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Error behavior and optimal discretization of chaotic differential equations

Cory Frontin

Submitted to the Department of Aeronautics & Astronautics
on 7 November 2022, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Aeronautics & Astronautics

Abstract

In this thesis, the simulation of chaotic systems is considered. For many chaotic systems, we desire to
make estimates of mean values of quantities of interest, and in this case, the effect of chaos is to introduce
behavior that naturally lends itself to statistical, rather than deterministic, description. When simulating
chaotic systems using discrete versions of governing differential equations, then, chaos introduces statisti-
cal errors alongside discretization errors. These statistical errors are generally one of two types: transient
spin-up error before the system reaches the attractor (i.e. the stationary distribution of long-run states) and
sampling error due to finite-time averaging of trajectories on the attractor.

In this work, we first propose an error model to describe the expected absolute errors on the attractor of a
chaotic ordinary differential equation system. This model for the error implies optimal choices of timestep
and sampling time to minimize the error in the simulation– including discretization error and sampling
error– given some computational budget. Adding a model for the spin-up error, this allows the description
of the optimal choice of timestep, sampling, and spin-up times. Next, we develop a small-sample Bayesian
approach that allows the estimation of the discretization and the sampling error using only a small number
of simulation results with distinct timesteps and sampling times on the attractor. We then extend the
approach for spatiotemporally chaotic partial differential equation systems, which introduces error due
to spatial discretization in addition to the temporal discretization errors and statistical errors. Finally, we
augment the small-sample approach with corrections for non-negligible spin-up transient behavior, then
embed the resulting small-sample method in a naïve explore-exploit algorithm. Using this algorithm, we
demonstrate that given a fixed total computational budget such an approach can allow chaotic simulations
that achieve near-optimal estimates without strong prior knowledge of the behavior of the system. In
addition to this near-optimal discretization, the method allows an a posteriori estimate of the simulation
error in the final result after the exploitation stage.

Thesis Supervisor: David Darmofal
Title: Jerome C. Hunsaker Professor of Aeronautics & Astronautics
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Introduction

Introduce a little anarchy.
Upset the established order,

and everything becomes chaos.

—the Joker (The Dark Knight)

Since the dawn of aviation, the ability to make predictions
about the characteristics of flying machines before they were built
differentiated successful aviators from their earthbound counterparts.
It is not a coincidence that the Wright Brothers emerged successful
in flight in 1903 after building the first wind tunnel capable of ex-
periments accurate enough to assist the process of aircraft design in
1901

7.
7 Michael G. Dodson and David S.
Miklosovic. An historical and applied
aerodynamic study of the Wright
Brothers’ wind tunnel test program
and application to successful manned
flight. In Fluids Engineering Division
Summer Meeting, volume 1, pages 269–
278. American Society of Mechanical
Engineers, 06 2005. Symposia, Parts A
and B

Where experimental prediction emerged as a differentiator in the first
decades of the 20

th century, the open of the 21
st might be character-

ized by the growing industrial use of computational fluid dynamics
(CFD) simulations. Since the earliest computational simulation
capabilities, CFD has become a key component of the aerospace
design lifecycle. The integration of CFD simulations have been shown
to have demonstrable benefits in terms of reducing wind tunnel,
component, and flight testing times8. While these advances are

8 Jeffrey P Slotnick, Abdollah
Khodadoust, Juan Alonso, David
Darmofal, William Gropp, Elizabeth
Lurie, and Dimitri J Mavriplis.
CFD Vision 2030 study: a path
to revolutionary computational
aerosciences. Technical Report CR–2014-
218178, NASA, 2014

impressive, there remain key challenges for computational fluids in
the foreseeable future. Though CFD is a key part modern aerospace
design, its present integration into the design lifecycle is limited
to “well-behaved” flows, for which reliable and efficient CFD is
currently possible.

The advancement of numerical methods for problems in aeronautics
through the latter half of the 20

th century and the first decades of the
21

st was fostered by the exponential rises in processing power under
Moore’s law and improvements in computational algorithms9. As

9 Chris A Mack. Fifty years of Moore’s
law. IEEE Transactions on Semiconductor
Manufacturing, 24(2):202–207, 2011
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an example, this can be seen in the development of top-end channel
flow DNS, which has moved from computations with millions of
gridpoints with turbulent Reynolds numbers in the hundreds10

10 John Kim, Parviz Moin, and Robert
Moser. Turbulence statistics in
fully developed channel flow at low
Reynolds number. Journal of Fluid
Mechanics, 177:133–166, 1987. doi:
10.1017/S0022112087000892

to exascale computations with hundreds of billions of gridpoints
and turbulent Reynolds numbers in the mid to high thousands11.

11 Myoungkyu Lee and Robert D.
Moser. Direct numerical simulation
of turbulent channel flow up to Reτ ≈
5200. Journal of Fluid Mechanics, 774:
395–415, 2015

In spite of progress, significant technical needs remain in order to
enable simulations of more complex aerodynamic problems. For
example, reliable prediction of drag for an aircraft outside of cruise
conditions12 remains elusive for the foreseeable future.

12 Edward N. Tinoco, Olaf P. Brodersen,
Stefan Keye, Kelly R. Laflin, Edward
Feltrop, John C. Vassberg, Mori Mani,
Ben Rider, Richard A. Wahls, Joseph H.
Morrison, David Hue, Christopher J.
Roy, Dimitri J. Mavriplis, and Mitsuhiro
Murayama. Summary data from
the sixth AIAA CFD Drag Prediction
Workshop: CRM cases. Journal of
Aircraft, 55(4):1352–1379, 2018

i.1 Prediction of turbulent flows

In order to make reliable computational predictions for aeronautical
questions of increased complexity, methods that resolve the turbulent
scales in the problem are necessary. While Reynolds-Averaged
Navier-Stokes (RANS) methods work well for predicting steady,
attached, and fully turbulent flows, they are well known to be less
reliable for predictions when flows are unsteady or detached or
transitional13. In order to accurately capture these types of flows, 13 David Levy, Kelly Laflin, John

Vassberg, Edward Tinoco, Mortaza
Mani, Ben Rider, Olaf Brodersen,
Simone Crippa, Christopher Rumsey,
Richard Wahls, Joe Morrison, Dimitri
Mavriplis, and Mitsuhiro Murayama.
Summary of data from the fifth AIAA
CFD Drag Prediction Workshop. In 51st
AIAA Aerospace Sciences Meeting, 2013

we will need to rely on direct numerical simulation (DNS), large
eddy simulation (LES) and hybrid RANS-LES approaches.

In a direct numerical simulation, all of the relevant physical scales
that exist in the problem are resolved. Though it’s highly accurate,
DNS is expensive beyond usefulness in many engineering-scale
applications14. In LES, the largest spatial and temporal scales are

14 Parviz Moin and Krishnan Mahesh.
Direct numerical simulations: A tool in
turbulence research. Annual Review of
Fluid Mechanics, 30(1):539–578, 1998

resolved, while the rest of the scales are modeled using sub-gridscale
models15. RANS, meanwhile, only resolves an averaged representa-

15 U. Piomelli. Large-eddy simulation:
achievements and challenges. Progress
in Aerospace Sciences, 35(4):335–362, 1999

tion of the flow, while modeling all parts of the flow that fluctuate
around the average. As a result, the cost of a RANS simulation is
signficantly less than an LES.

Original scaling estimates of the cost of modeling a fully turbulent
boundary layer with RANS, LES with and without wall modeling,
and DNS were made by Chapman16. LES costs were also estimated

16 Dean R. Chapman. Computational
aerodynamics development and
outlook. AIAA Journal, 17(12):1293–
1313, 1979by Spalart, et. al., which improved upon the Chapman results by

including the entire boundary layer, from laminar to turbulent,
estimating the boundary thickness using RANS17. More recent

17 P.R. Spalart, W.H. Jou, M. Strelets,
S.R. Allmaras, et al. Comments on
the feasibility of LES for wings, and
on a hybrid RANS/LES approach. In
Proceedings of the 1st AFOSR Int. Conf. on
DNS/LES, volume 1, pages 4–8, 1997

updates of Chapman’s estimates have been performed for WMLES,
WRLES, and DNS by Choi & Moin18, although they still did not

18 Haecheon Choi and Parviz Moin.
Grid-point requirements for large
eddy simulation: Chapman’s estimates
revisited. Physics of Fluids, 24(1):011702,
2012

incorporate the costs of the transitional region. Slotnick, et. al.19,

19 Slotnick et al., 2014

make estimates for the cost of WMLES, using an integral boundary
layer method with a transition model to estimate the boundary
layer thickness. The resulting scaling estimates with respect to a
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characteristic Reynolds number, Re, are compiled in Table 1. The key

method scaling
DNS Nx ∼ Re37/14

L
WRLES Nx ∼ Re13/7

L
WMLES Nx ∼ Re1

L
RANS Nx ∼ Re2/5

L

Table 1: Scaling estimates
of gridpoint requirements
with respect to characteristic
Reynolds number for RANS,
LES, and DNS.result from these estimates is that the significant costs of LES will

very quickly outpace the cost of the RANS approach for complex
configurations and these costs are one of the key barriers that must
be overcome in order to enable LES to become a more prominent tool
in aeronautical design practice.

Large eddy simulation

In order to understand the primary areas of LES improvement
on which we will concentrate, we begin by evaluating the costs
associated with LES simulations. An important distinction to begin
the study of LES is between wall-resolved LES and wall-modeled
LES.

The composition of a turbulent boundary layer can be understood
as two main layers. The inner layer is the region of the flow nearest
the wall, which is relatively predictable and where the most of
the turbulent kinetic energy in the flow is produced20. The outer

20 Alexander J. Smits, Beverley J.
McKeon, and Ivan Marusic.
High–Reynolds number wall
turbulence. Annual Review of Fluid
Mechanics, 43(1):353–375, 2011

layer, meanwhile, is much less predictable; while less production of
turbulent kinetic energy occurs in the outer layer, it has the effect of
convecting the turbulent kinetic energy that is produced by the inner
layer.

For wall-resolved LES (WRLES), grid is allocated in order to resolve
the large, energy carrying eddies in the outer layer and the most
significant energy producing eddies of the inner layer. However, the
scale of the most important features in the inner layer is significantly
smaller than the scale of the most important features in the outer
layer21. This means that the costs required to perform a WRLES

21 Sanjeeb T. Bose and George Ilhwan
Park. Wall-modeled large-eddy
simulation for complex turbulent
flows. Annual Review of Fluid Mechanics,
50(1):535–561, 2018

simulation are significant. In wall-modeled LES (WMLES), the
relative predictability of the inner layer is exploited by the use of a
model for the near wall flow. Thus, in WMLES, the computational
effort is concentrated on the outer layer, and the wall model is en-
trusted with modeling the effect of the inner layer of the flow22. As

22 Ugo Piomelli and Elias Balaras.
Wall-layer models for large-eddy
simulations. Annual Review of Fluid
Mechanics, 34(1):349–374, 2002

illustrated in Table 1, the cost of resolving near-wall features is much
higher than modeling them. However, wall modeling is not yet a
mature methodology, and it remains and area of active research23.

23 Corentin Carton de Wiart and
Scott M. Murman. Assessment of
wall-modeled LES strategies within
a discontinuous-Galerkin spectral-
element framework. In 55th AIAA
Aerospace Sciences Meeting
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For wall-modeled LES methods, as well as the related subset of
methods known as detached eddy simulation24 (DES) and other

24 Philippe R. Spalart. Detached-eddy
simulation. Annual Review of Fluid
Mechanics, 41(1):181–202, 2009

hybrid RANS-LES methods, another crucial area of research is the
use of transition models. When transition is not resolved in WMLES
and hybrid methods, transition models must be used to dynamically
change the modeling choices based on whether or not the model
indicates that the flow has transitioned to turbulence25.

25 J. Bodart and J. Larsson. Sensor-
based computation of transitional
flows using wall-modeled large eddy
simulation. In Annual Research Briefs,
pages 229–240. Center for Turbulence
Research, Stanford University, 2012; and
George Ilhwan Park and Parviz Moin.
An improved dynamic non-equilibrium
wall-model for large eddy simulation.
Physics of Fluids, 26(1):015108, 2014

The effect of using a model for small scales in LES and wall models
(and, possibly, transition models) in WMLES and hybrid methods
will be to introduce epistemological error into the simulation. Episte-
mological error is the form of error that comes from the deficiency
of the model to represent reality, and it is a very challenging type of
error to quantify. In addition to epistemological error, which can be
thought of as the difference between an exact solution to the model
equations of motion and the exact true solution, discretization errors
exist, which are associated with the effect of numerically estimating
solutions to the model equations, and statistical errors, which come
from the act of estimating an infinite-time average with a finite one.
The proposed work will concentrate on the effects of discretization
and statistical error, which we will refer to collectively as “simulation
error”, and how to minimize them.

i.2 Adaptive discretization methods

A key roadblock for the use of LES and related methods is grid gen-
eration. For example, with hybrid methods, it has been shown that
accuracy of the method– and its convergence to reference solutions–
tends to be frequently strongly dependent on the grids on which
the studies are performed26. One objective of this thesis to build a

26 Spalart, 2009framework within which the benefits of mesh adaptivity might be be
quantified, understood, and leveraged within the context of turbulent
flow simulations. For RANS and other non-chaotic systems, statistical
error is not usually a primary concern and the most important factor
in the accuracy of a solution to the equations is discretization error.
Adaptive methods allow for the optimization of the computational
mesh on which the solution is represented in order to control the
error in the discretization.

Many modern adaptive finite element methods (FEM) are based on
discontinuous Galerkin (DG) and continuous Galerkin (CG) schemes.
For clarity, we will concentrate on the DG method here, while noting
that extensions of all concepts to continuous discretizations exist27.

27 Hugh A. Carson, Arthur C. Huang,
Marshall C. Galbraith, Steven R.
Allmaras, and David L. Darmofal.
Mesh Optimization via Error Sampling
and Synthesis: An update. In AIAA
Scitech Forum, 2020; and Arthur Chan-
wei Huang. An adaptive variational
multiscale method with discontinuous
subscales for aerodyanamic flows. PhD
thesis, Massachusetts Institute of
Technology, 2020The DG method was developed in order to generalize the family of
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monotone finite volume (FVM) schemes to formal orders of accuracy
greater than two28. Thus DG couples the capability of FVM schemes

28 Bernardo Cockburn. An introduction
to the Discontinuous Galerkin method for
convection-dominated problems, pages
150–268. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998. Lectures
given at the 2nd Session of the Centro
Internazionale Matematico Estivo
(C.I.M.E.) held in Cetraro, Italy, June
23–28, 1997

to handle complex geometries with the high-order capability seen
in finite difference (FDM) methods. Additionally, DG methods have
been seen to be highly parallelizable and particularly well suited for
h- and p-adaptation29. Ensuing research has also found that DG has

29 Bernardo Cockburn, George E.
Karniadakis, and Chi-Wang Shu. The
development of discontinuous Galerkin
methods. In Bernardo Cockburn,
George E. Karniadakis, and Chi-Wang
Shu, editors, Discontinuous Galerkin
Methods, pages 3–50. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000

very good stability properties, particularly for the solution of Navier-
Stokes equations30. Furthermore, the DG method can provide high-

30 Laslo T. Diosady and Scott M.
Murman. Higher-order methods
for compressible turbulent flows using
entropy variables. In Proceedings of the
53rd AIAA Aerospace Sciences Meeting,
2015

quality a posteriori error estimates using the dual-weighted residual
(DWR) method and the solution to linearized adjoint sensitivity
problems31. This, in turn, can be exploited to reliably optimize grids

31 Roland Becker and Rolf Rannacher.
An optimal control approach to a
posteriori error estimation in finite
element methods. Acta Numerica, 10:
1–102, 2001

via mesh adaptation32.

32 Masayuki Yano and David L.
Darmofal. An optimization-
based framework for anisotropic
simplex mesh adaptation. Journal of
Computational Physics, 231(22):7626–
7649, 2012; and Masayuki Yano. An
optimization framework for adaptive higher-
order discretizations of partial differential
equations on anisotropic simplex meshes.
PhD thesis, Massachusetts Institute of
Technology, 2012

Space-time adaptive methods are also possible using a FEM ap-
proach. In space-time methods, the spatial and temporal dimensions
are simultaneously approximated by a finite-element discretization.
If the space-time domain is discretized using a (d + 1)-dimensional
discretization, it can then be solved adaptively to minimize the error
in the entire spatio-temporal solution33. This can allow even more

33 Thomas J.R. Hughes and Gregory M.
Hulbert. Space-time finite element
methods for elastodynamics:
Formulations and error estimates.
Computer Methods in Applied Mechanics
and Engineering, 66(3):339–363, 1988

efficient solution than the spatial adaptation technique with temporal
time-stepping for problems with concentrated regions of interest in
space and time34.

34 Yano, 2012; and Yashod Savithru
Jayasinghe. An adaptive space-time
discontinuous Galerkin method for reservoir
flows. PhD thesis, Massachusetts
Institute of Technology, 2018

In order to bring the very promising results for adaptive discretiza-
tion methods to bear on turbulent simulations, we consider the
implications of solving unsteady, turbulent equations of motion,
rather than their steady, time-averaged, and non-chaotic counterparts.
Foremost among the implications of this transition is how to define
“error” when unpredictable and quasi-random behavior is a natural
characteristic of the equations of motion. The goal of this thesis is to
begin to bridge this gap.

i.3 Chaotic systems

A significant barrier in applying the techniques discussed in the
previous section to LES simulations is the fact that solutions from
LES and other scale-resolving methods are chaotic. Chaotic systems
have been characterized35 as having three primary phenomena:

35 Steven H. Strogatz. Nonlinear dynamics
and chaos: with applications to physics,
biology, chemistry, and engineering. CRC
Press, 2 edition, 2015

1. purely deterministic mechanics,
2. aperiodic long-term behavior, and
3. high sensitivity to initial conditions, parametrization, and other

perturbations including discretization.
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Lyapunov stability analysis

A common way to describe the phenomena of chaotic systems
mathematically is Lyapunov stability analysis. Consider a dynamical
system governing u(t) : R+ → Rn given by:

du
dt

= f(u) u(0) = u0. (i.1)

It has been shown that there exist a set of Lyapunov exponents

Λ1 ≥ Λ2 ≥ . . . ≥ Λi ≥ . . . ≥ Λn

and covariant Lyapunov vectors (CLVs)

ψ1(u(t)), ψ2(u(t)), . . . , ψi(u(t)), . . . , ψn(u(t))

such that:

dψi(u(t))
dt

=
∂f
∂u

∣∣∣∣
u(t)

ψi(u(t))−Λiψi(u(t)) (i.2)

governs perturbations to the dynamics of the system36. Using Lya-
36 F. Ginelli, P. Poggi, A. Turchi,
H. Chaté, R. Livi, and A. Politi.
Characterizing dynamics with
Covariant Lyapunov Vectors. Phys.
Rev. Lett., 99:130601, Sep 2007

punov stability theory, it can be shown that, for some C ∈ R+:

||δu(t)|| ≤ C exp(Λ1t) (i.3)

where u(t) and u(t) + δu(t) solve the ODE starting from initial
conditions u0 and u0 + εu, respectively, where εu is a finite but very
small perturbation.

The values of {Λi} and their signs are strongly dependent on the
dynamical system f, and they help to describe the long term behavior
of the system. If the leading Lyapunov exponent Λ1 is negative, then
the dynamical system will have a single, fixed long-term solution. If
Λ1 is zero, then the system will exhibit a “limit cycle oscillation” with
some periodicity. Finally, if Λ1 > 0, then the system will be chaotic
and have a strange attractor, an infinite set of long-term solutions,
assuming that system is bounded. These behaviors have important
consequences for both discretization and adaptation, which is of key
interest to this work.

Numerical analysis for chaotic systems

Understanding the behavior of discrete solutions of chaotic systems
relies upon the numerical analysis for dynamical systems, particu-
larly chaotic ones. With some tB > tA > 0, the semigroup operator37

37 Andrew M. Stuart. Numerical
analysis of dynamical systems. Acta
Numerica, 3:467–572, 1994

S(∆t) : Rn → Rn is an operator which evolves the state exactly from
tA to tB:

S(tB − tA)u(tA) = u(tB) = u(tA) +
∫ tB

tA

f (u(t)) dt. (i.4)
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For a choice of discretization scheme, we can approximate the evo-
lution of the true solution using a discrete semigroup operator
Shp(∆t) : Rn → Rn:

Shp(∆t)uk = uk+1. (i.5)

which steps the solution from one time-step to another.
In this text, we will denote a discrete
variable or operator with a subscript
hp, which denotes a discretization
on a characteristic scale h with
design order p. For ODE systems, h
translates directly to time-step sizes,
i.e. hi ⇐⇒ ∆ti , but we use a more
general h which will be applicable
later to PDE discretizations which have
characteristic space and time scales:
hi ⇐⇒ (∆ti , ∆xi).

The classical ways of thinking about convergence can be stated using
this semigroup notation. For instance, the global L2 error can be
given by:

εhp =

√√√√ Nt

∑
k=0

[
S(k∆t)uIC − Sk

hpuIC
hp

]2
. (i.6)

Based on (i.3), we can expect the inner term to scale with exp(Λ1T),
where T = k∆t. For chaotic systems, Λ1 > 0. Additionally, if we
average over long timescales, T is large. Thus, we can expect the
traditional measures of global error to be very large for a chaotic
system over long timescales. This matches our phenomenological
understanding of chaotic systems: after a relatively short period
of time, two solutions that begin from slightly perturbed initial
conditions tend to diverge onto completely different trajectories.
Unfortunately, these facts mean that we cannot expect global error to
be a good measure of usefulness for discrete simulations of chaotic
systems.

In order to get at this question, we consider the limiting behavior
of solutions in a way that is general enough for chaotic systems,
following the work of Stuart38. The ω-limit set of a point in the phase

38 Stuart, 1994space of the solution u is given by:

ω(u) =
⋂
s≥0

(⋃
t≥s

S(t)u

)
, (i.7)

associated to a semigroup operator S(t). The ω-limit set, then,
describes the set of long-run states that you can get to from u by
the action of S(t). Likewise, the definition generalizes trivially to sets
of initial states, U = ∪u. Using the generalization, we can define the
attractor, A, which exists when S(t)U is a uniformly stable attracting
set, defined by:

A ≡ ω(U) ⊆ U. (i.8)

A consistent discretization and its implied discrete semigroup,
Shp, will also have its own ω-limit set, ωhp, and, when ShpUhp is a
uniformly stable asymptotically attracting set, an attractor Ahp. In
fact, if S(t) has an attractor, then there exists some ∆tc for which
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Shp has a stable attracting set Uhp and an attractor Ahp for all ∆t ∈
(0, ∆tc]. We can furthermore write39 that:

39 Jack K. Hale and Geneviéve Raugel.
Upper semicontinuity of the attractor
for a singularly perturbed hyperbolic
equation. Journal of Differential Equations,
73(2):197–214, 1988; and Peter E.
Kloeden and Jens Lorenz. Stable
attracting sets in dynamical systems
and in their one-step discretizations.
SIAM Journal on Numerical Analysis, 23:
986–995, 1986

dist(Ahp,A)→ 0, (i.9)

as ∆t → 0, where dist(B, A) = supu∈B infv∈A ‖u− v‖ is the asymmet-
ric Hausdorff semi-distance.

This is a fairly mathematically dense description, but it illustrates
that, while we cannot expect any set of discretizations of a chaotic
system to converge to a reference solution, we can expect the attractors
associated with the discretizations to converge toward the true
attractor. We can leverage this fact in turn to make meaningful
descriptions of the discretization error for simulating chaotic systems.

Ergodicity and long-time outputs of interest

A typical goal of any CFD simulation is to make estimates of one or
more outputs of interest, averaged in time, which are functions of the
state:

J∞ = lim
T→∞

1
T

∫ t0+Ts

t0

g(u(t)) dt, (i.10)

where g(u(t)) are instantaneous measurements like total energy, or
lift and drag, which depend in some way on the state, but have direct
interest for application to design problems. As we have discussed,
uhp from any two discretizations are likely to be divergent. This
implies that the instantaneous output of interest, g, is also likely to
be divergent. If g(uhp) does not converge, then, we need to ensure
that our approximations of J∞ can be reasonably compared between
discretizations.

Ergodic theory gives us the ability to theoretically justify the compar-
ison of values of J for divergent realizations of uhp(t) and instanta-
neous outputs g(uhp(t)). Ergodicity describes the tendency of distinct
trajectories of a system to converge onto a common attractor after a
brief initial transient40. In other words, ergodicity is the tendency

40 J.-P. Eckmann and D. Ruelle. Ergodic
theory of chaos and strange attractors.
In The Theory of Chaotic Attractors, pages
273–312. Springer, New York, NY, 2004

of a class of systems to “forget” their initial conditions. When a
system’s state or its outputs are ergodic, then, the state or output can
be treated as correlated samples from a stationary distribution: the
set of all trajectories on the attractor, after initial transients subside.

The Navier-Stokes equations have been proven in two dimensions
to be ergodic41, and are expected to be ergodic in three dimensions

41 Benedetta Ferrario. Ergodic results
for stochastic Navier-Stokes equation.
Stochastics, 60(3-4):271–288, 1997; Franco
Flandoli and Bohdan Maslowski.
Ergodicity of the 2-D Navier-Stokes
equation under random perturbations.
Communications in Mathematical Physics,
172(1):119–141, 1995; Martin Hairer and
Jonathan C. Mattingly. Ergodicity of
the 2d Navier-Stokes equations with
degenerate stochastic forcing. Annals
of Mathematics, 164(3):993–1032, 2006;
and Jonathan C. Mattingly. Ergodicity
of 2D Navier-Stokes equations with
random forcing and large viscosity.
Communications in Mathematical Physics,
206(2):273–288, 1999

as well. At the very least, three dimensional weak solutions, which
we will be concentrating on in the following work, to Navier-Stokes
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are known to converge to a global attractor and be ergodic42. The

42 George R. Sell. Global attractors for
the three-dimensional Navier-Stokes
equations. Journal of Dynamics and
Differential Equations, 8(1):1–33, 1996

relationship between the existence of weak and the existence of
strong solutions of Navier-Stokes in three dimensions are closely
related to the famous open mathematical problem of the existence
and uniqueness of solutions to the strong form Navier-Stokes equa-
tions; nonetheless, we presuppose that the strong form solutions to
the three-dimensional Navier-Stokes equations exist and are unique
and that the weak form solutions that we will find converge to them,
though these presuppositions can not yet be proven. Meanwhile, for
the Kuramoto-Sivashinsky equation43 and the Lorenz equations44, we

43 Patrick J. Blonigan and Qiqi
Wang. Least squares shadowing
sensitivity analysis of a modified
Kuramoto–Sivashinsky equation. Chaos,
Solitons & Fractals, 64:16–25, 2014

44 Colin Sparrow. The Lorenz equations.
Applied Mathematical Sciences.
Springer, 1982

can similarly expect the systems to be ergodic. Thus, we can take and
compare averages of the form:

JT =
1
Ts

∫ t0+Ts

t0

g(u) dt. (i.11)

meaningfully, so long as Ts is sufficiently large to wipe out the effect
of the transient and statistical errors, and, furthermore, we can use
these averages to study the convergence of discrete approximations
of JT to J∞. This idea underpins the error models developed in
Chapter 1, we use this framework to develop a model for the error
in discrete approximations in terms of the convergence of outputs of
interest to the system’s true output, J∞.

It is also worth adding here that we
assume that the discrete systems
faithfully represent the statistics of
the true attractor, though recent work
has shown that is not necessarily the
case (e.g. Chandramoorthy and Wang
[2021]) and further developments
may precipitate new requirements to
guarantee this is the case.

Finite predictability and unbounded sensitivity for chaotic systems

Before proceeding, we want to highlight a key implication of chaos
on the functionality of the adaptive discretization methods that
have previously been applied successfully to non-chaotic unsteady
flows. One of the early realizations about chaotic systems was their
finite predictability45: the long-term behavior of chaotic systems are

45 Michael James Lighthill, John
Michael Tutill Thompson, A. K. Sen,
A. G. M. Last, D. J. Tritton, Basil John
Mason, P. Mathias, and John Hugh
Westcott. The recently recognized
failure of predictability in Newtonian
dynamics. Proceedings of the Royal
Society of London. A. Mathematical and
Physical Sciences, 407(1832):35–50, 1986

extremely hard to predict given any uncertainty in their initial state.
This phenomenon is reflected in (i.3).

For the spacetime adaptive methods, mentioned above, to be ap-
plied to chaotic systems, they will require global solutions of the
spatiotemporal domain, or at least temporal subdivisions of the
spatio-temporal domain, which we call time-slabs. Typically, the solu-
tion algorithm for such a global nonlinear problem (e.g. a Newton
method) involves a series of global linearizations. Perturbations
to the global linearized solution should grow exponentially for
chaotic systems. Thus, if eΛ1Tslab is large, a global linear system can
be expected to suffer from ill-conditioning. Similarly, if an adaptive
method relies on an adjoint for its error estimate, the adjoint solution
should also be expected to be poorly conditioned. This implies that
global solution techniques will be limited to time-slabs of finite and
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limited size such that this amplification factor remains numerically
manageable.

Ruelle’s linear response theorem is the foundation of sensitivity
analysis for chaotic systems and can be expected to hold for the
outputs of many of the ergodic chaotic systems of interest46. This

46 David Ruelle. Differentiation of SRB
states for hyperbolic flows. Ergodic
Theory and Dynamical Systems, 28(2):
613–631, 2008

theorem states that derivatives of outputs of interest with respect to
any given parameter s,

∂J
∂s

=
∂

∂s

(∫ T

0
g(u(t; s))

)
, (i.12)

are known to exist and be smooth. However, the computation of
these values using traditional sensitivity methods, including the
adjoint method, break down when there is chaotic sensitivity of
the state u(t; s) to the parameters of interest47. This is an area of

47 Qiqi Wang, Rui Hu, and Patrick
Blonigan. Least Squares Shadowing
sensitivity analysis of chaotic limit cycle
oscillations. Journal of Computational
Physics, 267:210–224, 2014; and Daniel J.
Lea, Myles R. Allen, and Thomas W.N.
Haine. Sensitivity analysis of the
climate of a chaotic system. Tellus A:
Dynamic Meteorology and Oceanography,
52(5):523–532, 2000

active research, but while there are some promising methods to
calculating sensitivities for chaotic systems48, sensitivity calculations

48 Patrick J. Blonigan, Pablo Fernandez,
Scott M. Murman, Qiqi Wang,
Georgios Rigas, and Luca Magri.
Toward a chaotic adjoint for LES. In
Proceedings of the Summer Program.
Center for Turbulence Research,
Stanford University, 2016; and Nisha
Chandramoorthy and Qiqi Wang.
Sensitivity computation of statistically
stationary quantities in turbulent flows.
In AIAA Aviation Forum, 2019

at practical cost are not anticipated to be possible in the near future,
and alternative means of making error estimates for adaptation
on chaotic flows must be considered. Both of these issues must be
overcome in order to enable mesh adaptation for chaotic flows.

