
Geometrical Optimization of Planar Nano Vacuum
Channel Transistors

by
Adina R. Bechhofer

B.A., Queens College, City University of New York (2020)
B.S., Columbia University School of Engineering and Applied Science (2020)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 25, 2023
Certified by. .

Luca Daniel
Professor of Electrical Engineering and Computer Engineering

Thesis Supervisor
Certified by. .

Karl K. Berggren
Joseph F. and Nancy P. Keithley Professor in Electrical Engineering

Thesis Supervisor
Certified by. .

P. Donald Keathley
Principal Research Scientist , Research Laboratory of Electronics

Thesis Supervisor
Accepted by .

Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

2

Geometrical Optimization of Planar Nano Vacuum Channel

Transistors

by

Adina R. Bechhofer

Submitted to the Department of Electrical Engineering and Computer Science
on January 25, 2023, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Nano vacuum devices have demonstrated tunneling emission in low voltages due to their 10
nm scale gaps that create order 10 GV/m electric fields with just 10 V. The small gaps give
rise to ballistic transport through the channel, which combined with the low capacitances
of the electrodes, gives rise to ultrafast response times. Nano vacuum channel devices have
also exemplified robustness in the face of extreme radiation and temperature conditions
[28, 18]. The design of nano vacuum devices is unintuitive due to the complicated and
partially unknown physics governing their operation. In this thesis, we present an approach
to performing shape optimization on nano vacuum channel devices based on an adaptation
of a simulated-annealing [55] algorithm. We defined figures of merit to maximize the current
in a diode, minimize the off-to-on current ratio in a transistor, and minimize the gate leakage
current in a transistor. We implemented a finite element electrostatic simulation to calculate
the emission-current-density profiles on emitting tips in diodes and transistors. We also
implemented a heuristic to particle tracking to speed up the simulations and optimization
of transistors.

Using the optimization framework developed in this work, we are able to reach device de-
signs that achieve a 6-orders-of-magnitude performance improvement compared to the initial
geometry in approximately 10,000 optimization steps. For each emission model assumed, we
uncover unique geometrical features that enhance the performance of devices on figure of
merit of interest.

This work establishes a free and open-source framework for electronic device optimiza-
tion. Using this framework, device designers and engineers can spend less time, money, and
research efforts on developing efficient and high performing devices.

Thesis Supervisor: Luca Daniel
Title: Professor of Electrical Engineering and Computer Engineering

Thesis Supervisor: Karl K. Berggren
Title: Joseph F. and Nancy P. Keithley Professor in Electrical Engineering

3

Thesis Supervisor: P. Donald Keathley
Title: Principal Research Scientist , Research Laboratory of Electronics

4

Acknowledgments

I would like to express my deepest gratitude to my advisors, Dr. P. Donald (Donnie) Keath-

ley, Prof. Karl Berggren, and Prof. Luca Daniel for their invaluable advice, mentorship,

guidance, and support in all stages and aspects of this work. Their contributions range

from introducing me to physical models, optimization techniques, and debugging methods

to giving me access to tools and infrastructure that enabled this work. Without their help,

this work would simply not exist. Special thanks to Prof. Berggren and Dr. Keathley for

their editorial suggestions and comments.

Many thanks to Jose E. C. Serralles and my collaborators at the University of Colorado

Boulder, including Dr. Greg Werner, Luke Adams, Jesse Snelling, and Prof. John Cary for

their advice and suggestions on this work.

I would like to thank Marilyn Meyers for her assistance with the technical aspects of this

work.

I am grateful to the National Science Foundation as well as the Air Force Research

Laboratory for generously supporting my work.

I am incredibly grateful to the members of the Quantum Nanostructures and Nanofabri-

cation group, past and present, for their professional support, friendship, and their help in

navigating the bureaucracy of MIT. Special thanks go to Dr. Marco Turchetti, whose work

laid the foundations for my work, and to Torque, Emma, and John for their kind friendship.

I must acknowledge my dear friends who have stood with me, offering endless words of

support and encouragement. Thank you Julia, Theo, and Reuven for always being there

for me. Thank you Akiva, Alison, Anna, Yael, Aleeza, Toby, Tziona, Liat, Magd, Jojo, and

many more people whose names this page is too short to contain, for always lending an ear

to listen and always offering a kind word. Many thanks to my friends on the MIT Grad

Hillel board, including Sabrina, Tal, Will, and Lucy for their friendship and community.

Lastly, I would like to thank my parents and siblings for supporting and being proud of

me, even though they do not understand what it is that I do.

5

6

Contents

1 Introduction 19

1.1 A background of vacuum electronics . 19

1.2 Shape optimization . 22

2 Numerical Approaches 27

2.1 Optimization . 28

2.1.1 Algorithm . 28

2.1.2 Parameterization . 31

2.1.3 Annealing . 32

2.1.4 Stepping . 34

2.1.5 Cost . 35

2.1.6 Temperature . 35

2.2 Optimizer Implementation . 35

2.2.1 MATLAB Implementation . 36

2.2.2 Python Implementation . 38

2.3 Simulation . 41

2.3.1 Laplace Equation . 41

2.3.2 Current emission . 44

2.3.3 Visualization . 50

3 Global optimization for two terminal devices 51

3.1 Cost function (Mathematical Representation) 52

3.1.1 Emission mechanisms . 53

7

3.1.2 Other Variations in Cost Function . 56

3.2 Constraints . 57

3.3 Initial design . 59

3.4 Runtimes . 60

3.5 Results . 61

3.5.1 Fowler-Nordheim cost . 61

3.5.2 Enhanced Fowler-Nordheim cost . 62

3.5.3 Fowler-Nordheim + Schottky . 64

3.5.4 Enhanced Fowler-Nordheim + Schottky 65

3.5.5 Constraint violation . 66

3.6 Model limitations . 67

3.6.1 Emission regimes . 68

3.6.2 Mesh resolution . 68

3.6.3 2D electrostatic models . 69

3.6.4 Boundary condition . 71

3.7 Conclusion and outlook . 71

3.7.1 Dynamic step . 73

3.7.2 Symmetry . 73

3.7.3 Smoothing . 73

3.7.4 Principle Component Analysis . 74

4 Global optimization for gated devices 75

4.1 Cost functions . 76

4.1.1 Switching . 76

4.1.2 Gate leakage . 77

4.1.3 Regularized . 78

4.2 Heuristic for particle tracking . 78

4.2.1 Bisection search . 79

4.3 Initial performance . 80

4.4 Runtime . 82

8

4.5 Switch Results . 83

4.5.1 Fowler-Nordheim emission . 83

4.5.2 Enhanced Fowler-Nordheim emission 84

4.5.3 Fowler-Nordheim + Schottky emission 85

4.6 Leakage Results . 86

4.6.1 Fowler-Nordheim . 86

4.6.2 Enhanced Fowler-Nordheim emission 87

4.6.3 Fowler-Nordheim + Schottky . 88

4.7 Regularized cost result . 90

4.8 Limitations . 91

4.8.1 Step size . 91

4.8.2 Bisection search . 92

4.8.3 Particle tracking . 92

4.8.4 Gate emission . 93

4.9 Conclusion and outlook . 93

5 Conclusions, impact, and outlook 95

5.1 Conclusions . 95

5.2 Impact . 97

5.3 Next steps . 97

5.3.1 Optimization under voltage sweep . 97

5.3.2 Fabrication constraints . 98

5.4 Outlook . 98

5.4.1 Fabrication-aware design . 99

5.4.2 Adjoint optimization . 100

5.4.3 Adjoint method for particle tracking 101

5.4.4 Optimization for optical emission . 102

A Code 105

A.1 Simulation code . 105

A.2 Optimization code . 114

9

B Tables 125

B.1 Config . 125

B.2 Simulated annealing . 125

10

List of Figures

2-1 Parameterization of the optimization problem for initial geometry. Parameter

points are shown in red and the spline interpolation is shown in blue. (left)

The original parameterization consisting of 88 points allows for a lot of flex-

ibility, which can both be beneficial and cause issues. (right) The reduced

parameterization consisting of 36 points creates a more rigid structure, which

can both be restricting and prevent shape irregularities that crash the solver. 32

2-2 Optimization software stack using the simulated annealing method in MAT-

LAB. The MATLAB container acts as the main control. It starts by reading

in the initial geometry from a file and evaluating its performance. Then, the

optimization loop begins. In each iteration, the geometry is perturbed, then

the cost function is evaluated by writing the test geometry to a file and run-

ning a bash script that calls a python script that reads the geometry from a

file and runs the FEniCS simulation on it. After the FEniCS simulation is

complete, the cost function is evaluated and the value is printed to the con-

sole. MATLAB reads the cost function value from console and passes it to the

"decide if to keep" block. The optimization loop terminates when the itera-

tion number reaches the maximum iteration value. Then, the final geometry

and the cost function value in each iteration are written to external files. . . 37

11

2-3 Simulated annealing optimization software stack in python. The code in

main.py is the controller; it reads the parameters from config.yml and the

initial geometry, initializes the optimizer, saves the results, and adds the op-

timization metadata to a database in log.txt. The optimizer class in Sim-

ulated_annealing.py contains an __init__ method that initializes the class

and a run_opt method that runs the optimization. The perturb method per-

turbs the geometry. The decide_if_to_keep method calls the relevant cost

function on the test geometry and decides if to accept it. 38

2-4 Simulation domain for ungated (left) and gated (right) devices. Domain is

enclosed in the box with black edges. The emitter is traced in blue, the

collector which is also the right edge of the simulation is marked red, and the

gates (in the gated device) are green. 42

2-5 Simulation results visualized. (left) Electric potential in the gap between an

emitter and a collector plotted as a heatmap with yellow as the highest voltage

and purple as the lowest voltage. (right) Electric potential and approximate

current trajectories plotted for a gated device with the gate on. The trajec-

tories’ thickness is proportional to the current carried in them and the total

calculated currents are printed on the figure. 50

3-1 Geometries responsible for crashing the solver in the domain formation and

meshing stage. Parameter points are shown as red exes and the spline inter-

polation is shown in the blue line. When enlarging the figures, it can be seen

that some of the sharp tips contain narrow loops, making the polygons invalid. 58

12

3-2 The initial guess for geometry yields wildly different current predictions de-

pending on the emission mechanism assumed when 15 V are put across it

across it. (Top left) Simulation predicts 5 × 10−47 nA, basically zero for

pure Fowler-Nordheim, (top right) 0.173 nA of current for enhanced Fowler-

Nordheim. (bottom left) Simulation predicts 550 nA of current for with Schot-

tky + Fowler-Nordheim.(bottom right) Simulation assumes predicts basically

the same amount of current for the Schottky + enhanced Fowler-Nordheim

emission mechanism . 59

3-3 Runtimes for a simulated annealing optimization in python plotted against

the number of iterations. (left) A linear plot is shown with the line of best

fit. (right) A log-log plot is shown with the line of best fit to resolve the lower

iteration numbers better. 60

3-4 Results of optimization with a cost function depending on un-enhanced Fowler-

Nordheim emission. (top left) The intermediate results of the optimization

with 1000 iterations on a reduced parameterization give 1.67× 10−31 nA cur-

rent, a 3.35 × 1016 improvement compared to the initial current. (top right)

the intermediate result after 10,000 iterations for the reduced geometry gets

a current 2.06 × 10−6 nA, a 4.13 × 1040 times improvement. (bottom) The

intermediate result for optimization with 1,000 iterations on the original pa-

rameterization gives rise to a current of 1.39 × 10−28 nA, an improvement of

a factor of 2.8× 1018 . 61

3-5 Results of optimization with a cost function that depends on an enhanced

Fowler-Nordheim emission with 𝛾 = 7. (top left) The optimization with 1000

iterations on the reduced parameterization gives a current of 101 𝜇A, 5.8×105

times the initial current. (top right) The optimization with 10,000 iterations

on the reduced parameterization gives a current of 1.5 mA, a 8.6× 106 times

improvement. (bottom) The optimization with 1,000 iterations on the original

parameterization, gives a current of 14 nA, an 81 times improvement compared

to the initial current. 63

13

3-6 Results of optimization with a cost function that depends on an emission

model of un-enhanced Fowler-Nordheim + Schottky. (top left) The optimiza-

tion on the reduced parameterization with 1,000 iterations gave 718 nA, 1.31×

the initial current. (top right) The optimization on the reduced parameteri-

zation with 10,000 iterations gave 973 nA, 1.77× the initial current. (bottom

left) The optimization on the original parameterization with 1,000 iterations

resulted in a current of 684 nA, 1.25× better compared to the initial design.

(bottom right) The optimization on the original parameterization with 10,000

iterations gave a current of 808 nA, 1.47× better than the initial current. . . 64

3-7 Results of optimization assuming an emission model of enhanced Fowler-

Nordheim + Schottky. (top left) The optimization on the reduced geometry

with 1,000 iterations gives a current of 1.29 𝜇A, 2.35× the initial current.

(top right) The optimization on the reduced parameterization with 10,000

iterations resulted in a current of 93.1 𝜇A, 169.6× better compared to the

initial current. (bottom left) The optimization on the original parameteriza-

tion with 1,000 iterations gave 651 nA of current, 1.19× the initial current.

(bottom right) The optimization on the original parameterization with 10,000

iterations gave 1.31 mA of current, 2, 386× better than the initial current. . 65

3-8 Constraint violation rate vs maximum iteration of the optimizer for original

and reduced parameterization. The spread is due to the usage of different

emission-mechanism cost functions. 67

3-9 The effects of the mesh resolution has on the solution can be huge. (left)

For a structure with a tip, the field enhancement at the tip is double when

going from 20 to 1000 mesh partitions. (right) The mesh resolution has no

noticeable effect on the solution of a parallel plate capacitor 69

3-10 Simulations of circles of . 70

3-11 On non straight edges, the Dirichlet boundary conditions sometimes fail to

get applies due to insufficient tolerance of the boundary condition function . 72

14

4-1 Results of initial device design simulated in FEniCS with the emitter at 0 V,

collector at 15 V, and (left column) gate off (𝑣gate =0 V) and (right column)

gate on (𝑣gate = 15 V)and emission model (top) Fowler-Nordheim, (middle)

enhanced Fowler-Nordheim, (bottom) Fowler-Nordheim + Schottky. 81

4-2 Runtime for optimization of a three-terminal device plotted against the num-

ber of iterations in the optimization. The leakage cost function requires only

one electrostatic simulation, while the switch cost and the regularized cost

functions each require two simulations. Therefore, we analyze the runtime of

the optimizer under the switch cost and the regularized cost separately from

the runtime of an optimization under the leakage cost. 82

4-3 Results of optimizing the NVCT with switch cost function assuming Fowler-

Nordheim emission and maximum iteration of 10000. In both cases the cost

function is improved by reducing the off current. 83

4-4 Results of optimizing the NVCT with switch cost function assuming enhanced

Fowler-Nordheim emission and maximum iteration of (top row) 1000 and (bot-

tom row) 10,000. (left column) gate off and (right column) gate on. 84

4-5 Results of optimization of switch cost function assuming Fowler-Nordheim +

Schottky emission for (top) 1000 iterations and (bottom) 10,000 iterations.

(left column) gate off and (right column) gate on 85

4-6 Results of minimizing the gate leakage cost assuming Fowler-Nordheim emis-

sion for (left) 1000 iterations and (right) 10,000 iterations. Both structures

achieve cost function values that are 13 orders of magnitude smaller than the

initial cost. 86

4-7 Gate on simulations of results of an optimization of gate leakage with enhanced

Fowler-Nordheim emission assuming an artificial enhancement factor of 𝛾 = 7.

(top row) Results of optimizations with maximum iteration = 1,000. (bottom

row) Maximum iteration = 10,000. 87

4-8 Gate on simulations of results of an optimization of gate leakage with Fowler-

Nordheim + Schottky emission. (left) optimizations stopped after 1,000 iter-

ations. (right) 10,000 iterations. 88

15

4-9 Optimizations plotted as function of their performance on switch cost and

gate cost with (top) Fowler-Nordheim emission, (middle) enhanced Fowler-

Nordheim, and (bottom) Fowler-Nordheim + Schottky. In each plot, the per-

formance of the initial geometry is plotted in black, the results of optimizing

only one cost function are in blue, and the results of regularized optimization

are in orange. The raccoons are overlaid on the trash region of each sub-figure

for demonstration. 89

16

List of Tables

4.1 Simulated currents (left) and the corresponding cost functions (right) for tran-

sistor with the initial design assuming Fowler-Nordheim emission. Switch cost

refers to the off/on current ration defined in section 4.1.1. Leakage cost refers

refers to the gate/collector current ratio defined in section 4.1.2. 80

4.2 Simulated currents (left) and the corresponding cost functions (right) for tran-

sistor with the initial design assuming enhanced Fowler-Nordheim emission

with an artificial enhancement factor of 𝛾 = 7. 81

4.3 Simulated currents (left) and the corresponding cost functions (right) for tran-

sistor with the initial design assuming enhanced Fowler-Nordheim + Schottky

emission. 82

B.1 Optimization parameters found in config.yml. These can be changed by a user

to customize the optimization to their needs. 126

B.2 Geometry parameters in config.yml. We do not advise the user to change

these parameters. 127

B.3 Parameters expected by the simulated annealing class. 127

17

18

Chapter 1

Introduction

The physics governing the operation of vacuum devices is nonlinear, making design of optimal

devices an unintuitive task. Exploring device design by trial and an error is costly because

of the resources invested in every round of fabrication and testing. Therefore, we implement

shape optimization to computationally arrive at an optimal design without costly exploration

with fabrication and testing.

There are few works applying shape optimization to electron emitters, probably due to

the computational complexity involved in simulating and optimizing electron devices. In

this thesis, we will introduce a framework for shape optimization applied to vacuum electron

emitters. We will use the framework to optimize the emitter tip in vacuum channel diodes

and transistors. We parameterize the emitter by a collection of points with the polygon

resulting from their interpolation as the emitter. We use a global non-gradient algorithm

because the cost functions considered are ill suited for gradient calculations.

1.1 A background of vacuum electronics

The first vacuum tube diode was demonstrated in 1898 Thomas Edison who noticed current

flowing between a heated filament and a plate that were both encased in a glass bulb that has

been evacuated from air. The current flow in the diode was one directional, a property that

Fleming used in 1904 to rectify electrical signals and to detect radio waves. Three years later,

in 1907, DeFrost showed that the current between the filament and the plate can be controlled

19

by a grid with independent voltage placed between the filament and the plate. Thus, the

first triode device was born. The newly invented triode was used to amplify radio signals and

significantly contributed to the development of long distance communications. In the 1930’s

it was observed that the triode operation starts to break down when operated at frequencies

with wavelengths comparable to the size of the device’s elements. It became understood

that the inductance in the leading wires along with the capacitance of the terminals created

a "short circuit" effect in the vacuum tube device. Many attempts were made to change

the area of the electrodes and the length of the connecting wires in effort to extend the

frequency range of vacuum amplifiers. The frequency limitations were overcome to some

extent by development of techniques that coupled microwave energies to resonant cavities

and waveguides. By the 1940’s, "lighthouse" cavity devices reached maturity and were

ubiquitous in communication and computing [3]. Bell communications used vacuum tubes

for their transcontinental telephone and radio network until 1982 when those were finally

replaced by GaA transistors [13].

The first planar semiconductor transistor appeared in 1959, taking over the world of

computing by storm. The FET technology allowed for lower power consumption and faster

computation than the original vacuum tubes. The semiconductors also got rid of the expen-

sive and fragile vacuum encasing. For the 50 years following the introduction of the planar

transistor, computation experienced an exponential growth driven by transistors being pro-

duced at lower costs and smaller sizes. This allowed manufacturers to fit more transistors on

a chip for an affordable cost. At the same time, operating clocks frequencies were increased,

allowing more computation per device per second [19, 5]. In recent years, it appears that

the physical limit for semiconductor transistor scaling was reached. This has been driving

researchers to look at alternative devices and exotic materials.

It is commonly thought that the success of semiconductor transistors brought about the

vacuum tube’s fall from glory. However, vacuum tubes did not fall to complete disuse when

semiconductors took over. They just got repurposed for niche applications. In the early

2000’s vacuum devices were used mostly as sources in transmitters operating between UHF

and X-ray with peak powers of up to tens of gigawatts. They had a range of applications

in the military, commercial sector, and scientific research. Examples include particle ac-

20

celerators, satellite communication, hypothermia applicators, and military communication

devices. The old glass encasing of the devices was replaced by a new metal-ceramic encasing.

Additional new features include the use of rare-earth magnets and moderate temperatures

instead of high temperatures [14].

With the recent advances in nano fabrication technology, vacuum electronics have ex-

perienced a resurgence in the research community. Reborn as nano-fabricated metal and

ceramic electrodes with 10 nm scale gaps, they are interesting for several reasons. First, the

gaps between the emitter and collector are smaller than the mean free path of air, allow-

ing for vacuum operation in ambient conditions and ballistic transport of electrons between

terminals. Additionally, the small area of the electrodes gives rise to device capacitances on

the order of 10 aF. Together with the ballistic transport, this give rise to ultra fast response

times and operating frequencies of 100THz and beyond. Furthermore, nano vacuum devices

have been observed to be resistant to extreme radiation and temperature conditions [28, 18],

unlike traditional semiconductors, which are quite sensitive to harsh environments. Some

device geometries consist of vertical emitters sticking up from the substrate [27]. However,

here we consider planar gold and TiN devices because of the convenience of integrating them

into integrated circuits. Those devices have been tested and found to have stable currents for

approximately 1,000 hours of operation, making them reliable for application [42]. Nanofab-

ricated vacuum electronic devices can be used in high performing integrated circuits, room

temperature sensors, field emission displays, and space electronics [28].

The physics governing the vacuum device operation is rather complicated and highly

nonlinear. Thus, human intuition might not be the best guide to designing optimal devices.

The general wisdom in the field is to make emitters as sharp as possible, but sharp tips are

difficult to fabricate and tend to degrade over time. Many resources are invested in every

round of fabrication and testing. In this work, we apply shape optimization as a way to

computationally arrive at an optimal design without costly trial and error exploration in the

lab.

21

1.2 Shape optimization

Shape optimization made its first appearance in the field of mechanical structure optimiza-

tion. The usage of optimization methods for improved design is an old idea and has been

in use for a long time in the form of optimization over a small set of rigid design param-

eters. More flexible and free-form design algorithms start appearing in the 1960s with the

grid-and-truss optimization. In 1981, Cheng and Olhoff [4] published a work about opti-

mizing thickness distribution in elastic plates. Seven years later, their work was followed by

a publication by Bendsøe and Kikuchi [6] focusing on the material distribution method for

topology design using computational methods. Those methods were revolutionary because

they expanded the design space from a small one described by few parameters to an essen-

tially infinite design space with hundreds of parameters. Material density methods remain

the leading methods for parameterizing problems in structural design. It also inspired works

in photonics inverse design and optimization. The material density method divides the de-

sign domain into pixels or voxels where the material density is decided as a continuous value

between 0 and 1, where 0 indicates air, and 1 indicates full material [15].

Inverse design started appearing in the field of nanophotonics in the late 1990’s, with a

contributions by Spühler et al. and by Cox and Dobson. Spühler used a genetic algorithm

to evolve a telecom fiber into a ridge waveguide coupler [11]. Cox and Dobson used a

gradient type algorithm to optimize the bandgap in a periodic photonic crystal [12]. Those

two methods became archetypal in the field shape classical optimization for photonics. As

of this day, almost all works follow either a gradient descent method or an evolutionary

(genetic) algorithms.

Each optimization method requires a parameterization, a cost function, and an opti-

mization algorithm. In photonics there are two very common ways to parameterize a design

problem. The material density, which draws inspiration from the mechanical material den-

sity, relies on dividing the design domain into voxels and describing the permittivity voxel 𝑖

as

𝜖𝑖 = 𝜖1 + 𝜆𝑖(𝜖2 − 𝜖1) (1.1)

with 𝜆𝑖 ∈ [0, 1]. 𝜖1 and 𝜖2 are the permittivity of the two design materials (typically air

22

and another material). In each iteration of the optimization, 𝜆𝑖 is updated. After the final

iteration, a thresholding segments the permittivities to either 𝜖1 or 𝜖2. The second common

parameterization is known as the level set method. It assumes a smoothly varying function

Φ(𝑥) over the design space. The two design materials interface with each other at the level

set of Φ = 0. To move towards a design, Φ is evolved with Hamiltonian motion or gradient

descent.

