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AN EXPERIMENTAL AND THEORETICAL ANALYSIS OF
ACTIVE VIBRATION DAMPING OF A CANTILEVER BEAM
USING A DISTRIBUTED ACTUATOR

by
John M. Plump

Abstract

An active vibration damper which uses a distributed piezoelectric actuator. polyvinlidene
flouride film, and 'bang-bang’ feedback control to damp transverse vibrations in beams has
been tested experimentally on a 6 inch x 0.5 inch x 0.030 inch steel cantilever beam with a
6.7 gram tip mass and a 48 inch x 6 inch x 0.1250 inch aluminum cantilever beam with a 2.04
kg tip mass. The results of tests on the first bending mode of these structures verify those
results predicted by the simulation algorithm developed by Bailey. The passive loss factor of
the steel beam was n = 0.002 for small amplitude tip displacements. Using the Lyapunov
damper with a voltage amplitude of 100 volts increased the loss factor to 390 = 0.046 at a tip
dispiacement of 0.5mm. Active damping with a 500 volt control amplitude increased the loss
factor to gsgp = 0.375 at the same displacement amplitude. The passive loss factor at small tip
displacements of the aluminum beam was 5 = 0.0019. Lyapunov control with an amplitude
of 100 volts increased the system loss factor to gy = 0.030 at a tip displacement amplitude
of i.7 cem. Active damping with a control amplitude of 400 volts incrcased the loss factor to
#1400 = 0.080. The Lyapunov damper was also demonstrated to be very effective on the second
and third bending modes of the aluminum beam. For the second mode of the aluminum bean,
the initial condition was an angular acceleration at the tip of 56.5 rad #~2. The Lyapunov
control decreased the settling time from a free decay of 41 seconds to a controlled settling
time of 7.4 seconds using a control amplitude of 400 volts. The initial condition for the third
mode tests was an angular acceleration of 127 rad s~ 2 at the tip. For the third wode the
sertling time was reduced from 20.5 seconds to 3.8 seconds using a control amplitude of 400
volts. These experimental results verify that the Lyapunov damping is most effective for
swmaller vibration levels.

A constrained layer damper which uses the PVF2 acutator as an active constraining layer
was proposed as a candidate design which would be effective on damping all vibration am-
plitudes. The general system consisting of a base structure, viscoelastic layer and active
constraining layer was modelled, resulting in a sixth order partial differential equation gov-
srning the irahsverse wotions of the beam. The specitic case of the active constrained layer
damper applied to a cantilevercd beam with tip mass and rotary inertia was discussed. This
model revealed that the piezoelectric properties of the constraining layer contribute to the
shear strain in the VEM. As a result it is possible to actively modulate the amount of encrgy
dissipated. Also the active control appears as work at the system boundary. With the con-
straining laver fixed to the tip mass and left free at the root, the active portion of the stress
ix the ~anstraining layer appears as a boundary moment which can do work on the system.

Thesis Supervisor: James E. Hubbard Jr.
Title: Member CSDL Technical Staff
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Nomenclature

ES

TRR N FgE [T Qe g~

Nondimensional stiffness parameter
Bearn depth to length ratio

Tip displacement

Geometry parameter

Geometry parameter

Shear modulus of VEM
Dimensionless shear modulus
Storage modulus of viscoelastic material
Loss modulus of viscoelastic material
Constraining layer thickness
Viscoelastic layer thickness

Base structure thickness
Dimensionless rotary inertia

Rotary inertia

Square root of —1
Beam length
Dimensionless tip mass
Tip mass

Thickness to length ratio of beam with constrained layer damper
Time '

Dimensionless time

Work done on viscoelastic layer

Dimensionless work done on viscoelastic layer
Control voltage

Dimensionless control voltage

Maximum control voltage amplitude

Beam displacement

Dimensionless beam displacement

Length measure

Dimensionless length measure

Height measure

Moment constant

Centerline separation of base structure and
constraining layer in constrained layer damper
Shear in viscoelastic layer

Ridgid body displacement of constraining
layer with respect to base structure



A, Displacement field of constraining layer
As, Displacement field within the viscoelastic layer
As Displacement feld within base structure
n  System loss iactor

2 Loss factor of viscoelastic material

¢  Vibration ha!f period

p  Density of base structure

o Dimensionless stress

oy Tensile stress in coustraining iayer

os Tensile stress in base structure

r  Dimensionless shear stress

r»  Shear stress in viscoelastic layer

rs  Shear stress in base structure

«w  Angular frequency



Chapter 1
Introduction

Space vehicles of the future may be quite large [1]. For many of these
structures, such as telescopes or antennas, mission success may depend upon
a stable platform for observation or maintaining a stable shape. Tolerances
in typical optical systems can be of the order of 1/50th of a wavelength [2].
Maintaining these tolerances will require designs which are free of vibrations.
A3 can be seen by the wealth of literature [3,4,6], vibration control in these
proposed structures has received much attention. Structural vibrations in large
space structures will be lightly damped due to the low internal damping of the
materials used in construction, and as a consequence of their configuration. (i.e.
generally a system with very little mass and stiffness which spans a large dis-
tance) Transient vibrations could be initiated as a result of attitude maneuvers,
tracking, or upon spacecraft deployment and will have very long decay times.
In linear systems the transient overshoot and settling time of vibrations are
directly related to system damping. There may also be constant disturbances
to the system due to cooling systems, reaction wheels, etc. The consequences
of such vibrations are possible structural fatigue, line of sight errors in optical
systems, or other system malfunctions [6].

Because of the proposed systems being very light and flexible, they can not be
treated as lumped systems. These fiexible structures are distributed parameter
systems having an infinite pumber of vibrational modes. Current vibration
control systems may use both active and passive elements [7]. A typical passive
element is a viscoelastic dashpot. Active elements are sf two types, inertial or
interstructural. Examples of inertial force actuators are reaction wheels, control

“moment gyros or proof mass actuators.

This thesis documents ongoing research in the development of active dis-
tributed parameter vibration dampers which use a spatially distributed actua-
tor, polyvinylidene flouride film (PVF2). A vibration damper has been designed
[8] which uses PVF'2 to achieve control over all transverse vibration modes of
beams without truncation of the plant model. In what follows, the effectiveness
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Figure 1.1: Scale Satellite Structure at the Charles Stark Draper Laboratory

of this method on a cantilever beam is experimentally verified and documented.
In addition, a constrained layer damper which uses PVF2 as an active constrain-
ing layer has been developed. The modelling and proposed effectiveness of this
damper are also discussed.

