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Abstract

The blossom of quantum information science and technology in the past decades is
facilitated by the development of various qubit platforms. A qubit system that si-
multaneously has long coherence time, fast operation, and large scalability is highly
desirable. Particularly, nuclear spins have been considered as ideal quantum infor-
mation carriers thanks to their exceptionally long coherence time exceeding minutes
and even hours at room temperature. However, the application of nuclear spins is
hindered by their small energy scales and weak interactions with external fields.

Light-matter interaction has attracted intense interest in recent years. The de-
velopment in both classical and quantum optics provide unprecedented opportunities
in the applications of optical approaches. In condensed matter physics/materials sci-
ence, optical approaches provide great flexibility in characterizing material properties,
driving excitations, and even triggering phase transitions in materials. Meanwhile,
light-matter interactions are widely used in quantum science. For example, the spon-
taneous parametric down-conversion can be applied to create entangled photon pairs.
If nuclear spins can be manipulated with optical approaches, then it would facilitate
a number of potential applications.

However, an efficient interface between nuclear spins and optical approaches is
still lacking and is in particular hindered by the formidable gap between nuclear spin
frequencies (103 ∼ 106 Hz) and optical frequencies (∼ 1015 Hz). Previous works on
optical control over nuclear spins rely on ancillary electron spins. In this thesis, we
propose an opto-nuclear quadrupolar (ONQ) effect, whereby two-color optical photons
can coherently couple with nuclear spins without the need for ancillary electron spins.
Hence, several limitations due to the presence of the electron spins, such as shortened
nuclear spin coherence time, can be eased. Besides, the frequencies of the optical
lasers can be arbitrary in practice, so they can be fine-tuned to minimize the material
heating effect and to match telecom wavelengths for long-distance communications.

Following the introduction to the mechanism, we suggest several applications of
the ONQ effect. We will focus on the applications in quantum technologies, including
using nuclear spins as the quantum memory to store the quantum information carried
by optical photons, as the quantum transducer between microwave/radio frequency
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and optical photons. We will also discuss how laser cooling of nuclear spin excitations
can be realized via the ONQ effect.

Thesis Advisor: Ju Li
Title: Battelle Energy Alliance Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering

Thesis Reader: Mingda Li
Title: MIT Class of 1947 Career Development Professor
Assistant Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

1.1 Nuclear Spins

The sophisticated manipulation of electron charges leads to the well-celebrated elec-

tronics [1], which has revolutionized the human civilization during the past century.

The manipulation of electron spins leads to a plethora of applications in many fields

ranging from spintronics and condensed matter physics to quantum information sci-

ence and technology. Similar to electron charge and electron spin, nuclear spin is

another fundamental quantum object in nature. However, the control over nuclear

spins, while used in a few applications such as nuclear magnetic resonance (NMR),

has been less developed and less influential. Moreover, nuclear spins are considered

as sources of noises in many scenarios [2].

A major issue that hinders the application of nuclear spins is their small energy

scale and weak interaction with the environment. The interactions involving electron

charges and spins can easily exceed 1 eV and 1 meV, respectively. In contrast, in most

situations the interactions involving nuclear spins are well-below 1 𝜇eV ≈ 240 MHz.

For example, the nuclear Zeeman interaction is only around 10 MHz when a nuclear

spin is under a 1 T magnetic field. Also, the magnetic dipole interaction between two

nuclear spins is only on the order of kHz even if they are as close as 1 Å.

Furthermore, for decades nuclear spins are usually controlled with magnetic fields,

which are relatively hard to modulate. This hampers the application of nuclear spins
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as well. The generation of strong magnetic fields usually requires bulky coils; The

response time of strong magnetic fields is usually long (e.g. ms), leading to low

temporal resolution; Besides, magnetic fields are hard to focus, resulting in low spatial

resolution.

In many scenarios, electron spins are not controlled with magnetic fields, but in-

stead with electric or optical fields [3, 4], which directly interact with the electron

charge degree-of-freedom through electric dipole interaction. Then, certain mecha-

nisms such as spin-orbit interaction (∼ 10 meV) [5–7] can transmit the interaction

from charge to spin degrees-of-freedom, and thus electric/optical fields can indirectly

control electron spins. In the case of nuclear spin, an efficient electrical/optical inter-

face is still lacking. While nuclei also have charge, which could potentially mediate

the interaction between electric/optical fields and nuclear spins 1, the relevant energy

scale (∼ MeV) is too high for most practical applications.

In this era when quantum information science is blossoming, nuclear spins could be

an ideal quantum information carrier, thanks to their exceptionally long decoherence

time exceeding minutes or even hours at room temperature [8, 9]. It is thus highly

desirable to have more sophisticated control over nuclear spins.

1.2 Optical Approaches

Since the advent of lasers in the 1960’s [10], optical approaches have seen great suc-

cess. Optical approaches usually have both high temporal resolution (on or below

the order of fs [11]) and high spatial resolutions (hundreds of nm, only limited by

the diffraction limit [12]). Optical laser can also be ultra-strong and non-contact,

which provides additional flexibility. Thanks to these advantages, optical approaches

find wide applications in many scientific and technological disciplines. For example,

second-harmonics generation spectroscopy has been providing detailed information

on the ionic and electronic structure of molecules and solid-state systems since the

1The spin-orbit interaction in nuclei is strong (∼ MeV). It is actually an important ingredient in
shell model and helps explain the magic number of nucleons.
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very beginning of laser technology [13].

The fields of both classical and quantum optics are continuously evolving in recent

years. The development in photonics design [14, 15] leads to unprecedented control

over optical photons down to the single-photon level and ever-increasing interaction

strength between light and matter. For quantum information science and technology,

optical approaches also play crucial roles. In linear optics quantum computation [16,

17], photons are the fundamental building block of the qubit platform. In other

qubit systems such as semiconductor defects [2, 18], trapped ions [19], and Rydberg

atoms [20,21], optical approaches are used to initialize, manipulate, and/or readout as

well. In condensed matter physics, various nonlinear optical (NLO) effects and their

inherent relationship with crystalline structures, magnetic structures and particularly,

electronic band topologies have attracted wide interest. For example, some NLO

effects are closely connected to certain topological properties [22–25]. Meanwhile,

the NLO responses can be enhanced in topological materials [26–28], thus topological

materials can be efficient platforms of some applications such as photodetection in

infrared to terahertz range.

1.3 Overview of The Thesis

In this thesis, we will discuss how optical approaches can be used to control nuclear

spins. We will first introduce an opto-nuclear quadrupolar (ONQ) effect, which is

a second-order NLO effect and could couple two-color optical photons and nuclear

spins. We elucidate the mechanism and estimate the strength of the ONQ effect.

Then we will discuss potential applications of the ONQ effect, ranging from material

spectroscopy, to quantum technologies (quantum memory, quantum transduction,

etc.), to the laser cooling of nuclear magnons. Along with the ONQ effect, we will

also discuss the nuclear electric resonance (NER) [29–31], which can be considered as

the linear version of the ONQ effect and enables the interaction between microwave

electric fields and nuclear spins. An overview of this thesis is as follows:

• In Chapter 2, we introduce the nuclear spin Hamiltonian.
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• In Chapter 3, we discuss how electron spins have been used to control nuclear

spins via the hyperfine interaction.

• In Chapter 4, we explain the mechanism of the NER and the ONQ effect. We

also estimate their interaction strength.

• In Chapter 5, we compare the NER and ONQ effects with other linear and

nonlinear optical effects that could couple electric/optical fields with nuclear

spins.

• In Chapter 6, we discuss potential applications of the NER effect.

• In Chapter 7, we demonstrate potential applications of the ONQ effect.

• In Chapter 8, we will discuss some miscellaneous topics relevant to the optical

control over nuclear spins.

This thesis is based on two manuscripts in submission:

• Haowei Xu, Changhao Li, Guoqing Wang, Hua Wang, Hao Tang, Ariel Rebekah

Barr, Paola Cappellaro, and Ju Li. Two-photon Interface of Nuclear Spins Based

on the Opto-nuclear Quadrupolar Effect. Physical Review X, under revision.

• Haowei Xu, Guoqing Wang, Changhao Li, Hua Wang, Hao Tang, Ariel Rebekah

Barr, Paola Cappellaro, and Ju Li. Laser Cooling of Nuclear Magnons. Physical

Review Letters, under review.
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Chapter 2

Nuclear Spin Hamiltonian

In this chapter, we introduce different types of interactions that nuclear spins partic-

ipate in, which would be the foundations of the discussions in following chapters.

We first focus on the single nuclear spin Hamiltonian, which can be expressed as

𝐻𝑁 = 𝐻Z +𝐻hf +𝐻Q

= 𝛾𝑁
∑︁
𝑖

B𝑖𝐼𝑖 +
∑︁
𝑖𝑗

𝐴𝑖𝑗𝑆𝑖𝐼𝑗 +
∑︁
𝑖𝑗

𝑄𝑖𝑗𝐼𝑖𝐼𝑗.
(2.1)

Here 𝐼 (𝑆) is the angular momentum operator of the nuclear (electron) spin, with

𝑖 = 𝑥, 𝑦, 𝑧 the Cartesian indices. The three terms are the nuclear Zeeman interac-

tion 𝐻Z, the hyperfine interaction 𝐻hf , and the nuclear quadrupole interaction 𝐻Q,

respectively.

2.1 Nuclear Zeeman Interaction

The first term in Eq. (2.1), 𝐻Z, is the Zeeman interaction between nuclear spin

and external magnetic field B. 𝛾𝑁 is the gyromagnetic ratio of the nucleus under

consideration. The origin of the 𝐻Z is that the nucleus has a magnetic dipole m𝑁 =

𝑔𝑁𝜇𝑁 , where 𝑔𝑁 is the g-factor and is usually on the order of 1. 𝜇𝑁 is the nuclear

magneton,

𝜇𝑁 =
𝑒ℏ
2𝑚𝑝

, (2.2)
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where 𝑒 is the electron charge, ℏ is the Planck constant1, while 𝑚𝑝 is the mass of

proton. One can see that

𝛾𝑁 ≡ m𝑁

ℏ
∼ 10× 2𝜋 ·MHz

T
, (2.3)

that is, the nuclear Zeeman interaction strength is on the order of 10 MHz when the

external magnetic field is 1 T. This is significantly weaker than the strength of the

Zeeman interaction of electron spin, which is around 10× 2𝜋·GHz
T

.

The well-known nuclear magnetic resonance (NMR) technology relies on the nu-

clear Zeeman interaction 𝐻Z - a DC magnetic field leads to the Zeeman splitting and

Larmor precession, while an AC field drives the Rabi oscillation between different

nuclear spin states. Notably, the weak nuclear Zeeman interaction [Eq. (2.3)] makes

the manipulations of nuclear spins challenging. For example, for a typical nuclear

spin under 1 T magnetic field, a 99 % fidelity of initialization to the ground state

(using thermal cooling) requires a demanding temperature below 0.1 mK. Besides, a

strong AC magnetic field of 0.1 T only leads to a Rabi frequency of 1 MHz, which is

rather slow compared with e.g., electron spin or orbital transitions.

2.2 Hyperfine Interaction

The second term in Eq. (2.1), 𝐻hf , is the hyperfine interaction between nuclear spins

𝐼 and electron spin 𝑆, with 𝐴𝑖𝑗 the hyperfine tensor. Basically, the hyperfine inter-

action is the dipole-dipole interaction between the magnetic moments of the nucleus

and the electron. The nucleus, which has a dimension on the order of femtometer,

can be safely treated as a point localized at 𝑅𝐼 . In comparison, the electron has

relatively delocalized wavefunction |𝜓(𝑟)⟩. For clarity, we assume the electron spin to

be along 𝑧 direction, and the distribution of the electron magnetic moment is deter-

mined by the spin density 𝜌𝑆(𝑟) ≡ ⟨𝜓(𝑟)|𝑆𝑧|𝜓(𝑟)⟩. The hyperfine interaction has two

1We will occasionally set ℏ = 1 hereafter
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contributions [32]. The Fermi contact term is

[𝐴iso]𝑖𝑗 =
2𝜇0

3

𝛾𝑒𝛾𝑁
⟨𝑆𝑧⟩

𝛿𝑖𝑗

∫︁
𝛿(𝑟)𝜌𝑆(𝑟 +𝑅𝐼)d𝑟. (2.4)

And the dipolar term is

[𝐴ani]𝑖𝑗 =
𝜇0

4𝜋

𝛾𝑒𝛾𝑁
⟨𝑆𝑧⟩

∫︁
𝜌𝑆(𝑟 +𝑅𝐼)

𝑟3
3𝑟𝑖𝑟𝑗 − 𝛿𝑖𝑗𝑟

2

𝑟2
d𝑟. (2.5)

Here 𝛾𝑒 is the electron gyromagnetic ratio, and 𝜇0 is the vacuum permeability. 𝛿𝑖𝑗 is

the Kronecker delta, while 𝛿(𝑟) is the delta function. One can see that [𝐴iso]𝑖𝑗 is an

isotropic tensor, while [𝐴ani]𝑖𝑗 is anisotropic. ⟨𝑆𝑧⟩ is the expectation value of 𝑆𝑧, and

is used to normalize the hyperfine tensor.

To demonstrate the strength of the hyperfine interaction, here we roughly estimate

the magnitude of 𝐴iso. If an 𝑠-orbital electron is centered on the nuclear site , then

one has 𝜌𝑆(𝑟 = 𝑅𝐼) = 𝐶( 𝑍
𝑎0
)3, where 𝑎0 is the Bohr radius, 𝑍 is the atomic number

of the nucleus. 𝐶 is a constant dependent on the principle quantum number, and is

typically on the order of 10−3 ∼ 10−2 [5]. Then, one has

𝐴iso = 𝐶
2𝜇0

3

𝛾𝑒𝛾𝑁
⟨𝑆𝑧⟩

(︂
𝑍

𝑎0

)︂3

∼ 𝐶𝑍3 × 400 MHz.

(2.6)

One can see that 𝐴iso can reach 1 GHz and above. In practice, usually the electron is

not fully of 𝑠-orbital characteristics or not fully centered on the nuclear site, so 𝐴iso

could be smaller than the hand-waving estimation in Eq. (2.6). However, an 𝐴iso on

the order of hundreds of MHz is not rare, which is equivalent to an effective magnetic

field of

Beff =
𝐴iso

𝛾𝑁
≈ [10 ∼ 100] T. (2.7)

One can see that the hyperfine interaction can be a strong interaction for nuclear

spins.
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2.3 Nuclear Quadrupole Interaction

The third term in Eq. (2.1), 𝐻Q, is the nuclear quadrupole interaction, with 𝑄𝑖𝑗 the

quadrupole tensor. The charge distribution in certain nuclei is not fully isotropic

(not fully spherical). In the spirit of multipolar expansion [33], the dipole moments

of nuclear charge are always zero, whereas the quadrupole moment q of some nuclei

can be nonzero. When the nucleus resides in an electric field gradient (EFG) V𝑖𝑗,

there would be a nuclear quadrupole interaction. Notably, the charge distribution of

the nucleus is closely related to its angular momentum2, and the quadrupole tensor

can be expressed as [34, 35]

𝑄𝑖𝑗 =
𝑒qV𝑖𝑗

2𝐼(2𝐼 − 1)
, (2.8)

and the EFG tensor is

V𝑖𝑗 = lim
𝑟→𝑅𝐼

(︂
𝜕𝑖𝜕𝑗 −

1

3
𝛿𝑖𝑗∇2

)︂
𝑣(𝑟), (2.9)

where 𝑣(𝑟) is the electric potential at 𝑟. Note that the V𝑖𝑗 tensor is traceless by

definition.

The magnitude of the quadrupole interaction is mainly determined by two factors:

(1) the quadrupole moment q of the nucleus under consideration. q is typically on

the order of 10 ∼ 103 mb 3. Usually heavy nuclei have stronger anisotropy and

hence larger q; (2) the magnitude of the EFG tensor V, which would be larger if

the environment is highly anisotropic. Note that both q and V could be zero if the

nucleus or the environment is highly isotropic with a e.g., tetrahedral symmetry [33,

36].

In solid-states or molecular systems, the intrinsic EFG V(0) comes from the electric

potential generated by surrounding electrons. The typical magnitude of such an

electric potential is on the order of 𝜑 ∼ 1 V 4, while the typical length scale (i.e.,

2Recall that both the charge distribution and the angular momentum can be described by spher-
ical harmonics.

31 mb = 10−31 m−3

4Recall that the ionization energy hydrogen atoms is 13.6 eV.
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wavelength) is on the order of 𝜆 ∼ 1 Å 5. Hence, one has

V(0) ∼ 𝜑

𝜆2
∼ 1 V/Å2

. (2.10)

As we will show in Section 4.4, even larger V(0) ∼ 10 V/Å2 can be achievable.

2.4 Nuclear Spin-Spin Interaction

In previous sections, we discussed the single nuclear spin Hamiltonian. Nuclear spins

could also interact with nearby nuclear spins, which can be expressed as

Hnn =
∑︁
𝛼𝛽

𝐼𝛼 ·J𝛼𝛽 · 𝐼𝛽, (2.11)

where the superscripts 𝛼, 𝛽 are indices of the nuclear spins, and J𝛼𝛽 describes the

interaction between nearby nuclear spins. The summations over Cartesian indices

are implied by the dot product. A major contribution to J𝛼𝛽 is the dipole-dipole

interaction between the magnetic moments of nuclei, which is

J𝛼𝛽 = −𝜇0𝛾𝛼𝛾𝛽
4𝜋𝑟3

[︀
3(𝐼𝛼 · 𝑟)(𝐼𝛽 · 𝑟)− 𝐼𝛼 · 𝐼𝛽

]︀
, (2.12)

where 𝛾𝛼 and 𝛾𝛽 are the gyromagnetic ratio of the two nuclei, respectively. 𝑟 is the

distance between the two nuclei, while 𝑟 is the unit vector that connect the two nuclei.

For typical nuclear spins, 𝛾𝛼(𝛽) is on the order of 10× 2𝜋·MHz
T

, and the distance between

nearest nuclear spins can be on the order of of 1 Å. This leads to

J𝛼𝛽 ∼ 1 kHz. (2.13)

Note that besides the dipole-dipole interaction above, the nuclear spin-spin in-

teraction could also result from e.g., the Ruderman–Kittel–Kasuya–Yosida (RKKY)

interaction [37–40], which is mediated by conduction electrons in metals. Recently,

5Recall that the Bohr radius is 0.53 Å.
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there are also recent proposals to modulate the nuclear spin-spin interaction via e.g.,

optical illumination [41,42].
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Chapter 3

Control over Nuclear Spins via

Hyperfine Interaction

As discussed in Section 2.1, the control over nuclear spins is challenging, because the

interaction between nuclear spins and the environment is rather weak. Traditional

NMR technologies, while highly developed, suffer from several intrinsic limitations.

For example, bulky coils are required to generate magnetic field on the order of Tesla;

The Response time of magnetic field is usually long, so the temporal resolution is

usually low; The microwave (MW) or radio frequency (RF) magnetic fields used to

drive Rabi oscillations have long wavelength, and it is hard to focus magnetic fields,

so high spatial resolution is difficult to achieve.

In recent years, novel approaches for controlling nuclear spins, especially sin-

gle nuclear spin, are keenly explored. Besides a few works that utilize the nu-

clear quadrupole interaction, which can be modulated by electric field [29–31, 43] or

phonons/mechanical waves [44,45], a number of works utilize the hyperfine interaction

- If one changes the state of electron spins with external fields, then the hyperfine

interaction can be modified accordingly, which can be used to manipulate the nu-

clear spins [46–57]. In this chapter, we discuss some typical mechanism/experiments

that use hyperfine interaction to manipulate nuclear spins. We will also discuss some

limitations of using hyperfine interaction to control nuclear spins.
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3.1 Resonance Exchange between Nuclear and Elec-

tron Spin Polarizations

As discussed in Section 2.2, the hyperfine interaction 𝐻hf =
∑︀

𝑖𝑗 𝐴𝑖𝑗𝑆𝑖𝐼𝑗 can be con-

sidered as an effective magnetic field Beff
𝑖 =

∑︀
𝑖𝐴𝑖𝑗𝑆𝑖 acting on nuclear spin 𝐼𝑗, which

could drive the Rabi oscillation of nuclear spins when either 𝐴 or 𝑆𝑖 is oscillating with

a frequency resonant with nuclear spin transitions. An equivalent way to understand-

ing this effect is that electron and nuclear spins can exchange polarizations, thanks

to the hyperfine interaction. As an example, let’s consider an 𝑆 = 1
2

electron spin

and an 𝐼 = 1
2

nuclear spin, which can be described by |𝑚𝑆𝑚𝐼⟩, where 𝑚𝑆 (𝑚𝐼) = ↑, ↓

denote the electron (nuclear) spin quantum number. Notably, if |↑↓⟩ and |↓↑⟩ are

degenerate in energy, then the system can spontaneously transit between |↑↓⟩ and

|↓↑⟩. In this case, if by certain control, the electron spin is preferably in |↑⟩ state,

then the |↑↓⟩ → |↓↑⟩ transition would dominate the reverse |↓↑⟩ → |↑↓⟩ transition.

Consequently, the nuclear spin would also be preferably in the |↑⟩ state, due to the

hyperfine interaction with the electron spin.

One can see that resonance, or in other words, energy conservation, is a key condi-

tion for effective exchange between electron and nuclear spin polarization. Resonance

can be achieved when two different states are intrinsically degenerate in energy, as

in the case of the example above. Otherwise, the energy difference between the two

states should be provided externally by e.g, a microwave magnetic field. In the fol-

lowing, we will discuss different approaches for realizing resonance.

3.1.1 Resonance in Rotating+Rotating Frame

A straightforward way for achieving resonance is to make the nuclear and electron spin

have the same energy splitting. However, under the same static magnetic field B0, the

energy splitting of nuclear spin in the laboratory frame ∆lab
𝐼 = 𝛾𝑁B

0 is significantly

smaller than that of electron spin ∆lab
𝑆 = 𝛾𝑒B

0 by three orders of magnitude, as

discussed in Section 2.1. To address this issue, Hartmann and Hahn proposed [58]
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that one can apply two oscillating magnetic field B𝐼,osci and B𝑆,osci, whose frequencies

are on resonance with ∆lab
𝐼 and ∆lab

𝑆 , respectively. Then in the spirit of rotating frame

approximation, the energy splitting of nuclear and electron spins are ∆rot
𝐼 = 𝛾𝑁B

𝐼,osci

and ∆rot
𝑆 = 𝛾𝑒B

𝑆,osci in the rotating frame, respectively. By tuning the magnitude of

B𝐼,osci and B𝑆,osci, it is possible to achievement the resonance in the rotating frame

(∆rot
𝐼 = ∆rot

𝑆 ), and the polarization of the electron and nuclear spins can be effectively

exchanged. This is the so-called Hartmann Hahn (HH) double resonance.

3.1.2 Resonance in Rotating+Laboratory Frame

Besides HH double resonance, a closely related strategy to achieve resonance is to

apply one oscillating magnetic field B𝑆,osci to drive only the electron Rabi oscillation.

By tuning B𝑆,osci, one can realize the resonance between electron spin splitting in

the rotating frame and the nuclear spin splitting in laboratory frame (∆lab
𝐼 = ∆rot

𝑆 ).

This strategy, so called Nuclear spin orientation via electron spin locking (NOVEL),

has been widely studied in e.g. Refs. [51, 59–61]. Here we take 𝑆 = 1
2

and 𝐼 = 1
2

as

an example to illustrate the mechanism of the NOVEL scheme. We assume that the

B0 is along 𝑧 direction, while B𝑆,osci is along 𝑥 direction. In the rotating frame, the

electron eigenstates are |±⟩𝑆 = 1√
2
(|↑⟩𝑆 ± |↓⟩𝑆). The energy difference between |+⟩𝑆

and |−⟩𝑆 is ∆rot
𝑆 = 𝛾𝑒B

𝑆,osci. If ∆rot
𝑆 matches ∆lab

𝐼 = 𝛾𝑁B
0, then it is possible that

electron spin oscillates between |+⟩𝑆 and |−⟩𝑆, while nuclear spin oscillates between

|↑⟩𝐼 and |↓⟩𝐼 . The nuclear spin oscillation frequency is proportional to the magnitude

of the hyperfine tensor 𝐴. This process is illustrate in Figure 3-1.

Notably, the NOVEL scheme requires the hyperfine tensor 𝐴 to be anisotropic.

Besides, ∆lab
𝐼 needs to be comparable with, or preferably larger than 𝐴, so that

the hyperfine interaction would not over-influence the properties/dynamics of the

nuclear spin 1. This limits the Rabi frequency of the nuclear spin oscillation, which

is proportional to 𝐴, since ∆lab
𝐼 usually cannot exceed tens of MHz in experiments.

Some detailed analysis on the NOVEL scheme can be found in Ref. [51].

1Note that the hyperfine interaction is time-dependent when the electron spin is oscillating in
time
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Figure 3-1: Numerical Simulation of the NOVEL scheme. (a) Time evolution of the
nuclear spin polarization 𝐼. (b) Time evolution of the electron spin polarization in
the basis of |↑⟩ and |↓⟩. (c) Same as (b), but in the basis of |±⟩. (d) Same as (c),
but zoomed in along 𝑥-axis to show the Rabi oscillation between |±⟩. Here 𝑆 = 1

2
,

𝐼 = 1
2
. The external static magnetic field is B0 ∼ 0.1 T. The hyperfine tensor is

𝐴 = [[2, 0, 2]; [0, 4, 0]; [2, 0, 2]]× 2𝜋 ·MHz.
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Table 3.1: Different schemes for achieving resonance between nuclear and electron
spins.

Frame Frequency Matching Condition Specification

Rotating

+ Rotating
𝛾𝑒B

𝑆,osci = 𝛾𝑁B
𝐼,osci HH double resonance [58]

Rotating

+ Laboratory
𝛾𝑒B

𝑆,osci = 𝛾𝑁B
0 NOVEL [59]

Laboratory

+ Laboratory
𝛾𝑒B

0 = ∆quad
𝐼 This work

3.1.3 Resonance in Laboratory+Laboratory Frame

Finally, the resonance between nuclear and electron spins in the laboratory frame

can be achieved if the nuclear quadrupole interaction (Section 2.3) is considered.

