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Abstract—Visual servoing enables robotic systems to per-
form accurate closed-loop control, which is required in many
applications. However, existing methods either require precise
calibration of the robot kinematic model and cameras or use
neural architectures that require large amounts of data to train.
In this work, we present a method for unsupervised learning of
visual servoing that does not require any prior calibration and is
extremely data-efficient. Our key insight is that visual servoing
does not depend on identifying the veridical kinematic and
camera parameters, but instead only on an accurate generative
model of image feature observations from the joint positions of
the robot. We demonstrate that with our model architecture and
learning algorithm, we can consistently learn accurate models
from less than 50 training samples (which amounts to less than 1
min of unsupervised data collection), and that such data-efficient
learning is not possible with standard neural architectures.
Further, we show that by using the generative model in the
loop and learning online, we can enable a robotic system to
recover from calibration errors and to detect and quickly adapt
to possibly unexpected changes in the robot-camera system (e.g.
bumped camera, new objects).

I. INTRODUCTION

In robotics, techniques that use visual feedback to guide
robot control are referred to as visual servoing [5], [20], [36].
But while visual servoing enables closed-loop control, it often
relies on calibration of the robot-camera system [38]. In partic-
ular, it requires precise calibration of the cameras observing
the robot and the kinematic model of the robot itself [26].
Calibration procedures may require human input or precisely
manufactured devices and are often tedious to perform. Recent
work has attempt to circumvent the need for calibration by
instead learning visual servoing, often using neural network
architectures [24], [35]. However, these approaches require
large amounts of data and time to train in order to achieve good
performance. Further, they cannot quickly adapt to changes in
the robot-camera system (e.g. bumped camera, new objects)
without retraining.

In this paper, we present a learning-based approach to
visual servoing that, rather than employing neural networks,
uses structured generative models. We propose a differentiable
model architecture and optimization procedure for learning the
generative model’s parameters from data. While our architec-
ture resembles standard kinematic and camera modeling, a key
insight of our work is that we can perform visual servoing
without identifying the veridical (real world) kinematic and
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XArm 6-DoF
(simulated)

UR5 6-DoF
(simulated)
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(real)
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Fig. 1. Evaluation environments. We evaluated DurableVS in 4 different
environments: two simulated environments with a UR5 (6-DoF) and Xarm
(6-DoF) and two real environments with a UR5 and a Baxter (7-DoF).

TABLE I
DURABLEVS VERSUS VISP [26] VERSUS NEURAL METHOD

Method Data-Efficient Unsupervised Re-calibrating
VISP [26] 4 requires calibration

Neural 4

Ours 4 4 4

camera parameters, but rather just using an accurate generative
model of image feature coordinates from joint positions. Our
experimental results demonstrate that we can learn accurate
models extremely data-efficiently, from <50 training samples
(<1 min of unsupervised data collection), and that such
data-efficient learning is not possible with standard neural
architectures. Further, since our model is fast enough to run in
the control loop and learning can be done online, our method
can be used to detect and adapt to unexpected changes in the
robot-camera system.

In the remainder of this paper, we introduce our model ar-
chitecture, learning algorithm, and inference procedure. Then
we present experimental results highlighting our approach’s
accuracy, data-efficiency, speed, and its ability to quickly
recover from changes to the robot-camera setup via online
learning. We conclude by discussing related work in vision-
based control, limitations, and future work.

II. DURABLEVS MODEL

Our architecture is composed of three modules: (1) Forward
Kinematics, (2) Visual Feature Structure, and (3) Camera
Projection. The Forward Kinematics module takes as input
the joint positions jt and predicts the 6DoF Cartesian pose pt

of the end-effector. The Visual Feature Structure module takes
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Fig. 2. We illustrate the 3 modules that are composed to define our generative model from joint positions jt to image observations It, and the parameters
of those modules. According to the kinematic structure of the robot, the joint positions jt will place the robot’s end-effector at a certain 6D Cartesian pose
pt. Given the robot end-effector’s pose and the relative coordinates of the visual features in the end-effector frame, we can compute the 3D coordinates Mt

of the features in the world frame. Finally, the features are observed through the cameras and appear at pixel coordinates It in the images.

