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Abstract 

X-ray ptychographic tomography is a nondestructive method for three dimensional (3D) imaging with nanometer-
sized resolvable features. The size of the volume that can be imaged is almost arbitrary, limited only by the penetra-
tion depth and the available scanning time. Here we present a method that rapidly accelerates the imaging operation 
over a given volume through acquiring a limited set of data via large angular reduction and compensating for the 
resulting ill-posedness through deeply learned priors. The proposed 3D reconstruction method “RAPID” relies initially 
on a subset of the object measured with the nominal number of required illumination angles and treats the recon-
structions from the conventional two-step approach as ground truth. It is then trained to reproduce equal fidelity 
from much fewer angles. After training, it performs with similar fidelity on the hitherto unexamined portions of the 
object, previously not shown during training, with a limited set of acquisitions. In our experimental demonstration, 
the nominal number of angles was 349 and the reduced number of angles was 21, resulting in a ×140 aggregate 
speedup over a volume of 4.48× 93.18× 3.92µm

3 and with (14 nm)3 feature size, i.e. ∼ 10
8 voxels. RAPID’s key dis-

tinguishing feature over earlier attempts is the incorporation of atrous spatial pyramid pooling modules into the deep 
neural network framework in an anisotropic way. We found that adjusting the atrous rate improves reconstruction 
fidelity because it expands the convolutional kernels’ range to match the physics of multi-slice ptychography without 
significantly increasing the number of parameters.

Keywords  X-ray ptychographic tomography, Deep learning, Reduced-angle, Rapid imaging, Atrous spatial pyramid 
pooling, Anisotropic
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1  Introduction
Three-dimensional (3D) imaging at the nanometer scale 
enables important insights in biology and material behav-
iors, including virus function [1], structural damage [2], 
nanoelectronics [3], etc. One way is to do this destruc-
tively, i.e. immobilize the specimen, etch the top layer 
finely with a particle beam, image the revealed features 
with a scanning electron microscope or similar high-res-
olution methods, and repeat this process until the entire 
specimen volume has been consumed [4, 5]. However, in 
many instances, it is preferable to operate non-destruc-
tively, and then a form of tomography is necessary. This 
is more challenging than, say, the medical case, for two 
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main reasons: (i) as feature sizes approach the radia-
tion wavelength, e.g. X-rays, diffraction and scattering 
effects influence image fidelity more strongly; and (ii) 
the number of voxels (resolvable 3D elements) within a 
macroscopic volume can become very large. For example, 
at (10 nm)3 3D sampling rate, the number of voxels in a 
1 cm× 1 cm× 100µm volume is ∼ 1016 . In this paper, 
we use integrated circuits (IC) as an exemplar, because 
they present some practical conveniences—ICs are rigid 
and, thus, require no fixing—and it is also very useful, for 
example in manufacturing process verification, failure 
analysis and counterfeits detection [3, 6]. On the other 
hand, the challenge of 3D IC imaging grows with time 
due to Moore’s law [7].

For nondestructive 3D IC imaging at the nanoscale, 
hard X-rays are ideal probes because of their long pene-
tration depth and short wavelength. Unlike medical X-ray 
tomography, however, which operates almost always on 
the intensity of the projections, in the nanoscale case it is 
common to seek the complex field via ptychography [8] 
first, and then do tomography. This combined scheme is 
also known as X-ray ptychographic tomography (ptycho-
tomography) [9]. There are several reasons to do this: for 
example, if the projection approximation is still applica-
ble, then we can perform two tomographic reconstruc-
tions in parallel, one on the field amplitude yielding the 
imaginary part of the refractive index (attenuation) at 
each voxel and one on the field phase yielding the real 
part; most materials exhibit phase variations by 10 times 
larger than their respective absorption changes [10].

X-ray ptycho-tomography reconstructions are per-
formed in the same sequence as experimental acqui-
sition, i.e. in a two-step approach [9, 11]. First, 2D 
projections are retrieved from far-field diffraction pat-
terns using phase-retrieval algorithms [12–14], and then, 
tomographic reconstructions are implemented to recover 
the real and/or imaginary parts of a 3D object from 2D 
projections [15–18]. Many applications have been suc-
cessfully demonstrated with this two-step approach: 
IC imaging [3, 19], microscopic organism imaging [9, 
20] and studies of material properties such as fracture 
[21], percolation [22] and hydration [23]. However, both 
ptychography and tomography demand large redundancy 
in the data [24, 25], leading to long acquisition and pro-
cessing times generally.

One way to reduce the acquisition time is through 
high-precision scanners that can reliably work with 
efficient scanning schemes [26–28] and at high scan-
ning velocities [29, 30]. Reducing the data redundancy 
requirements in ptycho-tomography is an alternate way 
to speed up data acquisition but introduces ill-posed-
ness. However, with reduced data, the conventional 

reconstruction algorithms are likely to produce artifacts 
and a general loss of fidelity.

Studies have coupled computationally the ptychog-
raphy and tomography reconstruction processes to 
improve reconstruction qualities under limited data 
acquisition. One way is to split the whole problem into 
two sub-problems, as conventional two-step approaches, 
and perform them iteratively, to mildly relax the data 
redundancy requirements without sacrificing fidelity. For 
example, tomography naturally provides angular inter-
sections of beams as they pass through the object, which 
is employed to coarsen the ptychographic sampling in 
each projection with iterative two-step algorithms [31–
34]. The angular requirements in tomography could be 
eased as well [35–39] through physically modeling the 
interactions between X-ray and object with a multi-slice 
propagation model instead of projection approximation 
[40]. Depth information is resolved partially in individ-
ual projection planes to help relax the usual Crowther 
criterion for tomography. On the other hand, the cou-
pling between ptychography and tomography could be 
expressed as a single optimization problem to reconstruct 
3D objects from diffraction patterns directly instead of 
two separate cost functions [41–43] to further reduce the 
required number of measurements. Still, however, severe 
image artifacts are to be expected if data reduction is 
aggressive beyond a certain limit. Moreover, all the above 
mentioned variants of X-ray ptycho-tomographic recon-
struction are computationally intensive and, hence, scale 
prohibitively with sample volume.

