
Risk-Aware Neural Navigation for Interactive
Driving

by

Suzanna Jiwani

SB, Computer Science and Engineering,
Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 12, 2022

Certified by. .
Daniela Rus

Andrew (1956) and Erna Viterbi Professor, CSAIL Director
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Risk-Aware Neural Navigation for Interactive Driving

by

Suzanna Jiwani

Submitted to the Department of Electrical Engineering and Computer Science
on September 12, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Safety has been a key goal for autonomous driving since its inception, and we believe
recognizing and responding to risk is a key component of safety. In this work, we aim
to answer the question, "How can explainable risk representations be used to pro-
duce accurate and safe trajectories?". To answer this question, previous work uses
risk metrics to formulate an optimization problem. In contrast, our work is based on
research showing the usefulness of grids as a representation to generate image-based
risk maps through a trained neural network. We propose a novel method of deter-
mining risk from a bird’s eye view (BEV) of an autonomous vehicle’s surroundings.
Our method consists of (1) a Risk Map Generator, which is trained using a modified
loss to encourage recognizing risk associated with nearby agents, (2) value iteration
using the risk map to learn a policy, and (3) a Trajectory Sampler, which samples
from this policy to generate a trajectory. We uniquely evaluate our planner in an
interactive manner, adjusting the surroundings at each time step, and find significant
improvements in its overall ability to mimic human driving, with an 86.56% decrease
in average displacement error and an 87.72% decrease in the average distance from
the goal while maintaining comparable safety statistics when compared with baseline
methods. Self ablation also reveals the potential for fine-tuning the behavior of the
planner given a designer’s needs.

Thesis Supervisor: Daniela Rus
Title: Andrew (1956) and Erna Viterbi Professor, CSAIL Director

3

4

Acknowledgments

I owe everything I have achieved so far in life to my wonderful family, especially my

mom, who has supported me and pushed me to do the things I love in both life and

academia. Because of you, I could be confident in myself and my choice to attend

MIT. Thank you so much for celebrating my achievements, both big and small, and

for making sure I always have a place to call home. Also, thank you Junior for

checking in on me and my code all summer long.

I would also love to thank my partner Arkadiusz for all the time he’s sacrificed,

helping me prepare for presentations, talking through ideas, and even debugging code

with me. There is absolutely no way I would have been able to do as much as I have

without your help; this thesis is as much yours as it is my own.

Importantly, I want to thank Daniela Rus for her support and for providing me

with so many resources. Lastly, I owe a huge thank you to Xiao Li for all of his

guidance, advice, and mentorship. Our Friday meetings truly have been indispensable

- not only did I enjoy our life updates, but each and every one helped keep me on

track and encouraged me. I honestly was not sure that I would be able to finish my

thesis, or even write a true research paper, but your advice (and experience in the

field) really made these goals concrete and attainable.

Thank you all so much.

5

6

Contents

1 Introduction 13

1.1 Background . 13

1.1.1 Autonomous Vehicles . 13

1.1.2 Risk . 14

1.2 Contributions . 16

1.3 Outline . 17

2 Related Work 19

2.1 Risk-Aware Models . 19

2.2 Trajectory Planning from Bird’s Eye View 21

3 Data 23

3.1 NuScenes . 23

3.2 Supplementary Label Creation . 24

3.2.1 Sensor Uncertainty . 25

4 Architecture 27

4.1 Risk Model . 28

4.2 Value Iteration . 28

4.3 Trajectory Sampler . 29

4.4 Training . 30

5 Results 31

5.1 Method of Evaluation . 31

7

5.2 Increasing Risk Resolution . 33

5.3 Goal Specification . 34

5.4 Adjusting Uncertainty Specifications 35

5.5 Summary of Results . 37

6 Conclusions 39

6.1 Lessons Learned . 39

6.2 Future Work . 40

8

List of Figures

1-1 Illustrating risk compared to safety. The red car represents the

ego, while the blue is another agent on the road. While in subfigure

1-1a, the ego avoids a collision with the agent, the components of risk

are shown in 1-1b and 1-1c. With uncertainty-based risk, the ego

recognizes the positional uncertainty of the agent and takes care to

avoid all risky areas. With prediction-based risk, the ego uses the past

trajectory of the agent to avoid risky areas where the agent may be in

the future. 15

3-1 A Sample Engineered Goal. Here, we not only see how the en-

gineered goal maps directly to the rasterized BEV, but also how the

engineered goal can be flexibly defined. 24

3-2 Sample Uncertainty Map. Subfigure 3-2a shows the exact pixels

that are colored yellow by the rasterized BEV, representing the current

position of the agents. Subfigure 3-2b clearly shows the accuracy of the

method for transforming from global coordinates of each agent to 2D

Gaussians. 26

4-1 Architecture with intermediate outputs. Motion features and a

rasterized BEV are passed to the CNN Risk Map Generator, which

outputs a risk map. This risk map is used alongside an inputted goal

during value iteration to generate a policy (visualized here as an SVF),

which is sampled and transformed to make the final trajectory. 27

9

5-1 Risk Resolution. For the sample scene (5-1a), we examine the inter-

mediate risk map and SVF, as well as the final trajectory, generated

by the proposed planner for a variety of risk map resolutions (5-1 b-

e). We observe more detailed risk maps coupled with more controlled

trajectories as the resolution increases, though (as indicated in 5-1 f),

there is a distinct increase in time required to perform value iteration. 33

5-2 Goal Specification. For three sample scenes - a straight trajectory,

a slow turn, and a large turn - we examine the intermediary outputs

as well as the final trajectory generated by two planner variants - one

trained with a goal variance of 5 (5-2 a) and another with a goal vari-

ance of 2 (5-2 b). We observe the smaller variance (5-2 b) results

in straight trajectories with better goal achievement but also makes

turning more difficult. 34

5-3 Uncertainty Weight. For the sample scene (5-3a, a mostly straight

trajectory where there are agents directly in front and to the left of

the ego), we examine the intermediate risk map and SVF, as well as

the final trajectory, generated by the proposed planner for a variety

of uncertainty weights (5-3 b-d). We observe planners trained with

higher uncertainty weighting generate more conservative trajectories

in response to nearby agents. 35

5-4 Agent Uncertainty Shape. For the sample scene (5-4a, right turn

at an intersection), we examine the intermediate risk map and SVF,

as well as the final trajectory, generated by the proposed planner for

a variety of agent uncertainty shapes (5-3 b-e). We observe planners

trained with slightly different shapes will respond by generating tra-

jectories that match those shapes. 36

10

List of Tables

5.1 Performance Comparisons . 32

11

12

Chapter 1

Introduction

1.1 Background

Self-driving cars, or more broadly autonomous vehicles (AVs), not only have the po-

tential to help many everyday people get around safely, but they are steadily becoming

more of a reality. Research in the area, including heavy investments from companies

