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ABSTRACT

As a step toward automating the process of weld bead grinding, a
robot was used to manipulate an industrial grinder and control the nor-
mal force applied to the workpiece. This robot was part of a prototype
system that incorporated off-the-shelf hardware. A nonlinear force con-
trol law was designed with the ability to track a wide variety of
desired force profiles, reject positional disturbances such as jigging
errors, and remain stable. The maximum normal force controlled was 40 N
and the maximum frequency of the reference force was 2.23 Hz.

Before designing the force controller, a model of the robot system
in contact with the workpiece was developed. System identification
techniques were used to estimate the freguency response relating output
force to input displacement. The dynamic characteristics of this system
were dominated by a time delay in series with a nonlinear compliance.

A number of designs for force control laws, including proportional
and PI controllers, are presented along with experimental and simulated
results. Overall, the best performance was achieved using a nonlinear
force control law. This control law is presented in a form that is
applicable to most plants that can be modeled as a time delay followed
by a compliance.

Thesis Supervisor: Bruce K. Walker

Title: Associate Professor of Aeronautics and Astronautics
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This thesis addresses the problem of using a robct to manipulate an
industrial grinder and control the normail force appl!ied to a vorkpiece.
The results of this research will be used in the deveiopment of a soft-
disk, automated grinding system. The specitfic purpose of this system is
to grind weld beads flush with the parent materiai. For example, this
type of system could be used in the automobile industry to grind the
welds on car bodies before spray painting. Figure 1 shows the conceptu-

al arrangement of the robot, grinding disk, and workpiece.

The PUMA 560 robot using VAL-1I was used in the development of a
prototype grinding system. VAL-II is a programming language and controi
system for the robot. A communication capability is available with
VAL-II for modification of the robot's trajectery from an external com-
puter. VAL-II superimposes external inputs on the motion defined by the
robot control program. Specifically, for this system, VAL-II allowed

real time control of the robot path by an IBM PC-AT computer.

Section 2 discusses the motivation for this research as part of the

overali goal of developing an automated grinding system. The goal is to

use the normal force between the grinding disk and workpiece as an indi-

17
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Conceptual arrangement of robot, grinding disk,

workpiece: Tool and world coordinates illustrated
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rect way of controlling the material removal rate. In addition, Section
2 introduces the following topics: 1) the major components of the pro-
posed grinding system, 2) the previous research in force control and
modeling robot dynamics, 3) the prototype system used for this thesis,

and 4) the scope of this research.

Section 3 discusses the modeling of the plant, which consists of the
PUMA robot and VAL-II without workpiece contact. The model was based on
an experimentally determined frequancy response function for the plant.
System identification techniques were applied to the input and output
displacement histories to estimate the frequency response function. The
inputs were sinusoidal or random sequences specified for a single tool
coordinate. These sequences were sent by the IBH PC-AT supervisor to
VAL-II (tool coordinates are illustrated in Figure 1). The output was
the actual displacement of the robot's end effector. This displacement
was calculated in the frequency domain from measurements of the end
effector acceleration. The major resuit was that the dominant charac-
teristic of the plant, up to 10 Hz, was a time delay. The specific pro-
cedures, techniques, and experimental results are discussed in this

section.

The plant model was then extended to include contact with the work-

piece. Section 4 examines the effect of this contact on the dynamic

model! for the robot and VAL-II. An Astek six axis force and torque sen-

19



sor was attached to the to the robqt's end effector. The rubber backing
that holds the grinding disk was mounted on the force sensor (the grin-
der and grinding disk were not mounted in this experiment). The system
identification techniques mentioned above were modified to estimate the
frequency response function reiating output fo}ce and input displace-
ment. The input displacements were small enough to aliow a linear model
of the plant compliance. Two different rubber backings (of different
composition and form) were tried with initial contact forces ranging
from 250 to 2000 dN. 1In all cases the dominant characteristic of the

plant was the same as found in Section 3, a time delay up tc 10 Hz.

To complete the model of the system in contact with the workpiece,
the nonlinear plant compliance was modeled. This was done exper-
imentally and the results are presented in Section 5. In this exper-
iment, the grinding disk was mounted on the rubber backing. This is
because the presence of the grinding disk was found to have a signif-
icant effect on the overall plant compliance. Force measurements during
low frequency sinusoidal inputs were used to generate plots of measured
force vs. end effector displacement. End effector displacement was
estimated from the commanded displacement by accounting for the time

delay.

An integrated model of the plant in contact with the workpiece and

coupled with the IBM PC-AT supervisor is presented in Section 6. A num-

20



ber of force control laws were designed for this integrated system.
They were tested experimentally and the resuits were compared. Exper-
iments were performed using the laboratory setup and using simulations
written in CTRL-C. The best overa!ll performance was achieved by using a
nonlinear controller. A general derivation of this controller is pre-
sented that is applicable to any system that can be modeled as a time
delay followed by a compliance. However, the compliance must be capable
of being modeled such that measured force is a monotonic function of

displacement.

Conclusions and recommendations for future research are presented in
Section 7. Also, prelimary results from an experiment in which normal
force was controlled during grinding are presented. In the opinion of
the author, it will be possible to indirectly control the material
removal rate by controlling the normal force applied by a robot. When
controlling the material removal rate, the accuracy required of the
force controller depends on the specifications of the part being ground.
If a robot is capable of delivering force to the relevant tolerances,
then this research can be used in the development of an automated grind-

ing systom.

21
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tndelic oy

The Charles Stark Draper Laboratory (CSDL) has been researching
automation systems and their application to manufacturing for 20 years.
As a focus for current research, CSDL is using robots and machine vision
to automate the process of grinding weld beads. This technology could
be applied in the automobile and shipbuilding industry where the grind-
ing of weld beads is currently done manually. In addition, the develop-
ment of an automated grinding workstation will illustrate technical

capabilities that may be applied to futurs automation problems.

A model! of the grinding process is necessary for the development of
an automated grinding system. Grinding, however, is a poorly understood
process. CSDL is currently developing a grinding model. Ivers[8]
showed that material removal is a function of the power applied to the
contact patch, which is the area of contact between the grinding disk
and the workpiece. Applied power can be indirectiy controiled by regu-
lating wheel speed and normal force. This thesis examines the feasibil-
ity of using this normal force as an indirect means of centrolliing the

material removal.

23
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Figure 2. Block diagram of the proposed grinding system

2.1 PROPNSED GRINDING SYSTEH

An overall block diagram of the proposed grinding system is shown in
Figure 2. The nominal trajectory is a sequence of position-controlled
motions. This trajectory will be calculated prior to each grinding pass
based on the weld's nominal contour and a trajectory specification. The
nominal contour is the system's estimate of of the shape of the weid
surface. Normal force will be controlled by updating the nominal tra-

jectory of the rcbot in real time. When the trajectory is modified, the

24



grinding disk will contact the workpiece and the resulting contact force
will cause the grinding system and workpiece to deform. Force feedback
will be provided by a force sensor attached between the robot's end

effector and the grinder.

Parts assembled or machined by current automated workstations must
conform to tight dimensional specifications. Welds, however, vary in
shape; so the proposed system will have to plan a task strategy for each
workpiece. The strategy includes planning the nominal trajectory and
the desired contact forces prior to each grinding pass. To calcuiate the
nominal trajectory, the system must have the ability to recognize and
measure geometrical aspects of the weld. One geometrical aspect of the
weld is the nominal contour; another is the weld bead's volume as a
function of position along the iength of the weld. One possible meas-
urement system, which is currently being investigated at CSDL, is a
structured light vision system[19]. It will provide a method of handl-

ing welds that are not uniform in shape.

The nominal contour for the weld and a trajectory specification will
be used to calculate the nominal trajectory. For example, the nominal
trajectory could be specified to keep the contact patch and the contact
angle constant in too! coordinates. In this case, the contact patch
could also be specified to move along the nominal contour. The result-

ing nominal trajectory is a set of vectors that describe the position

25



and orientation of the grinding disk as a function of time. The desired
normal force will be calculated as a function of position along the weld
in an effort to predict the material that will be removed. This calcu-
lation will be based on the grinding model, the current status of the
grinding disk, and the weld volume at the contact patch. The material
removed on each pass is planned to minimize costs. The time required to
complete the job, the life expectancy and sharpness of the grinding
disk, and the percentage of ruined parts are some of the factors that

will determine cost.

After each grinding pass, the proposed system will update the grind-
ing model parameters and the grinding disk status. This will be done
using measurements of the actual material removed and the stored contact
force information. Measurements of material removed could be made by
the vision system. The systam will be able to determine, from measure-

ment histories, when the disk is worn out and change it.

A possibie scenario for grinding a weid with the proposed work-
station is summarized as follows. A workpiece with a weld to be ground
wili be transported to the workstation. A data base describing the
geometric characteristics of the weld will be generated by the vision
system. The nominal trajectory and desired contact force history will
be calculated. The robot will begin following the nominal trajectory.

When the beginning of the weld is reached, force control starts. The

26



system will remove the desired material by controlling the normal force
applied to the weld. After the pass is complete, the geometry of the
weld will be measured again by the vision system. The grinding model
parameters and disk status will be updated. If necessary, the grinding
disk will be changed. The next grinding pass will be planned, and the

sequence repeated until the weld is ground flush with the parent materi-

al[e].

2.2 PREVIOUS RESEARCH IN FORCE CONTROL ARD ROBOT MORELING

Force contro! of robot manipulators is a topic of practical impor-
tance. It must be considered whenever a manipulator interacts with the
environment. Goertz first recognized the problem in the late 1940's
during the development of teleoperator arms{13]. He recognized the dif-
ficulty in manipulating objects with a purely position-controlled
device. It is necessary for the operator, or controliler, to sense forc-
es between the end effector and the environment. Many tasks that have
been autemated, such as spray painting and welding, require little
direct interaction between the robot and the workpiece. Other tasks,
such as assembly, require some interaction, but the forces are relative-

ly small. In order to expand the range of robot tasks to include jobs
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such as grinding, issues of force interaction must be more fully inves-
tigated. The solution includes: 1) analysis of task goals to determine
a strategy to accomplish the task, 2) analysis of the system to deter-
mine a suitable model, 3) determining how to measure forces, 4) design-

ing a force control algorithm, and 5) stabilizing the control system.

Current robot manipulators are usually position-controlled devices.
Linkages are actuated by rotary servo motors or stepper motors and their
state, consisting of position and velocity, is measured by joint enced-
ers and tachometers. Position control is often nct an adequate method
of controlling the manipulator after contact is made with the environ-
ment. Interaction with the environment introduces a positional con-
straint. The contact force causes a deformation of the manipulator and
environment. The magnitude of the contact force depends on the total
compliance of the manipulator and the environment. The compliance of a
position-controlled manipulator is determined by the construction of the
robot, the strength of the motors, and the controller gains. For many
tasks that require interaction, it is desirable to increase the manipu-

lator compliance along one or more degrees of freedom (DOF).

For example, consider an assembly task with a six-DOF, position-
controlled manipulator. If the manipulator and the parts are relatively
stiff, then the parts must be accurately positioned by the manipulator

for them to mesh. Positional errors can cause unwanted contact between

28



the parts when they are assembleu. Manipulatar:, howevar, have limited
repeatability and accuracy. The toierance to position errers during
assembly can be increased by adding compliance along specific DOFs. In
the late 1970's, CSDL developed a passive solution called the Remote
Center Cecmpliance (RCC) [4] [12] . This device attaches to the robot's

end effector to provide the ''give" needed for assembly.