The nuclear spin splitting due to nuclear quadrupole interaction ∆quad
𝐼 can reach

hundreds of MHz to GHz in certain systems, which can match ∆lab
𝑆 = 𝛾𝑒B

0 by tuning

B0. Compared with the Hartmann-Hahn double resonance and the NOVEL scheme,

such a resonance in the laboratory frame has several advantages. For example, one

does not need two oscillating magnetic fields, and one does not need anisotropic 𝐴.

In summary, efficient change between electron and nuclear spin polarizations can

be realized, provided with the resonance between electron and nuclear spin splitting

in either laboratory or rotating frames. This can be used to control nuclear spins via

the mediation of electron spins. Three possibilities for achieving resonances are listed

in Table 3.1.

3.2 Optical Control over Nuclear Spins via Hyper-

fine Interaction

Using electron spin as the media, optical photons can be indirectly coupled to nuclear

spins (Figure 3-2). Indeed, optical photons can directly couple to electron orbital
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Electron Spin

Orbital Interaction + 
Spin-orbit Coupling

Nuclear Spin

Hyperfine 
Interaction

Figure 3-2: Illustration of the optical control over nuclear spins via hyperfine interac-
tion. Optical photons modify the electron spin states via orbital dipole interaction,
while the electron spin modifies the nuclear spin states via the hyperfine interaction.

dynamics via the electric dipole interaction. Then the electron spin dynamics can be

influenced as well due to e.g., spin-orbit coupling. Finally, the electron spin controls

the nuclear spin via the hyperfine interaction. Such optical control over nuclear

spins has been demonstrated by several groups [52–57]. Here we briefly discuss the

mechanisms of two typical experiments.

3.2.1 Dynamic Polarization

The dynamic polarization of single nuclear spins in the nitrogen vacancy (NV) center

by optical pumping was demonstrated in Ref. [52]. The 15N nuclei has 𝐼 = 1
2
, and the

eigenstates are denoted as {|↓⟩, |↑⟩}. The NV center has electron spin 𝑆 = 1. Due

to the zero field splitting (ZFS) [62], the electron spin eigenstates {|0⟩, |+1⟩, |−1⟩}

are along the [111] crystal axis of the diamond (the NV symmetry axis). The |−1⟩

state can be tuned off-resonance by an external magnetic field, and thus one can

focus on the {|0⟩, |+1⟩} subspace. The electron orbital ground and excited states are

denoted as 3𝐴 and 3𝐸, respectively. Notably, the ZFS for 3𝐴 and 3𝐸 are different.

Therefore, if one applies a magnetic field B0 with proper magnitude along the NV
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Figure 3-3: Two exemplary experiments on the optical control over nuclear spins via
hyperfine interaction. (a) Dynamical polarization of single nuclear spin, adapted from
Ref. [52]. (b) Optical control over nuclear spin via Raman scattering, adapted from
Ref. [53].

symmetry axis, then the degeneracy between |0⟩ and |+1⟩ states can be achieved for

either 3𝐴 or 3𝐸, which are called ground or excited state level anticrossing (LAC). In

Ref. [52], the excited state LAC is harnessed. Specifically, if one applies a magnetic

field B0 ≈ 500 G along the NV symmetry axis, then the electron spin eigenstates for
3𝐸 become |±⟩ ≡ 1√

2
(|0⟩ ± |+1⟩), while those for 3𝐴 are still {|0⟩, |+1⟩}.

The simplified mechanism of the dynamical polarization of nuclear spins is illus-

trated in Figure 3-3(a). We assume that the nuclear spin is initially in |↓⟩ state, and

the goal is to induce the |↓⟩ → |↑⟩ transition. By optically initializing the electron

spins, one has the initial state as |0, ↓⟩ on 3𝐴. Then, one applies a optical laser reso-

nant with the 3𝐴→ 3𝐸 transition. Since optical transitions conserve spin polarization

(angular momentum), one has |0, ↓⟩ on 3𝐸 after the optical excitation. However, due

to excited state LAC, |0⟩ = 1√
2
(|+⟩+ |−⟩) is not the eigenstate on 3𝐸, and the elec-

tron spin would spontaneous oscillate between |0⟩ and |+1⟩. During this process,

the electron and nuclear spin can exchange polarization, and the nuclear spins can

undergo |↓⟩ → |↑⟩ transition, as discussed in Section 3.1. Using this scheme, a nuclear

spin polarization higher than 98% is achieved at room temperature in Ref. [52].
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3.2.2 Optical Raman Transitions

The dynamic polarization of single nuclear spins described above requires the electrons

to do resonant interband transitions between orbital ground and excited states. In

Ref. [53], off-resonant Raman techniques are used to realize the all-optical control

over single 14N nuclear spin (𝐼 = 1) in NV center. The simplified mechanism is

illustrated in Figure 3-3(b). The energy splitting between the electron spin |0⟩ and

|+1⟩ on the orbital ground state is denoted as 𝛿. Two-color lasers with frequencies

𝜔1 and 𝜔2 are applied. 𝜔1 and 𝜔2 are detuned from the electron orbital transitions

by Ω, and thus electrons can only undergo virtual transitions between the ground

state and a virtual excited state. When |𝜔1 − 𝜔2| = 𝛿, the electron can start from

the ground state |0⟩, virtually absorb a 𝜔1 photon, jump to the virtual excited state

with a Rabi frequency of Ω1, emit a 𝜔2 photon, and finally jump back to |+1⟩ with a

Rabi frequency of Ω2. The effective transition frequency of such a Raman process is

Ω𝑅 = Ω1Ω2

Ω
. Since optical transitions conserve total angular momentum of the nuclear

and electron spins, the |0⟩ → |+1⟩ transition of electron spin must be accompanied

by the |1⟩ → |0⟩ or |0⟩ → |−1⟩ transition of nuclear spins. This effect was observed

in Ref. [53].

3.3 Limitations of using Hyperfine Interaction

While the control over nuclear spins via the hyperfine interactions have been widely

studied, it suffers from several limitations, as listed below

• It requires the existence of nearby ancillary electron spins (𝑆 ̸= 0), which is

available only in certain defect systems or magnetic materials. This approach

is not applicable in e.g., pristine non-magnetic materials;

• The decoherence time of electron spins are usually much shorter than that

of nuclear spins. This sets restrictions on the operation times, that is, the

operation must be completed before the decoherence of electron spins;
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• The existence of electron spins also shortens the nuclear spin decoherence time.

This is because the noise on electron spins can be transmitted to nuclear spins

via the hyperfine interaction [48];

• The strength of the hyperfine interaction decays significantly with distance.

Consequently, an ancillary electron can only control a relatively small number

of nuclear spins [cf. Section 7.3.2];

• The interface between electron spins and optical photons is sensitive to the envi-

ronment and can be strongly influenced by material inhomogeneities, electron-

phonon coupling, etc. This would limit the fidelity of entanglement between

remote spins.

Therefore, it is highly desirable to have optical mechanisms that can couple optical

photons and nuclear spins without the need for ancillary electron spins.
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Chapter 4

Electrical and Optical Control over

Nuclear Spins

From Hamiltonian engineering point of view [cf. Eq. (2.1)], the NMR technique relies

on modulating the nuclear Zeeman interaction (Section 2.1), while the techniques

discussed in Chapter 3 rely on modulating the hyperfine interaction (Section 2.2).

Both of these two interactions have been extensively studied. In contrast, the nu-

clear quadrupole interaction (Section 2.3) is relatively less explored for manipulating

nuclear spins. Actually, the nuclear quadrupole interaction can lead to efficient cou-

pling between electric/optical fields and nuclear spins, as we will demonstrate in this

chapter.

In this chapter, we first introduce how electric fields can perturb the electric field

gradient (EFG) around the nuclear spins, and hence the nuclear quadrupole interac-

tion. The responses of nuclear quadrupole interaction to external electric fields can be

analyzed perturbatively - The first order response corresponds the so-called nuclear

electric resonance (NER) [29–31], which establishes an interface between microwave

electric fields and nuclear spins; The second-order response is what we call the opto-

nuclear quadrupolar (ONQ) effect, which could establish an interface between optical

photons and nuclear spins. Using both analytical approaches [63, 64] and density

functional theory (DFT) [65, 66] calculations, we estimate the strength of the NER

and ONQ responses, which will be a crucial parameter for discussions in the following
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chapters.

4.1 Modulating EFG with Electric Fields

As discussed in Sec. 2.3, the nuclear quadrupole interaction originates in the interac-

tion between the nuclear quadrupole moment q and the EFG at the nuclear site V.

Notably, q is an intrinsic property of the nucleus under consideration, and is hard to

modify unless nuclear orbital transitions (nuclear reactions), whose energy scales are

typically on the order of MeV or above, are triggered. On the other hand, the EFG

is relatively easier to modify. Hence, it is more practical to manipulate nuclear spins

by modulating the EFG.

The intrinsic EFG generated by surrounding electrons can be on the order of

V(0) ∼ 1 V/Å2 [Eq. (2.10)]. In contrast, the EFG of an external electric field is

usually rather small. For example, the EFG of a plane wave is approximately

Vext ∼
Eext

𝜆
≈ 10−4 V/Å2

, (4.1)

which is smaller than V(0) by almost five orders of magnitude. Here the wavelength

of the plane wave is take as 𝜆 = 500 nm, and the maximum electric field strengh is

taken as Eext = 1 V/Å, which is extremely strong. To put it in another way, the

nuclear quadrupole interaction from Vext is

𝑄ext =
𝑒qVext

2𝐼(2𝐼 − 1)
≈ 10 Hz, (4.2)

where we have set q = 103 mb and 𝐼 = 3
2
. Obviously, even if Eext = 1 V/Å,

𝑄ext cannot effectively influence the dynamics of nuclear spins, whose energy scale is

typically above kHz.

Instead of directly using the EFG Vext of an external field, one can use the external

electric field E to drive the orbital motions of electrons, so that there is a change ∆V

in the EFG generated by electrons. For example, if an electron is initially in 𝑠 state,

then the EFG V(𝑠) would be zero at the nuclear site, because 𝑠 orbital is fully isotropic.
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Under external electric field, the electron could jump to the a 𝑝 state, whereby the

EFG V(𝑝) would become non-zero. The change in EFG ∆V = V(𝑝) − V(𝑠) would

perturb the nuclear spins.

Here we give a hand-waving estimation of ∆V, while more rigorous estimation

can be found in following sections. The energy difference between different electronic

states (e.g., 𝑠 and 𝑝 orbitals) is usually on the order of 𝐸𝑔 ∼ 1 eV. If the external

electric potential difference over the atomic scale 𝜆 ∼ 1 Å is comparable with 𝐸𝑔,

then the electrons could spontaneously jump between different states. In this case,

one has ∆V ≡ V(𝑝) − V(𝑠) = V(𝑝). In other words, if the external electric field is

E= 𝐸𝑔

𝜆
∼ 1 V/Å, then one could have ∆𝑉 ∼ 1 V/Å [cf. Eq. (2.10)], which is much

larger than Vext [cf. Eq. (4.1)], as we will elaborate on below.

Formally, the EFG V generated by electrons is a functional of electron density

matrix 𝜌. External electric field E could modify electron density distribution. This

effect can be described by perturbatively expanding the density matrix as

𝜌 =
∑︁
𝛼

𝜌(𝛼), (4.3)

where 𝜌(0) is the equilibrium density matrix and 𝜌(𝛼) ∝ E𝛼 is the 𝛼-th order response

to external electric field. The NER and ONQ effects correspond to 𝜌(1) and 𝜌(2),

respectively.

4.2 First-order Responses: Nuclear Electric Reso-

nance

In this section, we discuss the first-order response of the nuclear quadrupole interac-

tion under an external electric field, corresponding to the NER. The mechanism of the

NER is closely related to the so-called linear quadrupole Stark effect (LQSE) [67–69].

Recently, the NER has been demonstrated experimentally as well [29, 70]. We first

derive the formula for 𝜌(1) from linear response theory.
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4.2.1 Linear Response Theory

The full Hamiltonian of the electronic system can be separated as

𝐻 = 𝐻0 + 𝑉, (4.4)

where 𝐻0 is the unperturbed Hamiltonian, while 𝑉 is a perturbation, from e.g. the

interaction between the electric field and the electrons. If 𝑉 = 0, one has the equi-

librium density matrix as

𝜌0 =
1

𝑍
𝑒−𝛽𝐻0 , (4.5)

where 𝑍 is the partition function. Note that [𝜌0, 𝐻0] = 0. When a time-dependent 𝑉

is turned on, the density matrix 𝜌 can be obtained from the equation of motion (von

Neumann equation), which can be expressed as

𝜕𝜌

𝜕𝑡
= − 𝑖

ℏ
[𝐻, 𝜌]− 𝜌− 𝜌0

𝜏
. (4.6)

The last term −𝜌−𝜌0
𝜏

is a dissipation term, and indicates that the system tends to

return to 𝜌0, due to the interaction with the external heat bath.

To solve Eq. (4.6), we first use a trick similar to the transformation between the

Schrodinger picture and the interaction picture. Let 𝜌(𝑡) = 𝑒
𝑡
𝜏 𝑒𝑖

𝐻0
ℏ 𝑡𝜌(𝑡)𝑒−𝑖

𝐻0
ℏ 𝑡, then

we have
𝜕𝜌

𝜕𝑡
=

1

𝜏
𝑒

𝑡
𝜏 𝑒𝑖

𝐻0
ℏ 𝑡𝜌(𝑡)𝑒−𝑖

𝐻0
ℏ 𝑡 + 𝑖

𝐻0

ℏ
𝑒

𝑡
𝜏 𝑒𝑖

𝐻0
ℏ 𝑡𝜌(𝑡)𝑒−𝑖

𝐻0
ℏ 𝑡

+ 𝑒
𝑡
𝜏 𝑒𝑖

𝐻0
ℏ 𝑡𝜕𝜌(𝑡)

𝜕𝑡
𝑒−𝑖

𝐻0
ℏ 𝑡 + 𝑒

𝑡
𝜏 𝑒𝑖

𝐻0
ℏ 𝑡𝜌(𝑡)(−𝑖𝐻0

ℏ
)𝑒−𝑖

𝐻0
ℏ 𝑡

= 𝑒
𝑡
𝜏 𝑒𝑖

𝐻0
ℏ 𝑡

{︂
𝜌

𝜏
+
𝑖

ℏ
[𝐻0, 𝜌]−

𝑖

ℏ
[𝐻, 𝜌]− 𝜌− 𝜌0

𝜏

}︂
𝑒−𝑖

𝐻0
ℏ 𝑡

= − 𝑖

ℏ
[𝑉 , 𝜌] +

𝜌0
𝜏
𝑒

𝑡
𝜏 ,

(4.7)
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where 𝑉 (𝑡) = 𝑒𝑖
𝐻0
ℏ 𝑡𝑉 (𝑡)𝑒−𝑖

𝐻0
ℏ 𝑡. Then we can integrate Eq. (4.7) to get

𝜌(𝑡) = 𝜌(0)− 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′[𝑉 (𝑡′), 𝜌(𝑡′)] +
𝜌0
𝜏

∫︁ 𝑡

0

d𝑡′𝑒
𝑡′
𝜏

= 𝜌0 + 𝜌0

(︁
𝑒

𝑡
𝜏 − 1

)︁
− 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′[𝑉 (𝑡′), 𝜌(𝑡′)]

= 𝜌0𝑒
𝑡
𝜏 − 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′[𝑉 (𝑡′), 𝜌(𝑡′)]

= 𝜌0𝑒
𝑡
𝜏 − 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′

[︃
𝑉 (𝑡′), 𝜌0𝑒

𝑡′
𝜏 − 𝑖

ℏ

∫︁ 𝑡′

0

d𝑡′′[𝑉 (𝑡′′), 𝜌(𝑡′′)]

]︃

= 𝜌0𝑒
𝑡
𝜏 − 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′
[︁
𝑉 (𝑡′), 𝜌0𝑒

𝑡′
𝜏

]︁
− 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′

[︃
𝑉 (𝑡′),− 𝑖

ℏ

∫︁ 𝑡′

0

d𝑡′′[𝑉 (𝑡′′), 𝜌(𝑡′′)]

]︃
= · · ·

(4.8)

Iteratively putting 𝜌(𝑡) into the bracket yields

𝜌(𝑡) = 𝜌(0)(𝑡) + 𝜌(1)(𝑡) + 𝜌(2)(𝑡) + · · · (4.9)

with
𝜌(0)(𝑡) = 𝜌0𝑒

𝑡
𝜏 ,

𝜌(𝑛+1)(𝑡) = − 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′[𝑉 (𝑡′), 𝜌(𝑛)(𝑡′)].
(4.10)

Then going back from 𝜌(𝑡) to 𝜌(𝑡) with 𝜌(𝑡) = 𝑒−
𝑡
𝜏 𝑒−𝑖

𝐻0
ℏ 𝑡𝜌(𝑡)𝑒𝑖

𝐻0
ℏ 𝑡, we have

𝜌(𝑡) = 𝜌(0)(𝑡) + 𝜌(1)(𝑡) + 𝜌(2)(𝑡) + · · · (4.11)

with

𝜌(0) = 𝜌0, (4.12)
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and
𝜌(𝑛+1)(𝑡) = 𝑒−

𝑡
𝜏 𝑒−𝑖

𝐻0
ℏ 𝑡𝜌(𝑛+1)(𝑡)𝑒𝑖

𝐻0
ℏ 𝑡

= − 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′𝑒−
𝑡
𝜏 𝑒−𝑖

𝐻0
ℏ 𝑡[𝑉 (𝑡′), 𝜌(𝑛)(𝑡′)]𝑒𝑖

𝐻0
ℏ 𝑡

= − 𝑖

ℏ

∫︁ 𝑡

0

d𝑡′𝑒−
𝑡−𝑡′
𝜏 𝑒−𝑖

𝐻0
ℏ (𝑡−𝑡′)[𝑉 (𝑡′), 𝜌(𝑛)(𝑡′)]𝑒𝑖

𝐻0
ℏ (𝑡−𝑡′)

=
𝑖

ℏ

∫︁ 𝑡

0

d𝑡′𝑒−
𝑡′
𝜏 𝑒−𝑖

𝐻0
ℏ 𝑡′ [𝑉 (𝑡− 𝑡′), 𝜌(𝑛)(𝑡− 𝑡′)]𝑒𝑖

𝐻0
ℏ 𝑡′ .

(4.13)

To deal with the time integration, one can use the Fourier transformation of 𝑉 (𝑡− 𝑡′)

𝑉 (𝑡− 𝑡′) =

∫︁
d𝜔

2𝜋
𝑉 (𝜔)𝑒𝑖𝜔(𝑡−𝑡′), (4.14)

yielding

𝜌(1)𝑛𝑚(𝑡) =
⟨︀
𝑛
⃒⃒
𝜌(1)(𝑡)

⃒⃒
𝑚
⟩︀

=
𝑖

ℏ

∫︁ 𝑡

0

d𝑡′
⟨
𝑛
⃒⃒⃒
𝑒−

𝑡′
𝜏 𝑒−𝑖

𝐻0
ℏ 𝑡′ [𝑉 (𝑡− 𝑡′), 𝜌0]𝑒

𝑖
𝐻0
ℏ 𝑡′
⃒⃒⃒
𝑚
⟩

=
𝑖

ℏ

∫︁
d𝜔

2𝜋
⟨𝑛|[𝑉 (𝜔), 𝜌0]|𝑚⟩ 𝑒𝑖𝜔𝑡

∫︁ 𝑡

0

d𝑡 exp

(︂
𝑖

ℏ

[︂
(𝐸𝑚 − 𝐸𝑛) +

𝑖ℏ
𝜏

− ℏ𝜔
]︂
𝑡′
)︂

=
𝑖

ℏ

∫︁
d𝜔

2𝜋
𝑉𝑛𝑚(𝜔)(𝑓𝑚 − 𝑓𝑛)𝑒

𝑖𝜔𝑡 exp
(︀
𝑖
ℏ

[︀
(𝐸𝑚 − 𝐸𝑛) +

𝑖ℏ
𝜏
− ℏ𝜔

]︀
𝑡
)︀
− 1

𝑖
ℏ

[︀
(𝐸𝑚 − 𝐸𝑛) +

𝑖ℏ
𝜏
− ℏ𝜔

]︀
=

∫︁
d𝜔

2𝜋
𝑒𝑖𝜔𝑡

𝑓𝑛𝑚𝑉𝑛𝑚(𝜔)

𝐸𝑚𝑛 − ℏ𝜔 + 𝑖ℏ
𝜏

,

(4.15)

where |𝑚⟩ and |𝑛⟩ are electronic states. 𝑓𝑚𝑛 ≡ 𝑓𝑚 − 𝑓𝑛 and 𝐸𝑚𝑛 ≡ 𝐸𝑚 − 𝐸𝑛 are

the difference in the occupation number and the energy of |𝑚⟩ and |𝑛⟩. Meanwhile,

𝑉𝑚𝑛 = ⟨𝑚|𝑉 |𝑛⟩. Obviously, the first order perturbation in frequency domain is

𝜌(1)𝑛𝑚(𝜔;𝜔) =
𝑓𝑛𝑚𝑉𝑛𝑚(𝜔)

𝐸𝑚𝑛 − ℏ𝜔 + 𝑖ℏ
𝜏

. (4.16)
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4.2.2 Nuclear Electric Resonance

When we apply an external electric field E𝑝𝑒
𝑖𝜔𝑝𝑡, which is oscillating in time with

frequency 𝜔𝑝, one has interaction as

𝑉𝑚𝑛(𝜔𝑝) = ⟨𝑚| − 𝑒𝑟𝑝E𝑝|𝑚⟩ = −𝑒E𝑝[𝑟𝑝]𝑚𝑛, (4.17)

where [𝑟𝑝]𝑚𝑛 ≡ ⟨𝑚|𝑟𝑝|𝑛⟩ is the position operator of the electron. Then, one has

𝜌(1)𝑚𝑛(𝜔𝑝;𝜔𝑝) =
𝑒𝑓𝑛𝑚[𝑟𝑝]𝑛𝑚
𝐸𝑚𝑛 − ℏ𝜔𝑝

E𝑝. (4.18)

Here we ignored the 𝑖 ℏ
𝜏

term, which is not important when 𝜔𝑝 is far from 𝐸𝑚𝑛. The

oscillation in the electron density matrix leads to an oscillation in the EFG, which is

∆V(1) = Tr
{︁
𝜌(1) V̂

}︁
= 𝑒E𝑝

∑︁
𝑚𝑛

𝑓𝑛𝑚[V̂𝑖𝑗]𝑛𝑚[𝑟𝑝]𝑛𝑚
𝐸𝑚𝑛 − ℏ𝜔𝑝

,
(4.19)

where V̂ is the EFG operator and

[V̂𝑖𝑗]𝑚𝑛 = ⟨𝑚|V̂𝑖𝑗|𝑛⟩ =
1

4𝜋𝜀0
⟨𝑚|3𝑟𝑖𝑟𝑗 − 𝛿𝑖𝑗𝑟

2

𝑟5
|𝑛⟩. (4.20)

Here 𝜀0 is the vacuum permittivity. Note that Eq. (4.20) is valid in the single-particle

approximation and the exchange-correlation interaction between electrons is ignored.

The resultant perturbation in the nuclear quadrupole interaction is

𝐻NER =
∑︁
𝑖𝑗

C
𝑝
𝑖𝑗(𝜔𝑝, 𝜔𝑝)E𝑝𝐼𝑖𝐼𝑗e

𝑖𝜔𝑝𝑡, (4.21)
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where the response function C is defined as

𝐶𝑝
𝑖𝑗(𝜔𝑝, 𝜔𝑝) =

𝜕𝑄𝑖𝑗

𝜕E𝑝

=
𝑒q

2𝐼(2𝐼 − 1)

𝜕∆V
(1)
𝑖𝑗

𝜕E𝑝

=
𝑒3q

2𝐼(2𝐼 − 1)

∑︁
𝑚𝑛

𝑓𝑛𝑚[V̂𝑖𝑗]𝑛𝑚[𝑟𝑝]𝑛𝑚
𝐸𝑚𝑛 − ℏ𝜔𝑝

.

(4.22)

One can see that 𝐻NER oscillate in time with frequency 𝜔𝑝. If 𝜔𝑝 matches the

transition frequency ∆𝑔𝑒 between two nuclear spins states |𝑔⟩ and |𝑒⟩, then 𝐻NER

would be able to drive the resonant transitions between two |𝑔⟩ and |𝑒⟩, and the Rabi

frequency is

𝑓NER =

⃒⃒⃒⃒
⃒∑︁

𝑖𝑗

⟨𝑔|𝐼𝑖𝐼𝑗|𝑒⟩C𝑝
𝑖𝑗E𝑝

⃒⃒⃒⃒
⃒ . (4.23)

Hence, one can use a microwave electric field to drive nuclear spin transitions. This

is the so-called nuclear electric resonance (NER).

4.2.3 Features of the NER

Some features of the NER can be observed from Eq. (4.22). First, only electron

orbital motions (described by [𝑟𝑝]𝑚𝑛) are explicitly involved, while electron spins do

not appear. This suggests that electrons spins are not required for NER, in contrast

to approaches based on the hyperfine interaction discussed in Chapter 3. Next, the

frequency 𝜔𝑝 only appears in the denominator 1
𝐸𝑚𝑛−ℏ𝜔𝑝

. Since 𝜔𝑝 needs to be res-

onant with nuclear spin frequencies, it should be in the microwave/radio frequency

range, and is thus much smaller than 𝐸𝑚𝑛, which is on the order of 1 eV in typical

semiconductors. Consequently, the magnitude of C is almost independent of 𝜔𝑞.

4.2.4 Analytical Estimation of the C tensor

The magnitude of the C tensor can be estimated using ⟨𝑚|3𝑟𝑖𝑟𝑗−𝛿𝑖𝑗𝑟
2

𝑟5
|𝑛⟩ ≈ 1

𝑎30
, and

⟨𝑚|𝑟𝑝|𝑛⟩ ≈ 𝑎0, where 𝑎0 is the Bohr radius. Besides, although all (𝑚,𝑛) pairs con-
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tribute to C, the pair that satisfies 𝐸𝑚𝑛 = 𝐸𝑔, where 𝐸𝑔 is the electron bandgap,

makes the largest contribution. If we only consider this pair, then we have

C≈ 𝑔𝑒𝑒
3q

2𝐼(2𝐼 − 1)

1

4𝜋𝜀0𝑎20

1

𝐸𝑔

, (4.24)

where 𝑔𝑒 = 2 is the electron spin degeneracy. For 75As in zinc blende GaAs, one

has q = 314 mb, 𝐼 = 3
2
, and 𝐸𝑔 ≈ 1.4 eV. This leads to C ≈ 9.2 × 2𝜋·MHz

V/Å using

Eq. (4.24).

