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In science, we use power analyses to estimate how much evidence 
is needed to test the hypotheses we are considering. For instance, 
if we suspect that a drug will cure 90% of patients while a placebo 

will work 30% of the time, we will conclude that a relatively small 
sample of patients will enable us to test the drug’s efficacy; by con-
trast, if we believe the drug will cure only 50% of patients, we know 
we will need a larger sample to show an effect. Exact power analy-
ses, of course, require formal training in statistics and an estimate 
of the size of the effect the researcher aims to demonstrate. But the 
intuitive foundation of these analyses—that it takes more evidence 
to distinguish some hypotheses than others—may be part of com-
mon sense reasoning more broadly. Decades of research suggest 
that some of the epistemic practices that support scientific enquiry 
emerge as part of intuitive reasoning in early childhood. Here we 
look at whether lay adults and young children can use these intui-
tive metacognitive abilities to represent how much information they 
need to distinguish between populations depending on the degree 
to which the populations overlap.

This question is grounded in a long tradition of work suggest-
ing that children are sensitive to statistics in the environment and 
engage in selective exploration to maximize expected information 
gain. Infants attend to the transitional probability of events in both 
auditory1 and visual2 stimuli and can infer abstract rules from pat-
terns of data (for example, the difference between ABA and ABB 
patterns3). Infants can also infer probable outcomes simply from 
the number of modal possibilities; thus, for instance, if three blue 
objects and one red one are spinning in an open container, infants 
look longer if the red object falls out than if a blue one does4. 
Additionally, infants are sensitive to the relationship between sam-
ples and populations: If most of the objects in a box are red, babies 
expect most of the objects pulled from the box to be red but suspend 
this inference if the objects are drawn from somewhere other than 
the box (that is, the experimenter’s lap) or are drawn selectively by 
an experimenter searching through the box rather than randomly5. 
Infants also actively explore to reduce uncertainty. Seven- and 
8-month-olds are more likely to look away from events that are 
very predictable or unpredictable relative to moderately surpris-
ing events6 and 12-month-olds not only look longer at events that  

violate their intuitive theories, but intervene to explore the viola-
tions (for example, dropping objects that appeared to violate grav-
ity; banging objects that appeared to violate solidity7).

Children’s sensitivity to the relationship between hypotheses 
and evidence becomes increasingly sophisticated from toddlerhood 
to middle childhood. Toddlers are able to integrate observed data 
with their previous beliefs, and their inferences are not only sensi-
tive to the content of a sample, but also whether that sample was 
drawn randomly or selectively8. When preschoolers observe events 
that cannot be explained by a known cause, they posit unobserved 
variables to explain the event9,10, and selectively explain and explore 
events that violate their causal theories11,12. Preschoolers can also 
use the base rate of events to distinguish more and less probable 
hypotheses13,14, isolate variables in a causal system to distinguish 
candidate causes11, and integrate the evidence they observe with the 
testimony they hear from knowledgeable sources15.

However, it is less clear to what extent young children have an 
explicit understanding of the relationship between the evidence 
they observe and the knowledge they will gain. Some studies sug-
gest that at least some precursors to metacognition emerge early. 
Preschoolers correctly distinguish objects they can and cannot 
name16, spend more time considering response options given unin-
formative versus informative task instructions17, selectively with-
hold answers18–22, ask for help23 on items they struggle to remember 
and show more pupillary dilation and give higher confidence rat-
ings to remembered items24,25, see also refs. 18,22,26–28. However, young 
children may know when they are more or less certain about infor-
mation without using this knowledge to increase opportunities for 
learning. In self-paced learning tasks, 5-, 6- and 7-year-olds are more 
confident about correctly than incorrectly remembered items but 
only 6- and 7-year-olds accurately anticipate which items they will 
have trouble learning and dedicate more study time to these items29. 
Consistent with this, school-aged children often struggle with meta-
cognitive tasks in the context of test-taking: children are overcon-
fident in their memory30,31, and choose randomly when given the 
chance to restudy test items rather than choosing on the basis of 
their previous performance32. Introspective self-reports of knowl-
edge also improve from early school age to adolescence33–37. Thus, 
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children’s ability to monitor their uncertainty and use it to regulate 
their behaviour appears to develop through middle childhood.

Despite these findings, it is hard to assess the extent to which 
children’s information seeking is precisely and quantitatively cali-
brated to their uncertainty: almost all of the studies reviewed above 
have relied on children’s qualitative judgements about task difficulty. 
The few studies that have used graded measures have looked at how 
long children attend to a task, or their confidence ratings, as they are 
actually working on the task and experiencing uncertainty online. 
Children might be able to make well-calibrated responses to their 
current state of knowledge without having fine-grained representa-
tions of task difficulty a priori. For instance, one recent paper found 
that 4- to 8-year-olds’ exploration quantitatively tracked the diffi-
culty of discrimination problems; when asked to identify the num-
ber of marbles in a box by shaking the box and listening, children’s 
exploration time was independent of the number of marbles in the 
box but systematically tracked the difficulty of the simulated con-
trast (for example, the time children spent shaking a box containing 
nine marbles increased linearly when trying to discriminate those 
nine marbles from three, six or eight marbles in another box)38. 
This study suggests an impressively precise correlation between 
children’s uncertainty and their exploration, but in this context it 
is unclear whether children decided how long to explore a priori 
on the basis of their representation of the difficulty of the task, or 
whether they used online monitoring to continuously gather more 
information until they were confident enough to guess.