Active control schemes provide the manipulator with compliance
through the control system. A review of force feedback architectures is
given by Whitney [24]. 1In general, the robot is commandad aiocng some
nominal trajectory or veleocity. At some peint, contact occurs between
the robot and its environment. Their collective deformation and stiff-
ness give rise to forces that react directly on the robot's joints. The
contact forces are also sensed and fed to the feorce controiler. The

controller uses this feedback to modify the nominal trajectory.

For example, in stiffness control, the force vector is fed back
through a 6 x 6 compliance matrix. The resulting position summed with
to the original positicn command. If the force vector is in tool coor-
dinates, then the apparent stiffness of the end effector can be adjusted
by selecting desired values of the compliance matrix. GQamping control
is essentialiy an integrating controller; desired velocity is specified
instead of desired position. Sensed forces are multiplied by an acdmit-

tance matrix to give rise to velocity modifications. Hogan[6] discusses

29
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the concept of impedance control, which is a generalization of stiffness

and damping control.

Another active control scheme is hybrid force/position control. A
hybrid controller allows force to be commanded along certain DOFs and
position to be commanded along the remaining DOFs. DOFs are often
naturaily divided when a manipulator interacts with the ervironment.
This division is described within a compliance frame. For example, con-
sider putting a peg in a hole. The compliance frame is chcsen so that
one axis, the 2-axis, coincides with the peg axis. Translation aleng
and rotation about the z-axis are position-controlled, while the other
degrees of freedom are force-controlled. Raibert[15], Craig [3] , and

others discuss this technique.

The system must be specified and a model determined before a force
controller can be designed. This mode) must include the robot manipula-
tor because the manipulator contributes significantly to the overall
plant dynamics. There are two general approaches to modeling a plant.
One approach is to analyze internal dynamics based on physical laws to
form a mode! that predicts the input/output behavior. Another approach
is to analyze the irput/output behavior and form a model that describes
this behavior, but does not describe the internal dynamics. In this

research, the plant is modeled by analysis of the input/output behavior.

30
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The internal dynamics of robotic manipulators have been anaiyzed and
modeled for 20 years. In early models, the manipulator was assumed to
be a linkage of rigid bodies. Dynamic equations are derived by the New-
ton - Euler method, the Lagrange method, or other methods. Link parame-
ters, such as mass and moment of inertia, are determined by
disassembling a robot and carefully measuring the links. Armstrong, et
al.[1], performed this procedure on a PUMA 560 arm and expressed the

dynamics in the following form.

Al@)g + B(q) [q'q’] + C(q) [q'?] + g(4) =T (1)
where

q’ = dq/dt,

and

A(g) is the nxn kinetic energy matrix,

B(g) is the nxn(n-1)/2 matrix of Coriolis torques,
C(q) is the nxn matrix of centrifugal torques,
g(q) is the n vector of gravity torques,

q’ is the n vector of accelierations,

r is the joint torque vector.

The vector [g'q‘] is the n(n-1)/2 vector of velocity products. It is

given by:

[a'4a'gs 6°4Q'3 - + - Q4Q'» Q'58°3 » G'2G"°g + - - Q'-50'ps CET I A

The vector [q'2] is the n vector of squared velocities. It is given by:
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[a2,, @2 . . . q21".

For a typicel manipulator, equations like (i) have hundreds of terms &nd
are extremely complex. Many researchers have simplified those squations

to reduce computation time [7].

Exper imental results, by Good, st al.[5], have shown that this type
of model is inadequate for many rcbot designs. The major wesknast is
that the drive system is modeled as a pure torque source or first order
lag. This assumption is a poor one because of compliant elements in the
robot's drive system. Very few studies account for this compliance. 1In
the derivation of eguation (1), the arm is modeled as a linkage of rigid
bodies. There are unmodeled motions caused by flexibility in the link-~
ages connecting the drive systems to the arm members. There is also
bending and torsion of the arm members themselves. Nonlinear effects
are not modeled. These inciude viscous damping, coulomb friction for

motor and lcad inertias, and backlash.

To account for the unmodeled dynamics, Good used system identifica-
tion and structural dynamic analysis techniques. For example, the
dynamic response, from 0 to 50 Hz, of the integrated drive, for each
axis, was found. The drive system included the drive motor, harmonic
drive, linkages, and arm. Motor current and arm motion were recorded as

the servo motor was excited with random or sinusoidal input signals.
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The frequency response function was estimated using FFT analysis. This
type of research has led to more complate models of robot manipulators

and trajectory controlliers[5].

2.3 EXPERIMENTAL SYSTEM AMD SCOPE OF THIS RESEARCH

The prototype system used in this thesis for force control exper-
iments is shown in Figure 3. The PUMA 560 robot arm is in the back-
ground. Attached to the end effector is the Astek FS6-120A-200 six axis
force and torque sensor. The grinding disk and backing are attached to
the force sensor. The IBM PC-AT is on the left and the terminal for
VAL-II is on the right. Note that the system does not include a grind-
ing motor. The payload capacity of the PUMA (5 Ib) is too small to

manipulate more than a light duty industrial grinder.

A hybrid force/position controller was designed for this prototype
system. The nominal trajectory was a straight line path manually taught
to VAL-II. Force was measured by the force sensor and fed back to the
IBH PC-AT. The desired force profile (i.e., constant, sinusoidal) was
predetermined and stored in the memory of the IBM PC~AT before esach

experiment. The force feedback control strategy was programmed into the
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Ffigure 3. Overali setup for force control gxperiments



IBM PC-AT. The tool 2-component of the ccmmanded manipulator trajectory
was updated every 28 ms by the ccntrol strategy. This update was passad
from the IBM PC-AT to VAL-II and summed with the nominal trajectory.
The other trajectory components were position-controlied only. Comp!i-
ance was primerily provided by the grinding disk and rubber backing.
Some compliance was present in the robot gear mechanisms, but this was
considered negligible compared to the disk and backing. Stepien,et al.
[17] [18] , discuss a robotic system that uses a similar force control

architecture. Their system was tested in a2 deburring application.

As discussed, the z-position commands sent from the IBM-PC to VAL-II
were in tool coordinates. The corresponding joint position changes were
calculated by the VAL-II software and were transparent to the force con-
troller. Paul[13] discusses the translation of position in tool coordi-
nates to _joint coordinates. Future systems may have a need for a
multiple axis strategy. For example, force feedback could be used to
determine if the contact patch is properiy positioned on the weld. The
disk angle and feedspeed were not varied in these experiments. The

speed of the robot was constant along the nominal path over the weld.
VAL-II has a kinematic model of the PUMA embadded in its software

that is used for trajectory control. No attempt waz made in this

research to change or improve this model or VAL-II's trajectory control-
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ler. This research shows that force can be controlled with relatively

inexpensive off-the-shelf hardware without medifications.
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In this section, the frequency response characteristics of the pilant
consisting of the PUMA robot and VAL-II are discussed. The frequancy
response relating output displacement to input displacement commands was
estimated using system identification techniques. A plant mcdel was
constructed based on the frequency responses obtained. The dominant
characteristic of the plant, up to 10 Hz, was found to be a time delay,

and this is the model proposed in Section 3.4.

The modeling techniques presented in this section differ from those
discussed in Section 2. In this research, the PUMA was not divided into
components as was done by Good[5] or Armstrong [1] . Rather, the PUHA
and VAL-II were considered as an integrated plant and this plant was
identified from the input and output displacement histories. Figure 4
shows the PUMA robot with its associated electronics and VAL-II in
detail. This figure illustrates the piant along with the input and out-

put signals that were used to identify it.

The general procedure for each experiment is as follows. The robot

was configured in a fixed position without workpiece contact. A series

of displacement commands from the IBM PC~AT supervisor commanded the
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robot to move along a single tool ccordinate axis. The inputs included
sinusoidal and prefiltered random signals. An accelerometer was fixed
to the robot's end effector to measure acceleration. The accelerometer
output was passed through a Butterworth anti-aliasing filter and then
sampled and stored. The cross-spectral and auto-spectral densities were
estimated using the method of averaging periodograms and a Hamming win-
dow. The freguency response of the system was then astimated from the
spectral densities. The experiment was repeated with different masses
attached to the endpoint and various positions in the robot's workspace.
The frequency responses were verified at intermittent discrete frequen-
cies using sinusoidal inputs. These technigues are explained in Section

3.3.

3.1 EXPERIMENTAL SETUP

The four positions in which the robot was tested were chosen to
illustrate how the frequency response changes with the robot's config-
uration. For each position shown in Figures 5 through 8 the robot was
commanded to move along the tool 2z-axis. These positions, in world
coordinates, are specified in Table 1. The response for the tool

z-direction is considered the most important because this is the axis
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Table 1. Positions of robot in world coordinates

Position X Y F4 $ e ¥
1 211.43 670.87 -38.75 174.78 42.52 -96.93
2 202.91 780.97 -57.09 -88.32 89.85 0.0
3 207.41 629.866 -56.97 -88.32 88.86 0.0
4 214.24 371.81 -56.78 -88.32 89.96 0.0

X, Y, Z are distances in mm.
$, 6, ¥ are Euler angles in degrees.

along which the force is to be controlled. Tests were also performed in
position 3 with the accelerometer mounted on the itcol x-axis and tooi
y-axis. Figure 9 shows the accelerometer mounted on the teool y-axis.
Payload can be varied by changing the weight shown. Cross coupling
between axes was measured by mounting the accelerometer orthogonal to

the excitation axis.

Additional apparatus needed for these experiments is described
below.
e Bruei & Kjaer 4381 accelerometer
- Charge sensitivity (pC/g): 99.6

@ Accelerometer mount

~ Weight including bolt (kg): 0.448
- Additional payload #1 (kg): 1.157
~ Additional payload #2 (kg): 1.957



Figure 5. Experimental position 1

e Bruel & Kjaer 2635 charge amplifier; Setup:

= Transducer Sensitivity (pC/g): 99.6
= Output gain (mV/g): 100.0
= Upper frequency limit (kHz): 0.1
~ Lower frequency limit (Hz): 0.2

= Output set for acceleration
e Analog anti-aliasing filter
Three pole Butterworth low-pass filter with 15 Hz. cutoff frequency.

The sampling period for these expesriments is 0.028 sec, so the
Nyquist frequency is 17.9 Hz.

41



Figure 6. Experimental position 2

3.2 SYSTEM INPUTS

The frequency response was estimated at 4 frequencies using sinusoi-
dal inputs that were sampled ‘very 0.028 seconds for a total sequence
length of 1024 samples (28.672 s). The periods of the input signals
were chosen to divide evenly into 28.672 s. The amplitudes were chosen
to achieve a peak acceleration of at least 0.25 g. In addition, it was
desired that the maximum displacement be small, but at least 3.1 mm (100

counts). A count is the smallest displacement change that can be com-
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Figure 7. Experimental position 3

manded and is equal to 0.03125 mm (0.00123 in.). The details are given
in Table 2. Note that four stepe per cycle is the highest reasonable

frequency because this produces a triangular waveform.

The random input was also a sequence of 1024 samples. The goal was
to create a seguence of displacements that have a flat acceleration
spectrum. If S(d) is the displacement spectrum, then the acceleraiion
specirum is given by -w?S(d). Thus, a flat dispiacement spectrum would
imply large acceleration power at high frequencies that could be damag-

ing to the robot. To approximate the desired spectrum, a flat displace-



Figure 8. Experimental position 4

._\

;

ment random sequence was low-pass filtered. The actual gcceleration
spectrum falls off rapidly below 0.6 Hz and above 10.0 Hz. The proce-

dure for generating the random input signal is summarized as follows:

] Use a pseudo-random number generator that gives floating point

numbers uniformly distributed between -1/2 and +1/2.

