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Abstract

The Traveling Salesman Problem (TSP) is a foundational problem in the fields of the-
oretical computer science and optimization in which an agent is tasked with visiting
a set of 𝑛 target locations (in any order) in the shortest amount of time, either on a
graph or in a space. As this problem is well-known to be NP-hard, it is usually solved
using heuristics or approximation algorithms. An important variant of the TSP is the
Dynamic TSP (DTSP), in which the targets exist in a space in which the agent’s tra-
jectory must satisfy dynamic constraints (for instance, limited ability to accelerate).
The DTSP arises naturally in many robotic motion planning problems, particularly
in exploration, surveillance and reconnaissance, and is generally not amenable to the
standard TSP approximation algorithms. An interesting and important question,
known as the Dynamic Stochastic TSP (DSTSP), asks: if the target points are dis-
tributed randomly, how does the length of the shortest tour (either in expectation or
with high probability) grow with the number 𝑛 of targets? This problem has been
studied for a variety of common vehicle models, as well as certain broader classes of
dynamic control systems.

In this thesis, we present a novel proof that extends known DSTSP order-of-growth
results to a wider variety of dynamic systems, in particular to manifold workspaces, as
well as two novel algorithms which achieve a constant-factor approximation of the op-
timal tour with high probability. These new proofs and algorithms furthermore allow
us to study not only the order-of-growth of the tour length but also, for the important
subset of ‘symmetric’ dynamics, to give explicit constant factors and to tightly char-
acterize the relationship between the dynamics, the target point distribution, and the
optimal tour length. Finally, we extend these results to the non-stochastic adversar-
ial case, in which the target points are chosen to maximize the length of the optimal
tour.

Thesis Supervisor: Sertac Karaman
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction and Preliminaries

1.1 Introduction and Motivation

1.1.1 The Dynamic Stochastic Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a classic problem in computer science and

optimization, in which an agent is tasked with visiting a set of target locations, in

any order, in the minimum amount of time. In its most common form, the target

locations are modeled as a graph with weighted edges indicating the distance between

their endpoints. In addition to having an astounding range of practical applications,

it attracts a great deal of theoretical interest in many settings.

The TSP is well-known to be computationally challenging – specifically, finding the

shortest tour through a given set of points is NP-complete [1], even for Euclidean paths

through points in R2 [2]. Nevertheless, there are a number of successful algorithmic

methods for this problem, including approximation algorithms and heuristics.

Although the TSP originated in operations research, it has found numerous ap-

plications in the context of robotics as well. Most notably, a number of robot motion

planning and routing algorithms employ TSP algorithms at their core [3]. The appli-

cations of TSP in the robotics domain are far reaching, including persistent monitor-

ing, surveillance, reconnaissance, exploration, among other important problems.

However, in most cases in robotics, the vehicles we want to visit the target points

15



Figure 1-1: A Dynamic TSP instance. The dashed blue lines represent the shortest
tour for an agent without dynamics, but the robot shown must obey dynamics and
hence must follow a trajectory like the one pictured.

are subject to non-trivial differential constraints which have a substantial impact on

the optimal tour. Also, the addition of dynamic constraints means there is no fixed

notion of ‘distance’ between any given pair of target points, as the point-to-point

travel time depends on the specific configurations (e.g. heading for a Dubins car)

one wishes to have at the two target points in question. This means that the classic

approximation algorithms do not apply to this setting, and new algorithms must be

used to deal with the TSP in these instances [4]. Finally, understanding the impact

of the dynamics on the length of the tour would allow a system designer to pick the

best robot for the task at hand. We refer to this as the Dynamic TSP (DTSP).

An important variant of the TSP is the case in which the targets are independently

and identically distributed (iid), in which case the goal is to understand the behavior

of the shortest tour length as a random variable dependent on the targets, and in

particular to understand how the length of the shortest tour grows as the number

𝑛 of targets is increased. Since the length of the shortest tour is random, this is

generally studied either in terms of expected value or with high-probability bounds.

We refer to this as the Stochastic TSP ; when combined with dynamic constraints, it

is the Dynamic Stochastic TSP (DSTSP).

Remark 1. While the dynamic constraints might describe an agent in many different

settings, since our inspiration is the TSP for autonomous robotic vehicles we will

generally refer to the agent as the ‘vehicle’ in this thesis.

16



1.1.2 Previous Work

The importance of the Stochastic TSP has not gone unnoticed [5], inspiring extensive

study (mainly under Euclidean distance, which we will call the Euclidean Stochastic

TSP or ESTSP) from an algorithmic perspective, in particular on discovering algo-

rithms which on average achieve high-quality approximations in polynomial time [6].

In addition, it was found to have connections to a variety of practical and theoretical

problems, such as vehicle routing [7] and matching on the Euclidean plane [8].

The aysmptotic properties of the tour length of the Stochastic TSP as 𝑛Ñ 8 was

also extensively studied, both in the Euclidean case (notably by Beardwood et al. [9])

and for a variety of specific vehicles, culminating in results concerning the general

class of translation-invariant vehicles on R𝑑 by Itani [10]. Finally, concurrent to the

DSTSP work, the asymptotic properties of the related Dynamic Stochastic Orien-

teering problem was studied using a powerful general method [11]; the Orienteering

problem is in some sense the converse of the TSP, in which an agent (dynamically

constrained or otherwise) must visit as many target points out of 𝑛 as possible given

a fixed limit on the time or distance allowed. This allows a new angle for tackling the

DSTSP, as Orienteering and the TSP are closely related.

Euclidean Stochastic TSP The general asymptotic behavior of the Euclidean

Stochastic TSP was characterized by Beardwood, Halton, and Hammersley in 1959 [9]:

Beardwood-Halton-Hammersley Theorem. For any (integer) dimension 𝑑 ě

2, there is a constant 𝛽𝑑 ą 0 such that for any continuous probability distribution

with density function 𝑓 on R𝑑 with bounded support, 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 implies:

lim
𝑛Ñ8

TSPp𝑋1, . . . , 𝑋𝑛q

𝑛1´ 1
𝑑

“ 𝛽𝑑

ż

𝑓p𝑥q1´ 1
𝑑 𝑑𝑥 almost surely. (1.1)

where TSPp𝑋1, . . . , 𝑋𝑛q is the length of the optimal tour (under Euclidean dis-

tance) with targets 𝑋1, . . . , 𝑋𝑛.

Note that while the constants 𝛽𝑑 can be empirically estimated to a high degree of

accuracy, they are not known precisely.

17



In this theorem we see the general form of the asymptotic tour length which we

will try to achieve: an order-of-growth (in this case 𝑛1´ 1
𝑑 ) attached to a constant

factor with a clear dependence on the target point distribution’s density 𝑓 , which

takes the form of an integral over 𝑓p𝑥q taken to a particular power.

Dynamic Stochastic TSP In the second half of the 2000’s, the orders-of-growth

of the DSTSP were found for a number of vehicles, notably the Dubins car, Reeds-

Shepp car, differential-drive vehicles, and double integrators in 2 and 3 dimensions

(which are commonly used to model quadcopter dynamics) [12, 13, 14, 15, 16]. The

DSTSP for symmetric, translation-invariant dynamics in 2 dimensions was considered

by Itani et al. [17], using a technique based on subadditive functionals, which was then

expanded in Itani’s Ph.D thesis [10] to include a wide class of translation-invariant

dynamics in any Euclidean space R𝑑. These results are summarized in Table 1.1;

the general form Θp𝑛1´ 1
𝛾 q of the order-of-growth is apparent, where the small-time

constraint factor 𝛾 is a parameter dependent on the dynamics whose meaning will be

discussed at length in Sections 1.2 and 2.1.

Vehicle Reeds-Shepp Car
Diff Drive [12]

Dubins Car
[13, 15, 16]

Double
Integrator [14]

Translation-invariant
Vehicles [17, 10]

Space R2 R2 R2,R3 R2,R𝑑

Length Θp𝑛
2
3 q Θp𝑛

2
3 q Θp𝑛

2
3 q,Θp𝑛

4
5 q Θp𝑛1´ 1

𝛾 q

Table 1.1: Previous work on the DSTSP

These works contain important ideas which we use; in particular, the Recursive

Bead-Tiling and Recursive Cylinder-Covering algorithms given by Savla et al. [14]

(and a similar algorithm in Itani’s thesis [10]) form the basis for our more general

Pass-and-Merge algorithm discussed in Chapter 5. However, we note that unlike the

Beardwood-Halton-Hammersley Theorem, these works do not consider what happens

when the target point distribution 𝑓 changes, instead generally assuming that the

targets are uniformly distributed over the unit cube; while changing 𝑓 generally does

not affect the order of growth (given simple assumptions on 𝑓 , such as being a con-

18



tinuous probability distribution over some bounded full-dimensional support)1 , as

seen in the Beardwood-Halton-Hammersley Theorem it has a serious effect on the

constant factor attached to the length of the tour.

Dynamic Stochastic Orienteering The Orienteering problem, as described above,

is a sort of converse of the TSP which asks: given an agent, a set of 𝑛 targets, and

some length or time bound 𝜆 ą 0, how many target points can be visited by the

agent in the given length or time, from any starting position? When the agent is

dynamically constrained we call this Dynamic Orienteering, and when the targets

are distributed iid at random we call this Dynamic Stochastic Orienteering. Upper

bounds for Orienteering naturally correspond to lower bounds for the TSP in the

following way: if at most 𝐿p𝑛, 𝜆q targets can be reached with a trajectory of length

or time 𝜆, then to visit all 𝑛 points requires (up to rounding) at least a trajectory

of length 𝜆𝑛{𝐿p𝑛, 𝜆q. In addition to this correspondence to the TSP, the Orienteer-

ing problem and in particular the Stochastic Orienteering and Dynamic Stochastic

Orienteering problems have interesting additional applications to problems such as

filament detection in image analysis [18].

This problem was studied at length by Arias-Castro, Donoho, Huo, and Tovey [11]

using a powerful and general method which discretizes the space into appropriately-

sized cells (dependent on the dynamics and the number of targets 𝑛) and analyzes the

distribution of the target points into the cells based on the classic probability theory

combination of the union bound and the Chernoff bound. Their method can not only

handle a theoretically infinite range of different dynamically-constrained agents, but

also yields a means to strongly characterize how the probability that their bound is

violated goes to zero as the number of targets 𝑛 goes to 8.

However, their work assumes that an appropriate discretization is supplied ex-

ternally, which is often highly nontrivial; for instance, in their work they give the

appropriate discretizations for Euclidean Stochastic Orienteering and the Dynamic
1This is because any such 𝑓 can be ‘bounded above’ by distributing (a constant factor) more

targets on a cube containing its support, which can then be divided into a fixed number of unit
cubes. Each cube can then be handled individually, with the extra time needed to travel between
them not dependent on the number of targets 𝑛.
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Stochastic Orienteering with a Dubins car agent (a simple and extremely versatile

car model used in many applications [3]).

1.1.3 Contribution

We bring together the three main strands of work on the DSTSP and the related

Dynamic Stochastic Orienteering problem. In doing so, we achieve the following

using new and elementary methods:

• We extend the known DSTSP order-of-growth results (which depend on the

small-time constraint factor 𝛾, see Definition 4) to a broader class of dynam-

ics, specifically non-translation-invariant dynamics, which includes dynamics on

manifolds.

• We find a clear lower bound which not only captures the order-of-growth of

the optimal tour length but also captures an interesting interaction between

the target point density function 𝑓 and a newly-defined parameter which we

refer to as the agility function 𝑔 (Definition 5), which can also be viewed as an

extension of the Beardwood-Halton-Hammersley Theorem’s characterization of

the dependence of the ESTSP tour length on 𝑓 . We do this by converting the

problem to a novel version of the Dynamic Stochastic Orienteering problem

(which we refer to as Cost-Balanced Orienteering and which has a tighter cor-

respondence to the DSTSP) and applying the general method in [11], showing

an ‘automatic’ way of using the geometry of the dynamics at small scales to

produce the necessary discretization.

• For the upper bound, we consider two (well-known) different types of dynamic

constraints: symmetric and nonsymmetric, distinguished by whether the agent

can reverse their trajectory without loss of time. For each case, we design

a DSTSP algorithm by constructing a recursive tiling (which we refer to as

Hierarchical Cell Structures, see Sections 2.3 and 2.4) and using it to convert

the DSTSP analysis problem into a discrete probability problem (one for each

case) which we then solve.
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– Symmetric case: our upper bound matches the lower bound up to a fac-

tor constant in both number of targets 𝑛 and target probability density

function 𝑓 (but allowed to depend on the dynamics), thus describing how

the tour length depends on the number of targets 𝑛 and the target point

density function 𝑓 as 𝑛Ñ 8.

– Nonsymmetric case: our upper bound matches the lower bound up to a

factor constant in the number of targets 𝑛 (but allowed to depend on the

dynamics and the target density function 𝑓) thus describing how the tour

length depends on the number of targets 𝑛 as 𝑛Ñ 8.

Both algorithms are probabilistic approximation algorithms: given 𝑛 targets iid

distributed according to 𝑓 , with very high probability the given algorithm finds

a tour within a specified constant multiplicative factor of the optimal tour,

where the constant can depend on the dynamics in both cases but can only

depend on 𝑓 in the nonsymmetric case (see Appendix A.2 for more).

• We show how the probability that our upper and lower bounds are violated go

to zero as 𝑛 goes to infinity. In particular, we define a new and stronger notion

of ‘high probability’, which we call very high probability (Definition 7) and show

that our bounds hold with very high probability.

• We extend our DSTSP lower bound and the symmetric dynamics upper bound

to the adversarial case, where the targets are not distributed randomly but by

an adversary whose goal is to maximize the length of the shortest tour. In doing

so we obtain strong deterministic bounds on the longest possible length for the

shortest tour through 𝑛 targets when the dynamics are symmetric.

We also clearly articulate a set of assumptions from which the results are derived; to

apply our results, these assumptions can either be shown on their own (e.g. when

the geometry of the reachable sets (Definition 3) is clearly known) or by considering

deeper geometric properties of the dynamics. All of our work translates cleanly to

upper and lower bounds for the Dynamic Stochastic Orienteering problem.
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1.1.4 Thesis organization

The rest of this work is organized as follows.

• In the remainder of Chapter 1, we introduce the basic preliminaries needed

to understand the results (Section 1.2) and then state our main results (Sec-

tion 1.3). Note that the concepts introduced in Section 1.2 are sometimes not

rigorously defined there, and instead meant only to give the means to under-

stand Section 1.3; the full, rigorous treatment of these concepts is given in

Chapter 2.

• In Chapter 2 we state formally all the assumptions needed; we also show how

many of these assumptions follow from the underlying geometry of dynamic

control systems, as long as they have a given (very common and general) form

and particular result (the Ball-Box Theorem) holds for the system.

• In Chapter 3 we show our DSTSP lower bounds, which we achieve via an Ori-

enteering upper bound using the method developed by Arias-Castro et al. [11].

• In Chapter 4 we give our TSP algorithm for symmetric dynamics and derive

from it a very-high-probability upper bound on the shortest tour length which

is within a constant factor (with regard to the number of targets 𝑛 and the

target density function 𝑓) of the lower bound.

• In Chapter 5 we give our TSP algorithm for nonsymmetric dynamics and derive

from it a very-high-probability upper bound on the shortest tour length which

achieves the optimal order of growth (i.e. is within a constant factor of the

lower bound with regard to the number of targets 𝑛).

• In Chapter 6 we discuss the extension of our results to the case of worst-case

(nonrandom) target points which are placed to maximize the length of the

shortest tour.

• In Chapter 7 we conclude and discuss possible future directions of work.
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1.1.5 Notation and color-coding

We make use of a few standard notational conventions:

• Calligraphic font is typically used for spaces and sets; e.g. 𝒳 for the workspace

(the space that the vehicle moves and visits target points in).

• Random values are typically represented by upper-case letters, using the same

letter as their non-random counterparts in lower case; e.g. 𝑥 P 𝒳 is a point in

the workspace, while 𝑋 would represent a random point in the workspace.

• The time derivative of a process 𝑎p𝑡q (say, a vehicle’s position) on a manifold 𝒜
is given by 9𝑎p𝑡q, which represents a vector tangent to 𝒜 at 𝑎; we do not use 𝑎1

to indicate derivatives. Instead, 𝑎1 will often be used to denote another point

in the same space, e.g. ‘for any 𝑎 and 𝑎1 in 𝒜, the following condition holds’.

For ease-of-reading we also color-code our results:

• Our main theorems are presented in dark blue.

• Supporting (but still crucial) propositions are presented in light blue.

• Corollaries are presented in green.

• Definitions are presented in red.

• Assumptions are presented in yellow.

• Meta-Assumptions (geometric assumptions from which other assumptions fol-

low) are presented in orange.

• Known results we use are presented in gray (for example, see the Beardwood-

Halton-Hammersley Theorem above).

• Conjectures are presented in brown.

To avoid clutter, lemmas are not colored.
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1.2 Preliminaries

In this work we study the Dynamic Stochastic TSP, in which a vehicle controlled by

a system of dynamic constraints on a manifold 𝒳 , which we call the workspace, must

visit a set of independently and identically-distributed (iid) target points𝑋1, . . . , 𝑋𝑛 P

𝒳 , in any order, in as short a time as possible. Common examples of such vehicles

include the Dubins Car, the Differential-Drive Vehicle, and the Double Integrator

(either in R2 or R3, commonly used as a model of quadcopter motion).

1.2.1 The dynamic constraints

Although we are primarily concerned about the vehicles’s trajectory through the

workspace 𝒳 (which determines if and when each target point is visited), the dy-

namic constraints mean the state of the vehicle at any given time is more naturally

represented as a point 𝑞 in the configuration space (or phase space) 𝒬. Its posi-

tion in 𝒳 is then a function of its position in 𝒬, denoted as r𝑞s𝒳 “ 𝑥 P 𝒳 ; 1 we

denote the preimage of 𝑥 P 𝒳 as r𝑥s𝒬 “ t𝑞 P 𝒬 : r𝑞s𝒳 “ 𝑥u. We assume this func-

tion works locally as a projection from a dimp𝒬q-dimensional Euclidean space onto

a dimp𝒳 q-dimensional subspace, i.e. for any 𝑞, 𝑥 such that r𝑞s𝒳 “ 𝑥, there are some

neighborhoods around 𝑞 and 𝑥 and coordinate maps on these neighborhoods so that

r¨s𝒳 behaves linearly with respect to these maps.

For convenience we assume this mapping is well-behaved:

Assumption 1. r¨s𝒳 is smooth.

This doesn’t need to hold completely everywhere for our results to still hold (see

Section 2.5) but we assume it for what follows.

Given a position 𝑞 P 𝒬 and a control input 𝑢 from some control set 𝒰 , the

vehicle’s position evolves according to a control law 9𝑞 “ ℎcontp𝑞,𝑢q, where ℎcont takes

a position in 𝒬 and a control and returns a tangent vector indicating the direction in

1Typically 𝒬 “ 𝒳 ˆ 𝒞 for some 𝒞, and r¨s𝒳 is the projection function. It is possible that 𝒬 “ 𝒳 ,
but this is a special case.
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which the vehicle moves [3]. We call a trajectory 𝜋 : r0, 𝑇 s Ñ 𝒬 valid if there is some

control function 𝑢 : r0, 𝑇 s Ñ 𝒰 such that 9𝜋p𝑡q “ ℎcontp𝜋p𝑡q,𝑢p𝑡qq for all 𝑡 P r0, 𝑇 s.

We now introduce some notation which we will use for this work. We denote the

set of all valid trajectories as Π (we will also refer to the dynamics by the set Π of

valid trajectories it induces). Interpreting 𝑡 as time, 𝑇 is then the amount of time it

takes to execute trajectory 𝜋 P Π via the control function 𝑢, which we refer to as the

length of the trajectory 𝜋 and denote as ℓp𝜋q, so that 𝜋 : r0, ℓp𝜋qs Ñ 𝒬. Since the

targets are points in 𝒳 but the dynamics are specified over 𝒬, we will be interested

in the projection of trajectory 𝜋 P Π onto 𝒳 . We will denote:

�̄�p𝑡q “ r𝜋p𝑡qs𝒳 (1.2)

In general ¯̈ will denote the workspace projection of a set or function. We will also

slightly abuse notation by writing “𝑥 P �̄�” to mean “D 𝑡 s.t. 𝑥 “ �̄�p𝑡q” i.e. that 𝜋 visits

𝑥 at some point, and similarly “𝑞 P 𝜋” if there exists 𝑡 such that 𝑞 “ 𝜋p𝑡q.

1.2.2 Symmetric dynamics

A special class of dynamic constraints are those which allow the vehicle to reverse

direction and ‘backtrack’ with no loss of time. This property, which we call symmetry,

allows the system to use a simplified algorithm as compared to vehicles that don’t

have it. Formally:

Definition 1. We say that dynamics Π defined by control law ℎcont and control

set 𝒰 are symmetric if for every 𝑞 P 𝒬 and 𝑢 P 𝒰 :

ℎcontp𝑞,´𝑢q “ ´ℎcontp𝑞,𝑢q (1.3)

and 𝑢 P 𝒰 ðñ ´𝑢 P 𝒰 (1.4)

i.e. any possible motion can also be reversed by changing the control.
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This then means that for any valid trajectory 𝜋 : r0, ℓp𝜋qs Ñ 𝒬, the reverse trajectory
ÐÝ𝜋 : r0, ℓp𝜋qs Ñ 𝒬 where

ÐÝ𝜋 p𝑡q :“ 𝜋pℓp𝜋q ´ 𝑡q (1.5)

is also valid. This allows the vehicle to maneuver indefinitely in arbitrarily small

regions without having to leave and come back, and allowing a simplified algorithm

(with more precise bounds) when it holds.

1.2.3 Control-affine dynamics

A very powerful, general, and useful class of control systems are those which are

governed by a set of vector fields ℎcont0 , ℎcont1 , . . . , ℎcont𝑚 over 𝒬: given a location 𝑞 P 𝒬,

the vehicle’s instantaneous motion is a linear combination of the tangent vectors

ℎcont0 p𝑞q, ℎcont1 p𝑞q, . . . , ℎcont𝑚 p𝑞q produced by these fields at 𝑞, with the control inputs

being the coefficients for the various vector fields; the vector field ℎcont0 is special and

always applies with a coefficient of 1 (called the drift), while the rest can be scaled

up or down by the controls. Formally, we define:

Definition 2. A control-affine system (also called affine-in-control) is a system

of dynamic constrains in which the control law takes the form:

ℎcontp𝑞,𝑢q “ ℎcont0 p𝑞q `
𝑚
ÿ

𝑖“1

ℎcont𝑖 p𝑞q𝑢𝑖 (1.6)

where ℎcont0 , ℎcont1 , . . . , ℎcont𝑚 are smooth vector fields on 𝒬, and the control is some

𝑢 “ p𝑢1, . . . , 𝑢𝑚q P 𝒰 Ď R𝑚.

We assume that the following apply to the control set 𝒰 :

• 0 is in the interior of 𝒰 ;

• 𝒰 is bounded, convex, and closed (therefore compact);

• 𝒰 is radially symmetric, i.e. 𝑢 P 𝒰 ðñ ´𝑢 P 𝒰 .
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The uncontrolled vector field ℎcont0 is called the drift ; if ℎcont0 p𝑞q “ 0 (the trivial

tangent vector at 𝑞) for all 𝑞 P 𝒬, the vehicles is symmetric, which for control-

affine dynamics is also called driftless.

In some control-affine systems, ℎcont0 , . . . , ℎcont𝑚 span the tangent space at 𝑞, allow-

ing linear combinations to move in any direction (subject to the drift term ℎcont0 );

however, the vehicles we are interested in typically do not have this property, making

them nonholonomic [19]. In this case, the direction of movement is restricted to the

subspace of the tangent plane spanned by the vector fields ℎcont𝑖 .

Nevertheless, in symmetric control-affine systems, it is often possible to produce

motion in a direction not directly allowed by making small forward and backward

motions using commutators. Formally, the Lie algebra of the vector fields at 𝑞 yields

a set of vectors in which small motions can be made. A control-affine system is called

controllable at 𝑞 if this Lie algebra spans the tangent space. In this case, for any

𝜀 ą 0, the 𝜀-ball in the dynamics around 𝑞 will contain 𝑞 in its interior.

Example 1. Any nonsymmetric control-affine system ℎcont0 , ℎcont1 , . . . , ℎcont𝑚 has a sym-

metric analogue. For example, the Dubins car in R2, whose dynamics can be written

(for 𝑞 “ p𝑥, 𝑦, 𝜃q denoting p𝑥, 𝑦q position in R2 and heading 𝜃) as

»

—

—

—

–

9𝑥

9𝑦

9𝜃

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

cosp𝜃q

sinp𝜃q

0

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

0

0

1

fi

ffi

ffi

ffi

fl

𝑢1 (1.7)

where 𝑢1 P r´1, 1s; its symmetric analogue is the Reeds-Shepp car, whose dynamics

are

»

—

—

—

–

9𝑥

9𝑦

9𝜃

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

cosp𝜃q

sinp𝜃q

0

fi

ffi

ffi

ffi

fl

𝑢1 `

»

—

—

—

–

0

0

1

fi

ffi

ffi

ffi

fl

𝑢2 . (1.8)

Note that to produce the symmetric analogue, we don’t delete the drift vector field but

rather add a control to it.
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1.2.4 Reachable sets and related parameters

We first define the distance function induced by dynamics Π:

𝑑Πp𝑞, 𝑞
1
q “ inf

𝜋PΠ
pℓp𝜋q : 𝜋p0q “ 𝑞 and 𝜋pℓp𝜋qq “ 𝑞1

q (1.9)

Note that the minimum time required to go from 𝑞 through 𝑞1 and end at 𝑞2 for

any 𝑞, 𝑞1, 𝑞2 P 𝒬 is 𝑑Πp𝑞, 𝑞1q ` 𝑑Πp𝑞
1, 𝑞2q. Furthermore, making a useful equivalent

definition of the distance between 𝑥, 𝑥1 P 𝒳 poses difficulties as the time required to

go 𝑥 Ñ 𝑥1 Ñ 𝑥2 generally does not add in the same way it does for 𝑞 Ñ 𝑞1 Ñ 𝑞2

since the shortest valid path 𝑥 Ñ 𝑥1 might require a much different configuration at

𝑥1 from the shortest valid path 𝑥1 Ñ 𝑥2.

When Π is symmetric, 𝑑Π, but when Π is not symmetric it is a quasimetric since

𝑑Πp𝑞, 𝑞
1q ‰ 𝑑Πp𝑞

1, 𝑞q in general.

qq

Figure 1-2: Illustration of a symmetric vehicle (left, Reeds-Shepp car) and a non-
symmetric vehicle (right, Dubins car) with similar dynamics; both cannot follow
trajectories whose curvature exceeds a certain bound. Workspace 𝜀-reachable sets
are shown for each, note that the Reeds-Shepp car workspace reachable set is not
simply two copies of the Dubins car workspace reachable set. The volumes of the
workspace reachable sets are Θp𝜀3q, indicating that 𝛾 “ 3 for the vehicles involved.

Definition 3. Given a system Π, 𝑞 P 𝒬 and 𝜀 ą 0, the 𝜀-reachable set and the

workspace 𝜀-reachable set from 𝑞 are defined as

𝑅𝜀p𝑞q :“ t𝑞
1
P 𝒬 : 𝑑Πp𝑞, 𝑞

1
q ď 𝜀u and �̄�𝜀p𝑞q :“ r𝑅𝜀p𝑞qs𝒳 . (1.10)
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We refer to 𝑞 as the anchor of 𝑅𝜀p𝑞q and �̄�𝜀p𝑞q.

A key aspect of our results is the volume of these reachable sets, particularly the

workspace reachable sets, which determines in a sense how maneuverable the vehicle

is. In general, this volume will scale polynomially with 𝜀, i.e. Vol𝒳 p�̄�𝜀p𝑞qq9 𝜀
𝛾 for

some appropriate 𝛾, which we call (following [10]) the small-time constraint factor,

and which will ultimately determine how the TSP tour length scales as the number 𝑛

of targets grows to 8. Note that we are assuming that 𝛾 is constant over the space.

However, in order to obtain more precise bounds (particularly for the case of

symmetric vehicles) we are also interested in the constant factor attached to 𝜀𝛾, which

can vary depending on the configuration 𝑞 in question. We call this the configuration

agility function 𝑔 : 𝒬Ñ Rą0 and broadly speaking for small 𝜀 ą 0 we have

Vol𝒳 p�̄�𝜀p𝑞qq « 𝑔p𝑞q𝜀𝛾 (1.11)

Formally we can define these as follows:

Definition 4. The small-time constraint factor of Π is 𝛾 such that at all 𝑞

𝛾 :“ lim
𝜀Ñ0

logpVol𝒳 p�̄�𝜀p𝑞qqq

logp𝜀q
(1.12)

and the agility function 𝑔 : 𝒬Ñ Rą0 is

𝑔p𝑞q :“ lim
𝜀Ñ0

Vol𝒳 p�̄�𝜀p𝑞qq

𝜀𝛾
. (1.13)

Note that the configuration agility function takes inputs from 𝒬. Thus, we need to

define the workspace agility function which roughly measures the maximum possible

agility the vehicle can have when at a configuration projecting to 𝑥 P 𝒳 . This is

important because if the vehicle can be in many different configurations corresponding

to 𝑥 P 𝒳 , it will generally be best to use the configuration maximizing the agility. For

simplicity we will also denote this by 𝑔; whether 𝑔 refers to the configuration agility

function or the workspace agility function can be determined by whether its input is
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Figure 1-3: Illustration of a vehicle with nonconstant agility function. A Dubins car
drives onto a patch of ice, reducing its turn rate and thus reducing its agility (as seen
by the smaller workspace reachable set).

in 𝒬 or 𝒳 . We will use the term agility function to refer to either the configuration

or workspace agility function depending on context.

Definition 5. The workspace agility function is 𝑔 : 𝒳 Ñ Rą0 defined as

𝑔p𝑥q :“ sup
𝑞Pr𝑥s𝒬

𝑔p𝑞q (1.14)

1.2.5 The Dynamic TSP and Dynamic Stochastic TSP

The Dynamic TSP (DTSP) is then the following problem:

Definition 6. Given control system Π on 𝒬, and given 𝑛 targets 𝑥1, . . . , 𝑥𝑛 P 𝒳 ,

the TSP trajectory (or DTSP trajector) is the shortest valid path through all the

targets, denoted by:

TSPΠpt𝑥𝑖uq :“ TSPΠp𝑥1, . . . , 𝑥𝑛q :“ inf
𝜋PΠ
pℓp𝜋q : 𝑥𝑖 P �̄� for all 𝑖q . (1.15)

Note that we may assume WLOG that any DTSP trajectory through 𝑥1, . . . , 𝑥𝑛

starts and ends in the set t𝑥1, . . . , 𝑥𝑛u, since additional movement before visiting the

first target, or after visiting the last target, is wasteful.

Remark 2. Some variants of the TSP require the agent to visit all the target points

and then return to their original location, thus forming a loop. While Definition 6

does not require the vehicle to return to its starting location or starting configuration,
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we note that our results hold equally for the case of loops. This is because we will

make the assumption that the targets cannot be arbitrarily far apart (Assumption 4)

but must be confined within bounded space; thus, requiring a loop cannot make the

shortest tour shorter, and can add only at most a constant extra time to the tour.

The Dynamic Stochastic TSP (DSTSP) is the variant of the above problem in

which the targets 𝑋1, . . . , 𝑋𝑛 are randomly chosen; in this work we are concerned

with 𝑋1, . . . , 𝑋𝑛 chosen independently and identically distributed (iid) according to

some distribution 𝑓 over 𝒳 ; we write this as 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 . While 𝑓 can in principle

be any probability distribution, we will be concerned with continuous probability

distributions where 𝑓 represents a probability density function. Since 𝑓 represents a

continuous probability distribution, it satisfies 𝑓 : 𝒳 Ñ Rě0 such that for any subset

𝒳 ˚ Ď 𝒳 , we have E𝑋„𝑓 r𝑋 P 𝒳 ˚s “
ş

𝒳˚ 𝑓p𝑥q 𝑑𝑥. We denote the support of 𝑓 as

𝒳𝑓 :“ t𝑥 P 𝒳 : 𝑓p𝑥q ą 0u (1.16)

which we will assume is bounded (Assumption 5).

1.2.6 With Very High Probability

Finally, in order to completely state our results, we define the notion of with very high

probability, which is a stronger version of the common notion of with high probability.

Definition 7. Let t𝐴𝑛u𝑛PZě0 be an infinite sequence of events parameterized by

an integer 𝑛. Then we say that 𝐴𝑛 happens with very high probability (wvhp) if

there are constants 𝑐1, 𝑐2, 𝑐3 ą 0 such that, for all sufficiently large 𝑛,

Pr𝐴𝑛s ě 1´ 𝑐1𝑒
´𝑐2𝑛𝑐3 (1.17)

This implies that lim𝑛Ñ8 Pr𝐴𝑛s “ 1, and converges faster than any inverse polyno-

mial (depending on definition it can even be said to converge to 1 ‘exponentially’).

The rapid convergence rate, aside from being of interest itself, allows bounds on the
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expected tour length to follow immediately from our probabilistic bounds as well as

other results to immediately follow; for more, see Appendix A.1.1.

1.3 Main Results

In this section we state our main results. While our main results depend on a number

of conditions, for clarity we will state the results first. The general conditions needed

are given in Section 2.1, while additional assumptions for the upper bounds (for

the symmetric and nonsymmetric case, respectively) are given in Section 2.3 and

Section 2.4.

1.3.1 Parameters

We first define some parameters needed to state our theorems. Since the formal

definitions can be fairly involved, we will sketch the meaning of certain parameters

which will be formally defined later in Section 2.1; wherever we do we will refer to

the specific place it is defined.

First, recall that 𝛾 is the small time constraint factor and 𝑔p𝑥q is the agility

function (Definition 4), satisfying the rough relation

sup
𝑞Pr𝑥s𝒬

Vol𝒳 p�̄�𝜀p𝑞qq « 𝑔p𝑥q𝜀𝛾 (1.18)

Then we have the integer branching factor 𝑏 which generally denotes how many 𝜀-

configuration reachable sets it takes to cover a p2𝜀q-configuration reachable set (see

Assumption 8). We then use this to define a parameter 𝛽 which will be used in our

lower bound:

Definition 8. Let 𝑏 be the branching factor and 𝛾 be the small-time constraint

factor of Π, and 𝑟 be a constant where 𝑟 “ 2 when Π is nonsymmetric and 𝑟 “ 3{2
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when Π is symmetric. Then we let the lower constant be:

𝛽 “ p1` 𝜉q𝑟𝛾 where 𝜉 “

$

’

&

’

%

3plogp𝑏q{𝑟𝛾q if logp𝑏q ą 𝑟𝛾

3
a

logp𝑏q{𝑟𝛾 if logp𝑏q ď 𝑟𝛾
(1.19)

Note that 𝛽 “ p1` 𝜉q2𝛾 9 maxplogp𝑏q, 𝑟𝛾q.

For the upper bound for symmetric vehicles, we need to consider Symmetric Hi-

erarchical Cell Structures (SHCS) (see Definition 11), which we sketch here. A SHCS

is a recursively-defined structure of nested cells, having an integer scaling parameter

𝑠 and an efficiency parameter 𝛼 ď 1. An SHCS at scale 𝜀 rooted at some 𝑞 P 𝒬
is defined by a cell contained in some �̄�𝜀p𝑞q whose volume is at least 𝛼𝑔pr𝑞s𝒳 q𝜀𝛾

(roughly speaking, as there is an additional approximation term in Definition 11),

which can covered by 𝑠𝛾 SHCS’s at scale 𝜀{𝑠 (the next ‘level’ down). The scaling

parameter 𝑠 thus denotes how much smaller the SHCS’s get when going down a level,

and the efficiency parameter 𝛼 denotes how large the cells are relative to the largest

reachable sets at the same scale. Typically, SHCS’s can be constructed with scal-

ing factor 𝑠 “ 2; for instance, control-affine systems satisfying common regularity

conditions have SHCS’s with 𝑠 “ 2 (see Proposition 4 in Section 2.3). However, we

make a more general definition which can be extended to the Euclidean TSP with

target points distributed on a set of fractal dimension, which in certain cases (like the

Menger Sponge) are naturally scaled using 𝑠 ‰ 2; see Appendix C for more.

For the upper bound for nonsymmetric vehicles, we have to consider Nonsym-

metric Hierarchical Cell Structures (NHCS), which are also defined by nested cells,

though these do not come with any parameters which affect the result since for the

nonsymmetric upper bound we are only concerned about the order-of-growth.

1.3.2 Main concentration bounds

We first state a trivial, non-probabilistic bound which follows from Assumption 4:
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Proposition 1. For some constant 𝐶 ą 0, for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 P 𝒳𝑓 ,

TSPΠp𝑥1, . . . , 𝑥𝑛q ď 𝐶𝑛 . (1.20)

Proof. For each 𝑥𝑖, we select (arbitrarily) some 𝑞𝑖 such that r𝑞𝑖s𝒳 “ 𝑥𝑖; then by

Assumption 4, there is some 𝐶 such that 𝑑Πp𝑞𝑖, 𝑞𝑖`1q ď 𝐶 for all 𝑖 “ 1, . . . , 𝑛 ´ 1,

and hence we have a tour which goes through 𝑞1, 𝑞2, . . . , 𝑞𝑛 by the order of indices

with length ď 𝐶p𝑛´ 1q.

We now state the main theorem, which gives a very high probability lower bound

to the DSTSP, and a matching (up to a constant in 𝑛 and 𝑓) upper bound when Π

is symmetric. The lower bound uses the constant 𝛽, which in turn is based on the

branching factor 𝑏 (and the small-time constraint factor 𝛾); the upper bound, being

derived from an algorithm reliant on hierarchical cell structures, uses 𝑠 and 𝛼. Both

upper and lower bounds feature the growth rate 𝑛1´ 1
𝛾 and a term which demonstrates

how density 𝑓 and agility 𝑔 interact to affect the tour length.

Theorem 1. If the assumptions in Section 2.1 hold, then for any 𝛿 ą 0, the

following holds for sufficiently large 𝑛:

TSPΠpt𝑋𝑖uq ě p1´ 𝛿q𝛽
´1𝑛1´ 1

𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 𝑤𝑣ℎ𝑝 (1.21)

where 𝛽 is the lower constant (see Definition 8).

Furthermore, if Π is symmetric and 𝒳𝑓 can be covered with Symmetric Hi-

erarchical Cell Structures with scaling parameter 𝑠 ě 2 and efficiency parameter

𝛼 ď 1 (see Definition 11 and Assumption 10), then for any 𝛿 ą 0 the following

holds for sufficiently large 𝑛:

TSPΠpt𝑋𝑖uq ď p1` 𝛿q
`

12𝑠𝛼´ 1
𝛾

˘

𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 𝑤𝑣ℎ𝑝 (1.22)

Finally, if Π is nonsymmetric and can be covered with Nonsymmetric Hier-

archical Cell Structures (see Definition 14), then there is some constant 𝐶 ą 0
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(which can depend on the dynamics and on the target point density 𝑓) such that

TSPΠp𝑋1, . . . , 𝑋𝑛q ď 𝐶𝑛1´ 1
𝛾 𝑤𝑣ℎ𝑝 . (1.23)

These results extend to the expected value (see Appendix A.1.1 and Proposition 21

for the proof) due to Proposition 1:

Corollary 1. If the assumptions in Chapter 2 hold, then for any 𝛿 ą 0,

E
𝑋𝑖

𝑖𝑖𝑑
„ 𝑓
rTSPΠpt𝑋𝑖uqs ě p1´ 𝛿q𝛽

´1𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (1.24)

for all sufficiently large 𝑛. Furthermore, if Π is symmetric and 𝒳𝑓 can be covered

with Symmetric Hierarchical Cell Structures with scaling parameter 𝑠 ě 2 and

efficiency parameter 𝛼 (see Definition 11), then for any 𝛿 ą 0,

E
𝑋𝑖

𝑖𝑖𝑑
„ 𝑓
rTSPΠpt𝑋𝑖uqs ď p1` 𝛿q

`

12𝑠𝛼´ 1
𝛾
˘

𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (1.25)

for all sufficiently large 𝑛.

Finally, if Π is nonsymmetric, then there is some constant 𝐶 ą 0 (which can

depend on the dynamics and on the target point density 𝑓) such that

E
𝑋𝑖

𝑖𝑖𝑑
„ 𝑓
rTSPΠp𝑋1, . . . , 𝑋𝑛qs ď 𝐶𝑛1´ 1

𝛾 . (1.26)

Taken together, these results yield the general rule that for symmetric Π,

TSPΠpt𝑋𝑖uq “ Θ
´

𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

¯

(1.27)

and the multiplicative gap between the upper and lower bounds is (up to the approx-

imation factor)

𝑐gap :“ 𝑐gappΠq “ 12𝑠𝛼´ 1
𝛾 𝛽 (1.28)

where 𝛽9 maxplogp𝑏q, p3{2q𝛾q (since Π is symmetric).
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Note that this gap is a constant with regard to the density function 𝑓 , since none of

the parameters depend on 𝑓 . Therefore, (1.28) can be viewed as a statement on how

the TSP tour length varies as 𝑓 is changed (provided it still satisfies the assumptions

given in Section 2.1). While 𝑐gap has no direct dependence on 𝑔, both 𝑔 and 𝑐gap

depend on Π; however, the integral
ş

𝒳𝑓
𝑓p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥 is still a good indicator of

how fast a vehicle governed by Π can visit many targets distributed iid by 𝑓 .

Remark 3. Our techniques also allow us to achieve similar results to Theorem 1 for

the case of the Euclidean TSP and targets distributed on a set of fractal dimension;

see Appendix C.

1.3.3 DSTSP lower bound

We now state more precise versions of the bounds from Theorem 1, in particular

giving the convergence rates.

Proposition 2. Let the assumptions in Section 2.1 hold, and let

𝑣𝑓,𝑔 “ Var𝑓„𝑋

“

𝑓p𝑋q´
1
𝛾 𝑔p𝑋q´

1
𝛾

‰

(1.29)

“

ż

𝒳𝑓

𝑓p𝑥q1´ 2
𝛾 𝑔p𝑥q´

2
𝛾 𝑑𝑥´

ˆ
ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

˙2

(1.30)

Then for any 𝛿 ą 0, there is some 𝜆 ą 0 such that for sufficiently large 𝑛,

P

«

TSPΠpt𝑋𝑖uq ě p1´ 𝛿q𝛽
´1𝑛1´ 1

𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

ff

(1.31)

ě 1´ exp

ˆ

´
4

5

logp𝑏q𝜆𝑛
1
𝛾

1´ 𝛿{2

˙

(1.32)

´ exp

ˆ

´
𝑛p1´ 𝛿{2q

` ş

𝒳𝑓
𝑓p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥

˘2
𝛿2{32

p1` 𝛿{2q𝑣𝑓,𝑔 ` p1´ 𝛿{2q
` ş

𝒳𝑓
𝑓p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥

˘2
𝛿{12

˙

(1.33)
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Proposition 3. If Π is symmetric with SHCS’s with scaling parameter 𝑠 ě 2

and efficiency parameter 𝛼, for any 𝛿 ą 0: for 𝛾 ě 3,

P
„

TSPΠpt𝑋𝑖uq ď p1` 𝛿q
`

12𝑠𝛼´ 1
𝛾

˘

𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

ȷ

(1.34)

ě 1´ 𝑒´ 1
2
𝑛1´2{𝛾

(1.35)

ě 1´ 𝑒´ 1
2
𝑛1{3

(1.36)

for all sufficiently large 𝑛. For a more precise bound, let 𝑝 “ p𝑝1, . . . , 𝑝𝑚q be the

probability masses of the 𝑚 cells in the SHCS. Then

P
„

TSPΠpt𝑋𝑖uq ď p1` 𝛿q
`

12𝑠𝛼´ 1
𝛾

˘

𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

ȷ

(1.37)

ě 1´ 𝑒´ 1
2
𝑛1´2{𝛾p

ř𝑚
𝑗“1 𝑝

1´1{𝛾
𝑗 q2 (1.38)

for all sufficiently large 𝑛. Note that 1 ď
ř𝑚

𝑗“1 𝑝
1´1{𝛾
𝑗 ď 𝑚

1
𝛾 , and is maximized

when all 𝑚 cells in the SHCS have mass “ 1{𝑚.

If 𝛾 “ 2, and (wlog) 𝑝1 is the smallest nonzero value of 𝑝 “ p𝑝1, . . . , 𝑝𝑚q, then

for all sufficiently large 𝑛,

P
„

TSPΠpt𝑋𝑖uq ď p1` 𝛿q
`

12𝑠𝛼´ 1
𝛾

˘

𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

ȷ

(1.39)

ě 1´ 𝑒
´

p2{9q𝑝1𝑛p
ř𝑚
𝑗“1 𝑝

1{2
𝑗

q2

127´logp1{𝑝1q`logp𝑛q (1.40)

Remark 4. Note that while the probability bound for 𝛾 “ 2 converges to 1 faster

in the limit, in the sense that it is 1 ´ 𝑒´Θp𝑛{ logp𝑛qq as opposed to 1 ´ 𝑒´Θp𝑛1´2{𝛾q, the

𝛾 ě 3 bound avoids the 𝑝1 term, which can be very small. However, for 𝛾 ě 3, we can

get even faster convergence of 1´ 𝑒´Θp𝑛q; but the probability of failure includes some

terms which potentially stay relatively large until 𝑛 is sufficiently big.

1.3.4 DTSP with adversarial targets

Theorem 1 naturally leads to the following questions:
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• Given a control system Π with agility function 𝑔 and some bounded 𝒳 ˚ Ď 𝒳 ,

what probability density function 𝑓 with support (contained in) 𝒳 ˚ makes the

TSP trajectory on 𝑋𝑖
𝑖𝑖𝑑
„ 𝑓 the longest as 𝑛Ñ 8?

• How does this ‘worst-case density function’ compare to adversarial target points

(i.e. chosen to maximize the length of the optimal TSP trajectory)?

We will show that the difference between these (both in expectation and with very

high probability) is at most a constant factor which depends on certain characteristics

of the dynamic constraints but not on the agility function 𝑔, resulting in the bound:

Theorem 2. Let Π be dynamics satisfying the assumptions in Section 2.1 and

𝒳 ˚ Ď 𝒳 be bounded. Then for any 𝛿 ą 0, for any sufficiently large 𝑛,

sup
𝑋1,...,𝑋𝑛P𝒳˚

`

TSPΠpt𝑋𝑖uq
˘

ě p1´ 𝛿q𝛽´1𝑛1´ 1
𝛾

´

ż

𝒳˚

𝑔p𝑥q´1 𝑑𝑥
¯

1
𝛾 (1.41)

If Π is symmetric with a SHCS with scaling parameter 𝑠 ě 2 and efficiency

parameter 𝛼, then for any 𝛿 ą 0, for any sufficiently large 𝑛,

sup
𝑋1,...,𝑋𝑛P𝒳˚

`

TSPΠpt𝑋𝑖uq
˘

ď p1` 𝛿q
`

6𝑠𝛼´ 1
𝛾
˘

𝑛1´ 1
𝛾

´

ż

𝒳˚

𝑔p𝑥q´1 𝑑𝑥
¯

1
𝛾
. (1.42)

However, there exist examples where nonsymmetric Π satisfies the assump-

tions in Section 2.1 hold but

sup
𝑋1,...,𝑋𝑛P𝒳˚

`

TSPΠpt𝑋𝑖uq
˘

“ Θp𝑛q (1.43)

so the matching adversarial upper bound is only achievable in general when Π is

symmetric.

This means that for symmetric Π and any 𝛿 ą 0,

p1´ 𝛿q𝛽´1
ď

sup𝑋1,...,𝑋𝑛P𝒳˚ TSPΠp𝑋1, . . . , 𝑋𝑛q

𝑛1´ 1
𝛾 p

ş

𝒳˚ 𝑔p𝑥q´1 𝑑𝑥q
1
𝛾

ď p1` 𝛿q6𝑠𝛼´ 1
𝛾 (1.44)

for any sufficiently large 𝑛.
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Note that these are not probabilistic bounds since 𝑋1, . . . , 𝑋𝑛 are not random

anymore. The lower bound is directly derived from the ‘worst-case target distribution’

𝑓𝑔p𝑥q9 𝑔p𝑥q
´1 or, to normalize,

𝑓𝑔p𝑥q “
𝑔p𝑥q´1

ş

𝒳˚ 𝑔p𝑦q´1 𝑑𝑦
. (1.45)

The fact that the given lower bound holds at all (let alone with very high probability)

when 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓𝑔 then implies that a non-random adversary can choose a set of

target points which makes the shortest tour at least this large. The upper bound is

derived from our algorithm which covers the space using Symmetric Hierarchical Cell

Structures.

Remark 5. The DSTSP bound’s dependence on 𝑓, 𝑔 takes the form of an integral over

𝒳𝑓 of a function of 𝑓, 𝑔; this is because in some sense (when 𝑛 Ñ 8) the length of

the TSP depends only on local conditions. Even if two regions are close, with enough

target density the efficiency of visiting targets in each becomes roughly independent.

However, the Adversarial DTSP has an exponent outside the integral. This is because

varying 𝑔 locally will change where the targets go, and hence change the target density

over the whole space.

Remark 6. One odd feature of Theorem 2 is that the adversarial upper bound (equa-

tion (1.42)) has a better absolute constant 6 than the constant 12 in thee equivalent

stochastic bound (equation (1.25)). This is because in the adversarial case we get a

hard (deterministic) bound, but in the random case when 𝑓 does not maximize the

integral, an ‘unlucky’ random placement of targets might cause the tour to be larger

than it was expected to be. To get our probabilistic bounds we multiply by a buffer

constant (we use 2) which was not needed in the adversarial case.
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Chapter 2

Assumptions and Geometry

In this chapter we discuss the assumptions required for our theorems and algorithms

and the underlying geometry of control-affine systems. While the geometry of certain

vehicles imply many of these assumptions as lemmas we present them as assumptions

since it’s possible that in practice one wants to show them directly; where they can

be shown we give lemmas.

The chapter will be organized as follows:

• In Section 2.1 we state the assumptions needed for our results. We also state

and discuss the meta-assumptions, which are more fundamental properties of the

dynamics and the relationship between the workspace 𝒳 and the configuration

space 𝒬, and from which some of the assumptions can be derived as lemmas.

• In Section 2.2 we show that many of the assumptions from Section 2.1 follow

directly if the dynamics take a certain (common and general) form, particularly

from the Uniform Ball-Box Theorem (when the vehicle is symmetric) or the

Nonsymmetric Ball-Box Conjecture (when the vehicle is nonsymmetric); the

Uniform Ball-Box Theorem is a well-known theorem from sub-Riemannian ge-

ometry which is often used in motion planning, and the Nonsymmetric Uniform

Ball-Box Conjecture1 is a variant for nonsymmetric vehicles that we formulate.

1For a thorough analysis of the Nonsymmetric Uniform Ball-Box Conjecture, including the proofs
of several partial results which may possibly be used to prove it in the future, see Appendix B.
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This means that to use our results it is often sufficient to know that they sys-

tem being considered takes a certain geometric form (rather than needing to

show all the assumptions hold) when the vehicle is symmetric; when the vehicle

is nonsymmetric, one can alternatively prove that the Nonsymmetric Uniform

Ball-Box Conjecture holds for the dynamics in question.

• In Sections 2.3 and 2.4, we discuss the geometric structures on which our algo-

rithms are based (and in turn give our upper bounds to the DSTSP). In both

cases, we refer to these as Hierarchical Cell Structures, since they involve a

system of recursively nesting cells (inscribed within reachable sets).

• In Section 2.5 we address the fact that in certain important cases some assump-

tions may not hold everywhere - for instance, Lipschitz continuity assumptions

on the target density function 𝑓 . In this case we formulate a notion of ap-

proximately everywhere which suffices to cover the main instances we wish to

address, e.g. where the density function is piecewise constant (and thus has

sharp discontinuities). We then show in this section that our main results still

hold even if certain assumptions only hold approximately everywhere.

2.1 Assumptions

Our main results follow from a few assumptions. These generally deal either with

the properties of the target point distribution 𝑓 or of the properties of the dynamic

constraints Π at small scales.

In this section we specify our main assumptions, which suffice to show our very

high probability lower bound (see Chapter 3). Additional definitions and assumptions

needed for the upper bounds are given in Section 2.3 (which deals with symmetric

vehicles) and Section 2.4 (which deals with nonsymmetric vehicles).
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2.1.1 Meta-assumptions

If one wants to apply our results for a given vehicle and target point distribution, one

can directly prove all the assumptions given here (and Section 2.3 and Section 2.4)

hold for the vehicle in question; however, if the vehicle is control-affine many of the

assumptions follow from more basic meta-assumptions, which may be easier to show

instead. We state the meta-assumptions here and give some intuition as to their

meaning; they will be discussed in much greater depth in Section 2.2, where we show

how they imply certain assumptions.

The first meta-assumption deals with the dynamics Π:

Meta-Assumption 1. The dynamics Π are control-affine and equiregular ([19],

Definition 2.10) over r𝒳𝑓 s
𝒬, which is contained in some compact 𝒬˚ Ď 𝒬.

This concerns the vector fields ℎcont0 , . . . , ℎcont𝑚 which define a control-affine system

(see Definition 2). They define the directions of possible motion from a given 𝑞 P 𝒬;

by combining controls we can directly move in the subspace of 𝑇𝑞𝒬 (the tangent

space of 𝒬 at 𝑞) spanned by ℎcont0 p𝑞q, . . . , ℎcont𝑚 p𝑞q. However, by using commutators

(for instance, going forward along ℎcont1 , then forward along ℎcont2 , then backward

along ℎcont1 and finally backward along ℎcont2 ) it may be possible to simulate motions

outside the span of ℎcont0 p𝑞q, . . . , ℎcont𝑚 p𝑞q, though at the cost of making the motion

considerably slower (e.g. to move 𝜀2 in the new direction may take 𝜀 time). These

commutators are called Lie brackets, and if they can be iterated until they span the

tangent space (though the more iterations are produced, the slower the motion in the

given direction) we call the dynamics nonholonomic. Meta-Assumption 1 condition

says that how these Lie brackets (which are collectively called the Lie algebra) span

the tangent spaces of 𝒬 is the same, broadly speaking, through 𝒬. For symmetric

control-affine dynamics, this yields important tools such as the Chow-Rashevskii the-

orem and especially the Uniform Ball-Box Theorem ([19], Thm 2.4), which show that

reachable sets around any 𝑞 P 𝒬 always contain a rectilinear neighborhood of a cer-

tain size around 𝑞. For nonsymmetric dynamics, the presence of the drift vector field

(which cannot be moved backwards in) means we must define new, special variant of
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the Uniform Ball-Box Theorem, which we call the Nonsymmetric Uniform Ball-Box

Conjecture (since we are unable so far to prove it holds for all Π, see Section 2.2 for

formal statement and Appendix B for more discussion). If this holds, then Meta-

Assumption 1 also implies the same assumptions for nonsymmetric dynamics as for

symmetric dynamics.

The second meta-assumption deals with the projection r¨s𝒳 :

Meta-Assumption 2. There is some 𝒬˚ such that r𝒳𝑓 s
𝒬 Ď 𝒬˚ which is closed,

connected and projection-regular.

See Definition 10 for the formal definition of projection regularity, and Section 2.2.1 for

additional discussion. In the same way that the results depend on how the Lie algebra

of ℎcont0 , . . . , ℎcont𝑚 spans the tangent spaces of 𝒬, they depend on how it projects onto

𝒳 . In particular, if we look at the projections of the Lie algebra vectors onto the

workspace 𝒳 , we want them to also span the tangent spaces of the workspace in a

consistent way everywhere.

We will note which assumptions follow from the meta-assumptions and which have

to be made on their own (in particular, any assumption concerning the distribution

𝑓 of the target points has nothing to do with the meta-assumption); the proofs are

given in Section 2.2.

Remark 7. Our results follow if the assumptions in this chapter are met, even if the

meta-assumptions themselves do not hold.

2.1.2 𝜁-regularized approximations

To show our results, we will often want to assume that certain functions are Lipschitz

continuous or bounded away from 0 or 8, or both. However, in many important cases

this may not hold. Thus, we want to use approximations of these functions that do

have these properties, which we call 𝜁-regularized approximations ; 𝜁 ą 0 governs the

degree of approximation and the Lipschitz constant and bound away from 0 or 8.

Depending on whether we want our approximation to be an upper or lower bound,

we define the upper and lower 𝜁-regularized approximations.
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Definition 9. For any function ℎ and 𝜁 ą 0 on domain 𝒴 with metric 𝑑𝒴 , let

pℱpℎ, 𝜁q :“ tℎ˚ : ℎ˚
p𝑦q ě maxpℎp𝑦q, 𝜁q, ℎ˚ is p1{𝜁q-Lipschitzu (2.1)

and qℱpℎ, 𝜁q :“ tℎ˚ : ℎ˚
p𝑦q ď minpℎp𝑦q, 1{𝜁q, ℎ˚ is p1{𝜁q-Lipschitzu . (2.2)

We define the 𝜁-regularized upper and lower approximations ℎ̂p𝜁q and ℎ̌p𝜁q of ℎ

respectively as

ℎ̂p𝜁q
p𝑦q :“ inf

ℎ˚P pℱpℎ,𝜁q

pℎ˚
p𝑦qq (2.3)

and ℎ̌p𝜁q
p𝑦q :“ sup

ℎ˚P qℱpℎ,𝜁q

pℎ˚
p𝑦qq . (2.4)

We show that ℎ̂p𝜁q and ℎ̌p𝜁q have desirable properties while not being far from ℎ:

Lemma 1. For any nonnegative ℎ which is continuous almost everywhere and bounded

above by some finite ℎmax “ sup𝑦 ℎp𝑦q on domain 𝒴, the following hold for the upper

𝜁-regularized function ℎ̂p𝜁q:

i. ℎ̂p𝜁qp𝑦q ě ℎp𝑦q and ℎ̂p𝜁qp𝑦q ě 𝜁 for all 𝑦 P 𝒴.

ii. lim𝜁Ñ0 ℎ̂
p𝜁qp𝑦q “ ℎp𝑦q almost everywhere.

iii. ℎ̂p𝜁qp𝑦q is decreasing for any fixed 𝑦 as a function of 𝜁.

iv. ℎ̂p𝜁qp𝑦q is p1{𝜁q-Lipschitz continuous.

v. If ℎ has finite integral on a bounded set 𝒜,

lim
𝜁Ñ0

ż

𝒜
ℎ̂p𝜁q
p𝑥q 𝑑𝑥 “

ż

𝒜
ℎp𝑥q 𝑑𝑥 (2.5)

vi. For any 𝜁 ď ℎmax, we have max𝑦 ℎ̂
p𝜁qp𝑦q ď ℎmax. (Or, in other words, sup𝑦 ℎ̂

p𝜁qp𝑦q “

maxp𝜁, ℎmaxq).

Analogous results hold for the lower 𝜁-regularized function ℎ̌p𝜁q.
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Proof. We show these as follows:

i: This follows from the definition of ℎ̂p𝜁qp𝑦q.

ii: This follows since it holds at all 𝑦 at which ℎ is continuous, which is almost

everywhere.

iii: This follows since ℱpℎ, 𝜁 1q Ď ℱpℎ, 𝜁q if 𝜁 1 ą 𝜁, and therefore an infimum over

values in ℱpℎ, 𝜁q will be smaller than the same infimum over values in ℱpℎ, 𝜁 1q.

iv. This follows because the infimum of a set of 𝑐-Lipschitz continuous functions

is also 𝑐-Lipschitz continuous. This is because of the following argument by contra-

diction. Suppose ℎ̂p𝜁q is not p1{𝜁q-Lipschitz continuous; then there is 𝑦1, 𝑦2 P 𝒴 such

that

|ℎ̂p𝜁q
p𝑦2q ´ ℎ̂

p𝜁q
p𝑦1q| ą p1{𝜁q𝑑𝒳 p𝑦1, 𝑦2q . (2.6)

WLOG let ℎ̂p𝜁qp𝑦1q ă ℎ̂p𝜁qp𝑦2q. Then there is some ℎ˚ P ℱpℎ, 𝜁q such that

ℎ˚
p𝑦1q ´ ℎ̂

p𝜁q
p𝑦1q ă |ℎ̂

p𝜁q
p𝑦1q ´ ℎ̂

p𝜁q
p𝑦2q| ´ p1{𝜁q𝑑𝒴p𝑦1, 𝑦2q (2.7)

ùñ ℎ˚
p𝑦2q ´ ℎ

˚
p𝑦1q ě ℎ̂p𝜁q

p𝑦2q ´ ℎ
˚
p𝑦1q (2.8)

ą pℎ̂p𝜁q
p𝑦2q ´ ℎ̂

p𝜁q
p𝑦1qq ´

`

|ℎ̂p𝜁q
p𝑦1q ´ ℎ̂

p𝜁q
p𝑦2q| ´ p1{𝜁q𝑑𝒴p𝑦1, 𝑦2q

˘

(2.9)

“ p1{𝜁q𝑑𝒴p𝑦1, 𝑦2q (2.10)

so ℎ˚ is also not p1{𝜁q-Lipschitz continuous, which is a contradiction since ℎ˚ P

ℱpℎ, 𝜁q.

v. This follows from (ii) and the Dominated Convergence Theorem (where the

dominating function is 𝑓max over 𝒳𝑓 , which is integrable since by the conditions on

𝑓 , 𝒳𝑓 is bounded).

vi. This follows because the constant function with value maxp𝜁, ℎmaxq is an upper

bound to ℎ, at least as large as 𝜁 and Lipschitz continuous with any parameter (since

it is constant), and hence is in pℱpℎ, 𝜁q. Then by definition ℎ̂p𝜁qp𝑦q must be at most

maxp𝜁, ℎmaxq (and since ℎ̂p𝜁qp𝑦q ě maxp𝜁, ℎp𝑦qq for all 𝑦, this means sup𝑦 ℎ̂
p𝜁qp𝑦q “
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maxp𝜁, ℎmaxq).

Proofs for the lower 𝜁-regularized function are analogous.

The upper 𝜁-regularized approximation will be important to showing the TSP

lower bound (in general we can show a lower bound by assuming that the vehicle is

more agile than it really is, i.e. using an upper bound of 𝑔 in place of 𝑔 itself keeps

the DSTSP lower bound valid) while the lower 𝜁-regularized approximation will be

important to showing the TSP upper bound.

2.1.3 Assumptions about the dynamics

We now consider some assumptions we need to make about the dynamics Π. Let

𝑑𝒳 p¨, ¨q and 𝑑𝒬p¨, ¨q denote metrics on the manifolds 𝒳 and 𝒬. These induce norms

} ¨ }𝒳 and } ¨ }𝒬 on the tangent spaces at any 𝑥 P 𝒳 and 𝑞 P 𝒬.

Note that the lengths of the tours are not necessarily measured in the metrics

𝑑𝒳 or 𝑑𝒬 but rather by the time it takes to execute the tour, i.e. by 𝑑Π – these are

not necessarily equivalent because different control inputs to the vehicle might cause

motions of different speeds relative to these metrics. We introduce these to aid in the

analysis and in particular to make the following assumption well-defined:

Assumption 2. The manifold 𝒳 has dimension ě 2.

This is to avoid degenerate cases. Typically, when 𝒳 is 1-dimensional, the TSP tour

length is constant since one can simply sweep the entire space.

Assumption 3. There is some ‘speed limit’ 𝑐Π of Π such that for any 𝑞 P 𝒬 and

control 𝑢 P 𝒰 , we have }ℎcontp𝑞,𝑢q}𝒳 ď 𝑐Π.

Note that Assumption 2 and Assumption 3 together imply the following:

Lemma 2. The small-time constraint factor 𝛾 is at least 2.

Proof. Let ℬ𝜀p𝑥q denote the radius-𝜀 ball around 𝑥 P 𝒳 under metric 𝑑𝒳 . Then

�̄�𝜀p𝑞q Ď ℬ𝑐Π𝜀pr𝑞s𝒳 q (2.11)

ùñ Vol𝒳 p�̄�𝜀p𝑞qq ď Vol𝒳 pℬ𝑐Π𝜀pr𝑞s𝒳 qq (2.12)
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and we know that Vol𝒳 pℬ𝑐Π𝜀pr𝑞s𝒳 qq9 𝜀
dimp𝒳 q for small 𝜀. Thus, since logp𝜀q ă 0,

𝛾 “ lim
𝜀Ñ0

logpVol𝒳 p�̄�𝜀p𝑞qqq

logp𝜀q
ě

logpVol𝒳 pℬ𝑐Π𝜀pr𝑞s𝒳 qqq

logp𝜀q
“ dimp𝒳 q ě 2 . (2.13)

We also assume that any two configurations corresponding to points in the support

𝒳𝑓 of the target point distribution are connected by a finite path 𝜋 P Π:

Assumption 4. For any 𝑞, 𝑞1 P 𝒬, we have 𝑑Πp𝑞, 𝑞1q ă 8. Furthermore, there is

some constant 𝐶 such that if r𝑞s𝒳 , r𝑞1s𝒳 P 𝒳𝑓 (the support of target probability

distribution 𝑓) then 𝑑Πp𝑞, 𝑞1q ď 𝐶.

For symmetric equiregular control-affine dynamics satisfying Chow’s condition [19],

the first part of this assumption follows from the Chow-Rashevskii theorem. However,

for nonsymmetric control-affine dynamics it must be explicitly assumed since there

are simple examples in which it doesn’t hold (e.g. a boat swept downstream by a

current that can’t return upstream).2

2.1.4 Assumptions about the target distribution

We consider the support 𝒳𝑓 of density 𝑓 and how 𝑓 behaves on it.

Assumption 5. The function 𝑓 is a probability density function represents a

full-dimensional continuous random variable, i.e. 𝑓 : 𝒳 Ñ Rě0 is integrable,

continuous almost everywhere, and satisfies
ş

𝒳 𝑓p𝑥q 𝑑𝑥 “ 1 and

P𝑋„𝑓 r𝑋 P 𝒜s “
ż

𝒜
𝑓p𝑥q 𝑑𝑥 for any subset 𝒜 Ď 𝒳 . (2.14)

Furthermore, 𝑓 has a finite maximum value 𝑓max :“ sup𝑥P𝒳 𝑓p𝑥q ă 8.

The target region 𝒳𝑓 “ t𝑥 : 𝑓p𝑥q ą 0u is also compact.

2To apply Theorem 1 for nonsymmetric vehicles, Assumption 4 must be shown to hold explicitly.
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Except for very contrived examples, assuming that 𝒳𝑓 is compact is really just to

ensure it is bounded. If 𝒳𝑓 is allowed to be unbounded, it is easy to produce target

point distributions 𝑓 for which the expected distance between 𝑋1, 𝑋2
𝑖𝑖𝑑
„ 𝑓 is infinite

by using the St. Petersburg paradox: pick an origin point 0 P 𝒳 and set 𝑓 to have

support on a sequence of small regions 𝒳1,𝒳2, ¨ ¨ ¨ Ă 𝒳 , where P𝑋„𝑓 r𝑋 P 𝒳𝑖s “ 2´𝑖

but 𝑑𝒳 p0, 𝑋q « 2𝑖 for all 𝑋 P 𝒳𝑖; then a random 𝑋 „ 𝑓 will have infinite expected

distance from any point in 𝒳 , so 𝑋2 will always have expected infinite distance from

𝑋1. The length of the TSP tour will then be infinite in expectation even for 2 target

points, let alone 𝑛 ą 2.

