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Chapter 1

Introduction

Controlling complex quantum mechanical systems at room temperature remains a

central driving force in quantum information science. In the area of quantum com-

puting, these efforts have largely focused on photonic quantum systems, progressing

toward the long term goal of making a scalable, room temperature, photonic, quan-

tum processor. A proposed way of achieving photon-photon quantum logic gates is

with dynamically coupled photonic crystal cavities. Theoretical work has shown that

at room temperature with bulk second-order optical nonlinearities, near-unity gate

fidelity can be achieved by the capture and release of photonic qubits in dynamically

coupled nanocavities [1, 2].

Furthermore, two multimode programmable photonic resonators are sufficient for

realizing a complete photonic quantum error correction circuit [3]. Second harmonic

generation inside a multimode cavity is also a critical prerequisite for obtaining deter-

ministic high fidelity quantum controlled-phase gates based on dynamically coupling

photons to a two-level emitter [4]. Additionally, recent simulation work has demon-

strated the possibility of using nonlinear optics to build an all-photonic artificial neu-

ral network processor that can directly represent negative and complex numbers [5].

More generally, efficient second harmonic generation on photonic chips is important

for applications like telecommunications, single-photon blockades, metrology, biosens-

ing, converting infrared light to visible light for imaging, and basic quantum science

research. High-performance photonic crystal microcavities are a promising approach
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for achieving low energy, high-bandwidth all-optical switches [6, 7] and can also be

used for intrinsically forming neuron action potential-like signals [8].

In this thesis, a mechanism is introduced for achieving high nonlinear coupling

rates in silicon for second harmonic generation. Specifically, this work proposes a

controllable one-dimensional photonic crystal nanobeam microcavity design in silicon

that can realize high quality factors with small interaction mode volumes. Spatially

periodic DC electric fields are applied across the cavity to provide active control-

lability and to obtain an induced [9, 10] second-order nonlinear susceptibility 𝜒(2)

from silicon’s third-order nonlinearity 𝜒(3). This approach will enable a wide range

of quantum and classical applications, including presenting a potential pathway to-

ward scalable room temperature compatible photon-photon quantum logic gates and

all-optical switches and transistors.

1.1 Electric Field-Induced Second Harmonic Gener-

ation

From [11], an applied optical field at a single frequency 𝜔, 𝐸(𝑡) ∝ 𝑒𝑖𝜔𝑡, incident on an

arbitrary nonlinear, dispersionless, isotropic medium, induces a polarization response

𝑃 (𝑡) given by

𝑃 (𝑡) ≡ 𝑃 (1)(𝑡) + 𝑃 (2)(𝑡) + 𝑃 (3)(𝑡) + . . . (1.1)

= 𝜀0𝜒
(1)𝐸(𝑡) + 𝜀0𝜒

(2)𝐸2(𝑡) + 𝜀0𝜒
(3)𝐸3(𝑡) + . . . (1.2)

where 𝜀0 is the permittivity of free space, 𝜒(1) is the linear susceptibility, 𝜒(2) is the

second-order nonlinearity, 𝜒(3) is the third-order nonlinear susceptibility, and so on. If

the medium was anisotropic, the scalar susceptibilities would be replaced by tensors,

and if the medium had dispersion (and losses), then according to the Kramers-Kronig

relations, the polarization response would not be instantaneous.

In second-harmonic generation (SHG), an electromagnetic wave is incident on a

material with non-zero second-order susceptibility. This causes the output wave to
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have components at both the incident frequency and at double the incident frequency,

as seen in Fig. 1-1.

Figure 1-1: The left panel depicts a general second-harmonic generation system. The
right panel illustrates the corresponding energy level diagram. Copied from [11].

For an incident electric field 𝐸(𝑡) = 𝐴 cos(𝜔𝑡), substituting into Eq. (1.2) gives

𝑃 (𝑡) = 𝜀0𝜒
(1)𝐴 cos(𝜔𝑡) + 𝜀0𝜒

(2)𝐴2 cos2(𝜔𝑡)

=
1

2
𝜀0𝜒

(2)𝐴2⏟  ⏞  
DC Component

+ 𝜀0𝜒
(1)𝐴 cos(𝜔𝑡)⏟  ⏞  

Fundamental Component

+
1

2
𝜀0𝜒

(2)𝐴2 cos(2𝜔𝑡)⏟  ⏞  
Second Harmonic Component

(1.3)

From a practical standpoint, the maturity of complementary metal-oxide semicon-

ductor (CMOS) fabrication processes makes using materials such as silicon, silicon

nitride, or silicon dioxide attractive choices for building scalable photonic devices

in applications such as machine learning accelerators and quantum computing ar-

chitectures. Additionally, recent advances in wafer-scale nanofabrication of telecom

single-photon emitters in silicon [12] make it a promising platform for scaling up

quantum photonic integrated circuits to millions of qubits.

However these materials are centrosymmetric, and thus their second-order nonlin-

ear susceptibility 𝜒(2) is negligible. Ref. [9] theoretically and experimentally demon-

strates that applying a DC electric field across silicon breaks the crystalline symmetry

and allows silicon’s third-order nonlinearity 𝜒(3) to be converted into a second-order

nonlinear susceptibility 𝜒(2). This can be advantageous for applications such as ul-

trafast nonlinear electro-optical sampling [13] that require background-free control-

lability, since turning off the DC field corresponds to completely removing the SHG

signal.
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Based on Refs. [9, 10], electric-field-induced second-harmonic (EFISH) generation

can be derived as follows. Let the total electric field in a region of silicon, 𝐸𝑡𝑜𝑡(𝑡), have

a DC component, 𝐸𝑑𝑐, and an optical component 𝐸𝜔(𝑡) at frequency 𝜔. Substituting

𝐸𝑡𝑜𝑡(𝑡) = 𝐸𝑑𝑐 + 𝐸𝜔(𝑡) into Eq. (1.2) yields

𝑃 (𝑡) = 𝜀0𝜒
(1)𝐸𝑡𝑜𝑡(𝑡) + 𝜀0�

��>
0 for Si

𝜒(2)𝐸2
𝑡𝑜𝑡(𝑡) + 𝜀0𝜒

(3)𝐸3
𝑡𝑜𝑡(𝑡)

= 𝜀0
[︀
𝜒(1) (𝐸𝑑𝑐 + 𝐸𝜔(𝑡)) + 𝜒(3) (𝐸𝑑𝑐 + 𝐸𝜔(𝑡))

3]︀
= 𝜀0

[︀
𝜒(1) (𝐸𝑑𝑐 + 𝐸𝜔(𝑡)) + 𝜒(3)

(︀
𝐸3

𝑑𝑐 + 𝐸3
𝜔(𝑡) + 3𝐸2

𝑑𝑐𝐸𝜔(𝑡) + 3𝐸𝑑𝑐𝐸
2
𝜔(𝑡)

)︀]︀
= 𝜀0[

{︀
𝜒(1)𝐸𝑑𝑐 + 𝜒(3)𝐸3

𝑑𝑐

}︀⏟  ⏞  
DC Offset

+
{︀
𝜒(1) + 3𝜒(3)𝐸2

𝑑𝑐

}︀⏟  ⏞  
𝜒
(1)
effective

𝐸𝜔(𝑡)

+
{︀
3𝜒(3)𝐸𝑑𝑐

}︀⏟  ⏞  
𝜒
(2)
induced

𝐸2
𝜔(𝑡) +

{︀
𝜒(3)

}︀⏟  ⏞  
𝜒(3)

𝐸3
𝜔(𝑡)]

∴ 𝜒
(2)
induced = 3𝜒(3)𝐸𝑑𝑐 (1.4)

Eq. (1.4) shows that a DC applied E-field can induce a second-order nonlinear sus-

ceptibility 𝜒(2) from a third-order nonlinear susceptibility 𝜒(3). Following Refs. [9, 10],

this work uses 𝜒(3) ≈ 2.45×10−19 m2 V−2, which corresponds to telecom wavelengths

𝜆 ≈ 1.55 𝜇m in silicon.

1.2 Second Harmonic Generation Formalism

For this thesis, it is sufficient to consider the case of a simple diagonal second order

nonlinearity tensor. Ref. [14] defines the relevant figures of merit for quantifying and

comparing designs for second-harmonic generation as follows:

Let 𝜀1 and 𝜀2 be the relative permittivities of the material at the first (𝑓1, 𝜆1) and

second (𝑓2, 𝜆2) harmonics, respectively. Let 𝜀(�⃗�) be an indicator function that is 1

at positions with nonlinear material and 0 elsewhere. Additionally, let �⃗�1(�⃗�) and

�⃗�2(�⃗�) be the electric fields of the first and second harmonic modes. Lastly, let the
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𝑦 direction align with the orientation of the nonlinear material’s crystal axis. The

dimensionless nonlinear coupling coefficient 𝛽 is then defined by Ref. [14] as

𝛽 =

∫︁
𝜀(�⃗�)𝐸2

1𝑦𝐸
*
2𝑦 𝑑3�⃗�(︂∫︁

𝜀1|�⃗�1|2 𝑑3�⃗�

)︂(︂√︂∫︁
𝜀2|�⃗�2|2 𝑑3�⃗�

)︂ √︁
𝜆3
1 (1.5)

Let 𝑄1 and 𝑄2 be the total (dimensionless) quality factors, let 𝑄𝑟𝑎𝑑
1 and 𝑄𝑟𝑎𝑑

2 be the

radiative quality factors, and let 𝑄𝑡𝑟𝑎
1 and 𝑄𝑡𝑟𝑎

2 be the transmission coupling quality

factors corresponding to the fundamental and second harmonic modes, respectively.