Shape optimization has become ubiquitous in photonics with applications in design for

nonlinear optics and for nano scale photonics. It has been used to reduce the self heating

of a coil, design a material cloak, optimize near field effects, achieve a target diffraction,

optimize coupling and polarization, and design solar cells [32].

The figure of merit or cost function vary by application. In a work by Piggot et al., the

authors use a two step cost function known as "objective first". First, Maxwell equations are

calculated. Then, the electric fields that would produce the desired response were imposed on

the structure. The cost function is then defined as the error due to the mismatch between the

imposed electrical fields and the ones required by Maxwell’s equations. Adjoint sensitivity

is then used to adjust the geometry to minimize the error [25].

The optimization problem can be constrained or unconstrained. An additional work by

Piggott et al. seeks to include fabrication constraints in an optimization for a photonic spatial

mode demultiplexer. Restricting the voxel size to a grid of the minimum allowed feature size

was deemed to be too restrictive while the convolution with a smoothing filter was deemed

too permissive. The authors opted to constrain the curvature of the structure’s outline.

They used the level set parameterization with gradient descent to reach local minimum [30].

The boom in neural networks and deep learning made its way to the inverse design world

in recent years. There are works using supervised, unsupervised, and reinforcement learning

to optimize photonic structures for different applications. The general approach is to design

a surrogate neural network that learns the relevant physics. Then, the network is used as

part of a design network or to train a generative adversarial network. The deep learning

is incredibly powerful, but results are limited to the design space included in the training

examples. A lot of data is required to effectively train a network with many weights, and to

create a representative design space [40, 47].

23

Currently, the are far fewer works applying shape optimization to electron emitters or

devices that interact with electron trajectories than for photonics. That is probably the

case because electron trajectory optimization is far more computationally expensive, and

therefore, more difficult to do efficiently.

In this thesis, we will introduce a framework for shape optimization for electron emitters.

We will use the framework to optimize the emitter tip in diodes and transistors. Many of the

works in photonic shape optimization use the density parameterization like [22], but that is an

ill suited method for our applications. It can generate a geometry with many disconnected

components and many holes. Our formulation requires a continuous emitting component

that is large enough to make contact with in a circuit. We also require the emitter to have

one well defined surface from which we can emit electrons. We parameterize the emitter

by a collection of point with the the that polygon results from their interpolation as the

emitter. Neustock et al. parameterized electron lenses singularly with several parameter

points that are interpolated to make polygons defining the shapes. The authors use the

adjoint sensitivity method to compute gradients for optimization [37]. Gradient methods

are very powerful and converge to local minima quickly, yet we will abandon them in favor

of global non-gradient methods. The cost functions we consider here do not lend themselves

nicely to gradient calculations because they depend on highly nonlinear emission functions

which depend on PDE solutions. We made use of the simulated annealing method because

it is well suited for non-convex and irregular optimization landscapes.

Using the optimization framework developed in this work, we are able to reach device

designs that achieve a 6-orders-of-magnitude performance improvement compared to the

initial geometry in 10,000 optimization steps. For each emission model assumed, we uncover

unique geometrical features that enhance the performance of the device on figure of merit of

interest.

The remaining chapters in this thesis are organized as follows:

Chapter 2

This chapter describes in detail the optimization algorithm implemented, along with the

parameterization of the problem and the constraints. The principles governing the evolution

24

of the geometry in each iteration are described. The second half of the chapter focuses

on the software implementation of the the optimizer and of the PDE solver and the code

calculating the emission. Methods there is a discussion of methods that are used to speed

up the simulation and optimization process.

Chapter 3

This chapter describes the process of optimizing a diode under different assumptions of

emitting mechanisms. It includes a mathematical description of the cost function, an analysis

of the runtime, constraint failure, and the results. The results are followed by a dive into

the limitations of the modeling, the simulation, and the optimization.

Chapter 4

This chapter describes optimizing a transistor with two different figures of merit. A math-

ematical formulation is described for each cost function. There is a discussion of heuristics

for particle tracking, followed by the results of optimizing the devices for each cost function

assuming different emission mechanisms. The chapter concludes with an analysis of the

trade-off between the two figures of merit associated and additional limitations.

Chapter 5

This chapter concludes the thesis by describing the work done, highlighting impacts, and

provide an outlook for future implementations building on this work.

25

26

Chapter 2

Numerical Approaches

This chapter describes the methods and algorithms used in the thesis to simulate the planar

nano vacuum channel (PNVC) devices, evaluate their performance, and optimize them. We

used a finite element method PDE solver to simulate the electric potential in the space

between the device’s electrodes. We then calculate the electric field right outside the emitter

and use it to evaluate the emission current at the surface. That information was used to

evaluate the figure of merit of the candidate geometry. We initially used an out of the box

simulated annealing method as the optimizer. However, it did not offer the full range of

functionality and efficiency we sought. Therefore, we wrote our method with an aim towards

efficiency, flexibility, and debugging abilities.

Similarly to Neustock et al. [37], we parameterize the emitter by a collection of points

on the surface, but unlike the authors, we use Cartesian coordinated instead of radial ones.

This choice requires us to restrict the movement of the parameter points as we evolve the

structure.

Particle trajectory tracking is required to evaluate the performance of gated devices. In

this work, we implement a heuristic to particle tracking and a bisection search to speed up

the computation.

27

2.1 Optimization

Optimization problems generally consist of the following components: decision variables, an

objective (or cost) function, and an algorithm. The algorithm updates the decision variables

to a set of new values that improve the figure of merit. The way the algorithm works heavily

depends on the structure of the problem, the objective landscape, and the desired level of

performance for the final solution. Rarely can optimization problems be solved analytically.

That is the case when the objective function has an analytical closed form dependence

on the decision parameters, has well defined gradients, and a small number of dependant

decision parameters. Most optimizations, however, require an iterative process of numerical

calculations. That is certainly the case with shape optimization problems, which have a

large design space and and an objective function that depends on a PDE solution.

2.1.1 Algorithm

As discussed in section 1.2, there are two leading methods of shape optimization: gradient

methods and evolutionary methods. Gradient methods typically converge rather quickly

when the objective landscape is smooth. In each iteration, the direction of steepest change

in the objective function is calculated, and the decision variables are updated with a step

along that direction. When the problem is a minimization problem, the objective function

is refereed to as a cost function and the method is called gradient descent. The optimization

terminates when the gradient is zero or when a maximum number of iterations is reached.

The gradient method finds globally optimum solutions when the optimization landscape is

convex. A convex function 𝑓(𝑥) is defined as one where a line drawn between any two points

on the function will always be above the function [16]. Mathematically, this definitions can

be expressed as:

𝑓(𝑡𝑥1 + (1− 𝑡)𝑥2) ≤ 𝑡𝑓(𝑥1) + (1− 𝑡)𝑓(𝑥2) for 0 ≤ 𝑡 ≤ 1. (2.1)

Most problems, however, are non-convex and have multiple local optimum solutions. In those

cases, the gradient method converges to the local optimum closest to the starting point.

28

When the number of decision parameters is very large, as is the case in shape optimiza-

tion, calculating the gradient using the finite difference method becomes computationally

infeasible. That is because the method requires 𝑛 + 1 PDE solutions for a problem with

𝑛 decision parameters. The adjoint method was introduced as an approach to calculating

performance gradients efficiently [35]. Stochastic gradient descent was proposed as a way to

calculate approximate gradients using fewer computational resources and is widely used in

neural network training [8].

Evolutionary algorithms typically take longer to converge compared with gradient meth-

ods. There are many flavors of evolutionary methods, but they all include an exploration

component and an improvement component. The exploratory component jumps around the

objective landscape, attempting to discover more of it, while the improvement component

seeks to improve the objective function and pull the decision variables towards a nearby local

optimum. There is a trade off between the exploratory component and the downhill one.

The more an algorithm explores, the more likely it is to find the true global optimum, but

it comes at the price of a slower convergence time. The more an algorithm tried to improve

the objective, the faster it will converge to the closest local optimum, but it might miss the

true global optimum.

The genetic algorithm was inspired by biology. It works by creating random mutations

of the decision variables’ values and evaluating the "fitness" of the mutations. The most fit

mutations survive, reproduce, and mutate further, while the less fit mutations "go extinct"

[36]. The mutation is the exploratory component, and the pruning of unfit mutations is the

improvement component of the geometry.

Simulated anneal was inspired by the annealing process of metals. Initially, the metal

is very hot and the atoms in it move freely in random directions. As the metal cools,

the atoms start moving towards a low-energy configuration in the metal. The probability

of atoms moving towards a high-energy arrangement drops exponentially as a function of

temperature [55].

The optimization problem introduced in this thesis is non-convex. We can demonstrate

that by assuming that there is one unique emitter shape that is optimal. That optimal

shape can be represented in many ways by the parameter points. If we take one optimal

29

arrangement of parameter points, we can generate another arrangement by having each

parameter point transfer its value to the neighboring point in a counterclockwise way. Even

though the values of all of the parameter points have changed, the shape remains identical

and so does the performance. To further complicate things, our landscape is also full of

holes. A hole is a region where the objective value is undefined. In our case, holes consist of

regions where the values of the decision parameters generate an invalid polygon, such as an

open curve or a self intersecting one.

Given the non-convex and irregular nature of our problem, we found the simulated an-

nealing method to be the most fitting. Algorithm 1 outlines the algorithm that we used.

Algorithm 1 Simulated annealing algorithm adapted from [55]
iter_num = number of iterations
𝑇0 = initial temperature
𝑥0 = initial design
𝑥* ← 𝑥0

for t = 1 to iter_num do
𝑥test ← PERTURB(𝑥𝑡−1) ◁ Generate a random move in 𝑥test

∆𝐸 ← cost(𝑥test)− cost(𝑥𝑡−1) ◁ change in objective or "energy"
if ∆𝐸 < 0 then ◁ The move is in the desirable direction

𝑥𝑡 ← 𝑥test

if cost(𝑥𝑡) < cost(𝑥*) then
𝑥* ← 𝑥𝑡

end if
else ◁ If the perturbation does not reduce the cost

Draw a random variable 𝑟 ∼ Uniform(0, 1)
if 𝑟 > 𝑝 = 𝑒−Δ𝐸/𝑇𝑡 then ◁ Accept with probability 𝑝 = 𝑒−Δ𝐸/𝑇𝑡

𝑥𝑡 ← 𝑥test

end if
end if
return 𝑥*

end for
Require: 𝑇𝑡 < 𝑇𝑡−1

We start with an initial solution 𝑥0, and evaluate how well the solution performs with

respect to a defined objective function. Then, for each iteration, the optimizer creates

a candidate solution 𝑥test by perturbing the current solution, and evaluates the objective

function at 𝑥test. There are many ways to perturb the solution; one method is suggested in

algorithm 2. If the change in cost is negative, the 𝑥test solution is accepted. However, if the

30

change in cost is positive, there still is a chance of accepting the solution. The optimizer

randomly decided whether or not to accept the 𝑥test solution by drawing from an acceptance

probability distribution that depends on temperature, such as 𝑝 = 𝑒−Δ𝐸/𝑇𝑖 or 1
1+𝑒Δ𝐸/𝑇𝑖

.

We require the temperature to decrease between iterations, resulting in a relatively higher

probability of a counterproductive solution being accepted at the beginning of the simulation,

when the system is hot and in the exploration phase. As the simulation cools down, the

probability of accepting a counterproductive solution decreases to zero. Throughout the

optimization we keep track of the best candidate seen thus far in a variable 𝑥*. Eventually,

when the maximum number of iterations is reached, the algorithm returns 𝑥* as the final

solution.

2.1.2 Parameterization

We parameterized the emitter with a set of 𝑛 points in 2D space with 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) for

𝑖 = 1, . . . , 𝑛. We used a cubic spline interpolation through the parameter points to defines

the outline of the emitter as a closed curve in 2D. The spline is an easy way to enforce

smoothness on the structure, which is required for fabrication. Our original parameterization

consisted of 88 points evenly spaced around the emitter. After it became apparent that over-

parameterization might lead to issues, we introduced a second parameterization consisting

of 36 points. The reduced parameterization has a high density of points near the tip, and a

lower density further out. Both parameterizations are visualized in fig. 2-1.

As mentioned in the previous chapter, parameterizing a shape by points on the surface

is a lesser common approach in shape optimization. For many applications in photonics

and mechanical structures, the parameterization of choice consists of pixels or voxels with

a decision variable equal to the density of the material occupying that space [22, 25, 32].

That implementation is well suited for photonics, but is ill suited for our application which

requires us to have a continuous shape with a defined outline.

Neustock et al. use a parameterization consisting of points that define a closed curve [37].

Unlike our implementation, they use polar coordinates where the angular variable remains

fixed while the radial one changes. Their parameterization avoids the issue of self intersecting

polygons, but also forbids hook-like features which might be beneficial in some applications.

31

Figure 2-1: Parameterization of the optimization problem for initial geometry. Parameter
points are shown in red and the spline interpolation is shown in blue. (left) The original
parameterization consisting of 88 points allows for a lot of flexibility, which can both be
beneficial and cause issues. (right) The reduced parameterization consisting of 36 points
creates a more rigid structure, which can both be restricting and prevent shape irregularities
that crash the solver.

Our implementation allows both 𝑥 and 𝑦 to vary for each point, but as a result we must

restrict the movement of points to maintain shape feasibility. More on that in section 2.1.3.

2.1.3 Annealing

In out-of-the-box simulated annealing optimizers, the default annealing step randomly per-

turbs the parameter points without constraints or requirements for certain parameters to be

tied to each other. In those implementations, the (𝑥𝑖, 𝑦𝑖) values of each point are treated

as independent variables, which is ill suited for our implementation. When 𝑥𝑖 and 𝑦𝑖 move

independently of each other, the parameter points quickly arrive in a configurations that

forms an invalid polygon, and therefore, is non physical.

To increase the probability that the PERTURB method attempts valid parameter point

arrangements, we restrict each parameter points, (𝑥𝑖, 𝑦𝑖), to move along the line normal to

the surface going through that point. We find the line normal to the surface by taking

cross product of the tangent vector with the out of plane unit vector. We average the two

32

approximate cross product vectors at each point for better accuracy as follows:

𝑣1 = ((𝑥𝑖, 𝑦𝑖, 0)− (𝑥𝑖−1, 𝑦𝑖−1, 0))× (0, 0, 1) (2.2)

𝑣2 = ((𝑥𝑖+1, 𝑦𝑖+1, 0)− (𝑥𝑖, 𝑦𝑖, 0))× (0, 0, 1) (2.3)

𝑣𝑛 =
𝑣1
2

+
𝑣2
2
. (2.4)

We perturb each point by a random amount 𝑞𝑖 drawn from a uniform distribution centered at

zero. If 𝑞𝑖 is positive, the point will be perturbed outwards along the normal. Otherwise, the

point will be perturbed inwards along the normal. The of variance the uniform distribution

from which we draw, can either depend on the temperature parameter or be a constant.

Algorithm 2 outlines the perturbation method applied to the full set of parameter points.

Algorithm 2 Annealing perpendicularly
function perturb(𝑥, 𝑦)

for i = 2 to n-1 do
𝛿1 ← (𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1, 0)
𝛿2 ← (𝑥𝑖+1 − 𝑥𝑖, 𝑦𝑖+1 − 𝑦𝑖, 0)
𝑣1 ← 𝛿1 × (0, 0, 1) ◁ Cross product
𝑣2 ← 𝛿2 × (0, 0, 1) ◁ Cross product
𝑞𝑖 ∼ Uniform(−1, 1)
if Constant_pert then ◁ Constant variation in perturbation enabled

𝜖← 1
2‖𝛿1‖

else ◁ If not
𝜖←

√
𝑇

5‖𝛿1‖
end if
𝑥test,𝑖 ← (𝑥𝑖, 𝑦𝑖) + 𝜖𝑣1+𝑣2

2

end for
return 𝑥test

end function

While algorithm 2 presents the method in loop-form for readability, our implementation

was done with array operations for efficiency. The code implementation with arrays is found

in appendix A.2.

33

Bounds and Constraints

There are a lot of manufacturability constraints for PNVCTs limiting the range of allowed

shapes for emitters. Some constraints come from the state of technology, like resolution of

contemporary electron beam lithography (EBL) tools, while others are more fundamental

physical artifacts like the typical grain size of metal when it evaporates and the size of

atoms. To account for our finite resolution, we do not include explicit constraints. Instead,

we encode them in the distance between parameter points in the initial geometry and in the

spline interpolation.

In addition to that, the are also simulation constraints requiring the emitter to be con-

tained in the simulation domain and forbidding self-intersecting polygon shaped emitters.

We therefore establish upper and lower bounds on the 𝑥 and 𝑦 values of each simulation point.

If the PERTURB function attempts to push any point beyond the bounding box, the corre-

sponding 𝑥 or 𝑦 value will be set to the one on the surface of the box. The implementation of

this constraint can be found in appendix A.2. To reduce the probability of self-intersecting

polygons occurring, we require the PERTURB method to move points along lines perpendic-

ular to the surface. When self-intersecting polygons do occur, the electrostatic simulation

crashes. We implemented error handling to prevent the optimization process from exiting

every time the simulation crashes. The self-intersecting constraint is handled implicitly by

the except block of the try-except.

2.1.4 Stepping

In every iteration, the optimizer sends 𝑥test to the cost function to evaluate the performance of

the perturbed solution. If the perturbation reduces the cost, the perturbed solution becomes

accepted, and is then stored by the current solution variable. If 𝑥test is the best solution seen

thus far, it gets stored in 𝑥*. If the perturbation increases the cost, the algorithm draws

from the acceptance probability, and decides stochastically whether or not to accept it. This

step is described by algorithm 1 and the code implementation for it is in appendix A.2.

34

2.1.5 Cost

The figures of merit that are relevant to us depend on currents collected by either the collector

or the emitter. To calculate the currents, we solve a full electrostatic simulation, calculate

the emitted current density at the surface of the emitter, and then track current trajectories

through space. We used FEniCS [29] as our PDE solver to do to do a full electrostatic

simulation. We calculate the emitted currents using a few different emission models that

depend on the electric field. To calculate the current at the collector or gate, we approximate

the current trajectories rather than implement a full particle in cell simulation. The simulated

annealing algorithm is well suited for minimization problems, but not for maximization

problems. We, therefore, formulate all of our objective functions as cost functions. When a

figure of merit is desirable, we multiply it by −1 to turn it into a cost. Sections 3.1 and 4.1

describe the cost functions that were used in this work and why they are of interest to

minimize. Section 3.1.1 describes the different emission mechanisms considered for current

generation. See section 2.3 for implementation details.

2.1.6 Temperature

Temperature is decreasing during the optimization process. It is natural to stick to the phys-

ical inspiration of the optimization and decrease the temperature exponentially, as described

by Newton’s law of cooling. However, that might decrease the temperature too quickly and

prevent the algorithm from exploring. For that reason, we implemented several options for

the temperature evolution to allow the user to choose their desired cooling process. The im-

plemented options include a decrease as 1/𝑡, a linear decrease, and an exponential decrease.

The results presented in chapters 3 and 4 were generated by an optimization with a linear

cooling. See appendix A.2 and table B.1 for reference.

2.2 Optimizer Implementation

There are some existing out-of-the-box solutions for simulated annealing optimizations. We

naturally, looked at existing solutions and evaluated them before deciding to write our own.

35

The simulated annealing method included in Scipy [41] is convenient for usage because it

is natively embedded in python and does not require cross-language translation. However,

the method comes with little user enabled flexibility to change the perturbation method or

to include bounds on the solution. We therefore, turned to MATLAB which allows more

flexibility with user defined annealing, user defined cost functions, and easy integration of

bounds.

2.2.1 MATLAB Implementation

This section can be skipped by the reader because all the code described in it has been

deprecated and replaced with significantly more efficient code. There is, however, entertain-

ment value and perhaps, a lesson to be learned from the author’s MATLAB journey. The

motivation for using the MATLAB Simulated Annealing function was driven by a desire to

make as much use of packages already written by others. It was a noble desire, after all, as

it should have given us more time to focus on the applications of the code and the results of

the optimization. However, the opposite was accomplished, teaching us that noble intentions

alone are rarely enough.

The FEniCS solver has a python interface, which required us to find a way to communicate

between the MATLAB layer and and python layer. MATLAB is equipped with a function

that runs python scripts, outvars = pyrunfile(file, inputs). However, the variable

passing between the layers was not built for arrays. Another issue that presented itself was

that the C++ version that came with MATLAB conflicted with the one used by FEniCS. To

get the code to run, downloaded and built a different subversion of C++14. Even with that

fix, there were issues with the direct communication between MATLAB and FEniCS. We

finally managed to implement the optimization by using the MATLAB function that runs

bash scripts. The bash script ran a python script containing the FEniCS simulation code and

the cost function evaluation. Variable passing between the different layers of the code was

enabled by input from and output to external files. See fig. 2-2 for a detailed visualization

of the software stack.

Because the objective function ran a new python instance for each iteration of the op-

timizer, simulator crashes were undetectable. This feature made debugging an impossible

36

Figure 2-2: Optimization software stack using the simulated annealing method in MAT-
LAB. The MATLAB container acts as the main control. It starts by reading in the initial
geometry from a file and evaluating its performance. Then, the optimization loop begins. In
each iteration, the geometry is perturbed, then the cost function is evaluated by writing the
test geometry to a file and running a bash script that calls a python script that reads the
geometry from a file and runs the FEniCS simulation on it. After the FEniCS simulation is
complete, the cost function is evaluated and the value is printed to the console. MATLAB
reads the cost function value from console and passes it to the "decide if to keep" block.
The optimization loop terminates when the iteration number reaches the maximum iteration
value. Then, the final geometry and the cost function value in each iteration are written to
external files.

37

task. The back and forth input and output from and to external files increased the run time

significantly. For those reasons, we eventually decided to build our own in-house simulated

annealing optimization method.

2.2.2 Python Implementation

This section describes the optimization software stack written entirely in python which was

used to generate most of the results presented in this thesis. The code is available on github

at https://github.com/AdinaBechhofer/Simulated_annealing.

Figure 2-3: Simulated annealing optimization software stack in python. The code in
main.py is the controller; it reads the parameters from config.yml and the initial geometry,
initializes the optimizer, saves the results, and adds the optimization metadata to a database
in log.txt. The optimizer class in Simulated_annealing.py contains an __init__ method that
initializes the class and a run_opt method that runs the optimization. The perturb method
perturbs the geometry. The decide_if_to_keep method calls the relevant cost function on
the test geometry and decides if to accept it.

The simulated annealing class was written to replace the out-of-the-box optimizer, while

incorporating greater flexibility and debugging abilities. Additional code was written as

supporting architecture to make the optimization user friendly and reusable. A configura-

tion file contains all of the user controlled simulation and optimization parameters for easy

38

https://github.com/AdinaBechhofer/Simulated_annealing

customization. The main file acts as the main controller; it reads the parameters from the

configuration, initializes the optimization, and writes the simulation results and metadata to

external files after the optimization concludes. Each device type has a cost function python

file associated with it where the FEniCS electrostatic simulation is run and the cost value

is calculated. The utils folder contains utility script that are useful for analyzing the opti-

mization results and metadata. Below is a more detailed description of the code in each file

and its functionality.

config.yaml

Many parameters control the optimization procedure and the finite element simulation em-

bedded in the cost function. The parameters range from the size of the gap in the simulation

to the number of optimizer iterations. It can be incredibly tedious for a user to locate and

change all of the parameters of interest where they naturally appear in the code. Therefore,

we concentrated all of the parameters that a user might want to change in the config.yaml

file which gets read by the main script and passes the relevant parameters to the optimizer.

The parameters in configuration are organized into 2 categories; optimization parameters

and geometry parameters as described by tables B.1 and B.2.

main.py

The main.py file contains the main entry point to the optimization process. This file im-

ports the simulated_annealing module and additional relevant utility modules. It reads the

configuration parameters from config.yml, and starts a loop of 𝑁 iterations, where 𝑁 is a

parameter specified in config.yaml by the optimization runs parameter in the optimization

section. In each iteration of the loop, the initial geometry is read from a file specified in

the config, a simulated annealing object is created, and the optimization is run. After the

optimization terminates, relevant figures are generated and all the optimization metadata is

written to a log file where it is encoded as a json string. The optimization metadata includes

the parameters specified in the config file along with information about the runtime and con-

straint violation rate of the optimization (constraint violation rate refers to the proportion

of total geometries attempted that crash the simulator). If the log errors flag is set to

39

true in the config, a sample of the bad geometries will be saved along with the error message

that caused them. That information is useful for analysis and debugging.