4.3 Second-order Response: The Opto-Nuclear

Quadrupolar Effect

In this section, we discuss the second order response of the nuclear quadrupole in-

teraction to external electric fields. We first extend the linear response theory in

Section 4.2.1 to the second order. Then we demonstrate that by applying two electric

fields with different frequencies 𝜔𝑝 and 𝜔𝑞, the nuclear quadrupole interaction could

oscillate in the time with the difference-frequency 𝜔𝑝 − 𝜔𝑞, which could be tuned to

match nuclear spin frequency. This is the so-called ONQ effect. Finally, we give

analytical estimation on the strength of the ONQ effect.

4.3.1 Quadratic Response Theory

Using Eqs. (4.13, 4.18), one can obtain the the second-order perturbation in the

electron density matrix as

𝜌(2)𝑛𝑚(𝑡) =
⟨
𝑛
⃒⃒⃒
𝜌(2)(𝑡)

⃒⃒⃒
𝑚
⟩

=
𝑖

ℏ

∫︁
d𝜔′

2𝜋
𝑒𝑖𝜔𝑡

∫︁ 𝑡

0
d𝑡′ exp

(︂
𝑖

ℏ

[︂
(𝐸𝑚 − 𝐸𝑛) +

𝑖ℏ
𝜏

− ℏ𝜔′
]︂
𝑡′
)︂

×
∑︁
𝑙

(︁
𝑉𝑛𝑙(𝜔

′)𝜌
(1)
𝑙𝑚(𝑡− 𝑡′)− 𝜌

(1)
𝑛𝑙 (𝑡− 𝑡′)𝑉𝑙𝑚(𝜔′)

)︁
=

∫︁
d𝜔

2𝜋

∫︁
d𝜔′

2𝜋

𝑒𝑖(𝜔+𝜔′)𝑡

𝐸𝑚𝑛 − ℏ(𝜔 + 𝜔′) + 𝑖ℏ
𝜏

∑︁
𝑙

(︃
𝑓𝑙𝑚𝑉𝑛𝑙(𝜔

′)𝑉𝑙𝑚(𝜔)

𝐸𝑚𝑙 − ℏ𝜔 + 𝑖ℏ
𝜏

− 𝑓𝑛𝑙𝑉𝑛𝑙(𝜔)𝑉𝑙𝑚(𝜔′)

𝐸𝑙𝑛 − ℏ𝜔 + 𝑖ℏ
𝜏

)︃
(4.25)
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Switching to the frequency domain, one has

𝜌(2)𝑛𝑚(𝜔 + 𝜔′;𝜔, 𝜔′) =
1

𝐸𝑚𝑛 − ℏ(𝜔 + 𝜔′) + 𝑖ℏ
𝜏

∑︁
𝑙

(︃
𝑓𝑙𝑚𝑉𝑛𝑙(𝜔

′)𝑉𝑙𝑚(𝜔)

𝐸𝑚𝑙 − ℏ𝜔 + 𝑖ℏ
𝜏

− 𝑓𝑛𝑙𝑉𝑛𝑙(𝜔)𝑉𝑙𝑚(𝜔
′)

𝐸𝑙𝑛 − ℏ𝜔 + 𝑖ℏ
𝜏

)︃
.

(4.26)

4.3.2 The Opto-Nuclear Quadrupolar Effect

When two electric fields E𝑝(𝑞) = E𝑝(𝑞)𝑒
𝑖𝜔𝑝(𝑞)𝑡 are applied simultaneously, the electron

cloud could have an orbital motion with frequency 𝜔𝑝 − 𝜔𝑞, and the corresponding

density matrix is 1

𝜌(2)𝑛𝑚(𝜔𝑝 − 𝜔𝑞;𝜔𝑝,−𝜔𝑞) =
𝑒2E𝑝E𝑞

𝐸𝑚𝑛 − ℏ(𝜔𝑝 − 𝜔𝑞)

∑︁
𝑙

{︂
𝑓𝑙𝑚[𝑟𝑝]𝑛𝑙[𝑟𝑞]𝑙𝑚
𝐸𝑚𝑙 − ℏ𝜔𝑞

− 𝑓𝑛𝑙[𝑟𝑝]𝑛𝑙[𝑟𝑞]𝑙𝑚
𝐸𝑙𝑛 − ℏ𝜔𝑞

}︂
,

(4.27)

where the meaning of each term has been described in the previous section, and we

have again ignored the 𝑖 ℏ
𝜏

term. Similar to that in the case of NER, the oscillating

electron density matrix leads to an oscillating nuclear quadrupole interaction,

𝐻ONQ =
∑︁
𝑖𝑗

D
𝑝𝑞
𝑖𝑗 (𝜔𝑝 − 𝜔𝑞;𝜔𝑝,−𝜔𝑞)E𝑝E𝑞𝐼𝑖𝐼𝑗e

𝑖(𝜔𝑝−𝜔𝑞)𝑡, (4.28)

where D
𝑝𝑞
𝑖𝑗 is a second-order response function, and can be expressed as

D
𝑝𝑞
𝑖𝑗 (𝜔𝑝 − 𝜔𝑞;𝜔𝑝,−𝜔𝑞)

≡ 𝜕2𝑄𝑖𝑗

𝜕E𝑝𝜕E𝑞

=
𝑒q

2𝐼(2𝐼 − 1)

𝜕2V𝑖𝑗
𝜕E𝑝𝜕E𝑞

=
𝑒4q

2𝐼(2𝐼 − 1)

1

4𝜋𝜀0

∑︁
𝑚𝑛𝑙

[V̂𝑖𝑗]𝑚𝑛

𝐸𝑚𝑛 − ℏ(𝜔𝑝 − 𝜔𝑞)

{︂
𝑓𝑙𝑚[𝑟𝑝]𝑛𝑙[𝑟𝑞]𝑙𝑚
𝐸𝑚𝑙 − ℏ𝜔𝑞

− 𝑓𝑛𝑙[𝑟𝑝]𝑛𝑙[𝑟𝑞]𝑙𝑚
𝐸𝑙𝑛 − ℏ𝜔𝑞

}︂
.

(4.29)

Note that in Eq. (4.28) we omitted terms oscillating with 𝜔𝑝, 𝜔𝑞, and 𝜔𝑝+𝜔𝑞, as they

are far off-resonance with nuclear spin dynamics when 𝜔𝑝(𝑞) is in the optical range. A

physical picture of the ONQ effect is that the electron wavefunction, and hence the
1Use 𝜔 = 𝜔𝑝 and 𝜔′ = −𝜔𝑞 in Eq. (4.26)
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EFG at the nuclear site, would oscillate in |𝜔𝑝 − 𝜔𝑞| under the two-color laser [see a

semi-classical illustration in Figure 4-1(a)], leading to the |𝜔𝑝 −𝜔𝑞| oscillation of 𝐻Q.

The difference-frequency 𝜔𝑝 − 𝜔𝑞 can be tuned to match nuclear spin frequencies.

In the case of perfect resonance, the Hamiltonian in Eq. (4.28) could lead to an Rabi

oscillation of nuclear spins between two states |𝑔⟩ and |𝑒⟩ with a Rabi frequency of

𝑓ONQ =

⃒⃒⃒⃒
⃒∑︁

𝑖𝑗

⟨𝑔|𝐼𝑖𝐼𝑗|𝑒⟩D𝑝𝑞
𝑖𝑗 E𝑝E𝑞

⃒⃒⃒⃒
⃒ . (4.30)

4.3.3 Features of the ONQ Effect

From Eq. (4.29), one can see that the ONQ effect does not require electron spin as well.

On the other hand, only the difference-frequency 𝜔𝑝 − 𝜔𝑞 needs to be resonant with

nuclear spin energy, while 𝜔𝑝 (𝜔𝑞) itself can be chosen freely in principle. Furthermore,

as 𝜔𝑝(𝑞) only appears in the denominators such as 1
𝐸𝑚𝑙−ℏ𝜔𝑞

, D is not sensitive to 𝜔𝑝(𝑞)

when 𝜔𝑝(𝑞) is not close to the bandgap 𝐸𝑔. Therefore, there is relatively large flexibility

in choosing 𝜔𝑝(𝑞). In practice, 𝜔𝑝(𝑞) can be chosen to match telecom frequency and/or

minimize materials heating effect.

Notably, when 𝜔𝑝(𝑞) < 𝐸𝑔, the electron can only do virtual transitions between

three bands (𝑚,𝑛, 𝑙). In this case, the major contribution to the ONQ response

comes from the (𝑚,𝑛, 𝑙) pair that satisfies 𝐸𝑚𝑛, 𝐸𝑚𝑙 = 𝐸𝑔. On the other hand, when

𝜔𝑝(𝑞) > 𝐸𝑔, electrons can do real interband transitions, and the (𝑚,𝑛, 𝑙) pair that

satisfies 𝐸𝑚𝑙 ≈ 𝜔𝑝(𝑞) (or 𝐸𝑛𝑙 ≈ 𝜔𝑝(𝑞)) would resonantly boost the ONQ response. In

the following, we will only consider 𝜔𝑝(𝑞) < 𝐸𝑔, because 𝜔𝑝(𝑞) > 𝐸𝑔 leads to unwanted

resonant absorption of the laser energy, which could damage the materials.

4.3.4 Analytical Estimation of the D Tensor

For a crude analytical estimation, one can again set ⟨𝑚|3𝑟𝑖𝑟𝑗−𝛿𝑖𝑗𝑟
2

𝑟5
|𝑛⟩ ∼ 1

𝑎30
, ⟨𝑚|𝑟𝑝|𝑛⟩ ∼

𝑎0. Then, we only consider the (𝑚,𝑛, 𝑙) pair that satisfies 𝐸𝑚𝑛 = 𝐸𝑚𝑙 = 𝐸𝑔, which

makes the major contribution to the total D tensor, according to the discussion above.

While 𝜔𝑝(𝑞) is in the optical range and is usually comparable with 𝐸𝑔, the difference-
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Electron orbitals

|𝑚⟩

|𝑛⟩

|𝑙⟩

Nuclear spins

|𝛼⟩

|𝛽⟩

|𝛾⟩

a b

𝜔𝑞𝜔𝑝

|𝜔𝑝 −𝜔𝑞|

Nuclear spinElectron cloud

Figure 4-1: Illustration of the mechanism of the ONQ effect. (a) When two photons
with respective frequencies 𝜔𝑝 and 𝜔𝑞 interact with the electron simultaneously, the
electron cloud would vibrate with the difference-frequency |𝜔𝑝−𝜔𝑞|. Consequently, the
nuclear quadrupole interaction would also oscillate in time with frequency |𝜔𝑝 − 𝜔𝑞|.
(b) Energy level diagram of the ONQ effect. Under 𝜔𝑝 and 𝜔𝑞-lasers (photons), elec-
trons would do (virtual) transitions between three energy levels labelled by (𝑛,𝑚, 𝑙)
and modulate the EFG at the nuclear site. Nuclear spins can transit between two
different states if the frequency matching condition is satisfied.

frequency 𝜔𝑝−𝜔𝑞 is in the MW range and can be neglected compared with 𝐸𝑔. Then,

one has

D(𝜔𝑝 − 𝜔𝑞;𝜔𝑝,−𝜔𝑞) ∼
𝑔𝑒𝑒

4q

2𝐼(2𝐼 − 1)

1

4𝜋𝜀0𝑎0

1

𝐸𝑔(𝐸𝑔 − ℏ𝜔𝑞)
. (4.31)

For 75As in zinc blende GaAs, one has D≈ 24× 2𝜋·MHz
(V/Å)2

when 𝐸𝑔 − ℏ𝜔𝑞 = 0.2 eV.

Finally, from Eq. (4.31), one can see that D can be enhanced by using

• nuclei with large quadrupole moment,

• materials with small bandgap, and/or

• laser with a frequency close to (or even above) the bandgap.

4.4 DFT Calculations on the C and D Tensors

In the previous sections, we discussed the mechanism of the NER and the ONQ effects,

which are respectively, the first- and second-order responses of the nuclear quadrupole
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interaction under external electric/optical fields. In principle, these two effects are

generic and should be present in any solid-state or molecular systems, unless forbidden

by e.g., symmetries. For practical applications, of crucial importance is the strength

of the responses under feasible experimental conditions.

In this section, we estimate the magnitude of the C and D tensor using density

functional theory (DFT) [65,66] calculations, to be compared with the analytical es-

timations in previous sections. The DFT calculations are performed using the Quan-

tum Espresso package [71, 72]. Generalized gradient approximation (GGA) in the

form of Perdew-Burke-Ernzerhof (PBE) [73] is used to treat the exchange-correlation

interactions. Core and valence electrons are treated with projected augmented wave

(PAW) method [74] and a plane wave basis, respectively. The first Brillouin zone is

sampled by a 𝑘-mesh, and the convergence with respect to the 𝑘-mesh density has

been tested. After the ground state wavefunctions are obtained, we apply a static

electric field E along each Cartesian direction (𝑥, 𝑦, and 𝑧) using the modern theory

of polarization [75,76], and the change in the EFG tensors ∆V, and hence the change

in the quadrupole tensor ∆𝑄 can be obtained, from which we obtain the C and D

tensors. Note that in this approach, E is a static field. As a result, what we obtain

are the static response C(0; 0) and D(0; 0, 0), i.e., 𝜔𝑝 = 𝜔𝑞 = 0.

4.4.1 Zinc blende gallium arsenide

We first take zinc blende gallium arsenide (zbGaAs) as an example. Ga has two

abundant stable isotopes - 69Ga (abundance 0.60) and 71Ga (abundance 0.40) have

q = 171 mb and q = 107 mb, respectively, and both of them have 𝐼 = 3
2
. The

only abundant isotope of As is 75As, which has q = 314 mb and 𝐼 = 3
2
. Notably,

zbGaAs has tetrahedral symmetry, which enforces the EFG tensor at equilibrium

(under no light illumination) to be fully isotropic, that is, V(0) = V0I, where I is the

identity matrix. On the other hand, the EFG tensor should be traceless by definition

[Eq. (2.9)], and thus

V0 = 0, (4.32)
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𝑦𝑧

ℰ𝑥

a

b

Figure 4-2: Estimation of the D tensor in zinc blende GaAs. (a) Yellow and green
bubbles show positive and negative change in electron charge density when an electric
field along 𝑥 direction is applied. Pink and blue spheres are Ga and As atoms,
respectively. (b) Change in EFG ∆V𝑖𝑗 at the site of As nuclei in zbGaAs as a function
of E𝑥. Note that due to the M𝑥 symmetry, some components of the V𝑖𝑗 tensor have
zero first-order response, i.e., 𝜕V𝑥𝑥

𝜕E𝑥

⃒⃒⃒
E𝑥=0

= 0.

which means that the quadrupole interaction in zbGaAs is zero at equilibrium.

However, under external electric field, the electron wavefunction would redis-

tribute in real space, which could break certain spatial symmetries (Figure 4-2a).

Consequently, the response functions C and D are not necessarily zero. Indeed, C

and D are third- and fourth-order tensors, which have more degrees of freedom that

cannot be entirely forbidden by the tetrahedral symmetry [36]. In Figure 4-2b, we

show the change in different components of the EFG tensor at the site of As nuclei as

a function of E𝑥. Interestingly, the first order responses 𝜕V𝑖𝑗
𝜕E𝑥

⃒⃒⃒
E𝑥=0

is zero for certain

components of the V tensor, such as V𝑥𝑥. This is because zbGaAs has mirror-𝑥 (M𝑥)

symmetry, which enforces

𝜕V𝑥𝑥
𝜕E𝑥

⃒⃒⃒⃒
E𝑥=0

= − 𝜕V𝑥𝑥
𝜕E𝑥

⃒⃒⃒⃒
E𝑥=0

=⇒ 𝜕V𝑥𝑥
𝜕E𝑥

⃒⃒⃒⃒
E𝑥=0

= 0.

(4.33)

Furthermore, if the system has inversion symmetry and the nuclei under consideration

lie at the inversion center, then the first-order responses C can be entirely forbidden.

The second-order responses, on the other hand, are not constrained by mirror or
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Figure 4-3: Estimation of the D tensor in wurtzite GaN. (a, b) Atomic structure of
wurtzite GaN. The mirror symmetry M𝑥 is labelled by the dashed line in (a). Green:
Ga; Yellow: N. (c) change in EFG tensor ∆V𝑖𝑗 of at the site of Ga nuclei as a function
of E𝑥.

inversion symmetries. By fitting the V𝑖𝑗 vs. E𝑥 curves with second-order polynomials,

one has
C≈ 4.9× 2𝜋 ·MHz

V/Å

D≈ 20.0× 2𝜋 ·MHz

(V/Å)2

(4.34)

for 75As in zbGaAs, which are in reasonable agreement with the analytical estimates

in previous sections.

4.4.2 Wurtzite gallium nitride

Next, we study wurtzite gallium nitride (wGaN). Compared with zinc blende struc-

ture, wurtzite structure has slightly lower symmetry, which cannot entirely forbid

V(0) at equilibrium any more. Specifically, wGaN has P63mc symmetry, featuring

a three-fold rotational symmetry along the 𝑧-axis and a M𝑥 mirror symmetry. Here

the 𝑧 direction is the crystallographical 𝑐-axis of wGaN, while 𝑥-𝑦 plane is the crys-
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tallographical 𝑎-𝑏 place, as shown in Figure 4-3(a,b). The equilibrium V(0) tensor of

wGaN is

V(0) =

⎡⎢⎢⎢⎣
𝑉 0 0

0 𝑉 0

0 0 −2𝑉

⎤⎥⎥⎥⎦ , 𝑉 ≈ 1.67 V/Å2
. (4.35)

Notably, the magnitude of V(0) is relatively small. This is because although wGaN is

in wurtzite structure, its deviation from the zinc blende structure is rather small - the

lengths of inequivalent Ga-N bonds are respectively 𝑙1 ≈ 1.974 Å and 𝑙2 ≈ 1.966 Å,

which are different by less than 1 %. Note that the zinc blende structure corresponds

to 𝑙1 = 𝑙2.

Then we apply finite E𝑥 in DFT calculations and the change in the EFG tensor

∆V𝑖𝑗 as a function of E𝑥 is shown in Figure 4-3(c). Again one can observe that some

first-order responses are zero, thanks to the M𝑥 symmetry. By fitting the ∆V𝑖𝑗 - E𝑥

curves with second-order polynomials, one has

C≈ 0.6× 2𝜋 ·MHz

V/Å
,

D≈ 0.2× 2𝜋 ·MHz

(V/Å)2
.

(4.36)

4.4.3 Hafnium oxide

Next we study pristine HfO2 crystal (space group P21/c). Hf is a heavy element

with a large quadrupole moment. Specifically, 177Hf (abundance 18.6 %) has 𝐼 = 7/2

and 𝑞 = 3365 mb, while 179Hf (abundance 13.6 %) has 𝐼 = 9/2 and q = 3793 mb.

Notably, the spatial symmetry of HfO2 [Figure 4-4(a)] is much lower than that of

zbGaAs or wGaN, which is also manifested by the large EFG at equilibrium,

V(0) =

⎡⎢⎢⎢⎣
−15.1 −1.8 −48.0

−1.8 −39.2 12.3

−48.0 12.3 54.3

⎤⎥⎥⎥⎦× V/Å2
. (4.37)
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Figure 4-4: Estimation of the D tensor in HfO2. (a) Atomic structure of HfO2.
Brown: hafnium; Red: oxygen. (b-d) An electric field E is applied along the (b) 𝑥,
(c) 𝑦, and (d) 𝑧-direction and the change in EFG ∆V𝑖𝑗 is calculated.
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Combining the large EFG and the large quadrupole moment of Hf, the quadrupole

interaction is found to be around 1 GHz for Hf. Static electric fields E along three

dimensions are Eare applied, and the change in EFG ∆V𝑖𝑗 are shown in Figure 4-4(b-

d). By fitting the raw data (solid points) with a polynomial (lines), the second-order

response is found to be

C≈ 4.5× 2𝜋 ·MHz

V/Å
,

D≈ 2.3× 2𝜋 ·MHz

(V/Å)2
.

(4.38)

4.4.4 D at optical frequencies

As discussed before, the C and D tensors calculated with DFT are in the static limit

𝜔𝑝 = 𝜔𝑞 = 0. For the first order response, the frequency of the external electric field

should be in the MW/RF range to achieve resonance with nuclear spins. Hence, 𝜔𝑝

should be much smaller than the bandgap of typical semiconductors, and one can

safely treat 𝜔𝑝 ≈ 0. In other words, C(0; 0) in the static limit can be considered as a

good approximation of the true response function, which is C(𝜔𝑝;𝜔𝑝).

On the other hand, for the second-order response, the external fields are in the

optical range, comparable with the electronic bandgap. In this case, the D tensors in

the static limit calculated with DFT above should be considered as a lower bound for

D tensors at optical frequencies D(𝜔𝑝−𝜔𝑞;𝜔𝑝,−𝜔𝑞). This is manifested in Eq. (4.29),

where one can see that the magnitude of D should monotonically increase with 𝜔𝑞

for 𝜔𝑞 < 𝐸𝑔. Physically, this is because the virtual interband transitions of electrons

can be accelerated when the energy of the optical photons is closer to the bandgap.

When 𝜔𝑞 > 𝐸𝑔, electrons can do resonant interband transitions, and the responses

can be significantly enhanced.

To further verify this point in DFT calculations, we use materials with narrower

bandgaps. Naively, this would enhance the static responses because in this case 𝜔𝑞

would closer to 𝐸𝑔 [see also Eq. (4.29)]. Figure 4-5(a) shows the second-order respons

in EFG tensor, 𝜕2𝑉𝑥𝑥

𝜕E2
𝑥

, as a function of the bandgap 𝐸𝑔 for all wurtzite III-V materials
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a b

Figure 4-5: Magnitude of the second-order response in the EFG tensor 𝜕2V𝑥𝑥
𝜕E2

𝑥
against

bandgap 𝐸𝑔. (a) 𝜕2V𝑥𝑥
𝜕E2

𝑥
against the bandgap 𝐸𝑔 of all III-V semiconductors in wurtzite

structure with 𝐸𝑔 > 0 in DFT calculations. (b) 𝜕2V𝑥𝑥
𝜕E2

𝑥
against 𝐸𝑔 for wurtzite GaN.

Uniaxial strain is applied along the 𝑐-axis of wurtzite GaN, so that the bandgap can
be continuously modified.

with 𝐸𝑔 > 0 in DFT calculations 2. Clearly, 𝜕2𝑉𝑥𝑥

𝜕E2
𝑥

is larger in magnitude when 𝐸𝑔

is smaller. Specifically, for GaAs with 𝐸𝑔 ∼ 0.2 eV in DFT calculation, one has
𝜕2𝑉𝑥𝑥

𝜕E2
𝑥

∼ 103 × V/Å2

(V/Å)2
, corresponding to D ∼ 102 × 2𝜋·MHz

(V/Å)2
for Ga nuclei. We also

artificially strain wGaN so that its bandgap 𝐸𝑔 can be continuously modified. Again,

the 𝜕2𝑉𝑥𝑥

𝜕E2
𝑥

increases as 𝐸𝑔 shrinks [Figure 4-5(b)].

Besides 𝜕2𝑉
𝜕E2 , D tensor is also dependent on the quadrupole moment q and angular

momentum 𝐼 of the nucleus under consideration. For nuclei with small q such as Ga,

one has D ∼ [1 ∼ 102] × 2𝜋·MHz
(V/Å)2

. For nuclei with large q such as Hf, D can reach

[10 ∼ 103]× 2𝜋·MHz
(V/Å)2

or even larger values.

In summary, we will take

C≈ 5× 2𝜋 ·MHz

V/Å
,

D≈ 100× 2𝜋 ·MHz

(V/Å)2

(4.39)

for discussions in following chapters.

2Note that DFT calculations usually underestimate the bandgap
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4.5 Validity of the Estimation of the C and D Ten-

sors

In previous sections, we estimated the C and D tensors using both analytical pertur-

bation theory and DFT calculations, and the results exhibit reasonable agreement.

In this section, we further assess the validity of these estimations. We will show that

these estimations should give the correct order of magnitude of the C and D tensors.

4.5.1 Quadrupole Interaction Strength from DFT Calculations

First, we note that the quadrupole interaction strength in equilibrium 𝑄(0) calcu-

lated by DFT methods usually agree well with experimental results. For example,

Ref. [77] studied the quadrupole splitting 𝐶𝑞 ≡ 𝑒𝑞V𝑧𝑧
ℎ

of nitrogen-vacancy (NV) cen-

ter using both DFT calculations and experimental measurements. Here V𝑧𝑧 is the

largest principle value of the EFG tensor V. It is found that DFT and experimental

results are off by around 5 % (Table 1 therein). Meanwhile, our DFT calculations

give 𝐶𝑞 ≈ 5.1 MHz for NV−, in good agreement with experimental results, which is

4.95 MHz.

Besides, the validity of DFT calculation of other spin-related quantities of point

defects, such as hyperfine interaction, zero-field splitting, etc., has been systematically

analyzed in Refs. [62,78] as well. It is found that DFT calculations usually agree well

with experimental results.

4.5.2 NER Response

The NER response has been studied experimentally. Here we compare our theoretical

prediction on strength of the NER response with experimental results, which supports

the validity of the theoretical approaches used in this work.
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Experimental Results

In Ref. [70], the NER response of 75As in GaAs quantum well was studied, and the

response function C can be estimated from the data therein, which is

C
75As
exp ∼ 20× 2𝜋 ·MHz

V/Å
. (4.40)

In Ref. [29], the NER response of 123Sb point defect in Si was studied, and the the

response function C can be estimated from the data there in, which is

C
123Sb
exp ∼ 30× 2𝜋 ·MHz

V/Å
. (4.41)

Perturbation Theory Estimation

As discussed in Section 4.2.4, using first-order perturbation theory, the C tensor can

be estimated with

Cpertb ≈ 𝑔𝑒𝑒
3𝑞

2𝐼(2𝐼 − 1)

1

4𝜋𝜀0𝑎20

1

𝐸𝑔

. (4.42)

For 75As in GaAs, one has 𝐼 = 3
2
, 𝐸𝑔 = 1.42 eV, and 𝑞 = 314 mb, leading to

C
75As
pertb ∼ 9.1× 2𝜋 ·MHz

V/Å
. (4.43)

Similarly, for 123Sb defects in Si, one has

C
123Sb
pertb ∼ 8.2× 2𝜋 ·MHz

V/Å
. (4.44)

Here we used 𝐸𝑔 = 0.56 eV, which is half the bandgap of Si. This is because we

need to considere the defect state from 123Sb, which lies inside the bandgap of the Si

matrix.
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DFT Calculations

As discussed in Section 4.4, the C tensor can be obtained from DFT calculations as

well, which give

C
75As
DFT ∼ 4.9× 2𝜋 ·MHz

V/Å
, (4.45)

and

C
123Sb
DFT ∼ 12.1× 2𝜋 ·MHz

V/Å
. (4.46)

One can see that for the NER, which is the first-order response, the theoretical

predictions from both the perturbation theory and the DFT calculations give the

correct order of magnitude of the C tensor, as compared with experimental results.