2.1.5 Assumptions about the reachable set

A key condition for our results to hold is that the agility function be well defined and

that the limit it represents converges uniformly over the space:

Assumption 6. The control system Π has an agility function 𝑔 : 𝒬Ñ Rě0 and

a small-time reachability factor 𝛾 such that for any 𝜌 ą 0, there is some 𝜀˚
𝜌 ą 0

such that for all 0 ă 𝜀 ď 𝜀˚
𝜌 and all 𝑞 P 𝒬,

p1´ 𝜌q𝑔p𝑞q ď
Vol𝒳 p�̄�𝜀p𝑞qq

𝜀𝛾
ď p1` 𝜌q𝑔p𝑞q (2.15)

Note that this implies a similar bound on the workspace agility function:

Lemma 3. For any 𝜌 ą 0, there is some 𝜀˚
𝜌 ą 0 such that for all 0 ă 𝜀 ď 𝜀˚

𝜌 and all

𝑥 P 𝒳 ,

p1´ 𝜌q𝑔p𝑥q ď sup
𝑞:r𝑞s𝒳 “𝑥

Vol𝒳 p�̄�𝜀p𝑞qq

𝜀𝛾
ď p1` 𝜌q𝑔p𝑥q (2.16)

Proof. We let 𝜀˚
𝜌 ą 0 be the same value as in Assumption 6. Then, for any 𝑞 such

that r𝑞s𝒳 “ 𝑥, we have

Vol𝒳 p�̄�𝜀p𝑞qq

𝜀𝛾
ď p1` 𝜌q𝑔p𝑞q ď p1` 𝜌q𝑔p𝑥q (2.17)
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Additionally, we have

sup
𝑞:r𝑞s𝒳 “𝑥

Vol𝒳 p�̄�𝜀p𝑞qq

𝜀𝛾
ě sup
𝑞:r𝑞s𝒳 “𝑥

p1´ 𝜌q𝑔p𝑞q “ p1´ 𝜌q𝑔p𝑥q (2.18)

and we have shown both sides of the inequality.

We also assume bounds on 𝑔 over the workspace:

Assumption 7. Letting 𝑔min :“ inf𝑥P𝒳 𝑔p𝑥q and 𝑔max :“ sup𝑥P𝒳 𝑔p𝑥q,

0 ă 𝑔min ď 𝑔max ă 8 . (2.19)

2.1.6 The coverage assumptions

The conditions we need for our technique concern the ability to cover any 2𝜀-radius

reachable set with a constant number of « 𝜀-radius reachable sets, and to cover the

starting set 𝒬0 with a polynomially or even exponentially-increasing number of « 𝜀-

radius reachable sets. We note that this section deals primarily with configuration

reachable sets, unlike Section 2.1.5.

We begin with the 𝑏-coverability condition. The branching factor 𝑏 ą 1 is an

integer roughly corresponding to the number of 𝜀-reachable sets needed to cover a

2𝜀-reachable set in 𝒬:

Assumption 8. There is some integer 𝑏 ą 1, called the branching factor, such

that for any 𝜌 ą 0, there is some 𝜀˚
𝜌 ą 0 such that for any 𝑞 P 𝒬 and 0 ă 𝜀 ď 𝜀˚

𝜌 ,

there is a set 𝑄𝜌,𝜀p𝑞q of configurations such that

𝑅2𝜀p𝑞q Ď
ď

𝑞1P𝑄𝜌,𝜀p𝑞q

𝑅p1`𝜌q𝜀p𝑞
1
q and |𝑄𝜌,𝜀p𝑞q| ď 𝑏 (2.20)

Lemma 4. If Π satisfies Meta-Assumption 1, then Assumption 8 holds if either Π is

symmetric or if the Nonsymmetric Uniform Ball-Box Theorem holds for Π.
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We also have the starting coverability condition, which says that the set r𝒳𝑓 s
𝒬

(configurations on the support of 𝑓) can be covered with a polynomial number of

𝜀-reachable sets:

Assumption 9. There exists a polynomial 𝑃 such that there is some 𝜀˚ ą 0 such

that for any 𝜀 ă 𝜀˚ there is a set 𝑄0
𝜀 of configurations such that

r𝒳𝑓 s
𝒬
Ď

ď

𝑞P𝑄0
𝜀

𝑅𝜀p𝑞q and |𝑄0
𝜀| ď 𝑃 p1{𝜀q (2.21)

Note that this uses configuration reachable sets rather than workspace reachable sets.

The real possibility that this guards against (given that 𝒳𝑓 is bounded by Assump-

tion 5) is that the set of configurations one can be in at any 𝑥 P 𝒳𝑓 is unbounded.

For symmetric control-affine systems, reachable sets contain rectilinear sets with vol-

umes polynomial in 𝜀 as 𝜀 Ñ 0 (though the exponent is not 𝛾 as we are discussing

configuration reachable sets), so if r𝒳𝑓 s
𝒬 is bounded, the above holds.

One quick way to check Assumption 9 holds is that if Π is symmetric, control-

affine, and equiregular (satisfying Meta-Assumption 1), then Assumption 9 is equiva-

lent to the closure of r𝒳𝑓 s
𝒬 being compact (which typically just means bounded since

it’s already closed):

Lemma 5. If Π satisfies Meta-Assumption 1, then Assumption 9 holds if either Π is

symmetric or if the Nonsymmetric Uniform Ball-Box Theorem holds for Π.

This holds because, by the Uniform Ball-Box Theorem, for sufficiently small 𝜀,

each configuration 𝜀-reachable set anchored at 𝑞 contains a box centered at 𝑞 whose

with side lengths polynomial in 𝜀, and therefore with volume polynomial in 𝜀 (with the

same polynomial for each 𝑞). Then, the compact r𝒳𝑓 s
𝒬 can be tiled by polynomially

many of these boxes (allowing for some overlap) since 𝒬 is a manifold and is therefore

approximately Euclidean on small scales. See Section 2.2 for the complete proof.
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Figure 2-1: Visualization of the Uniform Ball-Box Theorem (left) and the Nonsym-
metric Uniform Ball-Box Conjecture (right) with inscribed and circumscribed boxes.
Note that this visualization is incomplete because it represents the workspace reach-
able sets while the Ball-Box Theorem concerns the configuration reachable set (which
is harder to depict because in this case it is 3-dimensional).

2.2 Assumptions from Geometry

In this section we show how some of the assumptions in Section 2.1 follow automati-

cally from Meta-Assumption 1, i.e. whenever the control system takes a certain form.

We make use of the following notions:

• We have control vector fields ℎcont1 , . . . , ℎcont𝑚 (see Section 1.2.3) over 𝑑-dimensional

manifold 𝒬 which define our control-affine system. For a vector field ℎ (not

necessarily one of the control vector fields) we denote by expp𝑧ℎq the function

which proceeds along ℎ for 𝑧 time, i.e. it takes 𝑞 P 𝒬 and returns a new point

expp𝑧ℎqp𝑞q which is the point reached from 𝑞 by following ℎ for 𝑧 time units.

• The Lie algebra of ℎcont1 , . . . , ℎcont𝑚 , which denote the set of directions which can

be generated via linear combination and Lie brackets, and which we assume

span the tangent space at each 𝑞 P 𝒬 (Chow’s Condition, [19] Definition 1.6).

A Lie bracket 𝐼 from the free Lie algebra on r𝑚s denotes a sequence of Lie

bracket operations over 𝑚 unspecified elements; it can then be applied to our

set of control vector fields. We denote by ℎ𝐼 the vector in the Lie algebra over

ℎcont1 , . . . , ℎcont𝑚 which corresponds to 𝐼, and we denote the length of Lie bracket

𝐼 (i.e. how many bracket operations needed to generate it) by |𝐼|.

• Adapted frames ([19], page 36), which denote a set of vector fields which are

used to generate a coordinate map around some 𝑞 P 𝒬 (and which span 𝑇𝑞p𝒬q),
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in a way compatible with the Lie algebra; the boxes of the Uniform Ball-Box

Theorem are defined via this coordinate map.

• Regular points ([19], Definition 2.4), which are configurations 𝑞 P 𝒬 in which

the Lie algebra behaves smoothly in a neighborhood around 𝑞.

These allow us to use our main tool:

Uniform Ball-Box Theorem. [[19], Theorem 2.4] If 𝒬˚ Ď 𝒬 is compact, there

exist constants 0 ă 𝑐 ă 𝐶 and 𝜀0 ą 0 such that, for 𝑞 P 𝒬˚ and 0 ă 𝜀 ď 𝜀0 and

any adapted frame 𝐻 “ pℎ𝐼1 , . . . , ℎ𝐼𝑑q (a set of elements of the Lie algebra of the

control vector fields) at p𝑞, 𝜀q,

Box𝐻p𝑞, 𝑐𝜀q Ă 𝑅𝜀p𝑞q Ă Box𝐻p𝑞, 𝐶𝜀q (2.22)

where Box𝐻p𝑞, 𝜀q “ texpp𝑧1ℎ𝐼1q ˝ ¨ ¨ ¨ ˝ expp𝑧𝑑ℎ𝐼𝑑qp𝑞q : |𝑧𝑖| ď 𝜀|𝐼𝑖| @𝑖u.

This states that at small scales 𝜀 the configuration 𝜀-reachable set 𝑅𝜀p𝑞q contains a

box of particular dimensions and orientation, and is in turn contained by a box of the

same dimensions and orientation scaled up by a constant. The coordinate system in

which these boxes are defined is given by 𝐻 : a point at coordinates p𝑧1, . . . , 𝑧𝑑q is the

one reached from 𝑞 by traveling for 𝑧𝑑 along ℎ𝐼𝑑 , then 𝑧𝑑´1 along ℎ𝐼𝑑´1
, and so forth.

The limits on |𝑧𝑖| give the dimensions of Box𝐻p𝑞, 𝜀q. This then yields, intuitively, a

way to cover 𝑅𝜀p𝑞q with a number of configuration p𝜀{2q-reachable sets, by taking

the circumscribed box of 𝑅𝜀p𝑞q and tiling it with the inscribed boxes of 𝑅𝜀{2p𝑞
1q for

a set of well-chosen 𝑞1.

We also give the nonsymmetric (or drifting) version:

Nonsymmetric Uniform Ball-Box Conjecture. If 𝒬˚ Ď 𝒬 is compact, there

exist constants 0 ă 𝑐 ă 𝐶 and 𝜀0 ą 0 such that, for 𝑞 P 𝒬˚ and 0 ă 𝜀 ď 𝜀0 and

any adapted frame 𝐻 “ pℎ𝐼1 , . . . , ℎ𝐼𝑑q (a set of elements of the Lie algebra of the
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control vector fields) at p𝑞, 𝜀q,

Box𝐻pexppp𝜀{2qℎ0qp𝑞q, 𝑐𝜀q Ă 𝑅𝜀p𝑞q Ă Box𝐻pexppp𝜀{2qℎ0qp𝑞q, 𝐶𝜀q . (2.23)

The difference here is that the same boxes as in the Uniform Ball-Box Theorem are

being pushed 𝜀{2 down the drift vector field. The reason why it’s being pushed 𝜀{2

rather than 𝜀 is that, since the vehicle is unable to directly control its movement down

drift vector field ℎ0 “ ℎcont0 , it controls it by taking advantage of the fact that the

reachable set is the set of points reachable in time at most 𝜀: the default is to only

move for 𝜀{2 time, and to move less than 𝜀{2 down ℎ0 the vehicle can end its motion

early; while to move more than 𝜀{2 down ℎ0 the vehicle can extend its motion for any

amount of time between 𝜀{2 to 𝜀.

As discussed, this is a conjecture. Nevertheless, formulating it brings two distinct

advantages:

• It prepares the way for potentially proving it future; if it’s proved, the main

results then immediately follow.

• It offers a shortcut for using our main DSTSP results. For a system of dynamic

that one is interested in, instead of proving all the assumptions in Section 2.1,

one can prove the Nonsymmetric Ball-Box Theorem holds for the system in

question instead.

2.2.1 Projection regularity

We note that merely discussing reachable sets in the configuration space is not suf-

ficient because we often want to deal with workspace reachable sets, in particular

when considering their volume. This means that we want to know that the projec-

tion function r¨s𝒳 is projection regular (as stated in Meta-Assumption 2); while this

was discussed in Section 2.2.1, we define it formally here. This concept mirrors the

concept of regularity as discussed in [19].

First, note that a vector field ℎ on 𝒬 produces for any 𝑞 P 𝒬 a tangent vec-

tor ℎp𝑞q P 𝑇𝑞𝒬; we let 𝑑 denote the number of dimensions of 𝒬. We also (as
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in Section 2.3.1) make the following definitions. Taking the projection to 𝒳 (and

letting 𝑥p𝑞q “ r𝑞s𝒳 ), we get a tangent vector on rℎp𝑞qs𝒳 P 𝑇𝑥𝒳 (moving along

ℎp𝑞q from 𝑞 P 𝒬 projects to a movement along rℎp𝑞qs𝒳 from 𝑥p𝑞q). We note that

𝐻p𝑞q “ tℎ𝐼1p𝑞q, . . . , ℎ𝐼𝑑p𝑞qu is by definition a basis of 𝑇𝑞𝒬; therefore

r𝐻p𝑞qs𝒳 “ trℎ𝐼1p𝑞qs𝒳 , . . . , rℎ𝐼𝑑p𝑞qs𝒳 u (2.24)

spans 𝑇𝑥𝒳 . Let us denote this by

�̄�p𝑞q :“ r𝐻p𝑞qs𝒳 “ tℎ̄𝐼1p𝑞q, . . . , ℎ̄𝐼𝑑p𝑞qu . (2.25)

We now consider at each 𝑞 the following: let △p𝑗q
𝑞 denote the subspace of 𝑇𝑥p𝑞q𝒳

spanned by tℎ̄𝐼𝑖p𝑞q : |𝐼𝑖| ď 𝑗u, and let 𝜉p𝑗q “ dimp△p𝑗q
𝑞 q. While this theoretically can

depend on 𝑞, we would like it to be consistent over the whole space. We thus define:

Definition 10. We say that 𝑞 is projection-regular under r¨s𝒳 if there is some

neighborhood 𝒬1 of 𝑞 such that 𝜉p𝑗q is constant over 𝒬1. We say that 𝒬˚ is

projection-regular if all 𝑞 P 𝒬˚ are projection-regular.

Remark 8. We note that 𝛾 is intimately related to the 𝜉p𝑗q’s. In particular, consider

𝜉p𝑗q ´ 𝜉p𝑗´1q (where by definition 𝜉p0q “ 0); this denotes the increase in dimension of

the spanned subspace when adding in |𝐼𝑖| “ 𝑗 from the adapted frame. The volume

of the resulting boxes at scale 𝜀 will then be 𝜀
ř

𝑗 𝑗p𝜉p𝑗q´𝜉p𝑗´1qq (note that once 𝑗 is high

enough that 𝑇𝑥𝒳 is spanned, the 𝜉p𝑗q become constant and the sum ends). Let 𝑑p𝒳 q be

the dimension of 𝒳 and 𝑗˚ be the minimum 𝑗 for which 𝜉p𝑗q “ 𝑑p𝒳 q; we then get

𝛾 “
𝑗˚
ÿ

𝑗“1

𝑗p𝜉p𝑗q
´ 𝜉p𝑗´1q

q “ 𝑗˚𝑑p𝒳 q
´

𝑗˚´1
ÿ

𝑗“1

𝜉p𝑗q (2.26)

This yields the following:

Lemma 6. If 𝒬˚ is connected and projection-regular, then 𝜉p𝑗q is constant over 𝒬˚

for all 𝑗.
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Proof. Let 𝒬1p𝑞q be the (open) neighborhoods of 𝑞 on which the projection-regularity

condition is known to hold. Then trivially,

𝒬˚
Ď

ď

𝑞P𝒬˚

𝒬1
p𝑞q . (2.27)

We know that all 𝒬1p𝑞q have constant 𝜉p𝑗q’s. Let 𝜉p𝑗qp𝑞q denote the value of 𝜉p𝑗q at

𝑞, and suppose (by way of contradiction) that we have some 𝑞, 𝑞1 such that 𝜉p𝑗qp𝑞q ‰

𝜉p𝑗qp𝑞1q. Let

𝒬1
1 :“

ď

𝑞2:𝜉p𝑗qp𝑞2q“𝜉p𝑗qp𝑞q

𝒬1
p𝑞2
q and 𝒬1

2 :“
ď

𝑞2:𝜉p𝑗qp𝑞2q‰𝜉p𝑗qp𝑞q

𝒬1
p𝑞2
q . (2.28)

Both are open since they are both unions of open sets; and both are nonempty because

𝑞 P 𝒬1
1 and 𝑞1 P 𝒬1

2. Finally, they are (by definition) disjoint and cover 𝒬˚. But this

contradicts the fact that 𝒬˚ is connected and we have our desired contradiction.

Thus, if Meta-Assumption 2 holds (i.e. projection regularity across some con-

nected and closed set 𝒬˚ containing r𝒳𝑓 s
𝒬), by Lemma 6 we can consider 𝜉p𝑗q as a

constant.

This is a meta-assumption because, like Meta-Assumption 1, we don’t use it di-

rectly in our results; rather, we use it to prove that under certain geometric conditions,

our normal assumptions hold automatically. Note that the 𝒬˚ in Meta-Assumption 2

can be intersected with the 𝒬˚ in Meta-Assumption 1 to create a compact 𝒬˚ con-

taining r𝒳𝑓 s
𝒬 on which the two meta-assumptions both hold.

This will come into play in Section 2.3.1 and Section 2.4.3 as well.

2.2.2 Coverage assumptions

We now consider the coverage assumptions Assumption 8 and Assumption 9, which

both assert that certain sets can be covered by reachable sets in a particular way.

Note that since these assumptions deal with configuration reachable sets, there is no

need for projection regularity.
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We begin with Lemma 4, which asserts that if Meta-Assumption 1 holds, then

Assumption 8 follows.

Proof of Lemma 4. We will prove that a slightly stronger version of Assumption 8

holds, in which there is some 𝑏 ą 1 such that there is some 𝜀˚ ą 0 such that for any

𝑞 P 𝒬 and 0 ă 𝜀 ď 𝜀˚ there is a set 𝑄𝜀p𝑞q of configurations such that

𝑅2𝜀p𝑞q Ď
ď

𝑞1P𝑄𝜀p𝑞q

𝑅𝜀p𝑞
1
q and |𝑄𝜀p𝑞q| ď 𝑏 . (2.29)

This is stronger than Assumption 8 in that it drops the 𝜌 ą 0 approximation factor,

and therefore if this holds then it Assumption 8 trivially holds as well (we can simply

let 𝑄𝜌,𝜀p𝑞q “ 𝑄𝜀p𝑞q for all 𝜌 ą 0). As a remark, Assumption 8 is phrased in the

more general way because there are instances where it yields a lower value of 𝑏, which

improves our lower bound in Theorem 1.

We choose some regular 𝑞 P r𝒳𝑓 s
𝒬, which is contained inside some compact subset

of 𝒬. Thus, we can find an adapted frame 𝐻 at 𝑞 which is an adapted frame for

all 𝑞1 in a neighborhood of 𝑞; let 𝜀 be sufficiently small so that all 𝑞1 P 𝑅𝜀p𝑞q are in

this neighborhood, and that 𝜀 ă 𝜀0 from the Uniform Ball-Box Theorem. Then, if

0 ă 𝑐 ă 𝐶 are as defined in the Uniform Ball-Box Theorem,

𝑅𝜀p𝑞q Ă Box𝐻p𝑞, 𝐶𝜀q . (2.30)

This is a box whose size along dimension 𝑖 P r𝑑s is 2p𝐶𝜀q|𝐼𝑖| Furthermore, for any

𝑞1 P 𝑅𝜀p𝑞q, we know

Box𝐻p𝑞
1, 𝑐𝜀{2q Ă 𝑅𝜀{2p𝑞

1
q . (2.31)

But these are boxes in the same coordinate system as Box𝐻p𝑞, 𝐶𝜀q, whose size along

dimension 𝑖 P r𝑑s is 2p𝑐𝜀{2q|𝐼𝑖|; this means it is a p𝑐{p2𝐶qq|𝐼𝑖| fraction of the size of

Box𝐻p𝑞, 𝜀q along dimension 𝑖, which is notably constant with regard to 𝜀. Thus, we
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can use

𝑏 “
𝑑

ź

𝑖“1

rp2𝐶{𝑐q|𝐼𝑖|s (2.32)

such boxes to cover Box𝐻p𝑞, 𝐶𝜀q. Call their centers 𝑞1, . . . , 𝑞𝑏. Then we have

𝑅𝜀p𝑞q Ă Box𝐻p𝑞, 𝐶𝜀q Ď
𝑏

ď

𝑗“1

Box𝐻p𝑞𝑗, 𝑐𝜀{2q Ď
𝑏

ď

𝑗“1

𝑅𝜀{2p𝑞𝑗q (2.33)

and we are done.

To modify the above proof for the nonsymmetric case, we pull back the centers

the appropriate amount: we find the 𝑏 centers 𝑞𝑗 whose boxes cover the box which

contains 𝑅𝜀p𝑞q, and then pull them back, i.e.:

Box𝐻pexppp𝜀{2qℎ0qp𝑞q, 𝐶𝜀q Ď
𝑏

ď

𝑗“1

Box𝐻p𝑞𝑗, 𝑐𝜀{2q (2.34)

Ď

𝑏
ď

𝑗“1

𝑅𝜀{2pexpp´p𝜀{4qℎ0qp𝑞𝑗qq (2.35)

which then concludes the proof.

We then consider Lemma 5, which asserts that if Meta-Assumption 1, then As-

sumption 9 follows.

Proof of Lemma 5. For simplicity we assume that r𝒳𝑓 s
𝒬 is itself compact (otherwise

we take a compact superset, and if 𝑃 p1{𝜀q configuration 𝜀-reachable sets can cover it

then r𝒳𝑓 s
𝒬 is trivially covered by them too).

By the Uniform Ball-Box Theorem, there exists constants 0 ă 𝑐 ă 𝐶 and 0 ă 𝜀0

such that any 𝑞 has an adapted frame𝐻 “ pℎ𝐼1 , . . . , ℎ𝐼𝑑q such that for any 0 ă 𝜀 ď 𝜀0

and 𝑞 P r𝒳𝑓 s
𝒬,

Box𝐻p𝑞, 𝑐𝜀q Ă 𝑅𝜀p𝑞q Ă Box𝐻p𝑞, 𝐶𝜀q . (2.36)

We let 𝜀˚p𝑞q denote any sufficiently small radius of the reachable set so that
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𝑅𝜀˚p𝑞qp𝑞q is contained in the neighborhood of 𝑞 on which 𝐻 is also an adapted frame

at all other 𝑞1. Without loss of generality we can assume 𝜀˚p𝑞q ď 𝜀0. We then consider

the open version of 𝑅𝜀˚p𝑞qp𝑞q, which is an open set containing 𝑞 (since control-affine

dynamics satisfying Chow’s Condition induce reachable sets around 𝑞 containing a

neighborhood of 𝑞). Thus (with the open reachable sets)

r𝒳𝑓 s
𝒬
Ď

ď

𝑞Pr𝒳𝑓 s𝒬

𝑅𝜀˚p𝑞qp𝑞q (2.37)

and since r𝒳𝑓 s
𝒬 is compact, there is some finite subcover. Let 𝑆 be the number of

sets in this finite subcover, and let 𝑞1, . . . , 𝑞𝑆 be the configurations at their centers,

so that

r𝒳𝑓 s
𝒬
Ď

𝑆
ď

𝑖“1

𝑅𝜀˚p𝑞𝑖qp𝑞𝑖q (2.38)

By the proof of Lemma 4 above, we know that for any 𝑞1 P 𝑅𝜀˚p𝑞𝑖qp𝑞𝑖q and any

𝜀 ă 𝜀˚p𝑞𝑖q, the set 𝑅𝜀p𝑞
1q can be covered by 𝑏 configuration p𝜀{2q-reachable sets, which

can each in turn be covered by 𝑏 configuration p𝜀{4q-reachable sets, and so forth. Thus,

for any integer 𝑘 ě 1, 𝑅𝜀p𝑞
1q can be covered by 𝑏𝑘 configuration p2´𝑘𝜀q-reachable sets.

In particular, 𝑅𝜀˚p𝑞𝑖qp𝑞𝑖q can be covered by 𝑏𝑘 configuration p2´𝑘𝜀˚p𝑞𝑖qq-reachable sets.

Let 𝜀˚
min :“ min𝑖 𝜀

˚p𝑞𝑖q and 𝜀˚
max :“ max𝑖 𝜀

˚p𝑞𝑖q. Then given 0 ă 𝜀 ď 𝜀˚
min, how

many configuration 𝜀-reachable sets are needed to cover r𝒳𝑓 s
𝒬? We let

𝑘𝜀 :“ minp𝑘 : 𝜀 ď 2´𝑘𝜀˚
maxq “ rlog2p𝜀

˚
max{𝜀qs ď log2p𝜀

˚
max{𝜀q ` 1 (2.39)

This also implies that

𝜀 ě 2´𝑘𝜀𝜀˚
max (2.40)

Then each 𝑅𝜀˚p𝑞𝑖qp𝑞𝑖q can be covered by 𝑏𝑘𝜀 configuration 2´𝑘𝜀𝜀˚
max-reachable sets,

which (using the same anchors) means each 𝑅𝜀˚p𝑞𝑖qp𝑞𝑖q can be covered by 𝑏𝑘𝜀 config-
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uration 𝜀-reachable sets. But we can bound

𝑏𝑘𝜀 ď 𝑏log2p𝜀˚
max{𝜀q`1

“ 𝑏p𝜀˚
max{𝜀q

log2 𝑏 “ 𝑐˚𝜀´ log2 𝑏 (2.41)

where 𝑐˚ “ 𝑏p𝜀˚
maxq

log2 𝑏, which is constant with regards to 𝜀. Noting that we have to

do this with all 𝑆 boxes 𝑅𝜀˚p𝑞𝑖qp𝑞𝑖q (where 𝑆 also does not depend on 𝜀), we then get

that r𝒳𝑓 s
𝒬 can be covered with ď 𝑆𝑐˚𝜀´ log2 𝑏 configuration 𝜀-reachable sets, which is

a polynomial number in 1{𝜀, so we are done.

To modify the above proof for the Nonsymmetric Uniform Ball-Box Conjecture,

we simply take the same boxes with centers 𝑞𝑖 and do the same pull-back, using

𝑞1
𝑖 “ expp´p𝜀˚p𝑞𝑖q{2qℎ0qp𝑞𝑖q as our centers for covering r𝒳𝑓 s

𝒬.

2.3 Symmetric Hierarchical Cell Structures

In this section we describe a key notion we need for our algorithm for the Symmetric

DSTSP, which we will explore in Chapter 4. We call this structure a Symmetric

Hierarchical Cell Structure (Symmetric HCS or SHCS); our algorithm depends on

its existence everywhere in 𝒳𝑓 (or ‘approximately everywhere’, see Section 2.5), a

condition which holds automatically if the system is control-affine and regular (see

Section 2.2, Proposition 4).

A Symmetric HCS is a structure of nesting cells which are inscribed in reachable

sets of increasingly small radii. It generally reflects the intuition that a 𝜀-workspace

reachable set should be divisible into 2𝛾 p𝜀{2q-workspace reachable sets, which should

each be divisible into 2𝛾 p𝜀{4q-workspace reachable sets, and so on, forming a sort of

hierarchy of reachable sets of exponentially decreasing radius. Our algorithm assumes

that any 𝑥 P 𝒳𝑓 is contained in some SHCS, which, as we will show, then allows us

to cover the space with (finitely many) SHCS’s with minimal overlap; furthermore, if

the dynamics (which are symmetric in this chapter) satisfy Meta-Assumption 1, we

can show that every 𝑥 P 𝒳𝑓 does in fact fall inside some SHCS. We define:
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Definition 11. A Symmetric Hierarchical Cell Structure HCSp𝑞0, 𝜀0, 𝛼, 𝑠, 𝜁q rooted

at 𝑞0 P 𝒬 with radius 𝜀0 ą 0, efficiency parameter 𝛼 ď 1, scaling parameter 𝑠,

and is 𝜁-regular, is a structure consisting of the following elements:

• A Jordan-measurable cell 𝑆p𝑞0, 𝜀0q Ď 𝒳 such that

𝑆p𝑞0, 𝜀0q Ď �̄�𝜀0p𝑞0q and Vol𝒳 p𝑆p𝑞0, 𝜀0qq ě 𝛼𝑔p𝜁q
pr𝑞0s𝒳 q𝜀

𝛾
0 (2.42)

where 𝑔p𝜁q is the lower 𝜁-regularized approximation of 𝑔.

• A set of 𝑠𝛾 disjoint 𝜁-regular hierarchical cell structures with radius 𝜀0{𝑠,

efficiency parameter 𝛼, scaling parameter 𝑠, and rooted at 𝑞1, . . . , 𝑞𝑠𝛾 such

that

𝑆p𝑞0, 𝜀0q Ď
𝑠𝛾
ď

𝑗“1

𝑆p𝑞𝑗, 𝜀0{𝑠q and 𝑞𝑗 P �̄�𝜀0p𝑞0q for all 𝑗 (2.43)

We call these the sub-SHCS ’s of the original SHCS.

We will sometimes refer to a set of SHCS’s as 𝑆1, . . . , 𝑆𝑚; in this case, we say 𝑥 P 𝑆𝑗 if

𝑥 is contained in the top-level cell. Note that this is a recursive definition, i.e. that to

give HCSp𝑞0, 𝜀0, 𝛼, 𝑠, 𝜁q we also need to give its components HCSp𝑞𝑗, 𝜀0{𝑠, 𝛼, 𝑠, 𝜁q for

𝑗 from 1 to 𝑠𝛾, and then in turn their components, and so forth. Thus, to know the

hierarchical cell structure at 𝑞0, 𝜀0 requires knowing a full hierarchy of cells which can

be represented as an infinite tree with 𝑠𝛾 branches at each node (as we will do when

we define the hierarchical collection problem). This is generally possible if we have

some kind of regular structure to exploit, for instance the rectilinear sets inscribed

within reachable sets implied by the Uniform Ball-Box Theorem (see Proposition 4).

The assumption of Jordan-measurability of the cells is meant to exclude contrived

cell structures. One important property of Jordan-measurability is that the volume

of a Jordan-measurable set is the same as the volume of its interior, a fact which is

used in the proof of Lemma 19.
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Assumption 10. There is some 𝛼 and 𝑠 such that for any 𝜁 ą 0, there exists

some 𝜀0 such that at any 𝑥 P 𝒳𝑓 , there is a 𝜁-regular SHCS with radius 𝜀0,

efficiency 𝛼, and scaling parameter 𝑠 containing 𝑥 in its interior.

2.3.1 Existence of Symmetric HCS’s

We now show how, under Meta-Assumption 1 (and a few additional assumptions

concerning the properties of the function r¨s𝒳 ), we can guarantee the existence of a

Symmetric Hierarchical Cell Structure about any given 𝑥 P 𝒳𝑓 with 𝑠 “ 2 by taking

advantage of the Uniform Ball-Box Theorem (see Section 2.2). Since we are dealing

with symmetric dynamics in this section, we don’t need the nonsymmetric version.

Then we have:

Proposition 4. If Π is symmetric and Meta-Assumption 1 and Meta-Assumption 2

hold then Assumption 10 holds with 𝑠 “ 2.

For convenience, we define the Local Hierarchical Cell Structure(LHCS), which is

a modified version of a SHCS:

Definition 12. A 𝜁-regular Local Hierarchical Cell Structure LHCSp𝑞0, 𝜀0, 𝛼, 𝑠, 𝜁q

rooted at 𝑞0 P 𝒬 with radius 𝜀0 ą 0, efficiency parameter 0 ă 𝛼 ď 1, and scaling

parameter 𝑠 is a structure consisting of the following elements:

• A Jordan-measurable cell 𝑆p𝑞0, 𝜀0q Ď 𝒳 such that

𝑆p𝑞0, 𝜀0q Ď �̄�𝜀0p𝑞0q and Vol𝒳 p𝑆p𝑞0, 𝜀0qq ě 𝛼𝑔p𝜁q
p𝑞0q𝜀

𝛾
0 (2.44)

where 𝑔p𝜁q is the lower 𝜁-regularized approximation of 𝑔.

• A set of 𝑠𝛾 disjoint 𝜁-regular LHCS’s with radius 𝜀0{𝑠, efficiency parameter
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𝛼, scaling parameter 𝑠, and rooted at 𝑞1, . . . , 𝑞𝑠𝛾 such that

𝑆p𝑞0, 𝜀0q Ď
𝑠𝛾
ď

𝑗“1

𝑆p𝑞𝑗, 𝜀0{𝑠q and 𝑞𝑗 P �̄�𝜀0p𝑞0q for all 𝑗 (2.45)

The difference between Definition 12 and Definition 11 is that the volume of the

cell is only expected to be a certain size relative to 𝑔p𝜁qp𝑞0q𝜀
𝛾
0 (which bounds the

volume of the workspace reachable set at 𝑞0 for small 𝜀0) as opposed to 𝑔p𝜁qpr𝑞0s𝒳 q𝜀
𝛾
0 ;

that is, the cell is only expected to be big relative to the workspace reachable set from

the anchor 𝑞0 rather than relative to the largest such cell around 𝑥0 “ r𝑞0s𝒳 .

Note that the condition of having a LHCS around every 𝑞0 P 𝒬 is actually stronger

than having a SHCS around every 𝑥0 P 𝒳𝑓 ; this is because by the definition 𝑔p𝑥q “

sup𝑞:r𝑞s𝒳 “𝑥 𝑔p𝑞q we know that we can find 𝑞 such that r𝑞s𝒳 “ 𝑥0 such that 𝑔p𝑞q is

arbitrarily close to 𝑔p𝑥0q, and then just use that as our 𝑞0 (taking the approximation

ˇ̈p𝜁q doesn’t affect this as 𝜁 Ñ 0 except at a closed set of measure 0, see Section 2.5).

We consider first a stylized case with 𝒬 “ 𝒳 (for instance, where the Dubins car

needs to visit target points where each target point has a random direction in which

it needs to be visited), in which case the projection function is the identity. Let us

fix some 𝑞0 P 𝒬 and 𝐻 “ pℎ𝐼1 , . . . , ℎ𝐼𝑑q be an adapted frame at 𝑞 and scale 𝜀 where

𝐼1 are elements of the Lie algebra; we let 𝑟𝑖 “ |𝐼𝑖| and 𝑟 “
ř𝑑

𝑖“1 𝑟𝑖; since 𝒬 “ 𝒳 , in

this case 𝛾 “ 𝑟 (since the volume of this box is proportional to 𝜀𝑟 as 𝜀 Ñ 0). Then

Box𝐻p𝑞0, 𝜀q is a box in the coordinate map produced by the adapted frame with sides

parallel to the axes and length 2𝜀𝑟𝑖 along dimension 𝑖 in the coordinate map. Then

there is a neighborhood ℛ of 𝑞0 and some 𝜀˚
0 ą 0 (we add the ¨˚ to distinguish it

from the 𝜀0 in the SHCS and LHCS definitions) and constants 0 ă 𝑐 ă 𝐶 such that

for any 𝑞 in a neighborhood of 𝑞0 and any 𝜀 ă 𝜀˚
0

Box𝐻p𝑞, 𝑐𝜀q Ă 𝑅𝜀p𝑞q Ă Box𝐻p𝑞, 𝐶𝜀q (2.46)

(see the Uniform Ball-Box Theorem).

Given Box𝐻p𝑞, 𝑐𝜀q, we note that we can cover it with 2𝑟 instances of Box𝐻p𝑞1, 𝑐p𝜀{2qq,

since these are smaller boxes with length 2p𝑐𝜀{2q𝑟𝑖 “ 2´𝑟𝑖 ¨ 2p𝑐𝜀q𝑟𝑖 , hence it has length

63



exactly 2´𝑟𝑖 of the length of Box𝐻p𝑞, 𝑐𝜀q on dimension 𝑖. Since 𝑟𝑖 “ |𝐼𝑖| is an integer

(the length of the Lie bracket 𝐼𝑖), this means 2𝑟𝑖 is also an integer and hence we can

divide the length of Box𝐻p𝑞, 𝑐𝜀q into 2𝑟𝑖 pieces of exactly length 2´𝑟𝑖 . Repeating this

for every 𝑖 “ 1, . . . , 𝑑 yields a division of Box𝐻p𝑞, 𝑐𝜀q into exactly
ś𝑑

𝑖“1 2
𝑟𝑖 “ 2𝑟 “ 2𝛾

boxes of the form Box𝐻p𝑞
1, 𝑐p𝜀{2qq. Thus, using 𝑆p𝑞, 𝜀q “ Box𝐻p𝑞, 𝑐𝜀q as our cells, we

have our Local Hierarchical Cell Structure in this case; because of the circumscribing

box Box𝐻p𝑞, 𝐶𝜀q, we know that there is a sufficiently small 𝜀˚ ą 0 such that if the

SHCS has scale ď 𝜀˚, the efficiency parameter 𝛼 (the ratio of the cell volume to the

volume of the reachable set it’s inscribed in) satisfies 𝛼 ě 1
2
p𝑐{𝐶q𝑟.

Remark 9. The volume of the ‘boxes’ on the manifold is not the same as the volumes

of their representations on the coordinate map; for one thing, the vectors in 𝐻 may

have different magnitudes, and the curvature of the manifold 𝒬 will also have an effect.

However, the ratio of the volume of Box𝐻p𝑞1, 𝑐𝜀q to the volume of Box𝐻p𝑞1, 𝐶𝜀q, as

𝜀Ñ 0, approaches p𝑐{𝐶q𝑟. Thus, there is a 𝜀˚ ą 0 such that for all 𝜀 ď 𝜀˚ and 𝑞1 in

the neighborhood of 𝑞

Vol𝒬pBox𝐻p𝑞, 𝑐𝜀qq

Vol𝒬pBox𝐻p𝑞, 𝐶𝜀qq
ě

1

2
p𝑐{𝐶q𝑟 (2.47)

However, we also want to extend this to cases where 𝒳 ‰ 𝒬; although the same

cell structure will achieve covering (just project all cells down to the workspace),

the issue is that when 𝒳 ‰ 𝒬 we get 𝛾 ă 𝑟 and hence covering with 2𝑟 sub-cells

is too many. Instead we will choose a size-2𝛾 subset of the configuration space sub-

cells whose projections onto 𝒳 will cover the projection of Box𝐻p𝑞, 𝑐𝜀q (up to an

approximation factor which decreases as 𝜀Ñ 0).

As discussed in Section 1.2, we assume that r¨s𝒳 locally behaves as a projection

from a (𝑑-dimensional) Euclidean space to a (𝑑1-dimensional) subspace. Let us fix

some 𝑞 P 𝒬, and let 𝑥 “ r𝑞s𝒳 . We can now treat a sufficiently small neighborhood 𝒱
of 𝑞 and its projection r𝒱s𝒳 onto 𝒳 as both linear (using 𝐻 as our basis in 𝒬). We

note for any 𝑞1 P 𝒱 and any sufficiently small 𝜀, by the Uniform Ball-Box Theorem we

can inscribe Box𝐻p𝑞
1, 𝑐𝜀q in 𝑅𝜀p𝑞

1q; as before, we can divide this into 2𝑟 sub-boxes of
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the form Box𝐻p𝑞
2, 𝑐p𝜀{2qq. We now consider the projection of these boxes onto 𝒳 : we

will show that an appropriately-chosen set of 2𝛾 of the 2𝑟 sub-boxes (with a tiny bit

of scaling up, which will diminish as 𝜀Ñ 0) will cover the projection rBox𝐻p𝑞1, 𝑐𝜀qs𝒳 .

A vector field ℎ on 𝒬 produces for any 𝑞 P 𝒬 a tangent vector ℎp𝑞q P 𝑇𝑞𝒬.

Taking the projection to 𝒳 (and letting 𝑥 “ r𝑞s𝒳 ), we get a tangent vector on

rℎp𝑞qs𝒳 P 𝑇𝑥𝒳 (moving along ℎp𝑞q from 𝑞 P 𝒬 projects to a movement along rℎp𝑞qs𝒳

from 𝑥 “ r𝑞s𝒳 P 𝒳 ). We note that 𝐻p𝑞q “ tℎ𝐼1p𝑞q, . . . , ℎ𝐼𝑑p𝑞qu is a basis of 𝑇𝑞𝒬;

therefore

r𝐻p𝑞qs𝒳 “ trℎ𝐼1p𝑞qs𝒳 , . . . , rℎ𝐼𝑑p𝑞qs𝒳 u (2.48)

spans 𝑇𝑥𝒳 . Let us denote ℎ̄𝑖p𝑞q :“ rℎ𝐼𝑖p𝑞qs𝒳 and denote

�̄�p𝑞q :“ r𝐻p𝑞qs𝒳 “ tℎ̄1p𝑞q, . . . , ℎ̄𝑑p𝑞qu . (2.49)

For any 𝐴 Ď r𝑑s, we let 𝐻𝐴 :“ tℎ𝐼𝑖 : 𝑖 P 𝐴u (and 𝐻𝐴p𝑞q :“ tℎ𝐼𝑖p𝑞q : 𝑖 P 𝐴u) and

likewise �̄�𝐴 :“ tℎ̄𝑖p𝑞q : 𝑖 P 𝐴u.

Remark 10. It’s important to remember that, despite the notation, ℎ̄𝑖p𝑞q is a tangent

vector of 𝑇𝑥𝒳 at 𝑥 “ r𝑞s𝒳 ; the 𝑞 is there to tell us which tangent vector. Likewise,

�̄�p𝑞q is a collection of 𝑑 tangent vectors in 𝑇𝑥𝒳 .

We then define for any 𝐴 Ă r𝑑s such that |𝐴| “ 𝑑1 the following for any 𝑞1 P 𝒱
and 𝑥1 “ r𝑞1s𝒳 :

Box𝐻𝐴
p𝑞1, 𝜀q “ texpp𝑧1ℎ𝐼1q ˝ ¨ ¨ ¨ ˝ expp𝑧𝑑ℎ𝐼𝑑qp𝑞

1
q : |𝑧𝑖| ď 𝜀|𝐼𝑖| @𝑖 P 𝐴 and 𝑧𝑖 “ 0 @𝑖 R 𝐴u

(2.50)

This is like Box𝐻p𝑞1, 𝜀q but we may only use vector fields in𝐻𝐴; note that Box𝐻𝐴
p𝑞1, 𝜀q Ď

Box𝐻p𝑞
1, 𝜀q. Let us also denote 𝑟𝐴 :“

ř

𝑖P𝐴 𝑟𝑖. Then, when 𝜀 is sufficiently small, if

�̄�𝐴 is linearly independent,

Vol𝒳 prBox𝐻𝐴
p𝑞1, 𝜀qs𝒳 q “ Θp𝜀𝑟𝐴q . (2.51)
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We then consider another stylized case where for any size-𝑑1 subset 𝐴 Ď r𝑑s,

�̄�𝐴p𝑞q is linearly independent. Since our vector fields and projection function are

smooth, this property will hold in some neighborhood around 𝑞; we will assume that

it holds in the neighborhood 𝒱 discussed above (otherwise, just take the intersection

of 𝒱 with the neighborhood for which this holds).

Remark 11. Note that this stylized case doesn’t always apply: for example, the Reeds-

Shepp car on R2 does not satisfy it, since the vector field ℎ2 “ r0; 0; 1s (note that

ℎ1 “ rcosp𝜃q, sinp𝜃q, 0s) which is controlled to steer the vehicle projects to nothing on

𝒳 “ R2 (i.e. it is not linearly independent of anything else). Traveling along this

vector field rotates the vehicle, which does not affect its location in 𝒳 “ R2.

In this case, without loss of generality, let 𝑟1 ď ¨ ¨ ¨ ď 𝑟𝑑. Then we let 𝐴˚ “ r𝑑1s,

which clearly satisfies 𝐴˚ “ argmin𝐴𝑟𝐴. We first claim that 𝑟𝐴˚ “ 𝛾.

For any 𝐴 Ď r𝑑s such that |𝐴| “ 𝑑1, consider a sequence 𝑎 “ p𝑎𝑖 : 𝑖 P r𝑑sz𝐴q where

𝑎𝑖 P t´1, 1u for all 𝑖 P r𝑑sz𝐴; that is, we assign ´1 or 1 for every index not in 𝐴.

Then we define:

Box
𝐻

p𝑎q

𝐴
p𝑞1, 𝜀q “ (2.52)

texpp𝑧1ℎ𝐼1q ˝ ¨ ¨ ¨ ˝ expp𝑧𝑑ℎ𝐼𝑑qp𝑞
1
q : |𝑧𝑖| ď 𝜀|𝐼𝑖| @𝑖 P 𝐴, 𝑧𝑖 “ 𝑎𝑖𝜀

|𝐼𝑖| @𝑖 R 𝐴u (2.53)

This denotes a 𝑑1-dimensional facet of Box𝐻p𝑞1, 𝜀q whose dimensions run along ℎ𝐼𝑖 for

𝑖 P 𝐴; the sequence 𝑎 denotes which facet (i.e. for the remaining dimensions, which

side of the box is it on). Note that there are a fixed number 2𝑑´𝑑1 of these facets for

each 𝐴, and a fixed number
`

𝑑
𝑑1

˘

of size-𝑑1 sets 𝐴, hence a total of 2𝑑´𝑑1
`

𝑑
𝑑1

˘

such facets.

We now note that

rBox𝐻p𝑞
1, 𝜀qs𝒳 “

ď

𝐴Ďr𝑑s:|𝐴|“𝑑1

ď

𝑎Pt´1,1ur𝑑sz𝐴

rBox
𝐻

p𝑎q

𝐴
p𝑞1, 𝜀qs𝒳 (2.54)

which is just saying that the projection of Box𝐻p𝑞
1, 𝜀q onto 𝒳 is the same as the
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union of the projections of all its dimension-𝑑1 facets onto 𝒳 . This means

Vol𝒳 prBox𝐻p𝑞
1, 𝜀qs𝒳 q ď

ÿ

𝐴Ďr𝑑s:|𝐴|“𝑑1

ÿ

𝑎Pt´1,1ur𝑑sz𝐴

Vol𝒳 prBox𝐻p𝑎q

𝐴
p𝑞1, 𝜀qs𝒳 q (2.55)

“ Θp𝜀𝑟𝐴˚ q (2.56)

since it is a sum of (a bounded number of) terms of order 𝜀𝑟𝐴 for various 𝐴, and

𝑟𝐴˚ “ min𝐴 𝑟𝐴. Furthermore, since Box𝐻𝐴˚ p𝑞
1, 𝜀q Ď Box𝐻p𝑞

1, 𝜀q, we have

Θp𝜀𝑟𝐴˚ q “ Vol𝒳 prBox𝐻𝐴˚ p𝑞
1, 𝜀qs𝒳 q ď Vol𝒳 prBox𝐻p𝑞

1, 𝜀qs𝒳 q (2.57)

and hence we have

Vol𝒳 prBox𝐻p𝑞
1, 𝜀qs𝒳 q “ Θp𝜀𝑟𝐴˚ q (2.58)

But since the small-time constraint factor was defined as the value 𝛾 satisfying

Vol𝒳 prBox𝐻p𝑞
1, 𝜀qs𝒳 q “ Θp𝜀𝛾q (2.59)

so 𝛾 “ 𝑟𝐴˚ . This is not surprising as both reflect the volume of Box𝐻p𝑞1, 𝜀q projected

on 𝒳 .

We now take a cell in our Local Hierarchical Cell Structure about 𝑞1 at scale 𝜀 to be

𝑆p𝑞1, 𝜀q “ rBox𝐻𝐴˚ p𝑞
1, 𝜀qs𝒳 . We check that it is indeed a LHCS (with scaling factor

2). We can subdivide Box𝐻𝐴˚ p𝑞
1, 𝜀q into 2𝑟𝐴˚ “ 2𝛾 sub-boxes Box𝐻𝐴˚ p𝑞

2, 𝜀{2q in the

same way as the Uniform Ball-Box Theorem does with Box𝐻p𝑞
1, 𝜀q; the projections

of these sub-boxes then become the sub-cells. One thing is that it may not have a

good efficiency parameter 𝛼 and it may be possible to do much better; but we are

only proving the existence of a LHCS here.

What happens when �̄�𝐴p𝑞q is not linearly independent for all 𝐴? It is still possible
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that an 𝐴1 such that �̄�𝐴1p𝑞q is not independent can still have

Vol𝒳 prBox𝐻𝐴1 p𝑞
1, 𝜀qs𝒳 q ą 0 (2.60)

though the volume must be 𝑜p𝜀𝑟𝐴1 q. However, if it has volume, it is only through a

Lie bracket interaction; thus, it has volume Θp𝜀𝑟
1
𝐴1 q where 𝑟1

𝐴1 ą 𝑟𝐴1 is an integer, and

minp𝑟𝐴 : 𝐴 Ď r𝑑s s.t. |𝐴| “ 𝑑1 and �̄�𝐴p𝑞
1
q is linearly independentq ď 𝑟1

𝐴1 . (2.61)

Therefore, we may choose

𝐴˚ :“ argminp𝑟𝐴 : 𝐴 Ď r𝑑s s.t. |𝐴| “ 𝑑1 and �̄�𝐴p𝑞
1
q is linearly independentq

(2.62)

Then the arguments from above (particularly equations (2.54) through (2.59)) still

hold, showing that 𝑟𝐴˚ “ 𝛾. We can then use 𝑆p𝑞1, 𝜀q “ rBox𝐻𝐴˚ p𝑞
1, 𝜀qs𝒳 as our cell,

as before.

Then, almost everywhere in 𝒳𝑓 , for any 𝛿 ą 0 we can choose 𝑞 such that r𝑞s𝒳 “ 𝑥

and 𝑔p𝜁qp𝑞q ě p1 ´ 𝛿q𝑔p𝜁qp𝑥q ě p1 ´ 𝛿q𝑔min; the Local HCS around 𝑞 is then a SHCS

around 𝑥. There exists a efficiency parameter 𝛼 ą 0 which, for sufficiently small 𝜀,

holds for all the sub-SHCS’s because 𝑔p𝜁qp𝑞q is bounded away from 0 and is Lipschitz

continuous, i.e. on small scales it can be treated as constant.

2.4 Nonsymmetric Hierarchical Cell Structures

In the same vein as the Symmetric HCS, we define a Nonsymmetric Hierarchical Cell

Structure on which we can build a DSTSP algorithm for nonsymmetric vehicles. In

this section, for simplicity, we denote the drift vector field by ℎ0 :“ ℎcont0 and the

control vector fields by ℎ𝑗 :“ ℎcont𝑗 for 𝑗 “ 1, . . . ,𝑚.

Recall as well that if we have a vector field ℎ on 𝒬, we denote the flow along ℎ by

time 𝑡 as expp𝑡 ℎqp𝑞q (the point 𝑞1 produced by moving along ℎ from 𝑞 for 𝑡 time).
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2.4.1 Deviation sets

While a tile inscribed within a reachable set is sufficient for the case of symmetric

dynamics, it is difficult to use such cells with nonsymmetric dynamics because the

trajectory of the vehicle as it leaves a cell may be constrained by the location of the

target point that it visits; this can cause a chain of increasingly complicated effects

(it can change what cell is visited next or what target point within that cell is visited

next, which causes more changes, and so forth) which make the formulation and

analysis of such an algorithm very difficult.3

To solve this, we define deviation sets : the basic idea is given 𝑞, 𝑞1 P 𝒬 where

𝑞1 P 𝑅𝜀p𝑞q, the deviation set is the set of configurations 𝑞1 for which 𝑞 Ñ 𝑞2 Ñ 𝑞1

is possible in ď 2𝜀 time. Then, inscribing a cell into the deviation set will allow the

vehicle to arrive at 𝑞, visit at target point in the cell, and then ‘reset’ to 𝑞1 (which will

lead into another cell, and so forth); thus we will have to show that even though the

deviation sets can be smaller than reachable sets4, they still contain cells of volume

9 𝜀𝛾. However, given 𝑞, the configuration 𝑞1 must be chosen carefully, as it’s possible

even if 𝑞1 P 𝑅𝜀p𝑞q for the deviation set to have zero volume.

Given control law ℎcontp𝑞,𝑢q, which returns the instantaneous velocity (in the

configuration space) where 𝑢 is the control input and 𝑞 is the current configuration,

we define ℎ𝑢 to be the vector field resulting from putting in a (constant) 𝑢 P 𝒰 . Note

that when ℎcontp𝑞,𝑢q is control-affine, we have ℎcontp𝑞,0q “ ℎ0p𝑞q and hence ℎ0 “ ℎ0

(putting in a zero input yields the drift vector field).

Then we formally define:

Definition 13. Given 𝑞 P 𝒬 and 𝜀 ą 0, the deviation set anchored at 𝑞 with

scale 𝜀 and control 𝑢 is

𝐷𝜀p𝑞,𝑢q :“ t𝑞
1 : 𝑑Πp𝑞, 𝑞

1
q ` 𝑑Πp𝑞

1, expp𝜀ℎ𝑢qp𝑞qq ď 2𝜀u . (2.63)

3The symmetric dynamics algorithm, by contrast, always ‘resets’ the vehicle back to the anchor
of the cell to make its behavior predictable.

4Note that reachable sets are constrained at one end but deviation sets are constrained at both
ends
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As with reachable sets, we denote the projection to the workspace by ¯̈:

�̄�𝜀p𝑞,𝑢q :“ r𝐷𝜀p𝑞,𝑢qs𝒳 . (2.64)

We refer to this as the workspace deviation set.

When Π is control-affine we denote

𝐷𝜀p𝑞q :“ 𝐷𝜀p𝑞,0q “ t𝑞
1 : 𝑑Πp𝑞, 𝑞

1
q ` 𝑑Πp𝑞

1, expp𝜀ℎ0qp𝑞qq ď 2𝜀u (2.65)

and �̄�𝜀p𝑞q :“ �̄�𝜀p𝑞,0q (2.66)

i.e. for control-affine vehicles if the control is not specified then the deviation set

takes the input 𝑢 “ 0 by default.

As with the reachable sets, we are interested in the volume of the workspace

deviation sets. However, it is possible at any sufficiently small scale 𝜀 to pick 𝑞,𝑢

such that 𝐷𝜀p𝑞,𝑢q has zero volume; for instance, if the vehicle is the Dubins car with

𝒰 “ r´1, 1s and 𝑢 “ ´1 i.e. maximum turning to the left (see Example 1), then it is

impossible to reach expp𝜀ℎ𝑢qp𝑞q from 𝑞 in ď 2𝜀 time without just following 𝑢 “ ´1

and hence the deviation set (and workspace deviation set) has volume 0. However,

as mentioned, following control 𝑢 “ 0 (as in (2.65)) yields a workspace deviation set

of the correct volume.

As we will see in Section 2.4.3, when Meta-Assumption 1 and the Nonsymmetric

Uniform Ball-Box Conjecture hold for Π the workspace deviation sets contain (and

are contained by) boxes whose sizes scale like that of workspace reachable sets.

2.4.2 The Nonsymmetric Hierarchical Cell Structure

As noted in Section 1.3, our upper bound results for nonsymmetric vehicles are fo-

cused entirely on showing the correct order-of-growth of the DSTSP shortest tour;

hence we can be looser with the constant factors and in particular will discard any

reference to the agility function 𝑔 (which remains important for the lower bound in

the nonsymmetric case). We also will remove the scaling factor 𝑠 and only define it for
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𝑠 “ 2; this suffices for dynamics satisfying Meta-Assumption 1 (if the Nonsymmetric

Uniform Ball-Box Conjecture holds) thanks to Lemma 8.

⇡
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Figure 2-2: Deviation sets and cells along a track 𝜋p𝑘q

𝑖 . (a) A single deviation set built
around track 𝜋p𝑘q

𝑖 ; (b) the cell inscribed in that set; (c) a string of cells which can be
visited in sequence; (d) multiple strings of cells which together form an unbroken row
around 𝜋

p𝑘q

𝑖 . Note that multiple runs along the track are needed to visit every cell
(one for the red and one for the green). These tracks can then be stacked to cover a
Nonsymmetric Hierarchical Cell Structure.

Definition 14. A 𝜀0-scale Nonsymmetric Hierarchical Cell Structure (Nonsym-

metric HCS or NHCS) with structural constants 𝛼1, 𝛼2 ą 0 is a structure consist-

ing of an infinite sequence of levels 𝑘 “ 0, 1, . . . . Each level 𝑘 then consists of the

following elements:

• 2𝑘𝛾 cells which are subsets of the workspace

𝑆
p𝑘q

1 , . . . , 𝑆
p𝑘q

2𝑘𝛾
Ď 𝒳 . (2.67)

We denote the set of level-𝑘 cells as 𝒮p𝑘q.

• 2𝑘p𝛾´1q tracks, which are trajectories

𝜋
p𝑘q

1 , . . . , 𝜋
p𝑘q

2𝑘p𝛾´1q : r0, 𝛼1s Ñ 𝒬 (2.68)
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where each 𝜋p𝑘q

𝑖 is associated with some control 𝑢p𝑘q

𝑖 P 𝒰 and some starting

configuration 𝑞p𝑘q

𝑖 and satisfies

𝜋
p𝑘q

𝑖 p𝑡q :“ expp𝑡 ℎ
𝑢

p𝑘q

𝑖
qp𝑞

p𝑘q

𝑖 q for all 𝑘 and 𝑖 P 1, 2, . . . , 2𝑘p𝛾´1q . (2.69)

This means that 𝜋p𝑘q

𝑖 is the trajectory produced when applying control 𝑢p𝑘q

𝑖

starting from 𝑞
p𝑘q

𝑖 for 𝛼1 time.

These then need to satisfy the following relationships with each other:

• For each 𝑘, the level-𝑘 cells are all disjoint.

• For each 𝑘, every level-𝑘 cell 𝑆p𝑘q

𝑖 is partitioned into 2𝛾 level-p𝑘 ` 1q cells

which we call its sub-cells.

• For each 𝑘, every level-𝑘 track 𝜋
p𝑘q

𝑖 is associated with 2𝑘 different level 𝑘

cells; WLOG we can assign the indices of the cells associated with 𝜋
p𝑘q

𝑖 as

𝑆
p𝑘q

𝑗;𝑖 where 𝑗 “ 1, 2, . . . , 2𝑘. We denote the set of all cells associated with

track 𝜋p𝑘q

𝑖 as

𝒮p𝑘q

𝑖 :“ t𝑆
p𝑘q

𝑗;𝑖 : 𝑗 P r2𝑘su . (2.70)

• For each 𝑆 P 𝒮p𝑘q

𝑖 , there is some 𝑡 P r0, 𝛼1s such that

𝑆 Ď �̄�𝜀0{2𝑘p𝜋
p𝑘q

𝑖 p𝑡q;𝑢
p𝑘q

𝑖 q . (2.71)

• Each 𝑆 P 𝒮p𝑘q at level 𝑘 has volume

Vol𝒳 p𝑆q ě 𝛼2𝜀
𝛾
0{2

𝑘𝛾 . (2.72)

and the single level-0 cell has nonzero volume.

We remark that 𝜀0 is the scale, as in the Symmetric HCS (the top level cell is

contained in a deviation set of radius 𝜀0, and the volume of level-𝑘 cells is generally
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Figure 2-3: (a) 2𝛾 cells at level 𝑘 combine to form (b) a cell at level 𝑘´ 1; black dots
represent (unvisited) targets. Note that most of the cells at level 𝑘 are empty, but
the level-(𝑘 ´ 1) cell is not.

proportional to 𝜀0{2𝑘𝛾); the structural constant 𝛼1 is a bound on the lengths of the

tracks; and the structural constant 𝛼2 is a bound on the constant factor of the volume

of the cells at level 𝑘 when attached to 𝜀0{2𝑘. Cells and deviation sets along a track

(for the example of a Dubins car) are illustrated in Section 2.4.2, and how 2𝛾 cells at

level 𝑘 combine to form a cell at level 𝑘 ´ 1 is illustrated in Section 2.4.2.

Finally, we make an assumption analogous to Assumption 10:

Assumption 11. For any 𝑥 P 𝒳𝑓 , there is some Nonsymmetric HCS containing

𝑥 in its interior.

The idea of the Nonsymmetric HCS is to permit a pass at any level 𝑘: a trajectory

through the NHCS which takes 9 2𝑘p𝛾´1q time which can visit a target point in every

(nonempty) cell. Then the vehicle can make a sequence of passes (not necessarily all

at the same level) until all the targets within the NHCS are visited, and move on to

the next NHCS. The main tradeoff to consider in this structure is the level 𝑘 at which

to make passes: since we visit 2𝑘𝛾 cells (and thus visit potentially 2𝑘𝛾 targets) in time

only 2𝑘p𝛾´1q, increasing 𝑘 can make the trajectory more efficient, visiting more targets

per time spent; however, when 𝑘 is too large, most cells will be empty (for instance,

if 2𝑘𝛾 ą 𝑛 then by the Pigeonhole Principle at least one cell will be empty, and if

the targets are random likely many more cells will be empty). Thus, picking the

correct 𝑘 for each pass is critical to finding an efficient tour. We call this problem the

Nonsymmetric Hierarchical Collection Problem (NHCP), and discuss it in Chapter 5.
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2.4.3 Nonsymmetric HCS from Geometry

In this section we assume Meta-Assumption 1; we will also exclusively work with

deviation sets under the 0 input, i.e. defined by (2.65); thus our deviation sets

depend significantly on the drift. We also assume that the Nonsymmetric Uniform

Ball-Box Conjecture holds, at least for our dynamic constraints Π. Finally, we make

an additional assumption that the drift moves the vehicle by some minimum speed

in the workspace:

Assumption 12. There is some constant 𝑐min ą 0 such that for all 𝑥 P 𝒳𝑓 ,

sup
𝑞Pr𝑥s𝒬

}rℎ0p𝑞qs𝒳 }𝒳 ě 𝑐min . (2.73)

That is, for any 𝑥 P 𝒳𝑓 , there is some 𝑞 mapping to 𝑥 such that ℎ0 moves the vehicle

at a rate ě 𝑐min in metric 𝑑𝒳 . Combined with the vector fields being smooth (Assump-

tion 1), this means that for any 𝑥 P 𝒳𝑓 , we can find some 𝑞 P r𝑥s𝒬 (i.e. a configuration

corresponding to the location of 𝑥 in the workspace) and some neighborhood 𝒱 of 𝑞

in 𝒬 such that for 𝑞1 P 𝒱 ,

}rℎ0p𝑞
1
qs𝒳 }𝒳 ě 𝑐min{2 . (2.74)

This allows us to construct the deviation sets below with some minimum speed, so in

our algorithm (which strings deviation sets together) we are guaranteed to cross 𝒳𝑓

a bounded amount of time.

Remark 12. If Assumption 12 doesn’t hold but there is some 𝑢˚ in the interior of

𝒰 Ď R𝑚 for which sup𝑞Pr𝑥s𝒬 }rℎ𝑢˚p𝑞qs𝒳 }𝒳 ě 𝑐min, we can do the following: we restrict

our controls to some neighborhood 𝒰˚ Ď 𝒰 of 𝒰 which is radially symmetric about 𝑢˚

and then subtract 𝑢˚ from 𝒰˚ to get 𝒰 1 :“ t𝑢 : 𝑢` 𝑢˚ P 𝒰˚u. Then the dynamics Π

are adjusted so that control 𝑢 P 𝒰 1 yield the same results as 𝑢` 𝑢˚ P 𝒰˚, i.e.

9𝑞 “ ℎ0p𝑞q `
𝑚
ÿ

𝑗“1

ℎ𝑗p𝑞qp𝑢𝑗 ` 𝑢
˚
𝑗 q “

ˆ

ℎ0p𝑞q `
𝑚
ÿ

𝑗“1

ℎ𝑗p𝑞q𝑢
˚
𝑗

˙

`

𝑚
ÿ

𝑗“1

ℎ𝑗p𝑞q𝑢𝑗 (2.75)
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i.e. we replace the drift vector field ℎ0 with ℎ0 `
ř𝑚

𝑗“1 ℎ𝑗𝑢
˚
𝑗 . By the properties of the

Lie bracket the resulting Lie algebra is unchanged.

To analyze the properties of the deviation set, we define for any control-affine dy-

namics (satisfying Definition 2) the reverse reachable set, i.e. the set of configurations

from which 𝑞 is reachable:

ÐÝ
𝑅 𝜀p𝑞q :“ t𝑞

1
P 𝒬 : 𝑑Πp𝑞

1, 𝑞q ď 𝜀u , (2.76)

or, equivalently, ÐÝ𝑅 𝜀p𝑞q “ t𝑞1 : 𝑞 P 𝑅𝜀p𝑞
1qu. Note that if Π is symmetric we have

𝑅𝜀p𝑞q “
ÐÝ
𝑅 𝜀p𝑞q; however, the distinction is important for nonsymmetric dynamics.

One very notable property of the reverse reachable set ÐÝ𝑅 𝜀p𝑞q is, under the Nonsym-

metric Uniform Ball-Box Conjecture, the boxes containing and contained within it

are the same general dimensions (i.e. the dimensions scale the same way relative to 𝜀)

as those in the reachable set 𝑅𝜀p𝑞q; this is because it can be viewed as the reachable

set of the dynamics with vector fields ´ℎ0, ℎ1, . . . , ℎ𝑚, i.e. Π with the drift vector

field reversed, and since the Lie algebra contains the same vectors either way (with

some extra minus signs, but this doesn’t affect any of the spanned spaces) the boxes

have the same scaling laws.

While the deviation set is more constrained than a reachable set (note that a

reachable set is constrained at the beginning, but a deviation set is constrained both at

the beginning and at the end), it satisfies the following relationships to the reachable

set and reverse reachable set:

Lemma 7. If 𝒬˚ Ď 𝒬 and 𝜀0 ą 0 are defined as in the Nonsymmetric Uniform

Ball-Box Conjecture, for any 𝑞 P 𝒬˚ and 0 ă 𝜀 ď 𝜀0 the following holds:

𝑅𝜀p𝑞q X
ÐÝ
𝑅 𝜀pexpp𝜀ℎ0qp𝑞qq Ď 𝐷𝜀p𝑞q Ď 𝑅2𝜀p𝑞q . (2.77)

Proof. The first inclusion holds because 𝑞1 P 𝑅𝜀p𝑞q X
ÐÝ
𝑅 𝜀pexpp𝜀ℎ0qp𝑞qq implies that

𝑑Πp𝑞, 𝑞
1q ď 𝜀 (since it’s in the reachable set) and 𝑑Πp𝑞

1, expp𝜀ℎ0qp𝑞qq ď 𝜀 (since it’s
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in the reverse reachable set of expp𝜀ℎ0qp𝑞q); hence by definition

𝑑Πp𝑞, 𝑞
1
q ` 𝑑Πp𝑞

1, expp𝜀ℎ0qp𝑞qq ď 2𝜀 (2.78)

and hence 𝑞1 P 𝐷𝜀p𝑞q by definition.

