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Abstract

Recent neural evidence challenges the traditional view
that face identity and facial expressions are processed
by segregated neural pathways, showing that informa-
tion about identity and expression are encoded within
common brain regions. This article tests the hypoth-
esis that integrated representations of identity and ex-
pression arise naturally within neural networks. Deep
networks trained to recognize expression and deep net-
works trained to recognize identity spontaneously de-
velop representations of identity and expression, respec-
tively. These findings serve as a “proof-of-concept” that
it is not necessary to discard task-irrelevant information
for identity and expression recognition.
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Introduction

The classical view of face processing proposes that identity
and expression information are distinct mechanisms (Bruce &
Young, 1986; Haxby, Hoffman, & Gobbini, 2000): an identity-
specialized pathway (i.e. ventral temporal; Kanwisher, Mc-
Dermott, and Chun, 1997; Gauthier et al., 2000) discards
expression information, and an expression-specialized path-
way (i.e. lateral temporal; Haxby et al., 2000; Hoffman and
Haxby, 2000) discards identity information. However, recent
evidence weighs against this view. Identity can be decoded in
lateral temporal regions (Anzellotti & Caramazza, 2017; Dobs,
Schultz, Bulthoff, & Gardner, 2018) and facial expression va-
lence can be decoded in ventral temporal regions (Skerry &
Saxe, 2014; Kliemann et al., 2018). An alternative hypothe-
sis suggests that identity and expression might not depend on
separate neural mechanisms (Duchaine & Yovel, 2015).

Here, we test whether learning to recognize facial expres-
sion necessarily requires discarding identity information (and
vice versa), or whether recognition of facial expression and
face identity might be mutually beneficial. To evaluate this, we
train deep convolutional neural networks (DCNNs) to recog-
nize expression and probe whether they spontaneously learn
identity information and, likewise, we train DCNNs to recog-
nize identity and probe whether they spontaneously learn ex-
pression information.
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Methods

To understand if these face tasks must be implemented by
separate mechanisms, we test if discarding irrelevant task in-
formation is necessary for successful facial expression and
face identity recognition. If this is the case, identity information
should decline when learning expression information and vice
versa. Using Pytorch (Paszke et al., 2017), a deep DenseNet
was constructed for each model, consisting of 1 convolutional
(CONV) layer, 3 dense blocks, and 1 fully connected (FC) lin-
ear layer (Fig. 1). All networks described were trained 10
times with random weight initialization to test the consistency
of the results. For convenience, the 10 runs will be referred to
as a single DCNN.
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Figure 1: Architecture. Top: Each network consist of a convo-
lutional layer, three dense blocks, and a fully-connected layer
(face images shown taken from KDEF, Lundqvist et al., 1998).
Bottom: Structure of a dense block.

Stimuli and Training

Expression and Identity DCNNs The expression DCNN
was trained to label facial expressions using images from
the Facial Expression Recognition 2013 (fer2013) dataset
(Goodfellow et al., 2013), containing 28,709 training images
and 3,589 testing images. The identity DCNN was trained to
label identities using the Large-Scale CelebFaces Attributes
(CelebA) dataset (Liu, Luo, Wang, & Tang, 2015). To match
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the dataset sizes for the two networks, a subset of CelebA
was used.

Untrained and Scene DCNNs To investigate if findings were
due to the architecture and did not depend on training, we
tested whether an untrained DCNN also supports identity and
expression recognition in later layers. To evaluate if findings
were face-specific, we probed a DCNN trained to label scenes
using UC Merced Land Use dataset (Yang & Newsam, 2010).

Testing

After training, network weights were fixed to prevent further
learning. To test identity and expression labeling, we used
an independent dataset of images: Karolinska Directed Emo-
tional Faces (KDEF) (Lundqvist et al., 1998). Accuracy was
evaluated for features from the initial CONV layer, and the last
layer of each dense block, after being summed with the in-
puts of the block. To accommodate differing output numbers,
layer features were extracted, run through batch normaliza-
tion, ReLU, and average pooling, followed by an FC linear
layer to produce output labels (‘readout layer’). A linear layer
trained directly on pixel values was used as a control. To con-
trol for low-level features, all readout layers were trained using
all but one of the viewpoints (frontal, 45 degree left, 45 degree
right). Accuracy was tested using the left-out viewpoint (as in
Anzellotti, Fairhall, and Caramazza, 2013), averaged across
the three conditions.

Results

Expression and Identity Classification

Expression-trained and identity-trained DCNNs perfor-
mances on an independent dataset Both networks gener-
alized to perform accurately their respective trained tasks on
KDEF. The expression DCNN labeled expression with a final
accuracy of 53.4% and the identity DCNN labeled identity with
a final accuracy of 48.35%.

Expression-trained and identity-trained DCNNs develop
identity and expression representations respectively
Features extracted from the CONV layer and each dense
block of the expression DCNN were used as inputs to a cor-
responding FC layer for identity readout: accuracies of 9.5%,
6.3%, 14.8% and 20.2% respectively (Fig. 2A, top). In a par-
allel analysis, identity DCNN features labeled expression with
accuracies of 17.6%, 17.1%, 21.5% and 42.1% (Fig. 2A, bot-
tom).

Expression and identity recognition using features from
an untrained DCNN and a scene-trained DCNN Features
extracted from the CONV layer and each dense block of the
untrained DCNN yielded accuracies of 16.5%, 16.2%, 15.5%
and 16.5%, respectively, for expression labeling (Fig. 2A,
bottom). For identity labeling, untrained features extracted
from each layer yielded accuracies of 7.9%, 7.1%, 13.6% and
6.1% (Fig. 2A, top). The untrained DCNN performed similarly
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Figure 2: Comparisons with the Untrained Network. A)

Left: Classification performance using expression features for
identity labeling and identity features for expression labeling,
Right: Classification performance using untrained features.
B) Difference between trained and untrained networks. Error
bars in plots denote the SEM of the performance of network
instances.

within a task for all layers (close to chance level).

When using the scene DCNN to label expression, features
from each layer yielded accuracies of 15.9%, 16.0%, 23.5%
and 33.0%, respectively. For the scene DCNN when label-
ing identity, layer features yielded accuracies of 9.5%, 7.8%,
17.3% and 29.6%.

Discussion

We propose that recognition of facial expression and face
identity are ‘complementary’ tasks — that representations op-
timized to recognize facial expression also contribute to the
recognition of face identity, and vice versa. This would account
for the observation that identity and expression information co-
exist within common brain regions (Anzellotti & Caramazza,
2017; Dobs et al., 2018). Features from an expression-trained
DCNN can support accurate identity recognition, and recip-
rocally, features from an identity-trained DCNN can support
accurate expression recognition. Our findings serve as an ex-
istence proof that in order to perform identity recognition, ex-
pression information does not need to be discarded (and vice
versa). In fact, within our models, networks trained to per-
form one task do not just retain information that can help solve
the other task: they enhance it. Surprisingly, findings were
not category-specific, contrasting with other transfer learning
studies (Yosinski, Clune, Bengio, & Lipson, 2014). However,
features did not simply arise in an untrained network either.
Ongoing work includes the application of these models to neu-
ral data.
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