It is outside the scope of this thesis to answer these questions, which
are of crucial and parallel importance to the application of this work.
In this work, we aim to create a framework in which, first, the errors
associated with simulations can be understood in the presence of
chaotic dynamics, and second, in which near-optimal choices might
be made with respect to these errors. This framework offers to allow
the efficacy of discretizations used on chaotic systems– and methods
for improving them– to be quantified.
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1

Error behavior for discretizations of
ergodic ordinary differential

equations

There’s no sense in being precise
when you don’t even know what you’re talking about.

—John von Neumann

For chaotic systems, estimation of long-time behavior is challeng-
ing because their governing ordinary differential equations (ODEs)
have limited predictability1. Of the general class of chaotic systems, a

1 Lighthill et al., 1986subset are ergodic systems, whose long-term states are drawn from a
stationary distribution, independent of initial condition2. For ergodic

2 Eckmann and Ruelle, 2004chaotic problems, we frequently want to quantify the unique infinite-
time average of some instantaneous quantity of interest of the system:

J∞ = lim
T→∞

1
T

∫ T

0
g(u(t)) dt, (1.1)

where g is the instantaneous output functional, and the state u(t) is
governed by a dynamical system of the form:

du
dt

= f(u) (1.2)

with a given initial condition (IC), u(0) = uIC.

Often, the complexity of a chaotic systems of interest is high, and
accordingly the cost of an accurate computational estimate of J∞

becomes formidable3. As the cost of computational simulation gets
3 Chapman, 1979; Spalart et al., 1997;
and Choi and Moin, 2012
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larger, efficient discretization methods become critical for accurately
estimating quantities of interest.

Understanding the error in approximations of J∞ is nontrivial be-
cause statistical errors (errors due to finite-time approximation)
and discretization error (error due to numerical approximation of
solutions) are always simultaneously present. In the largest Direct
Numerical Simulation (DNS) and Large Eddy Simulation (LES) cases,
for example, it is typical to fix sampling time at some large number
of characteristic times and validate that discretization error converges
as expected, assuming negligible sampling error4. Recent work

4 Kim et al., 1987; Adrián Lozano-
Durán and Javier Jiménez. Effect of
the computational domain on direct
simulations of turbulent channels up
to Reτ = 4200. Physics of Fluids, 26

(1):011702, 2014; Juan C. Del Álamo,
Javier Jiménez, Paulo Zandonade, and
Robert D. Moser. Scaling of the energy
spectra of turbulent channels. Journal of
Fluid Mechanics, 500:135–144, 2004; and
Konrad A. Goc, Oriol Lehmkuhl,
George Ilhwan Park, Sanjeeb T.
Bose, and Parviz Moin. Large eddy
simulation of aircraft at affordable cost:
a milestone in computational fluid
dynamics. Flow, 1, 2021

has sought to quantify the effect of statistical error more robustly,
using turbulent flow theory5, advanced spatio-temporal statistical

5 Roney L. Thompson, Luiz Eduardo B.
Sampaio, Felipe A.V. de Bragança
Alves, Laurent Thais, and Gilmar
Mompean. A methodology to evaluate
statistical errors in DNS data of plane
channel flows. Computers & Fluids, 130:
1–7, 2016

post-processing methods6, statistical windowing techniques7, or by

6 Serena Russo and Paolo Luchini.
A fast algorithm for the estimation
of statistical error in DNS (or
experimental) time averages. Journal of
Computational Physics, 347:328–340, 2017

7 Charles Mockett, Thilo Knacke, and
Frank Thiele. Detection of initial
transient and estimation of statistical
error in time-resolved turbulent
flow data. In Proceedings of the 8th
International Symposium on Engineering
Turbulence Modelling and Measurements,
pages 9–11. European Research
Collaboration on Flow Turbulence
and Combustion, 2010

extending the concept of Richardson extrapolation to chaotic flows
using auto-regressive models and Bayesian methods8. The latter

8 Todd A. Oliver, Nicholas Malaya,
Rhys Ulerich, and Robert D. Moser.
Estimating uncertainties in statistics
computed from direct numerical
simulation. Physics of Fluids, 26(3):
035101, 2014

work is notable for its use to estimate the statistical errors in the DNS
of a high-Re turbulent channel flow9.

9 Lee and Moser, 2015

The objective of this paper is to investigate the behavior of statis-
tical and discretization errors as a function of computational cost
for ergodic systems. Following a similar approach to Oliver et al.
[2014], we propose a simple error model for finite-time, discrete
approximations of infinite-time averages on attractors. Using the
Lorenz system as an example, we demonstrate that the discretization
error converges as timestep size decreases. However, it does not
increase exponentially with sampling time as might be expected from
classical numerical analysis but rather asymptotes to a constant value
with respect to sampling time. Further, for a given computational
cost (e.g. number of timsteps), an optimal choice of discretiza-
tion (i.e. timestep) exists that minimizes the expected error in a
simulation, when accounting for both the effects of discretization
error and sampling error. We show that this optimal choice results
in a convergence rate with respect to computational cost that is
bounded by the sampling convergence rate with a minor impact
from the discretization order of accuracy. Finally, we consider the
implications of spin-up time (i.e. unsampled time needed to arrive at
the stationary distribution) and parallelism on the optimal error. We
develop a method for estimating transient-related errors, and then
evaluate optimal choices incorporating the results.
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1.1 Proposed error model on the attractor

To approximate J∞, we compute finite-time, discrete estimates of the
outputs of interest of the true system:

JT,hp =
1
Ts

It0+Ts
t0

(
ghp(uhp(t))

)
, (1.3)

where the notation Ib
a(·) here represents the quadrature approxi-

mation of the integral
∫ b

a (·) dt of a quantity (·) between a and b.
Here, we have made a discrete approximation of the state using
an order-p discretization with a temporal grid with characteristic
size h = ∆t,where an order-p discretization is one for which the

We note here the use of h, which will
later be used to denote a spatial and
temporal discretization, in which case
h will represent both ∆t and ∆x; here,
though, it reduces to just ∆t.

discretization error behaves as:

max
t∈[0,t0+Ts ]

∣∣∣ghp(uhp(t))− g(u(t))
∣∣∣ = O(hp) (1.4)

when the discretization is applied to a well-posed (non-chaotic)
system. Then we sample that discrete state over a finite sampling
period, Ts, starting at some initial time t0. We can define the error
that is incurred as

eT,hp = JT,hp − J∞. (1.5)

By introducing a third value,

JT =
1
Ts

∫ t0+Ts

t0

g(u(t)) dt, (1.6)

we can re-write the error using an identity:

eT,hp = (JT,hp − JT) + (JT − J∞) = ehp + eT . (1.7)

Here, we define the “discretization error” and “sampling error”,
respectively:

ehp ≡ JT,hp − JT (1.8)

eT ≡ JT − J∞. (1.9)

We can take an absolute value of both sides of (1.7), followed by a
manipulation using the triangle inequality:

|eT,hp| = |ehp + eT |
≤ |ehp|+ |eT |.

(1.10)

Thus, the total error incurred by approximation is bounded by the
sum of the absolute discretization and sampling errors. Next, we
define the attractor of the operator f, A, as the set of long-term states
towards which all trajectories converge independently of initial
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condition10. We can define the expectation EA[φ(u0)] for a generic
10 Stuart, 1994function φ as the expectation taken over all the trajectories that can

result from starting from points on the attractor, A:

EA[φ] =
1
|A|

∫
u0∈A

φ(u0) du0. (1.11)

For the case in question we will be considering either

φ(u0) =
1
Ts

∣∣∣∣∫ t0+Ts

t0

g(u(t)) dt− J∞

∣∣∣∣ ,

or

φ(u0) =
1
Ts

∣∣∣∣It0+Ts
t0

(
ghp(uhp(t))

)
−
∫ t0+Ts

t0

g(u(t)) dt
∣∣∣∣ ,

with, for these examples, u(t0) = u0 ∈ A. Given these definitions, we
can now take the expectation of (1.10), giving

EA[|eT,hp|] ≤ EA[|ehp|] + EA[|eT |] (1.12)

by linearity.

From here, we propose asymptotic forms for the two right-hand side
terms in (1.12). Consider the definition of eT in (1.9):

eT =
1
Ts

∫ t0+Ts

t0

g(u(t)) dt− J∞. (1.13)

Assuming that we choose t0 such that each u0 is effectively an
independent sample from the attractor’s stationary distribution, then
the quantity g(u(t)) is a random variable drawn from a stationary
distribution. The states of ergodic systems, in general, are not inde-
pendent in time, but as long as the system has satisfactorily strong
mixing properties, the central limit theorem (CLT) can be applied
to finite time averages of its outputs. This is the case whenever the
condition of α-mixing is met11, which has been shown for the Lorenz

11 Manfred Denker. The central limit
theorem for dynamical systems.
Dynamical Systems and Ergodic Theory,
23:33–62, 1989; and Richard C. Bradley.
Basic properties of strong mixing
conditions. a survey and some open
questions. Probability Surveys, 2:107 –
144, 2005

system12. Thus we can write eT as:

12 V. Araújo, I. Melbourne, and
P. Varandas. Rapid mixing for
the Lorenz attractor and statistical
limit laws for their time-1 maps.
Communications in Mathematical Physics,
340(3):901–938, 2015

eT ∼ N
(

0,
(√

π

2
A0T−1/2

s

)2)
, (1.14)

where N (µ, σ2) gives the normal distribution with mean µ and
variance σ2. If we take the absolute value of this random variable,
the result is a halfnormal distribution:

|eT | ∼ H
((√

π

2
A0T−1/2

s

)2)
, (1.15)

where H(σ2) gives a halfnormal distribution such that |X| ∼ H(σ2)

when X ∼ N (0, σ2). The expectation of the half-normal distribution
is well defined, allowing:

EA[|eT |] ≈ A0T−1/2
s (1.16)
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as Ts goes to infinity.

Now consider the use of a time-stepping method to give a discrete
approximation uhp(tn) of u(tn) for each tn = n(∆t). Following
classical analysis13, we might expect that the discretization error

13 Ernst Hairer and Gerhard Wanner.
Number 14 in Springer Series in
Computational Mathematics. Springer,
Berlin, Heidelberg, second edition, 1993

should take a form:

|ehp| ≈ Cp

(
exp(ΛTs)− 1

Λ

)
(∆t)p. (1.17)

This analysis is based on bounding the growth of local truncation
error at each timestep by the Lipschitz constant, Λ, of the underlying
system, with Cp a constant parameter that depends on the choice of
method. However, Viswanath showed14 that, the global error could

14 Divakar Viswanath. Global errors of
numerical ODE solvers and Lyapunov’s
theory of stability. IMA Journal of
Numerical Analysis, 21(1):387–406, 01

2001

be modeled by a form:

|ehp| ≈ E(Ts; p)(∆t)p, (1.18)

where E(Ts; p) could be bounded by a constant for some nonlinear
but non-chaotic systems that are exponentially stable. While this
result has not been extended to chaotic systems, the expected conver-
gence onto the attracting set suggests a model of the form:

EA[|ehp|] ≈ Cp(∆t)p, (1.19)

As our results in Section 1.2 will show, (1.19) is a good description of
the expected discretization error that we observe.

Thus, taking (1.12), (1.16), and (1.19) we assume a bound of the form:

EA[|eT,hp|] ≤ emodel = Cq(∆t)q + A0T−r
s , (1.20)

that bounds EA[|eT,hp|] when ∆t is small enough and Ts is large
enough to satisfy the asymptotic assumptions. Here, q is the ob-
served discretization convergence rate, which in practice may differ
from p due to numerical cancellations or if the solutions of the
system are insufficiently regular. Similarly, r is an observed sampling
convergence rate coefficient, which we expect to be 1/2 asymptoti-
cally under the CLT.

1.2 Evaluation of proposed error model on the Lorenz system

In the following section, we will fit numerical results for the Lorenz
system to determine q, r, Cq, and A0 and show that this model is
representative of the observed behavior. The Lorenz system is given
by15:

15 Edward N. Lorenz. Deterministic
nonperiodic flow. Journal of Atmospheric
Sciences, 20(2):130 – 141, 1963
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du
dt

= f (u; α) =

 α0(u1 − u0)

u0(α1 − u2)− u1

u0u1 − α2u2

 , (1.21)

where u = [u0, u1, u2]
> and α = [α0, α1, α2]

>. The Lorenz system is
known to be chaotic for the classic parametrization16: α = [10, 28, 8/3],

16 Sparrow, 1982which is used everywhere in this text. For the output, we choose
g(u) = u2. We consider a set of explicit methods: forward Euler (FE,
p = 1), 3

rd-order Runge-Kutta (RK3, p = 3), and 4
th-order Runge-

Kutta (RK4, p = 4). In all of these methods, we expect asymptotic
convergence of JT,hp to JT to be at least O(∆tp) for non-chaotic
systems17.

17 J. R. Dormand, R. R. Duckers, and
P. J. Prince. Global error estimation with
Runge-Kutta methods. IMA Journal of
Numerical Analysis, 4(2):169–184, 04 1984

For any given discrete instance, we will start the simulation at an
initial state at t = 0 that is sampled randomly from a normal distribu-
tion:

uinit ∼

N (1.0, 5.02)

N (1.0, 5.02)

N (1.0, 5.02)

 . (1.22)

To guarantee that the initial sampling state u0 at t0 is on the attractor
(as well as further guaranteeing the independence from the other
Monte Carlo instances), we evolve the state of any given Lorenz
system discretization from its starting state uinit for t0 = 100 before
proceeding to sample; we refer to the process of evolving the solution
until it is on the attractor as “spin-up”. Then, we evolve the state over
the next Ts, during which we integrate and compute (1.3) using the
same numerical integration scheme that was used for the state itself.

To approximate eT,hp, we must first estimate J∞ by a reference value
Jref. Jref is calculated using an ensemble mean of JT,hp over Mens = 5122

instances of the Lorenz system. Each instance is started from a differ-
ent uinit as given in (1.22) and simulated using RK4 with ∆t = 17.7× 10−6

and Ts = 6646.9. The resulting Jref is:

Jref = 23.549916± 0.000074, (1.23)

with a 95% confidence estimate based on the ensemble mean estima-
tor.

The computation of Jref allows us to estimate errors eT,hp ≈ JT,hp − Jref.
For a given ∆t, Ts pair, we then approximate EA[|eT,hp|] using a
Monte Carlo method over M = 10,000 independent instances of
the discrete system, each started from initial states drawn from
(1.22) and spun-up to independent sampling starting points on the
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attractor u(m)
0 :

E[|eT,hp|] ≈
1
M

M

∑
m=1

∣∣∣JT,hp

(
u(m)

0

)
− Jref

∣∣∣ . (1.24)

In Figures 1.1, 1.2, and 1.3, we compare the results of simulations
with the FE, RK3, and RK4 discretizations with different values of
Ns. In these figures, Ts scales with ∆t for a given Ns, so the Ts values
on the x-axis will vary between lines on the plot. The fits shown are
computed with truncated data, in order to attempt to eliminate non-
convergent data at small Ts or large ∆t; the limits used for truncation
are found in Table 1.1. The results of the nonlinear least squares fits
for Ns = 104, 105, and 106, are given in Table 1.2. In the table, we
observe that r → 1/2 as the discretization error is reduced, either by
increasing Ns or by pushing p higher.

method ∆tmax Ts,min
FE 5.0× 10−3 1.0
RK3 5.0× 10−2 1.0
RK4 9.0× 10−2 1.0

Table 1.1: Fit boundaries for
nonlinear least squares fits.

These figures demonstrate that (1.19) has explanatory value, as the
errors in the discretization-dominated region collapse independently
of Ts. It is also worth noting that Table 1.2 demonstrates higher-than-
expected discretization error convergence rates for FE and RK4.

FE RK3 RK4

A0 2.19 1.74 1.63

r 0.975 0.721 0.683

Cq 4995 942 85,900
q 1.65 2.70 4.83

(a) Ns = 104

FE RK3 RK4

A0 1.94 1.50 1.41

r 0.820 0.648 0.620

Cq 1410 1310 96,100
q 1.40 2.76 4.84

(b) Ns = 105

FE RK3 RK4

A0 1.52 0.978 0.918

r 0.693 0.553 0.538

Cq 714.6 2740 165,000
q 1.273 2.96 5.02

(c) Ns = 106

Table 1.2: Values of error model
coefficients computed from
nonlinear least squares fits to
Monte Carlo study data.

In Figure 1.4, we can examine the sampling error behavior between
discretization methods for a single, shared choice of Ns. Here, we can
see that the sampling error effects on the left-hand side of the plot
collapse independently of the discretization method. This indicates
that the statistical effects are properties of the dynamical system,
not artifacts of the discretization, as we might expect in the limit as
∆t→ 0.

Finally, we attempt to compare the computational costs across the
various discretizations. In this case, the number of timesteps Ns is not
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Figure 1.1: Expected relative
error as a function of ∆t for
Forward Euler discretization
of the Lorenz equations.
Nonlinear least squares fit
based on Ns = 106 data.

Figure 1.2: Expected relative
error as a function of ∆t for
RK3 discretization of the
Lorenz equations. Nonlinear
least squares fit based on
Ns = 106 data.

a good proxy for fixed cost, since the computation time for a timestep
will vary between methods. Instead, we now fix Us, the total number
of evaluations of the right-hand side f used in sampling timesteps.
For the explicit schemes used in this work, we will have p right-
hand side evaluations (e.g. Forward Euler has p = 1 right-hand side
evaluations), and thus Us = pNs. In Figure 1.5, we can see the effect
of changing ∆t at fixed sampling cost Us across discretizations. The
error that can be achieved with the Runge-Kutta methods is lower
than that of the forward Euler scheme, a factor of 4.8 improvement
in the error from FE to RK4. However, the best-case improvement
for going from 3

rd-order to 4
th-order Runge-Kutta schemes is a only

factor of about 1.4. Moreover, the results show that to achieve the
lowest possible error, the optimal timestep will be discretization
dependent. We investigate this further in the next section.
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Figure 1.3: Expected relative
error as a function of ∆t for
RK4 discretization of the
Lorenz equations. Nonlinear
least squares fit based on
Ns = 106 data.

Figure 1.4: Expected relative
error as a function of ∆t for
discretizations of the Lorenz
equations.

1.3 Optimal timestepping on the attractor

We now study the implications of the error model (1.20), specifically
seeking to understand the convergence of the error with respect to
computational effort. In this analysis, we will assume that r = 1/2.

Consider a non-dimensional form of error model in which the error
is normalized by the standard deviation of the instantaneous output
σg and the timescales ∆t and Ts are normalized by decorrelation
time Td. The decorrelation time relates the amount of variance from
independent draws from the distribution on the attractor and the
amount of variance in the finite-time mean estimators based on the
correlated output signal, given by the relation18:

18 Kevin E. Trenberth. Some effects
of finite sample size and persistence
on meteorological statistics. Part I:
Autocorrelations. Monthly Weather
Review, 112(12):2359 – 2368, 1984

Var[JT ] =
Td
Ts

σ2
g . (1.25)
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Figure 1.5: Expected percent
error as a function of ∆t
for discretizations of the
Lorenz equations at a
number of sampling residual
evaluations. All fits evaluated at
Us = 1.2× 106.

Furthermore, combining (1.15) and (1.25) allows us to write

A0 =

√
2
π

σgT1/2
d . (1.26)

In general, Td is hard to estimate accurately; this is a crux of the work
of Oliver et al. [2014]. In our formulation of the error model, we
identify A0, which avoids outright estimation of Td. However, for the
purposes of understanding the behavior of the error, Td is an intrinsic
timescale which can be used to normalize ∆t and Ts.

The resulting non-dimensional form of the error model is

emodel
σg

=
CqTq

d
σg

(
∆t
Td

)q
+

√
2
π

(
Ts

Td

)− 1
2

. (1.27)

We can also write the optimizers and optimal value of (1.27) in terms of the non-dimensional variables.
These are given by: (

∆t
Td

)
opt

=

(
1

2π

) 1
2q+1

(
qCqTq

d
σg

)− 2
2q+1

N
− 1

2q+1
s

(
Ts

Td

)
opt

=

(
1

2π

) 1
2q+1

(
qCqTq

d
σg

)− 2
2q+1

N
2q

2q+1
s

(
emodel

σg

)
opt

=

(
1

2π

) q
2q+1

(
2 +

1
q

)(
qCqTq

d
σg

) 1
2q+1

N
− q

2q+1
s .

(1.28)

In terms of convergence with respect to sampling costs, the error
model will scale at best as(

emodel
σg

)
opt
∼ N

− q
2q+1

s .
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In the limit as q → ∞, the rate q/(2q + 1) → 1/2: the CLT limits the
convergence rate. Table 1.3 gives the rates of convergence (1.28) for
various values of q.

q q
2q+1

1 1/3
2 2/5
3 3/7
4 4/9
5 5/11
...

...
∞ 1/2

Table 1.3: Convergence rates for
combined error with respect to
sampling timesteps implied by
(1.28) at common high-order
discretization error convergence
rates.

Using the reference simulation, we can also find:

Var[JT ] ≈ Var[JT,hp] = 1.1692× 10−4

σ2
g ≈ σ̂2

g = 74.34804± 0.00018,
(1.29)

where σ̂g is an estimate of the standard deviation of g. Together,
these allow us to estimate:

Td ≈ 1.0170× 10−2

σg ≈ 8.6225.
(1.30)

With these values, we can plot the non-dimensional error model with
fixed r = 1/2, which is given for Ns = 105 in Figure 1.6.

Figure 1.6: Expected non-
dimensional error as a function
of non-dimensional timestep
for discretizations of the Lorenz
equations. r = 1/2 assumed.

We now consider the implications of these results for increasing Ns.
To focus solely on control of the discretization error, increases in
Ns can be used to refine ∆t = Ts/Ns, with Ts fixed. On the other
hand, to focus solely on controlling sampling error, Ts = Ns∆t can
be increased, holding ∆t fixed. In Figure 1.7, the two approaches
are compared with the optimal use of resources. In orange is the
discretization error control strategy. In this approach, the simulations
converge at a high-order rate in Ns towards the optimal error behav-
ior; once the error reaches this optimum, however, it asymptotes to a
constant: the expected statistical errors prevent more precise estima-
tion of JT,hp. On the other hand, the sampling error control approach
is shown in blue. In this approach, the central limit convergence rate
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Figure 1.7: Refinement study
comparison for fixed ∆t, fixed
Ts, and optimized ∆t & Ts using
RK3 discretization to compute
the expectation of the Lorenz
system output g = u2.

of 1/2 is initially achieved until the error asymptotes to a constant:
discretization errors prevent the more precise estimation of JT,hp. In
the literature for large simulations, discussed in the introduction,
simulations tend to be planned using either the discretization or
statistical error control approach. What (1.20) implies and Figure 1.7
demonstrates is that, in fact, there is a particular optimal scheme in
which ∆t and Ts are simultaneously varied that will extract the most
accurate estimate of J∞ as Ns increases.

1.4 Investigation of global discretization error model

In this section, we show that our simulations of chaotic, ergodic
ODEs are consistent with a bounded relationship between the local
and global discretization errors. Consider an estimate of the global
error based on Ns timesteps:

ehp ≈
1

Ns

Ns

∑
n=0

Ns

∑
η=n
G(tη , tn) ◦ e(n)LT,p, (1.31)

where
e(n)LT,p ≡ uhp(tn+1)− u?(tn+1) (1.32)

and u?(tn+1) is exact solution integrated from uhp(tn) through ∆t:

u?(tn+1) = uhp(tn) +
∫ tn+1

tn
f (u?(t)) dt. (1.33)

In (1.31), we have assumed that the error from any given local state
perturbation is propagated forward in time by the dynamics, before
being transformed into an error in the output; this process is cap-
tured by an operator G. Because the effect of local error propagates
forward and not backward in time, G(t, tn) = 0 for t < tn, and more-
over we assume that due to ergodicity G(t, tn) = 0 when t− tn & Td,
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where Td is the decorrelation time associated with the attractor. This
allows us to write:

ehp ≈
1

Ns

Ns

∑
n=0

n+Td/∆t

∑
η=n

G(tη , tn) ◦ e(n)LT,p. (1.34)

Now, we assume that a constant Gmax exists such that:∣∣G(tη , tn) ◦ v
∣∣ ≤ Gmax‖v‖∞, (1.35)

for all tn, tη ∈ R and v ∈ B(u(tn)) ⊂ Rd where B(u) is the set
of states possible by perturbation of u that remain in the basin of
attraction of the attractor A of f. When this is the case, we can create
a bound on the magnitude of ehp:

|ehp| ≤
Td
∆t
Gmax

1
Ns

Ns

∑
n=0

∥∥∥e(n)LT,p

∥∥∥
∞

≤ Td
∆t
Gmax max

n

∥∥∥e(n)LT,p

∥∥∥
∞

(1.36)

We now attempt to bound the value of Gmax for the Lorenz system
by approximating the local truncation error. To make an estimate, we
compute both the solution at the next timestep as well as a surrogate
for the true solution at each timestep: uhp(tn+1) and ũ?(tn+1), where
the former is computed with one timestep of the method of interest
and the latter is always computed with the highest available accuracy
method, RK4, and subdividing t ∈ [tn, tn+1] into ten consecutive
timesteps rather than one. Both uhp(tn+1) and ũ?(tn+1) are always

advanced from uhp(tn). This allows us to estimate e(n+1)
LT,p locally:

e(n+1)
LT,p ≈ ẽ(n+1)

LT,p = uhp(tn+1)− ũ?(tn+1). (1.37)

In Figure 1.8 we characterize the convergence of local error estimates.
Computations are run with Ts = 100 and t0 = 100 fixed, varying
∆t. At each timestep, the local truncation error is estimated by
computing (1.37). The figure shows the computed maxn ||ẽ(n)LT,p||∞
and demonstrates that the expected rate of (p + 1) is nearly exactly
achieved.

Using (1.36) we can estimate a bounding value for Gmax by

Gmax ≥
E[|ehp| ]

maxn

∥∥∥e(n)LT,p

∥∥∥
∞

∆t
Td

=
Cq∆tq

cp∆tp+1
∆t
Td

, (1.38)

where cp is the leading truncation error coefficient fit in Figure 1.8,
and Cq and q are taken from Table 1.2. Of course when q > qtheory = p,



34 ph.d. dissertation: c. frontin

Figure 1.8: Convergence of
estimated local truncation
error with respect to ∆t. Fits to
cp∆tp+1 shown (with offset for
presentation).

there will be ∆t dependence. However, as (1.38) requires that the
In general, we expect q = p, but due to
cancellation of local errors, q > p occurs
in practice for the Lorenz system. In
the expected case of q = p, we should
expect Gmax = Cq/(cpTd).

discretization error has an asymptotic behavior, we will only consider
∆t in the asymptotic convergence regions given in Table 1.1 to com-
pute Gmax. In Figure 1.9, we show the values of the right-hand side

Figure 1.9: Estimation of
bounding value Gmax.

quantity in (1.38), which allow us to make an estimate:

Gmax ≈ 4.3. (1.39)

Next, we use classical truncation error estimates19 to relate the
19 Hairer and Wanner, 1993discretization error to properties of the solution. We will assume

that the local truncation error is bounded by a form:

max
n

∥∥∥e(n)LT,p

∥∥∥
∞
≤ CLT

(p + 1)!

∥∥∥∥dp+1u
dtp+1

∥∥∥∥
∞

∆tp+1 (1.40)

where CLT is a local truncation constant term dependent on the nu-
merical method and the ‖·‖∞ in this context refers to the maximum
value in time of the inf-norm of a vector-valued, time-dependent
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quantity (·). The derivatives of u(t) can be computed by evaluating
f (u) and its derivatives using solutions from a reference RK4 solu-

Derivatives of f are computed
analytically using the chain rule.

tion of the Lorenz system with Ts = 1000, t0 = 100, and ∆t = 10−4.
Norms of the derivatives are shown in Figure 1.10. The resulting val-

Figure 1.10: Norm of analytic
derivatives of u computed
on the attractor of f. State
u computed with RK4 at
∆t = 10−4 and Ts = 1000 after
discarding t0 = 100.

ues of CLT that can now be derived by fitting the asymptotic behavior
in Figure 1.8 can be found in Table 1.4. The result of these estimates
is that we can reliably bound the global error of a dynamical system
as an accumulation of the local errors over a region of correlation.

p rate
(observed) CLT

∥∥∥ dp+1u
dtp+1

∥∥∥
∞

CLT

1 2.00 7.61× 103 7.33
3 4.02 3.28× 106 156
4 4.93 4.50× 107 76.5

Table 1.4: Rate and coefficient
fit for convergence of local
truncation error of discrete
Lorenz system. CLT

∥∥∥dp+1u
dtp+1

∥∥∥
∞

estimated by cp(p + 1)! using cp

fit from Figure 1.8.We now want to consider how the global error behavior demon-
strated here might extrapolate to more complicated systems by
evaluating the spectral behavior of the Lorenz system. Using a
discrete Fourier transform with a Hann window function20, we

20 F.J. Harris. On the use of windows
for harmonic analysis with the discrete
Fourier transform. Proceedings of the
IEEE, 66(1):51–83, 1978

perform a spectral analysis on the states of the Lorenz system with
a sampling time Ts = 1000, t0 = 100, and ∆t = 10−3. The resulting
spectrum can be found in Figure 1.11. The Lorenz system tends to
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Figure 1.11: Fourier spectrum
of u(t). Computed with
DFT using Hann window
function on data from RK4

discretization of Lorenz
system with Ts = 1000,
t0 = 100, and ∆t = 10−3.
Gray dashed line: fit assuming
|û( f )| ≈ exp(−a f + b) with
a = 0.872 and b = 2.58.

have the most content in the frequencies with f . 101, with a region
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of exponential decay in the range 1 . f . 30. On scales with f & 30,
machine precision plateaus are observed and omitted here.

