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Abstract— Hill functions are often used in stochastic models
of gene regulation to approximate the dependence of gene
activity on the concentration of the transcription factor which
regulates the gene. It is incompletely known, however, how
much error one may incur from this approximation. We inves-
tigate this question in the context of transcriptional networks
(TN). In particular, under the assumption of rapid binding and
unbinding of transcription factors with their gene targets, we
bound the approximation error associated with Hill functions
for TNs in which each transcription factor regulates a gene
in a one-to-one fashion and each regulated gene produces a
single transcription factor. We also assume that transcription
factors do not homodimerize or heterodimerize and that each
gene only has a single transcription factor binding site. These
results are pertinent for the modeling of TNs and may also
carry relevance for more general biological processes.

I. INTRODUCTION

A transcriptional network (TN) is a type of chemical reac-
tion network (CRN) which consists of transcription factors
(TFs) and genes (Figure 1a), where the genes produce TFs
and the TFs regulate the genes’ activities, that is the rate at
which a gene produces a TF, via reversible binding [1].

In deterministic models of gene regulation, one often
exploits for model reduction the separation between the
timescale of reversible binding of TFs with genes and the
timescale of production and decay of TFs. Per singular
perturbation theory, this separation justifies approximation
of the TF-gene complex concentration by its steady state
value, an approximation referred to as the quasi-steady state
approximation (QSSA) [2]–[4]. One can use this QSSA to
determine how the activity of a gene depends on the total
concentration of the TF that regulates it. When the binding
strength between TFs and genes is sufficiently weak, this
dependence takes the form of a Hill function [3].

Hill functions are also often used to approximate this
same dependence in the stochastic setting. Previous work,
however, has demonstrated that such an approximation can
result in significant errors in the number of TFs produced by
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Fig. 1. Visualization of most general TNs via bipartite directed graphs.
(a) A graph of a general TN. An edge from gene G to TF P indicates that
G produces P. An edge from a TF P to a gene G indicates that P regulates
G by changing the rate at which G produces TFs. An “→” arrow from P
to G indicates that G produces more TF (positive regulation) when bound
than unbound, and a “ ⊥” arrow indicates the opposite (negative regulation).
Unregulated genes, those that are not regulated by any TF, are shown with
dashed borders. (b) A graph of the special class of TNs that we consider
in this work. Unlike Figure 1a, each TF regulates at most one gene, each
regulated gene produces only one TF, and no two different TFs regulate the
same gene.

a gene, even when there is a separation of timescales between
reversible binding and TF production and decay [5]–[7].

Another widely used approach for reducing stochastic
models of CRNs with slow and fast reactions is to apply
a stochastic analogue of the QSSA, called the stochastic
QSSA (sQSSA) [8]–[12]. The sQSSA is the approximation
that immediately after a slow reaction of the CRN occurs,
the fast reactions of the CRN fire enough times to make the
probability distribution of the CRN close to the stationary
distribution of a “virtual” CRN which only includes these
fast reactions [8]. For some CRNs (such as those with a finite
number of states), one can use singular perturbation theory
or related techniques to prove that the sQSSA produces an
accurate reduced model for sufficiently rapid fast reactions
[13]–[18]. However, the propensity functions of the reduced
model are typically complicated in form [19]–[21]. As a
result, for situations such as CRN design, working with the
Hill function models may be more convenient thanks to their
simpler propensity functions.

In [5,6,22], the authors show that in the limit of weak
binding, models of various CRNs using the Hill function (or
in [22] a modified Michaelis-Menten function) are accurate
when timescale separation between reversible binding and
protein production is sufficiently large. It is still not clear,
however, how much error one may incur using Hill functions
in TN models that do not assume weak binding of TF to the
target genes.



In this work, we provide for a restricted class of TNs
an explicit bound on the error (measured in total variation
distance) between the distributions of the full model and a
reduced model using Hill functions, in the limit of rapid
binding and unbinding of TFs with genes, without assuming
weak binding. The class of TNs we investigate are those of
the form in Figure 1b, namely those in which each TF can
only regulate the activity of one gene, each regulated gene
can only produce a single TF, and no two TFs regulate the
same gene. We also assume the TFs do not homodimerize or
heterodimerize and that each gene has only one TF binding
site. To obtain our results, we first show the sQSSA is indeed
accurate for this class of TNs, and thereafter we apply facts
about the moment dynamics of CRNs [23] and results on
the finite state projection algorithm [24,25] to the reduced
model as to derive our error bound.

II. MATHEMATICAL BACKGROUND

We use N, Z, Z+, and R to respectively denote the
set of natural numbers (excluding 0), integers, non-negative
integers, and real numbers. We use Zn

+ (Zn) to denote row
vectors with n non-negative integer (integer) entries. We
define 1S(x) to equal 1 if x ∈ S and 0 otherwise.

A. Continuous Time Markov Chains

A (minimal) Continuous Time Markov Chain (CTMC) is
a random process Y = {Y (t)}t≥0 whose sample paths at
each time t > 0 take a value in some countable set Y ∪{∞}
with the property that the probability the process will be in
a given state at a given future time is entirely determined by
its present state [26]. Y is called the state space of Y .

The jump chain Ỹ0, Ỹ1, . . . of Y is the sequence of states
which Y visits, with Ỹ0 being the initial state. The amount
of time Y spends in state Ỹ k−1 between the (k − 1)th and
kth state transition is the kth holding time, Sk. The explosion
time of Y is defined by T∞

Y :=
∑∞

k=1 Sk. Following its
explosion time (and only following this time), Y is defined
to be in the special state ∞ (this is the meaning of minimal).
Y is nonexplosive if T∞

Y = ∞ almost surely.
In agreement with the assumptions of the references [25]–

[27] we invoke in our proofs, all CTMCs in this work are
assumed to be minimal and have right-continuous trajectories
with finite left-limits (again see [26] for details).

B. Infinitesimal Generators and Stationary Distributions

An infinitesimal generator is a function Q : Y × Y → R
such that for each y, y′ ∈ Y , 0 ≤ −Q(y, y) < ∞, y ̸=
y′ implies Q(y, y′) ≥ 0, and

∑
y′′∈Y Q(y, y′′) = 0. Each

minimal CTMC Y with state space Y is associated with an
infinitesimal generator Q : Y × Y → R that completely
specifies the likelihood the CTMC will have a given state at
a given future time [26].

