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Abstract
Enterprise digital operations require data-driven and scaleable solutions to moni-

tor and manage the increasing environmental impact caused by manufacturing hard-
ware and operating large data center warehouses. Data centers are complex systems
comprising of heating, ventilation, cooling, power distribution, and workspaces to sup-
port employees managing the facility’s operation. These workloads drive the global
financial sectors, critical supply chains, big data analytics supporting consumer buy-
ing habits, and managing digital records for healthcare and payrolls that are critical
to the function of modern society.

Although these digital operations are hidden within the confines of these large
data centers, out of sight and out of mind, their impact on the environment is not
negligible. The world’s IP traffic is expected to exceed 2.3 zettabytes. Data centers
consume significantly more energy per floor space of typical commercial buildings,
1.8% of the total energy used in the United States, and 1% of energy worldwide.
This drives the need to measure and understand the impact of these workloads on
the environment so that innovation and optimization can be leveraged to allow us to
grow these technologies and digital opportunities sustainably.

To sustainably grow our digital presence, we need a method for tracking the en-
vironmental impact that the industry can adopt at scale while allowing for continued
growth and development of digital technologies in parallel. There is interest from sev-
eral government organizations to standardize a method to achieve this. This thesis
attempts to illustrate a standardized and flexible way to measure the environmental
impacts of digital solutions that combine the embodied emissions caused by manufac-
turing hardware and operational emissions from both the ICT and non-ICT systems
in the data center. This solution would provide a means to track the actual ecological
influence of digital operations that can be applied to information technology systems
at any scale ranging from small technology systems to large cloud-provisioned data
center operations. This work will focus on embodied emissions combined with op-
erational emissions, reporting methodologies, and how that information can be used
to distribute workloads using a multi-armed bandit algorithm using Thompson Sam-
pling.
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This work illustrates that embodied emissions can constitute anywhere from five
to thirty percent of a server’s total environmental impact. Workloads can be more
than 11 times higher between workloads given the same set of hardware in a data
center. Choosing the right configuration can reduce emissions by 4 times. Data center
location significantly affects operational emissions, simply shifting the region where
a workload is executed can reduce emissions by 24% or more. Using a data-driven
approach, the spatial distribution of workloads can be implemented to optimize digital
operations based on environmental objectives with as low as 30 iterations. The risk
from regulation can be reduced, and a competitive advantage can be gained from
implementing a sustainability-focused digital architecture.

Thesis Supervisor: Dr. Bruce G. Cameron
Title: Director, System Architecture Group
Senior Lecturer, System Design and Management
Faculty Director, Architecture and Systems Engineering Certificate
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Chapter 1

Introduction

With the world increasingly dependent on digital technologies, a focused approach

to managing environmental impact will be necessary, and innovation is needed [1, 2].

The world’s IP traffic is expected to exceed 2.3 zettabytes [3] data centers are con-

suming significantly more energy per floor space of typical commercial buildings [4, 5]

and 1.8% of the total energy used in the United States [6]. The size and quantity

of data centers are expected to rise in various forms such as in closets, on-premises,

co-located facilities, or hyperscale facilities [7]. This growth has received significant

attention from the United States Government starting in the early 2000’s [8, 9, 10].

This trend poses a problem of increasing quantities of physical hardware and data

center construction is coupled with an increased energy demand [11], manufacturing

activities [12], and electronic material waste [13, 14]. The motivation for explor-

ing environmental impacts and manufacturing trends has been further influenced by

the Sustainable Development Goals [15]. Some of the goals relevant to emissions

reduction are Goal 12: Responsible Consumption and Production, focusing on manu-

facturing and Goal 13: Climate Action, which focuses on energy consumption related

to environmental impact. A goal relevant to establishing partnerships and strategies

to identify and tackle these emissions is Goal 17: Partnerships for the Goals, which

focuses on encouraging and facilitating implementation through collaboration across

the industry.

Gordon Moore’s papers in 1965 and 1975 harped on the importance of integrated
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circuits and the miniaturization of devices. They introduced the idea that trade-offs

in integration complexity and manufacturing yield could minimize component cost

and drive exponential improvements in cost and complexity aligned with advances in

the manufacturing process over time.

Ultimately physical limitations were met, Dennard scaling benefits were no longer

realized, and clock frequencies began to plateau in the mid-2000s. Complexity and

manufacturing advances are being replaced by constant voltage transistor scaling.

Performance gains are anticipated to be achieved through genuinely new devices,

integration processes, and overall system architectures leveraging the advances in the

industry achieved to date [16].

There is a significant focus on the power consumption of Information Communi-

cation Technology (ICT) hardware within the data center [17, 2]. Energy Star cer-

tifications are standard among many two-processor servers and other highly utilized

hardware in the data center. The characteristics of the hardware this certification

focuses on tend to be aligned with the number of processor sockets allocated in the

hardware and whether or not the hardware leverages Graphical Processing Units,

which tend to utilize more energy than traditional processors [18]. The early models

of server power consumption tend to aggregate the power consumed by the drawer as

a whole [19, 8]. Eventually, practices grew to measure power usage associated with

the machine’s state in data center modeling tools such as DCSim and CloudSim to

allocate resources to Virtual Machines (VMs) that distribute workloads across servers

in the data center[20]. In parallel, various power distribution algorithms have been

developed to optimize the allocation of resources based in the cloud [21, 22, 23]. Still,

there is no standardized method to monitor and report this information, as noted by

work to address energy usage of blockchain technologies [18].

These issues leave the industry with the question, "What carbon accounting model

in a data center will promote tangible greenhouse gas emissions reduction driven by

digital workloads in the data center." The hypothesis is that a bottoms-up metered

approach will be the most influential in driving a standardized solution with the

flexibility to scale monitoring and reporting the environmental impact of enterprise

18



workloads in the DC. This research will focus on motivations and trends of environ-

mental impact monitoring in the DC, a review of current accounting methods, gaps in

procedures and enabling technologies, and an illustrative case study to understand the

value of implementing various strategies and recommendations that could influence

the adoption of said methods for sustainability-driven decision making.

1.1 Motivation

Two types of carbon accounting addressed in this work are embodied and opera-

tional carbon footprints. Embodied emissions are associated with the energy required

to manufacture the hardware itself [12] and can be related to Industry 4.0 initiatives

such as green energy usage through electrification of manufacturing, utilization of

renewable energies, and the implementation of additive manufacturing for end-use

products [24]. These initiatives are already underway in the industry. This paper

seeks to explore models to calculate this Life Cycle Analysis (LCA) and have it re-

ported as part of hardware’s Vital Product Data (VPD), the self-reported identity of

the machine that holds the information such as serial numbers and machine type.

The operational carbon footprint is associated with the energy consumed during

the operation of the machine and the energy consumed by the supporting infrastruc-

ture in the data center. This thesis will explore various methods to implement power

consumption monitoring in the data center guided by best practices established by

Lei et al. [18]. The goal is to explore the feasibility of implementation to encourage

standardization of newly developed hardware to allow for such monitoring. Based

on professional experience, there is the ability to implement active data collection

of power Application-Specific Integrated Circuits (ASICs) that could report power

consumption to a dashboard in real time and store it on the VPD.

This model would further explore the work done by Siddik et al. by tapping into

power management integrated circuits (PMICs) used to regulate various elements

within a hardware system, such as Processor, Memory, IO, and Fan Control with

time-series data. Furthermore, exploring recommended task scheduling algorithms

across computing resources can is explored. Finally, the machine would self-report
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the carbon consumption associated with the execution of workloads by incorporating

the duration required to execute the workload and capture the operational emissions

and the embodied emissions associated with the job to be used in a detailed report

of the impact of said workload.

New architectures for computing are being explored beyond the traditional sequen-

tial model proposed by von Neumann. Previously, hardware and software designers

were able to work independently. This came at a cost, computational performance,

and energy efficiency, and the utilization of Application Specific Integrated Circuits

and other specialized hardware designed for specific workloads showed significant

promise. The implementation of "accelerators" is the general term for programming

models leveraging a better mapping of the operations of algorithms to a set of physi-

cal resources. Examples of this would include the multitude of specialized circuits in

smartphones and the broad adoption of GPUs and General Purpose GPUs used for

specialized workloads, especially in power-constrained systems.

1.2 General Thesis Objectives

The objective of this thesis is to provide a systemic method to measure the en-

vironmental impacts of digital workload that combines the embodied emissions from

the manufacturing and transportation of physical equipment as well as the energy

associated with running the equipment and use this information to allocate work-

loads locally in the data center or to various regions based on emission factors of the

data center. Once this impact and implementation method is understood, actions

can be taken to optimize the distribution and timing of these workloads to achieve

sustainability goals established by both the public and private sectors. This lays

the foundation for sustainable computing practices to be applied in large computing

operations by proposing optimization algorithms that allow for the exploration and

exploitation of the ideal mix of technologies to execute digital operations. This will

then enable architects to design systems specific to the workloads they are responsible

for supporting without risking sustainability commitments.
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1.3 Specific Thesis Objectives

This work seeks to test the hypothesis that monitoring power consumption and

combining this with embodied emissions reporting can be used to distribute workloads

spatially within a data center and among a set of data centers at specific times to

meet a business’ environmental emissions budget and reduce a static workload’s power

consumption in a data center with a heterogeneous mix of hardware.

1.4 Thesis Overview

This work will review current methods and feasibility for measuring and recording

embodied emissions associated with building the physical hardware supporting digital

operations. Review current practices and feasibility for measuring and recording the

power consumption of the hardware as aligned to the workloads it supports. The

work will conclude with methods to distribute this workload spatially and temporally

to meet global enterprise sustainability metrics that align with industry computing

trends, influence positive consumer behavior, and meet potential regulations affecting

business operations.
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Chapter 2

Literature Review

This chapter focuses on current research and trends in the reporting of embodied

emissions, the legislation driving detailed reporting of embodied emissions, the energy

consumption of data center assets, technologies explored for emissions reporting, how

sustainability affects consumer behavior, and gaps in data center emissions reporting.

2.1 The Metric lbCO2e

The main greenhouse gasses in the lower atmosphere that are of concern due to

their rising concentrations are carbon dioxide, methane, nitrous oxide, hydrochloroflu-

orocarbons, hydrofluorocarbons, and ozone, according to the World Meteorological

Organization [25]. A metric that describes the global warming effect of these gasses is

the term CO2e and has been generally accepted. CO2e is defined by the United States

Code of Federal Regulations as "...the number of metric tons of CO2 emissions with

the same global warming potential as one metric ton of another greenhouse gas...".

2.2 Embodied Emissions

Embodied emissions define the environmental impacts associated with the pro-

duction of a physical product and are typically measured in lbCO2e. These include

emissions from activities spanning raw material extraction and production, conver-

sion from raw materials into piece parts, assembly, transportation, implementation,
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service, and end-of-life activities associated with the product [26]. Given the current

economic climate, reducing waste and driving cost efficiencies are the number one

priority for North American and EMEA manufacturers and third for Asia/Pacific

Companies[27]. Operationalizing sustainability requires organizing and disclosing the

information needed to make decisions and prioritizing areas where the greatest im-

pact and operations can lead to a competitive advantage. To meet the requirements

of regulators and adapt to the pressures from their customers, these manufacturers

will need to leverage technology as a critical method to integrate data from a variety

of sources to identify gaps and pinpoint opportunities[27]

There are efforts to create a simplified model for a Life Cycle Analysis for Elec-

tronic Equipment ranging from consumer electronics to data center Information Com-

munications Technology (ICT) equipment [28]. Larger companies have already started

publishing product carbon footprint reports on their websites based on standard con-

figurations and utilization of industry-accepted estimation tools[29, 30, 31].