In general, regularization resolves ill-posedness by 
rejecting invalid objects and, hence, eliminating recon-
struction artifacts that would be incompatible with our 
prior knowledge about the object. For example, hand-
crafted priors, such as sparsity, piecewise constancy, etc. 
are routinely incorporated in X-ray ptycho-tomography 
problems to improve reconstruction qualities to some 
extent [31–33, 43, 44]. Recently, deep neural networks 
(DNNs) have yielded even better regularization perfor-
mance under severe ill-posedness, e.g. 2D phase retrieval 
through scattering media [45, 46] and under extremely 
low light conditions [47, 48], digital staining [49, 50], 
limited-angle 3D volumetric reconstruction [51, 52], etc. 
These works are based on supervised learning, where 
the regularizing priors are learned from large datasets of 
available typical objects. Non-supervised approaches are 
also possible [53, 54] but not of interest for our present 
work. The purpose of this paper is to use DNN-based 
regularizers to radically increase the allowable angular 
reduction and associated gains in both acquisition and 
computation time in X-ray ptycho-tomography, which 
hasn’t been explored in experimental X-ray ptycho-
tomography yet [55].
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Poor image fidelities resulting from severe ill-posed-
ness in X-ray ptycho-tomography is difficult to improve 
if we naïvely apply a vanilla 3D DNN structure with the 
kernels size of 3× 3× 3 [56], i.e., each layer’s receptive 
field extends to the next layer by a single pixel away only. 
To perform image correction in hard cases (i.e., large 
angular reduction) one needs DNNs with many layers 
or large size kernels, and that is disadvantageous both 
because it introduces too many parameters, especially in 
3D, and because training may saturate early, even with 
residuals [57]. On the other hand, the physics of tomo-
graphic image reconstruction suggests that larger recep-
tive fields in the convolutional layers should be effective 
in a shallower network while still requiring a large num-
ber of parameters. The atrous convolution methods 
[58, 59] combat this problem by forcing all connections 
within the receptive field to be zero, except the ones at 
the outermost corners. Moreover, the implementation of 
atrous convolution in a Spatial Pyramid Pooling (ASPP) 
module is known to perform well in extracting long-
range and multi-scale information [60, 61].

2 � Results
In this study, we propose the novel deep learning-based 
pipeline for reduced-angle ptycho-tomography, RAPID. 
Our method works as follows: first, the far-field dif-
fraction patterns obtained from reduced 21-angle 
acquisitions are pre-processed together to produce an 

Approximant [51]. This is a preliminary 3D reconstruc-
tion of the object’s interior and generally exhibits low 
quality. The Approximant is obtained by gradient descent 
inversion on a multi-slice propagation model [40, 62]. 
Subsequently, the Approximant is fed into the RAPID 
network. During the training phase, matching the net-
work’s output to the corresponding golden standard is 
used to adjust the network weights in a standard sto-
chastic gradient descent fashion. During testing, the 
network’s output is the final reconstruction of the given 
volume. The procedure is schematically depicted in Fig. 1 
and described in detail in the Methods section.

A new DNN structure is proposed by incorporating 
the atrous module in the 3D U-net structure [63, 64] to 
improve the image qualities. Here we modify the atrous 
module anisotropically to account for the 3D point 
spread function (PSF). We use the term “anisotropy” here 
in the sense that the atrous convolutional kernels are dif-
ferent along the x, y, and z axes.

In the experimental demonstration, the IC sample 
consists of 13 circuit layers. The layers have a different 
thickness each. The total thickness is unknown, but we 
estimated it based on the golden standard to be 3.92µm . 
The area of each circuit layer is 25.10× 93.18µm2 . The 
upper part of the IC, relative to the optical axis, is used to 
pre-train the network. This training segment has a total 
volume of 20.60× 93.18× 3.92µm3 . The remaining part, 
with volume 4.48× 93.18× 3.92µm3 , serves for testing.

Fig. 1  Schematic of the proposed RAPID framework. a Reduced-angle ptycho-tomography experiment to collect diffraction pattern 
measurements via translational and rotational scanning. Raw diffraction patterns are pre-processed to generate the approximant as the input to 
the pre-trained network, and volumetric distribution are obtained as the final output. b Network training process. Diffraction patterns acquired 
from reduced-angle ptycho-tomography are pre-processed to get the approximant as the network input, and a two-step conventional approach is 
employed to generate the high-resolution golden standard (GS) as the ground truth to train the DNN
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Better reconstruction performance can be expected as 
the number of rotation angles increases, at the expense of 
longer experimental and computational time. We explore 
the best scanning condition that results in the minimum 
feasible acquisition time. Starting from the extreme con-
dition of a single angle, we gradually increase N to 349 
by adding angular measurements uniformly within maxi-
mum angular range θmax = 140.8◦ . The improvement 
is noticeable quantitatively and visually when the total 
number of rotation angles is small, e.g. from 1 to 5, as 
shown in Fig.  2a, b; Additional file  1: Fig. S2. However, 
above 21 angles the improvement is marginal. Therefore, 
this represents a good compromise between accuracy 
and acquisition cost.

We further explore the influence of maximum angu-
lar range θmax with fixed number of rotation angles as 
N = 21 . Figure 2c, d and Additional file 1: Fig. S3 show 
quantitative and qualitative performance when increas-
ing θmax from 8◦ to 140.8◦ . Small angles such as 8◦ and 16◦ 
perform badly. Increasing θmax improves up to 32◦ and 
beyond the returns become diminishing again but with-
out any added cost in computational time. Therefore, we 
can afford to use the full range of 140.8◦.

Figure  3 describes typical testing results the N = 349 
angles and θmax = 140.8◦ for the golden standard com-
pared with our optimal compromise, i.e. N = 21 angles 
and θmax = 140.8◦ . Parts (a) and (b) show quantitative 
metrics of image quality. We have chosen four: Pearson 

Correlation Coefficient (PCC), Multi-scale Structural 
Similarity Metric (MS-SSIM) [65], Bit Error Rate (BER) 
[66], and the Dice coefficient [67] (Detailed in Methods 
section). The first two are used often in statistics and 
image processing, while the third and fourth are informa-
tion- and set-theoretic, respectively. The results indicate 
that the RAPID method indeed can learn to regular-
ize better than the conventional filtered backprojection 
(FBP) and simultaneous algebraic reconstruction tech-
nique (SART) methods.

Figure  3c–g show the golden standard and how well 
various reconstruction approaches come to approxi-
mate it, for several circuit layers and orientations. As 
expected, the Approximant (Fig.  3d) is of rather poor 
quality because of the severe missing wedge problem in 
our reduced-angle configuration. The RAPID method 
does not fully eliminate the axial artifacts, but signifi-
cantly reduces them—almost to the same extent as the 
golden standard (Fig. 3c). Part (h) shows the power spec-
tral densities (PSD) of the whole testing volume in kx − kz 
plane (the performances of kx − ky and ky − kz planes 
are shown in Additional file 1: Fig. S4), corresponding to 
methods of (c–g). Notable are the differences in coverage 
of the space between the measured slices (emerging as 
radial spokes in the PSD) and of the missing wedges.

For the same configuration N = 21 angles and 
θmax = 140.8◦ , Fig. 4 studies the influence of atrous ani-
sotropy in our method and compares with different 

Fig. 2  Quantitative comparison among different scanning strategies for testing volumes. a, b Show the performance change with the increase of 
the number of rotation angles. c, d Show the performance change with the increase of angular range



Page 5 of 12Wu et al. eLight             (2023) 3:7 	

combinations of isotropic or partially anisotropic scheme. 
To make the comparison fair, all methods are designed 
with a similar number of total parameters and trained 
with the same strategy. Extending the anisotropic kernel 
range along the axis of the missing wedge tends to effec-
tively compensate for the axial artifacts. Results E, F, and 
G in the figure indicate that the choice of atrous param-
eters does not impact performance significantly.