as input the 6DoF Cartesian pose pt of the end-effector and
predicts the 3D coordinates Mt of the visual features that are
rigidly attached to the end-effector. The Camera Projection
module takes as input the 3D coordinates Mt of the visual
features and predicts the pixel coordinates It at which the
visual features appear in the observed images. We compose
these 3 modules, in sequence, to get a model that, given the
joint positions jt as input, predicts the pixel coordinates It.
This architecture parallels the causal generative process by
which placing a robot at certain joint positions results in visual
features attached to the end-effector being observed at certain
locations in the images. (See Figure 2). We now discuss the
specific parametrization of each of the 3 modules:

Forward Kinematics We parametrize the Forward Kine-
matics module using the Denavit–Hartenberg (DH) convention
[14]. For each of the n links of an n-DoF robot, there are 4
DH parameters: ω - joint angle offset; d - link offset; a -
link length; α - link twist. We collect these parameters per
link into vectors r1, r2, . . . , rn. The link parameters ri and
the current joint angle jt[i] together define a relative transfor-
mation Lri(jt[i]) between consecutive links. Composing these
relative transformation for all links in the kinematic chain
gives the pose of the end-effector in the robot’s base frame. We
additionally parametrize the 6DoF pose of the base frame as b.
The Forward Kinematics K takes as input the joint positions
jt and outputs the 6DoF Cartesian end-effector pose pt:

pt = Kb,r1,...,rn(jt) = b ·
n∏

i=1

Lri(jt[i]) (1)

The parameters that must be learned are: b, r1, . . . , rn. We
refer to them collectively as R.

Visual Feature Structure We assume that we can track
visual features that are rigidly attached to the robot’s end-
effector. Thus, these features can be described by their 3D
(relative) coordinates F in the end-effector’s reference frame.
The Visual Feature Structure module S takes as input the 6DoF

Cartesian pose pt of the end-effector in the world frame and
outputs the 3D coordinates Mt of the visual features in the
world frame, done via a homogeneous transformation:

Mt = SF(pt) = pt · F> (2)

The parameter that must be learned is: F.
Camera Projection We model cameras using a pinhole

camera model whose parameters are the extrinsics matrix E,
which defines the relative pose of the camera in the world
frame, and the intrinsic matrix K, which governs how 3D
points in the camera frame are projected onto the image plane
via focal lengths and principal points [37]. Each of the c
cameras has its own parameters and we use Ki and Ei to
denote the intrinsics and extrinsics of camera i, respectively.
The Camera Projection C takes as input the 3D homogeneous
coordinates Mt of the features and outputs the 2D coordinates
of those features in the image I

(i)
t as observed in camera i:

I
(i)
t = CKi,Ei

(Mt) = K ·E ·Mt (3)

The parameters that must be learned are: Ki and Ei for each
camera i = 1, . . . , c where c is the number of cameras. We
collect the intrinsics and extrinsics per camera and refer to
them as Vi for camera i. To simplify notation, when we call
C on the input Mt with all camera parameters V1, . . . ,Vc, we
assume the output is the predicted image features I(1)t , . . . , I

(c)
t

in all c cameras, which we collect and refer to as It.
Summary Our architecture composes the 3 modules de-

scribed above:

Forward Kinematics: pt = KR(jt)

Visual Feature Structure: Mt = SF(pt)

Camera Projection: It = CV1,...,Vc(Mt)

Full Architecture: It = CV1,...,Vc(SF(KR(jt)))



Importantly, each of the above modules is differentiable and
thus the full architecture is differentiable.

III. LEARNING

We learn the parameters of our model from training data
consisting of pairs (jt, It) of joint positions and corresponding
image feature coordinates. This data can be collected in a
completely unsupervised manner by sending random actions
to the robot and capturing images from the cameras. Given
this data, we learn the parameters of the model via stochastic
gradient-based optimization with L-BFGS [25] optimizing the
reconstruction error between the predictions of the model
(given jt as input) and the true observations It.

While the ground truth veridical parameters (i.e. the true
robot kinematic model, feature structure, and camera intrinsics
and extrinsics) represent one solution to this optimization
problem, it is not the only solution. Consider parameter
settings corresponding to scaled up, scaled down, rotated, and
translated version of the real world. These models would be
equally accurate at predicting image observations from joint
positions, even though the model’s latent 3D representation
may not necessarily coincide with the real world. A key insight
of our work is that these models can be used for visual
servoing and can be learned unsupervised.

