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Summary

Over the course of a lifetime, we process a continual stream of information. Extracted from this 

stream, memories must be efficiently encoded and stored in an addressable manner for retrieval. 

To explore potential mechanisms, we consider a familiarity detection task where a subject reports 

whether an image has been previously encountered. We design a feedforward network endowed 

with synaptic plasticity and an addressing matrix, meta-learned to optimize familiarity detection 

over long intervals. We find that anti-Hebbian plasticity leads to better performance than Hebbian 

and replicates experimental results such as repetition suppression. A combinatorial addressing 

function emerges, selecting a unique neuron as an index into the synaptic memory matrix for 

storage or retrieval. Unlike previous models, this network operates continuously, and generalizes 

to intervals it has not been trained on. Our work suggests a biologically plausible mechanism for 

continual learning, and demonstrates an effective application of machine learning for neuroscience 

discovery.

eTOC

Tyulmankov et al. use meta-learning to build neural network models for continual familiarity 

detection. They show that anti-Hebbian plasticity is the preferred mechanism for optimizing 
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memory capacity and propose strong feedforward weights as an explicit addressing mechanism for 

selecting memory locations during storage and retrieval.

Introduction

Every day, a continual stream of sensory information and internal cognitive processing 

causes lasting synaptic changes in our brains that alter our responses to future stimuli. It 

remains a mystery how neural activity and local synaptic updates coordinate to support 

distributed storage and readout of information and, in particular, how ongoing synaptic 

changes due to either new memories or homeostatic mechanisms do not interfere with 

previously stored information.

Familiarity detection – identifying whether a stimulus has been previously encountered – 

is a simple and ubiquitous form of memory that serves as a useful testbed for addressing 

these issues. Classical studies have demonstrated that human recognition memory capacity 

for images is “almost limitless,” retention following a power law as a function of the number 

of items viewed (Standing, 1973). Theoretical work has shown that the number of memories 

stored by a familiarity detection network depends on the synaptic plasticity rule and can 

scale proportionally to the number of synapses (Bogacz and Brown, 2003). More recent 

behavioral work further demonstrates an impressive capacity in a continual setting, the error 

rate as a function of the number of intervening items exhibiting a “power law of forgetting” 

(Brady et al., 2008), theoretical studies showing that this is achievable by synapses with 

metaplasticity (Fusi et al., 2005; Ji-An et al., 2019). Neural signals of visual familiarity 

have been observed as reductions in responses to repeated presentations of a stimulus, a 

phenomenon known as repetition suppression (Grill-Spector et al., 2006; Meyer and Rust, 

2018; Miller et al., 1991; Xiang and Brown, 1998). At the timescales relevant for this task – 

one-shot memorization on the order of seconds and long-term forgetting on the order of days 

– this is plausibly caused by depression of excitatory synapses or potentiation of inhibitory 

ones (Lim et al., 2015).

Previous modeling work on recognition memory used a predesigned architecture and 

plasticity rule and both empirical and analytic evaluation of performance (Androulidakis 

et al., 2008; Bogacz and Brown, 2003; Norman and O’Reilly, 2003; Sohal and Hasselmo, 

2000). An emerging approach employs a machine learning technique known as “meta-

learning,” or “learning how to learn” (Thrun and Pratt, 2012), that uses optimization 

tools to rapidly search for mechanisms that artificial neural networks can use to solve 

a learning/memory task (Confavreux et al., 2020; Gu et al., 2019; Jordan et al., 2021; 

Lindsey and Litwin-Kumar, 2020; Metz et al., 2019; Najarro and Risi, 2021). In contrast 

to hand-designed models, meta-learning enables unbiased exploration of a large family of 

architectures and plasticity rules. Importantly, it is possible to impose constraints that ensure 

biological plausibility (Bengio et al., 1991).

In this work, we investigate not only “how” memories are stored – the synaptic plasticity 

rule – but also “where” – the mechanism for addressing the storage and retrieval locations. 

Classical models of memory rely on “content-based addressing” (Hopfield, 1982), where a 

partial cue elicits recall of the full memory through recurrent dynamics, but do not explicitly 
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select which synapses store the memory. On the other hand, “key-value” memory networks 

in machine learning (Graves et al., 2014, 2016), store values in a memory matrix indexed 

explicitly by keys, analogous to the addressing in a computer random-access memory, 

although such models lack a biological interpretation (but see Tyulmankov et al., 2021). Our 

model includes both a synaptic plasticity rule and an explicit addressing mechanism.

