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Abstract

Inefficiencies in manual extraction of information from business documents have re-
sulted in the development of automated processing solutions. Within the scope of
business documents, commercial invoices present additional complexities due to the
diversity of document layouts and the variation in quality of scanned documents.
Commercially available solutions have been built to perform invoice extraction, yet
they do not provide flexibility in accomplishing tasks unique to a particular dataset
and its associated complications. Using sample documents provided by a leading
electronic component distributor, we researched different approaches capable of ex-
tracting key-value information from a complex dataset of invoices. The thesis provides
a detailed look into the development of a highly accurate, end-to-end data pipeline
accomplishing this task. A multi-module approach integrating image processing, op-
tical character recognition, custom algorithms, and machine learning-based matching
was built and compartmentalized into continuous stages - allowing for effective and
efficient key-value extraction of information from invoice documents. In conjunction
with an intuitive web interface, the custom pipeline provides a solution with strong
performance and the flexibility to be generalized for extraction of additional business
documents in future efforts.

Thesis Supervisor: Amar Gupta
Title: Research Scientist
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Chapter 1

Introduction

1.1 Document Processing Overview

A growing trend exists among companies to outsource parts of their manual business

tasks, one of which is data extraction. Data extraction outsourcing is a multi-billion

dollar industry and is only growing rapidly year to year, with estimations showing it

to grow by $504 million into 2025 [1]. Data extraction specifically regarding business

documents is a significant portion of this outsourcing. However, this comes at a price

as significant human effort is still required, its manual nature does not improve speed,

and many ethical issues around labor exploitation and data privacy remain. Thus,

there has been a continued need for automating these processes to require minimal

manual intervention [2, 3].

Over the past decade, there has been significant work in the development of auto-

mated data extraction pipelines [4, 5]. A significant portion of these research efforts

have come, unsurprisingly, from the corporate world. Many major cloud service

providers, including Google Cloud, AWS, Microsoft Azure, and Alibaba Cloud, have

some form of service available that helps automate the document extraction pipeline.

While these services work well for simple optical character recognition (OCR) and

other general document extraction tasks, they do not allow much flexibility to fine-

tune the pipeline for custom purposes.

Additionally, even though automation of document processing can lead to much
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higher efficiency compared to traditional hand processing, many difficulties make

automation challenging [6, 7]; this includes noise, varying locations of important

information from document to document, and unclearly printed letters. Hence, there

is an existing need for custom pipeline solutions to be built around particular datasets

on an as-needed basis.

1.2 Invoice Documents Overview

Commercial invoice documents record the internal and external transactions made

by a company, and are crucial to the company’s proper functioning. An example

of an empty commercial invoice document as provided by the International Trade

Administration is shown in Figure 1-1. It is important to note that invoices are not

required to follow this exact structure, and the company providing the invoice has full

jurisdiction of its formatting. Extracting data from these documents is an important

process, yet the extraction process for invoices often requires significant human effort

and intervention, making it inefficient and expensive [8, 9]. Automatically under-

standing information from invoice documents is a challenging task additionally due

to the diversity of invoice document layouts and the wide variation in quality of the

scanned documents - presenting further complexities.

If the information a business hopes to extract differs from the standard information

that commercial extraction services can extract, the business must develop a custom

solution. For example, the AWS invoice analysis service known as Textract can extract

items such as number, quantity, total, and company, but certain other important

keys in work, like the waybill number, country of origin, and PO number, cannot be

extracted [10]. Custom solutions allow for the elimination of such discrepancies, and

ensure the solution being developed is able to achieve exact desired specifications.

Our lab has worked on problems of extracting important information from docu-

ments such as bank checks, IDs, and other miscellaneous documents [11, 12]. With

the issue of invoice processing in mind, Arrow Electronics, a leading electronic compo-

nent and computer product distributor, provided research funding to our lab for the
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development of a pipeline that can process and extract key-value information from

their provided collection of invoices; in other words, identify structured pairs from

their unstructured data.

Figure 1-1: Example of an empty commercial invoice document as provided by the
International Trade Administration.

1.3 A Need for Customized Extraction

The identified goal was to develop a multimodal pipeline that could efficiently parse

through the Arrow Electronics invoice documents and convert them into a structured

data output with minimal human effort. The specific problem at hand did not have a

ready-made solution that could be easily applied, and so we aimed to build a custom

solution that could accomplish tasks unique to the dataset and handle its associated

complications.
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Since many large companies handle many document types, the desired solution to

extract relevant information would require compatibility with Arrow’s diverse dataset.

Most processing techniques require document customization and the algorithms them-

selves must be tuned for each document format [13]. In the domain of tables as found

in invoices, while creating a system to extract key-value pairs from a specific format

usually does not pose significant difficulty, creating a single approach that achieves a

high accuracy on many different tabular layouts is quite challenging [14].

Despite the existence of commercially available pipelines to extract key-value

based information, most approaches are usually tailored to a specific type of doc-

ument or a certain document format [15]. Components such as the use of dark

background colors and light foreground colors, as well as shading and background im-

ages, increase document complexity [16]. This further elevates the difficulty of using

ready-made techniques to read, process, and match extracted information. The task

of building a custom pipeline for key-value extraction, both efficiently and accurately,

was accordingly shown to be one that would require deliberate preparation.

1.4 Identified Objectives

Having determined the project’s overarching goal, we hoped to compartmentalize the

pipeline into multiple modules such that each module would be responsible for a dif-

ferent objective, which together would accomplish the task of key-value extraction

from the Arrow invoice documents. Below, planned objectives corresponding to the

general focus of each module are presented; a detailed breakdown of each module is

presented in following sections.

1. Create a preprocessing and OCR approach to read and extract in-

formation from commercial invoice documents

We intended to construct a module that would first prepare different kinds of

technical documents for OCR. This preprocessing could involve techniques such as
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binarization, thresholding, deskewing, denoising, etc. The challenge with this process

is knowing which combination of techniques to use for each document, and the degree

to which they should be applied. Then, an OCR engine for the pipeline would also

need to be identified. The OCR component would allow for the extraction of texts

and their relative locations within each of the documents.