Table  1 shows the data acquisition time, computa-
tional reconstruction time, and total pipeline duration for 

the techniques under comparison. RAPID is ×16 faster 
in terms of data acquisition and ×175 faster for image 
reconstruction compared to the golden standard. The 
aggregate acceleration for the entire pipeline is ×140 . The 
absolute durations for the golden standard and RAPID 
were ∼ 66 h 30′ and ∼ 30′ , respectively.

Fig. 3  Performance of RAPID under Nθ = 21 acquisition within the range θ = 140.8
◦ . a, b Quantitative (PCC, MS-SSIM, BER, and DICE) comparison 

among approximant, RAPID, FBP, and SART. c–g Layer-wise visualization of the reconstruction results from different methods, including the golden 
standard reconstructed from Nθ = 349 angles, Approximant, RAPID, FBP, and SART recovered from Nθ = 21 angles. h PSD distribution in kz-kx plane 
of different methods. For kz-ky and kx-ky planes, refer to the Additional file 1: Fig. S4
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Fig. 4  Quantitative and qualitative comparison among the reconstruction results from different network architectures. a Layer-wise visualization of 
the reconstructions from different network architectures, A: 3D U-net structure as the baseline method; and modified 3D U-net by replacing the first 
convolutional kernels at each hierarchical level in the encoder as B: the combination of x − y , y − z , and x − z convolution kernels without atrous; 
C: 3D isotropic atrous module, D: 3D anisotropic atrous module with the same max atrous rate a1 = a2 = 18 , E–G: 3D anisotropic atrous module 
with different max atrous rates ((a1 = 24 and a2 = 30 ), ( a1 = 30 and a2 = 36 ), and ( a1 = 36 and a2 = 42 ), respectively). The results of method E are 
shown in Fig. 3e. b, c Quantitative comparison of the testing volumes

Table 1  Experimental and computational time (hours) and reduction ratio of the whole testing volume 4.50× 93.18× 3.92µm
3 from 

conventional two-step approaches with N=349 angles as the golden standard, RAPID, FBP, and SART methods with N = 21 angles

Golden standard RAPID FBP SART​

Time Ratio Time Ratio Time Ratio Time Ratio

Data acquisition 1.90 ×1 0.110 ×16 0.110 ×16 0.110 ×16

Computation 66.5 ×1 0.380 ×175 4.86 ×14 9.53 ×7

Total 68.4 ×1 0.490 ×140 14.0 ×1 9.63 ×7
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3 � Discussion
To address severely ill-posed problems in X-ray imag-
ing, we introduced anisotropic atrous spatial pyramid 
pooling modules which increase the size of the receptive 
field to enable long-range and multi-scale extraction of 
underlying features. This augmentation largely improves 
performance compared to non-atrous implementations. 
The max atrous rates in this novel module can be more 
rigorously determined by feature size, scattering poten-
tial, dataset sampling size, etc. For example, it would be 
worthwhile to investigate the relationship between max 
atrous rate and the anisotropy in the PSF of the imag-
ing system. Alternatively, by means of global-range self-
attention, transformer architectures [68, 69] have also 
been demonstrated for reduced-angle ptycho-tomogra-
phy [70]. Detailed comparison between these two meth-
ods is beyond the scope of the present paper.

Different from cylinder-shaped samples [9], the pen-
etration path length of a plate-shaped sample increases 
significantly with the rotation angle. When the penetra-
tion path length is larger than the depth of field, multi-
slice techniques are necessary to account for propagation 
effects within the sample when generating the approxim-
ant. In our implementation, we run a five-slice ptycho-
graphic algorithm under a reduced-angle framework 
for two iterations to speed up the computation, result-
ing in vague layer separation from each angle. The 
improvement in the reconstruction quality flattens after 
21 projections as shown in Fig.  2a, b is related to this 
approximant generation algorithm. As reconstructions 
from adjacent angles are similar, adding more angles will 
not improve the approximant quality significantly and 
thus the final reconstruction. Besides, a multi-slice ptych-
ographic algorithm can relax the Crowther criterion due 
to more frequency coverage in the Fourier domain for 
each projection angle [39], which also indicates the infor-
mation from neighboring angles are similar. On the other 
hand, the plateau after 32° in Fig. 2c, d shows that meas-
urements sampled from the angular range over 32° con-
tribute similarly to the approximant compared to the 32° 
case when fixing the total number of rotation angles as 
21. More slices may be required to count for the diffrac-
tion effects at larger angles, but in turn, increase the com-
putation burden. The theoretical proof for the turning 
point in terms of the number of projections and maxi-
mum angular range is out of the scope of this manuscript 
but is interesting for future study. On the other hand, 
the laminography technique [71, 72] compensates for 
uneven propagation lengths by scanning the illumination 
wavevectors along a conical surface. In either case, it may 
be possible to modify RAPID to further reduce the total 
scanning time by skipping steps in the ptychographic 
scan as well [73].

Supervised learning approaches often is a cause for 
concern regarding the generalization ability to new and 
unseen data. We propose a strategy to train on a subset 
of the sample, where a trustable but otherwise very slow 
alternative method can be used to obtain ground truths; 
and then use the train network on the rest of the sam-
ple, significantly speeding up the entire operation. This 
approach is appealing for integrated circuits or other 
large 3D specimens [74]. Besides, it is possible that trans-
fer learning [75] might alleviate the efforts for training 
RAPID anew for new experiments. For even more gen-
eral specimens, like viruses, nanoparticles, etc. compara-
ble performance may be expected, but most likely at the 
cost of some redesign in the learning architecture.

4 � Method
4.1 � X‑ray ptychographic tomography experiment 

of integrated circuits
X-ray ptychographic tomography experiment was car-
ried out using the Velociprobe with a Dectris Eiger 500K 
detector ( 75µm pixel size) positioned at a distance of 
1.92m from the sample at the Advanced Photon Source 
of the Argonne National Laboratory, USA. A schematic 
of the Velociprobe was shown in the previous paper 
[30]. The photon energy of 8.8 keV with a spectral band-
width of 10−4 was selected using a double-crystal silicon 
monochromator. A Fresnel zone plate with 50 nm out-
most zone width and 180µm diameter was installed on 
the zone plate scanner. The first order diffracted beam 
from the zone plate was selected by the combined use 
of a 60µm diameter tungsten central stop and a 30µm 
diameter order-sorting aperture placed ∼ 62mm down-
stream of the zone plate. The illumination spot size on 
the sample is about 1.4µm . The sample was fly-scanned 
in a snake pattern [30] with a 100-nm and 500-nm step 
size in the horizontal and vertical directions, respectively.