Simulated_annealing.py

The simulated annealing class contains the optimization framework. The simulated annealing

algorithm works by perturbing the current solution, evaluating the cost of the perturbed

solution, and deciding whether or not to adopt the perturbed solution. The optimization

code along with relevant parameter tables can be found in appendix A.2.

Our implementation provides the user with flexibility to customize their optimization and

functionality that extends beyond what is offered by out-of-the-box methods. Our method

has a defined custom annealing, which the user can control by choosing the variance of

the the random distribution of the perturbation steps. The user can set the distribution

variance to be either constant or temperature dependant. The user can also choose to

smooth out the perturbation with an averaging window. We provide the flexibility for

the user to change the initial temperature and the temperature cooling with respect to

optimization iteration. We allow the user to easily access all the past objective values seen

by the optimizer. Access to past values is useful for a principle component analysis (PCA)

method that is under development at the time of writing these lines (see section 3.7.4 for more

details). Additionally, we include several plotting methods for the user to easily visualize

the results of the optimization. Arguably most importantly, we provide an easy way to log

simulator crashes and debug errors.

error_analysis.py

The code in error_analysis.py is used to analyze simulation crashes. When the log errors

parameter is set to True, the optimizer saves copies of geometries that cause the simulator

to crash. The code in error_analysis.py reads all of the "bad" geometries from a specific

directory and attempts to simulate them. We implemented three try-except blocks along the

simulation code to detect which step is the culprit responsible for the simulation to crash.

After running through all the geometries, the results are aggregated into crash statistics,

which are reported to the user. The constraint violation statistics in section 3.2 were compiled

40

using this code.

2.3 Simulation

The figure of merit in our optimization depends on the electrical currents collected in various

parts of the device due to field-driven emission. Calculating those currents requires simu-

lating the electrostatics in the device, calculating the emission current, and approximating

current trajectories. Many different simulation software packages for electrostatics exist,

one of such is FEniCS. FEniCS is a open source scientific computing engine and differential

equation solver written as a collaboration between people at The University of Chicago and

Chalmers University of Technology[23]. FEniCS uses the finite element variational method to

solve partial and ordinary differential equations. FEniCS can also be used for computational

linear algebra, but in this work it was used only for differential equations.

Being open source, FEniCS is completely free to use. It also does not require a licence.

Additionally, it allows access to all layers of code and objects, allowing us to manipulate

the solution matrices and perturb the mesh directly. This feature gives us flexibility when

interacting with the simulator and sets the stage for dramatically speeding up the optimiza-

tion with adjoint like methods like we discuss in section 5.4.2. In comparison, commercial

simulators such as Comsol [10] and Lorentz [53] require user licences which can get pricey,

reaching upwards of 4000 USD without maintenance fees. They do allow scripting around

them, but have a limited array of predesignated functions, and they do not give direct access

to the underlying matrices. We use FEniCS to solve the Laplace equation in the gap between

the electrodes of the device and to calculate the electric field near the edge of the emitter.

We then use our own code to calculate the emission current and approximate where it ends

up.

2.3.1 Laplace Equation

Solving differential equations in FEniCS generally follows a procedure similar to the one

described in this section, but different forms are also possible. In this work, we solve Laplace’s

equation∇2𝑈 = 0 with non trivial boundary conditions to obtain the electric field outside the

41

emitter and the electric field lines. Sample setup code can be found in appendix appendix A.1.

Setup

Figure 2-4: Simulation domain for ungated (left) and gated (right) devices. Domain is
enclosed in the box with black edges. The emitter is traced in blue, the collector which is
also the right edge of the simulation is marked red, and the gates (in the gated device) are
green.

We start by defining the solution domain as a rectangle of length 190 nm and width 120

nm. The right edge of this domain rectangle is the collector (𝑥 = 20 nm). The emitter is a

polygon with vertices defined by the spline interpolation of the parameter points. A polygon

in FEniCS is defined by a sequence of point objects ordered in a counter clockwise manner

with the last point exactly equal to the zeroth point. In a simulation of a gated device, the

gates are rectangles of length 25 nm and width 15 nm centered at 𝑦 = 47.5 nm and 𝑦 = −47.5

nm and placed between the collector and the emitter in the horizontal direction. In FEniCS,

the domain can be described as the addition or subtraction of geometrical objects. Here,

we subtract the emitter (and gates if relevant) from the large domain rectangle, so that the

resulting domain simulates the potential in the gap between the electrodes of the device.

We generate a mesh for the domain by passing the domain of interest and the desired mesh

resolution to meshing function. See appendix A.1 for startup code.

Boundary conditions are set in FEniCS by defining a function for each boundary. The

function takes an (𝑥, 𝑦) pair as input and returns a Boolean indicating whether or not (𝑥, 𝑦)

is on that specific boundary. We set Neumann condition on the upper, left, and bottom

42

edges of the simulation (black edges in fig. 2-4). Neumann conditions have the same effect as

having a mirrored simulation cell reflected across the boundary. Using Neumann conditions

makes sense for PNVCTs because they are fabricated and operated in large arrays. We set

Dirichlet boundaries to the collector (red edge in fig. 2-4) and to the emitter (blue). The

boundary condition for the emitter is slightly more complicated than a straight edge and it

requires an interpolation between all the polygon vertices. The code in appendix A.1 verifies

whether or not an input point is on the boundary of the emitter with tolerance tol. The

code as is written now loops over each one of the emitter polygon line segments and checks

if the point is on that line segment. Looping is inefficient in python and should probably be

replaced with array operations.

Variational solution

The finite element method discretized PDEs and projects them onto a basis where they are

solved using the variational method. There are many bases popular for finite element, they

are typically different polynomials of varying degrees. Here we use the continuous Galerkin

(CG) polynomial of order 1 as the element basis. Each basis element, 𝜑𝑖 is a triangle with

height 1 on the node 𝑖, and zero on other nodes. It can be written mathematically as

𝜑𝑖(𝑛𝑗) =

⎧⎪⎨⎪⎩1 for 𝑖 = 𝑗

0 for 𝑖 ̸= 𝑗.

(2.5)

The value of 𝜑𝑖(𝑥) at any point between nodes is a linear interpolation using the closest node

points. When the solution is represented in this basis, the height of triangle is the value of

the solution at the node. We can think of this basis as a linear averaging scheme for all mesh

points that is not a node point.

To solve

−∇2𝑢 = 𝑓, (2.6)

we use a trial function, 𝑢 and an arbitrary test functions 𝑣. After applying the variational

43

method, we end up with ∫︁
Ω

∇𝑢 · ∇𝑣𝑑𝑥 =

∫︁
Ω

𝑓𝑣𝑑𝑥. (2.7)

Now we apply the finite element discretization

𝑢 =
∑︁
𝑗

𝑎𝑗𝜑𝑗 and 𝑣 =
∑︁
𝑗

𝑏𝑗𝜑𝑗, (2.8)

and substitute that into eq. (2.7)

∫︁
Ω

∑︁
𝑖

∑︁
𝑗

𝑎𝑖𝑏𝑗∇𝜑𝑖 · ∇𝜑𝑗𝑑𝑥 =

∫︁
Ω

∑︁
𝑗

𝑏𝑗𝑓𝜑𝑗𝑑𝑥. (2.9)

Note that the test and trial functions do not have to come from the same function space or

have the same finite element basis, but in this case it is convenient to do so and we have no

incentive to choose otherwise.

We set 𝑎 =
∫︀
Ω

∑︀
𝑖

∑︀
𝑗 𝑎𝑖𝑏𝑗∇𝜑𝑖 · ∇𝜑𝑗𝑑𝑥 and 𝐿 =

∫︀
Ω

∑︀
𝑗 𝑏𝑗𝑓𝜑𝑗𝑑𝑥 and solve 𝑎 = 𝐿. The

solution is attained by assembling matrices for 𝑎 and 𝐿, and computing a matrix solution [29].

We select a Krylov-Solver for the matrix solution because using a Krylov subspace method

is generally faster than applying a brute force matrix inversion. See appendix appendix A.1

for the code implementation in FEniCS.

2.3.2 Current emission

In chapters 3 and 4, we consider different models for the current emission in NVC devices

based on previous works in literature. For many years, it was unanimously understood that

emission from tips in vacuum was perfectly described by Fowler-Nordheim tunneling [20].

However, recent works have shown that there are voltage ranges in which other emission

mechanisms are dominant [50]. To implement the different emission models considered in

chapters 3 and 4, we wrote a Fowler-Nordheim emission function and a Schottky emission

function with parameters that can be adjusted for the different models.

For the Fowler-Nordheim function, we used the one dimensional version due to its relative

simplicity compared with the higher dimensional version. We assume that modeling electrons

44

as tunneling through a one dimensional potential barrier works sufficiently well for small area

chunks that are relatively flat. The current density due to Fowler-Nordheim emission is

𝐽 = 𝛼𝐹𝑁𝛾
2|𝐸|2 exp

(︃
−
𝛽𝐹𝑁𝜑

3/2
(︀
1− 𝛾𝜂𝐹𝑁 |𝐸|+ 1

6
𝛾𝜂𝐹𝑁 |𝐸| ln(𝛾𝜂𝐹𝑁 |𝐸|)

)︀
𝛾|𝐸|

)︃
, (2.10)

where |𝐸| is the magnitude of the electric field normal to the surface, 𝛾 is an arbitrary

enhancement factor, 𝛼𝐹𝑁 = 𝑒3/(8𝜋ℎ), 𝛽 = 8𝜋
√
2𝑚𝑒/(3𝑒ℎ), 𝜂𝐹𝑁 = 𝑒3/(4𝜋𝜖𝜑2), 𝜑 is the

metal’s work function, 𝑒 is the electron charge, 𝑚𝑒 is the electron mass, 𝜖 is the permittivity

of free space, and ℎ is Plank’s constant.

For Schottky emission, we use a current density of

𝐽 = 𝐴*𝑇 2 exp

⎛⎝−𝜑+ 𝑒
2

√︁
𝑒𝛾|𝐸|
𝜋𝜖

𝑘𝐵𝑇

⎞⎠ , (2.11)

where 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant, 𝐴* is a fitting parameter, and

all other quantities are as defined above.

To get the electric field for the emission functions, the gradient of of the potential is

needed 𝐸 = −∇𝑢. After obtaining the potential from the finite element method, we can

calculate the gradient numerically with finite difference. However, given that the basis for 𝑢

is a first order polynomial, finite difference will result in a gradient composed of piece-wise

constant functions. It is more robust to project the gradient into a vector function space

of an appropriate basis, and then extract the value of the gradient at a point. We use the

framework provided by FEniCS to project the gradient and to get its value at a point. The

code implementation can be found at appendix A.1 and the code to calculate the emission

is likewise in appendix A.1.

We need to evaluate the gradient of the potential at the surface of the emitter, but

the gradient is undefined exactly on the boundary of the simulation. For that reason, we

calculate the gradient at an 𝜖 distance away from the boundary of the emitter. To find

the points at which to calculate the gradient, we calculate the outward pointing normal

from each polygon segment and take a step of size 𝜖 along that direction. Calculating the

outward pointing normal is done by taking the cross product between the tangent vector,

45

(𝑥𝑖, 𝑦𝑖) − (𝑥𝑖−1, 𝑦𝑖−1), and the out of the plane normal. Initially, this was done in a loops

which is inefficient in python. In a later iteration of the code, we replaced the loop with

Numpy array operations. See code in appendix appendix A.1.

After obtaining the gradient of the potential, we need to check its direction relative to the

surface of the emitter. When the electric field is pointing outwards from the surface, electrons

will be emitted. When the electric field is pointing into the surface, emission is suppressed.

The emission functions that we wrote do not take the field direction into account; they only

consider magnitude. Therefore, we must ensure that the electric field is pointing outwards

before calculating the emission current. We already have the outward pointing normal from

the cross product calculation. We compute the dot product of the gradient with the outwards

normal; if the result is positive, we consider that field for current generation. Otherwise,

we disregard the field in that spot. To get the total current, we calculate the area for each

segment and integrate all the current densities over the total surface area of the emitter.

At the time of writing these lines, the code for integrating the current density shown

appendix A.1 is still in loop form. It could be made more efficient by replacing the loop with

Numpy arrays.

Gated devices

In ungated devices, we assume that the current emitted from anywhere on the surface of

the emitter is swept into the collector by the electric field. In gated devices, there are

multiple targets that can collect current. To evaluate the transistor’s operation, it is critical

to distinguish between the current hitting the collector and the current arriving at the

gate. Properly simulating electrons being emitted and traversing the gap is computationally

expensive. Particle-in-cell (PIC) simulators iteratively update the position and velocity

of each electron in the simulation along with the electric potential due to the charge of

the electrons in space. In this work, we create a fast heuristic for particle tracking by

approximating current trajectories with electric field lines. The approximation assumes that

electrons have zero mass, and therefore, zero momentum. As a result, the electrons follow

the electric field lines starting from the emission point until they reach an electrode surface

or a boundary of the simulation. Algorithm 3 calculates the electric field line starting at

46

(𝑥*, 𝑦*).

Algorithm 3 Tracing electric field lines
function trace-field-line(∇𝑢 𝑥, 𝑦, 𝑥*, 𝑦*, num_iter)

dot_product← (𝑥* − 𝑥, 𝑦* − 𝑦) · ∇𝑢 ◁ Dot normal to surface with potential gradient
if dot_product > 0 then

𝑥𝑛𝑒𝑤 ← 𝑥* +∇𝑥𝑢(𝑥, 𝑦)
𝑦𝑛𝑒𝑤 ← 𝑦* +∇𝑦𝑢(𝑥, 𝑦)
for q = 1:num_iter do

if reached_collector(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) then
return "collector"

else if reached_gate(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) then
return "gate"

else if reached_edge(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) and 𝑥𝑛𝑒𝑤 > 𝑥𝑔𝑎𝑡𝑒 then
return "r-edge"

else if reached_edge(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) and 𝑥𝑛𝑒𝑤 < 𝑥𝑔𝑎𝑡𝑒 then
return "l-edge"

else if intersect_emitter(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) then
return "zero"

else if ‖∇𝑢(𝑥, 𝑦)‖ ≤ tol then ◁ If gradient = 0
if (𝑥* − 𝑥𝑛𝑒𝑤, 𝑦

* − 𝑦𝑛𝑒𝑤) < 10 then ◁ In the vicinity of the emitter
return "zero"

else
𝑝← (𝑥𝑛𝑒𝑤 − 𝑥𝑝𝑟𝑒𝑣, 𝑦𝑛𝑒𝑤 − 𝑦𝑝𝑟𝑒𝑣) ◁ Away from emitter use momentum to

update trace
(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤)← (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) + 𝑝

end if
else

(𝑥𝑝𝑟𝑒𝑣, 𝑦𝑝𝑟𝑒𝑣)← (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤)
(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤)← (𝑥𝑛𝑒𝑤 +∇𝑥𝑢(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤), 𝑦𝑛𝑒𝑤 +∇𝑦𝑢(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤))

end if
end for

else
return "zero"

end if
end function

For each emission point, we calculate the electric field line by iteratively stepping in the

direction of the electric field. The initial point is the emission point on the emitter’s surface.

From there, we iteratively calculate the gradient, take a step in the direction of the gradient,

and calculate the gradient again in the new location until a stopping condition is met. The

obvious stopping conditions are reaching the collector or reaching the gate. When either one

47

of those is met, we break out of the loop and attribute the current emitted at the origin

point to the collector or gate respectively. A less obvious condition is a field line escaping

through the non-collector side of the simulation or looping back to the emitter. When one

of those conditions are met, we stop the loop iteration, but discard the emitted current

because it will not be detected at the collector or at the gate. When the gradient vanishes,

we do not immediately terminate the loop. If the gradient vanishes very close to the emitter,

we can assume that no current would be emitted. However, if the gradient vanishes after

allowing the emitted electrons to gain momentum in the electric field, we can assume that

the electrons will preserve their momentum and will keep traveling along a straight line until

they collide with the gate, collector, or different edge of the simulation. The code for this

calculation can be found in appendix A.1.

To calculate the collector current and the gate current, we can iterate through all the

points on the surface of the emitter and calculate the trace for each surface point, but that

formulation would be rather slow. We realized that we do not actually need to calculate all

of the field lines; we just need to find the last line to end up on the collector and the first

line to reach the gate. Because of the way that the field lines are ordered, we can implement

a binary search and find the desirable information much faster. Algorithm 4 describes the

binary search for the trajectories originating at points with 𝑦 > 0. The result of algorithm 4

is an index 𝑚𝑖𝑑𝑑𝑙𝑒. The trajectories indexed by a number lower than 𝑚𝑖𝑑𝑑𝑙𝑒 are counted as

collector current, while the trajectories with index higher than middle get counted as gate

current. The code in appendix A.1 contains two searches, one for trajectories originating at

points with 𝑦 > 0 and one for trajectories with origin points with 𝑦 < 0.

A slight complication arises from having array indices that correspond to trajectories

that do not leave the emitter or that fly off the edge of the simulation. When we encounter

those indices, we skip them without bisecting the array. We use a variable to keep track of

the skipped indices and use it in the bisection search. That way, we avoid getting stuck in

those indices, which could result in an infinite loop.

48

Algorithm 4 Binary search for trajectory tracing
let ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤 ◁ Trajectory indices
𝑥*, 𝑦* ← get_ppoints(𝑥, 𝑦) ◁ 𝑥, 𝑦 are on the surface, 𝑥*, 𝑦* are 𝜖 away from surface
𝑚𝑖𝑑𝑑𝑙𝑒←

⌊︀high+low
2

⌋︀
𝑠𝑘𝑖𝑝𝑝𝑒𝑑← 0
𝑓𝑜𝑢𝑛𝑑← False
while (ℎ𝑖𝑔ℎ− 𝑙𝑜𝑤) > 1 and not found do

𝑖← 𝑚𝑖𝑑𝑑𝑙𝑒
𝑑𝑒𝑠𝑡← TRACE-FIELD-LINES(∇𝑢, 𝑥𝑖, 𝑦𝑖, 𝑥

*
𝑖 , 𝑦

*
𝑖 , num_iter)

if 𝑑𝑒𝑠𝑡 = "gate" or destination = "l-edge" or 𝑚𝑖𝑑𝑑𝑙𝑒 = ℎ𝑖𝑔ℎ then
ℎ𝑖𝑔ℎ← 𝑚𝑖𝑑𝑑𝑙𝑒 − 𝑠𝑘𝑖𝑝𝑝𝑒𝑑
𝑚𝑖𝑑𝑑𝑙𝑒←

⌊︀
ℎ𝑖𝑔ℎ+𝑙𝑜𝑤

2

⌋︀
𝑠𝑘𝑖𝑝𝑝𝑒𝑑← 0

else if 𝑑𝑒𝑠𝑡 = "collector" then
𝑙𝑜𝑤 ← 𝑚𝑖𝑑𝑑𝑙𝑒
𝑚𝑖𝑑𝑑𝑙𝑒← 𝑟𝑜𝑢𝑛𝑑

⌊︀
ℎ𝑖𝑔ℎ+𝑙𝑜𝑤

2

⌋︀
𝑠𝑘𝑖𝑝𝑝𝑒𝑑← 0

else if 𝑑𝑒𝑠𝑡 = "edge-r" or 𝑑𝑒𝑠𝑡 = "zero" then
𝑚𝑖𝑑𝑑𝑙𝑒← 𝑚𝑖𝑑𝑑𝑙𝑒+ 1
𝑠𝑘𝑖𝑝𝑝𝑒𝑑← 𝑠𝑘𝑖𝑝𝑝𝑒𝑑+ 1
if 𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑙𝑜𝑤 then

𝑓𝑜𝑢𝑛𝑑←True
end if

else if 𝑚𝑖𝑑𝑑𝑙𝑒 ≥ ℎ𝑖𝑔ℎ or 𝑚𝑖𝑑𝑑𝑙𝑒 ≤ 𝑙𝑜𝑤 then
𝑓𝑜𝑢𝑛𝑑←True

end if
end while

49

2.3.3 Visualization

FEniCS supports visualization of the PDE solution in a built-in way. It can be done by calling

plot(u), where u is the solution of the PDE. The resulting figure is a 2D heatmap where

the color corresponds to the value of the potential at each pixel of the 2D grid. Figure 2-5

shows a visualization of the potential solution in the gap of a two terminal device with a

potential difference of 15 V imposed between the emitter and collector.

We can superimpose additional plots on-top of this plot to convey more information.

For example, we can calculate the approximate current trajectories and plot them over the

potential plot. In fig. 2-5, the thickness of the trajectory is proportional to the amount of

current carried by it. We can also print relevant quantities such as the collector current or

total emitted current on empty parts of the figure.

Figure 2-5: Simulation results visualized. (left) Electric potential in the gap between an
emitter and a collector plotted as a heatmap with yellow as the highest voltage and purple
as the lowest voltage. (right) Electric potential and approximate current trajectories plotted
for a gated device with the gate on. The trajectories’ thickness is proportional to the current
carried in them and the total calculated currents are printed on the figure.

50

Chapter 3

Global optimization for two terminal

devices

In this chapter, we seek to optimize the emitter part in a two-terminal electron emitting

device using the stochastic global optimization method discussed in chapter 2. Here, we

optimized the emitter’s geometry to maximize the current drawn from it. We assume that

all of the emitted current will make its way across the gap to the collector, where it can be

measured. We considered a few physically motivated emission mechanisms and use each one

of them in defining the cost function.

Well-stated constraints are crucial for limiting the scope of optimization to relevant and

physically and numerically plausible results. The constraints describe in this chapter are

required for the simulation to be able to run. Some of the constraints are explicitly coded

into the optimization, while others are implicitly coded and are expressed by the the FEniCS

simulation crashing when they are violated. The physical constraints due to fabrication

are different than the simulation constraints and are yet to be implemented. We explored

different methods to prevent constraints from being violated.

The simulation used to calculate the emission current has limitations that rise from

the mesh discretization and from the the 2D electrostatic modeling which make the result

differ from experimental data. However, we have reason to believe that the optimization

improvements in the simulated model translate into improvements in the real devices.

We see that under some emission conditions the optimizer seeks to maximize the surface

51

area to emit from, and in others, it seeks to create as many sharp tips as possible to maximize

the field enhancement from. These results indicate that the problem of optimizing a diode

under the current specifications and constraints is perhaps ill defined. At the limit of infinite

iterations, the diode tip will either converge to a flat edge just pushed against the boundary

of the collector or to a comb with infinitely sharp teeth, both of which, are problematic

for different reasons. More physical constraints are required to make the problem better

defined. However, even in the current state, this is a valuable endeavour because optimizing

the emitter tip in a diode is an important first step in the process of shape optimization.

Having a smaller target of optimization with a relatively simple cost function allows us to

thoroughly test our optimization approach and conduct sanity checks before advancing to

more complicated and less intuitive designs.

3.1 Cost function (Mathematical Representation)

Finding a figure of merit to optimize is one of the challenges of optimization problems. Most

physical systems cannot be reduced to a single number that describes perfectly how well the

system is performing. Here, we chose to maximize the total current emitted from the emitter

tip of the device (see fig. 2-4 for reference). Using this figure of merit is imperfect because of

reasons that will be outlined in the remainder of this chapter, however the advantage of it is

that it corresponds to a desirable quality of our devices and is one of the simplest imaginable

figures of merit to optimize. Additionally, using it as a figure of merit is an important sanity

check. It assures us that we are not being lead astray by a numerical error or a bug in the

code. Because there exists some intuition in the field for features that maximize the emission.

We can mathematically represent the total emission current maximization objective as:

max
𝑝1,...,𝑝𝑛

∫︁
𝜕Ω(𝑝1,...,𝑝𝑛)

𝐽(𝐸) · 𝑑𝑆 (3.1)

Such that

𝐸 = −∇Φ (3.2)

∇2Φ = 0 on Ω(𝑝1, . . . , 𝑝𝑛) (3.3)

52

Φ = 𝑉0 on 𝜕Ω1(𝑝1, . . . , 𝑝𝑛) (3.4)

∇Φ = 0 on 𝜕Ω2(𝑝1, . . . , 𝑝𝑛) (3.5)

Where 𝑝1, . . . , 𝑝𝑛 are the parameter points defining the emitter with 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) living in 2D

space. 𝐽(𝐸) is an electric field dependant emission current density. We consider different

mechanisms of emission for 𝐽(𝐸), which we elaborate on in section 3.1.1. Equation (3.3) is the

Laplace partial differential equation which is solved on Ω(𝑝1, . . . , 𝑝𝑛), the simulation domain

that is defined by the decision variables. The simulation has mixed boundary conditions

with Dirichlet boundary conditions on the emitter and the collector, denoted as the set

𝜕Ω1 = {emitter, collector} in eq. (3.4). There are Neumann conditions on all simulation

boundaries that are not in 𝜕Ω1, denoted as 𝜕Ω2 in eq. (3.5).