° For each element of the array, add 3 numbers from the uniform

distribution. The distribution of the array elements will be




S

el

Figure 9. Accelerometer mounted on tool y-axis

approximately gaussian with an approximate mean of 0.0 and stand-

ard deviation of 0.5.

Scale the data to the appropriate maximum amplitude, convert to

counts, round off, and store as a sequence of integers.

Pass the data through a digital low-pass filter to form the final

sequence. A two pole Butterworth low-pass filter, approximated
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Table 2. Sinusoida! input information.

counts/cycle frequency ampl i tude acceleration
{Hz2) (inches) (counts) (in/sec-sec) (g)
32 1.11607 2.0000 1626 98.35 0.25
16 2.23214 0.8822 789 133.20 0.50
8 4.46286 0.2455 200 183.20 0.50
4 8.92857 0.1228 100 386.40 1.00

by Tustin's (bilinear transform) method, was used with a natural
frequency of 4.22 Hz and variable gain. Two random input
sequences were constructed. The first, using a gain of 50, is
referred to as the low amplitude input, and the sacond, using a

gain of 100, is referred to as the high amplitude input.

3.3 SYSTEM IDENTIFICATION

The general goal of system identification is to determine a model,
or parameters of a model, for a system based on the input/output charac-

teristics such as the frequency responge function, H(jw), of the system.
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For the system considered in this thesis, H(jo) is experimentaliy deter-

mined and displayed in graphical form.

The technique of using estimated spectral densities to calculate the
frequency response of a system is based on linear system theory. The
laboratory system was assumed to be approximately linear when responding
to band-limited inputs of low amplitude. The two major sources of non-
linear effects were geometrical variations and the nonlinearities in the
drive train. The effect of geometrical variations was observed by test-
ing the robot in & distinct positions. These positions spanned the
range of the expected workspace. Alsc, the tests were performed for
each tool coordinate axis. The effect of the drive train dynamics was

cbserved by testing the robot with inputs of different amplitude.

The linearity of the system for each random input was estimated by
calculating the coherence function, defined in Section 2.3.2. This
function is a direct measure of the degree to which the output is line-
arly dependent on the input, and it is independent of the system being
identified. The value of the coherence function falls in the range [0,
1], where a value of 1 indicates a perfect linear relationship. There
are two causes of a value less then 1: measurement noise and nonlinear
plant characteristics. For the experiments presented in this section,

the coherence was greater than 0.9 in the frequency range of 1 to 10 Hz.
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The frequency response was also calculated at discrete frequencies
using sinusoidal inputs. The method, which is further explained below,
is to decompose the output signal into an infinite series of sinuscidal
components. Then the response for the input frequency is determined.
It is not necessary for the plant to be linear to use this method.
These results are shown as crosses on the frequency response plots for
comparison with the responses obtained from estimating spectral densi-

ties.

The input/output signals for the plant are defined as:

e u is the input displacement signal sent by the IBHM PC-AT to VAL-
II1,

e vy is the output displacement signal,
@ w is measurement noise uncorrelated with the input u,

e 2z is the measured output displacement(z = y + w).

Note that in the laboratory, acceleration was measured, not displace-

ment. The conversion from acceleration to displacement is made in the

frequency domain, as explained below.

If f(t) is a continuous function on the interval 0 < t < p, it may

be represented as a Fourier series expansion, given by



f(t) = Ay + g [A,cos (2mnt/p} + B sin(2mnt/p)], (2)

me1
where
"
Ay = 1/p | f(t) dt
)
P
A, = 2/p | f(t)cos(2mrt/p) dt
Yo
"
B, = 2/p | f(t)sin(2mnt/p) dt.
Yo

If f(t) is given by a finite set of N data points, then a 2zero order
approximation can be written for the integrals. Assume that the sample
points are equally spaced a distance T apart, 0 S t < NT. Defining

wy = 2um/NT m=0,1,2, ... N1 (3)

for w, < o, (sampling rate), the integrals are approximated by:
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N-1
Ay = 1/N Z f (nt) (4)
n=Q
N-1
A, = 2/N 2 f(nt) cos (2mmn/N)
n=0
N-1

B=2/NZ f(nt)sin(2nmn/N) .
n=0

Consider the Fourier Transform of a function f(t), defined by

Fw) = J‘f (t) e"39t dt (5)

where j = (-1)'/2, A 2ero-order approximation of the integrai is

F(m) =T E f (nT) e"2mn/N = (T)DFT (m) (6)

ns-a&

For N data points the Discrete Fourier Transform (DFT) can be written as

N-1 N-1
DFT(m) = 2 f(nT)cos (2smn/N) - j X f(nT)sin(2mmn/N) . (7)
rn0 n=0

Defining Ryey(m) = real part of DFT(m) and Iy (m) = imaginary part of

DFT (m) equation (7) can be written as



DFT(m) = Rypy(m) = jIyer(m). (8)

In this form the DFT can be used to calculate the coefficients of the
Fourier series expansion of a signal given by f(nT). The coefficients

are given by

Ay = (2/N)Rper (m) . (9)
B, = (2/N)Ipp; (m),

where

m=0, 1, 2, . . . N~

(A, = 0 when E[y(nT)] = 0).

In the laboratory, a single input frequency was used with units of
displacement. The ocutput sequence z(nT) was obtained by measuring and
sampling the output acceleration. The procedure for determining the

magni tude and phase respeonse is as follows:

1. Sample output z(nT) in units of (g),

. Compute and remove the mean (z(nT) = 2(nT) - mean),

2

3. Convert z(nT) to units of in/sec?,
4. Take the FFT of 2(nT) to yield Z(m),
5

. Multiply Z(m) by -(Z/anz) to yield the series coefficients for

the displacement spectrum,

6. Convert to magnitude/phase form.
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Consider a linear, time-invariant system with the frequency response

H{jw), input u, and output y. A property of the system is that

Suy (o)
Syu o)

H(jo) =

(10)

vhere S, (ju) and S, (ju) are the cross-spectral and auto-spectral den-

sities of the input and output. These functions are defined by

S,y (o) = kaw(t)e'i"'t dt (11)

and

S, o) = rRuu(t) e st gt (12)

where R, (t) is the cross-correlation function of the input and output

and Ruu(t) is the auto-correlation function of the input.

Another property of a iinear system is that the output spectral den-~

sity is
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Syy (o) = 1H{ o) |2 Sy (o) . (13)
If only a noisy measurement of the output is available, then
2(t) = y(t) + w(t) (14)

where w(t) is noise uncorrelated with the system input u(t). It follows

that
Su(jm) = Syy (o) + S, (jw) . (15)
The coherence function is defined to be

|5uz (jw) 12
C (w) = (16)
Suu (@) S5, o)

where 0 < C (jw) s 1.

Since the input and output are measured and sampled for a finite
time, the spectral densities must be estimated. In practice, reliable
estimates are difficult to obtain from finite data records. Zero-order
approximations of equations (11) and (12) are not reliable. The next

section discusses the estimation technique used in this research. Let ¢
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be an estimate of a spectral density S, then the goal is to estimate the

quantities
o _ (m)
Hay) = — (17)
0y, ()
and
Io  (m)i2
C,, () = ———— (18)
0, Mo, (m
where
w, = 2nm/NT m=0,1, . . ., N-1.

3.3.3 Estimation of Spectral Densities

The method of averaging periodograms to estimate spectral densities
is discussed by Welch[20]. Let X(n), n= 0, 1, . . ., N-1 be a sample
from a stationary, second-order stochastic sequence. Assume that E(X) =
0. Let X(n) have a spectral density S  (jo). Take segments, possibly

overlapping, of length L with the starting points of these segments D



units apart. Let X,, n=0, 1, . . ., L-1 be the first such segment.

Then
X, (n} = X(n) n=0, 1, . . ., L-1. (19)
Similarly,
X,(n) = X(n + D) n=0, 1, . . ., L-1
and finally
X (n) = X(n+ (K -1)0) n=0, 1, . . ., L-1.

Thus, there are K such segments; X,(n), . . ., X.(n), and they cover the

entire record ( (K - 1)D + L =N ).

The method of estimation is as follows. For each segment of length
L, calculate a modified periodogram. That is, select a data window
w(n), n=0, 1,. . ., L-1, and form the sequences X,(n)W(n). . . .,
X, (n)W(n). Then take the finite Fourier transforms F,(m), . . ., F (m)

of these sequences. The transforms are given by

L-3
F(m = 1/L Z X, (n)W(n) e-32mn/L, (20)
n=0

The K modified periodograms are given by

I (f) = L/U lr'k(m)l2 k=1, 2, . .., K, (21)

55



where

f, = m/L n=0, ..., L/2
and
L-1
U=1/L S W3(n).
n=0

The spectral estimate, ® (m), is is obtained by averaging the periodo-

grams

X
o, (m =1/Kk T 1,(F). (22)
k=1

This procedure can be used 1o calculate the input and output auto-
spectrsl densities, &, and ¢,,. The caiculation of the cross-spectral
densities is done is a similar manner. Let X(n), n=0, . . ., N-1, and
Y(n), n=0, . . ., N-4, be samples from two second-order stochastic
sequences. Both samples are divided into K segments of length L. Call
these segments X, (n), . . ., X.(n) and Y, (n), . . ., Y,(n). Modified
cross periodograms are calculated for each pair of segments Xk(n).

Yk(n). and the average of these modified cross periodograms constitutes

the estimate &,,. This procedure was applied to estimate the cross-



spectral density ®,,. Ffor this research, a 50% overlap of the data seg-
ments is used along with a Hamming window. The formula for a Hamming

window is

W(n) = N.64 - 0.46 cos[2w~n/N] ne0, 1, . . ., N-1. (23)

The procedure for calculating the frequency response function from the

input u(nT) and the output z(nT) is summarized as follows:

1. Sample output z(nT) in units of (g),

2. Convert z(nT) to units of in/sec?,

3. Compute the cross-spactral and auto-spectral densities,

(Segment means are removed before windowing and transforming to avoid
iow frequency distortion.)

4. Calculate the estimate of H(jw) in magnitude/phase form,

5. Calculate the estimate of C_,

6. Muitiply each component of H(jw) by -1/w? to convert to output

displacement over input displacament.
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3.4 EXPERIMENTAL RESULTS

Typical frequency response and coherence functions are shown in
Figure 10 and Figure 11 (note that on this plot and the others that the
phase was raeset to 0 by the transfer function estimation program after
-360 deg). There is a strong correlation between the results of the
sinusoidal tests (shown by crosses) and the -"andom input tests. The
piot shows valid results between 0.6 and 10 Hz. Outside of this range
the spectral density of the input is low. Also, the output measurements
above 10 Hz are noisy and the spectral estimation error is high. The
coherence function shows that the linear approximation is good between 1

and 10 Hz.