The electronics industry changes rapidly with continuous innovation and invest-

ments that drive growth in data centers [5, 3]. The generation of new technologies

generally focuses on performance gains to give players in various spaces a competitive

advantage in their specific arenas like drug discovery, reactivity to financial mar-

kets, or consumer-facing digital products. This means that little thought has been

placed on the environmental impact as sectors react to these opportunities in their

self-interest, given the focus on pushing the capabilities of their digital solutions beat

their competitors to the market.

This is apparent with the recent move to hyper-scale data centers and the scale-

out focus of digital operations to support cloud business models [3]. Examples include

shifting from on-premises data centers to co-located or scale-out data centers. This

can be seen with large software companies moving to build and manage their own

data centers, such as Facebook, Amazon, and Microsoft. Increases in the need for

ICT experience have resulted in a consortium called the Open Compute Project,

where these software companies are collaborating, standardizing, and documenting

best practices to enable data center operators to build a pool of skilled labor focused
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on supporting ICT equipment deployment, and operations [32]. As these standards

mature, there is also a risk that the constraints for skilled labor and costly hard-

ware support actions are reduced, and the data centers will move to the way of the

warehouse, where low-skilled staffing is needed in bulk to perform scaled operations.

Eventually, this will lead to automation in the industry, enabling significantly larger

operations, faster deployment, and consumption of ICT equipment.

Digital workloads will significantly increase the purchase and implementation of

ICT hardware in enterprise and edge operations, especially as automation and ma-

chine learning enables more use cases and increase the ability to manage large IT

infrastructure [33]. As companies begin to focus on their carbon footprint beyond

power consumption, they need to track and manage the environmental impact of

these operations, as private and public stakeholders focus on the importance of sus-

tainability in day-to-day operations.

Private sector pressures to disclose this information serves as a competitive ad-

vantage, and public relations statement affecting purchasing behavior and sustainable

marketing initiatives [34]. Regulations may enforce this activity financially through

taxes and fees or more aggressively by restricting the import of products into the

country that doesn’t meet their reporting requirements [35]. The impacts on business

operations from the private sector may provide some market benefits depending on

consumer motivation for a green and circular economy. There is growing sentiment

supporting sustainability by large corporations, but the average consumer may not

understand how to evaluate the impact associated with the consumption of digital

products. Therefore, the market impact from the private sector consumption may be

marginal for the time being. ESG goals have impacted stock market prices, mergers

and acquisitions, and financing. Some companies have made capital asset sales and

have seen positive stock market behavior [36].

Public sector influences may be seen as more drastic, and a driving factor be-

hind the buying behavior in the stock market and business-to-business interaction

[37]. ESG-based regulations derived in the European Union have proven to have

an impact on global business operations, termed the "ESG Brussels Effect," where
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disclosure standards become internationally recognized, similar to how California pi-

oneered stringent car emissions standards that were subsequently adopted by other

states in the United States [38]. Furthermore, the cost of implementation can be

significant if businesses are forced into a centralized operating and reporting model,

which incentivizes companies to establish a reporting system that adheres to open,

globalized standards [39].

Companies that own ICT equipment will need to begin tracking the carbon foot-

print associated with purchasing and implementing physical assets. Because of the

complicated mix of materials and manufacturing methods inherent to ICT equipment,

the environmental impact analysis is somewhat complex [40]. The manufacturing pro-

cess comprises traditional manufacturing techniques such as casting, injection mold-

ing, machining, and sheet metal forming as well as incorporating advanced production

methods such as silicon device production for integrated circuits and Printed Circuit

Boards (PCBs) [40]. These advanced manufacturing methods include composites that

form dielectric layers intermixed with metal conductive layers and traces. Typically,

these advanced manufacturing methods consume rare or hazardous materials that

drive significantly more energy, resource consumption, and waste in production.

Emissions are defined by the Green House Gas protocol and are categorized in

three scopes [25]. Scope 1 emissions are emissions those that are emitted during

the process of converting fuels to energy directly. These would include the gasoline

used to power vehicles, or diesel used in power generation. Scope 2 emissions are

those that are realized through the purchased and use of energy such as those caused

by purchasing electricity from the local electrical grid. Finally, scope 3 emissions are

emissions not caused or consumed directly from an actor, but are those that the actor

is indirectly responsible for. These emissions are most commonly associated with the

products a company use and dispose of from it’s suppliers to support it’s business

operations.

Two tools to estimate scope 3 emissions introduced and accepted as TCO certified

, a predominant sustainability certification for IT products, include the Product At-

tribute to Impact Algorithm (PAIA) and the iNemi Eco-Impact Estimator tool. These
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tools leverage industry-accepted databases for carbon footprint estimation based on

materials, properties, weights, and geography characteristics for producing parts. Fur-

thermore, there is an effort to drive direct reporting of Scope 1 and 2 emissions from

suppliers downstream of the product life cycle, including raw material acquisition,

production, and distribution of products. This reporting is currently thought to pro-

vide the most direct and reliable estimate of a product’s carbon footprint with the

least effort.

Figure 2-1: GHG Protocol Process Map Example.

2.2.1 Scope 3 Emissions Tools for Manufacturing
Because carbon accounting methods directly associated with manufacturing op-

erations have not been widely adopted, tools have been developed to provide general

insight into the environmental impact of producing goods based on raw materials and

the type of operations used to produce them. These tools utilize samples of data

representing standard production techniques such as injection molding, casting, and

machining, to name a few. Widely adopted tools and their assumptions are discussed

below.

2.2.2 Generalized Life Cycle Analysis Tools
A tool not specific to the ICT industry is the Simapro tool which leverages the

EcoInvent database and provides a user interface and APIs to evaluate the envi-
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ronmental impact of materials and activities associated with sectors that vary from

agriculture to metals and polymers. This tool references the ecological impact from

similar sectors as the GaBi database, which provides a user interface to interact

with the database. Another interface is the OpenLCA tool that references the GaBi

database. These databases generally rely on industry surveys for estimated emissions

aligned with general practices and then estimate the environmental impact per unit

weight for raw material extraction and production for the elements of the product

and packaging. For transportation estimates, the databases use factors aligned with

varying transportation methods (freight, air, water) based on distance traveled to

estimate the emissions aligned with logistics. They then attempt to create an impact

per unit of weight and/or distance for materials, products, and transportation to

generate a Bill of Activities (BOA) that captures a generalized view of environmental

impact. These tools create models for processes like raw material, injection molding,

or shipping by a specific method over a set distance.

Many evaluated the viability of these tools, and the models created can vary based

on materials, processes, or location. One product’s results calculated in one tool may

disagree with the results of another [41, 42, 43]. These variations can lie in the weights

and calculations used to model the BOAs and how they overcome uncertainties [44].

2.2.3 Eco-Impact Estimator

The iNemi Eco-Impact Estimator tool was proposed in 2012 as a spreadsheet-

based method for aggregating the estimated life-cycle impact of ICT hardware using

a simplified process, categorizing targeted components, providing reasonable accuracy

aligned with the ICT industry needs, and allowing for continuous improvement [40].

This tool is based on a collaboration between industry and academic partners, includ-

ing Nokia Bell Labs, IBM, TTM, Intel, Purdue University, Logitech, and iNemi. The

tool seeks to combine the dominant life cycle impacts from Manufacturing, Trans-

port, Use, and End-of-Life stages to combine Embodied Eco Footprint (Raw Material

Extraction, Intermediate Component, and Sub-Assembly Manufacturing), the Op-

erational Eco Footprint (Usage and Servicing), transportation and installation, and
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recycling and disposition of the ICT product. The tool estimates the environmen-

tal impact associated with detailed processes such as printed wiring board (PWB)

cutting, lamination, and drilling, as a few examples. The tool intends to offer more

availability of information to its members and academic researchers. It provides a

method to look at the impact of ICT hardware with more granularity and allows for

updates that align with technological advances as the industry evolves. This tool

also references the GaBi database. The uncertainty here also include those previ-

ously mentioned, like systemic errors, model uncertainty, parameter uncertainty, and

uncertainty in the data collected and used [44].

2.2.4 Product Attributes to Impact Algorithm

The PAIA tool was developed by the Massachusetts Institute of Technology Ma-

terials Systems Laboratory and Quantis in the Fall of 2016 after being launched in

2009. The PAIA tool has applications specific to servers, displays, notebooks, desk-

tops, thin clients, tablets, storage, and network switches, as well as an All-in-One

tool. The tool is a methodology for environmental footprint analysis specific to ICT

products. It provides a workflow that reduces the cost and effort associated with

calculating the ecological impact of categories of tools in kg CO2e [45]. There is a

consortium surrounding the tool that comprises member companies that allows them

to share experiences, stay on top of legislation associated with environmental impact,

and shape the direction of the PAIA tool. Current members include IBM, Fujitsu,

Dell, Hewlett Packard Enterprise, Cisco, Lenovo, and ViewSonic. This consortium

collaborates with organizations like the Environmental Protection Agency and the

Semiconductor Industry Association.

The PAIA approach focuses on influential product attributes in data collection

and input to understand the environmental impact of ICT products to identify the

relative performance of impact reduction strategies. To calculate the carbon footprint

of a product, the tool requires the user to provide specific information for parameters

that can reduce the estimate’s uncertainty and generalizes the rest of the information

to alleviate the burden of detailed data mining. For example, the inputs required to
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calculate the environmental impact of PCB manufacturing include area, additional

electronics by weight, manufacturing locations, manufacturing energy, and materials

by weight.

The tool is currently utilized to guide and support the development of standards

for product carbon footprint analysis in development and procurement initiatives,

respond to customer surveys and information requests, help guide material selection,

and Green House Gas goal setting while meeting reporting standards such as EPEAT,

Grenelle, and CDP. This tool references the GaBi Life Cycle Inventory database that

references lbCO2e data associated with raw material processes, general manufacturing

processes, and information specific to electronic component manufacturing. This tool

does not consider the effects of meaningful actions a particular actor takes within

a product’s supply chain. Assuming the database broadly represents the industry

activities, it would lump the more sustainable OEM suppliers with the least sustain-

able ones. These calculations would not measure the real effect of top-down pressure

to provide a more sustainable product. A more resource-intensive process would be

needed to capture this competitive advantage. Also, the uncertainties above in the

data [44] are also present, and the model is obscured from the average user of the

web interface.

2.2.5 Gaps in Embodied Emissions Calculations

The tools leveraged currently by the industry are a first step to understanding

carbon emissions as a comparison method. Still, they do little to evaluate the actual

impact of the specific manufacturing and transportation processes in place today.

These tools are more a relative indicator than a real snapshot of the environmental

impact of ICT equipment. There is a level of uncertainty built into the analysis done

by the PAIA tool, and no uncertainty statement is claimed in the iNemi Eco-Impact

Estimator tool. The uncertainty value in the PAIA tool can be quite significant,

driving a common declaration in product carbon footprint reports generally stating

that "All estimates of carbon footprint are uncertain" [29].