The second inclusion holds because if 𝑞1 P 𝐷𝜀p𝑞q, then

𝑑Πp𝑞, 𝑞
1
q ď 𝑑Πp𝑞, 𝑞

1
q ` 𝑑Πp𝑞

1, expp𝜀ℎ0qp𝑞qq ď 2𝜀 (2.79)

and hence by definition 𝑞1 P 𝑅2𝜀p𝑞q.

Lemma 7 then implies, if the Nonsymmetric Uniform Ball-Box Conjecture holds,

that the deviation sets contain the relevant boxes:

Lemma 8. If 𝒬˚ Ď 𝒬 is compact and the Nonsymmetric Uniform Ball-Box Conjec-

ture holds, then exist constants 𝑐 ą 0 and 𝜀0 ą 0 such that, for 𝑞 P 𝒬˚ and 0 ă 𝜀 ď 𝜀0

and any adapted frame 𝐻 “ pℎ𝐼1 , . . . , ℎ𝐼𝑑q (a set of elements of the Lie algebra of the

control vector fields) at p𝑞, 𝜀q,

Box𝐻pexppp𝜀{2qℎ0qp𝑞q, 𝑐𝜀q Ď 𝐷𝜀p𝑞q . (2.80)

Proof. This follows from Lemma 7: from the first inclusion (noting that the adapted

frames are the same because they are based on the same Lie algebras) we know that

since

exppp𝜀{2qℎ0qp𝑞q “ exppp𝜀{2qp´ℎ0qqpexpp𝜀ℎ0q𝑞q (2.81)

(going forward by 𝜀 along ℎ0 and then forward by 𝜀{2 along ´ℎ0 is the same as going

forward by 𝜀{2 by ℎ0), and by the Nonsymmetric Uniform Ball-Box Conjecture there
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are 𝑐1, 𝑐2 ą 0 such that

Box𝐻pexppp𝜀{2qℎ0qp𝑞q, 𝑐1𝜀q Ď 𝑅𝜀p𝑞q (2.82)

and Box𝐻pexppp𝜀{2qℎ0qp𝑞q, 𝑐2𝜀q Ď
ÐÝ
𝑅 𝜀pexpp𝜀ℎ0qp𝑞qq . (2.83)

Thus, letting 𝑐 “ minp𝑐1, 𝑐2q ą 0 yields

Box𝐻pexppp𝜀{2qℎ0qp𝑞q, 𝑐𝜀q Ď 𝑅𝜀p𝑞q X
ÐÝ
𝑅 𝜀pexpp𝜀ℎ0qp𝑞qq Ď 𝐷𝜀p𝑞q . (2.84)

We now show that (given the Nonsymmetric Uniform Ball-Box Conjecture) the

geometry of control-affine dynamic constraints implies Assumption 11:

Proposition 5. If the dynamic constraints Π satisfy Meta-Assumption 1 and the

Nonsymmetric Uniform Ball-Box Conjecture holds for Π, then Assumption 11

holds.

Proof. Let 𝑥0 P 𝒳𝑓 , and let 𝜀0 ą 0 and 0 ă 𝑐 ă 𝐶 be as defined in the Nonsymmetric

Uniform Ball-Box Conjecture, 𝐻 be an adapted frame, and 𝑞0 P r𝑥0s𝒬.

Without loss of generality, let 𝐼1 “ r0s, i.e. ℎ𝐼1 (the Lie bracket associated with

𝐼1) is just the original drift vector ℎ0 (any maximal linearly-independent subset of the

vectors ℎ0p𝑞q, ℎ1p𝑞q, . . . , ℎ𝑚p𝑞q can be in the adapted frame, since they all come with

|r𝑖s| “ 1 and so without loss of generality we can include ℎ0). Note that in Box𝐻 the

last direction traversed is 𝐼1, i.e. along ℎ0. Let us denote

𝐻 1 :“𝐻ztℎ𝐼1u “𝐻ztℎ0u (2.85)

i.e. the adapted frame with ℎ𝐼1 “ ℎ0 removed. Now it contains 𝑑 ´ 1 vectors and

hence 𝐻 1
p𝑞q cannot span the 𝑑-dimensional tangent space 𝑇𝑞𝒬. We now consider

Box𝐻 1p𝑞0, 𝑐𝜀0q in relation to Box𝐻p𝑞0, 𝑐𝜀0q; we note that by definition for any 𝑞 P

Box𝐻p𝑞0, 𝑐𝜀0q has a corresponding 𝑞1 P Box𝐻 1p𝑞0, 𝑐𝜀0q such that there is some 𝑡 P
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r´𝑐𝜀0, 𝑐𝜀0s for which

𝑞 “ expp𝑡 ℎ0qp𝑞
1
q (2.86)

We then pull back Box𝐻 1p𝑞0, 𝑐𝜀0q by 𝜀0 ` 𝑐𝜀0; let

𝒫 :“ t𝑞2 : 𝑞2
“ expp´p𝜀0{2` 𝑐𝜀0{2qℎ0qp𝑞

1
q for some 𝑞1

P Box𝐻 1p𝑞0, 𝑐𝜀0qu (2.87)

We now consider the collection of potential ‘tracks’ which are trajectories starting at

some 𝑞2 P 𝒫 and then following ℎ0 for 𝜀0 ` 𝑐𝜀0 (we will select a subset of these to be

our actual tracks as required in Definition 14). We denote 𝛼1 “ 𝜀0 ` 𝑐𝜀0 “ p1 ` 𝑐q𝜀0

(note that 𝜀0 is fixed); for any 𝑞2 P 𝒫 we let 𝜋𝑞2 : r0, 𝛼1s Ñ 𝒬 be the trajectory where

𝜋𝑞2p𝑡q “ expp𝑡 ℎ0qp𝑞
2
q . (2.88)

We now consider any 0 ă 𝜀 ď 𝜀0 and any 𝑞 P Box𝐻p𝑞0, 𝑐𝜀0q. Note that by Lemma 8

we have

Box𝐻p𝑞, 𝑐𝜀q Ď 𝐷𝜀pexpp´p𝜀{2qℎ0qp𝑞qq . (2.89)

We note that this means that for any 0 ă 𝜀 ď 𝜀0 and any 𝑞 P Box𝐻p𝑞0, 𝑐𝜀0q there is

some 𝑞2 and 𝑡 P r0, 𝛼1s such that

Box𝐻p𝑞, 𝑐𝜀q Ď 𝐷𝜀pexpp´p𝜀{2qℎ0p𝑞qqq “ 𝐷𝜀pℎ0p𝜋𝑞2p𝑡qqq (2.90)

because we can find 𝑞2, 𝑡 such that 𝑞 “ exppp𝑡` 𝜀{2qℎ0qp𝑞
2q. This means that all 𝑐𝜀

boxes with centers 𝑞 P Box𝐻p𝑞0, 𝑐𝜀0q are contained in a 𝜀-deviation set of a point on

one of the potential tracks starting in 𝒫 .

We now consider how to make our cells at each level. Note that, as in the Sym-

metric HCS, our cells are in the workspace and hence we must project these boxes
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down into 𝒳 . For any 𝑞 P 𝒬 and 𝜀 ą 0, we let

Box𝐻p𝑞, 𝜀q :“ rBox𝐻p𝑞, 𝜀qs𝒳 Ď 𝒳 (2.91)

(the projection of the box into the workspace). Note that Box𝐻p𝑞, 𝜀q is not necessarily

a box itself. As in Section 2.3.1, at sufficiently small scales we can treat the projection

function r¨s𝒳 as a linear projection from a higher dimensional space (with the same

number of dimensions as 𝒬) to a lower dimensional space (with the same number of

dimensions as 𝒳 ). We assume that 𝜀0 is sufficiently small (WLOG since 𝜀0 can be

made arbitrarily small and still satisfy its definition in the Nonsymmetric Uniform

Ball-Box Conjecture).

We then note that for any 𝑞 and 𝜀 ď 𝜀0, we can ‘pull back’ 𝑞 along the drift vector

field ℎ0 by 𝜀{2 to get

Box𝐻p𝑞, 𝑐𝜀q Ď 𝐷𝜀pexpp´p𝜀{2qℎ0qp𝑞qq Ď Box𝐻p𝑞, 𝐶𝜀q (2.92)

and hence Box𝐻p𝑞, 𝑐𝜀q Ď �̄�𝜀pexpp´p𝜀{2qℎ0qp𝑞qq Ď Box𝐻p𝑞, 𝐶𝜀q (2.93)

Note that Box𝐻p𝑞, 𝑐𝜀q is not necessarily a box thanks to the projection.

We will use 𝑆p0q

1;1 Ď Box𝐻p𝑞0, 𝑐𝜀0q (the top-level cell of our NHCS, and since it’s the

only cell on the only track at level 0 it gets 1; 1 in the subscript), and our top-level

track is 𝜋p0q

1 “ expp𝑡 ℎ0qp𝑞
p0q

1 q where 𝑞p0q

1 “ expp´p𝜀0{2 ` 𝑐𝜀0{2qℎ0qp𝑞
1q P 𝒫 (since

𝑞0 P Box𝐻 1p𝑞0, 𝑐𝜀0q). By (2.93) we have the inclusion of the cell within the deviation

set (using 𝑡p0q

1;1 “ 0) that we need.

We now take a similar strategy as in the proof of Proposition 4. We start with

a stylized case in which 𝒳 “ 𝒬 (i.e. the projection is just the identity function). In

this case, we use the following system of ‘coordinates’: let 𝑟𝑖 “ |𝐼𝑖|, and fix 𝑘; we

then let 𝒜p𝑘q :“
ś𝑑

𝑖“2r2
𝑘𝑟𝑖s and 𝑎 “ p𝑎2, 𝑎3, . . . , 𝑎𝑑q P 𝒜p𝑘q (i.e. where 𝑎𝑖 P r2𝑘𝑟𝑖s),

and 𝑧𝑖 “ p
2𝑎𝑖´1
2𝑘𝑟𝑖

´ 1qp𝑐𝜀0q
𝑟𝑖 (generalizing from the 𝑘 “ 1 case, this cuts the range

r´p𝑐𝜀0q
𝑟𝑖 , p𝑐𝜀0q

𝑟𝑖s into 2𝑘𝑟𝑖 equal intervals and puts 𝑧𝑖 in the center of each interval)
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and again let

𝑞p𝑘q
𝑎 :“ expp´p𝜀0{2` 𝑐𝜀0{2qℎ0q ˝ expp𝑧2ℎ𝐼2q ˝ ¨ ¨ ¨ ˝ expp𝑧𝑑ℎ𝐼𝑑qp𝑞0q P 𝒫 . (2.94)

It is in 𝒫 because we know that

expp𝑧2ℎ𝐼2q ˝ ¨ ¨ ¨ ˝ expp𝑧𝑑ℎ𝐼𝑑qp𝑞0q P Box𝐻 1p𝑞0, 𝑐𝜀0q . (2.95)

Note that there are 2
ř𝑑

𝑖“2 𝑘𝑟𝑖 “ 2
ř𝑑

𝑖“1 𝑘𝑟𝑖´𝑘 “ 2𝑘p𝛾´1q such 𝑎 (the property that 𝛾 “
ř𝑑

𝑖“1 𝑟𝑖 is unique to the 𝒬 “ 𝒳 case); thus we can associate each of our 2𝑘p𝛾´1q tracks

at level 𝑘 with some a sequence 𝑎 P 𝒜p𝑘q, and hence we replace the track index (which

we called 𝑖 in Definition 14, not to be confused with the index 𝑖 in 𝑟𝑖) with 𝑎 P 𝒜p𝑘q.

We then define our cells iteratively starting with level 𝑘 “ 0. We first define ‘upper

bounds’ (supersets) of our cells as follows. We note that if we index the 2𝑘p𝛾´1q tracks

at level 𝑘 by 𝑎 P 𝒜p𝑘q, we can index the 2𝑘𝛾 cells by pairs p𝑎1;𝑎q where 𝑎1 P r2𝑘s

(note that by definition 𝑟1 “ |𝐼1| “ 1 since 𝐼1 denotes the ‘Lie bracket’ of just ℎ0)

and 𝑎 P 𝒜p𝑘q (putting back the first index corresponding to ℎ𝐼1 “ ℎ0).

Formally, to get the cell center 𝑞p𝑘q
𝑎1;𝑎 corresponding to p𝑎1;𝑎q we let 𝑧1 “ p2𝑎1´1

2𝑘
´

1qp𝑐𝜀0q (the same formula as the other 𝑎𝑖, noting that 𝑟1 “ 1). Then we have

𝑞p𝑘q
𝑎1;𝑎

:“ expp𝑧1ℎ𝐼1q ˝ ¨ ¨ ¨ ˝ expp𝑧𝑑ℎ𝐼𝑑qp𝑞0q P Box𝐻p𝑞0, 𝑐𝜀0q . (2.96)

We note that for all 𝑞p𝑘q
𝑎1;𝑎, we have the following:

Box𝐻p𝑞
p𝑘q
𝑎1;𝑎

, 𝑐𝜀0{2
𝑘
q Ď 𝐷𝜀0{2𝑘p𝜋

p𝑘q
𝑎 p𝑡qq (2.97)

for some 𝑡 P r0, 𝛼1s, where 𝜋p𝑘q
𝑎 p𝑡q is the track starting at 𝑞p𝑘q

𝑎 p𝑡q.

We first let p𝑆
p0q

1;𝑎 “ Box𝐻p𝑞0, 𝑐𝜀0q, where 𝑎 “ p1, 1, . . . , 1q is the only sequence

where each 𝑎𝑖 is in r20¨𝑟𝑖s “ r1s (since it is level 0). We let Chp𝑎1;𝑎q denote the set of

sub-cells (or children) from p𝑎1;𝑎q, i.e. the 2𝛾 level-(𝑘`1) cells which are contained in

the level-𝑘 cell represented by p𝑎1;𝑎q. This happens by representing them by p𝑎1
1;𝑎

1q
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where 𝑎1
𝑖 P t2

𝑟𝑖p𝑎𝑖 ´ 1q ` 𝑗 : 𝑗 P r2𝑟𝑖su for all 𝑖 (including 𝑖 “ 1).

Then, starting with 𝑘 “ 0 and increasing it, we let 𝛿𝑘 be the smallest constant

such that for all 𝑎1 P r2𝑘s and 𝑎 P 𝒜p𝑘q,

p𝑆p𝑘q
𝑎1;𝑎

Ď
ď

p𝑎1
1;𝑎

1qPChp𝑎1;𝑎q

Box𝐻p𝑞
p𝑘`1q

𝑎1
1;𝑎

1 , p1` 𝛿
p𝑘q
q𝑐𝜀0{2

𝑘`1
q (2.98)

i.e. we take the boxes you would expect but need to expand them a little to ensure

we cover the cells from the previous layer. We then let

p𝑆
p𝑘q

𝑎1
1;𝑎

1 :“ Box𝐻p𝑞
p𝑘`1q

𝑎1
1;𝑎

1 , p1` 𝛿
p𝑘q
q𝑐𝜀0{2

𝑘`1
q (2.99)

for all these boxes. They are not our cells because they overlap somewhat, but overlaps

can be removed (while keeping the area of each cell within a constant multiple) to

get our cells 𝑆p𝑘q
𝑎1;𝑎.

However, we note that at each layer 𝑘, the multiplicative factor we need to expand

by is proportional to 1`𝑂p2´𝑘q. This is because if we have

𝑞 “ expp𝑧1ℎ𝐼1q ˝ ¨ ¨ ¨ ˝ expp𝑧𝑑ℎ𝐼𝑑qp𝑞0q P Box𝐻p𝑞0, 𝑐𝜀0q (2.100)

and then we move within a box centered at 𝑞, i.e. go to

𝑞1
“ expp𝑧1

1ℎ𝐼1q ˝ ¨ ¨ ¨ ˝ expp𝑧
1
𝑑ℎ𝐼𝑑qp𝑞q P Box𝐻p𝑞, 𝑐𝜀0{2

𝑘
q (2.101)

this only differs from

𝑞2
“ exppp𝑧1

1 ` 𝑧1qℎ𝐼1q ˝ ¨ ¨ ¨ ˝ exppp𝑧
1
𝑑 ` 𝑧𝑑qℎ𝐼𝑑qp𝑞0q (2.102)

because of the order in which we execute the flow operations. The error is thus

composed of additional Lie brackets of the Lie algebra, which scale down with the

box scale. Thus, 1` 𝛿p𝑘q can be bounded above by an infinite product of terms of the

form p1`𝑂p2´𝑘qq, which must converge, and hence we can bound all p1` 𝛿p𝑘qq by a
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constant. Thus, there is a constant 𝑐1 ě p1` 𝛿p𝑘qq𝑐 for all 𝑘 such that

𝑆p𝑘q
𝑎1;𝑎

Ď Box𝐻p𝑞
p𝑘q
𝑎1;𝑎

, 𝑐1𝜀0{2
𝑘`1
q Ď 𝐷𝛼2𝜀{2𝑘p𝜋

p𝑘q
𝑎 p𝑡qq (2.103)

for some 𝑡 P r0, 𝛼2s, where 𝛼2 “ 𝑐1{𝑐, and we are done with the stylized 𝒳 “ 𝒬 case.

To extend this to the case where 𝒳 ‰ 𝒬, we have to use the projection function

r¨s𝒳 . We use the following definitions from Section 2.2.1. We let 𝑑 denote the number

of dimensions of 𝒬, and 𝑑1 denote the number of dimensions of 𝒳 . Taking the pro-

jection to 𝒳 (and letting 𝑥p𝑞q “ r𝑞s𝒳 ), we get a tangent vector on rℎp𝑞qs𝒳 P 𝑇𝑥p𝑞q𝒳
(moving along ℎp𝑞q from 𝑞 P 𝒬 projects to a movement along rℎp𝑞qs𝒳 from 𝑥p𝑞q).

We note that 𝐻p𝑞q “ tℎ𝐼1p𝑞q, . . . , ℎ𝐼𝑑p𝑞qu is by definition a basis of 𝑇𝑞𝒬; therefore

r𝐻p𝑞qs𝒳 “ trℎ𝐼1p𝑞qs𝒳 , . . . , rℎ𝐼𝑑p𝑞qs𝒳 u (2.104)

spans 𝑇𝑥p𝑞q𝒳 . Let us denote this by

�̄�p𝑞q :“ r𝐻p𝑞qs𝒳 “ tℎ̄𝐼1p𝑞q, . . . , ℎ̄𝐼𝑑p𝑞qu . (2.105)

We also let △p𝑗q
𝑞 denote the subspace of 𝑇𝑥p𝑞q𝒳 spanned by tℎ̄𝐼𝑖 : |𝐼𝑖| ď 𝑗u, and let

𝜉p𝑗q “ dimp△p𝑗q
𝑞 q, which by Meta-Assumption 2 is fixed.

We will be using projections of the same tracks and cells from the 𝒬 “ 𝒳 case;

however, we will only need a subset of them (2𝑘p𝛾´1q tracks and 2𝑘 cells per track) to

cover the projections. We do this by the following method:

We consider 𝑘 “ 0, 1, . . . inductively. For 𝑘 “ 0, we have one 𝑞p0q
𝑎 and since a devi-

ation set coming from 𝜋
p0q
𝑎 contains cell Box𝐻p𝑞0, 𝑐𝜀0q, the corresponding workspace

deviation set contains ¯Box𝐻p𝑞0, 𝑐𝜀0q, which we use as our cell 𝑆p0q
𝑎1;𝑎 (recall that there

is only one setting of p𝑎1;𝑎q when 𝑘 “ 0).

Then, given a track 𝜋
p𝑘q
𝑎1;𝑎 at level 𝑘, we consider how to find 2𝛾´1 ‘child’ tracks

𝜋
p𝑘`1q

𝑎1
1;𝑎

1 at level 𝑘 ` 1. The requirement is that for any

𝑥 P Box𝐻p𝜋
p𝑘q
𝑎1;𝑎
p𝑡q, 𝑐𝜀0{2

𝑘
q where 𝑡 P r0, 𝛼1s (2.106)

82



there should be some child 𝜋p𝑘`1q

𝑎1
1;𝑎

1 and 𝑡1 P r0, 𝛼1s such that

𝑥 P Box𝐻p𝜋
p𝑘`1q

𝑎1
1;𝑎

1 p𝑡
1
q, 𝑐𝜀0{2

𝑘`1
q (2.107)

We note that since we are allowed to adjust 𝑡1, we can move Box𝐻p𝜋
p𝑘`1q

𝑎1
1;𝑎

1 p𝑡1q, 𝑐𝜀0{2
𝑘`1q

along ℎ0. Hence, we can focus instead on finding for any

𝑥 P Box𝐻 1p𝜋p𝑘q
𝑎1;𝑎
p𝑡q, 𝑐𝜀0{2

𝑘
q where 𝑡 P r0, 𝛼1s (2.108)

a child 𝜋p𝑘`1q

𝑎1
1;𝑎

1 and 𝑡1 P r0, 𝛼1s such that

𝑥 P Box𝐻 1p𝜋
p𝑘`1q

𝑎1
1;𝑎

1 p𝑡
1
q, 𝑐𝜀0{2

𝑘`1
q . (2.109)

This then reduces the problem to how Box𝐻 1 behaves under projection, analogous to

how Box𝐻 behaves under projection in Proposition 4. Repeating the same analysis

(examining the subsets of 𝐻 whose projections onto 𝒳 are linearly independent), we

can select 2𝛾´1 children (2𝛾´1 because eliminating ℎ0 reduces the dimension of the box

by 1 since by Assumption 12 the drift vector field’s projection onto 𝒳 has magnitude

bounded away from 0).

Since for any 𝑥0 P 𝒳𝑓 we can select an appropriate 𝑞0 P r𝑥0s𝒬 and 𝜀0 and get an

NHCS, we are done.

Remark 13. Unlike the proof of Proposition 4, we did not need to deal with an

analogue of Local Hierarchical Cell Structures in the above proof because we are not

concerned with maximizing the agility in any given region (since for nonsymmetric

vehicles our upper bound only concerns the order-of-growth).

2.5 Approximately everywhere

There are certain important cases where the assumptions don’t strictly hold over the

entire space – for instance, if the parameters of the dynamics have a discontinuity

(say, a Dubins car whose turning radius sharply changes when it enters a given re-
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gion), Assumption 6 may not hold because 𝑞 near the boundary may require 𝜀 to be

arbitrarily small, so no fixed 𝜀˚
𝜁 will work. In order to deal with this instance, we

define the notion of an assumption holding approximately everywhere on some subset

𝒳 ˚ Ď 𝒳𝑓 or 𝒬˚ Ď 𝒬.

Definition 15. An assumption holds approximately everywhere on a set 𝐴 in a

space 𝒜 with metric 𝑑𝒜 and volume Vol𝒜 if, for every 𝜂 ą 0, there is some 𝐴𝜂

such that:

• The assumption holds on 𝐴𝜂.

• Vol𝒜p𝐴z𝐴
1
𝜂q ď 𝜂 where 𝐴1

𝜂 :“ t𝑎 P 𝒜 : inf𝑎1R𝐴𝜂 𝑑𝒜p𝑎, 𝑎
1q ě 𝜂u (the 𝜂-interior

of 𝐴𝜂).

We call 𝐴𝜂 the 𝜂-approximator of 𝐴.

In short, the assumption should hold on a set 𝐴𝜂 whose 𝜂-interior 𝐴1
𝜂 (the set of

points at least 𝜂 away from points outside the set) takes up most of 𝐴, i.e. 𝐴z𝐴1
𝜂 has

volume at most 𝜂. While we use the same 𝜂 ą 0 as the depth of the interior and the

cap on the volume, they could be separated into 𝜂1, 𝜂2 ą 0 and the definition would

be equivalent (by using 𝜂 “ minp𝜂1, 𝜂2q).

Remark 14. One thing to note is that as 𝜂 Ñ 0, 𝐴𝜂 and 𝐴1
𝜂 will generally expand to

more completely fill 𝐴, and the condition 𝐴𝜂1 Ď 𝐴𝜂2 if 𝜂1 ě 𝜂2 can be enforced without

affecting the definition. Let’s define 𝐴˚ “
Ť

𝜂Ñ0𝐴𝜂: noting that our assumption in

question holds on all 𝐴𝜂 for 𝜂 ą 0, can we say that it must hold on 𝐴˚? No – many

of our assumptions take the form ‘for all 𝜁 ą 0, there exists some 𝜀˚
𝜁 ą 0 such that

for all 0 ă 𝜀 ď 𝜀˚
𝜁 a certain condition holds for all 𝑎’; however, a different 𝜀˚

𝜁 may be

needed for each given 𝐴𝜂 (so really it should be 𝜀˚
𝜁,𝜂), and no 𝜀˚

𝜁 ą 0 may work for all

𝜂 ą 0.

Remark 14 shows why we need Definition 15 rather than the more common ‘almost

everywhere’. We then note that we only need our assumptions to hold approximately

everywhere for our main results to hold:
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Proposition 6. If Proposition 2 and Proposition 3 are true when all the as-

sumptions hold everywhere, they are also true when all the assumptions hold

approximately everywhere on the support 𝒳𝑓 .

Proof. First, we note that we have a finite number 𝑘 of assumptions, which we can

label as 1, . . . , 𝑘. Then for 𝜂 ą 0, let 𝒳 p𝑖q
𝜂 denote the 𝜂-approximator of 𝒳𝑓 ; we then

denote 𝒳𝜂 :“
Ş𝑘

𝑖“1𝒳
p𝑖q
𝜂 and 𝒳 1

𝜂 be its 𝜂-interior. We claim that:

i. All the assumptions hold over 𝒳𝜂.

ii. Vol𝒳 p𝒳𝑓z𝒳 1
𝜂q ď 𝑘𝜂.

To show (i), we note that all our assumptions take the form discussed in Remark 14,

i.e. ‘for all 𝜁 ą 0, there is a 𝜀˚
𝜁 ą 0 such that for all 0 ă 𝜀 ď 𝜀˚

𝜁 , a certain condition

holds across the set’. We then fix 𝜁 ą 0 and we let 𝜀p𝑖q
𝜁,𝜂 ą 0 be the value which

corresponds to assumption 𝑖 over 𝒳 p𝑖q
𝜂 ; then we let 𝜀˚

𝜁,𝜂 “ min𝑖 𝜀
p𝑖q
𝜁,𝜂. In this case,

𝜀 ă 𝜀˚
𝜁,𝜂 ùñ 𝜀 ă 𝜀

p𝑖q
𝜁,𝜂 and hence for such 𝜀 the conditions all hold over their

respective 𝒳 p𝑖q
𝜂 , and hence hold over 𝒳𝜂.

To show (ii), we first show that 𝒳 1
𝜂 “

Ş𝑘
𝑖“1𝒳

p𝑖q1

𝜂 where 𝒳 p𝑖q1

𝜂 is the 𝜂-interior of

𝒳 p𝑖q
𝜂 . This is because

𝑥 P 𝒳 1
𝜂 ðñ inf

𝑥1R𝒳𝜂

𝑑𝒳 p𝑥, 𝑥
1
q ě 𝜂 (2.110)

ðñ inf
𝑖Pr𝑘s

inf
𝑥1R𝒳 p𝑖q

𝜂

𝑑𝒳 p𝑥, 𝑥
1
q ě 𝜂 (2.111)

ðñ 𝑥 P 𝒳 p𝑖q
𝜂 for all 𝑖 P r𝑘s (2.112)

ðñ 𝑥 P
𝑘

č

𝑖“1

𝒳 p𝑖q1

𝜂 (2.113)
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Then we can compute:

Vol𝒳 p𝒳𝑓z𝒳 1
𝜂q “ Vol𝒳

´

𝒳𝑓z

𝑘
č

𝑖“1

𝒳 p𝑖q1

𝜂

¯

(2.114)

“ Vol𝒳

´

𝑘
ď

𝑖“1

p𝒳𝑓z𝒳 p𝑖q1

𝜂 q

¯

(2.115)

ď

𝑘
ÿ

𝑖“1

Vol𝒳 p𝒳𝑓z𝒳 p𝑖q1

𝜂 q (2.116)

ď 𝑘𝜂 (2.117)

Thus, in particular we know that any point 𝑥 P 𝒳 1
𝜂 has a 𝜂-radius ball around it in

which all the assumptions hold and that as 𝜂 Ñ 0, the volume of 𝒳𝑓 that’s outside

the set 𝒳 1
𝜂 goes to 0, which in turn shows that

lim
𝜂Ñ0

P𝑋„𝑓 r𝑋 P 𝒳 1
𝜂s “ 1 and lim

𝜂Ñ0

ż

𝒳 1
𝜂

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 “

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

(2.118)

since 𝑓 represents a continuous probability distribution and 𝑔 is bounded below.

We now consider our main theorems, and specifically how they are proven.

First, we consider Proposition 2 (the very high probability lower bound to the

DSTSP). We then fix 𝜂 ą 0 and note that for any 𝑋1, . . . , 𝑋𝑛,

TSPΠpt𝑋1, . . . , 𝑋𝑛u X 𝒳 1
𝜂q ď TSPΠp𝑋1, . . . , 𝑋𝑛q (2.119)

Thus, any very high probability lower bound for the DSTSP where the trajectory only

needs to visit target points in 𝒳 1
𝜂 also applies to the original problem. Furthermore,

as lim𝜂Ñ0 P𝑋„𝑓 r𝑋 P 𝒳 1
𝜂s “ 1, for any 𝛿1 ą 0 we can set 𝜂 sufficiently small so that

P𝑋„𝑓 r𝑋 R 𝒳 1
𝜂s ď 𝛿1{2 (2.120)

Then t𝑋1, . . . , 𝑋𝑛u X 𝒳 1
𝜂 will with very high probability have ě p1 ´ 𝛿1q𝑛 targets by

the Chernoff bound.

86



Thus, we can modify the problem to distribute p1 ´ 𝛿1q𝑛 targets over 𝒳 1
𝜂 with

density proportional to 𝑓 ; this yields a TSP tour length at most as long (with very

high probability) as distributing 𝑛 targets according to 𝑓 and keeping only whose

which fall in 𝒳 1
𝜂, which in turn is at most as long as having to visit all 𝑛 targets.

We note that the scaled version of 𝑓 on 𝒳 1
𝜂 is

𝑓 |𝒳 1
𝜂
p𝑥q “

$

’

&

’

%

𝑓p𝑥q{P𝑋„𝑓 r𝑋 P 𝒳 1
𝜂s if 𝑥 P 𝒳 1

𝜂

0 if 𝑥 R 𝒳 1
𝜂

(2.121)

and that this value for all 𝑥 P 𝒳 1
𝜂 can be bounded as

𝑓p𝑥q ď 𝑓 |𝒳 1
𝜂
p𝑥q ď p1´ 𝛿1{2q

´1𝑓p𝑥q (2.122)

which in turn means that

ż

𝒳 1
𝜂

𝑓 |𝒳 1
𝜂
p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥 ď p1´ 𝛿1{2q

´p1´ 1
𝛾

q

ż

𝒳 1
𝜂

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (2.123)

ď p1´ 𝛿1{2q
´p1´ 1

𝛾
q

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (2.124)

We can then turn to the Orienteering problem, in particular the Cost-Balanced

Orienteering problem Definition 18 and the very high probability upper bound Propo-

sition 8 we derive for it. We can consider this problem on p1 ´ 𝛿1q𝑛 random target

points for approximation factor 𝛿2. We fix cost lower bound 𝜁 as in the proof of

Proposition 8 and set

𝜆 ă
𝜂𝜁

𝑐Π
(2.125)

where 𝑐Π is the speed limit of Π. Then any cost-𝜆 trajectory must have length

ď 𝜆{𝜁 ă 𝜂{𝑐Π, which can cover a distance of at most 𝜂 in the metric on 𝒳 . But since

all targets 𝑋𝑖 in this problem are in 𝒳 1
𝜂, which is the 𝜂-interior of 𝒳𝜂, any trajectory

visiting any target point (which are the only ones we care about) must remain entirely

in 𝒳𝜂, which is exactly where we know our assumptions hold. Therefore, the proof of
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Proposition 8 holds and we obtain the bound

PrCBOΠp𝑋1, 𝑋2, . . . , 𝑋𝑛;𝜆, 𝑓q ď p1` 𝛿2q𝛽𝜆 p1´ 𝛿1q
1
𝛾𝑛

1
𝛾 s ě 1´ 𝑒´ 4

5
p1`𝛿2q logp𝑏q𝜆p1𝛿1q

1
𝛾 𝑛

1
𝛾

(2.126)

Finally, we apply this to the TSP lower bound in the same way. In this case, instead

of visiting 𝑛 target points, we need to visit p1´ 𝛿1q𝑛, but the argument is the same.

Then, by setting 𝛿1, 𝛿2 small enough we can achieve an approximation factor 𝛿 for the

TSP for any 𝛿 ą 0 with very high probability.
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Chapter 3

DSTSP Lower Bound

In this chapter we show the DSTSP lower bound from Theorem 1, which not only

includes the order of growth Θp𝑛1´ 1
𝛾 q with regard to the number 𝑛 of target points, but

which describes the relationship between the density 𝑓 of target points, the agility

function 𝑔 of the vehicle, and the small-time constraint factor 𝛾. We do this by

showing a very high probability Orienteering upper bound and translating it into a

corresponding DSTSP upper bound. One wrinkle, however, is that while the usual

Orienteering problem suffices to show the order-of-growth of the DSTSP lower bound,

it is not precise enough to give the constant factor demonstrating the effect of density

𝑓 and agility 𝑔; this obstacle has to do with the fact that a TSP solution must visit

all the targets, which may be spread throughout 𝒳𝑓 , while an Orienteering path can

choose to restrict itself to only a very small region within 𝒳𝑓 – presumably one with

a high density of target points and/or where the vehicle has better agility. Thus, the

DSTSP depends on 𝑓 and 𝑔 over all of 𝒳𝑓 while the usual Orienteering essentially

depends only on most advantageous or lucrative area, in which target points can be

visited most rapidly, while 𝑓 and 𝑔 elsewhere (with high probability) do not affect

the solution at all. This is discussed in Section 3.1.

We thus obtain our DSTSP lower bound with the following steps:

1. Define a variant of the Orienteering problem, which we call Cost-Balanced Ori-

enteering (CBO) and which (approximately) balances out the lucrativity over
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the whole space (Section 3.2).

2. Show a very high probability upper bound to the CBO using the ‘implicit dis-

cretization’ we developed in [20],1 followed by the probabilistic technique devel-

oped by [11] (Section 3.3).

3. Use the very high probability CBO upper bound to show a corresponding very

high probability lower bound for the DSTSP.

3.1 Lucrativity and Cost-Balancing

Figure 3-1: Illustration of lucrativity for a Dubins car with a patch of ice on the
ground (which reduces turning rate and hence agility); targets are represented by
black dots. The circled area is the most lucrative, as it has both a large density of
targets and high vehicle agility.

In order to measure exactly how 𝑓, 𝑔 contribute to the ‘lucrativity’ of a region, we

consider the following: for small 𝜀 ą 0, we have Vol𝒳 p�̄�𝜀p𝑞qq « 𝑔p𝑞q𝜀𝛾. Thus, we can

estimate the probability that any given target falls into �̄�𝜀p𝑞q:

P𝑋„𝑓 r𝑋 P �̄�𝜀p𝑞qs « 𝑓pr𝑞s𝒳 q𝑔p𝑞q𝜀
𝛾 (3.1)

ď 𝑓pr𝑞s𝒳 q𝑔pr𝑞s𝒳 q𝜀
𝛾 (3.2)

Thus, the expected number of targets that fall within a given radius-𝜀 reachable set

1In [20] our focus was on the order-of-growth and hence we didn’t need to use cost-balancing.
However, the technique can be extended to the CBO, as we will do here.
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anchored at 𝑞 P r𝑥s𝒬 can be bounded by

E
𝑋𝑖

𝑖𝑖𝑑
„ 𝑓
r|t𝑋1, . . . , 𝑋𝑛u X �̄�𝜀p𝑞q|s ď 𝑛𝑓p𝑥q𝑔p𝑥q𝜀𝛾 . (3.3)

This means that if 𝜀 “ 𝑛´ 1
𝛾 p𝑓p𝑥q𝑔p𝑥qq´

1
𝛾 , the expected number of targets in a 𝜀-radius

reachable set is at most 1; we can then take 𝜀 to be a rough measure of the average

time to reach the nearest target from 𝑥, and hence 1{𝜀 “ 𝑛
1
𝛾 p𝑓p𝑥q𝑔p𝑥qq

1
𝛾 is roughly

the rate at which we visit target points in the vicinity of 𝑥. Thus, we may define the

lucrativity function over 𝒳 as

¢˚
p𝑥q :“ ¢˚

𝑓,𝑔p𝑥q :“
`

𝑓p𝑥q𝑔p𝑥q
˘

1
𝛾 (3.4)

which is proportional to the rate at which the vehicle can expect to encounter target

points near 𝑥 (when 𝑛 is large).

Thus, we want to modify the Orienteering problem to balance out the lucrativity

over the whole space and not have it favor any region over any other. Intuitively, this

can be done by using lucrativity function as a cost function: the vehicle is ‘charged’

¢˚p𝑥q cost per unit length for movement at 𝑥. This then means that the rate it can

expect to encounter target points is roughly 1 per unit cost, everywhere; we refer to

this as the problem being ‘balanced’.

Remark 15. Unfortunately, while this intuition generally holds across the space un-

der a very broad set of conditions, there are many cases of interest in which this

will not hold everywhere. In particular, (3.2) may fail wherever 𝑓pr𝑞s𝒳 q “ 0 or

𝑔pr𝑞s𝒳 q “ 0, or wherever 𝑓 or 𝑔 has a discontinuity. This leads in particular to a

problem where movement outside of 𝒳𝑓 (i.e. where 𝑓p𝑥q “ 0) is ‘free’ (no cost). This

makes the Orienteering problem with cost function ¢˚ too powerful to provide a useful

lower bound to the TSP.

To deal with the issue raised in Remark 15, we modify the lucrativity function to

obtain a cost function for our dynamics:
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Definition 16. The adjusted cost-balancing function (which we will generally

refer to as the cost function) of density 𝑓 and agility 𝑔 with regularization factor

𝜁 ą 0 is ¢ : 𝒳 Ñ R is

¢𝜁p𝑥q :“ p𝑓 p𝜁q
p𝑥q𝑔p𝜁q

p𝑥qq
1
𝛾 (3.5)

i.e. ¢𝜁p𝑥q is the product of the upper 𝜁-regularizations of 𝑓 and 𝑔 (the minimal

upper bounds of 𝑓, 𝑔 which are ě 𝜁 and p1{𝜁q-Lipschitz continuous, see Defini-

tion 9).

Then, for a trajectory 𝜋 P Π, its cost is

ℓ ¢
p𝜋q :“ ℓ ¢

𝜁 p𝜋q :“

ż ℓp𝜋q

0

¢
`

𝜋p𝑡q
˘

𝑑𝑡. (3.6)

For convenience, we want to be able to reparameterize 𝜋 by cost. For any 𝑡 P

r0, ℓp𝜋qs, we define

𝑡 ¢ :“ 𝑡 ¢
𝜋 :“

ż 𝑡

0

¢𝜁p𝜋p𝑡1qq 𝑑𝑡1 (3.7)

and define 𝜋 ¢ : r0, ℓ ¢p𝜋qs Ñ 𝒬 as the trajectory satisfying

𝜋 ¢
p𝑡 ¢
q “ 𝜋p𝑡q . (3.8)

We will use the ‘ ¢’ symbol in general to denote cost-denominated versions of defini-

tions from the previous section, e.g. �̄� ¢
𝜀 p𝑞q for the region reachable in ď 𝜀 cost from

𝑞. In general, the value of 𝜁 will be fixed and 𝜁 will be left out of the notation.

We need to show that the cost function satisfies certain important properties,

specifically being bounded above and below (away from 0) and being Lipschitz con-

tinuous:

Lemma 9. The cost function ¢𝜁p𝑥q “ p𝑓 p𝜁qp𝑥q𝑔p𝜁qp𝑥qq
1
𝛾 satisfies the following:

i. ¢𝜁p𝑥q ě ¢˚p𝑥q (where ¢˚p𝑥q is the lucrativity function p𝑓p𝑥q𝑔p𝑥qq
1
𝛾 ) for all 𝑥.
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ii. ¢𝜁p𝑥q is uniformly bounded away from 0 and is Lipschitz continuous. In partic-

ular, if 𝛾 ě 1, then it is 𝛼-Lipschitz continuous where

𝛼 “
1

𝛾
𝜁

2
𝛾

´3
p𝑓max ` 𝑔maxq (3.9)

and ¢𝜁p𝑥q ě 𝜁
2
𝛾 everywhere.

iii. lim𝜁Ñ0 ¢𝜁p𝑥q “ ¢˚p𝑥q almost everywhere.

Proof. We prove these in order.

i. This follows from the fact that 𝑓 p𝜁q and 𝑔p𝜁q are upper bounds for 𝑓 and 𝑔

(which are nonnegative) by construction, hence

¢𝜁p𝑥q “ p𝑓 p𝜁q
p𝑥q𝑔p𝜁q

p𝑥qq
1
𝛾 ě p𝑓p𝑥q𝑔p𝑥qq

1
𝛾 “ ¢˚

p𝑥q . (3.10)

ii. This follows because by construction 𝑓 p𝜁q and 𝑔p𝜁q are both ě 𝜁 everywhere, so

¢𝜁p𝑥q “ p𝑓 p𝜁q
p𝑥q𝑔p𝜁q

p𝑥qq
1
𝛾 ě 𝜁

2
𝛾 . (3.11)

To show that they are Lipschitz continuous, we note that both 𝑓 and 𝑔 are bounded

above (by 𝑓max and 𝑔max respectively) and that sup𝑥 𝑓
p𝜁qp𝑥q “ 𝑓max and sup𝑥 𝑔

p𝜁qp𝑥q “

𝑔max, and by construction 𝑓 p𝜁q and 𝑔p𝜁q are p1{𝜁q-Lipschitz continuous.

However, the composition of two Lipschitz-continuous function is also Lipschitz-

continuous (and the Lipschitz continuity factor of the composition is the product of

the factors of the original two functions). Furthermore p¨q
1
𝛾 is Lipschitz-continuous

if the domain is bounded away from 0 below and upper bounded away from 8; and

when the input is bounded below by 𝜁2 and above by 𝑓max𝑔max (as in this case), it is

𝛼1-Lipschitz continuous where

𝛼1 “

$

’

&

’

%

1
𝛾
𝜁2p 1

𝛾
´1q if 𝛾 ě 1

1
𝛾
p𝑓max𝑔maxq

1
𝛾

´1 if 𝛾 ă 1

(3.12)
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We now analyze the Lipschitz-continuity of 𝑓 p𝜁qp𝑥q𝑔p𝜁qp𝑥q; the product of two bounded

Lipschitz continuous functions is also a bounded Lipschitz continuous function. Specif-

ically, if ℎ1p𝑥q, ℎ2p𝑥q are respectively 𝜁1- and 𝜁2-Lipschitz continuous nonnegative

functions with respective fixed upper bounds ℎmax
1 , ℎmax

2 , then ℎp𝑥q “ ℎ1p𝑥qℎ2p𝑥q is

also nonnegative, is bounded above by ℎmax
1 ℎmax

2 and is p𝜁1ℎmax
2 ` 𝜁2ℎ

max
1 q-Lipschitz

continuous. Thus, 𝑓 p𝜁qp𝑥q𝑔p𝜁qp𝑥q is nonnegative, bounded above by 𝑓max𝑔max (and

below by 𝜁2), and is 𝛼2-Lipschitz continuous where

𝛼2 “ p1{𝜁qp𝑓max ` 𝑔maxq . (3.13)

Hence ¢𝜁p𝑥q is 𝛼-Lipschitz continuous where 𝛼 “ 𝛼1𝛼2. In particular, when 𝛾 ě 2

(the case we are most interested in) we have

𝛼 “
1

𝛾
𝜁

2
𝛾

´3
p𝑓max ` 𝑔maxq . (3.14)

iii. This follows as 𝑓 p𝜁q Ñ 𝑓 and 𝑔p𝜁q Ñ 𝑔 almost everywhere as 𝜁 Ñ 0; hence both

occur almost everywhere (the union of where they don’t converge is measure 0).

We also define cost-denominated versions of distance and reachable sets:

Definition 17. Given 𝑞, 𝑞1 P 𝒬, the cost-distance between them is

𝑑 ¢
Πp𝑞, 𝑞

1
q “ infpℓ ¢

p𝜋q : 𝑞
𝜋
Ñ 𝑞1, 𝜋 P Πq (3.15)

Given 𝜀 ą 0 and 𝑞 P 𝒬, the 𝜀-cost reachable set (in both 𝒬 and 𝒳 ) are

𝑅 ¢
𝜀 p𝑞q :“ t𝑞

1
P 𝒬 : 𝑑 ¢

Πp𝑞, 𝑞
1
q ď 𝜀u and �̄� ¢

𝜀 p𝑞q “ r𝑅
¢
𝜀 p𝑞qs𝒳 (3.16)

Although intuitively on small scales the cost-reachable sets will resemble our orig-

inal length-reachable sets (except scaled by the cost function ¢), they are not exactly

the same shape. Thus, we need to show that this change does not alter our main as-

sumptions, namely Assumption 8 and Assumption 9; we also need to show that (with

sufficiently small 𝜁 ą 0 regularization) it achieves the balancing effect we wanted.
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Lemma 10. Let 𝑏 be the branching factor from Assumption 8. Then there are func-

tions 𝜌𝑖 : Rą0 Ñ Rě0 for 𝑖 “ 1, 2, 3, 4 satisfying lim𝜁Ñ0 𝜌𝑖p𝜁q “ 0 and a polynomial 𝑃 ¢

(which depends through the cost function ¢ :“ ¢𝜁 on 𝜁) such that for any 𝜁 ą 0, 𝑞 P 𝒬
and 0 ă 𝜀 ď 𝜌1p𝜁q the following hold:

i. There is a set 𝑄 ¢
𝜀 p𝑞q such that |𝑄 ¢

𝜀 p𝑞q| ď 𝑏 and

𝑅 ¢
2𝜀p𝑞q Ď

ď

𝑞1P𝑄 ¢
𝜀 p𝑞q

𝑅 ¢
p1`𝜌2p𝜁qq𝜀p𝑞

1
q . (3.17)

ii. There is a set 𝑄 ¢,0
𝜀 such that |𝑄 ¢,0

𝜀 | ď 𝑃 ¢p1{𝜀q and

𝒬𝑓 Ď
ď

𝑞P𝑄 ¢,0
𝜀

𝑅 ¢
𝜀 p𝑞q (3.18)

iii. P𝑋„𝑓 r𝑋 P �̄� ¢
𝜀 p𝑞qs ď p1` 𝜌3p𝜁qq𝜀

𝛾.

iv. E𝑋„𝑓 r ¢𝜁p𝑋q´1s ě p1´ 𝜌4p𝜁qqE𝑋„𝑓 rp𝑓p𝑋q𝑔p𝑋qq
´ 1

𝛾 s.

Proof. We assume without loss of generality that 𝜁 ď 1 (so 𝛼1 “ 𝜁
2
𝛾 ď 1) and 𝜀 is

sufficiently small so that Assumption 8 and Assumption 9 hold.

The lemma then holds due to the properties of ¢𝜁p𝑥q, namely that it is bounded

below by 𝛼1 and 𝛼2-Lipschitz continuous; these two conditions show that on small

scales, it cannot change too much in a multiplicative sense. First, we define

ÐÑ
𝑅 𝜀p𝑞q and ÐÑ𝑅

¢
𝜀 p𝑞q (3.19)

to be the sets reachable from 𝑞 using (possibly alternating) backwards and forwards

trajectories in Π of, respectively total length ď 𝜀 or total cost ď 𝜀 (note that if Π is

symmetric then 𝑅𝜀p𝑞q “
ÐÑ
𝑅 𝜀p𝑞q and 𝑅 ¢

𝜀 p𝑞q “
ÐÑ
𝑅

¢
𝜀 p𝑞q).

Then, letting 𝑐Π ă 8 be the speed limit of Π in 𝒳 (i.e. }r 9𝜋p𝑡qs𝒳 } ď 𝑐Π for any
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𝜋 P Π), which of course also applies for backwards trajectories, we get

¢𝜁pr𝑞s𝒳 q ´ p5𝑐Πp𝛼2{𝛼1qq𝜀 ď ¢𝜁pr𝑞1
s𝒳 q ď ¢𝜁pr𝑞s𝒳 q ` p5𝑐Πp𝛼2{𝛼1qq𝜀 (3.20)

for any 𝑞 P 𝒬 and 𝑞1
P
ÐÑ
𝑅 p5{𝛼1q𝜀p𝑞q (3.21)

since ¢ is 𝛼2-Lipschitz continuous and 𝑞1 is by definition reachable from 𝑞 using Π (and

backwards Π) in at most p5{𝛼1q𝜀 time, which translates to at most p5𝑐Π{𝛼1q𝜀 distance

in the metric on 𝒳 , which finally translates to a change of at most p5𝑐Πp𝛼2{𝛼1qq𝜀 in

the value of ¢ by Lipschitz continuity. Then since ¢𝜁pr𝑞s𝒳 q ě 𝛼1, we can turn this

into multiplicative bounds:

p1´ p5𝑐Πp𝛼2{𝛼
2
1qq𝜀q ¢𝜁pr𝑞s𝒳 q ď ¢𝜁pr𝑞1

s𝒳 q ď p1` p5𝑐Πp𝛼2{𝛼
2
1qq𝜀q ¢𝜁pr𝑞s𝒳 q (3.22)

for any 𝑞 P 𝒬 and 𝑞1
P
ÐÑ
𝑅 p5{𝛼1q𝜀p𝑞q (3.23)

We then let 𝜌˚
𝜁 p𝜀q :“ p5𝑐Πp𝛼2{𝛼

2
1qq𝜀 (noting that 𝛼1, 𝛼2 depend on 𝜁, as well as 𝛾 and

𝑓 and 𝑔 through 𝑓max, 𝑔max); for any fixed 𝜁, we have lim𝜀Ñ0 𝜌
˚
𝜁 p𝜀q “ 0.

Furthermore, since ¢𝜁p𝑥q ě 𝛼1 for all 𝑥, we know that

ÐÑ
𝑅

¢
5𝜀p𝑞q Ď

ÐÑ
𝑅 p5{𝛼1q𝜀p𝑞q (3.24)

since any trajectory (allowing backwards movement) of cost ď 5𝜀 must have length

ď p5{𝛼1q𝜀. Thus, our bounds (3.22) hold for all 𝑞1 P
ÐÑ
𝑅

¢
5𝜀p𝑞q as well.

We now fix 𝑞 P 𝒬 and consider 𝑅 ¢
𝜀1p𝑞1q; if 𝑅 ¢

𝜀1p𝑞1q Ď
ÐÑ
𝑅

¢
5𝜀p𝑞q, then we can conclude

𝑅𝜀1{pp1`𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞

1
q Ď 𝑅 ¢

𝜀1p𝑞
1
q Ď 𝑅𝜀1{pp1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞
1
q (3.25)

since at any 𝑞2 P 𝑅 ¢
𝜀1p𝑞1q Ď

ÐÑ
𝑅

¢
5𝜀p𝑞q, we know that the cost is between p1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 q

and p1` 𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 q. Similarly, if ÐÑ𝑅

¢
𝜀1p𝑞1q Ď

ÐÑ
𝑅

¢
5𝜀p𝑞q, then

ÐÑ
𝑅 𝜀1{pp1`𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞
1
q Ď

ÐÑ
𝑅

¢
𝜀1p𝑞1

q Ď
ÐÑ
𝑅 𝜀1{pp1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞
1
q (3.26)
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(Note: the distinction between 𝜀1 and 𝜀 is very important in the above).

We now prove part (i). Equation (3.25) gives us the following:

𝑅 ¢
2𝜀p𝑞q Ď 𝑅2𝜀{pp1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q (3.27)

We can then apply Assumption 8 (since the right-hand side is the normal reachable

set) to get a cardinality-𝑏 set 𝑄𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q such that

𝑅2𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q Ď

ď

𝑞1P𝑄
𝜀{pp1´𝜌˚

𝜁
p𝜀qq ¢𝜁pr𝑞s𝒳 qq

p𝑞q

𝑅𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞

1
q (3.28)

Note that without loss of generality, for any 𝜀1 and any 𝑞1 (note: this 𝑞1 is not related

to 𝑄𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q, it is any 𝑞1 P 𝒬), we can assume

𝑄𝜀1p𝑞1
q Ă

ÐÑ
𝑅 3𝜀1p𝑞1

q (3.29)

since WLOG we can assume that any 𝑞2 P 𝑄𝜀1p𝑞1q has the property

𝑅𝜀1p𝑞2
q X𝑅2𝜀1p𝑞1

q ‰ H (3.30)

as the points in 𝑄𝜀1p𝑞1q are being used to cover 𝑅2𝜀1p𝑞1q. This in turn yields

𝑅𝜀1p𝑞2
q Ď

ÐÑ
𝑅 4𝜀1p𝑞1

q (3.31)

for any 𝑞2 P 𝑄𝜀1p𝑞1q. Thus we can apply this to

𝜀1
“ 𝜀{pp1´ 𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qq and 𝑞1
“ 𝑞 (3.32)

which then yields for any 𝑞1 P 𝑄𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qq that

𝑅𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞

1
q Ă

ÐÑ
𝑅 4𝜀{pp1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q (3.33)
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Then, for 𝜀 ď 𝛼2
1{p45𝛼2𝑐Πq we have

𝜌˚
𝜁 p𝜀q ď 1{9 (3.34)

which in turn means

4p1` 𝜌˚
𝜁 p𝜀qq{p1´ 𝜌

˚
𝜁 p𝜀qq ď 4p10{9q{p8{9q “ 5 (3.35)

and hence by (3.26) we have

ÐÑ
𝑅 4𝜀{pp1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q Ď
ÐÑ
𝑅

¢
5𝜀p𝑞q (3.36)

This then finally yields by (3.25) that for all 𝑞1 P 𝑄𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q,

𝑅𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞

1
q Ď 𝑅 ¢

pp1`𝜌˚
𝜁 p𝜀qq{p1´𝜌˚

𝜁 p𝜀qqq𝜀
p𝑞1
q (3.37)

when 𝜀 ď 𝛼2
1{p45𝛼2𝑐Πq. We can then define

𝜌1p𝜁q “ 𝜁𝛼2
1{p45𝛼2𝑐Πq and 𝜌2p𝜁q “

1` 𝜁{9

1´ 𝜁{9
´ 1 (3.38)

in which case when 𝜀 ď 𝜌1p𝜁q we get

1` 𝜌˚
𝜁 p𝜀q

1´ 𝜌˚
𝜁 p𝜀q

ď
1` 𝜌˚

𝜁 p𝜌1p𝜁qq

1´ 𝜌˚
𝜁 p𝜌1p𝜁qq

ď
1` 𝜁{9

1´ 𝜁{9
“ 1` 𝜌2p𝜁q (3.39)

where lim𝜁Ñ0 𝜌2p𝜁q “ 0. Thus, we finally have

𝑅𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞

1
q Ď 𝑅 ¢

p1`𝜌2p𝜁qq𝜀p𝑞
1
q (3.40)
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Putting this together with the above, we get

𝑅 ¢
2𝜀p𝑞q Ď 𝑅2𝜀{pp1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q (3.41)

Ď
ď

𝑞1P𝑄
𝜀{pp1´𝜌˚

𝜁
p𝜀qq ¢𝜁pr𝑞s𝒳 qq

p𝑞q

𝑅𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞

1
q (3.42)

Ď
ď

𝑞1P𝑄
𝜀{pp1´𝜌˚

𝜁
p𝜀qq ¢𝜁pr𝑞s𝒳 qq

p𝑞q

𝑅 ¢
p1`𝜌2p𝜁qq𝜀p𝑞

1
q (3.43)

and |𝑄𝜀{pp1´𝜌˚
𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q| ď 𝑏, and hence we may finally conclude that part (i) is

true, with

𝑄 ¢
𝜀 p𝑞q “ 𝑄𝜀{pp1´𝜌˚

𝜁 p𝜀qq ¢𝜁pr𝑞s𝒳 qqp𝑞q . (3.44)

Part (ii) follows by considering ¢˚
max :“ sup𝑥p𝑓p𝑥q𝑔p𝑥qq

1
𝛾 , which is a constant with

regard to 𝜁 and 𝜀. Then, noting that 𝑅𝜀{ ¢˚
max
p𝑞1q Ď 𝑅 ¢

𝜀 p𝑞
1q since ¢𝜁p𝑥q ď ¢˚

max, we

can simply use 𝑃 ¢ such that 𝑃 ¢p1{𝜀q “ 𝑃 p ¢˚
max{𝜀q and 𝑄 ¢,0

𝜀 “ 𝑄𝜀{ ¢˚
max

and we are

done.

Part (iii) follows because when 𝜀 ď 𝜌1p𝜁q and 𝑞1 P 𝑅 ¢
𝜀 p𝑞q,

p1´ p𝑐Πp𝛼2{𝛼
2
1qq𝜀q ¢𝜁pr𝑞s𝒳 q ď ¢𝜁pr𝑞1

s𝒳 q ď p1` p𝑐Πp𝛼2{𝛼
2
1qq𝜀q ¢𝜁pr𝑞s𝒳 q (3.45)

(under the same logic as before but with radius 𝜀 rather than 5𝜀). Thus we know

that

𝑅 ¢
𝜀 p𝑞q Ď 𝑅𝜀{pp1´p𝑐Πp𝛼2{𝛼2

1qq𝜀q ¢𝜁pr𝑞s𝒳 qqp𝑞q (3.46)

Then we set 𝜌3p𝜁q “ p1 ´ 𝜁{45q´𝛾 ´ 1. Then, when 𝜀 ď 𝜌1p𝜁q “ 𝜁𝛼2
1{p45𝛼2𝑐Πq, we

have

1´ p𝑐Πp𝛼2{𝛼
2
1qq𝜀 ě 1´ 𝜁{45 (3.47)
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which thus means (taking the above and projecting to 𝒳 )

�̄� ¢
𝜀 p𝑞q Ď �̄�𝜀p1´𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 qp𝑞q (3.48)

We then consider the volume of the set above. Since reachable set volumes approach

𝑔p𝑞q𝜀𝛾, for any 𝜌3˚p𝜁q there is some 𝜌1˚p𝜁q such that when 𝜀 ď 𝜌1˚p𝜁q,

Volp�̄�𝜀p𝑞qq ď p1` 𝜌3˚p𝜁qq𝑔p𝑞q𝜀𝛾 ď p1` 𝜌3˚p𝜁qq𝑔pr𝑞s𝒳 q𝜀
𝛾 (3.49)

Using 𝜀p1´ 𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 q instead of 𝜀 gives (for 𝜀 ď p1´ 𝜁{45q ¢𝜁pr𝑞s𝒳 q𝜌1˚p𝜁q ď

p1´ 𝜁{45q𝜁
2
𝛾 𝜌1˚p𝜁q)

Volp�̄�𝜀p1´𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 qp𝑞qq ď p1` 𝜌3˚p𝜁qqp1´ 𝜁{45q´𝛾 ¢𝜁pr𝑞s𝒳 q´𝛾𝑔pr𝑞s𝒳 q𝜀
𝛾 (3.50)

“ p1` 𝜌3˚p𝜁qqp1´ 𝜁{45q´𝛾𝑓 p𝜁q
pr𝑞s𝒳 q

´1𝜀𝛾 (3.51)

Finally we note that the entire reachable set is (by definition) within a distance of

at most 𝜀p1´ 𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 q and hence the Lipschitz continuity (and boundedness

away from 0) implies that for any 𝜌3˚˚p𝜁q, there is some 𝜌1˚˚p𝜁q such that for all

𝜀 ă 𝜌1˚˚p𝜁q,

𝑓 p𝜁q
p𝑞1
q ď p1` 𝜌3˚˚p𝜁qq𝑓 p𝜁q

p𝑞q for all 𝑞1 within distance 𝜀 of 𝑞 (3.52)
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Hence, setting 𝜀 ă 𝜌1˚˚p𝜁qp1´ 𝜁{45q ¢𝜁pr𝑞s𝒳 q ď 𝜌1˚˚p𝜁qp1´ 𝜁{45q𝜁
2
𝛾 then yields

E𝑋„𝑓 r𝑋 P �̄� ¢
𝜀 p𝑞qs ď E𝑋„𝑓 r𝑋 P �̄�𝜀p1´𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 qp𝑞qs (3.53)

“

ż

�̄�𝜀p1´𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 q
p𝑞q

𝑓p𝑥q 𝑑𝑥 (3.54)

ď

ż

�̄�𝜀p1´𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 q
p𝑞q

𝑓 p𝜁q
p𝑥q 𝑑𝑥 (3.55)

ď

ż

�̄�𝜀p1´𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 q
p𝑞q

p1` 𝜌3˚˚p𝜁qq𝑓 p𝜁q
p𝑞q 𝑑𝑥 (3.56)

“ p1` 𝜌3˚˚p𝜁qq𝑓 p𝜁q
p𝑞qVolp�̄�𝜀p1´𝜁{45q´1{ ¢𝜁pr𝑞s𝒳 qp𝑞qq (3.57)

ď p1` 𝜌3˚˚p𝜁qq𝑓 p𝜁q
p𝑞qp1` 𝜌3˚p𝜁qqp1´ 𝜁{45q´𝛾𝑓 p𝜁q

pr𝑞s𝒳 q
´1𝜀𝛾

(3.58)

“ p1` 𝜌3˚˚p𝜁qqp1` 𝜌3˚p𝜁qqp1´ 𝜁{45q´𝛾𝜀𝛾 (3.59)

Thus, noting that 𝜌3˚p𝜁q and 𝜌3˚˚p𝜁q can be made arbitrarily small as 𝜁 Ñ 0 (and

p1´ 𝜁{45q´𝛾 Ñ 1 as 𝜁 Ñ 0), we can let

𝜌3p𝜁q “ p1` 𝜌3˚˚p𝜁qqp1` 𝜌3˚p𝜁qqp1´ 𝜁{45q´𝛾
´ 1 (3.60)

and the above will hold for all 𝜀 such that

𝜀 ď 𝜌1˚p𝜁qp1´ 𝜁{45q𝜁
2
𝛾 and 𝜌1˚˚p𝜁qp1´ 𝜁{45q𝜁

2
𝛾 (3.61)

We then set 𝜌1 to be the minimum of the above values (of which there are only a

fixed, finite number, so it remains positive).

Finally, part (iv) follows from the Monotone Convergence Theorem since

E𝑋„𝑓 rp𝑓p𝑋q𝑔p𝑋qq
´ 1

𝛾 s “

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 ă 8 (3.62)

and lim𝜁Ñ0 ¢𝜁p𝑥q´1 “ p𝑓p𝑥q𝑔p𝑥qq´
1
𝛾 wherever 𝑓p𝑥q𝑔p𝑥q is continuous, which is almost

everywhere.
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Lemma 10(i) is the cost-reachable equivalent to the 𝑏-coverability assumption

(Assumption 8) for our original (length) reachable sets; (ii) is similarly equivalent

to the starting coverability assumption (Assumption 9); (iii) is a statement on the

probability weights of the cost-reachable sets; and (iv) refers to the ability of ¢𝜁 to

approximate ¢˚ (while being bounded away from 0 and Lipschitz continuous).

3.2 Cost-Balanced Orienteering

Definition 18. The cost-bounded trajectory set of dynamic system Π is denoted

Π ¢
𝜆 :“ t𝜋 P Π : ℓ ¢

p𝜋q ď 𝜆u (3.63)

Then, the Cost-Balanced Orienteering problem is defined by

CBOΠp𝑋1, 𝑋2, . . . , 𝑋𝑛;𝜆q :“ max
𝜋PΠ ¢

𝜆

p|�̄� X t𝑋𝑖u
𝑛
𝑖“1|q (3.64)

i.e. the maximum number of targets which can be visited by a trajectory of cost

at most 𝜆.

Note that unlike normal Orienteering or TSP, even if we treat 𝑋1, . . . , 𝑋𝑛 as fixed,

the problem depends on the density function 𝑓 as that influences the cost function.

We now show a (with very high probability) lower bound on the CBO, which can

then be turned into a corresponding upper bound on the Dynamic Stochastic TSP.

Proposition 7. [CBO upper bound] Let Π be a symmetric dynamic system and

𝑓 be a probability density function satisfying the assumptions in Section 2.1, and

let 𝜆 ą 0 be fixed and sufficiently small. Then, there exists 0 ă 𝛽 (dependent on

Π through branching factor 𝑏 and small-time constraint factor 𝛾 but not directly

on agility function 𝑔 or density 𝑓) such that if 𝑋1, 𝑋2, . . . 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 , then

CBOΠp𝑋1, 𝑋2, . . . , 𝑋𝑛;𝜆, 𝑓q ď 𝛽𝜆𝑛
1
𝛾 (3.65)
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with very high probability, where 𝛽 does not depend on 𝑓 , 𝑔, or 𝜆.

Note that 𝛽 depends on neither 𝑓 nor 𝑔 thanks to the cost balancing: changing 𝑓 or

𝑔 (by altering the dynamic system Π) also changes ¢𝜁 to preserve the balance.

We make the constants and probability bound of Proposition 7 more explicit:

Proposition 8. If the assumptions in Section 2.1 hold, then for any 𝛿 ą 0,

PrCBOΠp𝑋1, 𝑋2, . . . , 𝑋𝑛;𝜆, 𝑓q ď p1` 𝛿q𝛽𝜆𝑛
1
𝛾 s ě 1´ 𝑒´ 4

5
p1`𝛿q logp𝑏q𝜆𝑛

1
𝛾 (3.66)

for sufficiently large 𝑛 (where ‘sufficiently large’ can depend on 𝛿).

Definition 19. Given a cost bound 𝜆 ą 0, scale 𝜀 ą 0, and approximation

factor 𝜌 ą 0, we define a 𝜆-cost, 𝜀-scale, 𝜌-approximate representation sequence

(to be referred to in general as a representation sequence) to be any sequence of

configurations

𝜓 “ p𝜓0, 𝜓1, . . . , 𝜓r𝜆{pp1´𝜌q𝜀qsq where 𝜓𝑘 P 𝒬 for all 𝑘 (3.67)

such that 𝜓0 P 𝑄
¢,0
p1´𝜌q𝜀 and 𝜓𝑘 P 𝑄

¢
p1´𝜌{2q𝜀p𝜓𝑘´1q for all 𝑘 ě 1 (3.68)

Note that we scale back by p1´ 𝜌q for the initial covering set 𝑄 ¢,0
p1´𝜌q𝜀 but only by

p1´ 𝜌{2q for the 𝑏-covering sets 𝑄 ¢
p1´𝜌{2q𝜀.