Positing that the answer to “when” plasticity should occur is “always”, we consider a simple 

version of “what” to remember – familiarity. We construct a family of models that recognize 

previously experienced stimuli and, importantly, learn and operate continuously without 

separate learning and testing phases, avoiding catastrophic forgetting – a phenomenon where 

a network renders stored information unreadable (Beaulieu et al., 2020; Parisi, 1986). The 

capacity of these networks remains constant over time, so they can be continually fed new 

inputs with no reduction in steady-state memory performance.

We use a feedforward network architecture with ongoing synaptic plasticity, parameters 

of which are meta-learned using gradient descent to optimize continual familiarity 

detection. Unlike similar models (Ba et al., 2016; Miconi et al., 2019), to isolate synaptic 

plasticity as the unique memory mechanism, we avoid recurrent connectivity that could 

store memory through maintained neuronal activations. This architecture, unlike recurrent 

networks, generalizes naturally over a range of repeat intervals even if trained on a single 

interval. We show that an anti-Hebbian plasticity rule (co-activated neurons cause synaptic 

depression) enables repeat detection over longer intervals than a Hebbian rule and leads to 

experimentally observed features such as repetition suppression in the hidden layer neurons. 

Furthermore, an addressing function emerges through strong static feedforward weights, 

selecting a unique neuron to index the synapses for storage of a novel stimulus and detection 

of a familiar one.

Results

Continual familiarity detection task

In our task, a continuous stream of stimuli is presented to the network (Fig 1A). With 

probability 1 − p, the stimulus at time t is a randomly generated binary vector x(t), where 

each component is either +1 or −1. With probability p, the stimulus is a copy of the stimulus 

presented R time steps ago. The output of the network should be y(t) = 0 if x(t) is novel and 

y(t) = 1 if it is familiar, i.e. has appeared previously. We begin by considering familiarity 

detection for uncorrelated stimuli, but in later sections we generalize to a task that requires 

simultaneous classification and familiarity detection, and to a dataset of images. See STAR 

Methods.

HebbFF network architecture

To investigate the effectiveness of synaptic plasticity for solving this task, we use a 

feedforward neural network with a single hidden layer, and activity-dependent ongoing 

Hebbian plasticity to implement the memory function (HebbFF) (Fig 1B). We do not 

include any recurrent connections to ensure that memory cannot be stored through persistent 

neuronal activity, thus isolating synaptic plasticity as the only memory mechanism.
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In the HebbFF network, a group of hidden layer neurons with firing rates given by an 

N-dimensional vector h(t), receives a d-dimensional input x(t) at time t. The input to each 

hidden-layer neuron is weighted by its corresponding synaptic strength and then transformed 

into a firing rate through a nonlinear activation function σ. The synaptic strength between 

the postsynaptic neuron with rate hi(t) and the presynaptic neuron carrying the input xj(t) is 

the (i, j) component of an N-by-d matrix that is the sum of a static matrix W1 and a plastic 

matrix A(t). Thus, the firing rate of the hidden layer is given by

h(t) = σ W 1 + A(t) x(t) + b1

where σ is the logistic function applied element-wise and b1 is a vector representing baseline 

currents into the hidden layer. The matrix W1 is fixed after training, and its unconstrained 

values are set though optimization. Its structure serves an addressing function by imposing 

a unique baseline activity pattern in the hidden layer for each input. The plastic matrix 

A(t) is updated at every time step: its (i, j) component decays by a factor 0 < λ < 1 and 

is incremented by a Hebbian product of the pre- and postsynaptic activities, hi(t)xj(t). A 

plasticity rate parameter − ∞ < η < ∞ controls the sign and magnitude of this increment. In 

matrix form, the synaptic update rule is

A(t + 1) = λA(t) + ηh(t)x(t)T

Finally, the output of the network y(t) is a linear readout of the hidden layer and, since the 

target y(t) is binary, we bound the readout with the logistic function,

y(t) = σ W 2h(t) + b2

The response of the network is “familiar” if y(t) > 1/2 and “novel” otherwise. Although 

in the general case W2 is unconstrained, to simplify analysis we later consider a uniform 

readout where all entries of W2 are equal, with no appreciable change in performance.