2. Develop postprocessing methods to eliminate errors and further pre-

pare extracted information for key-value matching

We intended to produce postprocessing methods which would serve as an addi-

tional step following preprocessing and OCR extraction. Complementing the previous

module and handling errors that remain after it or other intermediate issues, post-

processing would aim to further correct the extracted texts before passing them on

to the matching module.

3. Determine key-value pairs from extracted information by applying

algorithmic and machine learning-driven approaches

We intended to develop an algorithmic and machine learning-based module that

would allow for accurate matching of key-value pairs from the documents’ extracted

information. This would support the final step of determining which extracted words

(values) matched with which of the specified keys, in turn accomplishing the goal of

identifying the specified key-value pairs from the input invoice documents.

4. Build additional features to supplement the pipeline’s usability

We intended to complete additional work to make the pipeline easily usable, pri-

marily designing and creating a web interface that would allow users to run the

pipeline on invoice documents from their local system. This work could also include

developing a tabulation method that could convert the matched key-value results into
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a format that can be visually identified on a processed invoice document, after which

it could be displayed on the developed web interface.
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Chapter 2

Related Work

Each of the following topics will be discussed in more detail throughout the thesis,

but a variety of previous research studies and background information adjacent to

the topics are presented here. By obtaining an initial understanding of these items,

we are better prepared as to how the pipeline can be built, in addition to unique

approaches that can be utilized.

2.1 Document-based Datasets

Document-based datasets are commonly recognized as being complex due to their

inclusion of information such as text, figures, and tables [17]. The document dataset

used for training and testing purposes in this project, consisting solely of Arrow-

provided commercial invoice documents, would serve as the primary source of data

for pipeline training, testing, and evaluation. Other studies and similar datasets can

provide some insight into how the data might be structured and different potential

ways of processing the input.

Receipts hold some resemblance to invoices due to their information also being

able to be classified as key-value pairs [18]. With this, we looked at a dataset known

as “Consolidated Receipt Dataset for Post-OCR Parsing” (CORD) that held some

similarities to our dataset [19]. We noted that newer models such as DONUT and

LayoutLMv3 produced results of over 90% in accuracy on CORD. This particular
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dataset could help explore fine-tuning model(s) applied in the pipeline, with advanced

models having shown effectiveness. Additionally, use of such a dataset could improve

the selected model’s ability to handle dynamic tabular data in the future - key-value

pairs in which certain keys may not have been seen within the current Arrow dataset.

The “Scanned Receipts OCR and Information Extraction” (SROIE) dataset pro-

vides scanned receipts that are generally low quality [20]. It consists of six hundred

receipts in the training set and four hundred receipts in the test set, with four possi-

ble keys: company, address, date, total. The dataset was used for three competition

tasks in the study (text localization, OCR, key-information extraction), indicating it

had good comparative quality to the Arrow dataset.

2.2 Image Processing

Unstructured documents in many cases lack a deterministic approach that would

allow them to be accurately processed. Datasets with such documents have been

been processed using different techniques with varying characteristics, as illustrated

in Figure 2-1 [21, 22]. These documents are found in a wide variety of business-

related activities, from which invoices are commonly seen. The Arrow dataset is one

in which the input is entirely raw, and in many cases may not be fully compatible

for key-value extraction. With the project’s task to build a custom solution, specific

processing approaches can be applied to improve the dataset’s extractability.

Processing of document images plays a critical role in ensuring that the extracted

information being passed into the key-value matching stage has been minimized for

errors. Multiple libraries exist with already developed preprocessing methods that

can be applied and evaluated to understand what configuration of the Arrow dataset

is best for subsequent OCR extraction [23, 24]. Postprocessing of images has the

ability to further reduce propagated errors as shown in previous studies [25, 26]. Its

usage in our pipeline would ultimately depend on if there is an identified need for

further correction upon OCR extraction.

OCR refers to the automated process of extracting information from printed or
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written text within an image file or scanned document, after which the extracted

material is converted into a machine-readable format [27]. The extracted results can

be used for a variety of data processing applications, and is primarily used to improve

efficiency of processing documents - eliminating the need for manual human entry.

We accordingly investigated some studies discussing previously applied OCR en-

gines. Tesseract is an engine shown to take less than a second to extract information

from an image [28]. On a dataset of license plate numbers, Tesseract had an accuracy

of about 70% and performed better on grayscale compared to color images - impor-

tant to note as the Arrow dataset primarily consisted of images with no color. Google

Cloud Vision is another noteworthy engine that is mainly used for image classifica-

tion, for which a previous study found that it is not robust to noise; adding random

noise to images (e.g. about 20%, random colored dots) altered image classifications

[29]. However, it is important to note that the type of noise added is not the same

as the typical noise in the Arrow dataset, which contained less random distributed

noise, more dots and random lines, and skewing.

Figure 2-1: Comparison of general image processing approaches.
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2.3 Document Layout Models

When matching extracted words (values) to their corresponding keys, there are two

approaches: the use of deterministic algorithms or the application of a model trained

on a dataset [30]. Custom algorithms have shown applicability for text extraction

purposes, and can be built for the pipeline based upon keys that we know exactly

what to expect for [31, 32]. However, more advanced methods must be used for

the majority of keys in the Arrow dataset. Machine learning models, specifically

document layout models, provide the ability to match key-value pairs from a complex

set of documents, and hence should also be incorporated into the pipeline [33].

LayoutLM is an example of a model that can jointly learn text with document

layout information, and achieves state of the art results on multiple datasets such

as the SROIE and FUNSD [33]. Built off of the BERT model, which uses text

and position embeddings, LayoutLM integrates 2D position embeddings and image

embeddings. The model outperforms other powerful models for objectives such as

Masked Visual-Language Modeling (MVLM) and Multi-label Document Classification

(MDC). Next generation models such as BROS and Docformer also indicate some

potential for use within the pipeline [34, 35].

Some available solutions provide an existing end-to-end model that would elimi-

nate the need for building individual modules for the pipeline. Many methods out-

source the job of OCR to off-the-shelf engines, which can be costly, inflexible, and

propagate OCR errors throughout the pipeline [36]. Models such as DONUT elim-

inate the need for this outsourcing while achieving strong results on many datasets

such as CORD and DocVQA while also being faster - demonstrating potential in its

use within the pipeline.
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Chapter 3

General Methodology

3.1 Invoice Dataset

The dataset provided by Arrow Electronics contains image-based invoice documents

(in PDF format) from various companies, as well as a number of spreadsheets con-

taining the ground-truth data of those documents. This ground-truth data was used

in the evaluation of individual modules and the comprehensive pipeline.