Neglecting material absorption, total quality factors are

𝑄1,2 =
1

1
𝑄𝑟𝑎𝑑

1,2
+ 1

𝑄𝑡𝑟𝑎
1,2

(1.6)

The transmissions at the cavity resonant frequencies are [15]

𝑇1,2 =

(︂
𝑄1,2

𝑄𝑡𝑟𝑎
1,2

)︂2

(1.7)

=

(︂
1− 𝑄1,2

𝑄𝑟𝑎𝑑
1,2

)︂2

(1.8)

The dimensionless efficiency per power is given by the first figure of merit

FOM1 = 𝑄2
1𝑄2|𝛽|2

(︂
1− 𝑄1

𝑄𝑟𝑎𝑑
1

)︂2(︂
1− 𝑄2

𝑄𝑟𝑎𝑑
2

)︂
(1.9)

= 𝑄2
1𝑄2|𝛽|2𝑇1

√︀
𝑇2 (1.10)

For a given pair of intrinsic radiative lifetimes 𝑄𝑟𝑎𝑑
1 , 𝑄𝑟𝑎𝑑

2 this figure of merit is

maximized when 𝑄1/𝑄
𝑟𝑎𝑑
1 = 𝑄2/𝑄

𝑟𝑎𝑑
2 = 0.5, which can be easily verified. This

corresponds to critical coupling of the first and second harmonic modes.

The dimensionless intrinsic upper bound on efficiency per power is quantified by

the second figure of merit

FOM2 =
(︀
𝑄𝑟𝑎𝑑

1

)︀2
𝑄𝑟𝑎𝑑

2 |𝛽|2 (1.11)
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When the first and second harmonic modes are critically coupled, FOM1 = FOM𝑚𝑎𝑥
1 =

FOM2/64. Furthermore, both figures of merit improve proportionally with the squared

magnitude of the normalized nonlinear coupling 𝛽.

1.3 Photonic Crystal Cavities

Atomic and molecular crystals are periodic arrangements of atoms or molecules within

a lattice. Electrons propagating through these crystals encounter a periodic potential.

This lattice potential allows electrons of some energy levels to propagate through the

crystal lattice, while electrons of certain other energy levels within band gaps of the

dispersion relation are prevented from propagating in certain directions.

Photonic crystals are the optical equivalent of atomic and molecular crystals [15].

In photonic crystals, the electrons are replaced by photons, the atoms and molecules

are replaced by patterned dielectric materials, and a periodic dielectric function takes

on the role of the periodic atomic potential. The photonic dispersion relation, also

known as a band structure or diagram, contains optical band gaps that obstruct the

propagation of light with certain frequencies and polarizations in certain directions.

These concepts can be used to control the propagation of light to yield high-𝑄 pho-

tonic resonances.

In general, band structures are plots of the allowable frequencies of eigenmode

solutions of Maxwell’s Equations versus the component of the wave vector that is

parallel to the dielectric interface. This is illustrated in Fig. 1-2(a) for an infinite

planar dielectric waveguide. The modes of this waveguide can be categorized as

either guided modes or unguided modes. Unguided modes are also termed radiation

modes or extended states. Propagation in free space is governed by the dispersion

relation 𝜔 = 𝑐|⃗𝑘| = 𝑐
√︁
𝑘2
‖ + 𝑘2

⊥. The red light-line in Fig. 1-2(a) is 𝜔 = 𝑐𝑘‖ which

corresponds to 𝑘⊥ = 0. For a fixed 𝑘‖, since 𝑘⊥ can take on any value to satisfy the

dispersion relation for an arbitrarily high 𝜔 > 𝑐𝑘‖, there is a continuum of extended

states above the light line. These extended states form the light cone.

Solving Maxwell’s equations also yields a discrete set of guided modes underneath
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the light line, which are localized to the waveguide. These localized modes can be

viewed as total internal reflected (TIR) modes. The corresponding dispersion curves

asymptotically approach the line 𝜔 = 𝑐
𝑛
𝑘‖ as 𝑘‖ becomes large, where 𝑛 is the refrac-

tive index inside the waveguide [16].

Figure 1-2: (a) Left Panel: Band structure for infinite planar dielectric waveguide.
(b) Right Panel: Band structure for infinite periodic planar dielectric waveguide.
Copied from [15].

On the other hand, Fig. 1-2(b) depicts the dispersion relation of an infinite planar

periodic dielectric. This 1D photonic crystal is a repetition of its fundamental block,

known as a unit cell. Let 𝑎 be the length of the unit cell in the direction of propagation.

Bloch’s Theorem states that the guided mode solutions are of the form 𝑒𝑖𝑘·�⃗� multiplied

by a unit cell function �⃗�𝑘(�⃗�) with period equal to the lattice vector �⃗�. For a 1D

photonic crystal, as a consequence of Bloch’s Theorem, only 𝑘‖ in a range of length
2𝜋
𝑎

is unique. Therefore, only the Brillouin zone 0 < 𝑘‖ ≤ 2𝜋
𝑎

needs to be considered

to characterize the guided solutions for all 𝑘‖.

Furthermore, symmetries within the 1D photonic crystal unit cell lead to cor-

responding symmetries within the Brillouin zone. The irreducible Brillouin zone is

the smallest subsection of the Brillouin zone that does not contain any symmetry

relations. In Fig. 1-2(b), the irreducible Brillouin zone is 0 < 𝑘‖ ≤ 𝜋
𝑎
. The slope

of the dispersion relation becomes zero at the edge of the irreducible Brillouin zone

𝑘‖ = 𝜋
𝑎
. This flattening of the dispersion relation creates bandgaps in the photonic
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crystal band structure. This means that the photonic crystal behaves as a mirror to

the bandgap frequencies. Thus, these bandgaps are instrumental in engineering the

flow of light.

Photonic band gaps can be used to confine light in standing-wave cavities with

long storage times. A defect in the middle of a photonic crystal can confine light of

frequencies within the photonic band gap. A larger photonic crystal surrounding the

defect allows the resonance in the defect to have a longer lifetime, but it increases

the difficulty of coupling light into and out of the cavity. Hence, there is a tradeoff

between more photonic crystal unit cells for a higher intracavity lifetime and fewer

photonic crystal unit cells for better cavity-to-waveguide coupling. Note that photonic

crystal cavities can also be considered an extension of microwave cavities to higher

electromagnetic frequencies.

Photonic crystal cavities are useful for enhancing nonlinear optical effects due to

their relatively high quality factors (long lifetimes) and relatively small mode volumes.

This can lower the power budget for devices requiring second harmonic generation [14].

In particular, photonic crystal cavities that are periodic in one dimension tend to

support larger photonic band gaps and tend to maintain their band gaps with lower

index contrasts as compared to 2D-periodic photonic crystal cavities [17]. The idea

therefore is to engineer the dispersion relation and number of unit cells of the 1D

photonic crystal to achieve bandgaps separated by an octave with highly overlapping

mode profiles and efficient coupling to the waveguide.

1.4 Design Objectives

There are three overarching design objectives for this work:

• Goal 1 – Dispersion Engineering: Design a unit cell such that for a certain

polarization and a certain frequency range inside a bandgap, the double of that

frequency range is also inside another bandgap of the same polarization that is

still under the light cone. This is explored in Chapter 2.
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• Goal 2 – Nonlinear Coupling Engineering: Construct a cavity based on

this unit cell and a DC electric field biasing profile to achieve a large nonlinear

coupling between the fundamental and second harmonic modes. This sets the

stage for achieving large figures of merit FOM1 and FOM2. This is the focus of

Chapter 3.

• Goal 3 – Lifetime Engineering: Optimize the microcavity length such that

the dimensionless efficiency per power, FOM1, is maximized. This corresponds

to achieving 𝑄1/𝑄
𝑟𝑎𝑑
1 = 𝑄2/𝑄

𝑟𝑎𝑑
2 = 0.5. This is studied in Chapter 4.

Chapter 5 discusses possibilities for fabrication, design limitations, and avenues for

future work.
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Chapter 2

Geometric Setup & Unit Cell Design

for Octave-Separated Bandgaps

2.1 Photonic Crystal Unit Cell Geometry

To satisfy Goal 1 – Dispersion Engineering from Chapter 1, the unit cell must be

engineered such that its dispersion relation supports two octave-separated bandgaps.

A rendering of the device conceptualized in this treatise is illustrated in Fig. 2-1. Each

unit cell is made of silicon and is surrounded by air in all directions. The propagation

axis is along the 𝑥−axis, the height of waveguide structure is along 𝑧−axis, and the

width of structure is along 𝑦−axis.

The 1D photonic crystal can be viewed as a silicon waveguide Bragg grating with

sinusoidal walls and periodic elliptical air holes. Waveguide Bragg gratings with si-

nusoidally corrugated walls can be fabricated more accurately than waveguide Bragg

gratings with rectangularly corrugated walls [18]. Additionally, Bragg-grating pho-

tonic crystal waveguides have the potential to be used as an experimental platform

for optical manipulation and assembly of ultracold molecules [19]. Furthermore, ridge

waveguides with longitudinal sinusoidal width perturbations have been used for sec-

ond harmonic generation [20].

