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ABSTRACT

Up until now, Human-Robot Interaction (HRI) has been largely
defined by the influences both humans and robots exert on each
other across various interaction modes. Robots follow human pur-
pose and serve goals determined by humans with various degrees of
agency. Humans act, respond, and adapt to robot behaviors while si-
multaneously advancing technology to increase robot’s affordances.
Abstracted by this dyad, HRI has left out the material background
making this exchange possible: Nature. The current planetary cri-
sis forces us to reconsider the importance of contextualizing HRI
within a larger picture, and invites us to ask ourselves how this
relationship can be better served by considering Nature as the driv-
ing agent in this binary relationship. In response to this reflection,
we present a first attempt of a speculative paradigm in HRI: Nature-
Robot Interaction. We discuss ethical and design underpinnings of
this approach to HRI, introduce initial guiding principles, as well as
examples of potential affordances, embodiments and interactions.
While we begin in the realm of the speculative and recognize the
infancy of our proposal, we invite the HRI community to it as a
serious design principle moving forward.
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1 INTRODUCTION

The environmental crisis surrounding the use of computing devices
and electronics, under which robots are a clear category, appears as
spinning out of control. According to the United Nations Institute
for Training and Research, in 2019 alone, 53.6 Mt (Megatonnes) of
e-waste was generated globally: the rough equivalent in weight of
18 million adult elephants. A figure that is projected to increase to
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74.6 Mt by 2030 against a sobering 17.4 percent recycling rate as
reported in 2019. This astonishing amount of material is the result
of a 2.5 million Mt increase in Electrical and Electronic Equipment
(EEE) every year [32]. On the producing end, the manufacturing
of this category of products is increasingly requiring the use of
precious metals and other raw materials, which are beginning to
become scarce. Communication devices and embedded computers,
common in robotic applications, concentrate high levels of base
metals such as copper, platinum or gold. A figure calculated at 14
Mt of virgin material [32]. On the disposing end, recycling rates are
not keeping up with the demands imposed by production, creating
large transnational flows of e-waste material. The direction of this
flow is usually directed to the Global South or to nations where the
policy and infrastructure for e-waste management are limited or
non-existent. As a result, hazardous materials contaminate all com-
ponents of natural environments across these geographies, place
e-waste workers at enormous health and safety risks [7, 119], and
incite social unrest in nations far removed from the places where
these technologies are used [73, 91]. Lastly, as HRI moves towards
autonomous interactions between humans and robots, the comput-
ing necessary for this level of robot agency to take place makes
energy an important consideration. Some of the Neural Architec-
ture Search (NAS) Natural Language Processing (NLP) models, for
example, require an estimated 1515.43 Watts of energy, the equiva-
lent of 274,120 hours of energy provision, roughly 626,155 pounds
of CO; [102]. And although some of this energy comes from re-
newable sources, these are not environmentally neutral [37]. Not
to mention the material footprint of an increasing data computing
infrastructure around the globe. HCI researchers have described the
intertwining of several of these dynamics as "wicked cycles"[23].

These factors will inevitably intersect with the steadily increas-
ing market for commercial and industrial robots. Their manufactur-
ing, deployment and recall will represent a burden the planet can not
withstand [105]. Despite several calls to consider the negative plan-
etary and societal impact of robotics manufacturing [11, 40, 108],
there is an astonishing lack of data reporting its material contribu-
tion to the global issue of e-waste, for example, with virtually no
available data.

If we go outside our global boundaries, the story is not different.
We are increasingly littering our orbital commons with defunct
satellites and debris, without any perspective for improvement in
the future [33]. Finally, beyond earth, the current anthropocentric
"space colonization" is yet another example of a utilitarian and
Nature-adverse approach: we are exploring space with robots that
will become, eventually, outer space trash, with disregard for their
impact on the extraterrestrial environment.

As we echo this call for reflection within HRI, and as engineers,
designers and roboticists, we are attuned to the complexities of
crafting, passing and enforcing national and international laws that
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can help ameliorate the challenges of e-waste, mining and energy
infrastructure and consumption. However, when contextualizing
our role, specifically within the HRI community, we see great po-
tential in intervening upon the imaginaries surrounding robots at
design point, instead of at wicked cycles point.

In this paper, we argue that one of the most important rea-
sons why the environmental reverberations of robotics, specifically
within the HRI community, have stayed out of the limelight has
to do with a historical dominance of human notions as the driver
of the human-robot relationship. This emphasis has generated an
incomplete picture of the "human" in the "human-robot" dyad. A
picture that removed the human from the background that makes
the human-robot interaction and life itself possible: Nature. We con-
tribute an attempt to break this human ruling in HRI by imagining
a new paradigm. We call this speculative direction: Nature-Robot
Interaction (NRI). This paradigm aims to blur anthropomorphism in
HRI design and present roboticists and other technology designers
with a new creative space by drawing attention to the possibilities
of centering in Nature. Moreover, NRI seeks to foster a conversation
around the need to factor in known material limits when thinking
about the future of robotics.