We say 𝜓 represents trajectory 𝜋, denoted 𝜋 Ą 𝜓, if

𝜋 ¢
p𝑘p1´ 𝜌q𝜀q P 𝑅 ¢

𝜀 p𝜓𝑘q for all 𝑘 P t0, 1, . . . , 𝑛u (3.69)

We denote the set of all representation sequences (with parameters 𝜆, 𝜀, 𝜌) as

Ψ ¢
𝜆,𝜀,𝜌. Furthermore, we denote the cost-reachable set of 𝜓 (with radius 𝜀) as the

union of the reachable sets of 𝜓0, 𝜓1, . . . , 𝜓r𝜆{pp1´𝜌q𝜀qs, which we denote

𝑅 ¢
𝜀 p𝜓q :“

r𝜆{pp1´𝜌q𝜀qs
ď

𝑘“0

𝑅 ¢
𝜀 p𝜓𝑘q (3.70)
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and we denote its workspace projection as

�̄� ¢
𝜀 p𝜓q :“

r𝜆{pp1´𝜌q𝜀qs
ď

𝑘“0

�̄� ¢
𝜀 p𝜓𝑘q . (3.71)

Note that any representation sequence may represent many (even infinitely many)

different valid trajectories, and any trajectory may be represented by multiple rep-

resentation sequences. We now show a few of lemmas concerning representation

sequences:

Lemma 11. For any 𝜌 ą 0, there is some sufficiently small 𝜁 ą 0 (which defines

the cost function) and 𝜀p𝜌q ą 0 such that for all 0 ă 𝜀 ď 𝜀p𝜌q such that any trajectory

𝜋 P Π ¢
𝜆 such that 𝜋p0q P r𝒳𝑓 s

𝒬 is represented by some 𝜓 P Ψ ¢
𝜆,𝜀,𝜌.

Proof. First, we define 𝜁 ą 0 sufficiently small so that 1 ` 𝜌2p𝜁q ď 1{p1 ´ 𝜌{2q; we

then use 𝜀p𝜌q “ 𝜌1p𝜁q (see Lemma 10 for the definitions of 𝜌2p𝜁q and 𝜌1p𝜁q). This in

particular means that for any 0 ă 𝜀 ď 𝜀p𝜌q and any 𝑞 P 𝒬, there is a set 𝑄 ¢
p1´𝜌q𝜀p𝑞q

such that |𝑄 ¢
𝜀 p𝑞q| ď 𝑏 and

𝑅 ¢
p2´𝜌q𝜀p𝑞q “ 𝑅 ¢

2p1´𝜌{2q𝜀p𝑞q Ď
ď

𝑞1P𝑄 ¢
p1´𝜌{2q𝜀

p𝑞q

𝑅 ¢
p1`𝜌2p𝜁qqp1´𝜌{2q𝜀p𝑞

1
q Ď

ď

𝑞1P𝑄 ¢
p1´𝜌{2q𝜀

p𝑞q

𝑅 ¢
𝜀 p𝑞

1
q .

(3.72)

We then construct 𝜓 P Ψ ¢
𝜆,𝜀,𝜌 such that 𝜓 Ą 𝜋 inductively.

Base case: We choose 𝜓0 such that 𝜋p0q “ 𝜋 ¢p0q P 𝑅 ¢
𝜀 p𝜓0q. This must exist

because by definition the 𝜀-radius reachable sets from points in 𝑄 ¢,0
p1´𝜌q𝜀 cover r𝒳𝑓 s

𝒬.

Inductive step: For any 𝑘 ą 0, given 𝜓𝑘´1 such that 𝜋 ¢pp𝑘´1qp1´𝜌q𝜀q P 𝑅 ¢
𝜀 p𝜓𝑘´1q,

we need to choose 𝜓𝑘 P 𝑄
¢
p1´𝜌{2q𝜀p𝜓𝑘´1q such that 𝜋 ¢p𝑘p1´ 𝜌q𝜀q P 𝑅 ¢

𝜀 p𝜓𝑘q. We do this

by noting that by definition 𝜋 ¢p𝑘p1´𝜌q𝜀q P 𝑅 ¢
𝜀 p𝜋

¢pp𝑘´1qp1´𝜌q𝜀qq (since they are only

cost p1´ 𝜌q𝜀 apart on valid trajectory 𝜋). Thus, 𝜋 ¢p𝑘p1´ 𝜌q𝜀q P 𝑅 ¢
p2´𝜌q𝜀p𝜓𝑘´1q (since

we can get from 𝜓𝑘´1 to 𝜋pp𝑘´1qp1´𝜌q𝜀q with a 𝜀-cost valid trajectory, and then from

𝜋pp𝑘´1qp1´𝜌q𝜀q to 𝜋p𝑘p1´𝜌q𝜀q with an additional p1´𝜌q𝜀-cost valid trajectory, thus

in total a p2´𝜌q𝜀-cost valid trajectory). But then by (3.72) we know that𝑅 ¢
p2´𝜌q𝜀p𝜓𝑘´1q
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Figure 3-2: Implicit discretization: inductively building 𝜓 representing 𝜋 for a Dubins
car; for simplicity the 𝜌 error term is omitted from the illustration. (a) The situation
at 𝜋 ¢pp𝑘 ´ 1q𝜀q, and extending the cost-reachable set from 𝜓𝑘´1 to radius 2𝜀 to
encompass 𝜋 ¢p𝑘𝜀q; (b) using Lemma 10 to cover 𝑅 ¢

2𝜀p𝜓𝑘´1q with 𝜀-cost reachable sets
to select 𝜓𝑘. Note that these reachable sets are configuration reachable sets so the
illustration is missing a dimension (the orientation).

is covered by the 𝜀-radius cost reachable sets from points in 𝑄 ¢
p1´𝜌{2q𝜀p𝜓𝑘´1q, and

hence we can choose the one containing 𝜋 ¢p𝑘p1´ 𝜌q𝜀q P 𝑅 ¢
p2´𝜌q𝜀p𝜓𝑘´1q to be 𝜓𝑘, thus

maintaining 𝜓𝑘 P 𝑄
¢
p1´𝜌{2q𝜀p𝜓𝑘´1q and 𝜋 ¢p𝑘p1´ 𝜌q𝜀q P 𝑅 ¢

𝜀 p𝜓𝑘q.

Thus, we can build 𝜓0, 𝜓1, . . . like this until we have covered all of 𝜋. Since 𝜋 ¢

only takes in inputs from 0 to 𝜆, we only need to do this up to 𝜋 ¢pt𝜆{pp1´𝜌q𝜀qu𝜀q and

we are done (we may even have to add another point to the representation sequence

if t𝜆{pp1´ 𝜌q𝜀qu “ r𝜆{pp1´ 𝜌q𝜀qs´ 1, which we can do from 𝑄 ¢
𝜀 p𝜓t𝜆{pp1´𝜌q𝜀quq).

Lemma 12. For any 𝜓 Ą 𝜋 P Π, we have 𝜋 Ă 𝑅 ¢
2𝜀p𝜓q; if Π is symmetric, then

𝜋 Ă 𝑅 ¢
p3{2q𝜀p𝜓q. Furthermore, �̄� Ă �̄� ¢

2𝜀p𝜓q holds for any Π and �̄� Ă �̄� ¢
p3{2q𝜀p𝜓q holds

for symmetric Π.

Proof. For any 𝜋 ¢p𝑡q, we can write 𝑡 “ 𝑘p1 ´ 𝜌q𝜀 ` 𝜏 where 𝑘 is an integer (and is

between 0 and r𝜆{𝜀s) and 𝜏 ă p1´ 𝜌q𝜀 ă 𝜀. Then 𝜋 ¢p𝑡q P 𝑅 ¢
2𝜀p𝜓𝑘q since 𝜋 ¢p𝑘p1´ 𝜌q𝜀q

is within 𝜀 cost from 𝜓𝑘 and 𝜋 ¢p𝑡q is within 𝜏 ă p1´ 𝜌q𝜀 ă 𝜀 cost from 𝜋 ¢p𝑘p1´ 𝜌q𝜀q.

If Π is symmetric, then we divide into two cases: (i) 𝜏 ď 𝜀{2; (ii) 𝜏 ą 𝜀{2. In case

(i), we have that 𝜋 ¢p𝑡q is at most 𝜏 ď 𝜀{2 cost (moving forwards) from 𝜋 ¢p𝑘p1´𝜌q𝜀q,

which is at most 𝜀 cost from 𝜓𝑘, hence

𝜋 ¢
p𝑡q P 𝑅 ¢

p3{2q𝜀p𝜓𝑘q Ď 𝑅 ¢
p3{2q𝜀p𝜓q. (3.73)

In case (ii) we have that 𝜋 ¢p𝑡q is at most p1´ 𝜌q𝜀´ 𝜏 ă 𝜀{2 from 𝜋 ¢pp𝑘` 1qp1´ 𝜌q𝜀q

(moving backward along 𝜋, which is allowed by symmetric Π), and 𝜋 ¢pp𝑘`1qp1´𝜌q𝜀q
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is at most 𝜀 cost from 𝜓𝑘`1, hence

𝜋 ¢
p𝑡q P 𝑅 ¢

p3{2q𝜀p𝜓𝑘`1q Ď 𝑅 ¢
p3{2q𝜀p𝜓q. (3.74)

In both cases, we have 𝜋 ¢p𝑡q P 𝑅 ¢
p3{2q𝜀p𝜓q for any 𝑡 P r0, 𝜆s and hence 𝜋 Ď 𝑅 ¢

p3{2q𝜀p𝜓q.

The statements for these sets projected into 𝒳 then follow trivially.

Lemma 13. Let 𝑏 be the branching factor and 𝑃 ¢ the polynomial from Lemma 10(ii),

|Ψ ¢
𝜆,𝜀,𝜌| ď 𝑃 ¢

p1{pp1´ 𝜌q𝜀qq𝑏r𝜆{pp1´𝜌q𝜀qs (3.75)

Additionally, for any fixed 𝛿 ą 0, there is some 𝜌p𝛿q ą 0 and 𝜀p𝛿q ą 0 such that for all

0 ă 𝜀 ď 𝜀p𝛿q,

|Ψ ¢
𝜆,𝜀,𝜌p𝛿q | ď 𝑏p1`𝛿q𝜆{𝜀 . (3.76)

Proof. This follows from the fact that for any 𝜓 “ p𝜓0, 𝜓1, . . . , 𝜓r𝜆{pp1´𝜌q𝜀qsq P Ψ ¢
𝜆,𝜀,𝜌,

we have 𝜓0 P 𝑄 ¢,0
𝜀 and 𝜓𝑘 P 𝑄 ¢

𝜀 p𝜓𝑘´1q for all 𝑘 ą 0. Thus, we have |𝑄 ¢,0
p1´𝜌q𝜀| ď

𝑃 ¢p1{pp1´ 𝜌q𝜀qq choices for 𝜓0, and then for each 𝑘 ą 0 (iterating from 1 to r𝜆{pp1´

𝜌q𝜀qs) we have |𝑄 ¢
p1´𝜌{2q𝜀p𝜓𝑘´1q| ď 𝑏 choices. Thus the total number of ways to

construct 𝜓 P Ψ ¢
𝜆,𝜀,𝜌 is at most 𝑃 ¢p1{pp1´ 𝜌q𝜀qq𝑏r𝜆{pp1´𝜌q𝜀qs.

Finally, the approximation holds because for any 𝛿 ą 0, we can select 𝜌p𝛿q such

that 1{p1´ 𝜌p𝛿qq ď 1` 𝛿{2. We note that

𝑏p1`𝛿q𝜆{𝜀
{𝑏r𝜆{pp1´𝜌p𝛿qq𝜀qs

ě 𝑏pp1`𝛿q´1{p1´𝜌p𝛿qqq𝜆{𝜀´1
ě 𝑏p𝛿{2q𝜆{𝜀´1 (3.77)

grows faster than any polynomial in 1{𝜀, and specifically it must grow faster than

𝑃 ¢p1{pp1´ 𝜌p𝛿qq𝜀qq. Thus, for sufficiently small 𝜀,

|Ψ ¢
𝜆,𝜀,𝜌p𝛿q | ď 𝑃 ¢

p1{pp1´ 𝜌q𝜀qq𝑏r𝜆{pp1´𝜌p𝛿qq𝜀qs
ď 𝑏p1`𝛿q𝜆{𝜀 (3.78)

and we are done.
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Furthermore, given any constant 𝑟 ě 0, the probability mass of any �̄� ¢
𝑟𝜀p𝜓q (and

thus the expected number of targets that fall within it) is easy to bound:

Lemma 14. For any fixed 𝜆 ą 0 and 𝛿 ą 0, there is a sufficiently small 𝜌p𝛿q ą 0 such

that for any sufficiently small 𝜀 ą 0 and 𝜓 P Ψ ¢
𝜆,𝜀,𝜌p𝛿q,

P𝑋„𝑓 r𝑋 P �̄� ¢
𝑟𝜀p𝜓qs ď p1` 𝛿q𝑟

𝛾𝜆𝜀𝛾´1 . (3.79)

Proof. We know that for any 𝜓𝑘 P 𝒬,

P𝑋„𝑓 r𝑋 P �̄� ¢
𝜀 p𝜓𝑘qs ď p1` 𝑜p1qq𝜀

𝛾 (3.80)

Therefore, using 𝑟𝜀 as the radius (which doesn’t affect the fact that the 𝑜p1q error

term still goes to 0 as 𝜀Ñ 0 and only depends on 𝜀) and letting 𝜌p𝛿q (as in the previous

lemma) satisfy 1{p1 ´ 𝜌p𝛿qq ă 1 ´ 𝛿{2, we can take a union bound. When 𝜀 ă 𝛿𝜆{8,

there are

r𝜆{pp1´ 𝜌p𝛿q
q𝜀qs` 1 ď p1` 𝛿{2q𝜆{𝜀` 2 ď p1` p3{4q𝛿q𝜆{𝜀 (3.81)

possible values of 𝑘. We can then take 𝜀 sufficiently small so that P𝑋„𝑓 r𝑋 P �̄� ¢
𝑟𝜀p𝜓𝑘qs ď

p1`𝛿˚q𝑟𝛾𝜀𝛾, where 𝛿˚ is the value (dependent on 𝛿 only) such that p1`𝛿˚qp1`p3{4q𝛿q “

1` 𝛿); then by the union bound, we have

P𝑋„𝑓 r𝑋 P �̄� ¢
𝑟𝜀p𝜓qs ď

r𝜆{pp1´𝜌p𝛿qq𝜀qs
ď

𝑘“0

P𝑋„𝑓 r𝑋 P �̄� ¢
𝑟𝜀p𝜓𝑘qs (3.82)

ď pr𝜆{pp1´ 𝜌p𝛿q
q𝜀qs` 1qp1` 𝛿˚

q𝑟𝛾𝜀𝛾 (3.83)

ď p1` 𝛿q𝑟𝛾𝜆𝜀𝛾´1 (3.84)

as we wanted.

We now define a new problem in which the goal is to find a representation sequence

whose 2𝜀-cost-reachable set (if Π is nonsymmetric) or p3{2q𝜀-cost-reachable set (if Π

is symmetric) contains as many target points as possible. We formally define:
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Definition 20. Given length bound 𝜆 ą 0, scale 𝜀 ą 0, and approximation factor

𝛿 ą 0, we define the Sequence Containment Problem (SCP) as follows. First, let

𝜌 :“ 𝜌p𝛿q be sufficiently small so that Lemmas 13 and 14 hold (we can take the

minimum of the values necessary for each), and let 𝜁 ą 0 (the cost function

regularization factor) be sufficiently small so that Lemma 11 holds (thus defining

the cost function ¢). If Π is nonsymmetric, let 𝑟 “ 2; if Π is symmetric, let

𝑟 “ 3{2; then

SCPΠp𝑋1, . . . , 𝑋𝑛;𝜆, 𝜀, 𝛿q :“ max
𝜓PΨ ¢

𝜆,𝜀,𝜌

|t𝑋1, . . . , 𝑋𝑛u X �̄�
¢
𝑟𝜀p𝜓q| (3.85)

This replaces the optimization problem over the tricky and uncountably infinite

Π (regarded as a set of trajectories) with an optimization problem over the finite set

Ψ ¢
𝜆,𝜀,𝜌. Furthermore, the new problem is an upper bound for the old one:

Lemma 15. For any dynamics Π, density function 𝑓 (which influences the cost

function), cost constraint 𝜆 ą 0 and scale 𝜀 ą 0,

CBOΠp𝑋1, . . . , 𝑋𝑛;𝜆q ď SCPΠp𝑋1, . . . , 𝑋𝑛;𝜆, 𝜀, 𝛿q (3.86)

Proof. This follows from Lemmas 11 and 12: for any 𝜋 P Π ¢
𝜆 , there exists 𝜓 P Ψ ¢

𝜆,𝜀,𝜌

such that 𝜓 Ą 𝜋, and this implies �̄� Ď �̄� ¢
𝑟𝜀p𝜓q. Thus,

|t𝑋1, . . . , 𝑋𝑛u X �̄�| ď |t𝑋1, . . . , 𝑋𝑛u X �̄�
¢
𝑟𝜀p𝜓q| (3.87)

and so the maximum of the former over 𝜋 P Π is at most the maximum of the latter

over 𝜓 P Ψ ¢
𝜆,𝜀,𝜌.

We now prove Proposition 8. In order to find an upper bound (wvhp) to the

CBO, we want to obtain a (wvhp) upper bound to SCPΠp𝑋1, . . . , 𝑋𝑛;𝜆, 𝜀, 𝛿q, which

by Lemma 15 will then hold for the CBO. Since we can set 𝜀 ą 0 to any (sufficiently

small) value, we use 𝜀 “ 𝑛´ 1
𝛾 (which will get arbitrarily small as 𝑛Ñ 8).
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We now consider first fixing 𝜓 (arbitrarily) before 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 are chosen and

then looking at |t𝑋1, . . . , 𝑋𝑛u X �̄�
¢
𝑟𝜀p𝜓q| as a random variable (since it takes random

inputs 𝑋1, . . . , 𝑋𝑛). We let 𝑝p𝜓q :“ P𝑋„𝑓 r𝑋 P �̄� ¢
𝑟𝜀p𝜓qs. Plugging into Lemma 14

yields

𝑝p𝜓q
“ P𝑋„𝑓 r𝑋 P �̄� ¢

𝑟𝜀p𝜓qs ď p1` 𝛿q𝜆𝑟
𝛾𝑛´p1´ 1

𝛾
q (3.88)

ùñ E
𝑋𝑖

𝑖𝑖𝑑
„ 𝑓
r|t𝑋1, . . . , 𝑋𝑛u X �̄�

¢
𝑟𝜀p𝜓q|s ď p1` 𝛿q𝜆𝑟

𝛾𝑛
1
𝛾 (3.89)

Additionally, with 𝜓 P Ψ ¢
𝜆,𝜀,𝜌 fixed, we can let 𝑍𝑖 :“ 𝑍

p𝜓q

𝑖 :“ 1t𝑋𝑖 P �̄�
¢
𝑟𝜀p𝜓qu and

𝑍 :“ 𝑍p𝜓q :“
𝑛

ÿ

𝑖“1

𝑍
p𝜓q

𝑖 “ |t𝑋1, . . . , 𝑋𝑛u X �̄�
¢
𝑟𝜀p𝜓q| (3.90)

We define 𝑝˚ “ p1 ` 𝛿q𝑟𝛾𝑛´p1´ 1
𝛾

q. Then we know that 𝑍𝑖
𝑖𝑖𝑑
„ Bernp𝑝p𝜓qq, and that for

sufficiently small 𝜀 (which translates to sufficiently large 𝑛 since 𝜀Ñ 0 as 𝑛Ñ 8) we

have 𝑝p𝜓q ď 𝑝˚ for all 𝜓; thus, we can WLOG assume 𝑝p𝜓q ď 𝑝˚ for all 𝜓 P Ψ ¢
𝜆,𝜀,𝜌.

We then define 𝑍˚
1 , . . . , 𝑍

˚
𝑖

𝑖𝑖𝑑
„ Bernp𝑝˚q and 𝑍˚ “

ř𝑛
𝑖“1 𝑍

˚
𝑖 . Since 𝑝p𝜓q ď 𝑝˚, for

any 𝐴 ą 0,

Pr𝑍p𝜓q
ě 𝐴s ď Pr𝑍˚

ě 𝐴s (3.91)

Let 𝜇˚ :“ Er𝑍˚s “ p1` 𝛿q𝑟𝛾𝜆𝑛
1
𝛾 .

Therefore we use Lemma 15, the union bound, equation (3.91), and Lemma 13
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(in that order) to get that for all 𝐴 ą 0 (where the probabilities are over 𝑋𝑖
𝑖𝑖𝑑
„ 𝑓):

P
“

CBOΠp𝑋1, . . . , 𝑋𝑛; 𝑓, 𝜆q ě 𝐴s ď P
“

SCPΠp𝑋1, . . . , 𝑋𝑛;𝜆, 𝜀, 𝛿q ě 𝐴
‰

(3.92)

“ PrD𝜓 P Ψ ¢
𝜆,𝜀,𝜌 : 𝑍

p𝜓q
ě 𝐴s (3.93)

ď
ÿ

𝜓PΨ ¢
𝜆,𝜀,𝜌

Pr𝑍p𝜓q
ě 𝐴s (3.94)

ď |Ψ ¢
𝜆,𝜀,𝜌|Pr𝑍

˚
ě 𝐴s (3.95)

ď 𝑏p1`𝛿q𝜆{𝜀 Pr𝑍˚
ě 𝐴s (3.96)

“ 𝑏p1`𝛿q𝜆𝑛
1
𝛾 Pr𝑍˚

ě 𝐴s (3.97)

for any sufficiently small 𝜀 ą 0, i.e. sufficiently large 𝑛.

Since 𝑍˚ is a sum of iid Bernoulli random variables, we can apply the Chernoff

bound. In particular, let 𝐴 “ p1` 𝜉q𝜇˚. Then the upper Chernoff bound says

Pr𝑍˚
ě 𝐴s “ Pr𝑍˚

ě p1` 𝜉q𝜇˚
s (3.98)

ď 𝑒´
𝜉2

2`𝜉
𝜇˚

(3.99)

“ 𝑒´
𝜉2

2`𝜉
p1`𝛿q𝑟𝛾𝜆𝑛

1
𝛾

(3.100)

We then note that equation (3.97), which is an upper bound on the probability that

the CBO problem yields a result ě 𝐴, is

𝑏p1`𝛿q𝜆𝑛
1
𝛾 Pr𝑍˚

ě 𝐴s ď 𝑒logp𝑏q p1`𝛿q𝜆𝑛
1
𝛾 ´

𝜉2

2`𝜉
p1`𝛿q𝑟𝛾𝜆𝑛

1
𝛾

(3.101)

“ 𝑒

`

logp𝑏q´
𝜉2

2`𝜉
𝑟𝛾

˘

𝜆p1`𝛿q𝑛
1
𝛾

(3.102)

We note that since 𝜆p1` 𝛿q ą 0, as long as logp𝑏q ´ 𝜉2

2`𝜉
𝑟𝛾 ă 0, the above goes to

0 as 𝑛 Ñ 8 (and does so according to 𝑒´𝑐𝑛
1
𝛾 , i.e. with very high probability). We

now analyze 𝜉 as defined in (1.19): since logp𝑏q{𝑟𝛾 ą
a

logp𝑏q{𝑟𝛾 ðñ logp𝑏q{𝑟𝛾 ą
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1 ðñ logp𝑏q ą 𝑟𝛾, if logp𝑏q ą 𝑟𝛾 we get

logp𝑏q ´
𝜉2

2` 𝜉
𝑟𝛾 “ logp𝑏q ´

9plogp𝑏q{𝑟𝛾q2

2` 3plogp𝑏q{𝑟𝛾q
𝑟𝛾 (3.103)

ď logp𝑏q ´
9plogp𝑏q{𝑟𝛾q2

5plogp𝑏q{𝑟𝛾q
𝑟𝛾 (3.104)

“ ´
4

5
logp𝑏q (3.105)

Similarly, if logp𝑏q ď 𝑟𝛾 we get

logp𝑏q ´
𝜉2

2` 𝜉
𝑟𝛾 “ logp𝑏q ´

9plogp𝑏q{𝑟𝛾q

2` 3
a

logp𝑏q{𝑟𝛾
𝑟𝛾 (3.106)

ď logp𝑏q ´
9plogp𝑏q{𝑟𝛾q

5
𝑟𝛾 (3.107)

“ ´
4

5
logp𝑏q (3.108)

and hence we have in either case the bound

logp𝑏q ´
𝜉2

2` 𝜉
𝑟𝛾 ď ´

4

5
logp𝑏q (3.109)

Then for sufficiently large 𝑛 (since 𝜀 “ 𝑛´ 1
𝛾 this is equivalent to ‘for sufficiently

small 𝜀’) and letting t𝑋𝑖u :“ t𝑋1, . . . , 𝑋𝑛u we have

PrCBOΠpt𝑋𝑖u; 𝑓, 𝜆q ě p1` 𝛿q𝛽𝜆𝑛
1
𝛾 s ď PrSCPΠpt𝑋𝑖u;𝜆, 𝜀, 𝜌q ě p1` 𝛿q𝛽𝜆𝑛

1
𝛾 s

(3.110)

ď |Ψ ¢
𝜆,𝜀,𝜌| Pr𝑍

˚
ě p1` 𝜉q𝜇˚

s (3.111)

ď 𝑏p1`𝛿q𝜆𝑛
1
𝛾
𝑒

`

´
𝜉2

2`𝜉
p1`𝛿q𝑟𝛾𝜆𝜀𝛾´1𝑛

˘

(3.112)

ď 𝑒´ 4
5

p1`𝛿q logp𝑏q𝜆𝑛
1
𝛾 (3.113)

thus proving Propositions 7 and 8.
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3.3 DSTSP lower bound

While the Cost-Balanced Orienteering problem can be bounded cleanly, it replaces

the length of the trajectory with a cost function. Thus, the direct correspondence

between Orienteering and TSP doesn’t hold with CBO and we need a new technique.

Let’s denote

Πt𝑋𝑖u :“ t𝜋 P Π : 𝑋𝑖 P �̄� for all 𝑖u (3.114)

i.e. the set of all TSP solution trajectories (not necessarily the minimum length). We

then take some 𝜋 P Πt𝑋𝑖u and want to show that with very high probability it must

be at least a certain length. We do this by chopping 𝜋 into segments of 𝜆 cost; if 𝜆 is

sufficiently short, the cost function will be roughly constant over the span of any of

these segments (since ¢𝜁 is Lipschitz continuous). Thus, the length of such a segment

will be at least roughly 𝜆{ ¢𝜁p𝑥q where 𝑥 is any point on the segment. Thus, we can

let ℓ𝑗 be the cost of the 𝑗th such segment, and let 𝑗p𝑖q be the segment that 𝑋𝑖 falls

in; we can then consider the sum over all 𝑖 of the length of the segment that 𝑋𝑖 falls

in, which is

𝑛
ÿ

𝑖“1

ℓ𝑗p𝑖q «

𝑛
ÿ

𝑖“1

𝜆{ ¢𝜁p𝑋𝑖q « 𝑛𝜆E𝑋„𝑓 r ¢𝜁p𝑋q´1
s « p1´ 𝛿q𝑛𝜆

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 .

(3.115)

However, this may well overcount the total length since each segment is counted once

per 𝑋𝑖 that falls on it; but by Proposition 8 we know that no such segment can have

more than p1`𝛿q𝛽𝜆𝑛
1
𝛾 targets on it. Thus, the total length is at least this sum divided

by p1 ` 𝛿q𝛽𝜆𝑛
1
𝛾 ; combining the two approximation factors 𝛿 (they can both be set

arbitrarily small), we end with the conclusion that for any 𝛿 ą 0, for all sufficiently

large 𝑛,

TSPΠp𝑋1, . . . , 𝑋𝑛q ě p1´ 𝛿q𝛽
´1𝑛1´ 1

𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (3.116)
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with very high probability.

Let us fix 𝜆 ą 0 generate 𝑋1, 𝑋2, . . .
𝑖𝑖𝑑
„ 𝑓 (an infinite sequence of targets, of which

we will look at trajectories visiting the first 𝑛 and let 𝑛 Ñ 8). For simplicity we

define

CBOp𝑛q :“ CBOΠp𝑋1, 𝑋2, . . . , 𝑋𝑛;𝜆, 𝑓q (3.117)

Let 𝛽 and 𝜉 be as defined in Definition 8. We will be using p1´𝛿{2q´1 instead of 1`𝛿

for the approximation (this will make the TSP bounds more elegant to state), which

are not equal but for any 𝛿1 ą 0, there is some 𝛿2 ą 0 such that 1` 𝛿1 “ p1´ 𝛿2{2q´1

and vice versa. Thus, with this alteration, Proposition 8 holds for all 𝛿 ą 0 for all

sufficiently large 𝑛 (where ‘sufficiently large’ may depend on 𝛿),

PrCBOp𝑛q
ď p1´ 𝛿{2q𝛽𝜆𝑛

1
𝛾 s ě 1´ 𝑒´ 4

5
logp𝑏q𝜆𝑛

1
𝛾

1´𝛿{2 ě 1´ 𝑒´ 4
5
logp𝑏q𝜆𝑛

1
𝛾 (3.118)

For the remainder of this section, we assume the bound on CBOp𝑛q holds; at the end

we will incorporate the probability that it fails into our bound. Let 𝜋 :“ 𝜋p𝑛q P Π be a

TSP trajectory for targets t𝑋1, . . . , 𝑋𝑛u and let 𝑡1, 𝑡2, . . . , 𝑡𝑛 P r0, ℓp𝜋qs satisfy �̄�p𝑡𝑖q “

𝑋𝑖 (𝑡𝑖 is the time when 𝜋 visits 𝑋𝑖, if there’s more than one then choose arbitrarily).

Without loss of generality we assume that max𝑖 𝑡𝑖 “ ℓp𝜋q (a TSP trajectory has no

need to continue once it has visited all 𝑛 targets).

We want to partition 𝜋 into cost-𝜆 segments. However, 𝜋 might not divide evenly

into cost-𝜆 segments, so we define the following values:

𝑘 :“ rℓ ¢
p𝜋q{𝜆s and 𝜆1 :“ ℓ ¢

p𝜋q{𝑘 (3.119)

Thus, 𝜆 ´ 1{𝑘 ď 𝜆1 ď 𝜆. Furthermore, since the bound on CBOp𝑛q holds, we know

that any cost-𝜆1 trajectory can have at most p1´ 𝛿{2q´1𝛽𝜆𝑛
1
𝛾 targets in it, and hence
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to get all 𝑛 points we need

𝑘 ě
𝑛

p1´ 𝛿{2q´1𝛽𝜆𝑛
1
𝛾

“ p1´ 𝛿{2q𝛽´1𝜆´1𝑛1´ 1
𝛾 (3.120)

such segments. Thus, as 𝑛Ñ 8 ùñ 𝑘 Ñ 8 ùñ 𝜆1 Ñ 𝜆. We define 0 “ 𝑡10 ă 𝑡11 ă

¨ ¨ ¨ ă 𝑡1𝑘 “ ℓp𝜋q such that

𝑡1𝑗 :“ min
´

𝑡 :

ż 𝑡

0

¢𝜁p𝜋p𝜏qq 𝑑𝜏 “ 𝑗𝜆1
¯

(3.121)

i.e. the trajectory reaches cost 𝑗𝜆1 at time 𝑡1𝑗. This also means that

ℓ ¢
p𝜋r𝑡1

𝑗´1,𝑡
1
𝑗sq “ 𝜆1 (3.122)

i.e. the cost 𝜋 accumulates between any 𝑡1𝑗´1 and 𝑡1𝑗 is 𝜆1. For any 𝑗, let 𝐴𝑗 :“ t𝑖 : 𝑡𝑖 P

r𝑡1𝑗´1, 𝑡
1
𝑗qu (and 𝐴𝑘 “ t𝑖 : 𝑡𝑖 P r𝑡

1
𝑘´1, 𝑡

1
𝑘suq so the whole interval r0, ℓp𝜋qs is included),

i.e. 𝜋 visits 𝑋𝑖 in the time interval r𝑡1𝑗´1, 𝑡
1
𝑗q. Because CBOp𝑛q is bounded and by

(3.122), we know that for sufficiently large 𝑛, all 𝑗 P r𝑘s satisfy

|𝐴𝑗| ď p1´ 𝛿{2q
´1𝛽𝜆𝑛

1
𝛾 . (3.123)

We also let ℓ𝑗 :“ ℓ
p𝜋,𝜆q

𝑗 “ 𝑡1𝑗 ´ 𝑡1𝑗´1, corresponding to the length of the 𝑗th cost-

𝜆1 trajectory, and define 𝑗p𝑖q such that 𝑖 P 𝐴𝑗p𝑖q (𝜋 visits 𝑋𝑖 in the 𝑗p𝑖qth cost-𝜆1

interval); note that it takes 𝜆 and not 𝜆1 as an input (and 𝜆1 is determined by 𝜆 and

ℓ ¢p𝜋q as described above). Note that the collection t𝐴𝑗u𝑗Pr𝑘s partitions r𝑛s.

Since ¢𝜁p𝑥q ě 𝛼1 everywhere and ¢𝜁 is 𝛼2-Lipschitz continuous, for any 𝜂 ą 0 we

can find 𝜆 such that for all 𝜆1 ď 𝜆, if 𝜋1 is a trajectory with cost ℓ ¢p𝜋1q “ 𝜆1 and
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𝑋 P �̄�1 then ℓp𝜋1q ě p1´ 𝜂q𝜆1{ ¢𝜁p𝑋q. We then derive the following:

ℓp𝜋q “
𝑘

ÿ

𝑗“1

ℓ𝑗 (3.124)

“
1´ 𝛿{2

𝛽𝜆𝑛
1
𝛾

𝑘
ÿ

𝑗“1

p1´ 𝛿{2q´1𝛽𝜆𝑛
1
𝛾 ℓ𝑗 (3.125)

ě
1´ 𝛿{2

𝛽𝜆𝑛
1
𝛾

𝑘
ÿ

𝑗“1

|𝐴𝑗|ℓ𝑗 (3.126)

“
1´ 𝛿{2

𝛽𝜆𝑛
1
𝛾

𝑛
ÿ

𝑖“1

ℓ𝑗p𝑖q (3.127)

This then leads to the intuitive steps (note that we use 𝜆 « 𝜆1 and remove the 𝛿

terms):

ℓp𝜋q Á
1

𝛽𝜆𝑛
1
𝛾

𝑛
ÿ

𝑖“1

𝜆{ ¢𝜁p𝑋𝑖q with very high probability (3.128)

Á
1

𝛽
𝑛1´ 1

𝛾E𝑋„𝑓 r ¢𝜁p𝑋q´1
s with very high probability (3.129)

«
1

𝛽
𝑛1´ 1

𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (3.130)

The two ‘Á’ steps (3.128) and (3.129) need to be precisely stated and justified: (3.128)

happens because the cost-𝜆1 segment 𝜋r𝑡1
𝑗p𝑖q´1

,𝑡1
𝑗p𝑖q

s contains 𝑋𝑖 but requires care in

handling the approximation, while (3.129) is shown with a concentration bound (and

because when 𝑛 is large 𝜆1 « 𝜆). The approximation in (3.130) is justified by using a

regularization factor 𝜁 which is sufficiently small to yield an approximation as close

as we desire.

Before we precisely state and prove the results that will give us steps (3.128) and

(3.129), we discuss our main tool for showing them, which is the one-sided Bernstein

condition and Bernstein’s inequality (see [21]). We will not define the one-sided

Bernstein condition since we don’t directly use the definition; instead, we give a

(known) sufficient condition, namely that a random variable which is bounded above

satisfies it:
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Proposition 9. If 𝑌 ´ Er𝑌 s ď 𝑎1 (guaranteed) for some 𝑎1 ą 0, then 𝑌 satisfies

the one-sided Bernstein condition with parameter 𝑎 “ 𝑎1{3.

This is useful because it allows us to use the (one sided) Bernstein’s inequality :

Proposition 10. Let 𝑌1, . . . 𝑌𝑛 be iid random variables (each with expectation

Er𝑌 s and variance Varr𝑌 s) satisfying the one-sided Bernstein condition with pa-

rameter 𝑎 ą 0. Then, for any 𝛿 ą 0,

P
” 1

𝑛

𝑛
ÿ

𝑖“1

𝑌𝑖 ´ Er𝑌 s ě 𝛿
ı

ď 𝑒´
𝑛𝛿2{2

Varr𝑌 s`𝑎𝛿 (3.131)

This is usually given in terms of 𝑌 bounded above because the one-sided Bernstein

inequality is given as an upper tail bound (as it’s typically used in that fashion); here

we are trying to derive a lower tail bound of a sum of iid random variables which are

bounded below (because they are all nonnegative) so we rephrase them as:

Proposition 11. Let 𝑌1, . . . , 𝑌𝑛 be iid nonnegative random variables (each with

expectation Er𝑌 s and variance Varr𝑌 s). Then for any 𝛿 ą 0,

P
”

𝑛
ÿ

𝑖“1

𝑌𝑖 ď p1´ 𝛿q𝑛Er𝑌 s
ı

ď 𝑒
´

𝑛Er𝑌 s2𝛿2{2

Varr𝑌 s`Er𝑌 s2𝛿{2 (3.132)

Proof. By Proposition 9, if 𝑌 is nonnegative then ´𝑌 satisfies the Bernstein condition

with parameter 𝑎 “ Er𝑌 s{3. Then we can re-write

𝑛
ÿ

𝑖“1

𝑌𝑖 ď p1´ 𝛿q𝑛Er𝑌 s ðñ
𝑛

ÿ

𝑖“1

p´𝑌𝑖q ě p1´ 𝛿q𝑛Er´𝑌 s (3.133)

ðñ
1

𝑛

𝑛
ÿ

𝑖“1

p´𝑌𝑖q ´ Er´𝑌 s ě 𝛿 Er𝑌 s (3.134)

Plugging this into Proposition 10 then yields the result.

Let 𝑌𝑖 :“ ¢𝜁p𝑋𝑖q
´1 ď 0, and if 𝑋 „ 𝑓 we define 𝑌 :“ ¢𝜁p𝑋q´1 ď 0 (the generic

version of 𝑌𝑖). We need to establish a few things:
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Lemma 16. For any approximation factor 𝛿 ă 0, there is a sufficiently small regu-

larization factor 𝜁 :“ 𝜁p𝛿q ą 0 so that Er𝑌 s and Varr𝑌 s satisfy

p1´ 𝛿q

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 ď Er𝑌 s ď

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (3.135)

and Varr𝑌 s ď

ż

𝒳𝑓

𝑓p𝑥q1´ 2
𝛾 𝑔p𝑥q´

2
𝛾 𝑑𝑥´ p1´ 𝛿q2

ˆ
ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

˙2

(3.136)

which are both finite when 𝛾 ě 2. Additionally, even when 𝛾 ă 2, we can bound the

expected value and the variance above using the regularization factor itself:

p1´ 𝛿q

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 ď Er𝑌 s ď 𝛼´1

1 (3.137)

and Varr𝑌 s ď 𝛼´2
1 {4 . (3.138)

Proof. We recall that the lucrativity function (of which the cost function ¢𝜁 is an

approximation) is ¢˚p𝑥q “ p𝑓p𝑥q𝑔p𝑥qq
1
𝛾 and that 𝛾 ě 2. Let 𝑌 ˚ “ ¢˚p𝑋q where

𝑋 „ 𝑓 . Then we have

Er𝑌 ˚
s “

ż

p ¢˚
q

´1 𝑑𝑓 (3.139)

“

ż

𝒳𝑓

𝑓p𝑥qp𝑓p𝑥q𝑔p𝑥qq´
1
𝛾 𝑑𝑥 (3.140)

“

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (3.141)

ď

ż

𝒳𝑓

p1` 𝑓p𝑥qq𝑔
´ 1

𝛾

min 𝑑𝑥 (3.142)

“ pVol𝒳 p𝒳𝑓 q ` 1q𝑔
´ 1

𝛾

min (3.143)

ă 8 (3.144)

where (3.142) follows because 𝑔p𝑥q ě 𝑔min for all 𝑥 and

𝑓p𝑥q1´ 1
𝛾 ď maxp1, 𝑓p𝑥qq ď 1` 𝑓p𝑥q (3.145)
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(and
ş

𝒳𝑓
𝑓p𝑥q 𝑑𝑥 “ 1 by definition). Similarly,

Erp𝑌 ˚
q
2
s “

ż

𝒳𝑓

𝑓p𝑥q1´ 2
𝛾 𝑔p𝑥q´

2
𝛾 𝑑𝑥 (3.146)

ď

ż

𝒳𝑓

p1` 𝑓p𝑥qq𝑔
´ 2

𝛾

min 𝑑𝑥 (3.147)

“ pVol𝒳 p𝒳𝑓 q ` 1q𝑔
´ 2

𝛾

min (3.148)

ă 8 (3.149)

Thus, both Er𝑌 ˚s and Erp𝑌 ˚q2s are finite when 𝛾 ě 2 (since we rely on 1 ´ 2
𝛾
ě 0);

but by definition ¢𝜁p𝑥q ě ¢˚p𝑥q and hence if 𝛾 ě 2, we have ¢𝜁p𝑥q´1 ď ¢˚p𝑥q´1

and so Er𝑌 s ď Er𝑌 ˚s ă 8 and Er𝑌 2s ď Erp𝑌 ˚q2s ă 8 and hence both Er𝑌 s and

Varr𝑌 s “ Er𝑌 2s ´ Er𝑌 s2 ď Erp𝑌 ˚q2s ´ p1´ 𝛿q2Er𝑌 ˚s2 are finite.

When 𝛾 ă 2, we then use the fact that by construction ¢𝜁p𝑥q ě 𝛼1, and hence

Er ¢𝜁p𝑋q´1s ď 𝛼´1
1 and Varr ¢𝜁p𝑋q´1s ď 𝛼´2

1 {4 (since ¢𝜁p𝑋q´1 P p0, 𝛼´1
1 s its variance

is at most 𝛼´2
1 {4). Thus, we are done.

Returning to the main proof, we first address step (3.128):

Lemma 17. For any 𝛿1 ą 0, there is a sufficently small 𝜆 ą 0 such that (when

𝑋𝑖
𝑖𝑖𝑑
„ 𝑓),

P
”

D𝜋 P Πt𝑋𝑖u s.t.
𝑛

ÿ

𝑖“1

ℓ𝑗p𝑖q ă p1´ 𝛿1q𝜆𝑛Er𝑌 s
ı

ď 𝑒
´

𝑛p1´𝛿1qEr𝑌 s2𝛿21{8

p1`𝛿1qVarr𝑌 s`p1´𝛿1qEr𝑌 s2𝛿1{6 (3.150)

for all sufficiently large 𝑛.

Proof. For any 𝑥 P 𝒳𝑓 let

ℓ˚
p𝑥;𝜆q “ min

𝜋1PΠ
pℓp𝜋1

q : ℓ ¢
p𝜋1
q “ 𝜆, 𝑥 P �̄�1

q (3.151)

i.e. the length of the shortest possible cost-𝜆 trajectory through 𝑥.

Recall that for any 𝜂 ą 0, there is some 𝜆˚
𝜂 ą 0 such that for any 0 ă 𝜆 ď 𝜆˚

𝜂 ,

P𝑋„𝑓 rD𝜋
1
P Π : 𝑋 P �̄�1, ℓ ¢

p𝜋1
q “ 𝜆 and ℓp𝜋1

q ă p1´ 𝜂q𝜆{ ¢𝜁p𝑋qs ď 𝜂 (3.152)
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We define 𝒳 p𝜂q Ď 𝒳𝑓 to be the region in which

𝑥 P �̄�1, ℓ ¢
p𝜋1
q “ 𝜆 ùñ ℓp𝜋1

q ě p1´ 𝜂q𝜆{ ¢𝜁p𝑥q (3.153)

for 𝜆 ď 𝜆˚
𝜂 breaks down, i.e.

𝒳 p𝜂q “ t𝑥 P 𝒳𝑓 : D𝜋1
P Π : 𝑥 P �̄�1, ℓ ¢

p𝜋1
q ď 𝜆˚

𝜂 and ℓp𝜋1
q ă p1´ 𝜂qℓ ¢

p𝜋1
q{ ¢𝜁p𝑥qu

(3.154)

Then, if we have some 𝑥 P 𝒳𝑓 and a trajectory 𝜋1 s.t. 𝑥 P �̄�1 and ℓ ¢p𝜋1q “ 𝜆 ă 𝜆˚
𝜂 ,

ℓp𝜋1
q ě

$

’

&

’

%

p1´ 𝜂q𝜆1{ ¢𝜁p𝑥q if 𝑥 R 𝒳 p𝜂q

0 if 𝑥 P 𝒳 p𝜂q
(3.155)

Therefore, we define the random variables

𝑍𝑖 :“ 𝑍
p𝜂q

𝑖 “

$

’

&

’

%

p1´ 2𝜂q𝜆{ ¢𝜁p𝑋𝑖q if 𝑋𝑖 R 𝒳 p𝜂q

0 if 𝑋𝑖 P 𝒳 p𝜂q
(3.156)

Since these are iid (depending only on iid 𝑋𝑖) let 𝑍 be the generic version. We know

from (3.123) that

𝜆1
ě 𝜆´ 1{𝑘 ě p1´ 𝛽𝑛´p1´ 1

𝛾
q
q𝜆 (3.157)

ùñ p1´ 𝜂q𝜆1
ě p1´ 2𝜂q𝜆 for 𝑛 ě p𝛽{𝜂q1` 1

𝛾´1 (3.158)

Since ℓ𝑗p𝑖q is a cost-𝜆1 trajectory passing through 𝑋𝑖, we know (fixing 𝜂) that for any

sufficiently large 𝑛

ℓ𝑗p𝑖q ě 𝑍𝑖 for all 𝑖 (3.159)

Additionally, since P𝑋„𝑓 r𝑋 P 𝒳 p𝜂qs ď 𝜂 and because Er𝑌 s “ E𝑋„𝑓 r ¢𝜁p𝑋q´1s and
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Er𝑌 2s “ E𝑋„𝑓 r ¢𝜁p𝑋q´2s are finite, we have

lim
𝜂Ñ0

Er𝑍p𝜂q
s “ 𝜆Er𝑌 s and lim

𝜂Ñ0
Varr𝑍p𝜂q

s “ 𝜆Varr𝑌 s (3.160)

Therefore, for any 𝛿1 ą 0 we can select some 𝜂 ą 0 such that

Er𝑍p𝜂q
s ě p1´ 𝛿1{2q𝜆Er𝑌 s and Er𝑍p𝜂q

s ď p1` 𝛿1q𝜆Varr𝑌 s (3.161)

Fixing such 𝜂, we apply Proposition 11 (noting that 𝑍𝑖’s are nonnegative iid) to get

P
”

𝑛
ÿ

𝑖“1

𝑍𝑖 ď p1´ 𝛿1{2q𝑛Er𝑍s
ı

ď 𝑒
´

𝑛Er𝑍s2p𝛿1{2q2{2

Varr𝑍s`Er𝑍s2p𝛿1{2q{3 (3.162)

ùñ P
”

𝑛
ÿ

𝑖“1

𝑍𝑖 ď p1´ 𝛿1q𝜆𝑛Er𝑌 s
ı

ď 𝑒
´

𝑛p1´𝛿1qEr𝑌 s2𝛿21{8

p1`𝛿1qVarr𝑌 s`p1´𝛿1qEr𝑌 s2𝛿1{6 (3.163)

ùñ P
”

𝑛
ÿ

𝑖“1

ℓ𝑗p𝑖q ď p1´ 𝛿1q𝜆𝑛Er𝑌 s
ı

ď 𝑒
´

𝑛p1´𝛿1qEr𝑌 s2𝛿21{8

p1`𝛿1qVarr𝑌 s`p1´𝛿1qEr𝑌 s2𝛿1{6 (3.164)

for all 𝜆 ă 𝜆˚
𝜂 , which holds since we can apply

Er𝑍s2 ě p1´ 𝛿1{2q2𝜆Er𝑌 s ě p1´ 𝛿1q𝜆Er𝑌 s and Varr𝑍s ď p1` 𝛿1qVarr𝑌 s

(3.165)

(because of the Varr𝑍s ą 0 term, the first substitution on the numerator and the

denominator makes the fraction smaller, hence the exponential of the negative of the

fraction larger).

But this means that with very high probability, given the CBO bound and applying

(3.127) (and using 1` 𝛿1 ă p1` 𝛿1{2q
2)

𝑛
ÿ

𝑖“1

ℓ𝑗p𝑖q ą p1´ 𝛿1{2q𝜆𝑛Er𝑌 s (3.166)

ùñ ℓp𝜋q ě
1´ 𝛿1{2

𝛽𝜆𝑛
1
𝛾

𝑛
ÿ

𝑖“1

ℓ𝑗p𝑖q ą p1´ 𝛿1q𝛽
´1𝑛1´ 1

𝛾Er𝑌 s (3.167)

with very high probability. Specifically (taking into account the probability that the
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CBO bound holds) we have

P
“

TSPΠpt𝑋𝑖uq ě p1´ 𝛿1q𝛽
´1𝑛1´ 1

𝛾Er𝑌 s
‰

(3.168)

ě 1´ 𝑒
´ 4

5
logp𝑏q𝜆𝑛

1
𝛾

1´𝛿1{2 ´ 𝑒
´

𝑛p1´𝛿1{2qEr𝑌 s2𝛿21{32

p1`𝛿1{2qVarr𝑌 s`p1´𝛿1{2qEr𝑌 s2𝛿1{12 (3.169)

We then do a few simplifications on the exponent of the final term (ignoring the

constant multiple of 𝑛 and the negative to make the expression cleaner):

p1´ 𝛿1
2
qEr𝑌 s2 𝛿21

32

p1` 𝛿1
2
qVarr𝑌 s ` p1´ 𝛿1

2
qEr𝑌 s2 𝛿1

12

“
p1´ 𝛿1

2
qEr𝑌 s2 𝛿21

32

p1` 𝛿1
2
qpEr𝑌 2s ´ Er𝑌 s2q ` p1´ 𝛿1

2
qEr𝑌 s2 𝛿1

12

(3.170)

“

ˆ

p1` 𝛿1
2
qpEr𝑌 2s ´ Er𝑌 s2q ` p1´ 𝛿1

2
qEr𝑌 s2 𝛿1

12

p1´ 𝛿1
2
qEr𝑌 s2 𝛿21

32

˙´1

(3.171)

“

ˆ

1` 𝛿1
2

p1´ 𝛿1
2
q
𝛿21
32

Er𝑌 2s

Er𝑌 s2
`
p1´ 𝛿1

2
q 𝛿1
12
´ p1` 𝛿1

2
q

p1´ 𝛿1
2
q
𝛿21
32

˙´1

(3.172)

This can be left as it is, but if we have Er𝑌 2s{Er𝑌 s2 and 𝛿1 is very small, we can write

it in its most significant terms as

ˆ

1` 𝛿1
2

p1´ 𝛿1
2
q
𝛿21
32

Er𝑌 2s

Er𝑌 s2
`
p1´ 𝛿1

2
q 𝛿1
12
´ p1` 𝛿1

2
q

p1´ 𝛿1
2
q
𝛿21
32

˙´1

“
𝛿21

32pEr𝑌 2s{Er𝑌 s2 ´ 1q
` 𝑜p𝛿31q

(3.173)

“
𝛿21

32pVarr𝑌 s{Er𝑌 s2q
` 𝑜p𝛿31q

(3.174)

Then, given a desired approximation factor 1´ 𝛿, we choose 𝛿 “ 𝛿1{2 and a regular-

ization term 𝜁 ą 0 producing

Er𝑌 s ě p1´ 𝛿2q
ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (3.175)
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where 𝛿2 “ 1´ p1´ 𝛿q{p1´ 𝛿{2q, i.e. such that

1´ 𝛿 “ p1´ 𝛿{2qp1´ 𝛿2q “ p1´ 𝛿1qp1´ 𝛿2q (3.176)

Thus, our bound becomes

p1´ 𝛿1q𝛽
´1𝑛1´ 1

𝛾Er𝑌 s “ p1´ 𝛿q𝛽´1𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (3.177)

and substituting 𝛿1 “ 𝛿{2 into the very-high-probability bound yields

P
„

TSPΠpt𝑋𝑖uq ě p1´ 𝛿q𝛽
´1𝑛1´ 1

𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

ȷ

(3.178)

ě 1´ 𝑒´ 4
5

logp𝑏q𝜆𝑛
1
𝛾

1´𝛿{4 ´ 𝑒
´

𝑛p1´𝛿{4qEr𝑌 s2𝛿2{128

p1`𝛿{4qVarr𝑌 s`p1´𝛿{4qEr𝑌 s2𝛿{24 (3.179)

ě 1´ 𝑒´ 4
5
logp𝑏q𝜆𝑛

1
𝛾
´ 𝑒

´

`

𝛿2

128pVarr𝑌 s{Er𝑌 s2q
`𝑜p𝛿3q

˘

𝑛 (3.180)

when 𝑛 is sufficiently large. When 𝛾 ě 2, this can be made to be arbitrarily close to

P
„

TSPΠpt𝑋𝑖uq ě p1´ 𝛿q𝛽
´1𝑛1´ 1

𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

ȷ

(3.181)

ě 1´ 𝑒´ 4
5

logp𝑏q𝜆𝑛
1
𝛾

1´𝛿{2 ´ 𝑒
´

𝑛p1´𝛿{2qEr𝑌 ˚s2𝛿2{32

p1`𝛿{2qVarr𝑌 ˚s`p1´𝛿{2qEr𝑌 ˚s2𝛿{12 (3.182)

ě 1´ 𝑒´ 4
5
logp𝑏q𝜆𝑛

1
𝛾
´ 𝑒

´

`

𝛿2

32pVarr𝑌 ˚s{Er𝑌 ˚s2q
`𝑜p𝛿3q

˘

𝑛 (3.183)

where Er𝑌 ˚s and Varr𝑌 ˚s are
ş

𝒳𝑓
𝑓p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥 and

ş

𝒳𝑓
𝑓p𝑥q1´ 2

𝛾 𝑔p𝑥q´
2
𝛾 𝑑𝑥 respec-

tively, with the downside that this may increase how large 𝑛 needs to be in order to

be ‘sufficiently large’ (in particular, it’s achieved by taking 𝛿1 Ñ 𝛿 and 𝛿2 Ñ 0 to

compensate, which requires cost regularization factor 𝜁 to go to 0). For sufficiently

large 𝑛 the dominant error term is always ´𝑒´ 4
5
logp𝑏q𝜆𝑛

1
𝛾 since the other error term’s

exponent scales with 𝑛, but when 𝛿 is very small the value of 𝑛 at which this term

takes over may be extremely large.

Finally, we can state it in the following maximally simple terms: for any 𝛿 ą 0,

there is some sufficiently small 𝜆 ą 0 and sufficiently large 𝑛p𝛿q such that for all
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𝑛 ě 𝑛p𝛿q,

P
„

TSPΠpt𝑋𝑖uq ě p1´ 𝛿q𝛽
´1𝑛1´ 1

𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥

ȷ

ě 1´ p1` 𝛿q𝑒´ 4
5

logp𝑏q𝜆𝑛
1
𝛾

1´𝛿{2

(3.184)

ě 1´ p1` 𝛿q𝑒´ 4
5
logp𝑏q𝜆𝑛

1
𝛾

(3.185)

with the caveat that as 𝛿 Ñ 0, 𝑛p𝛿q potentially goes to 8.
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Chapter 4

Symmetric Dynamics Algorithm

In this chapter we discuss our algorithm for the DSTSP with symmetric dynamics,

and the bound it achieves for the TSP. This algorithm relies on a division of 𝒳𝑓 into

Symmetric Hierarchical Cell Structures (see Section 2.3), which are nested cell struc-

tures satisfying certain key properties which allow them to be used easily to generate

a TSP tour; we call this division the Symmetric Hierarchical Cell Structure cover

(Symmetric HCS cover), which then transforms the TSP into an abstract problem on

a tree which we call the Symmetric Hierarchical Collection Problem (Symmetric HCP

or SHCP); this problem then admits an efficiently-computable optimal algorithm and

a clean upper bound.

Remark 16. The optimal solution to the SHCP, translated via the SHCS cover to the

TSP, does not constitute an optimal TSP tour; this is because the SHCP’s objective

function is really an upper bound to the TSP tour it translates to.

We organize this chapter as follows:

• In Section 4.1 we define the Symmetric HCS cover, and show that if Assump-

tion 10 holds (for every 𝑥 P 𝒳𝑓 , there exists an SHCS containing 𝑥), there is

always a Symmetric HCS cover.

• In Section 4.2 we show how the DTSP within a Symmetric HCS induces the

Symmetric HCP; solving the SHCP then yields a viable tour for the vehicle
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through the given target points as well as an upper bound to the length of

this tour. Finally, we show an upper bound to the SHCP (dependent on its

parameters and the number of targets).

• In Section 4.3 we show how the Symmetric HCS cover and the SHCP bound

derived in Section 4.2 combine to produce our (probabilistic) bound for the

Symmetric DSTSP.

4.1 Symmetric Hierarchical Cell Structure Cover

In this section we show how the existence of a Symmetric Hierarchical Cell Structure

(Symmetric HCS or SHCS) at any 𝑥 P 𝒳𝑓 (see Assumption 10) allows us to construct

a more intricate structure, the Symmetric Hierarchical Cell Structure Cover (SHCS

cover), which is then used by our algorithm. In brief, an SHCS cover is a fixed, finite

set of SHCS’s which cover 𝒳𝑓 and don’t overlap too much. We define:

Definition 21. For 𝜌 ě 0, a 𝜌-accurate Symmetric Hierarchical Cell Structure

cover (SHCS cover) of 𝒳𝑓 is a set 𝑆1, . . . , 𝑆𝑚 of SHCS’s such that:

• All SHCS’s have the same parameters (𝜀0, 𝛼, 𝜁, 𝑠).

• 𝒳𝑓 Ď
Ť𝑚

𝑗“1 𝑆𝑗.

• P𝑋„𝑓 r𝑋 is in more than one 𝑆𝑗s ď 𝜌.

Any SHCS with overlap parameter 𝛼 necessarily satisfies the condition for any overlap

parameter 𝛼1 ď 𝛼; thus, if the SHCS’s have different values of 𝛼, we can use the

minimum.

Assumption 10 implies the existence of SHCS covers of arbitrarily good accuracy.

First, we have the existence of a fixed-scale finite SHCS cover (possibly with bad

accuracy 𝜌):

Lemma 18. There exist 𝛼, 𝑠 such that for all 𝜁 ą 0, there is some 𝜀0 such that there

exists a finite SHCS cover (of some accuracy parameter 𝜌) of 𝒳𝑓 .
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Proof. By Assumption 10 each 𝑥 P 𝒳𝑓 is contained in the interior of some SHCS

𝑆𝑥. Thus, letting 𝑆int
𝑥 be the interior of 𝑆𝑥, we know that 𝒳𝑓 Ď

Ť

𝑥 𝑆
int
𝑥 . But by

Assumption 5, 𝒳𝑓 is compact, and hence there is a finite subset of these 𝑆𝑥’s whose

interiors cover 𝒳𝑓 .

Then, given a finite SHCS covering, for any 𝜌 ą 0 we can produce a 𝜌-accurate

covering at arbitrarily small scales by taking the sub-SHCS’s recursively until we

reach the desired scale, and deleting any redundant ones.

Lemma 19. If Assumption 10 is satisfied with parameters 𝛼, 𝑠, then for any 𝜌 ą 0 and

𝜁 ą 0, there is some 𝜀0 such that a 𝜌-accurate 𝜁-regularized SHCS cover 𝑆1, . . . , 𝑆𝑚

can be constructed. Furthermore, for any 𝜀˚
0 ą 0, there is some 𝜀0 ď 𝜀˚

0 for which it

exists.

Proof. We use the fact that by definition a 𝜀0-scale Hierarchical Cell Structure is

composed of 𝑠𝛾 smaller 𝜀0{𝑠-scale (sub)-Hierarchical Cell Structures, which are then

each divisible again and so forth. We also use the fact that within each SHCS, the

sub-SHCS’s are all disjoint, and that any scale-𝜀 SHCS is contained in some ball in

𝒳 with radius 𝑐Π𝜀.

By Lemma 18 we have a SHCS cover 𝑆pstartq
1 , . . . , 𝑆

pstartq

𝑚pstartq at some scale 𝜀pstartq
0 which

are 𝜁-regular with efficiency and scaling parameters 𝛼, 𝑠; it may have a very large

accuracy parameter 𝜌 ą 0 but since it is a cover we know that 𝒳𝑓 Ď
Ť𝑚pstartq

𝑗“1 𝑆
pstartq
𝑗 .

We then will use this to create an alternative covering 𝑆1, . . . , 𝑆𝑚 (at a smaller scale

𝜀0) which in addition to being 𝜁-regular is also 𝜌-accurate. For any Jordan-measurable

subset 𝐴 Ď 𝒳𝑓 , let Intp𝐴q denote its interior and

Int𝜂p𝐴q :“ t𝑥 P 𝐴 : 𝑑𝒳 p𝑥, 𝑥
1
q ě 𝜂 for all 𝑥1

R 𝐴u (4.1)

i.e. the 𝜂-interior of 𝐴 (points at least 𝜂 distance away from anything outside of 𝐴).

We then note the following (all sets involved are Jordan-measurable):

a. Vol𝒳 p𝐴q “ Vol𝒳 pIntp𝐴qq “ lim𝜂Ñ0Vol𝒳 pInt𝜂p𝐴qq.
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b. For any 𝐴1, . . . , 𝐴𝑘 Ď 𝒳 , letting 𝐴 “
Ş𝑘

𝑗“1𝐴𝑗, we have Int𝜂p𝐴q “
Ş𝑘

𝑗“1 Int𝜂p𝐴𝑗q

and Intp𝐴q “
Ş𝑘

𝑗“1 Intp𝐴𝑗q. Since intersections of finitely many Jordan-measurable

sets are Jordan-measurable, we also have Vol𝒳 p𝐴q “ Vol𝒳 pIntp𝐴qq.

We now subdivide each 𝑆
pstartq
𝑗 them 𝑘 times, for any integer 𝑘 to get a cover of

𝑚 :“ 𝑚start𝑠𝛾𝑘 SHCS’s at scale 𝜀0 :“ 𝜀
pstartq
0 𝑠´𝑘. Let these be denoted 𝑆1, . . . , 𝑆𝑚; let

𝑆
p𝑗q

1 , . . . , 𝑆
p𝑗q

𝑠𝛾𝑘
denote the SHCS’s which were created by subdividing 𝑆pstartq

𝑗 . For each

𝑆
p𝑗q

𝑖 , we then remove it if there is some 𝑗1 ă 𝑗 such that 𝑆p𝑗q

𝑖 Ď 𝑆
pstartq
𝑗1 , i.e. if it is

completely contained within a different SHCS from our starting cover with a lower

index. This is a simple way to remove redundant SHCS’s, and preserves the covering

property; to see this, we can perform this action starting with the descendants of

𝑆
pstartq

𝑚pstartq , then the descendants of 𝑆pstartq

𝑚pstartq´1
and so forth. We now claim that as long

as we set 𝑘 sufficiently large, we can reduce the redundancy (that is, the region

contained within multiple SHCS’s) to an arbitrarily small set. Let

𝑆𝑘p𝑗, 𝑗
1
q :“ t𝑥 : 𝑥 P 𝑆

p𝑗q

𝑖 X 𝑆
p𝑗1q

𝑖1 for some 𝑖, 𝑖1u (4.2)

i.e. the region in which descendants of 𝑆pstartq
𝑗 and 𝑆

pstartq
𝑗1 overlap, and its volume,

given 𝑘 subdivisions (after removing redundant descendants as per the above steps).

Without loss of generality let 𝑗1 ă 𝑗. Note that 𝑆0p𝑗, 𝑗
1q “ 𝑆

pstartq
𝑗 X 𝑆

pstartq
𝑗1 , and that

𝑆𝑘p𝑗, 𝑗
1
q Ď 𝑆𝑘1p𝑗, 𝑗1

q for all 𝑘 ą 𝑘1 . (4.3)

We now let

𝜂 :“ 2𝑐Π𝜀0 “ 2𝑐Π𝜀
pstartq
0 𝑠´𝑘 (4.4)

and claim that

𝑆𝑘p𝑗, 𝑗
1
q X Int𝜂p𝑆0p𝑗, 𝑗

1
qq “ H (4.5)

that is, that deleting redundant cells will progressively ‘hollow out’ the interior of
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𝑆0p𝑗, 𝑗
1q. This happens because for the root 𝑞 of cell 𝑆p𝑗q

𝑖 at 𝑥 (i.e. 𝑥 “ r𝑞s𝒳 )

𝑆
p𝑗q

𝑖 Ď �̄�𝜀0p𝑞q Ď ℬ𝑐Π𝜀0p𝑥q (4.6)

This means that any cell 𝑆p𝑗q

𝑖 rooted at 𝑥 is necessarily deleted if 𝑥 P Int𝑐Π𝜀0p𝑆0p𝑗, 𝑗
1qq;

and this additionally means that if 𝑆p𝑗q

𝑖 contains 𝑥 where 𝑥 P Int2𝑐Π𝜀0p𝑆0p𝑗, 𝑗
1qq “

Int𝜂p𝑆0p𝑗, 𝑗
1qq, then 𝑆p𝑗q

𝑖 is removed as well. Thus we get (4.5), which further implies

𝑆𝑘p𝑗, 𝑗
1
q Ď 𝑆0p𝑗, 𝑗

1
qzInt𝜂p𝑆0p𝑗, 𝑗

1
qq . (4.7)

But since 𝑆0p𝑗, 𝑗
1q “ 𝑆

pstartq
𝑗 X 𝑆

pstartq
𝑗1 , it is Jordan-measurable and hence the volume

of the above goes to 0 as 𝜂 Ñ 0, which happens as 𝑘 Ñ 8. But this means if we let

the total region of overlaps be

𝑆 1
𝑘 :“ t𝑥 P 𝒳𝑓 : 𝑥 P 𝑆

p𝑗q

𝑖 X 𝑆
p𝑗1q

𝑖1 for some 𝑖, 𝑗, 𝑖1, 𝑗1 where 𝑗 ‰ 𝑗1
u (4.8)

we get that

𝑆 1
𝑘 “

ď

𝑗‰𝑗1

𝑆𝑘p𝑗, 𝑗
1
q (4.9)

ùñ Vol𝒳 p𝑆
1
𝑘q ď

ÿ

𝑗‰𝑗1

Vol𝒳 p𝑆𝑘p𝑗, 𝑗
1
qq (4.10)

ùñ lim
𝑘Ñ8

Vol𝒳 p𝑆
1
𝑘q ď lim

𝑘Ñ8

ÿ

𝑗‰𝑗1

Vol𝒳 p𝑆𝑘p𝑗, 𝑗
1
qq “ 0 (4.11)

Thus for any 𝜌 ą 0, we can set 𝑘 sufficiently large so that

P𝑋„𝑓 r𝑋 P 𝑆 1
𝑘s ď 𝜌 (4.12)

which means that we have a 𝜌-accurate cover.

Finally, once we have it at scale 𝜀0, we can scale it down by as many factors of 𝑠

as we like, and in particular until the radius is smaller than the given 𝜀˚
0 .

In our upper bound proofs the remainder of this chapter (and the corresponding
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proofs in Chapter 6), we will assume that the SHCS cover we base our algorithm on

is 0-accurate, i.e. there is no overlap at all between different SHCS’s.