A summary of the relevant geometric photonic crystal parameters are detailed in

Table 2.1. All parameters related to the electrodes will be introduced in the next
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Figure 2-1: 3D rendering of the silicon 1D photonic crystal device concept.

chapter. These are the distances 𝑑 from the central 𝑥𝑧−plane of the cavity to the

edge of the electrodes, the distances 𝑎
2

between adjacent electrodes, the +1V and 0V

alternating electrode biasing, and the widths, heights, and positions of the electrodes.

2.2 MPB Simulation Setup

MPB, which stands for MIT photonic bands, is a free and open-source Python simu-

lation software package that computes dispersion relations and electromagnetic mode

profiles of photonic crystal unit cells via a frequency-domain eigenmode solver that

solves for harmonic modes of Maxwell’s equations [21]. MPB simulates unit cells

in normalized units. This means that the lattice constant of the unit cell in the

propagation direction is defined as 1 normalized unit.

MPB assumes infinite periodicity of the simulation domain in all three directions
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Parameter Definition

𝑎 Unit cell length or lattice constant. In normalized units it is always 1.

𝑟𝑥 Length of the minor radius of the elliptical hole, denoted by 𝑥 since this

is parallel to the propagation direction.

𝑟𝑦 Length of the major radius of the elliptical hole, denoted by 𝑦 since this

is perpendicular to the propagation direction.

𝑦𝑚𝑖𝑑 Distance from central 𝑥𝑧−plane to sinusoidal wall peak, where this peak

is directly above the ellipse in the 𝑦−direction.

𝑦𝑒𝑛𝑑 Distance from central 𝑥𝑧−plane to sinusoidal wall trough, where this

trough is half a unit cell away from 𝑦𝑚𝑖𝑑 and the center of the ellipse.

𝑧 Height of the unit cell

Table 2.1: Geometric parameters of the photonic crystal unit cell and their corre-
sponding definitions.

in accordance with Bloch’s theorem. The unit cell introduced in this chapter can be

considered as truly infinitely periodic in the 𝑥−direction, but is finite in the 𝑦− and

𝑧−directions. Therefore, enough space must be left in the 𝑦− and 𝑧−directions of the

simulation domain, such that successive unit cells spaced in the 𝑦 and 𝑧 directions are

virtually uncoupled. In light of these considerations, all MPB simulations performed

for this work use simulation domain sizes of 𝑠𝑥 = 1, 𝑠𝑦 = 8, and 𝑠𝑧 = 6.

An MPB resolution of at least 20 is needed to obtain correct qualitative be-

havior [22]. This thesis uses a resolution 25 = 32 for increased numerical accu-

racy. The MPB band simulation is computed over the Irreducible Brillouin Zone,

or 0 < 𝑘𝑥𝑎
2𝜋

≤ 0.5, with 56 𝑘−points per band. 8 𝑇𝐸-like and 8 𝑇𝑀 -like bands are

simulated.

Silicon is a dispersive material, which means that its refractive index varies with

frequency. At room temperature (293 K), for frequencies near the desired first har-

monic (≈ 2.65 𝜇m), the refractive index of silicon is approximately 3.435, and for

frequencies near the desired second harmonic (≈ 1.29 𝜇m), the refractive index of
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silicon is approximately 3.503 [23]. To save computation time, the MPB simulation

in this chapter uses a midpoint refractive index of 3.47.

2.3 Final Band Diagram Results

This section presents a set of parameters for this geometry that satisfy goal 1 and the

resulting simulated band diagram. Table 2.2 enumerates the numerical design values

of the unit cell parameters in both normalized and SI units.

Normalized Physical

Parameter Value Parameter Value

𝑎/𝑎 1.00 𝑎 575.00 nm

𝑟𝑥/𝑎 0.15 𝑟𝑥 86.25 nm

𝑟𝑦/𝑎 0.50 𝑟𝑦 287.50 nm

𝑦𝑚𝑖𝑑/𝑎 0.90 𝑦𝑚𝑖𝑑 517.50 nm

𝑦𝑒𝑛𝑑/𝑎 0.60 𝑦𝑒𝑛𝑑 345.00 nm

𝑧/𝑎 0.70 𝑧 402.50 nm

Table 2.2: Numerical design values for unit cell parameters in normalized and SI
units.

Fig. 2-2 depicts the dispersion relation for the structure shown in Fig. 2-1. The

solid shaded region in gray above the light line designates the light cone of extended

radiation states. As expected, the lowest band is a TE band [15].

Denote the 1st harmonic dielectric band edge frequency (𝑇𝐸 band #1) by 𝑓1,1.

Denote the 1st harmonic air band edge frequency (𝑇𝐸 band #2) by 𝑓2,1.

Denote the 2nd harmonic dielectric band edge frequency (𝑇𝐸 band #7) by 𝑓1,2.

Denote the 2nd harmonic air band edge frequency (𝑇𝐸 band #8) by 𝑓2,2.

Highlighted in yellow, the first harmonic usable gap is 𝑓1,1 < 𝑓 < 𝑓2,2
2

, and the

frequency of the fundamental mode must lie within this range. Highlighted in green,

the usable second harmonic gap is 2𝑓1,1 < 𝑓 < 𝑓2,2, and the frequency of the second

harmonic mode must lie within this range. These usable gap ranges are the frequency
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Figure 2-2: 1D photonic crystal band structure result.

ranges in which fundamental and second harmonic resonant modes placed within those

regions could simultaneously occur inside the 𝑇𝐸 band gaps of the photonic crystal

unit cell.

Since Eq. (1.5) requires good spatial overlap between the 𝑦−components of the

first and second harmonic cavity modes to have a high dimensionless nonlinear cou-

pling coefficient 𝛽, it is therefore important that the 𝑦−components of the photonic

crystal unit cell modes corresponding to the edges of the 𝑇𝐸 band are also spatially

overlapping. This was found to be the case for the unit cell design and parameters

discussed in this chapter.

By designing a 1D photonic crystal unit cell with a sinusoidal wall, elliptical

holes, and bandgaps containing the first and second harmonic frequencies, the unit
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cell dispersion relation was successfully engineered. This unit cell is the keystone

of the photonic crystal cavities that are synthesized and analyzed in the following

chapters.
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Chapter 3

Photonic Crystal Cavity Design

Approach

3.1 Recipe for Deterministic Design of Ultra-High

𝑄-Factor Microcavities

A 1D array of photonic crystal unit cells can be converted into a cavity by introducing

a defect or parameter perturbation at the center of the array. This causes the unit

cells on each side of the center to behave as mirrors at the bandgap frequencies,

forming a Fabry-Pérot-like cavity. The photonic band structure from Chapter 2 can

now be used to deterministically construct a 1D photonic crystal nanobeam cavity

with ultra-high quality factor, following the recipe detailed in Ref. [24].

1. The quality factor 𝑄 of a Bragg mirror cavity can be maximized with Gaussian-

shaped field attenuation inside the cavity’s mirrors [25]. Ref. [24] demonstrates

that for a cavity with Gaussian confinement, the optimal defect length is

𝐿 = 0.

2. To reduce scattering inside the device and to maintain a constant phase veloc-

ity at 𝜋/𝑎 [24], the unit cell length 𝑎 should be fixed for the entirety of the

photonic crystal nanobeam cavity. This work uses a fixed lattice constant
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𝑎 = 575 nm.

3. In order to achieve the desired Gaussian attenuation, the mirror strength

must increase linearly with unit cell distance from the center of the

cavity. This forms a modulated Bragg mirror [24]. Let 𝜔res be the cavity

resonant frequency. Let 𝜔1 be the dielectric band edge frequency (lower bandgap

frequency), let 𝜔2 be the air band edge frequency (upper bandgap frequency),

and let 𝜔0 = 𝜔1+𝜔2

2
be the midgap frequency, for a certain unit cell inside the

cavity. Then, the mirror strength 𝑀 of this unit cell inside the cavity is defined

as

𝑀 =

√︃
(𝜔2 − 𝜔1)2

(𝜔2 + 𝜔1)2
− (𝜔𝑟𝑒𝑠 − 𝜔0)2

𝜔2
0

(3.1)

Using the unit cell from Chapter 2 as the central cavity unit cell, this high-𝑄

cavity recipe from Ref. [24] is used as the basis for designing a microcavity to have

a high quality factor at both octave-separated frequencies. Note that our unit cell

has two sets of lower and upper bandgap frequencies, one set 𝜔11 , 𝜔21 for the first

harmonic formed from 𝑇𝐸 bands 1 and 2, and another set 𝜔12 , 𝜔22 for the second

harmonic formed from 𝑇𝐸 bands 7 and 8. It is therefore non-trivial to co-design the

first and second harmonic mirror strength profiles such that both are linear over the

same set of unit cells and have similar magnitudes.

3.2 Design of Cavity Tapering Profile

Unlike in Chapter 2 where the midpoint refractive index was used in the MPB sim-

ulation, here the silicon refractive index of 3.503 is used for the second harmonic

bands (𝑇𝐸 7 and 𝑇𝐸 8), and the silicon refractive index of 3.435 is used for the

fundamental harmonic bands (𝑇𝐸 1 and 𝑇𝐸 2). Furthermore, only the 𝑘𝑥 = 0.5

(normalized units) point, which corresponds to the edge 𝑘𝑥 = 𝜋
𝑎

of the irreducible

Brillouin zone, is simulated, and only the 1st, 2nd, 7th, and 8th 𝑇𝐸 bands are saved.

In each simulation the minor 𝑟𝑥 and major 𝑟𝑦 radii of the elliptical air holes are the
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physical parameters which are adjusted in each unit cell according to the tapering

profile under optimization.

