De Freitas, and N. J. Gordon. Sequential Monte Carlo Methods in
Practice, volume 1. Springer, 2001.

N. Ferruz, S. Schmidt, and B. Höcker. ProtGPT2 is a deep unsupervised language
model for protein design. Nature Communications, 12(4348), 2022.

S. J. Fleishman, A. Leaver-Fay, J. E. Corn, E.-M. Strauch, S. D. Khare, N. Koga,
J. Ashworth, P. Murphy, F. Richter, G. Lemmon, J. Meiler, and D. Baker. Roset-
tascripts: a scripting language interface to the Rosetta macromolecular modeling
suite. PLOS ONE, 6(6):e20161, 2011.

J. S. Fraser, H. van den Bedem, A. J. Samelson, P. T. Lang, J. M. Holton, N. Echols,
and T. Alber. Accessing protein conformational ensembles using room-temperature
x-ray crystallography. Proceedings of the National Academy of Sciences, 108(39):
16247–16252, 2011.

H. Gelman and M. Gruebele. Fast protein folding kinetics. Quarterly Reviews of
Biophysics, 47(2):95–142, 2014.

A. Herbert and M. Sternberg. MaxCluster: a tool for protein structure comparison
and clustering. 2008.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33, 2020.

J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video
diffusion models. In Deep Generative Models for Highly Structured Data Workshop,
ICLR, volume 10, 2022.

54



E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling. Equivariant diffusion
for molecule generation in 3D. In International Conference on Machine Learning,
2022.

C. Hsu, R. Verkuil, J. Liu, Z. Lin, B. Hie, T. Sercu, A. Lerer, and A. Rives. Learning
inverse folding from millions of predicted structures. In International Conference
on Machine Learning, 2022.

B. Huang, Y. Xu, X. Hu, Y. Liu, S. Liao, J. Zhang, C. Huang, J. Hong, Q. Chen, and
H. Liu. A backbone-centred energy function of neural networks for protein design.
Nature, 602(7897):523–528, 2022.

J. Ingraham, V. Garg, R. Barzilay, and T. Jaakkola. Generative models for graph-
based protein design. In Advances in Neural Information Processing Systems, vol-
ume 32, 2019.

L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. Rothlisberger, A. Zanghellini,
J. L. Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas III, D. Hilvert, K. N. Houk,
B. L. Stoddard, and D. Baker. De novo computational design of retro-aldol en-
zymes. Science, 319(5868):1387–1391, 2008.

J. M. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Zídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A.
Kohl, A. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler,
T. Back, S. Petersen, D. A. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pa-
cholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583 – 589, 2021.

N. P. King, W. Sheffler, M. R. Sawaya, B. S. Vollmar, J. P. Sumida, I. André, T. Go-
nen, T. O. Yeates, and D. Baker. Computational design of self-assembling protein
nanomaterials with atomic level accuracy. Science, 336(6085):1171–1174, 2012.

D. Kingma, T. Salimans, B. Poole, and J. Ho. Variational diffusion models. In
Advances in Neural Information Processing Systems, volume 34, 2021.

B. Kuhlman and P. Bradley. Advances in protein structure prediction and design.
Nature Reviews Molecular Cell Biology, 20(11):681–697, 2019.

J. S. Lee and P. M. Kim. ProteinSGM: Score-based generative modeling for de novo
protein design. bioRxiv, 2022.

Z. Lin, T. Sercu, Y. LeCun, and A. Rives. Deep generative models create new and
diverse protein structures. In Machine Learning for Structural Biology Workshop,
NeurIPS, 2021.

T. W. Linsky, R. Vergara, N. Codina, J. W. Nelson, M. J. Walker, W. Su, C. O.
Barnes, T.-Y. Hsiang, K. Esser-Nobis, K. Yu, Z. B. Reneer, Y. J. Hou, T. Priya,

55



M. Mitsumoto, A. Pong, U. Y. Lau, M. L. Mason, J. Chen, A. Chen, T. Berrocal,
H. Peng, N. S. Clairmont, J. Castellanos, Y.-R. Lin, A. Josephson-Day, R. S. Baric,
D. H. Fuller, C. D. Walkey, T. M. Ross, R. Swanson, P. J. Bjorkman, M. Gale,
L. M. Blancas-Mejia, H.-L. Yen, and D.-A. Silva. De novo design of potent and
resilient hACE2 decoys to neutralize SARS-CoV-2. Science, 370(6521):1208–1214,
2020.

S. Luo, Y. Su, X. Peng, S. Wang, J. Peng, and J. Ma. Antigen-specific antibody
design and optimization with diffusion-based generative models. In Advances in
Neural Information Processing Systems, 2022.

M. McPartlon, B. Lai, and J. Xu. A deep SE(3)-equivariant model for learning inverse
protein folding. bioRxiv, 2022.

E. Procko, G. Y. Berguig, B. W. Shen, Y. Song, S. Frayo, A. J. Convertine,
D. Margineantu, G. Booth, B. E. Correia, Y. Cheng, W. R. Schief, D. M. Hocken-
bery, O. W. Press, B. L. Stoddard, P. S. Stayton, and D. Baker. A computationally
designed inhibitor of an Epstein-Barr viral BCL-2 protein induces apoptosis in in-
fected cells. Cell, 157(7):1644–1656, 2014.