1.1 Social and environmental challenges ahead
for HRI

The robotics sector overall is on the rise. By 2014, sales of domestic
robots to individual costumers alone recorded at 3.35 million units.
Forecasts put that number at 5.3 million for the next decade [44],
and the market appears to be following this predicted behavior.
This figure does not include the considerable market penetration
of industrial robots in the past decade [103].

The environmental footprint of these market and consumer
shifts raises deep concerns. Approximately 83 percent of the end-
of-cycle material produced by these manufacturing flows creeps
through an obscured network of regional and international trading
or non-compliant, environmentally harming recycling practices,
all of which release large amounts of toxic materials [89]. These
hazardous components contaminate water sources [67, 116], nega-
tively shift the quality of air [43, 63], and of soil and terrestrial en-
vironments [61, 68], required for the wellbeing of all living species,
including humans [123]. A recent report on the health of Artisanal
and Small-Scale Mining (ASM) workers showed that 144 out of 176
health studies reported at least one instance of (i) prevalence or inci-
dence of diseases and other adverse health conditions [...](ii) signs and
symptoms related to chemical exposures [...]; and (iii) musculoskeletal
disorders, injuries, and fatalities [...]" [21]. Ironically, research has
found that e-waste handling causes some of the very health impacts
that HRI has tried to solve through decades of research.

Exposure to toxins during the unregulated recycling of e-waste
can lead to changes in neurodevelopment [64, 66] and overall
growth [121], hearing loss [117], and disadvantages in learning
outcomes [97], among others. All conditions occur to the most
vulnerable, pregnant women, aging populations and children.

Wildlife can also be affected by this phenomenon. Illegal and
uncontrolled mining practices creates a situation where miners are
forced to transform key global ecosystems in order to both mine
and survive in the process. In his book Coltan Boom, Gorilla Bust:
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The Impact of Coltan Mining on Gorillas and Other Wildlife in Eastern
DR Congo, biologist and conservationist lan Redmond estimated
that the footprint of coltan miners in the Bukavu region could have
eradicated the 3,700 elephant population and most of the 8,000 go-
rillas until then protected by the National Park system. This burden
is then passed to smaller species such as chimp, buffalo, antelope,
tortoises, birds and other small animals, irreversibly changing the
natural landscape [87].

The complex nature of many robot hardware systems, partic-
ularly robots using screens and sensor arrays to interface with
humans, makes it so that they require a large quantity of differ-
ent materials. So much so that at end-cycle, a consumer robot is
likely to fall under five of the six UNU-KEYS benchmarking macro-
categories of e-waste developed by the United Nations University
[111]. This increasing demand, shared with other popular EEE
products, creates considerable demand over raw materials, even-
tually leading to scarcity, as it was the case with silicon during
the COVID-19 pandemic [51]. A towering amount of common raw
materials such as iron, aluminium, and copper. are needed for robot
production. The broad EEE category of products which includes
robots, recorded by 2019 an approximate 39 Mt of material at the
production line statistic [32]. This goes along with all the plastics
required in robotic hardware, all the way from casings to cable
insulation. The majority of these production practices are far from
being circular, as the recycling statistics show [32]. Even in an ideal
scenario in which all the iron, copper and aluminium resulting from
e-waste (25 Mt) is recycled, the world would still require approxi-
mately 14 Mt of iron, aluminum and copper from primary resources
to manufacture new electronics (11.6 Mt, 1.4 Mt, and 0.8 Mt, re-
spectively) [32]. This indicates that the gap between the secondary
iron, aluminum and copper found in e-waste and their demand
for the production of new EEE is quite large: a consequence of the
continuous, unchecked growth of sales of EEE.

Alongside more common raw materials, precious metals make
this picture more complicated. The race for rare minerals has deep-
ened the aforementioned environmental challenges while fueling
internal and international conflict among nations involved in il-
legal mining of these materials. The global demand for gold and
coltan, for example, widely used for the production of capacitors,
semi-conductors and other internal parts, have sprung regions in
Sierra Leone, the Democratic Republic of Congo and Colombia just
to mention a few, into spiraling violence, more often than not con-
nected to international human rights violations [2, 47, 74]. These
geopolitics of sourcing and disposing of materials are creating so-
cial and environmental disarray and placing the burden at the end
of this material cycle in nations across the Global South, many
of them seen as "low-rights environments" [28]. These countries
usually lack the appropriate management infrastructure and sys-
tems to handle these waste streams, setting the stage for vulnerable
working, health and environmental conditions [7, 30, 119].