Let 𝑝 be a nonnegative integer denoting unit cell position along the profile, and

let 𝑁 be the total number of unit cells under consideration (𝑝 = 1, 2, . . . , 𝑁). In

this optimization 𝑁 = 25. Let the tapering profile 𝑟𝑥(𝑝), 𝑟𝑦(𝑝) denote the chosen

physical parameters as a function of unit cell position, let the actual mirror strength

profiles 𝑀1𝑎𝑐𝑡(𝑝) and 𝑀2𝑎𝑐𝑡(𝑝) denote the resulting mirror strengths as a function of

unit cell position, and let the desired mirror strength profiles 𝑀1𝑑𝑒𝑠(𝑝) and 𝑀2𝑑𝑒𝑠(𝑝)

denote linear mirror strengths as a function of unit cell position. This work assumes

𝑀1𝑑𝑒𝑠(𝑝) = 𝑀2𝑑𝑒𝑠(𝑝) = 𝑀𝑑𝑒𝑠(𝑝). 𝑀1𝑎𝑐𝑡(𝑟𝑥, 𝑟𝑦), 𝑀2𝑎𝑐𝑡(𝑟𝑥, 𝑟𝑦) are the actual functions

relating the physical parameters of a unit cell to its mirror strengths.

In general, linear 𝑟𝑥(𝑝) and linear 𝑟𝑦(𝑝) will yield nonlinear 𝑀1𝑎𝑐𝑡(𝑝) and nonlinear

𝑀2𝑎𝑐𝑡(𝑝), and vice-versa. Thus, the goal is to determine a nonlinear 𝑟𝑥(𝑝), 𝑟𝑦(𝑝) that

will give a linear 𝑀1𝑎𝑐𝑡(𝑝), 𝑀2𝑎𝑐𝑡(𝑝). The co-optimization procedure is performed as

follows:

• Step 0: Start with an initial 𝑟𝑥(𝑝), 𝑟𝑦(𝑝) over the ranges that can sustain a

second harmonic mode within the bandgap between 𝑇𝐸 bands 7 and 8.

• Step 1: In MPB, for all 𝑝, simulate the lower and upper bandgap frequencies

for the fundamental and second harmonic modes 𝜔11 , 𝜔21 , 𝜔12 , 𝜔22 .

• Step 2: In MATLAB, use 𝜔11(𝑝), 𝜔21(𝑝), 𝜔12(𝑝), 𝜔22(𝑝) from Step 1 to

compute 𝑀1𝑎𝑐𝑡(𝑝), 𝑀2𝑎𝑐𝑡(𝑝). This gives a sampling of the 𝑀1𝑎𝑐𝑡(𝑟𝑥, 𝑟𝑦) and

𝑀2𝑎𝑐𝑡(𝑟𝑥, 𝑟𝑦) functions.

If the actual profiles 𝑀1𝑎𝑐𝑡(𝑝), 𝑀2𝑎𝑐𝑡(𝑝) are sufficiently close to the desired linear

profiles 𝑀1𝑑𝑒𝑠(𝑝), 𝑀2𝑑𝑒𝑠(𝑝), exit the process. In this work, the exit condition
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is the Normalized Root Mean Squared Errors 𝑁𝑅𝑀𝑆𝐸1,2 < 0.05:

𝑁𝑅𝑀𝑆𝐸1,2 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑝=1

[𝑀1,2𝑎𝑐𝑡(𝑝)−𝑀𝑑𝑒𝑠(𝑝)]
2

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑝=1

[𝑀𝑑𝑒𝑠(𝑝)]
2

(3.2)

• Step 3:

– 3a: Construct the inverse functions 𝑟𝑥(𝑀1𝑎𝑐𝑡), 𝑟𝑦(𝑀1𝑎𝑐𝑡) and interpo-

late 𝑟𝑥, 𝑟𝑦 onto the 𝑀−points corresponding to 𝑀1𝑑𝑒𝑠(𝑝). This returns

𝑟𝑥𝑛𝑒𝑤1
(𝑝), 𝑟𝑦𝑛𝑒𝑤1

(𝑝).

– 3b: Construct the inverse functions 𝑟𝑥(𝑀2𝑎𝑐𝑡), 𝑟𝑦(𝑀2𝑎𝑐𝑡) and interpo-

late 𝑟𝑥, 𝑟𝑦 onto the 𝑀−points corresponding to 𝑀2𝑑𝑒𝑠(𝑝). This returns

𝑟𝑥𝑛𝑒𝑤2
(𝑝), 𝑟𝑦𝑛𝑒𝑤2

(𝑝).

• Step 4:

– 4a: Interpolate 𝑀2𝑎𝑐𝑡 onto 𝑟𝑥𝑛𝑒𝑤1
(𝑝), 𝑟𝑦𝑛𝑒𝑤1

(𝑝) from Step 3a and compare

the interpolated 𝑀 𝑖𝑛𝑡𝑝
2𝑎𝑐𝑡 (𝑝) to 𝑀2𝑑𝑒𝑠(𝑝)

– 4b: Interpolate 𝑀1𝑎𝑐𝑡 onto 𝑟𝑥𝑛𝑒𝑤2
(𝑝), 𝑟𝑦𝑛𝑒𝑤2

(𝑝) from Step 3b and compare

the interpolated 𝑀 𝑖𝑛𝑡𝑝
1𝑎𝑐𝑡 (𝑝) to 𝑀1𝑑𝑒𝑠(𝑝).

• Step 5: If 𝑀 𝑖𝑛𝑡𝑝
2𝑎𝑐𝑡 (𝑝) is closer to 𝑀2𝑑𝑒𝑠(𝑝) than 𝑀 𝑖𝑛𝑡𝑝

1𝑎𝑐𝑡 (𝑝) is to 𝑀1𝑑𝑒𝑠(𝑝), select

𝑟𝑥𝑛𝑒𝑤(𝑝) = 𝑟𝑥𝑛𝑒𝑤1
(𝑝), 𝑟𝑦𝑛𝑒𝑤(𝑝) = 𝑟𝑦𝑛𝑒𝑤1

(𝑝).

Else, select 𝑟𝑥𝑛𝑒𝑤(𝑝) = 𝑟𝑥𝑛𝑒𝑤2
(𝑝), 𝑟𝑦𝑛𝑒𝑤(𝑝) = 𝑟𝑦𝑛𝑒𝑤2

(𝑝)

• Step 6: Return to Step 1 with the updated 𝑟𝑥𝑛𝑒𝑤(𝑝), 𝑟𝑦𝑛𝑒𝑤(𝑝).

The final tapering profile 𝑟𝑥(𝑝), 𝑟𝑦(𝑝) is placed on both halves of the cavity. The

results of this optimization procedure are illustrated in Fig. 3-1. The center of the

cavity is unit cell number 50 which corresponds to 𝑝 = 1, and unit cell numbers 26

and 74 correspond to 𝑝 = 𝑁 = 25. Following Ref. [26] an additional section of, in
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this work 25, maximum mirror strength unit cells is added to both ends of the cavity

to obtain a radiation-limited cavity.

Figure 3-1: (a) Top: Final nonlinear 𝑟𝑥(𝑝), 𝑟𝑦(𝑝) tapering profile. (b) Bottom: Final
linear 𝑀1𝑎𝑐𝑡(𝑝), 𝑀2𝑎𝑐𝑡(𝑝) mirror strength profiles for the first and second harmonic
modes.

As seen in Fig. 3-1(b), the tapering profile was successfully designed such that

the mirror strength curves for the first and second harmonics are both approximately

linear and equal over the entirety of the tapered region. It is interesting to note that

the specific resulting nonlinear shapes of 𝑟𝑥(𝑝), 𝑟𝑦(𝑝) are similar in such a way that

𝑟𝑦(𝑝) is related to 𝑟𝑥(𝑝) by a linear rescaling plus offset.
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3.3 Electrode Geometry

Now that the cavity geometry has been designed, it is time to consider the electrode

geometry which is needed for Electric Field-Induced Second Harmonic (EFISH) gen-

eration. To reduce losses due to optical absorption, the electrodes will be made out

of doped silicon instead of metal.

The distance from the electrodes to the cavity must be carefully selected. On

one hand, if the electrodes are placed too far from the cavity, there would be a very

weak DC field inside the cavity, resulting in a weak 𝜒
(2)
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 and thus weak second-

harmonic generation. On the other hand, if the electrodes are placed too close to the

cavity, light will couple into the silicon electrodes as if they were waveguides, which

deteriorates the lifetimes of photons in the cavity and hence diminishes the system’s

quality factors and second harmonic generation figures of merit.

Returning to Fig. 2-1 from Chapter 2, 𝑑 = 1.25 𝜇m is the chosen distance from

the central 𝑥𝑧−plane of the cavity to the edge of the electrodes. The height of the

electrodes is the same 𝑧 as the height of the nanobeam structure. The 𝑥−distance

from the start of one electrode to the start of the next electrode is the same 𝑎 as the

lattice constant of the photonic crystal unit cells. The electrode 𝑥−width is a half

period 𝑎
2
, and the distance to the next electrode is another half period 𝑎

2
. Electrodes

on opposite sides of the device are spatially aligned with each other.