Two states y, y′ in Y communicate (with respect to Q) if
there is a nonzero probability that a CTMC with infinites-
imal generator Q and initial state y will have state y′ at
some point in the future and vice versa. Communication
is an equivalence relation on the set Y , partitioning it into

communicating classes (of Q). A communicating class C
is closed if the restriction of Q to the domain C × C is
itself an infinitesimal generator (i.e. if once in C the CTMC
cannot leave this set). A stationary distribution of Q is a
probability distribution π : Y → [0, 1] such that for all
y ∈ Y ,

∑
y′∈Y π(y′)Q(y′, y) = 0.

C. Stochastic CRNs

We define a stochastic CRN (SCRN) S to be an (ordered)
set of chemical species S1, . . . ,Sn, a state space Y ⊂ Zn

+,
and a finite collection of reactions (indexed by r) of the
form

∑n
i=1 ar,iSi →

∑n
i=1 br,iSi (ar,i, br,i ∈ Z+), each with

a propensity function υr : Y → [0,∞) and stoichiometry
vector ur := (br,1−ar,1, . . . , br,n−ar,n), such that for each
r, ur ̸= 0, and for each y ∈ Y , if y+ur /∈ Y then υr(x) = 0.

For each y0 ∈ Y , S has a naturally associated CTMC Y
with state space Y , initial state y0, and infinitesimal generator
Q : Y × Y → R given by

Q(y, y′) =
∑

r
υr(y)1{y′}(y + ur),

for y ̸= y′. We define this infinitesimal generator to be the
one determined by the set of stoichiometry vector-propensity
pairs {(ur, υr)}r. We call Q the infinitesimal generator of
S and refer to the communicating classes and stationary
distributions of S as those inherited from Q.

D. Total Variation Distance

Given two random variables Y and Y ′, both taking values
in Y , we define their total variation distance (TVD) to be
dTV (Y, Y

′) = 1
2

∑
y∈Y |P(Y = y)− P(Y ′ = y)|.

III. PROBLEM SETTING

We first describe the “full” SCRN corresponding to the
system that we wish to approximate, specifically a TN of the
form visualized in Figure 1b. We next define the “reduced”
SCRN corresponding to the reduction of the full SCRN via
the sQSSA. Finally, we introduce the “Hill” SCRN which
has the same reactions and chemical species as the reduced
SCRN, but uses Hill functions in the propensities. Our goal
is to bound the TVD between the CTMCs associated with
the full SCRN and the Hill SCRN, under the assumption of
rapid binding and unbinding of genes and TFs. We do so
by first showing the TVD between the CTMCs associated
with the full and reduced SCRNs vanishes in the limit of
rapid reversible binding. We then bound the TVD between
the CTMCs corresponding to the reduced and Hill SCRNs.

A. Full SCRN

Fix n ∈ N, and for each i ∈ {1, . . . , n} fix some ḡi ∈ Z+

representing the total number of copies of gene i. Define
X := {(p1, . . . , pn, c1, . . . , cn, g1, . . . , gn) ∈ Z3n

+ : ∀i gi +
ci = ḡi}. Define X̄ := Zn

+.
For convenience, throughout the rest of this text,

the variable x always represents a vector of variables
(p1, . . . , pn, g1, . . . , gn, c1, . . . , cn) which belongs to X , and
the variable x̄ always represents a vector of variables
(p̄1, . . . , p̄n) which belongs to X̄ . With this notation in mind,



let T : X → X̄ be defined by T(x) 7→ (p1 + c1, . . . , pn +
cn). Conceptually, T(x) represents the total (free + bound)
number of TFs of each species associated with state x.

For each i ∈ {1, . . . , n}, let fi and bi be positive scalars,
and let αi, βi, κi, and γi be non-negative. Let Ω = VCNA >
0, where VC represents the cell volume and NA is the
Avogadro constant. Fix σ : {1, . . . , n} → {1, . . . , n}, which
represents the map from each gene Gi to the TF Pσ(i) which
Gi produces.

Now, for each ϵ > 0, consider the SCRN Sϵ with chemical
species P1, . . . ,Pn,G1, . . . ,Gn,C1, . . . ,Cn, state space X ,
and the following reaction-propensity pairs described by
mass-action kinetics for all i ∈ {1, . . . , n}:

Pi + Gi → Ci, υf,i,ϵ(x) =
1

ϵ

fi
Ω
pigi; (1a)

Ci → Pi + Gi, υb,i,ϵ(x) =
1

ϵ
bici; (1b)

Ci → Ci + Pσ(i), υα,i(x) = αici; (1c)
Gi → Gi + Pσ(i), υβ,i(x) = βigi; (1d)

∅ → Pi, υκ,i(x) = Ωκi; (1e)
Pi → ∅, υγ,i(x) = γipi; (1f)

Ci → Gi, υγ′,i(x) = γici. (1g)

Note that for notational simplicity, we do not explicitly
include the unregulated genes in the above model. We instead
use (1e) to model the production of TF Pi from the set
of unregulated genes. With reference to Figure 1(b), if we
denote the unregulated genes in the TN by Gu

1 , . . . ,Gu
s with

respective copy numbers ḡu1 , . . . , ḡ
u
n, then κi =

∑s
r=1 κi,r ḡ

u
r ,

where κi,r is the molar production rate of Pi per copy of gene
Gu

r . Note also that ϵ is inversely related to the speed of the
binding and unbinding reactions, so we will ultimately be
interested in the behavior of this SCRN as ϵ approaches 0.

Fix x0 ∈ X . For each ϵ > 0, let Xϵ be the CTMC
associated with S having initial state x0.

B. Reduced SCRN

We first define a “fast subsystem” SCRN R, with chemical
species P1, . . . ,Pn,G1, . . . ,Gn,C1, . . . ,Cn, state space X ,
and the following reactions and propensities for all i ∈
{1, . . . , n}:

Pi + Gi → Ci, υf,i(x) =
fi
Ω
pigi;

Ci → Pi + Gi, υb,i(x) = bici.

Thus R consists of only the binding and unbinding reactions
of the full network.

For each x̄ ∈ X̄ , let Ex̄ = {x ∈ X : Tx = x̄}. In other
words, if we write x̄ as (p̄1, . . . , p̄n), Ex̄ is the set of states in
X where the total (free + bound) count of each TF species i
is p̄i. E := {Ex̄ : x̄ ∈ X̄} is the collection of communicating
classes of R. Since each such communicating class is finite
and closed (binding and unbinding does not change total TF
counts), for each x̄ there is a unique stationary distribution
πx̄ : X → [0, 1] of R which is supported on Ex̄ (see
Theorem 3.5.2 in [26]).