Figure 3-1: Example of an invoice document from the Arrow Electronics dataset.
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An example of a document is shown in Figure 3-1 (some information is redacted for

confidentiality reasons). From the tabular format, visual assessment of the example

can determine the presence of desired keys such as invoice date, company providing

the invoice, and waybill number. The pipeline, in its final form, should be able to

automatically and efficiently extract such keys and their corresponding values. Each

of the documents includes a variety of possible keys, from which a comprehensive set

of keys for extraction was identified:

1. Waybill number (identified as “GUIA”)

2. Invoice date (identified as “FECHA”)

3. Shipping method (identified as “SHIP_METHOD”)

4. Company for the invoice (identified as “PDC”)

5. Part number (identified as “NoPARTEARROW”)

6. Client part number (identified as “NoPARTECLIENTE”)

7. Unit price (identified as “PUNIT”)

8. Code (identified as “FRACCION”)

9. PO number (identified as “FACTURA”)

10. Country of origin (identified as “PORIGEN”)

11. Quantity (identified as “QTY”)

12. Total (identified as “TOTAL”)

Unlike standardized datasets such as the SROIE dataset, however, the Arrow

dataset lacked quality control [20]. Hence, potential techniques to improve data

quality for the pipeline’s preprocessing component such as skewing and denoising

were deemed necessary [42]. Additionally when provided to us, less than 1/3 of the

initial dataset corresponded to any lines in the master ground-truth spreadsheet, and

20



of all the lines in the spreadsheets, only about 6.6% of them corresponded to any

invoice PDFs. Since training via the pipeline would require being able to link invoice

documents with ground-truth data, the data on which the pipeline could be trained

on was only a small fraction of the full dataset.

To ensure that the dataset would be compatible with the pipeline, instances of

error with respect to matching with the ground-truth were corrected with corre-

spondence from Arrow Electronics. The corrected dataset consisted of ∼440 invoice

documents from ∼50 distinct companies, corresponding to ∼2,200 lines within the

ground-truth spreadsheet. This dataset continued to grow throughout the develop-

ment process, with similar issues of some inconsistencies between the invoice docu-

ments and ground-truth spreadsheets being seen and corrected as the dataset grew.

Ultimately, the comprehensive dataset used during the development process contained

∼18,000 identified key-value pairs.

3.2 Pipeline Architecture

There is a multitude of ways to develop a robust pipeline, with there being various

stages and dependencies for it to properly function end-to-end. Previous pipeline

developments provided guidance on how to go about deciding the structure of the

pipeline, with the processing stage (including preprocessing and postprocessing) com-

monly being independent of stages involving other functionalities [37, 38, 39].

Using this, the pipeline consisted of two primary halves: the first half was re-

sponsible for loading the document images, preprocessing the images, extracting the

words and their corresponding bounding boxes, and then postprocessing the extracted

words (in other words, the preprocessing/OCR and postprocessing modules); the sec-

ond half of the pipeline identified the words corresponding to each of the desired

keys, which was accomplished by custom algorithms and a trained machine learning

model, after which the output was converted into a proper table that could be easily

read and understood (in other words, the key-value matching module and tabulation

algorithm).
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This structure is visually detailed within Figure 3-2, where each small box rep-

resents an internal component, script, or data file: black boxes represent data files;

blue boxes represent regular document processing components; green boxes repre-

sent components associated with key-value matching; purple boxes represent pipeline

evaluation scripts.

Figure 3-2: General architecture of the pipeline.

The architecture of the proposed pipeline is not fully linear. The second half of the

pipeline containing the machine learning and algorithmic extraction components form

two distinct branches, after which their outputs are combined. This ensured that the

pipeline would not have any circular dependencies, and hence no cycles would form

and cause disruption - a challenge found with managing data pipelines [41].

3.3 Web Application Interface

A web application that allows users to run the extraction process from end-to-end was

also built to accompany the pipeline, meaning users could select invoice documents

from their local system for key-value pair extraction. By providing an easy-to-use

and easy-to-understand user interface, users would have simple use of the pipeline

for their key-value extraction purposes. Figure 3-3 provides an example of what the

interface displayed after a document was run through the pipeline, with its bounding

boxes and corresponding keys identified on the document itself on the left and the
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extracted key-value pairs presented on the right (some information is redacted for

confidentiality reasons). Some of the UI’s features were:

• The web application could run both halves of the pipeline on one or multiple

input PDF(s)

• Just as a progress bar can be seen for progress within a terminal, we integrated

a progress bar into the web application so users could be aware of approximately

how close the pipeline was to being completed for its run

• Hotkeys provided a shortcut to different options/actions within the pipeline for

the user’s ease of use (i.e. save output/images)

Figure 3-3: General outline of the pipeline’s web application.

3.4 Internal Dependencies

Generalizing the current pipeline so that it could be used for more key-value extraction

purposes in the future would allow for new keys to be extracted. This would in turn
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allow us to automatically extract key-value pairs from commercial documents other

than specifically invoices.

To potentially allow such changes in the future, we broke down the pipeline’s in-

ternal dependency structure by developing architecture diagrams and an extensive

documentation report. This report is not included in the thesis, but essentially pro-

vides internal implementation details of the many individual modules, scripts, and files

forming the pipeline. Figures 3-4, 3-5, and 3-6 are diagrams illustrating the internal

dependency relationships responsible for image processing, machine learning-related

components, and the web application. Using these diagrams, we can easily and visu-

ally identify which file/component to work on to add new features as desired in the

future, and they simply provide greater clarity as to what the internal dependencies

of the pipeline look like.

Figure 3-4: Diagram illustrating the dependencies of internal files responsible for the
image processing of invoice documents.
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Figure 3-5: Diagram illustrating the dependencies of internal files responsible for the
machine learning components.