The electric field set up by the electrodes is only useful in the silicon-dominated

regions of the photonic crystal device (as opposed to the air hole regions), as this is

where EFISH can occur. Furthermore, the majorities of the optical modes of the MPB

unit cell were found to exist in the silicon-dominated regions of the structure. Hence,

the electrodes are centered such that each electrode’s central 𝑥−position is midway

between the 𝑥−positions of the two nearest air holes. This way the highest intra-

cavity DC electric field, which induces the highest intra-cavity 𝜒
(2)
𝑖𝑛𝑑𝑢𝑐𝑒𝑑, is co-located

with the highest intra-cavity optical field. The spatial alternation in the electrode

biasing pattern will be discussed later in this chapter.

The cavity and electrode geometry is generated in Python using the gdspy pack-
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age. The GDSII file that describe the 𝑥𝑦−cross section of the waveguide and elec-

trodes is imported into Lumerical and COMSOL, where the 𝑧 height of the system

is then entered.

3.4 Lumerical FDTD Simulation Setup

Figure 3-2: Lumerical illustration of symmetry conditions and source positioning.
The device geometry is not rendered to scale.

Lumerical FDTD is a photonic simulation software package that uses the Finite

Difference Time-Domain (FDTD) method for solving Maxwell’s Equations at optical

frequencies. Here Lumerical FDTD is used to simulate the electric field profile of

the fundamental and second harmonic modes inside the photonic crystal microcavity

structure, and to extract the quality factors of these modes.

The FDTD simulations use a simulated time of 60 picoseconds, room temperature

(300 K), and a background material of air (𝑛 = 1). The simulation domain has a
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𝑦−span of 3 𝜇m, a 𝑧−span of 3 𝜇m, and an 𝑥−span of 60 𝜇m. The auto non-

uniform mesh is used with a Lumerical accuracy level of 3, which is categorized by

Lumerical as a “good tradeoff between accuracy, space memory requirements, and

simulation time.” Furthermore, since the simulations in this work have no metals or

Perfect Electric Conductors (PECs), the conformal variant 0 mesh refinement means

that a conformal mesh is applied to the entire simulation region [27]. The 𝑑𝑡 stability

factor is set at 0.99, and the minimum mesh step size is set at 0.25 nm.

Due to the symmetrical nature of the 1D photonic crystal cavity, Lumerical sym-

metry boundary conditions can be exploited to reduce the required simulation time

by reducing the size of the simulation domain. The 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, and 𝑧𝑚𝑎𝑥 boundary

conditions are PML (Perfectly Matched Layers). The 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, and 𝑧𝑚𝑖𝑛 boundary

conditions are symmetric, antisymmetric, and symmetric, respectively, corresponding

to the symmetries of the TE-like modes simulated in MPB. These symmetry condi-

tions cut the size of the simulation domain in one-eighth, which significantly reduces

the amount of time and storage required per simulation run.

For all three of the 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥 boundary conditions, the stretched coordinate

PML type is used. With a standard PML profile on any of the 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥

boundary conditions, the simulations diverge, but with a stabilized profile on all

three, the simulations successfully converge. However, the increased number of PML

layers in the stabilized profile significantly slows down the simulations. Taking the

stabilized 𝛼 of 0.9 [28] instead of the standard 𝛼 of 0 and keeping all other parameters

at the values of the standard profile, the simulation converges and runs in a reasonable

time frame.

The simulation source is an electric dipole source placed at the center of the

cavity, with an amplitude of 1 and direction angles 𝜃 = 90∘ and 𝜑 = 90∘ 3-2. Initial

simulations used a relatively broadband pulse to find the approximate frequency range

of the cavity resonance. Next, a narrowband input pulse around that frequency is

specified so that there are less extraneous frequencies that need to decay, allowing

the decay of the cavity resonance to be more clearly ascertained. For the simulation

results shown here, for the first harmonic, a standard pulse type optimized for short
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pulses is utilized with a frequency of 114.605 THz, a pulse length of 1.5 ps, and a

pulse center offset of 3 ps. For the second harmonic, a standard pulse type optimized

for short pulses is utilized with a frequency of 232.932 THz, a pulse length of 1.5 ps,

and a pulse center offset of 3 ps.

Simulating a material without dispersion, or with a fixed refractive index, is much

faster than simulating a material with dispersion. Additionally, having two distinct

simulation files at the two separate frequencies of interest allows for clearer visual-

ization of power and field decay over time corresponding to each of the fundamental

and second harmonic modes. For these reasons, two separate simulations are per-

formed. Each of the two narrow-band simulation files uses a constant refractive

index, which approximates the silicon material dispersion around the fundamental or

second-harmonic frequencies.

3.5 Lumerical FDTD Gridding

Since Lumerical uses the simulation bandwidth in determining the necessary mesh,

to maintain grid consistency between the first and second harmonic simulations, the

FDTD simulation bandwidth is manually set in both files to be 105 - 240 THz,

which corresponds to wavelengths 2.86 𝜇m - 1.25 𝜇m, respectively. Moreover, since

symmetry has been applied in all three of the 𝑥, 𝑦, 𝑧 directions, “force symmetric

mesh” is in place for all three axes.

Lumerical also uses refractive index to determine the necessary coarseness of the

grid. Therefore, to force the lower frequency simulation to have as fine of a grid as

the higher frequency simulation, additional phantom GDS layers with the refractive

index of the higher frequency silicon are added underneath the “actual” GDS layers

with the lower frequency silicon refractive index. Lumerical takes the higher of

these two refractive indices to compute its mesh, thus compelling Lumerical to use

consistent meshes for both simulations.

Fig. 3-3(a) shows that the grid computed by Lumerical is uniformly spaced in

the 𝑥−direction and approximately piecewise-uniform in the 𝑦− and 𝑧−directions.
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Figure 3-3: (a) Left: Uniform Lumerical 𝑋−mesh. (b) Center: Nonuniform
Lumerical 𝑌−mesh. (c) Right: Nonuniform Lumerical 𝑍−mesh.

In the 𝑦−direction, Fig. 3-3(b) depicts a shallower slope (higher resolution) in the

central region corresponding to the silicon microcavity and in the two outer regions

corresponding to the silicon electrodes on both sides of the cavity. There is a steeper

slope (lower resolution) for the air regions on both sides of the cavity before the

electrodes. In the 𝑧−direction, Fig. 3-3(c) shows a steeper slope (lower resolution)

for the air regions above and below the device and a shallower slope (higher resolution)

for the silicon device region. This specific nonuniform mesh is used for the remainder

of this chapter.

3.6 Total Quality Factors

Since the fields inside the photonic crystal cavity decay very slowly, the quality factors

of the first and second harmonic modes should be determined from the slope of the

decaying envelope of the intracavity fields’ time evolution [29]. Therefore, the high-𝑄

version of the Lumerical Quality Factor Analysis group is used to compute the total
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quality factor of the resonator.

Geometrically, a square 25 by 25 grid of time monitors is used at the center of

the cavity at the upper right section of the central unit cell. The 𝑥 span is 0.575 𝜇m,

which is the lattice constant and width of the unit cell, and the 𝑦−span is 0.525 𝜇m.

The center of this grid is the middle of the 𝑥 span, the middle of the 𝑦 span, and

elevated by 𝑧 = 0.1 𝜇m above the central 𝑥𝑦−plane of the structure.

For the first harmonic, the frequency range of analysis is 114 - 115 THz, and for

the second harmonic, the frequency range of analysis is 232 - 233 THz. For both

modes, the analysis start time is 15 ps, as this is the time after which the transient

input source will have fully decayed and dissipated away.

The total quality factors 𝑄1 and 𝑄2 of the fundamental and second harmonic

modes are given in Table 3.1.

Frequency 𝑓 (THz) Wavelength 𝜆 (𝜇m) Quality Factor 𝑄𝑡𝑜𝑡

1st Harmonic 114.6 THz 2.616 𝜇m 𝑄1 = 1.748 × 105

2nd Harmonic 232.9 THz 1.287 𝜇m 𝑄2 = 4.504 × 104

Table 3.1: Fundamental and second harmonic resonant frequencies and their corre-
sponding total quality factors 𝑄1 and 𝑄2.

3.7 Radiative Quality Factors

In order to calculate the radiative quality factors 𝑄𝑟𝑎𝑑
1 and 𝑄𝑟𝑎𝑑

2 one can quantify the

power leaving the microcavity, and thus the simulation domain, in different directions

using Lumerical output power time monitors. Because of symmetry conditions, only

one of each 𝑥, 𝑦, and 𝑧 monitor is required, instead of both. Three output power time

monitors, an 𝑥−normal, a 𝑦−normal, and a 𝑧−normal, are used, where each monitor

fills the entire simulation domain in that planar direction.

Assume that the power 𝑃𝑥 crossing the 𝑥−monitor is essentially coming from

waveguide transmission, and negligibly from the air surrounding the silicon struc-

ture. Assume that the power emanating through the 𝑦− and 𝑧−monitors, 𝑃𝑦 and 𝑃𝑧
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respectively, is all of the radiated power. Under these assumptions, the transmitted

power is 𝑃𝑥, and the radiated power is 𝑃𝑦 + 𝑃𝑧.

Figure 3-4: Left Column: First Harmonic (a-i) Transmitted power, (a-ii) Radiated
power, (a-iii) Total power leaving simulation domain. Right Column: Second Har-
monic (b-i) Transmitted power, (b-ii) Radiated power, (b-iii) Total power leaving
simulation domain.