Finally, we can combine this with the result from the main text (in which the

remaining ď 𝑛 target points are good) to achieve the same bound; this is because

we can collect the good target points and then the bad target points with only an

additional constant (added for the arc between the last good target visited and the

first bad target).

Remark 17. For regular symmetric control-affine dynamics (on which we can invoke

the Ball-Box Theorem) and continuous density functions 𝑓 we can find SHCS’s with

𝑠 “ 2. However, we make a broader definition allowing 𝑠 ‰ 2 so that targets dis-

tributed within sets of fractal dimension, which may scale more naturally with some

other 𝑠 (e.g. the Menger Sponge naturally scales with 𝑠 “ 3) may be analyzed in

future work.

4.2 The Symmetric Hierarchical Collection Problem

Figure 4-1: A Symmetric Hierarchical Cell Structure (on a fractal target set, chess
king representing the vehicle, cells in red) with targets, and its corresponding Sym-
metric Hierarchical Collection Problem with targets represented by dashed lines. Sub-
cells from left to right in the SHCS correspond to children from left to right in the
SHCP.

Unlike in the general DSTSP algorithms, however, the symmetric property of
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the control system allows a tile to be completely cleared of target points before the

algorithm moves on to the next one, since after visiting the one target the vehicle can

return to the anchor and go to the next one and so on.

For any 0 ă 𝜀0 ă 𝜀˚ (where 𝜀˚ is the value given in Assumption 8), 𝑞0 P 𝒬, and

𝛿 ą 0, we define the 𝜀0-scale hierarchical cell structure rooted at 𝑞0 as an infinite

rooted tree 𝑇 p𝑞0, 𝜀0q in the following way:

1. The nodes represent reachable sets / cells, each with an anchor 𝑞 and a radius

𝜀. We denote the node as 𝑣p𝑞,𝜀q, which represents the reachable set �̄�𝜀p𝑞q.

2. The children of 𝑣p𝑞,𝜀q are

𝐶p𝑣p𝑞,𝜀qq “ t𝑣p𝑞p1q,𝜀{2q, . . . , 𝑣p𝑞p𝑏q,𝜀{2qu satisfying 𝑅𝜀p𝑞q Ď
𝑏

ď

𝑗“1

𝑅𝜀{2p𝑞
p𝑗q
q (4.13)

as given in Assumption 8. We also assume WLOG that

𝑅𝜀p𝑞q X𝑅𝜀{2p𝑞
p𝑗q
q ‰ H for all 𝑗 (4.14)

(if not, we remove 𝑣p𝑞p𝑗q,𝜀{2q from the tree).

If 𝑣1 P 𝐶p𝑣q we say 𝑣 “ 𝑃 p𝑣1q (the parent).

We define the layers of the tree in the normal way, with the root 𝑣p𝑞0,𝜀0q being

layer 0, its children being layer 1, and so forth (note that all nodes at layer 𝑘 represent

reachable sets with radius 𝜀0{2𝑘). We denote these layers as

𝑇𝑘 :“ t𝑣p𝑞,𝜀q P 𝑇 p𝑞0, 𝜀0q : 𝜀 “ 𝜀0{2
𝑘
u. (4.15)

For any 𝑥 P 𝒳 and 𝑣p𝑞,𝜀q P 𝑇 p𝑞0, 𝜀0q, we say ‘𝑥 P 𝑣p𝑞,𝜀q’ if 𝑥 P �̄�𝜀p𝑞q (slightly abusing

notation by conflating the node 𝑣 and the region it represents).

Lemma 20. For any 𝑇 p𝑞0, 𝜀0q the following hold:

i. |𝑇𝑘| ď 𝑏𝑘.
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ii. For any 𝑣p𝑞,𝜀q P 𝑇 p𝑞0, 𝜀0q and any 𝑣p𝑞1,𝜀{2q P 𝐶p𝑣p𝑞,𝜀qq (any parent-child pair),

𝑑Πp𝑞, 𝑞
1
q ď 3𝜀{2 . (4.16)

iii. For any 𝑣p𝑞,𝜀q P 𝑇 p𝑞0, 𝜀0q,

𝑑Πp𝑞0, 𝑞q ď 3𝜀0 (4.17)

Proof. We show these in order:

(i) 𝑇𝑘 “
Ť

𝑣P𝑇𝑘´1
𝐶p𝑣q and |𝐶p𝑣q| ď 𝑏, so |𝑇𝑘| ď 𝑏|𝑇𝑘´1|; recursing back to |𝑇0| “

|t𝑞0u| “ 1 yields the result.

(ii) Noting that 𝑅𝜀p𝑞q X𝑅𝜀{2p𝑞
1q ‰ H (by (4.16), let 𝑞2 P 𝑅𝜀p𝑞q X𝑅𝜀{2p𝑞

1q. Then

by definition 𝑑Πp𝑞, 𝑞
2q ď 𝜀 and 𝑑Πp𝑞

1, 𝑞2q ď 𝜀{2 and (since the control system Π is

symmetric, 𝑑Π is a metric) we get by the triangle inequality that

𝑑Πp𝑞, 𝑞
1
q ď 𝑑Πp𝑞, 𝑞

2
q ` 𝑑Πp𝑞

1, 𝑞2
q ď 3𝜀{2 (4.18)

(iii) This follows from (ii): let 𝑣p𝑞,𝜀q P 𝑇𝑘, so 𝜀 “ 𝜀0{2
𝑘. This means that, letting

𝑞𝑘 :“ 𝑞, we can find 𝑞1, . . . , 𝑞𝑘´1 such that 𝑣𝑗 :“ 𝑣p𝑞𝑗 ,𝜀0{2𝑗q P 𝐶p𝑣p𝑞𝑗´1,𝜀0{2𝑗´1qq “

𝐶p𝑣𝑗´1q for all 𝑗 “ 1, 2, . . . , 𝑘 (tracing the path from the root 𝑣0 “ 𝑣p𝑞0,𝜀0q to 𝑣p𝑞,𝜀q).

Then by (ii) we have

𝑑Πp𝑞0, 𝑞𝑘q ď
𝑘

ÿ

𝑗“1

𝑑Πp𝑞𝑗´1, 𝑞𝑗q ď
𝑘

ÿ

𝑗“1

3𝜀02
´𝑗
ď 3𝜀0 (4.19)

Hence we are done.

Let 𝑛 target points 𝑋1, . . . , 𝑋𝑛 be in �̄�𝜀0p𝑞0q (the area covered by this tree essen-

tially). Each target point 𝑋1, . . . , 𝑋𝑛 is contained (at least) one of the nodes at level 𝑘

(at each 𝑘). Specifically, for any 𝑖 P r𝑛s, 𝑘 P Zě0 let 𝑣𝑘p𝑋𝑖q :“ 𝑣p𝑞𝑘p𝑋𝑖q,𝜀0{2𝑘q P 𝑇 p𝑞0, 𝜀0q

satisfying the following properties:

• 𝑋𝑖 P 𝑣𝑘p𝑋𝑖q for all 𝑖, 𝑘 (i.e. 𝑋𝑖 P �̄�𝜀0{2𝑘p𝑞𝑘p𝑋𝑖qq);
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• 𝑣0p𝑋𝑖q “ 𝑣p𝑞0,𝜀0q is the root for all 𝑖;

• 𝑣𝑘p𝑋𝑖q P 𝐶p𝑣𝑘´1p𝑋𝑖qq for all 𝑖 P r𝑛s and 𝑘 P Zą0.

Note that this means 𝑣𝑘p𝑋𝑖q P 𝑇𝑘. Such a set of nodes exists because of the structure of

𝑇 p𝑞0, 𝜀0q, specifically that the reachable sets of the nodes in 𝐶p𝑣q cover the reachable

set of 𝑣.

This suggests a ‘depth-first-search’ type algorithm for visiting 𝑋1, . . . , 𝑋𝑛. For

any 𝑣 P 𝑇𝑘 let

𝑛p𝑣q :“ |t𝑖 : 𝑣𝑘p𝑋𝑖q “ 𝑣u| (4.20)

i.e. the number of target points 𝑋𝑖 whose layer-𝑘 node is 𝑣. We travel from node to

node along the tree 𝑇 p𝑞0, 𝜀0q. If we describe the vehicle as being ‘at’ node 𝑣p𝑞,𝜀0{2𝑘q P

𝑇𝑘, it refers to being at 𝑞, from which we can do three things:

1. travel to its parent 𝑃 p𝑣q (taking at most 3𝜀02
´𝑘 time);

2. travel to a child 𝑣1 P 𝐶p𝑣q (taking at most 3𝜀02
´p𝑘`1q time);

3. visit some target point 𝑋𝑖 P 𝑣 and returning (taking at most 𝜀02´p𝑘´1q time

since 𝑋𝑖 P �̄�𝜀0{2𝑘p𝑞q).

This allows us to state our TSP as an abstract problem similar to the classic TSP on

graphs (but slightly different); since all distance upper bounds above are multiples of

𝜀0, we ignore it (and re-insert it after we find the solution).

Definition 22. The Symmetric Hierarchical Collection Problem (Symmetric HCP

or SHCP) with cell branching factor �̄� and scaling factor 𝑠 is an abstract problem

on an infinite rooted tree 𝑇 “ p𝑉,𝐸q where every 𝑣 P 𝑉 has �̄� children. We define:

1. 𝛾 “ log𝑠p�̄�q, which defines the relationship between 𝑠 and �̄� (in the Symmet-

ric Hierarchical Cell Structure this problem models, scaling the cells down

by a factor of 𝑠 results in a �̄�-factor increase in the number needed to cover

the same region).
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2. The root of 𝑇 is 𝑣0; the children of 𝑣 P 𝑉 are denoted as the set 𝐶p𝑣q and

its parent is 𝑃 p𝑣q and the edges incident to 𝑣 is denoted 𝐸𝑣.

3. The level of a node is its distance from 𝑣0 and is denoted 𝑘p𝑣q (so 𝑘p𝑣0q “ 0

and for all 𝑣 P 𝑉 and 𝑣1 P 𝐶p𝑣q we have 𝑘p𝑣1q “ 𝑘p𝑣q ` 1); the set of nodes

of level 𝑘 is denoted 𝐿𝑘 :“ t𝑣 P 𝑉 : 𝑘p𝑣q “ 𝑘u.

4. Each edge 𝑒 “ p𝑣, 𝑣1q P 𝐸 has a cost

𝑤p𝑒q “ 𝑠´minp𝑘p𝑣q,𝑘p𝑣1qq (4.21)

i.e. if 𝑒 connects level 𝑘 to level 𝑘 ` 1 then its cost is 𝑠´𝑘.

Finally, we have 𝑛 targets 𝜏1, . . . , 𝜏𝑛; these are not nodes on the tree but are

infinitely long paths starting at the root and continuing down the tree. We say

𝑣 P 𝜏𝑖 if 𝑣 is in the path 𝜏𝑖, and 𝑣𝑘p𝜏𝑖q is the level-𝑘 node of 𝜏𝑖, and we assume

that 𝜏𝑖 ‰ 𝜏𝑗 (i.e. they don’t represent the same infinite path) for all 𝑖, 𝑗 P r𝑛s.

The problem is solved by a player who moves around 𝑇 and collects targets.

When at 𝑣 P 𝑉 , the player chooses one of two actions, for an associated cost:

1. move along some 𝑒 P 𝐸𝑣 for cost 𝑤p𝑒q (i.e. going up costs 𝑠´p𝑘´1q, going

down costs 𝑠´𝑘);

2. collect a target 𝜏𝑖 such that 𝑣 P 𝜏𝑖 for cost 2 ¨ 𝑠´𝑘.

Then, starting at 𝑣0, the goal is to collect all 𝑛 targets 𝜏𝑖 and return to 𝑣0

for minimum total cost. We denote the minimum cost to collect 𝜏1, . . . , 𝜏𝑛 as

HCPp𝜏1, . . . , 𝜏𝑛; �̄�, 𝑠q, and the maximum cost to collect 𝑛 targets (i.e. 𝜏1, . . . , 𝜏𝑛

are adversarially chosen) as

HCP˚
p𝑛; �̄�, 𝑠q :“ max

𝜏1,...,𝜏𝑛
HCPp𝜏1, . . . , 𝜏𝑛; �̄�, 𝑠q . (4.22)

The targets 𝜏1, . . . , 𝜏𝑛 in the SHCP represent which cells the targets 𝑋1, . . . , 𝑋𝑛

fall into in the symmetric DTSP (we refer here to the DTSP and not the DSTSP
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because the targets will be treated as given, not randomly distributed, for now).

Remark 18. The SHCP isn’t exactly equivalent to the original symmetric DTSP

because

a. all the costs are derived from upper bounds to the equivalent costs in the DTSP;

b. the DTSP doesn’t require starting or ending at any particular point; and (most

importantly)

c. it restricts possible solutions to only those that follow the hierarchical structure.

The general tradeoff that this problem explores is that collecting targets gets

cheaper as the player moves down the tree 𝑇 , but this movement has costs and the

targets can get more dispersed as the tree branches out (note that all the targets are

present at the root, though collecting them is the most expensive there). This mirrors

the TSP on the cell structure in the following way:

Proposition 12. Let 𝑆 : 𝒬 ˆ p0, 𝜀˚s be a hierarchical cell structure with cell

branching factor �̄�, scaling factor 𝑠, and efficiency factor 𝛼 (see Definition 11)

and let 𝑋1, . . . , 𝑋𝑛 be targets in 𝑆p𝑞0, 𝜀0q. We then set up an infinite rooted

tree 𝑇 “ p𝑉,𝐸q with �̄� children at every node with the following correspondence:

every node 𝑣 P 𝑉 represents a cell 𝑆p𝑞, 𝜀q for appropriate values of 𝑞, 𝜀, such that

i. the root 𝑣0 represents 𝑆p𝑞0, 𝜀0q;

ii. if 𝑣 represents 𝑆p𝑞, 𝜀q, then its children 𝑣1, . . . , 𝑣�̄� P 𝐶p𝑣q represent (in some

order) the sets 𝑆p𝑞p1q, . . . , 𝑞p�̄�q, 𝜀{𝑠q which cover 𝑆p𝑞, 𝜀q (as given in Defini-

tion 11).

Let 𝑞p𝑣q be the anchor of the cell represented by 𝑣, and 𝜀p𝑣q be its radius.

Each target 𝜏𝑖 corresponding to 𝑋𝑖 is a path down the tree starting at the

root 𝑣0 and always choosing a node representing 𝑆p𝑞, 𝜀q containing 𝑋𝑖 (if there

are multiple such paths, choose one arbitrarily).
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Then, the following bound holds:

TSPΠp𝑋1, . . . , 𝑋𝑛q ď 𝜀0HCPp𝜏1, . . . , 𝜏𝑛; 𝑏, 𝑠q ď 𝜀0HCP
˚
p𝑛; 𝑏, 𝑠q . (4.23)

Proof. The first inequality follows because 𝜀p𝑣q “ 𝜀0𝑠
´𝑘p𝑣q (at each level the scale is

divided by 𝑠). Thus, we can equate a solution to the SHCP instance (moving on

the tree and collecting targets) with an equivalent solution on the TSP: at each step

where we are at 𝑣 P 𝑉 in the SHCP, we are at 𝑞p𝑣q P 𝒬 in the TSP. If 𝑣1 P 𝐶p𝑣q,

then

𝑑𝜋p𝑞p𝑣q, 𝑞p𝑣
1
qq ď 𝜀p𝑣q “ 𝜀0𝑠

´𝑘p𝑣q (4.24)

i.e. moving from 𝑞p𝑣q to 𝑞p𝑣1q takes time at most 𝜀0𝑤p𝑒q where 𝑒 “ p𝑣, 𝑣1q P 𝐸.

Furthermore,

𝑣 P 𝜏𝑖 ùñ 𝑋𝑖 P 𝑆p𝑞p𝑣q, 𝜀p𝑣qq ùñ 𝑑𝜋p𝑞p𝑣q, 𝑋𝑖q ď 𝜀0𝑠
´𝑘p𝑣q (4.25)

and hence visiting 𝑋𝑖 from 𝑞p𝑣q and then returning takes at most 2𝜀0𝑠´𝑘p𝑣q time, or,

in other words at most 𝜀0 times the equivalent cost in the SHCP. Thus every solution

to the SHCP yields a corresponding TSP trajectory whose length is at most 𝜀0 times

the cost, thus showing the first inequality.

The second inequality then follows from the definition of HCP˚
p𝑛; �̄�, 𝑠q.

We now define a few notions which will help us discuss the SHCP.

Definition 23. For 𝑣 P 𝑇 , 𝑛𝑣 :“ |t𝑖 : 𝑣 P 𝜏𝑖u|, i.e. the number of targets 𝜏𝑖

passing through 𝑣 P 𝑇 .

A plan 𝜃 for a SHCP instance 𝜏1, . . . , 𝜏𝑛 is a list of actions which, when per-

formed starting at the root 𝑣0, collects all the targets 𝜏𝑖 and returns to 𝑣0. The

cost of the plan is 𝑐costp𝜃q, the set of vertices entered is 𝑉𝜃, and 𝜃 is optimal if

there is no plan 𝜃1 such that

i. 𝑐costp𝜃1q ă 𝑐costp𝜃q; or
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ii. 𝑐costp𝜃1q “ 𝑐costp𝜃q and |𝑉𝜃1 | ă |𝑉𝜃|.

The extra condition for ‘optimality’ (to enter as few vertices as possible) is not really

a feature of the optimization problem represented by the SHCP in general but is made

for convenience, particularly for Lemma 22. We now consider two questions: (i) what

is the optimal algorithm for the SHCP?; (ii) what is the upper bound HCP˚
p𝑛; 𝑏, 𝑠q?

Lemma 21. In any optimal plan, every edge 𝑒 P 𝐸 is crossed either 0 or 2 times.

Proof. Let 𝑒 “ p𝑣, 𝑣1q, where 𝑣 is on the same side of 𝑒 as the root 𝑣0 and 𝑣1 is on the

opposite side. First, since the player must start and end at 𝑣0, every edge is crossed

an even number of times. Then, if an edge is crossed more than twice, it must happen

an even number 2𝑚 times. Let these happen at steps 𝑠1 ă 𝑠2 ă ¨ ¨ ¨ ă 𝑠2𝑚, and let

𝑆𝑖 denote the actions taken between 𝑠𝑖 and 𝑠𝑖`1 (and 𝑆0, 𝑆2𝑚 denote respectively the

actions before 𝑠1 beginning at 𝑣0 and the actions after 𝑠2𝑚 ending at 𝑣0). Note that

𝑆1, 𝑆3, . . . , 𝑆2𝑚´1 all begin and end at 𝑣1 while 𝑆2, 𝑆4, . . . , 𝑆2𝑚´2 all begin and end at 𝑣,

and finally 𝑆0 begins at 𝑣0 and ends at 𝑣 and 𝑆2𝑚 begins at 𝑣 and ends at 𝑣0. Then we

can produce a modified solution which performs 𝑆0, crosses 𝑒, does 𝑆1, 𝑆3, . . . , 𝑆2𝑚´1

without crossing 𝑒, then crosses back over 𝑒 and performs 𝑆2, 𝑆4, . . . , 𝑆2𝑚 and ends

at 𝑣0. Since costs do not depend on the step at which they are performed, the costs

of 𝑆0, 𝑆1, . . . , 𝑆2𝑚 all remain the same, and all targets are collected, but instead of

crossing 𝑒 a total of 2𝑚 times it is crossed only twice, thus reducing the cost of the

plan.

Lemma 22. A vertex 𝑣 ‰ 𝑣0 is entered in an optimal plan iff 𝑛𝑣 ě
𝑠

𝑠´1
.

Proof. We first prove that if 𝑛𝑣 ă
𝑠

𝑠´1
then an optimal plan never enters 𝑣. Suppose

we have a plan 𝜃 that enters 𝑣; it must do so from 𝑃 p𝑣q, and let 𝑘 “ 𝑘p𝑃 p𝑣qq. We

then consider a modification 𝜃1 of this plan which, rather than entering 𝑣, collects all

𝜏𝑖 going through 𝑣 at 𝑃 p𝑣q. The only difference between 𝜃 and 𝜃1 is that 𝜃 travels to 𝑣

and around its subtree and makes its collections there, while 𝜃1 makes all collections

at 𝑃 p𝑣q, so we can compare only the costs of these actions. Then:

• 𝜃1 incurs costs of 2𝑠´𝑘𝑛𝑣 to collect all the relevant targets;
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• letting 𝑘1 ě 1 be the number of levels deeper than 𝑘 that 𝜃 goes, the costs

incurred are at least

2𝑠´p𝑘`𝑘1q𝑛𝑣 ` 2
𝑘1´1
ÿ

𝑗“0

𝑠´p𝑘`𝑗q (4.26)

(collection costs, minimized if they are maximally deep, and minimum possible

movement costs to reach level 𝑘 ` 𝑘1 and return).

But then

𝑛𝑣 ă
𝑠

𝑠´ 1
ùñ 𝑛𝑣 ă 1`

𝑛𝑣

𝑠
(4.27)

and we can then collapse (4.26) because:

2𝑠´p𝑘`𝑘1q𝑛𝑣 ` 2
𝑘1´1
ÿ

𝑗“0

𝑠´p𝑘`𝑗q
“ 2𝑠´𝑘

´

𝑠´𝑘1

𝑛𝑣 `

𝑘1´1
ÿ

𝑗“0

𝑠´𝑗
¯

(4.28)

ą 2𝑠´𝑘
´

𝑠´p𝑘1´1q𝑛𝑣 `

𝑘1´2
ÿ

𝑗“0

𝑠´𝑗
¯

(4.29)

ą . . . ą 2𝑠´𝑘𝑛𝑣 (4.30)

where each step takes the last entry in the sum and the 𝑛𝑣 term and applies (4.27).

But this means that 𝜃1 is a lower-cost plan than 𝜃, so any plan that enters 𝑣 can be

improved by avoiding 𝑣 and collecting earlier.

Now suppose 𝑛𝑣 ě
𝑠

𝑠´1
, and suppose we have a plan 𝜃 which does not enter 𝑛𝑣, and

let 𝑘 “ 𝑘p𝑣q. Let 𝑣1 be the closest ancestor to 𝑣 that 𝜃 enters, and let 𝑘1 “ 𝑘p𝑣q´𝑘p𝑣1q

(how many levels above 𝑣 plan 𝜃 gets). Then all the targets 𝜏𝑖 that go through 𝑣 are

most efficiently collected at 𝑣1 and incur cost

2𝑠´𝑘p𝑣1q
“ 2𝑠´p𝑘´𝑘1q (4.31)

Alternatively, we can consider plan 𝜃1 which instead of collecting at 𝑣1 go to 𝑣 and
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collect there. This incurs cost

2𝑠´𝑘p𝑣q𝑛𝑣 ` 2
𝑘1´1
ÿ

𝑗“0

𝑠´p𝑘p𝑣1q`𝑗
“ 2𝑠´𝑘𝑛𝑣 ` 2

𝑘1´1
ÿ

𝑗“0

𝑠´p𝑘´𝑘1`𝑗q (4.32)

“ 2𝑠´𝑘
´

𝑛𝑣 `

𝑘1
ÿ

𝑗“1

𝑠´𝑗
¯

(4.33)

ď 2𝑠´𝑘𝑠𝑘
1

“ 2𝑠´p𝑘´𝑘1q (4.34)

where the sum collapses because at each step we apply

𝑛𝑣 ě
𝑠

𝑠´ 1
ùñ 𝑠 𝑛𝑣 ě 𝑠` 𝑛𝑣 (4.35)

Hence, as before, the modified plan 𝜃1 costs at most as much as 𝜃 (and visits more

vertices) so 𝜃 cannot be optimal.

Thus, we have our optimal algorithm: assuming 𝑛 ě 𝑠
𝑠´1

(if not, the optimal

algorithm is to simply collect all targets at the root), we consider the subset of vertices

𝑉ě 𝑠
𝑠´1

:“
!

𝑣 P 𝑉 : 𝑛𝑣 ě
𝑠

𝑠´ 1

)

(4.36)

which must include the root and must be connected since

𝑛𝑣 ě
𝑠

𝑠´ 1
ùñ 𝑛𝑃 p𝑣q ě 𝑛𝑣 ě

𝑠

𝑠´ 1
. (4.37)

Then the optimal plan is to do a depth-first-search tour of this subgraph (which is a

finite tree) using every edge exactly twice and collecting every target 𝜏𝑖 at the deepest

vertex at which it is present.

Proposition 13. For any 𝑛, �̄�, 𝑠 such that 𝑠 ě 2 and 𝛾 “ log𝑠p�̄�q ě 2,

HCP˚
p𝑛; �̄�, 𝑠q ď 6𝑠𝑛1´ 1

𝛾 (4.38)

Proof. We consider a plan that does the following: it takes a tour to each vertex at

some level 𝑘˚; at each 𝑣 P 𝐿𝑘˚ , it collects all targets 𝜏𝑖 P 𝑣. Note that this plan has a
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fixed cost: it must traverse all edges within the first 𝑘˚ levels twice, and each target

collected costs 2𝑠´𝑘˚ .

Thus the total cost of movement is

2
𝑘˚´1
ÿ

𝑘“0

�̄�p�̄�{𝑠q𝑘 “ 2�̄�
p�̄�{𝑠q𝑘

˚

´ 1

p�̄�{𝑠q ´ 1
“ 2

p�̄�{𝑠q𝑘
˚

´ 1

p1{𝑠q ´ p1{�̄�q
(4.39)

because between levels 𝑘 and 𝑘 ` 1 there are �̄�𝑘`1 edges, each with cost 𝑠´𝑘, which

must be traversed twice, and the total cost of collection is 2𝑛𝑠´𝑘˚ since we need to

collect 𝑛 targets at a cost of 2𝑠´𝑘˚ each.

Now we let 𝑘˚ “ rlog�̄� 𝑛s ´ 1. This is the deepest level at which there must still

be at least two targets at the same vertex. In this case, we have

p�̄�{𝑠q𝑘
˚

ď p�̄�{𝑠qlog�̄� 𝑛 “ 𝑛𝑠´ log�̄� 𝑛 “ 𝑛1´ 1
𝛾 (4.40)

as 𝑠´ log�̄� 𝑛 “ 𝑠´ log𝑠𝛾 𝑛 “ 𝑛´ 1
𝛾 . Furthermore, since 𝑠 ě 2 and 𝛾 ě 2, we know that

�̄� ě 2𝑠 and so p1{𝑠q ´ p1{�̄�q ě 1{p2𝑠q and so our movement cost is bounded by

2
p�̄�{𝑠q𝑘

˚

´ 1

p1{𝑠q ´ p1{�̄�q
ď 4𝑠𝑛1´ 1

𝛾 . (4.41)

Our collection cost is additionally

2𝑛𝑠´𝑘˚

ď 2𝑠𝑛𝑠´ log�̄� 𝑛 “ 2𝑠𝑛1´ 1
𝛾 . (4.42)

Adding these together gives a total cost of ď 6𝑠𝑛1´ 1
𝛾 .

Remark 19. While the abstraction provided by the SHCP is useful for providing an

upper bound and an algorithm for the Symmetric DSTSP, a number of common-sense

improvements can be made for the most common control systems. These include the

following:

• The abstraction ignores the possibility that cells which are far from each other

in the structure (i.e. to go from one to the other requires moving far back up the

tree and then back down) might be very close in the space. These ‘horizontal’
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connections can make it possible to traverse through a number of cells of the

same level 𝑘 without having to return to larger cells close to the root.

• As discussed in Remark 18, you can ignore the requirement to start and end at

the root (which we made in order to have nicer theorems and proofs).

• If you have a good point-to-point motion planner (specifically, configuration-to-

configuration), you can first use an SHCP algorithm to determine the order in

which to visit the targets and the configuration 𝑞 P r𝑋𝑖s
𝒬 in which to visit each

target 𝑋𝑖 and then use the point-to-point motion planner for each pair of con-

secutive configurations. If the point-to-point motion planner is computationally

efficient enough you can even use the cell structure to determine the configura-

tions for each target point (depending on which cell it ends up in, each target

point needs to be in a certain set of configurations to be reachable from the an-

chor of the cell) and then use a standard TSP approximation algorithm on the

complete graph where the edge weights are the point-to-point distances.

4.3 The Symmetric HCP and the TSP

We now consider what happens if the target space 𝒳𝑓 can be covered (with no overlap)

by a finite set of 𝑚 SHCS’s of a given scale 𝜀0 (not dependent on the number of

targets 𝑛). In this case, we can consider an algorithm that solves the SHCP induced

in each SHCS separately, visiting all the targets within the given SHCS, then strings

these together to produce a tour which visits all the target points. Such a tour can

be thought of as consisting of an alternation between two types of trajectories: (i)

trajectories within a single SHCS, visiting all the targets and returning to the root;

(ii) trajectories between SHCS roots. We note that the total tiime needed for type

(ii) segments is fixed and doesn’t depend on 𝑛 (it consists of a tour through the roots

of the SHCS’s). Thus, if 𝜀0 is fixed, we can treat it as an (additive) constant and

focus only on type (i).

We then solve each individual SHCS, which we denote as 𝑆1, 𝑆2, . . . , 𝑆𝑚. To get
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an upper bound to the tour, we apply the upper bound given by Proposition 13 for

the induced SHCP; note that 𝑛 will be replaced by the number of targets 𝑛𝑗 which

fall into 𝑆𝑗. The sum of these bounds over all 𝑗 then yields an upper bound on the

total time needed for type (i) segments in the tour. However, note that 𝑛𝑗 is now a

random variable, since each random target may either fall in or out of 𝑆𝑗.

This yields a probabilistic problem. Suppose there are 𝑚 bins, and 𝑛 balls will

be thrown in them iid according to some probability vector 𝑝 “ p𝑝1, . . . , 𝑝𝑚q; let

𝑛𝑗 be the number of balls thrown into the 𝑗th bin, and note that its distribution is

Binp𝑝𝑗, 𝑛q. Let

𝜈 :“ 1´
1

𝛾
P p0, 1q and 𝑌𝑗 :“ 𝑛𝜈

𝑗 and 𝑌 “
𝑚
ÿ

𝑗“1

𝑌𝑗 (4.43)

This models an upper bound to the Symmetric DSTSP in the following way: we cover

the space with 𝑚 𝜀0-scale hierarchical cell structures 𝑆1, . . . , 𝑆𝑚 with scaling factor 𝑠

and cell branching factor �̄� “ 𝑠𝛾; for each 𝑆𝑗, let 𝑆 1
𝑗 Ď 𝑆𝑗 so that 𝑆 1

1, . . . , 𝑆
1
𝑚 partition

𝒳𝑓 (each 𝑥 P 𝒳𝑓 is in exactly one 𝑆 1
𝑗). Then let 𝑝𝑗 :“ P𝑋„𝑓 r𝑋 P 𝑆 1

𝑗s; thus, each target

𝑋𝑖 „ 𝑓 falls into one of the 𝑚 ‘bins’ according to probability vector 𝑝, so we can let

𝑛𝑗 be the number of targets in 𝑆 1
𝑗 Ď 𝑆𝑗. Then, by Proposition 13, the time it takes

to visit all the 𝑛𝑗 targets in 𝑆 1
𝑗 is at most

6𝑠𝜀0𝑛
1´ 1

𝛾 “ 6𝑠𝜀0𝑛
𝜈
𝑗 “ 6𝑠𝜀0𝑌𝑗 (4.44)

To visit all 𝑛 targets thus takes at most

𝐶 `
𝑚
ÿ

𝑗“1

6𝑠𝜀0𝑌𝑗 “ 𝐶 ` 6𝑠𝜀0𝑌 (4.45)

where 𝐶 is a constant (in 𝑛) which depends on the choices of the 𝑆𝑗, representing the

time it takes for the vehicle to tour the roots of the hierarchical cell structures. This is

an upper bound for the Symmetric DSTSP trajectory length because it represents (an

upper bound to) the length of the path generated by the hierarchical cell algorithm,
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but the algorithm is not necessarily optimal.

We now show a few properties of 𝑌 :

Lemma 23. Er𝑌𝑗s ď p𝑝𝑗𝑛q𝜈 and Er𝑌 s ď
ř𝑚

𝑗“1p𝑝𝑗𝑛q
𝜈 “

`
ř𝑚

𝑗“1 𝑝
𝜈
𝑗

˘

𝑛𝜈

Proof. Note that ¨𝜈 is a concave function because 𝜈 P p0, 1q, and that Er𝑛𝑗s “ 𝑝𝑗𝑛.

Thus, by Jensen’s Inequality,

Er𝑌𝑗s “ Er𝑛𝜈
𝑗 s ď pEr𝑛𝑗sq

𝜈
“ p𝑝𝑗𝑛q

𝜈 (4.46)

and the result from Er𝑌 s follows by summing the Er𝑌𝑗s.

Given the logic above (and some analysis on what 𝑚 and 𝑝 are as 𝜀0 Ñ 0), this

alone gives an upper bound to the expected value of expected trajectory length in

the Symmetric DSTSP. However, we also want concentration bounds.

We will consider 𝑌 as a Doob martingale: for any 𝑖 “ 0, 1, . . . , 𝑛, let 𝑍𝑖 P r𝑚s be

the bin that ball 𝑖 falls into, and consider placing them one-by-one in index order (i.e.

deciding 𝑍1 first, then 𝑍2, etc). We then define our (centered) Doob martingale:

𝑌𝑗p𝑖q “ Er𝑌𝑗 |𝑍1, . . . , 𝑍𝑖s ´ Er𝑌𝑗s and 𝑌 p𝑖q “
𝑚
ÿ

𝑗“1

𝑌𝑗p𝑖q “ Er𝑌 |𝑍1, . . . , 𝑍𝑖s ´ Er𝑌 s

(4.47)

Then note that by definition 𝑌𝑗p0q “ 0 and 𝑌𝑗p𝑛q “ 𝑌𝑗 ´ Er𝑌𝑗s (and similarly with

𝑌 ), and that 𝑌 p𝑖q is a martingale with respect to 𝑖, i.e.

Er𝑌 p𝑖q |𝑌 p𝑖´ 1qs “ 𝑌 p𝑖´ 1q (4.48)

(as is well-known from the construction as a conditional expectation of a process,

which is known as a Doob martingale). For convenience, we also let 𝑛𝑗p𝑖q denote the

number of balls in bin 𝑗 after 𝑍𝑖 has been decided, i.e.

𝑛𝑗p𝑖q “
𝑖

ÿ

𝑖1“1

1t𝑍𝑖1 “ 𝑗u . (4.49)
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We then show a few results concerning 𝑌 p𝑖q:

Lemma 24. |𝑌 p𝑖q ´ 𝑌 p𝑖´ 1q| ď 1.

Proof. Consider first what happens when 𝑍𝑖 is changed to 𝑍 1
𝑖. Let 𝑍p𝑛q “ p𝑍1, . . . , 𝑍𝑛q

and let 𝑍p𝑛q

´𝑖 p𝑍
1
𝑖q “ 𝑍1, . . . , 𝑍𝑖´1, 𝑍

1
𝑖, 𝑍𝑖`1, 𝑍𝑛 i.e. 𝑍p𝑛q with 𝑍𝑖 replaced by 𝑍𝑖. Then

let 𝑌 p𝑍p𝑛qq be the value of 𝑌 given 𝑍1, . . . , 𝑍𝑛. For simplicity let 𝑍𝑖 “ 𝑗 and 𝑍 1
𝑖 “ 𝑗1.

|𝑌 p𝑍p𝑛q
q ´ 𝑌 p𝑍

p𝑛q

´𝑖 p𝑍
1
𝑖qq| “ |𝑛

𝜈
𝑗 ` 𝑛

𝜈
𝑗1 ´ p𝑛𝑗 ´ 1q𝜈 ´ p𝑛𝑗1 ` 1q𝜈 | (4.50)

“ |p𝑛𝜈
𝑗 ´ p𝑛𝑗 ´ 1q𝜈q ´ pp𝑛𝑗1 ` 1q𝜈 ´ 𝑛𝜈

𝑗1q| ď 1 (4.51)

Each of the two differences are in r0, 1s and hence their difference is in r´1, 1s. Thus

changing the value of any 𝑍𝑖 can only change the final value by 1 (in either direction).

Thus, for any 𝑍𝑖, 𝑍
1
𝑖,

|Er𝑌 |𝑍1, . . . , 𝑍𝑖s ´ Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍
1
𝑖s| “ E𝑍𝑖`1,...,𝑍𝑛r|𝑌 p𝑍

p𝑛q
q ´ 𝑌 p𝑍

p𝑛q

´𝑖 p𝑍
1
𝑖qq|s

(4.52)

ď 1 (4.53)

But then we get that

|𝑌 p𝑖q ´ 𝑌 p𝑖´ 1q| “ |Er𝑌 |𝑍1, . . . , 𝑍𝑖s ´ Er𝑌 |𝑍1, . . . , 𝑍𝑖´1s| (4.54)

“ |Er𝑌 |𝑍1, . . . , 𝑍𝑖s ´ E𝑍1
𝑖

“

Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍
1
𝑖s

‰

| (4.55)

ď E𝑍1
𝑖

“

|Er𝑌 |𝑍1, . . . , 𝑍𝑖s ´ Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍
1
𝑖s|

‰

(4.56)

ď 1 (4.57)

Thus, we can immediately apply Azuma-Hoeffding to get a bound; unfortunately,

to get a good result this requires that 𝛾 ą 2 (i.e. 𝜈 “ 1 ´ 1
𝛾
ą 1

2
). However, we will

give the result and sharpen it afterwards:
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Lemma 25. Given the definitions above,

E
„

𝑌 p𝑛q ě 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď 𝑒´
𝑛2𝜈 p

ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

2𝑛 “ 𝑒´ 1
2
𝑛2𝜈´1p

ř𝑚
𝑗“1 𝑝

𝜈
𝑗 q2 (4.58)

Furthermore,
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 ě 1, so we can even find a bound independent of 𝑝 “ p𝑝1, . . . , 𝑝𝑚q:

E
„

𝑌 p𝑛q ě 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď 𝑒´ 1
2
𝑛2𝜈´1

(4.59)

Proof. This is a direct application of the Azuma-Hoeffding Inequality with the bounded

differences as shown in Lemma 24.

We know that
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 ě 1 because 𝑝 is a probability vector and can therefore be

expressed as a convex mixture of the basis vectors 11, . . . ,1𝑚. Then we note that the

function 𝜃p𝑝q “
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 is concave and 𝜃p1𝑗q “ 1 for all 𝑗, and hence by Jensen’s

Inequality

𝜃p𝑝q ě
𝑚
ÿ

𝑗“1

𝑝𝑗𝜃p1𝑗q “ 1 (4.60)

and thus we have the result we wanted.

Proposition 14. Given 𝑌 “
ř𝑚

𝑗“1 𝑛
𝜈
𝑗 , we have

P
„

𝑌 ě 2𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď 𝑒´ 1
2
𝑛2𝜈´1p

ř𝑚
𝑗“1 𝑝

𝜈
𝑗 q2 (4.61)

which implies the following bound independent of 𝑝:

P
„

𝑌 ě 2𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď 𝑒´ 1
2
𝑛2𝜈´1

(4.62)

Proof. Using the definition of the centered martingale 𝑌 p𝑖q, we have 𝑌 p𝑛q “ 𝑌 ´Er𝑌 s,
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thus giving us:

𝑌 ě 2𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗 ùñ 𝑌 ´ 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗 ě 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗 (4.63)

ùñ 𝑌 ´ Er𝑌 s ě 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗 (4.64)

ùñ 𝑌 p𝑛q ě 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗 (4.65)

which in turn means by Lemma 25

P
„

𝑌 ě 2𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď P
„

𝑌 p𝑛q ě 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď 𝑒´ 1
2
𝑛2𝜈´1p

ř𝑚
𝑗“1 𝑝

𝜈
𝑗 q2 (4.66)

The second bound independent of 𝑝 follows as in the proof of Lemma 25.

Since we have ´1
2
𝑛2𝜈´1 in the exponent, this is a very high probability concentra-

tion bound when 𝜈 ą 1{2, which happens iff 𝛾 ą 2. When 𝛾 ď 2, this bound is not

high probability (let alone very high probability), so we need more precise methods.

One place where we lost some potential benefit is in Lemma 24: while this is the

best single constant bound that holds under all circumstances, it ignores the fact that

when 𝑖 is not very close to 𝑛, there are a lot of 𝑍𝑖1 for 𝑖 ă 𝑖1 which still need to be

allocated; this in turn means that each bin has some expected number of balls still

to be added, so adding a ball to any given bin now won’t change Er𝑛𝜈
𝑗 |𝑍1, . . . , 𝑍𝑖s

by very much (as the differences between 𝑘𝜈 and p𝑘 ` 1q𝜈 get smaller and smaller as

𝑘 gets larger). First, we need the following lemma:

Lemma 26. Let 𝑊 „ Binp𝑝, 𝑛q for some 𝑝 P p0, 1q and 𝑛, and 𝜈 P p0, 1q; then

Erp𝑊 ` 1q𝜈s ´ Er𝑊 𝜈
s ď 𝑒´ 3

28
𝑛𝑝
` 2𝜈p𝑛𝑝q𝜈´1 (4.67)

Proof. Since 𝜈 P p0, 1q, ¨𝜈 is concave, and so the first-order approximation is an upper
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bound, yielding

p𝑊 ` 1q𝜈 ´𝑊 𝜈
ď 𝑊 𝜈

` 𝜈𝑊 𝜈´1
´𝑊 𝜈

“ 𝜈𝑊 𝜈´1 (4.68)

While this is fine for 𝑊 ą 0, we have to be careful for the case of 𝑊 “ 0, since the

exponent 𝜈 ´ 1 is negative; however, when 𝑊 “ 0, we have p𝑊 ` 1q𝜈 ´𝑊 𝜈 “ 1, so

we have the bound

p𝑊 ` 1q𝜈 ´𝑊 𝜈
ď minp𝜈𝑊 𝜈´1, 1q (4.69)

since for 𝑊 ě 1, we have 𝜈𝑊 𝜈´1 ď 𝜈 ă 1.

We then note the following: for 𝑊 ď 𝑛𝑝{2, we have p𝑊 ` 1q𝜈 ´𝑊 𝜈 ď 1, and for

𝑊 ą 𝑛𝑝{2, we have p𝑊 ` 1q𝜈 ´𝑊 𝜈 ď 𝜈p𝑛𝑝{2q𝜈´1. Thus, we have

Erp𝑊 ` 1q𝜈s ´ Er𝑊 𝜈
s “ Erp𝑊 ` 1q𝜈 ´𝑊 𝜈

s (4.70)

ď Pr𝑊 ď 𝑛𝑝{2s ` Pr𝑊 ą 𝑛𝑝{2sp𝜈p𝑛𝑝{2q𝜈´1
q (4.71)

ď Pr𝑊 ď 𝑛𝑝{2s ` 2𝜈p𝑛𝑝q𝜈´1 (4.72)

We can then use Bernstein’s Inequality to bound Pr𝑊 ď 𝑛𝑝{2s, as 𝑊 is a binomial

random variable and hence a sum of iid Bernoulli random variables. In particular,

we let these iid Bernoullis be 𝑊𝑖 (𝑖 P r𝑛s) and we let

𝑊 1
𝑖 “ 𝑝´𝑊𝑖 (which also means 𝑊𝑖 “ 𝑝´𝑊 1

𝑖 ) (4.73)

which are zero-mean and |𝑊 1
𝑖 | ď 1 always. Thus,

𝑊 “

𝑛
ÿ

𝑖“1

𝑊𝑖 “ 𝑛𝑝´
𝑛

ÿ

𝑖“1

𝑊 1
𝑖 (4.74)

i.e. 𝑊 ď 𝑛𝑝{2 ðñ
ř𝑛

𝑖“1𝑊
1
𝑖 ě 𝑛𝑝{2. Thus, since the 𝑊 1

𝑖 have variance 𝑝p1´ 𝑝q, we
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have

P
„ 𝑛

ÿ

𝑖“1

𝑊 1
𝑖 ě

𝑛𝑝

2

ȷ

ď 𝑒´
p𝑛𝑝q2{8

𝑛𝑝p1´𝑝q`𝑛𝑝{6 “ 𝑒´
𝑛𝑝{8

p1´𝑝q`1{6 ď 𝑒´ 3
28

𝑛𝑝 (4.75)

and hence we can put it all together and get

Erp𝑊 ` 1q𝜈s ´ Er𝑊 𝜈
s ď 𝑒´ 3

28
𝑛𝑝
` 2𝜈p𝑛𝑝q𝜈´1 (4.76)

Lemma 27. For the martingale defined above, WLOG 𝑝 be sorted, i.e. 0 ă 𝑝1 ď

¨ ¨ ¨ ď 𝑝𝑚 (any 0 entries can be ignored and 𝑝 reduced). Then

|𝑌 p𝑖q ´ 𝑌 p𝑖´ 1q| ď minp𝑒´ 3
28

p𝑛´𝑖q𝑝1 ` 2𝜈pp𝑛´ 𝑖q𝑝1q
𝜈´1, 1q (4.77)

Proof. We consider the situation when 𝑍𝑖 is about to be decided, i.e. 𝑍1, . . . , 𝑍𝑖´1 are

known and 𝑍𝑖`1, . . . , 𝑍𝑛 are in the future. How much can Er𝑌 |𝑍1, . . . , 𝑍𝑖´1s differ

from Er𝑌 |𝑍1, . . . , 𝑍𝑖s? We note that

ˇ

ˇEr𝑌 |𝑍1, . . . , 𝑍𝑖s ´ Er𝑌 |𝑍1, . . . , 𝑍𝑖´1s
ˇ

ˇ (4.78)

“
ˇ

ˇEr𝑌 |𝑍1, . . . , 𝑍𝑖s ´ E𝑍„𝑝rEr𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍ss
ˇ

ˇ (4.79)

ď max
𝑍Pr𝑚s

Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍s ´ min
𝑍1Pr𝑚s

Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍
1
s (4.80)

(note that we are working with 𝑌 which is not centered, but the centering subtracts

Er𝑌 s from both sides and can be ignored). That is, we can bound |𝑌 p𝑖q ´ 𝑌 p𝑖 ´ 1q|

given 𝑍1, . . . , 𝑍𝑖´1 by taking the difference between the choice of 𝑍𝑖 that maximizes

𝑌 p𝑖q and the choice of 𝑍𝑖 that minimizes 𝑌 p𝑖q. Since 𝑍1, . . . , 𝑍𝑖´1 are unknown, we

also have to maximize over them, i.e. we want to bound

max
𝑍1,...,𝑍𝑖´1

pmax
𝑍Pr𝑚s

Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍s ´ min
𝑍1Pr𝑚s

Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍
1
sq (4.81)

We now break this down further: setting 𝑍 “ 𝑗 really adds 1 to the final 𝑛𝑗, and
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𝑍 1 “ 𝑗1 does the same to 𝑛𝑗1 ; the remaining 𝑗2 ‰ 𝑗, 𝑗1 are unaffected and cancel out.

Note also that 𝑍1, . . . , 𝑍𝑖´1 only matter insofar as they affect 𝑛1p𝑖´ 1q, . . . , 𝑛𝑚p𝑖´ 1q,

so we will condition on those instead. Thus, letting 𝑊𝑗 „ Binp𝑝𝑗, 𝑛´ 𝑖q, we have :

max
𝑍1,...,𝑍𝑖´1

pmax
𝑍Pr𝑚s

Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍s ´ min
𝑍1Pr𝑚s

Er𝑌 |𝑍1, . . . , 𝑍𝑖´1, 𝑍
1
sq (4.82)

“ max
𝑛𝑗p𝑖q,𝑛𝑗1 p𝑖q

`

Erp𝑊𝑗 ` 𝑛𝑗p𝑖q ` 1q𝜈s ´ Erp𝑊𝑗 ` 𝑛𝑗p𝑛qq
𝜈
s (4.83)

´
`

Erp𝑊𝑗1 ` 𝑛𝑗1p𝑖q ` 1q𝜈s ´ Erp𝑊𝑗1 ` 𝑛𝑗1p𝑛qq𝜈s
˘

(4.84)

ď max
𝑛𝑗p𝑖q

Erp𝑊𝑗 ` 𝑛𝑗p𝑖q ` 1q𝜈s ´ Erp𝑊𝑗 ` 𝑛𝑗p𝑛qq
𝜈
s (4.85)

“ max
𝑗

Erp𝑊𝑗 ` 1q𝜈s ´ Er𝑊 𝜈
𝑗 s (4.86)

where the expectation is over the 𝑛´ 𝑖 values 𝑍𝑖`1, . . . , 𝑍𝑛 yet to be determined. This

holds because p𝑎1 ` 1q𝜈 ´ 𝑎𝜈1 ě p𝑎2 ` 1q𝜈 ´ 𝑎𝜈2 if 𝑎1 ď 𝑎2; and that also means that

this is maximized if 𝑗 is selected so 𝑝𝑗 is minimized, i.e. we use 𝑝1.

Then, by Lemma 26 (and the previously-derived upper bound of 1), the result

follows, with 𝑛´ 𝑖 because this is the number of 𝑍𝑖1 yet to be determined.

We now adjust the Azuma-Hoeffding argument for the new difference bound:

Proposition 15. Given the definitions above, let 𝜈 ď 2{3 and (wlog) let 𝑝1 be

the smallest nonzero value in 𝑝 “ p𝑝1, . . . , 𝑝𝑚q. Then, for all

𝑛 ě
280

3
logp1{𝜈q𝑝´1

1 (4.87)

we have the following concentration bounds:

E
„

𝑌 p𝑛q ě 2𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

𝑒
´

𝑝1𝑛
2𝜈 p

ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

13` 8
2𝜈´1𝑛2𝜈´1 for 𝜈 P p1{2, 2{3q

𝑒
´

p2{9q𝑝1𝑛p
ř𝑚
𝑗“1 𝑝

1{2
𝑗

q2

127´logp1{𝑝1q`logp𝑛q for 𝜈 “ 1{2

𝑒
´

𝑝1𝑛
2𝜈 p

ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

560
3 logp1{𝜈q`4`18𝜈2 1

1´2𝜈 p 2803 logp1{𝜈qq2𝜈´1 for 𝜈 P p0, 1{2q

(4.88)
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As before,
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 ě 1, so we can remove it and the bound remains valid (if

potentially somewhat looser). Writing in asymptotic notation (but noting that

we have firm constants by the above) this is

E
„

𝑌 p𝑛q ě 𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ȷ

ď

$

’

’

’

’

’

&

’

’

’

’

’

%

𝑒´Θp𝑝1𝑛p2𝜈´1qp
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 q2q for 𝜈 P p1{2, 2{3q

𝑒´Θp𝑝1p𝑛{ logp𝑛qqp
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 q2q for 𝜈 “ 1{2

𝑒´Θp𝑝1𝑛2𝜈p
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 q2plogp1{𝜈q`p1´2𝜈q´1q´1q for 𝜈 P p0, 1{2q

(4.89)

Proof. Let

𝑐𝑖 “ minp𝑒´ 3
28

p𝑛´𝑖q𝑝1 ` 2𝜈pp𝑛´ 𝑖q𝑝1q
𝜈´1, 1q (4.90)

We now want to compute
ř𝑛

𝑖“1 𝑐
2
𝑖 . We first define

𝑎𝑖 “ 𝑐𝑛´𝑖 “ minp𝑒´ 3
28

𝑖𝑝1 ` 2𝜈p𝑖 𝑝1q
𝜈´1, 1q (4.91)

where 𝑖 now goes from 0 to 𝑛´ 1. Then we know that

𝑛´1
ÿ

𝑖“0

𝑎2𝑖 “
𝑛

ÿ

𝑖“1

𝑐2𝑖 (4.92)

Let 𝑧 “ 𝑖𝑝1; then we want to compare 𝑒´ 3
28

𝑧 to 2𝜈𝑧𝜈´1. In particular we want to find

𝑧˚ sufficiently large such that

𝑒´ 3
28

𝑧
ď 2𝜈𝑧𝜈´1 for all 𝑧 ě 𝑧˚ (4.93)

We compute:

𝑒´ 3
28

𝑧
ď 2𝜈𝑧𝜈´1 (4.94)

ðñ ´
3

28
𝑧 ď p𝜈 ´ 1q logp𝑧q ` logp2𝜈q (4.95)

ðñ
3

28
𝑧 ě p1´ 𝜈q logp𝑧q ´ logp2𝜈q (4.96)
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Then note that if 𝑧 ě 28
3

1
1´𝜈

,

𝑑

𝑑𝑧

3

28
𝑧 “

3

28
ě p1´ 𝜈q

1

𝑧
“

𝑑

𝑑𝑧
p1´ 𝜈q logp𝑧q ´ logp2𝜈q (4.97)

Thus, if 𝑧˚ ě 28
3

1
1´𝜈

and

3

28
𝑧˚
ě p1´ 𝜈q logp𝑧˚

q ´ logp2𝜈q (4.98)

then we can conclude that for all 𝑧 ě 𝑧˚,

𝑒´ 3
28

𝑧
ď 2𝜈𝑧𝜈´1 . (4.99)

Noting that 1 ă 28
3

1
1´𝜈

ď 28 (as 𝜈 ď 2{3), we let 𝑧˚ “ 280
3
logp1{𝜈q. Then

3

28
𝑧˚
“ 10 logp1{𝜈q ě p1´ 𝜈q log

´280

3
logp1{𝜈q

¯

´ logp2𝜈q (4.100)

which holds for 𝜈 P p0, 2{3q, and 𝑧˚ ě 28 for this range as well. This means that for

all 𝑧 ě 𝑧˚ (and 𝜈 P p0, 2{3q) we have

𝑒´ 3
28

𝑧
ď 2𝜈𝑧𝜈´1 . (4.101)

Then, recalling that 𝑧 “ 𝑖𝑝1, we have for all 𝑖 ě 𝑧˚{𝑝1 “
280
3
logp1{𝜈q𝑝´1

1 ,

𝑒´ 3
28

𝑖𝑝1 ď 2𝜈p𝑖 𝑝1q
𝜈´1

ùñ 𝑒´ 3
28

𝑖𝑝1 ` 2𝜈p𝑖 𝑝1q
𝜈´1

ď 3𝜈p𝑖 𝑝1q
𝜈´1 (4.102)

Thus, we have the following:

𝑎𝑖 “ minp𝑒´ 3
28

𝑖𝑝1 ` 2𝜈p𝑖 𝑝1q
𝜈´1, 1q ď

$

’

&

’

%

1 if 𝑖 ď 280
3
logp1{𝜈q𝑝´1

1

3𝜈p𝑖 𝑝1q
𝜈´1 if 𝑖 ě 280

3
logp1{𝜈q𝑝´1

1

(4.103)
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We now assume that 𝑛 ě 280
3
logp1{𝜈q𝑝´1

1 . In that case,

𝑛´1
ÿ

𝑖“0

𝑎2𝑖 ď
280

3
logp1{𝜈q𝑝´1

1 `

𝑛´1
ÿ

𝑖“ 280
3

logp1{𝜈q𝑝´1
1

9𝜈2p𝑖 𝑝1q
2𝜈´2 (4.104)

ď
280

3
logp1{𝜈q𝑝´1

1 ` 2` 9𝜈2𝑝2𝜈´2
1

ż 𝑛´1

280
3

logp1{𝜈q𝑝´1
1

𝑡2𝜈´2 𝑑𝑡 (4.105)

We now have to split this according to 𝜈 ą 1{2, 𝜈 “ 1{2, and 𝜈 ă 1{2. This yields

the following: for 𝜈 P p1{2, 2{3q,

9𝜈2𝑝2𝜈´2
1

ż 𝑛´1

280
3

logp1{𝜈q𝑝´1
1

𝑡2𝜈´2 𝑑𝑡 (4.106)

“ 9𝜈2𝑝2𝜈´2
1

1

2𝜈 ´ 1

ˆ

p𝑛´ 1q2𝜈´1
´

´280

3
logp1{𝜈q𝑝´1

1

¯2𝜈´1
˙

(4.107)

ď 4𝑝´1
1

1

2𝜈 ´ 1

ˆ

𝑛2𝜈´1
´

´280

3
logp1{𝜈q

¯2𝜈´1
˙

(4.108)

and hence we can conclude that (again, for 𝜈 P p1{2, 2{3q)

𝑛´1
ÿ

𝑖“0

𝑎2𝑖 ď 𝑝´1
1

ˆ

280

3
logp1{𝜈q ´

4

2𝜈 ´ 1

´280

3
logp1{𝜈q

¯2𝜈´1
˙

` 2`
4

2𝜈 ´ 1
𝑝´1
1 𝑛2𝜈´1

(4.109)

“ 𝑂p𝑝´1
1 logp1{𝜈q ` 1q `𝑂p𝑝´1

1 p2𝜈 ´ 1q´1
q𝑛2𝜈´1 (4.110)

Then, for 𝜈 “ 1{2, we have

𝑛´1
ÿ

𝑖“0

𝑎2𝑖 ď
280

3
logp1{𝜈q𝑝´1

1 ` 2` 9𝜈2𝑝2𝜈´2
1

ż 𝑛´1

280
3

logp1{𝜈q𝑝´1
1

𝑡2𝜈´2 𝑑𝑡 (4.111)

“
280

3
logp2q𝑝´1

1 ` 2` p9{4q𝑝´1
1

ˆ

logp𝑛´ 1q ´ log
´280

3
logp2q

¯

` logp1{𝑝1q

˙

(4.112)

ď

ˆ

280

3
logp2q ´ p9{4q log

´280

3
logp2q

¯

˙

𝑝´1
1 ` 2` p9{4q𝑝´1

1

`

logp𝑛q ´ logp1{𝑝1q
˘

(4.113)

ă p56´ p9{4q logp1{𝑝1qq𝑝
´1
1 ` 2` p9{4q𝑝´1

1 logp𝑛q (4.114)
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And finally, for 𝜈 P p0, 1{2q, we have

𝑛´1
ÿ

𝑖“0

𝑎2𝑖 ď
280

3
logp1{𝜈q𝑝´1

1 ` 2` 9𝜈2𝑝2𝜈´2
1

ż 𝑛´1

280
3

logp1{𝜈q𝑝´1
1

𝑡2𝜈´2 𝑑𝑡 (4.115)

ď
280

3
logp1{𝜈q𝑝´1

1 ` 2` 9𝜈2𝑝2𝜈´2
1

ż 8

280
3

logp1{𝜈q𝑝´1
1

𝑡2𝜈´2 𝑑𝑡 (4.116)

“
280

3
logp1{𝜈q𝑝´1

1 ` 2` 9𝜈2𝑝2𝜈´2
1

1

1´ 2𝜈

´280

3
logp1{𝜈q𝑝´1

1

¯2𝜈´1

(4.117)

“

ˆ

280

3
logp1{𝜈q ` 2` 9𝜈2

1

1´ 2𝜈

´280

3
logp1{𝜈q

¯2𝜈´1
˙

𝑝´1
1 (4.118)

(note that this is constant in 𝑛).

We then plug it into Azuma-Hoeffding (keeping in mind that
ř𝑛

𝑖“1 𝑐
2
𝑖 “

ř𝑛´1
𝑖“0 𝑎

2
𝑖 .

We get: for 𝜈 P p1{2, 2{3q,

E

«

𝑌 p𝑛q ě 2𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ff

ď 𝑒
´

𝑛2𝜈 p
ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

2
ř𝑛
𝑖“1

𝑎2
𝑖 (4.119)

ď 𝑒
´

𝑛2𝜈 p
ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

2𝑝´1
1 p 2803 logp1{𝜈q´ 4

2𝜈´1 p 2803 logp1{𝜈qq2𝜈´1q`4` 8
2𝜈´1 𝑝´1

1 𝑛2𝜈´1 (4.120)

“ 𝑒
´

𝑝1𝑛
2𝜈 p

ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

2p 2803 logp1{𝜈q´ 4
2𝜈´1 p 2803 logp1{𝜈qq2𝜈´1q`4𝑝1` 8

2𝜈´1𝑛2𝜈´1 (4.121)

ď 𝑒
´

𝑝1𝑛
2𝜈 p

ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

9`4𝑝1` 8
2𝜈´1𝑛2𝜈´1 (4.122)

ď 𝑒
´

𝑝1𝑛
2𝜈 p

ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

13` 8
2𝜈´1𝑛2𝜈´1 (4.123)

“ 𝑒´Θp𝑝1𝑛p2𝜈´1qp
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 q2q (4.124)

where the second-to-last step is simply from numerically taking the maximum of

280

3
logp1{𝜈q ´

4

2𝜈 ´ 1

´280

3
logp1{𝜈q

¯2𝜈´1

(4.125)

over the domain 𝜈 P p1{2, 2{3q.
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For 𝜈 “ 1{2, we have

E

«

𝑌 p𝑛q ě 2𝑛1{2
𝑚
ÿ

𝑗“1

𝑝
1{2
𝑗

ff

ď 𝑒
´

𝑛p
ř𝑚
𝑗“1 𝑝

1{2
𝑗

q2

2
ř𝑛
𝑖“1

𝑎2
𝑖 (4.126)

ď 𝑒
´

𝑛p
ř𝑚
𝑗“1 𝑝

1{2
𝑗

q2

2pp56´p9{4q logp1{𝑝1qq𝑝´1
1 `2`p9{4q𝑝´1

1 logp𝑛qq (4.127)

“ 𝑒
´

𝑝1𝑛p
ř𝑚
𝑗“1 𝑝

1{2
𝑗

q2

p28´p9{2q logp1{𝑝1qq`4𝑝1`p9{2q logp𝑛q (4.128)

ď 𝑒
´

p2{9q𝑝1𝑛p
ř𝑚
𝑗“1 𝑝

1{2
𝑗

q2

p126´logp1{𝑝1qq`𝑝1`logp𝑛q (4.129)

ď 𝑒
´

p2{9q𝑝1𝑛p
ř𝑚
𝑗“1 𝑝

1{2
𝑗

q2

127´logp1{𝑝1q`logp𝑛q (4.130)

“ 𝑒´Θp𝑝1p𝑛{ logp𝑛qqp
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 q2q (4.131)

Finally, for 𝜈 P p0, 1{2q we have

E

«

𝑌 p𝑛q ě 2𝑛𝜈
𝑚
ÿ

𝑗“1

𝑝𝜈𝑗

ff

ď 𝑒
´

𝑛2𝜈 p
ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

2
ř𝑛
𝑖“1

𝑎2
𝑖 (4.132)

ď 𝑒
´

𝑛2𝜈 p
ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

p 5603 logp1{𝜈q`4`18𝜈2 1
1´2𝜈 p 2803 logp1{𝜈qq2𝜈´1q𝑝´1

1 (4.133)

“ 𝑒
´

𝑝1𝑛
2𝜈 p

ř𝑚
𝑗“1 𝑝𝜈𝑗 q2

560
3 logp1{𝜈q`4`18𝜈2 1

1´2𝜈 p 2803 logp1{𝜈qq2𝜈´1 (4.134)

“ 𝑒´Θp𝑝1𝑛2𝜈p
ř𝑚

𝑗“1 𝑝
𝜈
𝑗 q2plogp1{𝜈q`p1´2𝜈q´1q´1q (4.135)

Note that the dependence on 𝑛 in the above bounds (holding 𝜈, 𝑝1 fixed) is the

following: 𝑒´Θp𝑛q for 𝜈 P p1{2, 2{3q; 𝑒´Θp𝑛{ logp𝑛qq for 𝜈 “ 1{2; and 𝑒´Θp𝑛2𝜈q for 𝜈 P

p0, 1{2q.

Barring fractals (which are of interest for future work) we have integer 𝛾 ě 2 and

hence 1´ 1
𝛾
“ 𝜈 P p0, 2{3q ùñ 𝜈 “ 1{2, i.e. when considering control-affine systems

and full-dimensional continuous distributions 𝑓 of target points, our main concern is

𝜈 “ 1{2. For 𝜈 ě 2{3, Proposition 14 provides a much cleaner very high probability

concentration bound (whose dependence on 𝑛 is 𝑒´Θp𝑛2𝜈´1q ě 𝑒´Θp𝑛1{6q), without any

fuss about how large 𝑛 has to be or the 𝑝1 term.
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4.4 Symmetric HCS covering algorithm

We now consider a division of 𝒳𝑓 into 𝑚 different 𝜀0-scale hierarchical cell structures,

as given in Assumption 10; we call their roots 𝑞1, . . . , 𝑞𝑚. Let 𝑥𝑗 “ r𝑞𝑗s𝒳 . These will

remain fixed while the number of targets 𝑛Ñ 8. Let 𝑆1, 𝑆2, . . . , 𝑆𝑚 be the top-level

cells of the SHCS’s that cover 𝒳𝑓 (at scale 𝜀0), and let 𝑥𝑗 “ r𝑞𝑗s𝒳 for all 𝑗; we define

𝑝𝑗 :“ P𝑋„𝑓 r𝑋 P 𝑆p𝑞𝑗, 𝜀0qs (4.136)

Note that 𝑝𝑗 depend on which SHCS’s we use, which in turn depends on 𝜀0. For

this proof, we will assume that the sets 𝑆p𝑞𝑗, 𝜀0q are disjoint (see Appendix D for a

proof that this simplifying assumption does not affect the result). Thus,
ř𝑚

𝑗“1 𝑝𝑗 “ 1,

and distributing 𝑋 „ 𝑓 puts it into a cell 𝑆𝑗 according to probability vector 𝑝 “

p𝑝1, . . . , 𝑝𝑚q. Let 𝑗p𝑋q denote the index of the cell 𝑋 falls into.

Then we wish to show that each SHCS covers a certain amount of probability

mass, except a negligible fraction:

Lemma 28. For any 𝜌1 ą 0, let a 𝜌1-good cell 𝑆𝑗 be defined as one such that

𝑝𝑗 ě p1´ 𝜌1q𝛼𝑓
p𝜁q
p𝑥𝑗q𝑔

p𝜁q
p𝑥𝑗q𝜀

𝛾
0 . (4.137)

Then, for any 𝜌1, 𝜌2 ě 0, for any sufficiently small 𝜁 ă 0 there is some 𝜀˚
0 such that

for any 0 ă 𝜀0 ď 𝜀˚
0 there are 𝑞1, . . . , 𝑞𝑚 satisfying the conditions of Assumption 10

such that

P𝑋„𝑓 r𝑆𝑗p𝑋q is 𝜌1-goods ě 1´ 𝜌2 . (4.138)

Proof. Consider some threshold 𝜌˚ ą 0 and call a cell 𝑆𝑗 𝜌
˚-sufficient if 𝑓 p𝜁qp𝑥𝑗q ě 𝜌˚.

We claim the following:

i. For any 𝜌2 ą 0, there is some 𝜌˚ ą 0 such that for all sufficiently small 𝜁 ą 0,

P𝑋„𝑓 r𝑓
p𝜁qp𝑋q ď p3{2q𝜌˚s ď 𝜌2.
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ii. For any 𝜌˚ ą 0, there is some 𝜀˚
0 such that if 𝑓 p𝜁qp𝑋q ą p3{2q𝜌˚, then 𝑆𝑗p𝑋q must

be 𝜌˚-sufficient.

iii. For any 𝜌˚, 𝜌1, 𝜁 ą 0, there is a sufficiently small 𝜀˚
0 such that for all 0 ă 𝜀0 ď 𝜀˚

0 ,

any 𝜌˚-sufficient cell is 𝜌1-good.