Google, Uber, and Tesla, is resulting in rapid progress. To contribute to the body

of work surrounding AVs, the goal of this work is to develop a planner that

is (1) able to generate rich and explainable risk representations; (2) pro-

duce trajectories that are averse to the generated risk; and (3) trainable

end-to-end using expert demonstrations.

1.1.1 Autonomous Vehicles

At the center of the development of AVs is the key problem of developing an au-

tonomous system capable of understanding complex environments and appropriately

responding to them. Specifically in the context of short-term trajectory planning for

self-driving cars (ie, planning the trajectory for the car over the next 3-5 seconds),

there are many factors, including lane dividers, other car’s speeds, traffic signals,

other car’s intended maneuvers, pedestrians, etc that determine a car’s trajectory.

For an autonomous car to be successful and reactive, it needs to be aware of its sur-

13

roundings. In practice, this is done by attaching some sort of sensing unit to the

vehicle (typically LiDAR or an array of cameras) and applying specialized algorithms

capable of extracting valuable information from these inputs.

When deciding which information is important for an AV to be successful, the

most intuitive approach is to simply draw inspiration from humans. However, hand-

tuned algorithms that mimic human behavior are too rule-based and cannot learn

from additional data encountered. To bridge this gap between human behavior and

implemented policy, we can utilize machine learning models that are capable of finding

complex patterns and train them to replicate humans. The ability to be aware of other

vehicles on the road is an important factor that makes humans successful drivers.

Using their own experience and sensing systems, humans are able to avoid other

drivers on the road, even though they cannot be completely certain what behavior

others will exhibit in the next few seconds. Humans implicitly assign risk to each

of these obstacles on the road - a road barrier certainly will not move, but another

driver may choose to behave unexpectedly.

1.1.2 Risk

While humans almost always implicitly think about risk when driving, it can be

difficult to determine an appropriate metric of risk from an algorithmic standpoint.

Currently, many papers in the self-driving field use the term "risk" to mean any

number of things, typically collision risk. Therefore, it is important to clearly define

the metric of risk as used in this thesis.

A visualization for the key components of risk used in this work can be found

in Figure 1-1, which shows a few interactions between the vehicle making decisions

(ego) and the other vehicles on the road (agents), and highlights the difference between

safety, or collision avoidance, and the two components of risk.

The first component, seen in Figure 1-1b, is derived from the inherent uncertainty

in where other agents are on the road. Since self-driving cars rely on sensors to

determine where objects are around them, they cannot be sure what the ground truth

of their positions is. The hardware used is only rated to a certain degree of accuracy, as

14

(a) Safety (b) Uncertainty-based risk (c) Prediction-based risk

Figure 1-1: Illustrating risk compared to safety. The red car represents the ego,
while the blue is another agent on the road. While in subfigure 1-1a, the ego avoids
a collision with the agent, the components of risk are shown in 1-1b and 1-1c. With
uncertainty-based risk, the ego recognizes the positional uncertainty of the agent and
takes care to avoid all risky areas. With prediction-based risk, the ego uses the past
trajectory of the agent to avoid risky areas where the agent may be in the future.

are the software components that transform the measurements coming from hardware

into (𝑥, 𝑦) positions of agents, and this potential inaccuracy compounds as information

is passed around. While most AV systems can be fairly sure about the positions of

objects relative to the ego, there is always some small level of uncertainty, which is

represented in this component of risk.

The second component of risk, seen in Figure 1-1c, represents the future positions

of agents rather than the current. This is largely dictated by the agent’s driving over

the last 1-3 sec and is driven by the question, "Where can I expect these agents to

be in the next 1-3 sec?" Just as a human driver assesses the cars around them to

determine whether to expect them to move slowly, quickly, in a straight line, or turn,

so should an AV.

However, it is unrealistic to assume a self-driving car will have immediate access

to a clear value for the risk of other agents, so we will attempt to predict those relative

risk values from birds-eye views (BEVs) of the scene. To do so, we develop a machine

learning model that, from BEVs, will gather information about the scene and the

riskiness of the other objects on and around the road. Using this information, it will

then create a trajectory for the ego vehicle to follow for the next 3-5 seconds.

Ultimately, the goal of engineers in the field is to create self-driving technology

15

that is safe for the people using it. Determining the risks of agents on the road can

help quantify situations that ML models should avoid, leading to overall safer AVs.

1.2 Contributions

We propose a novel approach to determining risk, where a trained convolutional neu-

ral network is able to identify a rich grid-based risk map without explicit identification

of uncertainty during inference. Instead, the network is exposed to generated uncer-

tainty maps during training so that it can learn to incorporate the measurement un-

certainty of agent positions into its risk map generations. The proposed architecture

is then able to utilize this risk information to couple seamlessly with a specified goal

so that it can generate "plans" (potential trajectories for the ego to follow), discussed

in more detail in Chapter 4. With this planner, we observe an 86.56% decrease in

average displacement error and an 87.72% decrease in the average distance from the

goal when compared to a variety of baseline models, while maintaining comparable

safety (percent close encounters). In addition, we provide an in-depth examination

of how our method’s hyperparameters, like the resolution of risk maps, can be tuned

to alter planner behavior in desired ways. We find that we are able to tune how

conservative, precise, or goal-oriented the planner is. A more detailed analysis can be

found in Chapter 5.