1.2 The human within Human-Robot
Interaction

Our proposition is that the most prominent reasons for the future
(and present) negative ecological impact of HRI have to do with (1)
the centering of the human in this relation, and (2) the abstraction of
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the human from the natural world. When seen from a historical lens,
a significant portion of the work within HRI has focused on how to
harmonize interactions between humans and robots, particularly
with the objective of enriching or optimizing the human experience.
Making robots easy to talk to [54, 80], visually and interactively
more compelling [15, 39, 60, 115], comforting within situations that
challenge us [53, 88, 99]; robots that can help us learn better [76],
improve our emotional well-being [19], our health [20] support
disabilities [107], make aging meaningful [57, 79], and even help
us find solace in our intimacy [52].

Once deployed, either through human in/out of the loop models,
these robots usually perform constrained tasks, allowing humans
to maintain control over the interaction, assess it and iterate over
it. This workflow requires several considerations, including safety,
animacy, dependability, and intelligence, among others, all defined
by humans, which in turn builds an implicit, sometimes defined
hierarchy between humans and robots. This anthropo-centrality
extends to the majority of the interaction metaphors in HRI in
the form of anthropomorphism [17, 29, 94], particularly within
social robotics [31]. The pinnacle of this anthropocentric approach
takes place when robots have to navigate, actuate, and interact
from within the human body, either for diagnostic [18, 20, 72] or
enhancing purposes [122]. In this scenario, the environment is the
human body itself, and it is mandatory to preserve the welfare of
the human host.

This sustained focus on the human has left us with a wealth of
technologies, methodologies and insights, a product of decades of
careful study across different domains. As a result, it has reinforced
the synthetic, artificial separation of humans and Nature in HRI.
We argue that this separation is a mirroring of a larger western
position that creates a binary out of Nature and culture where in
reality, both of them are intertwined and interpreted across different
cultures: nature-cultures [59, p.30]. It is this very binary that makes
it possible for robot designers to move ahead with business as usual,
regardless of the overall negative output on Nature as a result of
our practice.

Another consequence of this anthropocentric approach to HRI
can also be seen in the perpetuation of bias underlying some of
its systems; human flaws reflected upon technological artifacts. In-
stances of this phenomenon are offered by the current track record
and perception of facial recognition technology [13, 35] and voice
recognition [58, 104]. More importantly, prioritizing the human in
the design and development of robots and their interactions perpet-
uates a narrow and myopic vision of their universal role beyond
human lives.

This emphasis on the human as the center of gravitation for
robot behavior and purpose leaves plenty of room for divergent
paradigms. Although some exceptions to this paradigm are be-
ginning to appear, for example, by inverting the direction of the
interaction hierarchy in HRI to Robot-Human Interaction [98], or
investigating shifts in agency directly from the robot and not the
human. We build on these kinds of provocation, aiming to move
our imagination towards a more radical shift.
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1.3 A shift within the practice and paradigms
of design

Along with the positive advances in technology for the manufactur-
ing, disposal and energy consumption of robots, we propose that a
shift in the way robots are imagined within HRI can be as, if not
more, impactful moving forward. In this section, we provide some
ideas inspired by recent conversations and debates from within
the field of design. In his 1973 book Tools for Conviviality, Ivan
Illich argued that the demands of the industrial age had made it
so that the tools we built within this era push us further into an
environmental brink. To counteract this, he calls for designers to
imagine technological possibilities, tools and systems that benefit
both humans and Nature, in contrast to "the conditioned response of
persons to the demands made upon them by others, and by a man-
made environment" [50, p.24]. There is another equally powerful
insight into Illich’s conceptualization of a convivial tool: the capac-
ity of a user to understand the technical underpinnings of a tool.
Although some of the systems underlying the functioning of a robot
can fall outside this category (e.g. the inner workings between in-
puts and outputs within deep neural networks), any robot designer
should have a clear understanding of the environmental and social
tensions created by the required energy [9, 102], water [77, 96] or
land terraforming [82] for renewable energy, behind the computing
power required to operate a cloud-based robot for example. Under-
standing the natural background that serves us when designing
robots, as well as considering the implications of our designs upon
that background, will better prepare us to design convivial robots.
As the materiality of computing and manufacturing becomes
more visible, friction between different relations to the land that
makes possible its necessary resources will come into view. The
water protection movement led by Standing Rock Sioux tribal mem-
bers across the Missouri and Cannon Ball Rivers to stop the building
of the Dakota Access Pipeline [113], and the Kanaka Maoli resis-
tance to the building of the 30-meter telescope in Mauna Kea [70]
serve as examples of how land relationality manifests in the context
of technology. These examples serve as a reminder that human rela-
tionships with the natural world are not universal. In other words,
different human groups experience and act upon the world differ-
ently. As a result, what constitutes mere material extraction for
some (e.g. mining), means the harming of one’s most sacred thing
(e.g. Nature) for others. The Maori notion of Kaitiakitanga, or the
idea that humans belong and are meant to guard Nature instead of
dominating it [56], or the Place-Thought framework stemming from
Haudenosaunee and Anishnaabe cosmologies, underlying the risks
of assigning agency to the human over Nature, or the holistic vision
of integration of humans and the natural environment proposed
by the Buen Vivir (Good Living) Andean philosophy [1, p194], are
only some examples of this worldviews difference. Recent debates
in design theory have foregrounded the notion of ontological de-
sign, or the observation that as we design in a world, that world
designs us back [114]. This profound insight serves as an invitation
to seriously engage and encounter other worlds, meaning other
webs of relationships between living beings (including humans)
within the natural world, and is of great inspiration to the notion of
Nature-Robot Interaction. It also serves as a reminder that failing to
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attend to these differences, can lead robots to turn from a technol-
ogy for the future to a defuturing technology [34, p10]. This plural
vision of the world is already finding its way into related fields
such as sustainable computing [25], artificial intelligence [62, 71]
and Human-Computer Interaction (HCI) [3] just to mention a few.
In this paper, we argue that a shift towards different ontological
positionings when designing robots can have a profound positive
social and environmental impact moving forward.