In the current study, we are interested in cases in which learners 
cannot use uncertainty monitoring as a way to continuously adjust 
their exploration. Instead, we ask whether adults and children can 
represent the difficulty of discrimination problems and estimate, 
in advance, how much information they will need to make a good 
guess about the answer. To test this, we borrowed from a classic 
model in the infancy literature39. We introduced participants to two 
populations of coloured balls: in this case, boxes with inverse pro-
portions of coloured and white balls (for example, one filled with 
90% red balls and 10% white balls, and one with 90% white and 
10% red, referred to hereafter as a 90/10 set). As noted, even infants 
can use an observed sample of balls to guess the population from 
which it was drawn. Here however, we never draw a sample of balls; 
Learners are simply asked how many balls they would need in the 
sample to tell the two populations apart. The difficulty of this dis-
crimination problem depends, of course, on the overlap between 
the populations: distinguishing 90/10 from 10/90 is relatively easy 
and should require only a small sample of balls, while distinguish-
ing 60/40 from 40/60 is much harder and requires a larger sample.

In a formal power analysis, a scientist might use an effect size 
estimated from previous findings, a significance level of P = 0.05 
and a power level of at least 0.8 to calculate the sample size needed 
for her study. In contrast, participants in the current task are given 
full knowledge of the populations that they are comparing so effect 
size is no longer an unknown variable. Measures of confidence also 
replace significance level and power in this context, as it is difficult 
to assign numerical values to each of these factors as they combine 
to structure the simulated sampling choices of each participant.

The participant never sees any balls drawn and must select the 
size of the sample a priori, so the decision about how many balls 
to draw depends on participants’ assessments of the difficulty of 
the discrimination problem rather than their ability to solve it (that 
is, none of the problems can be solved given only the information 
provided). By varying the discriminability of the populations and 
comparing the results to a model of the difficulty of the discrimina-
tions, we can investigate the extent to which both adults and chil-
dren modulate their information seeking in quantitatively precise 
ways that track the difficulty of the task.

Because we are interested in whether either adults or children 
have the foundations of intuitive power analyses, we start by testing  

adults (experiments 1–4b). We then focus on 6- to 8-year-olds 
(experiment 5 and replication) because the previous literature 
suggests that these are among the youngest ages at which explicit 
uncertainty monitoring and control emerge, and because pilot work 
suggested that 4- and 5-year-olds struggled with the task demands 
of the full quantitative version.

Results
Computational framework. To succeed in this task, participants 
need to decide how informative a sample of a certain size would be 
without being able to see the contents of the sample. Vul et al.40 offers 
one way to formalize this sampling behaviour, suggesting that when 
ideal Bayesian inference is intractable and there is a cost associated 
with each sample the globally optimal solution might be to instead 
rely on a very small number of samples from the posterior distri-
bution40. We proposed that this strategy might successfully capture 
behaviour in our sampling task, so building on this previous work 
we adapted this framework to model an agent who represents all of 
the possible contents of a sample of a particular size N (for example, 
in a sample of N = 3 balls, it could contain three white balls, three 
coloured balls, one white and two coloured balls, or two white and 
one coloured ball), then weights them on the basis of the likelihood 
of drawing that particular sample from the population. We then use 
a cumulative distribution function to model the sampling process,

x
∑

i=0

(

N

i

)

pi (1− p)(N−i)

with N being the total number of samples drawn (restricted to 
even-numbered samples using a ceiling operator), x representing 
the number of samples that are coloured and p representing the 
probability that a given sample is a particular colour (that is, the 
probability associated with a given box). When most of the pos-
sible samples of a given size point to one of the two options, then 
participants should decide the sample is big enough; if not, then 
participants should request a larger sample. We therefore represent 
the utility of a particular sample size N as

N
∑

i=ceil(N/2)

(

N

i

)

pi (1− p)(N−i)

When this utility model is mapped to the number of samples 
an agent should request, it suggests that participants should sample 
exponentially, resulting in the ideal learner requesting almost the 
entirety of the potential samples for the hardest discriminations. 
This exponential strategy is ideal in a situation in which there is no 
cost for additional samples, but ignores the important role that cost 
might play when approximating utility. Drawing additional samples 
would in theory take time and energy; to address this, we modify 
the utility function to include a cost of sampling proportional to the 
number of samples taken, formally represented as: N × c. The full 
utility model, for a given sample size N is then

N
∑

i=ceil(N/2)

(

N

i

)

pi (1− p)(N−i)
− N× c

When even a moderate cost of sampling is added to the model, 
it drastically affects the shape of the ideal learner’s sampling curve, 
changing it from an exponential to an inverted U-shape (Fig. 1). 
This makes the prediction that for both the easiest and most dif-
ficult discriminations, a small number of samples should be drawn, 
with the most samples being drawn for the moderately difficult dis-
criminations in between. This framework echoes the work of Vul 
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et al.40 in which they demonstrate that choosing a very small num-
ber of samples (and in some cases, even a single sample), is a more 
optimal strategy when taking cost into consideration40. To compare 
the results from this globally optimal model to adults’ sampling 
behaviour, we used the behavioural model described above.

Experiment 1. Adults were shown a short animation that walked 
them through the setup of the task, in which images of two boxes of 
balls with inverse proportions were shown being shuffled behind a 
barrier so the location of each was unknown. Then a hand reached 
into one of the boxes and picked balls one at a time and placed them 
into an opaque bowl without revealing the colour of each ball. After 
the container was filled, the contents were revealed and participants 
were asked to judge which of the two boxes the sample had been 
drawn from. The training trial was done with a 72/28 ratio set, and 
was designed to be an easy discrimination. Failure to choose the 
correct box was used as an exclusion criterion.

Participants were then shown four characters, each with a set of 
two boxes, to give them a sense of the range of contrasts in the task 
and were told ‘This time, you will be deciding how many balls I 
should put in the bowl. For each friend, think about how tricky it 
will be to figure out which box I am picking from. For some friends 
you might need more balls to decide which box they are picked 
from, and for some friends you might need fewer. Try not to ask for 
more balls than you need.’