To construct the network, we use backpropagation through time (BPTT) to meta-learn 

the parameters W1, b1, W2, b2, λ, η, which are fixed once training is completed (STAR 

Methods). The continual familiarity detection task – the “learning” task – is then performed 

by the ongoing synaptic dynamics of A(t), controlled by the fixed parameters. These 

dynamics are a biologically plausible mechanism for solving the continual memory task, 

but BPTT is simply used as an optimization tool to find suitable parameters of the network.

The HebbFF network generalizes both in- and out-of-distribution

As a benchmark for comparing HebbFF performance, we train a long short-term memory 

(LSTM) network (Hochreiter and Schmidhuber, 1997) – a recurrent neural network (RNN) 

architecture well-suited for memory performance – on the continual familiarity detection 

task. Unlike HebbFF, which stores its input history in the plastic synaptic matrix A(t), an 

RNN uses ongoing neuronal activity.

Tyulmankov et al. Page 4

Neuron. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



If we train the RNN using a single dataset with T = 500 image presentations (STAR 

Methods) and a repeat interval of R = 3, it successfully learns the training set, but fails to 

generalize to new test sets with the same R (Fig 2A). To fix this, we use an “infinite data” 

approach in which we generate a new dataset for every iteration of BPTT, each with the 

same value of R = 3. Trained in this way, the RNN now generalizes in-distribution across 

datasets with R = 3 (i.e. to datasets drawn from the same distribution as the training data, 

which is parameterized by R), but fails to generalize out-of-distribution to data with any 

other value of R (i.e. to datasets from a different distribution) (Fig 2B). The same result 

holds with R = 6 (Fig 2B). We can further train the RNN with items spaced at intervals of 

both R = 3 and R = 6 (the value of R is chosen randomly for each familiar stimulus rather 

than being fixed). While the network can interpolate between the trained values, it does not 

extrapolate well to larger or smaller ones (Fig 2C). Although it is likely possible to train the 

RNN to perform well for multiple values of R with more complex training schedules, we 

believe that poor out-of-distribution generalization is a bottleneck of the RNN approach.

In contrast, the HebbFF network exhibits both in- and out-of-distribution generalization. 

Even when trained on a single dataset with a fixed repeat interval R, the network generalizes 

to new test sets with the same R, (Fig 3A) and even to those with different R values. 

Critically, the training procedure is the same as for the RNN above, but HebbFF successfully 

learns a qualitatively different solution due to its inductive bias. Trained with “infinite 

data” (the scheme we use in general), HebbFF generalizes to datasets with smaller and 

larger R (Fig 3B). Matching the number of dynamic variables rather than the number of 

hidden neurons, HebbFF still shows superior generalization compared to the RNN (Fig S1). 

This qualitative difference in performance suggests that Hebbian plasticity provides a more 

“natural” mechanism for familiarity detection.

The generalization performance of HebbFF is due to the fact that the memory representation 

of an item does not change over time, other than being scaled by a factor. A stimulus x(t) is 

initially stored as the outer product of h(t) and x(t), multiplied by the plasticity rate η. The 

plastic component of the connectivity matrix also contains terms arising from previously 

stored memories which, for the purposes of this particular stimulus, act as additive noise ε:

A(t + 1) = ηh(t)x(t)T + ε

As subsequent stimuli are presented, the representation of x(t) maintains the same form, so 

that k time steps later it is still stored as the outer product of h(t) and x(t), scaled by a factor 

λk:

A(t + k) = λkηh(t)x(t)T + λkε + ε′

where further additive noise ε’ arises from stimuli presented after x(t).

Unlike HebbFF, RNNs are poor at generalizing across intervals R because the dynamics 

of their units allow the memory representation of a stimulus to change arbitrarily over 

time. The RNN only generates the appropriate representation at the time when a query is 
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expected, namely after a delay equal to the value of R used during training. This makes it 

difficult to generalize across intervals.

The “how” of synaptic plasticity: storage via an anti-Hebbian rule

The plasticity rate η in HebbFF can be positive or negative, resulting in either Hebbian 

or anti-Hebbian plasticity. For the Hebbian solution with η > 0, synapses are potentiated 

in response to a stimulus. When it is repeated, the hidden layer activity is higher due 

to the increased strength of the synapses storing the memory. For anti-Hebbian plasticity, 

η < 0, synapses are depressed when a memory is stored. In this case, the hidden layer 

activity is lower for a familiar stimulus, consistent with experimental results of repetition 

suppression (Grill-Spector et al., 2006; Meyer and Rust, 2018; Xiang and Brown, 1998). 