From a design practice perspective, several efforts are currently
ongoing, particularly coming from the field of soft robotics [46],
and what has been called ecobots [108], looking at new fabrication
materials [118], new bio-inspired actuators [16, 75, 81, 112], new
generations of green electronics [12], and different arrays of energy
sourcing to allow robots to be less environmentally burdensome.
A recent special issue of the Biological Cybernetics on "Animal-
robot interaction and biohybrid organisms" is setting the stage for
the type of shift we suggest with the Nature-Robot Interaction
paradigm [90]. Although we recognize these advances represent
significant improvements, and would like to stress they are crucial
for moving the field in a different direction, we contend they are
not enough; we are in need of going beyond [40]. We argue that
the most significant change for the field might come from a radical
shift in frame; from a renewed imaginary that privileges Nature
over humans.

In what follows, we engage this imaginary and envision how
this new mindset could take place. We set the stage for the need of
an NRI lens, and present a possible set of laws guiding its practice,
along with underpinnings and considerations both positive and
negative. While acknowledging the early stages of our proposal, we
present possibilities and scenarios where NRI can unfold. We map
out NRI in relationship to other Nature-friendly moves in robotics
and close with some of the limitations of our exercise.

2 NATURE-ROBOT INTERACTION

We start this section addressing an important conceptual clarifica-
tion: what is taken as Nature in NRI. In developing his theory of
“The Parliament of Things”, Bruno Latour argues that the divisions
such as nature-culture, subject-object, as modes of classification in
the “modern world”, are merely synthetic. He points out that phe-
nomena such as the production of computer chips and the making of
the ozone layer blur these lines encompassing culturally-dependent
natural and human factors [59]. Therefore, if we embrace the no-
tion that non-human agents are worthy of agency on the basis of
their acting in the world (e.g. natural ecosystems, human tools),
we accept the possibility that Nature can be culturally constructed.
This larger conversation is known in the field of anthropology as
the “ontological turn” [84], a view on how the world is constructed
that dates the rise of the field of anthropology as pointed out by
critical Indigenous thinkers [106]. In our speculative take on what
form the NRI can take, we subscribe to this view of Nature(s).

The outlook of Nature-Robot Interaction brings into view a new
breed of robots: brought forth by Nature’s raw materials, powered
and animated by Nature’s diverse and sustainable energetic forms,
directed to feedback to Nature following the end of its life cycle.
From a form perspective, this paradigm calls for robots that are de-
signed to be both efficiently materialized and ingested by Nature’s
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ecosystems. From an interaction point of view, while still offering
the possibility to focus on the human-robot dyad, NRI requires each
interaction to be constructed as actively mediated by Nature, never
outside of that frame. This is a path for designers to be forever teth-
ered to the material implications of the robots they create. Moves
towards this outlook, this type of 'retributive technology design’, are
already taking place: the use of water-based composites in tandem
with robotic fabrication. Chemically tuned decay [27, 65]. A form
of material cycling and ecology long practices by various cultures
around the world.

Nature drives both human and robot decision-making. At the
human level, this already happens, particularly in rural areas world-
wide where culture and Nature are harmonically entangled. The
global practice of agroecology and Indigenous farming are living
examples of it [14, 38]. Robots will align with this behavior through
continuous environmental sensing and behavioral reinforcement
from humans, living creatures and other robots. This acting of
humans over robots on behalf of Nature, supports the program-
ming of robots for NRI purposes until robots can directly program
themselves to serve as Nature’s proxies.