This work is part of an effort to damp the vibrations in a scale model satellite
located at the Charles Stark Draper Laboratory [6]. This satellite structure
consists of a cylindrical hub with four perpendicular appendages extending ra-
dially outward. (cf. Figure 1.1) The entire structure is mounted on an air
béaring table to allow free rotation about the hub axis. Nitrogen gas thrusters
are mounted on two of the arms. These are used to initiate and control slew
maneuvers of the structure. The piezoelectric ilm dampers are being devel-
oped to damp the transverse bending oscillations of the appendages on this test
structure which result from slew maneuvers.

10






Chapter 2

Damping of Distributed Systems

2.1 Damping of Distributed Space Structures

The inherent system loss factor in large space structures can approach the
material loss factors of its components [2]. This is because many of the alternate
dissipation mechanisms such as air drag, joint losses and acoustic radiation have
been eliminated either by design (i.e. tight joints) or as a result of the space
environment itself. Engineering analysis has addressed the problem of increasing
the damping in these structures using two different approaches. They are by
increasing the inherent damping of the members in the structure via some passive
means, or by doing negative work on the system using active actuators.

Passive designs are appealing because of their simplicity. A passive damper
dissipates energy via experiencing inelastic deformation or undergoing some
other irreversible process, and is completely self contained. Passive damping
can be designed into a structure by using high loss materials, or local damping
elements. Use of free layer and constrained layer damping has been avoided be-
cause of the weight penalty it represents. As a result, attempts have been made
to damp certain target modes by employing local shear dampers around select
members or joints. This local approach, however, has been shown to yield un-
predictable results, and has the other unfavorable effect of redistributing energy
out of certain modes and into others [10].

There are many difficuities in using discrete actuators to control distributed
structures. Since the system to be controlled is of infinite order only a finite
subset of modes can be controlled using discrete actuators. The plant model is
usually separated into principle modes which are to be damped, and residual
modes which will not be damped [11,12]. The number of modes chosen to
represent the system as well as the location of sensors and actuators is often
difficult to reconcile [13,14]. Historically, active dampery used in this context
have been based on the use of discrete sensors/actuators and have used colocated
velocity sensor and force actuator pairs. Using this approach the amount of

12
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Figure 2.1: PVF2 Film with Metal Plating

damping per irdividual mode has been unpredictable and certain modes may
experience limited damping, independent of the damping coefficient designed
into the control system [7]. Another difficulty in the analysis and design of
control systems for distributed systems is that the feedback loop tends to couple
the initially uncoupled open loop modes. There exists the possibility of the
controller exciting modes which are left out of the dynamic model. This is
called control spillover and caz drive the uumodeled dynamics unstable. There is
also the companion effect which is called observation spillover, sensors detecting
modes which have been left out of the model, causing the compensator to react to
these unmodelled dyanmics. These two effects have been the subject of current
research [15].

2.2 Distributed Active Damper Design using
PVF2

An active vibration damper which circumvents many of the problems asso-
ciated with modal truncation was developed at M.LT. [9]. This damper uses a
spatially distributed actuator and can be configured to achieve control over all
bending modes in a beam [8]. Figure 2.1 shows a sketch of PVF2. The film
can be caused to strain by placing an electric field across its faces. Generally
a metal plating of aluminum or nickel is deposited on each face to distribute a
voltage, and hence the fleld, along the entire surface. Spatially varying the field
across the film will cause the strain to vary spatially as well. Figure 2.2 shows
the configuration of the active damper developed. It is a single layer of PVF2
bonded to one side of a beam. The effect of this configuration is to produce a
voltage dependent bending moment which is distributed along the beam. In this
study, a cantilever beam with mass and rotary inertia at the tip will be discussed

13
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{cf. Figure 2.3). Also, the film and beam properties are uniform along the beam
length. With the film and beam properties spatially uniform, the integrated
effect of the distributed moment manifests itseif as a discrete moment located
at the tip of the beam.

The equations of motion for the system shown in Figure 2.3 are:

EgIs—— pbhg 0!’ =0 (2.1)
with boundary conditions:
w= 0'::0 (22)
v _ (2.3)
oz =0 '
w Pw
E,I,a > = I'Bt’a + av(t) . (2.4)
*w w
Egls— 355 = M— 20|, (2.5)

It should be noted that for this configuration the control variable only appears
in one boundary condition.

A feedback control law was derived using Lyapunov’s Second Method since it
can easily handle bounded inputs and can be extended to distributed parameter
systems [9]. The control law has been derived for a beam with no internal
damping. In this study we will consider only the class of weak solutions of
Equation (2.1), given boundary conditions in (2.2) and (2.3), which obey the
conditions ontlined by Kalmann and Bartram in [16].

14
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A suitable Lyapunov-functional for the above mode! is,

F= %[: (3—}‘,’-)’+ (-‘?al:’-)’ dz (2.6)

where the first term in (2.6) is a measure of the strain energy in the structure
and the second term is a measure of its kinetic energy. With this choice of F'
conditions which are at least sufficient for stability can be derived. [17], [18].

A control law is found which will control all modes of vibration using only
angular velocity at the tip of the beam as the feedback variable. The resulting
control algorithm is given as;

0w
dtoz

v(t) = —Sgn (

where V, is the bounded control voltage. For a decaying periodic input, this
controller commands a constant amplitude squaze wave, or "bang-bang” control
output.

An obvious disadvantage of this law is that it is non-linear and hence may
lead to sliding mode problems and/or limit cycles depending on how weil the
physical system approximates the assumptions necessary for Lyapunov stability
as mentioned earlier. A digital simulation and parametric study was performed
which implemented the Lyapunov control law.

15



2.3 Simulation of the Lyapunov Control Law
for a Single Mode

The simulation algorithm is as follows:

1. Start with the beam having some initial displacement amplitude in a single
mode, and an initial velocity of zero.

2. For each half-cycle of vibration, determine the amount of work done on
the beam by the active damper and the energy dissipated by any passive
damping in the system.

3. Subtract the amount of energy lost during the half cycle from the amount
of energy in the system at the beginning of the half cycle. Use the remain-
ing energy to determine the corresponding displacement amplitude of the
beam.