The left and right columns of Fig. 3-4 show the power outputs for the fundamen-

tal and second harmonic modes. The 1st, 2nd, and 3rd rows show the transmitted,

radiated, and total (transmitted + radiated) powers emanating from the device. The

transients in power shown in orange for the first 6.5 ps are due to the presence of the

source turning on and then off. After 6.5 ps, it is safe to assume that the cavity has

reached its “steady” behavior and only sustains the first and second harmonic modes.

All additional extraneous frequencies have already evanescently decayed. This regime
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is shown in yellow in Fig. 3-4.

The computation procedure for 𝑄𝑟𝑎𝑑
1 and 𝑄𝑟𝑎𝑑

2 is as follows:

Let 𝑃 𝑡𝑟𝑎
𝑚1,2

(𝑡) be the upper envelope of the 1st, 2nd-harmonic transmitted power.

Let 𝑃 𝑟𝑎𝑑
𝑚1,2

(𝑡) be the upper envelope of the 1st, 2nd-harmonic radiated power.

Let 𝑃 𝑡𝑜𝑡
𝑚1,2

(𝑡) be the upper envelope of the 1st, 2nd-harmonic total emitted power.

Extract the exponential decay rate 𝛾𝑡𝑜𝑡
1,2 from 𝑃 𝑡𝑜𝑡

𝑚1,2
(𝑡) curve.

𝛾𝑡𝑟𝑎
1,2 =

𝑃 𝑡𝑟𝑎
𝑚1,2

𝑃 𝑡𝑜𝑡
𝑚1,2

𝛾𝑡𝑜𝑡
1,2 𝛾𝑟𝑎𝑑

1,2 =
𝑃 𝑟𝑎𝑑
𝑚1,2

𝑃 𝑡𝑜𝑡
𝑚1,2

𝛾𝑡𝑜𝑡
1,2

𝑄𝑡𝑟𝑎
1,2 =

𝜔1,2

𝛾𝑡𝑟𝑎
1,2

𝑄𝑟𝑎𝑑
1,2 =

𝜔1,2

𝛾𝑟𝑎𝑑
1,2

(3.3)

The transmitted, radiative, and total quality factors for the fundamental and

second harmonic modes are given in Table 3.2. As expected from Eq. (1.6), the

total quality factor is less than both the transmitted and radiated quality factors.

It is interesting to note that since the radiative quality factors are a few orders of

magnitude lower than the transmitted quality factors, the total quality factors are

very close to the radiative quality factors. This demonstrates that a radiation-limited

cavity at both frequencies has been successfully implemented.

Waveguide 𝑄−Factor Scattering 𝑄−Factor Total 𝑄−Factor

1st Harmonic 𝑄𝑡𝑟𝑎
1 = 6.035× 108 𝑄𝑟𝑎𝑑

1 = 1.749 × 105 𝑄𝑡𝑜𝑡
1 = 1.748× 105

2nd Harmonic 𝑄𝑡𝑟𝑎
2 = 7.307× 106 𝑄𝑟𝑎𝑑

2 = 4.510 × 104 𝑄𝑡𝑜𝑡
2 = 4.504× 104

Table 3.2: Transmitted, radiated, and total quality factors for the fundamental and
second harmonic modes.

3.8 Mode Profiles and Overlap

Lumerical field monitors, also known as frequency domain power monitors, return

quantities such as the output power and the 𝑥, 𝑦, 𝑧 components of the electric field,

magnetic field, and Poynting vector. For the first harmonic simulation, the 3D field

monitor is centered at 114.605 THz, and for the second harmonic simulation, the 3D
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field monitor is centered at 232.932 THz. The full 3D simulation data is exported.

Lumerical uses the symmetry rules to unwrap the data from the simulated region to

the full domain. To avoid incorporating the source and initial simulation transients,

start time apodization is used with an apodization center of 15 ps and an apodization

time width of 5 ps.
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Figure 3-5: (a) 𝑥𝑦−cross section of the fundamental mode. (b) 𝑥𝑧−cross section
of the fundamental mode. (c) 𝑥𝑦−cross section of the second harmonic mode. (d)
𝑥𝑧−cross section of the second harmonic mode.

Fig. 3-5 shows two cross sections of the imaginary part of the 𝑦−component of

the electric field for the first and second harmonic modes. The sign of the intracavity

field alternates with each successive unit cell. This fact is consistent with Bloch’s

Theorem. Since operation occurs at the edge of the irreducible Brillouin zone 𝑘𝑥 = 𝜋
𝑎
,

the mode solutions are proportional to 𝑒𝑖𝑘𝑥𝑥 = 𝑒𝑖
𝜋
𝑎
𝑥. Thus, the imaginary part of the

𝑦−component of the electric field is proportional to Im
{︀
𝑒𝑖

𝜋
𝑎
𝑥
}︀
= sin

(︀
𝜋
𝑎
𝑥
)︀
, which is

periodic with spatial period 2𝜋
𝜋/𝑎

= 2𝑎. Hence the mode solutions return to the same

sign after two unit cells.
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According to Eq. (1.5) for the dimensionless coupling coefficient 𝛽, the integrand

of the numerator depends significantly on the electric field overlap 𝐸2
1𝑦𝐸

*
2𝑦 . Fig. 3-6

plots this quantity for two different cross sections and demonstrates that this quantity

still alternates its sign every other period. Since 𝛽 requires integrating this over the

entire cavity, for a material whose 𝜀(�⃗�) does not change sign, 𝛽 would be nearly

vanishing.
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Figure 3-6: (a) Top: 𝑥𝑦−cross section, and (b) Bottom: 𝑥𝑧−cross section, of the
optical field overlap used as a factor of the integrand in the numerator of 𝛽.

This suggests that it would be advantageous to take the absolute value of this

field overlap quantity. If only the 𝜒(2) could alternate direction and correspondingly

change sign with each successive unit cell, this would allow all periods to contribute

and not subtract from the integral. Because silicon does not have an intrinsic 𝜒(2),

but can have a 𝜒
(2)
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 in the direction of the applied DC electric field, the direction

of the second-order nonlinearity can be adjusted by controlling the direction of the

applied DC electric fields.

This motivates a spatially alternating DC electric field pattern where the electric

field direction in every other period is in opposite directions. Thus, unlike in Ref. [9]

where all electrodes on one side of the cavity are biased at the same voltage relative

to the other side, implementing this spatially alternating field pattern requires a spa-

tially alternating voltage biasing pattern, where each successive electrode alternates

between the bias voltage and ground. This work uses a silicon electrode bias voltage

of +1 V.
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3.9 COMSOL FEM Simulation

The COMSOL Electrostatics Interface is an electrostatics simulation software pack-

age that uses the finite element method (FEM) for solving Maxwell’s Equations under

DC electrostatic conditions. Here, COMSOL is used to simulate the DC electric field

profile caused by the spatially-alternating biased electrodes. A DC relative permittiv-

ity 𝜀𝑟 = 11.7 is used for silicon. The results of the COMSOL simulation are exported

on the same non-uniform Lumerical grid shown in Fig. 3-3.

Fig. 3-7 displays the 𝑦−component of the DC electrostatic field inside the device.

A saturated color scale is used to more clearly display the fields inside the cavity as

opposed to edge effects near the waveguide. As expected, the field inside the silicon

is much lower than the field in air, since silicon behaves as a dielectric material at

DC. For this reason, the field is shown only inside the silicon device for clarity. Gray

coloring indicates air regions with field not shown.

By centering the doped silicon electrodes on the silicon-dominated region of the

unit cell, as opposed to the elliptical air-hole region of the unit cell, an approximately

constant electric field predominantly in the 𝑦−direction is successfully set up in each

unit cell. The central upper-electrode is biased at +1 V, and the central lower-

electrode is grounded to 0 V. This initiates the spatially alternating pattern, where

each successive electrode to the right or left reverses the biasing. This causes the

direction of the electric field to be reversed in successive unit cells.

-2000

0

2000

Figure 3-7: Spatially alternating DC field [V/m].
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3.10 Extension of Second Harmonic Generation For-

malism

From Chapter 1, Eq. (1.5) for the dimensionless nonlinear coupling 𝛽 was constructed

in Ref. [14] by assuming a 𝜒(2) nonlinearity that does not vary spatially and is constant

across the entirety of the structure of interest. However, as seen in Fig. 3-7, the DC

electric field 𝐸𝑑𝑐,𝑦(�⃗�) changes sign each period, causing 𝜒
(2)
induced(�⃗�) = 3𝜒(3)𝐸𝑑𝑐,𝑦(�⃗�) to

alternate sign each period. Also, within each period, there is still a slight spatial

variation in 𝐸𝑑𝑐,𝑦(�⃗�) and therefore 𝜒
(2)
induced(�⃗�).

Hence, the definition of the dimensionless nonlinear coupling 𝛽 from Chapter 1

must be extended to encompass the scenario of a second-order nonlinearity whose

sign and value vary spatially:

𝛽 =
1

𝜒
(2)
effective

∫︁
𝜒
(2)
induced(�⃗�)𝐸

2
1𝑦𝐸

*
2𝑦 𝑑3�⃗�(︂∫︁

𝜀1

⃒⃒⃒
�⃗�1

⃒⃒⃒2
𝑑3�⃗�

)︂√︂∫︁
𝜀2

⃒⃒⃒
�⃗�2

⃒⃒⃒2
𝑑3�⃗�

√︁
𝜆3
1 (3.4)

where the original 𝜀(�⃗�) in the numerator integrand is replaced with the actual 𝜒(2)
𝑖𝑛𝑑𝑢𝑐𝑒𝑑

nonlinearity. The expression is then divided by some volumetric average 𝜒
(2)
effective

in order to maintain normalized units. This mathematical construct is helpful for

comparing to the 𝛽’s of previous designs in the literature. In this work, the effective

second-order nonlinearity 𝜒
(2)
effective is defined as

𝜒
(2)
effective =

1

𝑉 (𝑊 )

∫︁
𝑊

⃒⃒⃒
𝜒
(2)
induced (�⃗�)

⃒⃒⃒
𝑑3�⃗� (3.5)

where 𝑊 denotes the volumetric region of the silicon photonic crystal waveguide over

specified lower and upper 𝑥−bounds, and 𝑉 (𝑊 ) is the volume of 𝑊 .