Notably, the experimental results are slightly greater than the theoretical predictions

for both 75As and 123Sb.

4.5.3 ONQ Response

The ONQ effect we proposed is the second-order response of the quadrupole interac-

tion to the electric field. To the best of our knowledge, there are no experimental data

on such a second-order response. On the other hand, the theoretical methods used

to calculate the strength of the second-order ONR response are in the same spirit

to those used to calculate the strength of the first-order NER response. Hence, we

believe they should give reasonable results as well.
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Chapter 5

NER and ONQ in Comparison with

Other Effects

In this chapter, we compare NER and ONQ with other effects that can couple mag-

netic, electric, or optical fields to nuclear spins.

5.1 NER vs. NMR

As discussed in Sections 4.2 and 2.1, NER and NMR are the first order response to

MW/RF electric and magnetic fields, respectively. Compared with magnetic fields,

electric fields usually have better controllability and relatively higher temporal/spatial

resolution. This is an unique advantage of NER. On the other hand, NER is not

applicable to all nuclei - NER requires the nuclear spin quantum number to be great

than 1
2
, otherwise the quadrupole interaction does not exist.

Another important parameter is the interaction strength of NER and NMR. As

discussed in Sections 4.2 and 4.4, the strength of NER is

C∼ [1 ∼ 10]× 2𝜋 ·MHz

V/Å
. (5.1)
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On the other hand, the strength of NMR is

𝛾𝑁 ∼ 10× 2𝜋 ·MHz

T

∼ 300× 2𝜋 ·MHz

V/Å
.

(5.2)

On the second line we used E = 𝑐0B to convert the strength of magnetic field to

electric field of a plane wave (𝑐0 is the speed of light). Comparing Eq. (5.1, 5.2),

one can see that when plane wave MW/RF fields (or MW/RF photons) are used to

manipulate nuclear spins, the NMR should be much stronger than NER. Of course,

in some situations one has E≫ 𝑐0B and the NER could dominate the NMR.

5.2 ONQ vs. Other Nonlinear Optical Effects

Next, we compare the ONQ effect with other nonlinear optical (NLO) effects that

could couple optical photons with nuclear spins. Here we only consider NLO effects

that do not require ancilla electron spins and exclude those discussed in Section 3.2.

We demonstrate that the ONQ effect has the strongest responses among these possible

NLO effects.

5.2.1 Nonlinear Nuclear Zeeman Effect

Optical photons have associated magnetic fields B𝑒𝑖𝜔𝑡, which can couple with nuclear

spins through the Zeeman interaction 𝐻Z = 𝛾𝑁
∑︀

𝑖 B𝑖𝐼𝑖. This interaction is also

oscillating at optical frequencies 𝜔, so the resonance with nuclear spins is achievable

only when two optical photons with frequencies 𝜔𝑝 and 𝜔𝑞 interact with the nuclear

spins simultaneously,

𝐻NNZ = 𝛾𝑁
∑︁
𝑖

(︀
𝐼𝑖B

𝑝
𝑖 𝑒

𝑖𝜔𝑝𝑡 + 𝐼𝑖B
𝑞
𝑖 𝑒

𝑖𝜔𝑞𝑡
)︀
. (5.3)
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Using the second-order perturbation theory, one has an effective Hamiltonian,

𝐻NNZ
eff ∼

∑︁
𝑖𝑗

𝐼𝑖𝐼𝑗𝛾
2
𝑁

1

𝜔𝑝 −∆𝑁

B
𝑝
𝑖B

𝑞
𝑗𝑒

𝑖(𝜔𝑝−𝜔𝑞)

∼
∑︁
𝑖𝑗

𝐼𝑖𝐼𝑗
𝛾2𝑁
𝑐20

1

𝜔𝑝 −∆𝑁

E
𝑝
𝑖 E

𝑞
𝑗 𝑒

𝑖(𝜔𝑝−𝜔𝑞),

(5.4)

where ∆𝑁 is the nuclear spin splitting and is in the MW/RF range. On the second

line we used E= 𝑐0B again. One can see that 𝐻NNZ
eff is oscillating in time with the

difference-frequency 𝜔𝑝 − 𝜔𝑞, which can be tuned to match nuclear spin frequencies.

Hence, 𝐻NNZ
eff can drive the Rabi oscillation of nuclear spins, which can be called the

nonlinear nuclear Zeeman (NNZ) effect.

The interaction strength of NNZ is

gNNZ =
𝛾2𝑁
𝑐20

1

𝜔𝑝 −∆𝑁

∼ 10−4 × 2𝜋 ·MHz

(V/Å)2
, (5.5)

which is smaller than that of ONQ by more than four orders of magnitude.

5.2.2 Nonlinear Nuclear Electric Resonance

In Sec. 4.1, we discussed that the quadrupole tensor would have a linear response to

external electric field, which is the NER effect. If simultaneously apply two electric

fields with frequency 𝜔𝑝 and 𝜔𝑞, respectively, the Hamiltonian would be

𝐻NNER =
∑︁
𝑖𝑗

(︀
C

𝑝
𝑖𝑗E𝑝𝐼𝑖𝐼𝑗e

𝑖𝜔𝑝𝑡 + C
𝑞
𝑖𝑗E𝑞𝐼𝑖𝐼𝑗e

𝑖𝜔𝑞𝑡
)︀
. (5.6)

Similar to that in the case of NNZ, Eq. (5.6) would lead to a nonlinear nuclear electric

resonance effect (NNER), whose effective Hamiltonian is

𝐻NNER
eff ∼

∑︁
𝑖𝑗𝑘𝑙

𝐼𝑖𝐼𝑗𝐼𝑘𝐼𝑙
C

𝑝
𝑖𝑗 C

𝑞
𝑘𝑙

𝜔𝑝 −∆𝑁

E𝑝E𝑞. (5.7)
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Table 5.1: Order of nonlinear optical effects that couple optical photons and nuclear
spins. Interactions involving nuclear spins are in bold font.

Electron

dipole

Nuclear

Zeeman

Nuclear

quadrupole

Strength[︁
2𝜋·MHz
(V/Å)2

]︁
ONQ second / first 102

NNZ / second / 10−4

NNER second / second 10−6

Strength 108 × 2𝜋·MHz
V/Å 300× 2𝜋·MHz

V/Å [1 ∼ 103]× 2𝜋 ·MHz /

The effective coupling strength is

gNNER =
C

𝑝
𝑖𝑗 C

𝑞
𝑘𝑙

𝜔𝑝 −∆𝑁

∼ 10−6 × 2𝜋 ·MHz

(V/Å)2
, (5.8)

where we have used C
𝑝
𝑖𝑗 ∼ 10× 2𝜋·MHz

V/Å . One can see that NNER is even weaker than

NNZ.

5.2.3 Why the ONQ Effect is Strong

The coupling strength of the ONQ effect can be on the order of 102× 2𝜋·MHz
(V/Å)2

, which is

stronger than those of NNZ and NNER by several orders of magnitude. To elucidate

the reason why the ONQ effect is the strongest, we need to distinguish three types of

interactions, namely

1. Electron dipole interaction: the interaction between electric field and elec-

tron, whose strength is on the order of 1× eV
V/Å ∼ 108 × 2𝜋·MHz

V/Å ;

2. Nuclear Zeeman interaction: the interaction between magnetic field and

nuclear spin, whose strength is on the order of 10× 2𝜋·MHz
T

∼ 300× 2𝜋·MHz
V/Å ;

3. Nuclear quadrupole interaction: the interaction between electron nuclear

spin, whose strength is on the order of 2𝜋 · [1 ∼ 103]×MHz.

Note that 1 eV is equivalent to 108 × 2𝜋 · MHz. One can see that the electron

dipole interaction is very strong. In contrast, the nuclear Zeeman and quadrupole
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interactions are rather weak.

The NLO effects, including ONQ, NNZ, and NNER, involve different order of

the interactions discussed above, which are shown in Table 5.1. One can see that

for ONQ, the second-order nonlinear process actually happens between photons and

electrons (electron dipole interaction), while the interaction involving nuclear spin is

first-order. In contrast, for NNZ and NNER, the interaction involving nuclear spin

(either nuclear Zeeman or nuclear quadrupole interaction) is second-order, which

makes them significantly weaker than the ONQ effect.
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Chapter 6

Applications of the NER Effect

In this chapter, we discuss some potential applications of the NER effect, which is

summarized in Table 6.1.

6.1 Manipulation of Single Nuclear Spin

Different from magnetic fields, electric fields can be well-controlled down to the nano-

scale. Therefore, it is possible to realize electrical control over single nuclear spin,

even if the nuclear spins have relatively high number density. The mechanism of the

NER manipulation over single nuclear spin has been discussed in Section 4.2.2 and

Refs. [30, 31]. Experimentally, it has been demonstrated in Ref. [29].

Table 6.1: Potential applications of the NER effect.

Application 𝜔𝑝-photon Nuclear Spin(s)
Frequency Matching

Condition

Single Nuclear

Spin Manipulation
Pump |𝑒⟩ ↔ |𝑔⟩ 𝜔𝑝 = ∆𝑔𝑒

Nuclear Spin

Ensemble Manipulation

Annihilation |𝑛⟩ → |𝑛+ 1⟩
𝜔𝑝 = 𝜔𝑚

creation |𝑛+ 1⟩ → |𝑛⟩

Spectroscopy Pump |𝑒⟩ ↔ |𝑔⟩ 𝜔𝑝 = ∆𝑔𝑒(𝑋)
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6.2 Manipulation of Nuclear Spin Ensemble

Besides controlling single nuclear spins, the NER effect can also be used to couple

MW/RF electric fields with a nuclear spin ensemble (NSE). As we will show below,

electric fields can excite an collective excitation of an NSE, which is the nuclear

magnon. A practical application of this effect might be to use the NSE as a quantum

memory to story the quantum information carried by an MW/RF photon.

Before further discussions, we would like to remark that for a photon which has

E= 𝑐0B, the NMR coupling should be stronger than the NER coupling (Section 5.1

and 6.2.3). Therefore, in terms of coupling strength, using the NER coupling is

advantageous only when E≫ 𝑐0B.

6.2.1 Nuclear Magnons

First, we briefly introduce the properties of the collective excitation of nuclear spins,

which is here called nuclear magnon (NM). For brevity we assume that there is only

one species of nuclei, and hence only one NM band. Multiple species lead to mul-

tiple NM bands. However, having multiple NM bands would not change the basic

properties of the NMs. This is because the NM bandgap is much larger than the

NM bandwidth, so different NM bands are effectively isolated from each other. The

Hamiltonian of a NSE can be written as (cf. Chapter 2)

H𝑁 =
∑︁
𝛼

(𝛾𝑁𝐼
𝛼 · B+ 𝐼𝛼 ·𝑄 · 𝐼𝛼) +

∑︁
𝛼𝛽

𝐼𝛼 ·J𝛼𝛽 · 𝐼𝛽. (6.1)

Here we assume there is no electron spin (𝑆 = 0) and neglect the hyperfine inter-

action. The spin operators are hard to deal with theoretically, so we perform the

Holstein–Primakoff transformation [79] to transform the spin operators 𝐼𝛼 to boson
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Wavelength(a)

≈

𝑘

𝜔𝑘

𝛾𝑛𝐵

𝒥𝐼[𝑧𝑐 − 𝒵(𝒌)]
(b)

𝑘0

𝑘1

𝑘2

𝑘3

𝐶0123

(c)

Figure 6-1: (a) Illustration of the NM mode. The ground state of the nuclear spins
are denoted by grey upright arrows. When NMs are excited, nuclear spins (denoted
by red arrows) precess around the ground states. The spatial pattern of the NM has
a periodicity, which is characterized by the wavelength. (b) Band dispersion of the
NMs (not drawn to scale). Note that one has 𝛾𝑁B ≫ 2J𝐼𝑑2𝑘2. (c) Illustration of
the four-NM scattering process. The vertex is denoted by 𝐶0123

creation (annihilation) operators 𝑎†𝛼 (𝑎𝛼),

𝐼𝛼𝑧 = 𝐼 − 𝑎†𝛼𝑎𝛼,

𝐼𝛼+ =
√
2𝐼

√︃
1− 𝑎†𝛼𝑎𝛼

2𝐼
𝑎𝛼,

𝐼𝛼− =
√
2𝐼𝑎†𝛼

√︃
1− 𝑎†𝛼𝑎𝛼

2𝐼
,

(6.2)

where 𝐼± ≡ 𝐼𝑥 ± 𝑖𝐼𝑦 are the angular momentum ladder operators. The square roots

in Eq. (6.2) can be expanded using the Taylor expansion. For example,

𝐼𝛼+ =
√
2𝐼

[︃
1−

∑︁
𝑛=1

(2𝑛− 3)!!

2𝑛𝑛!

(︂
𝑎†𝛼𝑎𝛼
2𝐼

)︂2
]︃
𝑎𝛼, (6.3)

which is applicable when 𝑎†𝛼𝑎𝛼 < 2𝐼. More rigorously, the square root can be expanded

using the Kubo operators [80,81], which avoids the error due to the truncation of the

Taylor series in Eq. (6.3).
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The eigenstates of the angular momentum operators are |𝐼,𝑚𝑧⟩𝛼, where 𝑚𝑧 =

−𝐼,−𝐼 + 1, · · · + 𝐼 is the eigenvalue of 𝐼𝑧 operator. After the Holstein–Primakoff

transformation, the eigenstates become

|𝐼, 𝐼 − 𝑛⟩𝛼 → |𝑛⟩𝛼

≡ 1√︀
(𝑛)!

(︀
𝑎†𝛼
)︀𝑛 |0⟩𝛼, (6.4)

where |0⟩𝛼 is the vacuum state of the boson operator and corresponds to |𝐼, 𝐼⟩𝛼. One

can see that

𝑎†𝛼|𝐼, 𝐼 − 𝑛⟩ → |𝐼, 𝐼 − (𝑛+ 1)⟩, (6.5)

that is, the boson operators lead to the transition between angular momentum states

with different 𝑚𝑧.

After the Holstein-Primakoff transformation, one can perform the Fourier trans-

formation to switch from 𝑟-space to 𝑘-space, which is

𝑎𝛼 =
1√
𝑁

∑︁
𝑘

𝑒𝑖𝑘·𝑟𝛼𝑎𝑘,

𝑎𝑘 =
1√
𝑁

∑︁
𝑖

𝑒−𝑖𝑘·𝑟𝛼𝑎𝛼,
(6.6)

where 𝑎𝑘 is the annihilation operator of an NM mode with wavevector 𝑘, while 𝑟𝛼 is

the location of the 𝛼-th nuclear spin. 𝑁 is the number of nuclear spins, and is used

to normalize the Fourier transformation. A semi-classical one-dimensional picture of

the NM mode is illustrated in Figure 6-1(a). Each nuclear spin precesses around its

ground state, and the phase of the precession is 𝑒𝑖𝑘·𝑟𝛼 with 𝑟𝛼 the location of the 𝑟𝛼-th

nucleus, so the wavelength is 𝜆 = 2𝜋
𝑘

. This resembles the phonon modes, whereby

the atomic vibrations have a 𝑒𝑖𝑘·𝑟𝛼 phase factor as well. NMs are in close analogy to

electron magnons [82,83].

After the Holstein–Primakoff transformation and the Fourier transformation, the

NSE Hamiltonian Eq. (6.1) can be reformulated in the basis of NM creation (annihi-
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lation) operators 𝑎†𝑘 (𝑎𝑘), yielding

H𝑁 = H(2) + H(3) + H(4) + · · · , (6.7)

where H(𝜁) contains 𝜁-number of 𝑎†𝑘 or 𝑎𝑘, and describes the interaction between

𝜁-number of NMs. Specifically, the quadratic term is

H(2) =
∑︁
𝑘

𝜔𝑘𝑎
†
𝑘𝑎𝑘 (6.8)

with 𝜔𝑘 the frequency of the NM mode. Higher order terms such as H(3) or H(4)

correspond to the interaction between multiple NMs, which lead to (1) shift of NM

frequencies and (2) decay of NM, which corresponds to finite NM lifetime [84,85].

The dipolar interaction between the magnetic moments of the nuclei is a funda-

mental electromagnetic interaction, and hence the J-interaction is usually unavoid-

able. Meanwhile, the quadrupole interaction at equilibrium can be zero if the nucleus

resides in a high-symmetry environment, such as the tetrahedral environment in zb-

GaAs discussed in Section 4.4. For brevity, we will consider the case of 𝑄 = 0 here-

after. Without loss of generality, we assume the external magnetic field to be along

the 𝑧-direction. We further assume J
𝛼𝛽
𝑖𝑗 = J𝛿⟨𝛼𝛽⟩𝛿𝑖𝑗, where 𝛿𝑖𝑗 is the Kronecker delta

and 𝛿⟨𝛼𝛽⟩ enforces that there is only nearest neighbor interactions. Here we would like

to note that the dipolar interaction between nuclear spins is a long-range interaction

that decays with 1
𝑟3

, where 𝑟 is the distance between nuclear spins. However, using

the nearest-neighbor approximation would not influence the order-of-magnitude of

the final results. For example, for an 1D chain, the potential energy per nuclear spin

is
∑︀

𝑛
J

𝑛3 ≈ 1.2×J, 𝑛 ∈ Z if all the interactions are considered. In 2D or 3D, the result

depends on the crystal symmetry, but should be on the order of
∑︀

𝑛
J

(
√
𝑛)3

≈ 2.6×J.

Meanwhile, only considering the nearest-neighbor interaction leads to a potential en-

ergy of J per nuclear spin, which is comparable with the results as above. One can

also refer to the calculation of Madelung constants, which are also on the order of 1.
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In this case, if we only consider H(2), then we have

𝜔𝑘 = 𝛾𝑁B+J𝐼 [𝑧𝑐 − Z(𝑘)] , (6.9)

where 𝑧𝑐 is the coordination number and Z(𝑘) is a function dependent on the crystal

structure. For example, a three-dimensional simple cubic structure has

𝑧𝑐 − Z(𝑘) = 6− 2 [cos(𝑘𝑥𝑑) + cos(𝑘𝑦𝑑) + cos(𝑘𝑧𝑑)]

≈ 𝑘2𝑑2.
(6.10)

Here 𝑑 is the lattice constant. On the second line, we used the Taylor expansion for

𝑘𝑑≪ 1, leading to

𝜔𝑘 ≈ 𝛾𝑁B+J𝐼𝑘2𝑑2. (6.11)

In the case of 𝑄 ̸= 0, the anisotropy from the nuclear quadrupolar interaction could

modify the NM band dispersion. The anisotropy effect has been discussed in the case

of electron magnon [83,86,87].

One can see that the dispersion of the NM frequency is determined by the nuclear

spin-spin interaction J. Remarkably, J is on the order of kHz, much smaller than

𝛾𝑁B, which is usually on the order of MHz. In other words, the bandwidth the NM

bands are very small.

6.2.2 Decay Rate of NM

The decay rate of NMs is a crucial parameter that affects various applications of

NMs. In this section, we will estimate the decay rate of NM. We will focus on NM

near the Γ-point in the Brillouin zone. This is because the wavevector of photons is

usually very small compared with the dimension of the Brillouin zone, and thus only

NM near the Γ-point can effectively interact with photons, as imposed by the law of

momentum conservation.

As discussed above, the NM decay results from the multi-NM interactions. The

leading-order effect should have been H(3), corresponding to the three-NM scattering.
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However, due to the small NM bandwidth, three-NM scattering always violates energy

conservation and cannot lead to NM decay. This is similar to the case of optical

phonon decay in certain materials such as BAs or AlSb. In these materials, the

lifetime of optical phonons are exceptionally long because three-phonon scatterings

involving optical phonons are forbidden by the small optical phonon bandwidth and

large bandgap between optical and acoustic phonons [88–91].

The leading order effect that leads to NM decay is four-NM scattering, which is

described by

H(4) =
∑︁
0,1,2,3

𝐶0123𝑎0𝑎1𝑎
†
2𝑎

†
3. (6.12)

Eq. (6.12) corresponds to the 𝑘0+𝑘1 → 𝑘2+𝑘3 scattering. Note that there could also

be other scatterings, such as 𝑘0 → 𝑘1 + 𝑘2 + 𝑘3. But these scatterings are forbidden

by the energy conservation law as well and thus could not lead to NM decay. Here

the subscripts 𝑙 = 0, 1, 2, 3 label the NM with wavevector 𝑘𝑙 that participate in the

scattering, and 0 denotes the Γ-point NM under consideration.

The H(4) coupling arises from the dipolar interaction when considering higher-

order terms in the expansion of Eq. (6.2), and the coupling constant 𝐶0123 can be

expressed as [84,85]

𝐶0123 =
J

4
[Z(𝑘0) + Z(𝑘1) + Z(𝑘2) + Z(𝑘3)− 4Z(𝑘0 − 𝑘2)] . (6.13)

The relaxation rate due to four-NM scattering can be obtained from Fermi’s golden

rule, and can be expressed as [84,85, 88,89]

𝜅(4)𝑚 =
2𝜋

ℏ
∑︁
1,2,3

|𝐶0123|2
(𝑛1 + 1)𝑛2𝑛3

𝑛0

𝛿(𝜔0 + 𝜔1 − 𝜔2 − 𝜔3)∆(𝑘0 + 𝑘1 − 𝑘2 − 𝑘3). (6.14)

Here 𝜔, 𝑘 and 𝑛 are respectively the frequency, wavevector and occupation number of

the NMs. ∆(𝑘0 + 𝑘1 − 𝑘2 − 𝑘3) corresponds to momentum conservation and enforces

𝑘0+𝑘1 = 𝑘2+𝑘3. Meanwhile, 𝛿(𝜔0+𝜔1−𝜔2−𝜔3) corresponds to energy conservation.
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Considering the dispersion relation in Eq. (6.11), one has

𝛿(𝜔0 + 𝜔1 − 𝜔2 − 𝜔3) ≈
𝛿(cos 𝜃23)

2J𝐼𝑑2𝑘2𝑘3
, (6.15)

where 𝜃23 is the angle between 𝑘2 and 𝑘3. Considering the small NM band width, we

will use 𝑛𝑖 = 𝑛0. For simplicity, we also use |𝐶0123| ≈ J and ignore the 𝑘-dependence

of 𝐶0123. Then one has

𝜅(4)𝑚 =
2𝜋

ℏ
J2𝑛0(𝑛0 + 1)

(︂
𝑑

2𝜋

)︂6 ∫︁
d3𝑘2d

3𝑘3𝛿(𝜔0 + 𝜔1 − 𝜔2 − 𝜔3)

=
1

(2𝜋)3
J

𝐼ℏ
𝑛0(𝑛0 + 1)𝑑4

∫︁ 𝑘max

0

𝑘2d𝑘2

∫︁ 𝑘max

0

𝑘3d𝑘3

=
𝜋

2

(︂
3

4𝜋

)︂ 4
3 J

𝐼ℏ
𝑛0(𝑛0 + 1).

(6.16)

Here we approximate the first Brillouin zone with an isotropic sphere whose radius

𝑘max is determined by 4𝜋
3
𝑘3max =

(︀
2𝜋
𝑑

)︀3. As J is on the order of kHz, one has 𝜅(4)𝑚 ∼

0.1 kHz when 𝑛0 = 1. Considering the assumptions used above (e.g., assuming a

nearest-neighbor interaction J and ignoring the 𝑘-dependence of 𝐶0123), which could

influence the magnitude of 𝜅(4)0 , it is reasonable to use

𝜅
(4)
0 ≲ [0.1 ∼ 1] kHz. (6.17)

Even higher-order terms H(𝜁) with 𝜁 > 4 in the Hamiltonian expansion [Eq. (6.7)]

could result in NM relaxation 𝜅
(𝜁)
0 as well. Due to the requirement of energy conser-

vation, only even order terms 𝜁 = 2𝑛 (𝑛 ∈ N) can contribute to NM relaxation. If

one uses the Taylor expansion in Eq. (6.3) to expand the square roots in Eq. (6.2),

then approximately one has

𝜅
(𝜁+2)
𝑚

𝜅
(𝜁)
𝑚

∼ 1

2𝜁
𝑛0(𝑛0 + 1), (6.18)

which can be obtained using a similar approach to that for calculating 𝜅
(4)
𝑚 above.

Hence, 𝜅(4)𝑚 would make the major contribution to the total NM relaxation rate, as long
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as 𝑛0 ≲ 1, which requires 𝑘𝐵𝑇 ≲ 𝜔𝑚. If one has the NM frequency as 𝜔𝑚 ∼ 30 MHz,

which can be realized with a magnetic field ∼ 3 T, and the temperature as 𝑇 ∼ 2 mK,

which is achievable in a dilute refrigerator, then 𝑛0 would be around 0.94, largely

satisfying the requirement discussed above.

Here we would like to remark that the Holstein-Primakoff transformation in Eq. (6.2)

is rigorous as all the commutation relations of the spin operators are satisfied. The

problem is how to deal with the square root. In the discussions above, we used the

Taylor series [Eq. (6.3)] to expand the square root. This is not the most suitable

approach for expanding the square roots in Eq. (6.2) when 𝑛0 is comparable with 2𝐼

(𝑘𝐵𝑇 ≳ 𝜔0). An more rigorous approach uses the so-called Kubo operator [80, 81],

which is √︂
1− 𝑎†𝑎

2𝐼
= 1 + 𝑓1𝑛+ 𝑓2𝑛

2 + · · · 𝑓2𝐼𝑛2𝐼 , (6.19)

where 𝑛 ≡ 𝑎†𝑎. By selecting proper coefficients 𝑓1, 𝑓2, · · · 𝑓2𝐼 , one can make the

expansion above rigorous for 0 ≤ 𝑛 ≤ 2𝐼, 𝑛 ∈ Z. As an example, for 𝐼 = 3
2
, one has

√︂
1− 𝑎†𝑎

2𝐼
= 1− 1

6
(11 + 3

√
3− 6

√
6)𝑛+

1

6
(6 + 4

√
3− 5

√
6)𝑛2 +

1

6
(−1−

√
3 +

√
6)𝑛3

(6.20)

The Kubo-opeators have been used to deal with magnetism at all temperatures,

including temperature near or above the (anti)-ferromagnetic transition tempera-

ture [80, 81]. Notably, using the Kubo operators, only up to the 4𝐼-th order term

would appear in the expansion of the square root. Hence, the NM relaxation rate can

be more rigorously computed. For example, for 75As with 𝐼 = 3/2, the NM relaxation

rate only result from terms up to 𝜅(14)0 , instead of the infinite series in Eq. (6.18).