The dominant characteristic of the frequency respcnse up to 10 Hz is
a phase shift. The phase shift is approximated well by a 0.1 sec time
delay; a comparison between the sinusoidal data and this model is given
in Table 3. Computation time is the major source of the time delay.
VAL-II must caiculate the appropriate joint servo motor commands to
realize each displacement commanded by the IBM PC-AT supervisor. The
plots show the attanuation of the magnitude response as frequancy
increases (see also data in Table 3). The most likely cause of atten-

uation in magnitude as frequency increases is servo driver saturation.
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Table 3. Sinusoidal test data

Test Position M

WNOOEWN
WWwNhPEp-WDWW

Test 1.116 Hz2
mag phase
1 0.80 -37.1
2 0.92 -36.8
3 0.94 -37.4
4 0.88 -37.3
5 0.80 -35.7
6 0.87 -36.9
7 0.9% -35.9
8 0.08 -203.1
%1 ° 1.00 -40.2
*2 1.00 -45.0

%1 is a 0.1 s time
%2 is a 0.112 s (4

otion
axts

NN NNNNNN

Accelerometer
axis

2.232 Hz

mag phase
0.83 -84.
0.86 -84.
0.87 -85.
0.88 -85.
0.84 -84.
0.8¢ -85.
0.83 -84.
0.06 -23%

1.00 -80.
1.00 -80.

delay model.
counts) time delay model.

7
8

Chh=2NON-=W

XX NNN-MNNN

Additional
payload (kg)

1.1562
1.857

1.152

4.464 Hz

mag phase
0.65 -177.
0.68 -176.
0.70 -177.
0.68 -175.
0.64 -175.
0.61 -178.
0.56 -170.
0.05 -307.
1.00 -160.
1.00 -180.

magnitude (displacement/displacement) and phase (degrees)

8.929 Hz
mag phase
0.45 -321.2
0.50 -321.5
0.54 -323.3
0.46 -316.5
not available
0.42 -318.4
nct avaiiable
not available
1.00 -321.4
1.00 -260.0

Figure 12 shows the frequency response function in Figure 10 com~

pared with three others.

Plot A is the same as in figure 10. Plot B

shows the same test with the high amplitude random input. In plot C, a

1.152 kg payload is added and in plot D a 1.957 kg payload is added.
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There is no significant difference in the frequency responses shown in
this figure. The characteristics of the frequency response are there-
fore independent of locad up to 2.5 kg in position 3. In addition, no
significant effect caused by drive train nonlinearities was observed

when the input magnitude was changed.

Figure 13 shows frequency responses for the robot in four different
positions. The position of the robot, within the workspace tested, has

no significant effect on the frequency response.

Figure 14 shows freguency response functions for the accelerometer
mounted in the y-direction. In the first 3et of plots (A), the robot
moves in the y-direction. Again, there is no significant change in the
response. In the second set of piots (é;. the robot mcves in the z2-di-
rection. This shows a typical cross-axis magnitude response of about
five to ten percent. Correlation function (B) shows that iLhe signal to
noise ratio for the second case is low. Results are not given for robot
motion in the x-direction because it was damaging to the robot. This is
because joint 1, the major axis, had to suppliy most of the motion. The
cross-axis coupling between the robot axes is weak for these positions

and magnitude of disturbances.

In summary, the major characteristics of the fraquency response

function are largely independent of position, excitation direction, and
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payload. The PUMA's inner servo lcop, operating at 10600 Hz, is able to
compensate for these changes in dynamics. More of a difference in the
magni tude resporises was expected. The dominant characteristic of all
tha respenses is the linear phase shift. As shown in Table 3, the phase
shift can be approximated as a 0.1 s time delay. However, the system
was modeled as a 0.112 s (4 sample periods) time delay to simplify sys-

tem analysis during the design stage.
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In this experiment, the plant consisting of the PUMA robot and VAL-
I1 was extended to include the grinding disk backing in contact with the
workpiece. The f(equenfy response ielating the output force to input
displacement for this plant was estimated. In this configuration, the
force sensor and disk backing were mounted to the robot's end effector,
and the robot was placed in contact with the workpiece as shown in Fig-
ure 15. The results are compared with those in Section 3 to determine
the changes in dynamics caused by contact with the envircnment. A time

delay remained a valid approkximation of the frequency response.

As before, the method of averaging periodograms with a Hamming win-
dow was used to estimate the frequency response. In this case, the mag-
nitude of the frequency response has units of stiffness (dN/mm). The
random input sequence used in this section had a flat displacemant spec-
trum. This is because a force sensor was used rather than an accelerom-
eter. To protect the robot, the magnitude of this input sequence was
smaller than that used in Section 3. The procedure for creating this
input sequence is the same as described in Section 3.2 except that the

low pass filter was not used.
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The lower amplitude of the input sequence allowed the allowed the
plant to be approximated as a linear spring in the frequency response

analysis. The input commnanded motion along the tool! z-axis only.

The frequency response was estimated for three contact angles, 10,
21.5, and 30 degrees. Ivers[8] used 21.5 deg.ees during grinding exper-
iments. Two different disk backings of different composition and form
were tried. The grinding disk was not mounted on the backing during
these experiments. For each experiment, the contact force was initial-
ized and then the input was started. Initial contact forces were in a
range of 250 to 2000 dN. The output from the force sensor was sampled
every 0.028 s. This force sensor internally filters the force output in
two stages. First, six analog strain gauge signals are filtered indi-
vidually by a third-order lowpass filter.;with the 3 dB point set at 120
Hz. Second, a second-order, programmable, digital filter rolls off the
sampled signals at frequencies selectable from 240 Hz to 15 Hz. The
digital filter cutoff set by the force sensor based on the effective

output data rate.



Figure 15. Configuration for experiments with workpiece contact



4.1 EXPERIMENTAL RESULTS

Typical results are shown in Figure 16 for disk #1 and Figure 17 for
disk #2. The only significant difference in these responses is the ove-
ral! height of the magnitude plot. This is due to differences in the
initial contact force. There was no other iritial parameter that made a

cignificant difference.

The magnitude responses shown in the figures is constant to about 3
Hz and then the magnitude response decreases as fregquency increases.
This attenuation is faster than what is shown in the figures for the
case without workpiece contact. This is not considered significant
because most of the input signals to be used by the force controller are
expected to have a bandwidth of less then 3 Hz. This is discussed in
more detail in Section 6. The phase lag can be approximated by a 0.1
sec time delay within a bandwidth of 10 Hz. 1In this approximation the

attenuation of the magnitude response is neglected.
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Figure 16. Frequency response of PUMA in contact with the workpiece

- disk #: (initial contact force 1100 dN)
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Figure 17. Frequency response of PUMA in contact with the workpiece

- disk #2: (initial contact force 2470 dN)
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5.0 {(OMPLIANCE MODEL OF PUMA ROJOT IN CONTACT WETH THE WORKPIECE

For this experiment, the PUMA was set up as described in Section 4
except that an 80 gri; grinding disk was mounted to the rubber backing.
This configuration was also used for the force control experiments, dis-
cussed in Section 6. The compliance of the plant, in this configuri-
tion, is experimentally determined. The grinding disk adds significant
stiffness to the backing and must be when measuring the piant compli-
ance. The contact angle was set to 21.5 degreass. This is one of the

setups used by Ivers[8].

The robot was initially positioned so that the grinding disk just
touches the workpiece. A low frequency sinusoidal sequence was used as

the inpuz, and is given by

u(kT) = A[1 -~ cos (2=fkT)] (24)

where

{60, 100, 150, 200}
0.13851 Hz

o, i, 2, . . ., 1023
0.028 s.

- >
| B I I |
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The input sequence commanded the robot in the tool z-direction and the
force output was recorded. Ordered pairs of {displacement (k),
force (k+4)} were formed. The force was offset to compensate for the 0.1
s time delay, which is approximately 4 time steps. The ordered pairs
were divided into two final sets; in the first set the displacement is
sequentially increasing, and in the second it is decreasing. The robot
pushes harder as the displacement increases, and pulls away as it

decreaseas.

Figure 18 and figure 18 show the results. Each figure has 4 exper-
imental plots and 1 plot of the modei (in bold print). Note that the
stiffness of the disk appears to increase more guickly for the lower
amplitude tests. This effect is not understood. The case of A = 200

can be approximated by

F(z) = b/a(e*z - 1), 2 20, (25)
where
F(z) = measured force

a=0.011
b-0.1 -

The stiffness P as a function of displacement is then given by

df
P(z) = — = pe2Z, (26)
dz
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Or, writing stiffness as a function of force yields

P(F) = aF + b. (27)

In this model, compliance is a linear function of force. Clearly, P(z)

is a monotonic function. However, the following form is used during the

nonl inear contro! law derivation for cenvenience:

P(a,, q,) = b/a(exp(q,) - explq,)), a1, g220 (28)

where P(q,, q,) is the change in force that results when the displace-

ment is changed from q, to q,.
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Measured system compliance
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Figure 18. Measured compliance - displacement increasing: Model is

in bold print, 1 count = 0.03125 mm (0.00123 in.)
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Figure 18. Measured compliance - displacement decreasing: Model is

in bold print, 1 count = 0.03125 mm (0.00123 in.)

77



78



The wbjective of the research ‘presented in this section was to
design a2 force contrcl law for the PUMA robot that would be usable in an
automated grinding system. The force control iaw must by abie to track
a wide range of input signals, be stable at high forces, be robus: to

medeling errors, and be able to reject positional disturbances.

To meet this objective, the characteristics of the PUHA roQot in
contact with the workpiece were integrated into a unified model. This
mode! consists of a time delay followed by a éompliance. A number of
different force control laws were designed and tested. The properties
and limitations of each closed loop system are illustrated by simu-
lations .- experiments. The best overall perfcrmance was achieved using
a nonlinear control law. This control law is presented in a general

form.
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6.1 DESCRIPTION OF FORCE CONTROL EXPERIMENTS

The experimental set up is shown in Ffigure 156. 1In this configura-
tion, the Astek force sensor, grinding disk, and backing were mounted to

the robot's end effector.

A nominal trajectory for the robot was specified. In these exper-
iments, the contour traced by the edge of the contact patch as the robot
follows the nominal trajectory corresponds to the nomina! contour of the
weld. The speed of the rebot along the nominal centour in these exper-
iments was 0.889 cm/s. 1f the workpiece was positioned without error,
then the edge of the contact patch moved directly along the actual con-
tour of the weld. A positional disturbance resulted when the two con-
tours did not coincide. Other specifications for the nominal trajectory

are possible.

The objective of the experiment was to track the desired fcrce sig-
nal as the robot followed the actual contour of the workpiece. Thus,
the control law must reject positional disturbances. The trajectories
and contours discussed above are illustrated in Figure 21. A negative
ramp disturbance resulted when the end of the weld was above PFINISH;
this case is shown in Figure 22. A positive disturbance resuited when

the end of the weld was below PFINISH. A compliex disturbance is ilius-
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PFINISH
PSTART

WORKPIECE

Figure 20. Motion sequence for force control experiments

trated in Figure 23. The workpiece shown in Figure 22 was 304.8 mm (1
ft.) long. The results for three rates of disturbance, given in

Table 4, are discussed at the end of this section.
The robot was taught the location of four points, as illustrated in

Figure 20. This was done by manually moving the robot to the desired

position and crientation, then commanding VAL-II to record the joint
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Robot

. T

Tool

Nominal
Trajectory

>mpliance

Nominu!l
Contour

Figure 21. Illustration of contours and trajectories

encoder positions. Force was controlled between PSTART and PFINISH;

this leg of the circuit was the system's nominal trajectory.

Each experiment began with the robot stationary at point A. The
control parameters, control law, and input signal were selected The
input wis the desired force profile that the robot was to apply to the

workpiece as a function of time. The force sensor was initially com-

82



Figure 22. ~5% ramp disturbance



Figure 23. Complex disturbance



Table 4. Ramp disturbances

ramp rcte angle of inclination absolute height error
at PFINISH
4 deg mm
5 2.85 1.5
10 5.71 3.0
15 8.53 4.5

Nominal contour speed = 8.89 mm/s
Workpiece length = 304.8 mm

manded to set the measured output of all forces and moments to =zerc,

eliminating gravitational effects during the experiment.