4. Repeat steps 2 and 3 until the displacement amplitude reaches zero.

This algorithm assumes that the control will not significantly change the mode of
vibration, and while it does not include the effects of air damping it does augment
the model by adding passive damping in the form of a passive loss factor 5 which
accounts for any internal structural damping which may be present. The first
mode of vibration and the Lyapunov control law were chosen to demonstrate
the simulation. The tip displacement represents the modal displacement. This
simulation algorithm essentially gives the decay envelope of the vibration since
the displacement amplitudes are determined every half cycle.

16



Chapter 3

Experimental verification of
Lyapunov control

3.1 Test Structures

The Lyapunov contrcl algorithm derived in [9] has been experimentally
tested on two different structures. The first is a 6 inch x 0.5 inch x 0.030 inch
steel beam, which is a dynamically scaled bench top version of one of the arms
on the model satelite structure. The second test was on one of the model satelite
structure arms. This was a 48 inch x 6 inch x 0.1250inch aluminum beam. Both
beams were configured as cantilevers with a mass and rotary inertia at the tip.
Details on the dynamic scaling of the steel beam may be found in [9]. The
dimensions and physical properties of the aluminum beam and the dynamically
scaled steel model are given in Table 3.1. To obtain a clear understanding of
how the damper performed, it was tested on structures vibrating in a single
mode. The first bending mode was chosen because it was easiest to isolate and

Aluminum Steel
Modulus, E, (Nm™?) 76x10° . 210x10°

Length, L, (m) 1.22 0.146
Thickness, h, (mm) 3.18 0.381
Width, b, (cm) 15.2 1.27
Tip Mass, M,, (kg), 2.04 6.73x10°3
Tip Inertia, Ji, (kgm?) 1.1x10"2  5.0x10~7
Deusity, p, (kgm™3) 2840 7800

Table 3.1: Beam Properties Used in Lyapunov Damper Tests

17
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Modulus, E, (Nm™3) 2.0x10°
Static Piezoelectric

constant, dy;, (mV ~!)  22x107'2
Thickness, hs, (m) 23x10~°
Density, p, (kgm™3) 1300

Table 3.2: PVF2 Film Properties

visually identify.

The tests used uniaxially polarized film, obtained from Pennwalt Corpora-
tion, King of Prussia, PA. It was bonded to both beams using a thin layer
of Eccobond 45 LV epoxy. A uniaxially polarized film exhibits a longitudinal
strain when an electric field is applied across its faces. ! (cf. Figure 3.1). The
physical properties of the PVF2 film appear in Table 3.2 [19]. This simple
damper configuration has a uniform geometry and a spatially uniform control
voltage is applied along its length. The effect of a voltage applied to the film has
been shown to produce a bending moment which is distributed along the beam
[20]. Because the properties of the film are uniform along the beam length, the
distributed moment is spatially uniform as well.

3.2 Experimental Equipment

Figure 3.2 is a schematic hyout of the equipment used in the tests of the
6 inch steel beam. The beam was fitted with a tip mass which included an

1A biaxially polarized film will strain along its length and width when subjected to an electric
field.

18
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Figure 3.2: Experimental Equipment used in Steel Beam Damper Tests

Entran.0.5 gram piezoresistive linear accelerometer. The accelerometer output
was integrated to give linear tip velocity, and connected to a digital oscilloscope
and to the controller. The Lyapunov control algorithm was implemented via
a Laboratory Technologies digital computer using a sample rate of 1000 Hz. 2
The control signal calculated by the microcomputer was amplified by a KEPCO
programmable power supply. The amplifier output was applied to the PVF2 by
soldering a wire to a thin, square metal washer. The washer was then clamped
to the beam. To insure a good electrical contact, a silver filled, electrically
conductive ink, Amicon C-931-40 was used between the PVF2 and the washer.
(cf. Figure 3.3)

The passive damping of the laminated beam was determined using the log-
arithmic decrement method. For large tip amplitudes (on the order of 2.0cm),

3The first bending mode of the scaled cantilever beam was approximately 6 Hz.

19
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the passive loss factor was determined to be p = 0.003. 3 For sinall amplitudes
(lmm), the passive loss factor was less than 0.002. The larger loss factor at
large tip displacements may be the result of cperating beyond the linear range
of the material. Application of the film to the heam did not significantly alter
the passive damping in the structure, which was ignored in the derivation of the
mode shapes and frequencies. The effects of passive damping were included in
the simulation as an exponential decay envelope on the transient responses.

Before the damping tests were made, the distributed moment constant, «, of
Equation (2.4) was determined experimentally. For these tests d.c. voltages were
applied to the beam/PVF2 system, and the tip displacement measured using a
fotonic sensor. Because the distributed control acts as a discrete moment at the
beam tip, the effective coupling of the control to the beam could be calculated
using a simple statics calculation. [21].

de = My 5= (2.1)
2E s
24,E5]3

a= 73 (3.2)

The observed moment constant was: a = 2.14x10~7 (Nm)V !,

The Lyapunov control algorithm uses as input the angular velocity of the
beam tip. Under single mode conditions, the linear velocity at the tip is pro-
portional to angular velocity by a constant factor. Since only one mode of the
scaled beam was assumed present. it was possible to.use the linear velocity of
the tip as the controlling input.

3.3 Scaled Steel Cantilever Beam Results

The tests were performed by initially displacing the tip of the beam 2 cm,
releasing it, and recording the tip velocity signal with a digital oscilloscope.

3For linear structures, 7 =2-¢

20



Dimensionless Length X=1%
Dimensionless Displacement W=7
Dimensionless Control Voltage Vi= %ff:
Dimensionless Time T=t- /38

Table 3.3: Nondimensional Parameters

Although in a strict sense this type of excitation will excite all modes to some
degree, only the first mode freqyuency was observable in the accelerometer ocutput
signal. -

Figure 3.4 shows oscilloscope traces of tests for various control voltages. The
figure gives a global perspective of the effectiveness of the active damper as the
control voltage amplitude, V, of Equation 2.7, was varied from 0 volts to 500
volts. As can be easily seen, the settling time is decreased from a free decay
time of over 2 minutes to a damped settling time of 8 seconds.

To facilitate comparison with simulations, the beam properties were nondi-
mensionalized using the relationships given in Table 3.3. Figure 3.5 is a plot
of both simulation and experimental results showing the decay envclopes for
several control voltages. A more detailed discussion of these results is defered
to Section 3.6.