Besides the Kubo operators, there are also other approaches to treat the square

roots in the Holstein-Primakoff transformation more rigorously than the Taylor series.

One example is the Newton series studied in Ref. [92]. The rigorous treatment of the

Holstein-Primakoff transformation is beyond the scope of the current work.
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6.2.3 NER/NMR Effect of NM

Using the Holstein-Primakoff transformation, one has the single nuclear NER Hamil-

tonian as
𝐻NER

𝛼 =
∑︁
𝑖𝑗

C
𝑝
𝑖𝑗E𝑝𝐼

𝛼
𝑖 𝐼

𝛼
𝑗

≈ gNERE𝑝𝑎𝛼 + ℎ.𝑐.

(6.21)

where we only kept the first-order terms ∝ 𝑎𝛼, 𝑎
†
𝛼 in the Holstein-Primakoff trans-

formation, which can be resonant with the electric field. ℎ.𝑐. stands for Hermitian

conjugate. gNER ∼ C
𝑝
𝑖𝑗 is the NER coupling strength with a single nuclear spin.

After second-quantizing the MW photon and switching to the 𝑘-space, one has

the NER Hamiltonian of the NSE as

HNER =
∑︁
𝛼

𝐻NER
𝛼

= gNEREzpf
√
𝑁𝑎†𝑝𝑎𝑚 + ℎ.𝑐.

(6.22)

where 𝑎†𝑝 is the creation operator of an 𝜔𝑝-photon, 𝑎𝑚 is the annihilation operator

of the NM that interacts with the 𝜔𝑝-photon. The wavevector 𝑘 of this NM is fixed

by the momentum conservation and is thus omitted. As compared with the lattice

constant 𝑑, the wavelength of MW photons is so long that only the magnetostatic

NM with 𝑘 ≈ 0 interacts with the MW photon. Also,

Ezpf =

√︃
ℏ𝜔𝑝

2𝜀0𝑉𝑝
(6.23)

is the zero-point electric field of the 𝜔𝑝-photon in an MW/RF cavity with mode volume

𝑉𝑝. 𝜀0 is the vacuum permittivity. The Rabi frequency of the swapping between the

NM and the 𝜔𝑝-photon is

fNER = gNEREzpf
√
𝑁

= gNER

√︂
ℏ𝜔𝑝𝜌

2𝜀0
,

(6.24)

where 𝜌 = 𝑁/𝑉𝑝 is an effective number density of the nuclear spins. We use 𝜌 =
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2028 m−3, and one has fNER ∼ 0.1 kHz with 𝜔𝑝 = 10 MHz and C= 5× 2𝜋·MHz
V/Å .

As a comparison, we examine the interaction strength between the 𝜔𝑝-photon and

the NM via NMR. In this case, the coupling Hamiltonian should be

HNMR = 𝛾𝑁B
zpf

√
𝑁𝑎†𝑝𝑎𝑚 + ℎ.𝑐. (6.25)

where

Bzpf =

√︃
𝜇0ℏ𝜔𝑝

2𝑉𝑝
(6.26)

is the zero-point magnetic field of the 𝜔𝑝 in a MW cavity, with 𝜇0 as the vacuum

permeability. It is straightforward to find that the NMR Rabi frequency is fNMR ∼

6 kHz under the same condition as discussed above.

6.3 Spectroscopy

Similar to NMR, NER can be used for spectroscopy as well. In NMR spectroscopy,

the resonance frequency of nuclear spins is predominantly determined by the gyro-

magnetic ratio of the isotope (e.g., 42.577 × 2𝜋·MHz
T

for 1H and 10.71 × 2𝜋·MHz
T

13C),

which is a constant for the isotope in different environments. The change in resonance

frequency, which is the so-called “chemical shift” and is used to extract information on

the chemical environment, only comes from the shielding effect of surrounding elec-

trons. In normal non-magnetic materials, the shielding effect is usually very weak 1.

Consequently, only a small change in the resonance frequency (usually on the order of

tens of ppm, part in million) can be induced, which necessitates sophisticated control

over external magnetic fields and/or the RF spectrometer.

In contrast, a unique advantage of NER spectroscopy is that the resonance fre-

quency of a certain isotope is sensitively dependent on the environment, because the

EFG is directly generated by surrounding electrons. For example, in zinc blende

GaAs, the quadrupole splitting of 75As is zero, thanks to the tetrahedral symmetry.

1Recall that the relative magnetic susceptibility of nonmagnetic materials is usually on the order
of 10−6
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In wurtzite GaAs, the quadrupole splitting of 75As is around 2.5 MHz. One can see

that the resonance frequency can be very sensitive to the environment of the isotope

under consideration.
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Chapter 7

Applications of the ONQ Effect

The ONQ effect establishes an efficient interface between nuclear spins and optical

photons. In this chapter, we will discuss some potential applications of such an

interface. A summary of these applications can be found in Table 7.3.

7.1 Single Nuclear Spin Manipulation

First, we will discuss the ONQ control over single nuclear spin in more detail, which

will be the foundation of other applications of the ONQ effect. As discussed in

Section 4.3.2, under two-color lasers with respective frequencies 𝜔𝑝 and 𝜔𝑞, there will

be an ONQ Hamiltonian, which oscillates with time at frequency |𝜔𝑝 − 𝜔𝑞|,

𝐻ONQ =
∑︁
𝑖𝑗

D
𝑝𝑞
𝑖𝑗 (𝜔𝑝 − 𝜔𝑞;𝜔𝑝,−𝜔𝑞)E𝑝E𝑞𝐼𝑖𝐼𝑗e

𝑖(𝜔𝑝−𝜔𝑞)𝑡 + ℎ.𝑐 (7.1)

where E𝑝 (E𝑞) is the electric field strength of the 𝜔𝑝 (𝜔𝑞) laser.

7.1.1 Rabi Oscillation

In the basis of {|𝑔⟩, |𝑒⟩}, which are the ground and excited nuclear spin states under

consideration, the effective ONQ Hamiltonian in the rotating frame is

𝐻ONQ
eff =

𝛿

2
(|𝑒⟩⟨𝑒| − |𝑔⟩⟨𝑔|) +

[︀
gONQE𝑝E𝑞|𝑒⟩⟨𝑔|+ ℎ.𝑐.

]︀
, (7.2)
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EFG

|𝑔⟩

|𝑒⟩

𝜔𝑝

𝜔𝑞

Figure 7-1: Illustration of the ONQ control over single nuclear spin. Two lasers with
respective frequencies 𝜔𝑝 and 𝜔𝑞 are applied simultaneously. When the difference-
frequency is resonant with nuclear spin transition energy (𝜔𝑝−𝜔𝑞 = ∆𝑔𝑒) is satisfied,
the nuclear spin could undergo Rabi oscillation between two states |𝑒⟩ and |𝑔⟩ .

where 𝛿 = 𝜔𝑝 − 𝜔𝑞 −∆𝑔𝑒 is the detuning from perfect resonance. The ONQ coupling

strength is

gONQ =
∑︁
𝑖𝑗

D𝑖𝑗⟨𝑒|𝐼𝑖𝐼𝑗|𝑔⟩ ∼ 102 × 2𝜋 ·MHz

(V/Å)2
, (7.3)

where we have omitted the polarizations (𝑝 and 𝑞) of the electric fields.

From Eq. (7.2), one can see that when the frequency matching condition 𝜔𝑝−𝜔𝑞 =

∆𝑔𝑒 is satisfied, the ONQ effect can induce nuclear Rabi oscillation between |𝑒⟩ and

|𝑔⟩, with a Rabi frequency of

𝑓Rabi = |gONQE𝑝E𝑞|. (7.4)

Specifically, when E𝑝 = E𝑞 = 10 MV/m, one has 𝑓Rabi = 100 Hz, when can be

significantly greater than the decoherence rate of single isolated nuclear spins [8, 9].

Notably, to realize the ONQ Rabi oscillation, one only needs

• nuclear spin with non-zero D tensor,

• two-color laser satisfying the frequency matching condition.

Therefore, the ONQ Rabi may serve as a proof-of-principle experiment for the ONQ
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effect.

The frequency matching condition is actually a energy conservation condition -

the excess energy of the two photons 𝜔𝑝 − 𝜔𝑞 is absorbed (emitted) by the nuclear

spin when it undergoes the |𝑔⟩ → |𝑒⟩ (|𝑒⟩ → |𝑔⟩) transition. This is similar to other

NLO processes such as Raman scattering or difference frequency generation, whereby

the excess energy of the two photons is absorbed (emitted) by a phonon or a third

photon.

7.1.2 Readout of the Single Nuclear Spins State

To detect the quantum state of the single nuclear spin, one possible approach is to

introduce an electron spin for readout [29, 48, 93] after the Rabi oscillation induced

by the ONQ interaction is finished. This can be realized by ionizing/neutralizing

the defect atom that hosts the single nuclear spin, which has been demonstrated in

Refs. [29, 48]. This could serve as a proof-of-principle experiment of the ONQ effect

in the short term.

In the long term, it might be desirable to totally get rid of electron spins and to

develop an all-optical control over nuclear spins. One possible approach is to use high-

quality optical cavities and high-efficiency single photon detectors. A single nuclear

spin is put into an optical cavity resonant with the 𝜔𝑝-photon and is pumped with a

𝜔𝑞-laser. After the second-quantization of the 𝜔𝑞-photon, the ONQ coupling would

be

𝐻ONQ = gONQE𝑝E
zpf
𝑞

(︀
|𝑔⟩⟨𝑒|𝑎†𝑞 + ℎ.𝑐.

)︀
, (7.5)

where ℎ.𝑐. stands for Hermitian conjugate, 𝑏†𝑞 is the creation operator of the 𝜔𝑞-

photon, and Ezpf
𝑞 =

√︁
𝜔𝑞

𝜀𝑟𝜀0𝑉𝑞
is the zero-point field of the 𝜔𝑞-photon in the cavity with

𝑉𝑞 the mode volume. When the nuclear spin is on excited state |𝑒⟩, then it can emit

a 𝜔𝑞-photon via the ONQ effect and jump back to |𝑔⟩. On the other hand, if the

nuclear spin is on ground state |𝑔⟩, then the 𝜔𝑞-photon would not be emitted. Hence,

the state of the nuclear spin can be determined by detecting whether the 𝜔𝑞-photon
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is emitted using a single photon detector. The emission rate of the 𝜔𝑞-photon is [94]

𝑅 =
4
[︀
gONQE𝑝E

zpf
𝑞

]︀2
𝜅𝑞

=
4[gONQE𝑝]

2

𝜀𝑟𝜀0𝑉𝑞
𝑄𝑞,

(7.6)

where 𝜅𝑞 is the decay rate, and 𝑄𝑞 ≡ 𝜔𝑞

𝜅𝑞
is the quality factor of the cavity. One can

see that the emission rate 𝑅 can be faster for a cavity with large quality factor and

small mode volume.

In practice, optical cavities with quality factors above 1010 have been demon-

strated [95, 96], and the mode volume can be down to 10−22 m3 by nano-photonics

design [97]. Using 𝑄𝑞 = 1010 and 𝑉𝑞 = 10−22 m−3, one has

𝑅 [Hz] ≈ 60× [E𝑝]
2 [MV/cm]2 (7.7)

That is, one has 𝑅 = 60 Hz when E𝑝 = 1 MV/cm. This is a relatively small emission

rate, thus high efficiency single photon detected would be desired [98,99]. Besides, it

also requires an optical cavity that simultaneously has high 𝑄-factor and small mode

volume. This could be challenging as well. So we consider this all-optical readout of

single nuclear spin as a long-term goal, which could be facilitated by the development

of quantum/classical photonics.

7.2 Isotope Spectroscopy

In this section, we discuss how the ONQ effect can be used for isotope spectroscopy,

yielding information on both the structure of the material and the type of the isotopes.

The first approach is to detect the side peaks due to the ONQ scattering, similar to

conventional Raman spectroscopy. Besides, the material imaging can be achieved by

detecting the nuclear spin dynamics induced by the ONQ effect, similar to the NMR.

Compare with other traditional spectroscopic techniques that rely on nuclear spins,

such as NMR or nuclear quadrupole resonance (NQR), the ONQ spectroscopy uses
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optical fields, instead of MW magnetic fields. This brings advantages such as higher

temporal/spatial resolution - the temporal resolution of optical techniques can often

be below picoseconds or even femtoseconds; The spatial resolution is limited only by

the diffraction limit, and can be on the order of hundreds of nanometers.

In addition, the detection of the side peaks in the ONQ spectroscopy or the de-

tection of the nuclear spin dynamics are relatively “classical” experiments, which do

not touch too much the quantum properties of the nuclear spins. Hence, these two

experiments should be relatively easier to demonstrate, and could serve as the proof-

of-principle experiments of the ONQ effect.

7.2.1 Detect the Side Peaks

If nuclear spins are pumped by a laser with frequency 𝜔𝑝, then electric fields (photons)

with shifted frequency 𝜔𝑝±∆𝑔𝑒 would be emitted, thanks to the ONQ effect. Notably,

the frequency shift ∆𝑔𝑒 ∝ qV is not the same for all nuclei, but depends on

• Type of isotope. For example, 69Ga and 71Ga have different quadrupole moment

q, and hence different ∆𝑔𝑒 ∝ q (Figure 7-2).

• Environment. For example, zinc blende GaAs has tetragonal symmetry, which

enforces ∆𝑔𝑒 ∝ V = 0. While wurtzite GaAs has relatively lower symmetry,

leads to ∆𝑔𝑒 ̸= 0.

Besides, the intensity of the peak, which is proportional to qD, is also dependent on

the two conditions above. Therefore, the ONQ effect provides information on both

the type of the isotope and the environment (structure of the material).

Next, we analyse the experimental feasibility of the ONQ spectroscopy. Here

we compare it with the Raman spectroscopy (Table 7.1), which is a prototypical

technique relying on detecting the side-bands, i.e., the (anti)-Stokes peaks. For Ra-

man spectroscopy, Raman-active vibrational modes are detected by measuring the

frequency shift of the side bands.

We first consider the intensity of the side peaks. For Raman scattering, the
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Table 7.1: Comparison between ONQ and Raman spectroscopy.

Scattering rate per f.u. Frequency shift Linewidth

ONQ 102 × 2𝜋·MHz
(V/Å)2

MHz ∼ GHz kHz

Raman 105 × 2𝜋·MHz
(V/Å)2

THz sub-THz

coupling strength (per unit cell) with external electric field is

gRaman = ∆𝜀𝜀0𝑉u.c.

∼ 105 × 2𝜋 ·MHz

(V/Å)2
,

(7.8)

where ∆𝜀 is the change in the relative permittivity when a single phonon (per unit

cell) is excited, and is typically on the order of 10−3 ∼ 10−2. 𝑉u.c. is the volume of a

unit cell. As discussed before, the ONQ coupling strength (per nuclear spin) is on the

order of gONQ ∼ 102 × 2𝜋·MHz
(V/Å)2

, which is smaller than gRaman ∼ 105 × 2𝜋·MHz
(V/Å)2

by three

orders of magnitude 1. This should not be a serious issue because the total intensity is

proportional to the number of atoms (nuclear spins) participating in the interaction.

Notably, Raman spectroscopy is applicable in gas phase or atomically-thin monolayer

materials, which has a very limited number of atoms [100, 101]. Hence, if the ONQ

spectroscopy is used on a three-dimensional solid-state material, which has a large

number of atoms, then the intensity of the side peak would be significantly improved

and should be detectable. Moreover, it is also possible to increase the intensity of the

side peaks by using a stronger pumping laser. Finally, the linewidth (decay rate) of

nuclear spins (∼ kHz, see discussions below) is much smaller than that of phonons

(∼ THz), which could help increase the total ONQ transition rate, according to the

Fermi’s golden rule [102]. In summary, we believe that the intensity of the ONQ side

peaks can be strong enough to be detectable in experiments.

Next, we consider the the frequency shift of the side peaks. For Raman spec-

troscopy, the frequency shift is usually on the order of THz (frequency of optical

phonons). In comparison, the frequency shift in ONQ spectroscopy (∆𝑔𝑒) is on the

1Here we assum each unit cell contains one nuclear spin under consideration.
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71Ga71Ga

69Ga 69Ga

𝜔𝑝

Δ𝑔𝑒(71Ga)

Figure 7-2: Mechanism of the isotopic spectroscopy using the ONQ effect. Under
the pumping laser with frequency 𝜔𝑝, side peaks with frequency 𝜔𝑝 ± ∆𝑔𝑒(𝑋) can
be detected. ∆𝑔𝑒(𝑋) is dependent on both the type of the isotope and the chemical
environment of the nuclei. Here we use 69Ga and 71Ga as an example. 69Ga and 71Ga
have different quadrupole moment q69 and q71, and their frequency shfit satisfies
Δ𝑔𝑒(69Ga)

Δ𝑔𝑒(71Ga)
= q69

𝑞71

order of MHz ∼ GHz. Therefore, relatively high spectral resolution is required, which

could be a challenge in practice. Fortunately, Raman-like spectroscopy with spectral

resolution down to the sub-kHz level has been demonstrated experimentally [102].

Finally, we need to consider the linewidth of the side peaks - it should be smaller

than the frequency shift of side peaks to be detectable. There are several contributions

to the total line width

• Linewidth of the pumping laser, which can be below 1 kHz [103–108].

• The decay rate of nuclear spins, which can also be below 1 kHz.

• The broadening due to inhomogeneity, which can be orders of magnitude lower

than ∆𝑔𝑒 in most situations. For example, our ab initio calculation indicates

that a 1% strain only leads to a less than 10% change in ∆𝑔𝑒.

In total, the linewidth of the side peaks can be kept far below the frequency shift

∆𝑔𝑒, which is on the order of MHz ∼ GHz. Therefore, we believe the side peaks can

be experimentally detectable.
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7.2.2 Detect the Nuclear Spin Dynamics

The information of the materials can also be obtained by detecting the nuclear spin

dynamics induced by the ONQ effect, using techniques developed in the NMR tech-

nology. This is because the nuclear dynamics induced by the ONQ and the NMR

are essentially the same (Rabi oscillation, decay, etc.), so they can be detected using

similar techniques, such as reading the total polarization of the spins. As an concrete

example, in Ref. [70], the nuclear spin dynamics is induced by electric fields via the

NER, and is detected by the optical time-resolved Kerr rotation technique.

7.3 Quantum Memory

Nuclear spins have long coherence time, and have been considered as ideal platform

for quantum memory. On the other hand, optical photons can be carrier of quan-

tum information in many scenario. The ONQ effect establishes an efficient interface

between nuclear spins and optical photons. In this section, we demonstrate that via

the ONQ effect, quantum information can be exchanged between optical photons

and nuclear spins, and thus nuclear spins can be a quantum memory that stores the

quantum information carried by optical photons.

7.3.1 Nuclear Spin Ensemble

Since the coupling strength between optical photons and a single nuclear spin is

relatively weak, we resort to nuclear spin ensemble (NSE), which has been discussed

in Section 6.2. As we will show below, the advantage of using NSE is that the total

ONQ coupling strength can be enhanced by a factor of
√
𝑁 , where 𝑁 is the number

of nuclear spins interacting with optical photons simultaneously.

To facilitate following discussions, here we talk a bit more about the ground and

excited states of the NSE. Without laser field, the true ground state of the NSE can

be described as

|𝐺⟩ = |𝑔1𝑔2𝑔3 · · · 𝑔𝑁⟩, (7.9)
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where all 𝑁 nuclear spins are in the ground state |𝑔⟩. Actually, |𝐺⟩ is a state where

the population of all nuclear magnon (NM) modes are zero.

The first excited state of the NSE is

|𝐸⟩ =
∑︁
𝛼

𝑐𝛼|𝑔1𝑔2 · · · 𝑔𝛼−1𝑒𝛼𝑔𝛼+1 · · · 𝑔𝑁⟩, (7.10)

where the coefficients 𝑐𝛼 satisfies
∑︀

𝛼 |𝑐𝛼|2 = 1. One can see that |𝐸⟩ corresponds to

the state whereby a single NM is excited. In other words, one has

|𝐸⟩ = 𝑎†𝑘|𝐺⟩. (7.11)

The coefficients 𝑐𝛼 are determined by the wavevector 𝑘. As discussed in Section 6.2,

if we ignore the interaction between nuclear spins, and assume that the NSE is homo-

geneous, then the energy difference between |𝐺⟩ and |𝐸⟩ is ∆𝐺𝐸 = ∆𝑔𝑒 = 𝜔𝑚. Note

that there could be excited states with even higher energy, such as

|𝐸2⟩ =
∑︁
𝛼𝛽

𝑐𝛼𝛽|𝑔𝛼𝑔𝛽 · · · 𝑔𝛼−1𝑒𝛼𝑔𝛼+1 · · · 𝑔𝛽−1𝑒𝛽𝑔𝛽+1 · · · 𝑔𝑁⟩. (7.12)

For |𝐸2⟩, two NMs are excited, that is, |𝐸2⟩ = 𝑎†𝑘𝑎
†
𝑘′ |𝐺⟩.

A pre-requisite for any quantum memory is initialization. Actually, as we will

show below, the NM mode (denote by a subscript 𝑚 hereafter) that can interact with

two-color photons is fixed by the requirement of energy and momentum conservation.

Therefore, we only need to initialize the 𝑚-th mode, i.e., 𝑛𝑚 → 0. The 𝑚-th mode can

be cooled down either thermally or by laser cooling, as we will discuss in Section 7.5.

Note that even if 𝑛𝑚 = 0, the population of other NM modes can still be non-

zero. However, because other modes cannot interact with optical photons due to

the violation of energy and/or momentum conservation, they would not influence the

quantum memory application, except that they could influence the decoherence time

of the 𝑚-th mode. In other words, 𝑛𝑚 = 0 can be regarded as a pseudo-ground state,

which is sufficient for quantum memory application, but it is not the true ground
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state described by Eq. (7.9).

Here for exemplary purpose, we show that the initialization to the true ground

state is possible if the quadrupole interaction is strong, which induces a large nuclear

energy splitting. At sufficiently low temperatures, the probability for the NSE to be

on |𝐺⟩ is

𝑝𝐺 =

[︂
1 + exp

(︂
−∆𝑔𝑒

𝑘𝐵𝑇

)︂]︂−𝑁

≈ 1−𝑁 exp

(︂
−∆𝑔𝑒

𝑘𝐵𝑇

)︂
,

(7.13)

where 𝑇 is the temperature and 𝑘𝐵 is the Boltzmann constant. For certain systems,

the energy splitting ∆𝑔𝑒 can be on the order of 1 GHz, equivalent to 50 mK. Thus, one

has 𝑝𝐺 ≈ 1−10−12 when 𝑇 = 1 mK and 𝑁 = 1010, sufficient for practical applications.

7.3.2 Hyperfine Control over NSE

Previously, it has been demonstrate that electron spin can be used to control NSE

through the hyperfine interaction [109–112]. Using hyperfine interaction to control

nuclear spins has been extensively discussed in Sec. 3. Here we only discuss how the

transition rate between |0⟩ and |1⟩ scales with 𝑁 when a single electron spin is used

to control the NSE. Here |0⟩ and |1⟩ are the number states of the NM mode that

interacts with the electron. While other NM modes can have nonzero occupations, for

brevity we set |0⟩ = |𝐺⟩ in and |1⟩ = |𝐸⟩ in Eqs. (7.9, 7.10). This would not change

the essence of discussions below, as other NMs do not participate in the interaction

with the electron spin.

The hyperfine Hamiltonian for the NSE is

Hhf =
∑︁
𝛼

𝑆 · A𝛼 · 𝐼𝛼. (7.14)

Note that here we have omitted Cartesian indices. As shown in Eqs. (2.4, 2.5), the

strength of the hyperfine interaction A𝛼 is proportional to the wavefunction density

𝜌𝛼𝑆 near the 𝛼-th nuclear site. If the electron needs to control 𝑁 nuclear spins, then

its wavefunction is shared by all nuclear spins. Consequently, one has A𝛼 ∝ 𝜌𝛼𝑆 ∝ 1
𝑁

,
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and

Hhf =
1

𝑁

∑︁
𝛼

𝑆 · A0 · 𝐼𝛼, (7.15)

where we assumed that the system is uniform, so A0 is the same for all nuclear spins.

Then, the coupling strength between |0⟩ and |1⟩ via hyperfine interaction is

Ghf = ⟨1|Hhf |0⟩

=
1

𝑁

∑︁
𝛼𝛽

𝑐𝛽⟨𝑔1𝑔2 · · · 𝑔𝛽−1𝑒𝛽𝑔𝛽+1 · · · 𝑔𝑁 |𝑆 · A0 · 𝐼𝛼|𝑔1𝑔2𝑔3 · · · 𝑔𝑁⟩

=
1

𝑁

∑︁
𝛼𝛽

𝑐𝛽g
hf𝛿𝛼𝛽

=
ghf

√
𝑁
,

(7.16)

where we assume a uniform sample and hence 𝑐𝛼 = 1√
𝑁

on the last line. ghf =

⟨𝑒|𝑆 · A0 · 𝐼|𝑔⟩ is the hyperfine coupling strength if the electron were to control a

single nuclear spin. One can see that the coupling strength is inversely proportional

to
√
𝑁 , i.e., it becomes weaker for a large NSE. Therefore, a key to realizing the

electron spin control over NSE is to confine the electron wavefunction so that only a

small NSE interacts with the electron spin. Indeed, in Refs. [110–112], only around

105 nuclear spins in a quantum dot are controlled simultaneously.