The fact that the Lorenz spectrum is an exponentially decreasing
function of frequency f makes the use of high-order methods the-
oretically appealing for the spectral convergence of hp-refinement
strategies21. Unfortunately, the effect of statistical error in (1.28)

21 George Karniadakis and Spencer
Sherwin. Spectral/hp element methods
for computational fluid dynamics. Oxford
University Press, 06 2005

limits the impact of this exponential decay, such that the benefits
of higher-order discretization methods are limited compared to
their steady-state and non-chaotic application. The convergence

Figure 1.12: Convergence of
optimal error with sampling
costs for FE, RK3, and RK4

discretizations of the Lorenz
output g = u2. Asymptotic 1/2
rate implied by central limit
theorem shown.

to the central limit rates can be seen in Figure 1.12, which shows
the convergence of (1.28) with the total sampling cost. The effect of
increasing order improves the convergence rate in (1.28) towards the
CLT-implied asymptotic rate of −1/2, as well as decreasing the value
of the leading constant, but the error never achieves the spectral rates
possible with hp-refinement in the steady case. Nevertheless, the
cost to achieve a given amount of error in expectation– in terms of
function evaluations– is significantly less with higher-order methods.
Managing to achieve 1% non-dimensional error in expectation is
possible with RK4 at a cost ten times less than would be possible
using FE; that factor grows larger than 100 when the tolerance is
tightened to 10−4.

1.5 Impact of ensemble averaging and spin-up

In this section, we will consider how the error behaves when ensem-
ble averaging (over multiple parallel instances) and when spin-up
effects are present.
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Ensemble averaging on the attractor

It is well understood how sampling error can be reduced at a fixed
wall clock time by ensemble averaging across multiple parallel
processes22; we now consider the effect of ensemble averaging 22 Vakhtang Makarashvili, Elia Merzari,

Aleksandr Obabko, Andrew Siegel,
and Paul Fischer. A performance
analysis of ensemble averaging for high
fidelity turbulence simulations at the
strong scaling limit. Computer Physics
Communications, 219:236–245, 2017

when the effect of discretization error is included. Consider a Monte
Carlo approach to approximate J∞ with a set of Mens independent
realizations:

JMC =
1

Mens

Mens

∑
m=1

J(m)
T,hp. (1.41)

We can write a modified version of (1.20) to approximate the error
that we expect in the Monte Carlo estimator in (1.41):

E[|JMC − J∞|] ≈ emodel,MC = Cq(∆t)q
MC +

A0√
Mens

T−r
s,MC, (1.42)

with an equivalent non-dimensional version, assuming r → 1/2:

(
emodel

σg

)
MC

=
CqTq

d
σg

(
∆t
Td

)q
+

√
2
π

M−
1
2

ens

(
Ts

Td

)− 1
2

, (1.43)

and an optimum given by

(
emodel

σg

)
MC,opt

=

(
1

2π

) q
2q+1

(
2 +

1
q

)(
qCqTq

d
σg

) 1
2q+1

M
− q

2q+1
ens N

− q
2q+1

s , (1.44)

at (
∆t
Td

)
opt

=

(
1

2π

) 1
2q+1

(
qCqTq

d
σg

)− 2
2q+1

M
− 1

2q+1
ens N

− 1
2q+1

s , (1.45)

and (
Ts

Td

)
opt

=

(
1

2π

) 1
2q+1

(
qCqTq

d
σg

)− 2
2q+1

M
− 1

2q+1
ens N

2q
2q+1

s . (1.46)

Equation 1.44 shows that, for finite values of q, the Monte Carlo
method will have a mitigated return compared to its purely stochas-
tic application as in Makarashvili et al. [2017]; the optimal error
scales as M−q/(2q+1)

ens as opposed to M−1/2
ens . However, parallelization

can achieve perfect scaling in the expected error, in the sense that the
effect of running Mens ensembles with Ns sampling timesteps each
will have an equivalent error in expectation to simulating MensNs

timesteps in serial. As Mens is varied on the set of optimal solutions,
(1.45) and (1.46) indicate that the timestep and sampling time should
be reduced with the same factor M−1/(2q+1)

ens as Mens increases in
order to achieve perfect scaling.
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Spin-up transient modeling

So far, we have considered the error and cost on the attractor, ne-
glecting the impact of “spin-up” from t = 0 to t = t0. This spin-up
is necessary because simulations of ergodic systems invariably need
some time for the state to proceed onto the attractor from the initial
condition.

Consider u(t), a solution of the ergodic chaotic system f from an
arbitrary initial condition u(0) = uIC in the basin of attraction of an
attractor, A. The existence of the attractor implies the non-linear sta-
bility of the system, such that all uIC will converge to trajectories on
the attractor A. Denote by uA(t) a trajectory that is on the attractor
for all t and to which u(t) collapses as t → ∞. The perturbation
δuA(t) ≡ u(t) − uA(t) that describes the IC, therefore, exists in a
stable subspace of perturbations to uA and can be associated with the
negative Lyapunov exponents of the system. Thus, we can assume
that such perturbations are governed asymptotically by∥∥∥δuA(t)

∥∥∥ . exp
(
− t

Tλ

)
, (1.47)

with Tλ a characteristic time associated with the stable Lyapunov
modes. In practice, we are interested in averages of quantities on the
attractor g(uA(t)), but we can only calculate quantities g(u(t)), that
will include some effect– if small– of the spin-up transient.

Next, we seek to quantify the effect of this gap on estimates JT ≈ J∞.
Consider the computation of JT . In our earlier idenitication of (1.7),
we have effectively found an estimate of

JAT =
1
Ts

∫ t0+Ts

t0

g(uA(t)) dt, (1.48)

by choosing t0 sufficiently large. We now want to consider an error
model of the form:

eT,hp = (JT,hp − JT)︸ ︷︷ ︸
ehp

+ (JT − JAT )︸ ︷︷ ︸
eλ

+ (JAT − J∞)︸ ︷︷ ︸
eT

(1.49)

where a new error eλ is introduced, associated with the spin-up
transient. The model for eT in (1.9) will apply without modification,

We note here that there is some
arbitrariness in the ordering of this
equation. Both the true system and the
discretized ones will have a tendency
to have transient behavior before
arriving at a stationary distribution.
We can account for the transient
behavior (as we have here) as being
a characteristic of the finite-time true
system, or as a characteristic of the
discrete, finite time system, such that
ehp is just on the attractor. In terms of
the equations, this would take the form:
eλ ≡ JT,hp − JAT,hp, ehp ≡ JAT,hp − JAT , and
eT as before. This latter description
is likely to be rather useful: it’s more
theoretically succinct and represents
a more readily estimable quantity;
however, we use the former in this work
since we estimate the expected transient
behavior using reference simulations,
which approximates the behavior of the
true system.

while the model for ehp will be subject to slightly different assump-
tions. Where in (1.8), Cq was bounded by the value on the attractor,
A, here we must assume that Cq is bounded from t = 0 to t = t0 + Ts,
including both the attractor and the transient part of the trajectory.
We only require that the transient part be in the basin of attraction of
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A, B(A). We assume that a model of the form used in (1.8) applies in
expectation when the transient component is included.

Next, we concentrate on eλ:

JT − JAT =
∫ t0+Ts

t0

(
g(u(t))− g(uA(t))

)
dt. (1.50)

We now assume that, like u, g will decay exponentially in t as (1.47),
such that

g(u(t))− g(uA(t)) ≡ δgA(t) ≈ Aλ exp
(
− t

Tλ

)
(1.51)

will apply for t ∈ [0, ∞), with Aλ a constant that can be related to the
deviation between g(u(0)) and g(uA(0)).

From this assumption,

eλ =
1
Ts

∫ t0+Ts

t0

g(u(t))− g(uA(t)) dt

≈ 1
Ts

∫ t0+Ts

t0

Aλ exp
(
− t

Tλ

)
dt

= Aλ
Tλ

Ts
exp

(
− t0

Tλ

)(
1− exp

(
− Ts

Tλ

))
≈ Aλ

Tλ

Ts
exp

(
− t0

Tλ

)
≡ eλ

(1.52)

Taking the absolute value, we can find a bounding model:

|eλ| = |Aλ|
Tλ

Ts
exp

(
− t0

Tλ

)
. (1.53)

As before, manipulation of (1.49) allows

|eT,hp| = |ehp + eλ + eT | (1.54)

≤ |ehp|+ |eλ|+ |eT |. (1.55)

Now, we take an expectation of the absolute value of eT,hp:

E[|eT,hp|] ≤ EB(A)[|ehp|] + EIC[|eλ|] + EA[|eT |], (1.56)

where EB(A) gives the expectation on the basin of attraction of A.
Here, the expectation of |eT,hp| doesn’t reduce to an expectation on
the attractor. The statistical term is handled on the attractor as before,
and we have assumed that the discretization error is bounded by the
same form in expectation on B(A) as on A. Finally, the expectation
of |eλ| is taken on the set of initial conditions used. This allows
us to take the expectation of (1.53) to complete (1.56). Because we
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anticipate a constant Tλ will be bounded for a given system, this is
given by:

EIC[|eλ|] = EIC[|Aλ|]
Tλ

Ts
exp

(
− t0

Tλ

)
. (1.57)

If a Aλ and Tλ can be identified by observation of g(u(t)) given an
initial condition uIC, |eλ| is no longer stochastic and the E[|eT,hp|] →
|eT,hp| as in (1.53).

Putting all the pieces together, we can now give an error model that
incorporates the effects of spin-up and ensemble estimation:

emodel,MC = Ãλ
Tλ

Ts,MC
exp

(
− t0

Tλ

)
+ Cq(∆t)q

MC +
A0√
Mens

T−r
s,MC, (1.58)

where Ãλ can be either estimated on an instance-by-instance basis or
by estimating the expectation on a family of initial conditions. Under
this model, eλ will scale with the exponent of a large negative value
when t0 � Tλ. Even when t0 6� Tλ, (1.53) suggests that the decay-
induced error term will still scale with T−1

s , faster than the expected
CLT rate of T−1/2

s , and thus it will be dominated as Ts � 1. This also
implies two “paths” to controlling spin-up errors: either choosing t0

long enough to shrink the mean offset error to negligibility at t = t0,
or choosing Ts long enough so that the mean offset contribution to
the simulation error is small in spite of the error at t = t0.

Identification of spin-up transient model

We will now develop a method to fit the error model. In order to
do so, consider observations gn ≡ g(tn) and gAn ≡ gA(tn) for tn

in {t0, t0 + Nskip∆t, . . . , t0 + Ts}. We will assume that Nskip is large
enough that the solution at each tn is effectively independent. If this
is the case, then we can assume that each gAn will be an independent
and identically distributed (i.i.d.) draw from a bounded, stationary
distribution with mean J∞. The distributions of gA(u(t)) and g(u(t)),
in general, are not known. In order to facilitate an estimate of the
mean behavior, we will assume gAn are i.i.d. draws from a normal
distribution with mean value J∞. Then, we have:

gn ∼ N (J∞ + δgA(tn), σ2
g), (1.59)

where the relationship between gn and gAn is taken from (1.51).

In order to understand the implications of this model, we can use
the set of reference RK4 simulations of the Lorenz system with Nt =
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105 timesteps sampled without spin-up over a period T = 100 from
initial conditions similar to those given in (1.22), with a scaled-up
standard deviation of 100 in all three variables to highlight the initial
transient. In order to treat each of J∞, σg, Aλ, and Tλ in (1.59) as
unknowns, we use Hamiltonian Monte Carlo with the likelihood
function implied by (1.59). We discard from t = 0 to t = 5, then take
10,000 equispaced samples from t = 5 to t = 100. For prior models,
we start by computing naïve estimators of the mean and standard
deviation of the trace, J̃ and σ̃ using the downsampled trace signal
{gn}, then use:

J∞ ∼ N ( J̃, σ̃2)

σg ∼ Γ(ασ, βσ)

Aλ ∼ N (0, max(ghp)−min(ghp))

Tλ ∼ Γ(αT , βT)

(1.60)

where

(ασ, βσ) ⇐=
(

µσ = σ̃, σσ =
σ̃

10

)
(αT , βT) ⇐= (µT = 10.0, σT = 10.0) .

It should be noted that in this
specification, the Bayesian fit only
requires a user-supplied prior for the
decay time and for the uncertainty in
the standard deviation, assumptions
upon which the fitting method only
requires be reasonable.

A sample fit and trace are found in Figure 1.13, for which the max-
imum a posteriori estimate gives Tλ = 0.312 and Aλ = −0.925.

Figure 1.13: g = u2(t) trace in
transient region, with Bayesian
method fit

For the Lorenz system, the initial transient onto the attractor is very
rapid, almost negligible. Applying the Bayesian fit procedure to an
ensemble of 1000 runs generated in the same way as Figure 1.13 we
can find maximum a posteriori (MAP) estimates of the variables Tλ

and |Aλ| in the decay model. In Figures 1.14 and 1.15, histograms of
these variables are shown, which are needed to determine (1.53). We
can see that the fit procedure identifies values:

Tλ < 4.03

|Aλ| < 38.7
(1.61)
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Figure 1.14: MAP estimate Tλ

for Lorenz system transient.
Collected over 1000 Lorenz
trajectories with ∆t = 10−2,
Ts = 100, and randomized uIC.
Outliers truncated, greater than
97% of data in pictured range.

Figure 1.15: MAP estimate |Aλ|
for Lorenz system transient.
Collected over 1000 Lorenz
trajectories with ∆t = 10−2,
Ts = 100, and randomized uIC.
Outliers truncated, greater than
97% of data in pictured range.

for greater than 97% of initial conditions, up to two standard devia-
tions above the mean. Using these values as a conservative estimate
for the mean offset, we can now model the effect of the transient
behavior.

1.6 Optimal time-stepping including spin-up

Now we can consider how the cost and error impact of spin-up is
incorporated into the model for error at a fixed cost. The spin-up
time requires the use of N0 timesteps:

N0 =

⌈
t0

(∆t)MC

⌉
≈ t0

(∆t)MC
. (1.62)

With N the total number of timesteps used, given by:

N = N0 + NMC =
t0

(∆t)MC
+ NMC, (1.63)

where NMC is the number of timesteps during sampling for t0 to
t0 + Ts on a given instance.
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By normalizing (1.58) then substituting (1.63), we arrive at a transient-
inclusive non-dimensional model for the error:

(
emodel

σg

)
MC

=
Ãλ

σg

Tλ

Td

(
N
(

∆t
Td

)
MC
− t0

Td

)−1
exp

(
− t0/Td

Tλ/Td

)

+
CqTq

d
σg

(
∆t
Td

)q

MC
+

√
2
π

M−
1
2

ens

(
N
(

∆t
Td

)
MC
− t0

Td

)− 1
2

.

(1.64)

Using this result, we can solve numerically for (∆t)MC,opt and eMC,opt

via (1.64).

Consider a Lorenz simulation on which a budget of U = pN =

1.2× 106 right-hand side evaluations are available on each of Mens

parallel processors. We start by studying the error under (1.64) as ∆t
and t0 vary with a conservative estimate for the transient behavior
using the bounding values in (1.61). In Figure 1.16, we show emodel

Figure 1.16: Dependence of
normalized error expectation
emodel,MC/σg on normalized
timestep ∆t/Td and normalized
spin-up time t0/Td with total
cost set at U = 1.2× 106

for Forward Euler. Red star
denotes optimum, dashed line
indicates optimal t0 given ∆t.

Figure 1.17: Dependence of
normalized error expectation
emodel,MC/σg on normalized
timestep ∆t/Td and normalized
spin-up time t0/Td with total
cost set at U = 1.2× 106 for
3

rd-order Runge Kutta. Red star
denotes optimum, dashed line
indicates optimal t0 given ∆t.
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Figure 1.18: Dependence of
normalized error expectation
emodel,MC/σg on normalized
timestep ∆t/Td and normalized
spin-up time t0/Td with total
cost set at U = 1.2× 106 for
4

th-order Runge Kutta. Red star
denotes optimum, dashed line
indicates optimal t0 given ∆t.

for Forward Euler at a fixed cost of U = 1.2× 106 (the optimum
is denoted by a red star). Moving to the right, discretization error
becomes the dominant factor as ∆t � Td. The diagonal boundary
gives the region of feasibility at which, under the cost constraint,
sampling no longer occurs (Ts = 0). Moving from the optimum
towards the bottom left, t0 → 0, Ts → 0, and ∆t � Td; thus the
transient error and sampling error become dominant. Similar plots
for RK3 and RK4 are found in Figures 1.17 and 1.18. The optimal
errors and optimizing simulations are described in Table 1.5. We can
see from these results that, at a fixed budget with U = 1.2× 106,
the effect of increasing the discretization order is make a smaller
error possible with a larger timestep, which means fewer timesteps to
traverse the spin-up time. These two effects combine to allow for an
increase in the sampling time available Ts, allowing significantly less
sampling error for RK3 compared to FE, and an additional– albeit
smaller– benefit moving from RK3 to RK4, holding cost fixed.

method p emodel ∆t t0 Ts

FE 1 0.0502 2.54× 10−4
30.2 275

RK3 3 0.0130 8.52× 10−3
35.5 3370

RK4 4 8.89× 10−3 0.0224 36.7 6670

Table 1.5: Optimal Lorenz
simulations for output g = u2

under budget of U = 1.2× 106

right-hand side evaluations
using Mens = 1.

In Figure 1.19, we take another perspective on these results for
RK3 by varying ∆t and plotting the optimal t0, Ts, and emodel. As
∆t gets large, the optimal choice of t0 has logarithmic growth, and
when ∆t/Td � 1, the optimal choice of t0 rapidly falls to zero.
Parallelization has a small but non-zero effect on the optimal choice
of sample time. The sampling time also has a small effect from
parallelization, in this case constrained to a small region. Outside
that ∆t region, Ts scales with ∆t both as ∆t→ 0 and as ∆t→ ∞.
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Figure 1.19: Dependence of
normalized spin-up time
t0/Td, sampling time Ts/Td,
and model error emodel/σg

on normalized timestep
∆t/Td with total cost set at
U = 1.2× 106 for 3

rd-order
Runge Kutta.

The bottom plot of Figure 1.19 shows the variation of error with ∆t.
In this plot we can see three distinct regions. For ∆t/Td � 10−2,
discretization error is the dominating error, and the convergence
goes with the discretization error rate. Approaching the optimum,
sampling error becomes the dominant error contribution, starting
at ∆t ≈ 2× 10−2 until ∆t ≈ 10−3. In this region, the convergence
is around the CLT-implied 1/2 rate, and the effect of parallelization
is clearly seen. For ∆t . 10−3, however, the spin-up error becomes
the dominant error contribution. The optimal choice of t0 begins to
fall rapidly, as the sampling and spin-up must compete for computa-
tional resources under the budget. Once the spin-up error dominates,
the paradigm by which (1.53) is controlled shifts from the exp(−t0)
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term to the T−1
s term as ∆t/Td → 0, since resolving Ts delivers both

spin-up and sampling error control.

This interdependence will evidently have an effect on the overall
scaling between cost and error, which we now seek to understand.
Here, we study the variation of emodel,MC with U under the optimal
choices and evaluate how well emodel,MC approximates experimental
data for E[|JMC − J∞|]. In Figure 1.20, the variation of emodel,MC

computed via (1.64) as a function of Mens and U is shown. From

Figure 1.20: Optimal non-
dimensional error under model
as a function of total cost U for
RK3. Theory totem on left-hand
side: discrete convergence rate,
1/q ; on right-hand side: 2(q+r)

q
rate from (1.44).

this figure, we can see that, in the limit of small error, the sampling
costs dominate and the best possible rate is given by the estimate
in (1.44), limited by the CLT. On the other hand, when the cost is
more moderate, scaling of the error is close to the discretization
error convergence rate in (1.19). In this region, the spin-up costs
are significant, and high-order discretization brings the state more
efficiently to the start of sampling. In the spin-up dominated region,
the effect of the parallel ensemble approach is minimal since spin-up
must be overcome on each processor.

Now, we validate the total error model for the Lorenz system by a fi-
nal numerical experiment. At each choice of Mens and U, we generate
1000 individual realizations of JMC at the computed (∆t)MC,opt and
NMC,opt and using the model fit given in Table 1.2. In Figures 1.21,
1.22, and 1.23, we show the predictions and the results of Monte
Carlo estimates of E[|JMC − J∞|] for our three discretizations. These
results validate the model, with significant discrepancies only when
the asymptotic assumptions– ∆t small and Ts large– do not hold, due
to budget limitations in the limit of small U.
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Figure 1.21: Total cost model
and Monte Carlo validation as a
function of total cost U for FE.

Figure 1.22: Total cost model
and Monte Carlo validation as a
function of total cost U for RK3.

1.7 Conclusion

In this chapter, we have developed a theoretical framework for the
total error incurred by the discrete sampling of mean outputs of
ergodic ODEs. These findings are validated by Monte Carlo studies
of the Lorenz system using Runge-Kutta methods. We incorporate
effects of parallelization and spin-up and validate that the models
match observed results in experiments. Using these models, we are
able to develop a comprehensive understanding of the relationship
between the wall-clock cost of a simulation and the amount of error
in expectation that it might achieve.

A key outstanding problem is the expense of identifying the param-
eters of the error model. In order to overcome this, we will show in
the next chapter that leveraging a Bayesian approach, as in Oliver



48 ph.d. dissertation: c. frontin

Figure 1.23: Total cost model
and Monte Carlo validation as a
function of total cost U for RK4.

et al. [2014], can allow us to approximate the model in (1.20) at
relatively small cost. Then in the proceeding chapter, we will need
to extend the framework to chaotic PDE systems as opposed to
ODE systems. Though many discrete PDE systems are discretized
in a form that reduces to an ODE system, a rigorous model for the
error and cost of a PDE system should account for the contributions
of both temporal discretization and spatial discretization and act
optimally with respect to both. Last but not least, we can exploit the
results to conduct a high-fidelity simulation at an (approximately)
optimal discretization.
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2

Bayesian small sample identification
of error models for discretizations of

ordinary differential equations

You can observe a lot just by watching.

—Yogi Berra

To effectively use error models for chaotic systems, we must
be able to know them before setting up and starting a simulation. In
Chapter 1, we showed that the error in approximating the true mean
value J∞ of a ergodic chaotic ODE system could be well approxi-
mated by an error model of the form

emodel = emodel(∆t, t0, Ts; Mens, θ, ψ)

given in the most general form in (1.58). Here, ψ = (|Aλ|, Tλ) and
θ = (Cq, q, A0, r) give parametrizations of the transient error and
attractor error models, respectively. In Section 1.5, a method for
approximating ψ using the discrete output ghp of a chaotic system.

In this chapter, we concentrate on identifying the parameters θ,
operating with t0 � Tλ such that eλ is negligible and the error model
reduces to:

emodel = emodel(∆t, Ts; θ)

= Cq∆tq +
A0√
Mens

T−r
s ,

(2.1)

This model implies an optimal choice of ∆topt and Ts,opt = Ns∆topt at
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a given number of sampling timesteps Ns:

∆topt(Ns; θ) = M
− 1

2(q+r)
ens

(
rA0

qCq

) 1
q+r

N
− r

q+r
s (2.2)

Ts,opt(Ns; θ) = M
− 1

2(q+r)
ens

(
rA0

qCq

) 1
q+r

N
q

q+r
s , (2.3)

at which the optimal (i.e. minimal) absolute error in expectation
would be achieved:

eopt(Ns; θ) = M
q

2(q+r)
ens A

q
q+r
0 C

r
q+r
q

((
r
q

) q
q+r

+

(
r
q

)− r
q+r
)

N
− qr

q+r
s . (2.4)

We note that (2.2), (2.3), and (2.4) are given here in the equivalent di-
mensional form to those in Chapter 1, in which r → 1/2 is assumed
a priori. Thus, given θ, optimal choices for ∆t and Ts can be made to
achieve the minimum expected error in JT,hp. In our previous work,
we showed we could fit (2.1) to identify θ using expensive Monte
Carlo estimates of E[|eT,hp|] that we generated after computing an
additional very high cost approximation Jref of J∞. However, in
practice, expensive Monte Carlo studies and reference values will
not be available, so we set out in this work to estimate the model in
(2.1) with a small number of simulations of JT,hp.

In Oliver et al. [2014], the authors develop an auto-regressive (AR)
modeling approach to approximate the statistical error behavior that
underlies the coefficient A0 in (2.1) and then apply this approxima-
tion to create a Bayesian method for Richardson extrapolation, which
effectively then allows the estimation of Cq and J∞. Unfortunately,
AR modeling techniques tend to suffer from noisy and irregular
approximation when applied to signals from real systems, because
the correlations in physical processes can be more complicated than
the assumed auto-regressive model; this is reflected in Oliver et al.
[2014], as the authors must develop a complicated model selection
procedure to arrive at their estimates, and they report frequent user
intervention in the presence of AR model instabilities and errors.

An alternative strategy is using statistical methods for outright
identification of (2.1). Success has been demonstrated in balancing
discretization and stochastic errors in steady simulations of hetero-
geneous media using frequentist statistical approaches incorporated
into multi-level Monte Carlo schemes1. A framework like this one

1 Florian Müller, Patrick Jenny, and
Daniel W. Meyer. Parallel multilevel
Monte Carlo for two-phase flow and
transport in random heterogeneous
porous media with sampling-error and
discretization-error balancing. SPE
Journal, 21(06):2027–2037, 09 2016

is promising for chaotic systems, where unpredictability replaces
stochasticity. However, it requires significant sample sizes in order
to make approximations of the error contributions at a given budget
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level and, therefore, to balance the error contributions at the next
level of a simulation. On the other hand, the challenge posed by the
results in Chapter 1 is achieving identification or approximation of
the error models without massive numbers of high-cost simulations.

In this chapter we show that a small sample Bayesian approach can
effectively approximate the terms in (2.1) without expensive reference
computations. We demonstrate that the asymptotic discretization
and sampling error models can be modified to generate a likelihood
function that describe the outputs JT,hp of any given simulation given
the true solution and parameters related to θ. Then, we employ this
likelihood in a Bayesian method that allows reliable approximation
of the model using a small sample of low-cost JT,hp simulations and
enables the selection of ∆t and Ts that are optimal under the model.

2.1 Bayesian error modeling

Bayesian likelihood formulation

Following the previous work, we break down the error incurred by
the dual approximations in J∞ ≈ JT,hp. We follow Section 1.1 up to
(1.7), which is:

eT,hp = (JT,hp − JT)︸ ︷︷ ︸
ehp

+ (JT − J∞)︸ ︷︷ ︸
eT

(1.7)

Now, we can insert (1.5) into (1.7) and rearrange to find

JT,hp = J∞ + ehp + eT . (2.5)

We assume that the discretization error has the form:

ehp ≈ C∗q (∆t)q, (2.6)

with q ∈ R+ and C∗q ∈ R.

For the statistical error term, we now revisit the central limit theorem
(CLT) for dynamical systems2. Under the asymptotic behavior of the

2 Denker, 1989CLT we can expect the quasi-random effect of sampling to take the
form of a normal random variable:

eT ∼ N
(

0,
(

A∗0√
Mens

T−r
s

)2
)

, (2.7)

with A∗0 , r ∈ R+, r → 1/2 as Ts → ∞. If we take (2.6) and (2.7) and
insert them into (2.5), we arrive at:

JT,hp ∼ N
(

J∞ + C∗q (∆t)q,
(

A∗0√
Mens

T−r
s

)2
)

, (2.8)
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which allows us to describe the output quantity of the discrete
system as a random variable, given knowledge of the augmented
parameter set

θ∗ =
(

C∗q , q, A∗0 , r, J∞

)
. (2.9)

Manipulating (2.8), we can find:

E[|JT,hp − J∞|] = E

[∣∣∣∣∣N
(

C∗q (∆t)q,
(

A∗0√
Mens

T−r
s

)2
)∣∣∣∣∣
]

= E

[∣∣∣∣∣C∗q (∆t)q +N
(

0,
(

A∗0√
Mens

T−r
s

)2
)∣∣∣∣∣
]

≤ E
[∣∣∣C∗q (∆t)q

∣∣∣]+ E

[∣∣∣∣∣N
(

0,
(

A∗0√
Mens

T−r
s

)2
)∣∣∣∣∣
]

≤ |C∗q | (∆t)q +

√
2
π

A∗0√
Mens

T−r
s .

(2.10)

Thus, the likelihood formulation and its parameters map to a model
of the same form as emodel = emodel( · ; θ) in (2.1) under the transfor-
mation:

Cq = |C∗q | A0 =

√
2
π

A∗0 . (2.11)

Alternately, we can write:

E[|JT,hp − J∞|] = E

[∣∣∣∣∣N
(

C∗q (∆t)q,
(

A∗0√
Mens

T−r
s

)2
)∣∣∣∣∣
]

= E

[
F
(

C∗q (∆t)q,
(

A∗0√
Mens

T−r
s

)2
)]

.

(2.12)

where F (µ, σ2) gives a folded normal distribution with a mean µ and
standard deviation σ, such that |X| ∼ F (µ, σ2) when X ∼ N (µ, σ2).
We can write the expectation of a folded normal distribution with an
underlying mean µ and standard deviation σ as

E[F (µ, σ)] = σ

√
2
π

exp
(
− µ2

2σ2

)
+ |µ| erf

(
|µ|√
2σ2

)
, (2.13)

(noting that sign (|x| erf(|x|/C)) = sign (x erf(x/C)) will hold
∀C > 0). Thus, substituting µ = C∗q ∆tq and σ = A∗0 M−1/2

ens T−r
s =

A∗0 M−1/2
ens N−r

s ∆t−r gives an alternative “folded” error model. In the
forthcoming results, we will show that the error model based on the
folded normal output model will slightly more accurately describe
the output error behavior– in the sense that 50% of results should
be above and below the expected error model– but at the cost of
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analytical complexity. On the other hand, the original error model
will give an upper bound on the folded error model and offer more
analytical insight. For this reason, “optimal” results in this work will
refer to optimality with respect to (2.1) under the transformation in
(2.11).

Finally, using (2.8) the likelihood of JT,hp conditioned on θ∗ can be
explicitly written as

p
(

JT,hp

∣∣∣ θ∗
)
= N

(
JT,hp; J∞ + C∗q (∆t)q,

(
A∗0√
Mens

T−r
s

)2
)

, (2.14)

which can be exploited by Bayesian methods. Here, the notation
N (x; µ, σ2) refers to the probability of an event X = x where the
random variable X ∼ N (µ, σ2). If we use independent initial
conditions for each simulation and spin up each until the solution
is on the attractor, then each of the discrete results of the chaotic
system will be independent random samples from a stationary
distribution. We can thus write the conditional likelihood of a set
of M simulations {JT,hp}:

p
(
{JT,hp}

∣∣∣ θ∗
)
=

M

∏
m=1

p
(

J(m)
T,hp

∣∣∣ θ∗
)

. (2.15)

Then, using Bayes theorem, the likelihood of the set of parameters θ∗

conditioned on the results
{

JT,hp

}
is:

p
(

θ∗
∣∣∣ {JT,hp}

)
=

p
(
{JT,hp}

∣∣∣ θ∗
)

p (θ∗)

p
(
{JT,hp}

) . (2.16)

Since the marginal likelihood of the set of output data p
(
{JT,hp}

)
is

a constant for any given set of output data, we can therefore design

estimation methods to estimate p
(

θ∗
∣∣∣ {JT,hp}

)
up to a constant

factor without the need to account for p
(
{JT,hp}

)
directly. Finally,

we will need to treat the prior likelihood of the data p (θ∗).