A total number of 349 rotation angles with the 
angle spacing 0.4◦ within the angular range of 
θmax = 140.8◦ from the reference axis was acquired for 
an IC produced with 16 nm technology with the size of 
25.09× 93.18 × 3.92µm3 . ∼ 60k diffraction patterns 
were captured at each angle. The field of view of the pro-
jection at each angle was 30× 100µm2 with the detec-
tor frame rate of 500Hz , giving 2ms exposure time per 
scan. It took about 129 s for each rotation angle and the 
total data acquisition time for 349 angles was ∼ 13 h. 
For reduced-angle ptycho-tomography, we increased the 
angular spacing proportionally. The experiment time for 
the whole testing volume was estimated linearly accord-
ing to the ratio of testing volume to the whole volume 
and the number of reduced angles to the whole angle, 
which is reasonable as the translational and angular scan-
ning scheme of ptycho-tomography.
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4.2 � Multi‑slice forward and inverse models 
for reduced‑angle acquisition

We applied the multi-slice propagation method to model 
the measurements exiting the object. In the multi-slice 
propagation model, the object f is divided into L slices 
along the beam propagation direction, as [f1, f2, , ..., fL] . 
Each slice is with the thickness of �z . The wave field 
ul,j(x, y, zl) from probe position j entering lth slice is 
modulated by the slice fl to yield a wave field 
u′l+1,j(x, y, zl+1) as u′l,j(x, y, zl) = ul,j(x, y, zl)fl(x, y, zl) . The 
wavefront is then propagated to the next slice according 
to the Fresnel diffraction integral given by

Here h�z = exp(−i(q −

√

q2 − q2x − q2y )) and q is the 
reciprocal domain coordinate. This process is repeated 
for all L layers until one obtains the exit wave leaving the 
object ψL,j , represented as 
ψL,j = fLP�zfL−1...P�zf2P�zf1u1,j . Here u1,j is the inci-
dent probe at scan position j. Then we apply the far-field 
propagation operator Pd to take the exit wave ψL,j from 
the object to the plane of the detector, which is per-
formed with a simple Fourier transform as 
uj(q) = PdψL,j = F{ψL,j}.

In this experiment, the quasi-coherent X-ray illumina-
tion was modeled as the combination of multiple coher-
ent modes with the index of m = [1, 2, ...,M] to improve 
the accuracy. Thus, the far-field diffraction measurements 
were represented as the sum of each coherent mode. In 
addition, reduced-angle ptycho-tomography requires the 
illumination of the object from several rotation angles θ . 
Here we rotated the object according to a constant wave 
propagation direction, which was performed with a rota-
tion operation fθ = Rθ f  , and the rotated object fθ is fur-
ther sliced into L different layers [fθ ,1, fθ ,2, , ..., fθ ,L] . This 
leads to a combined forward operation of

In order to apply the gradient descent updates to find 
optimal f, we start with the data fidelity term of the loss 
function

The gradient of L with respect to f is derived as

(1)

ul+1,j(x, y, zl+1) = P�zu
′

l+1,j(x, y, zl+1)

= F
−1

{F{u′l+1,j(x, y, zl+1)}h�z)}.

(2)

Hθ ,j =

∑

m

|u
(m)
θ ,j (q)|

2

=

∑

m

|Pdfθ ,LP�zfθ ,L−1...P�zfθ ,1P�zfθ ,1u
(m)
1,j |

2.

(3)

L =

1

2

1

NθNj

∑

θ ,j

�

∑

m

|u
(m)
θ ,j (q)|

2
− gθ ,j�

2
2 =

1

Nθ

∑

θ

Lθ .

The term ∂fθ
∂f

 could be obtained with the rotation matrix. 
We derive the formula of ∂Lθ

∂fθ
 to get the ∇f L with the 

chain rule as

Following the similar notation as ref. [76], we employ the 
auxiliary variable χ(m)

θ ,j  as

In this way, the gradient of the loss function Lθ with 
respect to the object fθ is defined as

where the asterisk represents the complex conjugate. 
Here ∂Lθ

∂u
(m)

θ ,j,l

 was derived as follows

4.3 � Computation of the approximant
The performance of the DNN is significantly improved if 
the raw measurements are preprocessed by considering 
the imaging formation as an approximation of the solu-
tion, which is also known as Approximant [47]. Here we 
treated the reconstruction of 3D refractive index of an 
object f (r) = exp[α(r)+ iφ(r)] from multi-angle ptych-
ographic diffraction measurements g as a nonlinear opti-
mization problem by minimizing the loss function

where the first component is known as the data fidelity 
term, which models the physical relationship between 
the object f and the measurements g in a reduced-angle 

(4)

∇f L =

1

Nθ

∑

θ

∂Lθ

∂f

=

1

Nθ

∑

θ

[

∂Lθ

∂fθ ,1
,
∂Lθ

∂fθ ,2
, ...

∂Lθ

∂fθ ,L

]

∂fθ

∂f
.

(5)

∂Lθ

∂fθ
=

∑

m,j

∂L

∂|u
(m)
θ ,j |

∂|u
(m)
θ ,j |

∂fθ

=

1

Nj

∑

m,j

(

∑

m

|u
(m)
θ ,j (q)|

2
− gθ ,j

)

2|u
(m)
θ ,j |

∂|u
(m)
θ ,j |

∂fθ

(6)χ
(m)
θ ,j = F

−1

{

2

(

∑

m

|u
(m)
θ ,j (q)|

2
− gθ ,j

)

u
(m)
θ ,j

}

.

(7)
∂Lθ

∂fθ ,l
=















1
Nj

�

m,j

χ
(m)∗
θ ,j u

(m)
θ ,j,L; l = L

u
(m)

θ ,j,lP−�z

�

∂Lθ

∂u
(m)

θ ,j,l+1

�

∗

; 1 ≤ l < L
.

(8)
∂Lθ

∂u
(m)

θ ,j,l

=







1
Nj
χ
(m)∗
θ ,j fθ ,L; l = L

fθ ,lP−�z{
∂Lθ

∂u
(m)

θ ,j,l+1

}
∗
; 1 ≤ l < L

(9)
ˆf = argmin

f

{�H(f )− g�2 + γ�(f )},
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setting; � is the regularizer expressing the prior knowl-
edge of the object, which is learned from the volumet-
ric pairs of golden standard IC patterns reconstructed 
from 349 rotation angles with a two-step reconstruction 
method, and the approximant retrieved from the one-
step multi-slice preprocessor with 21 rotation angles; and 
γ is the regularization parameter controlling the compe-
tition between the data fidelity term and regularization 
term. We assume that the sample is a pure phase object, 
i.e., α(r) = 0 , which is reasonable as the phase contrast 
is about 10 times larger than the absorption contrast in 
X-ray experiments for IC samples.

The approximant was generated by iteratively updat-
ing the data fidelity term (Eq.  3) via gradient descent 
f (k+1)

= f (k) − s(∇f L)f (k) . Here k denotes the iteration 
step, s is the step size, and (∇f L)f (k) is the gradient of L 
with respect to f evaluated at f (k) , as shown in Eq. 4. Raw 
diffraction patterns g of 256× 256 px2 were downsam-
pled by ×2 to accelerate the computation, which results 
in the Approximant ×2 smaller in x and y directions 
compared to the golden standard. In this work, we chose 
k = 2 to further speed up the computation, L = 5 by con-
sidering the depth of focus of our system, and M = 12 
coherent modes of the synchrotron X-ray for the recon-
struction. The number of desired reconstruction slices is 
much larger, i.e. 280, so we simply dilated the generated 
slices to match it. As a result, the quality of network input 
is poor.