To calculate the total emission current, we had to define a domain using the emitter

parameter points. Then, solve the Laplace equation in eq. (3.3), calculate the electric field

just outside the emitter, and use the magnitude of the calculated field to calculate the field

dependant emission. We considered different physically motivated emission mechanisms,

namely Fowler-Nordheim, enhanced Fowler-Nordheim, and a combined Fowler-Nordheim

Schottky emission. The different emission mechanisms give rise to different features which

we see rising in the results optimization.

3.1.1 Emission mechanisms

paragraph here

Fowler-Nordheim

For a long time the dominant theory in electron vacuum devices relied on Fowler-Nordheim

cold-field-driven emission [20]. It is derived from a triangular approximation of the potential

barrier. It assumes that the electrons have no thermal spread and are tunneling through

the barrier which gets narrower with increasing voltage [24]. The triangular approximation

gives rise to the following formulation

53

𝐽𝐹𝑁(𝐸) = 𝛼|𝐸|2 exp
(︂
−𝛽𝜑3/2

|𝐸|
𝑣(𝑓)

)︂
(3.6)

𝑣(𝑓) = 1− 𝑓 +
1

6
𝑓 ln(𝑓)

𝑓 =
𝑒3

4𝜋𝜖𝜑2
|𝐸|,

where 𝛼 = 𝑒3/(8𝜋ℎ), 𝛽 = 8𝜋
√
2𝑚𝑒/(3𝑒ℎ), 𝜑 is the metal’s work function, 𝑒 is the electron

charge, 𝑚𝑒 is the electron mass, 𝜖 is the permittivity of free space, and ℎ is Plank’s constant.

There are additional formulations that are specific to the emitter geometry and potential

barrier shape, making the result precise for each case. We, however, take the coarser for-

mulation because it is more general. Our emitter shape is changing with each iteration and

we cannot make any assumptions about the potential barrier shape or the tip geometry.

Additionally, we care about finding good relative accuracy for the optimization, rather than

absolute accuracy.

Enhanced Fowler Nordheim

Many works assume a field enhancement that is at least 7× the one found by performing

the electrostatic simulation of the device [33, 38]. In most cases, an artificial enhancement

is assumed in an effort to match experimental data. For the enhanced Fowler-Nordheim

simulations we assume a factor of 7 field enhancement. We initially assumed the enhancement

factor to implement the method done in literature. Later, we realized that an artificial

enhancement might be justified as a way to compensate for the disparity between 2D and

3D simulations. More on this in section 3.6.3, where limitations of 2D modeling are discussed.

The enhanced Fowler-Nordheim formulation is

𝐽𝐸𝐹𝑁(𝐸) = 𝛼|𝛾𝐸|2 exp
(︂
−𝛽𝜑3/2

|𝛾𝐸|
𝑣(𝑓)

)︂
(3.7)

𝑓 =
𝑒3

4𝜋𝜖𝜑2
𝛾|𝐸|,

where 𝛾 > 0 is the enhancement factor, and all other quantities are as describe above.

54

Fowler-Nordheim + Schottky

In work done by Turchetti et al., it was shown that the electron devices experience a multi

regime type of emission. In low voltages, they emit like Schottky. In mid-range voltages, they

emit like Fowler-Nordheim, and eventually they saturate at Child-Langmuir for high voltages.

We could assume an empirical cutoff and model Schottky emission for 𝑣 < 𝑣cutoff and Fowler-

Nordheim for 𝑣 > 𝑣cutoff. However, the cutoff might be different for each type of device, so

we instead combine the emissions by addition. We assume that both mechanisms are active

simultaneously, but in the different regimes a different one of the emission mechanisms

dominates.

Schottky emission is described in [39] as a thermal emission from a device with a work

function 𝜑. The application of a voltage across it acts as a reduction of the work function

and allows more of the thermally spread electrons to jump over the barrier.

𝐽𝑆(𝐸) = 𝛼𝑇 2 exp

⎛⎝min

⎛⎝−𝜑+ 𝑒
2

√︁
𝑒𝐸
𝜋𝜖

𝑘𝐵𝑇
, 0

⎞⎠⎞⎠ (3.8)

Where 𝑇 is the temperature in degrees Kelvins, 𝜑 is the work function of the metal in 𝑒𝑉 , 𝜖 is

the permittivity of the material in 𝑒2𝑒𝑉 −1𝑛𝑚−1. 𝐸 as before, is the electric field magnitude

in 𝑉 nm−1. The square root dependence on the electric field can be viewed as reducing the

work function barrier. We select the minimum of −𝜑+ 𝑒
2

√
𝑒𝐸
𝜋𝜖

𝑘𝐵𝑇
and 0 because we assume that

once the work function barrier has been reduced below zero, the electron emission remains

the same. This also allows us to make the transition regimes cleaner.

We let the emission current density be

𝐽(𝐸)𝐹𝑁+𝑆 = 𝐽𝐹𝑁(𝐸) + 𝐽𝑆(𝐸) (3.9)

with 𝐽𝐹𝑁(𝐸) from eq. (3.6) to match the modeling of the experimental results attained by

Turchetti et al.

55

Enhanced Fowler-Nordheim + Schottky

We also considered a combined Schottky and Fowler-Nordheim emission where the Fowler-

Nordheim is also enhanced. This form came about after realizing that the disparity between

the 2D and 3D electrostatic models is around the order of 7, which we consider for the

gamma. The hope is for this model to match experiment closer than previous models, due

to the compensation. The emission current density considered is

𝐽𝐸𝐹𝑁+𝑆(𝐸) = 𝐽𝐸𝐹𝑁(𝐸) + 𝐽𝑆(𝐸) (3.10)

with 𝐽𝐸𝐹𝑁(𝐸) from eq. (3.7) and 𝛾 = 7.

3.1.2 Other Variations in Cost Function

In addition to a large emission current, we care about fabricability of the device and where

the current in it is going. Those factors led us to consider adding two terms to the cost

function: the total surface area and the component of the emission current directed in the 𝑥

direction. Penalizing the total surface area might help reduce spikiness, which the optimizer

might favor because it is an easy way to increase the surface area and the field enhancement.

Yet, we wish to avoid spikiness in the surface because it is difficult to fabricate and unreliable

to operate. Adding a term that encourages the initial direction of the emitted currents to

be biased towards the 𝑥 direction could influence more current to arrive a the collector.

However, the electric field sweeps the electrons and changes their direction of travel as soon

as they are emitted. Perhaps the initial current direction does not affect the final result

much.

We considered two ways to transform the current maximization problem into a cost

minimization. The first obvious choice was to take the negative multiple of the current,

which ended up being our method of choice here. We also considered taking the inverse of

the total current. That method, however, is not a linear transformation. It stretches the

change in current at small currents and shrinks the change in current at large currents. In

general, we did not see major differences between the resulting geometries under the different

cost functions. That can probably be attributed to the fact that −𝑖 is related to 1/𝑖 with a

56

logarithm, which is a monotonically increasing function.

3.2 Constraints

As mentioned before, our optimization has a mix of explicitly stated and implicit constraints.

The explicit constraints restrict each of the parameter points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) ∀𝑖 = 1, . . . , 𝑛 to

be inside a box as follows

xmin ≤ 𝑥𝑖 ≤ xmax and ymin ≤ 𝑦𝑖 ≤ ymax ∀𝑖 = 1, . . . , 𝑛,

where xmin, ymin, xmax, and ymax are at a distance of 5 nm from the edge of the simulation.

This constraint ensures that the emitter outline does not contain any points that are outside

of the simulation domain.

The implicit constraints in our optimization are the requirements for the simulation to

run without crashing. Those constraints consist of a requirement for the emitter to be a

valid polygon with no edges that cross over each other, and a requirement for the surface of

the emitter to have a well defined normal at every point.

When the explicit boxing constraint is violated, the optimizer takes the rebellious point

that has crossed the boundary, and puts it in its place; at the closest point in the allowed

region. When either of the unstated constraints is violated, the FEniCS solver crashes.

We implemented a try-except block around the simulator to allow the optimization loop

to continue running even after the solver crashes (appendix A.2). However, as life teaches

us, not all is well and good when problems go ignored and undealt with. It appears that

when the solver crashes and the program does not terminate, the garbage collection of the

FEniCS simulation fails to clear allocated memory. Eventually, with enough occurrences

of solver crashes, the whole program fails with a memory error. We saw that the reduced

parameterizations has a better robustness against these violations due to it’s less flexible

nature.

We implemented a program that runs through geometries that have crashed the simulator

and makes use of try-except blocks to determine which constraint was violated. An invalid

57

polygon crashes the simulation in the domain creation or in the meshing step. A polygon

with poorly defined normal lines crashes the solver when calculating the electric field. From

an analysis of the simulator crashes, we can see that approximately 10% of the simulation

crashes are caused by the optimizer attempting to evaluate a self-intersecting emitter.

Figure 3-1: Geometries responsible for crashing the solver in the domain formation and
meshing stage. Parameter points are shown as red exes and the spline interpolation is shown
in the blue line. When enlarging the figures, it can be seen that some of the sharp tips
contain narrow loops, making the polygons invalid.

90% of solver crashes are accounted for by gradient calculation errors. When the surface

of the device becomes rough, it becomes difficult to calculate the cross product and find the

normal to the surface. As mentioned before, the gradient is not defined at the boundary

of the simulation, therefore we need to take a step into the simulation along the direction

perpendicular to the boundary. When the boundary is rough and the normal line is ill

defined, the algorithm might try to evaluate the gradient at a point inside the emitter,

which is not part of the simulation domain. The attempt to evaluate the gradient at a point

outside the domain results in a simulator crash.

58

3.3 Initial design

The initial design is a naïve rectangle with a triangular tip that is rounded at the end and

has a radius of curvature of about 10 nm. This geometry corresponds to a realistic initial

design. The current emitted from it depends on the emission model used and is indicated in

fig. 3-2.

Figure 3-2: The initial guess for geometry yields wildly different current predictions de-
pending on the emission mechanism assumed when 15 V are put across it across it. (Top
left) Simulation predicts 5× 10−47 nA, basically zero for pure Fowler-Nordheim, (top right)
0.173 nA of current for enhanced Fowler-Nordheim. (bottom left) Simulation predicts 550
nA of current for with Schottky + Fowler-Nordheim.(bottom right) Simulation assumes pre-
dicts basically the same amount of current for the Schottky + enhanced Fowler-Nordheim
emission mechanism

For the normal Fowler Nordheim, we get an initial current of 4.99 ×10−47 nA, which

means that an electron is emitted every 1029 years, essentially a zero current. For the

enhanced Fowler-Nordheim, we get an initial current of 0.173 nA, a respectable current. In

the Schottky un-enhanced case, we see 549 nA of current and the same for the enhanced

Fowler-Nordheim + Shcottky.

59

3.4 Runtimes

Figure 3-3: Runtimes for a simulated annealing optimization in python plotted against the
number of iterations. (left) A linear plot is shown with the line of best fit. (right) A log-log
plot is shown with the line of best fit to resolve the lower iteration numbers better.

When using the framework written in MATLAB, the runtime of an optimization with

1,000 iterations was approximately 28 - 30 minutes. When using the python home-brewed

simulated annealing framework, an optimization of 1,000 iterations took approximately a

minute to run, a 30 times speed up. The lion’s share of the speedup is accounted for by the

removal of the reading from and writing to external files which was used in the communication

between the layers of code in the MATLAB implementation. Additional speed ups were

provided by the usage of Numpy array operations instead of loops in some sections of the

simulation code. The switch to array operations instead of loops was concurrent with the

move of the optimizer code to python. So, we cannot distinguish between the speedups

provided by the array operation and by the removal of communication with external files.

Figure 3-3 shows the runtime of the optimization in python as a function of the maximum

iteration. It should be noted that the runtime doesn’t quite scale linearly as a function of

maximum iterations. One reason for the nonlinear trend is that the more iterations pass,

the weirder the emitter shape will be and the more likely it will be to evolve into a shape

that pushes against the unstated constraints and crashes the FEniCS solver. Section 3.5.5

investigates the tendency of the rate of constraint violation to grow with response to an

increase in the number of optimization iterations.

60

3.5 Results

We optimized the initial geometry to maximize emission current under the assumption of

four different emission mechanisms. The cost function under each emission assumption

is different, giving rise to different optimal results. Therefore, we present the results of

the optimization and evaluate its performance under the different emission assumptions in

separate sections.

3.5.1 Fowler-Nordheim cost

Figure 3-4: Results of optimization with a cost function depending on un-enhanced Fowler-
Nordheim emission. (top left) The intermediate results of the optimization with 1000 itera-
tions on a reduced parameterization give 1.67×10−31 nA current, a 3.35×1016 improvement
compared to the initial current. (top right) the intermediate result after 10,000 iterations
for the reduced geometry gets a current 2.06 × 10−6 nA, a 4.13 × 1040 times improvement.
(bottom) The intermediate result for optimization with 1,000 iterations on the original pa-
rameterization gives rise to a current of 1.39 × 10−28 nA, an improvement of a factor of
2.8× 1018

We ran several optimizations for the initial geometry diode with a cost function that

depends on a pure Fowler-Nordheim emission. In some runs of the optimization, we parame-

61

terized the geometry with a dense point distribution (termed "original" parameterization in

section 2.1.2). Other runs were parameterized by a reduced density of points, which we refer

to as the "reduced" parameterization. The optimization for the original parameterization

with maximum iteration of 10,000 crashed. Figure 3-4 shows a selection of the results that

survived which highlight the formation of sharp tips.

The top left sub-figure in fig. 3-4 shows the results of optimizing the diode with a reduced

parameterization assuming Fowler-Nordheim emission with a maximum iteration of 1,000.

The resulting current is 3.35×1016 the initial current. However, this figure is misleading. The

initial current was 4.99 × 10−47 which means that one electron is emitted every 1029 years.

The optimized current corresponds to an electron every 1012 years, which is still essentially a

zero current. The same applies to the results represented in the bottom of fig. 3-4. There, the

optimization also has a maximum iteration of 1,000, but it was run with the dense original

parameterization. The resulting current is 2.8×1018 times the initial current, corresponding

to an electron emitted once every 1010 years, an essentially a zero current.

We got a substantial current from the optimization that was run for 10,000 iterations

(top right of fig. 3-4). It looks like the pair of very sharp tips are responsible for the non-zero

current emission.

3.5.2 Enhanced Fowler-Nordheim cost

We ran the optimization for a diode with a cost function that depends on an enhanced

Fowler-Nordheim emission with an enhancement factor of 𝛾 = 7, as is done many times

in literature to match experimental results. However, in our simulations, the electric field

is smaller than expected for the structures due to the 2D nature of the simulations. The

enhancement factor could be correcting to the 3D electric field value. The optimizations were

run on the original parameterization on the reduced one with different maximum iteration

conditions. Like had happened for the pure Fowler-Nordheim cost, the optimization on

the original parameterization with maximum iteration of 10,000 crashed. The intermediate

results seem to imply that some combination of a sharpen tip and a bulb optimize the current

well. The top left sub-figure of fig. 3-5 converged to a geometry with a sharp tip and a bulb

and it emits a current of 101 𝜇A, 5.8×105 times the initial current. It seems like most of the

62

Figure 3-5: Results of optimization with a cost function that depends on an enhanced
Fowler-Nordheim emission with 𝛾 = 7. (top left) The optimization with 1000 iterations on
the reduced parameterization gives a current of 101 𝜇A, 5.8× 105 times the initial current.
(top right) The optimization with 10,000 iterations on the reduced parameterization gives a
current of 1.5 mA, a 8.6 × 106 times improvement. (bottom) The optimization with 1,000
iterations on the original parameterization, gives a current of 14 nA, an 81 times improvement
compared to the initial current.

63

current is coming out of the sharp tip near the bulb. The structure in the sub-figure on the

top right gives a current of 1.5𝑚𝐴, a 8.6 × 106 times improvement compared to the initial

current. It has a sharp tip which seems to supply the lion’s share of the current in addition

to a flat edge/bulb part. The geometry on the top right was obtained after 10,000 iterations

and produces an order of magnitude more current than the geometry on the top left that was

obtained after 1,000 iterations. The optimization shown in the bottom of fig. 3-5 resulted

in a structure with a not-particularly-sharp tip that gives a current of 14 nA, an 81 times

improvement compared to the initial current.

3.5.3 Fowler-Nordheim + Schottky

Figure 3-6: Results of optimization with a cost function that depends on an emission model
of un-enhanced Fowler-Nordheim + Schottky. (top left) The optimization on the reduced
parameterization with 1,000 iterations gave 718 nA, 1.31× the initial current. (top right)
The optimization on the reduced parameterization with 10,000 iterations gave 973 nA, 1.77×
the initial current. (bottom left) The optimization on the original parameterization with
1,000 iterations resulted in a current of 684 nA, 1.25× better compared to the initial design.
(bottom right) The optimization on the original parameterization with 10,000 iterations gave
a current of 808 nA, 1.47× better than the initial current.

We ran several runs of optimizations with a cost function that assumes a combined

64

emission of un-enhanced Fowler-Nordheim and Schottky. A sample of the results obtained

are presented in fig. 3-6. Overall, we see a tendency of the optimizer to favor large surface

area. Some sharp tips arise, but it seems like the dominant features are flat edges like in

the top right sub-figure of fig. 3-6 and bulbs like in the bottom 2 geometries in the same

figure. Favoring large surface areas seems to be a property of the Schottky term in the cost

function. The best improvement we see in the in cost function is an improvement of 1.77×.

3.5.4 Enhanced Fowler-Nordheim + Schottky

Figure 3-7: Results of optimization assuming an emission model of enhanced Fowler-
Nordheim + Schottky. (top left) The optimization on the reduced geometry with 1,000
iterations gives a current of 1.29 𝜇A, 2.35× the initial current. (top right) The optimization
on the reduced parameterization with 10,000 iterations resulted in a current of 93.1 𝜇A,
169.6× better compared to the initial current. (bottom left) The optimization on the original
parameterization with 1,000 iterations gave 651 nA of current, 1.19× the initial current.
(bottom right) The optimization on the original parameterization with 10,000 iterations
gave 1.31 mA of current, 2, 386× better than the initial current.

We ran optimization with a cost function that depends on an emission model that com-

bines enhanced Fowler-Nordheim with Schottky. The optimizer favors sharp tips, though

some of the geometries develop bulb like features as well, for example the structure in the

65

top right sub-figure of fig. 3-7. The best improvement in current is seen for the optimiza-

tion on the original parameterization with 10,000 iteration (bottom right of fig. 3-7). The

final current of 1.21 mA, is 2,386× the initial current. The high current is achieved by the

multiple sharp ridges at the tip.

3.5.5 Constraint violation

As mentioned in section 3.2, there are unstated constraints in the optimization, the viola-

tion of which, causes the FEniCS simulation to crash. We collected data about the rate

of constraint violations for each independent optimization. We see from fig. 3-8, that for

both parameterizations, the rate of constraint violation grows as the maximum number of

iterations of the optimization goes up. As the number of maximum iterations increases, the

optimizer finds its way to more obscure and more random geometries. Therefore, each indi-

vidual geometry in the later optimizations is more likely to be a polygon that self-intersects

or have poorly defined normal lines. Self intersecting polygons crash the simulator in the

domain definition and meshing stage, and poorly defined normals crash the simulator in the

electric field calculating stage.

We can see that generally the rate of constraint violation is lower for the reduced pa-

rameterization than for the original parameterization. More interestingly, the rate of growth

of the rate of constraint violation is slower for the reduced parameterization than for the

original one. This is indicated by the less steep slope of the orange dotted fitting line in

comparison to the blue dotted fitting line in fig. 3-8. The significance of this finding lies in

the fact that the garbage collection of FEniCS fails when the simulator crashes without ter-

minating the program. With enough constraint violations, a significant memory leak occurs

and the optimizer crashes with a segmentation fault. With the reduced parameterization, we

can run the optimizer for many more iterations before it encounters enough errors to reach

a segmentation fault. That’s why sections 3.5.1 and 3.5.2 include results for the reduced

parameterization with 10,000 iterations, but not for the original parameterization.

If we wish to run the optimizer without fear of crashing, we can probably code a garbage

disposal process to be triggered after a pre-determined number of simulation crashes. We can,

additionally, use the Shapely python library [56] to check whether the polygon is valid before

66

Figure 3-8: Constraint violation rate vs maximum iteration of the optimizer for original and
reduced parameterization. The spread is due to the usage of different emission-mechanism
cost functions.

attempting to simulate it. However, it is more ideal to minimize the error numbers to begin

with. We can consider forgoing the spline interpolation and accept a linear interpolation

with smoothing on the harsh corners. Alternatively, we can look at quadratic splines instead

of cubic ones. The lower curvature will prevent the curves from having the flexibility to loop

over themselves and form self intersecting polygons. Additionally, we propose new methods

of annealing and new parameterization which might be less prone to constraint violation in

section 3.7.

3.6 Model limitations

“All models are wrong, but some are useful” is quote often attributed to George E. P. Box.

Our simulations do not perfectly agree with experimental works, or even with more advanced

simulations in the field. However, their usefulness is found in their inaccuracy. The very

same features that make the model agree less with reality, makes it faster, allowing us to

implement optimizations with 10,000 iterations that run in less than 25 minutes. This section

67

addresses the sources of inaccuracy in the modeling which enable the speedups.

3.6.1 Emission regimes

Recent work in the field has established that metallic and ceramic electron emitters display

a multi-regime emission behavior. Starting with Schottky emission at low voltages, with

Fowler-Nordheim emission in mid range voltages, and saturation with Child-Langmuir in

high voltages [9, 50]. There is no theory to dictate or explain the relative weighting of the

different emission mechanisms or the cutoff between them. This work considered a Fowler-

Nordheim and a combined Schottky and Fowler-Nordheim emission. Since the theory is not

well understood, the cutoff in the combined emission model was fitted to one experimental

data set. We did not consider Child-Langmuir emission in this work.

As we showed in section 3.5, the assumption of emission mechanism fundamentally

changes the total current measured and the geometrical features that are selected by the

optimizer. The emission model needs to be better understood to better represent reality and

produce truely optimal devices.

3.6.2 Mesh resolution

The effect that the mesh resolution has on the solution of numerical PDEs is often overlooked,

but it is incredibly important. As a general rule, the higher the mesh resolution, the higher

the accuracy of the PDE solution. In finite element methods, the mesh can be thought of

as a basis that the solution gets projected onto. When the basis is larger, there are more

degrees of freedom to express the solution, therefore it is more flexible and accurate. The

major downside of a dense mesh, is the computation time required to solve the PDE on

that mesh [49]. The underlying matrices are 𝑛 × 𝑛 where 𝑛 is the number of mesh nodes.

Matrix solutions are typically 𝒪(𝑛3), so the solution time grown non linearly with the mesh

resolution.

To get a hold of the magnitude of the error from 20 mesh partitions, we simulated a tip

structure with different mesh resolutions and and plotted the field enhancement measured

at the tip and the solution time vs the mesh resolution. The left sub-figure in fig. 3-9 shows

68

Figure 3-9: The effects of the mesh resolution has on the solution can be huge. (left) For a
structure with a tip, the field enhancement at the tip is double when going from 20 to 1000
mesh partitions. (right) The mesh resolution has no noticeable effect on the solution of a
parallel plate capacitor

a more than 2× change in the field enhancement calculated for the same structure with

different mesh resolution. The better accuracy comes at a computational cost, going from

0.2 seconds for a 20 partition mesh, to over 4 minutes for 1000 partitions. For a simulation

of a parallel plate capacitor, on the other hand, we see no major change in either the field

enhancement as the mesh resolution increases. The computation time increases, but it not

as much as we see for the tip, as seen in the right sub-figure of fig. 3-9.