7.3.3 ONQ control over NSE

In this section, we discuss the ONQ control over NSE. First, we derive the ONQ

coupling strength with NSE, using an approach similar to that in Section 7.3.2. When

interacting with optical lasers, the ONQ Hamiltonian of a NSE is [cf. Eq. (7.2)]

HONQ = gONQE𝑝E𝑞

∑︁
𝛼

|𝑒𝛼⟩⟨𝑔𝛼|+ ℎ.𝑐. (7.17)
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The inhomogeneity in both the NSE and the laser field are ignored. Then the ONQ

coupling strength of a NSE is

GONQ = ⟨1|HONQ|0⟩

=
∑︁
𝛼𝛽

𝑐𝛽⟨𝑔1𝑔2 · · · 𝑔𝛽−1𝑒𝛽𝑔𝛽+1 · · · 𝑔𝑁 |
{︀
gONQ|𝑒𝛼⟩⟨𝑔𝛼|

}︀
|𝑔1𝑔2𝑔3 · · · 𝑔𝑁⟩

=
∑︁
𝛼𝛽

𝑐𝛽g
ONQ𝛿𝛼𝛽E𝑝E𝑞

=
√
𝑁gONQE𝑝E𝑞.

(7.18)

A Notably feature is the
√
𝑁 amplification factor, which boosts the ONQ interaction

when the NSE is large. Here |0⟩ and |1⟩ are the number states of the 𝑚-th NM

mode, which participates in the interaction with the optical photons. We again

used |0⟩ = |𝐺⟩ in and |1⟩ = |𝐸⟩ to simplify the expressions. Note again that in

most situations only one NM mode can interact with optical photons because of the

requirement of simultaneous conservation of both energy and momentum.

Next, we will derive the ONQ coupling between optical photons and the NM using

a different approach. We start from the original ONQ Hamiltonian of the NSE, which

is
HONQ =

∑︁
𝛼

𝐻𝛼
ONQ

=
∑︁
𝛼

∑︁
𝑖𝑗

(︀
D

𝑝𝑞
𝑖𝑗 E

𝛼
𝑝 E

𝛼
𝑞 𝐼

𝛼
𝑖 𝐼

𝛼
𝑗 + ℎ.𝑐.

)︀
.

(7.19)

Here the nuclei are labelled by 𝛼. E𝛼
𝑝(𝑞) is the electric field at the site of the 𝛼-th

nucleus.

Then, we transform the spin operators to boson creation/annihilation operators

using the Holstein-Primakoff transformation, yielding
∑︀

𝑖𝑗 D
𝑝𝑞
𝑖𝑗 𝐼

𝛼
𝑖 𝐼

𝛼
𝑗 ≈ gONQ(𝑎†𝛼 +

ℎ.𝑐.). Here we ignored some other higher-order terms that involve e.g. 𝑎†𝛼𝑎𝛼 or 𝑎†𝛼𝑎†𝛼
[cf. Eq (6.2, 6.3)], since they are off-resonance. This leads to

HONQ ≈
∑︁
𝛼

gONQE𝛼
𝑝 E

𝛼
𝑞

(︀
𝑎†𝛼 + ℎ.𝑐.

)︀
. (7.20)
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As we will discuss below, for the quantum memory application, the system is under

the 𝜔𝑝-pumping laser and is put into an optical cavity resonant with the 𝜔𝑞-field.

Consequently, we treat the 𝜔𝑝-field as an external plane wave E𝛼
𝑝 = E𝑝e

𝑖𝑘𝑝·𝑟𝛼 with 𝑘𝑝

the wavevector, and second-quantize the 𝜔𝑞-field using E𝛼
𝑞 = Ezpf

𝑞

(︀
𝑎†𝑞e

−𝑖𝑘𝑞 ·𝑟𝛼 + ℎ.𝑐.
)︀
,

where Ezpf
𝑞 is the zero-point field of the 𝜔𝑞-photon. We also perform the Fourier

transformation for the 𝑎†𝛼 (𝑎𝛼) operators [cf. Eq. (6.6)], leading to

HONQ =
∑︁
𝛼

gONQE𝑝E
zpf
𝑞 e𝑖𝑘𝑝·𝑟𝛼

(︀
𝑎†𝑞e

−𝑖𝑘𝑞 ·𝑟𝛼 + ℎ.𝑐.
)︀ 1√

𝑁

∑︁
𝑘

(︁
e−𝑖𝑘·𝑟𝛼𝑎†𝑘 + ℎ.𝑐.

)︁
=

gONQE𝑝E
zpf
𝑞√

𝑁

∑︁
𝑘

∑︁
𝛼

{︁
e𝑖(𝑘𝑝−𝑘𝑞−𝑘)·𝑟𝛼𝑎†𝑞𝑎

†
𝑘 + e𝑖(𝑘𝑝−𝑘𝑞+𝑘)·𝑟𝛼𝑎†𝑞𝑎𝑘 + ℎ.𝑐.

}︁
=

gONQE𝑝E
zpf
𝑞√

𝑁

∑︁
𝑘

{︁
𝑁∆(𝑘𝑝 − 𝑘𝑞 − 𝑘)𝑏†𝑞𝑎

†
𝑘 +𝑁∆(𝑘𝑝 − 𝑘𝑞 + 𝑘)𝑎†𝑞𝑎𝑘 + ℎ.𝑐.

}︁
= gONQ

√
𝑁E𝑝E

zpf
𝑞

{︀
𝑎†𝑞𝑎𝑚 + 𝑎†𝑞𝑎

†
𝑚 + ℎ.𝑐.

}︀
.

(7.21)

Here one can observe the
√
𝑁 factor for the collective interaction between the optical

photons and the NM. On the last line, we omitted the 𝑘 subscript of the NM mode,

but instead used 𝑚 as the subscript. This is because due to the conservation of

momentum, one has 𝑘 = ±(𝑘𝑞 − 𝑘𝑞), and thus 𝑘 is always close to the Γ-point in the

Brillouin zone.

Finally, one should note that the frequency of the 𝜔𝑞-photon is not arbitrary, but

determined by conservation of energy. For the 𝑎†𝑞𝑎𝑚 term, one has 𝜔𝑞 = 𝜔ℎ ≡ 𝜔𝑝+𝜔𝑚.

For the 𝑎†𝑞𝑎†𝑚 term, one has 𝜔𝑞 = 𝜔𝑙 ≡ 𝜔𝑝 + 𝜔𝑚. We replace the subscript 𝑞 with ℎ

and 𝑙 accordingly, yielding

HONQ = gONQ
√
𝑁E𝑝

{︁
E
zpf
ℎ 𝑎†ℎ𝑎𝑚 + E

zpf
𝑙 𝑎†𝑙𝑎

†
𝑚 + ℎ.𝑐.

}︁
. (7.22)

The collective coupling strength are

Gℎ = gONQ
√
𝑁E𝑝E

zpf
ℎ ,

G𝑙 = gONQ
√
𝑁E𝑝E

zpf
𝑙 .

(7.23)
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Pumped with 𝜔𝑝 laser
𝜔ℎ photon comes in

Nuclear Spin 
Ensemble

Optical cavity 
resonant with 𝜔ℎ

𝜔ℎ photon goes out

Readout Storage

Figure 7-3: Illustration of the NSE quantum memory using the ONQ effect. The
NSE is put inside an optical cavity with resonance frequency 𝜔𝑝, and is pumped with
the 𝜔𝑞-laser. When a 𝜔𝑝-photons comes into the cavity, the NSE can jump from |0⟩
to |1⟩ and memorize the 𝜔𝑝-photon, via the ONQ interaction with the photon. This
is the storage process. For readout, one detects whether a 𝜔𝑝-photon can be emitted
to determine the state of the NSE.

One can see that the total coupling strength is enhanced by a factor of
√
𝑁 ,

consistent with Eq. (7.18). This is in sharp contrast to the hyperfine coupling strength

for a NSE in Eq. (7.16), which is proportional to 1√
𝑁

. Therefore, using the ONQ effect,

a relatively large number of nuclear spins can be controlled simultaneously, provided

that the spot size and penetration depth of the pumping laser is large enough so that

all the nuclear spins interact with the pumping laser efficiently. Specifically, the spot

size and penetration depth of an off-resonance laser can be much greater than 1 𝜇m,

while a crystal sample with 1 𝜇m size along each dimension contains 𝑁 ∼ 1010 nuclear

spins, considering that the number density of nuclear spins is typically on the order

of 𝜌 ∼ 1028 m−3 in pristine crystals.

7.3.4 Protocol of the NSE Quantum Memory

Next, we discuss the storage and readout protocol of the NSE Quantum memory,

which is illustrated in Figure 7-3. Without loss of generality, we assume that the
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photon carrying the quantum information has frequency 𝜔ℎ [cf. Eq. (7.19)]. The

NSE is put inside an optical cavity resonant with the 𝜔ℎ-photon, and is pumped with

the 𝜔𝑝-laser.

HONQ = gONQ
√
𝑁E𝑞E

zpf
ℎ 𝑎ℎ|1⟩⟨0|+ ℎ.𝑐. (7.24)

Here for clarity we used 𝑎†𝑚 = |1⟩⟨0| and only considered the beam-splitting term

in Eq. (7.19). This is because for quantum memory we only need to consider the

swap between a single photon and a single NM. Actually, the coupling strength of

the squeezing term can be very small because the 𝜔ℎ-cavity is off-resonance with the

𝜔𝑙-photon 2. In the 𝜔ℎ-cavity, Ezpf
ℎ can be expressed as

E
zpf
ℎ =

√︂
𝜔ℎ

2𝜀0𝑉ℎ
, (7.25)

where 𝑉ℎ is the mode volume of the 𝜔ℎ-cavity. If 𝜔ℎ = 1 eV, E𝑝 = 10 MV/m,

𝑁 = 1010, and 𝑉ℎ = 1 𝜇m3, then one has the coupling strength as

GONQ = gONQ
√
𝑁E𝑞E

zpf
ℎ ∼ 0.13 MHz. (7.26)

Considering that the quality factor of an optical cavity can reach 109 or even 1010

(see e.g., Refs. [96, 113, 114]), the linewidth of the optical photon in the cavity is

𝜅ℎ ∼ 0.1 MHz. One has the spontaneous transition rate can be estimated as

fspon ∼
[︀
4GONQ

]︀2
𝜅ℎ

∼ 0.6 MHz, (7.27)

which is far above the decoherence/decay rate of both the NSE and the photon.

For both storage and readout process, the NSE is put in the 𝜔ℎ-cavity and pumped

with the 𝜔𝑝-laser. The storage process the 𝜔ℎ-photon is as follows. The NSE is first

initialized to |0⟩. When the 𝜔ℎ-photon comes in, the NSE can absorb the 𝜔ℎ-photon,

and jump to |1⟩.

For readout, one possible approach is to detect whether a 𝜔ℎ-photon is emitted to

2That is, Ezpf
𝑙 is very small compared with E

zpf
ℎ
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determine the state of the NSE - If the NSE is in |1⟩, then it is possible to detect an

outgoing 𝜔ℎ-photon; if the NSE is in |0⟩, then one cannot detect the 𝜔ℎ photon. The

emission rate is in Eq. (7.27), which is a relatively high emission rate, and should be

detectable by current single photon detectors [98,99].

Another approach for the nondemolition measurement of the quantum state of

the NSE, using the dispersive interaction [115–118] with an off-resonance anharmonic

optical cavity. In this case, the 𝜔𝑝-cavity is tuned off-resonance with the ONQ tran-

sition, i.e., 𝛿 ≡ 𝜔𝑝 − 𝜔𝑞 − ∆𝐺𝐸 ̸= 0 3. Meanwhile, the cavity has an anharmonicity

𝛼, which could result from e.g., the interaction with an ancillary atom [119,120] and

can reach above 1 MHz. In this case, the resonance frequency of the cavity depends

on the states of the NSE, and the shift in the resonance frequency is given by

𝜁 ≈
2
[︁
gONQ

√
𝑁E𝑞E

zpf
ℎ 𝑜1

]︁2
𝛿

1

1 + 𝛿/𝛼
. (7.28)

One has 𝜁 ≈ 30 kHz when E𝑞 = 0.1 MV/cm, 𝛿 = 0.2 MHz, and 𝛼 = 1 MHz. Such

a 𝜁 is resolvable considering that the linewidth of the cavity is around 24 kHz when

𝑄 = 1010. Therefore, by detecting the shift in the resonance frequency of the cavity,

one can indirectly probe the NSE state. This approach for detecting NSE state could

be more challenging than the resonant photon emission approach described above,

since introducing anharmonicity in the optical cavity could affect the properties of the

NSE (e.g., coherence time) as well. Hence, the system needs to be carefully designed,

which we leave as a future work.

7.3.5 Undesired Transitions

Finally, we would like to remark that besides the desired storage/readout transitions

as described above, the NSE can do other undesired transitions as well. For example,

when the NSE is in |0⟩ and is pumped with the 𝜔𝑝-field, the NSE can spontaneously

jump to |1⟩ and emit a photon with frequency 𝜔𝑞 − 𝜔𝑚. However, the transition

3Δ𝐺𝐸 is energy difference between |𝐺⟩ and |𝐸⟩, as discussed in the main text
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rate f′
spon of such a process is strongly suppressed by the cavity resonance with the

𝜔ℎ-field. Roughly, one has [96]

f′
spon

fspon
=

𝜅2ℎ
4𝜔2

𝑚 + 𝜅2ℎ
. (7.29)

If 𝜔𝑚 = 2𝜋 ·GHz and 𝜅ℎ = 2𝜋 ·MHz, one has f′spon
fspon

∼ 2.5× 10−7, which barely affects

the fidelity of the quantum memory.

7.4 Quantum Transduction

As described in previous sections, through the ONQ effect, nuclear spins can be

coupled to optical photons. On the other hand, nuclear spins can be coupled to

microwave (MW) / radio frequency (RF) photons (denoted by a subscript 𝑟 hereafter)

via nuclear Zeeman interaction (Section 2.1). Consequently, nuclear spins can be the

transducers between optical and MW/RF photons, which will be the focus of this

section.

7.4.1 Transduction Hamiltonian

First we look at the transduction Hamiltonian, which involves both the ONQ interac-

tion and the nuclear Zeeman interaction. Here we treat the 𝜔𝑝-laser as the pumping

field, and second quantize the 𝜔ℎ and 𝜔𝑟-photon. The transduction Hamiltonian of

the combined system of nuclear spins, optical photons, and MW/RF photons is

H𝑟↔𝑜 =
∑︁
𝛼

{︂
𝛿

2
(|𝑒𝛼⟩⟨𝑒𝛼| − |𝑔𝛼⟩⟨𝑔𝛼|) + gONQE

zpf
ℎ E𝑝𝑎

†
ℎ|𝑔𝛼⟩⟨𝑒𝛼|+ 𝛾𝑁B

zpf𝑎†𝑟|𝑔𝛼⟩⟨𝑒𝛼|+ ℎ.𝑐.

}︂
.

(7.30)

The frequency matching condition requires 𝜔ℎ − 𝜔𝑝 = 𝜔𝑟. However, 𝜔𝑟 is detuned

from the resonance frequency ∆𝑔𝑒 by 𝛿 = |𝜔𝑟 − ∆𝑔𝑒|, which should be large enough

to avoid the absorption of the MW/RF photons by the nuclear spins. E
zpf
ℎ =

√︁
𝜔ℎ

2𝜀0𝑉ℎ

is the zero-point electric field of the 𝜔ℎ-photon as described before. Bzpf
𝑟 =

√︁
𝜇𝑜𝜔𝑟

2𝑉𝑟
is

the zero-point magnetic field of the 𝜔𝑟-photon, where 𝜇0 is the vacuum permeability.
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Figure 7-4: Illustration of the quantum transduction between optical and MW/RF
photons using the ONQ effect. Nuclear spins interact with optical photons via the
ONQ effect, and interact with MW/RF photons via the nuclear Zeeman interaction.
The transduction between optical and MW/RF photons can be realized using nuclear
spins as the media.

When the detuning is large enough, Eq. (7.30) can be re-written as

H𝑟↔𝑜
eff = Gℎ𝑎

†
ℎ|0⟩⟨1|+ G𝑟𝑎

†
𝑟|0⟩⟨1|+ ℎ.𝑐. (7.31)

Here we have ignored the inhomogeneity in nuclear spins. The first (second) term de-

scribes the collective interaction between the NSE and the optical (MW/RF) photon.

The collective coupling strength are

Gℎ = gONQ
√
𝑁E𝑝E

zpf
ℎ ,

G𝑟 = 𝛾𝑁
√
𝑁Bzpf

𝑟 .
(7.32)

Before further analyses, we estimate the magnitude of Gℎ and G𝑟 achievable in

experiments. We assume 𝜔ℎ = 1 eV and 𝜔𝑟 = 2𝜋 · 1 GHz. We also assume 𝑁 = 𝜌𝑉ℎ,

where the number density of nuclear spins is 𝜌 ∼ 1028 m−3. This leads to Gℎ ≈

2.4 MHz when E𝑝 = 1.8 MV/cm. As for G𝑟, we assume that the mode volume of

the MW/RF cavity to be 𝑉𝑟 = 1 mm3, then one has G𝑟 ∼ 0.3 MHz when 𝑁 ∼ 1018,

corresponding to a crystal with 0.1 mm3 size. Note that MW/RF cavities with even

smaller mode volume are achievable [121].
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7.4.2 Adiabatical Elimination and Input-Output Formalism

In the limit of large detuning 𝛿 ≫ Gℎ, G𝑟, one can adiabatically eliminate the nuclear

spins dynamics in Eq. (7.31), and arrive at

H𝑟↔𝑜
ad = Gℎ𝑟𝑎

†
ℎ𝑎𝑟 + ℎ.𝑐. (7.33)

where

Gℎ𝑟 =
GℎG𝑟

𝛿
(7.34)

is the effective coupling strength between optical and MW/RF photons. Then the

transduction efficiency can be estimated using the input-output formalism [122,123].

Specifically, the Quantum Langevin equation for the optical and MW/RF fields are

𝑑𝑎ℎ
𝑑𝑡

= −𝑖Gℎ𝑟𝑎𝑟 −
𝜅ℎ
2
𝑎ℎ −

√
𝜅ℎ𝑎

in
ℎ ,

𝑑𝑎𝑟
𝑑𝑡

= −𝑖G*
𝑜𝑟𝑎ℎ −

𝜅𝑟
2
𝑎𝑟 −

√
𝜅𝑟𝑎

in
𝑟 ,

(7.35)

where 𝜅ℎ and 𝜅𝑟 are the cavity decay rate of the optical and MW/RF photons,

respectively. 𝑎inℎ and 𝑎in𝑟 are the input fields. Transforming to the frequency domain,

Eq. (7.35) becomes algebraic equations, which yield

𝑎outℎ (𝜔) =
4𝑖Gℎ𝑟

√
𝜅ℎ𝜅𝑟

4|Gℎ𝑟|2 + (𝜅ℎ − 2𝑖𝜔)(𝜅𝑟 − 2𝑖𝜔)
𝑎in𝑟 (𝜔) +

4|Gℎ𝑟|2 − (𝜅ℎ + 2𝑖𝜔)(𝜅𝑟 − 2𝑖𝜔)

4|Gℎ𝑟|2 + (𝜅ℎ − 2𝑖𝜔)(𝜅𝑟 − 2𝑖𝜔)
𝑎inℎ (𝜔),

𝑎out𝑟 (𝜔) =
4𝑖G*

𝑜𝑟

√
𝜅ℎ𝜅𝑟

4|Gℎ𝑟|2 + (𝜅ℎ − 2𝑖𝜔)(𝜅𝑟 − 2𝑖𝜔)
𝑎inℎ (𝜔) +

4|Gℎ𝑟|2 − (𝜅ℎ − 2𝑖𝜔)(𝜅𝑟 + 2𝑖𝜔)

4|Gℎ𝑟|2 + (𝜅ℎ − 2𝑖𝜔)(𝜅𝑟 − 2𝑖𝜔)
𝑎in𝑟 (𝜔).

(7.36)

The conversion efficiency between optical and MW/RF fields is

𝜂(𝜔) ≡
⃒⃒⃒⃒
𝑎outℎ (𝜔)

𝑎in𝑟 (𝜔)

⃒⃒⃒⃒2
=

⃒⃒⃒⃒
𝑎out𝑟 (𝜔)

𝑎inℎ (𝜔)

⃒⃒⃒⃒2
=

⃒⃒⃒⃒
4𝑖Gℎ𝑟

√
𝜅ℎ𝜅𝑟

4|Gℎ𝑟|2 + (𝜅ℎ − 2𝑖𝜔)(𝜅𝑟 − 2𝑖𝜔)

⃒⃒⃒⃒2
.

(7.37)
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The frequency matching condition 𝜔ℎ − 𝜔𝑝 = 𝜔𝑟 corresponds to 𝜔 = 0 in Eqs. (7.36,

7.37). In this case, unity transduction efficiency 𝜂(𝜔 = 0) = 1 can be achieved when

Γ ≡ 2|Gℎ𝑟|√
𝜅ℎ𝜅𝑟

= 1. (7.38)

This condition is also called the impedance matching condition.

As discussed in the previous section, Gℎ = 2.4 MHz and G𝑟 = 0.3 MHz can be

achievable in experiments. Here we also need to examine the photon loss rates 𝜅ℎ and

𝜅𝑟. For optical cavities, the quality factor can reach over 109 [96,113,114], equivalent

to 𝜅ℎ = 0.24 MHz for 𝜔ℎ = 1 eV. For MW/RF cavities, the quality factor can reach

105 [124], equivalent to 𝜅𝑟 = 0.01 MHz when 𝜔𝑟 = 1 GHz. Under these conditions,

Γ = 1 is achieved when the detuning is 𝛿 ≈ 30 MHz, satisfying the 𝛿 ≫ Gℎ, G𝑟

condition required for the adiabatical elimination.

7.4.3 Master Equation Simulations

The adiabatical elimination in Eq. (7.33) provides an easy approach for estimating

the transduction efficiency. However, it has a major drawback - the dynamics of

the transducers (nuclear spins here) are completely ignored. This is not a good

assumption, especially when the dynamics, including the decay rate of the transducers

are fast.

To demonstrate how the dynamics of nuclear spins affect the transduction effi-

ciency, we adopt the master equation approach. The master equation can be expressed

as
𝑑𝜌

𝑑𝑡
= −𝑖[H𝑟↔𝑜

eff , 𝜌] + 𝜅ℎ𝜁(𝑎ℎ) + 𝜅𝑚𝜁(𝜎
−) + 𝜅𝑟𝜁(𝑎𝑟), (7.39)

where H𝑟↔𝑜
eff is the full transduction Hamiltonian as shown in Eq. (7.31), 𝜌 is the

density matrix of the total system, and

𝜁(𝑜) = 𝑜𝜌𝑜† − 1

2

(︀
𝑜†𝑜𝜌− 𝜌𝑜†𝑜

)︀
(7.40)

is the Lindblad operator of a certain operator 𝑜. 𝜎− ≡ |0⟩⟨1|. Here we only considered
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a b

Figure 7-5: Numerical simulation of the optical to MW/RF transduction process using
the master equation. (a) Time evolution of the populations of different subsystems
(optical photon, nuclear spins, and MW/RF photon). Here we take 𝜅𝑚 = 0.01 MHz.
(b) Fidelity of the optical to MW/RF transition as a function of NSE dissipation rate
𝜅𝑚. In the simulations we take Gℎ = 2.4 MHz and G𝑟 = 0.3 MHz, as discussed in the
main text.

the relaxation of the nuclear spins, and the decoherece effect is ignored, which makes

marginal influence on the transduction process, according to our numerical tests.

There are various protocols to implement the transduction between optical and

MW/RF photons. Here we consider a simple protocol using sequential swap gates [125,

126]. For clarity, we use the optical to MW/RF transduction as an example. The

reverse MW/RF to optical transduction can be studied similarly. The protocol is

as follows. When an optical photon comes in, it is stored in the resonant optical

cavity and interacts with the nuclear spins for a certain amount of time that leads

to a |0⟩ → |1⟩ transition of the NSE, which is a swap process. During this period

of time, the MW/RF cavity is detuned, and the interaction between nuclear spins

and MW/RF photons are off. Then one turns on the interaction between MW/RF

photons and nuclear spins, and detunes the resonance frequency of optical cavity so

that optical photons can be decoupled. In this case, the nuclear spin transitions leads

to the emission of the MW/RF photon via the ONQ effect. In Figure 7-5, we show

that such a simple swap protocol could yield a transduction fidelity around 90 % with

parameters described around Eq. (7.38).

Next, we demonstrate how the decoherence of nuclear spins can affect the trans-
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duction efficiency. From Figure 7-5(b), one can see that the transduction fidelity

significantly deteriorates when 𝜅𝑚 ≳ 0.1 MHz. Fortunately, nuclear spins are im-

mune to external perturbations, and 𝜅𝑚 as low as kHz is readily achievable.

7.5 Laser Cooling of Nuclear Magnons

Nuclear spin is one of the hardest substances to cool down. As discussed before, the

gyromagnetic ratio of nuclei is typically on the order of 10 × 2𝜋·MHz
T

. Hence, under

a 2 T magnetic field, the nuclear spin splitting is only 20 MHz, equivalent to 1 mK.

On the other hand, the 3He/4He dilution refrigerators usually can only reach around

2 mK [127], whereby the nuclear spin has ∼ 38% probability to be on the excited

state, hindering various applications of nuclear spins. One possible approach to avoid

this problem is to use nuclear spins with large quadrupole interaction, where the

nuclear spin splitting can reach ∼ 1 GHz, equivalent to 50 mK (see e.g., Sec. 7.3.4).

However, nuclei with large quadrupole interaction are not viable for all applications.

Can we further cool down nuclear spins with lasers? At first sight, one may expect

that under laser illumination, substances would be heated up because they can absorb

energy from the laser. Somewhat intuitively, laser can actually cool down objects.

Laser cooling of atoms and molecules using the Doppler effect [128–130] has been

proposed and realized almost half-century ago. In recent years, laser cooling of quasi-

particles such as phonons [131], excitons [132], and electron magnons [133] has also

been proposed and/or realized using different techniques/mechanims. In this section,

we will show that the ONQ effect can enable the laser cooling of nuclear magnons

under feasible experimental conditions.

7.5.1 Laser Cooling/Heating Scheme

The eigenstates of the NM Hamiltonian Eq. (6.8) are the number states |𝑛⟩, whereby

𝑛 NMs are excited. Under the pumping laser 𝜔𝑝, NMs can be created (annihilated)

due to the ONQ interaction, which can be described by the ONQ Hamiltonian [cf.
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Eq. (7.21), see also Ref. [134]]

HONQ
𝑚 = Gℎ𝑎

†
𝑚𝑎ℎ + G𝑙𝑎

†
𝑚𝑎

†
𝑙 + ℎ.𝑐. (7.41)

where

Gℎ(𝑙) = gONQ
√
𝑁E𝑝E

zpf
ℎ(𝑙) (7.42)

is are the coupling strengths.