While these tools are great at estimating the product’s carbon footprint and iden-
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tifying parts of the systems where efforts for environmental impact reduction can be

taken, there is little this information can do to drive real concerted change in the

development of the products and provide companies with a clear competitive advan-

tage in the sustainability arena. Without information specific to the product’s full

life cycle, it can be unclear where a company should focus its resources, as there will

be product-specific measurements to review. Although utilization will always be a

large portion of the product’s environmental impact, detailed accounting of material

composition and supply chain logistics are prime areas of opportunity to tactically

reduce the Scope 1 and 2 emissions from partners that contribute to the product’s

overall environmental impact during production and end-of-life.

2.3 Sustainable Legislation

2.3.1 Digital Product Passports

The European Commission has proposed legislation to establish “a framework for

setting eco-design requirements for sustainable products” [46]. This proposal shows

the basis for a Digital Product Passport (DPP) that spans a broad base of industries,

ICT products being one of them at both the consumer and enterprise level. This plan

aims to establish a data-driven circular economy where consumers, regulators, and

actors can access information to influence more sustainable decision-making within

the product’s lifecycle. The included data may include material traceability, carbon

footprint information, recycling procedures, and lifecycle guidelines proposed by GS1

in Europe [47]. This proposition establishes the need for industry players to build the

required infrastructure to support digital access to product lifecycle information in a

standard and practical manner.

Europe has been known to set the standard for stringent environmental reporting,

the "ESG Brussels effect," and the proposition of the DPP has begun to set the

direction for a digital solution to reporting and evaluating the environmental impact

of products over their lifecycle from the cradle to grave. This legislation could prevent

exporting products into the EU and even affect internal production. The idea behind
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the DPP is that the actors in a product’s lifecycle would have full access to the

information required to create a digital twin of the entire product’s lifecycle and

subsequently model changes that the actors can take to improve the environmental

impact of the product. This can include material and process changes, alterations to

the supply chain to enhance the sustainability associated with logistics, the ability

to recycle the product, or re-purposing the product to improve its lifespan. But, not

all of the effects are considered to be risky. The drive for transparency could allow

sustainably minded actors to finally have the infrastructure to display a sustainability-

driven competitive advantage and remove the need for timely data gathering and

modeling.

To enable this form of digital tracking at the scale anticipated by the regula-

tion, the process would need to integrate with current data generation and storage

tools, such as Enterprise Resource Planning (ERP) software that is commonly used

to track inventory in industrial manufacturing. This software spans raw material,

intermediate, and end product supply chains. With this in place, the required data

strings would need to be defined. This allows the information to be integrated into

the natural workflow of many businesses using various GHG reporting methods, such

as allocation as stated in the Product Life Cycle Accounting and Reporting Standard

of the GHG protocol [48].

An example of reporting integrated into the workflow of a product via the ERP

system is to utilize a method called Economic Allocation. This method allocates

emissions for each unit produced based on its economic value when leaving the multi-

output process. This would mean that a company’s portion of total revenue leaving

a facility for that product would be that portion of that facility’s emissions. The

assumption is that the cost of resources for the product is built into the price con-

sistent with the company’s product portfolio. In this case, this would be data that

should already exist somewhere in a company’s digital infrastructure since the facil-

ity’s electricity consumption, the location of the facility, and the composition of the

grid should be known [49].

While this is a shortcut to getting to the specific emissions of a product, this
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would be a very scaleable solution. A genuinely advanced variation of this method

would be to directly monitor the power consumption of equipment used to produce

this product, the time the product spent in the facility, and downstream emissions

could be collected using Internet of Things devices and subsequently reported into

the ERP system. This would not be a solution that scales well and could be quite

costly to implement, which may deter adoption. Therefore the Economic Allocation

method may be the most straightforward method for actors to get as close to the

facility data as possible. The data for the two processes mentioned above could be

incorporated into GS1 standard barcode information as strings widely utilized today

in almost every product and exchange between actors [47].

2.4 Energy Consumption

The digital economy comprises infrastructure in the form of ICT goods and ser-

vices, e-commerce, priced digital services, and cloud services, according to the Bureau

of Economic Analysis [50]. The real gross output of the digital economy grew at an

annual rate of 5.2% between 2005 and 2018. Business-to-consumer e-commerce grew

at an average rate of 12.7% per year, with cloud services growing at 8.5% and hard-

ware closely behind at 7.9%[50]. This growth is generally driven by the pace at which

companies increase their digital footprint to meet the demand for online products and

gain an edge over their competitors. These closely follow the advances in computing

technology and deployment of Machine Learning, Artificial Intelligence, and Web 3.0

trends to identify novel opportunities to win market share and generate new revenue

streams.

There are changes associated with the environmental impact associated with such

an expansion [51, 6]. Companies that traditionally had on-premise solutions have

transitioned to co-located and cloud architectures, allowing them to physically dis-

associate themselves from their IT infrastructures. Using this outsourcing method,

companies can realize cost savings by virtualizing and placing their workloads in a

distributed environment [52, 53] without the need to directly take responsibility for

the overhead required to manage the associated ICT equipment.
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The distribution of ICT equipment impacts operations where a company’s digital

presence is sourced to third-party data centers and cloud operators. When a company

scales out its operations, it will only incur an expense based upon its Service Level

Agreement (SLA) associated with cloud computing resources or buying space in a

co-located data center. This means that companies may no longer be able to control

the procurement of or monitor the energy consumption associated with the opera-

tion of their digital infrastructure. Their workload expansion will rely on third-party

organizations to manage the environmental impact related to their digital footprint.

Given this lack of control, there would be a disconnect with the reporting stan-

dard associated with the Green House Gas Protocol (ISO 14064) [54]. Furthermore,

the current reporting structure allows companies to offset their climate impact by

paying for energy via Power Purchase Agreements or Time-based Energy Attribute

Certificates without considering embodied emissions. These are great methods to

spur investments external to the company. Still, this data may not be rich enough

to provide insights into internal decision-making processes by obscuring the actual

environmental impact associated with their digital footprint.

Enterprise workloads now treat data centers as a pool of computing resources

managed by a third-party organization. Ultimately, organizations no longer need to

source and manage physical assets in the data center, and deploying digital solutions

will bypass hardware considerations. The client will pay for the compute time and

type, storage capacity, or execution time on the hardware without considering the

power consumed by the hardware and the supporting infrastructure. This means that

tracking emissions associated with the physical implementation of hardware will be

obscured. Tracking aligned with the greenhouse gas protocol standards to determine

their total environmental impact from digital solutions will now be reported to them

by the operators of the data centers from which they source computing resources.

Evaluating their digital presence by workload requirements will be the most direct

means to make informed decisions to improve their sustainable computing strategy.

When an organization runs a workload at one data center location, its environmental

impact may not be the same as if they were to run it in a different data center.
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For example, if a coal-fired power grid predominantly supplies one data center and

another is supplied by one primarily hydroelectric, their environmental impact would

not be equal. Their claims of a zero-carbon footprint may not be entirely accurate.

Understanding the ecological impact of assets, data center location, and time of day

could help the company strategically manage its digital architecture optimizing for

sustainability goals. Algorithms for machine learning, optimizing business operations,

search, and encryption can be evaluated to ensure they run on the ideal hardware

resource. This can include identifying when it is most efficient to offload work to

a cluster of GPU accelerators, determining when CPU resources may be sufficient

to execute decryption algorithms relative to specialized hardware, or determining if

there is a benefit to updating large database operations onto new technology as a few

use cases.

2.4.1 Operational Emissions

To properly account for the carbon impact of workloads, it is essential to under-

stand the source of the power supplied to the data center. Different types of power

grids supply data centers with varying degrees of impact on the emitted greenhouse

gasses (GHG) realized per MWh consumed depending on their region [49]. Therefore,

the number of carbon emissions a data center owner or workload owner would need

to account for would change depending on where the workload is executed.

To determine the mix of energy utilized in those regions, various databases can be

referenced to determine the most likely mix of power generation for the locations of the

data centers and the associated emissions factors. State data can be used to determine

the percent contribution from the various energy supplies as a representation for the

regional grid mix, or the data center can identify its region depending on how the

grid is structured [55, 56, 57].

Grid compositions can vary regionally within a country and have even more vari-

ation from country to country [58, 59]. It is not uncommon for large corporations

with global scope to have multiple digital operations spread across varying geogra-

phies. One example can be looking at Facebook’s and Google’s data center operations
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regionally in the United States.

Some large companies like Facebook and Google post their data center information

in their annual sustainability reports. Google and Facebook have various locations

spread across the USA, with different energy mixes contributing to their carbon foot-

print. Data centers in the Mid and Southwest tend to have a more significant energy

consumption relative to locations in coastal regions. This could be due to the avail-

ability of land for data center construction resulting in more extensive facilities. Data

center size was not mentioned in the reports.

Shifting workloads into regions that utilize more carbon-neutral energy sources,

such as Oregon, can significantly reduce the carbon impact at the workload level. This

is intuitive because certain regions are predominantly supported by fossil fuel-based

energy supplies, such as the Fort Worth data center in Texas [60]. Fort Worth’s energy

mix is dominated by Natural Gas and Coal, with help from some Hydroelectric power

and some nuclear power. This contrasts with the Prineville data center in Oregon

being powered by a more balanced mix between Biomass, Wind, Solar, Hydroelectric,

and some gas.

2.4.2 Gaps in Energy-Related Emissions Reporting

The major gaps associated with energy-related emissions lie in the degree that

power plants report their emissions. Some regions don’t have the requirements to, and

therefore don’t report emissions data making it harder to estimate the environmental

impact of the energy sourced from those facilities [49]. The burden for reporting this

data may be pushed onto the data center owners to attempt to gather or estimate

this data and self-report the emissions associated with the power supplied to their

facility.

2.5 Blockchain Based Life Cycle Analysis

Blockchain technology has been leveraged for traceability of a product’s full life-

cycle from raw material to end-use parts and has been established in the aerospace

industry recently [61].
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2.5.1 Hyperledger Fabric

Walmart has utilized Blockchain technology through the IBM Food Trust to pro-

vide visibility into their supply chain [62]. In this case, the Walmart supply chain

wanted to utilize a fully transparent supply chain to establish provenance when food-

borne diseases arise; the Hyperledger implementation allowed the company to reduce

the time it takes to trace the origin of produce from 7 days to 2.2 seconds. This sys-

tem utilized GS1 data standards and barcodes across their supply chain to identify

the farm that the product originated from in one of their test cases. This system

allowed for full traceability and utilization of the data for internal dashboarding ef-

forts to understand the intricacies of their supply chain network. The team found

that an open-source vendor-neutral blockchain was necessary as it needed to be used

by various stakeholders within the system. The Hyperledger Fabric is a blockchain

framework hosted by the Linux Foundation with the intent of a modular architecture

and smart contracts as the structure for the logical implementation of the system.

2.6 Sustainability and Consumer Behavior

Recently, sustainability has been seen to affect consumer behavior depending on

the product category, demographic, and social factors [63, 64, 65]. 65% of consumers

have mentioned wanting purpose-driven brands, but only 26% act on it; this has

been coined the "intention-action" gap. Research has shown that public policy is a

crucial method in creating habits that form sustainable consumption behavior and

that companies can see an increase in consumption if marketing strategies align with

the consumer sentiment such as Social influence, Habit formation, Individual self,

Feelings and cognition, and Tangibility, coined the SHIFT framework, to strengthen

a customer’s attachment to the product [64] and subsequently promote consumption

[34].