3.6.3 2D electrostatic models

An additional source of inaccuracy comes from our usage of a 2D electrostatic simulation

instead of a 3D one [51]. 2D simulations map well to 3D when the objects simulated are

uniform and extend to approximately infinity in the missing dimension (the dimension ex-

cluded from the simulation). To quantify the quality of the infinite approximation in our

modeling, we recreated 2D versions of 3D simulations seen in literature. We simulate a 2D

cross section of the 3D device simulated by Turchetti et al., in which the authors see a field

enhancement factor of 𝛾 = 7 where 𝐸 = 𝛾 𝑣
𝑑

where d is the gap distance [50]. The field

enhancement factor that we see in our 2D simulations is off by a factor of 3-4, depending

on the mesh resolution. To verify that the deviation is, in fact, due to the 2D simulation

69

Figure 3-10: Simulations of circles of

and not other factors, we simulated structures that have a well known analytical solution for

the field enhancement. We simulated two circles of radius 10 nm with a fixed voltage across

them. We then compared the simulated electric field at the surface of the circles to the

theoretical value of the electric field for spheres and infinite cylinders with the same radius

embedded in 3D space. The formulas we used are

𝐸𝑚𝑎𝑥 = 0.9
𝑉

𝑑

𝑟 + 𝑑
2

𝑟
(3.11)

for spheres, and

𝐸𝑚𝑎𝑥 = 0.9
𝑉

2𝑟
(︀
ln
(︀
1 + 𝑑

2𝑎

)︀)︀ (3.12)

for cylinders [52].

We see a field enhancement that matches the theoretical value for cylinders with more

70

than 90% accuracy for gap distances of 10 mn - 50 nm between the circles. In comparison,

the calculated electric field matches the theoretical value for the sphere model with close to

90% accuracy for distance of 10 nm between the circles. However, the accuracy drops as the

distance increases. For a distance of 50 nm, there’s a 60% agreement between the measured

electric field and the the theoretical value.

It seems that a 2D simulation is a very good approximation when the simulated struc-

ture is uniform and very tall in the dimension that’s omitted. The required length-scale is

probably an order of magnitude or more than the features along the other dimensions. The

devices under study are about 20 - 40 nm tall, around the same order of the gap distance.

When simulating two sheets with a voltage difference, the 2D simulation agrees perfectly

(within numerical noise) to the theoretical structure. The distance between the sheets doesn’t

seem to change the field seen in simulation.

3.6.4 Boundary condition

There seems to be a little bit of an issue with the application of Dirichlet boundary condi-

tions in certain locations. When zooming in on fig. 3-11, we can see that there are a few

points along the geometry for which the Dirichlet condition is not applied. That probably

occurs when the condition applying the boundary conditions assumes a smooth or rounded

surface, but the mesh discretization causes a deviation from that. Therefore, the edges are

in a location different than the boundary condition expects. To remedy this, have a larger

tolerance on the boundary condition location.

3.7 Conclusion and outlook

As we’ve seen from the results in this chapter, there are two features which are selected for

by the optimization, a sharp tip with a very small radius of curvature, and a bulb. The

sharp tip generates a large field enhancement which drives a high current density. The bulb

provides a large surface area to emit current from. The features selected by the optimizer

depend on the assumed emission mechanism. When Schottky dominates the emission, the

algorithm will prefer a bulb while, and when Fowler-Nordheim dominates, a sharp tip will be

71

Figure 3-11: On non straight edges, the Dirichlet boundary conditions sometimes fail to
get applies due to insufficient tolerance of the boundary condition function

selected- within a range. Fowler-Nordheim starts to saturate at higher field enhancements

[9, 48], so when we assume an artificially large 𝛾, or have a high voltage difference, the

algorithm will start tending towards increasing surface area rather than forming sharp tips

for Fowler-Nordheim too. At the limit where the number of iterations approach infinity, we

expect the emitter shape to evolve into either a flat edge infinitely close to the collector or

into a comb with many infinitely sharp tips. Both or which are problematic for different

reasons. The flat edge emitter is a poor design because the emitted current will be uniformly

spread across it and we will have poor control over the current trajectories. Having a beam

with a high current density is much more convenient because it can be bent and re-routed

if needed, while a wide beam with a uniform spread is much more difficult to re-route.

A comb of infinitely sharp tips is problematic because those are essentially impossible to

fabricate. The resolution of modern fabrication is limited by the technology available, but

it is fundamentally limited by the atomic size of the material used.

In our runs of the optimizer, we haven’t seen the algorithm settle to either the flat

edge or comb, presumably because we didn’t let the optimization run for for long enough.

The memory leakage due to repeated constraint violation crash the optimizer before those

structures have a chance to emerge. Below are suggestions for implementations that can

help reduce the rate of constraint violation and speed up convergence.

72

3.7.1 Dynamic step

In the original simulated annealing formulation, the random perturbation that generates

the new test geometry, depends on the temperature at that iteration. The temperature

dependence is usually encoded as the variance of the distribution from which the perturbation

size is drawn. Towards the beginning of the simulated annealing, 𝑇 is high, meaning that

the variance of the distribution is large, allowing a wide spread of perturbation sizes with

a high upper limit. As the annealing proceeds and the system cools down, 𝑇 gets smaller,

and the perturbation sizes approach the mean. Our formulation implemented a temperature

dependant perturbation and a constant variance one. The temperature dependant step is

usually associated with faster convergence to an optimal result. However, we were unable to

test the convergence rate of the temperature dependant version of the algorithm because the

number of constraint violation encountered by it had crashed the optimizer every time. With

a different parameterization or better checks before simulating, we can get the temperature

dependant step to work.

3.7.2 Symmetry

By imposing symmetry constraints across the x axis, the dimensionality of the search space

of the optimal geometry gets significantly reduced. The reductions of the search space is

generally associated with convergence in fewer iterations. We can implement this feature

pretty easily by removing half of the parameter points, constraining the remaining points to

the top half plane, and reflecting the interpolation result onto the bottom half plane.

3.7.3 Smoothing

The results presented in this chapter were generated by a series of random perturbations and

a stochastic selection of beneficial perturbations. The geometrical perturbations consisted of

an independent random perturbation of all parameter point along directions perpendicular

to the surface. Perturbing all the points independently of each other contributes to the

surface roughness of the overall geometry, thus leading to a higher probability of constraint

violation which crashes the simulator. We implemented an averaging window smoothing to

73

the perturbations after every step in an attempt to make the perturbation smoother. That

had the effect of decreasing the expected step size and lowering the variance. After 1,000

iterations with the smoothed perturbations, the resulting shape has not changed by much.

That is because the mean for the perturbation size is zero due to the consideration of inwards

and outwards perturbation, so the expected perturbation when averaging is zero. Another

smoothing method should be considered.

3.7.4 Principle Component Analysis

We notice that the parameterization considered in this work is overly flexible and expressive,

and creates a huge search space of solutions. Meanwhile, the space of valid devices is a small

subspace of the full search space, and the space of optimal devices is even smaller. We can

attempt to find the manifold of valid devices and of optimal devices by doing a principle

component analysis (PCA) which takes the components corresponding to the largest singular

values from a singular value decomposition (SVD). That will cut the optimization into tow

stages. Stage one: run the optimization as before and save all the intermediate geometries.

Then, perform a PCA and transform the parameters. Stage two: run the remainder of the

optimization on the reduced model. Uncovering the manifold of valid devices and running

the optimization on that manifold is guaranteed to stop simulator crashes due to constraint

violation and will likely help us reach the optimal device quicker.

As we discussed earlier, the truly optimal diode under the total emission current maxi-

mization objective, is somewhat ill defined. Which is why we moved to dealing with tran-

sistors which are discussed in next chapter.

74

Chapter 4

Global optimization for gated devices

In the previous chapter, we focused on optimizing the current emitted from diodes. We

considered different emission mechanisms and incorporated them into the cost functions

that were optimized. While diodes are incredibly useful in many applications and can be

used to form complicated logic circuits [1], they do not form a complete set of logic elements.

Typical diodes require the use of a transistor to form a NOT gate. Though, tunneling

transistors which have a negative resistance region can form a NOT gate with a transformer

[2]. Transistors are the building block of modern electronic computation. In this chapter, we

optimize a planar nano vacuum channel transistor (PNVCT) with respect to two figures of

merit: the off/on current ratio and gate leakage. The full device depicted in right sub-figure

of fig. 2-4 has an emitter, two gates, and a collector. To control the scope, we optimize

only the emitter geometry, though next steps should consider optimizing the geometry of

the other components in the device as well. The behavior of transistors is complicated to

express mathematically as an objective function, so we focus on simpler individual attributes

of desirable transistors behaviors such as the on/off current ratio and the gate leakage current.

Optimizing the on/off current ratio is synonymous to minimizing the source-drain leakage

in MOSFETs and is a common figure of merit [31]. Gate leakage, however, is not a concern

in MOSFETs because of the insulating oxide, but in PNVCTs, there is no strong potential

barrier that prevents leakage to the gate, so we need to mitigate that too. We implement

heuristics to speed up the figure of merit calculations and explore regularized optimization.

75

4.1 Cost functions

There are many figures of merit that can be optimized in a transistor such as the cut off volt-

age, saturation, gate modulation, power consumption, frequency response, etc [46, 7]. An

ambitious cost function would be to optimize the the full I-V response to fit to a target desir-

able response. That would require simulating each structure along a two dimensional sweep

as the collector-emitter voltage was changes and as the gate-emitter voltage was changed. To

make things worse, for each simulation in the sweep, we would have to solve the electrostat-

ics, simulate particles emitted, and track them as they made their way from the emitter to

the gate or the collector. That would be incredibly computationally expensive and imprac-

tical for any application. Therefore, we focus on figures of merit that are computationally

less demanding and therefore better suited for an optimization with thousands of iterations.

4.1.1 Switching

In a transistor, the gate controls the conductivity of the channel. When fixing the voltage

between the emitter and the collector, the gate voltage dictates the current emitted from the

emitter and what portion of it makes it to the collector. An ideal transistor has infinite gate

control; when the gate is at high voltage, it turns the device on and causes a high current to

flow between the collector and emitter. When the gate is at a low voltage, it ensures that

no current flows between the emitter and collector. We aim to maximize the on-off current

ratio, hoping to push it as close to infinity as possible. The gate voltage acting as a switch

is the reason we refer to this figure of merit as the switching behavior in addition to calling

it the on/off current ratio or gate control merit. We can mathematically represent this cost

function as

min
𝑝1,...,𝑝𝑛

∫︀
𝜕Ω(𝑝1,...,𝑝𝑛)

𝐽collector(𝐸gate off) · 𝑑𝑆∫︀
𝜕Ω(𝑝1,...,𝑝𝑛)

𝐽collector(𝐸gate on) · 𝑑𝑆
(4.1)

Where 𝐽collector is the current density of a beam that leaves from the emitter and ends up on

the collector and 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) like defined in chapter 3. Integrating the beam over the surface

of the emitter,
∫︀
𝜕Ω

𝐽collector · 𝑑𝑆, gives us the total collector current. We cannot directly

measure the current in the collector. So instead, we are tasked with determining which

76

trajectories leaving the emitter arrive at the collector, and integrating those. Section 4.2 deals

with how we calculate which beams arrive at the collector and which at the gate efficiently.

The term 𝐸gate on refers to the electric field extracted from the electrostatic simulation with

the gate at the on voltage. Similarly, 𝐸gate off refers to the electric field extracted from the

electrostatic simulation with the gate at the off voltage. The electric field, 𝐸, is calculated

as described in eqs. (3.2) and (3.3) with boundary conditions as described in eqs. (3.4)

and (3.5). However, the set of Dirichlet boundary conditions now includes the gates which

can have a high or low voltage across them. For each geometry, we run two simulations;

one with the gate at a high voltage and one with the gate at low voltage. The current

density 𝐽(𝐸) depends on the emission mechanism assumed. We considered three of the four

mechanisms described in section 3.1.1: Fowler-Nordheim, Enhanced Fowler-Nordheim, and

Fowler-Nordheim with Schottky.

4.1.2 Gate leakage

In gated devices that do not have a gate separated by a layer of oxide, there is a concern that

a significant fraction of the emission current will escape to the gate, leading to low signal

at the collector and poor power efficiency. We introduced a cost function that encourages a

strong and robust collector signal and suppresses the gate signal to be weak in comparison.

The cost can be written as

min
𝑝1,...,𝑝𝑛

∫︀
𝜕Ω(𝑝1,...,𝑝𝑛)

𝐽gate(𝐸gate on) · 𝑑𝑆∫︀
𝜕Ω(𝑝1,...,𝑝𝑛)

𝐽collector(𝐸gate on) · 𝑑𝑆
(4.2)

where 𝐽gate(𝐸) refers to the current density of a beam that generates from a spot on the

emitter with electric field 𝐸 and reaches the gate. Similarly, 𝐽collector(𝐸) is the current

density of a beam that generates on the emitter at a spot with electric field 𝐸 and reaches

the collector. For this cost function, the electrostatic simulation needs to be run only once,

with the gate at a high voltage. The low gate voltage case needs not to be considered,

because no current reaches the gate when it is set to low.

77

4.1.3 Regularized

When optimizing an objective, the algorithm could inadvertently make the performance on

another objective worse even if there is no strong inherent trade-off between the objectives.

There are multiple ways to implement multi-objective optimization, where the performance

on one objective is not sacrificed for the benefit of the other. One popular option is to

optimize one objective while forcing the performance on another objective to remain above a

baseline using a constraint. Another approach is to attempt to optimize multiple objectives

simultaneously with a regularizer.

In our devices of interest, a trade-off has been shown between the gate control and the

collector signal strength. When the gate voltage has a lot of influence over the emitter-

collector current, the collector current tends to be low. In the case of a strong trade-off

between objectives, a satisfactory compromise can be achieved by the Pareto front, the

collection of points with a tight trade-off obtained by regularized optimization.

We implemented a multi-objective regularized optimization to asses the trade-off between

the switching cost and the gate leakage cost. A regularized optimization can be written

mathematically as

min𝜆cost1 + (1− 𝜆)cost2 s.t. 𝜆 ∈ [0, 1], (4.3)

or more explicitly

min
𝑝1,...,𝑝𝑛

∫︀
𝜕Ω(𝑝1,...,𝑝𝑛)

𝜆𝐽gate(𝐸gate on) + (1− 𝜆)𝐽collector(𝐸gate off)
· 𝑑𝑆∫︀

𝜕Ω(𝑝1,...,𝑝𝑛)
𝐽collector(𝐸gate on) · 𝑑𝑆

. (4.4)

A regularized cost function requires two cost electrostatic simulations to be run, one with

the gate at high voltage and another with the gate at low voltage.

4.2 Heuristic for particle tracking

With gated devices, current emitted can end up in the collector, gate, or even return back to

the emitter. For that reason, we can no longer use the framework we used for diodes, which

78

assumes that all the current emitted makes its way to where it is needed. Here, particle

tracking is necessary. Typically, particle-in-cell simulations would be used for that purpose.

The different varieties of particle-in-cell simulations include a self consistent simulation where

in each iteration the position and momentum of emitted particles are advanced in an electric

field and the electric field is updated to include the effects of the charged particles. A

lighter-weight version updates the position and momentum of the simulated particles but

not the electric fields. There is a particle-in-cell simulation package called LEopPart that

can be added to FEniCS. However, full particle tracking is a computationally expensive

process, especially when done self consistently to account for space-charge effects. Instead,

we create a rough heuristic for particle tracking as a zeroth order estimate for the purposes of

optimization. We assume that emitted particles have no mass and therefore no momentum,

and that they follow the electric field lines until they reach the collector, the gate, or the edge

of the simulation. While the absolute accuracy of this heuristic might not be high, all that is

needed for optimization is a good relative accuracy that maps to some improvement in the

absolute cost. So long as the heuristic guides the optimizer to a geometry that is close to

the optimal geometry, further local optimization can be done with more accurate models to

converge to the true local optimum. The heuristic for particle tracking was initially developed

as an iterative algorithm for each point on the emitter’s surface as described in chapter 2.

That implementation was sub-optimal, and was sped up by doing an implementation of

binary search on the trajectories.

4.2.1 Bisection search

The current trajectories are indexed by their origin point on the emitter, with the 0 index

having an origin at the tip. Trajectory indices increase in the counter clockwise direction

of their origin point going around the emitter. We realized that the current trajectories

are sorted to some extent; the trajectories near the tip generally end up at the collector,

and the trajectories further from the tip generally end up at the gate. This means that in

order to calculate the current on the collector, we need to find the first and last trajectories

to end up on the collector. All the trajectories indexed by a number smaller than the

first gate trajectory encountered are collector trajectories. All the trajectories indexed by

79

a number larger than the last collector trajectory, will end up on the gate. The bisection

search in practice is slightly more complicated than a normal bisection search because some

trajectories end up neither on the the gate nor the collector; they either fly off to the edge of

the simulation or they loop back to the emitter. This means that some indices of trajectories

need to be skipped before a bisection could be applied to narrow down the search space.

Algorithm 4 in chapter 2 describes the bisection search process.

4.3 Initial performance

To establish a baseline for benchmarking the optimization, we simulated the initial geometry

device under two gate conditions: the gate at low voltage (0 V) and gate at high voltage (15

V). In both simulations, the emitter is at 0V and the collector is at 15V. The performance

of the initial device is strongly variable depending on the assumed emission mechanism.

Therefore, we applied the performance analysis separately to each assumed emission type

and ran separate optimizations for each emission mechanisms.

Gate on Gate off
𝑖collector (nA) 2.63×−36 3.66× 10−60

𝑖gate (nA) 1.96−48 0.00

Cost Value
Switch 1.39× 10−34

Leakage 7.45× 10−13.

Table 4.1: Simulated currents (left) and the corresponding cost functions (right) for tran-
sistor with the initial design assuming Fowler-Nordheim emission. Switch cost refers to the
off/on current ration defined in section 4.1.1. Leakage cost refers refers to the gate/collector
current ratio defined in section 4.1.2.

Table 4.1 shows the gate and collector currents and associated cost function values for

an initial transistor with Fowler-Nordheim emission. The figures of merit seem satisfactory

on first glance, but are essentially meaningless because all currents being compared are

essentially zero, making the figure of merit undefined. The largest-magnitude current, 2.63×

10−36 nA, translates to an electron once every 2× 1018 years.

The currents for a simulation that assumes Fowler-Nordheim + Schottky emission are

listed in table 4.3. These currents are orders-of-magnitude larger than those calculated under

the assumption of un-enhanced Fowler-Nordheim emission and about an order-of-magnitude

larger than those calculated assuming enhanced Fowler-Nordheim, implying that in this

80

Figure 4-1: Results of initial device design simulated in FEniCS with the emitter at 0 V, col-
lector at 15 V, and (left column) gate off (𝑣gate =0 V) and (right column) gate on (𝑣gate = 15
V)and emission model (top) Fowler-Nordheim, (middle) enhanced Fowler-Nordheim, (bot-
tom) Fowler-Nordheim + Schottky.

Gate on Gate off
𝑖collector (nA) 8.98 1.14× 10−3

𝑖gate (nA) 0.114 0.00

Cost
Switch 1.27× 10−5

Leakage 0.013

Table 4.2: Simulated currents (left) and the corresponding cost functions (right) for tran-
sistor with the initial design assuming enhanced Fowler-Nordheim emission with an artificial
enhancement factor of 𝛾 = 7.

81

Gate on Gate off
𝑖collector (nA) 65.8 49.7
𝑖gate (nA) 35.4 7.07

Cost
Switch 0.76
Leakage 0.54.

Table 4.3: Simulated currents (left) and the corresponding cost functions (right) for tran-
sistor with the initial design assuming enhanced Fowler-Nordheim + Schottky emission.

geometry, the Schottky component of the emission dominates.

4.4 Runtime

Figure 4-2: Runtime for optimization of a three-terminal device plotted against the number
of iterations in the optimization. The leakage cost function requires only one electrostatic
simulation, while the switch cost and the regularized cost functions each require two simu-
lations. Therefore, we analyze the runtime of the optimizer under the switch cost and the
regularized cost separately from the runtime of an optimization under the leakage cost.

When analyzing the runtime of the optimization, it is important to differentiate between

cost functions that require only one simulation and cost functions that require two simulation

runs. The optimization is much slower per iteration compared to the optimizations discussed

in the previous chapter because of the trajectory tracking and the usage of two simulations in

some cost functions. The runtime is roughly linear in the number of iterations. Intuitively,

the slope of the linear fit to the runtime of the regularized cost and switch cost is about

twice as steep as the slope of the fit for the leakage cost.

82

4.5 Switch Results

For each one of the emission mechanisms considered, we ran 6-10 rounds of optimization

to minimize the ratio of off-current to on-current in the collector. We used the geometry

displaced in fig. 4-1 as the initial geometry and used the reduced parameterization for the

decision variables.

4.5.1 Fowler-Nordheim emission

Figure 4-3: Results of optimizing the NVCT with switch cost function assuming Fowler-
Nordheim emission and maximum iteration of 10000. In both cases the cost function is
improved by reducing the off current.

The results of the optimization with the switch cost function assuming a pure Fowler-

Nordheim emission look promising at first. For the two cases displayed in fig. 4-3, we see

cost function values of 9.8×10−47 and 7×10−43. That is 13 and 9 orders of magnitude better

than the initial geometry’s performance respectively. The figure stated here is misleading

however, because the advantage is achieved by pushing down the off current rather than

increasing the on current. The effective currents are still zero, making the figures of merit

are undefined.

83

Putting absolute accuracy aside, we can appreciate the geometrical features that the

optimizer selected for in the relative improvement. In the top sub-figure of fig. 4-3, the side

sharp tips exactly in line with the left edge of the gate suppress the electric field seen by the

tips when the gate is off.

4.5.2 Enhanced Fowler-Nordheim emission

Figure 4-4: Results of optimizing the NVCT with switch cost function assuming enhanced
Fowler-Nordheim emission and maximum iteration of (top row) 1000 and (bottom row)
10,000. (left column) gate off and (right column) gate on.

The results from optimizing the device for the switch cost function with enhanced Fowler-

Nordheim emission looks promising. For the examples shown in fig. 4-4, we see off-current to

on-current ratios of 1.4×10−6 and 8.3×10−14 for the 1000 iteration and the 10,000 iteration

examples respectively. Here too, the algorithm achieves a better objective value by reducing

the off current, but without significantly eliminating the on current too.

Interestingly, the optimizer favors a feature of two symmetric bumps instead of a tip,

a feature that can be seen in the top row of fig. 4-4 among other simulations that are not

shown here. When the optimizer does find a tip, it keeps the bumps symmetrically above

84

and below it.

4.5.3 Fowler-Nordheim + Schottky emission

Figure 4-5: Results of optimization of switch cost function assuming Fowler-Nordheim +
Schottky emission for (top) 1000 iterations and (bottom) 10,000 iterations. (left column)
gate off and (right column) gate on

For the example of 1,000, iterations we see an off/on current ratio of 0.39, a 48% decrease

from the initial value of 0.76. For the example of 10,000 iterations we see an off/on current

ratio of 0.088, an 88% decrease from the initial ratio. It seems like the optimizer is insisting

on increasing the on current, at the expense of making the off current also somewhat higher.

The way the optimizer increases the collector current when the gate is on is by creating

features that lie exactly in the space between the top and bottom gate. When the gates

are on, the features see the potential gradient and emission is encouraged, but because the

features are at the same 𝑥 coordinate as the edge of the gate, the electrons will be swept to

the collector instead of being swept into the gate. Those features also increase the emission

when the gate is off, but at a rate lower than the rate that still improves the objective value.

85

Figure 4-6: Results of minimizing the gate leakage cost assuming Fowler-Nordheim emission
for (left) 1000 iterations and (right) 10,000 iterations. Both structures achieve cost function
values that are 13 orders of magnitude smaller than the initial cost.

4.6 Leakage Results

For each one of the emission mechanisms considered, we ran a few rounds of optimization to

minimize the leakage current stolen by the gate. We used the geometry displaced in fig. 4-1

as the initial geometry and used the reduced parameterization for the decision variables.