We define the reduced SCRN S̄ as having chemical
species P̄1, . . . , P̄n, state space X̄ , and the following reaction-
propensity pairs (for all i ∈ {1, . . . , n}):

P̄i → P̄i + P̄σ(i), ῡ+,i(x̄) = αiEW∼πx̄
[Ci] + βiEW∼πx̄

[Gi];
(2a)

∅ → P̄i, ῡ+′,i(x̄) = Ωκi; (2b)
P̄i → ∅, ῡ−,i(x̄) = γip̄i, (2c)

where W = (P1, . . . , Pn, G1, . . . , Gn, C1, . . . , Cn) is a
vector-valued random variable. Note that this SCRN only
involves the TF species, P̄i, without distinction between
whether they are free or bound (we use the overbar to
emphasize this difference from Pi, which refers to the free
TF).

Remark 1. Note that the propensity functions ῡ+,i(x̄) are
weighted averages of υα,i(x) + υβ,i(x) over x ∈ Ex̄, with
the weights corresponding to the stationary distribution of
the fast subsystem R that is supported on Ex̄. Similarly,
ῡ+′,i(x̄) is the weighted average of υκ,i(x), and ῡ−,i(x̄) is
the weighted average of υγ,i(x) + υγ′,i(x). In light of these
facts, this SCRN may be viewed as the reduced model for the
full SCRN via application of the sQSSA (see [8] for more
details), where we make a change of coordinates so that we
only keep track of total TF (a “slow” species).

Let X̄ be the CTMC associated with S̄ having initial state
x̄0 := Tx0.

C. Hill SCRN

We define another SCRN S̄H with chemical species
P̄1, . . . , P̄n, state space X̄ , and the following reaction-
propensity pairs (for all i ∈ {1, . . . , n}):

P̄i → P̄i + P̄σ(i), ῡ
H
+,i(x̄) =

αiḡip̄i/Ω
p̄i/Ω +Ki

+
βiḡiKi

p̄i/Ω +Ki
; (3a)

∅ → P̄i, ῡ
H
+′,i(x̄) = Ωκi; (3b)

P̄i → ∅, ῡH
−,i(x̄) = γip̄i, (3c)

where for each i, Ki := bi/fi. The expressions αiḡi
p̄i/Ω

p̄i/Ω+Ki

and βiḡi
Ki

p̄i/Ω+Ki
are the Hill functions for the TF-bound and

TF-unbound gene activites, respectively.
Let X̄H be the CTMC associated with S̄H having initial

state x̄0.

IV. MAIN RESULTS

Our first lemma states that our CTMCs are nonexplosive.
The next lemma states that the joint probability distributions
of total TF counts of each species at a given time are identical
between the full SCRN and the reduced SCRN in the limit
of rapid binding and unbinding between TFs and genes. In
other words, the sQSSA indeed produces an accurate reduced
model when ϵ is small.

Lemma 1. For each ϵ > 0, Xϵ, X̄ , and X̄H are nonexplo-
sive.

Proof. See Appendix A.



Remark 2. To interpret the following results, it is helpful
to write Xϵ(t) as (Pϵ,1(t), . . . , Pϵ,n(t), Gϵ,1(t), . . . , Gϵ,n(t),
Cϵ,1(t), . . . , Cϵ,n(t)), X̄(t) as (P̄1(t), . . . , P̄n(t)), and
X̄H(t) as (P̄H

1 (t), . . . , P̄H
n (t)). Then TXϵ(t) = (Pϵ,1(t) +

Cϵ,1(t), . . . , Pϵ,n(t) + Cϵ,n(t)) represents the total counts
of each TF in the full system. Similarly, X̄(t) and X̄H(t)
represent the total TF counts in the reduced SCRN and Hill
SCRN, respectively.

Lemma 2. For all t ≥ 0,

lim
ϵ+→0

dTV (TXϵ(t), X̄(t)) = 0.

Proof. See Appendix B.

The following theorem, which is our main result, bounds
the error between the full SCRN and the Hill approximation-
based SCRN in the same rapid binding and unbinding limit.

Theorem 1. For all t ≥ 0,

lim
ϵ+→0

dTV (TXϵ(t), X̄H(t)) ≤

(n− n01)tmax
i

ḡi|αi − βi|
ḡi/Ω

ḡi/Ω +Ki
, (4)

where n01 is the number of i such that ḡi ∈ {0, 1}.

Proof. See Appendix C.

Our last result states that if each gene only has a single
copy, the Hill approximation error is in fact zero. This result
may be seen either as a corollary of the above, or as an
application of the results of [19] (section 4.1.3) to our system.

Corollary 1. Suppose that for each i, ḡi ∈ {0, 1}. Then, for
all t ≥ 0,

lim
ϵ+→0

dTV (TXϵ(t), X̄H(t)) = 0.

V. EXAMPLES

Fig. 2. Example TNs. (a) Simple regulation network. (b) Incoherent
Feedforward network.

A. Example 1: Simple positive regulation

For our first example, we investigate a simple TN in which
the constituitively expressed TF P1 positively regulates pro-
duction of P2 (Figure 2a). We define the full SCRN by (1a)-
(1g), with n = 2 and σ(1) = 2. Since P2 does not regulate
a gene, ḡ2 = 0. The reduced SCRN and the Hill SCRN are
respectively given by (2a)-(2c) and (3a)-(3c). The probability
distributions for each SCRN were computed and compared
in TVD (Figure 2a). We observe that the TVD bound (4) is
conservative by approximately an order of magnitude. In line
with the findings of [5,6] the marginal probability distribution
of the downstream TF can be significantly different between

the full and Hill approximations when ḡ1 is not much smaller
than ΩK.

Remark 3. At the cost of simplicity, the TVD bound (4) can
be made less conservative by computing the supremal error
between the propensity functions in the reduced system and
corresponding propensities in the Hill approximation (see
Proof of Theorem 1).