Consumers are willing to purchase based on a corporation’s environmental posi-

tioning, which has increased as consumers became more aware of the supply chain

impact when purchasing locally sourced consumer goods [66]. Deloitte surveyed con-
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sumer attitudes and behaviors around sustainability over three years, including years

during the pandemic and as pandemic tensions eased. There has been some corre-

lation that the COVID-19 pandemic increased the focus on corporate sustainability

and buying habits, but continued consumer spending on sustainable buying is seen in

2022. Consumers embrace circularity within the home, opting to repair rather than

replace items. Although only one in ten have begun to purchase carbon offsets and

16% have switched to renewable energy, there seem to be some barriers to adoption

perceived by the consumer [63]. Consumers are most likely to leverage sustainable

options in categories of products they find essential and utilized more often. This

could resonate with this sentiment as digital workloads are leveraged daily. In De-

loitte’s survey, consumers’ top five sustainable topics were sustainable packaging and

products, reducing waste in the manufacturing process, commitment to ethical work

practices, reducing carbon footprint, and respect for human rights[63]. These topics

align with the intent and availability of the proposed digital product passport, which

could work to support the SHIFT framework to provide a competitive advantage for

companies who do not have a direct high environmental impact and could then drive

pressure into the supply chain for more widespread sustainable production[35].

The main barriers to adopting sustainable products include pricing, a lack of in-

terest, and a lack of information. Findings show that showing a price reduction in

the utilization of the product and providing more information is key to leveraging

sustainability as a competitive advantage rather than considering a regulator bur-

den [63, 35]. Therefore the need to establish accurate reporting and a transparent

depiction of the product life cycle could support sustainability actions that promote

beneficial consumer behavior and reduce operating costs in the long run, [64, 34] while

providing insight into further activities that reinforce these dynamics.

2.7 Enterprise Sustainable Consumption Behavior

Investors, regulators, customers, and employees have driven an evolution in the

focus of ESG standards globally throughout organizations. Becoming a mainstream

business topic, executives are driving sustainability strategies into their business op-
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erations to drive competitive advantage to increase operational and financial perfor-

mance [2]. In a survey by the IDC, over 70% of organizations with an employee count

of over 10,000 have committed to a net-zero target and have begun to focus on veri-

fying their progress toward these goals. This momentum will see a shift in these large

organizations’ reporting methods and rigor currently in practice, refocusing how they

spend and implement their IT structure. Over 51% of respondents already recognize

that their sustainability efforts deliver operational and financial benefits through en-

hanced brand perception, customer loyalty, and the ability to identify inefficiencies

beyond general value from an investor-focused ESG sales pitch aligned with reducing

regulatory and public-relations risks[2]. These factors lead the IDC to conclude that

ESG performance will rank in the top 3 decision factors for IT equipment purchases,

with over half of the requests for proposals including metrics targeting carbon emis-

sions, material use, and labor conditions[2]. Furthermore, increasing requirements

to provide transparency in data center power consumption, use of renewable energy

sources, IT recyclability, and waste reduction is driving trends pushing data center

providers to disclose more than ever to their stakeholders. This also drives end-to-end

visibility requirements of IT vendors’ sustainability process concerning the product

that enter these data centers, promoting circularity as a critical component of the

product development process.

2.8 Power Aware Workload Placement

Power models have attempted to characterize the potential energy consumption

of various workloads based on the type of workload and a model to correlate the

consumption of hardware elements such as the CPU, memory, and switching devices

[67]. This would allow some ability to predict a somewhat optimal workload placement

based on operational emissions, but this has not been widely leveraged or implemented

as well.

Recently, research has focused on reducing energy consumption using modern

computational methods that mix K-means, ARIMA, threshold methods, and Linear

Integer Programs [68, 69]. The goal is to reduce latency driven by the decision-making
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process for workload placement and computational complexity. The most leverage

method found was to predict workloads a period in advance, day-ahead forecasting,

in conjunction with compute clusters, power models, and carbon-intensity forecasting,

among other constraints to shift workloads temporally. Future work was stated to

focus on spatial distribution following a similar framework at Google data centers

[70].

2.8.1 Multi-Armed Bandit Algorithms

In this research, it can be seen that a big issue with implementing smart work-

load placement is the lack of available data to be leveraged for prediction models or

forecasting algorithms. The multi-armed bandit algorithms focus on decision-making

with uncertainty to attempt to identify the optimal solution. William R Thompson

introduced this concept in 1933 and published it in Biometrika. These algorithms

have been widely used at scale to explore unknown environments with a large num-

ber of possible options like pricing and ad placements in large platforms like Amazon,

recommendation engines like those found on Netflix, clinical trial designs, network

routing, dynamic pricing, and relevant to this discussion resource allocation [71]. Cer-

tain classes of bandit algorithms have been leveraged in the study of reinforcement

learning and could be applied to complex learning problems.

These algorithms are a sequential game between a learner and the environment

over a horizon of n rounds. The learner chooses options based on historical results,

called a policy. The key to these algorithms is that the learner needs to make the

best possible decision while the results of the environment class are unknown. In

Thompson Sampling, the learner chooses a prior based on their available options.

They are practical concerning computational resources and observation. This method

focuses on randomization within a given distribution based on previous learning.

When the distribution is large, there is a tendency to explore options until a clear

winner is established. This leverages a Bayesian or Frequentist approach; Bayesian

was chosen to be studied here to focus on establishing priors associated with workloads

to "learn" the data center’s environment. Poorly chosen priors are left behind, and
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optimal solutions are generally leveraged while minimizing the theoretical regret, the

difference between the average reward from the chosen arm, and the known optimal

solution.

2.9 Gaps in Data Center Carbon Accounting

Data centers can access or request information associated with their regional en-

ergy mix by contacting their utility provider. This allows them to correlate their

aggregate usage to their environmental impact using grid emission factors represent-

ing the appropriate portfolio mix associated with the power entering their facilities.

Although this is great for the data center owners, this does little to allocate emis-

sions to the customers within the data center to allow monitoring of the contributions

to these aggregate emissions. It is not common, although some companies such as

Microsoft have started to offer these calculations for their cloud operations [72]. It

is unclear whether this includes the emissions from co-located data centers, so it is

assumed this is based on Microsoft-owned data centers. The documentation doesn’t

include the embodied emissions within their data center, contributing to the total

environmental impact on top of the operational emissions. This information is essen-

tial; the data center facility and manufacturing hardware are only there because of

the market’s need; therefore, the workloads are the sole reason the resulting emissions

exist and need to be accounted for by the end user as part of their downstream scope

3 emissions. This allows a company to understand the full impact of its business on

the environment.

The Carbon Trust and the Global e-Sustainability Initiative have developed ICT

sector guidance with a sector focused on cloud computing and data center services.

This document serves as a guide for industry and academia to perform research.

Still, data collection, reliable and consistent sources of secondary data, and actual

usage data for ICT hardware are not fully mature. Therefore, these strategies aren’t

standard in the industry yet [73].
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2.9.1 Gaps in Accounting Methods
Given how new emissions reporting is to companies, there will be a delay in adop-

tion, but there is a precedent for shifting to rigorous emissions reporting. Driven by

environmental concerns, power plants moved to rigorous reporting methods by the

Energy Policy Act of 1992 [59]. This type of reporting is necessary to gain insight into

the emissions associated with the production and implementation of ICT equipment

due to the scale at which the data centers are operating and decommissioning equip-

ment to keep up with technological advances. Power consumption in one country

can be sourced in many ways based on the facility’s location and cannot be treated

as one portfolio of emissions. Businesses wouldn’t know if they are better or worse

than the industry standard and wouldn’t understand how they can influence their

value chain to meet their sustainable goals. In manufacturing, industry-assumed unit

process emissions do not include how that facility manages waste or their efforts to

introduce efficiency measures such as automation or LED lighting. Streamlined ap-

proaches like the PAIA tool tend to obscure the product carbon footprint reporting

between products and are generally only able to be leveraged to find how general

components in the modeled hardware affect our environment. Product 1 wouldn’t

be able to differentiate from Product 2 since both could have metals sourced from

different parts of the world, have silicon made in a hydroelectric-powered facility or

one from a coal-powered facility, or have post-consumer recycled plastics in one versus

the other.
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Chapter 3

Proposed Method

Organizations interested in reducing their environmental impact to meet their sustain-

ability goals will need to consider more than just power consumption at the processor.

They will also need to explore the energy sources supplied to other devices and the

bus bars of the data center in which their workloads reside. Where workloads are

distributed will affect the level of GHG emissions output to meet that workload. Fur-

thermore, the following study sets a framework for evaluating various IT workloads

across many different types of server architectures; the current trend focuses more on

balancing loads across a homogeneous server cluster. These architectures can expand

beyond focusing on CPU clusters and provide a way to distribute loads in a disag-

gregated manner to scale the capacity of the data center [74]. This can be further

extrapolated to data center locations to target sustainability goals.

GPU utilization is a typical example. Able to process large amounts of data,

this technology has gained significant use for networking and data sharing and is

now being used to advance the field of machine learning [75]. CPUs are good at

facilitating sequential tasks very quickly but struggle with parallel processing across

various tasks. GPUs are typically an extensive array of relatively slow processors that

work in parallel, enabling them to process large amounts of data.

The initial rise of GPUs used to support the networking performance of video

streaming showed that they were still deficient in some applications. CPUs are still

utilized in parallel; an example is recognition tasks, where they outperform GPUs.
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Similar applications are now used to host machine learning algorithms where trade-

offs between the processing units are leveraged for different aspects of the work to

be done. A GPU still needs a CPU to manage operations such as passing data from

peripheral cards to the GPU for processing, a sort of command center.

The compute nodes can emulate this in the data center, but across servers rather

than singular systems and optimized for sustainability. The military has already

driven a need for computing resources to operate reliably and securely, albeit in

much harsher climates. Designing the systems for these harsher climates allows data

centers to run hotter and more humid. These systems are developed within strict

size, weight, and power constraints. All of which can be optimized for sustainability.

Reducing the size and weight leads to a reduction in shipping weight and cube size

to improve shipping density and power to reduce overall energy consumption.

Google has already made significant efforts to relocate non-mission-critical work-

loads to locations with larger mixes of renewable energy sources in their portfolio.

Data center owners will soon need to deviate from the practice of additionality, where

they are only paying an equivalent "tax" or fee to offset their environmental impact

on the carbon-intensive energy they are consuming. As technology advances and

processors become more power intensive, sourcing renewable energy locally to the

data center and encouraging renewable energy production at the regional grid will be

crucial in meeting sustainability goals and regulations.

Automating and standardizing reporting will be vital to creating a truly effective

system for companies to accurately manage their digital carbon footprint at scale[5,

52, 54].

3.1 Framework

The process of analyzing what machines should be used for workloads and where

they should be placed will be explored. Embodied emissions will first be analyzed

to understand the general environmental impact of similar servers. Then, a standard

workload for power consumption benchmarking will be used to compare the perfor-

mance per unit of energy for various enterprise servers simulating a containerized
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platform. Then the total server performance will be examined based on the bench-

marked metrics. Finally, the difference in emissions between data center locations

will be explored using the emissions factors from their respective electrical grid.