Furthermore, the meta-learning algorithm is more likely to converge to the anti-Hebbian 

solution, especially when trained with a relatively large repeat interval, even if the initial 

value of η is positive, and almost always when the initial value is negative (Fig S8).

Anti-Hebbian plasticity enables successful familiarity detection over considerably longer 

intervals than a Hebbian rule (Fig 3C). To understand this, note that the memory of a 

stimulus is degraded in two ways: plasticity events obscure existing memories, and plastic 

weights decay over time. With an anti-Hebbian plasticity rule, the hidden layer activation 

h(t) is close to zero for a familiar stimulus. As a result, the plasticity update ηh(t)x(t)T 

when the stimulus is repeated is negligible – as if a stimulus was not presented at that time 

step. This effectively reduces the number of plasticity events, and the disruption of existing 

memories. As a secondary effect, the smaller number of plasticity events allows a larger λ 
(slower decay rate) to be used while still controlling the amplitude of plastic weights (Fig 

S8), further extending the lifetime of the memory. Due to their superior performance and 

consistency with experimental results, we only consider anti-Hebbian solutions throughout 

the following sections.

The “when” of synaptic plasticity: continual learning without catastrophic forgetting

Previous modeling work using anti-Hebbian plasticity mechanisms for familiarity detection 

(Bogacz and Brown, 2003) focused on a paradigm used in classic studies of recognition 

memory (Standing, 1973) in which subjects are serially presented an entire dataset and later 

asked to identify which stimulus is familiar in a two-alternative-forced-choice (2AFC) test. 

Analogously, this previous modeling work used explicit “learning” and “testing” phases and 

demonstrated an impressive capacity for recognition memory (Bogacz and Brown, 2003) 

(Fig S2A). When evaluated on the continual memory task that we use, the Bogacz-Brown 

model has near-perfect performance if the number of stimuli T in the dataset is smaller than 

the model’s capacity P*, independent of the value of the repeat interval R (Fig 3D), as the 

model successfully stores all T < P* stimuli. As the dataset size increases, however, the 

model performance declines due to catastrophic interference (Fig 3D, S2B; STAR Methods). 

To store additional memories, the old memories must be removed by resetting the synaptic 

weights.

In real-world scenarios, an organism typically does not experience a dedicated “learning” 

phase. The answer to “when” synaptic plasticity should occur is “always.” As such, the 
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HebbFF model operates continually rather than using separate learning and evaluation 

phases. Its performance is independent of the length of the dataset, and it can operate 

continuously without any need to reset the synaptic weights. For example, a HebbFF 

network trained with R = 5 operates at near-perfect performance irrespective of the duration 

of the trial T when tested with R = 5 (Fig 3E). Similarly, when tested with R = 20, it operates 

continually at near 80% accuracy (Fig 3E), as expected from the generalization curve in Fig 

3C (note that for small T the accuracy (Fig 3E, top, blue) is transiently elevated because the 

fraction of novel stimuli is more than 2
3 ). In other words, the model has a moving window 

in time within which it can successfully detect a familiar stimulus, and forgets old stimuli 

gracefully without suffering from catastrophic interference.

The “where” of synaptic plasticity: addressing via strong feedforward weights

In the HebbFF network, the hidden layer plays a dual role. On the one hand, it must 

produce a reliable familiarity signal for the readout to decode. On the other, it must create a 

robust representation of the input stimulus during the Hebbian plasticity update. The hidden 

activity is controlled by the fixed parameters W1 and b1, as well as the plastic matrix A(t). 
Here, we investigate how W1, b1, and A(t), impact these two aspects of the familiarity 

detection task.

To simplify this analysis, we restrict W2 to be a scaled 1-by-N matrix of ones, W2 = α2[1, 

…, 1], where α2 is a trained scalar. Similarly, we restrict b1 = β1[1, …, 1]T. Since the 

hidden units now contribute equally to the readout, they are statistically identical (although 

not necessarily independent). Therefore, the rows of W1 and A(t) are statistically identical, 

allowing us to meaningfully plot histograms of the corresponding input currents. This choice 

of output weights does not affect the performance or memory mechanism (Fig S3).