To summarize our contributions, we:

• propose a neural navigation architecture that learns to generate interpretable

risk maps and risk-averse trajectory plans from human driving data;

• show that the proposed neural planner is able to incorporate users’ risk prefer-

ences;

• evaluate on a data-driven simulation environment and show improved explain-

ability, safety, and flexibility.

16

1.3 Outline

Chapter 2 will discuss other work in the field of AVs related to risk. Chapter 3

will outline what data was used in the models presented here and how labels were

generated. Chapter 4 will discuss the model used, with sections 4.1, 4.2, 4.3 detailing

the architecture of the model, and section 4.4 detailing the training routines used.

Results are presented in Chapter 5, and conclusions and future work are included in

Chapter 6.

17

18

Chapter 2

Related Work

This work unifies two distinct approaches to the task of trajectory planning. First,

there are a set of models that are risk-aware and consider the risk of other drivers

when making predictions; these are discussed in section 2.1. Next, there are a set of

models that are able to predict the ego vehicles’ trajectory from bird’s eye view (BEV)

images directly, which are discussed in section 2.2. To the best of our knowledge, there

is no existing published work that plans trajectories from BEVs while also explicitly

utilizing the risk of other vehicles as a feature.

2.1 Risk-Aware Models

Risk-based trajectory planners can be decomposed into two major components - (1)

the risk utilization, how risk is used to plan trajectories (typically using methods to

minimize risk), and (2) the risk definition, the method by which risk is determined.

In terms of utilizing risk, much work has been done on modeling the problem

of motion planning as a partially observable Markov decision process (POMDP).

POMDPs tend themselves well towards this task since they intrinsically take an AV’s

uncertainty of the true environment state into account. Therefore, work modeled off

POMDPs use POMDP solvers [17] [14] as their method of risk utilization. These

models of risk are excellent for managing the risk associated with state uncertainties,

though limited in their ability to visualize that risk for humans, which is a key aspect

19

the proposed approach intends on addressing.

Common non-POMDP approaches optimize over a cost function involving risk

(known as reinforcement learning, or RL) [25]. The authors of [11] provided a com-

prehensive survey on the topic of "Safe Reinforcement Learning", or RL wherein

safety is an important factor, and describe how most approaches will either add a

safety factor to the cost function being optimized or add guidance to the exploration

process. Our method is most similar to the first, adding a safety factor to the cost

function, since we perform value iteration to minimize risk (our cost). In [26], the

authors dive into similar topics with a focus on autonomous driving. In general, com-

mon risk metrics such as conditional value at risk, mean-variance, worst-case analysis,

etc. have been used as either an auxiliary loss in the objective function or as a set

of constraints. In many robotic and driving tasks, however, RL is not readily appli-

cable given its exploration requirement. Imitation learning and offline RL help with

addressing this problem. In [22], the authors use kernelized movement primitives to

estimate uncertainties in the demonstrations, the uncertainties are used to find opti-

mal gains in a controller. The authors of [24] use offline distributional RL to learn

a policy adverse to conditional value at risk. These methods, like ours, attempt to

minimize the level of risk through environment exploration. However, by utilizing a

fixed horizon value iteration, our method is able to avoid the typical time limitations

of exploration in RL.

There are a wide range of risk definitions represented in literature today. The

most straightforward might divide agents into a predefined set of attributes - for ex-

ample, whether their driving behavior is aggressive, timid, or normal [23]. Others

may hardcode values to indicate the importance of avoiding specific types of agents

[25] or reduce the notion of risk to simply a metric for collision likelihood [20]. Artifi-

cial intelligence has also been utilized to determine risk values, including fuzzy logic

models that incorporate in-vehicle data [10].

Unlike prior work that uses common risk metrics to formulate an optimization

problem, the proposed model will predict risk values (where "risk" is as defined in

section 1-1) across a grid using deep learning. We then learn a policy using these

20

risk values from maximum entropy inverse reinforcement learning (MaxEnt RL) that

determines the probability of moving from one grid location to another. Not explicitly

defining risk during inference gives us the advantage of letting the planner learn risk

rather than taking the time to define risk in real time. Compared to previous works

that use risk metrics to formulate an optimization problem, our approach of generating

image-based risk maps using a trained network provides better flexibility, integration

of complex agent and map considerations, and inference speed when outputting the

final trajectory.

These risk-aware models have great potential for improving a car’s ability to plan

safe trajectories. One such model showed the potential by comparing the results of

fully omnipotent Monte Carlo Tree Search (MCTS) planners with MCTS planners

that assume the same internal state for all drivers on the road [23].

2.2 Trajectory Planning from Bird’s Eye View

BEV is becoming an increasingly popular intermediate representation that connects

perception and prediction/planning components in a deep architecture. While in

practice, AVs do not have immediate access to a semantically segmented BEV, there

has been significant progress in developing efficient methods to generate BEV images

of the ego vehicles surrounding from camera and LiDAR data, making BEVs more

accessible to algorithms like ours that rely on a segmented BEV as input. In fact,

there are methods which are capable of fusing 2D camera information with 3D LiDAR

data to create BEVs that draw from an even larger wealth of information than from

a single source [18, 3, 15]. End-to-end models (from sensor input to a trajectory) are

also possible, and [13] has shown excellent results from camera images alone.

Other existing work has shown the potential for generating trajectories for predic-

tion directly from BEV [5, 21], though they do not provide an explicit input for and

visualization of risk, as our model does. In trajectory planning specifically, the con-

cept of BEV is often realized as occupancy grid maps [16, 19] and grid/lattice-based

planners are used on them. Less effort has been made in incorporating a semantically

21

segmented (rasterized) BEV in neural architectures for planning. We recognize that

BEV is a powerful representation that can be used to not only represent the geomet-

ric distribution of static and dynamic objects (e.g. map and traffic), but can also be

used to represent the ego agent’s understanding of its environment in the form of a

risk map.