Possible transitions of the NM mode are illustrated in Figure 7-6. Here Green

(red) arrows correspond to the first (second) term in Eq. (7.41). For laser cooling,

one needs Gℎ ≫ G𝑙 [131], whereby the second term in Eq. (7.41) (red arrows) can be

ignored. The solid and dashed green arrows indicate two reverse processes: The solid

green arrows indicate the 𝜔𝑝 + 𝜔𝑚 → 𝜔ℎ process, which annihilates and cools down

NMs; The dashed green arrows correspond to the reverse 𝜔ℎ → 𝜔𝑝 + 𝜔𝑚 transition,

which creates and heats-up NMs (back-heating effect). Usually the back-heating can

be minimal if the 𝜔ℎ-photon has a small population. The grey curved lines denote the

interactions between NMs/photons and the heat bath. On the other hand, the laser

heating of NMs can be achieved when G𝑙 ≫ Gℎ, whereby the first term in Eq. (7.41)

(green arrows) can be ignored.

In the rotating frame of 𝜔𝑝, one has the Hamiltonian of the combined system of

𝜔ℎ-photons and NMs as

H𝐶 = 𝜔𝑚𝑎
†
𝑚𝑎𝑚 + (𝜔ℎ − 𝜔𝑝)𝑎

†
ℎ𝑎ℎ +

(︁
Gℎ𝑎

†
ℎ𝑎𝑚 + ℎ.𝑐.

)︁
. (7.43)

Here we used the condition of Gℎ ≫ G𝑙, which can be realized by e.g., using an optical

cavity resonant with the 𝜔ℎ-photon. In this case, one has E
zpf
ℎ =

√︁
ℏ𝜔ℎ

2𝜀0𝑉ℎ
, where

𝑉ℎ is the mode volume of the 𝜔ℎ-cavity. As estimated before, one has Gℎ[kHz] ≈

1.9×E𝑝[MV/m], that is, a 1 MV/m pumping field leads to a collective ONQ coupling

strength of around 1.9 kHz.
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NM 

Kz

Figure 7-6: Scheme of the laser cooling/heating process. Circles denote photons whose
frequencies are marked inside the circle. The hexagon denotes the NM. Arrows denote
possible ONQ transitions, while the grey wavy lines indicate the coupling with the
heat bath.

7.5.2 Dynamics of the Laser Cooling Process

The dynamics of the laser cooling process can be described by the master equation

𝑑𝜌

𝑑𝑡
= −𝑖[H𝐶 , 𝜌] + 𝜅ℎ𝜁(𝑎ℎ) + 𝜅𝑚(𝑛th + 1)𝜁(𝑎𝑚) + 𝜅𝑚𝑛th𝜁(𝑎

†
𝑚), (7.44)

where 𝜅ℎ and 𝜅𝑚 are the decay rates of the 𝜔ℎ-photon and the NM, respectively, while

𝑛th =
1

exp
(︁

𝜔𝑚

𝑘𝐵𝑇

)︁
− 1

(7.45)

is the thermal population of the nuclear magnon. Considering that 𝜔𝑚 can reach

tens of MHz, while 𝑇 can be mK in a dilute refrigerator, we fix 𝑛th = 1 for following

discussions. The thermal occupation of the 𝜔ℎ-photon is ignored since 𝜔ℎ ≫ 𝑘𝐵𝑇 .

The laser cooling behavior is characterized by two parameters

Gℎ

𝜅𝑚
and

Gℎ

𝜅ℎ
(7.46)

𝜅𝑚 is usually in the sub-kHz range (Section 6.2.2), while Gℎ can be well above 1 kHz.
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Figure 7-7: Numerical simulation of the laser cooling of nuclear magnon using the
ONQ effect. (a) Time evolution of 𝑛𝑚(𝑡) in the weak-coupling regime (Gℎ/𝜅ℎ ≪ 1.
(b) The steady state NM occupation 𝑛steady as a function of dissipation rates 𝜅𝑚 and
𝜅ℎ in the weak-coupling regime. Here we set Gℎ = 10 kHz. (c) Time evolution of
𝑛𝑚(𝑡) and 𝑛ℎ(𝑡) in the strong coupling regime. Here we set Gℎ = 1 MHz. (d) 𝑛steady

as a function of Gℎ in both weak and strong-coupling regime. The strong-coupling
regime is mark in cyan. The red (green) curve denotes laser cooling without (with)
switching the 𝑄-factor of optical cavity. In (a, c, d), 𝜅𝑚 = 0.1 kHz and 𝜅ℎ = 1 MHz
are used.
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Hence, we are in the “strong-coupling” ( Gℎ
𝜅𝑚

≥ 1) regime regarding the dissipation of

NMs. On the other hand, 𝜅ℎ can be kept below MHz considering that a quality factor

𝑄ℎ on the order of 109 ∼ 1010 has been realized in optical cavities.

Weak-Coupling Regime

We first consider the weak-coupling regime ( Gℎ
𝜅ℎ

< 1). We first fix 𝜅𝑚 = 0.1 kHz

and 𝜅ℎ = 1 MHz. In Figure 7-7(a), the occupation number of the NM mode 𝑛𝑚(𝑡)

is plotted against time for Gℎ = 3, 10, and, 30 kHz, respectively. One can see that

𝑛𝑚(𝑡) monotonically decays with time until reaching a steady value (Section 7.5.3),

which is denoted by the dashed horizontal lines in Figure 7-7(a). Specifically, with

Gℎ = 10 kHz (30 kHz), one has 𝑛steady ≈ 0.20 (0.027), smaller by a factor of 5 (37)

as compared with 𝑛th. Note that the occupation number 𝑛ℎ of the 𝜔ℎ-photon is very

small during the whole process (Figure 7-8, Section 7.5.3) because of its fast decay

rate 𝜅ℎ ≫ Gℎ.

Next, we fix Gℎ = 10 kHz, corresponding to E𝑝 ≈ 5 MV/m. In this case, 𝑛steady as

a function of 𝜅𝑚 and 𝜅ℎ is shown in Figure 7-7(b). One can see that sizable cooling

effect exists even when 𝜅𝑚 = 1 kHz and 𝜅ℎ = 1 MHz.

Strong Coupling Regime

Next, we switch to the strong-coupling regime and set Gℎ = 1 MHz [Figure 7-7(c)].

In this case, 𝑛𝑚(𝑡) and 𝑛ℎ(𝑡) exhibit oscillating dynamics - 𝜔ℎ-photon and the NM

swaps with each other with a frequency of 2Gℎ. Notably, the magnitude of the total

occupation (𝑛𝑚 + 𝑛ℎ) continuously decreases with an envelope function 𝑒−𝜅̄𝑡. The

overall decay rate is

𝜅̄ =
1

2
(𝜅𝑚 + 𝜅ℎ). (7.47)

This is because approximately the NM and the 𝜔ℎ-photon mode each exists for half

of the time 𝑡 during the swap process. Finally, 𝑛steady reaches ∼ 10−4, smaller than 𝑛

by a factor of 104.
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7.5.3 Steady State Occupation of the NMs

During the laser cooling process, the NMs are coupled to the 𝜔ℎ-photons via the ONQ

effect, which is described by Eq. (7.22). The reduced transition rate between NMs

and 𝜔ℎ-photons can be obtained from the Fermi’s golden rule

K= 2𝜋G2
ℎ𝜌𝑓

= 2𝜋G2
ℎ

2

𝜋

𝜅ℎ
4(𝜔𝑚 − 𝜔ℎ)2 + 𝜅2ℎ

𝜔𝑚=𝜔ℎ−−−−→ 4G2
ℎ

𝜅
.

(7.48)

Here 𝜌𝑓 is the density of states of the final states. On the second line, we assume that

the density of states of the 𝜔ℎ-photon in the optical cavity is a Lorentzian function

with linewidth 𝜅ℎ. On the last line, we set 𝜔𝑚 = 𝜔ℎ, which is the resonance condition.

For bosons, the total transition rate depends on the occupation number as well.

For example, the total transition rate of 𝜔𝑝 + 𝜔𝑚 → 𝜔ℎ is

𝑓1 = K𝑛𝑚(𝑛ℎ + 1), (7.49)

where 𝑛𝑚 and 𝑛ℎ are the occupation number of the NM and the 𝜔ℎ-photon, respec-

tively. Similarly, the total transition rate of 𝜔ℎ → 𝜔𝑝 + 𝜔𝑚 is

𝑓2 = K(𝑛𝑚 + 1)𝑛ℎ. (7.50)

Note that the 𝜔𝑝-field is treated as a classical field. In other words, the number

of 𝜔𝑝-photons is implicitly represented by the electric field strength E𝑝, which is

incorporated in the C factor [cf. Eqs. (7.23, 7.48)].

Meanwhile, the NMs and the 𝜔ℎ-photons are coupled to the heat bath with a

coupling rate of 𝜅𝑚 and 𝜅ℎ, respectively. This leads to additional transitions. For the

NM, we have

• Absorption of NMs from the heat bath, with a transition rate 𝑓3 = 𝜅𝑚𝑛th(𝑛𝑚+

1);
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• Emission of NMs to the heat bath, with transition rate 𝑓4 = 𝜅𝑚(𝑛th + 1)𝑛𝑚;

Under the ONQ coupling with the 𝜔ℎ-photon and the coupling with the heat bath,

there are four transitions involving NMs, which are described above. The steady state

NM occupation 𝑛steady
𝑚 can be obtained by balancing all the four transitions above

(i.e., 𝑓1 + 𝑓4 = 𝑓2 + 𝑓3), leading to

K(𝑛steady
𝑚 + 1)𝑛steady

ℎ + 𝜅𝑚𝑛th(𝑛
steady
𝑚 + 1) = K𝑛steady

𝑚 (𝑛steady
ℎ + 1) + 𝜅𝑚(𝑛th + 1)𝑛steady

𝑚 ,

(7.51)

where 𝑛steady
𝑚 are 𝑛steady

ℎ are the steady-state occupation of the NM and the 𝜔ℎ-photon,

respectively. A similar equation can be obtained by balancing the transitions involving

the 𝜔ℎ-photon, which is

K𝑛steady(𝑛
steady
ℎ + 1) = 𝜅ℎ𝑛

steady
ℎ +K(𝑛steady + 1)𝑛steady

ℎ , (7.52)

where we used the fact that the thermal occupation of the 𝜔ℎ-photon is zero. Eqs. (7.51,

7.52) yield

𝑛steady
𝑚 = 𝑛th

𝜅𝑚(K+ 𝜅ℎ)

(𝜅𝑚 + 𝜅ℎ)K+ 𝜅𝑚𝜅ℎ
,

𝑛steady
ℎ = 𝑛th

𝜅𝑚K

(𝜅𝑚 + 𝜅ℎ)K+ 𝜅𝑚𝜅ℎ
.

(7.53)

In the weak-coupling regime, Eq. (7.53) reduces to

𝑛steady
𝑚 ≈ 𝑛th

𝜅𝑚𝜅ℎ
4G2

ℎ + 𝜅𝑚𝜅ℎ
,

𝑛steady
ℎ ≈ 0,

(7.54)

which are used in the main text. Actually, the occupation of the 𝜔ℎ-photon is very

small during to whole laser-cooling process in the weak-coupling regime, as shown in

Figure 7-8.

102



Figure 7-8: Time evolution of the occupation number of the 𝜔ℎ-photon in the weak-
coupling regime. The horizontal dashed lines indicate the steady state occupation
calculated from Eq. (7.53). Here 𝜅ℎ = 1 MHz, 𝜅𝑚 = 0.1 kHz.

7.5.4 𝑄-switching

Interestingly, in the strong-coupling ( Gℎ
𝜅ℎ

≥ 1) regime, further increasing Gℎ does not

help improve the cooling effect [red curve in Figure 7-7(d)]. Actually, 𝑛steady becomes

a constant [cf. Eq. (7.53)]

𝑛steady =
𝜅𝑚
𝜅ℎ
𝑛th. (7.55)

This effect also appears in the case of optical cooling of mechanical modes [135–137].

Fortunately, this limitation can be avoided by 𝑄-switching [138] - When 𝑛ℎ(𝑡) reaches

its maximum, one abruptly increases 𝜅ℎ. This results in the quick decay of the

𝜔ℎ-photons and the suppression of the back-heating effect (Figure 7-9). With 𝑄-

switching, the NM mode can be further cooled down when Gℎ
𝜅ℎ

≥ 1 (green curve in

Figure 3d).

7.5.5 Entropy of the NM system

Similar to occupation number, entropy is another important parameter for various

applications. Here we show that during the laser cooling process, the entropy of the

NM system is also suppressed.

For a non-interacting boson mode whose chemical potential is zero and energy is
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Figure 7-9: Dynamics of laser cooling with 𝑄-switching. The cavity dissipation rate
is abruptly increased when 𝑛ℎ(𝑡) reaches its maximum. Gℎ = 10 MHz.

𝜔, its entropy at thermal equilibrium is

𝑆th = − ln(𝛼− 1) +
𝛼 ln𝛼

𝛼− 1
, (7.56)

where 𝛼 = exp
(︁

𝜔
𝑘𝐵𝑇

)︁
, with 𝑇 as the temperature and 𝑘𝐵 as the Boltzmann constant.

𝛼 is related to the thermal occupation number as

𝑛th =
1

𝛼− 1
. (7.57)

Eqs. (7.56, 7.57) leads to

𝑆th = 𝑆th(𝑛th), (7.58)

that is, 𝑆th is determined by 𝑛th.

Figure 7-10, shows the time evolution of the von Neuman entropy 𝑆vn of the NM

mode during the laser cooling process. When 𝑡 < 0, the NM mode is only coupled

to the thermal bath. One can see that 𝑆vn = 𝑆th(𝑛th) is a constant when 𝑡 < 0, as

expected.

At 𝑡 = 0, the laser cooling is turned on, and 𝑆vn starts to decrease with time, until

a steady value 𝑆vn, steady. Interestingly, one has

𝑆vn, steady ≈ 𝑆th(𝑛steady). (7.59)
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Figure 7-10: Time evolution of the von Neumann entropy 𝑆vn of the NM mode during
the laser cooling process. The laser cooling is turned on at 𝑡 = 0. The horizontal
lines indicate 𝑆th(𝑛steady). Here 𝜅ℎ = 1 MHz, 𝜅𝑚 = 0.1 kHz.

𝑆th(𝑛steady) is denoted by the horizontal lines in Figure 7-10. One can see that after

the laser cooling, the entropy of the NM system resembles that of an equilibrium

thermal system whose occupation number is 𝑛steady.

7.5.6 Laser Heating of NMs

For laser heating of NM modes, the optical cavity should be red-detuned to be res-

onant with the 𝜔𝑙-photon, so that one has G𝑙 ≫ Gℎ. In this case, the combined

Hamiltonian of the NM and the 𝜔𝑙-photons is

H𝐻 = 𝜔𝑚𝑎
†
𝑚𝑎𝑚 + (𝜔𝑙 − 𝜔𝑝)𝑎

†
𝑙𝑎𝑙 +

(︁
G𝑙𝑎

†
𝑙𝑎

†
𝑚 + ℎ.𝑐.

)︁
(7.60)

For laser heating, the parameter 4G2
𝑙

𝜅𝑚𝜅𝑙
plays a crucial role.

Weak-Coupling Regime

If 4G2
𝑙

𝜅𝑚𝜅𝑙
< 1, the population of NM 𝑛𝑚(𝑡) increases with time, until reaching a steady

number [Figure 7-11(a)]

𝑛steady
𝑚 =

𝑛th𝜅𝑚𝜅𝑙 + 4G2
𝑙

𝜅𝑚𝜅ℎ − 4G2
𝑙

, (7.61)

which is denoted by the dashed horizontal lines in Figure 7-11(a).
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a b

Figure 7-11: Numerical simulation of the laser heating of nuclear magnon using the
ONQ effect. The figures shows the time evolution of the occupation of the nuclear
magnon 𝑛𝑚(𝑡) in (a) weak-coupling regime (using master equation) and (b) strong-
coupling regime (using semi-classical rate equation). 𝜅𝑚 = 0.1 kHz, 𝜅ℎ = 1 MHz.

Strong-Coupling Regime

If 4G2
𝑙

𝜅𝑚𝜅𝑙
> 1, then the occupation number of NMs would not reach a steady-state value.

Instead, it will increase with time exponentially. Of course, the final population is

limited by (1) the depletion of laser energy; and (2) the maximum number of NMs,

which is 𝑁𝐼.

Since in the strong-coupling regime, 𝑛𝑚 could reach a very large value, the master

equation is not suitable for studying the dynamics. This is because the Fock space

needs to be truncated to a dimension greater than 𝑛𝑚, which significantly boosts the

computational cost. In this regard, we use the semi-classical rate equation to study

the laser heating dynamics, which is

𝑑𝑛𝑚

𝑑𝑡
= K(𝑛𝑚 + 1)(𝑛𝑙 + 1)−K𝑛𝑚𝑛𝑙 + 𝜅𝑚𝑛𝑚(𝑛th + 1)− (𝑛𝑚 + 1)𝑛th,

𝑑𝑛𝑙

𝑑𝑡
= K(𝑛𝑚 + 1)(𝑛𝑙 + 1)−K𝑛𝑚𝑛𝑙 + 𝜅ℎ𝑛𝑙,

(7.62)

where K =
4G2

𝑙

𝜅𝑚+𝜅𝑙
. A numerical solution of the rate equation is shown in Figure 7-

11(b), where the exponential growth of 𝑛𝑚 with time can be observed.
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7.5.7 Laser Cooling of a Single Nuclear Spin

In previous sections, we discussed the laser cooling/heating of NMs, which are the

collective excitations of an NSE. Similar mechanisms can potentially be applied to

cool down a single nuclear spin as well.

For a single nuclear spin, the concept of NM does not apply. Instead, one should

deal with the occupation number of the excited state, which is also denoted as 𝑛th

here for clarity. The ONQ coupling strength with a single nuclear spin is

Gℎ = gONQE𝑝

√︂
ℏ𝜔ℎ

2𝜀0𝑉ℎ
, (7.63)

which lacks the
√
𝑁 amplification factor (i.e., 𝑁 = 1). Fortunately, by judicious

nano-photonics design, an ultra-small mode volume 𝑉ℎ ∼ 10−22 m3 at 𝜔ℎ = 1 eV

could be achievable [97]. Thus, one has Gℎ ≈ 20 Hz when E𝑝 = 10 MV/m.

Meanwhile, different from the NM, whose decay rate is constrained by the interac-

tions between nuclear spins, a single nuclear spin can have a decay rate 𝜅𝑚 ≲ 1 𝜇Hz

when isolated from other nuclear/electron spins [8,9]. In this case, after laser cooling,

the finally occupation number of the excited state is

𝑛steady
𝑚 =

𝜅𝑚𝜅ℎ
4G2

ℎ + 𝜅𝑚𝜅ℎ
𝑛th

≈ 6× 10−4𝑛th,

(7.64)

where we used E𝑝 = 10 MV/m, 𝜅𝑚 = 1 𝜇Hz, and 𝜅ℎ = 1 MHz. Note that since the

coupling strength is Gℎ ≈ 20 Hz, the pumping laser should be stable for a duration

on the order of seconds.

7.6 Applications: NER vs. ONQ

The potential applications of the ONQ effect are listed in Table 7.3, while those of

the NER effect are listed in Table 6.1. One can see that ONQ and NER have some

common applications, such as controlling single nuclear spins. On the other hand,
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Table 7.2: Comparison of the potential applications of the NER and ONQ effects

Application NER ONQ

Single Nuclear Spin Manipulation ! !

Spectroscopy ! !

NSE Manipulation

(Quantum Storage)
! !

Quantum Transduction ! %

Laser Cooling/Heating ! %

ONQ has some unique applications, such as the laser cooling of NMs. The comparison

of potential applications of the NER and ONQ effects is summarized in Table 7.2.
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Chapter 8

Miscellaneous Topics

8.1 Experimental Considerations

In this section, we briefly discuss some issues relevant to the the experimental demon-

stration of the ONQ effect.

8.1.1 Size of the Crystal Sample

As discussed in previous chapters, the collective ONQ coupling strength Gℎ between

the optical fields and the NSE is an intensive property that depends on 𝜌 ≡ 𝑁
𝑉ℎ

, where

𝑁 is the number of nuclear spin, while 𝑉ℎ is the mode volume of the 𝜔ℎ-cavity. Hence,

𝜌 is approximately the number density of the nuclear spins. One can see that Gℎ is

approximately independent of the size of the crystal that contains the nuclear spin,

which should be comparable with 𝑉ℎ.

On the other hand, the collective ONQ interaction in Eq. (7.22) requires the

optical fields to be uniform in the whole crystal sample, otherwise only part of the

nuclear spins interact with optical fields. Hence, the size of the crystal should not

be too large. Particularly, the optical fields can have stronger intensity when focused

onto a smaller spot-size, and the spot-size is limited by the wavelength of the optical

field, which is on the order of 1 𝜇m. To this end, we suggest using a crystal sample

with transverse area of [1 𝜇m]2 to demonstrate the ONQ coupling between optical
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photons and the NSE.

Another factor that should be considered is the penetration depth of the optical

field. As discussed in the main text, we propose to use optical fields whose frequencies

𝜔 are below the bandgap 𝐸𝑔 of the crystal. Therefore, the direct absorption of the

laser energy via the one-photon process is in principle zero. On the other hand, the

multi-photon process, whereby electrons do interband transitions by simultaneously

absorbing multiple photons, can lead to the absorption of the laser energy. Specifi-

cally, the intensity of the two- and three-photon process is determined by the two- and

three-photon absorption coefficient 𝛼2 and 𝛼3, which are on the order of 10−10 m/W

and 10−25 m3/W2 in typical semiconductors [139–145]. The penetration depth of an

optical field due to the two-photon absorption can be estimated as [139,144]

𝑑2ph =
1

𝛼2𝑃in

,

𝑑3ph =
1

𝛼3𝑃 2
in

,
(8.1)

respectively, where 𝑃in = 1
2
𝑐𝜀0E

2 is the incident laser power. Here 𝑐 is the speed of

light. If the electric field is E = 10 MV/m, then one has 𝑑2ph ≈ 7.5 × 104 𝜇m and

𝑑3ph ≈ 5.7× 108 𝜇m. This indicates that the two-photon absorption is much stronger

than the three-photon absorption when E= 10 MV/m, so we will only consider two-

photon absorption when estimating the temperature rise below. On the other hand, if

the depth of the crystal is 𝑑 = 0.1 𝜇m, then the optical field inside can be considered

as uniform, since 𝑑≪ 𝑑2ph.

In summary, we suggest using a crystal sample with a 1× 1× 0.1 𝜇m3 dimension,

which can ensure that the optical fields inside are uniform. Considering that the num-

ber density of nuclear spins can be on the order of 1028 m−3 in typical semiconductors

(e.g., zbGaAs), the 1× 1× 0.1 𝜇m3 crystal sample contains around 109 nuclear spins.
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8.1.2 Temperature Rise In the Electron/Phonon System Un-

der Laser Illumination

In this section, we estimate the temperature rise of the crystal sample under laser

illumination. The duration 𝜏laser of the laser illumination needs to be on the order

of ms (Figure 3 in the main text), which is much longer than the timescale 𝜏𝑒,𝑝 of

electron/phonon dynamics (typically fs to ps). Hence, we first treat the laser as a

continuous wave laser to estimate the temperature rise in the electron/phonon system.

The laser energy absorption power per unit area can be estimated with [146]

𝑃abs = 𝑃in

(︂
1− 𝑒

− 𝑑
𝑑2ph

)︂
≈ 𝑃in

𝑑

𝑑2ph

=
1

2
𝑐𝜀0E

2 𝑑

𝑑2ph
,

(8.2)

where 𝑃in is the incident laser power.

The temperature rise in the electron/phonon system can be estimated from

∆𝑇𝑒𝑝 =
𝑃abs

𝐾
𝑑

≈ 1.5 mK

(8.3)

where we use E = 10 MV/m (laser power 130 mW/𝜇m2), 𝑑 = 0.1 𝜇m, and the

thermal conductivity is taken as 𝐾 = 10 W ·m−1 ·K−1. Here, we would like to remark

that the defects in the crystal sample, which could result in one-photon absorption

of laser energy, should be avoided. Hence, high-quality crystal samples are desirable.

Besides, if the laser frequency satisfies 2𝜔 < 𝐸𝑔, then the two-photon absorption

is forbidden as well. In this case, the leading order contribution to the absorption

would be the three-photon process, which is much slower, as discussed before. The

absorption of the laser energy and the temperature rise could be even smaller than

those estimated in Eqs. (8.2, 8.3).
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Figure 8-1: Photon decay rate due to two- and three-photon absorption as a function
of electric field strength in zinc blende GaAs.

8.1.3 Cavity Photon Decay due to Multi-Photon Absorption

The multi-photon absorption leads to the decay of the cavity photons as well, which

limits the maximum achievable quality factor of the cavity. The decay rate of the

photon due to two/three-photon absorption can be estimated as

𝜅2ph (3ph) =
𝑐

𝑑2ph (3ph)

, (8.4)

which is plotted in Figure 8-1 as a function of the electric field strength E. As

discussed in the main text, the electric field needs be on the order of 10 MV/m for

the laser cooling of nuclear magnons. At such an electric field strength, the photon

decay rate due to two-photon absorption is on the order of GHz. Hence, the two-

photon absorption needs to be avoided by using a laser with frequency 𝜔 that satisfies

2𝜔 < 𝐸𝑔, where 𝐸𝑔 is the bandgap. In this case, the leading order contribution would

be the three-photon process. From Figure 8-1, one can see that the photon decay

rate from three-photon absorption is below MHz when E= 10 MV/m. If the photon

decay rate needs to be further decreased, then it would be necessary to avoid three-

photon absorption as well, whereby the four-photon absorption would be the leading

contribution in the multi-photon process.
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8.1.4 Influence of the Photon/Laser Linewidth

The laser/photon linewidth is an important parameter for the ONQ effect. Be-

fore further discussions, we would like to note that while it is desirable to have a

small laser/photon linewidth, it is not necessary to have a laser/photon linewidth

smaller than the NMR frequency. Nonlinear optical responses can exist even if

the laser/photon linewidth is wide. For example, the bulk photovoltaic effect [147],

whereby a DC charge current is generated under light illumination, can happen under

white light [148], which has a ultra-large “linewidth”.