Prior model formulation

In Bayesian inference, a prior model for p(θ∗) is assumed; by the
Bernstein-von Mises theorem, it can be shown that as the number of
datapoints goes to infinity, the posterior estimate from a well posed

likelihood and prior model p
(

θ∗
∣∣∣ {JT,hp}

)
will converge towards the

same result as the maximum likelihood estimator independently of
the choice of prior3.

3 David A. Freedman. On the
asymptotic behavior of Bayes’ estimates
in the discrete case. The Annals of
Mathematical Statistics, 34(4):1386–1403,
12 1963
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For the problem at hand, we now discuss building a prior for θ∗.
We begin with q and r; for these, by the appropriate truncation
error analysis and the central limit theorem, we can determine
theoretical asymptotic values of q and r as ∆t → 0 and Ts → ∞,
respectively. Of course, at finite ∆t and Ts, the rates are often not
exactly the theoretical asymptotic values. From experience running
discrete simulations near asymptotic convergence, we guess q to be
approximately within bounds

qtheory −
1
2
. qguess . qtheory +

1
2

and similarly for r

1
2
− 1

16
. rguess .

1
2
+

1
16

.

In the forthcoming work of this chapter, we use the RK3 methods
as described in Section 1.2; thus, qtheory = 3 is the derived result
for RK3 from numerical analysis, assuming that u is sufficiently
smooth. Meanwhile, rtheory = 1/2 using the asymptotic rate of
the CLT. In practice, the convergence rate of the output may vary
depending on the system and the choice of g, and r might deviate
from 1/2 if the CLT does not apply, due to uncontrolled transient
effects or insufficient Ts. We can take this qualitative description to
map to a prior distribution on q and r. We want a prior distribution
that has support on the positive real numbers with a well-defined
mean and standard deviation; to achieve this, we choose a gamma
distribution and interpret the bounds on qguess and rguess as 95%
bounds. Figure 2.1 shows the prior distributions for the present case,
a Runge-Kutta 3

rd-order discretization of the Lorenz system.

Figure 2.1: Prior distributions
for convergence rate variables
in the model.

The next prior to define is the true value of the output, which is
unknown in general. We often have some experience to estimate the
value of J∞ which is less theoretically-based than for the rates q and r
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but nonetheless gives a range of plausible values of J∞. As concerns
the present case, discrete traces of the Lorenz system, such as the
output trace in Figure 2.2, are prevalent in the literature. Using these

Figure 2.2: Instantaneous
output trace of g = u2 of
discrete Lorenz system with
∆t = 10−3 RK4 discretization.

types of results, we can make an estimate for the output as

Jguess = 23± 1. (2.17)

In general, outputs are real numbers, can be positive or negative,

These types of prior distributions
represent the injection of the simulation
designer’s intuition. In practice, this
would look like making ballpark
estimates, like an aerodynamicist
estimating 0.05 ± 0.05 for a drag
coefficient, or using a statistical analysis
on historical data to project estimates of
a wind farm’s output.and will have bounded statistics. Thus, we reinterpret this quantita-

tively as a 95% confidence interval on a normal random variable, and
in Figure 2.3, we can see the prior distribution that it implies.

Figure 2.3: Prior distribution for
J∞ estimate.

Finally, we must specify values for C∗q and A∗0 . Often, the goal of a
computational study of a chaotic system is not solely to consider one
particular set of parameters α, but rather over a range of possible
values. In this case, prior models for C∗q and A∗0 can be developed
using this previous knowledge; however, even in this case making
estimates beyond order-of-magnitude estimates relies strongly on the
assumption that J∞ will vary smoothly with α, which is not assured
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with nonlinear dynamical systems. Conservatively, we will want
to make guesses about the maximum order of magnitude of these
quantities. In the specific case of the Lorenz system study here, we
can refer to the values of Cq and A0 found in Chapter 1 and given in
Table 1.2. In order to emulate the increased uncertainty about these
values that we might expect in practice, we choose Cguess and Aguess

to have three orders of magnitude more uncertainty in the values
than we observe in the reference values, resulting in:

−1× 106 . Cguess . 1× 106

and
0 . Aguess . 2× 103.

In general, we now want to choose a prior distribution that has
values of about the same order of magnitude for all reasonable
C∗q and A∗0 . At the same time, the prior distributions should have
support on all possible values, in order to satisfy the Bernstein-von
Mises theorem. We can achieve this with a normal distribution
for C∗q and a half-normal distribution for A∗0 . As previously, we

A common alternative non-negative
distribution would be the lognormal
distribution, for example, but it is
not preferable because it implies a
preference for a particular range of
magnitudes, whereas all values below
the σ parameter for a halfnormal
variable have a similar likelihood.

translate the Cguess and Aguess ranges into quantitative ones by
taking them as 95% confidence intervals. In Figure 2.4, we can show
these prior distributions for the example of a Runge-Kutta 3

rd-order
discretization of the Lorenz system. We can see that one deficiency of

Figure 2.4: Prior distributions
for constant factor variables in
the model.

these choices is that C∗q = A∗0 = 0 maximize the prior model, though
the expectation of |C∗q | and A∗0 are non-zero.

The prior distributions that we arrive at, then, are given by:

C∗q ∼ N (µC, σ2
C),

q ∼ Γ(αq, βq),

A∗0 ∼ H(σ2
A),

r ∼ Γ(αr, βr), and

J∞ ∼ N (µJ , σ2
J ),

(2.18)
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The resulting prior model parameters are given in Table 2.1.
q r

µ 3.0 0.5
σ 0.25 0.031,25
α 144.0 256.0
β 48.0 512.0

C∗q J∞

µ 0.0 23.0
σ 1,000,000 0.5

A∗0
σ 103

Table 2.1: Parameters for prior
specification for RK3 error
model. α and β variables are
the parameters for Gamma
distributions, µ and σ represent
mean and standard deviations
observed (q and r) or specified
(C∗q , A∗0 , J∞).

With these five distributions, p(q), p(r), p(C∗q ), p(A∗0), and p(J∞), we
can now combine them, taking each to be independent, to arrive at a
fully specified prior:

p (θ∗) = p(C∗q ) p(q) p(A∗0) p(r) p(J∞). (2.19)

Taking (2.19) and substituting into (2.16), we can now write the
posterior distribution up to a constant factor. This allows us to
evaluate the maximum a posteriori (MAP) estimator of θ∗ using
an appropriate optimization method, and enables the use of Markov
Chain Monte Carlo (MCMC) methods to draw samples from the
posterior distribution.

2.2 Numerical results

Bayesian fit results

Using the numerical methods and problem setup outlined in Sec-
tion 1.2, we have collected a library of 1× 105 samples of JT,hp,
at Ns = 1× 105. For simplicity, we validate using Mens = 1 only.
For any given sample J(i)T,hp, we use a choice of ∆t(i) that is sampled
randomly, such that:

log10(∆t) ∼ U (log10(∆tmin), log10(∆tmax)), (2.20)

where U the uniform distribution, and where we use Ts,min = 10 and
∆tmax = 3× 10−2 in order to attempt to eliminate the non-asymptotic
behavior for small Ts and large ∆t, respectively, setting ∆tmin =

Ts,min/Ns. Now, we will take samples out of this library length-M
sets {JT,hp}, against which we calculate estimates of θ∗.

Now, we will evaluate the posterior estimates of θ∗ and the er-
ror models that they imply. The result of the Bayesian inference
problem is not a unique single solution for the error model, but a
random variable that describes the posterior likelihood of any given
parameter set θ∗. To begin, we will assess the resulting posterior
distributions by sampling to evaluate their spread. In order to sample
out of the posterior distributions, we have implemented (2.16), (2.18),
and (2.19) in the Stan language4. Stan implements Hamiltonian

4 Stan Developer Team. Stan modeling
language users guide and reference
manual. Technical report, 2021

Monte Carlo (HMC) using a state-of-the-art No U-Turn Sampler,
which provides samples out of the posterior distribution in compu-
tation time negligible compared to the cost generating the posterior
samples. In our work, all HMC results use H = 4 chains, each with
2S = 10× 103 total samples, where the first S samples from each



58 ph.d. dissertation: c. frontin

chain are discarded “burn-in”, which is used in order to arrive at
the stationary distribution before sampling. This leaves H × S total
samples from the posterior.

Figure 2.5: Comparison
between prior and posterior
distributions for rate
parameters q and r for
M = 100 3

rd-order Runge-Kutta
discretizations of the Lorenz
system using Ns = 1× 105

timesteps each.

Figure 2.6: Comparison
between prior and posterior
distributions for leading
coefficients C∗q and A∗0 for
M = 100 3

rd-order Runge-Kutta
discretizations of the Lorenz
system using Ns = 1× 105

timesteps each.

In Figures 2.5 and 2.6, we examine histograms of each posterior pa-
rameter using the HMC samples for one dataset of random M = 100
simulations, overlaid with the prior models for each. From Figure 2.5,
we can see that the posterior estimate of the rates vary away from
the prior model rates, while the order of magnitude of uncertainties
is similar. Figure 2.6, on the other hand, shows significant decreases
in uncertainty on the wide priors for C∗q and A∗0 . Last, the posterior
estimate and prior assumption for J∞ are shown in Figure 2.7. Here,
again, significant improvement in the uncertainty around the output
estimate is demonstrated.

Figure 2.7: Comparison
between prior and posterior
distributions for identification
of J∞ using M = 100 3

rd-order
Runge-Kutta discretizations
of the Lorenz system using
Ns = 1× 105 timesteps each.

The above posterior estimates represent marginal distributions of a
five-dimensional posterior distribution on θ∗. In general, the compo-
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nents of θ∗ on the posterior are not independent, but will have some
correlations between them. In Figure 2.8, the full five-dimensional

Figure 2.8: Cross correlation
of Hamiltonian Monte Carlo
samples from posterior
distribution for M = 100

distribution of θ∗ is visualized using cross-correlations for one
selection of M = 100 discrete results, showing the (sometimes)
complex interactions between the components of θ∗.

In addition to sampling with the HMC, we also compute maximum a
posteriori (MAP) estimates, which allow us to find the most probable
θ∗ on the full five-dimensional posterior distribution, accounting for
their inter-dependencies:

θ∗MAP = max
θ∗

log p
(

θ∗
∣∣∣ {JT,hp}

)
, (2.21)

where p
(

θ∗
∣∣∣ {JT,hp}

)
is the posterior likelihood given in (2.16).

Like in the HMC samples, θ∗MAP is computed using the optimization
schemes in Stan.

Now, we want to evaluate the error models generated with the
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Bayesian inference method. We use the reference fit in (1.23) and the
reference model in Table 1.2 for comparison. In Figure 2.9a, we show
the error model estimates developed by the small-sample method.
The plot shows the MAP error model and models associated with
each of 100 HMC samples from the posterior as well as the folded
error expectation given by supplying (2.13) with θ∗MAP. These are
plotted with the high-cost nonlinear least squares (NLS) reference
model, emodel,ref, from Table 1.2, with which all of the error models
demonstrate strong agreement. In this plot, we see that the Bayesian
process broadly captures the behavior of the error model using this
particular M = 100 set, {JT,hp}. It accurately predicts where ∆topt

will occur, and its guess of eopt is off by a small factor, less than
2. To further understand the behavior of the fit, we consider the
likelihood model for the output, (2.14), from which the error model
estimates are derived, shown in Figure 2.9b. Here, the expected
output is plotted with a dark orange dashed line, and the one and
two standard deviation bounds from the likelihood model are plotted
with subsequently lighter dashed lines. We can see here that the
behavior of the output JT,hp matches qualitatively with expectations.
When ∆t and Ts = Ns∆t are small, simulations vary significantly
about a nearly constant mean value, which approaches J∞. For large
∆t and Ts, random variation grows small about a growing mean
offset.

We can repeat this process identically for only ten randomly drawn
simulations, with no other changes. We omit the posterior studies
this time, and the resulting error model and likelihood model are
shown in Figure 2.10. Immediately, we can see that the spread in
the sampled error models is significantly larger than in Figure 2.9.
While there is more uncertainty, we can also see that the Bayesian
informative prior approach that we’ve outlined in this work is able
to regularize the small sample inference problem such that we can
identify the error model. Moreover, we do so in a way that matches
closely with the result of the high-cost structured NLS fit from the
previous work, for at least this particular random selection of M = 10
simulations. In a Section 2.2 we will consider the behavior of this
method in expectation across many possible length-M sets {JT,hp}.
Before doing so, we repeat the fit process using a larger set of M =

1000 simulations. Figure 2.11 gives the results of this simulation,
which demonstrates very close agreement with the reference error
model and an even tighter spread of sampled error models.
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(a) Error model.

(b) Output model.

Figure 2.9: Bayesian
approximation of models for
M = 100 3

rd-order Runge-Kutta
discretizations of the Lorenz
system using Ns = 1× 105

timesteps each.
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(a) Error model.

(b) Output model.

Figure 2.10: Bayesian
approximation of models for
M = 10 3

rd-order Runge-Kutta
discretizations of the Lorenz
system using Ns = 1× 105

timesteps each.
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(a) Error model.

(b) Output model.

Figure 2.11: Bayesian
approximation of models
for M = 1000 3

rd-order
Runge-Kutta discretizations
of the Lorenz system using
Ns = 1× 105 timesteps each.
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Performance in expectation as a function of M

In order to understand the variability of the Bayesian procedure
outlined in this section, we now perform Monte Carlo simulations for
a range of M. We will bootstrap length M sets out of the library of
simulations detailed in Section 2.2 then find the MAP estimate θ∗MAP
from each length-M set, {JT,hp}. This is repeated over an ensemble
of sizeM = 100 at each M. The presence of outliers is expected; it
is impossible to protect a priori against unrepresentative samplings,
and with M samples in each of theM Monte Carlo instances the
presence of unrepresentative sets {JT,hp} becomes likely when M is
small. These unrepresentative samplings and the resulting outlier
fits can generally be easily identified and, in practice, handled by
user intervention. In the study in this section, any fit exhibiting q
deviating by more than 0.5 or r deviating by more than 0.125 from
the expected values or JT,hp deviating the prior guess by more than
2.0 are omitted. This constitutes 16 of the 1700 simulations in the
forthcoming study.

We begin by evaluating how well the method estimates J∞ with
posterior estimates (J∞)MAP. Figure 2.12 shows the convergence of

Figure 2.12: Monte Carlo
results for output estimate
(J∞)MAP. Reference value
Jref and expected statistical
convergence rate M−1/2 are
shown.

the posterior output estimate (J∞)MAP to the reference value Jref

found in (1.23). From this plot, we can see that the estimator does
a good job of estimating this quantity from {JT,hp}, with below one
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percent error for simulations with M & 10. Error convergence seems
to achieve the M−1/2 rate expected in the size of the data for the
Bayesian method asymptotically.

Another key result for the Bayesian method is to accurately approx-
imate ∆topt, such that the (M + 1)-th simulation might be optimally
discretized, as well as eopt, which characterizes the error achievable
at the given cost budget. In Figure 2.13, the estimates based on the
length-M {JT,hp} for the optimizer are shown for each of theM
Monte Carlo instances. This result demonstrates that the Bayesian

Figure 2.13: Monte Carlo
results for optimizer and
optimum of asymptotic model
at Ns = 1× 105.

small sample method, even with as few as ten simulations with
randomized ∆t can fairly accurately estimate the error and find the
optimizer with small M. As a final measure of this ability, we can
take the ∆topt,MAP using each θ∗MAP in the Monte Carlo simulation
and compare the reference error emodel,ref against the optimal error
from the reference model eopt,ref. A plot of this excess error factor
with probability density estimates is given in Figure 2.14. This result
shows that the Bayesian error model, using only randomized ∆t
selection, can reliably identify near-optimal choices of ∆t using a
small number of simulations.
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Figure 2.14: Monte Carlo
results for excess error factor
of asymptotic model at
Ns = 1× 105. Orange regions
give density estimates.

2.3 Conclusions and future work

In this chapter, we have shown that models to describe the error
in discrete approximations JT,hp of an infinite-time mean output
quantity J∞ from a chaotic, ergodic system can be described in a way
that is compatible with a Bayesian formulation. Using this Bayesian
method, we show that it is possible to meaningfully estimate the
error behavior, even with a small number of samples.

Having shown here that it is possible to generate approximate error
models using a small-sample approach, now want to show in Chap-
ter 3 that such an approach can be generalized to the case of ergodic,
chaotic PDEs, where discretization effects from both temporal and
spatial discretizations are present. From there, the keystone of the
work will be to leverage the small sample approximation capability
developed here while simulating a dynamical system. In general,
we want to expend a computational budget to arrive at the best
possible estimate given that budget of a quantity of interest like J∞.
Leveraging small-sample estimation capability to do so will be the
concern of Chapter 4.
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3

Error behavior and identification
for ergodic chaotic partial

differential equations

You can watch the tape,
You can try to hit your spots,
But don’t do it for anything but

the love of movement and location,
Or the battle is lost.

—Punch Brothers, "Movement & Location"
Who’s Feeling Young Now?

So far we have demonstrated that the initial transient behavior
and the behavior on the attractor can be quantified for a chaotic,
ergodic ODE. In this chapter, we will attempt to extend the error
modeling and identification framework in Chapters 1 and 2 for
chaotic partial differential equation (PDE) problems.

For PDEs, solution requires the discretization of both space and time.
Many options for discretization exist, including prominently finite
difference, finite volume, and finite element methods. All three
remain common in industrial use, with benefits and costs for each.
In this work, we will concentrate on the finite element method for
spatial discretization combined with an implicit time integrator that
uses a method of lines approach.

While we opt to use a method of lines
temporal discretization with FEM
spatial discretization here, the approach
in this chapter can readily be extended
to other discretization schemes,
including space-time discretizations.

The use of provably stable FEM methods and implicit timestepping
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removes stability requirements that are common for other choices
of schemes. Using the finite element approach on grids of elements
with some characteristic size ∆x, coupled with stable implicit time-
marching methods that march timesteps separated by some ∆t,
allows choices about ∆x and ∆t to be primarily based on error
considerations. In this chapter we will develop an error model to
understand and control these errors in the setting of chaotic systems.

3.1 Error modeling

In order to efficiently estimate quantities of interest from spatio-
temporally chaotic dynamical systems, we want to be able to control
the various forms of error that enter into the result of a given simu-
lation. We break the error induced by simulation into two separate
categories. The first category, as previously, are the statistical errors,
composed of spin-up error and sampling error. The second category,
discretization errors, now includes contributions from the spatial
discretization as well as the time-stepping/temporal advancement
scheme. In this section, we will attempt to quantify each of these for
PDEs.

Cost & error on the attractor

Consider a spatio-temporal dynamical system given by a PDE:

∂u(~x, t)
∂t

= f(u;~x, t), (3.1)

with an initial condition given by u(~x, 0) = uIC(~x), where u is the
state of the system in Rn, and f is a nonlinear spatial differential op-
erator, ~x ∈ Rd, and t ∈ R; d gives the number of spatial dimensions
in the problem and n gives the number of states. In this work, we
will first approximate the spatial system by an appropriate spatial
discretization method, such that we formulate a problem of the form:

duhx px (t)
dt

= fhx px (uhx px ; t), (3.2)

where uhx px represents the solution of ordinary differential equation
(ODE) system with NDOF,x degrees of freedom that results from the
discrete spatial system characterized by a discretization scale hx = ∆x
and approximating order px, which we will define more explicitly
later. Once we have this semi-discrete ODE form, we can then apply
a method of lines discretization in time which can be characterized
by a temporal scale ht = ∆t and approximation order pt.

As with ODE problems, we are frequently interested in estimating
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the mean value of output quantities of interest:

J∞ = lim
T→∞

1
T

∫ t0+T

t0

g(u(~x, t)) dt, (3.3)

where g is an instantaneous output functional of interest. Analo-
gously, we approximate this value by a discrete approximation:

JT,hp =
1
Ts

It0+Ts
t0

ghp(uhp(~x, t)) dt, (3.4)

where h = (hx, ht) and p = (px, pt) are multi-indices, and uhp(~x, t)
represents the discrete solution function, which in general can be
interpolated onto (~x, t) but in practice will be evaluated at discrete
points ~x and t in space and time. As in Chapter 1, the integral is
approximated discretely, and we assume that the effect of numerical
integration of the output quantity is designed to be dominated by the
discrete error effects.

Consider the case where t0 is very large, and u0 has effectively
converged onto the attractor. In this case, transient errors will be
negligible and the remaining errors will be due to sampling and the
spatial and temporal discretizations. We define the error induced by
such a discrete estimate as eT,hp:

eT,hp ≡ JT,hp − J∞. (3.5)

Using an intermediate value

JT =
1
Ts

∫ t0+Ts

t0

g(u(~x, t)) dt, (3.6)

we can write, equivalently:

eT,hp ≡ (JT,hp − JT)︸ ︷︷ ︸
ehp

+ (JT − J∞)︸ ︷︷ ︸
eT

. (3.7)

We can rewrite this term, breaking the discretization error into the
sum of two components:

eT,hp = ehp,x + ehp,t︸ ︷︷ ︸
ehp

+eT , (3.8)

where ehp,x gives the spatial discretization error, ehp,t gives the tem-
poral discretization error, and eT gives the sampling error. Taking
the absolute value, then using the triangle inequality and expectation
function, we can write:

E[|eT,hp|] ≤ E[|ehp,x|] + E[|ehp,t|] + E[|eT |], (3.9)
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where expectations are taken on the stationary distribution of the
attractor. Following Chapter 1, we can use the central limit theorem
(CLT) assuming satisfactorily strong mixing properties are present in
the state of the dynamical system1 such that (1.16) applies:

1 Denker, 1989; and Bradley, 2005

E[|eT | ] ≈
A0√
Mens

T−r
s . (1.16)

Following Chapter 1, we can treat the temporal discretization error as
in (1.19), assuming a form:

E[|ehp,t| ] ≈ Bpt ∆tqt , (3.10)

with a positive parameter Bpt . This leaves the new spatial discretiza-
tion term, for which we will assume a form:

E[|ehp,x| ] ≈ Cpx ∆xqx , (3.11)

with Cpx a leading constant positive coefficient and qx the relevant
convergence order of the spatial discretization scheme.

Taking these three component models together, such that

E[|eT,hp|] ≤ emodel, (3.12)

we can write:

emodel = emodel(∆x, ∆t, Ts; Mens, θ)

= Cpx ∆xqx + Bpt ∆tqt +
1√

Mens
A0T−r

s ,
(3.13)

where
θ = {qx, qt, r, Cpx , Bpt , A0} (3.14)

gives the vector of relevant parameters.

Consider a budget Es = NelemNs of “total elements computed” in
a time-stepping scheme for sampling (i.e. starting on the attractor).
Using Es, we can constrain Ts given ∆x and ∆t, since Nelem = L/∆x
and Ns = Ts/∆t

Ts =
Es

L
∆x∆t. (3.15)

This allows us to insert (3.15) into (3.13). The result is minimized at:

∆xopt = q
− qt+r

qxqt+qxr+qtr
x q

r
qxqt+qxr+qtr
t r

qt
qxqt+qxr+qtr

C
− qt+r

qxqt+qxr+qtr
px B

r
qxqt+qxr+qtr
pt A

qt
qxqt+qxr+qtr
0

M
− qt

2(qxqt+qxr+qtr)
ens (Es/L)−

qtr
qxqt+qxr+qtr ,

(3.16)
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∆topt = q
r

qxqt+qxr+qtr
x q

− qx+r
qxqt+qxr+qtr

t r
qx

qxqt+qxr+qtr

C
r

qxqt+qxr+qtr
px B

− qx+r
qxqt+qxr+qtr

pt A
qx

qxqt+qxr+qtr
0

M
− qx

2(qxqt+qxr+qtr)
ens (Es/L)−

qxr
qxqt+qxr+qtr ,

(3.17)

and

Ts,opt = q
− qt

qxqt+qxr+qtr
x q

− qx
qxqt+qxr+qtr

t r
qx+qt

qxqt+qxr+qtr

C
− qt

qxqt+qxr+qtr
px B

− qx
qxqt+qxr+qtr

pt A
qx+qt

qxqt+qxr+qtr
0

M
− qx+qt

2(qxqt+qxr+qtr)
ens (Es/L)

qxqt
qxqt+qxr+qtr ,

(3.18)

at which the error is given by:

eopt = (qxqt + qxr + qtr)q
− qxqt+qxr

qxqt+qxr+qtr
x q

− qxqt+qtr
qxqt+qxr+qtr

t r−
qxr+qtr

qxqt+qxr+qtr

C
qtr

qxqt+qxr+qtr
px B

qxr
qxqt+qxr+qtr
pt A

qxqt
qxqt+qxr+qtr
0

M
− qxqt

2(qxqt+qxr+qtr)
ens (Es/L)−

qxqtr
qxqt+qxr+qtr ,

(3.19)

Thus we arrive at the best-possible error in expectation given a
sampling budget Es.

Figure 3.1: Consolidated
product of terms in (3.19)
exclusively composed of qx,
qt, and r, assuming r = 1/2.It is worth noting that the constant terms in the first line in (3.19) are

equivalent to:

(( qx

r

)qt ( qt

r

)qx) r
qxqt+qxr+qtr

+

((
qx

qt

)r ( r
qt

)qx) qt
qxqt+qxr+qtr

+

((
qt

qx

)r ( r
qx

)qt
) qx

qxqt+qxr+qtr

,

which is slightly more insightful; this term can be shown to be
bounded between 1 and q for r = 1/2, and qx = qt = q. Values of
this term can be seen in Figure 3.1.

Spin-up cost & error models

We now attempt to understand total cost and error of such a sim-
ulation including the pre-sampling cost and the spin-up error. In
Section 1.5, we developed a model for the spin-up error for an ODE,
which we will now use for the spatially discretized system given
in (3.2). Specifically, we assume that the output behavior can be
described by:

g(u(~x, t))− g(uA(~x, t)) ≈ Aλ exp
(
− t

Tλ

)
, (3.20)
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Here, Aλ represents the t = 0 displacement of the mean value of g(u)
from g(uA), and Tλ represents the characteristic decay time of the

A subtlety here is that, for an PDE
system reduced to a large-degree-of-
freedom ODE system, the likelihood
of having complex, multi-modal
decay is high, and this method might
more appropriately understood to
describe the decay of the dominant
CLV mode. The true nature of this
decay is generally obscured by the
output functional g, however, and for
simplicity and ease of interpretation we
assume one dominant modal behavior.

deviation in g.

We can now integrate (1.52) from t0 to t0 + Ts to get eλ:

eλ ≡
AλTλ

Ts
exp

(
− t0

Tλ

)
. (3.21)

Thus, the total errors can be described by

eT,hp = ehp,x + ehp,t + eλ + eT . (3.22)

Taking the absolute value, using the triangle inequality, and leverag-
ing linearity of expectations, we find:

E[|eT,hp| ] ≤ E[|ehp,x| ] + E[|ehp,t| ] + E[|eλ|] + E[|eT |], (3.23)

where the appropriate expectations are taken on the initial conditions
or on the attractor for each term. Using the models given in (1.16),
(3.10), (3.11), and (1.52) we arrive at an error model that includes the
effect of spin-up:

emodel = emodel(∆x, ∆t, t0, Ts; Mens, θ, ψ)

= Cqx ∆xqx + Bqt ∆tqt +
A0√
Mens

T−r
s + |Aλ|

Tλ

Ts
exp

(
− t0

Tλ

)
.

(3.24)

Consider now total cost, including the spin-up time t0, in terms of
the total number of elements on which a solution is computed over
all the timesteps. In this case, a total computed element budget will

This is a model for the error that is
effective in particular for discontinuous
Galerkin discretizations, but may be
less so for other types of discretizations.

consist of spin-up as well as sampling costs:

Et = NelemNt = Nelem(N0 + Ns). (3.25)

We can compute the sampling time:

Ts =
Et

L
∆x∆t− t0, (3.26)

and inserting into (3.24) gives:

emodel = emodel(∆x, ∆t, t0; E , Mens, θ, ψ)

= Cqx ∆xqx + Bqt ∆tqt +
A0√
Mens

(
Et

L
∆x∆t− t0

)−r

+ |Aλ|Tλ

(
Et

L
∆x∆t− t0

)−1
exp

(
− t0

Tλ

)
,

(3.27)

which is a model for the error as a function of ∆x, ∆t, and t0: the
three free choices in a given simulation for a given total elemental
budget Et.
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3.2 Output likelihood modeling for small-sample estimation

In practice, we will not have a priori access to the set of sampling
error model parameters, θ, nor the transient model ψ, and least of all
the true output J∞, which we take as the primary aim of simulation.
In (3.20), we described the transient behavior as a property of the
instantaneous output quantity of interest. We will show in Section 3.4
a fitting procedure can identify ψ using the output trace of a given
simulation. In this section, we will develop a modeling approach
that can allow us to make posterior estimates of θ and J∞ at low cost,
allowing for the complete estimation of the cost-error relationship on
reasonable computational budgets.

In order to identify θ, we revisit the assumptions used to generate the
sampling error model. We start with the definitions in (3.8). We can
combine (3.5) and (3.8) to find:

JT,hp = J∞ + ehp,x + ehp,t + eT (3.28)

We follow Chapter 2, incorporating spatial discretization effects. This
results in discretization error models:

ehp,x ≈ C∗px ∆xqx (3.29)

ehp,t ≈ B∗pt ∆tqt , (3.30)

with C∗px ∈ R and B∗pt ∈ R (as we are modeling ehp,x and ehp,t

as opposed to |ehp,x| and |ehp,t| and the constants are no longer
required to be positive). Taking (3.29), (3.30), and (2.7) and inserting
into (3.28), we arrive at a random variable form for the output of a
given simulation:

JT,hp = N
(

J∞ + C∗px ∆xqx + B∗pt ∆tqt ,
(

A∗0 T−r
s
)2
)

. (3.31)

This allows us to describe the error of interest in expectation as well:

E[|eT,hp| ] = E[|JT,hp − J∞| ]

= E
[∣∣∣N (C∗px ∆xqx + B∗pt ∆tqt ,

(
A∗0 T−r

s
)2
)∣∣∣]

≤ |C∗px ∆xqx + B∗pt ∆tqt | + E
[∣∣∣N (0,

(
A∗0 T−r

s
)2
)∣∣∣]

≤ |C∗px |∆xqx + |B∗pt |∆tqt +

√
2
π

A∗0 T−r
s ,

(3.32)

where we have applied the assumption that the discretization errors
have a deterministic effect alongside the triangle inequality and the
expectation of a half-normal variable. This allows the insight that our
likelihood-based model arrives at a form that is equivalent to (3.13),
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under the transformation:

Cpx = |C∗px | Bpt = |B∗pt | A0 =

√
2
π

A∗0 . (3.33)

Thus, if we can make an estimate to the parameters

θ∗ =
{

C∗px , qx, B∗pt , qt, A∗0 , r, J∗∞
}

, (3.34)

we can translate this result into an estimate of θ and (3.13) via the
parameter mapping in (3.33).