3.4 Aluminum Cantilever Beam Results

Tests of the active damper were also performed on the aluminum beam.
Prior to laminating the film to the beam, a modal analysis was performed. This
was done to identify the frequency, damping, and mode shape of the first five
modes of the beam. The tests were performed using a Hewlett-Packard 5420
Structural Analyzer. The first five mode shapes appear in Figure 3.6. Table 3.4
contains the frequency and damping data of these modes.

For the active damper tests, the tip mass of the aluminum beam was fit-
ted with an Endevco angular accelerometer and Sundstrand Q-Flex linear ac-
celerometer. This was necessary because the angular velocity of the tip for the
first mode was small. This is due to the small angular displacement at the tip
(cf. Figure 3.6) and the very low frequency of the first mode. To accurately
sense all modes, both the linear and angular accelerometers were used. The
linear accelerometer was limited to sensing only the first mode by low pass fil-
tering the output. The outputs were then integrated and summed to produce

21
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Figure 3.6: First 5 Mode Shapes of the Aluminum Test Structure
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Mode Number Frequency (Hz) Loss Factor (n)

1 0.7603 0.0019
2 7.42 0.0048
3 22.50 0.0037
4 44.33 0.0079
5 77.27 0.0075

Table 3.4: Frequency and Damping for tirst 5 niodes of Aluminum beam

[u
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To
controller

—\ [dt

Low Pass Fiiter Analog Integration

Linear
Accelerometer

Figure 3.7: Sensor Configuration Used in Aluminum Beam Tests

the control input. Figure 3.7 shows this sensor configuration schematically.

The moment constant of the large beam was determined experimentally using
the proceedure described for the 6 inch beam. The moment constant was found
to be: a = 2.11x107% (Nm)V 1.

Preliminary tests of the active damper on the large beam showed that rela-
sively low control voltages (220 volts) could cause eléctrical arcing on the film
sirface and localized burning of the nickel plating on the film. This burning
caused the plating to become discontinuous, creating sectioms of the plating
which were electrically isolated from adjacent sections. PVF2 will strain if it
is within an electric field. Since the control voltage was applied to the system
at only one location, a continucus conductor is necessary to distribute the volt-
age to insure a continuous distributed moment. It was determined that the
arcs were being caused by current transients induced by the controller. Because
the beam /P VF2 system acts like an elecirical capacitor, large current transients
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would be necessary for the voltage across the film to follow the Lyapunov control
law. This problem was not evident with the 6 inch beam because the capaci-
tance, and therefore the current transients, were much less. The problem was
eliminated by coating the entire exposed surface of the PVF2 with the conduc-
tive ink. This was done using by applying thin coats of the ink with an air
brush. Using this technique, further arcing was greatly reduced, and film with
damaged plating could be repaired.

First mode tests using the aluminum beam were made by displacing the
beam tip 16.7 cm and releasing it. Figure 3.8 shows time plots of tip displace-
ments for various control voltages. Once again the effect of the control is quite
pronounced with the settling time being decreased from over 409 seconds to a
damped settling time of 126 seconds. To facilitate comparison with simulations,
the beam properties were also nondimensionalized using the relationships given
in Table 3.3. Figure 3.9 is a plot of both simulation and experimental results
showing the decay envelopes for several control voitages.

3.5 Higher Mode Resuits

The Lyapunov controller was also sucessfully applied to the second and third
bending modes of the aluminum beam. For these higher mode tests the PVF2
was used to establish the initial condition. The film was used to drive the beam
by using the Lyapunov control algorithm with positive (destabilizing) feedback,
rather than negative feedback. In this configuration the control would sense the
modes which had been excited and drive them rather than damp them. Isolated
modes were excited by giving the beam a displacement disturbance near a known
anti-node of the mode of interest. The control would then preferentialy drive
this mode. This is a consequence of using the Lyapunov controller. It detects
and damps the mode with the largest angular velocity at the tip. With the
controller acting in a positive feedback loop it continually excited the mode
with the largest angular velocity. After a time, all the vibrational energy in
modes not being driven was dissipated due to natural damping, and the system
would be left vibrating in a single higher mode. This technique guaranteed that
the system would be excited in a natural mode.

Tests were run by establishing an initial condition, and then enabling the
active damping. Passive damping for the second mode was found from modal
analysis to be n = 0.0048. The initial condition for all second mode tests was
a peak angular acceleration at the tip of 56 rad s~2. The effect of the Lyapunov
damper was to reduce the settling time from over 40 seconds to 7.4 seconds using
a control amplitude of 400 volts. The results of the second mode tests appear
in Figure 3.10.

Passive damping in the third mode was found to be n = 0.0037. The initial
condition for all third mode tests was a peak angular acceleration at the tip
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Figure 3.8: Results of Damping Tests on the First Mode of the Aluminum
Structure
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Figure 3.9: Experimental and Simulated Decay Envelopes for the Aluminum
Test Structure
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Figure 3.10: Results of Damping Tests on Second Mode of Aluminum Beam
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of 127 rad s~2. For this mode, active damping decreased the settling time from
20 seconds to 3.8 seconds using a control amplitude of 400 volts. The results of
the third mode tests are presented in Figure 3.11. No simulation was performed
for the higher modes.

3.8 Discussion of Lyapunov Control Effective-
ness

The Lyapunov controller has been demonstrated to be effective on two differ-
ent scale structures. The resulting damping of this nonlinear control algorithm
is amplitude dependent. Consider the response of a beam with no internal
damping. The application of the Lyapunov damper would cause the vibration
amplitude to decay linearly in time. The resulting linear decay envelope in-
dicates a changing effective loss factor, which increases as the vibration levels
decrease. The active damping is most effective for smaller vibration levels be-
cause an actuator with a nonlinear control law such as this one dissipates an
increasing percentage of the system energy as the vibration amplitude decreases.
Even though the amount of energy dissipated per cycle is decreasing, the amount
of energy in the system is decreasing faster.