Figure 3-6: Diagram illustrating the dependencies of internal files responsible for the
web application.
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Chapter 4

Preprocessing and OCR Module

4.1 Preprocessing Overview

Preprocessing serves as a common step in OCR applications as scanned documents

tend to contain a variety of flaws that limit OCR accuracy, such as noise, skewed

pages, watermarks, and degraded text [42]. Functions provided by OpenCV, a pop-

ular Python computer vision library, were utilized to develop a suite of potential

preprocessing techniques to include in the module: resize, binarize, denoise, sharpen,

dilate, and deskew [43].

• Resize: Rescales an image, as images with a low DPI (dots per inch) tend to

result in decreased readability

• Binarize: Converts an image to consist of only black and white pixels, increas-

ing contrast within images and allowing for text to better stand out from the

background

• Denoise: Removes minor pepper noise (specks and small impurities from the

scanning process)

• Sharpen: Sharpens edges and text within an image, which allows for text to

better stand out
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• Dilate: Increases the area taken up by elements within an image, which can

help fill in degraded or missing parts of individual characters

• Deskew: Fixes an image’s orientation/skew

Figure 4-1: Overview of the Preprocessing component.

4.2 OCR Overview

After applying preprocessing techniques to the invoice documents, the next step in

the module included utilizing an OCR engine to extract and output texts from the

documents. In general, upon calling an OCR engine’s API, the response returns the

detected words stored as description keys and their location on the image - what

we considered as the text’s “bounding box.” An example of bounding boxes within

an input document is shown in Figure 4-2 [44]. Each of the texts includes a green

rectangle enclosing it, with four corners corresponding to coordinates being returned.

This bounding box is essentially four pairs of (x, y) pixel values that correspond to

the corners of the tightest “box” in the image encompassing each of the texts, also

known as position embeddings, which could be used within later steps of the pipeline.
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Figure 4-2: Example of bounding boxes returned from an OCR API.

4.3 OCR Engine Selection

Much work in this field has used Tesseract OCR as the primary OCR engine as is

illustrated in a previous research study [45]. The module was initially constructed

with Tesseract as the OCR engine through the Python wrapper Pytesseract, but

Google Cloud Vision (GCV) was soon considered as an option for the pipeline’s OCR

engine - with previous studies indicating GCV as a powerful alternative [46, 47].

GCV OCR is part of the Google Cloud Vision API, and could be used for its “Doc-

ument Text Annotation” service to read and parse text within the invoice documents

[44]. With the invoice documents having an unstructured format (a lack of specificity

as to how exactly each document looked), GCV would allow for the identification

and extraction of texts regardless of where they might be on the document and what

they might look like. Most, if not all, of the text within the documents was expected

not to have any extra type of formatting (such as being bolded or italicized), which

would allow for effective use of GCV.
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Hence, we decided to test between our two considered options. Pytesseract was

quite slow when we ran it on a large number of documents, as shown in Figure 4-3.

Even with multithreading, it took ∼60 minutes to run Pytesseract on a subset of ∼230

invoice PDFs. Running the same dataset using GCV’s service with multithreading

took ∼9 minutes, providing a ∼6x increase in speed.

Figure 4-3: Runtime comparison between Pytesseract and GCV OCR engines.

The original preprocessing module with Pytesseract was constructed with three

of the six potential preprocessing techniques: denoising (removing impurities from

an image), sharpening (sharpening an image’s edges to improve “reading” of text),

and deskewing (fixing an image’s orientation); other preprocessing methods were also

tested, such as binarization and dilation, but this set of three worked best in the

pipeline. GCV was much more robust than Pytesseract meaning that some of these

preprocessing techniques could be removed, simplifying the preprocessing step.

With GCV, the pipeline’s preprocessing module consisted of only the deskewing

technique, as denoising and sharpening did not improve GCV’s overall performance

and would hence be unnecessary. Deskewing, however, remained necessary, as the

provided documents varied in orientation and skew. Additionally, we found that

GCV was overall more accurate than Pytesseract for our dataset, as it detected more
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words and made fewer mistakes. Based on these observations, and it being recognized

as one of the most accurate and robust options available, GCV was selected as the

pipeline’s OCR engine [48].

With regards to the use of multithreading within the pipeline, integration of the

Python package “multiprocessing” into the pipeline improved performance. This pack-

age allowed the pipeline to utilize multiple cores and improved processing speed by

∼5x (depending on the number of cores used). As of now only the first half of the

pipeline is multithreaded, while the second half is not.
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Chapter 5

Postprocessing Module

5.1 General Overview

Postprocessing allows for the improvement of text information extracted from OCR,

and is accomplished via combinations of automated and/or manual techniques [49,

50]. Specific errors can be identified and corrections be made, which in our pipeline

ensured that the extracted text outputs were in a proper, revised format for use in

the subsequent Key-Value Matching Module.

5.2 Levenshtein Distance Overview

A commonly used postprocessing technique is to utilize Levenshtein distance, a metric

that enumerates how different two words are [51]. The standard Levenshtein distance

between two words is the number of character edits required to convert one word to

another, including insertions, deletions, and replacements. For example, the Leven-

shtein distance between “stone” and “tin” is three: two removals (“s” and “e”) and

one replacement (“o” to “i”). The recursive Levenshtein distance equation is shown in

Figure 5-1, where “a” is a word, “b” is a word, “i” is the terminal character position

of “a,” and “j” is the terminal character position of “b.”

We implemented a semi-automatic Levenshtein distance-based method in conjunc-

tion with a ground truth dictionary, or word bank. With inspiration taken from a
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Figure 5-1: Complete equation for calculating the true Levenshtein distance.

previous work, this method accepted input words which were each then compared to

their closest neighbor within the word bank [52]. The method would swap a word

with its word bank counterpart if its calculated Levenshtein distance was below a set

threshold. This was due to the fact that the words of interest in the dataset consisted

of more than just words within the English lexicon, as commercial invoices could also

contain foreign and industry-specific words. Levenshtein distance does not discrim-

inate between English and non-English words, and hence was generalizable for our

objectives.

5.3 Levenshtein Distance Customization

We included several customized features so that the extracted texts could better fit

the Key-Value Matching module. First, we did not consider any extracted words con-

taining numbers for postprocessing. This was due to the fact that any text containing

numbers was likely to represent some sort of value or identification number, which

was usually unique to the product and accordingly should not have been fixed.