Ten sets of boxes each with a new character were presented one 
at a time, along with a question asking ‘How many balls do you 
think I need to put in the bowl for you to know whether the balls 
came from my box or (the current character)’s box?’ Participants 
simply had to type in the number of samples that they thought 
they would need to discriminate each pair (Fig. 2a). The propor-
tions in the test stimuli varied from very easy discriminations 
(95/5) to very difficult ones (51/49) (Fig. 2b). Adults were not 
told the specific ratios; they had to estimate the difficulty of the 
discrimination problem from the visual display. Nor were adults 
told the exact number of balls in the box. One hundred balls 

were visible on the face of the box but the boxes were presented 
as three-dimensional sketches so, assuming participants thought 
the boxes were cubes, they might have inferred that there were 
roughly 1,000 balls in each box. The instructions indicated sam-
pling without replacement and in principle this could be mod-
elled by a hypergeometric distribution (that is, the probability of a 
coloured ball would change after each draw). However, given the 
inferred size of the population, sampling with or without replace-
ment would make little difference thus for simplicity, we modelled 
the probability of drawing a coloured ball as a binomial distribu-
tion. Participants were not given any feedback on their responses 
and the order in which the ten boxes were presented was random-
ized for each participant.

As each participant made a judgement for each of the ten pairs 
of boxes, we used a linear mixed effects model to analyse the rela-
tionship between the difficulty of the discrimination problem and 
the number of samples requested by participants. Proportion of 
coloured balls was a fixed effect, with participant as a random inter-
cept. P values were obtained by likelihood ratio tests comparing the 
full model with a null model that left out the effect of proportion. 
Adults were sensitive to the difficulty of the discrimination problem 
and asked for more balls as the discrimination problems got more 
difficult (χ2(1) = 66.19, P < 0.001), requesting 0.37 ± 0.04 (standard 
error (s.e.), 95% CI (0.28, 0.45)) more balls for each decreasing 
proportion (for example, from 60/40 to 59/41), Fig. 3a). Quantile–
quantile plots of model residuals were used to verify the normality 
of the data. Although there were no explicit costs associated with 
sampling more balls (that is, it was as easy to request 80 samples 
as it was ten), adults did not sample exponentially more balls in 
the hardest discriminations. Adults’ sampling behaviour appeared 
linear rather than exponential or an inverted U-shape, suggesting 
that participants were unlikely to be relying fully on the strategy 
described above, despite evidence that they were in fact incorporat-
ing an implicit cost of sampling.

Experiment 2. To verify that costs indeed affect participants’ 
responses, we replicated experiment 1 with 30 additional adults on 
MTurk, but made the cost of sampling explicit by requiring partici-
pants to push a button to request each additional sample (for exam-
ple, rather than typing the numeral 10 they had to click the button 
ten times), while still being blind to the content of each sample. 
As expected, participants were in fact sensitive to the cost of each 
additional sample, and the addition of explicit cost led participants 
to sample more conservatively across the board. We again used a 
linear mixed effects model with proportion of coloured balls as a 
fixed effect and participant as a random intercept. The results rep-
licated those in experiment 1: participants’ responses were graded 
with respect to the difficulty of the discrimination, asking for more 
samples for the more difficult discriminations and fewer for the eas-
ier discriminations (χ2(1) = 57.16, P < 0.001), requesting 0.15 ± 0.02 
(s.e.), 95% CI (0.11, 0.19) more balls for each decreasing proportion 
(Fig. 3b). Quantile–quantile plots of model residuals were used to 
verify the normality of the data.

Despite the fact that adults’ sampling behaviour indicates that 
they again considered the cost of sampling, participants’ estimates 
of how many samples to draw for each discrimination do not reflect 
the U-shaped curve predicted by the globally optimal model, and 
continue to appear linear. What other factors might be influencing 
participants to sample in this way? One possibility for this discrep-
ancy is that while the model predicts that people should take almost 
zero samples for the most difficult case, in experiments 1 and 2 
we instructed adults to request a sample for every discrimination 
problem that was presented. This might have led them to make a 
pragmatic assumption that they should sample in every round even 
if in some cases they knew that it would be nearly impossible to be 
certain about the correct answer.
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Experiment 3a. To investigate whether adults have the metacogni-
tive awareness to rationally opt out of the most difficult discrimi-
nations if given the opportunity, experiment 3a closely replicated 
experiment 1 with the addition of one sentence to the end of the task 

instructions: ‘To opt out of this trial, please enter ‘0’.’ Fifty additional 
adults were recruited on Amazon MTurk and tested online.

When explicitly given permission to opt out of each trial, some 
participants took the option to quit while others still requested 
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c, Screenshot of how test questions were presented to adult participants online in experiment 4b to avoid perceptual noise. d, Schematic of the simplified 
three-box task in experiment 5. Participants were presented with puppets and physical boxes filled with small plastic balls in ratios of 60/40, 75/25 and 
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behaviour in experiment 1 tracked the difficulty of discriminations; adults (N = 30) requested 0.37 ± 0.04 (standard error (s.e.), 95% CI (0.28, 0.45) more 
samples for more difficult discriminations (χ2(1) = 66.19, P < 0.001). Red diamonds indicate the mean number of samples requested. Box plots are centred 
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range. b, The number of balls adults requested for each of the ten discriminations in experiment 2, when the cost of sampling was explicit. Participants’ 
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samples in a similar pattern as in experiments 1 and 2. Forty  
percent of participants (20/50) chose to use the quitting option; 
those who quit did so rationally, choosing to quit more often for 
the most difficult discriminations (Fig. 4a). Even when all the ‘0’  
(quitting) responses were removed, adults were sensitive to the dif-
ficulty of the discrimination problem, requesting more samples for 
more difficult discriminations. According to a linear mixed effects 
model with proportion of coloured balls as a fixed effect, and par-
ticipant as a random intercept (χ2(1) = 56.94, P < 0.001), adults 
requested 0.28 ± 0.04 (s.e.), 95% CI (0.21, 0.36) more balls for each 
decreasing proportion, Fig. 4b). Quantile–quantile plots of model 
residuals were used to verify the normality of the data. But how did 
the 60% of participants who chose not to quit determine how many 
samples to request in the more difficult discriminations?