3.2 Calculating Embodied Emissions

The PAIA tool is widely adopted today, with several analyses published by differ-

ent hardware vendors. Due to the limited availability of detailed hardware information

and the idea that this information may only exist with the vendors, the published

carbon footprints in lbCO2e values using this tool will be used as a general reference

for the environmental impact of the hardware. Table 3.1 shows the 28 servers chosen

for analysis and whether or not their carbon footprint reports are published.
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3.3 Embodied Emissions

Server Index Brand Name Model Name Product Carbon Footprint (lbCO2e)
18 CISCO UCSB-B480-M5 Not Available
25 DELL E41S Available
32 DELL EMC E03B Available
47 DELL EMC E05B Not Available
57 CISCO UCSC-C480-M5 Not Available
61 DELL EMC E49S Available
62 DELL EMC E54S Available
97 Fujitsu PRIMERGY RX4770 M5 E-Star Fam4 Not Available
104 Hewlett Packard Enterprise DL580 Gen10 Available
121 Fujitsu PRIMERGY RX4770 M6 E-Star Fam4 Not Available
128 Hewlett Packard Enterprise HPE Superdome Flex 280 Server 4P Not Available
131 Hewlett Packard Enterprise HPE Synergy 660 Gen10 Compute Module Available
149 Hewlett Packard Enterprise HPE Proliant DL560 Gen 10 Not Available
177 Inspur NF8260M5 Not Available
178 Inspur NF8260M6 Not Available
179 Inspur NF8480M5 Not Available
180 Inspur NF8480M6 Not Available
191 IBM Power Systems E950 Not Available
192 IBM IBM Power E1050 Available
198 HPE Proliant DL560 Gen 10 HPE Proliant DL560 Gen 10 Not Available
201 Lenovo Lenovo ThinkSystem SR850P Server Available
204 Lenovo Lenovo ThinkSystem SR850 V2 Available
213 Lenovo Lenovo ThinkSystem SR950 Server (Xeon SP Gen2) Available
214 Lenovo ThinkSystem SN850 Available
224 Inspur SA8212H6 Not Available
234 Lenovo Lenovo ThinkSystem SR860 V2 Available
258 Lenovo ThinkSystem SR850 Available
261 Lenovo ThinkSystem SR860 Not Available

Table 3.1: Embodied emissions reported for the servers in the population published
by the brands.

3.4 Using the Server Efficiency Rating Tool for Com-

paring Power Consumption

The Server Efficiency Rating Tool (SERT) suite of workloads [76] serves as a set

of standard workloads that can capture power consumption relative to performance

for a workload run across almost any type of data center equipment [77, 78]. The

Standard Performance Evaluation Corporation, a leading benchmarking organization

that is widely recognized throughout the computing industry, owns the SERT suite.

As companies move to cloud-oriented operations, their workloads will sit on top of

an architecture and operating system agnostic framework similar to the SERT work-

load. This level of analysis can become a standard industry practice and drive hard-

ware manufacturers to promote sustainability-oriented development by optimizing

hardware for specific tasks such as Tensor Processing Units for tensor multiplication
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[79].

The SERT Suite measures the power consumption of the System Under Test for

various worklets meant to measure the consumption of CPU, Memory, and Storage

operations at different load levels and idle power draw. This information is widely

used to characterize the power performances of systems and is publicly reported by

the government program that certifies servers and electronic products called Energy

Star. This database will be used to understand the power draw of hardware relative

to various workloads.

3.4.1 SERT Worklets
The SERT worklets measure performance per watt with metrics specific to their

workload, including transactions per second, bandwidth, transactions per second

times the square root of the data store size, and IO operations per second. The

worklets are meant to represent everyday operations on data center hardware.

All CPU worklet performance metrics are in transactions per second and are

described in more detail below. These worklets’ performance should increase with

more resources or more capable resources. The workloads are Compress, CryptoAES,

LU, SHA256, SOR, SORT, and SSJ.

• Compress seeks to understand the power consumption during compression and

decompression operations.

• CryptoAES implements a transaction that encrypts and decrypts data using

block cipher algorithms, AES or DES.

• LU exercises large mathematical operations and computes the LU factorization

of dense matrices to achieve the number of calculations per second.

• SHA256 is an operation focused on security and performs hashing and en-

crypt/decrypt operations on hardware.

• SOR uses Jacobi Successive Over-relaxation that exercises typical access pat-

terns in finite difference applications; this is another mathematical operation.
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• SORT takes a randomized 64-bit integer array and sorts this during each trans-

action; this is one of the most critical operations in computing.

• SSJ exercises the CPU, caches, and memory of the System Under Test to simu-

late Online Transaction Processing. This worklet identifies the maximum num-

ber of transactions that is capable by the system and then runs the workload

from a peak of 100% down to system idle.

The Memory worklets measure memory bandwidth across array operations that

are important within the system and the impact of scaling across the system’s oper-

ations. The worklet’s performance should be higher for systems with better memory

characteristics. These workloads are Flood3, and Capacity3

• Flood3 utilizes four memory bandwidth tests that explore the system’s per-

formance across four common and important array operations. The aggregate

system bandwidth was averaged across the four tests and multiplied by the

amount of physical memory installed. The metric used for this test is band-

width in gigabytes per second.

• Capacity3 uses input data for a particular transaction instance at random. This

information is retrieved pre-computed allowing the workload to focus on mem-

ory performance with some CPU performance taken into account. The metric

for this workload is transaction per second times the square root of the data

store size.

The storageIO workload utilizes four transactions, two random and two serialized,

with each pair having a read and write element. This worklet focuses on the data

access performance of the system and is measured in IO operations per second. The

workload should show higher performance numbers for systems with better storage

network characteristics, such as higher bandwidth and lower latency.
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3.4.2 Calculating Sever Throughput

Server Power Capacity = Qty Server Power Supplies × Power Supply Capacity

(3.1)

Server Throughput = 𝐸𝐹𝐹workload × Server Power Capacity (3.2)

The SERT energy efficiency scores from energy star utilize normalized throughput

and power consumption to report a geometric mean of the load level scores referred

to as the EFFworkload. The unit of analysis is normalized transactions per Joule and

is taken by dividing the worklet’s metrics, transactions per second, and multiplying

by the Watts to get transactions per Joule as seen in equation 3.1. For simplification,

the total power capacity of the system will be calculated to be the power supply

capacity in Watts multiplied by the number of power supplies provided by the Energy

Star database. This will result in total transactions per second for the entire server

represented by equation 3.2.

3.5 Calculating Energy-Related Emissions for each

workload

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑mWh =
Server Throughput × Sever Power Capacity

3600 secs × 106 Watts
(3.3)

𝐶𝐹workload = 𝐷𝐶Carbon Intensity ×𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑mWh (3.4)

Two data center locations chosen are Dallas and the San Francisco Bay Area. These

two locations both have many data centers and some of the largest. These two

locations show an interesting difference in their mix of energy sources according to

the eGrid database.

The eGrid database reports the lbCO2e per MWh by state. This factor will
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determine the workload emissions by the servers for the two data center locations. To

get to the MWh from transactions per second, the run time will be calculated using

100,000 workloads as the baseline. This will return a value in seconds. This will be

multiplied by the server wattage to calculate a Watt-second value. Then this value

will be multiplied by 3,600 to achieve Watt-hours and divided by 100,000 to complete

Megawatt Hours. Finally, this will be multiplied by the emissions factor to calculate

a value in lbCO2e.

3.6 Multi-Armed Bandit Implementation

Figure 3-1: Initialization of the bandit algorithm where the distribution is centered
around zero and wide, representing an unknown data center environment.

Workloads are typically placed on fixed hardware clusters within the data center.

Power consumption data may not exist if the hardware was never run on other systems

within the data center, which makes it challenging to identify the optimal ICT asset

for that specific workload. Because of the ability to explore an unknown environment

and subsequently use that information to find and exploit an optimal solution in real-

time, the multi-armed bandit, or k-armed bandit, algorithm was chosen to explore

and learn a hypothetical data center portfolio. A series of portfolios were generated to

understand the capability of the algorithm to identify the optimal server given three

scenarios utilizing Thompson Sampling. The first scenario explores all 28 servers
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previously mentioned, with their emissions calculated using the California emissions

rate. This simulates finding the optimal server within a data center in California. The

second scenario randomly places ten servers in a California data center and ten in a

Texas data center and then runs the bandit algorithm to identify the best server and

data center mix. This scenario aims to simulate a random combination of hardware

in two different locations. Finally, the last scenario randomly places ten servers in an

Idaho data center, ten in a Washington data center, and eight in a Maine data center.

This scenario simulates a random portfolio of servers across the United States.

The emissions were calculated for each scenario’s data center portfolio using the

emissions rate from the state of the theoretical data center and a set of one million

transactions as one batch operation. The emissions numbers were used as the real

mean of the server’s distribution with a standard deviation of 0.02 lbCO2e, which

provided a somewhat realistic and practically wide distribution for the actual power

numbers. The bandit was initialized to have all posterior distributions set to a mean

of zero with a standard deviation of 1000 to simulate a wholly unknown and wide

distribution. The algorithm’s objective was set to minimize the emissions numbers

and then run for 1000 iterations. One thousand iterations were chosen arbitrarily; if

distributions for power consumption overlap, the bandit algorithm may jump back

and forth between multiple sets of resources. This could be caused by fluctuations

in operating temperatures of the inlet air into the server, potentially caused by in-

creased workloads on surrounding servers. There are methods such as the Gittins

Index or discounting rewards [71] that can be used to determine at what point is

the reward for this switching less than the cost of initializing workloads on different

pieces of hardware. Because this cost is unknown to the author and the subject of

dynamic programming is outside the scope of this work, this was considered but not

implemented.
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Chapter 4

Results

4.1 Server Population

The Energy Star Enterprise database was used to identify commercially available

servers. For this analysis, servers with four processor sockets were chosen to reduce

the number of servers in the population for analysis. Table 4.1 shows the server

brand and model name and the index used to reference the server in the following

charts. A principal component analysis was done to understand the similarity of the

servers in the population. A principal component analysis explores the relationships

of the features for the server population. It uses statistical measures to identify

orthogonal relationships between features for each observation in the population. It

then creates a two or three-dimensional representation of each observation that can

be used to explore similarities and differences between observations. Most of the

server’s processor architectures are similar, with the two IBM servers as outliers.

This could be because they are the only products not leveraging Intel servers and

have significantly higher processor operating frequencies and lower core counts.
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Figure 4-1: Lifetime server operating emissions versus embodied emissions as reported
by the manufacturer.IBM, Dell, and HPE model 4-year lifetimes with usage model
based on the PAIA EU energy factor. Lenovo models a 5-year lifetime, except for the
SR850-v2, all modeled based on the PAIA US energy factor.

Figure 4-2: Server principal component analysis to understand the likeness of the
servers.
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After searching for publicly available product carbon footprint reports, it can be

seen that over half of the servers in the population did not have a product footprint

report published. The PAIA tool was exclusively used for the product carbon foot-

print of the servers, with a report published. Of the product carbon footprint reports

found, the total product carbon footprint from manufacturing, end-of-life, packaging,

and transportation was reported as a percentage of the lifetime emissions over the

product lifecycle. This represents the product’s embodied emissions, but variation in

the servers’ lifespan affects the volume of operational emissions. The values varied

greatly, even for products of a similar size which could allude to varying assumptions,

versions of the PAIA tool used, and possible variations in the accuracy of the inputs

into the PAIA tool, as mentioned in the literature review.