4.4 � Network architecture and implementation details
RAPID is an encoder-decoder network architecture 
based on 3D U-net via including a special convolution 
module, the anisotropic atrous module, at each hierarchi-
cal level in the encoding branch, as shown in Additional 
file  1: Fig. S1a. The original 2D ASPP module contains 
one 1× 1 convolution and three 3× 3 convolutions with 
isotropic atrous rates = (6, 12, 18). Here we extend it to a 
3D version by incorporating the 3D atrous convolution, 
which is defined as

Here, (i, j, k) is the voxel in the original volume f and fil-
tered volume g, (l, m, n) is the voxel in the convolutional 
kernel h, r1, r2, and r3 are atrous rates in x, y and z axes. 
r1, r2 and r3 are generally the same, which is also known 
as isotropic atrous convolution.

Additional file  1: Figure S1b shows the design of the 
anisotropic atrous module including three anisotropic 
ASPP modules in x − y , y− z , and x − z planes and an 
additional 3D convolution module to capture features 
in 3D. The features extracted from these four branches 

(10)

g(i, j, k) =

L
∑

l=1

M
∑

m=1

N
∑

n=1

f (i − r1l, j − r2m, k − r3n)h(l,m, n).

are fused via concatenation and passed through another 
standard 3× 3× 3 convolution kernels. Inter-slice 
cross-talking in the Approximant, originating from the 
nature of multi-slice reconstruction model, makes fea-
ture separation in the z direction difficult. To emphasize 
this artifact and achieve isotropic volumetric resolution, 
we include two more anisotropic atrous convolutions 
a = a1, a2 to address the severe feature residuals along 
the z direction for atrous convolution operated in y− z 
and x − z planes.

The whole volumes were split into 2781 examples with 
the size of 128× 128× 280 for the golden standard, and 
64 × 64 × 280 for the Approximant. The split volumes 
overlapped 50% between each other. As mentioned 
before, the upper part with respect to the beam propa-
gation direction was used for training, which contained 
2060 volumes; and the lower part was used for test-
ing, which included 618 volumes. There was no overlap 
between the training and testing volumes. We employed 
a negative Pearson correlation coefficient (NPCC = −
PCC) as the loss function and the training runs for 200 
epochs with a batch size of 2. The PCC is defined as

for two volumes A and B. Adam optimizer for stochastic 
optimization [77] with a polynomial learning rate sched-
ule was used to update a learning rate as

where the initial learning rate lr(0) = 2e − 4 , the end 
learning rate lr(end) = 5e − 5 , the total decay steps 
T = 3e4 , and p = 0.5 . The rest parameters of Adam opti-
mizer were set as default values.

For training processes, we used the MIT Supercloud 
with an Intel Xeon Gold 6248 CPU with 384 GB RAM 
and dual NVIDIA Volta V100 GPUs with 32 GB VRAM. 
Once the network was trained, it took less than one min-
ute for giving predictions over each test volume with a 
single NVIDIA Volta V100 GPU. And the whole testing 
area took around 125 seconds to get the final result. Our 
scripts for training and testing are publicly available in 
https://github.com/Ziling-Wu.

4.5 � Two‑step reconstruction as the ground truth 
and comparison algorithms

The ptychography reconstruction was conducted with 
the multi-slice least square maximum likelihood algo-
rithm [78] for 600 iterations to generate the phase pro-
jections at each tomographic angle in PtychoShelves [79]. 

(11)PCC(A,B) =

∑

i(Ai − Ā)(Bi − B̄)
√

∑

i(Ai − Ā)2
∑

i(Bi − B̄)2
,

(12)lr(step) = (lr(0)− lr(end))×

(

1−
step

T

)p

,
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In total, it took ∼ 360 h for ptychographic reconstruc-
tion for all 349 angles with 8 Tesla V100 GPUs in paral-
lel. We further aligned all 349 projections in the form 
of a phase ramp removal process and post-process with 
a pre-trained super-resolution network to refine the 
projections, which took about ∼ 5 h with a single Tesla 
V100 GPU. The final tomographic reconstruction was 
performed with 10 iterations of SART [17] to generate 
a 3D reconstruction of the IC sample with the isotropic 
14 nm voxel size, which took about 1 h using 8 Tesla V100 
GPUs.

We compared our algorithm with two conventional 
approaches for 21-angle X-ray ptycho-tomography . 
The experiment time was reduced by × 16 as a result of 
the angular reduction. In terms of computation, ptych-
ography reconstruction and projection refinement were 
performed as the golden standard for diffraction meas-
urements from N = 21 angles. The final tomographic 
reconstruction was conducted with FBP and SART (10 
iterations) algorithms implemented in TomoPy with 
the ASTRA toolbox [80, 81]. The computation time for 
ptychographic reconstruction and refinement was also 
reduced linearly according to angular reduction com-
pared to the golden standard. The tomographic recon-
structions were performed with the same configuration 
as our method, which took 116 s and 1678 s for the whole 
volume with FBP and SART (10 iterations), respectively. 
The computation time for the whole testing volume was 
estimated proportionally.

4.6 � Quantitative comparison metrics
We used PCC, MS-SSIM, BER, and DICE metrics to 
quantify our proposed method. PCC and MS-SSIM are 
used to quantify the correlation between two volumes. 
PCC is defined in the Eq.  (12), and MS-SSIM [65] is a 
weighted similarity metric with fixed weights on SSIM 
values from different scales.

The remaining two metrics DICE and BER are used to 
quantify the segmentation volumes. DICE, also known as 
F1 score, is broadly used to compare the similarity among 
two segmented volumes via calculating overlapping size 
over their total size. Similarly, BER quantifies the ratio 
of erroneously classified voxels. Both of them involve 
the derivation of probability distribution functions, thus 
probabilistic, and are based on binary classification as 
follows

and

(13)DICE =

2 · TP

2 · TP+ FN+ FP
,

where TP , TN , FP , and FN indicate the number of true 
positives, true negatives, false positives, and false nega-
tives, respectively. For the gold standard, the binary 
thresholds and prior probabilities p(0), p(1) required for 
these quantities were estimated by an Expectation Maxi-
mization (EM) algorithm. For testing, we used Bayes’ rule 
p(x|0)p(0) = p(x|1)p(1) with p(0), p(1) same as for the 
gold standard.
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Additional file 1:  Fig S1. Network architecture of the proposed RAPID 
method. Fig. S2. Layer-wise visualization in terms of x−y plane at two 
different depths, y−z, and x−z planes for the reconstructions acquired 
from different number of angular scans. Fig. S3. Layer-wise visualization 
in terms of  x−y plane at two different depths,  y−z, and  x−z planes for 
the reconstructions acquired from different angular ranges. Fig. S4. Power 
spectral density distributions in terms of kx− ky,  ky− kz, and  kx− kz planes 
for different approaches.