4.6.1 Fowler-Nordheim

In the example that was run for 10,000 iterations (right sub-figure of fig. 4-6), the optimizer

manages to reduce the fraction of current proportionally consumed by the gate by pushing

the device edge to the right, past the gate. This design allows for gate current of 8× 10−26

times the collector current without decreasing the collector current to a point where it is

no longer detectable. That is a 13-order-of-magnitude reduction in the cost function with

respect to the initial value. However, from inspecting the figure, we can assume that the

on/off current ratio is close to one. In the example that converged in 1000 iterations (left

of fig. 4-6), the device became sharp only in the center space between the two gates causing

emission to be present at a location where the electrons will get swept to the collector. The

gate to collector current ratio is 6.2× 10−26, a similar cost function value as the result in the

right sub-figure, yet here the collector current is essentially zero (an electron emitted once

every 9,000 years).

86

4.6.2 Enhanced Fowler-Nordheim emission

Figure 4-7: Gate on simulations of results of an optimization of gate leakage with enhanced
Fowler-Nordheim emission assuming an artificial enhancement factor of 𝛾 = 7. (top row)
Results of optimizations with maximum iteration = 1,000. (bottom row) Maximum iteration
= 10,000.

In fig. 4-7, we show results of an optimization assuming enhanced Fowler-Nordheim emis-

sion. We see gate/collector ratio cost values of (left to right, top to bottom) of 2.3 × 10−3,

2.06× 10−4, 3.8× 10−6, and 3.4× 10−4. With an initial cost of 0.013, we see improvements

of 5.65×, 63×, 3.421× 104×, and 38× respectively.

An interesting feature that emerges here is the series of emitter dips in the emitter sides

near the gate corners. A large field enhancement is seen near the gate corners because they

are simulated as perfectly sharp, and the points on the emitter closest to the gate corner

are most likely to emit current that will be absorbed by the gate. To decrease the emission

that is absorbed by the gates, the optimizer pushes away the side of the emitter closest

to the gate corner, causing those segments of the emitter to be flat or cave in. Concavity

shields the points from the large electric field and flatness reduces the field enhancement,

resulting in less emission at the proximity of the gate. The collector current is made higher

87

by introducing sharp features in the space between the gates, at a spot where the emitted

beam will be swept directly to the collector.

4.6.3 Fowler-Nordheim + Schottky

Figure 4-8: Gate on simulations of results of an optimization of gate leakage with Fowler-
Nordheim + Schottky emission. (left) optimizations stopped after 1,000 iterations. (right)
10,000 iterations.

In fig. 4-6 we show the results of an optimization assuming Fowler-Nordheim + Schottky

emission. Despite the difficulties, the optimizer manages to push down the cost function by

creating sharp features that generate a large current that then gets swept to the collector.

The gate current also gets increased as a result of secondary features, but the overall cost

decreases.

Schottky emission has an exponential of a square root dependence on field enhancement,

a weaker dependence than Fowler-Nordheim exhibits. Additionally, Schottky assumes an

amount of thermal emission even for zero electric field. For those reasons devices with

Schottky emission are generally difficult for the optimizer when it comes to gate-to-collector

current ratio reduction. The introduction of sharp features to help raise the collector current

has a more muted effect and all points near the gate are emitting current that is being

absorbed by it, even when the electric field there is low.

88

Figure 4-9: Optimizations plotted as function of their performance on switch cost and
gate cost with (top) Fowler-Nordheim emission, (middle) enhanced Fowler-Nordheim, and
(bottom) Fowler-Nordheim + Schottky. In each plot, the performance of the initial geometry
is plotted in black, the results of optimizing only one cost function are in blue, and the results
of regularized optimization are in orange. The raccoons are overlaid on the trash region of
each sub-figure for demonstration.

89

4.7 Regularized cost result

Regularized cost functions are designed to balance and manage the trade-off between multiple

objectives that might be working against each other. It is common to visualize a collection

of optimizations with 𝑛 objectives as points in R𝑛 with each dimension representing per-

formance on one objective, but more sophisticated visualizations exist for high number of

objectives [26]. The Pareto front is the region in which there is an active trade-off between

the objectives; in order to do better on one objective, you must sacrifice performance on

another [17]. To visualize the benefit of our regularized optimization, we created fig. 4-9,

in which we plotted the results from each optimization as a point in 2D where the 𝑥 axis

represents the switching cost (eq. (4.1)) and 𝑦 axis represents the gate cost (eq. (4.2)). In

each subplot, the initial solution is plotted in black with dashed lines through it dividing the

space into regions with cost lower and higher than the initial cost in each dimension. The

results of optimization with a single objective are plotted in blue, while the results of the

regularized optimization are plotted in orange. The top right region is shaded to represent

its irrelevance due to the fact that points in it suffer from a worse performance on both cost

functions compared to the initial solution. In theory, that region should be empty because

the optimizer has no incentive to return a geometry that preforms worse on both cost func-

tions. However, we make approximations in calculating the cost in order to speed up the

optimizations. Those approximations are valid in most cases, but do sometimes lead the

optimizer astray. This issue does not invalidate the approximations altogether, but it means

that the results of the optimizer cannot be trusted blindly. A more sensitive and complete

simulation of the results needs to be run in order to verify them.

When allowed to converge fully, the regularized optimization points trace out the Pareto

front, which is the curve bounding the optimization. Here, however, several limitations

prevented that convergence from occurring. Those limitations along with the limitations

that cause points to appear in the upper right corners of (trash region) the sub-figures of

fig. 4-9 are discussed in section 4.8. Despite the limitations, we can see some interesting

characteristics of the optimization from analyzing fig. 4-9.

Each sub-figure in fig. 4-9 visualizes the results of a set of optimizations run under the

90

assumption of a different emission mechanism. Broken lines are drawn through the point

representing the initial geometry, cutting each sub-figure into four regions.

The upper-right region is defined as the trash region (raccoons are overlaid for demonstra-

tion). Points in the the trash region represent geometries that suffer from worse performance

on both objective functions compared to the initial geometry.

The diagonally opposed upper-left and lower-right corners are defined as the trade-off

regions. They represent solutions, that in order to achieve better performance on one metric,

had to sacrifice performance on another metric. For emission models of Fowler-Nordheim

and enhanced Fowler-Nordheim, we see that most points are in the union of the upper-left

and lower-right regions.

The lower left region is the optimal region. There, the geometries perform better on both

metrics when compared to the initial geometry. The optimizations with Fowler-Nordheim

has a few points in that region, none of which were generated from a regularized opti-

mization. The optimization with enhanced Fowler-Nordheim has one point in that region.

Surprisingly, the Fowler-Nordheim + Schottky emission model has many points in the op-

timal region. Interestingly, none of the points in the optimal region were generated by a

regularized optimization.

4.8 Limitations

In addition to the limitations discussed in section 3.6, which apply here as well, gated devices

experience limitations unique to them.

4.8.1 Step size

Calculating the electric field lines is done iteratively by calculating the potential gradient,

taking a step in the direction of the gradient, and repeating until a stopping condition is

reached. See algorithm 3 for full algorithm. Assuming a step size 𝜖, we have

(𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) = 𝜖∇𝑢(𝑥, 𝑦) + (𝑥, 𝑦)

91

The step size taken will affect the accuracy of the traced field line. Taking a smaller step

size will result in a more accurate trace at the price of requiring more iterations to reach the

end of the trajectory and increasing the runtime. In the optimization loop, we selected step

size of 𝜖 = 0.4 nm for a balance of accuracy and computational speed. When evaluating the

results of the optimization, we use 𝜖 = 0.1 nm for higher precision.

4.8.2 Bisection search

In the bisection search algorithm, we find the index of the last trajectory to end up on

the collector and assume that all trajectories with indices smaller than it end up on the

collector and that all trajectories with indices larger than it end up at the gate. We know

that electric field lines do not intersect, so no trajectories with smaller index will end up

on the gate. However, some of the trajectories do end up looping back into the emitter or

flying off the edge of the simulation. Depending on their index, they will be counted as

collector or emitter current, even though they should be excluded, as we do properly in the

post optimization evaluation of the results. This limitation could be the main contribution

to the disparity between the cost function evaluation happening during the optimization and

the post optimization evaluation.

4.8.3 Particle tracking

The full physical model is a lot more complicated, it involves particles getting emitted, in-

teracting with each other, and gaining momentum as they accelerate across the potential

difference, and influencing the electric fields around them. Simulating the accurate particle-

particle and particle-field interactions is computationally expensive, but it will be more

accurate. Likely, the charge in the particles will alter the field seen at the emitter and sup-

press emission somewhat. By ignoring the space charge effects, we do not see the saturation

at high voltages and we get probably more current than we should.

92

4.8.4 Gate emission

In our modeling we assumed that only the emitter emits current and that the collector and

the gates collect currents. However, the gate is capable of emitting current, especially when

there is a potential difference between it and the collector. This means that we were ignoring

potential current seen at the collector due to gate emission when the gate is at low voltage.

4.9 Conclusion and outlook

In this chapter we explored two figures of merit to optimize in a transistor. The first is the

switching behavior quantified as the ratio of the collector current when the gate is turning

the device on to the collector current when the gate is turning the device off. The second is

the gate leakage current which is quantified as the ratio of the gate current to the collector

current. We optimized devices with these figures of merit using the framework described in

chapter 2. Although the optimizations had limitations, we discovered useful features like the

exact 𝑥 coordinate to create sharp features that see an electric field influenced by the gate,

emit current that is absorbed by the collector.

In future iterations, we should seek to optimize the gate and collector geometries in

addition to the emitter. Additionally, we should verify the final results with a full particle

in cell simulator.

93

94

Chapter 5

Conclusions, impact, and outlook

5.1 Conclusions

In this thesis we built a framework to simulate and optimize electron emitting nano vacuum

channel diodes and transistors. We used FEniCS, an open source finite element solver with

additional layers of home-brewed code to account for emission and particle tracking. We

formulated cost functions to optimize the current emission from the diode and the switching

behavior and gate leakage for the transistor. We ran the optimization for different param-

eterizations, different cost functions, different maximum iterations, and different emission

models. We showed that un-intuitive device designs can be discovered by means of a rel-

atively simple optimizations. The geometrical features that emerge from the optimization

heavily depend on the emission mechanism assumed, which is yet to be fully determined in

PNVCTs. For the diode, we notice a tip and bulb feature emerge form optimizing the cur-

rent while assuming enhanced Fowler-Nordheim emission and Schottky + Fowler-Nordheim

emission. For enhanced Fowler-Nordheim + Schottky we see a tendency towards particu-

larly spiky geometries. For gated devices, we notice a symmetric double rounded tip emerge

for the off/on figure of merit when assuming enhanced Fowler-Nordheim emission. We also

notice the inward concavity near the gate for the minimum gate leakage figure of merit. In

both the costs of transistor we see sharp tips and other features that encourage emission

emerge at the exact 𝑥 coordinate of the right edge of the gate, where the features see the

field caused by the gate, but the current produced at the features is not pulled by the gate.

95

Instead, it makes it way to the collector.

Many simplifying assumptions and approximations were made in order to speed up the

simulation, making it fast enough so that an optimization with thousands or tens of thou-

sands of iterations can run in an acceptable time. The first approximation made was using

a two dimensional electrostatic simulations instead of a three dimensional one. This approx-

imation is accurate when the gap and the features of the emitter are much smaller than the

height of the device in real life. However, for bigger gaps we might get factor differences and

errors of 40%. An additional time saving simplification was the mesh resolution used in the

electrostatic simulation. Instead of using an incredibly fine mesh, we used a resolution of 20

instead of 1,000 which would have given 2× more accurate results but also would have taken

250× longer to compute. An additional assumption that applies only to gated devices was

the heuristic to particle tracking used to approximate the current at the collector and at the

gate. We cannot provide a quantification of the error caused by this approximation because

of lack of access to particle in cell simulations to use to calculate a more accurate figure to

use for benchmarking.

The bisection search used to speed up the summation of the relevant particle trajectories

can introduce errors. The search algorithm finds the first and last trajectories to arrive at

the collector. It assumes that all the trajectories indexed by numbers in the range of the

trajectories found end up at the collector. All other trajectories are assumed to end up

at the gate. However, there are trajectories that get reflected back to the emitter or fly

off the edge of the simulation which arbitrarily get added to the collector or gate current,

erroneously inflating the collector or gate currents. In most cases, the optimized result for

the approximate model maps to cost value that is better than the initial cost in a finer and

more accurate simulation. However, there are geometries returned by the optimizer that

when evaluated on a finer simulation, perform worse than the initial geometry. This by

no means invalidates the optimization process or the approximate simulations, but it does

establish that the results need to be verified with a finer simulation before moving on to the

fabrication.

96

5.2 Impact

The work described in this thesis is impactful for several reasons. The optimization is

useful at recommending geometries that are likely to be optimal. Those geometries can be

fabricated, saving the device designers time, money, and effort on fabrication and testing.

Additionally, the results of the optimization deepen our understanding of the device physics

and the models that are used to describe it. When unexpected geometrical features arise

from the optimization, we are confronted with new information that causes us to rethink our

modeling and leads to a better understanding of the model. Finally, this work establishes a

framework for an optimization process that is completely open source and publicly accessible.

Device designers will be able to download our code, apply the relevant changes, and explore

optimization at no cost and without needing to acquire academic licenses for commercial

software packages.

5.3 Next steps

Some suggestions for immediate futures steps to improve the optimizer are included in chap-

ters 3 and 4 as suggestions. Those suggestions include forcing symmetry on the parame-

terization, implementing a dynamic step size optimizer, and optimizing the shapes of the

collector and emitter. Additional ideas for optimization improvement are given in the next

sections.

5.3.1 Optimization under voltage sweep

The devices modeled and optimized in this work are operated under a range of voltages.

Diodes are operated under a one dimensional collector-emitter voltage. Transistors have

a 2D voltage sweep range, comprising of the sweep in collector-emitter voltage and the

sweep in gate-emitter voltage. While the electric field solution is linear, the current emission

and the particle flight in space are not linear in the voltage difference. Therefore, a more

complete optimization framework will consider optimizing and evaluating a device over its

full operating range. This will require many more simulations per optimization, but might

97

ultimately lead to a more informed optimization with overall better results.

5.3.2 Fabrication constraints

While the optimizer might attempt to create infinitely sharp corners and infinitely narrow

features, the fabrication is physically limited by the grain size of the material that is de-

posited to make the device. To prevent infinitely sharp corners from occurring, we used a

spline interpolation between the parameter points, which prevents sharpness, but still allows

features with small radii of curvature. To prevent features with a small radii of curvature, we

can directly penalize occurrences of radii below a certain threshold and add the penalizing

term directly to the cost function. Alternatively, we can add a minimum radius of curvature

as a constraint of the optimization.

Very narrow features are not physically impossible to fabricate, but are not robust because

of the fabrication variations and the tendency of narrow structures to be fragile and break

off. To discourage the optimizer from gravitating towards narrow and non robust structures,

we can add an additional term to the cost function penalizing the surface area to volume

ratio. The penalizing term will have a lowest value when the object is spherical and highest

when the shape irregular and windy.

The features described in this section are not yet implemented, but can be easily im-

plemented with help from already existing python packages such as Scipy and Shapely [41,

56].

5.4 Outlook

This work highlights the value and power of shape optimization and sets the stage for extend-

ing its usage to a variety of related projects. We are working on applying shape optimization

to fabrication aware design, adjoint optimization, and optical applications.

98

5.4.1 Fabrication-aware design

The nano fabrication process suffers not only from hard physical limitations such as the

atomic size or grain size of the material used, but also from limitations arising from the state

of fabrication technology.

NVCT devices are fabricated by layering a resist on the substrate, and then exposing

the resist to an electron beam at predetermined locations for some duration of time. Then,

the resist is put through development which breaks it down at the locations that were

exposed beyond some threshold. Then, the material for the devices is deposited into the

vacancies created by the resist breakdown. Eventually, the resist mask is washed away and

the deposited structure remains [45]. Additional steps can be applied to create an undercut,

but we will focus on the other parts of the process. The electron typically is assumed to have

a Gaussian spatial profile, which along with the threshold process for the resist development

and the finite grain size of deposited material, almost guarantee that the layout attempted

won’t match the final shape produced very well, especially in regions of very fine features.

There is a lot of art and acquired expertise in the process of tinkering a layout given to a

fabrication tool to get a desired target shape with sharp features at the other side. We wish

to include consideration for the fabrication process in the optimization, which can be done

in a several ways.

We could run the optimization as before, and after the final iteration, reverse engineer a

layout that will produce the closest shape to the target when placed in a nano fabrication tool.

Going from a target design to the layout is an inverse design problem which is a particular

flavor of optimization. This method will be the fastest of the methods proposed here, but

it is problematic in some cases. For example, if the optimizer generates a target shape

that cannot be fabricated, the closest fabricable shape might have a completely different

performance which is considerably sub-optimal.

Another method would be to bake a fabrication simulation into every iteration of the

optimization. This will make the "decide if to keep" step evaluate the cost function on the

shape that emerges on the other size of the fabrication simulation. The benefits of this

method are that the optimizer will seek to optimize the the fabricated shape, but will return

99

the layout for it once converged ion addition to not returning shapes that are unfabricable.

This method promises the most accuracy and usefulness, but is also incredibly slow and will

require coding an involved simulator with many steps.

The third approach acts like a compromise between the two methods suggested above.

We can add a layer that applies a Gaussian filter convolution to the parameter shape. The

convolution will smooth out harsh features and will simulate the effects of the electron beam

without requiring an intense fabrication simulation. It might be less accurate than a method

using a full fabrication simulation, but it is a lot faster and likely to produce a result that is

close enough to the result of the involved simulator.

5.4.2 Adjoint optimization

Finite difference is an intuitive and straight forward method for calculating a performance

gradients, though it is not nearly the most efficient one. Calculating a cost gradient using

finite difference requires 𝑛 + 1 simulation solves where 𝑛 is the number of parameters that

are optimized over. The adjoint method can be used to calculate a performance gradient of

a system efficiently, in only two system solves. It is used a lot in photonic design [21] and is

beginning to get applied in electron emitting and electron path devices [37].

For a system simulation that solves

𝑔(x, 𝑝) = 0

with parameters 𝑝, state vector x, and a merit equation

𝑓(x, 𝑝),

we derive the performance gradient 𝑑𝑓
𝑑𝑝

with tow system solves as follows

𝑔⊤x 𝜆 = −𝑓⊤
x (5.1)

𝑑𝑓𝑝
𝑑𝑝

= 𝜆⊤𝑔𝑝 (5.2)

100

[35]. In our work, the Laplace equation gets projected into a finite element space and is

solved by a matrix equation

𝜕Φa− 𝐿 = 0, (5.3)

where 𝜕Φ is a matrix of the form

𝜕Φ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜕𝜑1

𝜕𝑥1

𝜕𝜑1

𝜕𝑥2

𝜕𝜑2

𝜕𝑥1

𝜕𝜑2

𝜕𝑥2

...
𝜕𝜑𝑛

𝜕𝑥1

𝜕𝜑𝑛

𝜕𝑥2

⎤⎥⎥⎥⎥⎥⎥⎦ .

The 𝜑𝑖 are the basis functions for the finite element method. The system variables x can be

thought of as the set of coefficients of the basis functions a, such that

𝑈 =
∑︁
𝑗

𝑎𝑗𝜑𝑗. (5.4)

The merit function 𝑓(a, 𝑝), contains the nonlinear emission that depends on the electric field

𝐸 = −
∑︁
𝑗

𝑎𝑗∇𝜑𝑗

FEniCS allows users to access the deepest levels of code including nodal quantities and

basis functions. Thus, we have access to the 𝜕Φ matrix and can write an adjoint optimization

using the mesh quantities directly. We have done most of the derivation in order to implement

this. However, the node ordering is not immediately intuitive and has been preventing us

from moving forward.

5.4.3 Adjoint method for particle tracking

The work in chapter 4 relies on a heuristic to particle tracking. We considered the heuristic

as a fast approximation to the particle in cell (PIC) simulation. We could however, afford

to use a PIC if we can compute the direction of steepest descent efficiently, making the

optimizer converge quickly. Calculating an adjoint method to a PIC is unintuitive because

101

the particle emission and progression in space are highly non-linear. An additional diffi-

culty comes from the fact that the cost functions depend on currents that are defined as

a sum of discrete particles arriving at a target. Taking a gradient of a discrete quantity is

mathematically undefined. A work by Antenson et al. relies on creative use of the Green

identities and Poisson’s equation relating charge and potential to circumvent the discrete

quantities when calculating the adjoint for a PIC simulation in an electron gun [34]. We can

use Antenson’s formulation for the particle progression in time, but it does not account for

field dependant emission. We consider the option of including a field dependent emission in

the formulation and re-deriving the adjoin, or alternatively, alternating between optimizing

the electron trajectories with the PIC adjoint and optimizing the emission with the method

in section 5.4.2.

5.4.4 Optimization for optical emission

One of the many advantage of NVCTs is that they can be driven optically by ultrafast

pulses. Their low capacitance combined with the ballistic transport of the electrons through

the channel, allow for almost instantaneous current responses to the driving optical pulses.

PNVC device can sample the waveform of an 100THz optical pulse [43], they are sensitive

to the carrier envelope phase (CEP), respond to pulses with polarization aligned with the

geometry , and suppress pulses with perpendicular polarization. Previous work in ultrafast

optics shows that when NVCT devices are operated optically, their response is heavily de-

pendant on their geometry. A work by Buckley et al. compared the resonant responses of

several antennas of slightly different geometries, but with the same radius of curvature at

the tip. They found a significant differences in the resonant response and CEP sensitivity

for the different structures[44]. That work highlights the potential for shape optimization in

this area. Shape optimization can be used to design devices with a target resonant frequency

response, optimize devices for CEP detection, or to have a tailored polarization response.

The cost function for the shape optimization here will have to account for the time

dependence of the exciting electric field and the physics of the light matter interaction. We

will have to run a time domain simulation which aggregates the response of the device to the

excitation field and calculates the desired figure of merit. MEEP is an open source python

102

package that specializes in optical simulations. It has a built in adjoint method which can

be used for local shape optimization of a structure [54].

103

104

Appendix A

Code

A.1 Simulation code

This appendix chapter contains simulation code referenced in the thesis text.

1 # import relevant libraries

2 from fenics import *

3 from dolfin import *

4

5 # Define the solution domain using geometrical objects

6 emitter = Polygon([Point(coords[0][i], coords[1][i]) for i in

range(len(coords[0]))])

7 gate_top = Rectangle(Point(-20, 30), Point(-10, ymax))

8 gate_bottom = Rectangle(Point(-20, ymin), Point(-10, -30))

9 domain = Rectangle(Point(xmin, ymin), Point(xmax, ymax)) - emitter - gate_top -

gate_bottom

10

11 # Create the mesh

12 mesh = generate_mesh(domain, 20)

1 # select a function space and define trial functions and test functions

2 function_space = FunctionSpace(mesh, ’CG’, 1)

105

3 trial_fxn = TrialFunction(function_space)

4 test_fxn = TestFunction(function_space)

1 # variational method

2 a = inner(grad(trial_fxn), grad(test_fxn))*dx

3 L = Constant(0.0)*test_fxn*dx

1 # boundary conditions

2 out = DirichletBC(function_space, Constant(15), out_boundary)

3 em = DirichletBC(function_space, Constant(0), on_emitter)

4 gate = DirichletBC(function_space, Constant(17), on_gate)

5

6 bcs = [out, em]

1 def on_emitter(x, on_boundary):

2 return on_boundary and (intersect_surface(np.transpose(out2), x, tol) or

intersect_surface_2(np.transpose(out2), x, tol))

3

4 def intersect_surface(outline_points, point_star, tol):

5 """ used for determaining points on the inner boundary for boundary conditions.

6 Takes in a test point and an array of points which define a surface.

7 The code linearly iterates through the outline array and checks whether the

test point is on the line connecting point i with point i+1.