As can be observed in Eqs. (7.6, 7.27), the ONQ transition rate is inversely pro-

portional to the photon linewidth. Here we further examine the importance of the

laser/photon linewidth. We assume the laser/photon has a Lorentzian lineshape, and

the two-color laser/photon used in the ONQ effect are described by

E1(𝜔1) =
1

𝜋

𝜅𝑝
(𝜔1 − 𝜔𝑝)2 + 𝜅2𝑝

,

E2(𝜔2) =
1

𝜋

𝜅𝑞
(𝜔2 − 𝜔𝑞)2 + 𝜅2𝑞

.
(8.5)

One can see that the central frequency is 𝜔𝑝 (𝜔𝑞) and the linewidth is 𝜅𝑝 (𝜅𝑞).

When two-color fields with frequencies 𝜔1 and 𝜔2 are combined to trigger the Rabi

oscillation of the nuclear spins, the efficiency of the Rabi oscillation is proportional

to 𝜂(𝜔1, 𝜔2) =
𝑓2
Rabi

𝑓2
Rabi+(𝜔1−𝜔2−Δ)2

, where ∆ is the nuclear spin resonance frequency and

𝑓Rabi is Rabi frequency. Under laser/photon with lineshapes described by Eq. (8.5),

the overall efficiency of the Rabi oscillation can be estimated with

𝜂0 =

∫︁ ∫︁
d𝜔1d𝜔2E1(𝜔1)E2(𝜔2)𝜂(𝜔1, 𝜔2)

=
1

𝜋2

∫︁ ∫︁
d𝜔1d𝜔2

𝜅𝑝
(𝜔1 − 𝜔𝑝)2 + 𝜅2𝑝

𝜅𝑞
(𝜔2 − 𝜔𝑞)2 + 𝜅2𝑞

𝑓 2
Rabi

𝑓 2
Rabi + (𝜔1 − 𝜔2 −∆)2

=
𝑓Rabi(𝑓Rabi + 𝜅𝑝 + 𝜅𝑞)

(𝜔𝑝 − 𝜔𝑞 −∆)2 + (𝑓Rabi + 𝜅𝑝 + 𝜅𝑞)2
.

(8.6)

One can see that when 𝜔𝑝−𝜔𝑞−∆ = 0 and 𝜅𝑝 = 𝜅𝑞 = 0, then the efficiency is 𝜂0 = 1,
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as expected. Besides, one has 𝜂0 ∼ 1 when

𝜔𝑝 − 𝜔𝑞 −∆ ≲ 𝑓Rabi,

𝜅𝑝 (𝑞) ≲ 𝑓Rabi.
(8.7)

That is, the detuning from perfect resonance frequency and the linewidth of the two-

color laser/photon should be kept below the Rabi frequency 𝑓Rabi, which can be on

the order of kHz to MHz.

8.2 Nuclear Magnetism

In electronic systems, the interaction between nearby electron spins could lead to the

formation of macroscopic electronic spin (magnetic) structures, including ferromag-

netism, anti-ferromagnetism, ferri-magnetism, and spin waves [149]. In this section,

we discuss the possibility of the formation of nuclear spin patterns.

First, one should note that a spin polarization always breaks time-reversal sym-

metry (TRS), and a single nuclear spin could not spontaneously have a net spin po-

larization. To establish a magnetic structure, the TRS must be broken. In practice,

the TRS can be broken by

• external fields, such as magnetic field or circularly polarized light;

• interactions between nuclear spins, which could lead to spontaneous symmetry

breaking.

Next, we discusses these possibilities in more detail.

8.2.1 Magnetic Fields

External magnetic fields naturally break TRS, and hence lead to a nuclear spin po-

larization. In the following, we will show that various nuclear spin patterns can be

realized under magnetic fields.
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“Ferromagnetic-like” Structure

If all the nuclei are of the same species and are in the same environment, then they

would have the same polarization under external magnetic fields, which can be re-

garded as a “ferromagnetic-like” structure 1.

“Anti-ferromagnetic-like” Structure

If the nuclei are of different species, then “anti-ferromagnetic-like” structures could

arise under magnetic fields as well. For example, the gyromagnetic ratio of 13C and
29Si are

𝛾
13C ≈ +10.7084× 2𝜋 ·MHz

T
,

𝛾
29Si ≈ −8.465× 2𝜋 ·MHz

T
,

(8.8)

respectively. Consequently, in a SiC compound, if a magnetic field along +𝑧 direction

is applied, then 13C would preferably polarize along +𝑧 direction, whereas 29Si would

preferably polarize along −𝑧 direction, forming a “anti-ferromagnetic-like” structure.

“Staggered-magnetic-like” Structure

When the quadrupole interaction (Section 2.3) is considered, the nuclear spin could

form more complicated magnetic structures, which is here called “staggered-magnetic-

like” structure.

First, we would like to remark that although the quadrupole interaction leads

to anisotropy and a “preferred”-direction 𝑛 2, it cannot lead to net nuclear spin

polarization. This is because the nuclear quadrupole interaction 𝐻Q = 𝐼 · 𝑄 · 𝐼 is

quadratic in spin operator 𝐼, so the nuclear spin would have the same energy, and

thus equal probability, to polarize along +𝑛 and −𝑛 directions. Consequently, the

net spin polarization is still zero in equilibrium.

1Note that this is not true ferromagnetism, because ferromagnetism should arise spontaneously
without external magnetic fields. Here we use “ferromagnetic-like” only to indicate that all the
nuclear spins have the same polarization. Similar caveat applies to the “anti-ferromagnetic-like” and
“staggered-magnetic-like” patterns below.

2𝑛 is one of principal axis of the quadrupole tensor 𝑄, along which the nuclear quadrupole
interaction energy is the lowest.
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Ho1

Ho2

Figure 8-2: Atomic structure of HoSi3. The blue atoms are Si, while pink and green
atoms are two equivalent Ho.

If quadrupole interaction and external magnetic field co-exist, then the net po-

larization of the nuclear spin is determined by both the 𝑛 vector and the magnetic

field. As a result, nuclear spins under different environment (different 𝑛) could have

different net spin polarization. Here we use HoSi3 as an example. HoSi3 has space

group I4/mmm, and the two Ho atoms in the unit-cell are in inequivalent environ-

ments (Figure 8-2), leading to different 𝑛. If a 1 T magnetic field is applied along the

𝑧 direction ([111] crystallographical direction), then the two inequivalent Ho atoms

have different net spin polarization on the ground state, which are

⟨𝐼⟩Ho1 = [2.5270, 2.3921, −0.3765],

⟨𝐼⟩Ho2 = [2.4952, 2.2955, −0.8626].
(8.9)

Note that ⟨𝐼⟩Ho1 and ⟨𝐼⟩Ho2 are neither parallel nor anti-parallel to each other, which

can be considered as the “staggered-magnetic-like” structure.

Temperature Considerations

In the discussions above, we show that under external magnetic fields, the nuclear

spin ground state would have a net spin polarization. Hence, a nuclear spin structure

can be realized. To achieve such a net spin polarization, the nuclear spin should have

a large probability to be on the ground state. Since the nuclear spin splitting under
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a 1 T magnetic field is usually on the order of 10 MHz, the temperature should be

below 0.1 mK to ensure a high occupancy of the ground state.

8.2.2 Circularly Polarized Light

Besides magnetic field, circularly polarized light (CPL) 3 naturally breaks TRS as

well: the time-reversal partner of a left-handed CPL is a right-handed CPL. As we

will show below, CPL can dynamically lead to a net spin polarization. Here we

assume there is no external magnetic fields, while a quadrupole interaction leads to

the nuclear spin splitting. For brevity, we assume 𝐼 = 1, and

𝑄 =

⎡⎢⎢⎢⎣
−100 0 0

0 −100 0

0 0 200

⎤⎥⎥⎥⎦× 2𝜋 ·MHz. (8.10)

The eigenstates under the quadrupole interaction are {|0⟩, |+1⟩, |−1⟩}, among which

|0⟩ is the ground state with an energy level of −200 MHz, while |±1⟩ are degenerate

with an energy of +100 MHz.

Since |±1⟩ are degenerate, they are simultaneously populated when one applies a

linear polarized light (LPL) resonant with the |0⟩ → |±1⟩ transition. This effect is

shown in Figure 8-3(a). On the other hand, when a CPL is applied, the transition

between |0⟩ and |+1⟩ (or between |0⟩ and |−1⟩) is selectively triggered, depending

on the helicity of the CPL. As shown in Figure 8-3(b), the nuclear spin selectively

transits between |0⟩ and |−1⟩ when a right-handed CPL is applied, whereas |+1⟩ is

never occupied. Similarly, when a left-handed CPL is applied, |−1⟩ would never be

occupied.

The discussions above indicate that CPL can induce a dynamical nuclear spin

polarization. Meanwhile, the ground state of the nuclear spin is still |0⟩, and the

nuclear spin always has the tendency to relax (thermalize) to |0⟩. Therefore, the

dynamical polarization competes with the relaxation process. A key parameter here

3For brevity, we will use CPL to denote circularly polarized radio frequency or microwave as well.
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Figure 8-3: Rabi oscillations of a 𝐼 = 1 nuclear spin under (a) LPL and (b) CPL.
Under LPL, not net spin polarization is generated, because the nuclear spin has equal
probability to be on the |+1⟩ and |−1⟩ states. In contrast, under CPL, a net spin
polarization can be generated because only the transitions between |0⟩ and |−1⟩ is
allows.

is 𝑓
𝜅
, where 𝑓 is the Rabi frequency between |0⟩ and |+1⟩ or |−1⟩, while 𝜅 is the

relaxation rate of the nuclear spin. When 𝑓
𝜅
> 1, the nuclear spin can have a full

polarization to |+1⟩ or |−1⟩. On the other hand, when 𝑓
𝜅
< 1, only partial polarization

is achievable.

8.2.3 Spontaneous Symmetry Breaking Due to Interactions

In electronic systems, the interaction between nearby electron spins could result in

magnetism [149], which breaks the TRS. This can be considered as a spontaneous

symmetry breaking. Similarly, the interactions between nuclear spins could result in

nuclear magnetism as well. In contrast to electronic magnetism, the nuclear mag-

netism has some notable difference

• The exchange interaction between localized electron spins, which leads to elec-

tronic magnetism, are usually short range interactions. This because usually

these interactions depend on the overlap between electron wavefunctions, which

quickly decays with distance. Consequently, in many models that describes

magnetism, such as the Ising model and the Heisenberg model, only nearest-
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neighbor interactions are considered 4.

In contrast, the interactions between nuclear spins mostly result from dipolar

interactions, which is long range and decays with 1
𝑟3

, with 𝑟 the distance be-

tween the nuclear spins. This could significantly complicated the nuclear spin

dynamics. The nuclear spins do not necessarily form ferromagnetic or anti-

ferromagnetic structures at low temperature. For example, if the interaction

between two nuclear spins are 𝐻𝛼𝛽 = 𝐽0𝐼𝛼𝐼𝛽

𝑟3𝛼𝛽
with 𝐽0 > 0, then the potential

energy between nearest-neighbor nuclear spins could be minimized when an

anti-ferromagnetic structure is formed. However, the anti-ferromagnetic struc-

ture has a maximized potential energy between next-nearest-neighbor nuclear

spins. Hence, the the anti-ferromagnetic structure is not necessarily the ground

state. Instead, complex spin structures resembling the electron spin glasses

could appear [150–152].

• The exchange interaction between electron spins can reach meV, equivalent to

a temperature of tens of Kelvin. On the other hand, the dipole interaction

between nuclear spins are only on the order of kHz [cf. Section 2.4], equivalent

to tens of nK. As the critical temperature of the magnetic phase transitions are

usually comparable with the interaction strength [153–155], one needs to cool

down to below nK to observe the spontaneous nuclear spin magnetic structure,

which is rather challenging.

8.3 Nuclear Spin Interactions with Phonons

Besides electric/magnetic/optical fields, nuclear spins could possible interact with

phonons/acoustic waves (we will simply use “phonon” hereafter) as well. On one

hand, this could enable the phonon control over nuclear spins [44, 45], similar to the

phonon control over a variety of other quantum systems [156–159]. On the other

4The are also dipolar interactions between electron spins, which is long range. However, the
dipolar interaction is on the order of 𝜇eV between nearest electron spins. This is significantly
weaker than the exchange interaction, which can reach meV. Consequently, the properties of the
electron spins are predominantly determined by the exchange interaction.
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hand, the coupling with phonons could also lead to the decoherence/relaxation of

nuclear spins. In this section, we examine the interaction between nuclear spins and

phonons.

First, we note that the frequency of optical phonons is most systems is on the

order of THz, well above the nuclear spin frequency, which is usually below GHz.

Therefore, optical phonons cannot resonantly couple with phonons5, and we only

need to consider acoustic phonons near the Γ-point in the Brillouin zone, which can

be mimicked by compressive/tensile strain. The strain leads to a change in the EFG,

and hence the quadrupole interaction, which can be expressed as

𝐻phonon =
∑︁
𝑖𝑗, 𝑝𝑞

S
𝑝𝑞
𝑖𝑗 𝑢𝑝𝑞𝐼𝑖𝐼𝑗

∼ gphonon|𝑒⟩⟨𝑔|+ ℎ.𝑐.

(8.11)

where on the second line we transformed the Hamiltonian to the subspace spanned

by two nuclear spin states |𝑒⟩ and |𝑔⟩. 𝑢𝑝𝑞 denotes the strain with 𝑝, 𝑞 as Cartesian

indices. S
𝑝𝑞
𝑖𝑗 ≡ 𝜕𝑄𝑖𝑗

𝜕𝑢𝑝𝑞
is the response function.

In Figure 8-4, we show the change in EFG ∆V at the site of Ga nuclei in wGaN

as a function of 𝑢𝑥𝑥. By fitting the data with first-order polynomial, we obtain

S∼ 3.0 MHz. (8.12)

We first consider a single nuclear spin. The magnitude of the strain 𝑢0 when a

single phonon (per unit cell) is excited can be estimated with

𝑢0 =

√︂
ℏ𝜔ph

𝐺𝑉u.c.
, (8.13)

where 𝜔ph is the phonon frequency, 𝐺 is the elastic modulus, while 𝑉u.c. is the volume

of the unit cell. Using 𝜔ph = 20 MHz, 𝑉u.c. = 10−28 m3, and 𝐺 = 300 GPa, one has

𝑢0 ∼ 4× 10−5. Therefore, the coupling strength between a single nuclear spin with a

5at least in the sense of first-order coupling
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Figure 8-4: Change in the EFG tensor at the site of Ga nuclei in wGaN as a function
of strain 𝑢𝑥𝑥.

single phonon (per unit cell) is

gphonon = ⟨𝑒|S𝑖𝑗𝑢
0𝐼𝑖𝐼𝑗|𝑔⟩ ∼ 10 kHz. (8.14)

The exact magnitude of gphonon depends on the quadrupole moment of the nuclei as

well.

Next, we consider the coupling between a single phonon with a NSE, whereby the

Hamiltonian can be written as

Hphonon =
∑︁
𝛼

𝑢𝛼𝐼𝛼 · S · 𝐼𝛼

=
gphonon

√
𝑁

∑︁
𝛼

|𝑒⟩⟨𝑔|𝛼 + ℎ.𝑐.

(8.15)

where we omitted 𝑝, 𝑞. On the second line we assumed that the system is homoge-

neous, 𝑁 is the total number of unit cells 6. The strain in each unit cell when a

single photon is excited is thus 𝑢0
√
𝑁

, because the elastic energy of the phonon has to

be shared by all the unit cells. Then the coupling strength between phonon and the

6also the total number of nuclear spins
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NSE is (cf. Sections 7.3.2, 7.3.3)

Gphonon = ⟨1|Hphonon|0⟩

= gphonon,
(8.16)

which is independent of the number of unit cells.

One can see that the coupling between phonon and nuclear spin (ensemble) is

a relatively strong interaction, and the phonon control over nuclear spins could be

efficient. On the other hand, the decoherence/relaxation of nuclear spins due to the

coupling with phonons can also be strong. Fortunately, such a decoherence/relaxation

can be avoided by designing the structure of the sample, so that there are no phonons

whose frequencies are resonant with nuclear spins. A simple strategy is to use a crystal

with small size 𝐿. With a finite 𝐿, the phonon modes in the crystal is discrete, i.e.,

𝜔𝑛
ph ∼ 𝑣ph

2𝜋

𝐿
𝑛, (8.17)

where 𝑣ph is the speed of the acoustic phonon, and 𝑛 denotes the 𝑛-th phonon mode.

The frequency spacing between different phonon modes is thus

∆𝜔ph = 𝑣ph
2𝜋

𝐿

∼ 3 GHz

𝐿 [𝜇m]
.

(8.18)

On the second line 𝐿 is in the unit of 𝜇m, and we have used 𝑣ph = 3000 m/s. One

can see that when 𝐿 = 1 𝜇m, the frequency spacing between different phonon mode

is on the order of 3 GHz, which is significantly larger than the nuclear spin frequency.

Therefore, it is feasible to avoid phonons resonant with nuclear spin transitions and

the resultant decoherence/relaxation, which could help improve the precision of the

spectroscopy.
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Chapter 9

Concluding Remarks and Future

Directions

In conclusion, in this thesis we propose an opto-nuclear quadrupolar (ONQ) effect,

whereby two-color photons can be coupled with nuclear spins. Some advantage of the

ONQ effect are

• Ancillary electron spins are not required, in contrast to the approaches discussed

in Chapter 3;

• There is flexibility in choosing the wavelength of the optical photons, as dis-

cussed in Section 4.3;

• The ONQ effect is stronger by several orders of magnitude than other nonlinear

optical effects that could couple with nuclear spins, as discussed in Section 5.2.

Then, we propose some potential applications of the ONQ effect under feasible

experimental conditions (Chapter 7), including quantum memory, quantum transduc-

tion, and laser cooling of nuclear magnons for initialization. These applications fully

exploit the long relaxation/decoherence time nuclear spins.

For future studies, there are several possible directions

• Find/design materials suitable for ONQ applications. One can focus on topo-

logical materials and/or materials containing isotopes with large quadrupole
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moment, which could have strong ONQ response. For certain applications, one

also needs to consider e.g., the isotope purity.

• Design photonics structure to enhance the light-matter interaction strength. For

example, if one aims at controlling single nuclear spins, then optical cavities with

small mode volume is favorable. Optical cavities with high 𝑄-factors are also

desirable.

• On the experimental side, the experimental demonstration of the ONQ effect is

desirable. Some proof-of-principle experimental can be

– Detecting the side peaks due to the ONQ scattering or detecting the nu-

clear spin dynamics induced by the ONQ effect, as proposed in proposed

in Section 7.2. These two “classical” experiments could be relatively easier

to demonstrate.

– The ONQ control over single nuclear spins or nuclear spin ensemble, as

discussed in Section 7.1 and 7.3. These two experiments are relevant to

the quantum properties of the nuclear spins, and could be more challenging.
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Appendix A

Nonlinear Optical Responses of

Electronic System

During my Ph.D. study, besides the Optical Control over Nuclear Spins, which is the

focus of the main text of this theis, I have been working other some other projects,

which I will briefly describe in the following.

Enhanced Linear/Nonlinear Optical Responses in Topological Materials

• Linear optical responses (gain/absorption coefficient) is enhanced in topologi-

cal materials with Mexican-hat band structure due to (1) band inversion that

increases the interband transitions rate and (2) Mexican-hat band structure

that increases the joint density of states. By exploring the topological materials

database, we found a number of materials that could out-perform the MgCdTe

detector in the infrared/terahertz range. Recently, the large optical response of

PbxSn1−xSe, which is a Mexican-hat topological insulation, has been verified in

experiments.

Related publication:

Haowei Xu, Jian Zhou, Hua Wang, and Ju Li, Giant Photonic Response of

Mexican-Hat Topological Semiconductors for Mid-infrared to Terahertz Appli-

cations. J. Phys. Chem. Lett. 11, 6119–6126 (2020).
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Mark Polking, Haowei Xu, Ju Li, et. al. Manuscript in preparation.

• We point out several guidelines for designing materials with strong nonlinear

optical responses, including (1) topological band structure, (2) strong inver-

sion symmetry breaking, and (3) small electronic band gap. We substantiate

these guidelines with Janus transition metal dichalcogenides (TMDs) in the 1T’

phase, whose nonlinear photocurrent conductivity is larger than other 2D ma-

terials by two orders of magnitude. Recently, the colossal terahertz frequency

nonlinearities of 1T’ Janus TMDs have been observed in experiments.

Related publication:

Haowei Xu, Hua Wang, Jian Zhou, Yunfan Guo, Jing Kong and Ju Li, Colossal

switchable photocurrents in topological Janus transition metal dichalcogenides.

npj Comput. Mater. 7, 1–9 (2021).

Jiaojian Shi*, Haowei Xu* (equal contribution), Christian Heide, Changan

HuangFu, Chenyi Xia, Felipe de Quesada, Hao Zhou, Tianyi Zhang, Leo Yu,

Amalya Johnson, Fang Liu, Tony Heinz, Liying Jiao, Shambhu Ghimire, Ju Li,

Jing Kong, Yunfan Guo, and Aaron M. Lindenberg. Giant terahertz-frequency

nonlinearities from a monolayer Janus topological semiconductor. Manuscript

in preparation.

Electron Spin-Related Nonlinear Optical Responses

• We propose a bulk spin photovoltaic (BSPV) effect, whereby spin current can

be generated under light illumination. By symmetry analysis, we elucidate that

the only requirement of the BSPV effect is inversion symmetry breaking, while

time-reversal symmetry breaking is not necessary. Furthermore, if the system

has mirror symmetry, then via the BSPV effect, it is possible to obtain pure

spin current without accompanying charge current, which is highly desirable for

certain spintronics applications.

Related publication:
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Haowei Xu, Hua Wang, Jian Zhou, and Ju Li, Pure Spin Photocurrent in Non-

centrosymmetric Crystals: Bulk Spin Photovoltaic Effect. Nature Commun.

12, 4330 (2021)

• We propose a nonlinear Edelstein effect (NLEE), whereby static spin polariza-

tion can be generated under light illumination. We demonstrate that ferromag-

netic, ferrimagnetic, and anti-ferromagnetic orders can all be realized with the

NLEE. We also discussed the relationship between NLEE and other magneto-

optical effects such as inverse Faraday effect. This theoretical proposition agrees

well with recent experimental results [160].

Related publication:

Haowei Xu, Jian Zhou, Hua Wang, and Ju Li, Light-Induced Static Magnetiza-

tion: Nonlinear Edelstein Effect. Phys. Rev. B 103, 205417 (2021).

Many-Body Effects in Nonlinear Optical Responses

• We formulate an Green’s function formalism to incorporate many-body effects

in nonlinear optical responses. Using this formalism, we found that in topo-

logical materials, nonlinear optical responses can be significantly different on

the surface than in the bulk. For example, the nonlinear photocurrent on the

surface can have opposite directions to that in the bulk. We attribute this effect

to the topological surface properties.

Related publication:

Haowei Xu, Hua Wang, and Ju Li, Abnormal Nonlinear Optical Responses

on the Surface of Topological Materials. npj Computational Materials 8, 111

(2022)

• Using the many-body formalism described above, we examined how electron-

phonon coupling can affect nonlinear optical effects. We found that when the

phonons are out-of-equilibrium (e.g., when there is a temperature gradient),
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then they can significantly alter the optical selection rules and lead to non-

trivial effects in nonlinear optical responses.

Related publication:

Haowei Xu, Hua Wang, and Ju Li, Nonlinear Photocurrents with Nonreciprocal

Phonon Dressing. Phys. Rev. B 106, 035102 (2022).

Light-Induced Phase Transitions

• Inspired by optical tweezers, we illustrate that a linearly polarized laser pulse

with selected frequencies can drive ultrafast diffusionless martensitic phase tran-

sitions in various materials. Coupling with electrons and/or phonons, light can

effectively modify the energy landscape. We have illustrated this concept in

various systems such as ferroelastic monolayer SnSe/SnO, bilayer hBN, and

monolayer MoS2. The phase transition switching time can be on the order

of picoseconds, to be compared with the nanosecond time-scale in conventional

thermal and diffusional phase transitions. The estimated energy consumption of

the light-driven martensitic phase transitions is also about 2 orders of magnitude

lower than that in Ge-Sb-Te alloy. Recently, some evidence of opto-mechanical-

driven phase transition in SnSe has been observed in experiments.

Related publications:

Jian Zhou, Haowei Xu, Yifei Li, R. Jaramillo and Ju Li, Opto-Mechanics Driven

Fast Martensitic Transition in Two-Dimensional Materials. Nano Lett. 18,

7794–7800 (2018).

Haowei Xu, Jian Zhou, Yifei Li, R. Jaramillo, and Ju Li, Optomechanical control

of stacking patterns of h-BN bilayer. Nano Res. 12, 2634–2639 (2019).

Jian Zhou, Haowei Xu, Yongliang Shi, and Ju Li, Terahertz Driven Reversible

Topological Phase Transition of Monolayer Transition Metal Dichalcogenides.

Adv. Sci. 2003832 (2021).

Jiaojian Shi*, Yijing Huang*, Christian Heide* (equal contribution), Carl-
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Friedrich Schön, Haowei Xu, Yuki Kobayashi, Andrew F. May, Pooja Donthi

Reddy, Duan Luo, Eamonn Hughes, Kunal Mukherjee, Mariano Trigo, Ju Li,

Jian Zhou, Shambhu Ghimire, Matthias Wuttig, David A. Reis, Aaron M. Lin-

denberg. Evidence of opto-mechanical-driven topological phase transition in

SnSe. Manuscript in preparation.

• We propose that using gapless surface states, the topological phase transition

can happen at arbitrarily weak (but finite) external field strength. This can be

regarded as an unconventional topological phase transition, where the bandgap

closing is guaranteed by bulk-edge correspondence and symmetries, while the

bandgap reopening is induced by external fields. This can be a convenient

approach to realize topological phase transitions. As an example, using Floquet

theory, we demonstrate that the surface of Bi2Se3 would become a quantum

anomalous Hall insulator under circularly polarized light. In other words, Bi2Se3

becomes an axion insulator.

Related publication:

Haowei Xu, Jian Zhou, and Ju Li. Light-induced quantum anomalous Hall

effect on the surfaces of topological insulators. Adv. Sci. 2101508 (2021)
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