Acknowledgements
The authors are grateful to Nina Weisse-Bernstein, Jung Ki Song, Mo Deng, 
Baoliang Ge, William Harrod, Ed Cole, Zachary Levine, Bradley Alpert, Lee 
Oesterling and Antonio Orozco for helpful discussions and comments. The 
MIT SuperCloud and Lincoln Laboratory Supercomputing Center provided 
resources (high performance computing, database, consultation) that have 
contributed to the research results reported within this paper. I.K. acknowl-
edges support from Korea Foundation for Advanced Studies (KFAS). Z.W. and 
G.B. acknowledge funding from the Intra-CREATE Thematic Grant Retinal 
Analytics via Machine learning aiding Physics (RAMP) contract NRF2019-
THE002-0006 by Singapore’s National Research Foundation (NRF). This 
research used resources of the Advanced Photon Source, a U.S. Department 
of Energy (DOE) Office of Science User Facility, operated for the DOE Office 
of Science by Argonne National Laboratory under Contract No. DE-AC02-
06CH11357. The views and conclusions contained herein are those of the 
authors and should not be interpreted as necessarily representing the official 
policies or endorsements, either expressed or implied, of the ODNI, IARPA, the 
US Government, NRF, or the Singapore Government.

Author contributions
GB designed the research; ZW and IK conducted research; YY and JD 
performed the experiment; YJ contributed to the data pre-processing; ZW 
analyzed the data and prepared figures; ZW, IK and GB wrote the paper; all 
authors discussed the results and edited the paper. All authors read and 
approved the final manuscript.

Funding
This project is funded by the Intelligence Advanced Research Projects Activity, 
Office of the Director of National Intelligence (IARPA-ODNI) under contract 
FA8650-17-C-9113.

Availability of data and materials
The data that support the findings of this study are available from IARPA but 
restrictions apply to the availability of these data, which were used under 
license for the current study, and so are not publicly available. Data are how-
ever available from the authors upon reasonable request and with permission 
of IARPA. The scripts for training and testing are publicly available in https://
github.com/Ziling-Wu.

(14)BER =

FP+ FN

TP+ TN+ FP+ FN
,

https://doi.org/10.1186/s43593-022-00037-9
https://doi.org/10.1186/s43593-022-00037-9


Page 11 of 12Wu et al. eLight             (2023) 3:7 	

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 21 August 2022   Revised: 28 September 2022   Accepted: 11 
November 2022

References
	1.	 K. Grunewald, P. Desai, D.C. Winkler, J.B. Heymann, D.M. Belnap, W. 

Baumeister, A.C. Steven, Three-dimensional structure of herpes simplex 
virus from cryo-electron tomography. Science 302(5649), 1396–1398 
(2003)

	2.	 P. Ercius, O. Alaidi, M.J. Rames, G. Ren, Electron tomography: a three-
dimensional analytic tool for hard and soft materials research. Adv. Mater. 
27(38), 5638–5663 (2015)

	3.	 M. Holler, M. Guizar-Sicairos, E.H. Tsai, R. Dinapoli, E. Müller, O. Bunk, J. 
Raabe, G. Aeppli, High-resolution non-destructive three-dimensional 
imaging of integrated circuits. Nature 543(7645), 402–406 (2017)

	4.	 B. Parkinson, Layer-by-layer nanometer scale etching of two-dimensional 
substrates using the scanning tunneling microscope. J. Am. Chem. Soc. 
112(21), 7498–7502 (1990)

	5.	 C. Harrison, M. Park, P. Chaikin, R.A. Register, D.H. Adamson, N. Yao, Layer 
by layer imaging of diblock copolymer films with a scanning electron 
microscope. Polymer 39(13), 2733–2744 (1998)

	6.	 S.H. Lee, K.-N. Chen, J.J.-Q. Lu, Wafer-to-wafer alignment for three-dimen-
sional integration: a review. J. Microelectromech. Syst. 20(4), 885–898 
(2011)

	7.	 R.R. Schaller, Moore’s law: past, present and future. IEEE Spectr. 34(6), 
52–59 (1997)

	8.	 R. Hegerl, W. Hoppe, Dynamische theorie der kristallstrukturanalyse 
durch elektronenbeugung im inhomogenen primärstrahlwellenfeld. Ber. 
Bunsenges. Phys. Chem. 74(11), 1148–1154 (1970)

	9.	 M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C.M. Kewish, R. Wepf, O. 
Bunk, F. Pfeiffer, Ptychographic x-ray computed tomography at the 
nanoscale. Nature 467(7314), 436–439 (2010)

	10.	 H. Takano, Y. Wu, J. Irwin, S. Maderych, M. Leibowitz, A. Tkachuk, A. Kumar, 
B. Hornberger, A. Momose, Comparison of image properties in full-field 
phase x-ray microscopes based on grating interferometry and Zernike’s 
phase contrast optics. Appl. Phys. Lett. 113(6), 063105 (2018)

	11.	 M. Guizar-Sicairos, A. Diaz, M. Holler, M.S. Lucas, A. Menzel, R.A. Wepf, O. 
Bunk, Phase tomography from x-ray coherent diffractive imaging projec-
tions. Opt. Express 19(22), 21345–21357 (2011)

	12.	 H.M.L. Faulkner, J. Rodenburg, Movable aperture lensless transmission 
microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett. 93(2), 
023903 (2004)

	13.	 A.M. Maiden, J.M. Rodenburg, An improved ptychographical phase 
retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10), 
1256–1262 (2009)

	14.	 F. Pfeiffer, X-ray ptychography. Nat. Photonics 12(1), 9–17 (2018)
	15.	 M.J. Willemink, P.B. Noël, The evolution of image reconstruction for ct-

from filtered back projection to artificial intelligence. Eur. Radiol. 29(5), 
2185–2195 (2019)

	16.	 P. Gilbert, Iterative methods for the three-dimensional reconstruction of 
an object from projections. J. Theo. Biol. 36(1), 105–117 (1972)

	17.	 A.H. Andersen, A.C. Kak, Simultaneous algebraic reconstruction tech-
nique (sart): a superior implementation of the art algorithm. Ultrason. 
Imaging 6(1), 81–94 (1984)

	18.	 C. Bouman, K. Sauer, A generalized Gaussian image model for edge-pre-
serving map estimation. IEEE Trans. Image Process. 2(3), 296–310 (1993)

	19.	 A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. 
Rakete, D. Samberg, S. Stephan, S. Schöder, Non-destructive and quan-
titative imaging of a nano-structured microchip by ptychographic hard 
x-ray scanning microscopy. J. Microsc. 241(1), 9–12 (2011)

	20.	 A. Diaz, B. Malkova, M. Holler, M. Guizar-Sicairos, E. Lima, V. Panneels, 
G. Pigino, A.G. Bittermann, L. Wettstein, T. Tomizaki, Three-dimensional 

mass density mapping of cellular ultrastructure by ptychographic x-ray 
nanotomography. J. Struct. Biol. 192(3), 461–469 (2015)

	21.	 P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, O. Bunk, Density mapping of 
hardened cement paste using ptychographic x-ray computed tomogra-
phy. Cement Concr. Compos. 36, 71–77 (2013)

	22.	 B. Chen, M. Guizar-Sicairos, G. Xiong, L. Shemilt, A. Diaz, J. Nutter, N. Bur-
det, S. Huo, J. Mancuso, A. Monteith, Three-dimensional structure analysis 
and percolation properties of a barrier marine coating. Sci. Rep. 3(1), 1–5 
(2013)