Manually specifying such a risk map to incorporate a wide coverage of scenarios

is difficult. Therefore, our method aims to integrate a risk map generator with a tra-

jectory generator in the same neural architecture and train them using human driving

data. The most relevant literature to our work which also serves as an inspiration

is [6], where the authors learn a reward map from BEV and use it for multi-model

trajectory prediction. The difference in our work is that we use additional risk super-

vision and goal conditioning to make our architecture a “steerable” risk-aware planner

(details will be discussed in Section 4.4).

22

Chapter 3

Data

3.1 NuScenes

We use the NuScenes dataset [2] for training and evaluation. This dataset follows a

schema wherein a 20 second sequence of consecutive frames known as a scene is split

into samples taken with a frequency of 2Hz. Each sample encompasses input data

(including LiDAR data and camera images from the 6 on-board cameras), informa-

tion about the ego car’s pose, as well as sample annotations for all of the elements in

the sample (ie. pedestrians, traffic cones, other cars) that details information about

them. These details can be stacked together to provide labeling for the scene repre-

sentation in vector form, and for labeling scene representation as a BEV, NuScenes

also has segmented BEVs available per sample. The dataset contains 1000 scenes of

20s each collected in Boston and Singapore. It also includes rich semantic information

including 23 object classes (pedestrian, vehicle, etc) and HD maps with 11 annotated

layers (lanes, walkways, etc).

In sum, there are 3 pieces of data passed to the planner: a 200 pixel x 200

pixel BEV, motion features, and goal. While the BEV is available directly from the

NuScenes dataset, the others must be manually formed using information provided

by NuScenes. The motion features are of shape (3, 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒, 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒), where

𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 is the dimension of the risk map, and represent (𝑣, 𝑥
𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒

, 𝑦
𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒

) across

each grid state. The goal is of shape (𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒, 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒), and is computed by

23

taking the ground truth goal (ie. the future location of the human driver) and map-

ping a Gaussian to the surrounding pixels. All of these pieces of data reflect the

same portion (referred to as patch in the NuScenes dataset) of the scene, meaning if

𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 = 200, there would be a pixel-to-pixel mapping between them. Therefore,

if the ground truth goal is on the edge of the BEV, then the entire Gaussian would

not be visible. Look to Figure 3-1 for an example.

(a) Straight Trajectory (b) Turning Trajectory

Figure 3-1: A Sample Engineered Goal. Here, we not only see how the engineered
goal maps directly to the rasterized BEV, but also how the engineered goal can be
flexibly defined.

3.2 Supplementary Label Creation

In order to aid the training regimen described in section 4.4, there are additional data

points that need to be generated so that they can serve as labels. As discussed in more

detail in 4.4, the state visitation frequency representing ground truth movement (or

SVFgt) is important when determining loss. Like the supplementary data discussed

in section 3.1, SVFgt matches the patch location of the rasterized BEV. In order to

generate this label, we map the human trajectory’s global coordinates to pixels on

the rasterized BEV and mark them as visited.

This data also does not explicitly label "risk" as part of the sample annotation.

Therefore, we have some potential options for labeling, discussed in section 3.2.1.

24

3.2.1 Sensor Uncertainty

One drawback of using nuScenes data as described in 3.1, is that uncertainty in

particular objects’ positions (derived from hardware limitations or upstream model

uncertainty) is not provided. Therefore, a primary goal when creating labels for

uncertainty was to remain flexible and allow for these uncertainties to be inputted,

as they are during self-evaluation in section 5.4.

The first step in creating labels for uncertainty around an object was deciding

what shape they should be. NuScenes provides positions for each object, given as a

"translation" in the annotation describing the object. This translation gives a single

position, even though each object truly occupies more space than a single point.

Knowing that, in birds-eye view, a car is more rectangular than circular and a truck

is more elongated than a car, it becomes clear that the uncertainty cannot be a fixed

shape for all objects; there is a need for variable length and width. This was the

driving factor behind the structure used to represent uncertainty.

𝑓(𝑥, 𝑦) = 𝐴 exp

(︂
−
(︂
(𝑥− 𝑥0)

2

2𝜎2
𝑋

+
(𝑦 − 𝑦0)

2

2𝜎2
𝑌

)︂)︂
(3.1)

To address these needs, a 2D (or bivariate) Gaussian is a natural choice. Not only

does it inherently lend itself to rapidly diminishing values around a center, but it is

easy to manipulate to adjust the shape and size of the curve. The results of applying

a bivariate Gaussian to agents in a specific scene are shown in Figure 3-2. Equation

3.2.1 gives the value of the 2D Gaussian for any (𝑥, 𝑦) pair, where for a particular

clockwise angle 𝜃, the values 𝑎, 𝑏, 𝑐 are defined as

𝑎 =
cos2 𝜃

2𝜎2
𝑋

+
sin2 𝜃

2𝜎2
𝑌

,

𝑏 = −sin 2𝜃

4𝜎2
𝑋

+
sin 2𝜃

4𝜎2
𝑌

,

𝑐 =
sin2 𝜃

2𝜎2
𝑋

+
cos2 𝜃

2𝜎2
𝑌

,

25

(a) The pixels where an agent is present
in the scene, on a 200x200 grid

(b) Gaussians centered at each agent with
𝜎𝑥 = 0.5, 𝜎𝑦 = 1.5

Figure 3-2: Sample Uncertainty Map. Subfigure 3-2a shows the exact pixels that
are colored yellow by the rasterized BEV, representing the current position of the
agents. Subfigure 3-2b clearly shows the accuracy of the method for transforming
from global coordinates of each agent to 2D Gaussians.

such that the matrix ⎡⎣𝑎 𝑏

𝑏 𝑐

⎤⎦
is positive definite. The angle 𝜃 is set to be equal to the orientation of the agent, and

𝜎𝑥, 𝜎𝑦 are left as a design choice. While there is the potential to adjust the size and

shape of the 2D Gaussians surrounding each agent to the type of agent (ie. smaller

circles for pedestrians and longer ellipses for trucks), fixed-shaped Gaussians worked

relatively well. In fact, section 5.4 shows how a variety of fixed-shape Gaussian masks

were used during evaluation to understand how it affects the trajectories generated.