Fig. 3. (a) Simulation results for simple positive regulation for six cases:
1. ḡ1 = 3, ϵ = 0.01, b1 = 250/hr; 2. ḡ1 = 3, ϵ = 0.01, b1 = 3/hr; 3.
ḡ1 = 3, ϵ = 1, b1 = 100/hr; 4. ḡ1 = 3, ϵ = 1, b1 = 3/hr; 5. ḡ1 = 1,
ϵ = 0.01, b1 = 100/hr ; 6. ḡ1 = 1, ϵ = 1, b1 = 250/hr. In each case,
t = .1hr, Ω = NA · 1µm3, f1 = 1Ω/hr, γ1 = γ2 = 1/hr, κ2 = 0/hr/Ω,
α1 = 10/hr, β1 = 0/hr, ḡ2 = 0, and κ1 = K, where K := f1/b1/Ω.
We let the initial state be x0 := (p1,0, p2,0) = (ΩK, 0). TVD is compared
between the full SCRN (“Full”) and both the reduced SCRN (“Red.”) and
the Hill SCRN (“Hill”). The TVD error bound (“Bound”) from (4) is also
shown. Note this bound is only guaranteed to hold in the limit of small
ϵ. Probabilities are approximated via the Finite State Projection Algorithm
[24], with a guaranteed absolute computation error of less than 10−4. (b)
Marginal distributions of P2 count in the full and Hill SCRNs for case 1.
(c) Marginal distributions of P2 count in full and Hill SCRNs for case 2.

B. Example 2: Incoherent Feedforward-Like Network

In the next example, we investigate the Hill approximation
for a network modeling an Incoherent Feedforward Loop
(IFFL). Unlike a standard IFFL, however, in this TN the
output TF P4 is produced by two different genes, each
with its own regulator, rather than a single gene that has
two interacting regulators. In particular, the network has
direct positive regulation from P1 to P4 along with indirect
negative regulation from P2 to P4 via P3 (Figure 2b). The
full, reduced, and Hill SCRNs for this circuit are defined
respectively by (1a)-(1g), (2a)-(2c), (3a)-(3c), with n = 4
and σ given by σ(1) = 4, σ(2) = 3, σ(3) = 4.

When properly parameterized, this TN displays robustness
of steady-state mean levels of P4 to disturbances in the
activity of upstream gene Ḡu

1 (Figure 4a). The transient
period during which the adaptation occurs is shown in
Figure 4b. One can use Theorem 1 to investigate whether
the Hill function model reliably reproduces the probability
distribution of the more complicated reduced model during
this transient period. In particular, the TVD error bound at
t = 1 hr is below 10% (Figure 4c).



Fig. 4. Results from simulations of the system in Figure 2b, in the
“on” state (P1 and P2 are produced by Ḡu

1 ) and “off” state (P1 and P2

are not produced). In both cases, the system is initialized in the state
(p1, p2, p3, p4) = (0, 0, 2, 2). For the on state, κ1 = κ2 = 100/Ω/hr,
and for the off state, κ1 = κ2 = 0/Ω/hr. The following other parameters
were used: ḡ1 = ḡ2 = 2, ḡ3 = 1, ḡ4 = 0, b1 = b2 = b3 = 100/hr,
f1 = f2 = f3 = 1Ω/hr, α1 = 1/hr, β2 = 1/hr, α3 = 100/hr,
γ1 = γ2 = 1/hr, Ω = 1µm3, with all other parameters set to 0. (a)
Probability distributions of the downstream TF P4 at 10 hours, for the
on and off states, simulated using for the reduced SCRN (“Red.”) and
Hill SCRN. For both the on and off states, the reduced and Hill SCRNs
are almost identical. The means of the distributions are shown via dotted
lines (they are very close). (b) Timecourse of mean counts of P4 in the
“on” state, with initialization in the (deterministic) “off” steady state, for
both the reduced system and Hill approximation. The deterministic Hill
approximation trajectory is shown for reference. (c) Simulated TVD for the
on-state approximation at 1 hr. (from 107 simulations performed according
to [28]; the numerical result likely overestimates because TVD is sensitive
to noise in the empirical distributions), along with the error bound (4).

VI. CONCLUSION

In this work, we derived a bound on the TVD error
incurred when using a Hill approximation for stochastic
modeling of a class of TNs in the limit of rapid reversible
binding of TFs to their target genes. This bound is non-
asymptotic in all model parameters other than ϵ, which scales
the reversible binding speeds. These results can be applied
to understand how different results derived using reduced
models of TNs that use Hill functions may be from the full
model when reversible binding is indeed sufficiently fast.
Possible further work in this pursuit includes deriving similar
bounds when the same TF may bind to multiple different
genes, different TFs to compete for the same gene, and TFs
may homodimerize and heterodimerize.

APPENDIX

In the theorem proofs we use the following notation. Given
a CTMC Y with state space Y , for all S ⊂ Y we let τY,S =
inf{0 ≤ t < T∞

Y : Y (t) /∈ S} represent the exit time of
Y from the subset S, where inf ∅ = +∞. We also define
ρY : Y × [0,∞) → [0, 1] by ρY (y, t) = P(Y (t) = y, t <
T∞
Y ). Given t ∈ [0,∞), we let ρY (·, t) : Y → R be the

map that sends y to ρY (y, t). If Y is nonexplosive, ρY (·, t)
is the probability density of Y at time t (ignoring the special
state ∞, which is irrelevant since Y is nonexplosive). Given

a function f : U → R and V ⊂ U , we let f |V : V → R
be the restriction of f to the domain V . We also let ∥f∥1 =∑

u∈U |f(u)| be the 1-norm of f and if F : U×U → R, we
let ∥F∥1 = supu∈U

∑
u′∈U |F (u, u′)| be the induced 1-norm

of F .

A. Proof of Lemma 1

Proposition 1. Let Y be a CTMC with state space Y ,
infinitesimal generator Q, and explosion time T∞

Y . Let
Ỹ0, Ỹ1, . . . be the jump chain of Y . Suppose that there exist
c1, c2 > 0 such that for all k ∈ Z+ and each y0, . . . , yk ∈ Y
such that P(Ỹ0 = y0, . . . , Ỹk = yk) ̸= 0, |Q(yk, yk)| ≤
c1k + c2. Then Y is nonexplosive.