In the remainder of this section, we describe the 3 subrou-
tines of our learning algorithm:

A. Camera and Feature Structure Learning

We first optimize the camera parameters V1:c (for all c
cameras) and feature coordinate parameters F. In addition
to optimizing these parameters, we also optimize the end-
effector poses p1:T , which are a variable in the model. In this
first stage of the optimization, we are considering a truncated
model from poses pt to pixel coordinates It, and ignoring
the joint positions and kinematics. The function Dpixel is a
quadratic error between the observed and generated pixel
coordinates. The objective of the following optimization is to
find a setting of the parameters (V1:c,F) and poses (p1:T ) that
produces pixel coordinates consistent with the actual observed
coordinates It (for all c cameras and T time steps):

F∗, V∗1:c, p∗1:T =

argmin
F,V1:c,p1:T

T∑
t=1

c∑
i=1

Dpixel
(
CVi

(SF( pt)), I
(i)
t

) (4)

I
(i)
t are the feature detections at time t in camera i. This

optimization is prone to convergence to sub-optimal local
minima and it is important to provide good initialization for
p1:T and V1:c. We compute initializations by triangulating
features observed in multiple cameras and estimating the
camera baselines i.e the transforms between pairs of cameras.

B. Kinematic Learning

Next, we optimize the kinematic parameters R. We use the
observed joint positions j1:T and the Cartesian end-effector
poses p1:T output from the previous subroutine. The function

Dpose(A,G) = ‖A − G‖F is the Frobenius norm between
pose matrices A and G. The objective of the following
optimization is to find a setting of the kinematic parameters
R that produces Cartesian poses consistent with p∗1:T .

R∗ = argmin
R

T∑
t=1

Dpose(KR(jt),p
∗
t ) (5)

Note, we are using p∗1:T , the output of the previous subrou-
tine, as a target in this optimization. Since these were learned
without considering kinematic structure, they may be inaccu-
rate and therefore, the full model optimization (described in
the next section), which simultaneously optimizes all model
parameters, is needed to correct these errors.

C. Full Model Learning

Finally, we optimize all model parameters simultaneously.
This optimization is very similar to that of the Camera and
Structure learning (Section III-A). The error is also between
the generated and observed pixel coordinates It. However
instead of using the truncated model (from pt to It) we
consider the full model (from jt to It).

Rf ,Ff ,Vf
1:c =

argmin
R,F,V1:c

T∑
t=1

c∑
i=1

Dpixel(CVi
(SF(KR(jt))), I

(i)
t )

(6)

The outputs of the previous two subroutines (R∗, F∗, V∗1:c)
serve as the initialization for this optimization. We found that
all 3 subroutines of this optimization are needed to ensure
consistent convergence. Table II compares to DVS-OnlyFull,
an ablation of our method that does not use the other 2
subroutines for learning, and we find that it sometimes fails
to learn accurate models, especially as we reduce the amount
of training data.

IV. INFERENCE

After learning the model parameters, the model can predict
the coordinates It of the image features given the robot’s joint
positions jt. However, in order to use this model for visual
servoing, we need to be able to find the joint positions ĵt such
that the image features will be located at some desired target
locations Ît in the image. We use an inference-via-optimization
approach to infer ĵt:

ĵt = argmin
jt

Dpixel
(
f(jt), Ît) (7)

where f is our learned model.
We can then use the above inference to control the robot.

We first infer the current joint positions jt from the current
observations It. Then, we select desired locations of the image
features Ît and infer the corresponding joint positions ĵt.
Finally, we command the robot to move by ĵt − jt to match
those desired image feature coordinates. This optimization
is implicitly solving optimizations corresponding to Inverse
Kinematics (IK) [3] and Perspective-n-Point [10] problems.



V. EXPERIMENTS

We conducted several experiments that demonstrate the
accuracy, data-efficiency, speed, and flexibility of our ap-
proach. We first present a quantitative evaluation comparing
our method, ablations of our method, and neural baselines. The
results show that our approach learns very accurate models
more data-efficiently than neural baselines. Then, we show
the speed of our generative model, demonstrating that our
approach is usable for real-time applications. Next, we show
that our method can detect and quickly adapt to changes in the
robot-camera setup via online learning. Finally, we evaluate
our method’s servoing accuracy, showing comparable accuracy
to VISP [26], a standard calibrated method for visual servoing.