8 Returns a boolean value

9 TODO: find a better and more efficient way to calculate this

10 """

11 x_star, y_star = point_star

12 is_on = False

13 for i in range(len(outline_points[:, 0]) -1):

14 if abs(outline_points[i, 0] - outline_points[i+1, 0]) < tol:

15 if abs(x_star - outline_points[i, 0]) < tol and ((y_star <=

outline_points[i,1] and y_star >= outline_points[i+1,1]) or (y_star

106

>= outline_points[i,1] and y_star <= outline_points[i+1,1])):

16 is_on = True

17 elif abs(outline_points[i, 1] - outline_points[i+1, 1]) < tol:

18 if abs(y_star - outline_points[i, 1]) < tol and ((x_star <=

outline_points[i,0] and x_star >= outline_points[i+1,0]) or (x_star

>= outline_points[i,0] and x_star <= outline_points[i+1,0])):

19 is_on = True

20 elif (x_star <= outline_points[i,0] and x_star >= outline_points[i+1,0])

or (x_star >= outline_points[i,0] and x_star <= outline_points[i+1,0]):

21 m = (outline_points[i,1] - outline_points[i+1,1])/(outline_points[i,0]

- outline_points[i+1,0])

22 b = outline_points[i,1] - m*outline_points[i,0]

23 if abs(y_star - m*x_star - b) < tol:

24 is_on = True

25 return is_on

26

27 def intersect_surface_2(outline, point_star, tol):

28 poly = [(outline[i, 0], outline[i, 1]) for i in range(outline.shape[0])]

29 line = shapely.geometry.Polygon(poly).buffer(tol)

30 point = shapely.geometry.Point(point_star[0], point_star[1]).buffer(tol)

31 return line.intersects(point)

1 # assemble the system into matrices with boundary conditions

2 A, b = assemble_system(a, L, bcs)

3

4 # define solver parameters

5 solver = KrylovSolver(’cg’, ’ilu’)

6

7 # allocate a function space function and vector for the solution

8 u = Function(function_space)

9 U = u.vector()

10

107

11 # solve

12 solver.solve(A, U, b)

1 V_g = VectorFunctionSpace(mesh, ’CG’, 1)

2 v = TestFunction(V_g)

3 w = TrialFunction(V_g)

4 a = inner(w, v)*dx

5 L = inner(grad(u), v)*dx

6 grad_u = Function(V_g)

7 solve(a == L, grad_u)

1 def fowler_nordheim_emission(E_strength, area, phi):

2 """ Takes in an electric fielsd magnitude, area, and work function. Determains

the current due to fowler nordheim emission in that area

3 """

4 afn = 1.5414e-6 # eV v^-2

5 bfn = 6.8309 # eV^(-3/2)V/nm

6 nu = 1

7 J = afn*(np.power(E_strength, 2)/phi)*np.exp(np.divide(-nu*bfn*np.power(phi,

3/2), E_strength, out=np.zeros_like(E_strength), where=E_strength!=0))

8 return J*area

1 def find_ppoints(x, y, epsilon=1/20):

2 """ The code takes in an array of x values and an array of y values. Together

they describe an outline of a shape.

3 The code uses the cross product to generate the outward pointing normal for

every point on the outline.

4 The outward normal is used to find a new point that is in the simulation

domian, just outside the shape.

5 This is used to find a point just outside the emitter to test the e field in

because the gradient isn’t defined on the boundary (apperantly)

6 """

108

7 x_new = []

8 y_new = []

9 for i in range(len(x)-1):

10 x_vec = x[i+1] - x[i]

11 y_vec = y[i+1] - y[i]

12 norm_factor = np.sqrt(x_vec**2 + y_vec**2)/epsilon

13 x_vec /= norm_factor

14 y_vec /= norm_factor

15 x_new.append(x[i] + y_vec)

16 y_new.append(y[i] - x_vec)

17 return x_new, y_new

1 def find_ppoints(x, y):

2 """ The code takes in an array of x values and an array of y values. Together

they describe an outline of a shape.

3 The code uses the cross product to generate the outward pointing normal for

every point on the outline.

4 The outward normal is used to find a new point that is in the simulation

domian, just outside the shape.

5 This is used to find a point just outside the emitter to test the e field in

because the gradient isn’t defined on the boundary (apparently)

6 """

7 new_points = np.zeros((len(x)-1, 2))

8 x_vec = x[1:] - x[:-1] # x_vec = x[i+1] - x[i]

9 y_vec = y[1:] - y[:-1] # y_vec = y[i+1] - y[i]

10 norm_factor = 10*np.sqrt(np.power(x_vec, 2) + np.power(y_vec, 2))

11 x_vec = np.divide(x_vec, norm_factor)

12 y_vec = np.divide(y_vec, norm_factor)

13 new_points[:, 0] = x[:-1] + y_vec

14 new_points[:, 1] = y[:-1] - x_vec

15 return new_points

109

1 new_points = find_ppoints(x_coords, y_coords)

2 magnitude = np.zeros_like(new_points[:, 0])

3 area = np.zeros_like(new_points[:, 0])

4 for i in range(len(new_points[:,0])):

5 grad_at_x = grad_u(Point(new_points[i, 0], new_points[i, 1])) #Point(x[i],

y[i])

6 dot_product = (new_points[i, 0] - x_coords[i])*grad_at_x[0] + (new_points[i,

1] - y_coords[i])*grad_at_x[1]

7 if dot_product >0:

8 # if the dot product is negative, the current is pointing outward and can

be counted

9 magnitude[i] = np.sqrt((grad_at_x[0])**2 + (grad_at_x[1])**2)*1e9

10 # don’t need an else because the value will be zero by default

11 if i<len(new_points[:, 0]) - 1:

12 seg1 = np.sqrt((new_points[i, 0] - new_points[i-1, 0])**2 + (new_points[i,

1] -new_points[i-1, 1])**2)

13 seg2 = np.sqrt((new_points[i+1, 0] - new_points[i, 0])**2 +

(new_points[i+1, 1] -new_points[i, 1])**2)

14 area[i] = 1e-9*(seg1+seg2)/2

15 else:

16 seg1 = np.sqrt((new_points[i, 0] - new_points[i-1, 0])**2 + (new_points[i,

1] -new_points[i-1, 1])**2)

17 seg2 = np.sqrt((new_points[0, 0] - new_points[i, 0])**2 + (new_points[0,

1] -new_points[i, 1])**2)

18 area[i] = 1e-9*(seg1+seg2)/2

19

20 total_current = np.sum(fowler_nordheim_emission(magnitude, area, 5.3))*40e-9 * 1e6

get current as micro amps

1 paths = []

2 for i in range(len(x)):

110

3 grad_at_x = grad_u(Point(x[i], y[i]))

4 ...

5 """calculate dot product, magnitude, and area like above"""

6 ...

7 if dot_product>0 :

8 current_path = [(x[i], y[i])]

9 x_new = x[i] + grad_at_x[0]

10 y_new = y[i] + grad_at_x[1]

11 for q in range(400):

12 if x_new >= xmax: # reached collector

13 current_path.append((x_new, y_new))

14 collector_currents[i] = magnitude[i]

15 break

16 elif gated_device and reached_gate([x_new, y_new]): # reached gate

17 current_path.append((x_new, y_new))

18 gate_currents[i] = magnitude[i]

19 break

20 elif y_new >= ymax or y_new <= ymin or x_new <= xmin or

intersect_surface(np.transpose(out2), [x_new, y_new], 5e-1): #

esceped through the side or looped back to emitter

21 current_path.append((x_new, y_new))

22 break

23 elif np.sqrt((grad_at_x[0])**2 + (grad_at_x[1])**2) <= 0.1:

24 current_path.append((x_new, y_new))

25 if np.sqrt((x[i]-x_new)**2 + (y[i] - y_new)**2) < 10:

26 break

27 else:

28 prev_x, prev_y = current_path[-2]

29 momentum_x = x_new - prev_x

30 momentum_y = y_new - prev_y

31 grad_at_x = grad_u(Point(x_new, y_new))

32 x_new = x_new + momentum_x

111

33 y_new = y_new + momentum_y

34 else:

35 current_path.append((x_new, y_new))

36 grad_at_x = grad_u(Point(x_new, y_new))

37 x_new = x_new + grad_at_x[0]

38 y_new = y_new + grad_at_x[1]

39 paths.append(current_path)

40

41 def reached_gate(x):

42 return (x[0] >= -15 and x[0] <= 0) and (x[1] >= 35 or x[1] <= -35)

1 ## for y > 0

2 high = 60

3 low = 0

4 middle = round((high + low)/2)

5 found = False

6 iterations_of_search = 0

7 skipped = 0

8 while (high - low) > 1 and not found:

9 i = middle

10 x_star = new_points[i, 0]

11 y_star = new_points[i, 1]

12 grad_at_x = grad_u(Point(x_star, y_star))

13 trajectory_end = are_we_there_yet(grad_u, x_coords[i], y_coords[i], x_star,

y_star, grad_at_x, xmin, xmax, ymin, ymax, out2, 0, num_iter = 300)

14 iterations_of_search += 1

15 if trajectory_end == "gate" or trajectory_end == "edge-l" or middle == high:

16 high = middle - skipped

17 middle = round((high + low)/2)

18 skipped = 0

19 elif trajectory_end == "collector":

20 low = middle

112

21 middle = round((high + low)/2)

22 skipped = 0

23 elif trajectory_end == "edge-r" or trajectory_end == "zero":

24 middle += 1

25 skipped += 1

26 if middle == low:

27 found = True

28 elif middle >= high or middle <= low:

29 found = True

30 if iterations_of_search > 10:

31 print("stuck!!")

32

33 ## for y < 0

34 high2 = len(new_points[:, 0]) - 1

35 low2 = high2 - 60

36 middle2 = round((high2 + low2)/2)

37 found2 = False

38 iterations_of_search2 = 0

39 skipped = 0

40 while (high2 - low2) > 1 and (not found2):

41 i = middle2

42 x_star = new_points[i, 0]

43 y_star = new_points[i, 1]

44 grad_at_x = grad_u(Point(x_star, y_star))

45 trajectory_end = are_we_there_yet(grad_u, x_coords[i], y_coords[i], x_star,

y_star, grad_at_x, xmin, xmax, ymin, ymax, out2, 0, num_iter = 400)

46 iterations_of_search2 += 1

47 if trajectory_end == "gate" or trajectory_end == "edge-l":

48 low2 = middle2

49 middle2 = int((high2 + low2)/2)

50 skipped = 0

51 elif trajectory_end == "collector" or middle2 == high2:

113

52 high2 = middle2 - skipped

53 middle2 = int((high2 + low2)/2)

54 skipped = 0

55 elif trajectory_end == "edge-r" or trajectory_end == "zero":

56 middle2 += 1

57 skipped += 1

58 if middle2 == low2:

59 found2 = True

60 elif middle2 >= high2 or middle2 <= low2:

61 found2 = True

62 if iterations_of_search2 > 10:

63 print("stuck!!")

1 plt.figure()

2 plot(u, vmin= min_v, vmax=max_v)

3 plt.show()

1 max_current = max(emission)

2 min_current = min(emission)

3 for i, path in enumerate(paths):

4 x_path = [tup[0] for tup in path]

5 y_path = [tup[1] for tup in path]

6 width = 3*(emission[i] - min_current + 0.2)/max_current

7 plt.plot(x_path, y_path, ’r’, linewidth=width)

A.2 Optimization code

This appendix chapter contains the optimization code and the utility scripts referenced in

the thesis text.

1 from optimizer.simulated_annealing import simulated_annealing

114

2 import optimizer.objective_2terminal as ug_objective

3 import optimizer.objective_gated as g_objective

4 import utils.plot_currents as plotter

5

6 if params["optimization"]["device"] == "ungated":

7 save_directory = "ungated"

8 params["optimization"]["save directory"] = save_directory

9 solver = simulated_annealing(x0, ug_objective.objective,

params["optimization"]["max iteration"], params["optimization"]["initial

temp"], upper_bound = ub, lower_bound = lb, parameters = params) #

initialize

10 else:

11 save_directory = "gated"

12 params["optimization"]["save directory"] = save_directory

13 solver = simulated_annealing(x0, g_objective.objective,

params["optimization"]["max iteration"], params["optimization"]["initial

temp"], upper_bound = ub, lower_bound = lb, parameters = params) #

initialize

14

15 final = solver.run_annealing(upper_bound = ub, lower_bound = lb, parameters =

params) # solve

1 params["optimization"]["run time"] = end - start

2 params["optimization"]["error rate"] =

solver.error_number/params["optimization"]["max iteration"]

3

4 np.savetxt(save_directory + "/final_solution_{}.csv".format(fname), final,

delimiter=",")

5 np.savetxt(save_directory + "/accepted_cost_{}.csv".format(fname),

accepted_cost_arr, delimiter=",")

6 np.savetxt(save_directory + "/best_cost_{}.csv".format(fname), best_cost_arr,

delimiter=",")

115

7

8 # plot geometry, merits, and current distribution

9 solver.plot_final_geometry(save_directory + "/" + fname + "geometry")

10 solver.plot_merits(save_directory + "/" + fname + "merits")

11

12 p = plotter.plot_currents(params, final)

13 p.plot_trajectories(save_directory + "/" + fname)

14

15 #solver.plot_final_geometry()

16 with open("opt_log2.txt", ’r’) as f:

17 database = json.load(f)

18 database.append(params)

19 with open("opt_log2.txt", ’w’) as f:

20 json.dump(database, f)

1 class simulated_annealing:

2 def __init__(self, x0, cost, num_iterations, initial_T, upper_bound=None,

lower_bound=None, parameters=None):

3 self.num_iterations = num_iterations

4 self.current_iteration = 0

5 self.converged = False

6 self.initial_T = initial_T

7 self.current_T = initial_T

8 self.const_pert_size = parameters["optimization"]["const pert"]

9 self.initial_solution = x0

10 self.current_solution = x0

11 self.try_solution = x0

12 self.best_solution = x0

13 self.initial_objective = cost(x0, parameters["geometry"]["xmin"],

parameters["geometry"]["xmax"], parameters["geometry"]["ymin"],

parameters["geometry"]["ymax"])

14 self.try_objective = self.initial_objective

116

15 self.current_objective = self.initial_objective

16 self.best_objective = self.initial_objective

17 self.upper_bound = upper_bound

18 self.lower_bound = lower_bound

19 self.cost = cost

20 self.T_change = parameters["optimization"]["temperature scale"]

21 self.try_cost_arr = np.zeros(num_iterations)

22 self.accepted_cost_arr = np.zeros(num_iterations)

23 self.best_cost_arr = np.zeros(num_iterations)

24 self.error_number = 0

25 self.run_id = parameters["optimization"]["run_num"]

26 self.save_directory = parameters["optimization"]["save directory"]

27 self.smooth_pert = parameters["optimization"]["perturb smoothly"]

28 self.symmetry = parameters["optimization"]["symmetry"]

29 self.log_errors = parameters["optimization"]["log errors"]

30 self.geomtry_params = parameters["geometry"]

1 def perturb(self):

2 """

3 Inputs: self

4 Outputs: None

5 For each parameter point, p(i), this method computes 2 normal vectors: (p(i

+1) - p(i)) x z and (p(i) - p(i-1)) x z

6 where z is the unit vector in the direction out of the plane.

7 The average of the normal vectors is used to move the point p(i) to a new

location p(i)*.

8 Each point is moved along the line normal to the surface through that point by

a random amount drawn from a uniform distribution.

9 If the random movement tries to push a point beyond a boundary, the algorithm

resets it to the boundary.

10 """

11 new_points = np.zeros_like(self.current_solution)

117

12 delta_x1 = np.zeros_like(self.current_solution)

13 delta_x2 = np.zeros_like(self.current_solution)

14 x_vec = self.current_solution[1:, 0] - self.current_solution[:-1, 0] # x_vec =

x[i+1] - x[i]

15 y_vec = self.current_solution[1:, 1] - self.current_solution[:-1, 1] # y_vec =

y[i+1] - y[i]

16

17 if self.const_pert_size:

18 epsilon = 1/2

19 else:

20 epsilon = np.sqrt(self.current_T)/5

21

22 norm_factor = np.divide(epsilon, np.sqrt(np.power(x_vec, 2) + np.power(y_vec,

2)))

23

24 delta_x1[:-1, 0] = np.multiply(norm_factor, self.current_solution[1:, 1] -

self.current_solution[:-1, 1]) # norm_factor*(y[i+1] -y[i])

25 delta_x1[:-1, 1] = - np.multiply(norm_factor, self.current_solution[1:, 0] -

self.current_solution[:-1, 0]) # norm_factor*(x[i+1] -x[i])

26 delta_x1[-1, :] = delta_x1[0, :]

27 delta_x2[1:, 0] = np.multiply(norm_factor, self.current_solution[1:, 1] -

self.current_solution[:-1, 1]) # norm_factor*(y[i+1] -y[i])

28 delta_x2[1:, 1] = - np.multiply(norm_factor, self.current_solution[1:, 0] -

self.current_solution[:-1, 0]) # norm_factor*(x[i+1] -x[i])

29 delta_x2[0, :] = delta_x2[-1, :]

30 q = np.random.uniform(low=-0.5, high=0.5, size=(delta_x1.shape[0],))

31 q[-1] = q[0]

32 if self.smooth_pert:

33 ## kernel size hard coded and can be reset. This might actually be a

disaster considering that the mean is zero

34 kernel_size = 3

35 kernel = np.ones(kernel_size) / kernel_size

118

36 q = np.convolve(q, kernel, mode=’same’)

37 # to set back of full device to not change, uncomment the line below. Notice

that this only works for the original geometry with 88 points.

38 #q[21:-21] = 0

39 new_points[:, 0] = self.current_solution[:,0] + np.multiply(delta_x1[:, 0]/2 +

delta_x2[:, 0]/2, q)

40 new_points[:, 1] = self.current_solution[:,1] + np.multiply(delta_x1[:, 1]/2 +

delta_x2[:, 1]/2, q)

41

42 ## implement constraints

43 if self.upper_bound is not None:

44 new_points[new_points>self.upper_bound] =

self.upper_bound[new_points>self.upper_bound]

45 if self.lower_bound is not None:

46 new_points[new_points<self.lower_bound] =

self.lower_bound[new_points<self.lower_bound]

47 # register perturbation

48 self.try_solution = new_points

1 def decide_if_to_keep(self, parameters):

2 """ Decide whether or not to keep the perturbation

3 Inputs: self, dict: parameters

4 Outputs: None

5 This function attempts to call the cost function on the current proposed

solution which is saved in self.try_solution

6 If delta cost < 0: accept solution with no further checks.

7 If delta cost >=0: draw from acceptance probability and then accept or discard.

8 If except block is reached, the error count will increase and if the debugger

mode is activated, the error will be logged.

9 """

10 try:

11 self.try_objective = self.cost(self.try_solution,

119

self.geomtry_params["xmin"], self.geomtry_params["xmax"],

self.geomtry_params["ymin"], self.geomtry_params["ymax"])

12 delta_cost = self.try_objective - self.current_objective

13 self.try_cost_arr[self.current_iteration] = self.try_objective

14 if delta_cost <0:

15 # goes downhill -> accept

16 self.current_solution = self.try_solution

17 self.current_objective = self.try_objective

18 if self.current_objective < self.best_objective:

19 self.best_objective = self.current_objective

20 self.best_solution = self.current_solution

21 else:

22 prob = np.exp(-delta_cost/self.current_T) # is this good enough? We’ll

find out

23 r = np.random.uniform(0, 1)

24 if r <= prob:

25 # accept with this probability

26 self.current_solution = self.try_solution

27 self.current_objective = self.try_objective

28 except Exception as e:

29 self.try_cost_arr[self.current_iteration] = float("nan")

30 self.error_number +=1

31 if self.log_errors:

32 print(e)

33 print(self.error_number)

34 elements = [True, False]

35 probabilities = [0.3, 0.7]

36 dec = np.random.choice(elements, 1, p=probabilities)[0]

37 if dec:

38 np.savetxt(self.save_directory +

"/errors/err_geom_run{}_error{}.csv".format(self.run_id,

self.error_number), self.try_solution, delimiter=’,’)

120

39 self.accepted_cost_arr[self.current_iteration] = self.current_objective

40 self.best_cost_arr[self.current_iteration] = self.best_objective

1 def run_annealing(self, upper_bound=None, lower_bound=None, parameters=None):

2 """

3 start the annealing process

4 TODO: update iter number, temperature

5 TODO: Set bounds/ constraints """

6

7 if upper_bound is not None:

8 self.upper_bound = upper_bound

9 if lower_bound is not None:

10 self.lower_bound = lower_bound

11

12 for i in range(self.num_iterations):

13 # update iteration

14 self.current_iteration = i

15 # update temperature (newton cooling maybe?)

16 if "lin" in self.T_change:

17 self.current_T = self.initial_T*(1-i/self.num_iterations)

18 elif "exp" in self.T_change:

19 self.current_T = self.initial_T*np.exp(-i*10/self.num_iterations)

20 elif "inv" in self.T_change or "over" in self.T_change:

21 self.current_T = self.initial_T/(1 + i)

22

23 # perturb

24 self.perturb()

25 self.decide_if_to_keep(parameters)

26 return self.best_solution

1 def plot_final_geometry(self, fname):

2 """

121

3 Inputs: self, string: fname

4 Outputs: None

5

6 Plots the final geometry (spline interpolation of points) and saves the figure

as fname.png

7 """

8 x_coords = self.best_solution [:, 0]

9 y_coords = self.best_solution[:, 1]

10 tck, u = spint.splprep([x_coords, y_coords], s=0)

11 unew = np.arange(0, 1.005, 0.005)

12 out = spint.splev(unew, tck)

13

14 out[0][-1] = out[0][0]

15 out[1][-1] = out[1][0]

16

17 plt.figure()

18

19 plt.plot(out[0], out[1], x_coords, y_coords, ’rx’)

20 plt.plot([self.geomtry_params["xmin"], self.geomtry_params["xmax"]],

[self.geomtry_params["ymin"], self.geomtry_params["ymin"]], ’k’)

21 plt.plot([self.geomtry_params["xmin"], self.geomtry_params["xmax"]],

[self.geomtry_params["ymax"], self.geomtry_params["ymax"]], ’k’)

22 plt.plot([self.geomtry_params["xmin"], self.geomtry_params["xmin"]],

[self.geomtry_params["ymin"], self.geomtry_params["ymax"]], ’k’)

23 plt.plot([self.geomtry_params["xmax"], self.geomtry_params["xmax"]],

[self.geomtry_params["ymin"], self.geomtry_params["ymax"]], ’k’)

24 plt.savefig(fname + ".png")

25 plt.show()

26 plt.close()

27

28 def plot_merits(self, fname):

29 """

122

30 Inputs:

31 Outputs:

32

33 Plots the merits over the iterations

34 """

35 plt.figure()

36 plt.semilogy(range(self.num_iterations), -1*self.accepted_cost_arr,

range(self.num_iterations), -1*self.best_cost_arr)

37 plt.legend([’accepted cost’, ’best cost’])

38 plt.savefig(fname + ".png")

39 plt.show()

40 plt.close()

123

124

Appendix B

Tables

B.1 Config

This section contains parameter tables for the config.yml file.

B.2 Simulated annealing

This section contains parameter tables for the simulated annealing class.

125

parameter values description
device String: ungated/-

gated
Which type of device is being optimized.

cost String: cost function Cost function description. Options are: -current
(applies for ungated only), switch, leakage, and
regularized (apply for gated only).

max iteration Integer: 1-inf How many iterations the optimizer will run for. A
good value is at least 1000.

initial geom String: filename Name of file from which to select initial geometry.
Values include initial_rounded, initial_reduced

temperature scale string How should temperature decrease throughout the
simulated annealing optimization. Supported op-
tions are linear, exponential, and inverse.

initial temp Float: default 100 Initial temperature in the simulated annealing op-
timization

emission
symmetry Boolean Whether symmetry should be imposed across the

horizontal axis. Default value is False.
log errors Boolean Whether geometries that crash FEniCS should be

saved along with the error messages for debugging.
Default value is False.

const pert Boolean: default True Whether the size of the perturbation should re-
main constant throughout the optimization. Set-
ting the parameter to False will result

perturb smoothly Boolean: default False Whether or not a smoothing filter should be ap-
plied to the perturbation.

start run number Integer: 0-inf ID number for the first run of optimizer.
optimization runs Integer: 1 The number of identical optimizations to run with

the run of main.py
comment String Any comment the use deems worthy of appearing

in the matadata of the optimization run.
show plots Boolean Whether or not main.py should show the plots of

the final geometry and cost values of each opti-
mization.

lambda Float: 0.0-1.0 When regularized optimization is run, this param-
eter controls the scaling of the two cost functions
with respect to each other.

Table B.1: Optimization parameters found in config.yml. These can be changed by a user
to customize the optimization to their needs.