Next, the module utilized custom weights when calculating a pair’s Levenshtein

distance to allow for improved word comparisons [53]. The default Levenshtein dis-

tance algorithm treats all single-character edits the same, meaning that swaps between

pairs of characters similar in appearance (1, I) are treated the same as pairs that are

very different (X, 0). However, as the OCR engine was much more likely to incor-

rectly identify characters similar in appearance, such instances needed to be given

a lower distance, which could also be considered as a weight. Because of this, we

used the Python package “weighted-levenshtein,” which had a set of custom weights

for insertions, deletions, and character substitutions [54]. Given the need for custom
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weights and with inspiration from the results of a prior study, the distance thresholds

for “fixing” words were accordingly set as follows: 0.99 for words of length 3 or less,

1.99 for length 4 to 8, and 2.99 for all other word lengths [55].

5.4 Word Bank Construction

As our Levenshtein distance approach required a bank of words to be compared

to, we implemented a self-growing word bank with the ability to adapt and grow

with new input documents. Due to the sheer number of invoices processed by Arrow

Electronics, manually constructing a list of relevant words would be inefficient. Hence,

we initialized the word bank to contain a small subset of crucial keywords that would

be used later in the Key-Value Matching Module.

Each time a document was processed through the pipeline for its first time, if the

word bank construction feature was enabled, the module would record the OCR word

outputs that had a confidence score greater than a defined threshold. After a word

appeared a set number of times with a high enough score, the module would add

the word to the word bank, which would be saved across runs to a specified JSON

output file. We settled upon a confidence of 0.95 with a count threshold of 5, which

ultimately allowed for the word bank to be adaptable and effective in its purpose.

5.5 Additional Methods

Besides using the word bank, additional custom postprocessing methods specific to

this dataset were implemented. Some of these methods include:

• To remove redundant inputs to the word bank, we checked if a word did not

include numbers and stripped special characters

• Dates were converted into the ISO format, which would make dates easier to

detect (for example, “July 17, 2021” would become “2021-07-17”)
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• Unit prices would often have “/M” attached to it, which meant that the unit

price was for a thousand units; the module would detect this and divide the

price by 1000 to identify the correct price per unit

• “FACTURA” numbers occasionally had “-1” or “/1” attached at the end, which

would be removed

• To maintain consistency, the country of origin would be converted into pre-

defined three character codes, such as “TAIWAN” to “TWN” or “KOREA” to

“KOR”

• PO numbers often started with “CVM5,” so GCV would read it in as “CVMS”

instead - this would be corrected

• The given list of bounding boxes would sometimes be modified in-place to com-

bine words surrounding hyphens and slashes

• Two “PORIGEN” codes that were separated by a slash would be identified as

independent from one another
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Chapter 6

Key-Value Matching Module

6.1 General Overview

After passing through the Postprocessing Module, the pipeline produced a JSON

file containing the words and bounding boxes for all pages in the input. Now, the

pipeline’s objective was to identify which words (values) corresponded to which of the

specified keys. For some of the keys, custom algorithms were used as a deterministic

approach could be followed. For the remaining keys, the pipeline used a trained

machine learning model to classify the given words and bounding boxes. An example

of some matched key-value pairs can be seen in Figure 6-1, where classifications

from the module are color coded and written adjacent to each bounding box (some

information is redacted for confidentiality reasons).

Figure 6-1: Example of key-value pairs following results from the Key-Value Matching
Module.
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6.2 Deterministic Algorithms Overview

We identified that the keys corresponding to waybill number, invoice date, and ship-

ping method could be determined following a specific structure for every document.

This deterministic quality made them less suitable to be extracted by a ML model, and

hence we developed and used custom algorithms for them. Specifically, the waybill

number was often parsed as multiple words, and so we used a rule-checking method to

determine if the extracted value corresponded to a possible waybill number; the date

was already preprocessed into the ISO format, and so a simple format comparison

was needed; the shipping method was always from the company DHL (either “DHL

EXPRESS” or “DHL 3RD PARTY INT’L BILL”) and hence was also easy to extract.

6.3 Machine Learning Model Overview

The specific machine learning model that we chose to use within the module was

LayoutLM, which is a state-of-the-art model used for interpreting complex document

layouts. Specifically, the pipeline used the LayoutLMForTokenClassification version

of the model, which classifies words and bounding boxes based upon the specified

keys. For the model, we knew that we wanted to integrate a model whose foundation

was built upon the problem of document processing - essentially identifying a model

that could label the documents’ texts accurately. For the training loop, we used

Cross Entropy Loss with the AdamW optimizer, and built a custom data preparation

method that allowed us to train and test on a variety of custom subsets of the entire

dataset. A diagram of the ML model component’s general structure is shown in

Figure 6-2.

LayoutLM was inspired by the BERT model, which uses an attention-based bidi-

rectional language modeling approach [56]. BERT accepts a sequence of tokens and

stacks multiple layers to produce final representations. More specifically, using a set

of tokens that have been processed, the input embeddings are computed by summing

the corresponding word, position, and segment embeddings together. These input em-
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Figure 6-2: Diagram of the pipeline’s ML Model component.

beddings are then passed through a multi-layer bidirectional transformer that is able

to generate contextualized representations with an adaptive attention mechanism.

Document layouts contain visually rich information that can also be aligned with

input texts, and this ideology serves as the foundation of the LayoutLM model. There

is document layout information that contains the relative position of words within the

invoice documents, which can be embedded as 2-D position representations. There

is also visual information that primarily contains indications of which document seg-

ments are important and should accordingly be prioritized, which can be represented

as image features. Thus, combining these two types of information allows for a more

nuanced semantic representation of a document [57].

LayoutLM does exactly this by applying the BERT architecture and adding two

additional input embeddings: a 2-D text position embedding and an image embed-

ding. The 2-D position embedding is a way through which the relative spatial position

in a document can be represented. The spatial position of elements (via bounding

boxes) is represented by (x0, y0, x1, y1), where (x0, y0) corresponds to the position

of the bounding box’s upper left corner and (x1, y1) corresponds to the position of

the bounding box’s lower right corner. For the image embedding, with each of the

word’s bounding boxes from the OCR results, the image is split into several pieces,

all of which have a one-to-one correspondence with the words. These image region

features are then converted into token image embeddings. As shown in Figure 6-3, the
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downstream task (in our case, key-value matching) is accomplished upon combining

the image and LayoutLM embeddings after passing through the model.