Proof. Fix t ≥ 0. Denote by S1, S2, . . . the holding times
of Y . Since T∞

Y =
∑∞

i=1 Si by definition, for each k ∈ Z+,

P(T∞
Y ≤ t) ≤ P(

k+1∑
i=1

Si ≤ t)

=
∑

y0,...yk∈Y
P(

k+1∑
i=1

Si ≤ t|Ỹ0 = y0, . . . , Ỹk = yk)

× P(Ỹ0 = y0, . . . , Ỹk = yk). (5)

Let E∗
0 , E

∗
1 , E

∗
2 . . . be independent exponentially dis-

tributed random variables, with E∗
i having rate parameter

c1i + c2. Choose k ∈ Z+ and y0, . . . , yk ∈ Y such that
P(Ỹ0 = y0, . . . , Ỹk = yk) ̸= 0. By the Markov property,
given Ỹ0 = y0, . . . , Ỹk = yk, the collection of random
variables S1, . . . , Sk+1 are independent exponentially dis-
tributed random variables with respective rate parameters
|Q(y0, y0)|, . . . , |Q(yk, yk)| (See Chapter 2.6 in [26]). Thus

P(
k+1∑
i=1

Si ≤ t|Ỹ0 = y0, . . . , Ỹk = yk) = P(
k∑

i=0

Ei ≤ t), (6)

where the Ei are a collection of independent exponential
random variables, each with rate parameter |Q(yi, yi)|.

Since for each i ∈ {0, . . . , k}, |Q(yi, yi)| ≤ c1i + c2 by
assumption,

P(
k∑

i=0

Ei ≤ t) ≤ P(
k∑

i=0

E∗
i ≤ t). (7)

Putting (5), (6), and (7) together then gives that for each k,
P(T∞

Y ≤ t) ≤ P(
∑k

i=0 E
∗
i ≤ t).

However, by Theorem 2.3.2(ii) in [26], P(
∑∞

i=0 E
∗
i ≤

t) = 0. Since limk→∞ P(
∑k

i=0 E
∗
i ≤ t) = P(

∑∞
i=0 E

∗
i ≤

t) = 0, we have that P(T∞
Y ≤ t) = 0. As t ≥ 0 was arbitrary,

P(T∞
Y < ∞) = P(∪∞

t=1{T∞
Y ≤ t})

≤
∞∑
t=1

P(T∞
Y ≤ t) = 0.

To prove Lemma 1, we apply Proposition 1 to each
CTMC:



Proof of Lemma 1. • Fix ϵ > 0, let x0 := (p1,0, . . . , pn,0,
g1,0, . . . , gn,0, c1,0, . . . , cn,0), and let Qϵ be the in-
finitesimal generator of Xϵ. By inspection, for any state
y that Xϵ can access within k transitions, |Q(y, y)| ≤
n(γ∗(p∗,0 + c∗,0 + k) + κ∗ + ( b∗ϵ + f∗

ϵ (p∗,0 + c∗,0 +
k))ḡ∗) + n2(α∗ + β∗)ḡ∗, where the subscript ∗ refers
to the maximal value of the relevant variable over all
i ∈ {1, . . . , n}.

• Let x̄0 = (p̄1,0, . . . , p̄n,0) and let Q̄ be the infinitesimal
generator of X̄ . From inspection, for any state y that X̄
can access within k transitions, |Q̄(y, y)| ≤ n(γ∗(p̄∗,0+
k) + κ∗) + n2(α∗ + β∗)ḡ∗, where the quantities with
subscript ∗ are again the maximal ones.

• The same bound used above for |Q̄(y, y)| also applies
to |Q̄H(y, y)|, so that X̄H is nonexplosive.

B. Proof of Lemma 2

Our approach to this proof uses the finite state projection
(see [24,25]) to “project” our original problem onto one with
a finite number of finite classes at which point we use the
results from [13,14]. To then return to the problem with
infinite states, we perform an interchange of the limits in
the finite state projection and singular perturbation. In [15],
the authors apply a finite state projection to an SCRN prior to
applying singular perturbation, but they are only concerned
with analyzing the projection, so they do not perform this
exchange of limits to justify the QSSA for the full system.
We note that in [16], the authors offer another way to
perform model reduction on infinite systems via analysis
of stochastic equations. We choose to instead prove this
proposition via an approach more similar to the formalism of
[13,14], leveraging niceties of our system of interest (namely
that each fast subsystem has only a finite number of states).

Before proving Lemma 2 we prove two necessary propo-
sitions.

Let Y be a countable set and let A,B : Y × Y → R be
infinitesimal generators. Let C be the set of communicating
classes of A, and suppose that each C ∈ C is finite and
closed, so that A has a unique stationary distribution πC :
C → R supported on C. For each ϵ > 0, let Qϵ =

1
ϵA+B,

and let Yϵ be a CTMC with state space Y , initial state y0 ∈ Y ,
and infinitesimal generator Qϵ. Let C0 be the element of C
to which y0 belongs, and let Y be a CTMC with state space
C, initial state C0, and infinitesimal generator Q : C×C → R
given by

Q(C,C ′) =
∑
y∈C

∑
y′∈C′

πC(y)B(y, y′),

for C ̸= C ′.

Proposition 2. Fix t ≥ 0. If there exists a nonexplosive
CTMC Z with state space Y and a sequence of sets S1 ⊂
S2 ⊂ . . . each of which is finite and whose union is Y such
that

P(τYϵ,Sk
≤ t) ≤ P(τZ,Sk

≤ t) (8)

for each ϵ > 0 and k ∈ N, then

lim
ϵ→0+

∑
C∈C

∣∣∣∣∣∣
∑
y∈C

ρYϵ
(y, t)− ρY (C, t)

∣∣∣∣∣∣ = 0.

Proof. It is in this proposition that we perform singular
perturbation on countable Markov Chains by combining the
finite state projection with singular perturbation for finite
Markov Chains via a limit exchange.

Fix t ≥ 0. Throughout this proof, we let k be the generic
element of N. Given a function f : Y → R with ∥f∥1 < ∞,
let Tf : C → R be defined by Tf(C) =

∑
y∈C f(y). Note

that ∥Tf∥1 ≤ ∥f∥1.
We first use the finite state projection (see [24,25]) to turn

our singular perturbation problem into one that is finite-
dimensional. Enumerate the communicating classes of C
as C1, C2, . . . , and for each k, let Dk = ∪k

i=1Ci and
Dk = {C1, . . . , Ck}. For each k and ϵ > 0, define θϵ,k :
Y × [0,∞) → [0, 1] and ηk : C × [0,∞) → [0, 1] to be the
solutions to the respective initial value problems

d

ds
θϵ,k(y, s) =

∑
y′∈Dk

θϵ,k(y
′, s)Qϵ(y

′, y); θϵ,k(y, 0) = δy,y0 ,

(9)
d

ds
ηk(C, s) =

∑
C′∈Dk

ηk(C
′, s)Q(C ′, C); ηk(C, 0) = δC,C0 ,

(10)

for all y ∈ Dk and C ∈ Dk, where for y /∈ Dk, we set
θϵ,k(y, t) = 0 and for C /∈ Dk, we set ηk(C, t) = 0.
Tθϵ,k(·, t) and ηk(·, t) are the respective finite state projec-

tions of TρYϵ(·, t) and ρY (·, t). We wish to show that these
projections are equal in the limit of ϵ → 0+.