Due to this variation, the embodied emissions for products are not used in the

accompanied analysis since the methods cannot be confirmed to be consistent for

producing a carbon footprint number. This would be alleviated given a standard pro-

cedure for reporting embodied emissions for ICT assets with consistent assumptions

for the analysis. Instead, the percent of embodied emissions concerning operational

emissions was explored. These can be somewhat inconsistent since many companies

estimate the lifetimes of their systems in different ways, which could lead to varia-

tions in operational emissions. Not all companies disclosed the estimated lifetime for

their analysis. Embodied emissions make up between 30 and 5 percent of the total

emissions for the servers based on the reports used in figure 4-1.

4.2 Server SERT Worklet Capacity

It can be seen that for the suite of SERT worklets, the server emissions vary by

worklet greatly. In this analysis, the servers are identified by an index, and the config-

uration of the top three performing servers is examined in more detail. This analysis

utilizes the SERT workload efficiency score to establish transactions per second by

multiplying the efficiency score, transactions per Joule, by the system’s total power,

Watts. The system’s total power capacity was calculated by multiplying the number

of power supplies by the power supply capacity. The central assumption here is that
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the system’s power architecture allows full utilization of the power available to the

system. This could be misleading as some system architectures provision redundant

power supplies, and there are no extreme outliers in the performance calculations, so

this is assumed to be a reasonable assumption to make.

4.3 CPU Workloads

Figure 4-3: Server capability in transactions per second for the SERT Compress
workload.

The Compress workload benchmarks the capability of a server during the com-

pression and decompression of data. In this workload, three servers stand out with

a higher capacity than the rest. The top-performing server is an HPE blade server

running an Intel processor with 20 cores at an operating frequency of 2 GHz. This

is followed by a Dell EMC blade server running on an Intel processor with 20 cores

at an operating frequency of 2.1 GHz. Finally, this is followed by an IBM Power

server running on an IBM 12-core processor operating at 3.35 GHz. This shows a

variation in system architecture where the two Intel-based systems are not working

at the highest frequency in the available pool of servers. The performance of these

servers slightly leads the IBM server performance, which runs on an entirely different

architecture, but at a significantly higher operating frequency.

The CryptoAES workload encrypts and decrypts data using a specific block cipher
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algorithm. In this workload, it is apparent that the magnitude of performance changes

between the servers as compared to the Compress workload. Two Dell servers lead

in performance, running Intel processors with 20 cores at 2.1 GHz, followed by the

HPE server running a 20-core Intel server at 2 GHz. Among the top performers for

the Compress workload, the IBM server is one of the worst-performing servers and

lands in the bottom three.

The SOR workload exercises typical access patterns in finite difference applica-

tions using Jacobi Over-Relaxation to solve Laplace’s equation in 2 dimensions. This

workload shows variation in performance among the population of servers examined

compared to the Compress and CryptoAES servers. Still among the top three servers

are the previously mentioned Dell and HPE servers, with another HPE server running

a 20-core intel processor at 2 GHz joining the top three in second place. The HPE

Synergy 660 (index 131) has consistently been one of the top three performing servers

for the workloads discussed but varies between first and third.

The SERT SORT workload uses a sorting algorithm for a randomized 64-bit in-

teger array as a benchmark. Again, there is a variation in performance across the

population of servers studied, but the top three performing servers are consistent with

the SOR workload. This could mean that the operations tap into similar aspects of

the system architecture to realize better performance.

The SHA256 workload performs SHA-256 hashing transformations on a byte array.

This workload has the same top three performing servers as the Compress workload,

albeit in a different order. The IBM server running on a Power processor leads in

performance, followed by the HPE server and Dell servers that consistently perform

well in all workloads discussed.

The LU workload computes the LU factorization of a dense matrix that uses

partial pivoting focused on benchmarking linear algebra kernels and dense matrix

operations. The top-performing workloads are the same three servers as the SOR

and SORT workloads, potentially alluding to an ideal architecture to support these

mathematical operations.
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4.4 Memory Workloads

Figure 4-4: Server capability in transactions per second for the SERT Capacity work-
load.

The Capacity workload performs XML operations on a minimum, and maximum

data set and scales with memory capacity leading to higher performance in servers

with higher memory capacity. The top three performers in this workload were the

HPE and the two Dell servers previously mentioned. These servers did not have the

highest memory capacity, ranging from 320 to 380 gigabytes versus the maximum of

three terabytes. This could be due to the performance of the system architecture

associated with memory access and the interfaces between the processor and memory

within the system.

4.5 StorageIO Workloads

The StorageIO workload tests the server’s access to internal storage in two meth-

ods, read and write to a random file location and then sequential locations. This

workload showed the highest degree of variance between the top performers and the

general population of servers. The StorageIO sequential workload’s top performers

were two Inspur rack mount servers. The top Inspur server runs a 20-core Intel

processor at 2.4 GHz, followed by a 24-core Intel processor at 2.4 GHz. The third

top-performing server for this workload was the IBM server running a Power processor
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Figure 4-5: Server capability in transactions per second for the SERT Sequential
workload.

at 3.35 GHz. The StorageIO random workload’s top performers consist of the same

two Inspur servers that were the first and second top performers for the sequential

workload, but in this case, they were the first and third performers. A Lenovo server

running a 28-core Intel processor at 2.3 GHz was the second top performer for this

workload. This server was the 6th top performer in the sequential workload. Many

top-performing servers were running Intel processors. But, a large portion of the

studied population also ran Intel processors. This could allude to the fact that work-

load capacity could be impacted beyond the processor architecture, which includes

core count, operating frequency, and overall system architecture.

4.6 Calculating Emissions Based on Regional Grid

Figure 4-6 displays the range of emissions factors associated with all 50 states in

lbCO2e per megawatt hour. It can be seen that states such as West Virginia (WV),

Wyoming (WY), and Kentucky (KY) have relatively large emissions factors relative

to the population. Vermont (VT), Washington (WA), and Idaho (ID) have the lowest

emissions factors relative to the population.

In the analysis, it was seen that the system’s architecture showed variation in

performance between workloads. Most of the architectures studied were Intel-based,
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Figure 4-6: Emissions factor in lbCO2e / mWh by US state.

Figure 4-7: Graph of emissions data by core count for each SERT workload type. The
highest emitting core configuration for the CPU workloads was four times the lowest
emitting configuration. For storage workloads, the highest emitting configuration was
14 times the lowest, and for memory workloads, it was 179 times the lowest emitting
configuration.
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Workload Equation R2 Value
CPU −0.066 + 0.0062𝑥− 0.0005𝑥2 + 1.047× 10−5𝑥3 0.48
Storage −0.0358 + .017𝑥− .0013 + 2.729× 10−5𝑥3 0.40
Memory −0.0683 + 0.0308𝑥− 0.0023𝑥2 + 4.719× 10−5𝑥3 0.46

Table 4.1: Polynomial regression for figure 4-7

and there was still a significant variation in performance, so the core count was

explored to understand the difference between the system’s processor architectures

to see if there were some processor-based architectural considerations to be made.

Figure 4-7 shows that 8-core processors could typically execute their workloads with

the most operational emissions. Interestingly, increasing the number of cores did

not significantly impact the emissions; it could have been mistakenly assumed that

reducing the workload run-time would positively correlate with core count since more

cores can run the workload in parallel. There is variation between the workloads

and the optimal core count for reducing emissions, which alludes to the notion that

the server running the architecture impacts the emissions associated with a given

workload type. A third-order polynomial regression was calculated. It was seen that

the model for the CPU workloads was the best correlated to the data with an R2

value of 0.48.

eGrid subregions emissions were explored how broader areas in the United States

affect the operational emissions and can change regionally, say moving a workload

from the East Coast to the Mid-West. It can be seen that there are also more sig-

nificant variations in regional emissions rates. Shifting a workload from the SERC

Mid-West region to the NPCC New England region results in a 24% reduction in

emissions. This information can be compared to the energy cost relative to a com-

pany’s carbon offset prices when placing their workloads and aiming to meet their

environmental goals.

Observing emissions from the Compress workload, it is evident that a data center

in California will most likely have lower emissions when comparing a server in both

locations. But, this assumed that both sites have the same portfolio mix of servers. If

the data center’s cluster only had access to server type 201 in Texas, 0.009 lbCO2e, and
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Figure 4-8: Server emissions rates based on regional placement for the SERT Com-
press workload.

Figure 4-9: Comparing emissions for servers between California and Texas. Cali-
fornia’s average emissions were 0.009 lbsCO2e for the SERT workload, while Texas’
average emissions were 0.017 lbsCO2e
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server type 192 in California, 0.019 lbCO2e, it would make sense to route the workload

to the Texas data center. Therefore, any algorithm that would route workload based

on emissions should consider the portfolio mix and the data center location. The price

paid for electricity was not considered directly in this analysis; lower energy prices

in Texas without considering emissions may be a deciding factor for stakeholders,

given their priorities. It can be seen that the Flood and Sequential IO workloads

SERT Workload Average Emissions in CA (lbsCO2e/batch process)
Compress 0.0093
Crypto AES 0.0115
LU 0.0074
SOR 0.0107
SORT 0.0102
SHA 256 0.0067
Flood 0.0694
Capacity 0.0089
Sequential 0.0156
Random 0.0062

Table 4.2: Average operational emissions by workload. The emissions from the
FLOOD workload are 11x the emissions for the Random IO workload given the same
basket of hardware.

have the highest emissions due to energy consumption. This could be because the

flood workload would leverage the system CPU and memory elements. Some of these

workloads’ energy efficiencies may depend on the periphery devices’ efficiency instead

of just the CPU.

Server lbsCO2e Location
Dell EMC r840 0.0003 Vermont
IBM Power e1050 0.0917 Wyoming

Table 4.3: Sensitivity study based on the Compress workload.

A crude sensitivity study was done to explore how the best-performing server in

the state with the lowest emissions rate compares to the worst-performing server with

the highest emissions rate. The results are shown in table 4.3. There is a significant

variation in emissions that are several orders of magnitude. Ideally, these workloads

would be able to be placed in the optimal region on the optimal solution, but this
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may not be feasible.

4.7 Multi-Armed Bandit Workload Distribution

Figure 4-10: The multi-armed bandit algorithm begins to exploit the optimal server
in scenario one after only 70 iterations.

Figure 4-11: Scenario 1 portfolio and algorithm output.

The bandit algorithm was set to minimize the emissions associated with each

execution of the batch operation to minimize the total emissions for all runs of the

batch operation, 1000 in this case. The results of the bandit algorithm correctly

identified the optimal solution for scenario 1 in less than 70 iterations with significant
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learning across the portfolio. The servers that have not been exploited in this case

can be dropped from the portfolio, and the near-top performers can be identified and

leveraged if the optimal server is at operating capacity.

Figure 4-12: An example of the posterior distributions after 20 iterations during
scenario2

Figure 4-13: The bandit algorithm identifying and exploiting the optimal server after
50 iterations in scenario 2

Figure 4-12 shows the bandit algorithm after 20 iterations as it is learning the

optimal server given the set of 20 servers. This shows the algorithm’s ability to

gather valuable information and exploit the optimal server after only 50 iterations.