A. Quijano-Rubio, U. Y. Ulge, C. D. Walkey, and D.-A. Silva. The advent of de
novo proteins for cancer immunotherapy. Current Opinion in Chemical Biology,
56:119–128, 2020.

C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet,
and M. Norouzi. Palette: image-to-image diffusion models. arXiv preprint
arXiv:2111.05826, 2021.

V. G. Satorras, E. Hoogeboom, and M. Welling. E(n) equivariant graph neural net-
works. In International Conference on Machine Learning, 2021.

F. Sesterhenn, C. Yang, J. Bonet, J. T. Cramer, X. Wen, Y. Wang, C.-I. Chiang, L. A.
Abriata, I. Kucharska, G. Castoro, S. S. Vollers, M. Galloux, E. Dheilly, S. Rosset,
P. Corthésy, S. Georgeon, M. Villard, C.-A. Richard, D. Descamps, T. Delgado,
E. Oricchio, M.-A. Rameix-Welti, V. Más, S. Ervin, J.-F. Eléouët, S. Riffault, J. T.
Bates, J.-P. Julien, Y. Li, T. Jardetzky, T. Krey, and B. E. Correia. De novo protein
design enables the precise induction of RSV-neutralizing antibodies. Science, 368
(6492), 2020.

J. B. Siegel, A. Zanghellini, H. M. Lovick, G. Kiss, A. R. Lambert, J. L. StClair,
J. L. Gallaher, D. Hilvert, M. H. Gelb, B. L. Stoddard, K. N. Houk, F. E. Michael,
and D. Baker. Computational design of an enzyme catalyst for a stereoselective
bimolecular Diels-Alder reaction. Science, 329(5989):309–313, 2010.

D.-A. Silva, B. E. Correia, and E. Procko. Motif-driven design of protein–protein
interfaces. In Computational Design of Ligand Binding Proteins, pages 285–304.
2016.

56



J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, 2015.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-
based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

D. Tischer, S. Lisanza, J. Wang, R. Dong, I. Anishchenko, L. F. Milles, S. Ovchin-
nikov, and D. Baker. Design of proteins presenting discontinuous functional sites
using deep learning. bioRxiv, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

J. Wang, S. Lisanza, D. Juergens, D. Tischer, J. L. Watson, K. M. Castro, R. Ragotte,
A. Saragovi, L. F. Milles, M. Baek, I. Anishchenko, W. Yang, D. R. Hicks, M. Ex-
pòsit, T. Schlichthaerle, J.-H. Chun, J. Dauparas, N. Bennett, B. I. M. Wicky,
A. Muenks, F. DiMaio, B. Correia, S. Ovchinnikov, and D. Baker. Scaffolding
protein functional sites using deep learning. Science, 377(6604):387–394, 2022.

J. Wu, S. Luo, T. Shen, H. Lan, S. Wang, and J. Huang. EBM-Fold: fully-
differentiable protein folding powered by energy-based models. arXiv preprint
arXiv:2105.04771, 2021.

P. Xiong, X. Hu, B. Huang, J. Zhang, Q. Chen, and H. Liu. Increasing the efficiency
and accuracy of the ABACUS protein sequence design method. Bioinformatics, 36
(1):136–144, 2020.

J. Xu and Y. Zhang. How significant is a protein structure similarity with TM-score=
0.5? Bioinformatics, 26(7):889–895, 2010.

M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang. GeoDiff: A Geometric Diffusion
Model for Molecular Conformation Generation. In International Conference on
Learning Representations, 2022.

C. Yang, F. Sesterhenn, J. Bonet, E. A. van Aalen, L. Scheller, L. A. Abriata, J. T.
Cramer, X. Wen, S. Rosset, S. Georgeon, T. Jardetzky, T. Krey, M. Fussenegger,
M. Merkx, and B. E. Correia. Bottom-up de novo design of functional proteins
with complex structural features. Nature Chemical Biology, 17(4):492–500, 2021.

Y. Zhang and J. Skolnick. TM-align: a protein structure alignment algorithm based
on the TM-score. Nucleic Acids Research, 33(7):2302–2309, 2005.

L. Zhou, Y. Du, and J. Wu. 3D shape generation and completion through point-voxel
diffusion. In International Conference on Computer Vision, pages 5826–5835, 2021.

57


	Introduction
	Motif-scaffolding
	Conditional sampling with diffusion models
	Related work

	Preliminaries
	Problem formulation
	Diffusion probabilistic models

	ProtDiff: A diffusion model of protein backbones in 3D
	Equivariant neural network of protein backbones
	Feature initialization

	SMCDiff: Conditional sampling in diffusion models by particle filtering
	Challenge of conditional sampling
	Conditional sampling is a sequential Monte Carlo problem

	Experiments
	ProtDiff training details
	In silico evaluation of designed backbones
	Motif-scaffolding via conditional sampling
	Unconditional sampling
	Sample diversity analysis
	Failure mode analysis
	Noise interpolation analysis
	Qualitative analysis of scTM in different ranges

	Applicability of SMCDiff beyond proteins: MNIST inpainting

	Conclusion