With the set up complete, a VAL-II program was started that com-
manded the robot to foilow the countercleckwise circuit of straight line

paths shown in Figure 20. This program was written in VAL-II's command

language.
SPEED 20 ALWAYS ;always move at 20% maximum speed
APPROS PSTART, 50 ;approach the point 50 mm from
; PSTART (negative tool-z)
MOVES PSTART smove in a straight line to PSTART
BREAK swait until PSTART is reached
ALTER (0, 16) sinterrupt the IBM PC-AT for path
; modifications -
MOVES PFINISH ; as robot is moving to PFINISH
NOALTER ;stop interrupts
DEPARTS 50 ;move 50 mm in negative taol-z
; direction (away from workpiece)
APPROS PSTART, 50 ;go back to starting point and quit



When PSTART was reached, force control was activated by the ALTER com-
mand in the VAL-II program. This command instructed VAL-II to interrupt
the IBM PC-AT every 28 ms for a trajectory modification. VAL-~XI adds
this modification to the nominal trajectory to control the normal force.
The control law in the IBM PC-AT determines the trajectory modification

from the desired force and the feedback from the Astek force sensor.

6.2 INTEGRATED MODEL OF PUWA ROBOT IN CONTACT WITH THE WORKPIECE

The plant that was controlled consisted of the VAL-iI controller,
PUMA robot, grinding disk, and backing. The model discussed here
describes the plant from the point of view of the controlling computer.
This is a discrete time model, described by difference equations. The

model describes the plant during contact with the workpiece.

The block diagram of the plant is shown in Figure 24. This figure
shows the IBM PC-AT sending u,,,, the commanded tool 2-displacement, to
the VAL-II controller. The resulting tool z-position of the grinding
disk with respect to the nominal trajectory (in 4 sample periods) is u,.
The 4 sampling-period time delay is an approximation of the 0.1 s time

delay that was proposed in Sections 3 and 4 as a model for the PUHA and



VAL-II. The displacement disturbance, d,, is the difference between the
actual workpiece ceontour and the nominal contour along the tool z-axis.
The net deflection of the disk, from the undeformed position, it givep
by 4, = u, - d,. The output force, y, is determined by the compliance
function P(a,, 0). Using the compliance model determined in Section 5,
P(a,, 0) is

Y = P(a, 0) = (b/a) (exp(aa,) - 1) 4,20 (29)

In this model! of the plant, it is assumed that the robot can reach
the commanded positions. It is also assumed that the robot can execute
each commanded change in position within a single sampling period. The
ability of the robot to overcome normal forces up to 2000 dN is verified
in Section 4. The magnitude response is also discussed in Section 4,
and it is shown to be approximately 1 for an input bandwidth up to 3 Hz.
The magnitude response assumption was violated during tests with step
inputs because it is impossible for a physical system to exactly follow
a step. In these experiments, the maximum desired force was 400 dN.
The desired force signals, r , were offset sinusoids and steps. All the

inputs used in the force control experiments are summarized in Table 5.
. .gure 25 shows a bleck diagram of the IBM PC-AT controlling comput-

er. The inputs are r, , the desired force signal, and y,, the measured

force output. The control law computations are represented by G(z).
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Figure 24. Block diagram of PUMA robot in contact with workpiece

Because of the nature of the VAL-II interface, the coentrol signal, u,,s.,
was always delayed one time period. Thus, the total time delay in the
feedforward path was modeled as 5 sampling periods, or 0.14 s. From a
state space point of view, the system description required 5 states, one
for each period of delay. The compliance was modeled as a nonlinear

gain and did not add a state to the model.



Table 5. Desired force input signals used in force control exper-

iments

Sinusoids {r, = A[1 - cos(2=fkT)] + 0,}

nominal exact spacial Ampli tude Offset
frequency frequency (f) wavelength (A) (0,)
Hz Hz mm/cycle dN dN
0.14 0.13951 63.5 50 50
0.14 0.13951 63.5 100 100
0.14 0.13951 €3.5 150 150
0.14 0.13951 63.5 200 200
0.14 0.13951 63.5 50 75
0.14 0.13951 63.5 50 125
0.20 0.278G2 44.5 30 50
0.56 0.55804 15.9 50 50
1.12 1.11607 7.9 50 50
2.23 2.23214 4.0 50 50

(precision of input frequency necessary for symmetric data)

Steps
time of step location of step magni tude
S mm from PSTART dN
0.000 0.0 0
0.000 0.0 25
3.584 31.9 25
3.584 31.9 50
3.584 31.9 75

T=0.028s, k=0,1, 2,3 ..., 1023
nominal contour speed = 8.89 mm/s
(A1l input profiles stored in integer format)




IBM PC/AT Controiling Computer

[ —_— S —_—

Desired l

fm“«'?“e -1 Command

r l * G(Z) —>Z | u > VAtI(,)-[[
« ) uk+5 ked

Measured output
y from Astek
force sensor

Figure 25. Block diagram of contralling computer

6.3 CONTROLLER BANDWIDTH CONSIDERATIONS

The required controller bandwidth is related to the contact patch
size, the nominal contour speed, and the material removal rate. An
approximate bound on the required bandwidth can be obtained as follows.
The grinding disk contacts the workpiece over a finite contact patch.

Each dimension of this contact patch is on the order of 10 mm. The
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finite size of this contact patch leads directly to a finite limit in
the wavelength of the contour that a grinder can grind into a weld. If
L is the length of the contact patch, then the minimum wavelength that
can be ground into a weld is greater than 2L.. Therefore, a bound on the
required bandwidth is 1/2L. For this system, L = 10 mm, so the band-
width of a contour ground into a weld is less than 0.5 cycles/cm.
Assume the bandwidth of the desired force signal is of the same order of
magnitude. Then, for a nominal contour speed of 8.88 mm/s, the maximum
bandwidth of this signal is 0.56 Hz. The maximum input frequency used
in these experiments, 2.23 Hz, would not be needad unless the nominal

contour speed was at least 35 mm/s.

6.4 PROPORTIONAL - INTEGRAL CONTROL

As a starting point, consider proporticnal control of a linear com-
pliance with a five step time delay. The closed loop system is shown in
Figure 26. 1In this figure, K is the controller gain and P is a linear
stiffness. Referring to the block diagram of the controlling computer,

G(z) is

U ™ K(r, - 2). (30)
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Also, the closed lcop transfer function is

Y (2) KP

= . (31)
R (2) 25 + KP

The total gain of the system (KP) is the product of the controller gain
and the plant stiffness. From the characteristic equation, the stabil-

ity criterion is

KP < 1 (32)

assuming P is a constant linear compliance.

In addition to stability limitations, proportional control for a
linear system always has a steady state error in response to a step
input. This is easily shown using the final value theorem. For the
laboratory system, P was pnonlinear. The gain and stability of the sys-

tem were "herefore functions of the inputs, r,_ and d,.

Steady state errors to step inputs are eliminated by introducing an

integrator into the control law. A block diagram of the system with

Proportional-Integral (PI) contrel is shown in Figure 27.
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Figure 26. Block diagram of proportional control

The stability of the system now depends on KP and the integral time,
T,. The inverse of the integral time 1/T, is called the reset rate.
The reset rate is the number of times per sampling period that the pro-
portional part of the control action is duplicated. When P is a linear
compliance, the maximum KP as a function of integration time is shown in
Figure 28. The closed loop system will be stable if the peint defined
by the parameters KP and T, falls below the curve. The closed loop

characteristic equation for the plant with PI control is

(T, +1)z - T,
i+ K| — ——— | =0 (33)

i, 2™ - 2n)
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H(z) = K(1 + 2T (z - 1))

Figure 27. Block diagram of proportional - integral contrel

For T, = 20, the stability criterion is
KP < 0.97

The characteristics of the linear system are useful for interpreting
the responses of the nonlinear laboratory system. The response tec a
step in the reference input, r , is shown in Figure 28. The simulation
used equation (28) as the nonlinear compliance model with the parameters
listed. In the labor~tory system, there was a small gap between the
grinding disk and backing. This is why the experiment had a longer

delay than the simulation. Both plots illustrate the sluggish response
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Figure 28. Stability of proportiecnal - integral control

of a PI controller. Higher gains or lower integration times began to

vield unacceptable cscillations in the steady state.

As with proportional control, the total gain depends on the control-
ler gain and the plant stiffness. The plant stiffness increases linear-
ly with force; this was discussed in Section 5. Thus, the effective
closed locop gain, KP, increases with force. About any operating force,

the nonlinear system can be approximated by a linear system. As force
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increases, the cloced loop poles of the linear approximation become clo-
ser to the unit circle (in the z-domain), thus the stability margin of
the nonlinear system decreases. This is illustrated by the responses in
Figure 30. Notice that the actual system became unstable at a iower
force level than the simulation. The plots in Section 5 showed that the
actual compliance tended to be stiffer than the model. In addition, the
actual system is not a pute time delay, which was the model used in the

simuiation.

A desirable property of adding integral action to the controil law is
that it causes the closed loop system to se2ek the workpiece (seek a
force). If r. steps from zero to a positive force while the grinding
disk is not in contact with the workpiece, the end effector will move in
the tool z-direction until contact is made. The contact force increases

until the steady state error is eliminated.

A PI controller will have a finite steady state error to a ramp
input in either r, or d . Ia Figure 31, the response of a PI contreller
reguiating a desired force of zero while moving against a -5% ramp is

shown. The steady state error is approximately 30 dN.
Each of the examples so far showed the controller regulating a con-

stant desired force, r,. In general, the controller also has to track

time-varying inputs such as sinusoids. The response of the closed loop
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system using PI control to a 0.14 Hz sinusoid varying from 0 to 100 dN
is shown in Figure 32. The response is sluggish, and there is a phase
lag due to the time delay. As with the step input, oscillations begin

as force is increased.

Jerivative action was tried in an effort to damp the oscillations,
but this effort was unsuccessful. The derivative action had little
effect on the response. Because a PI controller became oscillatory as
force was increased, it was not an acceptabie controller for a robotic

grinding system.

6.5 LINEAR FEEDFORWARD COMPENSATION

Feedforward compensation is one way of reducing response times and
compensating for phase lag. Consider first a plant consisting of a time
delay followed by a linear spring. If the desired force, r, ., is known
in advance, then the plant model can be inverted to determine the dis-
placement commands necessary to produce the desired force. This is done
by advancing r, 5 time steps and feeding the advanced input through a
feedforward gain. The gain should be chosen to be the reciprocal of the

plant stiffness. In the case of nonlinear plant stiffness, an operating
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range is determined and the feedforward gain can be chosen to be the
average plant stiffness. A block diagram of the system with a PI con-
troller and linear feedforward compensation is shown in Figure 33. The
commanded displacement, u,,., is the sum of the closed loop displace-

ment, u_., and the feedforward displacement, u,.. The feedforward gain,

cl
R, has units of compliance. The closed loop compensator acts to reject

disturbances, d,, and modeling errors in R.

The responses for step inputs of magnitudes 25, 50, and 75 dN are
shown in Figure 34. The response is faster than PI control and the time
lag is eliminated. However, the response undershoots for low inputs and
overshoots for high inputs due to the nonlinear plant compliance. The
time lag is also eliminated for sinusoidal inputs, shown in Figure 35,

and the magnitude response improved.