This design paradigm travels all the way from the choice of
materials and processes of manufacturing to the goals a robot is
built to achieve and the data that feeds its decision-making systems.
This is a way in which Nature acts and takes priority within the
human-robot dyad. This acting can be more than passive, it means
that robot designs will default to overriding protocols for the pur-
pose of protecting Nature (e.g. disobeying human instructions in
exchange of securing the welfare of natural ecosystems). Nature
systematically plays an active role.

These robots move seamlessly across ecosystems, much like in-
formation through Nature’s rhizome [8, p.126]. They mimic Nature,
some of them are Nature [10]. Even if distributed, these robotic ma-
chines can assemble to recreate Nature’s conditions when Nature is
incapable of doing so (e.g. imitating micro-climates that allow bees
to move in space when natural weather conditions do not allow
for it). They continuously survey the health of living organisms
with which they interact (including humans), and make meaning-
ful suggestions for how to improve wellbeing all across. When it
comes to the health of Nature’s core functioning, they proactively
act in its protection. This can include, but is not limited to robots
having the capability to remove pollutants from air, water and soils,
sequestering carbon and greenhouse gases, and promoting ade-
quate conditions for pollination when appropriate. This acting in
guardianship of Nature is to take place even if at the expense of
human goals or action (e.g. impeding mining where ecosystems are
being stretched outside their limits).

In line with the position in Nature we take at the beginning of
this section, NRI imagines a world where robots respond to particu-
lar cultural positioning. As the Haudenosaunee follow an ethics of
balancing all life and sees humans as “responsible for taking actions
that positively affect seven generations hence”, for example, we
imagine robots that operationalize this directive through program-
matic routines that follow a Haudenosaunee worldview of balance
[109, p.41]. This decentralization of robots negates the possibility
of universalizing needs, avoiding the domestication of Nature and
subsequent acceleration of the human transformation of earth’s
raw materials into ‘standing-reserves’ [48]. The place-based ethical
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positioning of NRI, allows for robots and its designers to escape the
narrowing set of origin stories behind technology.

In summary, this fictional picture of what NRI can offer us, is
characterized by the aforementioned principles:

e Robots are animated by Nature. Powered by it, directed by
it and consumed by Nature at the end of their material life
cycle.

e Nature as a driver of human and robot decision-making
both as setting the priorities of robot designs, and by way of
requiring a concerted action on behalf of Nature’s welfare

e Humans serve as Nature’s proxies when programming robots
for NRI until robots can directly program themselves to serve
as Nature’s proxies.

e Robots as place-based ethical artifacts, dependent of culturally-
rooted understandings of Nature(s).

A complete understanding of this paradigm shift requires us
to delve deeper into the philosophical underpinnings that favor a
Nature-centric approach, how it weaves into the constructs of cul-
ture and community, and what its possible benefits and drawbacks
can be. Nature-Robot Interaction exists as a conceptualization to
aspire to. We recognize our current technology is not yet at a level
that allows for a complete NRI vision to be achieved, yet our state-
of-the-art is developed enough to invite roboticists to begin moving
the needle toward this direction. In continuing to envision a future
where Nature-Robot Interaction design takes places, we return to
the realm of the speculative to imagine a set of laws governing the
existence of robots built under this paradigm.

2.1 The laws of Nature-Robot Interaction

The first of the famous laws of robotics proposed by Isaac Asimov
centers on humans with no regard for the natural world. Even with
its refined version in the Foundation and Earth, the law centers
humanity, still signaling humans as the most important species,
and Nature at their service [6].

We take inspiration from Asimov’s laws of robotics to provide
guidelines for how NRI could take place. Notably, these laws are
entirely based on imagining the outcomes of interactions between
humans and robots [5]. Any other version of laws of robotics, to our
knowledge, has not centered Nature or consider it as a prominent
actor. We suggest the following four laws:

(1) First law: a robot’s existence and interactions with and
within the world must not harm Nature, including all its life
forms, either by action or inaction.

(2) Second law: a robot must follow the provided protocols by
its programmer, Nature, human or robot, except where such
orders would conflict with the First Law.

(3) Third law: a robot’s programming must take into account
the cultural norms defining a harmonic relationship between
intelligent forms and Nature as long as such norms do not
conflict with the First or Second Law.

(4) Fourth law: a robot must protect its own existence as long
as such protection does not conflict with the First, Second,
or Third Law.

Our first law seeks Nature’s welfare above all. Nature was here
before humans (and will be after), as humans were before robots.
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One cannot conceive the existence of humans or robots, and life in
general, without Nature’s thriving.