The initial slope of all experimental decay envelopes are steeper than their
corresponding predictions. This result is expected and is due to the presence of
additional, unmodelled loss mechanisms being present in the physical structure.
These added losses could be the result of air drag, structural nonlinearities,
and/or losses occuring in the mounting fixture. As the tip amplitude decreases,
however, the effects of these other damping mechanisms become negligible and
the energy dissipation is primarily due to the active damping which results from
the control. The final slope of the decay envelope is predicted by the simulation

to be:
Ad, Ve- /

lag] — g-6
where fand g are parameters defined in [9] which are dependent on the beam
geometry, material, and boundary conditions, and @ is the half period of vi-
bration. A comparison of decay envelopes between simmlation and the steel
beam experiments show the final slopes to be identical, with the final settling
time shifted due to the initial effects of added damping at large displacements.
At lower control voltages and large amplitudes, passive damping is the domi-
nant dissipation mechanism, while the active damping supplied by the PVF2
is dominant at small amplitudes of vibration. At the higher control voltages
active damping begins to dominate the overall response of the beam. This is
evident by the gradual flattening out of the decay envelopes as the displacement
amplitude decreases.

(3.3)
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The loss factor of the controlled structure was determined experimentally
when the tip displacement amplitude was (.5 mm. With a control voltage am-
plitude of 190 volts, the loss factor was nyo, = 0.048. The loss factor when
using 200 and 500 volt control amplitudes was 5a90 = 0.087, and g0 = 0.375
respectfully.

A comparison was also made between the predictions of the simulation and
the experimental results of the full scale beam (applied to the first bending
mode). Figure 3.8 is a plot of tip displacement vs. time for the full scale beam
whose dimensions were given in Table 3.1. The results are almost identical
to those obtained for the dynamically scaled beam. The effect of unmodelled
damping, however, is much more evident, and persists over a much broader range
of tip displacements. At small tip displacements wkere the active damping is
expected to dominate, the slopes of the decay envelopes converge to the same
value as expected. There is, however, a slight difference between the final slopes
as predicted by Equation (3.3) and the experimental results. This difference is
believed to be due to parameter uncertainties associated with aluminum beam.

The passive loss factor of the aluminum beam for small tip displacements
was 57 = 0.0019. Lyapuuov control with an amplitude of 100 volis increased the
system loss factor to 5300 = 0.030 at a tip displacement amplitude of 1.7 cm.
Active damping using a control amplitude of 400 volts increased the loss factor
to n400 = 0.080 at the same vibration amplitude.

These experimental results support the analysis and simulation done in {9]
and indicate that an active damper with this type of control law may provide
a method of keeping resonant vibrations from building up due to the extremely
high levels of damping that can be achieved for low level vibrations. Similarly,
the use of the film to excite the beam gives a clear understanding of just how
this weak actuator can be used effectively. As an actuator operating in a regime
which is damping controlled, this weak actuator is able to cause quite large
responses.

32



Chapter 4

Active Constrained Layer
Damper Design

4.1 Constrained Layer Dampers

Although the performance of the Lyapunov damper previously discussed has
been shown to be effective at low amplitude vibration levels, a design is sought
which will be effective at all levels. An active damper would need relatively pow-
erfal actuators to be effective on large amplitude vibrations. This is because of
the large amount of potential energy present. PVF2 is a relatively weak ac-
tuator, and it’s limited effectiveness on damping large displacements has been
demonstrated. Possible damper designs which would be effective on zll vibra-
tion levels could incorporate very powerful actuators for large amplitudes and
the Lyapunov control for low levels, but this is at the cost of increased com-
plexity. An alternate dezign philosophy is to increase the passive damping of
the structure. The level of passive damping has been shown to be the primary
dissipation mechanism for large amplitude vibrations. Therefore the simpiest
design would call for increased passive damping to control the large amplitude
vibrations, which would be augmented by the active damper at low vibration
levels.

The primary methods of increasing the passive damping in & distributed
structure are free layer and constrained layer viscoelastic damping. Both meth-
ods rely on the strain of a viscoelastic material (VEM) to dissipate energy (cf.
Figure 4.1). In a free layer damper the dilatation strain is of the same order
as the shear strain [22]. If the VEM is covered with a stiff constraining layer,
it experiences much greater shear and relatively small dilatation. Since most
of the energy is dissipated by shear in the damping layer, using a constraining
layer is very effective [28]. A simple way of incorporating the active properties
of PVF2 into a constrained layer design would be to substitute a layer of PVF2
into the design as the constraining layer.
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Figure 4.1: Free and Constrained layer dampers

The prospect of an active constraining layer is attractive because it allows
the shear in the viscoelastic layer to be modulated actively, thereby increas-
ing the damping effectiveness over a broader operating range. With a passive
constrained layer damper, the shear, and therefore the rate of energy dissipata-
tion from the structure, tends toward zero as the vibration amplitude decreases.
Also, passive constrained layer dampers are designed for a single target mode.
With an active constraining layer it would be possible to have a finite dissipation
rate at low amplitudes. There also exists the possibility of combining the large
amplitude performance of a constrained layer damper with the low amplitude
performance of the Lyapunov controller in one design.

This chapter discusses the modelling of an active constrained layer damper
which uses PVF2 as the constraining layer. It expands themes developed in
[24].

4.2 Theoeretical Model Development of an Ac-
tive Constrained Layer Damper

The modelling of an active constrained layer damper is presented. The result
i~ a sixth order partial differential equation governing the transverse bending
motion of a damped, finite Jength beam. Ir addition, a cantilevered beam with
a mass and rotational inertia located at the tip will be discussed.

The geometry of the system being modelled is shown in Figure 4.2. Subscripts
1, 2, and 3 refer to the constraining layer, viscoelastic layer and beam layer re-
spectively. The model is based on the following assumptions:
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Figure 4.2: Beam Section with Constrained Layer Damper

The constraining and viscoelastic layers have no bending stiffness.
The viscoelastic layer can o:_:ly trapsmit shear.

All dissipatation losses occur within the VEM.

There exists a uniform state of shear in the VEM.

Uniform normal stress throughout the thickness of the constraining layer.