Figure 6-3: Architecture of the LayoutLM model.

A powerful component of the LayoutLM model was its independence from pre-

processing, OCR, and postprocessing methods, meaning that its sole purpose was to

identify the key-value pairs in the pipeline. Separating the first two modules from the

third module containing the model in the pipeline, LayoutLM accordingly allowed us

to more easily identify and remedy errors if they appeared earlier on - improving the

pipeline’s final results.

6.4 Machine Learning Model Alternatives

We also considered other models for the machine learning component, primarily

the DONUT model, which stands for “Document Understanding Transformer” [36].

DONUT had been utilized in the development of other datasets and extraction meth-

ods similar to the key-value matching task we had been working on [58, 59]. This

model’s architecture uses a visual transformer encoder and textual decoder, and unlike

most other models that use OCR first and then apply a machine learning approach

such as LayoutLM, DONUT does not use any off-the-shelf OCR package. In other
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words, it is an end-to-end model that handles the entire process of taking in processed

input images and matching the key-value pairs.

The use of the DONUT model was appealing for several reasons. Unlike other

models, we would not need to externally identify potentially effective OCR engines,

errors from the OCR component would not propagate through the rest of the model,

and no OCR postprocessing module would be needed. This in theory could allow the

pipeline to be simpler and faster while also attaining a higher accuracy. As further

shown in Figure 6-4, DONUT provides a full system with no outsourcing of processing

approaches or OCR engine, allowing for focus on the objective of key-value extraction

from a provided document [36].

Figure 6-4: Architecture of the DONUT model.

To obtain a base understanding of the DONUT model, we trained and tested using

the SROIE dataset. After 30 epochs of training, the results were slightly accurate with

an accuracy score of 0.679 and an F1 score of 0.574. Next, to evaluate if integrating

the DONUT model would be a better approach, we trained the model with the Arrow

dataset, first for 10 epochs to verify proper training, and then further trained it for

another 20 epochs, for a total of 30 epochs.

266 invoice documents from the Arrow dataset were used, on which DONUT did

not perform well. Both the summarized and full accuracy results are shown in Tables

6.1 and 6.2. Deterministically matched keys such as “GUIA” and “SHIP_METHOD”

had high accuracies as expected, but all other keys involved within the ML com-

ponent greatly underperformed. We did note that the model learned the output

representation extremely quickly, within 10 epochs. However, even after 30 epochs,

the information output did ultimately not match with the ground-truth, and did not
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show much improvement with additional epochs.

# of Correct Keys # of Total Keys Total Accuracy Equally-weighted Accuracy

3,599 9,540 37.72% 50.50%

Table 6.1: Summarized results of the DONUT model on the Arrow dataset.

Keys # of Correct Keys # of Total Keys Key Accuracy

GUIA 230 266 86.47%
FECHA 210 266 78.94%

SHIP_METHOD 242 266 90.07%
PDC 208 266 78.20%

NoPARTEARROW 338 1230 27.48%
NoPARTECLIENTE 13 27 48.15%

PUNIT 363 1190 30.50%
FRACCION 375 1152 32.55%
FACTURA 315 1225 25.71%
PORIGEN 498 1231 40.45%

QTY 447 1231 36.31%
TOTAL 360 1190 30.25%

Table 6.2: Individual results of the DONUT model on the Arrow dataset.

We soon realized that the results were poor not because the model was inferior,

but because DONUT expected an input image of size 1280 x 720, while images of

size such as (5 * 1280) x 720 were being passed in, meaning the image had to be

compressed vertically or in another manner. In order to remedy this, we developed

a script that modified the dataset such that the images were rotated correctly (as

needed) and then were made as large as possible, instead of shrinking them down to

12 pages - making the 88% of documents with 6 or fewer pages more legible.

This, however, came with several caveats. The features in each document now

varied considerably in size, and as we would need to apply the same process for

future datasets, GCV would also be required as a preprocessing step, increasing cost

and processing time. Converting the Arrow dataset into a compatible format and

testing the DONUT model in the pipeline produced an output with accuracies that
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were much lower than expected. As this model presented many inefficiencies and

difficulties, we ultimately decided not to move forward with fully integrating the

DONUT model into the pipeline.

The LayoutLMv2 and LayoutLMv3 models were also considered, which would

provide further improved versions of the LayoutLM model [60, 61]. However, these

new versions were not allowed to be used for commercial uses (a stipulation of the

project), and hence LayoutLM was deemed as the final choice for the machine learning

component.
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Chapter 7

Document Tabulation

7.1 General Overview

Figure 7-1: Sample result from the tabulation algorithm.

A custom, rule-based algorithm was developed to convert the output from the

Key-Value Matching Module into a visual table form overlaid on top of the input

document. This was critical as our dataset could have multiple rows of keys (such as

multiple rows containing part numbers and quantities) within a single document, and

hence the final result needed to be properly organized by row. The output was visual
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key-value classification on the original invoice document processed by the pipeline, as

shown in Figure 7-1 (some information is redacted for confidentiality reasons).

7.2 Algorithm Development

Figure 7-2: Diagram illustrating the tabulation algorithm’s process.

To initially identify the rows, the algorithm took in the key classifications from

the previous ML component, and divided the bounding boxes by classification. Then,

to handle each key separately, it converted each box into a set of (x, y) coordinate

pairs. Specifically, since words could be left-aligned, right-aligned, or center-aligned,

the algorithm considered three separate sets of points for every bounding box: the

top left corners, the top right corners, and the top middle point.

Next, the algorithm looked for a pattern of vertically-spaced, horizontally-aligned

coordinate pairs, which became the guess for that key’s row position. To obtain the

position of the rows for the entire page, the algorithm combined the guess for each

key, determined the most frequent row height, and selected the positions obtained by

the highest key with that row height.

After determining the rows, the correct boxes within each row were selected, which

was necessary as the model may have classified additional words per key - so the al-

gorithm must filter for the correct word. This was accomplished via a combination of

individual formatting checks and matching information across keys. For the format-

ting check, an example is checking if a word classified as a numeric-valued key (such

as “QTY”) was actually a numeric value. For matching information, the information

should match up across keys; particularly, the quantity multiplied by the unit price
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should equal the total price for each row.