65



The server would have found the optimal server in less than a year if done weekly.

The results for scenario two can be found in Appendix B.

Figure 4-14: Results for scenario 3 showing the algorithm differentiating between
server and data center location for the same workload. In this scenario, the three
servers with the lowest emissions to complete the same task had emissions within
0.0006 lbCO2e of each other. Average emissions in Idaho were 0.0041 lbsCO2e. Aver-
age emissions in Maine were 0.0045 lbsCO2e. Average emissions in Washington were
0.0047 lbsCO2e.

Finally, figure 4-14 shows the output from the bandit algorithm for scenario 3.

These three states had the lowest emissions rates, and the algorithm converged on

the lowest emitting servers over 1000 runs, as shown in figure B-9. This drives home

the notion that the algorithm can be used to identify a reasonable solution from

an uncertain environment and place workloads where emissions are the lowest. The

algorithm can be exploited via software and used to orchestrate workloads passively

with minimal computational resources, assuming reporting capabilities are present

and can operate in real time. In this case, servers with the lowest emissions for this

workload can be easily identified by looking at the historical data.
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Chapter 5

Discussion

5.1 Potential for Sustainability as a Service

Digital operations as a service have become a popular method to modernize and

expand digital operations while lowering the cost and risk associated with managing

IT infrastructure. Digitizing processes creates workloads that may not be tempo-

rally or spatially constrained by service level agreements, allowing businesses to place

workloads strategically to meet specific goals. Workload placement optimized for

sustainability is enabled by integrating data that describes the entire scope of an

asset’s environmental impact. This includes the embodied emissions and operational

emissions driven by both idle and utilized states.

By incorporating embodied emissions along with the operational emissions of as-

sets within a data center, an actor can quantify the environmental impact of their

digital presence. Following market principles, the assets in the data center are pro-

duced and installed to support the demand for the workloads. When a business

makes profits and pays for the expansion of digital operations, this is equivalent to a

traditional industry where capital equipment is built, installed, and run to support

operations in a production or processing facility. Given the scrutiny placed on sus-

tainable business operations, it will take more than estimating and reporting numbers

to meet corporate goals transparently and effectively. This data would need to be

leveraged and acted upon to reduce energy consumption associated with producing,
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utilizing, and recycling ICT assets at the pace the technology is advancing.

Enterprises focus more on sustainability goals as they make decisions for technol-

ogy suppliers, but the scope and timeline are still unclear. This would mean that

clear and tangible statements from their supplier base will be needed to realize their

environmental goals. In the S&P Global Market Intelligence VotE: Digital Pulse, En-

vironmental Impact 2022 study, 47% of respondents claim that environmental impact

is important in purchasing decisions, and 29% claim that it is somewhat important

[80]. This alludes to the notion that having sustainability metrics and action items

would drive a competitive advantage when companies seek new product offerings and

technology solutions.

5.2 ICT Asset Carbon Accounting on System

All systems today have a digital identifier called its vital product data (VPD)

that reports the system’s model, serial number, configuration, and various teleme-

try data available for monitoring. Incorporating an integer that corresponds to its

embodied emissions is not challenging to do. This bridges the cyber-physical gap

by acknowledging the environmental impact of bringing the hardware into existence

when it would otherwise be overlooked.

A data center’s carbon footprint would include the impact of all elements residing

within its walls to support business operations, including hardware and support in-

frastructure. The data center’s carbon footprint would be the downstream emissions

for a business’s digital presence in the same way that a power plant and fossil fuel

utilization would be aligned with the electricity demand for running a facility.

The asset would also be able to report to its VPD the amount of power that

piece of hardware has consumed over the lifespan of its operation. This information

can be used to assess the emissions associated with the product to prolong its life

or determine if it meets the criteria for end-of-life based on metrics to meet its ESG

goals.

Most proposed systems have focused on external monitoring or integrating me-

tering into the data center infrastructure. This misses granular data available to the
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replaceable and upgradeable units within the system by ignoring power management

devices internal to the system on devices like drives, fan control units, or networking

switches. This leaves room for the standardization of silicon-based technologies re-

porting their power directly to the VPD and, subsequently, the DCIM Management

software with significant granularity. This would allow a considerable data flow to

generate a real-time digital twin of the system’s operation. Many ASICs allow this

today, but the infrastructure to capture and report this data is the responsibility of

the system architect, and the ability to aggregate this data has not become a common

practice in the industry.

5.3 Monitoring Operational Emissions in the Data

Center

Managing power consumption is inherent to most data centers today. The demand

for bulk power in the data center is monitored to ensure that all systems within the

data center can operate without interruption. During peak demand, there needs to

be a large enough power budget so that any spikes in energy usage by ICT equipment

or infrastructure do not result in power shortages within the facility. Because of this,

most large data center operations have utilized data center infrastructure manage-

ment (DCIM) software to manage the day-to-day operations of the data center, such

as network quality, physical planning, and resource management. Some examples

of this software include Nlyte (Nlyte Software), StruxureWare (Schneider Electric),

Trellis (Vertiv), and PowerIQ (Sunbird Software), to name a few. DCIM software

allows companies to automate, provide visibility, integrate with building manage-

ment systems, and provide real-time monitoring across the IT infrastructure. DCIM

tools are capable of much more, but the features mentioned are of interest to enable

sustainability initiatives within the data centers.

Specifically, sustainability within the data center would incorporate space, cool-

ing, power network, storage, and virtualization to optimize workload distribution in

the scope of this discussion. To minimize infrastructure costs associated with physical
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footprints, equipment and building power consumption would be compared to proces-

sor utilization. Workload optimization has been a critical focus for many data center

operators and has been slowly advancing with the application of Machine Learning to

place equipment for thermal, power, communications, and workload placement [81].

Furthermore, with the advent of edge computing and Industry 4.0 initiatives such

as the Internet of Things, real-time data center monitoring needs to become more

granular as quantities of processing units grow [33]. Data center monitoring and

management (DCIMM) aims to use a more data-centric approach to optimize data

center operation in a non-invasive way. This includes using equipment with network

connections in the data center, like cooling systems, Uninterruptible Power Supplies

(UPS), Power Distribution Units (PDUs), and Remote Power Panels (RPPs) in con-

junction with Power Management Integrated Circuits (PMICs). PMICs are typically

found on elements within the server and manage the power architecture throughout

the system, such as voltage regulators, ASICs, and various processors. The PMIC

would send power information to the system control structure, which can report the

power draw at any time.

Identifying the time series power draw of the elements in the data center associated

with a workload would allow operators to determine the hardware within the data

center that is being leveraged efficiently. This provides the ability to calculate the

environmental impact of the workload in terms of lbCO2e by aggregating the emissions

associated with energy consumption and the manufacturing and procurement of the

assets themselves as described by their life cycle analysis.

5.4 Data Center Workload Distribution

After workloads can monitor digital data for asset Carbon Footprint Reporting and

power consumption, a system can be implemented for intelligent workload optimiza-

tion within the DC. Most data centers are assumed to operate with a heterogeneous

mix of assets. These assets can include various general compute nodes that operate

on different architectures such as Intel, AMD, Power, or Z processor architecture.

Various storage devices can range from SSD, Disc, and NvME from other suppliers.
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There can also be various types of processors, like Graphical Processing Units, Tensor

Processing Units, and Digital Processing Units, that can be leveraged for different

kinds of workloads. These elements can be combined and leveraged within a data

center to provide services optimized for a client’s specific needs.

Currently, workloads are optimized for particular architectures. With the onset of

Hyperscale and Cloud/Hybrid Cloud solutions, there is a need to mix various products

to provide a holistic solution that meets the client’s needs. Examples include the need

for Cloud Object Storage, AI Inferencing for Fraud Detection, and secure transaction

processing. These solutions may require legacy integration with an Amazon Web

Service based on an x86 architecture, an inferencing engine based on a Power Systems

architecture, and a transactional engine based on a Z System Architecture. The

solution to this lies in integrating various cloud-based services through a platform

like Red Hat OpenShift, or other Kubernetes platforms. This is where the underlying

systems are foundational and are integrated into the platform architecture. This

removes the need for architecture-specific workloads and allows the workload to be

run on any system. This freedom supports the rapid deployment of digital operations

by enabling the developer to focus on the application but may forgo performance

or power consumption considerations. This can allow performance and operational

emissions variability based on the hardware utilized.

With a system built on a containerized platform, the workloads can become hard-

ware agnostic, and true "X as a Service" solutions can be optimized to meet almost

any business goal. Workloads are distributed, monitored, and subsequently optimized

on the fly by mixing and matching various hardware elements within the data cen-

ter based on objectives and constrained by service level agreements. An example of

sustainability would be minimizing the overall workload carbon footprint in CO2e.

Assuming that most large organizations have a consistent set of workloads aligned

to batch operations, optimization algorithms such as genetic or multi-armed bandit

algorithms can be implemented to identify the optimal set of hardware specific to that

workload that minimizes both the energy consumed and the environmental impact of

the assets used.
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Currently, Google has a product named OVO Vertflow that can be integrated with

the workflow management tool called Apache Airflow. This tool allows workflows to

be kicked off and run in the greenest Google cloud region available at the time. This

means that the Data Center receiving an influx of energy from a solar or wind farm will

host the workload that has been kicked off. What is missing is a measure of whether

or not the hardware is the most energy-efficient hardware in those data centers.

As the algorithms mature, there will be an ideal path for workloads that enter

the data centers until new technology arrives, continuously optimizing the placement

of the workload to meet business goals. Through DCIM monitoring, asset utilization

optimizes data center operations by identifying the redundant or rarely used hardware

to serve the DC’s workloads. Alternatively, assets are kept in the mix and explored

to determine if they are optimal solutions for new workloads. The goal is to utilize

these explore and exploit algorithms to optimize hardware utilization and reduce idle

state power draw.

This would allow cloud operators to provide a "Green Premium" for the utilization

of the most efficient hardware in the data center. This new product offering lets

businesses choose between running their workloads on less efficient systems to save

costs or utilizing the most efficient systems to place their workloads. Some companies

may choose the lowest cost option and disregard the emissions if there are no negative

consequences to this operating model. An incentive for this type of adoption would

need to come from external market dynamics. As regulation becomes more aggressive

in specific geographies like the United States or the EU, there may be an incentive

to adopt a model like this. Furthermore, consumer sentiment regarding sustainable

companies would allow some actors to leverage this model for a competitive advantage

and drive a market segment in cloud computing aligned with these optimization

methods. Because energy costs are baked into the data center operating model, some

operators may opt to provide discounts for this operating model or naturally move

in this direction to reduce costs. There is an inherent trade-off assuming that the

more efficient systems would come at a higher price point. These dynamics are still

unclear, but there would need to be creative ways to leverage this opportunity.
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5.5 Reporting Energy-Related Emissions

Various databases provide emissions multipliers based on the data center’s loca-

tion, but many power plants in developed nations report emissions by measurement.

The data center would be able to inquire as to what the operational emissions associ-

ated with their energy consumption are and subsequently report the carbon footprint

associated with their operations. These emissions factors are then multiplied by the

power consumed, resulting in a greenhouse gas emissions number for the energy used.