Note that the linear system of ODEs (9) and (10) are finite
dimensional (this is the point of using the finite state projec-
tion). Also note that Qϵ|Dk×Dk

= 1
ϵA|Dk×Dk

+ B|Dk×Dk
,

where A|Dk×Dk
is “block-diagonal” in the sense that for

each j ∈ {1, . . . , k}, each A|Cj×Cj
is itself an infinitesimal

generator and ADk×Dk
(y, y′) = 0 when y and y′ do not

belong to the same communicating class. Based on these
facts, via a standard change of basis and application of
singular perturbation theory for finite linear systems (see
[13,14] for details) we can conclude that

lim
ϵ→0+

∥Tθϵ,k(·, t)− ηk(·, t)∥1 = 0. (11)

Now that we know the projections are equal in the
desired limit, we wish to show that the probability densities
TρYϵ

(·, t) and ρY (·, t) are equal in this same limit.
Theorem 2.5 (iv) in [25] then tells us that

lim
k→∞

∥ρY (·, t)− ηk(·, t)∥1 = 0. (12)

We also have that

∥TρYϵ
(·, t)− Tθϵ,k(·, t)||1 ≤ ∥ρYϵ

(·, t)− θϵ,k(·, t)∥1
≤ P(τYϵ,Dk

≤ t), (13)



where the second inequality comes from combining Theorem
2.5 parts (ii) and (iii) in [25] (note that (iii) is an extension
of results from [24]).

Let S0 = ∅ and choose r1 ≤ r2 ≤ · · · ∈ Z+ such that
rk → ∞ and Srk ⊂ Dk for each k. From the definition of the
exit time, for each k, P(τYϵ,Dk

≤ t) ≤ P(τYϵ,Srk
≤ t). By

assumption, for each k, supϵ>0 P(τYϵ,Srk
≤ t) ≤ P(τZ,Srk

≤
t). Since Z is assumed nonexplosive, P(τZ,Srk

≤ t) → 0 as
k → ∞ by the Theorem 2.1 in [25], so that

lim
k→∞

sup
ϵ>0

P(τYϵ,Dk
≤ t) = 0.

Combining the above with (13) gives

lim
k→∞

sup
ϵ>0

∥TρYϵ
(·, t)− Tθϵ,k(·, t)∥1 = 0. (14)

Equation (14) states that Tθϵ,k(·, t) → TρYϵ
(·, t) as k →

∞ uniformly in ϵ > 0, and (11) states that Tθϵ,k(·, t) →
ηk(·, t) as ϵ → 0+ point-wise in k, so that a standard result
in analysis (see [Tao, Proposition 3.3.3]) guarantees we can
exchange these limits:

lim
ϵ→0+

TρYϵ
(·, t) = lim

k→∞
ηk(·, t).

The above result together with (12) gives

lim
ϵ→0+

∥TρYϵ
(·, t)− ρY (·, t)∥1 = 0,

which is equivalent to our desired result.

In order to apply Proposition 2, one must somehow
construct the CTMC Z which in some sense bounds the
CTMCs Yϵ uniformly as in (8). The upcoming proposition
provides the machinery for constructing such a CTMC.

Definition 1 (Increasing set). Let n,m ∈ N and let Y ⊂ Zn
+

be nonempty. We say a set Γ ⊂ Y is increasing in Y with
respect to a matrix L ∈ Rn×m with nonzero columns if for
each y ∈ Γ and y′ ∈ Y , (y′ − y)L ≥ 0 implies that y ∈ Γ.

Proposition 3. Let n,m ∈ N, Y ⊂ Zn
+ be nonempty, and

L ∈ Rn×m have nonzero columns. Let S and S̆ be two
SCRNs with the same chemical species, state space Y ⊂ Zn

+,
and stoichiometry vectors u1, . . . , uR. Let υ1, . . . , υR and
ῠ1, . . . , ῠR respectively be the propensity functions of S and
S̆ associated with each reaction.

Fix y0 ∈ Y , choose S ⊂ Y , and let Y and Y̆ be
the CTMCs with initial state y0 associated with S and S̆,
respectively. Suppose that Y and Y̆ are nonexplosive and
that for each r ∈ {1, . . . , R} the following conditions hold

• Y − S is increasing in Y with respect to L.
• if urL has at least one negative entry, then

supy∈Y ῠr(y) ≤ infy∈Y υr(y)
• if urL has at least one positive entry, then

supy∈Yυr(y) ≤ infy∈Y ῠr(y).
Then for all t ≥ 0,

P(τY,S ≤ t) ≤ P(τY̆ ,S ≤ t).

Proof. This is an direct consequence of Theorem 3.4 of [27].

Proof of Lemma 2. For convenience, define Θ =
{α, β, κ, γ, γ′}, which represents the set of “slow”
reaction types in S, define Φ = {f, b}, which represents the
set of “fast” reaction types in S, and define Ξ = {+,+′,−},
which represents the set of reaction types in S̄. Throughout
the rest of this proof, let θ be the generic element of
Θ, ϕ the generic element of Φ, ξ the generic element
of Ξ, and i the generic element of {1, . . . , n}. We
also let x := (p1, . . . , pn, g1, . . . , gn, c1, . . . , cn) and
x′ := (p′1, . . . , p

′
n, g

′
1, . . . , g

′
n, c

′
1, . . . , c

′
n) represent generic

elements of X , and we let x̄ := (p̄1, . . . , p̄n) and
x̄′ := (p̄′1, . . . , p̄

′
n) represent generic elements of X̄ .

We first explicitly write the infinitesimal generators of Xϵ

and X̄ . For each i and ϕ, let uϕ,i be the stoichiometry vector
of the reaction in R associated with propensity υϕ,i. Let
A : X×X → R be the infinitesimal generator determined by
{(uϕ,i, υϕ,i)}ϕ,i (i.e. the one associated with R). Recall that
for each x̄ ∈ X̄ , πx̄ is defined to be the stationary distribution
of R (and thus also of A) supported on Ex̄ := {x ∈ X :
∀i pi + ci = p̄i}, with E := {Ex̄ : x̄ ∈ X̄} being the set of
communicating classes of R (and thus also of A), each of
which is finite and closed.