Claim (i) holds because 𝑓 is continuous almost everywhere, and therefore lim𝜁Ñ0 𝑓
p𝜁qp𝑥q “

𝑓p𝑥q almost everywhere; thus we pick 𝜌˚ sufficiently small so that P𝑋„𝑓 r𝑓p𝑋q ď

p3{2q𝜌˚s ď 𝑝2{2, and then letting 𝜁 Ñ 0 we get

lim
𝜁Ñ0

P𝑋„𝑓 r𝑓
p𝜁q
p𝑋q ď p3{2q𝜌˚

s “ P𝑋„𝑓 r𝑓p𝑋q ď p3{2q𝜌
˚
s ď 𝑝2{2 (4.139)

which means that for sufficiently small 𝜁 ą 0, we have P𝑋„𝑓 r𝑓
p𝜁qp𝑋q ď p3{2q𝜌˚s ď 𝜌2.

Claim (ii) holds because by definition

𝑋 P 𝑆𝑗p𝑋q Ď �̄�𝜀0p𝑞𝑗q Ď ℬ𝑐Π𝜀0p𝑥𝑗q (4.140)

where ℬ denotes a ball in the metric on 𝒳 (with a given radius and center). Since

by definition 𝑓 p𝜁q is p1{𝜁q-Lipschitz continuous, as long as 𝑐Π𝜀0{𝜁 ď 𝜌˚{2 (i.e. 𝜀0 ď

𝜌˚𝜁{p2𝑐Πq) we have

|𝑓 p𝜁q
p𝑋q ´ 𝑓 p𝜁q

p𝑥𝑗q| ď 𝜌˚
{2 (4.141)

ùñ 𝑓 p𝜁q
p𝑥𝑗q ě 𝜌˚ (4.142)

for any 𝑋 such that 𝑓 p𝜁qp𝑋q ą p3{2q𝜌˚, which by definition means that 𝑆𝑗p𝑋q is

𝜌˚-sufficient.

Claim (iii) holds because 𝑓 p𝜁q is Lipschitz continuous, 𝑆𝑗 Ď ℬ𝑐Π𝜀0p𝑥𝑗q, and 𝑓 p𝜁qp𝑥𝑗q ě

𝜌˚; thus, by making 𝜀0 sufficiently small, 𝑓 p𝜁qp𝑋q ě p1 ´ 𝜌1{2q𝑓
p𝜁qp𝑥𝑗q for every
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𝑋 P ℬ𝑐Π𝜀0p𝑥𝑗q, and Vol𝒳 p𝑆𝑗q ě p1´ 𝜌1{2q𝛼𝑔
p𝜁qp𝑥𝑗q𝜀

𝛾
0 . Thus,

P𝑓„𝑋r𝑋 P 𝑆𝑗s “

ż

𝑆𝑗

𝑓p𝑥q 𝑑𝑥 (4.143)

ě

ż

𝑆𝑗

𝑓 p𝜁q
p𝑥q 𝑑𝑥 (4.144)

ě

ż

𝑆𝑗

p1´ 𝜌1{2q𝑓
p𝜁q
p𝑥𝑗q 𝑑𝑥 (4.145)

“ p1´ 𝜌1{2q𝑓
p𝜁q
p𝑥𝑗qVol𝒳 p𝑆𝑗q (4.146)

ě p1´ 𝜌1{2q
2𝛼𝑓 p𝜁q

p𝑥𝑗q𝑔
p𝜁q
p𝑥𝑗q𝜀

𝛾
0 (4.147)

ě p1´ 𝜌1q𝛼𝑓
p𝜁q
p𝑥𝑗q𝑔

p𝜁q
p𝑥𝑗q𝜀

𝛾
0 . (4.148)

Finally, claims (i)-(iii) show our result because

P𝑋„𝑓 r𝑆𝑗p𝑋q is 𝜌1-goods ě P𝑋„𝑓 r𝑆𝑗p𝑋q is 𝜌˚-sufficients (4.149)

ě P𝑋„𝑓 r𝑓
p𝜁q
p𝑋q ą p3{2q𝜌˚

s (4.150)

ě 𝜌2 (4.151)

and we are done.

For the remainder of this proof, we will assume that all cells are 𝜌1-good. We will

show in Appendix D that this assumption can be made without loss of generality, i.e.

that the same very high probability bound can be achieved.

Given covering SHCS’s with roots 𝑞1, . . . , 𝑞𝑚, we define

𝐶𝜀0 “ TSPΠp𝑞1, . . . , 𝑞𝑚q (4.152)

i.e. the amount of TSP tour time needed to visit all the roots of the cells, which

depends on 𝜀0 but is constant with regards to 𝑛. Note that this requires the vehicle

to visit particular configurations rather than just targets, and note that computing

it exactly can be intractable; however, we only need any constant length and, if we

have good point-to-point (or configuration-to-configuration) motion planning for our
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vehicle, we can even get a good constant approximation by computing the distances

between all pairs of 𝑞𝑗1 , 𝑞𝑗2 and applying a standard TSP approximation algorithm.

We now want to apply Proposition 14 or Proposition 15 (depending on whether

𝛾 ě 3 since 𝜈 “ 1 ´ 1
𝛾
). To do this, we need to compute

ř𝑚
𝑗“1 𝑝

1´ 1
𝛾

𝑗 . We note that if

we define a discrete random variable 𝑍 „ 𝑝 in r𝑚s, this is equivalent to

𝑚
ÿ

𝑗“1

𝑝
1´ 1

𝛾

𝑗 “ E𝑍„𝑝

”

𝑝
´ 1

𝛾

𝑍

ı

(4.153)

Let 𝑋 „ 𝑓 ; then we can interpret 𝑍 “ 𝑗p𝑋q. For any 𝛿 ą 0, we can choose 𝜌1 ą 0

and 𝜁 ą 0 and 𝜀0 small enough that Lemma 28 applies and

ż

𝒳𝑓

𝑓p𝑥q𝑓 p𝜁q
p𝑥q´

1
𝛾 𝑔p𝜁q

p𝑥q´
1
𝛾 𝑑𝑥 «

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (4.154)

(this approximation can be made arbitrarily close by setting 𝜁 small) to get

𝑚
ÿ

𝑗“1

𝑝
1´ 1

𝛾

𝑗 “ E𝑍„𝑝

”

𝑝
´ 1

𝛾

𝑍

ı

(4.155)

“ E𝑋„𝑓

”

𝑝
´ 1

𝛾

𝑗p𝑋q

ı

(4.156)

ď E𝑋„𝑓

”

p1´ 𝜌1q
´ 1

𝛾𝛼´ 1
𝛾 𝜀´1

0 𝑓 p𝜁q
p𝑋q´

1
𝛾 𝑔p𝜁q

p𝑋q´
1
𝛾

ı

(4.157)

“ p1´ 𝜌1q
´ 1

𝛾𝛼´ 1
𝛾 𝜀´1

0

ż

𝒳𝑓

𝑓p𝑥q𝑓 p𝜁q
p𝑥q´

1
𝛾 𝑔p𝜁q

p𝑥q´
1
𝛾 𝑑𝑥 (4.158)

ď p1` 𝛿q𝛼´ 1
𝛾 𝜀´1

0

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (4.159)

By Proposition 13, if 𝑛𝑗 is the number of targets that fall into 𝑆𝑗, the time needed to

visit all of them (starting and ending at the root 𝑞𝑗) is at most 6𝑠𝜀0𝑛
1´ 1

𝛾

𝑗 and hence a

TSP trajectory can be constructed by combining a TSP trajectory through the roots

𝑞1, . . . , 𝑞𝑚 (taking a constant 𝐶𝜀0 time) and these tours within cells; each time you
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arrive at a 𝑞𝑗, you execute a tour of the 𝑛𝑗 targets within 𝑆𝑗. Thus,

TSPΠp𝑋1, . . . , 𝑋𝑛q ď 𝐶𝜀0 ` 6𝑠𝜀0

𝑚
ÿ

𝑗“1

𝑛
1´ 1

𝛾

𝑗 (4.160)

𝑤𝑣ℎ𝑝 ď 𝐶𝜀0 ` 12𝑠𝜀0𝑛
1´ 1

𝛾

𝑚
ÿ

𝑗“1

𝑝
1´ 1

𝛾

𝑗 (4.161)

𝑤𝑣ℎ𝑝 ď 𝐶𝜀0 ` 12𝑠𝜀0𝑛
1´ 1

𝛾 p1´ 𝜌1q
´ 1

𝛾𝛼´ 1
𝛾 𝜀´1

0

ż

𝒳𝑓

𝑓p𝑥q𝑓 p𝜁q
p𝑥q´

1
𝛾 𝑔p𝜁q

p𝑥q´
1
𝛾 𝑑𝑥

(4.162)

𝑤𝑣ℎ𝑝 ď 𝐶𝜀0 ` p1` 𝛿q12𝑠𝛼
´ 1

𝛾𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (4.163)

Exactly what ‘wvhp’ means here is dependent on what regime from Propositions 14

and 15 the exponent 𝜈 “ 1 ´ 1
𝛾

falls in, but in all cases probability of failure is

upper bounded (in the limit) by some 𝑐1𝑒´𝑐2𝑥𝑐3 where 𝑐1, 𝑐2, 𝑐3 ą 0. Note that while

𝐶𝜀0 increases as 𝜀0 gets smaller, and that 𝜀0 might have to be set small to achieve

approximation error 𝛿 ą 0, it is constant with regard to 𝑛 and hence negligible as

𝑛Ñ 8.

Remark 20. A fun consequence of this argument is that, in the Euclidean TSP on R𝑑,

if the target points 𝑋1, . . . , 𝑋𝑛 are drawn from a bounded set 𝒳 ˚ Ď R𝑑 with Hausdorff

dimension 𝛾 ě 1, then the worst-case tour length scales according to Θp𝑛1´ 1
𝛾 q.

The requirement that 𝛾 ą 1 comes from the fact that if 𝛾 ă 1, the time required to

move between hierarchical cell structures, which is 𝑂p1q, dominates over 𝑛1´ 1
𝛾 . Thus,

if 𝛾 ă 1 the Euclidean TSP trajectory length defaults back to 𝑂p1q, i.e. bounded above

by a constant even as 𝑛Ñ 8.
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Chapter 5

Nonsymmetric Dynamics Algorithm

In this chapter we present our algorithm for nonsymmetric dynamics, which, like the

symmetric dynamics algorithm, is based on tiling the space with cells inscribed in

reachable sets. The difference, however, is that a vehicle with symmetric dynamics

can visit all the target points in a cell in a short period of time, as after each visit it can

return to the anchor and then proceed to the next one; a vehicle with nonsymmetric

dynamics can only be sure of visiting a single target point in each cell before the drift

pushes it out and into the next cell. Thus, the algorithm for nonsymmetric dynamics

must have a strategy of when and how often to return to each cell in order to to ensure

that every target point is visited. As in the nonsymmetric dynamics algorithm, we

will be working with cells of various different scales in order to avoid wasting too

much time traveling through empty cells.

Since we can only achieve the correct order-of-growth for the shortest tour length

for nonsymmetric dynamics, we make the simplifying assumption that the targets are

uniformly distributed over a cube. Since we may have targets on a curved manifold,

we define this in relation to the Nonsymmetric Hierarchical Cell Structure.
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5.1 Tiling Algorithm

5.1.1 Nonsymmetric HCS cover

Under Assumption 11, we know that for every 𝑥 P 𝒳𝑓 , there is a Nonsymmetric Hier-

archical Cell Structure containing 𝑥. We want to use this to produce a Nonsymmetric

HCS cover:

Definition 24. A Nonsymmetric Hierarchical Cell Structure cover (Nonsymmet-

ric HCS cover, or NHCS cover) is a finite set of NHCS’s for which the union of

their top-level cells covers 𝒳𝑓 .

Note that unlike the symmetric case, since we are only trying to show the order of

growth, we are not concerned with overlaps. Thus, we can bound the performance of

our algorithm above by considering how the algorithm performs when every NHCS

contains 𝑛 targets; if each NHCS has a Θp𝑛1´ 1
𝛾 q growth rate for the length of the

DSTSP tour through 𝑛 random targets within it (with very high probability), then

(also accounting for a fixed extra time to the tour for traveling between cells) the

whole tour will have a Θp𝑛1´ 1
𝛾 q length with very high probability.

Lemma 29. If Assumption 11 holds, then a NHCS cover exists.

Proof. For any 𝑥 P 𝒳𝑓 , let 𝑆𝑥 denote the interior of the top-level cell of the NHCS

containing 𝑥, which is open. Then clearly

𝒳𝑓 Ď
ď

𝑥P𝒳𝑓

𝑆𝑥 ; (5.1)

but since 𝒳𝑓 is compact by Assumption 5, there is a finite subset of the 𝑆𝑥 which also

cover 𝒳𝑓 , which is our finite set of NHCS’s.

5.1.2 Nonsymmetric HCS and Passes

We now consider the Nonsymmetric HCS. For convenience we repeat Definition 14

here. An 𝜀-scale NHCS with structural constants 𝛼1, 𝛼2 ą 0 is a structure consisting

162



of an infinite sequence of levels 𝑘 “ 0, 1, . . . . Each level 𝑘 then consists of the following

elements:

• 2𝑘𝛾 cells which are subsets of the workspace

𝑆
p𝑘q

1 , . . . , 𝑆
p𝑘q

2𝑘𝛾
Ď 𝒳 . (5.2)

We denote the set of level-𝑘 cells as 𝒮p𝑘q.

• 2𝑘p𝛾´1q tracks, which are trajectories

𝜋
p𝑘q

1 , . . . , 𝜋
p𝑘q

2𝑘p𝛾´1q : r0, 𝛼1s Ñ 𝒬 (5.3)

where each 𝜋
p𝑘q

𝑖 is associated with some control 𝑢p𝑘q

𝑖 P 𝒰 and some starting

configuration 𝑞p𝑘q

𝑖 and satisfies

𝜋
p𝑘q

𝑖 p𝑡q :“ expp𝑡 ℎ
𝑢

p𝑘q

𝑖
qp𝑞

p𝑘q

𝑖 q for all 𝑘 and 𝑖 P 1, 2, . . . , 2𝑘p𝛾´1q . (5.4)

This means that 𝜋p𝑘q

𝑖 is the trajectory produced when applying control 𝑢p𝑘q

𝑖

starting from 𝑞
p𝑘q

𝑖 for 𝛼1 time.

These satisfy the following relationships with each other:

• For each 𝑘, the level-𝑘 cells are all disjoint.

• For each 𝑘, every level-𝑘 cell 𝑆p𝑘q

𝑖 is partitioned into 2𝛾 level-p𝑘` 1q cells which

we call its sub-cells.

• For each 𝑘, every level-𝑘 track 𝜋p𝑘q

𝑖 is associated with 2𝑘 different level 𝑘 cells;

WLOG we can assign the indices of the cells associated with 𝜋p𝑘q

𝑖 as 𝑆p𝑘q

𝑗;𝑖 where

𝑗 “ 1, 2, . . . , 2𝑘. We denote the set of all cells associated with track 𝜋p𝑘q

𝑖 as

𝒮p𝑘q

𝑖 :“ t𝑆
p𝑘q

𝑗;𝑖 : 𝑗 P r2𝑘su . (5.5)
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• For each 𝑆 P 𝒮p𝑘q

𝑖 , there is some 𝑡 P r0, 𝛼1s such that

𝑆 Ď �̄�𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡q;𝑢
p𝑘q

𝑖 q . (5.6)

• Each 𝑆 P 𝒮p𝑘q at level 𝑘 has volume

Vol𝒳 p𝑆q ě 𝛼2𝜀
𝛾
{2𝑘𝛾 . (5.7)

and the single level-0 cell has nonzero volume.

We now define the following operation on an NHCS:

Definition 25. Given an NHCS with cell sets 𝒮p𝑘q for each level 𝑘, a pass at level

𝑘 is a trajectory that visits one target in each (nonempty) level-𝑘 cell in 𝒮p𝑘q.

Any visited target is considered as removed from the problem.

This is our fundamental operation for visiting all targets which fall within the

NHCS. We show that it can be done (at a given level 𝑘) in a limited time:

Proposition 16. Given an NHCS, there is some constant 𝐶 such that a pass at

any level 𝑘 can be executed in time ď 𝐶2𝑘p𝛾´1q.

Proof. As above, we let 𝑞p𝑘q

𝑖 be the starting point of track 𝜋p𝑘q

𝑖 , which operates under

fixed control 𝑢p𝑘q

𝑖 .

We now consider the cells 𝑆p𝑘q

1;𝑖 , . . . , 𝑆
p𝑘q

2𝑘;𝑖
P 𝒮p𝑘q

𝑖 . Each is contained in some devia-

tion set �̄�𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡qq; we denote the time in question as 𝑡p𝑘q

𝑗;𝑖 , i.e.

𝑆
p𝑘q

1;𝑖 Ď �̄�𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 q,𝑢
p𝑘q

𝑖 q . (5.8)

Without loss of generality we index these in order, i.e.

0 ď 𝑡
p𝑘q

1;𝑖 ď 𝑡
p𝑘q

2;𝑖 ď ¨ ¨ ¨ ď 𝑡
p𝑘q

2𝑘;𝑖
ď 𝛼1 . (5.9)

The general idea is that we can go on track 𝜋
p𝑘q

𝑖 and deviate at each 𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 q

to visit a target in 𝑆
p𝑘q

𝑗;𝑖 before returning to 𝜋p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 ` 𝜀{2𝑘q. By the definition of a
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deviation set, the time needed to start at 𝜋p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 q and visit any target

𝑥 P 𝑆
p𝑘q

𝑗;𝑖 Ď �̄�𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 q,𝑢
p𝑘q

𝑖 q (5.10)

and then return to 𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 ` 𝜀{2𝑘q is at most 2𝜀{2𝑘. Being back on 𝜋
p𝑘q

𝑖 will then

allow us to proceed to 𝜋p𝑘q

𝑖 p𝑡
p𝑘q

𝑗`1;𝑖q by applying control 𝑢p𝑘q

𝑖 .

However, one problem with the above is that it is very possible that

𝑡
p𝑘q

𝑗;𝑖 ` 𝜀{2
𝑘
ą 𝑡

p𝑘q

𝑗`1;𝑖 (5.11)

i.e. the return point for the current deviation set is after the starting point for the

next one. However, we claim that there is some constant (integer) ∆ independent of

𝑘 such that

𝑡
p𝑘q

𝑗;𝑖 ` 𝜀{2
𝑘
ď 𝑡

p𝑘q

𝑗`Δ;𝑖 . (5.12)

This means that we can always go to the ∆-th next cell. We show this claim as

follows: first, we note that for any 𝑡 P r𝑡p𝑘q

𝑗;𝑖 , 𝑡
p𝑘q

𝑗;𝑖 ` 𝜀{2
𝑘s,

�̄�𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡q,𝑢
p𝑘q

𝑖 q Ď �̄�2𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡qq Ď �̄�3𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 qq (5.13)

Then, by Assumption 6 we have a constant 𝐶 1 such that

Vol𝒳 p�̄�3𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 qqq ď 𝐶 1
p𝜀{2𝑘q𝛾 “ 𝐶 1𝜀𝛾{2𝑘𝛾 . (5.14)

Now we look at all 𝑗1 such that 𝑡𝑗1;𝑖 P r𝑡
p𝑘q

𝑗;𝑖 , 𝑡
p𝑘q

𝑗;𝑖 ` 𝜀{2
𝑘s. We know that for such 𝑗1,

𝑆
p𝑘q

𝑗1;𝑖 Ď �̄�𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗1;𝑖q,𝑢
p𝑘q

𝑖 q Ď �̄�3𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 qq (5.15)

and all of them are disjoint. But then note that each 𝑆p𝑘q

𝑗1;𝑖 satisfies

Vol𝒳 p𝑆
p𝑘q

𝑗1;𝑖q ě 𝛼2𝜀
𝛾
{2𝑘𝛾 . (5.16)
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But this means by volume that at most ∆ “ r𝐶 1{𝛼2s of these 𝑆p𝑘q

𝑗1;𝑖 can fit in �̄�3𝜀{2𝑘p𝜋
p𝑘q

𝑖 p𝑡
p𝑘q

𝑗;𝑖 qq.

Thus, we know that 𝑡p𝑘q

𝑗;𝑖 `𝜀{2
𝑘 ď 𝑡

p𝑘q

𝑗`Δ;𝑖; thus we can get all of the cells in 𝒮p𝑘q

𝑖 with

∆ runs down the track (the first time we get a target in each of 𝑆p𝑘q

1;𝑖 , 𝑆
p𝑘q

1`Δ;𝑖, 𝑆
p𝑘q

1`2Δ;𝑖 . . . ,

the second time we get a target in each of 𝑆p𝑘q

2;𝑖 , 𝑆
p𝑘q

2`Δ;𝑖, 𝑆
p𝑘q

2`2Δ;𝑖 . . . , and so on up to

𝑆
p𝑘q

Δ;𝑖, 𝑆
p𝑘q

Δ`Δ;𝑖, 𝑆
p𝑘q

Δ`2Δ;𝑖 . . . ). Each run down the track takes at most 2𝛼1 time (the track

originally takes ď 𝛼1 time by (5.3), and we need to potentially double it to account

for extra time taken during deviations); by Assumption 4, for each ‘reset’ of the track

(return to 𝑞p𝑘q

𝑖 ) requires at most a constant 𝐶2 time.

[Note: if the end of the track 𝜋
p𝑘q

𝑖 p𝛼1 ` 2𝜀{2𝑘𝛾q (the end because we may still

need to visit a target starting at 𝜋p𝑘q

𝑖 p𝛼1q) and/or the start 𝑞p𝑘q

𝑖 “ 𝜋
p𝑘q

𝑖 p0q fall outside

𝒳𝑓 , we can use the last time it falls outside and the first time it falls inside so the

assumption still applies.]

Thus, we can repeat track 𝜋
p𝑘q

𝑖 at most ∆ times and visit one target from each

(nonempty) cell in 𝒮p𝑘q

𝑖 , which takes a total time of at most

∆p𝛼1 ` 2𝜀{2𝑘𝛾 ` 𝐶2
q ď ∆p𝛼1 ` 𝜀` 𝐶

2
q “ 𝐶 (5.17)

including an extra segment needed to move to the next track. Repeating this for all

2𝑘p𝛾´1q tracks then completes a pass in at most 𝐶2𝑘p𝛾´1q time, visiting at least one

target from each (nonempty) cell in 𝒮p𝑘q “
Ť

𝑖 𝒮
p𝑘q

𝑖 .

5.2 Uniform targets on a Nonsymmetric HCS

We now consider the simplified problem of uniformly random iid targets on a Non-

symmetric HCS. By Proposition 16, the vehicle can pass through all cells at level

𝑘 ě 0 in time ď 𝐶 2𝑘p𝛾´1q and visit at least one target from each of 2𝑘𝛾 (nonempty)

cell at level 𝑘. We call this a pass. We will show in Corollary 2 that this simplified

case is sufficient for the general upper bound we want to show.

Since in this section we are only concerned about the order-of-growth, we can

ignore constant multiplicative factors (so long as we know that their supremum is
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finite). Thus, we can consider the cost of a pass at level 𝑘 to be 2𝑘p𝛾´1q. Furthermore,

since our primary goal is to find a probabilistic upper bound to the length of the

shortest tour (via designing an algorithm which achieves a length of at most the upper

bound), we make the pessimistic assumption that we can visit exactly one target in

each nonempty cell per pass (targets that we have already visited are considered

removed from the problem).

To emulate this problem, we define the Nonsymmetric Hierarchical Collection

Problem (Nonsymmetric HCP, or NHCP). Like its symmetric counterpart, is an ab-

stract combinatorial problem designed to represent the general characteristics of our

algorithmic framework for solving a DSTSP instance. For the nonsymmetric DSTSP,

this means representing the problem of deciding how many passes to make before

each merge step in the algorithmic framework given above.

5.2.1 The Nonsymmetric Hierarchical Collection Problem

We define the Nonsymmetric Hierarchical Collection Problem as follows; for simplicity

we assume that 𝑛 “ p2𝛾qℓ “ 2ℓ𝛾 for some integer ℓ. For 𝑛 which does not satisfy this,

we note that we can add (random) ‘phantom’ targets to round up to the nearest

power of 2𝛾, which increases the number of targets by at most a factor of 2𝛾.

As in the Symmetric HCP, the nesting cell structure is represented by a rooted

tree 𝑇 with branching factor �̄� “ 2𝛾, where each vertex represents a cell and its

children represent its sub-cells; the target points𝑋1, . . . , 𝑋𝑛 are represented by targets

𝜏1, . . . , 𝜏𝑛 which are each an infinite path down the tree, starting from the root,

representing the sequence of (diminishing) cells containing 𝑋𝑖. However, a major

difference in the Symmetric HCP and the Nonsymmetric HCP is that the Symmetric

HCP allows the player to move around the cells according to the cell structure as

they want, visiting as many target points in each cell as they want; by contrast,

the Nonsymmetric HCP only allows the player to visit the cells in a very fixed way

with little flexibility, and with the ability to visit only one target point in each cell

(however, they can repeat ths cycle as many times as they want). This means the

main action of the player is not to move around the tree 𝑇 , but to execute a pass :
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at each step, the player picks a particular level (i.e. all the vertices at some depth 𝑗)

and visits one target (of their choice) at each vertex; this

Definition 26. The Nonsymmetric Hierarchical Collection Problem (NHCP),

parameterized by 𝛾, is a combinatorial problem with the following elements:

i. A rooted tree 𝑇 “ p𝑉,𝐸q with branching factor 2𝛾; we denote by 𝑉𝑗 the set

of vertices at depth 𝑗 (with the root at depth 0).

ii. 𝑛 targets 𝜏1, . . . , 𝜏𝑛; each 𝜏𝑖 represents an infinite path through 𝑇 , starting

from the root. We denote by 𝑣𝑗p𝜏𝑖q the vertex at level 𝑗 that 𝜏𝑖 passes through.

A (single-player) game is played on this structure. At each step, the player may

make a pass at any level 𝑗 that they select: they collect one target of their choice

which passes through each 𝑣 P 𝑉𝑗 (if no target 𝜏𝑖 passes through 𝑣, no target is

collected at that vertex), for a cost of 2p𝛾´1q𝑗. The objective is to collect all the

targets for the minimum cost. We denote by

NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q (5.18)

the minimum cost needed to collect all 𝑛 targets 𝜏𝑖.

The Stochastic NHCP is the above but the targets 𝜏1, . . . , 𝜏𝑛 are iid distributed

uniformly, i.e. 𝑣𝑗`1p𝜏𝑖q is always equally likely to be any of the 2𝛾 children of 𝑣𝑗p𝜏𝑖q.

Note that ‘passes’ get more efficient in a sense at deeper levels: since 𝑇 has branching

factor 2𝛾, at level 𝑗 there are 2𝛾𝑗 vertices and hence the potential to collect 2𝛾𝑗 targets

in a single pass, for a cost of only 2p𝛾´1q𝑗. However, the trade-off is that at deeper

levels (with a limited number of targets 𝑛) many of the cells will be empty, which

becomes inefficient. Thus the player needs to strike a balance in order to collect

targets for minimum cost.

One feature of the Nonsymmetric HCP which makes it very unlike the Symmetric

HCP is that the cost is maximized when the targets 𝜏1, . . . , 𝜏𝑛 are bunched up in

the same vertices, rather than spread out (in fact, the minimum cost of the NHCP
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corresponds roughly to the maximum cost of the SHCP, since both are realized when

the targets are spread out, in which case the SHCP algorithm performs actions which

closely resemble the ‘pass’ of the NHCP). This reflects the fact that a symmetric

vehicle can remain inside the cell and collect all the targets there quickly, while a

nonsymmetric vehicle must make repeated passes, which essentially iterates through

all the vertices at that level, to get them all (in which case it may as well just do its

passes at level 0).

One effect of this is that the guaranteed Θp𝑛1´ 1
𝛾 q upper bound of the SHCP does

not apply to the NHCP; for example, if at each level the targets within each vertex

are divided into at most 2𝛾´1 sub-vertices, then a pass at any level can collect at most

1 target per unit of cost it incurs, and therefore the targets can be collected only by

incurring a total of 𝑛 cost (by e.g. taking 𝑛 passes at level 0). This target point

distribution can be achieved (in the worst case) if the targets are distributed on a

lower-dimensional subset of 𝒳 ; see the proof of Proposition 20 for an example where

this sort of target point placement causes the shortest tour to have length Θp𝑛q.

5.2.2 Relationship between the DTSP and NHCP

We now show the relationship between the Dynamic TSP and the Nonsymmetric

HCP. In particular, we show how a DTSP instance maps to an NHCP instance:

Definition 27. For a Nonsymmetric Hierarchical Cell Structure 𝑆, we build an

infinite rooted tree 𝑇 as follows: each cell of the NHCS corresponds to a vertex of

𝑇 , with the root vertex 𝑣0 corresponds to the top-level cell in the NHCP; then the

2𝛾 children of each vertex 𝑣 correspond to the 2𝛾 sub-cells of the cell corresponding

to 𝑣. This trivially means that each level-𝑘 cell corresponds to a vertex at depth

𝑘 of 𝑇 .

Then, given some 𝑥 P 𝑆, its cell path is the path through 𝑇 corresponding

to all the cells containing 𝑥 (starting at the root 𝑣0 and going to the child of 𝑣0

corresponding to the sub-cell containing 𝑥, and so forth). We call this 𝜏p𝑥q; note

that if 𝑥 ‰ 𝑥1 then 𝜏p𝑥q ‰ 𝜏p𝑥1q since at some level they will fall in different cells.
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Then for targets 𝑥1, . . . , 𝑥𝑛 on 𝑆, the equivalent NHCP instance of the DTSP

is NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q where 𝜏𝑖 “ 𝑥𝑖.

We now show how a DTSP instance relates to its equivalent NHCP instance:

Proposition 17. Given targets 𝑥1, . . . , 𝑥𝑛 in a Nonsymmetric Hierarchical Cell

Structure, let 𝜏1, . . . , 𝜏𝑛 denote the cell paths corresponding to 𝑥1, . . . , 𝑥𝑛. Then

there is some constant 𝐶 ą 0 such that

TSPΠp𝑥1, . . . , 𝑥𝑛q ď 𝐶 ¨ NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q . (5.19)

Proof. This follows from the rules of making a pass as outlined above: there must

be a sequence of passes in the NHCP which allow all the targets to be collected with

NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q cost; we can then run that sequence of passes (the same levels

and visiting targets 𝑥𝑖 corresponding to the same

Thus, if we have some function 𝛼p𝑛q (not to be confused with the efficiency

parameter from the Symmetric HCS) such that NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q ď 𝛼p𝑛q, then

TSPΠp𝑥1, . . . , 𝑥𝑛q “ 𝐶 ¨ 𝛼p𝑛q. This yields the following corollary:

Corollary 2. If 𝜏1, . . . , 𝜏𝑛 are iid uniformly distributed random paths on 𝑇 and

there is some constant 𝐶 1 such that NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q ď 𝐶 1𝑛1´ 1
𝛾 with very high

probability, then for any Π, 𝑓 satisfying the assumptions in Section 2.1, there is

some constant 𝐶 such that

TSPΠp𝑋1, . . . , 𝑋𝑛q ď 𝐶𝑛1´ 1
𝛾 (5.20)

with very high probability when 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 .

Proof. We first show this to be true when 𝑓 is the uniform distribution on some

Nonsymmetric HCS 𝑆. Then having 𝜏1, . . . , 𝜏𝑛 iid uniformly distributed random paths

on 𝑇 corresponds exactly to the cell paths of 𝑋1, . . . , 𝑋𝑛; then Proposition 17 means

that if NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q ď 𝐶 1𝑛1´ 1
𝛾 with very high probability, we automatically

get TSPΠp𝑋1, . . . , 𝑋𝑛q ď 𝐶𝑛1´ 1
𝛾 with very high probability.
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Then to generalize this to all distributions 𝑓 , we find a NHCS cover (by Lemma 29

one always exists), which covers 𝒳𝑓 with a finite collection of NHCS’s 𝑆1, . . . , 𝑆𝑚; then

we can use this cover to partition 𝒳𝑓 and solve the problem on each piece separately

and combine them in the end. If the distribution 𝑓 is not uniform on each piece,

we can add random ‘phantom’ targets to make it uniform, increasing the number

of target points by a multiplicative factor (which does not affect the order-of-growth

since it applies the multiplicative factor to 𝑛1´ 1
𝛾 ). For a full proof, see Appendix A.1.2

and in particular Proposition 23.

5.2.3 Analysis of the Nonsymmetric HCP

Now that we have established the relationship between the NHCP (with uniformly

iid random targets) and the DSTSP, we need to analyze the NHCP. We want to show

the following:

Proposition 18. If 𝜏1, . . . , 𝜏𝑛 are iid uniformly randomly over the tree 𝑇 (i.e.

𝑣𝑗`1p𝜏𝑖q is always equally likely to be any of the 2𝛾 children of 𝑣𝑗p𝜏𝑖q), then

PrNHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q ď 6 ¨ 2𝛾´1
¨ 𝑛1´ 1

𝛾 s ě 1´ 4 ¨ 𝑒´𝑛
1´ 1

𝛾 (5.21)

with very high probability.

Note that in this section ℓ refers to a level in the tree 𝑇 , not the length of a

trajectory. Then Proposition 18 and Corollary 2 together show the nonsymmetric

upper bound in Theorem 1.

Lemma 30. If 𝑛 ě 2𝛾ℓ for integer ℓ, then for any 𝜏1, . . . , 𝜏𝑛,

NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q ě 2p𝛾´1qℓ . (5.22)

Consequently, we can establish the bound:

NHCPp𝜏1, . . . , 𝜏𝑛; 𝛾q ě 2´p𝛾´1q𝑛1´ 1
𝛾 . (5.23)
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Proof. Trivially, adding more targets increases the cost to collect all targets, so we

may WLOG assume that 𝑛 “ 2𝛾ℓ.

Suppose we make a pass at level 𝑗; what is the minimum possible cost per target

collected?

• When 𝑗 ď ℓ, we collect at most 2𝛾𝑗 targets for a cost of 2p𝛾´1q𝑗, yielding a cost

of at least

2p𝛾´1q𝑗
{2𝛾𝑗 “ 2p𝛾´1q𝑗´𝛾𝑗

“ 2´𝑗 (5.24)

per target collected.

• When 𝑗 ą ℓ, we collect at most 𝑛 “ 2𝛾ℓ targets (since those are all the targets)

for a cost of at least

2p𝛾´1q𝑗
{2𝛾ℓ “ 2p𝛾´1q𝑗´𝛾ℓ

“ 2´ℓ`p𝛾´1qp𝑗´ℓq (5.25)

per target collected.

This is then clearly minimized at 𝑗 “ ℓ, yielding a minimum possible 2´ℓ cost per

target collected by any pass. Furthermore, this cost-per-target can only increase as

the number of targets diminishes. Thus, the minimum possible cost of collecting all

𝑛 “ 2𝛾ℓ targets is

2´ℓ𝑛 “ 2p𝛾´1qℓ (5.26)

and we are done with the first part. The second part follows from the first because
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we can set ℓ “ tlog2p𝑛q{𝛾u ě log2p𝑛q{𝛾 ´ 1 to get

ℓ ě
log2 𝑛

𝛾
´ 1 (5.27)

ùñ 𝛾ℓ ě log2 𝑛´ 𝛾 (5.28)

ùñ p𝛾 ´ 1qℓ ě
´

1´
1

𝛾

¯

log2 𝑛´ p𝛾 ´ 1q (5.29)

ùñ 2p𝛾´1qℓ
ě 2´p𝛾´1q𝑛1´ 1

𝛾 (5.30)

thus completing the second part.

Note that this minimum possible might be achieved if each target is present at a

unique level-ℓ vertex, but it may be unachievable if e.g. the targets are concentrated

in some much smaller subset of the vertices.

Remark 21. While this shows the minimum possible cost to collect all targets in

the Nonsymmetric HCP, it does not reflect the minimum possible cost to collect all

targets in the DSTSP; this is because the NHCP make the safe assumption that only

one target can be collected in a vertex (corresponding to a cell) per pass, and that

empty vertices cannot be skipped. Hence, like the Symmetric HCP, it is only an upper

bound for the corresponding DSTSP instance.

This demonstrates that if we find a strategy which (with very high probability with

random targets) collects all the target points with cost ď 𝐶𝑛1´ 1
𝛾 for some constant

𝐶 ą 0, we will have achieved a solution whose cost is, with very high probability,

within a constant factor of the optimal solution of the Nonsymmetric HCP.

We now consider strategies for the Nonsymmetric HCP. Given that the targets

are randomly distributed, there are two basic approaches to showing that it can be

solved for relatively low cost with very high probability: describe a strategy that

always successfully collects all the targets, and show that it has very high probability

to achieve low cost; or describe a strategy that always has low cost, and show that it

has a very high probability of successfully collecting the target points. We will opt

for the latter:
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Definition 28. Given 𝛾 and the number of targets 𝑛, the exponential moment

suppression strategy (EMS strategy) makes the following passes:

• Initialization: 1 pass at level ℓ :“ r
log2p𝑛q

𝛾
s;

• Main sequence: 2𝛾 passes at levels 𝑗 “ ℓ´ 1, ℓ´ 2, . . . , 1, 0;

• Cleanup: 2p𝛾´1qℓ passes at level 0.

Since the passes are taken in reverse order of levels (deeper passes first), as long

as a target is taken from each nonempty cell on every pass, it makes no difference

which targets are taken (different targets passing through the same vertex 𝑣 P 𝑉𝑗

may pass through different vertices at level 𝑗1 ą 𝑗, but at level 𝑗2 ă 𝑗 they must

all pass through the ancestor of 𝑣, so which one is taken and which is left for

future passes is irrelevant).

Note that this is a ‘blind’ strategy: it doesn’t take into account where the targets

𝜏1, . . . , 𝜏𝑛 actually are, but instead goes through a fixed sequence of passes. This

makes the cost easy to bound, leaving us to show that it successfully collects all the

targets with very high probability.

Lemma 31. The EMS strategy collects all the targets with cost ď 6 ¨ 2𝛾´1 ¨ 𝑛1´ 1
𝛾

Proof. We start by noting that 2p𝛾´1qℓ ď 2𝛾´1𝑛1´ 1
𝛾 since by definition 𝑛 ą 2p𝛾´1qpℓ´1q.

We then consider all costs as multiples of 2p𝛾´1qℓ:

• Initialization: 1 pass at level ℓ, which costs 2p𝛾´1qℓ;

• Main Sequence: 2𝛾 passes at each level ℓ´ 1, ℓ´ 2, . . . , 0. Since 𝛾 ě 2, we know

that the cost of a pass at level ℓ´ 𝑗 is at most

2p𝛾´1qpℓ´𝑗q
“ 2´p𝛾´1q𝑗

¨ 2p𝛾´1qℓ
ď 2 ¨ 2´p𝛾´1q

¨ 2´𝑗
¨ 2p𝛾´1qℓ (5.31)

(since p𝛾 ´ 1q𝑗 ě p𝛾 ´ 1q ` 𝑗 ´ 1 as 𝛾 ´ 1, 𝑗 are both positive integers), hence

the cost of 2𝛾 passes is at most 4 ¨ 2´𝑗 ¨ 2p𝛾´1qℓ. Then the total cost of the main
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sequence passes is bounded by:

ℓ
ÿ

𝑗“1

2𝛾 ¨ 2p𝛾´1qpℓ´𝑗q
ď

ℓ
ÿ

𝑗“1

4 ¨ 2´𝑗
¨ 2p𝛾´1qℓ

ď 4 ¨ 2p𝛾´1qℓ (5.32)

• Cleanup: 2p𝛾´1qℓ passes at level 0, which cost 1 per pass and hence a total cost

of 2p𝛾´1qℓ.

Thus, summing these yields a total cost of at most 6 ¨ 2p𝛾´1qℓ which, as noted, is at

most 6 ¨ 2𝛾´1 ¨ 𝑛1´ 1
𝛾 .

We now need to show that, with high probability, the EMS strategy successfully

collects all the targets. Note that since the EMS strategy never makes a pass at a

deeper level than ℓ, we can ignore layers of 𝑇 below that depth and treat it as a

depth-ℓ (finite) rooted tree with branching factor 2𝛾. Furthermore, since 2𝛾ℓ ě 𝑛 by

definition, to get a lower bound on the probability that the EMS strategy collects all

targets we can WLOG assume 𝑛 “ 2𝛾ℓ. This then means that 𝑇 has 𝑛 “ 2𝛾ℓ leaves,

and we can consider the targets as being distributed iid uniformly among them (which

then specifies their vertices at higher layers).

However, we really want the number of targets at each leaf to be independent of

the number of targets at the other leaves. To do this, we Poissonize the number of

targets: instead of distributing 𝑛 targets at random, we first choose 𝑁 „ Poisp𝑛q (the

Poisson distribution with parameter 𝑛) and then distribute 𝑁 targets iid uniformly

at random among the 𝑛 leaves. We refer to this as the Poissonized target distribu-

tion or Poissonized targets. We now show that this doesn’t substantially change the

probability of collecting all the targets:

Lemma 32. If the EMS strategy fails to collect all the targets with probability ď 𝑝

when there are 𝑁 „ Poisp𝑛q iid targets, then its probability of failure is ď 4𝑝 with 𝑛

iid targets.

This implies that if the EMS strategy succeeds with very high probability on

Poissonized targets, it will also succeed with very high probability on the original

problem with 𝑛 targets distributed uniformly at random.
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Proof. We note that Pr𝑁 ě 𝑛s ě 1{4 if 𝑁 „ Poisp𝑛q. Let 𝑝1 be the probability of

failure when 𝑛 targets are distributed; this means that when𝑁 targets are distributed,

with at least 1{4 probability (after 𝑁 „ Poisp𝑛q is chosen but the targets 𝜏1, . . . , 𝜏𝑁

are not yet distributed) the probability of failure of the EMS strategy is 𝑝1; thus the

probability of failure of the EMS strategy under the Poissonized target distribution is

ě p1{4q𝑝1 (inequality because (i) the chance that 𝑁 ě 𝑛 may be 1{4, (ii) distributing

more than 𝑛 targets can yield a greater than 𝑝1 chance of failure, and (iii) distributing

less than 𝑛 targets but more than 0 can still yield a nonzero chance of failure). Thus,

P𝑁„Poisp𝑛qrEMS strategy failss ď 𝑝 ùñ 𝑝1
ď 4𝑝 (5.33)

and we are done.

In fact, there is good reason to believe that Poissonized targets are actually worse

(from the standpoint of success probability of the EMS strategy) than a fixed number

𝑛 of targets, since fixing the number of targets anticorrelates the number of targets

in different buckets; but the above is sufficient for us.

We now note that since we are assuming (WLOG) that 𝑛 “ 2𝛾ℓ, the expected

number of targets in the Poissonized case is Er𝑁 s “ 𝑛, and the unique properties of

the Poisson distribution mean that if 𝑁 „ Poisp𝑛q targets are distributed uniformly

and iid at random into 𝑛 vertices, each vertex independently gets Poisp1q targets. For

any vertex 𝑣 P 𝑉𝑗, we denote 𝑁𝑣 :“ |t𝜏𝑖 : 𝑣𝑗p𝜏𝑖q “ 𝑣u|, i.e. the number of targets

which pass through 𝑣. This means:

Lemma 33. For 𝑣 P 𝑉ℓ (leaves of 𝑇 since we ignore layers below ℓ), we have

t𝑁𝑣u𝑣P𝑉ℓ

𝑖𝑖𝑑
„ Poisp1q.

Proof. As stated, this follows from the properties of the Poisson distribution.

We now define the exponential moment of a random variable:

Definition 29. For a random variable 𝑌 , we define 𝜇pexpqp𝑌 q :“ Er𝑒𝑌 s.

This has the following properties: let p𝑧q` :“ maxp𝑧, 0q; then,
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Lemma 34. If 𝑊1, . . . ,𝑊𝑘 are independent random variables, then

𝜇pexpq

ˆ 𝑘
ÿ

𝑗“1

𝑊𝑗

¸

“

𝑘
ź

𝑗“1

𝜇pexpq
p𝑌𝑗q . (5.34)

Furthermore, for any random 𝑊 and any 𝑘 ě 0,

𝜇pexpq
pp𝑊 ´ 𝑘q`q ď

𝜇pexpqp𝑊 q ´ 1

𝑒𝑘
` 1 . (5.35)

Proof. Equation (5.34) follows trivially from the fact that the expected value of the

product of independent random variables is the product of their expected values.

To prove (5.35), let 𝑤𝑗 “ Pr𝑊 “ 𝑗s for all nonnegative integers 𝑗. Then, by

definition:

𝜇pexpq
p𝑊 q ´ 1 “

8
ÿ

𝑗“0

𝑤𝑗p𝑒
𝑗
´ 1q. (5.36)

Note that when 𝑊 ď 𝑘, p𝑊 ´ 𝑘q` “ 0; otherwise, p𝑊 ´ 𝑘q` “ 𝑊 ´ 𝑘. This means

that p𝑊 ´ 𝑘q` “ 0 with probability 𝑤0 ` 𝑤1 ` ¨ ¨ ¨ ` 𝑤𝑘, and for all 𝑗 ą 𝑘,

Prp𝑊 ´ 𝑘q` “ 𝑗 ´ 𝑘s “ 𝑤𝑗. (5.37)

Thus, putting this together, we get that:

𝜇pexpq
pp𝑊 ´ 𝑘q`q ´ 1 “

𝑘
ÿ

𝑗“0

𝑤𝑗p𝑒
0
´ 1q `

8
ÿ

𝑗“𝑘`1

𝑤𝑗p𝑒
𝑗´𝑘

´ 1q “
8
ÿ

𝑗“𝑘`1

𝑤𝑗p𝑒
𝑗´𝑘

´ 1q.

(5.38)

However, this means that

𝑒𝑘
`

𝜇pexpq
pp𝑊 ´ 𝑘q`q ´ 1

˘

“

8
ÿ

𝑗“𝑘`1

𝑤𝑗p𝑒
𝑗
´ 𝑒𝑘q ď

8
ÿ

𝑗“0

𝑤𝑗p𝑒
𝑗
´ 1q “ 𝜇pexpq

p𝑊 q ´ 1

(5.39)

where the inequality is due to both the addition of (nonnegative) missing terms and
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the fact that we are subtracting 𝑒𝑘 from each term on the left and only subtracting 1

on the right. Rearranging this inequality gives us

𝜇pexpq
pp𝑊 ´ 𝑘q`q ď

𝜇pexpqp𝑊 q ´ 1

𝑒𝑘
` 1. (5.40)

We note that the proof of property (5.35) works in much the same way (with an

integral instead of a sum) even if 𝑊 is not an integer random variable and 𝑘 is not

an integer; however, we only need the restricted form to obtain our desired result.

The above are important for the following reasons: the number of targets in a level-

𝑗 vertex 𝑣 is the sum of the number of targets in its children, which are independent

when the target distribution is Poissonized; and making a pass at level 𝑗 removes a

target from each vertex 𝑣 P 𝑉𝑗 so long as it still has at least one, so if it had 𝑊 targets

and we make 𝑘 passes we end up with p𝑊 ´ 𝑘q` targets.

We now can show that the EMS strategy works with very high probability:

Proposition 19. If 𝑁 „ Poisp𝑛q targets 𝜏1, . . . , 𝜏𝑁 are uniformly distributed in

𝑇 with branching factor 2𝛾, then

PrEMS strategy collects all targetss ě 1´ 𝑒´2p𝛾´1qℓ

ě 1´ 𝑒´𝑛
1´ 1

𝛾
. (5.41)

In other words, the EMS strategy collects all targets with very high probability.

Proof. Let 𝑌𝑗p𝑣q be a random variable denoting the number of targets remaining at

vertex 𝑣 P 𝑉𝑗 after the 2𝛾 main sequence passes at level 𝑗; for the special case of 𝑗 “ ℓ,

let 𝑌ℓp𝑣q denote the number of targets remaining at vertex 𝑣 after the initialization

step. We note that by symmetry, 𝜇pexpqp𝑌𝑗p𝑣qq is the same for all 𝑣 P 𝑉𝑗, and hence

we let 𝑦𝑗 :“ 𝜇pexpqp𝑌𝑗p𝑣qq, which holds for all 𝑣 P 𝑉𝑗.

We then make the following claim: 𝑦𝑗 ď 𝑒 for all 𝑗 “ ℓ, ℓ ´ 1, . . . , 1, 0. We show

this by induction (starting from base case 𝑗 “ ℓ and proceeding backwards to 𝑗 “ 0).
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Base case 𝑗 “ ℓ: Note that for all 𝑣 P 𝑉ℓ, we have 𝑁𝑣 „ Poisp1q and hence, by

definition of the exponential moment,

𝜇pexpq
p𝑁𝑣q “

8
ÿ

𝑘“0

𝑒𝑘

𝑒 ¨ 𝑘!
“ 𝑒´1

¨

8
ÿ

𝑘“0

1

𝑘!
𝑒𝑘 “ 𝑒𝑒´1 (5.42)

as the value of the summation in the preceding line is the classic infinite-sum definition

of the exponential. Thus (by (5.35) from Lemma Lemma 34):

𝑦ℓ “ 𝜇pexpq
pp𝑁𝑣 ´ 1q`q ď

𝑒𝑒´1 ´ 1

𝑒
` 1 ă 𝑒 (5.43)

(for those who are curious, 𝑒𝑒´1´1
𝑒

` 1 « 2.683 which is close to but still less than 𝑒).

Thus, 𝑦ℓ ď 𝑒, satisfying the base case.

Inductive step 𝑗 ă ℓ: We need to show that if 𝑦𝑗`1 ď 𝑒, then 𝑦𝑗 ă 𝑒. For any

𝑣 P 𝑉𝑗, let 𝑍𝑣 denote the number of targets in 𝑣 just before the 2𝛾 main sequence

passes at level 𝑗; then since the Poissonized target distribution makes the number of

targets in 𝑣’s 2𝛾 children independent (the original number of targets in each level-

p𝑗`1q vertex is independent, and since the strategy doesn’t account for the positions

of the targets when deciding what passes to make they remain independent) and each

has (by definition) exponential moment 𝑦𝑗`1 ď 𝑒, we have

𝜇pexpq
p𝑍𝑣q “ 𝑦2

𝛾

𝑗`1 ď 𝑒2
𝛾

(5.44)

which then means that (since we make 2𝛾 passes)

𝑦𝑗 “ 𝜇pexpq
pp𝑍𝑣 ´ 2𝛾q`q ď

𝑒2
𝛾
´ 1

𝑒2𝛾
` 1 ă 2 ă 𝑒 (5.45)

as we wanted.

Therefore, we have shown our claim that 𝑦𝑗 ď 𝑒 for all 𝑗 “ ℓ, ℓ ´ 1, . . . , 1, 0; in

particular, we are interested in having 𝑦0 ă 𝑒. Now we let 𝑌0 denote the number of

targets left after the main sequence is done (before the cleanup phase), and 𝑁final be

the number of targets left at the end of the game (after the cleanup phase). We thus
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know that 𝜇pexpqp𝑌0q “ 𝑦0 ď 𝑒, and 𝑁final “ p𝑌0 ´ 2p𝛾´1qℓq`. Therefore,

𝜇pexpq
p𝑁finalq ď

𝑒´ 1

𝑒2p𝛾´1qℓ
` 1 . (5.46)

The EMS strategy fails if 𝑁final ą 0; suppose it does so with probability 𝑝. Then a

trivial lower bound for the exponential moment is

𝜇pexpq
p𝑁finalq ě p1´ 𝑝q ` 𝑒𝑝 “ 1` p𝑒´ 1q𝑝 (5.47)

Thus, putting it together yields

1` p𝑒´ 1q𝑝 ď 1`
𝑒´ 1

𝑒2p𝛾´1qℓ
ùñ 𝑝 ď 𝑒´2p𝛾´1qℓ

(5.48)

and hence the probability that the EMS strategy gets all the targets is at least 1´𝑝 ě

1´𝑒´2p𝛾´1qℓ . For the final step, we note that in this proof we were actually distributing

𝑁 „ Poisp2𝛾ℓq targets, and we possibly had fewer than that; and furthermore by the

definition of ℓ we have 2p𝛾´1qℓ ě 𝑛1´ 1
𝛾 and hence we have 1´𝑒´2p𝛾´1qℓ

ď 1´𝑒´𝑛
1´ 1

𝛾 .

Finally, to prove Proposition 18 we use the EMS strategy: by Lemma 31 the

EMS strategy has cost at most 2𝛾´1 ¨ 6 ¨ 𝑛1´ 1
𝛾 ; by Proposition 19, when the targets

are Poissonized the probability of failure is at most 𝑒´𝑛
1´ 1

𝛾 ; and by Lemma 32 the

probability of failure in the original case (when there are always 𝑛 targets) is at most

4 times the probability of failure in the Poissonized case. Thus, we are done.

Remark 22. The EMS strategy can be quickly converted to a strategy that always

collects all targets but has variable costs: follow the EMS strategy all the way to the

cleanup step, and then simply make sufficient cleanup passes at level 0 to collect all

targets. Since the EMS strategy works with very high probability, the expected cost of

the modified EMS strategy will be Θp𝑛1´ 1
𝛾 q (as the number of cleanup passes at level

0 is at most linear even in the worst case).
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Chapter 6

Adversarial Targets

We now show Theorem 2, which deals with the length of the tour when the targets are

placed (within a bounded 𝒳 ˚ Ď 𝒳 ) to maximize the shortest tour length. We refer

to this as adversarial target placement. While our adversarial target lower bound

will hold for non-symmetric dynamics, as in Chapter 4 our main focus here is on

symmetric Π.

As discussed in Section 1.3, we consider two related questions which follow natu-

rally from Theorem 1:

1. Given symmetric dynamics Π and bounded (but full dimensional) target region

𝒳 ˚, what target point density 𝑓 over 𝒳 ˚ maximizes the expected length of the

optimal TSP trajectory when 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 as 𝑛Ñ 8?

2. Given symmetric dynamics Π, a bounded set 𝒳 ˚ Ď 𝒳 and a number of target

points 𝑛, what is sup𝑋1,...,𝑋𝑛P𝒳˚ TSPΠp𝑋1, . . . , 𝑋𝑛q?

Although we have lower and upper bounds on the tour length which are tight up to

a fixed constant factor for all 𝑓 , we cannot claim to know exactly what 𝑓 maximizes

the DSTSP tour length (either in expectation or with high probability). However, we

know that both the lower and upper bounds to our tour length are of the form

𝑐𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (6.1)
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where 𝑐 is in both cases a constant which does not depend on 𝑓 . Therefore, instead

of question 1, we will answer the related question of: given symmetric dynamics Π

and bounded (but full dimensional) target region 𝒳 ˚, what target point density 𝑓

over 𝒳 ˚ maximizes

ż

𝒳˚

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (6.2)

and what value does this maximum take?

Question 2 then asks for a deterministic upper bound on the tour length, with

targets chosen by an adversary to maximize tour length. While adversarially-chosen

targets are by definition going to produce a longer tour length than any random

distribution, we are interested in knowing whether, as 𝑛 Ñ 8, it is possible to do

substantially better than the worst-case 𝑓 from question 1. Note that question 1

requires a single probability distribution to be used for all values of 𝑛 as 𝑛 Ñ 8,

while question 2 allows a different set of points to be selected depending on 𝑛. While

this seems like it might allow more flexibility for the adversarial target points, we will

show that roughly the same bound applies to the adversarial target points.

6.1 Adversarial Targets Lower Bound

In order to show the lower bound from Theorem 2, we will find density 𝑓𝑔 over 𝒳 ˚

which maximizes the lower bound from Theorem 1, which is equivalent to maximizing
ş

𝒳˚ 𝑓p𝑥q
1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥; this clearly also serves as a lower bound to the longest tour

from non-random target points. It also maximizes the upper bound from Theorem 1

thanks to the constant factor gap.

We thus have to solve the following problem:

maximize
ż

𝒳˚

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (where 𝑓 : 𝒳 ˚

Ñ R is integrable)

subject to
ż

𝒳˚

𝑓p𝑥q𝑑𝑥 “ 1, and 𝑓p𝑥q ě 0 for all 𝑥 P 𝒳 ˚

(6.3)
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(i.e. the constraint is that 𝑓 is a probability density function over 𝒳 ˚).

Lemma 35. Problem (6.3) is maximized by 𝑓˚p𝑥q9 𝑔p𝑥q´1, i.e.

𝑓˚
p𝑥q :“

𝑔p𝑥q´1

ş

𝒳˚ 𝑔p𝑦q´1𝑑𝑦
. (6.4)

Proof. First, we note that 𝑓˚ trivially satisfies the constraints in (6.3): it is normalized

so it integrates to 1 over 𝒳 ˚, and it is nonnegative since 𝑔p𝑥q (and hence 𝑔p𝑥q´1) is

nonnegative. We also note that it exists since 𝑔p𝑥q ě 𝑔min over 𝒳 ˚ and 𝒳 ˚ has finite

volume (since it is bounded), so
ş

𝒳˚ 𝑔p𝑦q
´1 𝑑𝑦 ď 𝑔´1

minVol𝒳 p𝒳 ˚q ă 8.

We then note that scaling 𝑔p𝑥q by a constant 𝑐 yields

ż

𝒳˚

𝑓p𝑥q1´ 1
𝛾 p𝑐 𝑔p𝑥qq´

1
𝛾 𝑑𝑥 “ 𝑐´ 1

𝛾

ż

𝒳˚

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (6.5)

Thus it does not affect what 𝑓 maximizes the objective function; hence we may assume

without loss of generality that
ş

𝒳˚ 𝑔p𝑥q
´1 𝑑𝑥 “ 1 (of course we will have to put in the

correct scale when evaluating the optimal value).

We will now show Lemma 35 using Hölder’s Inequality. We first define:

𝑓p𝑥q :“ 𝑓p𝑥q1´ 1
𝛾 and 𝑔p𝑥q “ 𝑔p𝑥q´

1
𝛾 (6.6)

and note that since by definition 𝑓p𝑥q, 𝑔p𝑥q ě 0 for all 𝑥, we know that 𝑓p𝑥q, 𝑔p𝑥q ě 0

for all 𝑥, so we can ignore the absolute value function in the statement of Hölder’s

Inequality. We then define the constant 𝜂 :“ 𝛾
𝛾´1

. Note that 1
𝜂
` 1

𝛾
“ 1, as required

by Hölder’s Inequality. Thus:

ż

𝒳˚

𝑓p𝑥q 𝑔p𝑥q𝑑𝑥 ď
´

ż

𝒳˚

𝑓p𝑥q𝜂𝑑𝑥
¯

1
𝜂

´

ż

𝒳˚

𝑔p𝑥q𝛾𝑑𝑥
¯

1
𝛾
. (6.7)

But, using the definitions from above,

𝑓p𝑥q𝜂 “
`

𝑓p𝑥q1´ 1
𝛾
˘

𝛾
𝛾´1 “ 𝑓p𝑥q and 𝑔p𝑥q𝛾 “

`

𝑔p𝑥q´
1
𝛾

˘𝛾
“ 𝑔p𝑥q´1 (6.8)
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so we can rewrite equation (6.7) as

ż

𝒳˚

𝑓p𝑥q 𝑔p𝑥q𝑑𝑥 ď
´

ż

𝒳˚

𝑓p𝑥q𝑑𝑥
¯

1
𝜂

´

ż

𝒳˚

𝑔p𝑥q´1𝑑𝑥
¯

1
𝛾
; (6.9)

however, by the condition that 𝑓 is a probability density function and our assumption

(without loss of generality) about 𝑔p𝑥q´1, we know that

ż

𝒳˚

𝑓p𝑥q𝑑𝑥 “

ż

𝒳˚

𝑔p𝑥q´1𝑑𝑥 “ 1 (6.10)

implying that the right hand side of expression (6.9) is just 1. Thus,

ż

𝒳˚

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 “

ż

𝒳˚

𝑓p𝑥q 𝑔p𝑥q𝑑𝑥 ď 1 (6.11)

for any probability density function 𝑓 . But, using 𝑓˚ as defined in the statement of

Lemma 35, it is trivial to see that

ż

𝒳˚

𝑓˚
p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥 “ 1 (6.12)

thus showing that 𝑓˚ is the maximizing density function.

Remark 23. Density 𝑓˚ makes the lucrativity function constant over 𝒳 ˚, as for all

𝑥 P 𝒳 ˚,

¢˚
p𝑥q “ p𝑓˚

p𝑥q𝑔p𝑥qq
1
𝛾 “

´

ż

𝒳˚

𝑔p𝑦q´1 𝑑𝑦
¯´ 1

𝛾
. (6.13)

Lemma 36. The optimal value of the problem given in (6.3) is

max
𝑓

ż

𝒳˚

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 “

´

ż

𝒳˚

𝑔p𝑥q´1 𝑑𝑥
¯´ 1

𝛾 (6.14)
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Proof. Plugging 𝑓˚ into expression (6.3) gives

ż

𝒳˚

𝑓˚
p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥 “

ż

𝒳˚

´ 𝑔p𝑥q´1

ş

𝒳˚ 𝑔p𝑦q´1𝑑𝑦

¯1´ 1
𝛾
𝑔p𝑥q´

1
𝛾 𝑑𝑥 (6.15)

“

ż

𝒳˚

𝑔p𝑥q´1

` ş

𝒳˚ 𝑔p𝑦q´1𝑑𝑦
˘1´ 1

𝛾

𝑑𝑥 (6.16)

“

ş

𝒳˚ 𝑔p𝑥q
´1𝑑𝑥

` ş

𝒳˚ 𝑔p𝑦q´1𝑑𝑦
˘1´ 1

𝛾

(6.17)

“

´

ż

𝒳˚

𝑔p𝑥q´1𝑑𝑥
¯

1
𝛾
. (6.18)

Thus, if we distribute the points 𝑋1, 𝑋2, . . . , 𝑋𝑛 according to 𝑓˚ (iid), by Theo-

rem 1, for any 𝛿 ą 0

TSPΠp𝑋1, . . . , 𝑋𝑛q ď p1` 𝛿q𝛽
´1𝑛1´ 1

𝛾

´

ż

𝒳˚

𝑔p𝑥q´1𝑑𝑥
¯

1
𝛾

𝑤𝑣ℎ𝑝 (6.19)

holds for sufficiently large 𝑛. Thus, the deterministic𝑋1, . . . 𝑋𝑛 in 𝒳 ˚ which maximize

the tour length achieves at least this length, giving us the lower bound in Theorem 2.

6.2 Adversarial Targets Upper Bound

We now consider the upper bound for the DTSP with adversarial targets. As with

randomly-distributed targets, this differs significantly for symmetric and nonsymmet-

ric dynamics; however, unlike with randomly-distributed targets, there is no general

upper bound with order-of-growth Θp𝑛1´ 1
𝛾 q for adversarial targets with nonsymmetric

dynamics (see Proposition 20).

Remark 24. For nonsymmetric dynamics, any distribution 𝑓 satisfying the assump-

tions in Section 2.1 yields a very high probability upper bound with order-of-growth

Θp𝑛1´ 1
𝛾 q (though the dependence on 𝑓 may be complicated and result in arbitrarily

large constants). However, this is only guaranteed due to the assumption that 𝑓 is
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full-dimensional and stays the same as 𝑛 Ñ 8, while adversarial targets can be ar-

ranged on a lower-dimensional subset of 𝒳 .

6.2.1 Adversarial targets with nonsymmetric dynamics

Proposition 20. There are examples of nonsymmetric dynamics Π and bounded

𝒳 ˚ Ď 𝒳 such that

sup
𝑋1,...,𝑋𝑛P𝒳˚

TSPΠp𝑋1, . . . , 𝑋𝑛q “ Θp𝑛q . (6.20)

Proof sketch of Proposition 20. We consider a Dubins car on R2 with a turning circle

of radius 1, and we let 𝒳 ˚ “ r´1, 1s2. Let 𝒜 “ t𝑥 : }𝑥}2 “ 1{1000u (the circle

centered at 0 with radius 1{1000), and let the 𝑛 targets 𝑋1, . . . , 𝑋𝑛 be uniformly

spaced on 𝒜, i.e. 𝑋𝑖 “ p1{1000qpcosp2𝜋𝑖{𝑛q, sinp2𝜋𝑖{𝑛qq. We then claim that the

vehicle can’t visit all 𝑛 target points in less than 2𝑛 time. This is because the curvature

bound on the Dubins car is significantly smaller than the curvature of the circle 𝒜,

so the shortest curve that can intersect 3 distinct points on 𝒜 has length « 2𝜋 (i.e. it

can intersect 𝒜 twice in a short period of time but then must circle back around all

the way to return), meaning the shortest path that can visit 𝑛 points has length at

least (approximately) p2𝜋{3q𝑛; since 2 ă p2𝜋{3q, we can use 2𝑛 as a firm lower bound

for the length of the shortest tour that can visit 𝑛 distinct points on 𝒜 (which of

course is a lower bound to the length of the shortest tour that can visit 𝑋1, . . . , 𝑋𝑛),

for sufficiently large 𝑛.

Incidentally, this Θp𝑛q order-of-growth is the worst possible under the assumptions

in Section 2.1, specifically because of Assumption 4: since any two configurations

𝑞, 𝑞1 P r𝒳 ˚s𝒬 satisfies 𝑑Πp𝑞, 𝑞1q ď 𝐶 for some fixed 𝐶 (which depends on 𝒳 ˚), given

any 𝑋1, . . . , 𝑋𝑛 we may arbitrarily choose 𝑞𝑖 P r𝑋𝑖s
𝒬 for all 𝑖 and then visit them in

any order to achieve a tour of length ď 𝐶𝑛.

Remark 25. The worst-case placement of the target points 𝑋1, . . . , 𝑋𝑛 achieves a

worse order-of-growth than a random placement of target points according to density
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function 𝑓 satisfying the assumptions in Section 2.1 because 𝑓 is required to represent

a continuous distribution on a full-dimensional set; if 𝑓 were allowed to represent the

uniform distribution on the circle 𝒜 from the proof of Proposition 20, which is not

full-dimensional, the worse order-of-growth Θp𝑛q would be achieved.