We can now use (3.31) to write the probability of any given series of
output results:

p
({

J(i)T,hp

} ∣∣∣ J∞, C∗px , qx, B∗pt , qt, A∗0 , r
)
=

Nsamp

∏
i=1
N
(

J(i)T,hp; J∞ + C∗px ∆xqx + B∗pt ∆tqt ,
(

A∗0 T−r
s
)2
)

, (3.35)

since any two output averages are independently generated. In this
work, we will assume that px, pt, and r satisfy the theoretical rates.
Thus, using Bayes rule, we can write:

p
(

J∞, C∗px , B∗pt , A∗0
∣∣∣ {J(i)T,hp

})
∝

p
({

J(i)T,hp

} ∣∣∣ J∞, C∗px , B∗pt , A∗0
)

p
(

J∞, C∗px , B∗pt , A∗0
)

. (3.36)

The implication of this statement is that, with a set of results {J(i)T,hp}

and a prior model p
(

J∞, C∗px , B∗pt , A∗0
)

, we can create an estimate for
the model parameters J∞, C∗px , B∗pt , and A∗0 .

We now generate a prior model. For J∞, we generally have an intu-
ition for a quantity of interest; while we don’t know exactly what we
expect J∞ to be, we can guess a plausible range. In this case, we can
make a guess that the average value of g =

∫
Ω u2(~x, t) dΩ is about

100± 50. We can codify this by a normal distribution:

p (J∞) = N
(

µJ , σ2
J

)
(3.37)

with µJ = 100 and σJ = 25. This distribution can be seen in Fig-
ure 3.2.

Figure 3.2: Prior distribution for
J∞.

In the case of this work, this guess
is generated from knowledge of pre-
requisite results generated in the
process of the research. In general,
these types of estimates can be made
by literature study (e.g. Blonigan and
Wang [2014] for the modified KSE used
here), extrapolation of empirical results,
or low-fidelity models.

On the other hand, we want to assume that variables C∗px , B∗pt , and A∗0
are unknown, at least up to a order of magnitude. To achieve this, we
use a large variance, zero-mean normal distribution for C∗px and B∗pt :

p
(
Cpx

)
= N

(
0, σ2

C

)
(3.38)



error behavior and identification for ergodic chaotic pdes 75

and
p
(

Bpt

)
= N

(
0, σ2

B

)
, (3.39)

with σC = σB = 105. This distribution can be seen in Figure 3.3,
and we note that there is a non-negligible probability associated with
magnitudes of Cpx and Bpt up to 106.

Figure 3.3: Prior distribution for
C∗px and B∗pt .

For A∗0 , which is non-negative, we use a halfnormal distribution:

p (A∗0) = H
(

σ2
A

)
(3.40)

with σA = 100. This distribution can be seen visualized in Figure 3.4.

Figure 3.4: Prior distribution for
A∗0 .

These values are chosen to have orders of magnitude significantly
larger- by at least two orders of magnitude- of the values we found
at high cost in Table 3.5. Taking these four variables as independent,
results in a prior model:

p
(

J∞, C∗px , B∗pt , A∗0
)
= p (J∞) p

(
C∗px

)
p
(

B∗pt

)
p (A∗0) . (3.41)

Thus, (3.36) can be fully specified, and Bayesian posterior estimates
can be made of the model parameters J∞, C∗px , B∗pt , and A∗0 .

3.3 Kuramoto-Sivashinsky equation

In order to evaluate the models proposed in this work, we will solve
the Kuramoto-Sivashinsky equation (KSE) with convection, given by:

∂u
∂t

+ (c + αu) · ∇u + β∇2u + γ∇4u = 0 in Ω

u = ∇u · n̂ = 0 on ∂Ω
(3.42)

with c = 1.6, α = 1, β = 1, γ = 1. The boundary conditions in
(3.42) are clamped-plate BCs and are necessary for realizing a chaotic
solutions. In this work, we will used a one-dimensional (d = 1)
domain Ω from x = 0 to x = L with L = 128, for which the KSE
is known to be chaotic with this set of parameters. The Kuramoto-
Sivashinsky equation describes a variety of physical processes, with
its first derivation for use in describing flame front propagation2. As

2 Yoshiki Kuramoto. Diffusion-induced
chaos in reaction systems. Progress
of Theoretical Physics Supplement, 64:
346–367, 02 1978; and Gregory I.
Sivashinsky. Nonlinear analysis of
hydrodynamic instability in laminar
flames– I. derivation of basic equations.
Acta Astronautica, 4(11):1177–1206, 1977

a numerical model, the Kuramoto-Sivashinsky equation is notable as
a simple problem which exhibits multi-scale spatiotemporal chaos,
and for this reason is commonly used as a test problem for research
in chaotic dynamical systems3.

3 Blonigan and Wang, 2014; and Johan
Larsson. Grid-adaptation for chaotic
multi-scale simulations as a verification-
driven inverse problem. In AIAA
Aerospace Sciences Meeting, 2018

In Figures 3.5 and 3.6, we show two sample solutions of the Kuramoto-
Sivashinsky equation. Figure 3.5 shows the behavior from t = 0 to
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Figure 3.5: Solution of modified
Kuramoto-Sivashinsky equation
with 0 ≤ t ≤ 100.

Figure 3.6: Solution of modified
Kuramoto-Sivashinsky equation
with 1000 ≤ t ≤ 1100.

t = 100, as the KSE develops after being initialized at t = 0 with a
Gaussian initial condition given by:

uIC(x) = exp

((
x− L/2

L/32

)2
)

. (3.43)

On the other hand, Figure 3.6 gives the behavior from t = 1000 to
t = 1100, which is more characteristic of the statistically stationary
behavior. The resulting solutions demonstrate spatial development
of the linear instabilities as the solution is convected by c from left-
to-right. These instabilities result in aperiodic and unpredictable
coherent structures in the region with x & 64 which result in
consistent and stationary mean behavior over long times.

In Figure 3.7, the instantaneous energy output functional of the
system,

g(u(~x, t)) =
∫

Ω
u2(~x, t) dΩ, (3.44)

is shown, with the sampling periods from Figure 3.5 and Figure 3.6
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both shown. In this plot, the emergence of statistically stationary

Figure 3.7: Output trace
of modified Kuramoto-
Sivashinsky equation.

behavior can be seen, along with evident spin-up transient behavior,
which are of critical interest for making accurate estimates of long-
term averages.

Discretization method

In this work, we will solve the spatial behavior of the KSE using a
new discontinuous Galerkin (DG) scheme that extends the second
method of Bassi and Rebay4 (DGBR2) to fourth-order operators

4 F. Bassi and S. Rebay. A high-order
accurate discontinuous finite element
method for the numerical solution
of the compressible Navier-Stokes
equations. Journal of Computational
Physics, 131(2):267–279, 1997

solved with a Ciarlet-Raviart auxiliary-variable form5. We will refer

5 Philippe G. Ciarlet and Pierre-Arnaud
Raviart. A mixed finite element method
for the biharmonic equation. In Carl
de Boor, editor, Mathematical Aspects
of Finite Elements in Partial Differential
Equations, pages 125–145. Academic
Press, 1974

to this scheme as a “DGBR4” discretization. The DGBR4 scheme
gives a finite element solution of the spatial physics with order px

polynomial solutions on the elements. The resulting semi-discrete
differential-algebraic form is then discretized in time by a DIRK-DAE
scheme that advances the state with a valid approximation of the
auxiliary variable. Complete details on the scheme can be found in
Appendix B.

The classic analysis for DG schemes6 results in global error conver-

6 Cockburn et al., 2000

gence rates for non-chaotic problems that scale as ∆xpx+1. Accord-

In addition to global error convergence
rates, superconvergent rates in output
functionals have been shown to exist
when PDEs are discretized in an adjoint
consistent and fully variational manner
[Pierce and Giles, 2000]. This type of
discretization is outside the scope of
this work, but this framework can be
extended to investigate the effect of
superconvergent methods for chaotic
systems.

ingly, we will assume that the output functional g is bounded and
thus that qx = px + 1. The temporal discretization error convergence
rate for the RK scheme is expected to be qt = pt.

Initial conditions for the forthcoming Kuramoto-Sivashinsky simu-
lations in this work use a randomly-perturbed initial condition, in
which each degree of freedom is chosen from a zero-mean random
variable with a standard deviation given by ε, with ε = 10−6 every-
where.
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Computational cost

We now seek to quantify the computational cost of generating any
given solution of the Kuramoto-Sivashinsky equation using the
DGBR4/DIRK-DAE scheme. We start by noting that the spatial
DGBR4 scheme for the 1D Kuramoto-Sivashinsky equation lin-
earizes to a block triangular system. Thus, the spatial system can
be solved with a block Thomas algorithm to handle inter-element
interactions, with Gaussian elimination on element-wise blocks for
the intra-element interactions. We assume that the cost of solving the
spatial nonlinear system on average is well approximated by some
constant times the cost of the inversion of the linearized system. Each
nonlinear solve of the spatial system happens within the implicit
Runge-Kutta scheme. For the DIRK-DAE schemes used in this work,
each timestep will require pt inversions of the spatial system to
advance the primary state, as well as one additional final inversion
that advances the auxiliary state. Combining these assumptions, the

We note that this advancement scheme
is likely not the most efficient approach
possible for this type of system.

cost of the scheme is expected to scale with

Ct =
[
(px + 1)3Nelem

]
︸ ︷︷ ︸

cost of linear solve

[(pt + 1)Nt]︸ ︷︷ ︸
timestepping cost

= Cpx pt NelemNt = Cpx ptEt,

(3.45)

and thus the cost of this scheme will scale with the total number of
elements computed, Et = NelemNt, where

Cpx pt = (px + 1)3(pt + 1) (3.46)

is a discretization-dependent constant. Experiments validating this
cost model can be found in Appendix C.

3.4 Numerical experiments

We will now perform a series of computations to show that the
(3.13), (3.27), and (3.35) have explanatory value for simulations of
the Kuramoto-Sivashinsky equation.

Reference estimate of J∞

We start by making a reference approximation Jref ≈ J∞ that can
be used in turn to generate approximations of the error. In order
to estimate this value, we must assume a value for the spin-up
time, t0. We set the spin-up time to t0 = 1.71× 104, then simulate
for another Ts = 29,965 using Ns = 1,004,214 timesteps, such that
∆t ≈ 2.98× 10−2. The same timestep is used for the spin-up time.
The physical domain is discretized using Nx = 1297 equispaced
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elements over the domain Ω. These parameters are used with the
px = 2 DG scheme and the 3

rd-order Runge-Kutta scheme. We
generate an ensemble of Mens = 82 instances to estimate the true
value.

The result of this simulation is an estimate of the output of interest,
which in this work will everywhere be the energy of the KSE system
given in (3.44). This gives an estimate of J∞:

Jref = 118.44± 0.05, (3.47)

with the standard error given based on the ensemble estimate.

Error model reference values

We now simulate the KSE over a grid of choices of ∆x, ∆t, and Ts in
order to identify θ and θ∗. In order to ensure fitting of the asymptotic
behavior, we have observed approximate limits of the asymptotic
convergence region, given in Table 3.1. Given these maximum values,

∆xmax 0.24
∆tmax 0.50
Ts,min 10

(a) px = 1 DG, RK2

∆xmax 1.00
∆tmax 0.24
Ts,min 10

(b) px = 2 DG, RK3

Table 3.1: Observed limits of
asymptotic convergence.

we simulate on a grid of ∆x and ∆t values that span one order of
magnitude, setting Ts at each (∆x, ∆t) pair under the constraint in
(3.15) at a fixed Cs = 107, where Cs is defined analogously to Ct over
the Ns timesteps used for sampling (rather than the total number of
timesteps Nt). All simulations are run with t0 = 12,000; as ∆x and
∆t get smaller, the number of spin-up timesteps grows at a high rate.
At each (∆x, ∆t) point, we run 100 simulations with the zero-mean
randomly-perturbed initial condition. Using the estimates JT,hp and
the reference estimate of Jref from (3.47), we approximate E[|eT,hp|] by
the Monte Carlo method.

Next, we seek reference values of C∗px , B∗pt , and A∗0 (and, in turn, Cpx ,
Bpt , and A0). In order to generate reference values for these, (3.35)
can rearranged such that eT,hp is given by a normal variable with
discretization-dependent mean

µJ(∆x, ∆t) = C∗px ∆xqx + B∗pt ∆tqt , (3.48)

and a standard deviation that varies as A∗0 T−1/2
s (in the limit as r →

1/2). Since we know the standard deviation is T−1/2
s under the CLT
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up to a constant, we use a weighted nonlinear least squares fit to find
C∗px and B∗pt from (3.48). Next, we use the quantity

eT,hp − µJ√
Ts

to identify A∗0 , since this quantity should be a zero-mean normal
distribution with standard deviation A∗0 . On the top plots of Fig-
ures 3.8 and 3.9, eT,hp is shown with the respective discretization
error behavior. The lower left plots show the corrected error quantity
(eT,hp − µJ) and two standard deviations about zero, which show
some pre-convergent7 behavior under the CLT for Ts < 50, which

7 It is very possible that the observed
pre-convergent behavior in Ts is due to
insufficient spin-up at t0 = 12,000.

we exclude from the fits for that reason. In the bottom left plot,
we show the distribution of the non-dimensional error quantity for
Ts < 50, overlaid with a Gaussian function having the same standard
deviation.

C∗px 480.418
qx 2
B∗pt

−47.541
qt 2
A∗0 71.571
r 1/2

Table 3.2: Result of θ∗ fit for
discrete estimates of mean KSE
energy output using px = 1 DG,
RK2 discretization.

Figure 3.8: Error behavior and
reference fits for likelihood
model parameters for
px = 1, RK2 simulation of
KSE energy. Fits and histogram
for Ts < 50.

C∗px 15.640
qx 3
B∗pt

−749.493
qt 3
A∗0 63.983
r 1/2

Table 3.3: Result of θ∗ fit for
discrete estimates of mean KSE
energy output using px = 2 DG,
RK3 discretization.

Because we expect the variation to be a property of the physical
system, independent of the discretization, we can also directly
compare the non-dimensionalized error quantity between the two
discretizations, allowing a combined estimate of A∗0 and the his-
togram in Figure 3.10.
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Figure 3.9: Error behavior and
reference fits for likelihood
model parameters for
px = 2, RK3 simulation of
KSE energy. Fits and histogram
for Ts < 50.

A∗0 69.342
r 1/2

Table 3.4: Combined statistical
fit for discrete estimates of
mean KSE energy output.

The resulting reference values for θ∗ can be found in Tables 3.2, 3.3,
and 3.4. In addition to θ∗, we can also use (3.33) to compute the
implied values of θ, which we give in Table 3.5.

Cpx 480.418
qx 2
Bpt 47.541
qt 2
A0 57.105
r 1/2

(a) px = 1 DG, RK2

Cpx 15.640
qx 3
Bpt 749.493
qt 3
A0 51.051
r 1/2

(b) px = 2 DG, RK3

Table 3.5: Estimates of θ to
characterize error model for
discrete estimates of mean KSE
energy output.
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Figure 3.10: Reference fit for
likelihood model parameter A∗0
from combined px = 1, RK2

and px = 2, RK3 discretizations
of KSE energy. Fits and
histogram for Ts < 50.

Spin-up model fitting

Having identified a model for the behavior of the error on the at-
tractor, we now must characterize the spin-up transient in order to
completely understand the relationship between cost and error. For a
reference value of the underlying spin-up behavior, we will study the
outputs of the reference cases used to generate (3.47). Our goal is to
identify ψ for the transient behavior.

We follow the procedure outlined in Section 1.5, computing the
likelihood of the output trace using (1.59) and using the priors in
(1.60). We use different hyperparameters for the Tλ prior, specialized
for the KSE traces we observe here:

(αT , βT) ⇐= (µT = 1000.0, σT = 500.0) .

In Figure 3.11 we show a sample of the fit for g(t) =
∫

Ω u2(~x, t) dΩ
with the px = 2, RK3 solution. The result of this approximation is an
estimate

ψ∗ = (Tλ, Aλ) ≈ (1730,−48.5), (3.49)

from which values for ψ can be derived. We can repeat this process
across the ensemble used to generate (3.47), and in Figure 3.12, we
show a histogram of the results for the entire ensemble used for the
reference estimate. There results suggest that a conservative estimate
for the transient decay model for the KSE energy output with the
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Figure 3.11: Sample trace
of reference KSE energy
output (g(u(t)) =

∫
Ω u2 dΩ)

with transient model fit.
Results: (J∞)est = 117.72,
σg,est = 14.900, Tλ,est = 1583.24,
Aλ,est = −59.614 .

(a) |Aλ| (b) Tλ

Figure 3.12: Histograms of
transient model fits of ψ using
reference ensemble.

fuzz initial condition:

ψref = (Tλ, |Aλ|) ≈ (2000, 60), (3.50)

which we will use to characterize the spin-up transient for the
purposes of error modeling.

Taken in sum, this section demonstrates that with the use of a Bayesian
method we can make an estimate of the dominant exponential
convergence behavior in any given ergodic trace of the Kuramoto-
Sivashinsky system without strong a priori knowledge. This means,
in turn, that we should be able to relate any choice of t0 and Ts to an
estimate of the error incurred by the transient convergence process
using (1.52).
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3.5 Optimal simulation including spin-up

Now that we have characterized the discretization, sampling, and
transient errors associated with simulations of a given PDE output,
we explore simulation optimality as a function of computational cost.
Consider a simulation with a budget of Nx Nt = 1012 total computed
elements. We can begin by studying the effect of the choice of ∆x
and ∆t in terms of the error under (3.27) with the estimates of ψ

given in (3.50) and θ in Table 3.5. At each (∆x, ∆t), we compute the
optimal spin-up time by mimimizing (3.27) under the realizability
constraint T > t0. In Figure 3.13, the error under the model is shown
with an optimum value for the px = 1 DG/RK2 with Mens = 1 and
Mens = 64. In Figure 3.14, an equivalent plot is shown for the px = 2
DG/RK3 case.

We observe that, as expected, the error models have clear and evident
optima. Moving diagonally from top-right to bottom-left, we vary the
total simulation time available under the budgets. We can see from
the overlaid t0 contours that the spin-up time is significant in the
top-right region, where total simulation time is least constrained by
the budget. As noted in Chapter 1, there are two modes for reduction
of the spin-up errors: increasing Ts to reduce the spin-up error as
T−1

s , or increasing t0 to decrease this error exponentially. Because
the available T = t0 + Ts is set by ∆x and ∆t under the budget,
when ∆x and ∆t are small, T must also be small. In this case, it
becomes advantageous to use less t0 in order to use the available
T for sampling, which mutually controls the sampling error as well
as the spin-up error.

Next, we consider the behavior of the optimizer as a function of
computational cost. In Figure 3.15, we can see the convergence
behavior for the two choices of discretization used here. From these
plots, computed at equivalent budgets according to (3.45), we see two
dominant convergence regions emerge, in which

eopt ∼ Cα
t . (3.51)

When the budget Ct is large, the convergence behavior is dominated
by the sampling behavior and

α = − qxqtr
qxqt + qxr + qtr

.

dominates. On the other hand, in the limit of small budgets, the
transient resolution becomes a restricting factor. In this region, spin-
up costs are the dominant factor, and they are optimally controlled
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(a) Mens = 1: eopt = 0.285, ∆xopt = 0.010, ∆topt = 0.033, Ts,opt = 99289

(b) Mens = 64: eopt = 0.082, ∆xopt = 0.006, ∆topt = 0.019, Ts,opt = 25684

Figure 3.13: Total error model
variation with ∆x and ∆t at
optimal choice of t0 with
total element computation
budget Nx Nt = 1012 using the
px = 1/RK2 discretization.
Contours of optimal choice of t0

overlaid.
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(a) Mens = 1: eopt = 0.148, ∆xopt = 0.107, ∆topt = 0.030, Ts,opt = 217954

(b) Mens = 64: eopt = 0.033, ∆xopt = 0.067, ∆topt = 0.018, Ts,opt = 75353

Figure 3.14: Total error model
variation with ∆x and ∆t at
optimal choice of t0 with
total element computation
budget Nx Nt = 1012 using the
px = 2/RK3 discretization.
Contours of optimal choice of t0

overlaid.
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(a) px = 1 DG, RK2 discretization.

(b) px = 2 DG, RK3 discretization.

Figure 3.15: Convergence plots
for the expected error under the
model at the optimum choice
of ∆x, ∆t, t0 and Ts at a given
wall-clock budget and number
of ensembles.
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by Ts. Thus, in this region,

α = − qxqt

qxqt + qx + qt

dominates as long as the discretization errors remain asymptotic.
This is the value shown in the left-hand-side theory totems in Fig-
ure 3.15.

qx qt αsampling αspinup

2 2 −1/3 −1/2
3 3 −3/8 −3/5
4 4 −2/5 −2/3
5 5 −5/12 −5/7
6 6 −8/21 −3/4
...

...
...

...
∞ ∞ −1/2 −1

Table 3.6: Total error
convergence rates as a function
of design order under the
model.

In Table 3.6, we show these theoretical cost-error rates for discretiza-
tions with qx = qt. As seen for ODEs in Section 1.2, the optimal
rates achievable with a higher-order method on a chaotic system
are limited by the central limit theorem. Meanwhile, for problems
with significant spin-up transient costs, the rate for small budgets is
limited by T−1

s . Finally, we note that it appears the high-order rates
can be recovered in the intermediate region between statistically
dominated rates, between 107 and 109 cost units in Figure 3.15. It is
possible that for some problems these properties might open up a
significant region with high-order convergence with respect to C, but
it is certainly has an insignificant impact in this setting.

3.6 Small-sample model identification

In order to demonstrate and validate the Bayesian procedure, we
will now perform small-sample fits. To do so, a database of JT,hp is
generated. We generate random choices of ∆x and ∆t subject to a
sampling budget of Cs = 107, by choosing ∆x and ∆t sampled from a
loguniform distribution such that:

log10 ∆x ∼ U (log10 ∆xmax − 1, log10 ∆xmax)

log10 ∆t ∼ U (log10 ∆tmax − 1, log10 ∆tmax)

then Ts is set by the budget, as in (3.15). The maximum values of
∆x and ∆t are set using the limits in Table 3.1. Sampled triples for
which Ts is greater than the minimum for convergence are rejected;
moreover, the system is spun up for t0 = 12,000 and samples for
which the total cost C > 1010 are also rejected. The errors with
respect to Jref in the resulting set of simulations for px = 1, RK2

simulation– on which we will concentrate in this section– can be
found in Figure 3.16.

For each forthcoming Bayesian fit, we will bootstrap a length-M sets
of simulation results, {JT,hp}, out of the database. Then, {JT,hp},
(3.35), (3.36), and (3.41) are used to compute the MAP estimate θ∗MAP
as well as an estimate of θMAP and the error models using (3.33).
In Figure 3.17, the first such Bayesian fit is shown, with M = 1000
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Figure 3.16: Error values of
output data for Cs = 107 and
t0 = 12,000. Area of markers
scale with Ts subject to budget.

Figure 3.17: Bayesian error
model fit with M = 1000
simulation datapoints drawn
randomly. Small-sample
estimate shown with white
contours, “true” model
shown with black and colored
background contours.
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points. This result is a fit that captures the important qualitative
features, namely the location and magnitude of error the minimizer
Quantitatively, the fit has a small mismatch with the true value of
the optimal error, and a slight offset of the optimizer. The values and
their comparison to the values in Table 3.2 are given in Table 3.7.

variable value pct. error
(C∗px )MAP 478.23 0.46%
(B∗pt

)MAP −40.69 14.41%
(A∗0)MAP 59.57 16.77%
(J∞)MAP 118.75 0.26%
variable value ref. value

(∆xopt)MAP 0.062 0.066
(∆topt)MAP 0.211 0.211
(eopt)MAP 10.911 12.665

Table 3.7: Small-sample fit
results for px = 1, RK2 with
M = 1000.

These results show that the error model captures J∞ and C∗px under
5% error, while the temporal and sampling error models have larger
errors. To further interrogate these results, we can look at the con-
vergence behavior as understood by the model in Figure 3.18. These

Figure 3.18: Convergence
behavior under small-sample
fit for px = 1, RK2 with
M = 1000. Adjusted JT,hp

removes modeled temporal
effects for spatial convergence,
vice versa, and removes both
spatial and temporal effects for
the sampling error convergence.
Data colored by dominant effect
under observed model.

results show that temporal-discretization-dominated simulations are
relatively few, compared to the spatial-discretization- and sampling-
dominated simulations. In addition to the lack of sample density
across the error effects, it is likely that non-asymptotic sampling
behavior can be present when Ts . 30, based on the results in
Section 3.4.

In addition to the results shown here,
we have also tested the Bayesian small
sample procedure with synthetic data
generated exactly according to the
likelihood function, for which this
quantiative mismatch does not exist
as M → ∞. This suggests that the
real simulation data containts some
non-asymptotic effects, whether in ∆x,
∆t, or Ts or due to uncontrolled initial
transients. The synthetic data studies
can be found in Appendix D.
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Figure 3.19: Bayesian error
model fit with M = 100
simulation datapoints drawn
randomly. Small-sample
estimate shown with white
contours, “true” model
shown with black and colored
background contours.

variable value pct. error
(C∗px )MAP 479.51 0.19%
(B∗pt

)MAP −43.33 8.86%
(A∗0)MAP 55.65 22.25%
(J∞)MAP 119.88 1.22%
variable value ref. value

(∆xopt)MAP 0.061 0.066
(∆topt)MAP 0.201 0.211
(eopt)MAP 10.542 12.665

Table 3.8: Small-sample fit
results for px = 1, RK2 with
M = 100.

Figure 3.20: Bayesian error
model fit with M = 10
simulation datapoints drawn
randomly. Small-sample
estimate shown with white
contours, “true” model
shown with black and colored
background contours.

variable value pct. error
(C∗px )MAP 465.70 3.06%
(B∗pt

)MAP −41.72 12.24%
(A∗0)MAP 36.20 49.42%
(J∞)MAP 118.59 0.12%
variable value ref. value

(∆xopt)MAP 0.053 0.066
(∆topt)MAP 0.177 0.211
(eopt)MAP 7.826 12.665

Table 3.9: Small-sample fit
results for px = 1, RK2 with
M = 10.

In Figures 3.19 and 3.20, the fit results for M = 100 and M = 10
simulations are shown, respectively, with the corresponding data in
Tables 3.8 and 3.9. These fits again identify J∞ with less than 1% error
while having larger error for other model parameters. Nonetheless,
these anecdotal results for M = 1000, 100, and 10 demonstrate that
the small-sample procedure can identify J∞ and make high-quality
qualitative estimates of the optimal cost-constrained discretization
(∆xopt, ∆topt), even approaching the small-sample limit.
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Finally, we study the sensitivity of the small-sample procedure to the
particular set of M simulations of JT,hp. In order to do so, we will
now repeat the process of the small-sample fits overM = 100 length-
M sets. Each of these sets will be bootstrapped without replacement
from the database of simulations used previously in this section,
without replacement at a givenM. Due to computational limits,
M = 100 is not available for every choice of M. Figure 3.21 shows
theM available in the data we have. The following plots will have
M according to this limited data.

Figure 3.21: M available with
computed data.

In Figure 3.22, the (J∞)MAP estimates are shown. This plot demon-
strates that as M increases, the distribution of (J∞)MAP converges
towards Jref with a rate approximately M−1/2. In Figure 3.23, we
consider the accuracy of error estimates and optimized discretiza-
tions that are generated by each of the length-M MAP estimates. In
these plots, we see the quality of the error model, measured by the
approach of (eopt)MAP to (eopt)ref, is good and stays within a small
factor of the reference error. In the lower subplot of Figure 3.23, we
show the multiplicative factor between the error under the reference
model at (eopt)MAP and the optimal error using the reference model,
which should represent the lowest possible error at this cost. This
plot shows that, using the small sample estimation capability here,
more than 90% of the estimates with random length-M sets {JT,hp}
with M ≥ 10 should result in a simulation with no more than a factor
of two more than the minimum possible error.

3.7 Conclusions and future work

The results in this chapter demonstrate that the error model can be
extended to the domain of chaotic PDEs and has explanatory value
in that context. Moreover, we demonstrate that these effects can be
identified with a small-sample approach without relying on the use
of expensive reference computations. In addition to the sampling
behavior, we show that the spin-up transient behavior of the PDE
systems, as in the ODE case, can be identified and accounted for.
Taken together, we can now identify all of the contributions to the
error in JT,hp, without reference computations that far exceed the cost
of JT,hp.
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(a) Asymptotic output (J∞)MAP.

(b) Error |(J∞)MAP − Jref|.

Figure 3.22: Small sample
identification of J∞ as a
function of M.
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(a) Estimate of optimal error, (eopt)MAP.

(b) Excess error in optimized (M + 1)-th simulation.

Figure 3.23: Small sample error
estimation as a function of M.
In (a): 295 total points out of
range: 100 at M = 1, 100 at
M = 2, 95 at M = 3. In (b): 300
total points out of range: 100
at M = 1, 100 at M = 2, 95 at
M = 3, 1 at M = 6, 1 at M = 9,
2 at M = 10, 1 at M = 40.
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4

Bayesian optimization of
discretizations for ergodic chaotic

differential equations

Start where you are. Use what you have. Do what you can.

—Arthur Ashe

As we have shown in Chapter 3, it is possible to estimate the
transient behavior of a discretized PDE. Additionally, we can iden-
tify a model for the discretization and sampling errors of a given
physical system and discretization using a small number of outputs
from simulations measured on the attractor. Now, we turn towards
application of these results in situ when running simulations without
a priori knowledge of the error model or transient behavior.