Networks trained with larger R have sparser hidden unit activity (Fig 4A–C): the sparser 

the activity, the less plasticity is evoked, and thus the longer memories can be retained 

without overwriting. In the limiting case we might expect that exactly one neuron is active 

for a novel stimulus and none are active for familiar stimuli. Associated with this increased 

sparsity in activity, W1 is also sparser for larger R (Fig 4D–F, S8).

To isolate the effect of W1 on hidden unit activity, we compute a histogram of the input 

current into the hidden layer due to the non-plastic synapses, W1x(t) + b1, across units and 

across time (Fig 4G–I). As R increases, the distribution becomes multi-modal as a result 

of the combinatorial structure of the rows in W1 (more evident in the idealized model: see 

below and STAR Methods). In general, the number of peaks in this distribution depends on 

the number of large-magnitude values of W1 per row. Critically, due to the logistic function 

nonlinearity, only the rightmost peak in Fig 4I is large enough to elicit appreciable activity 

in the hidden layer. This peak drives the small number of hidden units that are significantly 

activated by a novel stimulus. In other words the W1 matrix acts like an addressing function 

to select a small subset of hidden units to store the memory of a given stimulus.

We next consider the effect of A(t), focusing on the network trained to maximum capacity 

(Fig 4C,F,I) (see next section). For a novel stimulus, the distribution of the input current 
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due to the plastic synapses A(t)x(t) is unimodal and symmetric about zero (Fig 4J–L). For 

a familiar stimulus, however, there is an additional peak at approximately λR−1ηd. This 

peak is due to the dot product of the input vector x(t − R) (stored in the matrix A(t) as 

λR−1ηh(t − R)x(t − R)T), and the familiar input vector x(t) = x(t − R). Importantly, the 

neurons that exhibit this behavior are the same ones active due to W1 when the stimulus was 

novel. Thus, again, W1 provides addressing functionality (now indirectly through its effect 

on A(t)), allowing the system to probe the same neurons not only during storage but also 

during recall.

Finally, the total hidden layer input current is the sum of these two components, (W1 + 

(t))x(t) + b1 (Fig 4M–O). Comparing Fig 4I and Fig 4O, we see that the large central 

symmetric mode of the A(t)x(t) distribution does not significantly impact the total hidden 

layer input current. Rather, the familiarity signal arises because the smaller peak of the 

A(t)x(t) distribution pushes the rightmost peak of the W1x(t) + b1 distribution below zero 

(Fig 4M). Anti-correlation between the two input currents for familiar stimuli (Fig 4P–R) 

indicates that this shift is caused by the input current from the plastic component of the 

synapse cancelling the input current from the fixed component, resulting in lower activation, 

i.e. repetition suppression.

Curriculum training and empirical capacity

A randomly-initialized HebbFF network may fail to find a solution if directly trained with a 

large value of R (Fig S8). Instead, we use a curriculum training procedure to bootstrap the 

optimized solution. First, the network is trained on data with R = 1, using the “infinite data” 

regime. Once the accuracy is above 99%, R is incremented by one and training continues 

on data with R = 2. This process continues until R becomes large enough that the network 

cannot find a solution with accuracy above 99%, i.e. if R is not incremented for at least 2 

million iterations (Fig 5A). We thus define the memory capacity Rmax as the largest value of 

R for which the familiarity detection accuracy is above 99%.

We curriculum-train networks of different sizes and plot the capacity Rmax for each one 

(Fig 5B). For consistency and ease of training, we restrict the networks to the anti-Hebbian 

solution and use the uniform readout as above. We find that the capacity depends primarily 

on the number of synapses, rather than on the number of pre- or postsynaptic neurons (Fig 

5C,D), consistent with previous familiarity detection results (Bogacz and Brown, 2003). To 

estimate the scaling, we compute a linear least-squares fit of log(Rmax) as a function of 

log(Nd). Empirically, we find that the capacity of the network scales as

Rmax ≈ 0.10(Nd)0.79

which is sublinear in the number of plastic input synapses to the hidden layer, Nd.

In contrast, the model of Bogacz and Brown (2003) for the non-continual task has a capacity 

that is linear in the number of synapses. To determine whether the difference between the 

empirical performance of HebbFF and the Bogacz-Brown model reflects a fundamental 
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limitation in the feedforward architecture, we developed an idealized version of the model 

(Fig 6A) that we could study analytically (STAR Methods).