The second law considers robot’s agency and highlights the pos-
sibility of Nature to act as an agent driving robots’, or for robots to
drive their own behavior. It foregrounds the possibility of multiple
agents acting upon robots along with the potential conflict inherent
to this mode of interaction. It is worth noting that in recent times,
tensions or conflict between humans and the natural world (e.g.
human-wildlife conflict), assume agency and even legal represen-
tation over non-humans. In the same way that rivers in Colombia,
Ecuador and New Zealand have rights, agency and legal standing,
future conflicts over multi-agency over robots, can draw inspiration
from these experiences [55, 78]. In the context of HRI, it also means
that robots might not require human intervention to interact with
Nature.

Our third law acknowledges how different communities see the
harmony between their societies and Nature. It emphasizes the
possibility of different ways to thrive without negatively affecting
Nature. In the same way evolution has found different solutions to
a similar natural problem, different cultures can set different direc-
tives to accomplish Nature’s welfare. We leave an open question for
how robots programmed by different cultures will interact amongst
themselves and outside their "local" ecological/cultural boundaries,
though we suggest that the notion of "partial connections” can pro-
vide a way to understand the unfolding relationships of two entities
that are related to each other by way of containing one another,
yet not possibly reduced one to the other [24, 101, p.52,p.32].

The fourth law, in the face of the possibility of self-aware and
conscious robots, presents the duality between self-preservation
and Nature’s welfare. We highlight the importance of recognizing
agency for all living forms, hence our Nature-centric approach, to
avoid past mistakes made by human societies when subjugating
other life forms.

Same as Asimov’s, our proposed laws of NRI are susceptible of
multiple ethical dilemmas and conundrums. In an effort to explore
some of these, we continue with an exploration of a small set of
potential benefits and drawbacks of this fictional paradigm.

2.2 Benefits of NRI

Given Nature’s omnipresence as the backbone supporting all human
and robot activities, NRI presents multiple potential socioeconomic,
cultural and environmental benefits.

Socioeconomic: A Nature-centric lens will lead to changes in
socio-economic policies, both local and global, prioritizing the en-
vironment and communities’ welfare above that of personal and
private interests. With a shift from consumer-focused economies
to Nature’s welfare-oriented markets, human comfort, and per-
sonal and private interests, will not be at the center of the equation
anymore. This new approach to the forces of the market will pro-
mote changes in economic behaviors and incentives, overriding
geopolitical interests. In consequence, we expect an increase in ben-
efiting actions towards solving the global environmental challenges,
including better allocation of natural resources.

Culture and Community: Local communities and cultural prac-
tices will gain traction and recognition in the socioeconomic and
political space. Given their deeply rooted relationship with the
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environment, they are better suited for a Nature-centric lifestyle.
As robots’ follow a place-based orientation, the variety of possible
designs is naturally increased, instead of concentrated under a dom-
inant design paradigm. This variety can also promote collaboration
between communities, particularly as Nature’s welfare cannot be
achieved if tackled by atomized and isolated working islands.
Environmental: In focusing on Nature’s welfare, NRI promotes
sustainable practices by having agents directly responding to hu-
man and non-human needs. In this context, an increase in data
collection and sharing by robots will mean better models about the
world and the possibility of developing better tools to prevent, or
respond to, natural disasters. A focus on Nature’s welfare could
also lead to higher investment into technologies, including robots,
aiming at solving pressing global challenges. Robots will act in
service of improved agriculture, energy harvesting, recycling and
trash management, pollutants removal, human research, animal
and plant studies, especially as these agents will adapt to respond
to these activities’ environmental variables. Finally, in the context
of enterprises intrinsically creating negative environmental conse-
quences on Nature (e.g. logging, mining, and resource extraction), a
Nature-centric approach will allow robots to find optimal scenarios
to maximize extracted resources while considering Nature’s welfare,
while alternative approaches are discovered and put in place.

2.3 The dark side of NRI

As the focus on human agency is displaced, unforeseen potential
harms, drawbacks, and ethical challenges come into view. Steer-
ing away from a human-centered focus reveals novel and creative
ways to approach compelling questions within HRI, while poten-
tially benefiting Nature. Regardless of this positive framing, several
scenarios require an open debate, especially in light of cultural de-
pendencies guiding NRI. Ethical concerns such as privacy and data
handling, and the effect robots have on Nature are already being
discussed [41], along with potential uses (positive and negative,
foreseeable and unforeseeable) of all the data collected when robots
interact with Nature [93]. This also encompasses discussions on the
ecological impact of deploying robots into the wild, in particular
the effect of robots in untouched environments and in the species
it interacts with [26]. Building on these, we highlight some of the
limitations and concerns to be considered. We present different sce-
narios, not to propose solutions, but rather to bring these aspects
into consideration.

e When Nature and humanity are on opposite sides of the scale,
how will robots take action? Consider resource extraction or
agro-industrial farming necessary to sustain human needs: a
Nature-centric lens requires either a substitution or complete
freeze of any of these activities regardless of its impact on
human welfare. Would a robot measure the loss of human life
and weigh it against the environment and other lifeforms?
What could such a metric be, and what characteristics are
important when assessing the value of human life versus
Nature’s welfare?