4.1 Small-sample identification with non-negligible transient ef-
fects

In Section 3.6, we developed a small-sample approach for the PDE
problem when t0 � Tλ. The first key problem in this chapter is
that we will no longer be able to assume that t0 � Tλ and that the
spin-up transient is negligible, since the target error tolerance is not
known a priori. In (3.24), we developed a model for the expected
value of a simulation with discretization and statistical errors–
including both sampling and spin-up errors– by assuming an ex-
ponential decay model for the convergence to the solution on the
attractor, (1.52), and using its expected integrated value. In the small-
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sample case, we will assume that the coefficients in (1.52) can be
estimated for a given simulation. Now, we can insert (1.52) into
(3.8), and follow the derivation in Section 3.6 to arrive at a likelihood
function for a simulation result JT,hp subject to a spin-up transient:

p
({

J(i)T,hp

} ∣∣∣ J∞, C∗px , qx, B∗pt , qt, A∗0 , r
)
=

Nsamp

∏
i=1
N
(

J(i)T,hp; J∞ + C∗px ∆xqx + B∗pt ∆tqt + e(i)λ ,
(

A∗0 T−r
s
)2
)

, (4.1)

where

e(i)λ ≡ A(i)
λ

T(i)
λ

T(i)
s

exp

(
−

t(i)0

T(i)
λ

)[
1− exp

(
−T(i)

s

T(i)
λ

)]
(4.2)

gives the error contribution based on the i-th g(i)hp signal, which is

used to generate J(i)T,hp.

Computational problem

In this chapter, we will develop an algorithmic approach that is
compatible with the PDE models derived in Chapter 3. However,
in order to moderate computational costs, we will simulate the
Kuramoto-Sivashinsky equation as in Section 3.3 using a fixed
number of spatial degrees of freedom. In this case, we fix the number
spatial elements at Nx = 64 and px = 2, in which event we will
refer to the system as the KSE-ODE system. This alludes to the fact
that the result reduces to an ODE problem, as in Chapter 1 and 2,
but we will refer to the PDE-specific equations in Chapter 3 to retain
generality, assuming that C∗px → 0 everywhere in the results for the
KSE-ODE case.

4.2 Numerical results: error model identification in the presence
of spin-up transient effects

In this section, we consider the error in a KSE-ODE simulation.
Because we have fixed the spatial system far from the convergence re-
gion, we will not recycle any of the reference results used previously,
as there are no guarantees that the temporal behavior of the spatially
coarse system will be equivalent. We compute a reference simulation

To elaborate on this point: multiscale
temporal behaviors are dependent on
the physical mechanisms resolved, so
when the physical system is discretized
with few spatial elements we can
expect the temporal behavior to be
significantly distinct. Grid-dependence
of the temporal properties of CFD
problems, for instance, is very clearly
demonstrated in Fernandez & Wang
[2017].

with an ensemble of Mens = 25 instances, with Ts = 2.73× 105,
t0 = 3577, and ∆t = 2.67× 10−2 . The result is

Jref ≈ 181.30± 0.04, (4.3)

where the limits given are based on the standard error on the ensem-
ble of averages.
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Now we can take the likelihood function of a simulation result JT,hp

and subtract J∞ to find:

p
(

eT,hp

)
= N

(
JT,hp − J∞; B∗pt ∆tqt + eλ,

(
A∗0 T−r

s
)2
)

. (4.4)

which can be manipulated analogously to (3.31) to allow the transfor-
mation in (3.33) and equivalence to (3.24). Now, in order to complete
the process in Section 3.4 with the transient correction, we must treat
the eλ term.

In this section, we fit a function µg

µ
(i)
g = Jdecay,(i)

∞,hp + A(i)
λ exp

(
− t

T(i)
λ

)
(4.5)

to g(i)hp(t) using a non-linear least squares procedure, in order to find

A(i)
λ and T(i)

λ , with Jdecay,(i)
∞,hp used to denote the asymptotic value as

detected by the mean fit process. With this estimate, we can compute
The (asymptotically equivalent)
Bayesian least squares procedure
used to fit the decay in Chapter 1 can
be prone to ill-fitting for the KSE-ODE
problem, hence the use of standard
nonlinear least-squares.

e(i)λ using (4.2). Applying this correction, we can then use the large-
sample method of Section 3.4 to find the error model parameters in
(4.4).

To assess the correction method and identify the various error model
parameters, we will simulate using Ns = 4.0× 104, various selections
of t0, and the RK3 discretization, with ∆t sampled loguniformly sub-
ject to the convergence limits on ∆t and Ts in Table 3.1. In addition
to the minimum on Ts, we also require that T = t0 + Ts ≥ 1200,
in order to promote accurate capture of the transient behavior,
and simulations for which the nonlinear least squares fit fails on
to capture ψ∗ are rejected. To establish a reference estimate of the
parameters, we start with 2000 simulations with t0 = 9000. At this
large value of t0, eλ is effectively negligible, with the 99.7th-percentile
value of |eλ| approximately 5.9× 10−2. In Table 4.1, the values of
the resulting fit are shown, which we take as the canonical reference
estimates of the system’s error behavior (i.e. θ∗ and ψ).

B∗pt qt A∗0 r J∞ (|Aλ| )95 (Tλ)95

−311.3 3 115.7 1/2 181.34 126.12 1111.34 Table 4.1: Results of error
model fit for px = 2, RK3

at Ns = 4× 104 with error
correction at t0 = 9000.
Simulations sampled log-
uniform in ∆t with ∆t < 0.24
and Ts > 9580.0; 1835
simulations used for fit.

Now, we can repeat the study with lower values of t0; for an extremal
case, we now explore simulations with t0 = 300, but otherwise
specifying simulations identically to the previous case. For this
case, we simulate 1200 runs, truncating the range such that Ts >

2400. In Figure 4.2, we show the raw data that results. Figure 4.2
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Figure 4.1: Raw JT,hp data
from Nx = 64, px = 2
simulation using RK3 with
t0 = 9000 (reference case). Fit
superimposed.

Figure 4.2: Raw JT,hp data
from Nx = 64, px = 2
simulation using RK3 with
t0 = 300. Reference model fits
superimposed.
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demonstrates behavior that clearly departs from the transient-free
results from the previous chapters, such as Figure 2.11. Specifically,
there exists a clear trend as ∆t shrinks, away from J∞-centered
sampling.

This behavior emerges due ot the effect of the transient error. In
Figure 4.3, we have estimated the transient error e(i)λ , each calculated
with the nonlinear-least squares estimate of the decay computed with
the weighted least-squares fit to g(i)hp . We expect the Ts-dependent

Figure 4.3: Estimates of eλ for
JT,hp data from Nx = 64, px = 2
simulation using RK3 with
t0 = 300.

behavior of the transient effect to scale with T−1
s , as in (1.52). This

behavior is reflected in both the mean and statistical variation of eλ,
which can be clearly seen in Figure 4.4. On one hand, the trend in
Figure 4.4 suggests that the estimates of eλ match the theoretically
expected behavior with Ts. On the other hand, these plots– especially
Figure 4.3– show how challenging it is to model the transient effect,
which can materialize as a random effect whose non-zero mean value
grows with T−1

s as Ts shrinks, while also having the same trend in its
standard deviation.

Given that the values of eλ converge as expected, we now apply eλ as
a correction to the JT,hp data, in order to attempt to recover the un-
derlying discretization and sampling error model. We first compute
e(i)λ using the method above. Then, we can repeat the nonlinear least
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Figure 4.4: Estimates of |eλ|
for JT,hp data from Nx = 64,
px = 2 simulation using RK3

with t0 = 300.

squares procedure, using an augmented mean function

J∞ + C∗px (∆x(i))qx + B∗pt(∆t(i))qt + e(i)λ ,

about which J(i)T,hp should me sampled with a standard deviation

that scales with T−1/2
s . We fit for B∗pt , A∗0 , and J∞ using (4.1) as in

Section 3.4.

In Figure 4.5 we report the error under the resulting error model.
Here, the qualitative behavior that we expect on the attractor is
present, but there are clear effects that are not described by the
central limit theorem behavior for Ts < 4000, presumptively induced
by the eλ corrections. Despite the inaccuracies, Figure 4.5 allows
significantly more insight into the behavior of the system than the
equivalent raw data in Figure 4.2. As in Section 3.4– but here adding
the effect of eλ– we expect the quantity

JT,hp − eλ − J∞

T−1/2
s

to follow a normal distribution; in Figure 4.6, we show that the
result of the nominally normally-distributed quantity after transient
correction does appear to be approaching a normal distribution, al-
though not without some evident defects due to error in the transient
correction. In Table 4.2, the resulting reference values from the fit
for B∗pt and A∗0 and J∞ with qt and r fixed at their asymptotic values
are given, along with conservative (95% percentile) estimates of Tλ
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Figure 4.5: Corrected JT,hp

data from Nx = 64, px = 2
simulation using RK3 with
t0 = 300.

B∗pt qt A∗0 r J∞ (|Aλ| )95 (Tλ)95

−624.7 3 279.5 1/2 185.20 127.16 1194.00

Table 4.2: Results of error
model fit for px = 2, RK3

at Ns = 4× 104 with error
correction at t0 = 300.
Simulations sampled log-
uniform in ∆t with ∆t < 0.24
and Ts > 9584.0; 1115
simulations used for fit.

and |Aλ| . We note from the values in Table 4.2 that the transient
correction also appears to induce an offset in J∞ with respect to Jref.

For comparison, we also have run 1600 simulations with t0 = 1000
and t0 = 3000 but otherwise identical to further investigate the
quality of the spin-up transient correction. In Figures 4.7 and 4.8 the
results of this study are shown, and corresponding data is given in
Tables 4.3 and 4.4.

B∗pt qt A∗0 r J∞ (|Aλ| )95 (Tλ)95

−647.8 3 250.8 1/2 185.46 127.73 1221.60

Table 4.3: Results of error
model fit for px = 2, RK3

at Ns = 4× 104 with error
correction at t0 = 1000.
Simulations sampled log-
uniform in ∆t with ∆t < 0.24
and Ts > 9598.0; 1461
simulations used for fit.

These results show that t0-dependence in the quality of small-sample
fits becomes a factor in the fits when JT,hp is corrected for the eλ

contribution. Particularly, small t0 leads to excess variance induced
by the correction term, and causes drift in the estimation of J∞.
Nonetheless, fits to the corrected data give a plausible qualitative
approximation of the real error behavior even with significant eλ

when the transient is captured by sufficient T = t0 + Ts, in spite of
evident spin-up effects. This qualitative success should be sufficient
to allow us to proceed with the assimilation of eλ-corrected data and
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Figure 4.6: Histogram of
nominally normal quantity
from JT,hp data from Nx = 64,
px = 2 simulation using RK3

with t0 = 300.

B∗pt qt A∗0 r J∞ (|Aλ| )95 (Tλ)95

−371.3 3 134.5 1/2 182.39 125.34 1125.33 Table 4.4: Results of error
model fit for px = 2, RK3

at Ns = 4× 104 with error
correction at t0 = 3000.
Simulations sampled log-
uniform in ∆t with ∆t < 0.24
and Ts > 9598.0; 1494
simulations used for fit.

make estimates of the discretization and sampling errors using the
small-sample process.
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Figure 4.7: Raw and corrected
JT,hp data from Nx = 64, px = 2
simulation using RK3 with
t0 = 1000.

Figure 4.8: Raw and corrected
JT,hp data from Nx = 64, px = 2
simulation using RK3 with
t0 = 3000.
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4.3 System analysis of simulation components

Having demonstrated that the use of a transient correction allows
us to recover useful approximations of the attractor model, we turn
toward demonstrating that the result of Chapters 2 and 3– model
identification at small sample sizes– can be recreated for simulations
with spin-up transients. Now, we want to combine these results
and create a scheme to simulate optimally with respect to total
cost without a priori knowledge of the error or solution behavior.
In order to understand the requirements of such a scheme, we now
summarize and consider the interconnections between the inputs
and outputs of the various estimation processes we have thus far
developed.

Any given simulation, which we will denote symbolically by PDEhp(·),
takes as inputs gridsize ∆x, timestep ∆t, and total simulation time T.
The result of this simulation is the state of the system as a function
of space (if applicable) and time, uhp(~x, t). In addition to the state, an
instantaneous output quantity ghp(t) is computed as well.

Average values of outputs, JT,hp are computed by integrating the
output signal ghp(t) starting at some specified time t0 through the
remaining Ts. In addition to output integration, ghp is also used for
the decay fitting process, denoted symbolically by decay(·). This
process results in estimates of the observed transient behavior, ψ∗.
The relation (3.21) between the choice of t0 and Ts and the amount of
spin-up error can be derived from ψ∗.

Last but not least, the small-sample fitting process, takes a set of
output quantities {JT,hp} and gives a set of model parameters that
describes the sampling and discretization error contributions, θ∗.
These, alongside the decay behvaior ψ∗, determine the optimal
choices of ∆x, ∆t, t0, and Ts for at a given cost, at which PDEhp(·)
should be run.

Unfortunately, this analysis makes clear the challenge posed by the
framework. In an optimal situation, any given simulation should
be situated at an optimal choice of (∆x, ∆t, Ts) under (3.27). This
requires knowledge of both ψ∗ and θ∗. Once a simulation is com-
plete, ψ∗ can be estimated directly by the decay fit but before the
simulation is run, the quantity is not known and requires estimation.
Meanwhile, θ∗ is in general not known but we aim to estimate it
using a small set of sampled simulations, {JT,hp}. Calculation of
these average outputs JT,hp can be done with the output of any
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given simulation, but nominally, we want an optimal balance of
spin-up and sampling, subject again to (3.27). However, this optimal
integration must be performed ∆x and ∆t fixed, since the simulation
has already been run.

The circular dependencies here make arriving at perfect estimates at
any given stage challenging. In the remainder of this chapter, we will
present a heuristic algorithm that allows for good– if not optimal–
choices of ∆x, ∆t, and t0 by exploiting an error model estimated
through a low-cost exploration phase.

4.4 Explore-exploit algorihm

Consider now the simulation of JT,hp without prior knowledge of the
error behavior, subject to a fixed total budget B. We can choose to
subdivide the total budget into any number of simulations, such that

B = ∑
n
C(n)t , (4.6)

where C(n)t gives the cost of the n-th simulation.

If we knew the error behavior a priori, the optimal solution would
be simple: solve for JT,hp at the optimal discretization with one
simulation at Ct = B. In lieu of this knowledge, we take an explore-
exploit strategy. Thus we divide the budget into some number of
exploration simulations and a final exploit simulation:

B = ∑
m
C(m)

t︸ ︷︷ ︸
Bexplore

+ Cexploit
t︸ ︷︷ ︸
Bexploit

(4.7)

Using the explore budget, Bexplore, we will run M explore simula-
tions, whose goal is to determine estimates of ∆xopt, ∆topt, Ts,opt, and
t0,opt that should minimize the error in the exploit stage, rather than
making an accurate estimate of J∞ on their own. Given the resulting
estimate, we then use the remaining Bexploit to compute JT,hp with the
goal of making eT,hp as small as possible, using the best guess given
the knowledge accumulated in the exploration stage.

Transient-robust small-sample simulation

In Algorithm 1, we show a proposed heuristic explore-exploit proce-
dure. We denote by Θ∗ the Bayesian random variable (RV) descrip-
tion of the model θ∗, which which is functionally generated by the
Hamiltonian Monte Carlo sampler detailed in Section 2.2; realizations
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of this RV are denoted by θ∗. Additionally, we denote by (·)+ a quan-
tity that is based on the observed transient behavior, rather than the
expected behavior, denoted by ˜(·). For the expected transient behvior,
we use a shorthand max function to denote a conservative estimate
for the transient behavior, such that ψ̃ = (maxn |A(n)

λ | , maxn T(n)
λ ).

Last but not least,

emodel(∆x, ∆t, t0) = emodel(∆x, ∆t, t0|θ(θ∗), ψ(ψ∗))

is given by the form in (3.27).

4.5 Numerical results: algorithm application

In this section, we demonstrate the use of Algorithm 1. We will
run a set of 20 RK3 discretizations of the KSE-ODE problem with
Nt = 4× 104 for exploration, and assess the error performance that

For the RK3 KSE-ODE case, cost
reduces to some constant times the
total number of timesteps, Nt.

they might project to have on a simulation with Nt = 3.2× 106, i.e.
using B∆x/Cpx pt = 4× 106. As previously, we will reject simulations
that lack the fidelity to be in the convergent regime of ∆t and Ts

given by Table 3.1. In addition to the convergence limit on Ts, we
also will require T > 1200 in order to guarantee that the transient
behavior is satisfactorially captured. In order to choose the next
stage’s ∆t, and t0, we take a very naïve approach, sampling a set
{θ} ∼ Θ∗, calculating ∆topt and t0,opt with each sample, then

For the KSE-ODE problem there is no
∆x, but this naïve approach can be
extended to a full PDE problem with
the treatment of ∆x and some choices
about the sampling process in ∆x, ∆t,
and Ts.

choosing randomly among the implied sets {(∆topt, t0,opt)} that fall
within the constraints. If no member of the set {(∆topt, t0,opt)} falls
within the constraints, ∆t is chosen as a loguniform sample between
the minimum and maximum ∆t possible under the constraints.

In Figures 4.9 and 4.10 we show the sequences of ∆t(m) and T(m)

and A∗,(m)
λ and T∗,(m)

λ , as they are generated by the exploration cycle.
These values, once computed, cannot be changed without running a
new simulation.

In order to quantify the progression of the scheme, we will compare
to the optimal values for the exploit simulation with Nt = 3.2× 106

under the model described with t0 = 3000 in Table 4.4. At these
values, and using the 95

th percentile transient characteristics, we
should simulate at the reference optima, given by:

(∆topt)ref = 0.0510

(t0,opt)ref = 7.75× 103

(Ts,opt)ref = 1.55× 105

(eopt)ref = 0.276

. (4.8)
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Algorithm 1: Heuristic cycle algorithm for identification of θ and ψ

create cost schedule C(m)
t , Cexploit

t s.t. ∑M
m=1 C

(m)
t + Cexploit

t = B . many approaches possible
{JT,hp} ← ∅
for m = 1, . . . , M do

Θ∗ ← HMC(θ∗ | {JT,hp}) . random variable
if m = 1 then

ψ̃(m) = (Tguess, 0)
else

ψ̃(m) ← max{ψ(ψ∗,(n))}m−1
n=1

end if
choose (∆x(m), ∆t(m), t(m)

0 ) using Θ∗ and ψ̃(m) . many approaches possible

N(m)
t ← C(m)

t ∆x(m)/(Cpx pt L)

T(m)
s ← N(m)

t ∆t(m) − t(m)
0

u(m)
hp (t)← PDEhp(∆x(m), ∆t(m), N(m)

t )

ψ∗,(m) ← decay(ghp(u
(m)
hp ))

t+,(m)
0 ← argmint0

(emodel(t0, ∆x(m), ∆t(m))) . ∆x(m) and ∆t(m) fixed.

T+,(m)
s ← N(m)

t − t+,(n)
0

J(m)
T,hp ←

∫ t+,(m)
0 +T+,(m)

s

t+,(m)
0

ghp(u
(m)
hp ) dt . reintegrate optimally

for n = 1, . . . , m− 1 do
t+,(n)
0 = argmint0

(emodel(t0, ∆x(n), ∆t(n))) . ∆x(n) and ∆t(n) fixed.

T+,(n)
s = N(m)

t − t+,(n)
0

J(n)T,hp ←
∫ t(n)0 +T(n)

s

t(n)0

ghp(u
(n)
hp ) dt . reintegrate optimally

end for
{JT,hp} ← {J(n)T,hp}

m
n=1 . update & append

end for
θ∗MAP ← M.A.P.(HMC(θ∗ | {JT,hp}))
ψ̃← max{ψ(ψ∗,(n))}m

n=1

(∆xexploit, ∆texploit, texploit
0 )←

(
(∆xopt, ∆topt, t0,opt)

∣∣∣ (θ(θ∗MAP), ψ̃, Cexploit
t

))
Nexploit

t ← Cexploit
t ∆xexploit/(Cpx pt L)

Texploit
s ← Nexploit

t ∆texploit

uexploit
hp (t)← PDEhp(∆xexploit, ∆texploit, Nexploit

t ) . final state estimate

ψ∗,(m) ← decay(ghp(u
exploit
hp ))

Jexploit
T,hp ←

∫ texploit
0 +T(n)

s

texploit
0

ghp(u
exploit
hp ) dt . final output estimate

θ∗ ← M.A.P.(HMC(θ∗ | {{JT,hp}, Jexploit
T,hp })) . allows final output error estimate
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Figure 4.9: Sequence of
∆t(m) and T(m) values for
M = 20 explore simulations
at Nt = 4× 104 generated
according to Algorithm 1.

In Figures 4.11, Figures 4.12, and Figures 4.13, we show the estimates
of ∆topt, t0,opt, and Ts,opt for the target Nt = 3.2× 106 simulation as
estimated up to the m-th simulation. These show progress towards
the optimizer, which appears to be approaching an asymptote with
some deviation from– but close to– the reference value.

The most important assessment of the performance of the scheme is
how well the exploit-stage simulation might be expected to perform
at a given exploration stage. We can do this using the error under the
model in (3.27) given the reference values, evaluated at the estimated
optimizer:

eref(t0,opt, ∆xopt, ∆topt) = emodel(t0,opt, ∆xopt, ∆topt | θref, ψref)

This is done in Figure 4.14. As we can see from the results, after a
spontaneously good initial point from the prior, Algorithm 1 man-
ages to control the error a final value around 1.5 times the optimal
in expectation, which would occur if the exploit stage timesteps
Nt = 3.2× 106 were used with perfect a priori knowledge. At m = 2
and m = 3, for example, the iterative process would have arrived at
errors a factor of seven higher than the optimal.

After the final stage, we make a final posterior estimate to optimize
the exploit stage, resulting in:

∆texploit = 0.0394

t0,exploit = 8.44× 103

Ts,exploit = 1.18× 105

eopt,exploit = 0.390

. (4.9)
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Figure 4.10: Sequence of ψ∗,(m)

values for M = 20 explore
simulations at Nt = 4× 104

generated according to
Algorithm 1.

Using the reference model, the error at this posterior optimizer is
expected to be

eref(∆texploit, t0,exploit, Ts,exploit) = 0.357 (4.10)

Thus, though some errors certainly remain, the explore cycle in
Algorithm 1 results in good approximants of the reference values in
(4.8) which are computed exclusively using the M = 20 exploration
computations.

It is noted that in the absence of such a result, one must make an
arbitrary guess where to simulate the system. One such naïve ap-
proach might have been to perform the simulation at the relevant
convergence limit in Table 3.1, under the assumption that the dis-
cretization errors will be dominated by statistical ones. In this event,
the error in the exploit simulation would be at least 5.1, accounting
for discretization error alone, and thus the approach herein reduces
the error by a factor of at least twelve at Nt = 3.2× 106. While this
is only one of many possible approaches, it highlights that the error
reduction under this strategy– compared to naïve approaches– is
likely to be significant.
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Figure 4.11: Sequence of ∆topt

estimates for exploit simulation
generated by each of M = 20
exploration simulations at
Nt = 4× 104.

Figure 4.12: Sequence of t0,opt

estimates for exploit simulation
generated by each of M = 20
exploration simulations at
Nt = 4× 104.
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Figure 4.13: Sequence of Ts,opt

estimates for exploit simulation
generated by each of M = 20
exploration simulations at
Nt = 4× 104.

Figure 4.14: Comparison
between reference error at
best estimate ∆t, t0 for exploit
simulation and reference eopt

generated by each of M = 20
exploration simulations at
Nt = 4× 104.
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To complete the section, we now run an ensemble of 25 exploit
simulations at the optimizer in (4.9), in order to quantify the spread
of outcomes possible from the exploit stage. In Figure 4.15, we show

Figure 4.15: Comparison
between reference error at
best estimate ∆t, t0 for exploit
simulation and reference eopt

generated by each of M = 20
exploration simulations at
Nt = 4× 104.

the histogram of Jexploit
T,hp from the resulting simulations. As we can see

by comparing the estimate eopt = 0.370 in (4.9), the algorithm allows

a good prediction of the spread of the errors in Jexploit
T,hp .

This error estimate can be further refined by incorporating Jexploit
T,hp

into a final small-sample model estimate, by finding the MAP esti-
mate θ∗MAP incorporating the exploit stage result into the data:{

J(1)T,hp, . . . , J(M)
T,hp, Jexploit

T,hp

}
,

then calculating emodel using ψ∗exploit and the resulting θ∗MAP. In
Figure 4.16, we show a histogram of the final MAP error estimate
from each Jexploit

T,hp . As with the accumulated exploration result, we
find that the final posterior estimate after the exploit simulation
is also descriptive of the spread of errors we see about Jref. This
demonstrates that the procedure in Algorithm 1 not only enables
near-optimal discretization but also allows for a reliable estimate of
eT,hp at the conclusion of the exploit simulation.
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Figure 4.16: Distribution of
final estimates at ∆topt, t0,opt,
Ts,opt resulting from final MAP
estimates.

4.6 Numerical results: performance expectation

Finally, in this section, we seek to demonstrate that this process
is repeatable. In order to do so, we will repeat the explore stage
100 times and show that the resulting set of optimizers should
consistently achieve a low error according to the reference error
model.

For each instance of the explore stage, we independently run M = 20
explore simulations according to Algorithm 1 and evaluate ∆texploit,
texploit
0 , and Texploit

s for each. In Figure 4.17, the resulting optimizers
of this study are shown on histograms. These results demonstrate
that the process can reliably– though not without a few outliers– find
a near-optimal discretization for the exploit stage.

We can project the error at these optimizers using the reference
values of the error model. In Figure 4.18, the error under eref implied
by Table 4.4 is evaluated at each instance’s optimizer to give an
estimate of the error at the approximated optimizer. These results
show that, of 100 simulations run using the methodology outlined
in this chapter, only three are expected to have more than a factor of
two more than optimal amount of error, indicating reliable estimation
of the optimizer.
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Figure 4.17: Histogram of
optimal discretization estimates
for exploit simulation after
100 independent runs of the
exploration algorithm.
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Figure 4.18: Histogram
of reference error at
approximated optimizers
for exploit simulation after
100 independent runs of the
exploration algorithm.

4.7 Conclusion

In this chapter, we have demonstrated that it is possible to make
estimates of the model for the behavior of solutions on the attractor
using a data from simulations with non-negligible spin-up transient
errors via a correction term. Then, we use this result to demonstrate
that by the use of an explore-exploit scheme it is possible to achieve
near-optimal results in terms of the balance of fixed-cost error contri-
butions from discretization, spin-up transient, and sampling errors.

There remains significant room for improvement to these results. One
key issue is that the deterministic correction approach for the tran-
sient component of the error, while adequate, clearly induces some
errors that diminish the performance of the small-sample method.
Additionally, the framework developed here neglects the correlation
between the spatial resolution and the spin-up transient behavior,
namely Tλ, which grows as the number of spatial degrees of freedom
are increased for the Kuramoto-Sivashinsky equation, though should
be expected to converge eventually towards an asymptote. The work
of Fernandez and Wang [2017] in particular covers the discretization
dependence of the temporal properties– particularly the Lyapunov
exponents– of dynamical systems in CFD.

While there remains room for improvement, the novel capability
of this method to achieve efficient use of resources has immediate
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utility in numerics, as well as providing a framework in which a
number of key and outstanding questions in computation might
be considered. We will look at some of these key questions in the
concluding chapter. In terms of the immediate utility, the heuristic
algorithm herein gives a foundation upon which many results in
optimization can be brought to bear. One particular example is the
choice of discretizations in the exploration stages, which is ripe for
optimization. A particular approach of interest is an information-
maximizing experimental design approach1, in which information

1 Xun Huan and Youssef M. Marzouk.
Simulation-based optimal Bayesian
experimental design for nonlinear
systems. Journal of Computational
Physics, 232(1):288–317, 2013

theory could be used to make a choice that is optimal in terms of
shrinking the uncertainty about control parameters– like t0,opt, ∆xopt,
and ∆topt– as a function of the error model.

In addition to optimal choices in the exploration stage, another
area that is primed for optimization is the allocation of resources
for exploration vs. exploitation. The explore-exploit problem has a
rich history in multiple academic disciplines, including psychology2,

2 Daniel J. Navarro, Ben R. Newell,
and Christin Schulze. Learning and
choosing in an uncertain world: An
investigation of the explore-exploit
dilemma in static and dynamic
environments. Cognitive Psychology,
85:43–77, 2016

autonomy3, and artificial intelligence4. In Algorithm 1, we arbitrarily

3 Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra.
Planning and acting in partially
observable stochastic domains. Artificial
Intelligence, 101(1):99–134, 1998

4 Kaelbling et al., 1998; Isaac J Sledge
and José C Príncipe. Balancing
exploration and exploitation in
reinforcement learning using a value
of information criterion. In 2017 IEEE
international conference on acoustics,
speech and signal processing (ICASSP),
pages 2816–2820. IEEE, 2017; and
Jonathan Sorg, Satinder Singh, and
Richard L. Lewis. Variance-based
rewards for approximate Bayesian
reinforcement learning. In Proceedings
of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence,
UAI’10, page 564–571, Arlington,
Virginia, USA, 2010. AUAI Press

chose to use M = 20 simulations for exploration, each 1% of the total
simulation budget. It is very likely that more effective and adaptive
allocation of costs into exploration and exploitation is possible,
especially in the context of the Bayesian method used herein, and
this represents another key area for extension of this work.
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Summary and future work

You certainly usually find something, if you look, but it is not always
quite the something you were after.

–J. R. R. Tolkien, The Hobbit

The concentration of this work has been quantifying and
minimizing the gap between the modeling equations used for a
simulation and the discrete simulation results that result from com-
putational approximation of those equations. For most non-chaotic
systems, this description can be fairly simply represented by the
convergence of the discrete solution function to a unique exact
solution function of the modeling equations in some appropriate
measure. In the following section, we will delineate the contributions
of this work, which extends our understanding of costs and errors to
chaotic systems.

Contributions

Error modeling for mean output quantities
of chaotic, ergodic differential equations

For chaotic, ergodic systems, we narrowly define the goal of a simu-
lation as estimating the mean, J∞, of some quantity of interest. The
first major contribution of this work, then, is to propose a compre-
hensive model for the simulation error in estimates of J∞. In this
model, simulation error consists of a combination of sampling error
due to chaotic variation on the attractor, transient error due to spin-
up, and discretization errors due to temporal and (when relevant)
spatial discretization.
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The resulting model offers insight into the fundamental efficiency
limitations of approximations of J∞. The central limit theorem can be
expected to govern the sampling behavior for a wide class of ergodic
problems, and when this is the case it will limit the asymptotic rates
of convergence of the error in a finite-time esimate JT with respect
to J∞ as a function of cost to the rate −1/2. Simulations of chaotic
systems will often be a finite-time estimate of a discrete approximation
of the true system. In this case, simulation results JT,hp are subject
to both sampling and discretization errors; the rates of convergence
of the total simulation error error, given for ODEs in (2.4) and (3.19)
for PDEs, will not reach the −1/2 rate expected under the CLT, but
will have a q-dependent rate penalty. These discrete rates approach
the CLT rate as q → ∞, where q is the convergence rate of the
discretization error. While significant improvements in the rates
disappear in the chaotic, ergodic analysis, our work demonstrates
that the use of high-order schemes can nonetheless have significant
reductions in error at a given amount of wallclock cost, at least for
the systems shown in the work.