6.6 NONLINEAR FEEDFORWARD COHMPENSATION AND GAIN SCHEDULING

Consider a plant described by a time deiay followed by a nonlinear
compliance. Assume this compliance is a monotonic function of displace~
ment. This plant can aiso be inverted. For the nonlinear stiffness

described by equation (29), the inverse for positive forces is given by

R(r,, 0) = (1/a)In[(a/b)r, + 1] r, 2 0 (34)
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where r is the desired force and R(r,, 0) is displacement (again, the
notation is for ceonvenience). Thus, the linear gairn, R, shown in

Figure 33, can be replaced by the nonlinear function of the input R(r,,

0).

The controller gain, K, can be scheduled to provide stability at
high force leveis. One way to do this is to divide K by an estimate of
the plant stiffness ®,. The plant stiffness as a function of force is
given by equation (29). Using this equation and scheduling gain on the

reference force profile yields

d, «ar, +b (35)

where @, is the estimate of the actual plant stiffness P, at time k.
So, the overall gain of the closed loop system is KP,/®¢. The block dia-
gram for the system with nonlinear feedforward compensation and the gain
scheduling is shown in Figure 36. This gain schedule will help reduce
oscillations at high force levels because &, increases as the reference
force, r,, increases. However, the error between the desired closed
loop gain, K, and the actual closed loop gain, KP,/®, increases with
tracking error. So, if the tracking error is large, then other undesir-

able effects may be caused by the gain schedule.
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Figure 37 illustrates the step responses to diffarent force levels.
Note the increased uniformity of these responses compared with the step
responses in Figure 3d. The improvement is mainly due to replacing the

constant R by R(r,, 0) in the feedforward compensation.

The sinusoidal response shows a more significant improvement. Fig-
ure 38 and Figure 39 show the response to three 0.14 Hz sinusoids of
increasing amplitude. Like the step response, the tracking was improved
by the use of R(r,, 0) in place of the constant R. Also, stability was

improved at high force levels because of the gain schedule.

Figure 39 shows that the tracking error begins to degrade at 400 dN.
The error, shown at the top of each curve, is integrated. Undershoot
indicates that the system model is stiffer than the actual plant. The
precomputed feedforward compensation and the closed loop gain are there-
fore lower than desired. As the input cycles back to 0 dN force, the
model improves and the closed loop gain increases. This makes the inte-
grated error mcre significant causing the undershoot observed at low

forces in Figure 39. This is one example of integrator windup.

The major limitation of this control architecture (shown in
Figure 36) is poor disturbance rejection properties. The controller's
inability to track a sinusoid while rejecting a -5% ramp is illustrated

in Figure 40. Of the three signals, e, ¢, and u,,, used to compute the
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control signal, u,,,, twec are functions of the input only. These sig-
nals, u,, and ®, can be considered open loop compensation. Ir general,
open locop compensation tends to degrade the disturbance rejection prop-

erties of a controller.

Consider the nonlinear function R(r,, 0). This function calculates
the estimated displacement from the nominal surface of the workpiece
necessary to achieve the desired force. As the error between the actual
and nominal contour of the workpiece increases, the accuracy of this
estimate decreases. Also, the accuracy of the system stiffness esti-
mate, ¢, decreases as the tracking error increases. The PI ciosed lcop
compensator does help the controller track the disturbance. This is
shown in Figure 41. This test was performed using a simulation to pro-
tect the hardware. If the ramp in this simulation leveled out to G°
slope, then the tracking error wouid have been attenuated. The disturb-
ance rejaction properties of this controller are not adequate for auto-

mated grinding.
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6.7 MODEL-REFERENCE ADAPTIVE SYSTEM

In the previous controller using gain scheduling, the gain was a
function of the input only. In general, controller gains can be func-
tions of any available measurement. Controliers that adjust gains in
this way generalize to the class of model-refereince adaptive systems.
For systems in which the plant characteristics chzunge slowly compared to
the system response time, this type of controller can compensate for
parameter changes. A typical application is systems with aging compo-
nents. In the case of a nonlinear compliance, the purpose is to compan-
sate for the changing compliance of the plant. This requires the
controller parameters to be updated at a rate that is at least of the
same order of magnitude as the inverse of the system response time.
Closed loop adjustment of controller parameters at this high rate tends

to create a limit cycle.

For this plant, no algorithm of this type was found that could
adjust the gain rapidly enough to insure stability problem at high forc-

es. The simplest algorithm
® =ay, +b (36)

illustrates the general result. This estimate, ¢, , of the system stiff-
ness, simply replaces the gain scheduled estimate shown in Figure 36.
In Figure 42, the response of a gain schedulied controller is compared

with the response of this model-reference adaptive controller. Because
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of the oscillatory response, a model-reference adaptive controller was
not implemented in the laboratory. In both cases, the feedforward com-
pensation was not used and noise was removed from the output signal. In
summary, no method was found to adjust the gain, closed loop, rapidly

enough to be useful.

6.8 NONLINEAR CONTROL

The controllers considered so far are inadequate for an automated
grinding system. In this section, a nonlinear design able to meet the
objectives stated in the beginning of Section 6 is proposed. The com-
pensator is derived in a general form. In this form, the nonlinear con-
troller can be applied to any plant that can be modeled as a time delay
followed by an invertible compliance. The time delay must be modeled as
an integer multiple of the sampling period and the compliance must be
modeled as a monotonic function of deflection. The controiler was
implemented on the PUHA robot system and the results are shown in Sec-

tion 6.8.9.
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For this system, the time delay in the IB¥ PC-AT and VAL-II were

combined, yielding a delay of 5 sampling periods (0.14 s). It is also

assumed that the desired force, r,, is known a priori.

This section describes the design of a nonlinear controller. The

derivation is informal; justifications for the steps taken are made by

examples. To begin, it is useful to list the major assumptions that are

addressed in the following subsections.

The purpose of the controller is to track a desired input force
signal.

The time delay (2°") is the dominant dynamic effect. It is
assumed that the difference between the actual time delay and the
model (integer multiple of the sampiing pefiod) is negligible.
The plant compliance P, is generally nonlinear and is the source
of modeling errors. Thase modeling errors can also cause unsta-
ble behavior.

When displacement commands reach the compliance, they are cor-
rupted by positional disturbances. These disturbances must be

rejected.
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° Feedback is provided by measurements of the output force. These

measurements are corrupted by noise.

6.8.2 Invartible Compliance Model
The stiffness model! (P) is assumed to be monotonic function of dis-

placement. P is therefore an invertible function. Suppose the nonline-

ar stiffness model is given by

v = P(a,, q,) (37)
where v is the change in force when the displacement changes from g, to
q,. Consider the case when the stiffness is displaced a distance q,
from the relaxed position (q, = 0). The resulting change in force is
given by

v, = Plq,, 0). (38)
The displacement caused by changing the force from 0 to v, is given by

q, = R(v,, 0). (39)

Thus, R is definad to be the inverse of P. In general,



q = R(v,, v,) (40)

where q is the change in displacement caused by a change in force from

AL to Vge

6.8.3 Alternative Form for Feadferward Compansatian

In Section 6.4, the plant was inverted in the feedforward path. The
idea was to anticipate the desired force 5 sampling periods in the

future. The equation was
Uge = R(r 50 0) (41)
where r .. is the advanced desired force and u,, is the feedforward com-

pensation (displacement). An alternative form for the inverted plant is

now derived. Let n be the time delay of the plant. Then, in general

Ueen = Ivdf/P(f) v=r.) (42)
0

or

Ueen = R(rg,,e 0). (43)

4 1B



Advanced Commanded

desired displacement
force
profile
———1 R(r, , 0) }|———
r K+n u
k+n k+n

Initial
Iq) condition
I

¢ '

k
-1
—L»f Z »IR(r,_,r._ )—=>¢ « Ydu,  |—
r k+n ken-1 7 f gy ) =1 +n | U,
ken Feen-1 k+n = *n
Adv.an(.ed Commanded
desired displacement
force
profile

Figure 43. Model of inverted plant

Thus, the feedforward displacement is found by integrating the recipro-

cal of the the nonlinear stiffness from 0 to the desired force. Let

duyn ™ Upen = UYgen-g (44)

then

dukm = R(rkm' rk#n-1) (45)
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where du,, is the commanded change in displacement. In particular,

note that
u, = u,., +du. (46)

Since the input signal starts with r  (because it is advanced by n) u,.,

must be determined 2s an initial condition. Let
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b = R(r_.,, 0) (47)

be the initial condition (see Figure 44). The inverted plant model may
be represented as shown in Figure 43. Both forms shown in Figure 43 are

equivalent. The second form of open loop control is summarized as

AU = R(Fens Fuen-1) (48)
k
U = ¢ + 2 duy,,
i=1
At any time k, u,, is the commanded displacement that will reach the

compliance at the future time k+n if the plant is purely a n-step time

delay.

6.8.4 Open Loop Control

The inverted plant given by equation (48) may be used as an open loop
controller. This was the motivation for the nonlinear feedforward com-
pensation discussed in Section 6.4. However, as also discussed in Sec-
tion 6.4, open loop ccmpensation is not robust to modeling errors or
disturbances. The nonlinear controi law is based upon the second form

of open lcop controil given by equation (48). The robustness of the non-
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linear control iaw is shown, in part, by compariscn with open loop con-

trol.

Figure 45 and Figure 46 illustrate how the compliance model given by
equation (29) on page 87 changes with the parameters a and b. The
response of open loop ccmpensation when the plant is stiffer than the
model is shown in Figure 47 (the nonlinear controller reduces to open
loop compensation given by equation (48) when K = 0 ). For the case of

a stiff model, open loop compensation is shown in Figure 49, plot A.

6.8.5 A Hypothetical Example

The following hypothetical example will serve to illustrate the rea-
soning behind some of the steps that were taken in the design of the
nonlinear control law. For this example assume that the following is

true:

® The compliance model (P) is an exact representation of the actual
compliance (P,),

e There is no measurement noise (w, = 0, 2, = y,),

e Initial conditions are y, = r* and d, = 0,

© The desired force is r, = r* for all k.
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B A

In summary, the system is at steady state, under ideal ccnditions, with

no force error. At time ki there is an ideal step disturbance d,, = -1.

Two possible closed-lcop controiler designs are now proposed that
lead up to the final design (Design #3). This example will be used to
illustrate some of the properties of the proposed designs. Experimental

results are presented in Section 6.8.9 for design #3.

6.8,6 Dasign i - Tha Stabjlity Problem

The purpose of this design is to illustrate that the time delay
causes a stability problem. Consider the use of the open loop control-
ler given by equation (48). Referring to the example. d,, will cause a
steady state error. Under the conditions stated, it is possible to cal-
culate the change in displacement necessary to cancel the disturbance in

n sample periods. The correction (calculated at time k1) is given by:

du g = R(r’, y,y) = -dy = 1. (49)

However, this correction is desired at time ki only. A controller of

the form

i

oA BCRRSRT
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du,,, = R(Fiens V) (50)
n-1

U ™ & + 2 dug,,
1=1

is not acceptable; it will either become unstable or lead to a limit
cycle. This is because the controller makes corrections n times prior

to feedback.

The major source of unstable behavior is the time delay. At any
time k there are always n-1 commanded displacements that have already
been sent by the controllzr, but have not affected the plant compliance.

In order to compensate for the time delay, the controller wiil be pro-

vided with a memory.

The idea behind this design is to send the commanded displacement,
du,,,» based on an estimate of what the measured force will be n-1 sam-
pling periods in the future. This controller is derived in generai, and

then an example will be considered.