	23.	 M. Esmaeili, J.B. Fløystad, A. Diaz, K. Høydalsvik, M. Guizar-Sicairos, J.W. 
Andreasen, D.W. Breiby, Ptychographic x-ray tomography of silk fiber 
hydration. Macromolecules 46(2), 434–439 (2013)

	24.	 O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, F. Pfeiffer, Influence of 
the overlap parameter on the convergence of the ptychographical itera-
tive engine. Ultramicroscopy 108(5), 481–487 (2008)

	25.	 R.A. Crowther, D. DeRosier, A. Klug, The reconstruction of a three-
dimensional structure from projections and its application to electron 
microscopy. Proc. R. Soc. London A Math. Phys. Sci. 317(1530), 319–340 
(1970)

	26.	 P.M. Pelz, M. Guizar-Sicairos, P. Thibault, I. Johnson, M. Holler, A. Menzel, 
On-the-fly scans for x-ray ptychography. Appl. Phys. Lett. 105(25), 251101 
(2014)

	27.	 J.N. Clark, X. Huang, R.J. Harder, I.K. Robinson, Continuous scanning mode 
for ptychography. Opt. Lett. 39(20), 6066–6069 (2014)

	28.	 Y. Yao, Y. Jiang, J.A. Klug, M. Wojcik, E.R. Maxey, N.S. Sirica, C. Roehrig, Z. Cai, 
S. Vogt, B. Lai, Multi-beam x-ray ptychography for high-throughput coher-
ent diffraction imaging. Sci. Rep. 10(1), 1–8 (2020)

	29.	 J. Deng, Y.S. Nashed, S. Chen, N.W. Phillips, T. Peterka, R. Ross, S. Vogt, C. 
Jacobsen, D.J. Vine, Continuous motion scan ptychography: characteriza-
tion for increased speed in coherent x-ray imaging. Opt. Express 23(5), 
5438–5451 (2015)

	30.	 J. Deng, C. Preissner, J.A. Klug, S. Mashrafi, C. Roehrig, Y. Jiang, Y. Yao, M. 
Wojcik, M.D. Wyman, D. Vine, The velociprobe: an ultrafast hard x-ray 
nanoprobe for high-resolution ptychographic imaging. Rev. Sci. Instrum. 
90(8), 083701 (2019)

	31.	 D. Gürsoy, Direct coupling of tomography and ptychography. Opt. Lett. 
42(16), 3169–3172 (2017)

	32.	 M. Kahnt, J. Becher, D. Brückner, Y. Fam, T. Sheppard, T. Weissenberger, F. 
Wittwer, J.-D. Grunwaldt, W. Schwieger, C.G. Schroer, Coupled ptychogra-
phy and tomography algorithm improves reconstruction of experimental 
data. Optica 6(10), 1282–1289 (2019)

	33.	 H. Chang, P. Enfedaque, S. Marchesini, Iterative joint ptychography-
tomography with total variation regularization. in 2019 IEEE International 
Conference on Image Processing (ICIP), pp. 2931–2935 (2019). IEEE

	34.	 S. Aslan, V. Nikitin, D.J. Ching, T. Bicer, S. Leyffer, D. Gürsoy, Joint ptycho-
tomography reconstruction through alternating direction method of 
multipliers. Opt. Express 27(6), 9128–9143 (2019)

	35.	 A. Suzuki, S. Furutaku, K. Shimomura, K. Yamauchi, Y. Kohmura, T. Ishikawa, 
Y. Takahashi, High-resolution multislice x-ray ptychography of extended 
thick objects. Phys. Rev. Lett. 112(5), 053903 (2014)

	36.	 K. Shimomura, A. Suzuki, M. Hirose, Y. Takahashi, Precession x-ray ptychog-
raphy with multislice approach. Phys. Rev. B. 91(21), 214114 (2015)

	37.	 K. Shimomura, M. Hirose, T. Higashino, Y. Takahashi, Three-dimensional 
iterative multislice reconstruction for ptychographic x-ray computed 
tomography. Opt. Express 26(24), 31199–31208 (2018)

	38.	 P. Li, A. Maiden, Multi-slice ptychographic tomography. Sci. Rep. 8(1), 
1–10 (2018)

	39.	 C. Jacobsen, Relaxation of the crowther criterion in multislice tomogra-
phy. Opt. Lett. 43(19), 4811–4814 (2018)

	40.	 A.M. Maiden, M.J. Humphry, J. Rodenburg, Ptychographic transmission 
microscopy in three dimensions using a multi-slice approach. JOSA A 
29(8), 1606–1614 (2012)

	41.	 T. Ramos, B.E. Grønager, M.S. Andersen, J.W. Andreasen, Direct three-
dimensional tomographic reconstruction and phase retrieval of far-field 
coherent diffraction patterns. Phys. Rev. A 99(2), 023801 (2019)

	42.	 S. Barutcu, P. Ruiz, F. Schiffers, S. Aslan, D. Gursoy, O. Cossairt, A.K. Katsag-
gelos, Simultaneous 3d x-ray ptycho-tomography with gradient descent. 
in 2020 IEEE International Conference on Image Processing (ICIP), pp. 
96–100 (2020). IEEE



Page 12 of 12Wu et al. eLight             (2023) 3:7 

	43.	 Z. Fabian, J. Haldar, R. Leahy, M. Soltanolkotabi, 3d phase retrieval at 
nano-scale via accelerated wirtinger flow. in 2020 28th European Signal 
Processing Conference (EUSIPCO), pp. 2080–2084 (2021). IEEE

	44.	 V. Nikitin, S. Aslan, Y. Yao, T. Biçer, S. Leyffer, R. Mokso, D. Gürsoy, Photon-
limited ptychography of 3d objects via Bayesian reconstruction. OSA 
Continuum 2(10), 2948–2968 (2019)

	45.	 S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis, Imaging through glass 
diffusers using densely connected convolutional networks. Optica 5(7), 
803–813 (2018)

	46.	 Y. Li, Y. Xue, L. Tian, Deep speckle correlation: a deep learning approach 
toward scalable imaging through scattering media. Optica 5(10), 
1181–1190 (2018)

	47.	 A. Goy, K. Arthur, S. Li, G. Barbastathis, Low photon count phase retrieval 
using deep learning. Phys. Rev. Lett. 121(24), 243902 (2018)

	48.	 M. Deng, S. Li, A. Goy, I. Kang, G. Barbastathis, Learning to synthesize: 
robust phase retrieval at low photon counts. Light Sci. Appl. 9(1), 1–16 
(2020)

	49.	 Y. Rivenson, T. Liu, Z. Wei, Y. Zhang, K. de Haan, A. Ozcan, Phasestain: the 
digital staining of label-free quantitative phase microscopy images using 
deep learning. Light Sci. Appl. 8(1), 1–11 (2019)

	50.	 H. Majeed, A. Keikhosravi, M.E. Kandel, T.H. Nguyen, Y. Liu, A. Kajdacsy-
Balla, K. Tangella, K.W. Eliceiri, G. Popescu, Quantitative histopathology of 
stained tissues using color spatial light interference microscopy (cslim). 
Sci. Rep. 9(1), 1–14 (2019)