Using the same example, it is now robots the ones in need.
When Nature and robots are on opposite sides of the scale, how
will robots take action? If a robot needs to draw materials
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from Nature to stay operational, what would the value com-
parison be between Nature’s possible extracted materials
and the robot’s existence?

o Nature’s welfare hierarchies. With a myriad of actors taking
steps on behalf of Nature, and with Nature largely defined
through cultural notions, how will Nature find balance across
this difference? When humanity and robots’ existence depend
upon Nature’s possibilities, how will humans and robots act in
the face of planetary crisis?

All these scenarios require us to take into account the rights of
Nature. Over the last decade, Indigenous and grassroots communi-
ties have led efforts to operationalize them into practice. Examples
include the inclusion of Nature’s rights in Ecuador’s Constitution
[4], the declaration of the Atrato River in Colombia as a subject
of rights [36], and the establishment of the Te Urewera forest and
Whanganui River in New Zealand [42, 49], all rivers in Bangladesh
[95], and the Mar menor lagoon in Spain [100] as legal entities.

2.4 Efforts towards a Nature-friendly HRI

In considering an alternative to current HRI design patterns, we
consider some of the alternatives already out there, in an effort
to map out how NRI might fit within this picture. Most efforts in
robotics, and technological advancement in general, are currently
focused on sustainability and technological efficiency. Different
variations of how technology is developed and deployed in a Nature-
friendly HRI include:

Ecological design - ecodesign: In line with sustainability trends
promoted by environmentalists, ecological design was adopted by
the design community in the 1990’s [69], and has inspired robot
researchers and innovators alike. Ecodesign is a model calling for
an "ecological informed enlightenment" where Nature is not "...some-
thing to be overcome and subordinated.., but one that harmonizes
"...the human enterprise with how the world works as a physical
system and how it ought to work as a moral system” [110]. This
approach places a strong component in how culture creates, shapes
and evolves the relationship of communities with their environ-
ment, their concepts of value, and how technology is created and
implemented [110].

End-use innovation: An approach to dealing with tensions
between human and Nature-centered goals, focused on the search
for more innovation and technological investment, i.e. end-use
innovation. It imagines how several of the negative effects of a
human-centric life are diminished through the increasing of tech-
nical efficiency (productivity), reducing the need for Nature’s re-
sources (energy, raw material, physical space) [22].

Biodegradable robots: Focusing on innovations from material
science, chemistry and biology, biodegradable materials are allow-
ing the development of electronics and robots that can fully return
to Nature after accomplishing its tasks [120].

Green robotics: This is a current approach that focuses on
sustainable robotic design and how to enforce circular material
cycles following the operational life of robots. It covers structural
and manufacturing materials, electronics and actuators, all the
way to a robot’s energy consumption, integration into ecosystems,
intended purpose, and its impact on Nature [45, 83].
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Although these steps towards a more Nature-friendly HRI are
commendable and necessary, HRI’s centering on humans as the
driving force, leaves too many open questions when it comes to
considering the impact of its practice in Nature, as explained in
the first half of this work. To counter this, NRI offers a perspective
that we argue better aligns with both human and Nature’s needs; a
perspective we recognize comes with caveats and uncertainty.

3 IMAGINED INTERVENTIONS OF ROBOTS
IN NATURE’S REGULAR COURSE

Lastly, we present some scenarios where robots’ actions and non-
actions follow Nature-centric and/or anthropocentric approach.
For NRI-compliant robots, most cases reveal that Nature’s welfare
can be seen immediately as human’s welfare (e.g. natural disaster
assisting robots) while in others, they look the opposite in the short
term (e.g. forest conservation).

(1) Farming: HRI: In the anthropocentric paradigm, automation
of mechanized agriculture has promised to bring high pro-
ductivity and lower costs to farmers around the world. But au-
tomated agriculture is expensive [124] and only available to
a few (mainly big land owners); it favors monocultures (lead-
ing to erosion and subsequently soil desertification [92], and
promotes waste by using technologies that mainly harvest
standardized produce (usually leaving behind odd produce
in the plants). Beyond technical drawbacks, "there are legal,
ethical and social concerns associated with autonomous agri-
culture” [92, p.306]. NRI: a Nature-centric vision of automated
agriculture treats the food availability problem through a dif-
ferent lens. It aims to optimize the soil’s biomass to support
crops and animal species in the long term. It aligns with sus-
tainable agriculture and promotes biodiverse farming while
replacing the use of fertilizers and pesticides with sustain-
able practices, which have been employed for millennia by
Indigenous collectives.