26

Chapter 4

Architecture

Figure 4-1: Architecture with intermediate outputs. Motion features and a
rasterized BEV are passed to the CNN Risk Map Generator, which outputs a risk
map. This risk map is used alongside an inputted goal during value iteration to
generate a policy (visualized here as an SVF), which is sampled and transformed to
make the final trajectory.

As discussed in Chapter 3, the proposed model takes as input a rasterized BEV

and motion features. Figure 4-1 shows how these are passed to a CNN Risk Map

Generator to generate a risk map of the scene. Our model is unique in its ability to

utilize a given goal to act as a planner, taking both the goal and the risk map and

performing a modified value iteration to generate a policy for how to traverse the

pixels of the risk map. This policy is them sampled and translated to coordinates in

the ego frame.

Our biggest contribution is our technique to train the Risk Map Generator to take

into account uncertainties associated with agents on the road, discussed further in

27

section 4.4.

4.1 Risk Model

The Risk Map Generator is a learned component which maps a rasterized BEV of a

scene and motion features (𝑣, 𝑥
𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒

, 𝑦
𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒

) of each grid state to a risk score for

each of the grid states (risk map). The raster image is encoded using the stem and

first 3 residual blocks of ResNet-34 [12], followed by an additional 2D convolution.

This encoding is concatenated with the motion features and passed through a basic

convolutional neural network to produce the risk map.

4.2 Value Iteration

Our BEV scene representation has the added benefit that BEV scenes are inherently

grid-worlds, meaning that we can model them easily as an MDPs. Every grid cell state

𝑠 ∈ 𝒮 is observable, has possible actions 𝒜 = {LEFT,RIGHT,UP,DOWN,END}

with reward 𝑅(𝑠) being the risk map and with deterministic transition probabilities

𝑇 (𝑠, 𝑎) where actions deterministically dictate which cell is moved into next.

This formulation means that classical Value Iteration [1] is a natural choice for

finding an optimal policy of ego moving through the BEV grid-world. However,

convergence of dynamic programming based value iteration takes a long time, so we

choose finite-horizon value iteration, which works well enough empirically (see chapter

5). Moreover, we change the classical formulation by taking inspiration from [6] - such

that there is not a single goal state. Instead, the grid-world has two layers - one layer

of the grid represents path states and the other layer represents goal states. Ego starts

in a path state, and stays there until it chooses the action END, which represents

moving from the path grid to the goal grid, indicating episode termination. The path

and goal states each have their own reward. In order to incentivize value iteration

terminating close to the intended goal, we engineer the rewards for the goal states to

be high around the known destination grid cell, smoothed with a Gaussian filter to

28

allow for more flexibility.

Algorithm 1 displays pseudocode for this modified value iteration. We start by

initializing the effective value at each goal state as the value given by the goal mapping

𝑔 and at each path state as−∞. Combined, these form the variable 𝑉 (𝑠), representing

the expected value of being in a state. For each step until the fixed horizon 𝑁 , we do

the following: (1) update the 𝑄(𝑠, 𝑎) value (representing the expected value of taking

an action 𝑎 at state 𝑠) for each state-action pair in the path states to be equal to the

reward from the current state plus the value accumulated by travelling to the next

state multiplied by a discount factor 𝛾, (2) set the 𝑄 value for each state-action pair in

the goal states to be −∞ (this mathematically makes the policy never move from goal

states since exp(−∞)→ 0), (3) update the value for each state to be an aggregation

of taking all actions at that state, (4) update the policy Π(𝑎|𝑠) by applying a softmax

function over the expected values of taking an action at any given state.

Algorithm 1 Value Iteration
1: Inputs: risk map 𝑟; goal map 𝑔
2: 𝑉𝑟 ← −∞
3: 𝑉𝑔 ← 𝑔
4: 𝑉 ← [𝑉𝑟, 𝑉𝑔]
5: for n=1 . . . N do
6: 𝑄𝑟(𝑠, 𝑎) = 𝑟 + 𝛾 · 𝑉𝑟(𝑠

′, 𝑎) ∀𝑠, 𝑎, 𝑠′ = 𝑇 (𝑠, 𝑎)
7: if 𝑇 (𝑠, 𝑎) out of bounds then
8: 𝑄𝑟(𝑠, 𝑎) = −∞
9: end if

10: 𝑄𝑔(𝑠, 𝑎) = −∞
11: 𝑉𝑟(𝑠) = logsumexp𝑎𝑄𝑟(𝑠, 𝑎)∀𝑠
12: 𝑄← [𝑄𝑟, 𝑄𝑔]
13: Π(𝑎|𝑠) = exp(𝑄(𝑠, 𝑎)− 𝑉 (𝑠))
14: end for

4.3 Trajectory Sampler

Once this policy is generated, we sample probabilistically according to the policy to

determine the sequence of grid states. Since this is probabilistic, we sample 1000

times then cluster the sequences and pick the one with the most elements in the

29

cluster. For each pixel location in the trajectory, we compute the coordinate of the

center of the pixel and append that to our transformed trajectory. Since the model

is trained to plan 6 seconds into the future, the trajectory is evenly downsampled

to 12 waypoints (2 per second). This method does not take into account a velocity

profile when distributing waypoints throughout the generated plan, but the Risk Map

Generator is capable of using the history in the rasterized BEV as well as the ego

velocity in the motion features to determine an appropriate distance of travel.

4.4 Training

The Risk Map Generator is the only learned component of the architecture. It is

trained independently of the trajectory sampling process using gradient descent on

the loss ℒ = SVFdiff+𝒩overlap with respect to the CNN’s parameters, where SVFdiff =

SVFgen−SVFgt is the difference between the ground truth SVF and the SVF generated

by following the policy from value iteration.