For each i and θ, let uθ,i be the stoichiometry vector of
the reaction in each Sϵ that is associated with the propensity
υθ,i. Let B : X × X → R be the infinitesimal generator
determined by {(uθ,i, υθ,i)}θ,i. Then by definition, for each
ϵ > 0, Xϵ is a CTMC with state space X , initial state x0,
and infinitesimal generator Qϵ :=

1
ϵA+B.

For each i and ξ, let ūξ,i be the stoichiometry vector of the
reaction in S̄ associated with propensity ῡξ,i. By definition,
X̄ is a CTMC with state space X̄ , initial state x̄0, and
infinitesimal generator Q̄ : X̄ × X̄ → R given by

Q̄(x̄, x̄′) =
∑
ξ,i

ῡξ,i(x̄)1{x̄′}(x̄+ ūξ,i), (15)

for x̄ ̸= x̄′.
We next introduce an intermediate CTMC X which will

turn out to be equivalent to X̄ , albeit defined to have a
different state space. In particular, let X be a CTMC with
state space E , initial state Ex̄0

, and infinitesimal generator
Q : E × E → R given by

Q(Ex̄, Ex̄′) : =
∑
x∈Ex̄

∑
x′∈Ex̄′

πx̄(x)B(x, x′)

=
∑
x∈Ex̄

∑
x′∈Ex̄′

πx̄(x)
∑
θ,i

υθ,i(x)1{x′}(x+ uθ,i)

=
∑
θ,i

∑
x∈Ex̄

πx̄(x)υθ,i(x)1Ex̄′ (x+ uθ,i)

=
∑
θ,i

EW∼πx̄
[υθ,i(W )]1{x̄′}(x̄+∆T(uθ,i))

(16)

for x̄ ̸= x̄′, where ∆T : Z3n → Zn maps (∆p1, . . . ,∆pn,
∆g1, . . . ,∆gn, ∆c1, . . . ,∆cn) to (∆p1 + ∆c1, . . . ,∆pn +



∆cn). In other words, ∆T(u) gives the change in total
counts of each protein species associated with the stoichiom-
etry vector u.

Our the proof will consist of first showing

lim
ϵ→0+

∑
x̄∈X

∣∣∣∣∣ ∑
x∈Ex̄

ρXϵ
(x, t)− ρX(Ex̄, t)

∣∣∣∣∣ = 0, (17)

and subsequently showing that for each x̄, x̄′ ∈ X̄ ,

ρX(Ex̄, t) = ρX̄(x̄, t). (18)

Combining (17) and (18) then gives our desired result.
Towards showing (17), for each k ∈ N, let Sk = {x ∈

X : ∀i pi + ci ≤ k}. In light of Proposition 2, (17) follows
if we can find a nonexplosive CTMC Z with state space X
such that for all ϵ > 0 and k ∈ N,

P(τXϵ,Sk
≤ t) ≤ P(τZ,Sk

≤ t). (19)

Define the SCRN S̆ with species
P1, . . . ,Pn,G1, . . . ,Gn,C1, . . . ,Cn, state space X , and the
following reaction-propensity pairs for each i ∈ {1, . . . , n}:

Pi + Gi → Ci, ῠf,i(x) = 0;

Ci → Pi + Gi, ῠb,i(x) = 0;

Ci → Ci + Pσ(i), ῠα,i(x) = αiḡi;

Gi → Gi + Pσ(i), ῠβ,i(x) = βiḡi;

∅ → Pi, ῠκ,i(x) = Ωκi;

Pi → ∅, ῠγ,i(x) = 0;

Ci → Gi, ῠγ′,i(x) = 0.

Define L =
[
eP,1 + eC,1 . . . eP,n + eC,n

]
, where

eP,1, . . . , eP,n, eG,1, . . . , eG,n, eC,1, . . . , eC,n are the stan-
dard unit vectors of Z3n

+ . Fix ϵ > 0 and k ∈ N.
Let Z be the CTMC with initial state x0 that is associated

with S̆ . We check that the hypotheses of Proposition 3 are
satisfied (with X , Sϵ, Sk, Xϵ, and Z respectively in place
of Y , S, S, Y , and Y̆ ): Xϵ is nonexplosive by Proposition 1
and Z is nonexplosive because its propensity functions are
bounded (see Theorem 2.7.1(ii) in [26]). Furthermore:

• Suppose x ∈ X − Sk, x′ ∈ X , and (x′ − x)L ≥ 0.
Then for some j, pj+cj > k. But since (x′−x)L ≥ 0,
p′j + c′j ≥ pj + cj > k, so that x′ ∈ X − Sk.

• For each i and µ ∈ {α, β, κ}, uµ,iL has non-negative
entries, and for λ ∈ {γ, γ′, f, b}, ῠλ,i = 0 ≤ υλ,i.

• For each i and µ ∈ {α, β, κ}, we have that ῠµ,i ≥ υµ,i,
and for λ ∈ {γ, γ′, f, b}, uλ,iL has non-positive entries.

Thus by Lemma 3, Z satisfies (19). Since ϵ > 0 and k ∈ N
were chosen arbitrarily and Z is nonexplosive, (17) is shown.

Towards showing (18), note that there is a natural one-to-
one correspondence between X̄ and E given by x̄ ↔ Ex̄.
Since X̄ is a CTMC on state space X̄ with infinitesimal
generator Q̄(x̄, x̄′) and initial state x̄0 and X is a CTMC on
state space E with infinitesimal generator Q(Ex̄, Ex̄′) and
initial state Ex̄0

, if we can show that

Q(Ex̄, Ex̄′) = Q̄(x̄, x̄′), (20)

then we will have demonstrated (18).
Note that (16) says that Q is determined by the propensity

functions υ̂θ,i(x̄) := EW∼Ex̄
[υθ,i(W )] and reaction vectors

ûθ,i := ∆T(uθ,i) (with θ ∈ Θ, i ∈ {1, . . . , n}). But ûα,i =
ûβ,i = ū+,i, ûκ,i = ū+′,i, and ûγ,i = ûγ′,i = ū−,i. Thus if we
can show υ̂α,i+ υ̂β,i = ῡ+,i, υ̂κ,i = ῡ+′,i, and υ̂γ,i+ υ̂γ′,i =
ῡ−,i (i.e. the sum of propensities associated with a given
reaction vector are the same for Q and Q̄), then by comparing
(15) and (16) we are done. We check these conditions one
by one:

• EW∼πx̄
[υα,i(W )] + EW∼πx̄

[υβ,i(W )] =
αiEW∼πx̄

[Ci] + βiEW∼πx̄
[Gi] = ῡ+,i(x̄),

• EW∼πx̄
[υκ,i(W )] = Ωκi = ῡ+′,i(x̄),

• EW∼πx̄
[υγ,i(W )]+EW∼πx̄

[υγ′,i(W )] = γiEW∼πx̄
[Pi]+

γiEW∼πx̄ [Ci] = γiEW∼πx̄ [Pi + Ci] = γip̄i = ῡ−,i(x̄),
where W = (P1, . . . , Pn, G1, . . . , Gn, C1, . . . , Cn). Hence
we have shown (17) and (18), so the proof is complete.