In addition, we show that the optimal balance of error contributions
can take different forms than the CLT-limited convergence rate.
When budget limitations dominate, we show a limiting convergence
with T−1

s , associated with the reduction of the spin-up transient error.
To the author’s knowledge, this work represents a first attempt to
quantify an optimal use of resources in this budget-constrained limit.

Last but not least, we incorporate the possibility of ensemble paral-
lelism, and give an assessment of the potential benefits of ensemble
estimation. We show that, as with the sampling time, ensemble
estimation of a discrete system cannot improve at the ideal rate
for a purely stochastic system, but incurs a penalty when both
discretization and sampling errors are present. Moreover, we show
that in order to reduce the expected error by parallel ensemble
estimation, the specified discretization must be continually optimized
in order to prevent domination by the discretization error as the
number of ensemble instances, Mens, increases. Finally, we account
for the fact that the spin-up cost does not amortize across processors,
but must be controlled on every instance of the simulation, and amend
the total cost-error model results to account for this.
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Small-sample Bayesian estimation of sampling and discretization
errors on the attractors of chaotic, ergodic differential equations

In addition to theoretical description of these errors, the work further
demonstrates that a Bayesian inference approach can robustly iden-
tify the described error behavior on the attractor using only only a
small number of discrete simulations of the system.

While this is not the first use of a Bayesian method in the context
of chaotic systems (e.g., Oliver et al. [2014]), a novel contribution of
this work is the use of a Bayesian method to identify a model for the
errors in a discrete simulation method.

Explore-exploit scheme for near-optimal simulation
of chaotic, ergodic differential equations

By amending the small-sample methods to account for the effect of
spin-up transient effects, we propose a scheme to explore possible
discretizations using some fraction of a budget in order to then
exploit the remainder of the budget in a near-optimal manner.
Despite multiple naïve heuristic shortcuts and ample room for
improvement in the explore-exploit scheme, we demonstrate that
near-optimal use of computational resources is possible using the
naïve scheme.

Taken as a whole, the error model we propose suggests that current
state-of-the-art processes for simulation planning are likely to be
subject to cost-error inefficiencies, while our demonstration of the
explore-exploit scheme suggests that it is possible to approach the
optimal use of resources.

Outstanding issues and improvements

Error modeling in non-convergent regions

One of the fundamental assumptions that is made in this work is that
simulations are always performed in the asymptotically convergent
regions for the parameters of interest. These have all been identified
in this work by exhaustive computation and a priori confinement of
the parameter spaces for ∆x, ∆t, and Ts.

In practice, these will not be known a priori: pre-convergent behavior
must be either detected or modeled accurately. One possibility for
modeling pre-convergent behavior for the discretization error is by
the use of higher-order terms. The discretization error is derived, in
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effect, by the first non-zero entry in Taylor series approximation of
the true solution. It is possible that by incorporating higher terms
than the leading order into the modeling process may enable capture
of pre-convergent behavior, although this is not guaranteed. For
the CLT convergence, short sampling times Ts may also have non-
convergent behavior, for which non-normal distributions of the
sampling error may be present. While there is not a Taylor series
justification for the inclusion of higher-order terms for the CLT, one
possible treatment might be to use a variance that scales with T−1

s
in the small Ts limit, like the expected transient behavior, but scales
with T−1/2

s when Ts becomes large.

A key problem with eother of these approaches is that they have im-
plications for the identifiability of the models, and these implications
must be carefully examined before attempting to fit them, especially
in the small-sample case. Further investigation of the pre-asymptotic
regime is left to future work.

Improved small-sample fitting of data with spin-up transients

An area of this work that needs more attention is the use of transient-
corrected data for the small-sample system identification. While the
process covered in Chapter 4 achieves its goal, the fits to transient-
corrected output data leave much room for improvement.

Fitting of the exponential decay in the outputs of the Kuramoto-
Sivashinsky equation, for example, demonstrates that the exponential
thesis for the decay behavior has high explanatory value. However,
the accuracy of these fits remains unexamined, and the results in
Section 4.1 seem to indicate that the resulting transient errors eλ–
used to correct JT,hp against the transient effects– are inaccurate when
t0/Tλ is not sufficiently large.

An alternative scheme might be to treat the “corrected” values in a
hierarchical model, which would effectively impute guesses for JAT,hp,
the output that would have resulted from the related trajectory on the
attractor and to which the simulated trajectory converges as t → ∞.
Any such model, however, is likely to struggle to distinguish between
the natural variance in the system due to chaos and uncertainty
in the transient model, and such a model for this reason must be
carefully constructed.
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Exploration stage optimization in explore-exploit algorithm

As noted in Chapter 4, the explore-exploit algorithm used therein
was based on a number of naïve, heuristic choices in order to develop
a proof-of-concept optimization scheme. While the results generated
in Ch. 4 show promise, it is very likely that they can be improved.

This area is left to future researchers, but we expect that a combi-
nation of canonical approaches for explore-exploit problems and
Bayesian experimental design methods are primed to bring signifi-
cant improvements in accuracy by the conclusion of the exploration
stage of the explore-exploit algorithm.

Applications and extensions

Given the results and contributions of this thesis, we now conclude
by considering how the framework established in this thesis can be
applied and used.

Mixed grid- and ensemble-parallelism for discretization of chaotic PDEs

In this work, we have demonstrated that the CLT imposes a fairly
restrictive limit on the relationship between the cost and error of
a simulation, and in so doing we have highlighted the importance
of advanced methods for speeding up and reducing the error in
simulations of chaotic PDEs. Perhaps the foremost candidate among
these methods is parallelization. In the body of this thesis, we only
considered ensemble parallelism, which we showed could reduce the
sampling error in a system but cannot reduce the cost of resolving
spin-up.

While our analysis of ensemble parallelism is fairly exhaustive for
low-dimensional ODE problems like the Lorenz system, it must be
extended to also be able to account for and optimize usage when
the high-dimensional spatial system or the temporal advancement
scheme can be parallelized within a given instance as well. Suppose
P processors are available for a job: the key question is how to
allocate processors to Mens ensembles with instances that run with
Np processors each, such that:

P = MensNp (c.11)

In high-performance computing (HPC), the benefits of parallelization
are traditionally described by Amdahl’s law5 for fixed workload com-

5 Gene M. Amdahl. Validity of the
single processor approach to achieving
large scale computing capabilities. In
Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference,
AFIPS ’67 (Spring), page 483–485,
New York, NY, USA, 1967. Association
for Computing Machinery
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puting or Gustafson’s model6 for fixed time computing, with further 6 John L. Gustafson. Reevaluating
Amdahl’s law. Commun. ACM, 31(5):
532–533, May 1988

extensions for for memory-bounded computing7, heterogeneous

7 Xian-He Sun and Lionel M Ni.
Another view on parallel speedup.
In Supercomputing ’90: Proceedings
of the 1990 ACM/IEEE Conference on
Supercomputing, pages 324–333, 1990

computing8, and general high-performance computing with multiple

8 Mark D. Hill and Michael R. Marty.
Amdahl’s Law in the multicore era.
Computer, 41(7):33–38, 2008

constraining factors9. Amdahl’s law for a fixed workload W can be

9 Ashur Rafiev, Mohammed A. N.
Al-Hayanni, Fei Xia, Rishad Shafik,
Alexander Romanovsky, and Alex
Yakovlev. Speedup and power scaling
models for heterogeneous many-core
systems. IEEE Transactions on Multi-
Scale Computing Systems, 4(3):436–449,
2018

written as:

Tserial
Tparallel

=
W

W(1− ρ) + Wρ
Np

=
1

(1− ρ) + ρ
Np

, (c.12)

where Tserial and Tparallel are the computation times of the serial and
parallel codes, Np gives the number of parallel processors, and ρ

gives the fraction of the workload W that can be parallelized (with
(1− ρ) the portion that cannot be run in parallel).

In (3.45) we develop a model for the wallclock costs of a simulation,
which we can rewrite assuming within-instance parallelization
benefits are described by Amdahl’s law:

Cparallel
t =

(
(1− ρ) +

ρ

Np

)
Cpx pt NelemNt. (c.13)

In this case, we assume for simplicity ρ is fixed for a discretization
scheme on a given problem. This then propogates into (3.27) where E
can be replaced with

E
(1− ρ) + ρ

Np

,

allowing, with (c.11):

eparallel
model = Cqx ∆xqx + Bqt ∆tqt +

A0√
P/Np

 E
L
(
(1− ρ) + ρ

Np

)∆x∆t− t0

−r

+ |Aλ|Tλ

 E
L
(
(1− ρ) + ρ

Np

)∆x∆t− t0

−1

exp
(
− t0

Tλ

)
.

(c.14)

This leads to a new optimization problem, which would give the
optimal use of P processors to minimize eparallel

model . Without solving
for the optimizer of (c.14), we can see that if ρ ≈ 1, i.e. a simulation
instance is readily parallelizable, instance parallelization can reduce the
cost of resolving spin-up, which we have shown in this work ensemble
parallelization can not.

Mesh adaptation for chaotic PDEs

Another technique for error reduction is mesh adaptation, which
seeks to reduce the error in a simulation by optimizing grids used for
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the discretization of a system.

It is far outside the scope of this thesis to suggest a resolution to
the question of how to achieve grid adaptation for chaotic flows.
However, the framework laid out in this thesis can be extended to
understand the improvements that might be realized through grid
adaptation. The effect of grid adaptation would be, in the terms of
(3.13), to replace the discretization error model with an effective error
model:

ehp,x ≈ Ceff∆xqx,eff
eff , (c.15)

which is based on some effective measure of characteristic grid
length, ∆xeff. This effective model would have the benefit of applying
to situations where the solution is irregular, for which the simple
treatement of discretization error in this work would be expected to
come in under the optimal rate (i.e. qx < px + 1) but for which the
effective model remains optimal qx ≈ px + 1.

A complete treatment of the extension of the error modeling to
anisotropic adapted grids is outside the scope of this work, but the
framework herein can be adapted to understand the relationship
between adaptive spatial discretizations the total errors. While
complete generalization remains outstanding, we remark that the
results of this thesis suggest that reduction of discretization error at a
given cost must be high in order to overcome the rate limitations that
come from the central limit theorem.

Adaptive space-time discretization of chaotic PDEs

In the previous sub-section, our discussion centered around spa-
tial mesh adaptation. Another developing capability is space-time
discretization, in which problems are solved as monolithic (d + 1)-
dimensional problems, where d is the number of spatial dimensions.
In this context, time is incorporated as if it were an additional spatial
dimension, in which temporal flux is interpreted as convection. The
result of such a treatment is a monolithic system of equations that
can be solved to describe the system at all times in a spatiotemporal
domain. One of the key benefits of such an approach is that it en-
ables space-time adaptivity: where spatial adaptation optimizes the
grid used from one timestep to the next in a timestepping scheme,
a space-time approach allows for computational resources to be
allocated preferentially to the regions in space and time that are of
importance.

Unfortunately the extension of space-time methods to chaotic sys-
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tems is non-trivial. A key problem is that chaotic sensitivity to
initial conditions limits the time window on which the space-time
problem can be solved with a Newton-style nonlinear solver, before
the linearization becomes ill-conditioned. Suppose a space-time
method covers a temporal domain of period ∆T, and it is solved
using a linear solver that can tolerate the inversion of matrices with
up to some condition number ε. Because the deviation between the
solution at t and the solution at t + ∆T is governed by the Lyapunov
stability, we can expect:

cond(J) ∼ exp(Λmax ∆T),

where J is the Jacobian of the global problem and Λmax is the largest
Lyapunov exponent of the system, which will be positive for a
chaotic system. This leads to an expression that should give a limit
on the length of time that an individual space-time discretization of a
chaotic system can span:

∆Tmax ≤
1

Λmax
log ε, (c.16)

under the simple assumptions here.

For chaotic problems, we will need Ts large enough to have a mean-
ingful statistical sample; with some certainty, Ts � ∆Tmax when
this is the case. In order to overcome this fundamental limitation, a
time-slab approach is the most obvious candidate, in which the total
simulation time T is subdivided into “time-slabs” of length ∆T, with
the final state of any given time-slab used as the initial condition for
the next.

Such an approach could have a few significant benefits. For one, it
is likely that an improvement in the per-instance parallel speedup
would result, as the non-parallelizable portion of a computation
will be amortized more favorably across a significant region in time,
resulting in ρ → 1 (this is demonstrated for flows in porous media by
Jayasinghe [2018]). Moreover, many applications have complex flow
in fairly compact space-time regions. For these types of problems,
it is possible that the cost benefits from space-time adaptivity may
significantly change the cost-error relationship depite the central
limit theorem. As with spatial adaptation, the error models in this
work need to be revised for these space-time adaptive problems;
however the fundamental framework in this work is still valuable as
a starting point to understand and quantify the relationship between
costs and errors when applying these types of space-time adaptive
discretizations.
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Epistemological errors

It is worth distinguishing here between
the notion of epistemological errors as
used in simulation, which describe
errors due to modeling physical
systems with simplified mathematical
models, and epistemic uncertainties,
which refer generally to errors that can
be reduced by repeating an experiment.
Paradoxically, in most applications
one would interpret epistemological
errors as a source of so-called aleatoric
uncertainty, a mutually exclusive
category to epistemic uncertainty.
At any rate we are referring to
epistemological errors in this section.

At the highest level, we can think of the goal of simulation as trying
to close the gap between the relevant performance of a real system
and computational estimates of that performance. This gap breaks
down into two parts: the epistemological error that separates perfect
answers of the equations used to model the system from the behavior
of the real system, and the simulation error that separates the result
of computational estimates of those solutions from the true solutions
of the modeling equations. The goal of this work has been to under-
stand, estimate, and minimize the second part.

In very general terms, both of these two types of error are always
present. In a perfect simulation paradigm, simulation effort will
be expended with some ideal balance between the epistemological
errors and the simulation errors: below the limit of epistemological
error, increased precision in simulation is wasted, since the real
system is no better described by a more precise simulation than
the next less precise simulation. When this is the case, there are
often more useful allocations of effort and time: further exploring
the problem’s parametric dependencies (e.g. design changes in
an engineering system) at a particular fidelity, quantification of
uncertainty, taking an extended break, etc.

In practice, understanding the epistemological errors in simulations
at a given fidelity is a grand challenge. Literature that attempts to
estimate the limits of epistemological barriers of simulation methods
like low-fidelity models, RANS, and LES is sparse, let alone literature

An interesting, if tangential, research
thrust is into epistemic uncertainty
quantification for RANS turbulence
models, which primarily concentrates
on detailed analysis of errors rather
than quantification of high-level output
errors (see, e.g., Gorlé and Iaccarino
[2013]).

that attempts to use these various methods in a resource-optimal way.
While estimates for the limiting epistemological errors are elusive,
multi-level and multi-fidelity frameworks in which these various
methods can be embedded have been developed the literature10.

10 Gianluca Geraci, Michael S. Eldred,
and Gianluca Iaccarino. A multifidelity
multilevel Monte Carlo method for
uncertainty propagation in aerospace
applications. In 19th AIAA Non-
Deterministic Approaches Conference,
2017; and Benjamin Peherstorfer,
Philip S. Beran, and Karen E. Willcox.
Multifidelity Monte Carlo estimation
for large-scale uncertainty propagation.
In AIAA Non-Deterministic Approaches
Conference, 2018

We observe that coupling a framework like the one in this work to
the design process is a very interesting and fruitful area for future
research. The goal of such a coupling would help to allow LES and
other chaotic system simulations to be executed and integrated in a
way that maximizes their ability to uncover new information about
the design questions at hand without excess cost or waste. With
that said, however, robust quantification of this type of wholistic
cost-error balancing will require significant development before it is
practical or advisable to use full-stack optimal resource allocation for
design. Nonetheless, the work in this thesis lays out an important
and necessary piece for such a scheme to optimally incorporate data
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from chaotic simulations.
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A

Generalized PDE sampling error
model

In this appendix, we will make a general error model for d-dimensional
DG-like discretizations under the error model in Chapter 3. The
primary distinction between the DIRK-DAE/DGBR4 discretization
used herein and discretizations of turbulent Navier-Stokes is that the
cost model in Chapter 3 levers savings due to the tri-diagonal linear
systems that exist in the 1D case, and these savings do not exist in the
d-dimensional case.

We will assume a generic d-dimensional discontinuous Galerkin
discretization with order px polynomial representations on simplex
elements. In this case, each element will have

Nelem
DOF =

1
d!

(px + d)!
px!

(A.1)

degrees of freedom. This allows us to write the total number of
degrees of freedom in the spatial system as:

Nsys,x
DOF =

1
d!

(px + d)!
px!

Nelem. (A.2)

Now, we will need to solve such as system with a nonlinear solver.
We will assume that the nonlinear solves require number of solutions
of the linearized system, and that that number has a well-defined
average, N̄NLI. At each iteration, the linearized system with Nsys,x

DOF
degrees of freedom will be solved. A general statement for the cost of
solving a linear system is that it will scale as:

Clinear = CLS(Nsys,x
DOF )

ξ , (A.3)
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where ξ is a constant, and CLS is a constant coefficient. For tridi-
agonal linear systems, as in the 1D KSE DGBR4 case, ξ = 1. Most
generally, ξ = 3 is the upper limit, at which the Gaussian elimination
algorithm can be used to solve any linear system. In general, smaller
values of ξ might be possible using more advanced or tailored
algorithms. Taking these together, the cost of solving the spatial

The block Thomas algorithm for the
tridiagonal system (ξ = 1) is just one
particular example of a specialized
value.

system is:

Csys,x = N̄NLICLS

(
1
d!

(px + d)!
px!

)ξ

︸ ︷︷ ︸
Csys,x

Nξ
elem, (A.4)

where Csys,x = Csys,x(d, px) is constant for a given physical system
and discretization.

The physical system is now solved in the temporal discretization. We
will assume an implicit method-of-lines discretization with s stages,
at each of which the spatial system must be solved. Thus, the total
cost should scale as:

C = sNtCsys,x

= sN̄NLICLS

(
1
d!

(px + d)!
px!

)ξ

︸ ︷︷ ︸
Ccost

Nξ
elemNt (A.5)

over Nt timesteps, where Ccost = Ccost(d, px, s) is the total cost
coefficient, constant for a given physical system and discretization.

Now, we note that Nelem ≈ (L/∆x)d and Ns = Ts/∆t, so that we can
write the cost model in terms of ∆x, ∆t, and Ts:

Cs = Ccost
LξdTs

∆xξd∆t
, (A.6)

which inverts to give Ts:

Ts =
Cs

CcostLξd ∆xξd∆t. (A.7)

Now, we can insert this value into (3.13). The result takes an minimal
error eopt at:

∆xopt = L
qtrξd

qxqt+qxr+qtrξd q
− qt+r

qxqt+qxr+qtrξd
x q

r
qxqt+qxr+qtrξd
t r

qt
qxqt+qxr+qtrξd (ξd)

qt+r
qxqt+qxr+qtrξd

C
− qt+r

qxqt+qxr+qtrξd
px B

r
qxqt+qxr+qtrξd
pt A

qt
qxqt+qxr+qtrξd
0 M

− qt
2(qxqt+qxr+qtrξd)

ens (Cs/Ccost)
− qtr

qxqt+qxr+qtrξd

(A.8)

∆topt = L
qxrξd

qxqt+qxr+qtrξd q
rξd

qxqt+qxr+qtrξd
x q

− qx+rξd
qxqt+qxr+qtrξd

t r
qx

qxqt+qxr+qtrξd (ξd)−
rξd

qxqt+qxr+qtrξd

C
rξd

qxqt+qxr+qtrξd
px B

− qx+rξd
qxqt+qxr+qtrξd

pt A
qx

qxqt+qxr+qtrξd
0 M

− qx
2(qxqt+qxr+qtrξd)

ens (Cs/Ccost)
− qxr

qxqt+qxr+qtrξd

(A.9)
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Ts,opt = L−
qxqtξd

qxqt+qxr+qtrξd q
− qtξd

qxqt+qxr+qtrξd
x q

− qx
qxqt+qxr+qtrξd

t r
qx+qtξd

qxqt+qxr+qtrξd (ξd)
qtξd

qxqt+qxr+qtrξd

C
− qtξd

qxqt+qxr+qtrξd
px B

− qx
qxqt+qxr+qtrξd

pt A
qx+qtξd

qxqt+qxr+qtrξd
0 M

− qx+qtξd
2(qxqt+qxr+qtrξd)

ens (Cs/Ccost)
qxqt

qxqt+qxr+qtrξd

(A.10)

at which:

eopt = (qxqt + qxr + qtrξd)L
qxqtrξd

qxqt+qxr+qtrξd q
− qxqt+qxr

qxqt+qxr+qtrξd
x q

− qxqt+qtrξd
qxqt+qxr+qtrξd

t r−
qxr+qtrξd

qxqt+qxr+qtrξd (ξd)−
qtrξd

qxqt+qxr+qtrξd

C
qtrξd

qxqt+qxr+qtrξd
px B

qxr
qxqt+qxr+qtrξd
pt A

qxqt
qxqt+qxr+qtrξd
0 M

− qxqt
2(qxqt+qxr+qtrξd)

ens (Cs/Ccost)
− qxqtr

qxqt+qxr+qtrξd .

(A.11)

The resulting scaling factors have similar trends to the results in
Chapter 3 for the 1D block tridiagonal system. The costs scale at a
rate given by:

− qxqtr
qxqt + qxr + qtrξd

.

Assuming Gaussian elimination, ξ = 3 on a 1D system d = 1, and the
resulting rates various choices of q = qx = qt are shown in Table A.1.

q 1 2 3 4 5 · · · ∞
− qxqtr

qxqt+qxr+qtrξd −1/6 −1/4 −3/10 −1/3 −5/14 · · · −1/2 Table A.1: Sampling cost-error
convergence rates for ξ = 3
(Dense Gaussian elimination).

Thus, the effect of more computationally complex solves is to slow
the convergence towards the CLT rate of 1/2 in a greater manner
than in the tridiagonal case.

Tridiagonal system reduction

For a 1D block tridiagonal system, ξ → 1 and d = 1, which results in:

∆xopt = L
qtr

qxqt+qxr+qtr q
− qt+r

qxqt+qxr+qtr
x q

r
qxqt+qxr+qtr
t r

qt
qxqt+qxr+qtr

C
− qt+r

qxqt+qxr+qtr
px B

r
qxqt+qxr+qtr
pt A

qt
qxqt+qxr+qtr
0

M
− qt

2(qxqt+qxr+qtr)
ens (Cs/Ccost)

− qtr
qxqt+qxr+qtr

(A.12)

∆topt = L
qxr

qxqt+qxr+qtr q
r

qxqt+qxr+qtr
x q

− qx+r
qxqt+qxr+qtr

t r
qx

qxqt+qxr+qtr

C
r

qxqt+qxr+qtr
px B

− qx+r
qxqt+qxr+qtr

pt A
qx

qxqt+qxr+qtr
0

M
− qx

2(qxqt+qxr+qtr)
ens (Cs/Ccost)

− qxr
qxqt+qxr+qtr

(A.13)

Ts,opt = L−
qxqt

qxqt+qxr+qtr q
− qt

qxqt+qxr+qtr
x q

− qx
qxqt+qxr+qtr

t r
qx+qt

qxqt+qxr+qtr

C
− qt

qxqt+qxr+qtr
px B

− qx
qxqt+qxr+qtr

pt A
qx+qt

qxqt+qxr+qtr
0

M
− qx+qt

2(qxqt+qxr+qtr)
ens (Cs/Ccost)

qxqt
qxqt+qxr+qtr

(A.14)
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at which:

eopt = (qxqt + qxr + qtr)L
qxqtr

qxqt+qxr+qtr q
− qxqt+qxr

qxqt+qxr+qtr
x q

− qxqt+qtr
qxqt+qxr+qtr

t r−
qxr+qtr

qxqt+qxr+qtr

C
qtr

qxqt+qxr+qtr
px B

qxr
qxqt+qxr+qtr
pt A

qxqt
qxqt+qxr+qtr
0

M
− qxqt

2(qxqt+qxr+qtr)
ens (Cs/Ccost)

− qxqtr
qxqt+qxr+qtr .

(A.15)

It is often desirable to use matched convergence rates in the spatial
and temporal discretization methods, such that qx = qt = q:

∆xopt = L
r

q+2r q−
1

q+2r r
1

q+2r

C
− q+r

q2+2qr
px B

r
q2+2qr
pt A

1
q+2r
0

M
− 1

2(q+2r)
ens (Cs/Ccost)

− r
q+2r

(A.16)

∆topt = L
r

q+2r q−
1

q+2r r
1

q+2r

C
r

q2+2qr
px B

− q+r
q2+2qr

pt A
1

q+2r
0

M
− 1

2(q+2r)
ens (Cs/Ccost)

− r
q+2r

(A.17)

Ts,opt = L−
q

q+2r q−
2

q+2r r
2

q+2r

C
− 1

q+2r
px B

− 1
q+2r

pt A
2

q+2r
0

M
− 1

q+2r
ens (Cs/Ccost)

2
q+2r

(A.18)

at which:
eopt = (q2 + 2qr)L

qr
q+2r q−

2(q+r)
q+2r r−

2r
q+2r

C
r

q+2r
px B

r
q+2r
pt A

q
q+2r
0

M
− q

2(q+2r)
ens (Cs/Ccost)

− qr
q+2r .

(A.19)
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B

Stabilized discontinuous
Galerkin/DIRK-DAE method for
unsteady fourth-order physical

operators

B.1 Background/Introduction

For this thesis, we wanted to find a cheap spatiotemporal system
that exhibits chaos as a useful toy problem. Kuramoto-Sivashinsky
and its generalizations are the well-established option for this type of
problem:

∂u
∂t

+∇ ·
(

cu +
α

2
u2
)
+∇ ·

(
β∇u + γ∇3u

)
= f in Ω

u = ud on ΓB

∇u · n̂ = gd on ΓB

, (B.1)

where ΓB ≡ ∂Ω. The boundary condition here, a “clamped plate” BC,
is key to sustain a turbulent attractor1.

1 Blonigan and Wang, 2014

The fourth-order operator makes the generation of solutions using
a DG method non-trivial. Various authors have generated stable
schemes for the Kuramoto-Sivashinsky or other fourth-order differen-
tial equations, including notably alternating upwinding on a family
of auxiliary variables2 and tailored interior penalty methods3.

2 Yan Xu and Chi-Wang Shu. Local
discontinuous Galerkin methods for the
Kuramoto-Sivashinsky equations and
the Ito-type coupled KdV equations.
Computer Methods in Applied Mechanics
and Engineering, 195(25):3430–3447, 2006

3 Emmanuil H. Georgoulis, Paul
Houston, and Juha Virtanen. An
a posteriori error indicator for
discontinuous Galerkin approximations
of fourth-order elliptic problems. IMA
Journal of Numerical Analysis, 31(1):
281–298, 09 2009

In the interest of future research using the SANS solver, we prefer to
have a simple mixed form that is compatible with the lifting operator
approach of Bassi and Rebay [1997] (with minimal modifications),
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and has promise for being demonstrably dual consistent. Thus, we
Proof of dual-consistency is outside
of the scope of this appendix, but our
method is promising for provable
dual-consistency.

seek a compatible mixed form for the KSE.

We introduce a mixed variable to arrive at a coupled system of PDEs:

∂u
∂t

+∇ ·
(

cu +
α

2
u2
)
+∇ · (β∇u + γξ∇a) = f in Ω

∇ · (∇u)− ξa = 0 in Ω

u = ud on ΓB

∇u · n̂ = gd on ΓB

(B.2)

where ξ is an arbitrary constant.

This allows us to define:

F t =

(
u
0

)
S =

(
0
−ξa

)
f =

(
f
0

)

F I =

(
cu + 1

2 αu2

0

)
FV =

(
β∇u + γξ∇a

∇u

)
= −K∇u K =

[
−β −γξ

−1 0

] (B.3)

Giving:

∂F t

∂t
+∇ · F I(u) +∇ · FV(u,∇u) + S(u,∇u) = f (B.4)

where we have used u = [u, a]> to represent the complete state.

The discontinuous Galerkin form of (B.2) is given by:

∑
κ∈Th

∫
κ

w>
∂F t

∂t
dΩ + ∑

e∈ΓI

∫
e
[[w]]> ̂F I(u) · n̂ dΓ− ∑

κ∈Th

∫
κ
∇w> · F I(u) dΩ

+ ∑
e∈ΓI

∫
e
[[w]]> ̂FV(u,∇u) · n̂ dΓ− ∑

κ∈Th

∫
κ
∇w> · FV(u,∇u) dΩ

+ ∑
κ∈Th

∫
κ

w>S(u,∇u) dΩ + ∑
e∈ΓB

∫
e

w>F B(u,∇u) · n̂ dΓ = ∑
κ∈Th

∫
κ

w>f dΩ

(B.5)

Here, ̂F I(u) · n̂ and ̂FV(u,∇u) · n̂ are symmetric numerical fluxes
and FB(u) · n̂ is the numerical flux on the boundary that enforces the
boundary conditions. We hope to find a choice of the boundary flux
to guarantee that the system is stable. The second method of Bassi
and Rebay for the viscous terms gives:
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∑
κ∈Th

∫
κ

w>
∂F t

∂t
dΩ + ∑

e∈ΓI

∫
e
[[w]]> ̂F I(u) · n̂ dΓ− ∑

κ∈Th

∫
κ
∇w> · F I(u) dΩ

+ ∑
e∈ΓI

∫
e
[[w]]>

{
FV(u, ∇̃u) · n̂

}
dΓ− ∑

κ∈Th

∫
κ
∇w> · FV(u, ∇̃u) dΩ

+ ∑
κ∈Th

∫
κ

w>S(u, ∇̃u) dΩ + ∑
e∈ΓB

∫
e

w>F B(u, ∇̃u) · n̂ dΓ = ∑
κ∈Th

∫
κ

w>f dΩ,

(B.6)

where the lifted gradient is given by ∇̃u and will be defined in the
forthcoming sections.