𝒩overlap = SVFgen · 𝜐 · 𝒩 is a novel term which represents the uncertainty of the

positions of the agents, where 𝒩 is the uncertainty map described in section 3.2.1,

· is an elementwise product, and 𝜐 is a weight to control the effect of this term.

Intuitively, this term adds loss if ego visited states on the grid which are close to,

or are occupied by, agents. Using 𝒩overlap in the loss as opposed to incorporating

uncertainty into inference/inputs allows the CNN to recognize implicit uncertainties

associated with surrounding agents. This model for uncertainty is consistent with

measurement uncertainty from sensors, since they are both scene-independent.

30

Chapter 5

Results

5.1 Method of Evaluation

A key drawback to the model as presented so far is that it plans a trajectory using

agent information that will quickly become stale. More specifically, the uncertainty

masks used to assess risk utilize agent information to avoid where agents are currently,

not where they will be in the future.

In order to simulate using this model in a changing environment, additional in-

frastructure was created to generate what will be referred to as "rollouts". These

rollouts represent trajectories that were generated by the model when the environ-

ment is updating at each time step.

In this infrastructure, at each time step, the model outputs a set of trajectories

that are each a single step along with their probabilities. The most likely of them is

selected, and the scene is simulated to move forward by 1 time step. The ego moves

according to the output of the model while all other agents move as they did when

the data was collected. Then, the inputs to the model are updated to reflect these

changes, and the process begins anew.

We evaluate our method and comparison cases in terms of optimality, safety, and

similarity to human driving during these rollouts. Within the dataset, we will set the

human ego vehicle’s start and end positions as the initial and goal positions. Opti-

mality is measured as the time to travel from the initial position to the vicinity of

31

the goal position. Safety is measured as the percentage of close encounters to nearby

ado (ie. non-ego) vehicles in a scene, comfort is taken as the maximum acceleration

during a scene, and similarity to human driving is the L2-norm between the planner

and human trajectories (also called average displacement error or ADE). During eval-

uation, we control the ego vehicle with our learned planner, the ado vehicles move

according to the trajectories recorded in the dataset with synchronized time. All

results are averaged over the validation set.

Five planner variants are used for comparison. Ours refers to the proposed

method; Human refers the human driver in the dataset; CNN refers to a planner

that maps BEV directly to controls (Implemented similarly to [9]); and CNN-LSTM

refers the previous planner with an added LSTM component to keep track of history.

RvS-G refers to the goal conditioned offline RL via supervised learning proposed in

[7]. For all planners, the same CNN backbone is used to extract features from the

rasterized BEV image (similar to [4]).

Table 5.1: Performance Comparisons

Model Safety (%) ADE (m) Goal (m)
mean 90% mean 90% mean 90%

Human 19% 51% n/a n/a n/a n/a
CNN 10% 30% 23.22 43.54 16.2 55.7

CNN-LSTM 13.2% 40% 18.7 39.6 18.1 60.4
RvS-G 25% 67% 16.15 31.16 32.91 72.55
Ours 12.16% 31% 2.17 3.81 1.99 3.68

These comparisons shown in table 5.1. We observe that the planner outperforms

the comparisons in its ability to mimic human driving and reach the ground truth

goal while still retaining comparable safety scores as the safest planner (CNN). There

are also a number of tune-able parameters that can affect our planner’s performance,

which will be discussed in depth in the rest of this chapter.

32

Figure 5-1: Risk Resolution. For the sample scene (5-1a), we examine the inter-
mediate risk map and SVF, as well as the final trajectory, generated by the proposed
planner for a variety of risk map resolutions (5-1 b-e). We observe more detailed risk
maps coupled with more controlled trajectories as the resolution increases, though
(as indicated in 5-1 f), there is a distinct increase in time required to perform value
iteration.

5.2 Increasing Risk Resolution

First, we investigate the effect of the risk map (also referred to as "reward map" as it

pertains to its role in value iteration) dimension on generated trajectories. Intuitively,

we expect a greater risk resolution to allow for more precise movements since a small

resolution might result in blurry agents and limited capability for distinguishing lanes.

Figure 5-1 presents a case study for how the model performs on a single scene with a

variety of reward resolutions.

With the smallest resolution (25x25), the risk map appears to prioritize avoiding

the lane divider, without the ability to distinguish between the two lanes on the correct

side of the highway. This results in an SVF where the ego vehicle simply stays in

place. At the next resolution (50x50), the two possible lanes are defined through the

risk map, with going off-road clearly discouraged. The ego vehicle moves forward,

though without a clear stopping point. The next two larger resolutions (75x75 and

100x100) have risk maps that are visually similar to the 50x50 resolution, with more

defined features. They are therefore able to take into account the agent ahead of the

ego and modify the distance of the forward trajectory.

However, this increased ability to specify lanes, dividers, agents, and other obsta-

cles comes at a cost. The final chart in Figure 5-1 indicates a sharp increase in the

time required to perform value iteration on the reward maps, making larger reward

33

resolutions infeasible for real-time computation.

5.3 Goal Specification

Figure 5-2: Goal Specification. For three sample scenes - a straight trajectory, a
slow turn, and a large turn - we examine the intermediary outputs as well as the final
trajectory generated by two planner variants - one trained with a goal variance of 5
(5-2 a) and another with a goal variance of 2 (5-2 b). We observe the smaller variance
(5-2 b) results in straight trajectories with better goal achievement but also makes
turning more difficult.

Next, we examine the effects of adjusting the relative size of the inputted goal

across a variety of representative scenes. Figure 5-2 presents three scenes - a straight

trajectory in the first row, a slow turn in the second row, and a larger turn in the

last row - for an inputted Gaussian goal with a variance of 5 and another with a

variance of 2. Across all three scenes, it is evident that the model with a larger

variance generates reward maps with more detail. We observe that using a bivariate

Gaussian distribution with high variances as the goal results in flexible path reward

generations. We hypothesize that the larger area of the goal within the state grid

causes the model to focus on incorporating scene features along a path rather than

getting to the goal.