A. Data-Efficiency

We first demonstrate the data-efficiency of our method
on real and simulated robot environments. Table II shows
a quantitative evaluation of our method compared to neural
network baselines and ablations of our method. Each method
is trained on the indicated number of training samples (pairs of
(jt, It)) and tested on a held-out data set of 100 samples. We
report the average error between the predicted and observed
pixel coordinates (for visual features that were observed). We
compare with 4 neural architecture baselines. NN1: Single
hidden layer (200 units), Tanh activation. NN2: Single hidden
layer (200 units), ReLU activation. NN3: Two hidden layers
(100, 50 units), Tanh, ReLU activations. NN4: Two hidden
layers (100, 50 units), ReLU, ReLU activations. We also
compare with 2 ablations of our model. DVS-NoFull: Camera
and Feature Structure Learning (Section III-A) and Kinematic
Parameter Learning are used but not Full Model Learning
(Section III-C). DVS-OnlyFull: Only Full Model Learning
(Section III-C) is used. Our full architecture is denoted DVS,
which uses all 3 subroutines for learning the model parameters.
We find that our method consistently outperforms the baselines
in all environments. The neural networks are unable to match
the performance of our model given the same amount of data.

This is due in part to the concise parametrization of our
model, which prevents overfitting the limited training data.
The neural architecture lacks the structure of our model and
is significantly overparametrized. Note that for an n degree
of freedom (DOF) robot with m tracked features that are
observed in c cameras, our model’s parameters are: 6 for the
robot base frame, 4n for DH parameters for all joints, 3m for
3D coordinates of each of the features, 6c for the camera ex-
trinsics and 4c for camera intrinsics, totaling 6+4n+3m+10c
parameters. In our experiments where we have a 6DoF robot,
12 features, and 2 cameras, the total number of parameters is
86. In comparison, a neural architecture with just 50 hidden
units already has 2798 parameters.

We also compare with two ablations of our method, DVS-
NoFull and DVS-OnlyFull, which don’t use the full learning
algorithm but only some subset of the 3 subroutines. DVS-
OnlyFull, the ablation that only uses the Full Model Learning
subroutine (Section III-C), can sometimes match the perfor-
mance of our full method DVS when 75 or 100 training

samples are available. However, when only 50 samples are
available the full method outperforms the ablations, illustrating
the need for all 3 subroutines.

B. Speed

For our architecture to be practically useful, it must be fast
enough to be used for real-time servoing. In Table III, we
provide times for the forward, gradient, and inference com-
putations in our model. Real-time servoing systems, such as
VISP [26], use gradient-based servoing. Computing a gradient
through our full model takes 16.1ms implying that our model
supports 60+ FPS servoing, which would not be the bottleneck
in most visual servoing systems given standard frame rates of
cameras and frame rates of object/feature detectors that are
often used for vision-based control.

C. Online Learning

Most robotic systems assume that kinematic and camera
calibrations will be performed once during setup and will
remain fixed over the course of the robot’s use. These system
often do not monitor these calibrations, so if they were to
change, this may only be detected in downstream task perfor-
mance. For example, imagine a robot that uses an overhead
camera to detect objects and plan grasps. If the camera’s
extrinsics were to drift by 1cm, the resulting grasps would
be offset by 1cm, which would degrade the overall grasping
performance. We demonstrate that by using our model, we
can detect these changes to the system and adapt to them via
online learning. We evaluate our method’s ability to adapt to
these changes by first learning the model parameters with an
initial configuration of the robot-camera setup, then modifying
the setup and measuring the model’s reconstruction error as it
sequentially receives new observations and updates the model
parameters online. The reconstruction error is computed on a
held-out data set collected in the new setup.

First, we consider modifications to the cameras (adding a
new camera and moving an existing camera), which might
happen accidentally if a camera is bumped or intentionally if
another viewpoint is needed for a certain task. (We conducted
this experiment on the UR5 real environment). Figure 3(a)
shows the reconstruction error as a function of the number
of new samples available for the case where a third camera
is added and the case where one of existing two cameras is
moved. With just 2 new samples, the model is sufficiently
accurate to begin servoing again and continues to improve its
accuracy as more samples become available.