B.2 Stability of steady diffusive problem

Consider the case with c = α = 0 =⇒ F I → 0 and furthermore
assume a steady system. This leaves:

∑
e∈ΓI

∫
e
[[w]]>

{
FV(u, ∇̃u) · n̂

}
dΓ− ∑

κ∈Th

∫
κ
∇w> · FV(u, ∇̃u) dΩ

+ ∑
κ∈Th

∫
κ

w>S(u, ∇̃u) dΩ + ∑
e∈ΓB

∫
e

w>FV
B (u, ∇̃u) · n̂ dΓ = ∑

κ∈Th

∫
κ

w>f dΩ
(B.7)

Where we use a “lifted gradient” given by:

∇̃(·) =

∇(·) + Rh ([[·]]d) in κ ∈ Th

∇(·) + ηre
h ([[·]]d) on e ∈ Γ

(B.8)

The global lifting operator is defined by:

∑
κ∈Th

∫
κ

θ · Rh ([[ζ]]d) dΩ = − ∑
e∈ΓI

∫
e
{θ} · [[ζ]] dΓ− ∑

e∈ΓB

∫
e

θ(ζ − ζ̂) · n̂ dΓ

∑
κ∈Th

∫
κ

θ · R0
h([[ζ]]) dΩ = − ∑

e∈ΓI

∫
e
{θ} · [[ζ]] dΓ− ∑

e∈ΓB

∫
e

θζ · n̂ dΓ
(B.9)

where ζ̂ = ud when ζ = u and ζ̂ = a when ζ = a; this implies:

∑
κ∈Th

∫
κ

θ · Rh ([[ζ]]d) dΩ = ∑
κ∈Th

∫
κ

θ · R0
h([[ζ]]) dΩ + ∑

e∈ΓB

∫
e

θζ̂ · n̂ dΓ (B.10)

where ζ̂ can be replaced with a Dirichlet boundary state if it exists.
The local lifting operator is, similarly, defined by:
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∑
κ∈{κ}e

∫
κ

θ · re
h ([[u]]d) dΩ =


−
∫

e {θ} · [[u]] dΓ if e ∈ ΓI

−
∫

e {θ} · (u− ud) dΓ if e ∈ ΓB

0 otherwise

∑
κ∈{κ}e

∫
κ

θ · re
h ([[a]]d) dΩ =

−
∫

e {θ} · [[u]] dΓ if e ∈ ΓI

0 otherwise
,

(B.11)

and

∑
κ∈{κ}e

∫
κ

θ · re
h,0([[ζ]]) dΩ =

−
∫

e {θ} · [[ζ]] dΓ if e ∈ ΓI

−
∫

e θζ · n̂ dΓ if e ∈ ΓB
(B.12)

such that:

∑
κ∈{κ}e

∫
κ

θ · re
h ([[u]]d) dΩ = ∑

κ∈{κ}e

∫
κ

θ · re
h,0([[u]]) dΩ +

∫
e

θud · n̂ dΓ

∑
κ∈{κ}e

∫
κ

θ · re
h ([[a]]d) dΩ = ∑

κ∈{κ}e

∫
κ

θ · re
h,0([[a]]) dΩ +

∫
e

θa · n̂ dΓ
(B.13)

Now, we can substitute the definitions into the equation we want to
use to prove coercivity:

∑
e∈ΓI

∫
e
[[w]]

{[
β∇̃u + γ∇̃a

]
· n̂
}

dΓ + ∑
e∈ΓI

∫
e
[[b]]

{
∇̃u · n̂

}
dΓ

− ∑
κ∈Th

∫
κ
∇w ·

[
β∇̃u + γ∇̃a

]
dΩ− ∑

κ∈Th

∫
κ
∇b · ∇̃u dΩ

− ∑
κ∈Th

∫
κ

ba dΩ + ∑
e∈ΓB

∫
e

(
w
b

)>
FV

B (u, ∇̃u) · n̂ dΓ = ∑
κ∈Th

∫
κ

w f dΩ

(B.14)

On the boundary, the boundary flux is given by:

FV
B · n̂ =

(
β∇̃u · n̂ + γ∇̃a · n̂

gd

)
(B.15)

Here, we have replaced the Neumann boundary condition on the
second equation. This gives:
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∑
e∈ΓI

∫
e
[[w]] {[β (∇u + ηre

h ([[u]]d)) + γ (∇a + ηre
h ([[a]]d))] · n̂} dΓ

+ ∑
e∈ΓI

∫
e
[[b]] {(∇u + ηre

h ([[u]]d)) · n̂} dΓ

− ∑
κ∈Th

∫
κ
∇w · [β (∇u + Rh ([[u]]d)) + γ (∇a + Rh ([[a]]d))] dΩ

− ∑
κ∈Th

∫
κ
∇b · (∇u + Rh ([[u]]d)) dΩ− ∑

κ∈Th

∫
κ

ba dΩ

+ ∑
e∈ΓB

∫
e

w [β (∇u + ηre
h ([[u]]d)) + γ (∇a + ηre

h ([[a]]d))] · n̂ dΓ = − ∑
e∈ΓB

∫
e

bgd dΓ

+ ∑
κ∈Th

∫
κ

w f dΩ

(B.16)

Consider testing with w = [u,−γa]:

∑
κ∈Th

∫
κ

γa2 dΩ + ∑
κ∈Th

∫
κ

γ∇a · ∇u dΩ − ∑
κ∈Th

∫
κ

γ∇u · ∇a dΩ

− ∑
κ∈Th

∫
κ

γ∇u · Rh ([[a]]d) dΩ + ∑
κ∈Th

∫
κ

γ∇a · Rh ([[u]]d) dΩ

+ ∑
e∈ΓI

∫
e

γ [[u]] {∇a · n̂} dΓ + ∑
e∈ΓI

∫
e

γη [[u]] {re
h ([[a]]d) · n̂} dΓ

− ∑
e∈ΓI

∫
e

γ [[a]] {∇u · n̂} dΓ− ∑
e∈ΓI

∫
e

γη [[a]] {re
h ([[u]]d) · n̂} dΓ

+ ∑
e∈ΓB

∫
e

γu∇a · n̂ dΓ + ∑
e∈ΓB

∫
e

γηure
h ([[a]]d) · n̂ dΓ

− ∑
κ∈Th

∫
κ

β∇u · ∇u dΩ− ∑
κ∈Th

∫
κ

β∇u · Rh ([[u]]d) dΩ

+ ∑
e∈ΓI

∫
e

β [[u]] {∇u · n̂} dΓ + ∑
e∈ΓI

∫
e

βη [[u]] {re
h ([[u]]d) · n̂} dΓ

+ ∑
e∈ΓB

∫
e

βu∇u · n̂ dΓ + ∑
e∈ΓB

∫
e

βηure
h ([[u]]d) · n̂ dΓ = ∑

e∈ΓB

∫
e

bgd dΓ

+ ∑
κ∈Th

∫
κ

w f dΩ

(B.17)

Noting that β < 0 for stable second-order system, we find that the
blue term is positive for γ > 0, the cyan term is positive for γ > 0
and β < 0, magenta terms can be shown to be positive following the
DGBR2 Dirichlet problem proof4, and red terms cancel out or go to

4

zero (note here that re
h ([[a]]d)→ 0 when e ∈ ΓB).
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In order to prove coercivity, we must show that the remaining terms,
in black, are positive; in sum:

Φ ≡ − ∑
κ∈Th

∫
κ

γ∇u · Rh ([[a]]d) dΩ + ∑
κ∈Th

∫
κ

γ∇a · Rh ([[u]]d) dΩ

+ ∑
e∈Γ I

∫
e

γ [[u]] · {∇a} dΓ + ∑
e∈Γ I

∫
e

γη [[u]] · {re
h ([[a]]d)} dΓ

− ∑
e∈Γ I

∫
e

γ [[a]] · {∇u} dΓ − ∑
e∈Γ I

∫
e

γη [[a]] · {re
h ([[u]]d)} dΓ

+ ∑
e∈ΓB

∫
e

γu∇a · n̂ dΓ

(B.18)

Using θ = ∇u and ζ = a and θ = ∇a and ζ = u, respectively:

∑
κ∈Th

∫
κ
∇u · Rh ([[a]]d) dΩ = − ∑

e∈ΓI

∫
e
{∇u} · [[a]] dΓ

∑
κ∈Th

∫
κ
∇a · Rh ([[u]]d) dΩ = − ∑

e∈ΓI

∫
e
{∇a} · [[u]] dΓ− ∑

e∈ΓB

∫
e
∇au · n̂ dΓ + ∑

e∈ΓB

∫
e
∇aud · n̂ dΓ

(B.19)

Substituting:

Φ = ∑
e∈ΓI

∫
e

γ {∇u} · [[a]] dΓ− ∑
e∈ΓI

∫
e

γ {∇a} · [[u]] dΓ− ∑
e∈ΓB

∫
e

γ∇au · n̂ dΓ + ∑
e∈ΓB

∫
e

γ∇aud · n̂ dΓ

+ ∑
e∈ΓI

∫
e

γ [[u]] · {∇a} dΓ + ∑
e∈ΓI

∫
e

γη [[u]] · {re
h ([[a]]d)} dΓ

− ∑
e∈ΓI

∫
e

γ [[a]] · {∇u} dΓ− ∑
e∈ΓI

∫
e

γη [[a]] · {re
h ([[u]]d)} dΓ

+ ∑
e∈ΓB

∫
e

γw∇a · n̂ dΓ

(B.20)

As previously, red terms cancel out. The cyan term here, noting that
this term emerges from the b = γa transformation, is reducible to a
constant RHS term and we can ignore it while proving coercivity.

Now, for the remaining terms, we use θ = re
h ([[a]]d) and θ =

re
h ([[u]]d), respectively, to find:
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∑
κ∈{κ}e

∫
κ

re
h ([[a]]d) · r

e
h ([[u]]d) dΩ =


−
∫

e
{

re
h ([[a]]d)

}
· [[u]] dΓ if e ∈ ΓI

−
∫

e
{

re
h ([[a]]d)

}
· (u− ud) dΓ if e ∈ ΓB

0 otherwise

∑
κ∈{κ}e

∫
κ

re
h ([[u]]d) · r

e
h ([[a]]d) dΩ =

−
∫

e
{

re
h ([[u]]d)

}
· [[u]] dΓ if e ∈ ΓI

0 otherwise

(B.21)

By summing over the interior edges, we find:

Φ = −γη ∑
e∈ΓI

∑
κ∈{κ}e

∫
κ

re
h ([[a]]d) · r

e
h ([[u]]d) dΩ + γη ∑

e∈ΓI

∑
κ∈{κ}e

∫
κ

re
h ([[u]]d) · r

e
h ([[a]]d) dΩ (B.22)

Thus, Φ = 0, and L2 stability follows for γ > 0 and β < 0.

In the case that β → 0, we find that the formulation does not have a
unique solution because there are infinitely many solutions, varying
u, at a given minimizer of a; this is equivalent to the lack of an inf-
sup condition on the Ciarlet-Raviart saddle point problem. We now
seek to extend the BR2 stabilization to guarantee the existence of a
solution.

B.3 Extended DGBR2 formulation for biharmonic operators

In (B.8), the formulation of the lifted gradient comes from the idea
of adding a consistent stabilization to penalize jumps in the solution.
Now, we consider such a penalty term that is now independent of β

but instead dependent on γ:

Rs(w, u) = (sγ) ∑
e∈Γ0

I

∑
κ∈Th

∫
κ

re
h,0([[w]]) · re

h ([[u]]d) dΩ

= (sγ) ∑
e∈Γ0

I

∑
κ∈Th

∫
κ

re
h,0([[w]]) · re

h,0([[u]]) dΩ + (sγ) ∑
e∈ΓB

∫
e

re
h,0([[w]])ud · n̂ dΓ

= −(sγ) ∑
e∈ΓI

∫
e
[[w]] · re

h ([[u]]d) dΓ− (sγ) ∑
e∈ΓB

∫
e

wre
h ([[u]]d) · n̂ dΓ

(B.23)

These relations follow straightforwardly from the definitions. We
can see that adding this stabilization term is equivalent to adding
an additional penalty to the boundary jumps. Two facts are trivially
observable: first, that by taking w = u this term is coercive in u; and
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second, because each term is dependent on the jump in the solution
variable, it is zero for sufficiently smooth solutions.

We can add this term to (B.16):

∑
e∈Γ I

∫
e
[[w]] {β (∇u + ηre

h ([[u]]d)) · n̂} dΓ

+ ∑
e∈Γ I

∫
e
[[w]] {γ (∇a + ηre

h ([[a]]d) − sre
h ([[u]]d)) · n̂} dΓ

− ∑
e∈Γ I

∫
e
[[b]] {(∇u + ηre

h ([[u]]d)) · n̂} dΓ

− ∑
κ∈Th

∫
κ
∇w · [β (∇u + Rh ([[u]]d)) + γ (∇a + Rh ([[a]]d))] dΩ

+ ∑
κ∈Th

∫
κ
∇b · (∇u + Rh ([[u]]d)) dΩ + ∑

κ∈Th

∫
κ

ba dΩ

+ ∑
e∈ΓB

∫
e

w (β (∇u + ηre
h ([[u]]d) − sre

h ([[u]]d)) · n̂) dΓ

+ ∑
e∈ΓB

∫
e

w (γ (∇a + ηre
h ([[a]]d)) · n̂) dΓ = ∑

e∈ΓB

∫
e

bgd dΓ

+ ∑
κ∈Th

∫
κ

w f dΩ

(B.24)

This implies a new approach to the lifted gradients from before;
instead of stabilizing as we have previously, we now introduce a
stabilization matrix to the lifted gradients:

Astab =

[
η 0
−s η

]
(B.25)

and now:

(
∇̃u
∇̃a

)
=



∇u

∇a

 +

[[u]]d
[[a]]d

 in κ ∈ Th∇u

∇a

 + Astab

[[u]]d
[[a]]d

 on e ∈ Γ

(B.26)

which should now guarantee stability and coercivity of the Ciarlet-
Raviart DGBR2 mixed form for biharmonic operators for all stable
choices of γ > 0. For a shorthand, we refer to this stability form as
the “DGBR4” method.
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B.4 DIRK-DAE time marching for DGBR4

Now, consider a generalized semi-discrete form for unsteady DG
discretizations:

∑
κ∈Th

∫
κ

w
∂

∂t
(
F t

u(u(q), a)
)

dΩ + Rsemi
u (w; u(q), a) = 0

∑
κ∈Th

∫
κ

b
∂

∂t
(
F t

a (u(q), a)
)

dΩ + Rsemi
a (b; u(q), a) = 0.

(B.27)

This can be specialized to the KSE problem by taking the result of
(B.6) with the DGBR4 definition of the lifting operator,

When we apply timestepping methods to problems of this type, w
and b will be exclusively dependent on space, not time, so w = w(~x)
and b = b(~x). Thus we will want to approximate

∂

∂t

(
∑

κ∈Th

∫
κ

wF t
u(u(q), a) dΩ

)
+ Rsemi

u (w; u(q), a) = 0

∂

∂t

(
∑

κ∈Th

∫
κ

bF t
a (u(q), a) dΩ

)
+ Rsemi

a (b; u(q), a) = 0

(B.28)

∀w, b ∈ V with an appropriate timestepped form.

Given this form, we also note that for the Galerkin methods, we rep-
resent the solutions q and a by a summation of degrees of freedom
Qk = [Q]k and Ak = [A]k over a set of Nbasis basis functions φk(~x):

q = q(~x) =
Nbasis

∑
k=1

Qk φk(~x) = q(Q)

a = a(~x) =
Nbasis

∑
k=1

Ak φk(~x) = a(A)

(B.29)

Now given a test function w j , we can write an equivalent form of
(B.28) for the semidiscrete system variables Q = Q(t) and A = A(t):

∂

∂t

(
∑

κ∈Th

∫
κ

w jF t
u(Q, A) dΩ

)
+ Rsemi

u (w j ; Q, A) = 0

∂

∂t

(
∑

κ∈Th

∫
κ

b jF t
a (Q, A) dΩ

)
+ Rsemi

a (b j ; Q, A) = 0

(B.30)

where the system fluxes here are defined by forwarding the DOF
vectors to the relevant functions.

For low dispersive errors, we would like to use a diagonally implicit
RK approach. In this case, we solve:
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1
∆t
Rt

u(w j ; Qn+1 , An+1) =
1

∆t
Rt

u(w j ; Qn , An) +
s

∑
k=1

βk K(k)
j (Q(k) , A(k))

1
∆t
Rt

a(b j ; Qn+1 , An+1) =
1

∆t
Rt

a(b j ; Qn , An) +
s

∑
k=1

βk L(k)
j (Q(k) , A(k))

(B.31)

Where each of the stage solutions Q(k) and A(k) are solutions to:

K(k)
j (Q(k) , A(k)) ≡ 1

∆t
Rt

u(w j ; Q(k) , A(k)) − 1
∆t
Rt

u(w j ; Qn , An)

= −
k

∑
m=1

αkmRsemi
u (w j ; Q(m) , A(m))

L(k)
j (Q(k) , A(k)) ≡ 1

∆t
Rt

a(b j ; Qn , An) − 1
∆t
Rt

a(b j ; Q(k) , A(k))

= −
k

∑
m=1

αkmRsemi
a (b j ; Q(m) , A(m)).

(B.32)

for all j such that K(k)
j = [K(k) ] j and likewise L(k)

j = [L(k) ] j . Thus,
we can solve a problem of the form:

Bu
RK(k), j(Q(k) , A(k)) ≡ 1

αkk ∆t
Rt

u(w j ; Q(k) , A(k)) + Rsemi
u (w j ; Q(k) , A(k))

=
1

αkk ∆t
Rt

u(w j ; Qn , An) −
k−1

∑
m=1

αkm
αkk
Rsemi

u (w j ; Q(m) , A(m)) ≡ fu
RK(k), j

Ba
RK(k), j(Q(k) , A(k)) ≡ 1

αkk ∆t
Rt

a(b j ; Q(k) , A(k)) + Rsemi
a (w j ; Q(k) , A(k))

=
1

αkk ∆t
Rt

a(b j ; Qn , An) −
k−1

∑
m=1

αkm
αkk
Rsemi

a (b j ; Q(m) , A(m)) ≡ fa
RK(k), j .

(B.33)

If solve this system using a Newton-like method, we will do it by
generating a Jacobian like:

∂(Bu
RK(k), j , Ba

RK(k), j)

∂(Q(k) , A(k))
=


(

1
αkk ∆t

∂Rt
u

∂Q + ∂Rsemi
u

∂Q

)∣∣∣
w=w j

(
1

αkk ∆t
∂Rt

u
∂A + ∂Rsemi

u
∂A

)∣∣∣
w=w j(

1
αkk ∆t

∂Rt
a

∂Q + ∂Rsemi
a

∂Q

)∣∣∣
w=w j

(
1

αkk ∆t
∂Rt

a
∂A + ∂Rsemi

a
∂A

)∣∣∣
w=w j

 (B.34)

This Jacobian should remain nonsingular for F t
a → 0 so long as the

spatial problem Rsemi
a remains nonsingular. Thus, we can solve for

all of the intermediate stage working states Q(k) and A(k) . In turn,
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we can evaluate the stage-wise conservative steps K(k)(Q(k) , A(k))

and L(k)(Q(k) , A(k)).

With these solutions in hand, now seek to use (B.31) to update the
solution for Qn+1 and An+1 at tn+1. In order to do so, we now seek
to solve a system of the form:

Bu
RK, j(Qn+1 , An+1) ≡ 1

∆t
Rt

u(w j ; Qn+1 , An+1)

=
1

∆t
Rt

u(w j ; Qn , An) −
s

∑
k=1

βkK(k)
j (Q(k) , A(k)) ≡ fu

RK, j

Ba
RK, j(Qn+1 , An+1) ≡ 1

∆t
Rt

a(b j ; Qn , An)

=
1

∆t
Rt

a(b j ; Qn , An) −
s

∑
k=1

βkL(k)
j (Q(k) , A(k)) ≡ fa

RK, j .

(B.35)

Using a Newton-like method, we find a Jacobian like:

∂(Bu
RK, j , Ba

RK, j)

∂(Qn+1 , An+1)
=


(

1
∆t

∂Rt
u

∂Q

)∣∣∣
w=w j

(
1

∆t
∂Rt

u
∂A

)∣∣∣
w=w j(

1
∆t

∂Rt
a

∂Q

)∣∣∣
w=w j

(
1

∆t
∂Rt

a
∂A

)∣∣∣
w=w j

 , (B.36)

which will be singular when Rt
a (or Rt

u for that matter) goes to
zero. In that case, (B.30) is an index-1 set of differential-algebraic
equations (DAEs), rather than a system of ordinary differential
equations (ODEs). To handle this, we specialize the methods of ? for
our working/conservative variable transformations. Thus, we want
to advance Q using the Runge-Kutta method on Rt

u while advancing
A by solving Rt

a(Qn+1 , An+1) = 0. This gives an augmented system
for the case Rt

a → 0:

Bu
RK, j(Qn+1 , An+1) ≡ 1

∆t
Rt

u(w j ; Qn+1 , An+1)

=
1

∆t
Rt

u(w j ; Qn , An) −
s

∑
k=1

βkK(k)
j (Q(k) , A(k)) ≡ fu

RK, j

Ba
RK, j(Qn+1 , An+1) ≡ Rsemi

a (w j ; Qn+1 , An+1) = 0 ≡ fa
RK, j .

(B.37)

Now, this allows a Newton-like method which has a Jacobian of the
form:

∂(Bu
RK, j , Ba

RK, j)

∂(Qn+1 , An+1)
=


(

1
∆t

∂Rt
u

∂Q

)∣∣∣
w=w j

(
1

∆t
∂Rt

u
∂A

)∣∣∣
w=w j

∂Rsemi
a

∂Q

∣∣∣
w=w j

∂Rsemi
a

∂A

∣∣∣
w=w j

 , (B.38)
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Now, this results in a system that should be nonsingular whenever
Rsemi

a is nonsingular, which is broadly the case. Thus, we can ad-
vance the state and auxiliary completely to tn+1!
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Cost model validation for
DGBR4/DIRK-DAE solutions of
Kuramoto-Sivashinsky equation

In order to assess the wallclock costs of solutions of the DGBR4/DIRK-
DAE scheme used in Chapter 3 and developed in Appendix B, we
assess the cost model in this appendix.

Consider the solution of the Kuramoto-Sivashinsky equation using
DGBR4 with DIRK-DAE timestepping. In Section 3.3, we establish
a cost model for s-stage diagonally implicit Runge-Kutta (DIRK)
scheme using an order px DGBR4 scheme for the spatial solution:

Ct =
[
(px + 1)3 Nelem

]
︸ ︷︷ ︸

cost of linear solve

[(s + 1)Nt ]︸ ︷︷ ︸
timestepping cost

= Cpx s Nelem Nt ,

(3.45, reprise)

where
Cpx s = (px + 1)3(s + 1). (3.46, reprise)

In Chapter 3, these are derived under
the assumption s = pt.

In this Appendix, we demonstrate that this model adequately de-
scribes the wallclock time. We have run the KSE using the DGBR4/DIRK-
DAE scheme in this section and performed a set of experiments with
Nt = 100 timesteps each and using s = 3 (RK3) for demonstration.
In a first experiment, we simulate with L = 128.0, t0 = 0, and

Simulations in this study are performed
on one machine, in one session, and
with isolated computational load. For
that reason, timing results from this
section should be understood to be
arbitrarily united, but consistent.

Ts = 1.0 and show that the wallclock time to solution scales with
(px + 1)3Nelem. The results of this study are shown in Figure C.1. In
this plot, we can see that for each of px = 1, px = 2, and px = 3, the
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the scaling of wallclock time is linear with respect to the linear cost
model, as we expect.

In addition to the spatial model of this form, we also assume that
there will not be variation of the cost of solution of the nonlinear
system as a function of ∆t, due to increased numbers of nonlinear
iterations due to system stiffness. In Figure C.2, we study the depen-
dence of wallclock time on ∆t with L = 128, Nelem = 128, t0 = 0,
Ts = 1.0, and s = 3. While there is some stiffness effect for large ∆t,
the wallclock time to solution for simulations subject to this effect
remain within a factor of 1.5 of the small-∆t asymptotic value for
timestep sizes up to ∆t = 1. Given this bound on these effects,
we conclude that the error model in (3.45) will have satisfactory
performance as a model for wallclock time to solution.
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Bayesian fit testing: synthetic test
data

In Section 3.6, we developed a small-sample estimator that could
identify the discretization and sampling error behavior nominally
on the attractor of a chaotic PDE problem. In order to determine the
source of inaccuracies in the small-sample process demonstrated
in Chapter 3, we will now assess the performance of the small-
sample estimators on synthetic data, generated using the asymptotic
theoretical behavior:

Jsyn
T,hp ∼ N

(
J∞ + C∗px ∆xqx + B∗pt ∆tqt ,

(
A∗0 T−r

s
)2
)

, (D.1)

where the values from Table 3.2 and (3.47) for px = 1 and pt = 2 are
used.

At a limit of C = 1010 and using the sampling costs of Cs = 107, a
set of 100,000 synthetic output datapoints, {Jsyn

T,hp}, are generated, the
errors in which can be seen in Figure D.1.

For each forthcoming Bayesian fit, we will draw a length-M set
{JT,hp} of simulation results using a random number generator.
Then, {JT,hp}, (3.35), (3.36), and (3.41) are used to compute the MAP
estimate θ∗MAP as well as an estimate of θMAP and the error models
using (3.33). In Figure D.2, the first such Bayesian fit is shown, with
M = 1000 points.

Quantitatively, the fit has a small mismatch with the true value of
the optimal error, and a slight offset of the optimizer. The values and
their comparison to the values in Table 3.2 are given in Table D.1.
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Figure D.1: Error values
of synthetic output error
data points for Cs = 107 and
t0 = 12,000. 10,000 total points.

Figure D.2: Bayesian error
model fit with M = 1000
synthetic datapoints drawn
randomly. Small-sample
estimate shown with white
contours, “true” model
shown with black and colored
background contours.



bayesian fit testing: synthetic test data 149

variable value pct. error
(C∗px )MAP 502.63 4.62%
(B∗pt

)MAP −47.60 0.12%
(A∗0)MAP 69.79 2.48%
(J∞)MAP 118.53 0.07%
variable value ref. value

(∆xopt)MAP 0.083 0.085
(∆topt)MAP 0.269 0.271
(eopt)MAP 20.733 20.921

Table D.1: Small-sample fit
results for px = 1, RK2 with
M = 1000.

These results show that the error model captures J∞, C∗px , and A∗0
under 5% error, while the temporal discretization error models have
larger errors. To further interrogate these results, we can look at the
convergence behavior as understood by the model in Figure D.3.

Figure D.3: Convergence
behavior under small-sample
fit for px = 1, RK2 with
M = 1000. Adjusted JT,hp

removes modeled temporal
effects for spatial convergence,
vice versa, and removes both
spatial and temporal effects for
the sampling error convergence.
Data colored by dominant effect
under observed model.

These results show that temporal-discretization-dominated simula-
tions are relatively few, compared to the spatial-discretization- and
sampling-dominated simulations.

Figure D.4: Bayesian error
model fit with M = 100
synthetic datapoints drawn
randomly.
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variable value pct. error
(C∗px )MAP 479.51 0.19%
(B∗pt

)MAP −43.33 8.86%
(A∗0)MAP 55.65 22.25%
(J∞)MAP 119.88 1.22%
variable value ref. value

(∆xopt)MAP 0.061 0.066
(∆topt)MAP 0.201 0.211
(eopt)MAP 10.542 12.665

Table D.2: Small-sample fit
results for px = 1, RK2 with
M = 100.

In Figures D.4 and D.5, the fit results for M = 100 and M = 10
simulations are shown, respectively, with the corresponding data in
Tables D.2 and D.3.

Figure D.5: Bayesian error
model fit with M = 10 synthetic
datapoints drawn randomly.
Small-sample estimate shown
with white contours, “true”
model shown with black and
colored background contours.

variable value pct. error
(C∗px )MAP 465.70 3.06%
(B∗pt

)MAP −41.72 12.24%
(A∗0)MAP 36.20 49.42%
(J∞)MAP 118.59 0.12%
variable value ref. value

(∆xopt)MAP 0.053 0.066
(∆topt)MAP 0.177 0.211
(eopt)MAP 7.826 12.665

Table D.3: Small-sample fit
results for px = 1, RK2 with
M = 10.

These anecdotal results for M = 1000, 100, and 10 demonstrate that
the small-sample procedure can identify J∞ and make high-quality
qualitative estimates of the optimal cost-constrained discretization
(∆xopt, ∆topt), even approaching the small-sample limit using syn-
thetic data.

Finally, we study the sensitivity of the small-sample procedure to the
particular set of M simulations of JT,hp. In order to do so, we will
now repeat the process of the small-sample fits overM = 100 length-
M sets. Each of these sets will be generated by random number
generator draws from the synethetic data likelihood function. Due
to computational limits,M = 100 is not available for every choice of
M.

In Figure D.6, the (J∞)MAP estimates are shown. This plot demon-
strates that as M increases, the distribution of (J∞)MAP converges
towards Jref with a rate approximately M−1/2. In Figure D.7, we
consider the accuracy of error estimates and optimized discretiza-
tions that are generated by each of the length-M MAP estimates. In
these plots, we see the quality of the error model, measured by the
approach of (eopt)MAP to (eopt)ref, is good and stays within a small



bayesian fit testing: synthetic test data 151

factor of the reference error. In the lower subplot of Figure D.7, we
show the multiplicative factor between the error under the reference
model at (eopt)MAP and the optimal error using the reference model,
which should represent the lowest possible error at this cost. This
plot shows that, using the small sample estimation capability here,
more than 90% of the estimates with random length-M sets {JT,hp}
with M ≥ 10 should result in a simulation with no more than a factor
of two more than the minimum possible error.
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(a) Asymptotic output (J∞)MAP.

(b) Error |(J∞)MAP − Jref|.

Figure D.6: Small sample
identification of J∞ as a
function of M.
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(a) Estimate of optimal error, (eopt)MAP.

(b) Excess error in optimized (M + 1)-th simulation.

Figure D.7: Small sample error
estimation as a function of M.
In (a): 288 total points out of
range: 100 at M = 1, 100 at
M = 2, 88 at M = 3. In (b):
298 total points out of range:
100 at M = 1, 100 at M = 2,
88 at M = 3, 3 at M = 4, 1 at
M = 6, 1 at M = 8, 1 at M = 9,
2 at M = 10, 1 at M = 63, 1 at
M = 158.
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