Finally, after obtaining the preliminary values for each row, the algorithm post-

processed the rows to improve certain cases. For example, an invoice may have the

PO number written at the top of the page instead of a PO number in each row, so the

algorithm would detect that PO number and append it to each row. After methods

such as this, we obtained the final result of the pipeline: the extracted key-value

information as a classified table.

7.3 Algorithm Improvement

An issue we identified in certain input cases was that the tabulation algorithm was not

adept in processing rows of varying heights within a given document; an example of

rows (pink lines) incorrectly superimposed onto the original document with different

heights is shown in Figure 7-3. Rows of varying height were decently rare, and mainly

occurred for documents from one particular company. Adjusting the algorithm to

accommodate varying height rows just required the addition of a small adjustment

factor to the tabulation algorithm, which was set to 20 pixels. With this improvement,

our process for document tabulation - and development of the pipeline - was complete.

Figure 7-3: Example of a document with varying row heights.
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Chapter 8

Final Evaluation

We developed three evaluation scripts separate from the three main modules, each

of which were used to measure the performance of specific parts of the pipeline.

The first evaluation script measured the performance of the first half of the pipeline

(preprocessing, OCR, postprocessing). The model evaluation script measured the

performance of the trained LayoutLM model, while the final evaluation script evalu-

ated the accuracy of the comprehensive pipeline - beginning to end. A comparison of

the pipeline to a leading commercially available solution is also presented.

8.1 Preprocessing, OCR, and Postprocessing Evalu-

ation

The first evaluation method took in a JSON file containing the output of the pipeline’s

first half, which contained the first two modules. It compared the extracted outputs

against the ground-truth CSV file, and measured the number of ground-truth words

that were both present and correct; it is important to note that the words had not

yet been matched with keys at this stage in the pipeline.

Looking at the results for the Arrow dataset, as shown in Tables 8.1 and 8.2,

92.22% of all keywords in the ground-truth CSV were both present and correct in

the OCR output of their respective invoice documents. Each individual key’s accu-
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racy was also determined; for example, 91.67% of the “GUIA” (or waybill number)

words from our ground-truth data was present within the information output from the

pipeline’s preprocessing, OCR, and postprocessing components. This communicated

the fact that the processing half was able to correctly identify a significant majority

of the information present in the invoice documents, which was a crucial first step in

the objective of key-value extraction.

# of Correct Keys # of Total Keys Total Accuracy Equally-weighted Accuracy

16,405 17,789 92.22% 91.68%

Table 8.1: Summarized results from the Preprocessing, OCR, and Postprocessing
Evaluation.

Keys # of Correct Keys # of Total Keys Key Accuracy

GUIA 396 432 91.67%
FECHA 374 435 85.98%

SHIP_METHOD 831 951 87.38%
PDC 624 716 87.15%

NoPARTEARROW 1,927 2,215 87.00%
NoPARTECLIENTE 81 83 97.59%

PUNIT 1,791 2,160 82.92%
FRACCION 1,883 2,037 92.44%
FACTURA 2,030 2,195 92.48%
PORIGEN 2,189 2,201 99.45%

QTY 2,196 2,204 99.64%
TOTAL 2,083 2,160 96.44%

Table 8.2: Individual results from the Preprocessing, OCR, and Postprocessing Eval-
uation.

8.2 Machine Learning Model Evaluation

The model evaluation script was used to independently evaluate the performance

of the LayoutLM model on a test set of 266 invoice documents. The model had a

93.55% overall accuracy score and a 74.20% macro F1 score. A macro F1
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score was used as opposed to a micro F1 score as micro F1 scores often don’t return

an objective measure of model performance when classes are imbalanced, while the

macro F1 score does.

The model’s accuracy was found to be higher than the F1 score. We deduced this

to be due to the fact that the model sometimes classified extra words to each key.

For example, looking at the “QTY” column in Figure 8-1, we observe there are 3,124

words which were classified as “QTY” and were indeed a “QTY,” but there were also

631 words classified as “QTY” that were actually “_OTHER” - or not associated with

any key. For our pipeline’s identified objectives, classifying extra keys was preferred

over missing keys, as the former could be handled within the tabulation algorithm.

Figure 8-1: Confusion matrix for the trained LayoutLM model.

The model’s output confusion matrix for the test set is presented in Figure 8-1,

and is an evaluation technique used to summarize the performance of a classification
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algorithm. In the matrix, the diagonal elements represent the number of datapoints

for which the predicted label is equal to the true label, while the other elements are

those that have been mislabeled by the classifier. The higher the diagonal values of

the confusion matrix the better as it indicates more correct predictions. The bottom

labels represent the classes given by the model, while the left labels represent the

classes in the ground-truth. Visual assessment of our model’s confusion matrix along

the diagonal accordingly indicated effective classification.

It is also important to note that although the model was conclusively accurate,

its input data was based on the output from the OCR and postprocessing modules,

meaning that errors within those stages could have propagated into the model as well.

For example, sometimes the training data within the Arrow dataset was missing some

classifications, which could be attributed to the fact that the training data constructor

was unable to match the tokens up to the ground truth in certain cases. This is

something that can be improved upon as the pipeline continues to be developed.

8.3 Comprehensive Pipeline Evaluation

The final evaluation script measured the accuracy of the pipeline as a whole. Accuracy

was measured as the number of correct key-value pairs divided by the number of total

ground-truth key-value pairs on a test set of 266 invoice documents.

As shown in Tables 8.3 and 8.4, the accuracy where each key was weighed

equally was 87.85%, while the overall accuracy was 83.69%. Additionally, the

accuracy of each individual key extracted was determined. The most accurate keys

(“GUIA,” “PDC,” “FECHA,” “SHIP METHOD,” and “NoPARTECLIENTE”) were ex-

tracted with an accuracy greater than 90%, while all other keys except “NoPARTEAR-

ROW” were extracted with an accuracy greater than 80%. It should be noted that the

evaluation script only checked against rows that were present in the ground truth, so

extra rows that the pipeline accidentally “processed” were ignored. Similarly, if a key

was completely empty in the ground-truth, the evaluation script ignored any values

given by the pipeline for that corresponding key.
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# of Correct Keys # of Total Keys Total Accuracy Equally-weighted Accuracy

7,984 9,540 83.69% 87.85%

Table 8.3: Summarized results from the Comprehensive Pipeline Evaluation.