C. Proof of Theorem 1

Proof of Theorem 1. We first show that for all i ∈
{1, . . . , n} and all x̄ ∈ X̄ ,

|ῡH
+,i(x̄)− ῡ+,i(x̄)| ≤ |αi − βi|

ḡ2i
ḡi +ΩKi

. (21)

To show the above, fix i ∈ {1, . . . , n}
and let x̄ = (p̄1, . . . , p̄n) and let W =
(P1, . . . , Pn, G1, . . . , Gn, C1, . . . , Cn) be a random variable
with distribution πx̄. Given that πx̄ has finite support, from
the moment dynamics equations (see [23]) corresponding to
R,

d

dt
E[Ci] =

fi
Ω
E[PiGi]− biE[Ci]

=
fi
Ω
E[(ḡi − Ci)(p̄i − Ci)]− biE[Ci]

=
fi
Ω
E[C2

i ]−
(
bi +

fi
Ω
(p̄i + ḡi)

)
E[Ci] +

fi
Ω
p̄iḡi,

where Pi = p̄i−Ci because W is by definition supported in
Ex̄. But since πx̄ is a stationary distribution of X̄ , d

dtE[Ci] =
0, so that

E[C2
i ]− (ΩKi + p̄i + ḡi)E[Ci] + p̄iḡi = 0. (22)

Since 0 ≤ Ci ≤ ḡi, we have that 0 ≤ E[C2
i ] ≤ ḡiE[Ci].

Using this fact and the above equation, it follows that
p̄iḡi

p̄i + ḡi +ΩKi
≤ E[Ci] ≤

p̄iḡi
p̄i +ΩKi

,

which implies∣∣∣∣E[Ci]−
p̄iḡi

p̄i +ΩKi

∣∣∣∣ ≤ ḡ2i
ḡi +ΩKi

.

Together with the relation E[Ci] + E[Gi] = ḡi, the above
immediately implies (21).

We now continue to the main proof. We use k as the
generic element of N and x̄ as the generic element of X̄ .
Let Q̄ and Q̂ be the respective infinitesimal generators of X̄



and X̄H . Let S1 ⊂ S2 ⊂ . . . be a sequence of sets, each of
which is finite and whose union is X̄ .

We use the finite state projection to “project” X̄ and X̄H

onto the Sk and find a bound on the TV error between
the projections which applies uniformly for each k. To
begin, for each k, define ρ̄k : X̄ × [0,∞) → [0, 1] and
ρ̂k : X̄ × [0,∞) → [0, 1] to be the solutions to the initial
value problems

d

ds
ρ̄k(x̄, s) =

∑
x̄′∈Sk

ρ̄k(x̄
′, s)Q̄(x̄′, x̄); ρ̄k(x̄, 0) = δx̄,x̄0

;

d

ds
ρ̂k(x̄, s) =

∑
x̄′∈Sk

ρ̂k(x̄
′, s)Q̂(x̄′, x̄); ρ̂k(x̄, 0) = δx̄,x̄0 ,

for all x̄ ∈ Sk, and for all x̄ ∈ X − Sk, set ρ̄k(x̄, t) =
ρ̂k(x̄, t) = 0.

Define ∆ρk = ρ̄k − ρ̂k. Theorem 2.5 (iv) from [25]
guarantees that limk→∞ ∥ρX̄(·, t) − ρ̄k(·, t)∥1 = 0 and
limk→∞ ∥ρX̂(·, t)− ρ̂k(·, t)∥1 = 0, so that

dTV (X̄(t), X̄H(t)) =
1

2
∥ρX̄(·, t)− ρX̂(·, t)∥1

≤ lim
k→∞

1

2
∥∆ρk(·, t)∥1. (23)

Define ∆Q = Q̄− Q̂. Then for each k and x̄ ∈ Sk,

d

ds
∆ρk(x̄, s) =

∑
x̄′∈Sk

∆ρk(x̄
′, t)Q̄(x̄′, x̄)

+
∑

x̄′∈Sk

ρ̂k(x̄
′, t)∆Q(x̄′, x̄).

The solution to the above finite system of linear ODEs
equation, given the zero initial condition ∆ρk(·, 0) = 0, is
given by the following convolution:

∆ρk(x̄, t) =

∫ t

0

∑
x̄′,x̄′′∈Sk

ρ̂k(x̄
′′, t− τ)∆Q(x̄′′, x̄′)

× eQ̄kτ (x̄′, x̄)dτ,

where Q̄k = Q̄|Sk×Sk
. Thus

∥∆ρk(·, t)∥1 ≤
∫ t

0

∥ρ̂k(·, t− τ)∥1 ∥∆Q∥1
∥∥∥eQ̄kτ

∥∥∥
1
dτ

≤
∫ t

0

∥∆Q∥1 dτ, (24)

where ∥eQ̄kτ∥1 ≤ 1 because Q̄ is an infinitesimal generator.
It follows from [19] (section 4.1.3) that if ḡi = 1, ῡH

+,i(x̄) =
ῡ+,i(x̄). Using this fact in combination with (21), we have

that∑
x̄′∈X̄

|∆Q(x̄′′, x̄′)| = 2 |∆Q(x̄′′, x̄′′)|

= 2
∑
ξ,i

|ῡH
ξ,i(x̄

′′)− ῡξ,i(x̄
′′)|

= 2

n∑
i=1

|ῡH
+,i(x̄

′′)− ῡ+,i(x̄
′′)|

≤ 2(n− n01) max
i=1,...,n

|αi − βi|
ḡ2i

ḡi +ΩKi
,

where ξ ∈ {+,+′,−}. Thus ∥∆Q∥1 ≤ 2(n −
n01)maxi=1,...,n |αi−βi|ḡ2i /(ḡi+ΩKi). Together with (23)
and (24), this gives our desired result.
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