SR A T o

Rotational inertia of the beam is ignored. (i.e. Bernoulli-Euler beam
theory)

7. The beam and film properties are spatially uniform.
The proceedure will be:

1. Derive the strain field within the VEM.
2.. Satisfy equilibruim and compatibility.
3. Introduce boundary conditions.

Consider an element of a beam in bending (cf. Figure 4.3). The displacement
of a point on the surface of the beam can be decomposed into two terms. One
associated with the displacement due to the slope of the beam and the second
term due to the strain of the neutral axis itsef. Let As be the displacement
of a point on the top surface of the element in bending. Then Ay is given by

Equation (4.1). .
As(z) = ( [ fean - Z—‘:) : ("2—’) (4.1)
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Figure 4.3: Beam Element in Bending

The displacement fleld of the constraining layer, A, is also composed of two
terms. One is the rigid body translation of the constraining layer relative to the
base structure and will be designated 6. A second term is due to the strain
of the constraining layer. The strain in the constraining layer is caused by the
mechanically induced stress, oy, and as a result of its piezoelectrical properties,
4y, (Equation (4.2))

M@ =bot [ ( “"h )dn (4.2)

The displacement fleld within the viscoelastic material, Ay, is the linear inter-
polation between layers L and 2, and is given by Equation (4.3).

As(z) = As(2) (‘-"l‘“—"’-l‘!l) + Au2) ((l;T”!l) (4.3)

hy

The shear strain in the VEM is found by differentiating the displacement field
and is given by Equation (4.4). The resulting shear stress in the VEM is given
by Equation (4.5).

m(z) = Q%’;fi)- (4.4)
ri(%) = gava(z) (4.5)

The free body diagram in Figure 4.4 shows the stresses on a differential
element of the composite beam. The force balance equations in the x and y
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Figure 4.4: Free Body Diagram of an Element of a Damped Sandwitch Beam

directions are given by (4.6), and (4.7). Moment equilibrium of the element
about point O is given by Equation (4.8).

don dos

hy5 ths5—=0 (4.6)
8w an ar Ars
— phs FYo +hldz +hgaz +hsaz =0 (4.7)
1 OM._ 301 _
rihy + rahy + rshs + b 92 h:8 9z (4.8)

Combining these equations and the moment-curvature relationship of a beam in
bending (Equation.(4.9)) yiclds;

’w

Ms = E’I’EF (4.9)
8‘w B’w 8’0.
PR T ™ (4.10)

- Finally, a relationship between the stress in the constraining layer and the
beam deflection is needed to complete the model. Force equilibrium on the
differential element of the consiraining layer shown in Figure 4.4 yields Equation

(4.11).
= "’_": (4.11)
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Figure 4.5: Free Body Diagram of Constraining Layer

Combining this expression with Equations (4.3), (4.4), and (4.5) and differenti-
ating yields:

Py g2 [hsdlw 1 hy ds)
9B Mg |2 02 C\E, T heEs)  hy ' (4.12)

To facilitate analysis, the following expressions are used for nondimensionaliza-
tion.

&

=7 (4.13)

X= % (4.14)

V= % (4.15)

G= %II‘T: (EL. + }:2:,)  (4.16)
o= ‘%g:‘—ﬂ (4.17)
Yy
- ;‘_2 (4.19)

T = zf;% (4.20)
"’;‘:Ib’p (4.21)

J pb,"’: = (4.22)

M= pb“,;‘: . (4.23)
=4 O (a29)



The final set of equations is then:

W W ¢

ax* T Tt T axe (4.26)
3o ’?w
Ek? - Go = GABW + GAV (4-20,

Combining Equations (4.14) and (4.15) yields the sixth order partial differential
equation:

W IW  PW W 9rV
W—G(l-{-AB)aX‘ 'I'aJ{zBTz—-GaTz —AGa—ﬁ—O (4.27)

The governing differential equation is of sixth order, therefore six boundary
conditions need to be specified. Four of these are the usual boundary conditions
associated with beam end conditions. The beam boundary conditions which will
be used here are those used in the earlier study, a cantilevered beam with tip
mass and rotational inertia. They are given by Equations (4.28) to (4.31).

W = 0|y, (4.28)

%%’. = (4.29)

%’% =-J ag;g,x +V () » (4.30)
AL )

The two additional boundary conditions &re imposed on the VEM ard constrain-
ing layer. A short listing of some candidate boundary conditions may be found
in [26]. The boundary conditions chosen in this application are relatively sim-
ple. The first is specifying zero tensile stress in the constraining layer at the root
end of the beam. This corresponds to a free end of the constraining layer. The
second is specifying zero shear stress in the VEM at the tip. These boundary
conditions are given by Equations (4.32) and (4.33) respectfully.

PW W W

axt tgm ~CAB Gz —GAV =0 (4.52)
P W oW PW v
axs * axop ~GABgxs ~GAgx =0 ot (4.33)

Figure 4.6 shows schematically a beam with these boundary conditions.
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4.3 Energy Dissipation with an Active Con-
strained Layer Damper

The energy removed from the structure will be due to two effects, dissipation
within the shear layer, and active work done on the boundary. The internal
dissipation can be further resolved into a passive component, which is present
in all constrained layer dampers, and an active component which is due to the
piezoelectrical properties of the constraining layer. These three distinct energy
pathways, passive dissipation, active dissipation, and boundary work, will be
discussed separately.

Energy dissipation within a viscoelastic material is a result of the stress and
strain histories having compouents in quadrature with one another, and is equal
to the area of the hysteresis loop of the material's stress-strain diagram. (cf.
Figure 4.7) In the analysis that follows, forced, sinusoidal steady state vibrations
are considered. This assumption allows the use of a complex shear modulus to
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evaliate internal losses. The modulus is of the form
G=(Gy+j-Ga) (4.34)

where G; and G are the storage and loss moduli of the viscoelastic material.
The ratio G3/G, is commonly called the loss factor of the material. Appendix I
gives a brief description on the use of a complex modulus in evaluating the strain
response of a viscoelastic 1naterial to an applied stress.

The loss factor of a system with a passive constrained layer damper can be
found using the approximate relationship [26]:

Bb (2)
n= 12¢"’1+2¢+¢’(1+m’) (4.35)

L .
= ) Esls \*
¢ - 21l'fE|h|h3 (pbh;) (436)

Where ¢ is defined as the nondimensional shear parameter, and 53 is the loss
factor of the viscoelastic layer. The system loss factor is defined as the ratio of
the energy dissipated per cycle to the peak strain energy in the structure during
that cycle. For effective passive constrained layer designs, the shear parameter
should be near unity [26]. For this reason passive cornstrained layer dampers
can usually only be made effective for a single mode at a time.