6.2.2 Adversarial targets with symmetric dynamics

We now prove the upper bound in Theorem 2 using the Symmetric Hierarchical Cell

Structure algorithm developed in Chapter 4. Consider a Symmetric HCS cover over

𝒳 ˚ with scaling parameter 𝑠 and overlap parameter 𝛼 at scale 𝜀0, which we know

exists when Meta-Assumption 1 holds (see Proposition 4). The SHCS induces a

specific algorithm, which by Proposition 13 generates a tour of length bounded above

by

6𝑠𝜀0

𝑚
ÿ

𝑗“1

𝑛
1´ 1

𝛾

𝑗 ` 𝐶𝜀0 (6.21)

where 𝑛𝑗 is the number of targets that falls into cell 𝑗 and 𝐶𝜀0 is a constant denoting

the time needed to travel between cells. Let us denote 𝑝𝑗 “ 𝑛𝑗{𝑛 and 𝑝 “ p𝑝1, . . . , 𝑝𝑚q;

since
ř

𝑗 𝑛𝑗 “ 𝑛, we know that 𝑝 is a probability vector. Ignoring the constant 𝐶𝜀0 ,

we can re-write the above as

6𝑠𝜀0

𝑚
ÿ

𝑗“1

𝑛
1´ 1

𝛾

𝑗 “ 6𝑠𝜀0𝑛
1´ 1

𝛾

𝑚
ÿ

𝑗“1

𝑝
1´ 1

𝛾

𝑗 (6.22)

Note that in contrast with Section 4.3, here we can simply distribute the target points

according to 𝑛1, . . . , 𝑛𝑚 so there is no need for probabilistic analysis. Nevertheless,

it will be useful to view 𝑝 as a probability vector and, as before, set 𝑍 „ 𝑝 and to

consider

𝑚
ÿ

𝑗“1

𝑝
1´ 1

𝛾

𝑗 “ E𝑍„𝑝r𝑝
´ 1

𝛾

𝑍 s (6.23)
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We then consider the probability distribution induced over the cells by 𝑋 „ 𝑓˚ where

𝑓˚ is the worst-case probability distribution over 𝒳 ˚, i.e. 𝑓˚p𝑥q9 𝑔p𝑥q´1. Let 𝑗p𝑥q

be the index of the cell 𝑥 P 𝒳 ˚ falls into; if 𝑝˚ is induced this way, then 𝑍 „ 𝑝˚ is

equivalent to 𝑍 “ 𝑗p𝑋q where 𝑋 „ 𝑝˚. This probability distribution is

𝑝˚
𝑗 “ P𝑋„𝑓˚r𝑋 P 𝑆𝑗s “

ż

𝑆𝑗

𝑓˚
p𝑥q 𝑑𝑥 “

ş

𝑆𝑗
𝑔p𝑥q´1 𝑑𝑥

ş

𝒳˚ 𝑔p𝑦q´1 𝑑𝑦
. (6.24)

Therefore, we can re-write

E𝑍„𝑝˚rp𝑝˚
𝑍q

´ 1
𝛾 s “ E𝑍„𝑝˚

«

ˆ

ş

𝑆𝑍
𝑔p𝑥q´1 𝑑𝑥

ş

𝒳˚ 𝑔p𝑦q´1 𝑑𝑦

˙´ 1
𝛾

ff

(6.25)

“

´

ż

𝒳˚

𝑔p𝑦q´1 𝑑𝑦
¯

1
𝛾E𝑍„𝑝˚

„

´

ż

𝑆𝑍

𝑔p𝑥q´1 𝑑𝑥
¯´ 1

𝛾

ȷ

(6.26)

Finally, we will analyze
ş

𝑆𝑗
𝑔p𝑥q´1 𝑑𝑥 for any 𝑗 P r𝑚s. Note that we can make 𝜀0

arbitrarily small because a HCS at scale 𝜀0 with scale factor 𝑠 and overlap parameter

𝛼 can be changed to a HCS at scale 𝜀0{𝑠 with the same parameters (and then to an

HCS at scale 𝜀0{𝑠2 and so forth) by taking its sub-cells as the new cells. Therefore,

letting 𝑔p𝜂q be the 𝜂-regularized lower approximation of 𝑔, for any 𝛿1, 𝛿2 ą 0 we can

set 𝜀0 sufficiently small so that for any cell center 𝑞𝑗 and configuration 𝑞1 such that

𝑑Πp𝑞, 𝑞
1q ď 𝜀0,

Vol𝒳 p𝑆𝑗q ě p1´ 𝛿1q𝛼Vol𝒳 p�̄�𝜀0p𝑞𝑗qq ě p1´ 𝛿2qp1´ 𝛿1q𝛼𝑔
p𝜂q
pr𝑞s𝒳 q𝜀

𝛾
0 (6.27)

ùñ 𝑔p𝜂q
p𝑥q ď p1´ 𝛿1q

´1
p1´ 𝛿2q

´1𝛼´1𝜀´𝛾
0 Vol𝒳 p𝑆𝑗q (6.28)

ùñ 𝑔p𝜂q
p𝑥q´1

ě p1´ 𝛿1qp1´ 𝛿2q𝛼𝜀
𝛾
0Vol𝒳 p𝑆𝑗q

´1 (6.29)

for all 𝑥 P 𝑆𝑗 (since 𝑆𝑗 Ď �̄�𝜀0p𝑞q). Furthermore, for any 𝛿3 ą 0, we can set 𝜂

sufficiently small so that for all 𝑗,

ż

𝑆𝑗

𝑔p𝑥q´1 𝑑𝑥 ě p1´ 𝛿3q

ż

𝑆𝑗

𝑔p𝜂q
p𝑥q´1 𝑑𝑥 (6.30)

188



But then we can conclude that for any 𝑗,

ż

𝑆𝑗

𝑔p𝑥q´1 𝑑𝑥 ě p1´ 𝛿3q

ż

𝑆𝑗

𝑔p𝜂q
p𝑥q´1 𝑑𝑥 (6.31)

ě p1´ 𝛿1qp1´ 𝛿2qp1´ 𝛿3q𝛼𝜀
𝛾
0

ż

𝑆𝑗

Vol𝒳 p𝑆𝑗q
´1 𝑑𝑥 (6.32)

“ p1´ 𝛿1qp1´ 𝛿2qp1´ 𝛿3q𝛼𝜀
𝛾
0 (6.33)

and hence we can flip it around and get

ˆ
ż

𝑆𝑗

𝑔p𝑥q´1 𝑑𝑥

˙´ 1
𝛾

ď p1´ 𝛿1q
´ 1

𝛾 p1´ 𝛿2q
´ 1

𝛾 p1´ 𝛿3q
´ 1

𝛾𝛼´ 1
𝛾 𝜀´1

0 . (6.34)

Since this holds for all 𝑗, we know that

E𝑍„𝑝˚

„

´

ż

𝑆𝑍

𝑔p𝑥q´1 𝑑𝑥
¯´ 1

𝛾

ȷ

ď p1´ 𝛿1q
´ 1

𝛾 p1´ 𝛿2q
´ 1

𝛾 p1´ 𝛿3q
´ 1

𝛾𝛼´ 1
𝛾 𝜀´1

0 . (6.35)

We can then plug this in to get a bound on E𝑍„𝑝rp𝑝
˚
𝑍q

´ 1
𝛾 s “

ř𝑚
𝑗“1p𝑝

˚
𝑗 q

1´ 1
𝛾 . Then we

plug the bound into expression (6.22) to get

6𝑠𝜀0𝑛
1´ 1

𝛾

𝑚
ÿ

𝑗“1

p𝑝˚
𝑗 q

1´ 1
𝛾 ď 6𝑠𝛼´ 1

𝛾𝑛1´ 1
𝛾

´

ż

𝒳˚

𝑔p𝑦q´1 𝑑𝑦
¯

1
𝛾 `

p1´ 𝛿1qp1´ 𝛿2qp1´ 𝛿3q
˘´ 1

𝛾

(6.36)

One wrinkle is that while this is true of 𝑝˚ induced by 𝑓˚, our 𝑛𝑗’s must be integers

which means they cannot in general exactly represent 𝑝˚. However, as 𝑛 Ñ 8, the

𝑝𝑗 “ 𝑛𝑗{𝑛 can come arbitrarily close, and for any 𝛿4 there is some 𝑛p𝛿4q such that for

all 𝑛 ě 𝑛p𝛿4q, there are some 𝑛1, . . . , 𝑛𝑚 such that if 𝑝𝑗 “ 𝑛𝑗{𝑛 then

𝑚
ÿ

𝑗“1

𝑝
1´ 1

𝛾

𝑗 ď p1` 𝛿4q
𝑚
ÿ

𝑗“1

p𝑝˚
𝑗 q

1´ 1
𝛾 (6.37)

Then, for any 𝛿5 ą 0, we can set 𝛿1, 𝛿2, 𝛿3, 𝛿4 ą 0 such that

1` 𝛿5 “ p1´ 𝛿1q
´ 1

𝛾 p1´ 𝛿2q
´ 1

𝛾 p1´ 𝛿3q
´ 1

𝛾 p1` 𝛿4q (6.38)
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which then gives that for 𝑛 ě 𝑛p𝛿4q, distributing the 𝑛𝑗 according to this approximation

of 𝑝˚
𝑗𝑛, we get that

6𝑠𝜀0

𝑚
ÿ

𝑗“1

𝑛
1´ 1

𝛾

𝑗 ď p1` 𝛿5q6𝑠𝛼
´ 1

𝛾𝑛1´ 1
𝛾

´

ż

𝒳˚

𝑔p𝑦q´1 𝑑𝑦
¯

1
𝛾 (6.39)

Thus, for sufficiently large 𝑛, the HCS induces an algorithm which collects all the

target points in at most p1`𝛿5q6𝑠𝛼´ 1
𝛾𝑛1´ 1

𝛾
` ş

𝒳˚ 𝑔p𝑦q
´1 𝑑𝑦

˘
1
𝛾 `𝐶𝜀0 length; and for any

𝛿 ą 0 we can choose 0 ă 𝛿5 ă 𝛿 and choose 𝑛 sufficiently large that

p1` 𝛿5q6𝑠𝛼
´ 1

𝛾𝑛1´ 1
𝛾

´

ż

𝒳˚

𝑔p𝑦q´1 𝑑𝑦
¯

1
𝛾
` 𝐶𝜀0 ď p1` 𝛿q6𝑠𝛼

´ 1
𝛾𝑛1´ 1

𝛾

´

ż

𝒳˚

𝑔p𝑦q´1 𝑑𝑦
¯

1
𝛾

(6.40)

Since our specific algorithm can then always collect the target points in at most this

amount of time, the optimal algorithm will do at least as well, and hence

sup
𝑋1,...,𝑋𝑛P𝒳˚

TSPΠp𝑋1, . . . , 𝑋𝑛q ď p1` 𝛿q6𝑠𝛼
´ 1

𝛾𝑛1´ 1
𝛾

´

ż

𝒳˚

𝑔p𝑦q´1 𝑑𝑦
¯

1
𝛾 (6.41)

and we have finished proving the upper bound to Theorem 2.

Remark 26. Since
ř

𝑗 𝑝𝑗 “ 1 by definition and 1 ´ 1
𝛾
ă 1, the optimal values of

𝑝1, . . . , 𝑝𝑚 to maximize
ř𝑚

𝑗“1 𝑝
1´ 1

𝛾

𝑗 are actually 𝑝1 “ ¨ ¨ ¨ “ 𝑝𝑚 “
1
𝑚

, which yields

𝑚
ÿ

𝑗“1

𝑝
1´ 1

𝛾

𝑗 “ 𝑚
1
𝛾 . (6.42)

This aligns with the intuition that to make the target points hard to visit, they should

be spread out over the cells (at a given scale) evenly. While this was not used in

the analysis as 𝑚 is hard to compute directly, it is useful to know in order to find 𝑛

sufficiently large so that every 𝑝𝑗 “
𝑛𝑗

𝑛
can approximate 1

𝑚
. This ‘sufficiently large’

value increases with 𝑚, which increases as the scale 𝜀0 decreases.
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Chapter 7

Conclusion

In this chapter we conclude and discuss possible directions for future work.

In this work we gave a very general formulation of the Dynamic Stochastic Trav-

eling Salesman Problem (DSTSP), capturing a wide range of dynamic systems (with

a specific focus on control-affine systems, though not limited to such), which extends

previous formulations to systems on manifold (rather than Euclidean) workspaces.

To do this, we develop a novel technique of discretizing the workspace, adapted from

Arias-Castro et al. ([11], 2005) and Adler, Karaman ([20], 2016), as well as a novel

Dynamic TSP algorithm for symmetric dynamically-constrained vehicles based on

Hierarchical Cell Structures. We also showed that our techniques work even in cases

where the natural properties needed for the system to be well-behaved are only ap-

proximate.

Under this expanded formulation, we showed novel results describing not only

how the length of the tour scales with the number 𝑛 of iid targets, but also the effect

of the density function 𝑓 of the target point distribution on the length of the fastest

tour. In particular, we defined the agility function 𝑔 induced by the dynamics over

the workspace and showed for all dynamics in our formulation a very-high-probability

lower bound on the tour length that both scale according to

𝑛1´ 1
𝛾

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (7.1)
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where 𝒳𝑓 is the support of 𝑓 , and for symmetric dynamics a matching upper bound

which scales according to (7.1). For symmetric dynamics, this yields very-high-

probability lower and upper bounds that differ by only a constant in terms of 𝑓

and 𝑛.

We then use these results to analyze the case of adversarial target points, in

which the targets are distributed by an adversary on some bounded region 𝒳 ˚ with

the objective of maximizing the tour length. For symmetric vehicles, we show similar

(but deterministic) matching lower and upper bounds which scale according to

𝑛1´ 1
𝛾

ˆ
ż

𝒳˚

𝑔p𝑥q´1 𝑑𝑥

˙
1
𝛾

(7.2)

with the lower bound also applying to non-symmetric vehicles.

7.1 Future work

While we establish lower and upper bounds to the tour lengths of the DSTSP and

the Adversarial DTSP which are tight up to a constant factor in both 𝑓 and 𝑛, many

interesting lines of future work remain.

Our work establishes a 12𝑠𝛼´ 1
𝛾 𝛽 multiplicative gap between the lower and up-

per bounds for symmetric dynamics, where 𝑠 and 𝛼 are parameters measuring the

effectiveness of our cell-tiling algorithm (and 𝑠 “ 2 for control-affine systems, see

Proposition 4), and 𝛽 (see Definition 8) is a parameter describing the difficulty of

covering larger reachable sets with smaller ones at small scales. In particular, de-

pending on the dynamics, 𝛼 ď 1 is the degree to which the tiles fill the reachable

sets in which they are inscribed, and generally measures how efficiently the reachable

sets can be used to tile the workspace. However, it is not settled whether 𝛼 really

represents how efficiently the vehicle can visit the targets, or whether it is a product

of our specific Symmetric Hierarchical Cell Structure algorithm.

Theorem 1 almost completely extends the result of Beardwood et al. ([9], 1959)

on the Euclidean Stochastic TSP to general symmetric dynamic constraints. In par-
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ticular, the Beardwood-Halton-Hammersley Theorem states that for the Euclidean

Stochastic TSP on R𝑑 with targets 𝑋1, 𝑋2, . . .
𝑖𝑖𝑑
„ 𝑓 , there is some constant 𝛽𝑑 (de-

pending only on 𝑑) such that

TSPp𝑋1, . . . , 𝑋𝑛q Ñ 𝛽𝑑𝑛
1´ 1

𝑑

ż

𝒳𝑓

𝑓p𝑥q1´ 1
𝑑 𝑑𝑥 (7.3)

almost surely as 𝑛 Ñ 8. Our result extends the 𝑛1´ 1
𝑑 to 𝑛1´ 1

𝛾 (Euclidean paths in

R𝑑 can be formulated as a dynamic system with 𝛾 “ 𝑑) and extends
ş

𝑓p𝑥q1´ 1
𝑑 𝑑𝑥

to
ş

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 (when considering only the length of Euclidean paths, 𝑔 is

constant and can therefore be moved to the constant outside the integral); how-

ever, it leaves open the possibility that the constant outside fluctuates between our

derived lower and upper bounds and doesn’t go to a particular value in the range

r𝛽´1, 12𝑠𝛼´ 1
𝛾 s. Showing that there is some constant 𝛽Π for any symmetric dynamic

constraints Π and 𝑋1, 𝑋2, . . .
𝑖𝑖𝑑
„ 𝑓

lim
𝑛Ñ8

TSPΠp𝑋1, . . . , 𝑋𝑛q

𝑛1´ 1
𝛾

ş

𝒳𝑓
𝑓p𝑥q1´ 1

𝛾 𝑔p𝑥q´
1
𝛾 𝑑𝑥

“ 𝛽Π (7.4)

would complete the extension of the Beardwood-Halton-Hammersley Theorem to our

more general setting (with dynamic constraints), though it is also possible that such

an extension might only be possible for Π satisfying stronger regularity conditions.

Furthermore, the techniques developed here (hierarchical cell tiling strategies and

Cost-Balanced Orienteering) may yield results on the following extensions of or prob-

lems related to the DSTSP or Stochastic Orienteering:

• As discussed in Appendix C, our techniques can yield strong upper bounds for

the Euclidean TSP where the targets are distributed over a subset of fractal

dimension; in particular, the Symmetric Hierarchical Cell Structure is suited

to such cases. However, this leaves open the question of fractal distribution of

targets with dynamically-constrained tours, as well as matching lower bounds.

• Another interesting extension may be to have targets be sets within the workspace
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rather than points. While having the targets be balls of fixed size is gener-

ally trivial in the limit (a fixed-length trajectory can ‘sweep’ the space and

visit all possible 𝜀-balls), possibilities such as having the targets be random 𝑘-

dimensional affine subspaces embedded in a 𝑑-dimensional workspace may be

solvable with our techniques.

• The Orienteering problem can also be thought of as trying to pass a curve of

limited length obeying constraints through as many targets as possible, which

has applications in image processing [11], and an important extension of this is

to pass a higher-dimensional region of limited size obeying dynamic constraints

through targets.

• Another problem related to Orienteering is the problem of trying to fit a function

satisfying local constraints (for instance, Lipschitz continuity) to target points

with a loss function (as opposed to trying to exactly pass through as many

targets as possible).

• Finally, the TSP is related to a number of other problems in which mobile agents

must visit unordered targets, such as the Traveling Repairperson Problem [10]

in which targets pop up stochastically (for instance, according to a Poisson

process) over time and must be visited with a minimum delay per target.

Finally, it remains open whether a guaranteed approximation algorithm exists

for the Dynamic TSP in general. Theorem 1 shows that our Hierarchical Collection

Problem algorithms achieve a constant factor approximation of the shortest tour with

very high probability (the difference between the symmetric and nonsymmetric cases

primarily being that the approximation factor can depend arbitrarily on the den-

sity 𝑓 of the target point distribution); this in turn shows that our algorithms also

achieve a constant factor approximation of the expected length of the shortest tour

(see Corollary 1 and Appendix A.1.1). Finally, Theorem 2 shows that our Symmetric

HCP algorithm achieves a constant factor approximation of the shortest tour through

adversarially-distributed target points. However, our analysis leaves open the pos-

sibility that the targets may be cleverly placed so as to permit a very short tour
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while the algorithms only find loner ones (though when the targets are random this

becomes vanishingly unlikely), and it is interesting to consider whether an algorithm

exists which prevents this. See Appendix A.2 for a full discussion.

195



196



Bibliography

[1] Richard M. Karp, Reducibility among Combinatorial Problems, pp. 85–103,

Springer US, Boston, MA, 1972.

[2] Christos H. Papadimitriou, “The euclidean travelling salesman problem is np-

complete,” Theoretical Computer Science, vol. 4, no. 3, pp. 237–244, 1977.

[3] S. M. LaValle, Planning Algorithms, Cambridge University Press, Cambridge,

U.K., 2006, Available at http://planning.cs.uiuc.edu/.

[4] Jerome Ny, Eric Feron, and Emilio Frazzoli, “On the dubins traveling salesman

problem,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 265–270,

2012.

[5] A. M. Frieze and J. E. Yukich, Probabilistic Analysis of the TSP, pp. 257–307,

Springer US, Boston, MA, 2007.

[6] Richard M. Karp, “Probabilistic analysis of partitioning algorithms for the

traveling-salesman problem in the plane,” Mathematics of Operations Research,

vol. 2, no. 3, pp. 209–224, 1977.

[7] Dimitris Bertsimas, Philippe Chervi, and Michael Peterson, “Computational

approaches to stochastic vehicle routing problems,” Transportation Science, vol.

29, no. 4, pp. 342–352, 1995.

[8] Ludger Rüschendorf Birgit Anthes, “On the weighted euclidean matching prob-

lem in 𝑟𝑑,” Applicationes Mathematicae, vol. 28, no. 2, pp. 181–190, 2001.

197



[9] Jillian Beardwood, J. H. Halton, and J. M. Hammersley, “The shortest path

through many points,” Mathematical Proceedings of the Cambridge Philosophical

Society, vol. 55, no. 4, pp. 299–327, 1959.

[10] Sleiman Itani, Dynamic systems and subadditive functionals, Ph.D. thesis, Mas-

sachusetts Institute of Technology, 2012.

[11] Ery Arias-Castro, David L. Donoho, Xiaoming Huo, and Craig A. Tovey, “Con-

nect the dots: How many random points can a regular curve pass through?,”

Advances in Applied Probability, vol. 37, no. 3, pp. 571–603, 2005.

[12] John J. Enright and Emilio Frazzoli, “The traveling salesman problem for the

reeds-shepp car and the differential drive robot,” in Proceedings of the 45th IEEE

Conference on Decision and Control, 2006, pp. 3058–3064.

[13] K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and traveling salesper-

son problems for dubins’ vehicle,” in Proceedings of the 2005, American Control

Conference, 2005., 2005, pp. 786–791 vol. 2.

[14] Ketan Savla, Francesco Bullo, and Emilio Frazzoli, “On traveling salesperson

problems for a double integrator,” in Proceedings of the 45th IEEE Conference

on Decision and Control, 2006, pp. 5305–5310.

[15] Ketan Savla, Emilio Frazzoli, and Francesco Bullo, “On the dubins traveling

salesperson problems: Novel approximation algorithms,” in Robotics: Science

and Systems, 2006.

[16] Ketan Savla, Emilio Frazzoli, and Francesco Bullo, “Traveling salesperson prob-

lems for the dubins vehicle,” IEEE Transactions on Automatic Control, vol. 53,

no. 6, pp. 1378–1391, 2008.

[17] Sleiman Itani, Emilio Frazzoli, and Munther A Dahleh, “Travelling salesperson

problem for dynamic systems,” IFAC Proceedings Volumes, vol. 41, no. 2, pp.

13318–13323, 2008, 17th IFAC World Congress.

198



[18] Ery Arias-Castro, David L Donoho, and Xiaoming Huo, “Adaptive multiscale

detection of filamentary structures in a background of uniform random points,”

The Annals of Statistics, pp. 326–349, 2006.

[19] Frédéric Jean, Control of Nonholonomic Systems: from Sub-Riemannian Geom-

etry to Motion Planning, SpringerBriefs in Mathematics. Springer International

Publishing, 2014.

[20] Aviv Adler and Sertac Karaman, “The stochastic traveling salesman problem and

orienteering for kinodynamic vehicles,” in 2016 IEEE International Conference

on Robotics and Automation (ICRA), 2016, pp. 2788–2795.

[21] Patrick Rebeschini, “Algorithmic foundations of learning, lecture 7 notes,”

September 2020.

[22] Richard Durrett, Essentials of stochastic processes, Springer texts in statistics.

Springer, Cham, 3rd ed. edition, 2016.

[23] Michael R Garey and David S Johnson, “Computers and intractability,” A Guide

to the, 1979.

[24] Nicos Christofides, “Worst-case analysis of a new heuristic for the travelling sales-

man problem,” Tech. Rep., Carnegie-Mellon Univ Pittsburgh Pa Management

Sciences Research Group, 1976.

199



200



Appendix A

Probability, Optimization, and

Complexity

In this chapter we discuss and define important notions in probability, optimization,

and algorithms, as well as prove a few important lemmas. Aside from Appendix A.1.1,

all notions discussed here are well-known and standard; and while (to our knowledge)

the notion of “with very high probability” is novel, the results and proofs contained

in Appendix A.1.1 are elementary and analogous to known results about the related

notion of “with high probability”.

A.1 Probability and Random Variables

Because our results primarily deal with a stochastic version of the Traveling Salesman

Problem (TSP), in which the targets are randomly placed into a space, the length of

the shortest TSP tour is a random variable, and we deal with various notions from

probability theory which we will briefly outline here. When we discuss probability

events, measurable subsets of an elementary outcome space Ω of the type

𝐴 “ t𝜔 P Ω : rsome conditionsu (A.1)
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we will drop the 𝜔 and just equate the event with the condition. For instance, if we

have a random variable 𝑍, we denote the event that 𝑍 ě 𝑎 as 𝐴 “ t𝑍 ě 𝑎u (rather

than the more complete 𝐴 “ t𝜔 P Ω : 𝑍p𝜔q ě 𝑎u).

We will also deal heavily with stochastic domination:

Definition 30. A random variable 𝑍 stochastically dominates a random variable

𝑍 1 if for any 𝑧 P R,

Pr𝑍 ď 𝑧s ď Pr𝑍 1
ď 𝑧s (A.2)

We denote this relationship 𝑍 ľ 𝑍 1.

This is equivalent to saying the cumulative distribution function (CDF) of 𝑍 is a

lower bound to that of 𝑍 1; it is also equivalent to say that there is a coupling (of the

distributions of 𝑍,𝑍 1) such that 𝑍 ě 𝑍 1 almost surely.

A.1.1 With Very High Probability

We now take a closer look at the notion of ‘with very high probability’. Recall

that an infinite sequence of events 𝐴𝑛 parameterized by integer 𝑛 happens with very

high probability (Definition 7) if there are constants 𝑐1, 𝑐2, 𝑐3 ą 0 such that, for all

sufficiently large 𝑛,

Pr𝐴𝑛s ě 1´ 𝑐1𝑒
´𝑐2𝑛𝑐3 (A.3)

and recall that this means it converges to 1 faster than any inverse polynomial as

𝑛Ñ 8. It also gives us some additional information for which “with high probability”

is not sufficient:

Lemma 37. If t𝐴𝑛u happens with very high probability, then (where ␣ means ‘not’)

Prpmax𝑛 : ␣𝐴𝑛q ă 8s “ 1 (A.4)

i.e. almost surely there is some finite 𝑛˚ s.t. 𝐴𝑛 happens for all 𝑛 ą 𝑛˚.
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Proof. We show this by using the Borel-Cantelli Lemma, which states that if a se-

quence of events t𝐸𝑛u has
ř8

𝑛“1 Pr𝐸𝑛s ă 8, then

Prpmax𝑛 : 𝐸𝑛q ă 8s “ 1 (A.5)

But letting 𝐸𝑛 “ ␣𝐴𝑛, we have

Pr𝐸𝑛s ď 𝑐1𝑒
´𝑐2𝑛𝑐3 (A.6)

for sufficiently large 𝑛 (say, 𝑛 ą 𝑛1). Of course, for 𝑛 ď 𝑛1, we have the trivial bound

Pr𝐸𝑛s ď 1. Thus,

8
ÿ

𝑛“1

Pr𝐸𝑛s ď 𝑛1
`

ÿ

𝑛ą𝑛1

𝑐1𝑒
´𝑐2𝑛𝑐3

ă 8 (A.7)

since 𝑐1𝑒´𝑐2𝑛𝑐3 (which decreases faster than 𝑛´𝑘 for any 𝑘) is a convergent series.

Therefore, Prpmax𝑛 : ␣𝐴𝑛q ă 8s “ 1, as desired.

We then also define a related notion of a random variable growing “with very high

probability”:

Definition 31. If t𝑍𝑛u is a sequence of random variables and 𝛼p𝑛q : Zą0 Ñ Rě0

is any function then we say “𝑍𝑛
𝑤𝑣ℎ𝑝
“ 𝑂p𝛼p𝑛qq” if there exists a constant 𝑐 ą 0

such that the sequence of events 𝐴𝑛 “ t𝑍𝑛 ď 𝑐𝛼p𝑛qu happens with very high

probability.

We similarly say 𝑍𝑛
𝑤𝑣ℎ𝑝
“ Ωp𝛼p𝑛qq if there exists a constant 𝑐 ą 0 such that

𝐴𝑛 “ t𝑍𝑛 ď 𝑐𝛼p𝑛qu happens with very high probability, and 𝑍𝑛
𝑤𝑣ℎ𝑝
“ Θp𝛼p𝑛qq

if there exist constants 𝑐2 ą 𝑐1 ą 0 such that 𝐴𝑛 “ t𝑐1𝛼p𝑛q ď 𝑍𝑛 ď 𝑐2𝛼p𝑛qu

happens with very high probability.

Finally, we say that “𝑍𝑛
𝑤𝑣ℎ𝑝
Ñ 𝛼p𝑛q” (multiplicatively) if there exists a nonneg-
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ative sequence 𝛿𝑛 satisfying lim𝑛Ñ8 𝛿𝑛 “ 0 such that

𝐵𝑛 “ t1´ 𝛿𝑛 ď 𝑍𝑛{𝛼p𝑛q ď 1` 𝛿𝑛u (A.8)

happens with very high probability.

The following then hold:

Lemma 38. If 𝑍1, 𝑍2, . . . and 𝑍 1
1, 𝑍

1
2, . . . are sequences of random variables param-

eterized by 𝑛 such that 𝑍𝑛 ľ 𝑍 1
𝑛 for all 𝑛, then

𝑍𝑛
𝑤𝑣ℎ𝑝
“ 𝑂p𝛼p𝑛qq ùñ 𝑍 1

𝑛
𝑤𝑣ℎ𝑝
“ 𝑂p𝛼p𝑛qq (A.9)

and 𝑍 1
𝑛

𝑤𝑣ℎ𝑝
“ Ωp𝛼p𝑛qq ùñ 𝑍𝑛

𝑤𝑣ℎ𝑝
“ Ωp𝛼p𝑛qq (A.10)

Proof. This follows from the definitions: if 𝑍𝑛
𝑤𝑣ℎ𝑝
“ 𝑂p𝛼p𝑛qq then we have some 𝑐 ą 0

and 𝑐1, 𝑐2, 𝑐3 ą 0 such that

Pr𝑍𝑛 ą 𝑐𝛼p𝑛qs ď 𝑐1𝑒
´𝑐2𝑛𝑐3 (A.11)

Since 𝑍𝑛 ľ 𝑍 1
𝑛 implies Pr𝑍 1

𝑛 ą 𝑐𝛼p𝑛qs ď Pr𝑍𝑛 ą 𝑐𝛼p𝑛qs, we are done with Eq. (A.9).

The proof of Eq. (A.10) is analogous.

Lemma 39. If 𝑍𝑛
𝑤𝑣ℎ𝑝
Ñ 𝛼p𝑛q, then 𝑍𝑛{𝛼p𝑛q Ñ 1 almost surely.

Proof. By Lemma 37, with probability 1 there is some finite 𝑛˚ such that 𝐵𝑛 happens

for all 𝑛 ą 𝑛˚. Thus, for 𝑛 ą 𝑛˚, we have

1´ 𝛿𝑛 ď 𝑍𝑛{𝛼p𝑛q ď 1` 𝛿𝑛 (A.12)

and since 𝛿𝑛 Ñ 0 as 𝑛Ñ 8, the result follows.

The next lemma shows that our main results on the very-high-probability behavior

of the DSTSP translate directly to expected value.
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Proposition 21. If t𝑍𝑛u is a sequence of nonnegative random variables such that

𝑍𝑛 “ Θp𝑛𝑘q with very high probability and 𝑍𝑛 “ 𝑂p𝑛ℓq (non-probabilistic upper

bound), where 0 ă 𝑘 ď ℓ, then Er𝑍𝑛s “ Θp𝑛𝑘q.

Proof. We give upper and lower bounds for Er𝑍𝑛s by splitting it into three parts

based on the following events: let 𝐴p1q
𝑛 “ t𝑍𝑛 ă 𝑎1𝑛

𝑘u; 𝐴p2q
𝑛 “ t𝑎1𝑛

𝑘 ď 𝑍𝑛 ď 𝑎2𝑛
𝑘u

(where 0 ă 𝑎1 ă 𝑎2 and 𝑎2 is the constant factor in the wvhp upper bound as in

Definition 31); and 𝐴p3q
𝑛 “ t𝑎2𝑛

𝑘 ă 𝑍𝑛u. Then:

Er𝑍𝑛s “

3
ÿ

𝑖“1

Pr𝐴p𝑖q
𝑛 sEr𝑍𝑛 |𝐴

p𝑖q
𝑛 s (A.13)

We can then upper bound and lower bound these since: Pr𝐴p2q
𝑛 s ě 1 ´ 𝑐1𝑒

´𝑐2𝑛𝑐3

(for 𝑐1, 𝑐2, 𝑐3 ą 0 as in Definition 7) we know that Pr𝐴p1q
𝑛 s,Pr𝐴p3q

𝑛 s ď 𝑐1𝑒
´𝑐2𝑛𝑐3 ; and

Er𝑍𝑛 |𝐴
p𝑖q
𝑛 s “ 𝑂p𝑛ℓq (and are nonnegative), and Er𝑍𝑛 |𝐴

p2q
𝑛 s “ Θp𝑛𝑘q (by definition).

Then since 𝑐1𝑒´𝑐2𝑛𝑐3
Ñ 0 faster than 𝑎´1

2 𝑛´ℓ, terms 𝑖 “ 1 and 3 vanish as 𝑛Ñ 8

while term 𝑖 “ 2 goes to Θp𝑛𝑘q and we are done.

This shows that Corollary 1 follows directly from Theorem 1 and Proposition 1.

A.1.2 IID and Poisson Targets

A big part of our analysis depends on the technique of Poissonization, replacing 𝑛

iid random targets with targets generated via an appropriate (possibly non-uniform-

intensity) Poisson process. This small tweak means that the position and number of

targets present in disjoint regions are independent (whereas with iid targets, more

targets in one region means less, on average, for the others), greatly simplifying a lot

of the analysis. Furthermore, one can more easily bound Poisson processes above and

below because of the remarkable property that the sum of two independent Poisson

processes is itself a Poisson process, even if their intensity functions have no relation.

However, it needs to be shown that Poissonization doesn’t alter the limiting behavior

of the minimum-length tour (as 𝑛Ñ 8).
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To describe this, we need to clearly establish the meaning of iid (independently and

identically distributed) targets in 𝒳 and of targets distributed according to a Poisson

process, and the connection between the two types of random distribution. We will

not develop a complete description of these, but rather provide basic definitions and

crucial lemmas. For a more complete treatment, see [22].

We also note that we will be dealing only with continuous distributions and Pois-

son processes with full-dimensional intensities, as our theorems are limited to these

cases. It is an interesting open question what happens when targets have lower-

dimensional distributions (especially for symmetric vehicles).

Definition 32. A continuous probability distribution 𝐹 over 𝒳 is a probability

distribution taking 𝒳 as its space of elementary outcomes and described by a

measurable function 𝑓 : 𝒳 Ñ Rě0 such that

ż

𝒳
𝑓p𝑥q𝑑𝑥 “ 1 (A.14)

in which, for any measurable subset 𝒜 Ď 𝒳 , if 𝑋 „ 𝐹 ,

Pr𝑋 P 𝒜s “
ż

𝒜
𝑓p𝑥q𝑑𝑥 (A.15)

𝑓 is referred to as the probability density function (PDF) of 𝐹 .

For instance, in R3, the uniform distribution over the cube r0, 1s3 (with PDF 𝑓 “

1𝑥Pr0,1s3 , where 1𝒜 is the indicator function which takes value 1 on 𝒜 and 0 every-

where else) is continuous, whereas in R3 the uniform distribution over the line segment

r0, 0, 0s to r1, 0, 0s is not considered “continuous” because no density function (inte-

grated in 3 dimensions) can express it (since a line segment has measure 0 in R3 all

functions with support only on the line segment integrate to 0).

𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝐹 refers to the case where 𝑋1, . . . , 𝑋𝑛 are all distributed according

to 𝐹 independently. If we want to ignore the indices and consider the targets as an

206



un-ordered 𝑛-element set, we write

t𝑋1, . . . , 𝑋𝑛u
𝑖𝑖𝑑
„ 𝐹 (A.16)

Definition 33. A (full-dimensional) Poisson process over 𝒳 is a random distri-

bution described by a function 𝜆 : 𝒳 Ñ Rě0 such that �̄� “
ş

𝒳 𝜆p𝑥q𝑑𝑥 ă 8 which

does the following:

• pick 𝑁 „ Poisp�̄�q, where Poisp�̄�q is the Poisson distribution with rate �̄�;

• pick 𝑋1, . . . , 𝑋𝑁
𝑖𝑖𝑑
„ 𝐹𝜆, where 𝐹𝜆 is the continuous distribution with prob-

ability density function 𝑓𝜆 : 𝜆{�̄�.

𝜆 is referred to as the intensity function of the Poisson process, and we write

p𝑋1, . . . , 𝑋𝑁q „ PoisProcp𝜆q to denote that p𝑋1, . . . , 𝑋𝑁q is generated this way

(noting that 𝑁 is a random variable too). To denote the unordered set generated

(i.e. remove the indices) we write t𝑋1, . . . , 𝑋𝑁u „ PoisProcp𝜆q.

The value �̄� denotes the expected number of points generated by PoisProcp𝜆q. Note

that the Poisson process does not generate a fixed number of target points since 𝑁

is also random.

This is admittedly not the most fundamental definition of the Poisson process with

intensity 𝜆, which can be considered as a limiting distribution of more easily defined

discrete probability distributions (the definition we use is then a theorem about the

more fundamental definition). However, it is sufficient for our purposes.

Remark 27. It’s worth noting the distinction between generating an ordered list

of points or an unordered set. Generating 𝑛 targets iid naturally applies indices,

whereas Poisson processes are most fundamentally understood as being unordered point

sets; since we want to link the two, we have notation for distinguishing both ordered

and unordered versions, though we will more often be concerned with the unordered

version.

We now state some key properties of the Poisson process:
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Proposition 22. Suppose p𝑋1, . . . , 𝑋𝑁q „ PoisProcp𝜆q over 𝒳 :

1. For disjoint 𝒜,𝒜1 Ď 𝒳 , the random sets t𝑋1, . . . , 𝑋𝑁uX𝒜 and t𝑋1, . . . , 𝑋𝑁uX

𝒜1 are independent (note that we use the set of targets rather than the in-

dexed sequence). In particular, this also means |t𝑋1, . . . , 𝑋𝑁u X 𝒜| and

|t𝑋1, . . . , 𝑋𝑁u X𝒜1| (considered as random variables) are independent.

2. For any 𝒜 Ď 𝒳 ,

E
“

|t𝑋1, . . . , 𝑋𝑁u X𝒜|
‰

“

ż

𝒜
𝜆p𝑥q𝑑𝑥 (A.17)

As a special case, note that when �̄� “
ş

𝒳 𝜆p𝑥q𝑑𝑥 as in Definition 33:

Er𝑁 s “ E
“

|t𝑋1, . . . , 𝑋𝑁u|
‰

“ E
“

|t𝑋1, . . . , 𝑋𝑁u X 𝒳 |
‰

“ �̄� (A.18)

3. If t𝑋1, . . . , 𝑋𝑁u „ PoisProcp𝜆q and t𝑋 1
1, . . . , 𝑋

1
𝑁 1u „ PoisProcp𝜆1q indepen-

dently, then

t𝑋1, . . . , 𝑋𝑁 , 𝑋
1
1, . . . , 𝑋

1
𝑁 1u „ PoisProcp𝜆` 𝜆1

q (A.19)

Point (2) indicates that if we have a distribution 𝐹 with PDF 𝑓 , and we want to

emulate 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝐹 as closely as possible with a Poisson process, it is natural

to consider PoisProcp𝑛𝑓q: if 𝜆 “ 𝑛𝑓 then 𝑓𝜆 “ 𝑓 and so 𝐹𝜆 “ 𝐹 ; and Er𝑁 s “ 𝑛.

Thus, in expectation 𝑛 targets will be generated, and they will be distributed iid

according to 𝐹 . Of course this is not the same distribution since 𝑁 is still random,

but it is reasonable to expect that the two are fairly close, especially when 𝑛 is

large and concentration bounds on Poisp𝑛q kick in. This observation is the basis

of the Poissonization technique from the analysis of the Nonsymmetric Hierarchical

Collection Problem in Section 5.2.
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A.1.3 Simplification through Poissonization

These notions also allow us to greatly simplify the problem when we are only con-

cerned about the order-of-growth because we can WLOG assume that the targets fall

uniformly on a rectangular region. Formally, to define a region on a curved manifold

we have to take an adapted frame (see Section 2.2 and Appendix B); however, we can

show a more general result allowing simplification.

Proposition 23. For Π satisfying the assumptions in Section 2.1, if there is a

finite set of bounded 𝒳1, . . . ,𝒳𝑚 Ď 𝒳 such that 𝒳𝑓 Ď
Ť𝑚

𝑗“1𝒳𝑗, and probability

density functions 𝑓1, . . . , 𝑓𝑚 where each 𝑓𝑗 has support 𝒳𝑗 and there is some 𝑐 ą 0

such that 𝑓𝑗p𝑥q ą 𝑐 for all 𝑥 P 𝒳𝑗, then if for all 𝑗,

TSPΠp𝑋1, . . . , 𝑋𝑛q
𝑤𝑣ℎ𝑝
“ 𝑂p𝑛1´ 1

𝛾 q when 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓𝑗 (A.20)

we can conclude that for any 𝑓 satisfying Assumption 5,

TSPΠp𝑋1, . . . , 𝑋𝑛q
𝑤𝑣ℎ𝑝
“ 𝑂p𝑛1´ 1

𝛾 q when 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 . (A.21)

Note that having a single 𝑐 ą 0 as the lower bound for the densities 𝑓𝑗 is equivalent

to having a separate 𝑐𝑗 ą 0 for each since we can use 𝑐 “ min𝑗 𝑐𝑗.

In order to prove this, we consider the Poissonization of the target point distri-

bution 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 , which is the distribution t𝑋1, . . . , 𝑋𝑁u „ PoisProcp𝑛 ¨ 𝑓q

of target points; it replaces the 𝑛 iid targets according to 𝑓 with a Poisson process

according to intensity 𝑛 ¨ 𝑓 , or, equivalently, it generates some 𝑁 „ Poisp𝑛q and then

distributes 𝑁 targets iid according to 𝑓 . We now show that the length of the shortest

TSP tour keeps its order-of-growth when the target distribution is Poissonized:

Lemma 40. If Π satisfies the assumptions in Section 2.1, then

TSPΠp𝑋1, . . . , 𝑋𝑛q
𝑤𝑣ℎ𝑝
“ Θp𝑛1´ 1

𝛾 q when 𝑋1, . . . , 𝑋𝑛
𝑖𝑖𝑑
„ 𝑓 (A.22)

ðñ TSPΠp𝑋1, . . . , 𝑋𝑁q
𝑤𝑣ℎ𝑝
“ Θp𝑛1´ 1

𝛾 q when t𝑋1, . . . , 𝑋𝑁u „ PoisProcp𝑛 ¨ 𝑓q (A.23)
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Proof. This follows directly from the fact that if 𝑁 „ Poisp𝑛q, then 𝑁 ď 2𝑛 and

𝑁 ě 𝑛{2 with very high probability, and the fact that adding target points can only

make the shortest DTSP tour longer. For clarity, we will let 𝑋1, 𝑋2, . . .
𝑖𝑖𝑑
„ 𝑓 (an

infinite sequence of random targets), and we will let the iid targets be the first 𝑛 from

this list, while the Poissonized targets are the first 𝑁 where 𝑁 „ Poisp𝑛q.

We then show both directions:

Forward: Suppose there are constants 0 ă 𝑎 ă 𝐴 and 0 ă 𝑐1, 𝑐2, 𝑐3 such that

P
“

TSPΠp𝑋1, . . . , 𝑋𝑛q ě 𝑎𝑛1´ 1
𝛾
‰

ě 1´ 𝑐1𝑒
´𝑐2𝑛𝑐3 (A.24)

and P
“

TSPΠp𝑋1, . . . , 𝑋𝑛q ď 𝐴𝑛1´ 1
𝛾
‰

ě 1´ 𝑐1𝑒
´𝑐2𝑛𝑐3 (A.25)

(while technically we can have different 𝑐1, 𝑐2, 𝑐3 for the upper and lower bounds, it’s

equivalent to assume they’re the same since we can always choose the larger 𝑐1 and

the smaller 𝑐2, 𝑐3). We can also without loss of generality assume that 𝑐1, 𝑐2, 𝑐3 also

imply that for sufficiently large 𝑛,

Pr𝑁 ď 2𝑛s ě 1´ 𝑐1𝑒
´𝑐2p2𝑛q𝑐3 and Pr𝑁 ě 𝑛{2s ě 1´ 𝑐1𝑒

´𝑐2p𝑛{2q𝑐3 (A.26)

Then we consider TSPΠp𝑋1, . . . , 𝑋𝑁q; then we conclude

TSPΠp𝑋1, . . . , 𝑋r𝑛{2sq ě 𝑎p𝑛{2q1´ 1
𝛾 and 𝑁 ě 𝑛{2

ùñ TSPΠp𝑋1, . . . , 𝑋𝑁q ě 𝑎p𝑛{2q1´ 1
𝛾 ě p𝑎{2q𝑛1´ 1

𝛾

(A.27)

which in turn implies by the union bound

PrTSPΠp𝑋1, . . . , 𝑋𝑁q ě p𝑎{2q𝑛
1´ 1

𝛾 s (A.28)

ě PrTSPΠp𝑋1, . . . , 𝑋r𝑛{2sq ě 𝑎p𝑛{2q1´ 1
𝛾 and 𝑁 ě 𝑛{2s (A.29)

ě 1´ 2𝑐1𝑒
´𝑐2p𝑛{2q𝑐3 (A.30)

yielding a very high probability lower bound with order-of-growth 𝑛1´ 1
𝛾 . To get the
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upper bound, we use a similar trick:

TSPΠp𝑋1, . . . , 𝑋2𝑛q ď 𝐴p2𝑛q1´ 1
𝛾 and 𝑁 ď 2𝑛

ùñ TSPΠp𝑋1, . . . , 𝑋𝑁q ď 𝐴p2𝑛q1´ 1
𝛾 ď p2𝐴q𝑛1´ 1

𝛾

(A.31)

which in turn implies by the union bound

PrTSPΠp𝑋1, . . . , 𝑋𝑁q ď p2𝐴q𝑛
1´ 1

𝛾 s (A.32)

ě PrTSPΠp𝑋1, . . . , 𝑋2𝑛q ď 𝐴p2𝑛q1´ 1
𝛾 and 𝑁 ď 2𝑛s (A.33)

ě 1´ 2𝑐1𝑒
´𝑐2p2𝑛q𝑐3 (A.34)

yielding a very high probability upper bound with order-of-growth 𝑛1´ 1
𝛾 . Combining

the two yields the very high probability order of growth.

Backward: For any 0 ă 𝑎 ă 𝐴, define

𝑝1p𝑛; 𝑎q :“ 1´ P
“

TSPΠp𝑋1, . . . , 𝑋𝑛q ě 𝑎𝑛1´ 1
𝛾
‰

(A.35)

and 𝑝2p𝑛;𝐴q :“ 1´ P
“

TSPΠp𝑋1, . . . , 𝑋𝑛q ď 𝐴𝑛1´ 1
𝛾

‰

(A.36)

Then TSPΠp𝑋1, . . . , 𝑋𝑛q is not Θp𝑛1´ 1
𝛾 q if (and only if) either of the following:

i. for all 𝑎 ą 0, 𝑝1p𝑛; 𝑎q Ñ 0 as 𝑛 Ñ 8 slower than 𝑐1
1𝑒

´𝑐1
2𝑛

𝑐1
3 for any 𝑐1

1, 𝑐
1
2, 𝑐

1
3 ą 0

(or doesn’t approach 0 at all).

ii. for all 𝐴 ą 0, 𝑝2p𝑛;𝐴q Ñ 0 as 𝑛 Ñ 8 slower than 𝑐1
1𝑒

´𝑐1
2𝑛

𝑐1
3 for any 𝑐1

1, 𝑐
1
2, 𝑐

1
3 ą 0

(or doesn’t approach 0 at all).

Fix 𝑎 ą 0; then if 𝑝1p𝑛; 𝑎q Ñ 0 as 𝑛 Ñ 8 slower than 𝑐1
1𝑒

´𝑐1
2𝑛

𝑐1
3 for any 𝑐1

1, 𝑐
1
2, 𝑐

1
3 ą 0

(or doesn’t approach 0 at all), we note that by (A.27) that

PrTSPΠp𝑋1, . . . , 𝑋𝑁q ă p𝑎{2q𝑛
1´ 1

𝛾 s ě 𝑝1p𝑛; 𝑎q ´ 𝑐1𝑒
´𝑐2p𝑛{2q𝑐3 (A.37)
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because if 𝑁 ě 𝑛{2 and TSPΠp𝑋1, . . . , 𝑋t𝑛{2uq ě 𝑎p𝑛{2q1´ 1
𝛾 then

TSPΠp𝑋1, . . . , 𝑋𝑁q ě 𝑎p𝑛{2q1´ 1
𝛾 ě p𝑎{2q𝑛1´ 1

𝛾 (A.38)

and 𝑁 ě 𝑛{2 with probability at least 1 ´ 𝑐1𝑒
𝑐2p𝑛{2q𝑐3 . However, if 𝑝1p𝑛; 𝑎q Ñ 0 as

𝑛Ñ 8 slower than 𝑐1
1𝑒

´𝑐1
2𝑛

𝑐1
3 for any 𝑐1

1, 𝑐
1
2, 𝑐

1
3 ą 0 (or doesn’t approach 0 at all) then

so does 𝑝1p𝑛; 𝑎q ´ 𝑐1𝑒
´𝑐2p𝑛{2q𝑐3 . Thus, if (i) holds then TSPΠp𝑋1, . . . , 𝑋𝑁q ě 𝑎1𝑛1´ 1

𝛾

does not hold with very high probability for any 𝑎1 (as we can use 𝑎 “ 2𝑎1), and hence

TSPΠp𝑋1, . . . , 𝑋𝑁q does not have order-of-growth 𝑛1´ 1
𝛾 with very high probability.

For possibility (ii) we use an analogous argument based on (A.31) and the very

high probability that 𝑁 ď 2𝑛.

Thus, we have shown that if TSPΠp𝑋1, . . . , 𝑋𝑛q does not have order-of-growth

𝑛1´ 1
𝛾 with very high probability, neither does TSPΠp𝑋1, . . . , 𝑋𝑁q, so we have shown

both the forward and backward implications and we are done.

We can now show Proposition 23.

Proof of Proposition 23. Fix some 𝑓 satisfying Assumption 5; in particular, there is

some 𝑓max such that 𝑓p𝑥q ď 𝑓max for all 𝑥 P 𝒳𝑓 .

We now consider each 𝑓𝑗 over 𝒳𝑗. Since 𝑓𝑗p𝑥q ě 𝑐 for all 𝑥 P 𝒳𝑗, letting 𝑎 “

r𝑓max{𝑐s (by definition an integer), we have that 𝑎 𝑓𝑗p𝑥q ě 𝑓p𝑥q for all 𝑥 P 𝒳𝑓 (which

holds for all 𝑗). Then by assumption in Proposition 23 we have for all 𝑗: when

𝑋
p𝑗q

1 , . . . , 𝑋
p𝑗q
𝑛

𝑖𝑖𝑑
„ 𝑓𝑗,

TSPΠp𝑋
p𝑗q

1 , . . . , 𝑋p𝑗q
𝑛 q

𝑤𝑣ℎ𝑝
“ 𝑂p𝑛1´ 1

𝛾 q (A.39)

Then by definition when 𝑋p𝑗q

1 , . . . , 𝑋
p𝑗q
𝑎𝑛

𝑖𝑖𝑑
„ 𝑓𝑗, since 𝑎 is a constant,

TSPΠp𝑋
p𝑗q

1 , . . . , 𝑋p𝑗q
𝑎𝑛 q

𝑤𝑣ℎ𝑝
“ 𝑂pp𝑎𝑛q1´ 1

𝛾 q “ 𝑂p𝑛1´ 1
𝛾 q (A.40)
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By Lemma 40 this implies that if t𝑋p𝑗q

1 , . . . , 𝑋
p𝑗q

𝑁p𝑗qu „ PoisProcp𝑛𝑎 ¨ 𝑓𝑗q,

TSPΠp𝑋
p𝑗q

1 , . . . , 𝑋
p𝑗q

𝑁p𝑗qq
𝑤𝑣ℎ𝑝
“ 𝑂p𝑛1´ 1

𝛾 q (A.41)

Since there are a fixed, finite number of 𝒳𝑗 and 𝑓𝑗, and by Assumption 4 the time

needed to travel between any two configurations in r𝒳𝑓 s
𝒬 is at most 𝐶, generating

t𝑋
p𝑗q

1 , . . . , 𝑋
p𝑗q

𝑁p𝑗qu „ PoisProcp𝑛𝑎 ¨ 𝑓𝑗q independently, we have

TSPΠ

ˆ 𝑚
ď

𝑗“1

t𝑋
p𝑗q

1 , . . . , 𝑋
p𝑗q

𝑁p𝑗qu

˙

ď

𝑚
ÿ

𝑗“1

TSPΠp𝑋
p𝑗q

1 , . . . , 𝑋
p𝑗q

𝑁p𝑗qq `𝑚𝐶 (A.42)

“ 𝑂p𝑛1´ 1
𝛾 q (A.43)

Finally, since 𝑎 ¨ 𝑓𝑗p𝑥q ě 𝑓p𝑥q for all 𝑥 P 𝒳𝑗, and 𝒳𝑓 Ď
Ť𝑚

𝑗“1𝒳𝑗, we get that

𝑓p𝑥q ď
𝑚
ÿ

𝑗“1

𝑎 ¨ 𝑓𝑗p𝑥q for all 𝑥 P 𝒳𝑓 . (A.44)

Then let 𝑓 1p𝑥q “
ř𝑚

𝑗“1 𝑎 ¨𝑓𝑗p𝑥q´𝑓p𝑥q for all 𝑥, and let t𝑋1, . . . , 𝑋𝑁u „ PoisProcp𝑛 ¨𝑓q

and t𝑋 1
1, . . . , 𝑋

1
𝑁 1u „ PoisProcp𝑛 ¨ 𝑓 1q. Then t𝑋1, . . . , 𝑋𝑛, 𝑋

1
1, . . . , 𝑋

1
𝑁 1u has the same

distribution as
Ť𝑚

𝑗“1t𝑋
p𝑗q

1 , . . . , 𝑋
p𝑗q

𝑁p𝑗qu by the properties of the Poisson process. But

this means that

TSPΠ

ˆ 𝑚
ď

𝑗“1

t𝑋
p𝑗q

1 , . . . , 𝑋
p𝑗q

𝑁p𝑗qu

˙

“ 𝑂p𝑛1´ 1
𝛾 q (A.45)

TSPΠp𝑋1, . . . , 𝑋𝑁q “ 𝑂p𝑛1´ 1
𝛾 q (A.46)

which, by Lemma 40 then implies

TSPΠp𝑋1, . . . , 𝑋𝑛q “ 𝑂p𝑛1´ 1
𝛾 q . (A.47)

Since this holds for all 𝑓 satisfying Assumption 5, we are done.
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A.2 The TSP, Complexity, and Approximation

As already discussed in the introduction, the TSP is an extremely important problem

in a number of fields, with a rich history and enormous number of applications. In

the original formulation, a traveling salesman needs to visit a number of cities, in any

order; given the distances (or costs) of traveling between pairs of cities, modeled as a

weighted graph, we want to compute how quickly (or cheaply) he can accomplish this.

The question of computation complexity is: how quickly can this be computed? If it

is too difficult to compute, can an approximate value be computed in a reasonable

time instead?

To start, we must first clearly define the notions of complexity and approximation

we are working with. While we assume the reader is familiar with the basic complexity

theory notions discussed here, in particular the Nondeterministic Polynomial (NP)

class of problems, we will briefly outline the relevant notions.

A.2.1 Complexity Basics

Here we cover some basic notions needed to discuss complexity and approximation.

Problems and Instances A computational problem is modeled as a general ques-

tion which admits different instances. For example, the classic TSP is to find the

shortest tour through all the nodes of a (connected) undirected graph, and any spe-

cific connected graph 𝐺 describes an instance of the problem. The complexity of a

problem is the relationship between the length of description (typically in bits) needed

to specify the instance and the computation time and/or space required to determine

the answer. We will generally denote an instance of a problem with the letter 𝐴.

Decision vs Optimization Problems A problem is a decision problem if the

objective is to determine the truth or falsity of some proposition about any given

instance 𝐴 (a yes or no question): for example, in the classic SAT problem you are

given a boolean formula (the instance) and asked to determine whether some setting

of the variables would make the formula true. We contrast that with an optimization
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problem, where the objective is to set problem-defined variables to minimize some

objective function under constraints defined by 𝐴: for example, in the Linear Pro-

gramming problem (standard form) the instance is a matrix 𝐴 P R𝑚ˆ𝑛 and vectors

𝑏 P R𝑚 and 𝑐 P R𝑛 (so 𝐴 “ p𝐴, 𝑏, 𝑐q), and you are asked to find the minimum value

𝑐J𝑥 can take while 𝑥 P R𝑛 (the variables) satisfy 𝐴𝑥 “ 𝑏 and 𝑥 ě 0 (if no 𝑥 satisfies

this then the value of the problem is regarded as infinite).

For a generic optimization problem, we denote the value of instance 𝐴 as Optp𝐴q.

Note that the TSP is an optimization problem (where the “variables” are just a

description of the tour, the constraint is to visit each target, and the objective function

is the length of the tour); however, since its our problem of interest, we will denote

the shortest tour length on instance 𝐴 as TSPp𝐴q “ Optp𝐴q. We note that we only

ask for the optimal value here, but often in practice it is also necessary to show how

that optimal value is achieve (for instance, what to set the variables to).

Nonoptimal Algorithms for Optimization Problems Furthermore, in opti-

mization problems one also has the notion of a feasible solution which may or may

not be optimal, where the variables are set so the constraints are satisfied but the

objective may not take its minimum possible value – e.g. in the TSP, any tour that

visits all the targets is a feasible solution, even though it may be much longer than

necessary – and we may have algorithms for an optimization problem which don’t nec-

essarily return the optimal value. For a generic algorithm ALG and instance 𝐴, we

denote the value returned as ALGp𝐴q. Note that by definition, ALGp𝐴q ě Optp𝐴q;

we say that ALG provides an exact solution to the problem if, for all instances 𝐴, it

is guaranteed that ALGp𝐴q “ Optp𝐴q.

The reason we want to study algorithms which do not provide exact solutions to

an optimization problem is that it might be the case that the best value Optp𝐴q is

very time-consuming to compute, whereas ALGp𝐴q for a well-constructed algorithm

might be both a good approximation of Optp𝐴q and significantly easier to compute.

Remark 28. Optimization problems can also have infeasible instances, where the

constraints can never be satisfied (e.g. in the TSP on a disconnected graph 𝐺 the agent
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cannot visit all the targets). In this work we assume all instances of our problems are

feasible (for the DSTSP, Assumption 4 guarantees this).

Decision Versions of Optimization Problems While decision and optimization

problems are fundamentally different, we can construct a decision version of an opti-

mization problem as follows: a threshold 𝜏 can be added to an optimization problem

to yield the decision problem “given p𝐴, 𝜏q, is Optp𝐴q ď 𝜏?”; an algorithm for this

in turn can (usually) be used to solve the original optimization problem via binary

search, which is typically very efficient.

A.2.2 NP and Reductions

We now consider the well-known complexity class NP and the notion of reduction.

In this (sub)section we deal only with decision problems, i.e. an instance 𝐴 evaluates

either to true or false, and it is our job to determine which it is. Given a problem

𝐿, we denote the truth-value of instance 𝐴 under 𝐿 as VAL𝐿p𝐴q, and we denote the

size of instance 𝐴 as 𝑛p𝐴q (usually determined by the number of bits needed to fully

describe 𝐴).

A computational problem 𝐿 is usually considered “tractable” or “easy” if VAL𝐿p𝐴q

can be evaluated in time polynomial in 𝑛p𝐴q (‘time’ being synonymous with the

number of elementary computations needed); if an algorithm solves the problem in

polynomial time we say it is efficient. The class of such problems is denoted P (for

‘polynomial’).

Remark 29. ‘Tractable’ problems may be exceptionally costly to compute for realistic

instances – for instance, if VAL𝐿p𝐴q can be computed in 101000𝑛p𝐴q1000 time, it is

“tractable” even though for essentially any instance and any computer it would take

eons to finish the computation.

A computational problem 𝐿 can be reduced to problem 𝐿1 (in polynomial time)

if there is a polynomial-time algorithm which, for any instance 𝐴 of 𝐿 produces an
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instance 𝐴1 of 𝐿1 such that

VAL𝐿1p𝐴1
q “ VAL𝐿p𝐴q (A.48)

Note that this means if we have a black-box way of solving 𝐿1, we can use it to solve

instances of 𝐿 as well. In general, a polynomial-time reduction from 𝐿 to 𝐿1 shows

that solving 𝐿 cannot be harder than solving 𝐿1 (however, 𝐿1 can still be harder to

solve than 𝐿). Reductions can be chained together, i.e. combining a reduction from

𝐿 to 𝐿1 with a reduction from 𝐿1 to 𝐿2 produces a reduction from 𝐿 to 𝐿2.

The notion of (polynomial-time) reduction can then be used to define and analyze

broader ‘complexity classes’ (of which P is an example). A problem 𝐿 is Hard for a

given class if all problems in that class can be reduced to 𝐿; it is Complete in that

class if it both belongs in the class and is Hard.

The crucial class of Nondeterministic Polynomial (NP) problems consists of prob-

lems 𝐿 which admit an efficiently-verifiable certificate for all 𝐴 such that VAL𝐿p𝐴q “

true; that is, if VAL𝐿p𝐴q “ true, there is some object 𝜃 (for instance, if 𝐴 is a

SAT instance, 𝜃 may be the settings of the variables which satisfy 𝐴) such that given

𝐴 and 𝜃, it only takes polynomial time to verify that VAL𝐿p𝐴q “ true. Note that

actually finding 𝜃 may be hard, and hence evaluating VAL𝐿p𝐴q without being given

𝜃 may still be hard, and that if VAL𝐿p𝐴q “ false there may be no way to efficiently

verify even with extra knowledge.

Problems that belong in NP commonly ask for the existence of some object, for

instance the existence of a solution to a boolean formula: given a viable solution it is

easy to check that it works, but there may be no easy way to check that an unsolvable

boolean formula does not have a solution. The TSP decision problem is also in NP:

if there exists a tour of length ď 𝜏 on instance 𝐴, then it can be easily verified. It

is also known that most variants of the TSP (such as the classic TSP on undirected

graphs, or the Euclidean TSP limited to integer targets in 2 dimensions) and their

decision variants are NP-Hard. In general we will mildly abuse the terminology and,

given a variant of the TSP, write that it is “NP-Complete” or “NP-Hard” to mean its
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decision variant is NP-Complete or NP-Hard.

A.2.3 Different Types of Approximation

Because the standard TSP is known to be NP-complete [23], even in extremely con-

strained settings (such as targets only on Z2 with Euclidean distances), works on TSP

algorithms generally focus on approximation: given a TSP instance, the objective is

to compute a path through all the targets which, while not necessarily the exact

shortest path, approximates its length. However, there are a few different notions of

approximation depending on the exact problem being discussed.

Definition 34. We define our notions of approximation as follows:

1. Guaranteed Approximation: The algorithm ALG achieves a guaran-

teed approximation to factor 𝛼 if, for any instance 𝐴, it is guaranteed that

ALGp𝐴q ď 𝛼Optp𝐴q. 𝛼 is usually a constant but can also be a function

of 𝑛p𝐴q, e.g. a log-factor approximation algorithm satisfies ALGp𝐴q ď

𝑐 logp𝑛p𝐴qqOptp𝐴q for some constant 𝑐 ą 0.

2. Approximation in Expectation: For some random procedure of gener-

ating 𝐴 (e.g. uniform random 𝐴 of complexity 𝑛p𝐴q “ 𝑛), the algorithm

ALG achieves approximation in expectation to factor 𝛼 if

ErALGp𝐴qs ď 𝛼ErOptp𝐴qs (A.49)

3. Approximation with Very High Probability: For some random proce-

dure of generating 𝐴, the algorithm ALG achieves approximation with very

high probability to factor 𝛼 if there are 𝑐1, 𝑐2, 𝑐3 ą 0 such that

PrALGp𝐴q ď 𝛼Optp𝐴qs ě 1´ 𝑐1𝑒
´𝑐2𝑛p𝐴q𝑐3 (A.50)

4. Adversarial Approximation: The algorithm ALG achieves adversarial
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approximation to factor 𝛼 if

sup
𝐴P𝒜𝑛

ALGp𝐴q ď 𝛼 sup
𝐴P𝒜𝑛

Optp𝐴q (A.51)

where 𝒜𝑛 “ t𝐴 : 𝑛p𝐴q ď 𝑛u.

Here 𝛼 ě 1 by definition (or else ALG would be better than Opt, which is by definition

impossible).

Guaranteed approximation is the most common notion of approximation algo-

rithm (it is sometimes referred to as worst-case approximation to distinguish it from

average-case, but we will not use that term here to avoid confusion with adversarial

approximation), and it is the most powerful in the sense that if it holds, it im-

plies the other three. Guaranteed approximation algorithms for the classic (discrete,

non-dynamic) TSP are well-studied, in particular the question of the smallest fac-

tor 𝛼 achievable: the well-known Christofides approximation algorithm [24] achieves

𝛼 “ 3{2, and more advanced algorithms can reduce it further. However, as noted

in Section 1.1 these algorithms do not apply to the Dynamic TSP due to the lack of

a well-defined notion of ‘distance’ between target points.

Our main DSTSP results (Theorem 1) show that our algorithms achieve approx-

imation with very high probability (type 3 from Definition 34 above), which in turn

shows that they also achieve approximation in expectation (type 2 from Definition 34

above, and see Corollary 1). A significant open problem remains over whether there

is an algorithm capable of achieving guaranteed approximation (type 1 from Defi-

nition 34 above) for the general Dynamic TSP, as there is for the TSP on graphs.

Finally, Theorem 2 shows that in the symmetric case our Symmetric Hierarchical

Collection Problem algorithm achieves adversarial approximation (type 4 from Defi-

nition 34 above, see Chapter 6).

We remark that we do not originate these notions: in particular, previous works

on the Dynamic TSP or Euclidean TSP have used notions 2-4 [13, 14, 16], while 1 is

the standard notion of approximation algorithms (and is generally the one used when

discussing the TSP non-dynamic settings).
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Appendix B

Nonsymmetric Ball-Box Conjecture

In this appendix we study the fundamental differences between symmetric (or drift-

less) and nonsymmetric (or drifting) control-affine dynamics. In particular, we con-

sider how to formulate and prove an analogue to the Uniform Ball-Box Theorem ([19],

Theorem 2.4) which holds for nonsymmetric dynamics. The Uniform Ball-Box The-

orem shows how to inscribe a box in and circumscribe a box around the reachable

set (or ball) of a given set of dynamics at any sufficiently small scale 𝜀; it is often

used to show that even at very small scales the vehicle can move in any direction

through clever use of commutators of its control vector fields. While this property

doesn’t hold for nonsymmetric vehicles (typically the drift will move the vehicle for-

ward faster than it can produce many other motions), for our purposees we want to

use it to do two things:

• Show that the reachable set has a certain volume, which governs the maneuver-

ability of the vehicle at small scales, and consequently yields the lower bound

as proved in Chapter 3.

• Allow the inscribed boxes to be used to produce recursive tilings (the Hierar-

chical Cell Structures used in Chapter 4 and Chapter 5).

The goal is to extend this to nonsymmetric dynamics.