One possibility is that participants chose a threshold of certainty 
that they hoped to attain for each sampling problem, and then 
asked for the number of balls that would be required in each of the 
scenarios to reach that threshold. Although this threshold-based 
model seems to be an intuitive strategy, it predicts drastic exponen-
tial sampling behaviour that does not align with our behavioural 
results (Supplementary Fig. 1). Despite this, the fact that a subset of 
participants knew to give up for the more difficult discriminations 
suggests that they had metacognitive awareness about the cases in 
which they had a lower likelihood of success. Even for other partici-
pants who did not choose to quit, this ability might be reflected in 
a measure of their reported confidence in simulating the sampling 
outcomes in these more difficult cases.

Experiment 3b. To measure participants’ metacognitive awareness 
of their ability to simulate the outcome of each discrimination task, 
experiment 3b again replicated experiment 1, but instead of offering 
participants the option to give up, we added a question after each 
sampling judgement to ask participants how confident they would 
be in picking the correct box if they saw the number of samples they 
had just requested. Participants used a slider to indicate their confi-
dence between 0 (not confident at all) and 100 (extremely confident), 
with additional labels at 25 (slightly confident), 50 (moderately con-
fident) and 75 (very confident). After z-score normalization, partici-
pants’ confidence ratings were only positive for the relatively easier 
discriminations (70/30 to 95/5), suggesting that although partici-
pants’ sampling tracked the difficulty of each discrimination, they 
were also aware that their ability to succeed in the task would not be 
constant across the different discriminations (Fig. 4c).

Experiment 4a. In addition to having lower confidence in the 
more difficult discrimination problems, the perceptual nature of 
our stimuli may have also affected participants’ sampling behav-
iour. Previous research has suggested that perceptual estimations 
of proportion are often distorted, and can affect decision-making 
reliant on these stimuli (see ref. 41 for review). To investigate this in 
the context of our specific stimuli, we ran an experiment in which 
we asked adult participants (N = 100) to estimate the proportion of 
coloured balls in each of the ten different distributions used in this 
study. Participants were shown the same images of pairs of boxes 
of varying proportions as in experiments 1–3, but each image was 
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Fig. 4 | ‘Measures of adults’ metacognitive awareness before and after sampling in experiments 3a and 3b. a, Adult participants (N = 50) made rational 
decisions about when to quit, choosing to quit more often for the more difficult discriminations. b, Number of balls adults requested for each of the ten 
discriminations in experiment 3a with all instances where adults sampled zero balls (that is, chose to quit) removed. Participants’ sampling behaviour 
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only shown for 2 seconds before it disappeared so participants could 
not simply count the number of coloured balls. After each image 
was shown, participants were asked to estimate the proportion of 
coloured balls in the top box of the set. Participants’ estimates were 
both closer to the true proportions and less variable as the propor-
tion of coloured balls increased and the boxes became easier to dis-
tinguish from each other (Fig. 5a).

Perceptual noise model. In response to these findings, we modified 
the globally optimal model to use the means and standard deviations 
from the participants’ estimates rather than the true proportions. 
The model structure remained the same, but for each discrimina-
tion problem, 100 samples of p were sampled from a distribution 
with the mean and standard deviation of the participants’ estimates 
of the proportions on that trial, truncated so that P > 0.5. Each of 
these 100 P values was then used to generate predictions for the 
number of samples to draw for the corresponding discrimination 
problem, which were then averaged to obtain a single model pre-
diction. The addition of this ‘perceptual noise’ flattened the curve 
of the model prediction and successfully captured the linear shape 
of the human judgements in experiment 1 (with a fit cost of 0.0024 
and a root-mean-square error (r.m.s.e.) of 3.93), experiment 2 with 
an additional cost of sampling (fit cost of 0.0091, r.m.s.e. = 1.99), as 
well as the sampling behaviour of participants in experiment 3 after 
removing the trials in which participants quit (fit cost = 0.0027, 
r.m.s.e. = 2.97) (Fig. 6a–c). This adjusted model offers a better 
fit overall than the model that does not include perceptual noise 
(experiment 1 r.m.s.e. = 3.88, experiment 2 r.m.s.e. = 4.10, experi-
ment 3 r.m.s.e. = 3.75).

Experiment 4b. To further investigate the influence of perceptual 
noise on participants’ sampling decisions, we ran a study with 30 addi-
tional adults modelled after experiment 1, but instead of representing 
the proportion of coloured and white balls inside the box by showing 
participants an image of the front of the box with the coloured balls 
visible, we presented them as percentages in written text (Fig. 2c).  

Simply by removing the visual nature of the stimuli, participants’ 
sampling behaviour aligned with the exponential curve predicted by 
the no-cost model, rather than linearly as they had been before. We 
tested this by fitting a linear model to participants log-transformed 
ratings across the ten different proportions (β = −0.03, P < 0.001, 
adjusted R2 = 0.28, 95% CI = (−0.04, −0.02), Akaike information cri-
terion (AIC) = 702.33) as well as to the raw data (β = −0.66, P < 0.001, 
adjusted R2 = 0.25, 95% CI = (−0.80, −0.54), AIC = 2,541.29). These 
results lend further support to the hypothesis that the linearity of 
adults’ sampling in the previous experiments is influenced by the 
perceptual nature of our stimuli (Fig. 5b).