A passive constrained layer damper which used PVF2 as the constraining
layer was designed to damp the first mode of the 6 inch steel beam used in the
Lyapunov damper tests. With this design, there were only two design variables
which could be varied. They were the VEM shear modulus, and the VEM
thickness. Given that there is a practical lower limit on the shear modulus of
real materials, the design required a very thick shear layer to arrive at a low
shear parameter. The passive design started with a very low modulus material
found in the literature [27], and varied the thickness until the shear parameter
equaled unity. The final design values appear in Table 4.1. The system loss
factor for this design was n = 0.098. Although this is quite good, the design is a
poor one. In order to achieve the desired shear parameter, the VEM thickness
had to be increased until it was on the order of 8 beam thicknesses! Obviously
this is an impractical design. The necessity of such a thick damping layer was a
direct result of the low constraining layer stiffness. By comparison, using a steel
constraining and the same VEM would yield a design with a similar loss factor,
but a much thinner VEM layer. (cf. Table 4.2)

Alternatively, increasing the thickness of the PVF2 by a factor of three or
four would produce reasonable designs.

The active effects of the damper are a result of piezoelectrically induced
stresses. Since the system is linear, the stresses can be resolved into their active
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Constraining Layer PVF2

Thickuness (m) 2.5x1078
VEM Modulus {¥Vm~%) 1.58x10*
VEM Loss Factor 1.2
VEM Thickness (m) 3.01x1073
System Loss Factor 0.098
hz/hs 79

Table 4.1: Final Design Values of Passive Constrained Layer Damper Using
PVF2 as the Constraining Luyer

Constraining Layer Steel
Thickness (m) 2.5x10®
VEM Modulus (Vm~2) 1.58x10*
VEM Loss Factor 1.2
VEM Thickness (m) 5.95x10~%
System Loss Factor 0.087
ha/hs 0.16

Table 4.2: Passive Constrained Layer Damper Design Using a Steel Coastraining
Layer '
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and passive components. The actively induced normal stress in the constraining
layer can be found by setting the modal displacement of the beam to zero and
solving equation {4.26), that is solving:

%o

E’—]?; - Ge = GAV (4.37)

Using boundary conditions (4.32) and (4.33), tkis gives:

ov(X,T) =V A {cosh(\/[(?lX) — 1 - tanh(\/[G]) - sinh(\/[E;TX)] (4.38)

From equation (4.11), the active shear stress is found to be:

7(X,T) =V 4/ [sinh(\/ﬁjq — tanh(,/|G)) cosh(\/[(T|X)] (4.39)

or more compactly:
(X, T) = VA‘/|G| - J(X) (4.40)

The shear stress in the VEM which is due entirely to beam deflections will
be denoted as @ (X,T). Thus the total shear stress in the VEM is given by
Equation (4.41).

(X, T)=n(X,T)+ w(X,T) (4.41)

The amount of energy actively dissipated per cycle of vibration will now be
derived. It must be emphasized that although no control has been explicitly
stated, the above analysis implicitly assumes that the shear stress is harmonic
and in phase with the vibration. The work done on the viscoelastic layer is given
by Equation (4.42).

du ta
(—{V—d' = j:l f"/d‘ (4.42)

Assume harmonic motion with r(t) = rycos(wt) and a material with a complex
shear compliance C = C} + jC;. Then the work done on the material is given
by Equation (4.43).

du ta o . 2 g N

— =—w [ 71,C)cos(wt)sin(wt)dt - w/ 75,C3 cos’ (wt)dt (4.43)

dVd 6 31
Let the limits of integration be one period of oscillation (i.e. 0 to 2x/w) to find
the energy storage and dissipation per cycle. The first term of Equation (4.43)
is zero, and represents the elastic, recoverable work done during the cycle. The
second term is given by:

dugi

v, = —rO’C,x (4.44)
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This is the enery dissipated per cycle. Rewritten in terms of shear modulus
parameters it becomes:
dugi, rigym

= 4.45
dvol lg|2 ( )
The energy is nondimensionalized using Equation (4.46).
ul
T = .
V=g (4.46)

The total energy dissipated is found by integrating over the volume of the shear
layer. Substituting appropriate nondimensional parameters this becomes:

U= O J, 70X (4.47)

Making use of Equations (4.39) and (4.41) yields:

TG 1y 2
U= :ﬂTzP ]o |rw +VA\/|E|f(X)] X (4.48)
Equation (4.48) shows that the amount of energy dissipated per cycle can be
modulated actively.

In addition to internal dissipation, the active stresses appear in the bound-
ary conditions. With the constraining layer fixed to the tip mass and left free
at the root, the boundary conditions (4.30), (4.32) and (4.33) contain active
- terms. Equation (4.30) shows the normal stress in the constraining layer acts
as a discrete moment at the beam tip. Since the tip may experience angular
displacements, this moment can do work on the system. The active component
of this boundary condition is just Equation (4.38) evaluated at X = 1.

o(LV)=VA (coshz(\/la) - Sinhz(\/ﬁ) _ 1) (4.49)
cosh(\/la‘)

Making use of the identity: .
cosh?(u) — sinh?(u) = 1 (4.50)

yields:
o(1,V)=VA l _ (4.51)
cosh(/|G|)
The work domne per cycle by this boundary condition is:
1 oW (1,T)
U(T)=V(T)A -1} —== (4.52)
( ) (cosh( IGI) ) 9X
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This result i3 similar to those found by Bailey [9]. In the limit as the VEM
sufness tends toward infinity and the loss modulus goes to Zero, Equation (4.52)
and those derived in [9] are ideutical.

Boundary conditions (4.32) and (4.33) are both stress boundary conditions.
Eqguation (4.32) requires the tensile stress in the constraining layer to be zero at
the beam root. Equation (4.33) constrains the shear stress in the core to be zero
at the tip. Since in each case the total stress is zero, there can be no resultant
gtrain. Therefore peither boundary condition can do work on the system.
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Chapter 5

Conclusions and
Recommmendations

5.1 Lyapurov Damper

An active vibration damper which uses a disiributed piezoelectric actuator,
and ‘bang-bang’ feedback control to damp transverse vibrations in beams has
been tested e¢xperimentally on two different structures. One was a 6 inch x 0.5
inch x 0.030 inch steel cantilever beam with a 6.7 gram tip mass. The second
was a 48 inch x 6 inch x (0.1250 inch aluminum cantilever beam witk a 2.04
kg tip mass. The results of tests on the first bending mode of these structures
verify those results predicted by the simulation algorithm developed in [9].