Keys # Correct of Keys # of Total Keys Key Accuracy

GUIA 259 266 97.37%
FECHA 250 266 93.98%

SHIP_METHOD 260 266 97.74%
PDC 249 266 93.61%

NoPARTEARROW 813 1230 66.10%
NoPARTECLIENTE 26 27 96.30%

PUNIT 1,008 1,190 84.71%
FRACCION 960 1,152 83.33%
FACTURA 1,016 1,225 82.94%
PORIGEN 1,053 1,231 85.54%

QTY 1,080 1,231 87.73%
TOTAL 1,010 1,190 84.87%

Table 8.4: Individual results from the Comprehensive Pipeline Evaluation.

8.4 Alternative Pipeline Comparison

In addition to evaluating the pipeline’s performance, it was necessary to compare its

final performance to other commercially available solutions. Previous studies have

investigated the efficacy of such solutions for general purpose document processing

tasks, but it was critical to understand those pipelines’ performance on the Arrow

dataset relative to our pipeline’s own [62]. We identified Amazon Web Services (AWS)

Textract as the most competitive, end-to-end commercial solution for comparison

[10]. Textract’s expense analysis can extract information such as contact information

and vendor name without any particular template or explicit label from invoices and

receipts, and hence was the best suited operation we could compare our pipeline with.

Textract explicitly extracts specified keys, of which we found the following that

matched with our dataset: “VENDOR_NAME” (“PDC” in the Arrow dataset),

“INVOICE_RECEIPT_DATE” (“FECHA” in the Arrow dataset), “QUANTITY”

(“QTY” in the Arrow dataset), and “PRICE” (“TOTAL” in the Arrow dataset). The
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other key-value pairs which Textract detected that didn’t fall under one of these fields

were classified as “OTHER,” and Textract returned the keys it detected as a separate

parameter.

To compare the final pipeline with Textract, we used six possible keys: the four

keys shared with the standard fields, as well as “GUIA” and “PUNIT.” These keys were

chosen as they were the easiest to convert from the Textract output, after which we

randomly selected a dataset of about 100 documents. We observed that our pipeline

performed much more accurately than Textract on the Arrow dataset, as shown in

Figure 8-2. Our pipeline more accurately extracts all of the specified key-value pairs

in comparison to the Textract pipeline.

Figure 8-2: Accuracy comparison of AWS Textract and the developed pipeline.

We can partially attribute this to the fact that we have defined a specific method-

ology to extract the proper key-value pairs, while Textract is not fully positioned

to handle the range of inputs from our dataset; for example, the waybill number

(“GUIA”) is not a standard field that Textract extracts, but by checking the obtained

label for certain keywords it was able to obtain an accuracy score over 70%.

From this we concluded that the Textract pipeline could be improved, but only

if a significant amount of time was spent in doing so. However with the objective of

this comparison being to compare our complete pipeline with the commercial AWS
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Textract pipeline, and the fact that adding custom rules to Textract would then

signify that it isn’t a standalone solution, we deduced our current pipeline as being

more effective for key-value extraction from the Arrow dataset.

51



Chapter 9

Conclusion

9.1 Summary of Contributions

This thesis illustrates the development of a fully functional, end-to-end data pipeline

that can extract key-value pairs from a complex dataset of commercial invoice docu-

ments provided by Arrow Electronics with an accuracy of ∼84%. Existing solutions

would not provide the flexibility or ease of use needed for the identified objectives,

and hence our custom process involved starting from the ground up. Previous stud-

ies from adjacent workspaces provided context about general issues associated with

document processing and specific technical approaches that could be used to improve

pipeline performance.

The deep-dive into the pipeline’s architecture and its compartmentalized modules

provide insight into its conceptual backgrounds, technical features, and design deci-

sions. The Preprocessing and OCR Module used structured techniques to improve

the dataset’s OCR compatibility, after which the Google Cloud Vision service was

selected and applied as the pipeline’s OCR engine. The subsequent Postprocessing

Module included the development of a custom Levenshtein distance-based method

to correct identified errors in the extracted text, in addition to custom correction

methods specific to the dataset. The Key-Value Matching Module finally matched

key-value pairs via the use of deterministic algorithms or the LayoutLM machine

learning model depending on the key. Custom methods were built and used to evalu-
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ate performance, both on individual modules and on the comprehensive pipeline. To

supplement the pipeline, we also developed a document tabulation algorithm to pro-

vide visual key-value classification on processed invoice documents, and an intuitive

web interface to easily run the pipeline and examine results on a local system.

9.2 Future Work

Though the current state of the pipeline demonstrates that it is accurate in its ex-

traction of key-value pairs, there is still room for improvement. New additions to

the dataset could result in more kinds of unstructured documents and make accuracy

maintenance difficult. To address this, we can begin by looking into ways of im-

proving pipeline accuracy at its initial image processing stage. Incorporating neural

networks or dimension reduction techniques into preprocessing or adding denoising to

postprocessing are examples of methods that could further improve the inputs being

fed into the Key-Value Matching Module [63, 64, 65].

As pipeline development continues, we hope to extend input types beyond just

commercial invoices, meaning documents such as expense reporting and warehouse re-

ceiving should be able to be accepted, and their corresponding key-value pairs should

be extracted. Previous studies involving such kinds of documents can provide inspi-

ration on extending the current pipeline [66, 67]. For each new dataset of documents,

we would need to restructure the data so that it is compatible with the pipeline, ana-

lyze/correct ground-truth data, retrain/evaluate the ML model within the Key-Value

Matching Module, and ultimately test new key-value relationships. This would allow

the pipeline to become more robust for widespread commercial extraction purposes.

Lastly, we hope to continue iterating on the web application interface to improve

its functionality and overall user experience. Specifically, we hope to look into new

ways of providing feedback on the accuracy of individual keys extracted from a par-

ticular document. Current development of a confidence metric within the interface is

a good start, but we believe this can be improved and extended for a wider variety

of key-value pairs in the future.
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