Experiment 5 and replication. The results of experiments 1–4 indi-
cate that adults can successfully adjust their sampling behaviour on 
the basis of the difficulty of the discrimination problem, that they 
were sensitive to small changes in the cost of sampling and that they 
had the metacognitive awareness to know when the problem was 
too difficult to solve and it was a better choice to quit. In experi-
ment 5, we ask whether 6- to 8-year-old children are also able to 
quantitatively track the discrimination difficulty of a problem and 
adjust their information gathering in response. We focus on this age 
range because (as reviewed above), the literature suggests that these 
are among the youngest ages at which children demonstrate com-
petency in tasks requiring metacognitive monitoring of the gaps 
in their knowledge as well as control and planning of their future 
actions to minimize those gaps. In experiment 5 and its preregis-
tered replication (osf.io/uafcq) we tested children’s abilities in both 
a simplified version of the adult task and in a full quantitative task 
that very closely followed the structure of experiment 1.

Three inclusion criteria were used in both experiment 5 and the 
replication. First, children had to determine which of two popula-
tions (80/20 or 20/80 pink to white balls) a sample of ten pink and 
three white balls was drawn from. Next, children were shown three 
pairs of boxes (pairs presented in random order) with coloured and 
white balls in ratios of 60/40, 75/25 and 90/10 and asked which of 
the three pairs of boxes would be the easiest to tell apart from each 
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other and which would be the hardest, without any discussion of 
how sample size might relate to the difficulty of the discrimina-
tion problem (Fig. 2d). Finally, before children moved on to the full 
quantitative task they were asked to name three different numbers 
between one and 100 and then asked which of those numbers were 
the highest. Children who failed any of these three inclusion criteria 
were excluded from analysis.

Children were first introduced to two plastic boxes, one filled 
with an 80/20 ratio of pink to white balls and one with a 20/80 ratio 
of pink to white balls. The experimenter placed the boxes behind a 
barrier and shuffled them from side to side. The barrier was then 
separated into two pieces with one box hidden behind each so that 
the child could tell that the experimenter was only pulling samples 
from one of the boxes, but could not tell which box was behind 
which barrier. The experimenter then took balls one at a time from 
the box and placed them into a tube without revealing the colour 
of the balls. When the tube was filled, the experimenter revealed 
that the tube contained ten pink balls and three white balls and 
the child was asked from which population the sample originated. 
Three puppets were then introduced, each with pairs of boxes in 
60/40, 75/25 and 90/10 proportions presented in a random order. 
To make sure children understood the structure of the game, they 
were then asked which of the three pairs of boxes would make the 
guessing game the hardest and which would make the game the 
easiest, without any discussion about how sample size might relate 
to difficulty.

After passing these inclusion criteria, children began the test 
trial. Children were shown a set of printed images representing ten 
different sized tubes, ranging from one that could hold only a single 
ball to one that could hold ten balls (Fig. 2d). The experimenter told 
the children that they were going to play the same game with each 
of the three puppets, but that they could choose which size tube to 
use for each game so that once the tube was filled, they would be 
able to figure out which box the balls had been sampled from. She 
then asked the children to assign one of the ten tubes to each game.  
To encourage children to think about the contrast between the dif-
ferent games, each tube could only be chosen once.

In both experiment 5 and its replication, most children correctly 
ranked the three discriminations, asking for more samples from 
the most difficult discrimination and the fewest from the easiest 
(experiment 5, Friedman chi-squared 15.25; P < 0.001, replication, 
Friedman chi-squared 17.333, P < 0.001, Fig. 7a,b, respectively). 
There was no effect of age on choosing the correct rank order  

experiment 5 estimate 0.75, z value = 1.187, P = 0.235, 95% 
CI = (−0.44, 2.12), effect size = 0.32, replication: estimate 1.39, z 
value = 1.871, P = 0.06, 95% CI = (0.13, 3.14), effect size 0.36, by 
binomial regression). Fifteen of 24 children (62.5%) chose the cor-
rect rank order in experiment 5; 17 of 24 children (70.8%) chose the 
correct rank order in the preregistered replication.

After children completed the task with the three sets of boxes, 
the same group of children were then given the full quantitative task 
similar to the task completed by adults. To continue to the next task, 
children were asked to list three numbers that fall between 1 and 
100 and identify which of the numbers they had listed was the larg-
est to ensure that they understood the size of the samples that they 
requested.

Children were then told that there were even more different 
sets of boxes that they could make guesses for. The tasks transi-
tioned from real physical boxes and balls to digital images pre-
sented on a laptop. Rather than assigning a tube of a certain size, 
children were asked to say exactly how many balls each character 
would need on each trial to figure out which box the sample had 
been drawn from, between 1 and 100 (children’s responses were 
anchored to avoid responses such as ‘a truck full’ or ‘a gajillion’). 
The question was repeated for each of the ten different discrimi-
nation tasks, ranging from the most difficult (51/49) to the easiest 
(95/5), in a pseudo-random order. Otherwise, the task was identi-
cal to the adult task except that it was administered by the experi-
menter rather than online and instead of typing the number or 
tapping a key to request a sample, children were asked to say the 
number out loud.