This is evident in the straight trajectory, where the generated SVF shows the

model considering two different ways of going up the straight road. We also note that

the higher variance results in a trajectory that falls short of the ground truth, likely

because enough reward can be achieved from being within a standard deviation of the

goal. However, this effect can actually be reversed in a turning scenario, shown in the

34

second row. The decreased flexibility of a smaller variance resulted in a trajectory

where the ego stayed in place, whereas the larger variance encouraged movement, even

if it fell a bit short of the ground truth. Even with the larger turn represented in the

third row, we observe a shorter turn than with a higher variance. Therefore, overall,

while a smaller variance may encourage more closely matching the goal in straight

trajectory scenarios, the decreased flexibility associated with the smaller goal area

becomes detrimental in turning situations.

5.4 Adjusting Uncertainty Specifications

Figure 5-3: Uncertainty Weight. For the sample scene (5-3a, a mostly straight tra-
jectory where there are agents directly in front and to the left of the ego), we examine
the intermediate risk map and SVF, as well as the final trajectory, generated by the
proposed planner for a variety of uncertainty weights (5-3 b-d). We observe planners
trained with higher uncertainty weighting generate more conservative trajectories in
response to nearby agents.

We also examine the ability of the proposed model to adjust to desired risk-

awareness by observing its behavior in Figure 5-3, where the results of three different

training regimens on a single scene are shown. Each training regimen differs only

by the uncertainty weight of the loss function (discussed in section 4.4), meant to

represent desired risk-awareness, and this particular scene was chosen to highlight

the model’s response to nearby agents that directly interfere with movement. We

observe that with the largest uncertainty weighting (Figure 5b), both the SVF and

the resulting trajectory indicate the ego does not move at all. With the second

largest uncertainty weighting (Figure 5c), the SVF shows with some probability the

ego moves forward, although the resulting trajectory indicates not moving was more

probable. However, with the smallest uncertainty weighting (Figure 5d), both the

35

SVF and the trajectory indicate the ego vehicle will move forward. Overall, we see

that a larger uncertainty weighting will clearly result in a model whose predictions

will avoid other road agents more intensely.

Figure 5-4: Agent Uncertainty Shape. For the sample scene (5-4a, right turn at
an intersection), we examine the intermediate risk map and SVF, as well as the final
trajectory, generated by the proposed planner for a variety of agent uncertainty shapes
(5-3 b-e). We observe planners trained with slightly different shapes will respond by
generating trajectories that match those shapes.

Lastly, we investigate the results of choosing a particular representation for uncer-

tainty masks around agents over other representations. As discussed in section 4.4,

the proposed model utilized uncertainty masks such that a bivariate Gaussian with

𝜎𝑥 = 0.5, 𝜎𝑦 = 1.5 surrounded each agent. Qualitative results of varying the 𝜎’s can

be seen in figure 6. With no uncertainty overlap component included in the loss, the

planner outputs a relatively smooth turning trajectory, with a consistent turn radius.

However, once an uncertainty component is introduced to the loss, no matter how the

bivariate Gaussians around each agent are shaped, the turn becomes uneven as the

planner attempts to avoid the agent in the next lane. With the smallest uncertainty

representations (𝜎𝑥 = 0.5, 𝜎𝑦 = 0.5), the planner outputs an SVF that clearly avoids

the nearby agent but allows for some flexibility for when it moves into the desired lane

whereas the planner with the largest uncertainty representations (𝜎𝑥 = 2, 𝜎𝑦 = 2)

enforces moving into the desired lane as late as possible. Interestingly, the planner

with the moderate oval-shaped uncertainty representation (𝜎𝑥 = 0.5, 𝜎𝑦 = 1.5) not

only generates a trajectory that avoids the agent with a different shape, but the

SVF shows a slight possibility of a smooth turn. Overall, this indicates some level

36

of flexibility for desired agent avoidance behavior when designing a planner under

the proposed architecture, even when the planner itself is not aware of these tuning

parameters when run during inference.

5.5 Summary of Results

Not only does the proposed planner demonstrate superior ADE and goal achievement

when compared to the other planner presented, but it does so without compromising

safety. Self ablation on various components of the planner reveals the potential for

fine-tuning behavior as desired. Increasing the resolution of the generated risk maps

allows for more detail, which improves human driving similarity, though value itera-

tion takes longer. Adjusting the variance of the goal result in better goal achievement

when the variance is smaller, though difficulty turning comes with it as a trade-off.

The planner can also be made more conservative with relation to nearby agents by

increasing the uncertainty weighting in the loss function, and the manner in which

the trajectories generated avoid agents can also be tuned by altering the shape sur-

rounding each agent.

37

38

Chapter 6

Conclusions

Overall, we see great potential for the architecture presented with its ability to re-

act to minor changes in the given goal and uncertainty masks. Designers can tune

the planner’s behavior, enforcing smaller goal variances when goal achievement is a

priority or allowing for larger goal variances when other aspects are more important.

We also observe the potential to tune how conservative the planner is by adjusting

the uncertainty weighting in the loss, as well as the ability to adapt to a variety of

sensor infrastructures with a range of localization abilities.

6.1 Lessons Learned

Transitioning from standard semester-long classes with projects that span a month

in time (from inception to completion), completing this thesis has inherently been

a learning process. Rather than spend a day or two deciding on a project, I took

a semester to become comfortable with the field by working on smaller tasks while

thinking about potential gaps in the literature. This can feel discouraging if the

expectation is to finish quickly, so I learned to keep perspective of longer term goals,

like making meaningful contributions to the field of self driving.

During my first semester researching with the lab, I became more comfortable

navigating larger project’s codebases through practice. The relatively small project

of creating visualizations for examining how another person’s code and model worked

39

helped me develop as more nuanced understanding of PyTorch and PyTorch Light-

ning, and I am grateful to have had the opportunity to be introduced to the field

without needing to work on a thesis immediately.