	51.	 A. Goy, G. Rughoobur, S. Li, K. Arthur, A.I. Akinwande, G. Barbastathis, 
High-resolution limited-angle phase tomography of dense layered 
objects using deep neural networks. Proc. Natl. Acad. Sci. 116(40), 
19848–19856 (2019)

	52.	 I. Kang, A. Goy, G. Barbastathis, Dynamical machine learning volumetric 
reconstruction of objects’ interiors from limited angular views. Light Sci. 
Appl. 10(1), 1–21 (2021)

	53.	 F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, G. 
Situ, Phase imaging with an untrained neural network. Light Sci. Appl. 
9(1), 1–7 (2020)

	54.	 H. Chung, J. Huh, G. Kim, Y.K. Park, J.C. Ye, Missing cone artifact removal 
in odt using unsupervised deep learning in the projection domain. IEEE 
Trans. Comput. Imag. 7, 747–758 (2021)

	55.	 S. Aslan, Z. Liu, V. Nikitin, T. Bicer, S. Leyffer, D. Gürsoy, Joint ptycho-tomog-
raphy with deep generative priors. Mach. Learn. Sci. Technol. 2(4), 045017 
(2021)

	56.	 L. Alzubaidi, J. Zhang, A.J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. 
Santamaría, M.A. Fadhel, M. Al-Amidie, L. Farhan, Review of deep learning: 
Concepts, cnn architectures, challenges, applications, future directions. J. 
Big Data 8(1), 1–74 (2021)

	57.	 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-
tion. in Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 770–778 (2016)

	58.	 S. Mallat, A Wavelet Tour of Signal Processing (Elsevier, Amsterdam, 1999)
	59.	 L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic 

image segmentation with deep convolutional nets and fully connected 
crfs. arXiv preprint arXiv:​1412.​7062 (2014)

	60.	 K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convo-
lutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. 
Intell. 37(9), 1904–1916 (2015)

	61.	 L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolu-
tion for semantic image segmentation. arXiv preprint arXiv:​1706.​05587 
(2017)

	62.	 U.S. Kamilov, I.N. Papadopoulos, M.H. Shoreh, A. Goy, C. Vonesch, M. Unser, 
D. Psaltis, Learning approach to optical tomography. Optica 2(6), 517–522 
(2015)

	63.	 O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for 
biomedical image segmentation. in International Conference on Medical 
Image Computing and Computer-Assisted Intervention, pp. 234–241 
(2015). Springer

	64.	 Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, 3D U-Net: 
learning dense volumetric segmentation from sparse annotation. in 
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 424–432 (2016). Springer

	65.	 Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for 
image quality assessment. In: The Thrity-Seventh Asilomar Conference on 
Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402 (2003). IEEE

	66.	 J. Lim, Is ber the bit error ratio or the bit error rate? EDN. Retrieved, 02–16 
(2015)

	67.	 L.R. Dice, Measures of the amount of ecologic association between spe-
cies. Ecology 26(3), 297–302 (1945)

	68.	 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł Kai-
ser, I. Polosukhin, Attention is all you need. Adv. Neural Informat. Process. 
Syst. 30, (2017)

	69.	 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unter-
thiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is 
worth 16x16 words: Transformers for image recognition at scale. arXiv 
preprint arXiv:​2010.​11929 (2020)

	70.	 I. Kang, Z. Wu, Y. Jiang, Y. Yao, J. Deng, J. Klug, N. Weisse-Bernstein, S. 
Vogt, G. Barbastathis, Attentional Ptycho-Tomography (APT) for three-
dimensional nanoscale X-ray imaging with minimal data acquisition and 
computation time (Submitted)

	71.	 L. Helfen, T. Baumbach, P. Mikulik, D. Kiel, P. Pernot, P. Cloetens, J. Baruchel, 
High-resolution three-dimensional imaging of flat objects by synchro-
tron-radiation computed laminography. Appl. Phys. Lett. 86(7), 071915 
(2005)

	72.	 M. Holler, M. Odstrcil, M. Guizar-Sicairos, M. Lebugle, E. Müller, S. Finizio, 
G. Tinti, C. David, J. Zusman, W. Unglaub, Three-dimensional imaging of 
integrated circuits with macro-to nanoscale zoom. Nat. Electron. 2(10), 
464–470 (2019)

	73.	 Z. Wu, I. Kang, T. Zhou, V. Coykendall, B. Ge, M.J. Cherukara, G. Barbasta-
this, Photon-starved x-ray ptychographic imaging using spatial pyramid 
atrous convolution end-to-end reconstruction (ptychospacer). in Compu-
tational Optical Sensing and Imaging, pp. 1–6 (2022). Optica Publishing 
Group

	74.	 M.J. Cherukara, T. Zhou, Y. Nashed, P. Enfedaque, A. Hexemer, R.J. Harder, 
M.V. Holt, Ai-enabled high-resolution scanning coherent diffraction imag-
ing. Appl. Phys. Lett. 117(4), 044103 (2020)

	75.	 K. Weiss, T.M. Khoshgoftaar, D. Wang, A survey of transfer learning. J. Big 
data 3(1), 1–40 (2016)

	76.	 E.H. Tsai, I. Usov, A. Diaz, A. Menzel, M. Guizar-Sicairos, X-ray ptychography 
with extended depth of field. Opt. Express 24(25), 29089–29108 (2016)

	77.	 D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv 
preprint arXiv:​1412.​6980 (2014)

	78.	 M. Odstrčil, A. Menzel, M. Guizar-Sicairos, Iterative least-squares solver 
for generalized maximum-likelihood ptychography. Opt. Express 26(3), 
3108–3123 (2018)

	79.	 K. Wakonig, H.-C. Stadler, M. Odstrčil, E.H. Tsai, A. Diaz, M. Holler, I. Usov, J. 
Raabe, A. Menzel, M. Guizar-Sicairos, Ptychoshelves, a versatile high-level 
framework for high-performance analysis of ptychographic data. J. Appl. 
Crystallogr. 53(2), (2020)

	80.	 D. Gürsoy, F. De Carlo, X. Xiao, C. Jacobsen, Tomopy: a framework for the 
analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21(5), 
1188–1193 (2014)

	81.	 D.M. Pelt, D. Gürsoy, W.J. Palenstijn, J. Sijbers, F. De Carlo, K.J. Batenburg, 
Integration of tomopy and the astra toolbox for advanced processing 
and reconstruction of tomographic synchrotron data. J. Synchrotron 
Radiat. 23(3), 842–849 (2016)

http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1412.6980

	Three-dimensional nanoscale reduced-angle ptycho-tomographic imaging with deep learning (RAPID)
	Abstract 
	1 Introduction
	2 Results
	3 Discussion
	4 Method
	4.1 X-ray ptychographic tomography experiment of integrated circuits
	4.2 Multi-slice forward and inverse models for reduced-angle acquisition
	4.3 Computation of the approximant
	4.4 Network architecture and implementation details
	4.5 Two-step reconstruction as the ground truth and comparison algorithms
	4.6 Quantitative comparison metrics

	Acknowledgements
	References