Despite much larger variance in children’s responses compared to 
adults (and the anchoring on 1 to 100 samples) 6–8-year-olds were 
sensitive to the difficulty of discriminations across the ten different 
contrasts in both experiment 5 and its replication, (χ2(1) = 39.79, 
P < 0.001) and χ2(1) = 52.09, P < 0.001), respectively, choosing to 
sample 0.72 ± 0.11 (s.e.), 95% CI (0.5, 0.93) more balls for each 
decreasing proportion in experiment 5 and 0.78 ± 0.10 (s.e.), 95% 
CI (0.58, 0.98) more in the replication, according to a linear mixed 
effects model with proportion as a fixed effect and participant as a 
random intercept, Fig. 7c,d, respectively). Quantile–quantile plots 
of model residuals were used to verify the normality of the data. 
Children’s sampling behaviour was also successfully captured by 
the perceptual noise model in both experiment 5 and its replication 
(fit cost 0.0009, r.m.s.e. 10.39 and fit cost 0.0004, r.m.s.e. = 10.97, 
respectively, Fig. 8a,b, respectively).
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Discussion
Considerable previous work suggests that even infants represent 
the relationship between samples and populations5,8,39, and in this 
sense are ‘intuitive statisticians’. Building on this, the current work 
suggests that children’s intuitive statistical reasoning can extend 
far beyond this ability. Here we demonstrate that both adults and 
children can represent the probabilistic relationships between sam-
ples and populations metacognitively, judging the relative amount 
of evidence required to distinguish easier and harder discrimina-
tion problems in the absence of any specific information about the 
sample being drawn. Children and lay adults intuitively recognize 
something comparable to the kind of inference we make in science: 
that the more overlap there is between populations, the more statis-
tical power it takes to distinguish them. While previous work has 
shown that even young children engage in online monitoring and 
control22,42, the current study demonstrates that children can repre-
sent their uncertainty a priori and adjust their behaviour quantita-
tively in response to gradations in problem difficulty.

Across each of our experiments, both lay adults and children 
represented the relative difficulty of discriminating populations 
and recognized that larger samples were required to discriminate 
populations with greater overlap. In experiment 1, adults were able 
to track the difficulty of statistical discriminations and adapt their 
sampling behaviour in response. Nonetheless, their behaviour did 
not align with the U-shaped globally optimal model of sampling 

described in previous work40. In experiment 2, we confirmed that 
this was not because adults were insensitive to the cost of sampling; 
adults requested fewer samples across the board when costs were 
explicit. However, they still asked for more samples than predicted 
by the model for more difficult discriminations. Arguably, this 
might have been because adults did not realize they could ask for 
zero balls (that is, ‘quit’) on the most difficult problems. When given 
explicit permission to quit (experiment 3) participants that decided 
to quit did so for the most difficult discriminations, which aligned 
with their self-reported confidence in making the discriminations. 
Participants felt confident in their ability to succeed in the easier 
discriminations (between 70/30 and 94/5), but did not feel confi-
dent for the more difficult discriminations (51/49 to 65/35).

One puzzling aspect of participants’ behaviour in experiment 3 
is why, when given the explicit option of quitting on the hardest 
discrimination problems, 40% of participants elected to do so and 
60% did not. Here, we asked separate groups of participants either 
to sample or to quit, or to estimate their confidence when sampling. 
Thus, one possibility is that the group of participants who chose 
to quit were (appropriately) less confident in their ability to make 
estimates from the sample than those who did not. Alternatively, 
those who quit might have placed a higher estimate on the cost of 
sampling, or at least the combined cost a sample large enough to 
be informative. It is also possible that other temperamental factors 
(a dislike of quitting in general on characterological grounds, or 
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Fig. 7 | Children’s sampling behavior in experiment 5 and its replication. a,b, In experiment 5 (a) and its replication (b), children requested the largest 
sample for the 60/40 discrimination, the smallest sample for the 90/10 discrimination and a sample in between those values for the 75/25 discrimination, 
suggesting that they modulated their information seeking on the basis of the difficulty of the task at hand (N = 25 in each experiment 5 and its replication, 
experiment 5 Friedman chi-squared 15.25, P < 0.001, replication: Friedman chi-squared 17.333, P < 0.001). Children who correctly rank-ordered all three 
tasks (15 of 24 in experiment 5 and 17 of 24 in the replication) are highlighted in blue, while other participants are shown in grey. c,d, In both experiment 5  
(c) and its replication (d), 6- to 8-year-olds (N = 24 were sensitive to the difficulty of discriminations across the ten different contrasts, (χ2(1) = 39.79, 
P < 0.001) and χ2(1) = 52.09, P < 0.001), respectively, choosing to sample 0.72 ± 0.11 (s.e.), 95% CI (0.5, 0.93) more balls for each decreasing proportion in 
experiment 5 and 0.78 ± 0.10 (s.e.), 95% CI (0.58, 0.98) more in the replication. Red diamonds indicate the mean number of samples requested. Box plots 
are centred on the median number of samples, with the bounds of each box marking the first and third quartiles and the whiskers extending to 1.5× the 
interquartile range.
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a greater preference for making risky guesses under uncertainty) 
might have motivated some of the participants’ behaviour. Finally, 
in this design participants never actually had to perform the task 
at all; participants were asked to choose a sample but they did not 
need to guess the population. In contexts where there is no pen-
alty for making a wrong guess, and especially in this context where 
they did not have to guess at all, participants may reasonably feel 
that they might as well try something rather than nothing. Future 
research might distinguish the factors that affect quitting behaviour, 
and extend this work to children as well.

In each of experiments 1–3, adults’ sampling behaviour appeared 
to be increasing linearly as the discriminations became more diffi-
cult, while the globally optimal model suggests exponentially larger 
samples would be necessary for the most difficult cases. In experi-
ment 4a we asked adults to estimate the numerical proportion of 
each set of boxes from the visual depictions used in earlier experi-
ments, and then ran the model on those estimated proportions 
rather than on the true proportions. This simple addition changed 
the sampling estimates from exponential to linear. To verify this 
experimentally, in experiment 4b we removed the perceptual factor 
by showing participants the proportion of balls contained in each 
box as text (for example, ‘70% red balls and 30% white balls’) instead 
of as a visual representation of the balls themselves. In this experi-
ment, adults’ sampling reflected an exponential trend, further sup-
porting the impact that perceptual noise had on sampling behaviour 
in the previous experiments. Despite the exponential nature of par-
ticipants’ sampling behaviour in experiment 4b, the number of sam-
ples they requested still does not align with what would be expected 
if they had maintained a fixed confidence threshold across each dis-
crimination (Supplementary Fig. 2).