Next, we consider modifications to the structure of the
visual features. Consider the setting where a robot grasps a
peg and wants to insert it into a hole. To do this accurately,
we would track and servo using visual features on the peg
to align it to the hole. This would require learning the 3D
structure of the new visual features on the peg. We evaluate
our method’s ability to learn new visual features, by attaching
a novel marker to the robot’s end-effector. (We conducted
this experiment on the UR5 real environment). Figure 3(b)
shows the reconstruction error (of the new visual features) as



TABLE II
RECONSTRUCTION ERROR OF LEARNED MODELS ON EACH OF THE 4 ENVIRONMENTS, VARYING THE TRAINING DATA SET SIZE

Reconstruction Error (Test)

Neural Baselines DurableVS (DVS)
Environment # Samples NN1 NN2 NN3 NN4 DVS-NoFull DVS-OnlyFull DVS

UR5 (sim)
50 26.45 13.87 70.51 12.43 10.91 8.92 0.64
75 15.00 14.35 85.45 9.15 11.40 4.36 0.64
100 20.45 11.35 79.34 10.36 12.54 3.04 0.63

Xarm (sim)
50 39.27 27.15 27.82 23.00 7.54 31.02 0.37
75 38.24 19.47 29.05 16.08 7.58 0.36 0.36
100 33.80 14.76 16.90 14.01 9.40 0.36 0.36

UR5 (real)
50 60.28 3.56 29.61 4.48 6.46 4.64 0.36
75 60.27 23.00 28.99 3.96 9.28 4.25 0.37
100 60.27 3.62 59.69 5.58 6.53 4.84 0.36

Baxter (real)
50 16.07 13.54 16.25 14.76 7.87 12.17 2.40
75 12.61 11.02 14.48 8.88 12.36 2.21 2.20
100 13.83 9.57 11.31 7.93 7.58 2.01 2.00

TABLE III
SPEED OF QUERIES IN DURABLEVS

Query Time (s) FPS

Forward Kinematics 0.0012 833
Forward Camera/Feature 0.0014 714
Forward Full Model 0.0025 400
Gradient Full Model 0.0161 62
Gradient Kinematics 0.0126 79
Gradient Camera/Feature 0.0091 110
Infer Pose from Image 0.0005 2000
Infer Joints from Pose 0.1012 10
Infer Joints from Image 0.1025 10

a function of the number of new samples available. With 2
samples, the model is already very accurate. One explanation
for this efficiency is to think that if we had two cameras
properly calibrated, the new features could be triangulated to
3D, given pixel coordinates. With more views, the error in
the triangulation reduces. Note, this triangulation is not done
explicitly, only implicitly through the optimization.

Finally, we may want to relearn the robot’s kinematic model,
for example, if a joint is damaged or if we modify the end-
effector tool e.g. swap the gripper. (Since we could not modify
the real robot kinematics, we conducted this experiment on the
simulated UR5 robot by adding random noise to the robot’s
link lengths.) In Figure 3(c), we show the reconstruction
error as a function of the number of new samples available.
Compared to re-learning camera and feature structure param-
eters, re-learning the kinematic parameters require more new
samples. However, within approximately 25 samples the model
has adapted and is very accurate again.

These results demonstrate that when there are unexpected
changes to the robot-camera setup (e.g. bumped cameras, new
visual features, damaged robot), modules of the generative
model can be quickly relearned to adapt to those changes.
But how do we detect these unexpected changes? We can
detect these changes by comparing the expected image feature
coordinates (as predicted by the learned generative model)
with the actual observations. During normal operation, these
should match very closely, however when there are unexpected

changes to the system there will be discrepancies between the
expectation and observation. We use this as a signal that model
parameters need to be updated.

D. Servoing Accuracy

Finally, we demonstrate that our architecture enables accu-
rate visual servoing. Figure 3d show a comparison between
our method and VISP [26], a popular library implementing
visual servoing. In this evaluation, we first randomly select
target locations for the visual features and then allow each
method to servo to the target. We measure the error between
the target and actual pixel coordinates at each time step.
(We average over 50 runs with different randomly selected
targets). We found that both DurableVS and VISP achieve
sub-pixel accuracy. Our method slightly outperforms VISP,
likely due to inaccuracies in camera calibration, which further
motivates the value of learning as opposed to assuming a
fixed camera calibration1. In these experiments, it appears
DurableVS converges to the targets more rapidly than VISP.
However, we do not claim that DurableVS is faster than
VISP in general, as VISP’s convergence rate depends on
many factors. We provide this data to show that DurableVS
can be competitive with VISP (out of the box) on a real
robot, in addition to requiring no calibration and automatically
recovering from a broad class of calibration errors.