(2) Animal research: HRI: robot agents supporting animal re-
search are focused on the improvement of animal interven-
tions (e.g. high-precision surgeries and molecules delivery)
[86], not so much on creating conditions to exclude animals
from current research models, in spite of the challenges ani-
mal models present for translational medicine [85]. NRI: un-
der this perspective, a drastic reduction in the use of animals
in any research activities is favored in exchange for putting
NRI-compliant robots at service of the development of micro
and nanobots. These could improve the development and
implementation of tissue, organ and systems of organs plat-
forms where physiology, pharmacology and other studies
can be carried away. Such platforms might help ameliorate
issues regarding the species difference problems introduced
by animal models.

Space exploration: HRI: current space programs have placed

its efforts on the mission objectives and the system’s fail-

safes. They have given almost no attention to the impact
space waste will have on the environment. This is critical as
more robots, with limited life spans, support space missions.

Examples of such approaches are the expendable launch ve-

hicles (rockets), and robots currently circulating across the

®G)
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solar system. NRI: infrastructure development in the context
of space programs will include as default the reuse of space
parts, and the return of robots to Nature. In recent years
reusable space launch vehicles have proven to be success-
ful, less expensive, and highly reliable. Moreover, once their
life cycle has ended, future robots exploring space could
complete their last mission goal: return to Nature.

Forest conservation: HRI: current robot agents function
as proxies for human interests and needs. In this context,
they act as sensing units tracking the state and conditions
of the forest to support socioeconomic, environmental and
political goals (e.g. informing logging industries, calibrating
carbon credits based on carbon absorption), with such data
rarely openly available to the public.

NRI: future models of robot agents centered on Nature’s wel-
fare will not only sense and distribute such data but will be
designed and deployed to accomplish specific Nature-centric
missions, to intervene and promote the forest’s conserva-
tion, and hence all the biodiversity they contain. Robots
could track and treat disease damaging fungus colonies in
the forest, or assess and restore the chemical unbalance in
the soil. Robots are to be present in Nature to support it, not
to primarily respond to human needs.

Solar flare protection: in this scenario, both HRI and NRI
approaches deem the same outcome though the means to
achieve the goal might differ. Under HRI, any space mission
prioritizes the anthropocentric goal of survival as the driver,
regardless of the impact any robot action or inaction could
have on other living beings or Nature itself. NRI would re-
quire a careful assessment of the impact the mission could
have on Nature as a whole, in spite of the benefits of protect-
ing human-made hardware and avoiding the disruption of
human activities.

Beyond these prototypical scenarios, NRI could allow the devel-
opment and deployment of new robots to satisfy Nature-welfare
needs and the decommission of robots created and deployed to
accomplish anthropocentric goals.

4 LIMITATIONS AND FUTURE WORK

Our initial proposal for a Nature-Robot Interaction paradigm fo-
cuses on a specific set of challenges faced by Nature and brought
upon the current state of affairs in robotics. This analysis is not
comprehensive as it leaves out important considerations regarding
the use of energy in robotics and the current state of robot man-
ufacturing at scale. Future work could focus on these and other
additional considerations, with the goal of providing a more holistic
image.

Although we proposed a set of guidelines to drive the practice
and notions behind NRI, taking inspiration from science fiction,
further work is required in considering a broader set of scenarios.
This analysis could include current debates in robo-ethics and ethics
in Artificial Intelligence, which have provided key advancements
for dealing with unforeseen outcomes of practice within these fields.

As roboticists and designers who participate in environmental
activism, particularly at the intersection with technology develop-
ment, we recognize our bias towards the imperative protection of



HRI ’23 Companion, March 13-16, 2023, Stockholm, Sweden

Nature, particularly in light of the current state of Nature’s ecosys-
tems. Regardless, we recognize the importance of nuance and partic-
ipation of other points of view. Future work should counterbalance
the radical proposals offered by our work.

Finally, we recognize that as academics and practitioners with the
privilege of formal training, we enact a particular position within a
matter that concerns unprivileged groups. Our hope is that, as this
conversation grows and expands, underprivileged groups will be
brought into the conversation. Similarly, a more meaningful engage-
ment with knowledges outside of the scientific frame is required.
We have made an effort to foreground some of the important con-
tributions these knowledge systems can offer to HRI, but recognize
there is much more ground to be covered.

5 CONCLUSION

In this paper, we proposed a new robot interaction paradigm that
places Nature at its epicenter: Nature-Robot Interaction (NRI). This
approach seeks to blur anthropomorphism in HRI design by sug-
gesting alternatives to how humans and robots relate to Nature and
the environment. We propose a set of laws and principles that we
hope will spark a dialogue in the HRI community and help guide
the design and deployment of new generations of robots driven
by Nature’s welfare. Although our speculative exercise falls short
in considering what is a multi-dimensional, complex problem, we
recognize the importance of adding to this conversation. Therefore,
our paper is an explicit call to imagine robots that do not use Nature
as their material source, but rather as a source of inspiration.
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