Another question that stems from our findings is whether there 
are other factors beyond the cost of each sample and perceptual noise 
that might have influenced adults to request a relatively small num-
ber of samples for even the most difficult discrimination problems. 
Previous work42,43 has suggested that people are relatively insensi-
tive to sample size, and in particular, trust that small samples will 
reflect the population they are drawn from more than is warranted. 
While participants in our task were sensitive to relatively small vari-
ations in the ratio of objects when contrasted across populations 
and knew to ask for more information for harder discriminations,  
they drew much smaller samples (consistent with a belief in the 

law of small numbers) than was predicted by the globally optimal 
model. However, adults’ confidence ratings suggested that while 
they might have been biased towards selecting small samples, they 
were not fully misled about their chances of success: they (accu-
rately) expressed very low confidence that they would succeed on 
the most difficult discrimination problems. The interplay between 
the assumption that small samples will be representative of their 
population and rational changes to confidence in the probability 
of success from these small samples is another interesting topic for 
future study.

The current results also extend our understanding of the meta-
cognitive abilities of children in middle childhood. In experiment 5,  
children’s sampling behaviour also tracked the difficulty of each 
discrimination problem, with children requesting more samples 
for the populations with the most overlap. To our knowledge, this 
study is one of very few to quantitatively map the link between chil-
dren’s ability to represent the difficulty of a problem and the amount 
of information they need to solve it38. In contrast to earlier work 
suggesting that school-age children struggle with metacognitive 
tasks such as allocating study time on the basis of their past perfor-
mance32, but consistent with more recent work suggesting relatively 
sophisticated metacognition in young children (for example, ref. 22) 
our findings suggest that young school-age children can represent 
both the difficulty of problems and the amount of information they 
will need to solve them. In the current study, 6 to 8-year-olds were 
able to make proactive, graded judgements about how much infor-
mation they would need to solve a problem, and engaged in both 
metacognitive monitoring and control across fine-grained discrimi-
nations. While this demonstrates impressive metacognitive abilities, 
children were more likely to oversample in the easier discrimina-
tion cases, leading to more divergence from model predictions than 
adult sampling.

In contrast to these findings, one recent study that assessed how 
children and adults chose to sample information to determine the 
location of a target object found that children undersampled with 
respect to their ideal learner model44. A few important differences 
may have led to these disparate results. In the Jones et al. task, chil-
dren sampled possible locations one at a time, and could see the 
explicit cost of each additional sample as well as the explicit reward 
they would get if they could identify the object’s correct position. 
In the current study, the cost of sampling was implicit, and rather 
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than being able to monitor cost and confidence online, children 
were asked to make a single, proactive judgement about how many 
samples they would need for each discrimination. Relative to adults, 
children may weigh costs more heavily when they have to collect 
samples one by one but underestimate costs when estimating the 
total amount of information needed all at once. Recall also that 
children in our task were anchored on a scale from 1–100 samples. 
Again, relative to adults, sampling one at a time may have led chil-
dren to stop early but anchoring children on a range extending all 
the way to 100 may have induced them to consider large samples. 
Future work might explore how children’s estimation of cost might 
differ in proactive versus online sampling within the same task as 
well as how anchoring affects children’s sampling behaviours.

While the current task provided a context in which we could 
precisely quantify how sampling behaviours changed with task dif-
ficulty, everyday decision-making often lacks such clear and con-
crete displays of information. In less controlled environments, we 
are forced to more roughly assess and estimate likelihoods when 
choosing to act. In the current study, target populations and their 
inverse pairs were also presented in succession, giving participants 
the additional possible benefit of seeing related problems in the con-
text of those that differed only in their relative difficulty. This rela-
tive ease may limit the applicability of these findings to real-world 
estimation problems. Future work could ask how participants 
might respond to discriminations such as those used in the cur-
rent study when presented in isolation, as well as whether people’s 
ability to track how much information they need extends to more  
diverse domains.

Collectively, the current results indicate that adults and chil-
dren as young as six distinguish easy and difficult discrimination 
problems, and can make sophisticated graded inferences about 
the number of samples they need as discrimination problems 
become more difficult. Beyond the impressive ability to simulate 
how much information we might need to solve a problem, the 
current findings suggest that this complex metacognitive ability 
insensitive to the cost of sampling and the modality in which we 
perceive the population. Our findings also suggest that we are able 
to judge which subset of problems we can complete with confi-
dence, and have the capacity to use this information to decide 
how to act (or whether to quit) on tasks that extend past our cur-
rent abilities. Future work might further explore the development 
of our metacognitive abilities across different tasks and domains 
and the ways that they inform and direct our information  
seeking behaviour.

Methods
Participants. This research complied with all ethical regulations of and was 
approved by the Committee on the Use of Humans as Experimental Subjects at the 
Massachusetts Institute of Technology. Informed written consent (for adults and 
parents of children who participated) and verbal assent (for children) was obtained 
from all participants.

Computational modelling. Models were written and run using Python. Model 
predictions were fit to both adults’ and children’s behavioural data in R by finding 
the value of the cost of sampling c that minimized the sum of squared errors 
between the model’s predicted number of samples and the number of samples 
requested by participants.

Experiment 1. G*Power was used to estimate that with an effect size of 0.4 (based 
on pilot testing) to reach a power level of 0.9 we would need a sample size of 
N = 30. Thirty-three adults were recruited on Amazon Mechanical Turk and tested 
online. Participants were required to be above 18 years of age to participate, but 
data on exact age and sex were not collected for online participants. Participants 
were compensated according to minimum wage in Massachusetts for the average 
time spent on the task. Three participants were excluded from analysis for failing 
to correctly answer an attention check, for a final sample size of N = 30.