VI. RELATED WORK

A. Kinematic & Camera Calibration

Robotic systems often assume the robot’s kinematic model
and any cameras it uses are calibrated. Kinematic calibra-
tion often needs precisely manufactured devices or manual
alignment procedures [16], [18], [33] which can be time-
consuming. Camera calibration needs a pattern to be placed at
different locations in view of the camera [4], [32], [38], [42]
and this process must be repeated whenever the camera is

1We used a standard camera calibration routine provided in ROS [32] and
validated its accuracy
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Fig. 3. (a,b,c) We evaluate our method’s ability to adapt to changes to the robot-camera setup by measuring the model’s reconstruction error as it sequentially
receives new observations and updates the model parameters online. (a) On the real UR5, we measure the reconstruction error in both the case where we add
a new camera and the case where we move an existing camera. (b) On the real UR5, we measure the reconstruction error when we attach new visual features
to the end-effector. (c) On a simulated UR5, we measure the reconstruction error when we modify the link lengths of the robot, simulating a change to the
robot kinematics. (d) We compare the accuracy of our method with VISP [26] on servoing to randomly select target coordinates of the visual features.

moved. Other prior works propose methods for learning kine-
matics [2], [7], [18], [33], [34] or self-calibration of cameras
[9], [11], [15], [22], [39]. However, none of these methods can
learn both kinematic and camera models, unsupervised.

Independent kinematic and camera calibration can also
negatively affect accuracy of visual servoing since errors in the
kinematic calibration can lead to errors in camera calibration.
Many prior works explore the benefits of simultaneous kine-
matics and camera calibration [21], [39], [43] in avoiding these
compounded errors. However, these calibration approaches are
aimed at identifying the veridical system parameters and thus
cannot be learned without supervision.

Finally, kinematics and camera calibration must be repeated
when even small changes are made to the robot-camera
system. As demonstrated in our experiments, our approach
can quickly adapt to such changes online, enabling the system
to continue to function without interruption or intervention.

B. Visual Servoing

Visual servoing refers to techniques that use visual feedback
to guide control. Commonly used methods for visual servoing
are image-based visual servoing (IBVS) and position-based vi-
sual servoing (PBVS). In general, these methods seek to move
certain tracked image features to desired target locations. Most
proposed visual-servoing approaches depend on calibration of
the robot’s kinematic model and cameras [5], [8], [28], [28],
[36]. To relax this assumption some methods directly estimate
the image-joint Jacobian, capturing how changes to the robot’s
joint positions lead to changes in image features [17], [19],
[27], [30], [41]. Unlike differential approaches, our method
learns a structured model of the system.

Visual Servoing Platform (VISP) [26] is a popular library
implementing various visual servoing control laws. Part of our
contribution in this work is the Durable Visual Servoing (DVS)
Python [40] package which implements our architecture in
PyTorch [29]. This package includes a demo of data-collection,
learning, and visual servoing with the learned model in a
simulated PyBullet [6] environment. In addition, we provide
tutorials to enable researchers to apply our system to their
applications and to build upon our architecture.

C. Learning Vision-based Control

Recent work on learning control of robots using visual
feedback has focused on deep learning approaches. [35] learns
viewpoint-invariant visual servoing but requires pre-training
in simulated environments before transferring to real environ-
ments. [23] trains perception and control systems simultane-
ously using an end-to-end neural network and demonstrates
that this can be applied to perform a wide range of tasks.
However, as is often the case with neural networks, they
demand a large amount of training data and time. With
our method, models can be learned from significantly fewer
samples and less time than these neural methods.

In future work, we plan to explore the combination of our
structured generative model with deep learning approaches.
We believe that this combination can improve the overall
data-efficiency of end-to-end learning of robotic tasks like
grasping [24], [31], drone flying [12], and object manipula-
tion/interaction [1]. Consider if the deep learned system could
robustly detect visual features and plan the path of those
image features such that the robot performs the desired task.
Our architecture could then take this as input and infer the
necessary joint commands to perform the task. In this paper,
we used Aruco markers [13] attached to the end-effector as
the visual features. By combining our architecture with deep
learning, we could develop an overall more general system.

VII. CONCLUSION

In this paper, we presented an approach to learning visual
servoing based on structured generative models. We have
shown that given an arbitrary uncalibrated robot observed
through an arbitrary number of uncalibrated cameras, our
system can learn accurate visual servoing. This is done com-
pletely unsupervised and extremely data-efficiently (in less
than a minute). Learning can continue online, enabling the
system to detect and recover from changes to the robot-camera
system. The problem we have addressed in this work is broadly
applicable to many vision-based robotics domains and tasks.
We hope that our contribution can enable more data-efficient
and robust systems that can operate in real-world settings with
no human supervision.
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