Recall that our dynamics are control-affine (Definition 2) if there are smooth vector
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fields ℎ0, ℎ1, . . . , ℎ𝑚 on 𝒬 such that the control law can be expressed as

9𝑞 “ ℎ0p𝑞q `
𝑚
ÿ

𝑗“1

ℎ𝑗p𝑞q𝑢𝑗 (B.1)

for control 𝑢 “ p𝑢1, . . . , 𝑗𝑚q in some 𝒰 Ď R𝑚, and that 𝒰 satisfies the following

properties:

• 𝒰 contains 0 “ p0, . . . , 0q in its interior (and is thus full-dimensional in R𝑚);

• 𝒰 is convex;

• 𝒰 is bounded and closed;

• 𝒰 is radially symmetric, i.e. 𝑢 P 𝒰 ðñ ´𝑢 P 𝒰 .

We note that the last of these conditions implies that if ℎ0 is zero everywhere (i.e.

the dynamics are driftless) then any motion can be reversed by negating the inputs,

making the dynamics symmetric. Thus, in this chapter, we use driftless as a synonym

for symmetric, and drifting as a synonym for nonsymmetric.

Remark 30. As the Nonsymmetric Uniform Ball-Box Conjecture remains unproven,

this section is intended as an exploration and discussion of the topic. Some results

are stated and proved as potential partial steps to a future proof.

B.1 Notation

Because this section deals in detail with a topic which is largely absorbed into the

assumptions or only dealt with at a high level in the rest of this work, and because

we don’t require certain concepts (notably the target distribution 𝑓 or the number of

targets 𝑛) we use different notation intended to clarify the distinction between vector

fields and functions over manifolds. Specifically:

• we let 𝑛 denote the dimension of 𝒬;
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• we use capital letters such as 𝑉 or 𝑊 to represent vector fields, generally of the

control vector fields (denoted ℎ𝑗 elsewhere) or their Lie brackets;

• 𝑓 to denote functions over the manifold (either to the real numbers or other

spaces).

A control-affine system Π is specified as a sequence of control vector fields followed

by control set, where the first vector field is the drift i.e. Π “ p𝑉0, 𝑉1, . . . , 𝑉𝑚;𝒰q.
Note that if we want to symmetrize a control-affine system Π “ p𝑉0, 𝑉1, . . . , 𝑉𝑚;𝒰q,
we do so by adding a control to the drift term, which in this notation means adding

a zero vector field as the new drift and adding a dimension to the control set, which

we define as

Π “ p𝑉0, 𝑉1, . . . , 𝑉𝑚;𝒰q ùñ ÐÑ
Π :“ p0, 𝑉0, 𝑉1, . . . , 𝑉𝑚; r´1, 1s ˆ 𝒰q . (B.2)

We also refer to the reachable sets as 𝑅Πp𝑞, 𝜀q where Π are the dynamics, 𝑞 is the

center, and 𝜀 is the radius.

All notation in this section is specified within.

B.2 Lie Brackets

We begin with a description of Lie brackets and some of their important properties.

This section deals with definitions from driftless systems – even though the drift

vector field 𝑉0 is present it will not be treated as distinct.

Let 𝑉 be a smooth vector field. Then for any 𝑓 (either a function to real numbers

or another vector field or a flow, etc), we can differentiate 𝑓 along 𝑉 . We denote this

as 𝑉 𝑓 (or 𝑓 Ñ 𝑉 𝑓 being the transformation).

Given a vector field 𝑉 , we denote its flow (from 𝑞 P 𝒬) by 𝜙𝑡
𝑉 p𝑞q : R Ñ 𝒬; this

denotes the point in 𝒬 reached by integrating along 𝑉 for 𝑡 time, i.e. it satisfies

𝑑

𝑑𝑡
𝜙𝑡
𝑉 p𝑞q “ 𝑉 p𝜙𝑡

𝑉 p𝑞qq (B.3)
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at all 𝑡 and 𝑞, and 𝜙0
𝑉 p𝑞q “ 𝑞 for all 𝑞 P 𝒬.

Definition 35. For smooth vector fields 𝑉,𝑊 on 𝒬, their Lie bracket r𝑉,𝑊 s is

a vector field on 𝒬 given by either of the following (equivalent) definitions:

(a) r𝑉,𝑊 s is the unique vector field satisfying r𝑉,𝑊 s𝑓 “ 𝑉𝑊𝑓 ´𝑊𝑉 𝑓 for all 𝑓 .

(b) For any 𝑞 P 𝒬,

r𝑉,𝑊 sp𝑞q “
𝑑

𝑑𝑡

ˇ

ˇ

ˇ

𝑡“0`

`

𝜙
?
𝑡

𝑉 ˝ 𝜙
?
𝑡

𝑊 ˝ 𝜙´
?
𝑡

𝑉 ˝ 𝜙´
?
𝑡

𝑊 p𝑞q
˘

(B.4)

Proposition 24. Lie brackets satisfy the following properties:

(a) Linearity in both arguments: for (finite) sets of vector fields t𝑉𝑖u, t𝑊𝑗u and

coefficients t𝑎𝑖u, t𝑏𝑗u,

”

ÿ

𝑖

𝑎𝑖𝑉𝑖,
ÿ

𝑗

𝑏𝑗𝑊𝑗

ı

“
ÿ

𝑖,𝑗

𝑎𝑖𝑏𝑗r𝑉𝑖,𝑊𝑗s (B.5)

(b) Skew symmetry: r𝑉,𝑊 s “ ´r𝑊,𝑉 s for all vector fields 𝑉,𝑊 .

(c) Jacobi identity: r𝑉1, r𝑉2, 𝑉3ss ` r𝑉2, r𝑉3, 𝑉1ss ` r𝑉3, r𝑉1, 𝑉2ss “ 0

Since Lie brackets are themselves vector fields, we can take Lie brackets of Lie brack-

ets, and so forth:

Definition 36. Given a set of vector fields 𝒱1 “ t𝑉0, 𝑉1, . . . , 𝑉𝑚u the set of order-𝑠

iterated Lie brackets is defined inductively by

𝒱𝑠`1 :“ 𝒱𝑠
Y tr𝑊,𝑉𝑖s : 𝑊 P 𝒱𝑠, 𝑉𝑖 P 𝒱1

u (B.6)

Since 𝒱𝑠 at 𝑞 is a set of vectors in 𝑇𝑞𝒬, we can define △𝑠p𝑞q “ spanp𝒱𝑠p𝑞qq Ď 𝑇𝑞𝒬.

Chow’s condition[3] (also known as the Hörmander condition) holds if for all
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𝑞 P 𝒬, the degree of nonholonomy at 𝑞

𝑟p𝑞q :“ mint𝑠 : △𝑠
p𝑞q “ 𝑇𝑞𝒬u ă 8 (B.7)

i.e. if the iterated Lie brackets span the whole tangent space.a The Lie algebra

of t𝑉0, 𝑉1, . . . , 𝑉𝑚u is

Liep𝑉0, 𝑉1, . . . , 𝑉𝑚q :“
ď

𝑗ě1

△𝑠 (B.8)

and is smallest linear subspace of 𝑉 𝐹 p𝒬q (the space of smooth vector fields on

𝒬) containing 𝑉0, 𝑉1, . . . , 𝑉𝑚 and invariant under Lie bracketing.

We also define 𝑛𝑠p𝑞q “ dimp△𝑠q (where dimp△0p𝑞qq “ 0 at all 𝑞 by conven-

tion), and the vector 𝑛p𝑞q “ p𝑛1p𝑞q, . . . , 𝑛𝑟p𝑞qp𝑞qq is called the growth vector at 𝑞.

𝑞 is regular if it has a neighborhood in which 𝑛 is constant, and control system

Π is equiregular if 𝒬 is connected and all 𝑞 are regular. This implies that 𝑛 is

constant over 𝒬, and in particular that the degree of nonholonomy 𝑟 :“ 𝑟p𝑞q is

the same everywhere.
aGiven that 𝑉0 represents the drift term, the strong Hörmander condition holds if the iter-

ated Lie brackets of t𝑉1, . . . , 𝑉𝑚u span 𝑇𝑞𝒬. While used in various works concerning drifting
systems[?], many important systems (for instance the Dubins car) do not satisfy it.

While all the definitions above depend on 𝑞, for simplicity (and because for equiregular

systems each 𝑛𝑠 is a constant) when a 𝑞 is fixed we will usually drop it and write e.g.

△𝑠 :“ △𝑠p𝑞q.

Each iterated Lie bracket can be written out in similar fashion to Definition 35(b):

the derivative at 𝑡 “ 0 of a sequence of movements (either forward or backward) along

the component vector fields. We will need this representation in order to discuss the

behavior of Lie brackets under drift.
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B.3 Privileged Coordinates and Ball-Box Theorem

While the Ball-Box Theorem can be intuitively stated as relating to the inclusion of

sub-Riemannian balls inside boxes and vice versa, formalizing it is tricky. One im-

mediate problem is defining a rigorous notion of a ‘box’ in a manifold. This is done,

within a neighborhood of a point of interest 𝑞 P 𝒬, by setting up a coordinate map:

a ‘box’ is then the pre-image of a Euclidean box under the coordinate map. How-

ever, not every coordinate map will have the needed properties. Instead, privileged

coordinates are generally used:

Definition 37. Given a driftless equiregular control systema

Π˚
“ p0, 𝑉0, 𝑉1, . . . 𝑉𝑚; r´1, 1s

𝑚`1
q (B.9)

define the weights 𝑤𝑗 for 𝑗 “ 1, 2, . . . , 𝑛 as

𝑤𝑗 “ 𝑠 ðñ 𝑛𝑠´1 ă 𝑗 ď 𝑛𝑠 (B.10)

i.e. the number of weights of value 𝑠 is the number of dimensions added to the

span when iterating Lie brackets from 𝒱𝑠´1 to 𝒱𝑠. We also define the order of a

function 𝑔 : 𝒬Ñ R at 𝑞 P 𝒬 (under Π) as

ord𝑞p𝑔q :“ sup
`

𝜃 P R : 𝑔p𝑞1
q “ 𝑂p𝑑Π˚p𝑞, 𝑞1

q
𝜃
q
˘

(B.11)

Given 𝑞 P 𝒬, a system of privileged coordinates at 𝑞 is a local coordinate map

𝑧 : 𝒬Ñ R𝑛 (where 𝑧p𝑞1q “ p𝑧1p𝑞
1q, . . . , 𝑧𝑛p𝑞

1qq) in a neighborhood of 𝑞 such that

ord𝑞p𝑧𝑗q “ 𝑤𝑗 for all 𝑗 (B.12)
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We also define the scale-𝜀 box at 𝑞 to be

𝑃 𝜀
𝑞 :“ 𝑧´1

´

𝑛
ź

𝑗“1

r´𝜀, 𝜀s
¯

Ď 𝒬 (B.13)

To be precise,
ś𝑛

𝑗“1r´𝜀, 𝜀s Ď R𝑛 is the Euclidean box parallel to the privileged

coordinates, centered at 0 and of width 2𝜀, and 𝑃 𝜀
𝑞 is the preimage of this box.

Because of the nature of privileged coordinates, the preimage will have size Θp𝜀𝑤𝑗q

in the direction of 𝑧𝑗.
aWe use this ‘symmetrized’ version of Π so we can employ 𝑉0, 𝑉1, . . . , 𝑉𝑚 in the usual manner,

and so 𝑑Π˚ is a metric.

Since 𝒬 is a manifold, as 𝜀 Ñ 0, the volume of 𝑐𝑃 𝜀
𝑞 in 𝒬 approaches p2𝜀q𝛾 where

𝛾 :“
ř𝑛

𝑗“1𝑤𝑗, i.e. the volume of the Euclidean box representing it. The privileged

coordinates obey an important rule:

Proposition 25. For a system of privileged coordinates p𝑧1, . . . , 𝑧𝑛q at 𝑞,

𝑑𝑧𝑗p△𝑤𝑗p𝑞qq ‰ 0 and 𝑑𝑧𝑗p△𝑤𝑗´1
p𝑞qq “ 0 for 𝑗 “ 1, . . . , 𝑛 (B.14)

This is referred to as the coordinates being linearly adapted.

We now re-state the Ball-Box Theorem (for driftless systems) in the notation of

this appendix:

Uniform Ball-Box Theorem. Let Π “ Πp0, 𝑉0, 𝑉1, . . . , 𝑉𝑚; 𝒰q be a driftless

control-affine system satisfying Meta-Assumption 1, where t𝑉0, 𝑉1, . . . , 𝑉𝑚u are

equiregular. Then is a set of privileged coordinates and constants 0 ă 𝑐 ă 𝐶 and

𝜀˚ ą 0 such that for all 0 ă 𝜀 ă 𝜀˚,

𝑃 𝑐𝜀
𝑞 Ď 𝑅Πp𝑞, 𝜀q Ď 𝑃𝐶𝜀

𝑞 (B.15)

The change from r´1, 1s𝑚`1 to 𝒰 is not consequential, since 𝛿r´1, 1s𝑚`1 Ď 𝒰 Ď

∆r´1, 1s𝑚`1 for some constants 0 ă 𝛿 ă ∆; therefore, 𝑑Π and 𝑑Π˚ (from Definition 37)

227



differ by no more than a ∆{𝛿 constant factor, so the growth vector is unaffected and

the constants 𝑐, 𝐶 change by at most a ∆{𝛿 factor.

As will be discussed later in greater depth, it is important to note that the proper

driftless ‘equivalent’ to a drifting control system Π “ p𝑉0, 𝑉1, . . . , 𝑉𝑚; 𝒰q (i.e. the

driftless system with which it shares important properties like size of the reachable

set) is not p0, 𝑉1, . . . , 𝑉𝑚; 𝒰q but rather

ÐÑ
Π :“ p0, 𝑉0, 𝑉1, . . . , 𝑉𝑚; r´1, 1s ˆ 𝒰q (B.16)

Instead of removing the drift term (which would prevent a Dubins car from even

moving, for example), we add a control to it.

Finally, we state a slightly more general version of the Nonsymmetric Uniform

Ball-Box Conjecture in the notation of this appendix:

Conjecture 1. Let Π “ Πp𝑉0, 𝑉1, . . . , 𝑉𝑚; 𝒰q be a control-affine system where

𝑉0, . . . , 𝑉𝑚 satisfy Meta-Assumption 1. Then there is set of privileged coordinates

such that for any 0 ă 𝜆 ă 1 there are constants 0 ă 𝑐𝜆 ă 𝐶𝜆 such that for every

sufficiently small 𝜀 ą 0,

𝑃 𝑐𝜆𝜀

𝜙𝜆𝜀
0 p𝑞q

Ď 𝑅Πp𝑞, 𝜀q Ď 𝑃𝐶𝜆𝜀

𝜙𝜆𝜀
0 p𝑞q

(B.17)

This differs from the original because it permits the center to be at any 𝜆𝜀 down the

flow of 𝑉0 from 𝑞

B.4 Lie Brackets Under Drift

In order to extend the Unigotm Ball-Box Theorem to control-affine dynamics with

drift, we extend the notion of Lie brackets; this extension is intended as an exploration

of how the Nonsymmetric Uniform Ball-Box Conjecture may be proved in the future.

There are two main challenges to doing so: (i) Lie brackets are commonly thought of

as the limit to a commutator of 𝑉𝑖, 𝑉𝑗, and therefore are vectors in 𝑇𝑞𝒬, but under

the influence of drift the end point will be more the result of the drift along 𝑉0 than
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the motions of the commutator, which must then be somehow subtracted out; (ii)

since many systems we are interested in require the drift vector field 𝑉0 in order for

the Lie brackets to span the space, we want to include 𝑉0 in the Lie brackets, despite

the system’s inability to directly control movement along it.

Definition 38. Under the coordinate chart as defined above, given smooth vector

fields 𝑉𝑖, 𝑉𝑗, the drifting Lie bracket (which drifts along 𝑉0) is

r𝑉𝑖, 𝑉𝑗s˚ “
𝑑

𝑑𝑡

ˇ

ˇ

ˇ

𝑡“0

´

𝜙
?
𝑡

0`𝑖 ˝ 𝜙
?
𝑡

0`𝑗 ˝ 𝜙
?
𝑡

0´𝑖 ˝ 𝜙
?
𝑡

0´𝑗 ˝ 𝜙
4

?
𝑡

´0

¯

(B.18)

This corresponds to the usual definition of the Lie bracket, but each movement is

accompanied by drift (as it must be); to compensate, we pull the starting point back

by the corresponding amount along the drift, so that it gives a comparison of the

motion with a comparison of doing nothing and following the drift alone.

Remark 31. As mentioned, we want to be able to use 𝑉0 itself as a term in the

drifting Lie brackets, and to do this we must be able to write Definition 38 as a series

of valid movements (except for the initial pullback term). Note that every term is of

the form 𝜙𝜏
0`𝑖 or 𝜙𝜏

0´𝑖, for an appropriate 𝑖, 𝜏 . If 𝑖 “ 0, then 𝜙𝜏
0`0 (moving twice as

fast along 𝑉0) and 𝜙𝜏
0´0 (staying stationary) are not valid movements – but we can

rewrite 𝜙𝜏
0`0 “ 𝜙2𝜏

0 , and 𝜙𝜏
0´0 can be removed entirely since it is the identity function.

Thus, even with 𝑉0 as a term, the drifting Lie bracket corresponds to a sequence of

valid movements.

We now consider how the drifting Lie bracket compares to normal Lie brackets:

Lemma 41. r𝑉𝑖, 𝑉𝑗s˚ “ r𝑉𝑖, 𝑉𝑗s ` 2r𝑉𝑖, 𝑉0s ´ 2r𝑉0, 𝑉𝑗s for all 𝑖, 𝑗.

Proof. We prove this using Definition 35(a), i.e. that for every smooth 𝑓 and 𝑉,𝑊 ,

r𝑉,𝑊 s𝑓 “ 𝑉𝑊𝑓 ´𝑊𝑉 𝑓 (B.19)

We define a function

𝛽p𝑡q :“ 𝜙4𝑡
´0 ˝ 𝜙

𝑡
0`𝑖 ˝ 𝜙

𝑡
0`𝑗 ˝ 𝜙

𝑡
0´𝑖 ˝ 𝜙

𝑡
0´𝑗p𝑞q (B.20)
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We then define 𝛼p𝑡q “ 𝛽p
?
𝑡q , so that

r𝑉𝑖, 𝑉𝑗s˚𝑓p𝑞q “ lim
𝑡Ñ0

1

𝑡

`

𝑓p𝛼p𝑡qq ´ 𝑓p𝑞q
˘

(B.21)

Now we let 𝑡 “ 𝑠2, so we can re-write this limit as 𝑠Ñ 0:

r𝑉𝑖, 𝑉𝑗s˚𝑓p𝑞q “ lim
𝑠Ñ0

1

𝑠2
`

𝑓p𝛽p𝑠qq ´ 𝑓p𝑞q
˘

(B.22)

We now apply L’Hopital’s rule, taking the first derivative of both 𝑓p𝛽p𝑠qq ´ 𝑓p𝑞q on

top and 𝑠2 on the bottom (w.r.t. 𝑠), getting

r𝑉𝑖, 𝑉𝑗s˚𝑓p𝑞q “ lim
𝑠Ñ0

1

2𝑠

𝑑

𝑑𝜏

ˇ

ˇ

ˇ

𝜏“𝑠
𝑓p𝛽p𝜏qq “ lim

𝑠Ñ0

p𝑓 ˝ 𝛽q1p𝑠q

2𝑠
(B.23)

(switching to Newton notation for derivatives, for clarity).

We now want to show that lim𝑠Ñ0p𝑓 ˝ 𝛽q
1p𝑠q goes to 0 (the zero vector in the

coordinate chart) thus allowing us to apply L’Hopital’s rule again. This happens

because of the chain rule, where

lim
𝑠Ñ0
p𝑓 ˝ 𝛽q1p𝑠q “ lim

𝑠Ñ0
𝛽1
p𝑠q𝑓 “ 𝛽1

p0q𝑓 (B.24)

(the derivative of 𝑓 along 𝛽1p0q). 𝛽1p0q can also be analyzed with the chain rule. To

simplify, we define

𝐻p𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5q “ 𝜙𝑥1
´0 ˝ 𝜙

𝑥2
0`𝑖 ˝ 𝜙

𝑥3
0`𝑗 ˝ 𝜙

𝑥4
0´𝑖 ˝ 𝜙

𝑥5
0´𝑗p𝑞q (B.25)

Then we can re-write (where 𝑥1 “ 4𝑡 and 𝑥2 “ 𝑥3 “ 𝑥4 “ 𝑥5 “ 𝑡)

𝛽1
p0q “

𝑑

𝑑𝑡

ˇ

ˇ

ˇ

𝑡“0
𝐻p𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5q (B.26)

“

5
ÿ

𝑘“1

B𝐻

B𝑥𝑘

𝑑𝑥𝑘
𝑑𝑡

(B.27)

“ ´4𝑉0 ` p𝑉0 ` 𝑉𝑖q ` p𝑉0 ` 𝑉𝑗q ` p𝑉0 ´ 𝑉𝑖q ` p𝑉0 ´ 𝑉𝑗q “ 0 (B.28)
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Thus we can apply L’Hopital again to get

r𝑉𝑖, 𝑉𝑗s˚𝑓p𝑞q “ lim
𝑠Ñ0

p𝑓 ˝ 𝛽q1p𝑠q

2𝑠
“
p𝑓 ˝ 𝛽q2p0q

2
(B.29)

Using the function𝐻 from above, we define𝐺p𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5q “ p𝑓˝𝐻qp𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5q,

and let 𝑔p𝑡q “ 𝐺p4𝑡, 𝑡, 𝑡, 𝑡, 𝑡q so that p𝑓 ˝ 𝛽q2p𝑡q “ 𝑔2p𝑡q. Then:

𝑔2
p0q “

5
ÿ

𝑘,ℓ“1

B𝑥𝑘
B𝑡

ˇ

ˇ

ˇ

𝑡“0

B𝑥ℓ
B𝑡

ˇ

ˇ

ˇ

𝑡“0

B2𝐺

B𝑥𝑘B𝑥ℓ

ˇ

ˇ

ˇ

𝑥1,𝑥2,𝑥3,𝑥4,𝑥5“0
(B.30)

Note that at 𝑥1 “ 𝑥2 “ 𝑥3 “ 𝑥4 “ 𝑥5 “ 0, the function 𝐺 is just 𝑓p𝑞q (and all the

flow components are the identity function). Thus, taking a partial derivative of 𝐺 at

this point is the same as taking the derivative of the corresponding flow term, and so

5
ÿ

𝑘,ℓ“1

B𝑥𝑘
B𝑡

ˇ

ˇ

ˇ

𝑡“0

B𝑥ℓ
B𝑡

ˇ

ˇ

ˇ

𝑡“0

B2𝐺

B𝑥𝑘B𝑥ℓ

ˇ

ˇ

ˇ

𝑥1,𝑥2,𝑥3,𝑥4,𝑥5“0
(B.31)

“ 16p´𝑉0qp´𝑉0q𝑓 ` 4p´𝑉0qp𝑉0 ` 𝑉𝑖q𝑓 ` 4p´𝑉0qp𝑉0 ` 𝑉𝑗q𝑓 (B.32)

` 4p´𝑉0qp𝑉0 ´ 𝑉𝑖q𝑓 ` 4p´𝑉0qp𝑉0 ´ 𝑉𝑗q𝑓 (B.33)

` 4p´𝑉0qp𝑉0 ` 𝑉𝑖q𝑓 ` p𝑉0 ` 𝑉𝑖qp𝑉0 ` 𝑉𝑖q𝑓 ` p𝑉0 ` 𝑉𝑖qp𝑉0 ` 𝑉𝑗q𝑓 (B.34)

` p𝑉0 ` 𝑉𝑖qp𝑉0 ´ 𝑉𝑖q𝑓 ` p𝑉0 ` 𝑉𝑖qp𝑉0 ´ 𝑉𝑗q𝑓 (B.35)

` 4p´𝑉0qp𝑉0 ` 𝑉𝑗q𝑓 ` p𝑉0 ` 𝑉𝑖qp𝑉0 ` 𝑉𝑗q𝑓 ` p𝑉0 ` 𝑉𝑗qp𝑉0 ` 𝑉𝑗q𝑓 (B.36)

` p𝑉0 ` 𝑉𝑗qp𝑉0 ´ 𝑉𝑖q𝑓 ` p𝑉0 ` 𝑉𝑗qp𝑉0 ´ 𝑉𝑗q𝑓 (B.37)

` 4p´𝑉0qp𝑉0 ´ 𝑉𝑖q𝑓 ` p𝑉0 ` 𝑉𝑖qp𝑉0 ´ 𝑉𝑖q𝑓 ` p𝑉0 ` 𝑉𝑗qp𝑉0 ´ 𝑉𝑖q𝑓 (B.38)

` p𝑉0 ´ 𝑉𝑖qp𝑉0 ´ 𝑉𝑖q𝑓 ` p𝑉0 ´ 𝑉𝑖qp𝑉0 ´ 𝑉𝑗q𝑓 (B.39)

` 4p´𝑉0qp𝑉0 ´ 𝑉𝑗q𝑓 ` p𝑉0 ` 𝑉𝑖qp𝑉0 ´ 𝑉𝑗q𝑓 ` p𝑉0 ` 𝑉𝑗qp𝑉0 ´ 𝑉𝑗q𝑓 (B.40)

` p𝑉0 ´ 𝑉𝑖qp𝑉0 ´ 𝑉𝑗q𝑓 ` p𝑉0 ´ 𝑉𝑗qp𝑉0 ´ 𝑉𝑗q𝑓 (B.41)

“ ´ 4𝑉0𝑉𝑖𝑓 ` 4𝑉𝑖𝑉0𝑓 ´ 4𝑉0𝑉𝑗𝑓 ` 4𝑉0𝑉𝑗𝑓 ` 2𝑉𝑖𝑉𝑗𝑓 ´ 2𝑉𝑗𝑉𝑖𝑓 (B.42)

The above happens because while deriving along vector fields is not commutative, it

is distributive. The derivation is long and complicated but one can visualize it as
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follows: consider the sequence

´4𝑉0, p𝑉0 ` 𝑉𝑖q, p𝑉0 ` 𝑉𝑗q, p𝑉0 ´ 𝑉𝑖q, p𝑉0 ´ 𝑉𝑗q. (B.43)

Call these terms (in order) 𝑊1,𝑊2,𝑊3,𝑊4,𝑊5; then

B𝑥𝑘
B𝑡

ˇ

ˇ

ˇ

𝑡“0

B𝑥ℓ
B𝑡

ˇ

ˇ

ˇ

𝑡“0

B2𝐺

B𝑥𝑘B𝑥ℓ

ˇ

ˇ

ˇ

𝑥1,𝑥2,𝑥3,𝑥4,𝑥5“0
“

$

’

&

’

%

𝑊𝑘𝑊ℓ𝑓 if 𝑘 ď ℓ

𝑊ℓ𝑊𝑘𝑓 if ℓ ă 𝑘

(B.44)

Note that 𝑘, ℓ are interchangeable (as we would expect) and that the the order that

𝑊𝑘,𝑊ℓ appear in is determined by their order in the sequence. We will consider the

nine possible terms 𝑌 𝑍𝑓 for 𝑌, 𝑍 P t𝑉0, 𝑉𝑖, 𝑉𝑗u separately:

• 𝑉0𝑉0𝑓 has 16 from 𝑊1𝑊1; another 16 from 𝑊𝑘𝑊ℓ and 𝑊ℓ𝑊𝑘 (depending on

whether 𝑘 ď ℓ) for 𝑘, ℓ P t2, 3, 4, 5u; and ´32 from 𝑊1𝑊𝑘 and 𝑊1𝑊ℓ (both

apply) for 𝑘, ℓ P t2, 3, 4, 5u. Thus, the 𝑉0𝑉0𝑓 term cancels completely.

• 𝑉𝑖𝑉𝑖𝑓 has 2 from 𝑘 “ ℓ “ 2 and 𝑘 “ ℓ “ 4, but has ´2 from 𝑘 “ 2, ℓ “ 4 and

𝑘 “ 4, ℓ “ 2, and therefore also cancels completely.

• 𝑉𝑗𝑉𝑗𝑓 is analogous to 𝑉𝑖𝑉𝑖𝑓 , except for 𝑘, ℓ P t3, 5u instead of t2, 4u, and cancels

completely.

• 𝑉0𝑉𝑖𝑓 : by symmetry we can look at the result for 𝑘 ă ℓ, double it (to account

for ℓ ă 𝑘) and add the result for 𝑘 “ ℓ. For 𝑘 ă ℓ, when 𝑘 “ 1, the terms for

ℓ “ 2, 4 cancel each other; for 𝑘 “ 4, 5, there is no ℓ ą 𝑘 which produces any

𝑉0𝑉𝑖𝑓 terms; and for 𝑘 “ 2, 3, only ℓ “ 4 produces the correct term, and we

get ´𝑉0𝑉𝑖𝑓 both times. Thus (doubling to account for 𝑘 ą ℓ as well) we get

´4𝑉0𝑉𝑖𝑓 . For 𝑘 “ ℓ, only 𝑘 “ ℓ “ 2 and 𝑘 “ ℓ “ 4 contain 𝑉0𝑉𝑖𝑓 , and they

cancel out (we get 𝑉0𝑉𝑖𝑓 from 𝑘 “ ℓ “ 2, and ´𝑉0𝑉𝑖𝑓 from 𝑘 “ ℓ “ 4). Thus

the overall result is ´4𝑉0𝑉𝑖𝑓 .

• 𝑉0𝑉𝑗𝑓 : this is analogous to 𝑉0𝑉𝑖𝑓 (but with 𝑘, ℓ P t3, 5u being the terms of

interest rather than 𝑘, ℓ “ t2, 4u) and we get ´4𝑉0𝑉𝑗𝑓 .
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• 𝑉𝑖𝑉0𝑓 : this is analogous to 𝑉0𝑉𝑖𝑓 , but with 𝑘 “ 2 and ℓ “ 3, 4 (and vice versa)

being the outstanding terms, giving 4𝑉𝑖𝑉0𝑓 .

• 𝑉𝑗𝑉0𝑓 : this is analogous to 𝑉𝑖𝑉0𝑓 , but with 𝑘, ℓ P t3, 5u being the terms of

interest (rather than 𝑘, ℓ P t2, 4u), giving 4𝑉𝑗𝑉0𝑓 .

• 𝑉𝑖𝑉𝑗𝑓 : we split it up again into 𝑘 ă ℓ (and double to also capture 𝑘 ą ℓ) and

𝑘 “ ℓ. Since 𝑉𝑖, 𝑉𝑗 never appear in the same 𝑊𝑘, the 𝑘 “ ℓ case doesn’t produce

any 𝑉𝑖𝑉𝑗𝑓 terms. For 𝑘 ă ℓ: when 𝑘 “ 1, 3, 5, there is no ℓ which produces a

𝑉𝑖𝑉𝑗𝑓 term; when 𝑘 “ 2, the term cancel between ℓ “ 4, 5; and when 𝑘 “ 4, we

get p´𝑉𝑖qp´𝑉𝑗q𝑓 “ 𝑉𝑖𝑉𝑗𝑓 . Thus (doubling to account for ℓ ă 𝑘) we get 2𝑉𝑖𝑉𝑗𝑓 .

• 𝑉𝑗𝑉𝑖𝑓 : this is analogous to 𝑉𝑖𝑉𝑗𝑓 except that the term left over is 𝑘 “ 3, ℓ “ 4

and we get 𝑉𝑗p´𝑉𝑖q𝑓 “ ´𝑉𝑗𝑉𝑖𝑓 ; doubling (for 𝑘 “ 4, ℓ “ 3) we get a final result

of ´2𝑉𝑗𝑉𝑖𝑓 .

Thus, we know that

r𝑉𝑖, 𝑉𝑗s˚𝑓p𝑞q “ 𝑔2
p0q{2 (B.45)

“
`

´ 2𝑉0𝑉𝑖𝑓 ` 2𝑉𝑖𝑉0𝑓 ´ 2𝑉0𝑉𝑗𝑓 ` 2𝑉0𝑉𝑗𝑓 ` 𝑉𝑖𝑉𝑗𝑓 ´ 𝑉𝑗𝑉𝑖𝑓
˘

p𝑞q

(B.46)

Now we employ Definition 35(a); we know that r𝑉𝑖, 𝑉0s𝑓 “ 𝑉𝑖𝑉0𝑓 ´ 𝑉0𝑉𝑖𝑓 and

r𝑉0, 𝑉𝑗s𝑓 “ 𝑉0𝑉𝑗𝑓 ´ 𝑉𝑗𝑉0𝑓 for all 𝑓 . Thus, we have

r𝑉𝑖, 𝑉𝑗s˚𝑓 “
`

r𝑉𝑖, 𝑉𝑗s ` 2r𝑉𝑖, 𝑉0s ´ 2r𝑉0, 𝑉𝑗s
˘

𝑓 (B.47)

for all 𝑓 , and we are done.

Note the corollary when 𝑉𝑖 “ 𝑉0 and/or 𝑉𝑗 “ 𝑉0 (since r𝑉0, 𝑉0s “ 0):
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Corollary 3. For any 𝑉𝑖, we have

r𝑉0, 𝑉𝑖s˚ “ ´r𝑉0, 𝑉𝑖s and r𝑉𝑖, 𝑉0s˚ “ 3r𝑉𝑖, 𝑉0s (B.48)

We note also that Lemma 41 means that

Spanpt𝑉𝑖u𝑖 Y tr𝑉𝑖, 𝑉𝑗su𝑖,𝑗q “ Spanpt𝑉𝑖u𝑖 Y tr𝑉𝑖, 𝑉𝑗s˚u𝑖,𝑗q (B.49)

i.e. the set of all 𝑉𝑖 plus all length-2 Lie brackets spans the same space (at any point)

as the set of all 𝑉𝑖 plus all length-2 drifting Lie brackets, which in other words is that

the degree of nonholonomy is ď 2. In that case, we have our result:

Proposition 26. Let Π “ Πp𝑉0, 𝑉1, . . . , 𝑉𝑚; 𝒰q be a control-affine system where

𝑉0, . . . , 𝑉𝑚 satisfy Meta-Assumption 1 and such that the degree of nonholonomy

is ď 2. Then there is set of privileged coordinates such that for any 0 ă 𝜆 ă 1

there are constants 0 ă 𝑐𝜆 ă 𝐶𝜆 such that for every sufficiently small 𝜀 ą 0,

𝑃 𝑐𝜆𝜀

𝜙𝜆𝜀
0 p𝑞q

Ď 𝑅𝜀p𝑞q Ď 𝑃𝐶𝜆𝜀

𝜙𝜆𝜀
0 p𝑞q

(B.50)

Extending this to the full Nonsymmetric Uniform Ball-Box Conjecture might be

done by analyzing iterated drifting Lie brackets and showing that they result in the

same spans as the Lie brackets (though there is a combinatorial explosion in the

different terms which need to be canceled out).
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Appendix C

Fractal Targets

While 𝛾 is an integer for control-affine systems and continuous target point distri-

butions, it is interesting theoretically to consider the case of noninteger 𝛾. This can

occur when the targets are distributed over a set of fractal dimension. Since this

appendix is meant to illustrate how our techniques (particularly the Symmetric Hi-

erarchical Cell Structures) can be applied in different settings, we will make some

simplifying assumptions.

First, we limit ourselves to targets distributed in strictly self-similar fractal sets

in R𝑑 and a single scaling factor (such as the Sierpinski triangle, Menger sponge, or

Koch curve) and the Euclidean TSP with varying top speed. Note that in this case

𝒳 “ 𝒬 “ R𝑑, so there is no distinction between 𝑞 P 𝒬 and 𝑥 P 𝒳 .1 We will therefore

refer to configurations as 𝑥 P R𝑑, and the reachable sets 𝑅𝜀p𝑥q are the same for both

workspace and configuration space.

Formally, we assume that 𝒳𝑓 (the set on which the targets are distributed) is com-

posed of �̂� copies of itself at 𝑠´1 scale (translated and/or rotated and/or reflected),

which makes imposing a Hierarchical Cell Structure with Euclidean dynamics trivial.

Using 𝛾 as revealed through the HCS, we find that 𝛾 “ log𝑠 �̂� is the Hausdorff dimen-

sion of 𝒳𝑓 ; we assume that 𝛾 ě 1 (otherwise the 𝑂p1q time to travel between HCS’s

in the HCS cover will overwhelm the 𝑂p𝑛1´ 1
𝛾 q tour time from the hierarchical collec-

1This means that standard TSP approximation algorithms such as Christofides can be applied,
but our analysis is still needed to determine the tour length as 𝑛 Ñ 8.
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tion problem). Additionally, choosing a random 𝑋 P 𝒳𝑓 can be done by iteratively

choosing sub-copies.

We also limit ourselves to considering the Euclidean TSP over such distributions,

with a top speed function ℎ, i.e. our control law is

9𝑥 “ ℎp𝑥q𝑢 (C.1)

where the control set is 𝒰 “ t𝑢 P R𝑑 : }𝑢}2 ď 1u. We assume ℎ is Lipschitz-

continuous and ℎmin :“ inf𝑥 ℎp𝑥q ą 0 and ℎmax :“ sup𝑥 ℎp𝑥q ă 8. Formally, the

Lipschitz continuity of ℎ allows us to get a 𝜁-approximate HCS cover for any 𝜁 ą 0

(locally ℎ is approximately constant so we can just use nesting cells at a small scale

𝜀0).

Instead of ‘density 𝑓 ’ and ‘agility 𝑔’, we let

𝜑p𝑥q “ lim
𝜀Ñ0

P𝑋„𝑓 r𝑋 P �̄�𝜀p𝑥qs

𝜀𝛾
(C.2)

(where𝑋 „ 𝑓 means the given distribution over the fractal, even though 𝑓 is no longer

a probability density function). Then we replace the integral
ş

𝑓p𝑥q1´ 1
𝛾 𝑔p𝑥q´

1
𝛾 𝑑𝑥 with

its equivalent E𝑋„𝑓 r𝜑p𝑥q
´ 1

𝛾 s.

Our upper bound can still tell us about this case:

Proposition 27. For noninteger 𝛾, we get the following bounds: if 𝛾 ě 3 is

noninteger, then bounds (1.35), (1.36), and (1.38) from Proposition 3 still hold.

If 𝛾 P p2, 3q, then for all sufficiently large 𝑛,

P
“

TSPΠpt𝑋𝑖uq ď p1` 𝛿q
`

12𝑠𝛼´ 1
𝛾

˘

𝑛1´ 1
𝛾E𝑋„𝑓 r𝜑p𝑥q

´ 1
𝛾 s

‰

(C.3)

ď 1´ 𝑒´
p𝛾´2q𝑝1𝑛p

ř𝑚
𝑗“1 𝑝

1´1{𝛾
𝑗

q2

13𝛾 (C.4)
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And, finally, if 𝛾 P p1, 2q, then for all sufficiently large 𝑛,

P
“

TSPΠpt𝑋𝑖uq ď p1` 𝛿q
`

12𝑠𝛼´ 1
𝛾

˘

𝑛1´ 1
𝛾E𝑋„𝑓 r𝜑p𝑥q

´ 1
𝛾 s

‰

(C.5)

ď 1´ 𝑒
´

𝑝1𝑛
2p1´1{𝛾qp

ř𝑚
𝑗“1 𝑝

1´1{𝛾
𝑗

q2

560
3 logp𝛾{p𝛾´1qq`4`18p1´1{𝛾q2

𝛾
𝛾´2 p 2803 logp𝛾{p𝛾´1qqq1´2{𝛾 (C.6)

Proof. This is proved in the same manner as the upper bounds in Chapter 4 using

the HCS cover and the collection problem.
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Appendix D

Good Target, Bad Target

In this appendix we show that even though our Symmetric HCS cover (see Chap-

ter 4) might not be entirely overlap-free, since it can be have arbitrarily small overlap

parameter 𝜌 (see Lemma 19), we can derive the main results in the same way as in

Chapter 4. Recall that we showed that the probability that 𝑋 „ 𝑓 falls into multi-

ple HCS’s can be made arbitrarily small, i.e. less than any 𝜌 ą 0. Additionally, in

Lemma 28 we made a distinction of cells in a HCS cover between 𝜌1-good and not

𝜌1-good cells, and showed that for any 𝜌1, 𝜌2 ą 0 we could find a sufficiently fine scale

so that the probability of a target point not falling into a 𝜌1-good cell is at most 𝜌2.

This allows us to define two kinds of target points 𝑋𝑖: those that fall into a

single 𝜌1-good cell, and those that don’t (either by falling into a not-𝜌1-good cell, or

by falling into multiple cells) which we respectively call good and bad target points.

Each target point has at most a 𝜌˚ ď 𝜌 ` 𝜌2 chance of being bad, where 𝜌˚ can be

made arbitrarily small, and they are independent. We now show that we can simplify

to ignore the bad ones. We first fix some HCS cover of 𝒳𝑓 at scale 𝜀pbadq with 𝑚pbadq

different HCS’s, as in Lemma 18; this is allowed to overlap to any amount, but note

that it is fixed independent of 𝜌˚.

Let 𝑛pbadq be the number of bad target points, and 𝑛
pbadq

𝑗 be the number of bad

target points in the 𝑗th cell of the fixed HCS cover with 𝑚pbadq cells at scale 𝜀pbadq.
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Note by Proposition 13 and the concavity of 𝑥1´ 1
𝛾 that this means that

𝑚pbadq
ÿ

𝑗“1

HCP˚
p𝑛pbadq; �̂�, 𝑠q ď

𝑚pbadq
ÿ

𝑗“1

6𝑠p𝑛pbadq
{𝑚pbadq

q
1´ 1

𝛾 “ 6𝑠p𝑚pbadq
q

1
𝛾 p𝑛pbadq

q
1´ 1

𝛾 (D.1)

Thus, letting 𝑞pbadq

1 , . . . , 𝑞
pbadq

𝑚pbadq be the roots of this HCS cover and letting

𝐶pbadq :“ TSPΠp𝑞
pbadq

1 , . . . , 𝑞
pbadq

𝑚pbadqq . (D.2)

As before we don’t necessarily need to know the exact value of this; what’s important

is that it is fixed with respect to 𝑛.

Thus, we know that

TSPΠpt𝑋𝑖 : 𝑋𝑖 is baduq ď 𝐶pbadq
` 6𝑠p𝑚pbadq

q
1
𝛾 𝜀pbadq

p𝑛pbadq
q
1´ 1

𝛾 . (D.3)

This is a guaranteed bound, not a probabilistic one. We can then note that 𝑛pbadq

is itself a binomial random variable of 𝑛 draws of ď 𝜌˚ probability of success each.

Therefore, with very high probability (for any fixed 𝜌˚ ą 0) we have 𝑛pbadq ď 2𝜌˚𝑛,

which implies

TSPΠpt𝑋𝑖 : 𝑋𝑖 is baduq ď 𝐶pbadq
` 6𝑠p𝑚pbadq

q
1
𝛾 𝜀pbadq21´ 1

𝛾 p𝜌˚
q
1´ 1

𝛾𝑛1´ 1
𝛾 (D.4)

By Lemma 28, for any 𝛿˚ ą 0, we can then fix 𝜌˚ sufficiently small so that for

sufficiently large 𝑛,

𝐶pbadq
{𝑛1´ 1

𝛾 ` 6𝑠p𝑚pbadq
q

1
𝛾 𝜀pbadq21´ 1

𝛾 p𝜌˚
q
1´ 1

𝛾 ď 𝛿˚ (D.5)

i.e. while the above scales according to 𝑛1´ 1
𝛾 we can make the constant term as small

as we need to so that it is negligible compared to the overall constant as derived in

the main text.
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Appendix E

Counterexamples

We now delve into some non-theorems – things that sound like they might be true,

but in fact are not. The most basic point of describing these (other than the fact

that some of them are really quite interesting) is to show why certain assumptions

we make are necessary – without them, the theorems break down.

E.1 When 𝒬𝑓 is too expansive and the agent too fast

A key assumption for our lower-bound proof for the TSP (or, more accurately, for

the upper-bound proof of the Orienteering problem) is Assumption 9, that 𝒬𝑓 can

be covered by a polynomial number of reachable sets. Another key assumption is

Assumption 3: that the agent cannot move arbitrarily quickly through the workspace.

We ask: are these assumptions necessary? Our technique seems to rely mainly on the

volume of the reachable sets, which can have the properties we want (for instance,

bounded agility 𝑔 at all configurations) even when 𝒬𝑓 allows for arbitrarily large

speeds (as the following example shows).

We show a counterexample for the case where Assumption 4 and Assumption 3

don’t hold but all the other examples still hold:

Example 2. Consider the space 𝒳 “ 𝒯 2, where 𝒯 2 is the 2-dimensional torus. We

represent this as r0, 1q2 with opposing edges joined together, with two axes being (as

usual) the 𝑥-axis and 𝑦-axis. We introduce a vehicle traveling through 𝒳 whose 𝑥-axis
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Figure E-1: Illustration of Example 2, with a steep ‘track’ from which we can deviate
and visit targets. Because we can select from an infinite range of slopes, we can find
one that comes arbitrarily close to every target point, allowing us to collect them all
in a fixed amount of time (not dependent on 𝑛).

position always increases at speed 1 (except for wrapping around), while its 𝑦-axis

position is controlled through double integration, i.e. it controls its acceleration on

the 𝑦-axis.

Thus, its current configuration 𝑞p𝑡q at time 𝑡 includes an 𝑥-axis position 𝑥p𝑡q, a

𝑦-axis position 𝑦p𝑡q, and a 𝑦-axis velocity 𝑣p𝑡q; note that since its 𝑥-velocity is always

1 we have no need to record it. Therefore, 𝒬 “ 𝒯 2 ˆ R. The dynamics it obeys are:

9𝑞 “

»

—

—

—

–

9𝑥

9𝑦

9𝑣

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1

𝑣

0

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

0

0

1

fi

ffi

ffi

ffi

fl

𝑢1 with control 𝑢1 P r´1, 1s (E.1)

The vehicle is allowed to start at any 𝑞0 P 𝒬.

Unlike the double integrator which is generally studied, we do not place any limits

on the velocity. For the following, we use x𝑧y :“ 𝑧´ t𝑧u, i.e. x𝑧y is the fractional part

of 𝑧.

First, we need the following lemma, to show that 𝛾 and 𝑔 satisfy Assumption 6:

Lemma 42. For this vehicle, 𝛾 “ 3, and 𝑔p𝑞q “ 1{3 for all 𝑞 P 𝒬.

Proof. We consider the shape of the small-time reachable set. For simplicity we

‘unroll’ the workspace 𝒯 2 into R2 where the mapping from p𝑥˚, 𝑦˚q P R2 to p𝑥, 𝑦q P 𝒯 2
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is p𝑥, 𝑦q “ px𝑥˚y, x𝑦˚yq; as we will be primarily concerned with the height of intervals

along the 𝑦-axis, working in R2 presents no problems unless the height is larger than

1, which we will prevent by working on short time scales. Because the dynamics are

translation-invariant over the (toroidal) workspace, we may also assume WLOG that

we are at p𝑥p0q, 𝑦p0q, 𝑣p0qq “ p0, 0, 𝑣0q P 𝒬 for some 𝑣0 P R. In that case, at time

𝑡 “ 𝛿 (with the assumption that 𝛿 ă 1{10) we must be at p𝛿, 𝑦p𝛿q, 𝑣p𝛿qq: what are the

minimum and maximum values of 𝑦p𝛿q achievable? The extremes of this interval are

if we input 𝑢p𝑡q “ 1 or 𝑢p𝑡q “ ´1 for all 𝑡 P r0, 𝛿s. Let us consider 𝑢p𝑡q “ 1. Then, at

time 𝑡 “ 𝑡˚ ` 𝛿:

𝑦 “ 𝑣0𝛿 ` 𝛿
2
{2 (E.2)

and similarly, if we have input ´1 at all times, 𝑦 “ 𝑣0𝛿 ´ 𝛿2{2. It is obvious that

all points in between the extremes are reachable as well (just by setting 𝑢p𝑡q to an

appropriate value in r´1, 1s), so the interval has size 𝛿2. So now we want to calculate

the size of the set reachable from configuration 𝑞 “ p𝑥˚, 𝑦˚,𝑚q in time at most 𝜀.

This can then be computed as:

Vol𝒯 2p𝑅𝜀p𝑞qq “

ż 𝜀

𝛿“0

𝛿2𝑑𝛿 “
𝜀3

3
(E.3)

which by definition means that 𝛾 “ 3 and 𝑔pp0, 0, 𝑣0qq “ 1{3 for all 𝑣0 (and, by

translation invariance, for all 𝑞 P 𝒬).

Thus, the unbounded velocity does not cause e.g. agility 𝑔 to become unbounded.

The reason that this example violates the lower bound that our results would have

provided is that, because Assumption 9 is violated, the number of discretizations of

valid paths is infinite. Not only does this break the proof given in Chapter 3, we can

show that it causes there to always be TSP tour of length ă 1:

Proposition 28. For this vehicle, if the target points 𝑋𝑖 are distributed unifomly
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at random over r0, 1s2:

TSPΠp𝑋1, . . . , 𝑋𝑛q ď 1 almost surely (i.e. with probability 1) (E.4)

The proof of this relies on the following lemma:

Lemma 43. If p𝑥1, 𝑦1q, . . . , p𝑥𝑛, 𝑦𝑛q
𝑖𝑖𝑑
„ Unifr0,1s2 and 𝜀 ą 0, then with probability 1

there exists 𝑣0 P R such that

x |𝑦𝑖 ´ 𝑣0𝑥𝑖| y ď 𝜀 for all 𝑖 P r𝑛s (E.5)

Proof. We first define, for all 𝑣 P R and 𝜀 ą 0, the set

𝑆𝑣,𝜀 :“ tp𝑥, 𝑦q : x |𝑦 ´ 𝑣𝑥| y ď 𝜀u (E.6)

Note that our lemma states that no matter how small 𝜀 ą 0 is, there is (with prob-

ability 1) some 𝑣 such that p𝑥𝑖, 𝑦𝑖q P 𝑆𝑣,𝜀 for all 𝑖. For what follows, since 𝜀 is fixed,

we will denote 𝑆𝑣 :“ 𝑆𝑣,𝜀.

To prove this, we need a particular claim. In what follows, Volp¨q refers to the

2-dimensional area:

Claim: For any union of finitely many polygons 𝑈 Ď r0, 1s2 with sides parallel to

the axes,

lim
𝑣Ñ8

Volp𝑆𝑣 X 𝑈q “ 2𝜀Volp𝑈q (E.7)

We first prove the claim for the special case that 𝑈 is a rectangle with sides parallel

to the axes. Let 𝑈 be bounded by 𝑥min, 𝑥max on the 𝑥-axis and by 𝑦min, 𝑦max on the

𝑦-axis. First, we consider the set 𝑆𝑣p𝑦
1q :“ 𝑆𝑣 X tp𝑥, 𝑦

1q : 𝑥 P r𝑥min, 𝑥maxsu, i.e. the

intersection of 𝑆𝑣 with a horizontal line at 𝑦 “ 𝑦1. We note that this intersection

consists of regularly-spaced intervals of width 2𝜀{𝑣, spaced (center-to-center) 1{𝑣

apart; we let 𝑎𝑣p𝑦1q be the (1-dimensional) length of 𝑆𝑣p𝑦
1q. We note that since the

centers of the line segments are spaced 1{𝑣 apart, accounting for rounding at the

edges of 𝑈 , there should be between p𝑥max´𝑥minq𝑣´ 2 and p𝑥max´𝑥minq𝑣` 2 centers
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of the intervals passing through the segment r𝑥min, 𝑥maxs ˆ 𝑦
1; thus

2𝜀p𝑥max ´ 𝑥minq ´ 2𝜀{𝑣 ď 𝑎𝑣p𝑦
1
q ď 2𝜀p𝑥max ´ 𝑥minq ` 2𝜀{𝑣

and as 𝑣 Ñ 8 this means that 𝑎𝑣p𝑦1q Ñ 2𝜀p𝑥max ´ 𝑥minq uniformly over all 𝑦.

Since 𝑆𝑣 and 𝑈 are both measurable in area (both are unions of finitely many

polygons), we get that

lim
𝑣Ñ8

Volp𝑆𝑣 X 𝑈q “ lim
𝑣Ñ8

ż 𝑦max

𝑦min

𝑎𝑣p𝑦
1
q𝑑𝑦1

“ 2𝜀p𝑥max ´ 𝑥minqp𝑦max ´ 𝑦minq “ 2𝜀Volp𝑈q

For 𝑈 which is not a rectangle with sides parallel to the axes, we simply decompose

𝑈 into (finitely many, disjoint) polygons, then approximate each polygon by a finite

number of rectangles parallel to the axes (which can be done to arbitrary position by

increasing the number of rectangles), and apply Claim 1; the limit applies uniformly

over all the rectangles simply because there are a finite number of them.

Now that we have established the claim, we can prove the lemma. We now gen-

erate a sequence 𝑣1, 𝑣2, ¨ ¨ ¨ P R with a special property. For any fixed sequence

𝑣 “ p𝑣1, 𝑣2, . . . q let 𝑣p𝑘q :“ p𝑣1, . . . , 𝑣𝑘q, and for any length-𝑘 bitstring 𝑏 P t0, 1u𝑘

define the following:

𝑆𝑣p𝑘qp𝑏q :“
𝑘

č

𝑗“1

𝑆𝑣𝑗p𝑏𝑗q

where we define 𝑆𝑣p0q :“ 𝑆𝑐
𝑣 (the complement) and 𝑆𝑣p1q :“ 𝑆𝑣; essentially, 𝑏 is a

bitstring telling us whether we need to be in 𝑆𝑣𝑗 (if 𝑏𝑗 “ 1) or in its complement (if

𝑏𝑗 “ 0). We note that the set t𝑆𝑣p𝑘qp𝑏qu𝑏Pt0,1u𝑘 of 2𝑘 subsets of r0, 1s2 is a partition of

r0, 1s2, and we note that no matter what 𝑣1, . . . , 𝑣𝑘 are, 𝑆𝑣p𝑘qp𝑏q is a union of finitely

many polygons for any 𝑏.

We now consider the following procedure:

1. 𝑣1 “ 1;

245



2. for any 𝑘 ě 1, we iteratively choose 𝑣𝑘`1 sufficiently large so that

Volp𝑆𝑣p𝑘qp𝑏q X 𝑆𝑣𝑘`1
q ě 𝜀Volp𝑆𝑣p𝑘qp𝑏qq (E.8)

for all 𝑏 P t0, 1u𝑘.

By the claim we showed before, since there are finitely many 𝑏 P t0, 1u𝑘, the property

is satisfied by any sufficiently large 𝑣𝑘`1 (since the limiting volume is twice the volume

we require).

Now we consider a random target p𝑥, 𝑦q „ Unifpr0, 1s2q; for any 𝑏 P t0, 1u𝑘 and

any 𝑘,

Prp𝑥, 𝑦q P 𝑆𝑣𝑘`1
| p𝑥, 𝑦q P 𝑆𝑣p𝑘qp𝑏qs “

Volp𝑆𝑣p𝑘qp𝑏q X 𝑆𝑣𝑘`1
q

Volp𝑆𝑣p𝑘qp𝑏qq
ě 𝜀 (E.9)

(we don’t need to worry about zero-probability issues since there is always a positive

probability, and in any case we need the above only for 𝑏 where VolpVolp𝑆𝑣p𝑘qp𝑏qq ą 0).

Considering 𝑛 independent targets p𝑥1, 𝑦1q, . . . , p𝑥𝑛, 𝑦𝑛q
𝑖𝑖𝑑
„ Unifpr0, 1s2q, we get that

Prp𝑥𝑖, 𝑦𝑖q P 𝑆𝑣𝑘`1
for all 𝑖 | p𝑥𝑖, 𝑦𝑖q P 𝑆𝑣p𝑘qp𝑏𝑖qs ě 𝜀𝑛 (E.10)

for any set of length-𝑘 bitstrings 𝑏𝑖. Therefore, taking the inverse of the above state-

ment (the probability that at least one p𝑥𝑖, 𝑦𝑖q is not in 𝑆𝑣𝑘) and considering all 𝑘

from 1 to ℓ, we get

Pr@ 𝑘 P rℓs, D 𝑖 P r𝑛s such that p𝑥𝑖, 𝑦𝑖q R 𝑆𝑣𝑘s ď p1´ 𝜀
𝑛
q
ℓ (E.11)

But since 1´ 𝜀𝑛 ă 1, we get

Pr@ 𝑘 P Zě0, D 𝑖 P r𝑛s such that p𝑥𝑖, 𝑦𝑖q R 𝑆𝑣𝑘s (E.12)

“ lim
ℓÑ8

Pr@ 𝑘 P rℓs, D 𝑖 P r𝑛s such that p𝑥𝑖, 𝑦𝑖q R 𝑆𝑣𝑘s (E.13)

ď lim
ℓÑ8

p1´ 𝜀𝑛qℓ “ 0 (E.14)
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Thus, we know that the probability that the set tp𝑥𝑖, 𝑦𝑖qu𝑛𝑖“1 of 𝑛 random target points

escaping all 𝑆𝑣𝑘 is 0, thus showing our lemma.

Armed with Lemma 43 we can now prove Proposition 28.

Proof. We denote the coordinates of target 𝑋𝑖 as p𝑥𝑖, 𝑦𝑖q. Assume, without loss of

generality, that the the points 𝑋𝑖 are ordered by increasing 𝑥-values; with probability

1, all of them have unique (and nonzero) 𝑥-values. We then let 𝛿 :“ min𝑖p𝑥𝑖 ´ 𝑥𝑖´1q

(where 𝑥0 is defined to be 0) for all 𝑖 “ 1, 2, . . . , 𝑛, and consider a control policy which

does the following over 𝑡 P r0, 𝛿s, for some 𝑎 P r´1, 1s:

𝑢p𝑡q “

$

’

’

’

’

’

&

’

’

’

’

’

%

𝑎 if 𝑡 P r0, p1{4q𝛿q

´𝑎 if 𝑡 P rp1{4q𝛿, p3{4q𝛿q

𝑎 if 𝑡 P rp3{4q𝛿, 𝛿s

(E.15)

Letting 𝑞p0q “ p𝑥0, 𝑦0, 𝑣0q), and we will use the trick from before of ‘unrolling’ 𝒯 2, so

our trajectory will be considered on R2. We are particularly interested in 𝑞pp1{2q𝛿q

and 𝑞p𝛿q. We note that 𝑣p𝑡q is the following (easy to calculate since 9𝑣p𝑡q “ 𝑢p𝑡q and

𝑣p0q “ 𝑣0):

𝑣p𝑡q “

$

’

’

’

’

’

&

’

’

’

’

’

%

𝑣0 ` 𝑎𝑡 if 𝑡 P r0, p1{4q𝛿q

𝑣0 ` 𝑎p𝛿{2q ´ 𝑎𝑡 if 𝑡 P rp1{4q𝛿, p3{4q𝛿q

𝑣0 ´ 𝑎𝛿 ` 𝑎𝑡 if 𝑡 P rp3{4q𝛿, 𝛿s

(E.16)

There are several things of note: (i) in all cases, the 𝑣0 appears by itself in 𝑣p𝑡q;

(ii) 𝑣pp1{4q𝛿 ` 𝑠q “ 𝑣pp1{4q𝛿 ´ 𝑠q when 𝑠 ď p1{4q𝛿; and (iii) when 𝑡 ď p1{2q𝛿, then

𝑣p𝑡` p1{2q𝛿q “ ´𝑣p𝑡q.

Since 𝑦p𝑡q “ 𝑦0 `
ş𝑡

0
𝑣p𝑠q𝑑𝑠, we see from (i) that we can separate out the 𝑣0 term,

i.e. if we define 𝑤p𝑡q :“ 𝑣p𝑡q ´ 𝑣0 we find that 𝑤p𝑡q has no dependence at all on 𝑣0 so
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we can write

𝑦p𝑡q “ 𝑦0 ` 𝑣0𝑡`

ż 𝑡

0

𝑤p𝑠q 𝑑𝑠 (E.17)

Furthermore, by (ii) we know that

ż p1{2q𝛿

0

𝑤p𝑠q 𝑑𝑠 “ 2

ż p1{4q𝛿

0

𝑤p𝑠q 𝑑𝑠 “ 2

ż p1{4q𝛿

0

𝑎𝑠 𝑑𝑠 “ 𝑎p1{16qp𝛿2q (E.18)

Finally, we get by (iii) that
ş𝛿

0
𝑤p𝑠q𝑑𝑠 “ 0 since the parts on r0, p1{2q𝛿q and rp1{2q𝛿, 𝛿s

cancel out, and that 𝑤p𝛿q “ 0 (from looking at 𝑣p𝛿q). Therefore:

𝑦pp1{2q𝛿q “ 𝑦0 ` p𝛿{2q𝑣0 ` 𝑎p𝛿
2
{16q and 𝑦p𝛿q “ 𝑦0 ` 𝛿𝑣0 and 𝑣p𝛿q “ 𝑣0 (E.19)

Note that its configuration at 𝑡 “ 𝛿, i.e. p𝑥0 ` 𝛿, 𝑦0 ` 𝛿𝑣0, 𝑣0q, is exactly the config-

uration it would have had with a zero control, i.e. 𝑢p𝑡q “ 0 for 𝑡 P r0, 𝛿s; but its

𝑦-position at 𝑡 “ p1{2q𝛿 deviated by 𝑎p𝛿2{16q (where 𝑎 P r´1, 1s).

Using this knowledge, we let 𝜀 “ 𝛿2{16 and find 𝑣p𝜀q P R as given in Lemma 43.

For each 𝑖 P r𝑛s, let 𝑥1
𝑖 “ 𝑥𝑖 ´ 𝛿{2 and 𝑥2

𝑖 “ 𝑥𝑖 ` 𝛿{2 (except for 𝑥2
𝑛, which we don’t

need). Since 𝛿 “ min𝑖p𝑥𝑖 ´ 𝑥𝑖´1q where 𝑥0 is defined as 0, we know that

0 ď 𝑥1
1 ď 𝑥1 ď 𝑥2

1 ď 𝑥1
2 ď 𝑥2 ď 𝑥2

2 ď ¨ ¨ ¨ ď 𝑥1
𝑛 ď 𝑥𝑛 ď 1 (E.20)

(since we aren’t using 𝑥2
𝑛). We again want to work in the “unrolled” space, which

essentially is R2 tiled with 1ˆ 1 squares, each with its own copies of the targets. To

do this, we need to define

𝑚˚
“ argmin𝑚PZp|𝑦𝑖 `𝑚

˚
´ 𝑣p𝜀q𝑥𝑖 |q and 𝑦˚

𝑖 :“ 𝑦𝑖 `𝑚
˚ (E.21)

for all 𝑖 P r𝑛s: this basically identifies the “copy” of 𝑦𝑖 in the unrolled space closest to

the line 𝑣p𝜀q𝑥𝑖. Finally, we define 𝑎𝑖 :“ p𝑦˚
𝑖 ´ 𝑣

p𝜀q𝑥𝑖q{𝜀, and note that by the definition

of 𝑣p𝜀q, we have |𝑎𝑖| ď 1. We now build a trajectory starting at 𝑞p0q “ p0, 0, 𝑣p𝜀qq
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with the following control (recalling that 𝑥p𝑡q “ 𝑡 is guaranteed since 𝑥p0q “ 0) for

𝑡 P r0, 1s:

𝑢1p𝑡q “

$

’

&

’

%

𝑢˚
𝑖 p𝑡´ 𝑥

1
𝑖q if 𝑡 P r𝑥1

𝑖, 𝑥
2
𝑖 s

0 otherwise
(E.22)

where 𝑢p𝑖q
1 : r0, 𝛿s Ñ R is

𝑢
p𝑖q
1 p𝑡q “

$

’

’

’

’

’

&

’

’

’

’

’

%

𝑎𝑖 if 𝑡 P r0, p1{4q𝛿q

´𝑎𝑖 if 𝑡 P rp1{4q𝛿, p3{4q𝛿q

𝑎𝑖 if 𝑡 P rp3{4q𝛿, 𝛿s

(E.23)

i.e. the control analyzed earlier, shifted to the 𝛿-length interval r𝑥1
𝑖, 𝑥

2
𝑖 s (in the case

of 𝑖 “ 𝑛, we cut the trajectory off at 1 if it happens that 1 ă 𝑥2
𝑛). What does this

control do?

We already saw that from 𝑡 “ 0, sub-control 𝑢p𝑖q
1 p𝑡q produces the same state at

𝑡 “ 𝛿 as a zero control would, but that at 𝑡 “ 𝛿{2 it deviates from the zero-control

path by 𝑎𝑖p𝛿2{16q “ 𝑎𝑖𝜀 “ 𝑦˚
𝑖 ´ 𝑣

p𝜀q𝑥𝑖. Thus (since outside of the sub-control areas it

just sets 𝑢p𝑖q
1 “ 0) the trajectory satisfies 𝑞p𝑡q “ p𝑡, 𝑣p𝜀q𝑡, 𝑣𝜀q (in the unrolled space)

for 𝑡 “ 𝑥1
𝑖 and 𝑥2

𝑖 for all 𝑖, but at 𝑡 “ 𝑥𝑖 (the midpoint of r𝑥1
𝑖, 𝑥

2
𝑖 s) it satisfies

𝑞p𝑥𝑖q “

»

—

—

—

–

𝑥𝑖

𝑣p𝜀q𝑥𝑖 ` 𝑦
˚
𝑖 ´ 𝑣

p𝜀q𝑥𝑖

𝑣p𝜀q

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

𝑥𝑖

𝑦˚
𝑖

𝑣p𝜀q

fi

ffi

ffi

ffi

fl

(E.24)

However, we note that x𝑦˚
𝑖 y “ 𝑦𝑖, i.e. being at p𝑥𝑖, 𝑦˚

𝑖 q in the unrolled space equates

to being at p𝑥𝑖, 𝑦𝑖q in 𝒯 2, so the trajectory successfully collects target 𝑋𝑖. But we

now have a trajectory that collects all 𝑛 targets within 0 ď 𝑡 ď 1, thus showing the

result.

Hence, even though 𝛾 “ 3 and there is no issue of unbounded agility, we have
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still managed to show that the law of TSPp𝑋1, . . . , 𝑋𝑛q “ 𝑛1´ 1
𝛾 does not hold in this

case, since TSPp𝑋1, . . . , 𝑋𝑛q ď 1 (almost surely) regardless of how large 𝑛 gets. The

reason this happens is because the vehicle is allowed to select from an unbounded

set of starting configurations: hence our ORNT upper bound proof fails because

we cannot cover our starting configuration set 𝒬𝑓 with polynomially many (or any

finite number for that matter) reachable sets; the counterexample shows that the

boundedness of 𝒬𝑓 is not only necessary for the proof but for the result.

However, if we bound 𝒬𝑓 by insisting that the starting configuration have a slope

𝑣 P r´𝑀,𝑀 s, for fixed 𝑀 , this construction no longer works because the appropriate

slope 𝑣p𝜀q will soon fall far outside of the allowed interval, and if we wanted to achieve

such a slope, we would have to spend a lot of time just accelerating. In such a

scenario, the algorithms given in this work are much more efficient than accelerating

up to the “perfect” constant-length trajectory, because the acceleration process itself

will be too protracted.
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