In order to more clearly distinguish the impact of bias voltage level on device

performance, it is useful to express 𝐸𝑑𝑐,𝑦 (�⃗�) as the product of a unitless spatial pat-

tern oscillating between −1 and 1, 𝜉𝑑𝑐 (�⃗�), that is independent of bias voltage and a
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constant, 𝐸𝑚𝑎𝑥
𝑑𝑐,𝑦 , that is proportional to the bias voltage magnitude.

𝐸𝑑𝑐,𝑦 (�⃗�) = 𝐸𝑚𝑎𝑥
𝑑𝑐,𝑦 𝜉𝑑𝑐 (�⃗�) (3.6)

Therefore,

𝜒
(2)
effective =

1

𝑉 (𝑊 )

∫︁
𝑊

⃒⃒
3𝜒(3)𝐸𝑑𝑐,𝑦 (�⃗�)

⃒⃒
𝑑3�⃗�

=
1

𝑉 (𝑊 )

∫︁
𝑊

⃒⃒
3𝜒(3)𝐸𝑚𝑎𝑥

𝑑𝑐,𝑦 𝜉𝑑𝑐 (�⃗�)
⃒⃒
𝑑3�⃗�

=
3𝜒(3)𝐸𝑚𝑎𝑥

𝑑𝑐,𝑦

𝑉 (𝑊 )

∫︁
𝑊

|𝜉𝑑𝑐 (�⃗�)| 𝑑3�⃗� (3.7)

Substituting into 𝛽,

𝛽 =
1

�����3𝜒(3)𝐸𝑚𝑎𝑥
𝑑𝑐,𝑦

𝑉 (𝑊 )

∫︀
𝑊
|𝜉𝑑𝑐 (�⃗�)| 𝑑3�⃗�

∫︁
������
3𝜒(3)𝐸𝑚𝑎𝑥

𝑑𝑐,𝑦 𝜉𝑑𝑐 (�⃗�)𝐸
2
1𝑦𝐸

*
2𝑦 𝑑3�⃗�(︂∫︁

𝜀1

⃒⃒⃒
�⃗�1

⃒⃒⃒2
𝑑3�⃗�

)︂√︂∫︁
𝜀2

⃒⃒⃒
�⃗�2

⃒⃒⃒2
𝑑3�⃗�

√︁
𝜆3
1

=
𝑉 (𝑊 )∫︀

𝑊
|𝜉𝑑𝑐 (�⃗�)| 𝑑3�⃗�

∫︁
𝜉𝑑𝑐 (�⃗�)𝐸

2
1𝑦𝐸

*
2𝑦 𝑑3�⃗�(︂∫︁

𝜀1

⃒⃒⃒
�⃗�1

⃒⃒⃒2
𝑑3�⃗�

)︂√︂∫︁
𝜀2

⃒⃒⃒
�⃗�2

⃒⃒⃒2
𝑑3�⃗�

√︁
𝜆3
1 (3.8)

Since only the position of the second-order nonlinearity, and not its physical value,

appears in Eq. (3.8), 𝛽 can be used to compare designs implemented in different

material platforms.

3.11 Effective Second-Order Nonlinearity

It can be seen from Fig. 3-7 that the DC field repeats every two unit cells, except near

the far left and right ends of the cavity where edge effects dominate. Near the device-

waveguide interface, the far left and far right electrode pairs do not have another

adjacent electrode pair of opposite polarity to reduce the total field at that location.

This causes the electric field in the waveguide right outside the cavity and electrodes
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to have a much larger magnitude than inside the cavity. Before these edge effects

are reached, the volumetric average calculated in Eq. (3.5) should be the same when

computed over any range of unit cells symmetric around the center of the cavity.

In practice, due to the finite resolution of the structure simulated in COMSOL,

there will be slight numerical differences between volumetric averages integrated over

different 𝑥−ranges.
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Figure 3-8: (a) Top: 𝜒
(2)
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 over the selected 𝑥−integration region. (b) Bottom:

Variation in the volumetric average 𝜒
(2)
effective as a function of symmetric 𝑥−integration

range.

Fig. 3-8(b) displays the numerical variation of 𝜒(2)
effective as the 𝑥−integration range,

which is symmetric about the center of the cavity, increases. As expected, for very

small 𝑥−integration ranges, each additional pixel corresponds to a larger contribution

to the integral, causing relatively large numerical oscillations. A spatially accurate

value is reached for 𝑥−ranges larger than ≈ [−20, 20] 𝜇m.

For 𝑥−ranges beyond the red line in Fig. 3-8(a) and (b), edge effects become non-

negligible. As the electric field saturates, the 𝜒
(2)
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 saturates, and the 𝜒

(2)
effective

grows linearly. Thus the red line which corresponds to an integration 𝑥−range

[−25.57, 25.57] 𝜇m is selected. For this integration region,

𝜒
(2)
effective = 6.012× 10−16 m/V
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As 𝜒
(2)
effective is a constant inherent to the device at a DC electrode bias of 1 V, this

value will be used throughout.

3.12 Resulting Figures of Merit

Using this modified expression for 𝛽, the figures of merit are listed in Table 3.3.

Structure |𝛽| FOM1 FOM2

This work: Si PhC Nanobeam 0.0085 10.8 1.003 × 1011

GaAs PhC Nanobeam [17] 0.00021 820 1.8× 108

AlGaAs/Al2O3 micropost [14] 0.018 7.5× 106 8.3× 1011

Table 3.3: Comparison of achieved Figures of Merit (FOMs) with preexisting designs
in the literature. Note that the micropost design and this work’s silicon microcavity
design are only simulated whereas the GaAs microcavity design is also experimentally
verified.

Although the 𝛽 and FOM2 values for this silicon photonic crystal device are com-

petitive with the literature [14, 17], FOM1 is significantly lower. A high intrinsic

FOM2 means that this cavity could be effective for second harmonic generation. How-

ever, the lower FOM1 indicates that light can’t effectively couple into and out of the

cavity. This can be seen from the fact that 𝑄 and 𝑄𝑟𝑎𝑑 are almost equal, which means

this device operates far into the under-coupled regime.

This suggests that reducing the length of the cavity by reducing the number of

unit cells on each side of the cavity center, which would reduce the total quality

factor, could be useful to increase FOM1. This is explored in the next chapter of the

exposition.
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Chapter 4

Cavity Length Optimization

4.1 Simulation Approach for Enhancing SHG Effi-

ciency Per Power

The end of Chapter 3 concluded that it would be advantageous to explore reducing

the number of unit cells for increasing the second harmonic generation unitless ef-

ficiency per power FOM1. In order to do this, this work uses a spatial windowing

technique to reduce the design time required for investigating many cavity sizes. Note

that based on Fig. 3-8, as long as the cavity contains more than a total of 20 unit

cells, 𝜒
(2)
effective remains approximately the same regardless of the size of the cavity.

Therefore, Comsol DC electric field simulations do not need to be repeated, and

only Lumerical photonic simulations need to be carried out.

For this cavity design and Lumerical simulation setup, the majority of the light

is confined towards the center of the simulation region, and the PML layers function

sufficiently well such that they prevent back reflections of the exiting field into the

simulation domain. Therefore, moving the PML layers inwards along the 𝑥−axis

should effectively reduce the number of unit cells in the cavity. This can work since

the entire taper profile from Chapter 3 is not being compressed into a smaller number

of unit cells but rather is simply being truncated by the PML layers at a smaller

unit cell number from the center of the cavity. Essentially, smaller cavities are being
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simulated by simply shrinking the 𝑥−extent of the simulation domain on the larger

geometry file.

The PML is shifted inward by integer multiples of the lattice constant and is

placed at the position along the unit cell where the unit cell’s width is 𝑦𝑒𝑛𝑑 and hence

equal to the waveguide width. This means that duplicating the pixel layer right before

the PML through the PML would look like the former waveguide segment. For the

structure in Chapter 3, moving the PML layers inwards such that the waveguide

segments at the ends of the geometry were no longer part of the simulation domain

negligibly impacted the fields and figures of merit. Thus, this method of reducing the

simulation domain is applied for exploring cavities containing different numbers of

unit cells. All Lumerical settings from the previous chapter were applied to all of

the cavities in this chapter. Furthermore, each cavity length continues to correspond

to 2 separate Lumerical simulations, one at the first harmonic frequency and one

at the second harmonic frequency.

4.2 Results of Sweep on Unit Cell Count

Following the approach outlined in the previous section, 12 unique total cavity sizes

were tested: {30, 40, 50, 54, 56, 58, 60, 66, 70, 80, 90, 100}. This corresponds to

{15, 20, 25, 27, 28, 29, 30, 33, 35, 40, 45, 50} unit cells on each half of the cavity, respec-

tively.