At any time k, the net deflection of the compliance, A, may be

estimated from the measured output force, z,, by
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A, = R(z,, 0) (51)

where A, is defined to be an estimate of A,. In the same way, an esti-

mate of the future deflection A, ., can be definad as

Agen-1 = A t du,  + . . o+ dy,.,. (52)

Thus, the estimate is formed by adding the next n-i1 commanded changes in
displacement that have already been sent by the controller to the plant.

Further, the estimated future force, ¥,  _., is given by

ramey ™ PAganoqs 0). (53)

Using this estimated future force, the second controller is given as

duen = R(Fens ¥ien-1) (54)
n-1

Uy = & + Z du,,,.
1=1

Considering the example again, because there are no modeling errors
the estimated deflection at time k is simply the actual deflection.

That is

Ay = A, = u, - d,. (55)



Therefore, at time k1 the commanded change in displacement, du,, ., is

du,yon = R(F™Y ¥y pnag) = =dyy = 1.

since du, . ,, = du,,, = . . . =du,. ., =0. So, this commanded displace-
ment is the same as given by design #1. The improvement is illustrated
by considering the commanded displacement at time ki+{. Because of the
time deiay, the estimated deflection, A ,,,y),» is the same as at time ki.

The estimated future deflection, A(,q4q)en-1» iS5 given by

Aktetyon-1 ™ ¢ + AU 1)an-1 ™ Upy (56)
Therefore,

¥(k1s1yen-1 = PlUgys 0) =1’ (57)
and

dU(yqaq)en = R(F5 r7) =0 (58)

as desired. The memory prevents the controller from compensating multi-

ple times for the same error.



In practice, however, this controller is not robust to modeling
errors. Figure 48, piot B, shows this controller tracking a sinusoid
when the piant is much stiffer than the model (the nonlinear controller
reduces to this design for K = 1), The controller is too aggressive.
The opposite case is shown in Figure 49, plot C; in this case the model
is much stiffer than the plant. A model that is too stiff only causes

tracking errors. Thus, it is desirable to have

P(a, 0) 2 P,(a, 0) for all a. (59)

The second design was too aggressive when the plant was stiffer than
the model. In addition to this problem, there will generally be noise
in the measured force signal (the actual noise will vary depending of
the grinder, grit size, disk out-of-round, and other factors). The pro-
posed solution is to reduce the closed loop gain. Replacing ¥, ., by
K¥,4n-4 in design #2, however, is not desirable because a steady state
error. will result. Consider the axample probiem without the disturb-

ance. The system is in equillibrium when

du,, ="du,,™=...=dy,"=0 (60)
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thus,

du,,, = R(r", k¥, ) = 0. (61)
Therefore,
r' ey, (62)

which implies there is a steady state error.

The nonlinear controller used in this work is given by

dupen = R(Fens Yen-1) (63)
n-1

U = ® + T duy, .
fa1

where,

Yean-1 = (1 = K rpen-y + Kby

and

K is the feedback controller gain.

For the example problem without the disturbance, this design will not

have a steady state error. As before, at steady state

dug,, = R(F*, k¥,,.,) = 0. (64)
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Therefore,

(A =-Kr" + Kb,y =r", (65)
and
Yan-1 = Y = 1o (66)

In general, the choice of the value of K depends on the modeling errors,
the measurement noise, the expected positional disturbances, and the
specifications for the system. For example, consider Figure 48, plot A,
and Figure 49, plot B. The lower value of K decreased the cscillations
for the case when the plant is stiffer then the model, but increased the
tracking error for the case when the model is stiffer than the plant.

Therefore, there is a performance trade-off that must be made in the

choice of K.

For the actual laboratory system in this work, K was chosen by trial
and error. A sinusoidal input was tried and K was increased until the
tracking error was removed. Then, K was increased further until the
magnitude of the output noise became unacceptable. The range of accept-
able values for K was found to be 0.1 < K < 0.2. The value of 0.14 was

chosen as the best compromise.

This controller will have a steady state error to a step input if

there is a modeling error. The effect of a modeling error on a step
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response is shown in Figure 51. However, for the system used in this
work, it was possible to model the compliance well enough so that the

steady state errors were of the same order of magnitude as the noise.

This controller is an integrating controller. As was discussed for
the PI controller, if there is no initial contact and there is a nonzero
desired force then this controller continues to move the end effector of
the robot until contact is made with the workpiece (the controller seeks

a force).

For the current system, P and R must be defined in general so that
the controller will operate properly for positive and negative forces.

P(a, 0) is given by

(b/a) (exp(ad) - 1) 420 (67)

-(b/a) (exp(-as) - 1) A < 0.

R(v,, v,) is given by
(1/a) in[(av, + b)/(av, + B)] v,, v, 20 (68)
(1/2) In[(b - av,) /(b - av))] v,, v, <0

(1/a) in[(av, + b) (b - av))/b?] v, 20, v, <0

(1/2) In[(b - av,) (b - av,)/b?] v, <0, v, 2 0.
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The controller equations, for the PUHA robot, are summarizeu as

Ugg = ¢ +n§ du, ¢
1u1
du, = R(r,s0 Y4 (69)
Voo = (1 = Krg,, + Kb,
Vies = Pla e 0)
Ageg = A + du g + du . + dyy., + du,,
A, = R(z,, 0),

b = du, + c:lu2 + du, + du4.

A final point is that the controller was initialized open loop (K = 0)
for 5 sampling periods (0.14 s) to allow feedback to start. This was

done because the experiments were always started at a known initial con-

dition.

The step response for this controller is shown in Figure 2. The
response is fast (rise time = 0.1 s) and there is little overshoot
(overshoot = 5%). Comparison with Figure 37 shows that there is more
steady state noise, and the output is slightly biased. The bias is due

to the modeling error for the compliance. This is an area for improve-

138



Simuiation

200

1781

150+

1254

1004

784
FALE AL, Ay ST, P STRANPIPS St NS\, B PSP PPy

Force (dN)

(3
Q
3

254

-28 ; ’ - » -
° 1 2 s 4 s ]
Time (8)

10

4
o
o 4

Figure 51. Effect of modeling errors on step response: model (a

0.0t1, b 0.17), plant(a 0.014, b 0.17)

140



Force (dN)

Forca (dN)

A - Experiment

12%
1004
78-
50 : Aot fIMARAL
254
0 Prolasasin,
-23 14 v 1 T Y
] L) i0 18 20 25 30
Time (s)
B — Experiment
125
100+
784
$0-
25-
04
-29. ﬁ LS v v L
9 S 11/] 18 20 28 30
Time (s)

Figure 52. Step response of nonlinear controliler: (K 0.14, a 0.012,

b 002)

141

T e

pin L I =T vn pmey

-t

RS e e

==

- m—— eI o W SR E 5 g



A — Experiment

125

Force (dN)

1
-
4

Time (s)

B — Experiment

225 e

200+ s
178
150-
128+ ' '

Force (dN)

754

S0+
254 \ /

-28<% S arT——

15
Time (s)

Figure 53. Sinusoidal response of nonlinear controller (100 & 200

dN max.): (0.14 Hz, K 0.4, a 0.011, b 0.17)

142

WM YT ATV T

wwr



Exper'tmeni

325
360" - 11

278 | N A

250

F

225-

200+

179-

180"

force (dN)

125
1001

75"

|

-254 ; v y 7
0 0 18 20 2% 30
Time (8)

onlinear controtler (300 dh

Figure 54. Sinusoida\ response of N

max.) : (0.14 "z, K 0.14, 3 ¢.011, P 0.7

143



Experimeni

429

400+

5754

390~

\ 325
3004

\

2504

225%

force (dN)

173+

1504

——————

129+

79

sod | {

~28 T v v Y Y Y
) ] 10 18 20 28 50
Time (8)

Figure 55. Sinusoidal response of nonlinear controlier (400 dN

max.) : {0.14 Wz, K 0.14, a 0.011, b 0.47)

144



ment, but the difference between this response and the respcnse in Fig-

ure 37 is not considered significant.

Figure 53, 54, and 55 show the sinusoiual response of the control-
ler. There is no phase lag and the response remains stable up to 400 dN
of commanded force. Higher forces were not tried in order to preotect
the hardware. Tracking at high forces is better than the previous
design, for which tracking deteriorated at 325 dN. Figure 56 shows the
response to offset sinusoids. The controller is able to catch up to the

input and continue tracking.

The ability to track a sinusoid while rejecting a -5% ramp disturb-
ance is illustrated in Figure 57, 58, and 58. Disturbance rejection is
one of the most important improvements over the previous controllers.
Although there are some oscillations on the rising edge of the output
force, the controller remains stable up tc 400 dN. Like a PI control-
ler, this controller always has a positive steady state error rejecting
a negative ramp and a negative steady state error rejecting a positive
ramp. The controller rejecting a +5% ramp is shown in Figure 60. Plot
A clearly shows the negative steady state error while regulating a con-
stant force. A 400 dN sinusoidal input, tracking a +5% ramp, is shown
in Figure 61. Positive ramps cause steady state errors, but do not
cause oscillations. Negative ramps during a rigsing input signal are the

hardest to reject. This situation causes some oscillation. Figure 62,
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63, and 64 illustrate the controller tracking 2 sinusoid while rejecting
2 -10% ramp. The oscillations and tracking error increase on the rising
edge, but the controller remains stable up to 400 dN. A -15% ramp is
shown in Figure 65, 66, and 67. Although there are large force vari-
ations in the force response, the positional movements of the robot were

small. MNo high frequency shaking was observed.

The response of the controiler for increasing input frequency is
illustrated in Figure 68, 68, and 70. These plots show the responses
for sinusoids of freguency 0.28, 0.56, 1.12, and 2.23 Hz. There is no
significant phase lag until 2.23 Hz. The magnitude response tends to be
high for input frequencies above 0.56 Hz; this is another area for

improvemant.

The ability of the controller to reject the complex disturbance
shown in Figure 23 was tested. This contour was two wells in a
sequence. The second well was deeper then the first. The robot is
shown starting down the second well in Figure 23. The oscillations
shown in the middie of Figure 71 occured when the robot was negotiating
the first rising edge. Then as the disk crossed the peak in the middle
and began down the steepar well, a negative steady state error began.
The rise of the second well was more than a 15% grade. At the end of
the experiment the contour contacted the center of the disk. The com-

pliance model is not valid for this type of contact. This caused the
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three force peaks at the end of the experiment. The sinusoidal response
is shown in Figure 72. The force peaks at the end are more pronounced.
Although it is difficult to tell from the figure, the tooi-z motion of
the robot was small. Contact in the center caused the force to rise
quickly. 1In response, the robot would pull back about 1 cm. (sometimes

losing contact), and then continued trying to track the input force pro-

file.

This controller had stable responses for a wide range of inputs.
The controllier was able to track a sinusoid with a peak force of 400 dN.
Disturbance rejection properties are significantiy better then previous-
ly tested controliers. Steady state errors occur for first order dic-

turbances. Steady state errors also occur if there are modeling errors.
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Figure 65. Sinusoidal response of nonlinear controller rejecting a

-15% ramp disturbance (100 dN max.): (0.14 Hz, K 0.14, a

0.012, b 0.2)
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Figure 66.
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Sinusoidal response of nonlinear controller
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A time delay is .the dominant dynamic characteristic of the PUMA
robot and VAL-II up to a bandwidth of 10 Hz. This was established by
estimating the frequency response that relates output displacement to
input displacement during experiments without workpiece contact. The
error between the magnitude response of this time delay model and the
actual magnitude response began to increase for frequencies greater than
3 Hz. The actual magnitude response began attenuating as frequency
increased. The most likely cause of this attenuation is saturation of
the servo drivers. Despite the additional dynamics above 3 Hz, the time
delay remained the dominant characteristic. It was also found that
geometric and drive train nonlinearities had little effect on the fre-

quency response for the range of inputs tested.