5.6 Spatial and Temporal Workload Distribution

Once workloads in the data center are optimized, the distribution of workloads

or batches can be placed strategically. Examples of spatial optimization would be

relocating workloads that require high energy consumption to a data center where

the connected grid utilizes more "green energy" and fewer fossil fuels or to one with

more high-efficiency assets that can reduce the physical footprint required to support

the execution. Temporal optimization of the workload means that the workload that

is not constrained by time or geography can be placed into a buffer queue of a data

center that can leverage more Solar or Wind energy at a specific point during the day

and then executed when the energy source is significantly more "green."

Various large workloads are periodically run to support enterprise operations [82].

Examples include end-of-day transaction processing, fraud surveillance, data analyt-

ics in research applications, training machine learning models, capacity requirements

planning, inventory processing, invoicing, and email automation [83]. These work-

loads generally require significant computing resources leading to a bump in power

consumption. The emissions from these operations can be minimized by shifting the

execution times or locations to systems and data centers that reduce greenhouse gas

emissions during utilization. Some workloads, like data fetching from field operations

of large oil rigs, could be done at night on a weekend when there may not be as much

demand for commercial computing resources. Another example would be doing your

resource capacity planning in the afternoon when there are more contributions to the
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grid from renewable resources.

Using this information, a data center user can distribute workloads not restricted

by regulation or service level agreements to meet local goals. This means workloads

will be distributed to regions where the locality, or even the business itself, invested

in new technologies to reduce carbon footprints, such as renewable energy or carbon

capture. This capability allows companies to directly support sustainable initiatives

by investing their digital carbon footprint where it has the most impact. This will

create competition focused on sustainable operations between data centers and allow

localities to spur investment without the "Not In My Backyard" concerns by driving

support for new regional investments.

Pricing for this type of service would need to be explored through market demand.

One option for pricing in this space would be tying the fees for this "as a Service"

offering to a fraction of the price for a region’s carbon credits, power purchase agree-

ment, or energy bill. If the dollars per watt of computing were measured and leveraged

in this type of billing scheme, businesses would be incentivized to address the car-

bon footprint of their digital operations through this method. This would benefit

the company by allowing them to meet its sustainability goals transparently while

leveraging the competitive advantage gained by marketing these green operations to

its customers. This would also spur investment in sustainable energy projects either

in the data center or the local region, where the contributions of these fees are used

to support sustainable projects directly.

5.6.1 Implementing Sustainability Goals Using Today’s Tools

Utilizing software to control workload distribution requires a central computing

center. The sensors feed data into this compute node, which needs to be standardized,

stored, and processed. This involves database management, an interface to implement

optimization, and a connection to the network that manages the flow into and out of

the data center through hypervisors and into virtual machines. The software-defined

distribution for hypervisor clusters is currently in practice with many commercial

offerings and includes redundancy across servers for reliability. It periodically checks
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the state of the machine to ensure up-time via heartbeat messages. It would use this to

establish the embodied and operational emissions associated with the devices required

to support the architecture. This would then need to consider the other servers in the

cluster to determine the embodied emissions associated with that virtual machine and

the workloads it supports. This method can then leverage the optimization algorithms

for consistent workload distribution across the cluster and enable virtual machines on

different servers throughout the cluster to support the operations within it.

These tools are commonplace in current cloud operations but have not been tai-

lored to optimize for sustainability goals. Most of these tools generally focus on bal-

ancing processor utilization and memory capacity to meet the needs of the business.

Modifying the objective of these tools would allow for the ability to shift workloads

to idle or more efficient machines and move the workloads between data centers to

meet their needs.

5.6.2 Hardware Defined Sustainable Workload Distribution

The concept of software-defined distribution above can be done by implementing

various logic gates on the physical hardware, where a cluster spanning several phys-

ical servers is connected via a network switch. This network switch utilizes pseudo-

boolean logic and the reporting provided by the VPD of the systems to ping, read

and write memory to a cache and distribute workloads to specific machines based on

a given goal. This then is placed into a more extensive network, providing a hierar-

chical ability to distribute the workload across clusters and manage the data center.

This method has not been implemented or experimented with and would offer a new

generation of sustainable smart switches that would reduce latency, complexity, and

power draw required to distribute workloads over a large set of hardware.

5.6.3 Hyperledger Reporting

Both methods of workload distribution would allow the hardware to report serial

number, equipment type, embodied emissions, category of embodied emissions (Chips,

PCB, Metal, Plastic), power consumption to date, years in service, data center, client

category, SLA category, Location, and the DPP Unique product identifier. This
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information can subsequently be reported to a hyperledger blockchain supported by

idle hardware in the facility and log transactions in the form of workloads. This

allows a generally large and immutable database to run efficiently and provide access

to performance, workload, consumption, and emissions data. The hyperledger fabric

offers access control to elements on the blockchain, allowing regulators, data center

owners, and workload owners access to the information pertinent to them. After a

period of normal operations, data centers can generate a "standard" operating state

for the hardware that can be used by machine learning to track the environmental

impact of the server and either reroute workloads or promote decommissioning of the

hardware based on its green payback period or limit.

5.6.4 "Green" Hardware

The notion of Green Hardware is to be defined by the operator. Still, it would

include leveraging the information stored and transmitted in a manner considered

to have justified its existence. One example is to charge a small fee for sustainable

workload distribution, then have that information stored on the VPD as a subset

of the total emissions. This assumes the infrastructure is in place that minimizes

the carbon footprint of the client’s system. The hardware then has simple logic

implemented to ensure that the subset is a fixed percentage of the total emissions of

the hardware until the value of the accumulated fees equals the total monetary value

needed to pay a carbon offset tax or power purchase agreement.

This would then influence consumer behavior throughout the value chain of the

environmental impact of a business’s digital presence. Green hardware would drive a

competitive advantage for companies that wish to maintain an ecological marketing

presence, allow enterprises to leverage sustainable certifications, and meet regulations

that can open access to countries focused on environmental management. Further-

more, beyond the operations of the data center, this would drive the adoption of

sustainable technologies at the local level to support investment and job creation for

new and current facilities.
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5.6.5 Diurnal Task Shifting
Shifting workload execution to align with the local power grid’s carbon intensity

can reduce greenhouse gas emissions for the given workloads. Some work done in this

space is to increase or decrease CPU utilization inversely with the carbon intensity of

the grid [69]. There have been efforts to characterize workload efficiency in cloud data

centers by introducing a new metric focused on a set of services, called payloads, that

encompasses the IT and non-IT power consumption within the data center. This

is called the Cloud Power Usage Efficiency, which aims to establish the ability to

characterize the carbon intensity of workloads and provides the logic to distribute the

workloads based on the carbon intensity factor.

This workload placement method could reduce the carbon footprint of workloads

that are well known and would be a method to alleviate some of the constraints of

specific workloads that are restricted to certain geographies or facilities [70]. Several

of the work being done has addressed the notion that the carbon intensity varies

throughout the day, and the biggest hurdles to implementation are predicting which

workloads can be shifted, indicating where to place workloads at certain times, priori-

tizing workloads, and modeling the power consumption for all of the elements utilized

for a given workload.

5.6.6 Multi-Armed Bandit Implementation
The multi-armed bandit algorithm using Thompson Sampling worked well for the

theoretical scenario, typically finding the optimal solution in less than one hundred

iterations. If batch operations can be characterized or previous-day predictions can

be used, like in Google’s Carbon Intelligent Computing System, this would be an

ideal method to distribute workloads across clusters of like hardware to identify spa-

tially optimized workload distribution within the data center regionally between data

centers. The algorithm does not compute intensively and can create interpretable

learning data that computers and human operators can leverage.
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Chapter 6

Conclusion

Although the ability to distribute workloads spatially and temporally is not a readily

available solution, the required elements for such a system are generally available and

can integrate with the vital product data already reported by the ICT hardware.

They are necessary as the growth of cloud computing and hyperscale data centers

increases the ecological impact of manufacturing and operations. A method is needed

that provides for a standardized and comparable calculation of embodied emissions,

the ability to monitor and report power consumption by workload, the ability to

report operational emissions dynamically, and the ability to distribute workloads to

minimize combined embodied and operational emissions constrained by service level

agreements and regulation.

The ICT sector needs to collaborate to identify a harmonized method to calcu-

late embodied emissions for data center assets. There have been some proposals and

guidelines, but a standard body has rigidly formalized nothing. Although attempts

have been made with tools such as the PAIA tool, iNemi Eco-Impact Estimator, and

general lifecycle analysis tools, there will not likely be mass adoption of a rigorous

method. Efforts are required to combine elements of the PAIA tool, such as uncer-

tainty calculations, with the granularity of the iNemi tool to allow for comparative

and realistic measurement of embodied servers that are unique to the hardware. This

is necessary for a generation-to-generation evolution of hardware for internal metrics.

It also provides a competitive incentive for hardware producers to reduce their envi-
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ronmental impact and for customers to make educated decisions. Furthermore, data

centers should begin to focus on their data center’s entire "carbon load" to account

for the volume of embodied emissions associated with its operations. Scaling out

operations should be reflected in carbon footprint reporting beyond just the energy

consumed during operation.

ICT suppliers can implement intelligent monitoring at little to no system power or

performance cost. This would lead to intelligent operations in the data center, allow

their customers to identify cost reduction opportunities during operation, and provide

their clients the ability to meet their environmental goals through their products.

This would further simplify the infrastructure needed to monitor and report power

consumption and offer granular data to drive digital twin modeling and operational

optimization. This can be done at the device level to drive insight into the operation

of the data center infrastructure in real time with system-level operations inside the

ICT assets of the data center.

The analysis has shown that operational emissions can be optimized with the

above data, given a set of hardware and data center locations. With the data, large

data center operators can report their emissions in a manner that supports progress

toward environmental goals, cost reduction, and risk mitigation, possibly opening

the door for new and novel business opportunities that the world is looking for.

The ability to gather and act on data in real time allows for temporal and workload

distribution in many ways, such as through K-means, previous-day predictions, linear

integer programs, or bandit algorithms. These methods have shown the potential to

reduce the environmental impacts associated with the growth of the digital age. They

could potentially be applied beyond the data center as manufacturing, mining, and

other industries become more digitized with the advent of edge computing.

As all of these digital operations shift away from on-premises and self-managed

solutions, businesses must be aware of their digital carbon footprint that scales with

their digital solutions. The market, regulators, and other stakeholders are becoming

aware of digital operations’ increasing hardware and energy consumption. Businesses

must prepare to deal with the risks to their operations and reputations. This research
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has shown a crude way of addressing these issues. Future work will continue to try to

implement the methods discussed in a scaleable manner that supports dynamic and

ever-changing operations. Hopefully, it will influence how ICT hardware is designed

and deployed to benefit the environment and innovation.

81



82



Appendix A

Tables

83



84



Appendix B

Figures

85



Figure B-1: Server capability in transactions per second for the SERT Random work-
load.

Figure B-2: Server capability in transactions per second for the SERT Flood workload.
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Figure B-3: Server capability in transactions per second for the SERT LU workload.

Figure B-4: Server capability in transactions per second for the SERT SHA256 work-
load.
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Figure B-5: Server capability in transactions per second for the SERT SORT work-
load.

Figure B-6: Server capability in transactions per second for the SERT SOR workload.
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Figure B-7: Server capability in transactions per second for the SERT CryptoAES
workload.

Figure B-8: Results from the bandit algorithm for scenario 2.
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Figure B-9: Results from the bandit algorithm for scenario 2.
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