Fig. 4-1(a) shows the variation in the radiative quality factors and total quality

factors for different total numbers of unit cells in the cavity. Fig. 4-1(b) displays

the ratios 𝑄𝑡𝑜𝑡
1

𝑄𝑟𝑎𝑑
1

and 𝑄𝑡𝑜𝑡
2

𝑄𝑟𝑎𝑑
2

, which vary roughly sigmoidally with the size of the cavity.

For total numbers of unit cells larger than 70, 𝑄𝑡𝑜𝑡
1 ≈ 𝑄𝑟𝑎𝑑

1 and 𝑄𝑡𝑝𝑡
2 ≈ 𝑄𝑟𝑎𝑑

2 . This

corresponds to the under-coupled device operation. For 56 total unit cells in the

cavity, 𝑄𝑡𝑜𝑡
1 ≈ 𝑄𝑟𝑎𝑑

1

2
and 𝑄𝑡𝑜𝑡

2 ≈ 𝑄𝑟𝑎𝑑
2

2
, making this cavity critically coupled. For fewer

total numbers of unit cells the cavity becomes over-coupled. In this region, the total

quality factors 𝑄𝑡𝑜𝑡
1 and 𝑄𝑡𝑜𝑡

2 grow exponentially as the number of unit cells in the

cavity is increased.
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Fig. 4-2(a) shows FOM2 on a zoomed in scale and Fig. 4-2(b) plots FOM1, which is

always less than FOM2. This is the case because FOM2 is an intrinsic upper bound on

the performance of the cavity and FOM1 represents an achievable unitless efficiency

per power. As the total number of unit cells in the cavity is changed, FOM2 varies

within 1 order of magnitude, whereas FOM1 varies within 10 orders of magnitude.

FOM1 has a theoretical maximum of FOM1𝑚𝑎𝑥 =
FOM2

64
[14]. It is evident that the

maximum FOM1 occurs for a total cavity size of 56 unit cells, which is depicted by

the yellow line in Figs. 4-1 and 4-2. As expected, FOM1 is maximized when the cavity

is critically coupled. For 56 unit cells, FOM1 =
FOM2

64.87
, which is very close to the

theoretical FOM1𝑚𝑎𝑥.

It can be seen in Fig. 4-2(b) that for over 70 total unit cells FOM1 rapidly de-

teriorates, and by a 100 total unit cells, the cavity simulated in Chapter 3, FOM1

has essentially vanished. It is interesting to note that this deterioration is occurring

within the last 25 unit cells on each side of the cavity, which are the repeated fixed

mirror strength unit cells seen in Fig. 3-1 from Chapter 3. The optimal cavity size of

56 unit cells corresponds to only 3 fixed mirror strength unit cells on each side of the

cavity. These observations indicate that the fixed mirror strength additions to the

ends of the cavity were essentially unnecessary.

4.3 Figures of Merit Summary

The transmitted, radiative, and total quality factors for the fundamental and second

harmonic modes of the optimized photonic crystal nanobeam structure are given in

Table 4.1. As expected from Eq. (1.6), the total quality factor is less than both the

transmitted and radiated quality factors. Since the transmitted quality factors are

now of the same order of magnitude as the radiative quality factors, the total quality

factors are now reduced. 𝑄𝑡𝑜𝑡
1

𝑄𝑟𝑎𝑑
1

= 0.533 and 𝑄𝑡𝑜𝑡
2

𝑄𝑟𝑎𝑑
2

= 0.466 demonstrate that a critically

coupled cavity at both frequencies has been successfully implemented.

The figures of merit of the optimized silicon photonic microcavity are listed in

Table 4.2.
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Waveguide 𝑄−Factor Scattering 𝑄−Factor Total 𝑄−Factor

1st Harmonic 𝑄𝑡𝑟𝑎
1 = 2.285× 105 𝑄𝑟𝑎𝑑

1 = 2.043 × 105 𝑄𝑡𝑜𝑡
1 = 1.090× 105

2nd Harmonic 𝑄𝑡𝑟𝑎
2 = 1.877× 104 𝑄𝑟𝑎𝑑

2 = 2.760 × 104 𝑄𝑡𝑜𝑡
2 = 1.287× 104

Table 4.1: Updated transmitted, radiated, and total quality factors for the funda-
mental and second harmonic modes.

Structure |𝛽| FOM1 FOM2

This work: Si PhC Nanobeam 0.00867 1.334 × 109 8.657 × 1010

GaAs PhC Nanobeam [17] 0.00021 820 1.8× 108

AlGaAs/Al2O3 micropost [14] 0.018 7.5× 106 8.3× 1011

Table 4.2: Comparison of optimized Figures of Merit (FOMs) with preexisting designs
in the literature. Note that the micropost design and this work’s silicon microcavity
design are only simulated whereas the GaAs microcavity design is also experimentally
verified.

This successfully meets the final goal of lifetime engineering to achieve an optimal

cavity. In conclusion, it has been demonstrated that for competitive 𝛽 and FOM2, it

is possible to also have a larger FOM1 value than the designs proposed by [14, 17].

This makes the silicon 1D photonic crystal EFISH device a promising candidate for

efficient second harmonic generation in integrated silicon photonics for a wide vari-

ety of applications, including photonic computing, sensing, communications, space,

quantum science and engineering, and machine learning accelerators.
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Figure 4-1: (a) Top: Total and radiative quality factors, and (b) Bottom: Ratios of
total to radiative quality factors, as a function of nanobeam size for both the first
and second harmonics.
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Figure 4-2: (a) Top: Device figure of merit 2, and (b) Bottom: Device figure of
merit 1, as a function of nanobeam size.
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Chapter 5

Conclusions

This thesis proposes a one dimensional photonic crystal nanobeam cavity in silicon for

second harmonic generation, with high quality factors and low mode volumes for both

the fundamental and second harmonic modes. Second harmonic generation in silicon

is made possible by taking advantage of its electric field induced second harmonic

(EFISH) effect. The unit cell’s photonic crystal band structure was engineered to

have same-polarization, octave-separated band gaps under the light cone. Tapering

profile optimization enabled the resultant cavity to have ultralarge quality factors at

both of the octave separated modes.

Consistent with Bloch’s theorem, the optical field reverses sign with each unit

cell, which typically leads to diminished figures of merit (𝛽, FOM1, FOM2) in devices

relying on the intrinsic 𝜒(2) of non-centrosymmetric materials such as gallium arsenide

or lithium niobate. The silicon microcavity bypasses this issue since its second-order

nonlinearity is induced by an electric field whose direction can be controlled via

electrode biasing. A spatially alternating DC electric field sets up a corresponding

spatially alternating 𝜒
(2)
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 that enables each unit cell to contribute positively to 𝛽,

resulting in a 𝛽 that is an order of magnitude larger than previously obtained with

gallium arsenide.

The electrode bias voltages could be realized in practice by using doped silicon.

Table 5.1 lists the silicon effective second order nonlinearity for the 1 V applied in

this work and estimates the voltages required for realizing the maximum induced
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nonlinearity possible in this design, which is limited by the silicon breakdown voltage

of 40V/𝜇m [30].

𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝐸𝑚𝑎𝑥
𝑑𝑐,𝑦 𝜒

(2)
effective 𝐸𝑒𝑓𝑓

𝑑𝑐,𝑦

1 V 4.814 mV
𝜇m 6.012× 10−4 pm

V 0.818 mV
𝜇m

8.3 kV 40.00 V
𝜇m 4.995 pm

V 6.796 V
𝜇m

48.9 kV 235.4 V
𝜇m 29.40 pm

V 40.00 V
𝜇m

Table 5.1: Estimates of effective second-order nonlinearities achievable with different
applied electrode bias voltages. 𝐸𝑒𝑓𝑓

𝑑𝑐,𝑦 is estimated using 𝜒
(2)
effective = 3𝜒(3)𝐸𝑒𝑓𝑓

𝑑𝑐,𝑦.

One avenue for future work is to design a different spatially alternating bias-

ing profile that has a smaller difference between the maximum electric field 𝐸𝑚𝑎𝑥
𝑑𝑐,𝑦

and the effective electric field for induced second harmonic generation, 𝐸𝑒𝑓𝑓
𝑑𝑐,𝑦, where

𝜒
(2)
effective = 3𝜒(3)𝐸𝑒𝑓𝑓

𝑑𝑐,𝑦. Another interesting boulevard is to investigate time-varying

second harmonic generation in the microcavity by changing the bias voltage of the

electrodes in real time.

Moreover, the 𝑥−spacing between adjacent electrodes causes a field between the

electrodes that is on the order of the breakdown voltage of air. The addition of a

dielectric into a region with some electric field will reduce the electric field in that

region due to the electrostatic polarization arising in the dielectric medium. Thus,

it could be advantageous to surround the electrodes with electrolytes. This would

require re-engineering of the unit cell to return the second harmonic bands below the

light line.

While the induced second harmonic generation values and spatial pattern are

programmable with electrode bias voltage, the unit cell still has its bandgap at specific

frequencies. Once the lattice constant, or unit cell length, is chosen, the physical band

edge frequencies are locked in place. Additionally, once the cavity and defect design

are determined, the mode inside of each bandgap is fixed at its resonant frequency,

which is not conducive to tunability. Consequently, a useful direction of development

is to enable tunable first- and second-harmonic wavelengths, perhaps by strain or

thermal tuning.
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Silicon is a scalable platform for photonics, and this work opens the door to

extending these devices to nonlinear optical functions without requiring the use of

additional materials.
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