The frequency response was also estimated ir experiments with work-
piece contact and the results compared with the noncontact case. 1In
these experiments, the frequency response related output force to input
displacement. The frequency response remained essentialiy the same as

in the noncontact case. The only difference was that the magnitude
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response for frequencies above 3 Hz attenuatad more rapidly. This dif-

ference was not found to be significant.

The compliance of the PUMA robot with the grinding disk and rubber
backing attached Qas also experimentally determined. The compliance
model was combined with the‘results of the frequency response exper-
iments to form an integrated model of the plant. This model was used to

design a force control law.

A number of designs for a force control laws, including proportional
and PI controllers, were presented along with experimental and simulated
results. Cverall, the best performance was achieved using a nonlinear
force control law. This nonlinear design is derived for the class of
tystems that can be described as a time delay followed by a compliance
(where the compiiance is capable of being modeled as a monotonic func-
tion of displacement). The nonlinear controller was able to track a
wide range of inputs up to a maximum force of 400 dN. The closed lcop
system remained stable. Also, the ability of this controller to reject
Positional disturbances was found to be better than the other control-
iers tested. The response to some inputs, however, requires improve-
ment. Specifically, the peak magnitude was higher than the reference
force for sinusoidal inputs above 0.5 Hz. In addition, the sinusoida)

response began tc lag the input for frequencies above 2.0 Hz.
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1.1.2 Recomnendations

The time delay model is valid for the PUMA arm and VAL-II control-
ler. It may be a valid model for other robots, but not all robots[5].
The frequencv response of any robot system should be estimated before
implementating a forcg control law. If the dynamics-of the robot and
controller are similar to those of the PUMA, then a force controlier

similar to the one described herein may be vaiid.

A more rigorous analysis of the nonlinear controller should be per-
formed. The stability of the nonlinear controller was tested by exper-
iments and simulations. Although the controller remained stable for a
wide range of conditions, a more careful analysis should be performed to
determine the limits of stability. Alse, the robustness of the control-

ler to disturbances and parameter variations should be determined.

The nonlinear controller displayed a steady state error during ramp
disturbances and modeling errors. Based on laboratory experience, the
steady state error caused by an inaccurate compliance model is small (on
the order of output noise). However, when grinding on a regular basis,
the disk compiiance will change as it wears. This may cause a problenm,
if so it may be beneficial to design a system that estimates the compli-
ance model parameters before each pass. This is a good application for

a model reference adaptive system.
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The disturbance rejection properties of the controller may be
improved. Certainly positional disturbances should be avoided as much
as possible by accurately setting up, aligning, and measuring the work-
piece. An accurate nominal contour will always improve the force con-
trol results (compared to an inaccurate contour). However, some
positional disturbances will always exist. The ability to reject those
that do occur is dependent on the accuracy of the estimated future
force, ¥ ,..,. Currently, ¥ _, is a function of the measured output and
the system states. It may be possible tc improve this estimate by addi-
tionalily considering the time derivatives of the input and output. The
idea is to try and estimate the rate of change of the positional dis-

turbance and use this information to improve ¥, ...

Prefiltering the input force profile prior to each pass should be
investigated as a way to improve the magnitude response of the force
controller. Since the input signal is known before each grinding pass,
a non-causal, linear—-phase filter could be used. Thus, the magnitude of

the desired input signal could be altered without affecting the phasea.

The resuits of this research suggest that the material removal rate
can be indirectly controlied by the applied normal force. CSOL has
mounted a lightweight, modified air-powered grinder to the end of the
PUHA. Preliminary force control tests with the grinder spinning were

performed. Figure 73 shows a preliminary result. With the grinder

168



spinning. the controller is tracking a sinusoidal input force profile
while rejecting a -10% ramp disturbance. The workpiece was measured
before and after 4 grinding passes using the same frequency input. The
material removal was measured at three points along the width of the
workpiece and the results are shown in Figure 74. The reason that the
material removal is not uniform across the width of the weld has not

been fully analyzed.

The air grinder and force sensor are heavier than the payioads test-
ed during the frequency response experiments discussed in section 3.
Their combined weight approaches the payload capacity of the PUMA.
Before a complete series of force control experiments is performed, the
frequency response of the plant with this payload should be estimated.
Because of the added weight, the frequency response may differ from that

calculated in this thesis.

Some of the experiments in Section b6 should be repeated during
grinding. If it is necessary to add an additiocnal filter to the force
measurement, then the extra phase lag should be accounted for. These
experiments may show that it is not necessary to alter the plant model
used by the force control law during grinding. It may be adegquate to
simply determine a new plant compliance for the case of the running
grinder. Otherwise, a grinding modei may have to be integrated into the

plant model used by the force controller. One way of doing this that
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has been considered at CSDL is to model grinding as a2 nonlinear damper.
Then, the force controller would be redesigned for a plant consisting of

a time delay, compliance, and damper in series.

Once the tracking performance of the ferce controller with the grir-
der operating is satisfactory, the contours ground into the weld should
be characterized. This may be done by using the sinusoidal system iden-
tification techniques discussed in section 3. These techniques apply to
the characterization of nonlinear systems. In this case, the input is
the normal force profile and the output is the change in weid contour.
Thus, a sinusoidal normal force would be applied to a flat steel work-
piecc and the magnitude and phase of the ground contour would be meas-
ured. This could be done at many frequencies and ampiitudes to build up
a function (probably nonlinear) that relates material remova! to ampli-
tude and freguency. The results of these experiments could be comprred
with those predicted by the grinding model currently being developed at

csoL.

In addition to testing force control during grinding, it is impor-
tant to test force control on complex contours. This would invelve the
measurement of a complex contour and the generation of a data base. A
vision system, such as the onc developed at CSDL, would be suitable for
this purpose. A camera and light source could be mounted in a fixed

position above a table. Then a workpiece could be placed on the table



for measurement. To create the data base, the position of the workpiece
wouid be manually incremented after each measurement. Software would
have to translate this data base irto a nominal trajectory and download
this trajectory to VAL-II. Integraticn of the system in thiz way will
aid in specifying the level of positional disturbances that the fcrce

controller should be designed for.

In addition to the further experiments, force contro! would be
improved by reducing the time delay. This would yield the most signif-
icant improvement in force controller performance compared with the

other recommendations mentioned.
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// Nonlinear Control Law Simulation
erase

clear -v

//Inititialize variables
rand(’normal’);

n=142;

h=0.028;

a=50,;

w=3,14;

m=0.02;

noise=0;

mmod = 0.01;

gain = 0.14;

bmod = ,10;

kl1=0.;

k=-1;

lasty=0;

lastd=0;

cntr=0;

lastu = 0;

/s

// Calculate input and input time vectors
//

for i = 1:
k =k + 1;
r(i) = a*
end;

//71E 1 < 25; r(i) = 0; else r(i) = 50;

//

// reset k and find initial u

/s

k = -1;

1n1tc (l/mmod)*log((mmod*r(S) + bmod)/bmod) ;
dul
du2
dus
dud
dub

(n+10);...

(12 cos(wtk*h));...

l
.
’

OOOOO

wo we W
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s/ ,
// Start Simulation

/s

for 1 = 1l:n;
k = k + 1;...
t(i) = k*h;
rp{i) = r(1),...
du = dul;
dul = du2;...
du2 = du3;...
du3l = dud;...

dud4 = dub5;...
u = lastu + du;...
lastu = u;...

d = 0;...

lastd = 4;

del = dul + du2 + du3 + dud;...

y(i) = noise*rand + (by/m)*(exp(m*{u - d)) - 1);...

yhat = (y(i) + bmod/mmod)*exp(mmod*del) - bmod/mmod;

if i ¢ 6; rid = r(i+d); else rid = (1—ga1n)*r(1+4)+ga1n*yhat;end;.

dub = (l/mmod)*log((mmod*r(i+5) + bmod)/(mmod*rid4 + bmod));...
if i = 1; du5 = du5 + initc;end;

data(i, 1) = t(i);...

data(i, 2) = y(i);...

inp(i, 1) = t(i);...

inp(i, 2) = r(i);...

end;

dashed’)

plot(t,rp,’solid’, t,y,’
* 11111111")
14

ylabel('magnitude’,
xlabel(’time’,’ 11l1')
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This code is not a complete program. Only the code for the nonline-

ar control law has been included.

saess Initialization caode weus
main()
{

seess Operator Interface code evree

seese Fille access code ««se

/#* initialize reg «/
clcntr = 9;

tetecntr = -1;

tadv = cp.adv;
tadv_1 = cp.adv - 1;
m = cp.slope;

b = cp.yint;

bovm = b/m;

mcvb = m/b;

invm = 1/cp.slope;
mmobb = mem/bsb;
clgain = (double)cp. kn/cp. kd;

clgain?2 = 1. - clgain;

lagtc = (int)(invmeleg((medlitadv-1]1+b)/b));
dcl = Q. ;

dc2 = 0. ;

dc3 = 0. ;

dc4 = 0. ;

deS = 0. ;

eene Code to run experiment eses

} /# altrndc3 o/
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reg(mforce)
int miorce;
t
int di_@, di_1, i;
double rcntrl, cur_pos, pos_in_4;

tgtcntr+s+;
i = tstcntr;

/+ remember that mificrce has reversed sign!i! e/
mforce = -mforce;

/* calculate estimated z position e/
if(mforce >= @){

cur_pos = invm2log(movbemforce+1);
} /e if o/
else

cur_pos = -invmelog(-movbemforce+1);
} /e elge »/

/+ update state variables =/
dcl = de2;
de2 = dec3;
dc3 = dc4;
dc4 = dcS5;

/+ sum displacement commands in progresas #/
pos_in_4 = cur_pos + dcl +« dec2 + dec3 + dc4;
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/e calculate yhat ( estimated force ) in 4 semple periodag =~/
if(pos_in_4 >= @) {

yhat = bhovme(exp(me#pos_in_4) - 1);
} /o 1if e/
else(
yhat = -bovme(exp(-mepos_in_4) - 1);

} /* elae =/

/* Find desired force in 4 sample periode accounting for
messurement. Wait for S mamples before astarting closed loop *®/
if(i < tadwv){
di_1 = difi + tadv_11];
} /o if =/
elgel
di_1 = clgain2edii + tadv_1]] + clgeinsyhat;
} /= elase =/

/¢ Demired force in 5 sample periods «/
di_@ = dli+tadvl;

/+* Calculate change in displacement #/
if( di_© >= @ ) {
1f( di_1 >= @) ¢
dcS = invmelog((medi_@+b)/(msdi_1+bij);
} /» if e/
else(
decS = invmelog(movbedi_O-mmobbesdi_0edi_i+1l-movbsdi_1);
} /= elase #/
Y} /o 1if e/
elael
if( di_1 >= @) (¢
dcS = -invmelog(mavbedi_Ll-mmobb«di_@=di_1l+1-movbedi_0);
} /e 1if =/
elsel
deS = invmelog((b-medi_1)/(b-mesdi_@&),;
} /7« elae «/
} /» elase o/

rentrl = lastc + dcS;
lastec = rcntrl;

return (int)rcntrl;
} /* reg %/

ssese Error Handling and minor subroutineg s#sss
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