Free vibration tests of the iirst mode of the steel beam were conducted by
displacing the tip 2.cm, and releasing it. A beam without active control had
a seftling time of over 2 minutes. Free decay tests using the Lyapunov control
algorithm and a centrol amplitude of 500 volts decreased the settling time to 8
seconds. Similar first mode tests were performed on the aluminum beam. The
initial conditions for these tests was a tip displacement of 16.7 cm. Without
active control the beam vibrations had a decay time of over 400 seconds. Using
Lyapunov control with a control amplitude of 400 volts reduced this settling
time to 126 seconds. ’

The active Lyapunov damping demonstrated in this study is nonlinear. If it
were applied to a structure which had no internal damping, the tip displacement
would decay linearly in time. This indicates a changing system loss factor. Using
moderate feedback voltages, the effective loss factor of the closed ioop system
increased dramatically as the vibration level decreased. The passive loss factor
of the steel beam was n = 0.002 for small amplitude tip displacements. Using
the Lyapunov damper with an amplitude of 100 volts increased the loss factor
to nioo = 0.046 at a tip displacement of 0.5mm. Active damping with a 500
volt control amplitude increased the loss factor to g = 0.375 at the same
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displacement amplitude.

The passive loss factor at small tip Jdisplacements of the aluminum beam
was 1 = 0.0019. Lyapunov control with an amplitude of 100 volts increased the
system loss factor to ey = 0.030 at a tip displacement amplitude of 1.7 cm.
Active damping with a control amplitude of 400G volts increased the loss factor
tu n40 = 0.080.

The Lyapurov damper was also demoustrated to be very effective on the
second and third bending modes of the aluminum beam. The initial conditions
for these tests were established by using the film actuator to excite the beam at
the desired modal irequency. The Lyapunov control algorithm used on the first
mode tests was also used for these tests unchanged. For the second mode of
the aluminum beam, the initial condition was an angular acceleration at the tip
of 56.5 rad s~ 2. The Lyapunov control decreased the settling time from a free
decay of 41 seconds to a controlled settling time of 7.4 seconds using a control
amplitude of 400 volts. The initial condition for the third mode tests was an
angular acceleration of 127 rad s~2 at the tip. For the third mode the settling
time was reduced from 20.5 seconds to 3.8 seconds using a control amplitude of
400 volts.

These experimental results verify that the Lyapunov damping is most effec-
tive for smaller vibration levels. This is because the nonlinear damping dissi-
pates an increasing percentage of the system energy as the vibration amplitude
decreases. This type of active damping may be most effective as a method of
keeping resonant vibrations from building up due to the potentially high levels
of damping that can be achieved for low level vibrations.

5.2 Active Constrained Layer Damper

A constrained layer damper which uses the PVF2 acutator as an active
constraining layer was proposed as a candidate design which would be effective
on damping all vibration amplitudes. The genera! system consisting of a base
structure, viscoelastic layer and active constraining layer was modelled, resulting
in a sixth order partial differential equation governing the transverse motions of
the beam. The specific case of the active constrained layer damper applied to a
cantilevered beam with tip mass and rotary inertia was discussed. This model
revealed that there are two ways the active constraining layer affects the beam.
The first is by contributing to the shear strain in the VEM. As a result it is
possible to actively modulate the amount of energy dissipated.

In addition to the internal disipation, the active control appears as work at
the system boundary. With the constraining layer fixed to the tip mass and left
free at the root, the active portion of the stress in the constraining layer appears
as a boundary moment which can do work on the system. This result is similar to
those found by Bailey [9] and is the basis of the Lyapunov control algorithm. Iu
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the limit as the VEM becomes perfectly rigid and the loss modulus goes to zero,
the model of the active constrained layer damper and the Lyapunov controller
are identical. If the VEM has finite storage and loss moduli, the system will be
affected by both the active dissipation and the boundary work.

5.3 Recomendations for Future Work

Future work in active vibration damping using PVF2 should address the
following concerns: An optimality condition and a feedback control law for the
active constrained layer damper should be derived. This will allow the effective-
ness of this damper to be evaluated quantitatively. As a first step, the mode
shapes that satisfy Equation (4.27) will have to be found.

The evaluation of the Lyapunov controller could be aided greatly by better
measurement techniques of appropriate system parameters. Especially critical is
the measurement of the moment constant. Experimental values obtained in this
study and previous work [8] have shown discrepancies between predicted and
observed values. In the aluminum beam tests, the moment constant was difficult
to secure due to the fact that the first mode frequency was near the thermal
drift frequency of the measurement equipment. Developing another technique,
perhaps a dynamic test, should be considered. The higher mode experiments
have shown that the PVF2 film can be used as an actuator quite effectively. It
may be possible to derive the moment constant by measuring the steady state
amplitude of forced vibrations and the modal damping.

A final area of recomended research is in using the film as a distributed
sensor. Crude experiments have shown that a large output voltage is generated
by the film when the beams were excited harmonically. Transient tests have also
shown that the film output spectrum and the beam modal spectrum were the
same.
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Appendix A

Viscoelastic Response to an
Appiied Stress

Using the Euler definition cf the complex expontential (A.1),
¢! = cos(wt) + j - sin(wt) (A.1)

along with the complex shear modulus greatly simplifies the task of identifying
the strains which are in phase and in quadrature with the stress. Consider a
viscoelastic material being sheared by an applied stress given by Equation (A.2),
which can also be written as the real part of the complex function (A.3).

T = 1o cos(wt) (A.2)
T =Re (ro - e’"‘") (A.3)
Assume the material can be characterized by a complex shear compliance, C.
1
C = el (A-4)
1
= — A.5j
Gi1+J-G: (45)
G, . Gy

C =

ag+a @ a (4.6)

Then, the shear strain is given by Equation (A.7).
Y=(Ci+j - Ca) ro- & (4.7)
Since the forcing function has been defined as the real portion of equation (A.3),
it is appropriate to use only the real part of Equation (A.7) as the solution.
4 = 19 - (C) cos(wt) — Cysin(wt)) (A.8)
Equation (A.8) consists of two terms, one in phase with the forcing function,

and one in quadrature with it. Equation (A.8) can be rewritten in terms of
elastic modulus by substituting Equation (A.8) into (A.8).
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