Experiment 2. Thirty-two adults were recruited on Amazon Mechanical Turk 
and tested online. Participants were required to be above 18 years of age to 
participate, but data on exact age and sex were not collected for online participants. 

Participants were compensated according to minimum wage in Massachusetts for 
the average time spent on the task. Two participants were excluded from analysis 
for failing to correctly answer an attention check, for a final sample size of N = 30 
(consistent with experiment 1).

Experiment 3a. For experiment 3, we increased the sample size because allowing 
participants to enter ‘0’ would mean we would have fewer data points to analyse 
and we wanted to be able to have similar power with potentially fewer data 
points per participant. Fifty-four adults were recruited on Amazon Mechanical 
Turk and tested online. Participants were required to be above 18 years of age to 
participate, but data on exact age and sex were not collected for online participants. 
Participants were compensated according to minimum wage in Massachusetts for 
the average time spent on the task. Three participants were excluded from analysis 
for failing to correctly answer an attention check, and one was excluded for failing 
to answer all test questions, for a final sample size of N = 50.

Experiment 3b. Sixty-one adults were recruited on Amazon Mechanical Turk 
and tested online. Participants were required to be above 18 years of age to 
participate, but data on exact age and sex were not collected for online participants. 
Participants were compensated according to minimum wage in Massachusetts for 
the average time spent on the task. Eleven participants were excluded from analysis 
for failing to correctly answer an attention check, for a final sample size of N = 50 
(consistent with experiment 3a).

Experiment 4a. One hundred and forty-one adults were recruited on Amazon 
Mechanical Turk and tested online. Participants were required to be above 
18 years of age to participate, but data on exact age and sex were not collected for 
online participants. Participants were compensated according to minimum wage 
in Massachusetts for the average time spent on the task. Forty-one participants 
were excluded from analysis for failing to correctly answer an inclusion question 
(successfully reporting that a box with 100% coloured balls contained a proportion 
of 100% and not any other proportion), for a final sample size of N = 100.

Experiment 4b. Sixty-six adults were recruited on Amazon Mechanical Turk 
and tested online. Participants were required to be above 18 years of age to 
participate, but data on exact age and sex were not collected for online participants. 
Participants were compensated according to minimum wage in Massachusetts 
for the average time spent on the task. Twelve participants were excluded from 
analysis for failing to correctly answer an attention check. Due to the fact that 
this experiment was less visually interesting than the previous experiments, an 
additional check question was included in which participants saw a set of boxes 
with 100% of one colour of balls and 0% of the other, and were excluded if they did 
not request a single sample for that trial. Twenty-four participants were excluded 
on the basis of this check question for a final sample size of N = 30 (consistent with 
experiments 1 and 2).

Experiment 5 and replication. With a goal of reaching a power level of 0.9 
for the Friedman’s test used for the ranking task, we performed simulations on 
bootstrapped samples drawn from pilot data. A sample of 24 participants was 
sufficient to reach this threshold, as recorded in a preregistration (osf.io/uafcq, 
registered July 2018). Children were recruited from an urban children’s museum 
and tested in a private room off the museum floor; 27 children were recruited 
for experiment 5. Participants were given a selection of stickers to thank them 
for participating. Data collection was not performed blind to the order of the 
discrimination problems presented to the children. One was excluded from 
analysis due to a camera malfunction that prevented the data from being coded, 
one due to parent-reported verbal disability and one for failure to identify the 
easiest and most difficult discriminations in the simplified task for a final N = 24 
(15 female, mean age 7; 6; range 6; 0–8; 11). For the replication, an additional 
sample of 30 children were recruited, with four excluded on the basis of their 
failure to identify the easiest and most difficult discriminations in the simplified 
task, and two who failed to complete the task with a final sample of N = 24 (15 
female, mean age 7; 2; range 6; 1–8; 10).

Materials. For experiments 1–4, the testing materials were presented using the 
online survey platform Qualtrics and were run asynchronously online.

For experiment 5, four cloth hand puppets (pink, red, blue and green) were 
used. Four clear plastic boxes (12 × 12 × 14 cm3) were lined with paper that matched 
the colour of most of the balls inside (coloured paper for the characters’ boxes, 
white for the experimenter’s) on all sides except the front so that participants could 
see the ratio of coloured to white plastic balls (2 cm diameter) inside. A barrier 
was glued into place so that the first two layers of plastic balls were held in place 
in the same location for all participants and it looked as though the entire box was 
filled. For the set of boxes used during the training trial, two additional hidden 
compartments were built behind the barrier of each box to hold the right number 
and colour of balls needed to place into the tube during the warm-up game so 
that the experimenter could close her eyes but still sample a consistent sample 
across participants. The cardboard tube used during training (3 cm diameter, 
26 cm in height) was cut vertically so that one side could be covered with clear 
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packing tape to create one opaque side and one clear side. During sampling, two 
white cardboard barriers (each 46 × 36 cm) were used to cover each of the boxes 
and block the experimenter’s hands while sampling balls from the box into the 
tube. For the simplified task, laminated images of the different sizes of tubes that 
children could choose from (2 cm width, varying in height by how many balls 
it could contain) were presented on a plastic tray (25 × 38 cm), and during the 
full quantitative task, digital images of the ten sets of boxes were presented using 
Keynote on a 13 inch laptop screen.

All children were tested in a private testing room in a children’s museum 
with both the experimenter and the parent or guardian present, with the child 
sitting across from the experimenter at a small child-sized table. All sessions were 
recorded and children’s tube assignment and verbal responses were coded from 
video by an experimenter blind to trial order.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on the Open Science 
Foundation project page found at https://osf.io/gdp68. Source data are provided 
with this paper.

Code availability
Code used for data analysis is available from the corresponding author  
upon request.
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