6.2 Future Work

In terms of the existing infrastructure, perhaps more can be done to explore its capa-

bilities. For example, it could be tested on different datasets, including the Waymo

Open Dataset [8], to determine whether a particular BEV setup can contribute to

overall safer and human-like trajectories. In addition, it could be used in conjunction

with the works discussed in 2.2 that generate a BEV from sensor data to create a

full-stack pipeline. If effective, it could even be tested on a real car.

This work explored the ways in which grid-based risk can be fine-tuned and af-

fect planner behavior. This is extremely helpful as many papers recently published

demonstrate the functionality of using BEV, either as a primary input or as an inter-

mediary representation. However, risk is always present in the field of autonomous

driving, even if the representation is not grid-based. Therefore, future work could

take inspiration from this exploration of explicit risk management and do the same

for other common scene representations.

40

Bibliography

[1] Richard Bellman. Dynamic Programming. Princeton Univ. Pr., 1957.

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving. 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 11618–
11628, 2020.

[3] Xuanyao Chen, Tianyuan Zhang, Yue Wang, Yilun Wang, and Hang Zhao.
Futr3d: A unified sensor fusion framework for 3d detection. ArXiv,
abs/2203.10642, 2022.

[4] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi
Nguyen, Tzu-Kuo Huang, J. Schneider, and Nemanja Djuric. Multimodal tra-
jectory predictions for autonomous driving using deep convolutional networks.
ICRA, pages 2090–2096, 2019.

[5] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi
Nguyen, Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. Multimodal tra-
jectory predictions for autonomous driving using deep convolutional networks.
ICRA, 2019.

[6] Nachiket Deo and Mohan M. Trivedi. Trajectory forecasts in unknown environ-
ments conditioned on grid-based plans. CoRR, abs/2001.00735, 2020.

[7] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs:
What is essential for offline rl via supervised learning? arXiv preprint
arXiv:2112.10751, 2021.

[8] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao,
Sabeek Pradhan, Yuning Chai, Ben Sapp, Charles R. Qi, Yin Zhou, Zoey Yang,
Aur’elien Chouard, Pei Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander Mc-
Cauley, Jonathon Shlens, and Dragomir Anguelov. Large scale interactive mo-
tion forecasting for autonomous driving: The waymo open motion dataset. In
Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9710–9719, October 2021.

41

[9] W. Farag and Z. Saleh. Behavior cloning for autonomous driving using con-
volutional neural networks. 2018 International Conference on Innovation and
Intelligence for Informatics, Computing, and Technologies (3ICT), pages 1–7,
2018.

[10] Iván Silva Feraud and José Eugenio Naranjo. Are you a good driver?: A data-
driven approach to estimate driving style. In ICCMS 2019, 2019.

[11] J. Garcia and F. Fernández. A comprehensive survey on safe reinforcement
learning. JMLR, 16:1437–1480, 2015.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.

[13] Anthony Hu, Zak Murez, Nikhil Mohan, Sof’ia Dudas, Jeffrey Hawke, Vi-
jay Badrinarayanan, Roberto Cipolla, and Alex Kendall. Fiery: Future in-
stance prediction in bird’s-eye view from surround monocular cameras. ArXiv,
abs/2104.10490, 2021.

[14] Xin Huang, Sungkweon Hong, Andreas G. Hofmann, and Brian C. Williams.
Online risk-bounded motion planning for autonomous vehicles in dynamic envi-
ronments. CoRR, abs/1904.02341, 2019.

[15] Yang Jiao, Zequn Jie, Shaoxiang Chen, Jing Chen, Xiaolin Wei, Lin Ma, and
Yueping Jiang. Msmdfusion: Fusing lidar and camera at multiple scales with
multi-depth seeds for 3d object detection. 2022.

[16] Kibeom Lee and Dongsuk Kum. Collision avoidance/mitigation system: Motion
planning of autonomous vehicle via predictive occupancy map. IEEE Access,
7:52846–52857, 2019.

[17] Dachuan Li, Yunjiang Wu, Bing Bai, and Qi Hao. Behavior and interaction-
aware motion planning for autonomous driving vehicles based on hierarchical
intention and motion prediction. In 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), pages 1–8, 2020.

[18] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela
Rus, and Song Han. Bevfusion: Multi-task multi-sensor fusion with unified
bird’s-eye view representation. ArXiv, abs/2205.13542, 2022.

[19] Abdelhak Loukkal, Yves Grandvalet, Tom Drummond, and You Li. Driving
among flatmobiles: Bird-eye-view occupancy grids from a monocular camera for
holistic trajectory planning. 2021 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 51–60, 2021.

[20] Kasra Mokhtari and Alan R. Wagner. Don’t get yourself into trouble! risk-aware
decision-making for autonomous vehicles, 2021.

42

[21] Tung Phan-Minh, Elena Corina Grigore, Freddy A. Boulton, Oscar Beijbom,
and Eric M. Wolff. Covernet: Multimodal behavior prediction using trajectory
sets. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14062–14071, 2020.

[22] João Silvério, Yanlong Huang, Fares J. Abu-Dakka, L. Rozo, and D. Caldwell.
Uncertainty-aware imitation learning using kernelized movement primitives. 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 90–97, 2019.

[23] Zachary Sunberg, Christopher Ho, and Mykel J. Kochenderfer. The value of
inferring the internal state of traffic participants for autonomous freeway driving.
CoRR, abs/1702.00858, 2017.

[24] N’uria Armengol Urp’i, S. Curi, and A. Krause. Risk-averse offline reinforcement
learning. ArXiv, abs/2102.05371, 2021.

[25] Qiannan Wang and Matthias Gerdts. Risk-based path planning for autonomous
vehicles. 2021.

[26] Ze yu Zhu and Huijing Zhao. A survey of deep rl and il for autonomous driving
policy learning. ArXiv, abs/2101.01993, 2021.

43