126

parameter values description
x_gap float: default 20 Gap in nm between emitter and collector in the x direc-

tion. Descriptive.
y_gap: float: 50 Gap in nm between 2 gates in the y direction. Relevant

for gated devices. Descriptive.
w float: 100 Width in nm of emitter base. Descriptive.
wg float: 30 Width in nm of gates. Descriptive.
l float: 100 Length in nm of emitter along the x dimension. Descrip-

tive.
lg float: 100 No idea, but doesn’t matter beacuse it’s just descriptive.
h float: 50 Height in nm of emitter triangle. Descriptive.
hg float: 50
xmin float: -170 The smallest x value edge of the simulation.
xmax float: 20 The largest x value edge of the simulation.
ymin float: -60 The smallest y value edge of the simulation.
ymax float: 60 The largest y value edge of the simulation.
margin float: 5 How close to the edge of the simulation can the emitter

reach.

Table B.2: Geometry parameters in config.yml. We do not advise the user to change these
parameters.

parameter type description
num_iterations int Number iterations for the optimizer
current_iteration int The current iteration of the optimizer
converged Boolean Has the optimizer converged
initial_T float Initial temperature
current_T float Current temperature in the optimization
const_pert_size Boolean Whether perturbation size depends on temperature
initial_solution 2xn float array Initial geometrical parameters
current_solution 2xn float array Current geometrical parameters
...

...
...

Table B.3: Parameters expected by the simulated annealing class.

127

128

Bibliography

[1] B. J. Yokelson and W. Ulrich. “Engineering multistage diode logic circuits”. In: Trans-

actions of the American Institute of Electrical Engineers, Part I: Communication and

Electronics 74.4 (Sept. 1955). Conference Name: Transactions of the American Insti-

tute of Electrical Engineers, Part I: Communication and Electronics, pp. 466–475. issn:

2379-674X. doi: 10.1109/TCE.1955.6372399.

[2] R. H. Bergman. “Tunnel Diode Logic Circuits”. In: IRE Transactions on Electronic

Computers EC-9.4 (Dec. 1960). Conference Name: IRE Transactions on Electronic

Computers, pp. 430–438. issn: 0367-9950. doi: 10.1109/TEC.1960.5219881.

[3] T.E. Yingst et al. “High-power gridded tubes—1972”. In: Proceedings of the IEEE 61.3

(Mar. 1973). Conference Name: Proceedings of the IEEE, pp. 357–381. issn: 1558-2256.

doi: 10.1109/PROC.1973.9035.

[4] Keng-Tung Cheng and Niels Olhoff. “An investigation concerning optimal design of

solid elastic plates”. In: International Journal of Solids and Structures 17.3 (1981),

pp. 305–323. issn: 0020-7683. doi: https://doi.org/10.1016/0020- 7683(81)

90065-2. url: https://www.sciencedirect.com/science/article/pii/0020768381900652.

[5] G. Baccarani, M.R. Wordeman, and R.H. Dennard. “Generalized scaling theory and

its application to a ¼ micrometer MOSFET design”. In: IEEE Transactions on Electron

Devices 31.4 (1984), pp. 452–462. doi: 10.1109/T-ED.1984.21550.

[6] Martin Philip Bendsøe and Noboru Kikuchi. “Generating optimal topologies in struc-

tural design using a homogenization method”. In: Computer Methods in Applied Me-

chanics and Engineering 71.2 (1988), pp. 197–224. issn: 0045-7825. doi: https://

129

https://doi.org/10.1109/TCE.1955.6372399
https://doi.org/10.1109/TEC.1960.5219881
https://doi.org/10.1109/PROC.1973.9035
https://doi.org/https://doi.org/10.1016/0020-7683(81)90065-2
https://doi.org/https://doi.org/10.1016/0020-7683(81)90065-2
https://www.sciencedirect.com/science/article/pii/0020768381900652
https://doi.org/10.1109/T-ED.1984.21550
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2

doi.org/10.1016/0045-7825(88)90086-2. url: https://www.sciencedirect.

com/science/article/pii/0045782588900862.

[7] J.-M. Shyu et al. “Optimization-based transistor sizing”. In: IEEE Journal of Solid-

State Circuits 23.2 (Apr. 1988). Conference Name: IEEE Journal of Solid-State Cir-

cuits, pp. 400–409. issn: 1558-173X. doi: 10.1109/4.1000.

[8] Shun-ichi Amari. “Backpropagation and stochastic gradient descent method”. In: Neu-

rocomputing 5.4 (1993), pp. 185–196. issn: 0925-2312. doi: https://doi.org/10.

1016/0925-2312(93)90006-O. url: https://www.sciencedirect.com/science/

article/pii/092523129390006O.

[9] Y.Y. Lau, Youfan Liu, and R. K. Parker. “Electron emission: From the Fowler-Nordheim

relation to the Child-Langmuir law”. In: American Institute of Physics (1994).

[10] COMSOL Multiphysics. “Introduction to COMSOL multiphysics®”. In: COMSOL

Multiphysics, Burlington, MA, accessed Feb 9 (1998), p. 2018.

[11] M.M. Spuhler et al. “A very short planar silica spot-size converter using a nonperiodic

segmented waveguide”. In: Journal of Lightwave Technology 16.9 (1998), pp. 1680–

1685. doi: 10.1109/50.712252.

[12] Steven J. Cox and David C. Dobson. “Maximizing Band Gaps in Two-Dimensional

Photonic Crystals”. In: SIAM Journal on Applied Mathematics 59.6 (1999), pp. 2108–

2120. issn: 00361399. url: http://www.jstor.org/stable/118418 (visited on

01/17/2023).

[13] V.L. Granatstein, R.K. Parker, and C.M. Armstrong. “Vacuum electronics at the dawn

of the twenty-first century”. In: Proceedings of the IEEE 87.5 (1999), pp. 702–716. doi:

10.1109/5.757251.

[14] R.K. Parker et al. “Vacuum electronics”. In: IEEE Transactions on Microwave Theory

and Techniques 50.3 (2002), pp. 835–845. doi: 10.1109/22.989967.

[15] Martin P. Bendsøe and Ole Sigmund. Topology Optimization - Theory, Methods, and

Applications. English. Germany: Springer Verlag, 2003. isbn: 3-540-42992-1.

130

https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/https://doi.org/10.1016/0045-7825(88)90086-2
https://www.sciencedirect.com/science/article/pii/0045782588900862
https://www.sciencedirect.com/science/article/pii/0045782588900862
https://doi.org/10.1109/4.1000
https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://doi.org/10.1109/50.712252
http://www.jstor.org/stable/118418
https://doi.org/10.1109/5.757251
https://doi.org/10.1109/22.989967

[16] S. Boyd et al. Convex Optimization. Berichte über verteilte messysteme pt. 1. Cam-

bridge University Press, 2004. isbn: 9780521833783. url: https://books.google.

com/books?id=mYm0bLd3fcoC.

[17] P. Ngatchou, A. Zarei, and A. El-Sharkawi. “Pareto Multi Objective Optimization”. In:

Proceedings of the 13th International Conference on, Intelligent Systems Application

to Power Systems. 2005, pp. 84–91. doi: 10.1109/ISAP.2005.1599245.

[18] W. P. Kang et al. “Nanodiamond Lateral VFEM Technology for Harsh Environments”.

In: IEEE Transactions on Nuclear Science 54.4 (2007), pp. 1061–1065. doi: 10.1109/

TNS.2007.892117.

[19] Chris A. Mack. “Fifty Years of Moore’s Law”. In: IEEE Transactions on Semiconductor

Manufacturing 24.2 (2011), pp. 202–207. doi: 10.1109/TSM.2010.2096437.

[20] Richard G. Forbes. “Development of a simple quantitative test for lack of field emission

orthodoxy”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences 469.2158 (2013), p. 20130271. doi: 10.1098/rspa.2013.0271. eprint:

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2013.0271. url:

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2013.0271.

[21] Christopher M. Lalau-Keraly et al. “Adjoint shape optimization applied to electromag-

netic design”. In: Opt. Express 21.18 (Sept. 2013), pp. 21693–21701. doi: 10.1364/

OE.21.021693. url: https://opg.optica.org/oe/abstract.cfm?URI=oe-21-18-

21693.

[22] Jesse Lu and Jelena Vučković. “Nanophotonic computational design”. In: Optics Ex-

press 21.11 (June 3, 2013). Publisher: Optica Publishing Group, pp. 13351–13367.

issn: 1094-4087. doi: 10.1364/OE.21.013351. url: https://opg.optica.org/oe/

abstract.cfm?uri=oe-21-11-13351 (visited on 01/16/2023).

[23] Martin Alnæs et al. “The FEniCS Project Version 1.5”. en. In: <p>Archive of Numer-

ical Software Vol 3 (2015), Starting Point and Frequency: Year:

2013</p>. doi: 10.11588/ANS.2015.100.20553. url: http://journals.ub.uni-

heidelberg.de/index.php/ans/article/view/20553.

131

https://books.google.com/books?id=mYm0bLd3fcoC
https://books.google.com/books?id=mYm0bLd3fcoC
https://doi.org/10.1109/ISAP.2005.1599245
https://doi.org/10.1109/TNS.2007.892117
https://doi.org/10.1109/TNS.2007.892117
https://doi.org/10.1109/TSM.2010.2096437
https://doi.org/10.1098/rspa.2013.0271
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2013.0271
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2013.0271
https://doi.org/10.1364/OE.21.021693
https://doi.org/10.1364/OE.21.021693
https://opg.optica.org/oe/abstract.cfm?URI=oe-21-18-21693
https://opg.optica.org/oe/abstract.cfm?URI=oe-21-18-21693
https://doi.org/10.1364/OE.21.013351
https://opg.optica.org/oe/abstract.cfm?uri=oe-21-11-13351
https://opg.optica.org/oe/abstract.cfm?uri=oe-21-11-13351
https://doi.org/10.11588/ANS.2015.100.20553
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553

[24] A. Kyritsakis and J. P. Xanthakis. “Derivation of a generalized Fowler–Nordheim equa-

tion for nanoscopic field-emitters”. In: Proceedings of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences 471.2174 (Feb. 8, 2015). Publisher: Royal Soci-

ety, p. 20140811. doi: 10.1098/rspa.2014.0811. url: https://royalsocietypublishing.

org/doi/10.1098/rspa.2014.0811 (visited on 11/24/2022).

[25] Alexander Y. Piggott et al. “Inverse design and demonstration of a compact and

broadband on-chip wavelength demultiplexer”. In: Nature Photonics 9.6 (June 2015).

Number: 6 Publisher: Nature Publishing Group, pp. 374–377. issn: 1749-4893. doi:

10.1038/nphoton.2015.69. url: https://www.nature.com/articles/nphoton.

2015.69 (visited on 01/16/2023).

[26] Tea Tušar and Bogdan Filipič. “Visualization of Pareto Front Approximations in Evo-

lutionary Multiobjective Optimization: A Critical Review and the Prosection Method”.

In: IEEE Transactions on Evolutionary Computation 19.2 (2015), pp. 225–245. doi:

10.1109/TEVC.2014.2313407.

[27] S A Guerrera and A I Akinwande. “Nanofabrication of arrays of silicon field emitters

with vertical silicon nanowire current limiters and self-aligned gates”. In: Nanotechnol-

ogy 27.29 (June 2016), p. 295302. doi: 10.1088/0957-4484/27/29/295302. url:

https://dx.doi.org/10.1088/0957-4484/27/29/295302.

[28] Jin-Woo Han, Dong-Il Moon, and M. Meyyappan. “Nanoscale Vacuum Channel Tran-

sistor”. In: Nano Letters 17.4 (2017). PMID: 28334531, pp. 2146–2151. doi: 10.1021/

acs . nanolett . 6b04363. eprint: https : / / doi . org / 10 . 1021 / acs . nanolett .

6b04363. url: https://doi.org/10.1021/acs.nanolett.6b04363.

[29] Hans Petter Langtangen and Anders Logg. Solving PDEs in Python. Springer, 2017.

isbn: 978-3-319-52461-0. doi: 10.1007/978-3-319-52462-7.

[30] Alexander Y. Piggott et al. “Fabrication-constrained nanophotonic inverse design”.

In: Scientific Reports 7.1 (May 11, 2017). Number: 1 Publisher: Nature Publishing

Group, p. 1786. issn: 2045-2322. doi: 10.1038/s41598-017-01939-2. url: https:

//www.nature.com/articles/s41598-017-01939-2 (visited on 01/16/2023).

132

https://doi.org/10.1098/rspa.2014.0811
https://royalsocietypublishing.org/doi/10.1098/rspa.2014.0811
https://royalsocietypublishing.org/doi/10.1098/rspa.2014.0811
https://doi.org/10.1038/nphoton.2015.69
https://www.nature.com/articles/nphoton.2015.69
https://www.nature.com/articles/nphoton.2015.69
https://doi.org/10.1109/TEVC.2014.2313407
https://doi.org/10.1088/0957-4484/27/29/295302
https://dx.doi.org/10.1088/0957-4484/27/29/295302
https://doi.org/10.1021/acs.nanolett.6b04363
https://doi.org/10.1021/acs.nanolett.6b04363
https://doi.org/10.1021/acs.nanolett.6b04363
https://doi.org/10.1021/acs.nanolett.6b04363
https://doi.org/10.1021/acs.nanolett.6b04363
https://doi.org/10.1007/978-3-319-52462-7
https://doi.org/10.1038/s41598-017-01939-2
https://www.nature.com/articles/s41598-017-01939-2
https://www.nature.com/articles/s41598-017-01939-2

[31] Hsien-Ching Lo et al. “Transistor Optimization with Novel Cavity for Advanced Fin-

FET Technology”. In: 2018 International Conference on Simulation of Semiconductor

Processes and Devices (SISPAD). 2018 International Conference on Simulation of Semi-

conductor Processes and Devices (SISPAD). ISSN: 1946-1577. Sept. 2018, pp. 210–213.

doi: 10.1109/SISPAD.2018.8551703.

[32] Sean Molesky et al. “Inverse design in nanophotonics”. In: Nature Photonics 12.11

(Oct. 2018), pp. 659–670. doi: 10.1038/s41566-018-0246-9. url: https://doi.

org/10.1038/s41566-018-0246-9.

[33] Shruti Nirantar et al. “Metal–Air Transistors: Semiconductor-Free Field-Emission Air-

Channel Nanoelectronics”. In: Nano Letters 18.12 (Dec. 12, 2018), pp. 7478–7484.

issn: 1530-6984, 1530-6992. doi: 10.1021/acs.nanolett.8b02849. url: https:

//pubs.acs.org/doi/10.1021/acs.nanolett.8b02849 (visited on 01/05/2023).

[34] Thomas M. Antonsen, David Chernin, and John J. Petillo. “Adjoint approach to beam

optics sensitivity based on Hamiltonian particle dynamics”. In: Physics of Plasmas 26.1

(Jan. 2019), p. 013109. doi: 10.1063/1.5079629. url: https://doi.org/10.1063/

1.5079629.

[35] Andrew M. Bradley. PDE-constrained optimization and the adjoint methods. Oct. 2019.

[36] Seyedali Mirjalili. “Genetic Algorithm”. In: Evolutionary Algorithms and Neural Net-

works: Theory and Applications. Cham: Springer International Publishing, 2019, pp. 43–

55. isbn: 978-3-319-93025-1. doi: 10.1007/978-3-319-93025-1_4. url: https:

//doi.org/10.1007/978-3-319-93025-1_4.

[37] Lars Thorben Neustock et al. “Inverse Design Tool for Ion Optical Devices using

the Adjoint Variable Method”. In: Scientific Reports 9.1 (July 2019). doi: 10.1038/

s41598-019-47408-w. url: https://doi.org/10.1038/s41598-019-47408-w.

[38] Lucia B. De Rose, Axel Scherer, and William M. Jones. “Suspended Nanoscale Field

Emitter Devices for High-Temperature Operation”. In: IEEE Transactions on Electron

Devices 67.11 (Nov. 2020), pp. 5125–5131. issn: 0018-9383, 1557-9646. doi: 10.1109/

TED.2020.3019765. url: https://ieeexplore.ieee.org/document/9189941/

(visited on 01/05/2023).

133

https://doi.org/10.1109/SISPAD.2018.8551703
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1021/acs.nanolett.8b02849
https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02849
https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02849
https://doi.org/10.1063/1.5079629
https://doi.org/10.1063/1.5079629
https://doi.org/10.1063/1.5079629
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1038/s41598-019-47408-w
https://doi.org/10.1038/s41598-019-47408-w
https://doi.org/10.1038/s41598-019-47408-w
https://doi.org/10.1109/TED.2020.3019765
https://doi.org/10.1109/TED.2020.3019765
https://ieeexplore.ieee.org/document/9189941/

[39] Georg Gaertner, Wolfram Knapp, and Richard G. Forbes, eds. Modern Developments

in Vacuum Electron Sources. Vol. 135. Topics in Applied Physics. Cham: Springer

International Publishing, 2020. isbn: 978-3-030-47290-0 978-3-030-47291-7. doi: 10.

1007/978-3-030-47291-7. url: http://link.springer.com/10.1007/978-3-030-

47291-7 (visited on 11/28/2022).

[40] Sunae So et al. “Deep learning enabled inverse design in nanophotonics”. In: Nanopho-

tonics 9.5 (May 1, 2020). Publisher: De Gruyter, pp. 1041–1057. issn: 2192-8614. doi:

10.1515/nanoph-2019-0474. url: https://www.degruyter.com/document/doi/

10.1515/nanoph-2019-0474/html (visited on 01/16/2023).

[41] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-

0686-2.

[42] Ranajoy Bhattacharya et al. “Long term field emission current stability characteriza-

tion of planar field emitter devices”. In: Journal of Vacuum Science & Technology

B 39.5 (Sept. 2021), p. 053201. doi: 10.1116/6.0001182. url: https://doi.org/

10.1116/6.0001182.

[43] Mina R. Bionta et al. “On-chip sampling of optical fields with attosecond resolution”. In:

Nature Photonics 15.6 (Apr. 2021), pp. 456–460. doi: 10.1038/s41566-021-00792-0.

url: https://doi.org/10.1038/s41566-021-00792-0.

[44] Drew Buckley et al. “Nanoantenna design for enhanced carrier–envelope-phase sensi-

tivity”. In: J. Opt. Soc. Am. B 38.9 (Sept. 2021), pp. C11–C21. doi: 10.1364/JOSAB.

424549. url: https://opg.optica.org/josab/abstract.cfm?URI=josab-38-9-

C11.

[45] A Nardi et al. “Nanoscale refractory doped titanium nitride field emitters”. eng. In:

Nanotechnology 32.31 (2021), pp. 315208–. issn: 0957-4484.

[46] Hugo Serra, Rui Santos-Tavares, and Nuno Paulino. “Transistor-level optimization

methodology for the complete design of switched-capacitor filter circuits”. In: Interna-

tional Journal of Circuit Theory and Applications 49.1 (2021). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cta.2891,

134

https://doi.org/10.1007/978-3-030-47291-7
https://doi.org/10.1007/978-3-030-47291-7
http://link.springer.com/10.1007/978-3-030-47291-7
http://link.springer.com/10.1007/978-3-030-47291-7
https://doi.org/10.1515/nanoph-2019-0474
https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0474/html
https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0474/html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1116/6.0001182
https://doi.org/10.1116/6.0001182
https://doi.org/10.1116/6.0001182
https://doi.org/10.1038/s41566-021-00792-0
https://doi.org/10.1038/s41566-021-00792-0
https://doi.org/10.1364/JOSAB.424549
https://doi.org/10.1364/JOSAB.424549
https://opg.optica.org/josab/abstract.cfm?URI=josab-38-9-C11
https://opg.optica.org/josab/abstract.cfm?URI=josab-38-9-C11

pp. 94–113. issn: 1097-007X. doi: 10.1002/cta.2891. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/cta.2891 (visited on 01/10/2023).

[47] Peter R. Wiecha et al. “Deep learning in nano-photonics: inverse design and beyond”.

In: Photonics Research 9.5 (May 1, 2021), B182. issn: 2327-9125. doi: 10.1364/PRJ.

415960. url: https://opg.optica.org/abstract.cfm?URI=prj-9-5-B182 (visited

on 01/16/2023).

[48] Cherq Chua, Yee Sin Ang, and Lay Kee Ang. “Tunneling injection to trap-limited

space-charge conduction for metal-insulator junction”. In: Applied Physics Letters 121.19

(Nov. 7, 2022), p. 192109. issn: 0003-6951, 1077-3118. doi: 10.1063/5.0124748. url:

https://aip.scitation.org/doi/10.1063/5.0124748 (visited on 11/23/2022).

[49] Francesco Mezzadri and Xiaoping Qian. “Density gradient-based adaptive refinement

of analysis mesh for efficient multiresolution topology optimization”. In: International

Journal for Numerical Methods in Engineering 123.2 (2022). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6863,

pp. 465–504. issn: 1097-0207. doi: 10.1002/nme.6863. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/nme.6863 (visited on 12/05/2022).

[50] Marco Turchetti et al. “Electron Emission Regimes of Planar Nano Vacuum Emitters”.

In: IEEE Transactions on Electron Devices 69.7 (July 2022). Conference Name: IEEE

Transactions on Electron Devices, pp. 3953–3959. issn: 1557-9646. doi: 10.1109/TED.

2022.3175706.

[51] A Demenko, J K Sykulski, and R M Wojciechowski. “2D versus 3D electromagnetic

field modelling in electromechanical energy converters”. In: (), p. 2.

[52] Electric field enhancement equations. url: http://www.nessengr.com/technical-

data/electric-field-enhancement/.

[53] Lorentz: Integrated Engineering Software. url: https://www.integratedsoft.com/

products/Lorentz.

[54] MEEP. url: https://meep.readthedocs.io/ (visited on 01/12/2023).

[55] Rob A. Rutenbar. “Simulated Annealing Algorithms: An Overview”. In: IEEE Circuits

and Devices Magazine ().

135

https://doi.org/10.1002/cta.2891
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.2891
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.2891
https://doi.org/10.1364/PRJ.415960
https://doi.org/10.1364/PRJ.415960
https://opg.optica.org/abstract.cfm?URI=prj-9-5-B182
https://doi.org/10.1063/5.0124748
https://aip.scitation.org/doi/10.1063/5.0124748
https://doi.org/10.1002/nme.6863
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6863
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6863
https://doi.org/10.1109/TED.2022.3175706
https://doi.org/10.1109/TED.2022.3175706
http://www.nessengr.com/technical-data/electric-field-enhancement/
http://www.nessengr.com/technical-data/electric-field-enhancement/
https://www.integratedsoft.com/products/Lorentz
https://www.integratedsoft.com/products/Lorentz
https://meep.readthedocs.io/

[56] Sean Gillies et al. Shapely: manipulation and analysis of geometric objects. toblerity.org,

2007–. url: https://github.com/Toblerity/Shapely.

136

https://github.com/Toblerity/Shapely

	Introduction
	A background of vacuum electronics
	Shape optimization

	Numerical Approaches
	Optimization
	Algorithm
	Parameterization
	Annealing
	Stepping
	Cost
	Temperature

	Optimizer Implementation
	MATLAB Implementation
	Python Implementation

	Simulation
	Laplace Equation
	Current emission
	Visualization

	Global optimization for two terminal devices
	Cost function (Mathematical Representation)
	Emission mechanisms
	Other Variations in Cost Function

	Constraints
	Initial design
	Runtimes
	Results
	Fowler-Nordheim cost
	Enhanced Fowler-Nordheim cost
	Fowler-Nordheim + Schottky
	Enhanced Fowler-Nordheim + Schottky
	Constraint violation

	Model limitations
	Emission regimes
	Mesh resolution
	2D electrostatic models
	Boundary condition

	Conclusion and outlook
	Dynamic step
	Symmetry
	Smoothing
	Principle Component Analysis

	Global optimization for gated devices
	Cost functions
	Switching
	Gate leakage
	Regularized

	Heuristic for particle tracking
	Bisection search

	Initial performance
	Runtime
	Switch Results
	Fowler-Nordheim emission
	Enhanced Fowler-Nordheim emission
	Fowler-Nordheim + Schottky emission

	Leakage Results
	Fowler-Nordheim
	Enhanced Fowler-Nordheim emission
	Fowler-Nordheim + Schottky

	Regularized cost result
	Limitations
	Step size
	Bisection search
	Particle tracking
	Gate emission

	Conclusion and outlook

	Conclusions, impact, and outlook
	Conclusions
	Impact
	Next steps
	Optimization under voltage sweep
	Fabrication constraints

	Outlook
	Fabrication-aware design
	Adjoint optimization
	Adjoint method for particle tracking
	Optimization for optical emission

	Code
	Simulation code
	Optimization code

	Tables
	Config
	Simulated annealing