Idealized model and theoretical capacity

We noted above that the limiting behavior of the network at maximum capacity appears to 

have W1 activate just a single unit for memory storage. We build this limiting behavior into 

the idealized model through a specific choice of W1 and b1, set by design rather than through 

a training procedure. Specifically, we use the first n ≪ d components of x(t) as an identifier 

by choosing the first n columns of W1 so that a unique hidden unit is activated by each 

possible n-bit combination of these components (STAR Methods), and set the remaining 

columns of W1 to zero. To simplify the model, we do not allow plasticity to operate on the 

inputs from these bits and set the first n columns of A(t) to zero (Fig 6A). This isolates the 

addressing function of the fixed matrix from the memory storage. Furthermore, instead of a 

sigmoid nonlinearity for the hidden units, we use a Heaviside step function Θ(·). Thus, the 

hidden layer in the idealized model is governed by

h(t) = Θ W 1 + A(t) x(t) + b1

For the nonzero entries of A(t), plasticity is the same as in the trained model, but because 

the Heaviside function does not depend on the scale of the input, we can set the plasticity 

rate to η = −1 without loss of generality. The optimal synaptic decay rate λ is computed 

analytically. A stimulus is considered familiar if all hidden unit activities are zero, and novel 

otherwise (STAR Methods).

This idealized model exhibits similar behavior to HebbFF. We can fit the analytic functional 

form of the true and false positive probabilities computed from the idealized model (Fig 

6B) to the corresponding probabilities of HebbFF (Fig 6C). Furthermore, the histograms of 

inputs to the hidden layer are qualitatively similar: W1x(t) + b1 has the same multimodal 

distribution with more prominent peaks in the middle (Fig 4I, 6D, STAR Methods), a 

bimodal distribution of A(t)x(t) with a large symmetric central peak and a smaller one 

corresponding to the familiarity signal (Fig 4J, 6E), and a similar distribution of the total 

input current (W1 + A(t))x(t) + b1 (Fig 4O, 6F). From this, we conclude that the memory 

storage and readout mechanisms are analogous in the meta-learned HebbFF network and the 

idealized model.

Finally, the memory capacity of the idealized model can be computed analytically (STAR 

Methods). As in the Bogacz-Brown model (2003), the capacity is proportional to the number 

of synapses Nd. There are several possible reasons for the discrepancy between the analytic 

capacity, as well as that of the Bogacz-Brown model, relative to the empirical capacity 

for HebbFF. First, the idealized HebbFF model uses a dedicated set of synapses through 

the fixed W1 matrix, and the Bogacz and Brown model selects the units that have the 

highest input current implicitly through inhibitory competition. Both of these are dedicated 

addressing functions for the hidden layer, but meta-learned HebbFF must multiplex this 

functionality with memory storage, leading to correlations between the hidden layer input 

currents from the plastic and fixed synapse components (Fig S4A).
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In addition, replacing the logistic function with a Heaviside function means that familiar 

stimuli truly generate no plasticity in the idealized model, reducing overwriting at the cost 

of not reinforcing partially-decayed memories (Fig S4B–C). For the same reason, in contrast 

to HebbFF, the idealized model achieves maximal plasticity for any suprathreshold level of 

input to a hidden layer unit.

Finally, training the HebbFF model may lead to specialized solutions for small d and N that 

have better performance than that predicted by the asymptotic analysis. Similarly, training 

may not converge to the optimal solution for large d and N because it requires the use of 

very long repeat intervals R. This means the dataset size T must be very large to include a 

sufficient number of familiar examples, which may lead to practical issues such as vanishing 

gradients. Thus, the empirical capacity may scale sublinearly with the number of synapses 

because of over-performance at low R, under-performance at high R, or both.

HebbFF recapitulates neural data from inferotemporal cortex

We next compare the optimized HebbFF model with experimental results. Meyer and 

Rust (2018) recorded neurons from the inferotemporal (IT) cortex of monkeys performing 

familiarity detection and compared the quality of two decoders in predicting behavior from 

neural data as a function of neural population size. The authors considered a “spike count 

classifier” (SCC) decoder, which amounts to comparing a simple average of neuronal firing 

rates to a threshold, as well as a Fisher linear discriminant (FLD), which instead considers a 

weighted average, with weights computed from the data.

We perform a similar analysis. We first construct an FLD decoder of the hidden unit firing 

rates and rank the units in reverse order of their FLD readout weights (i.e. units with the 

most negative weights are top-ranked; STAR Methods). We then consider decoders that use 

increasingly larger subsets of hidden units, adding them according to their ranking. As in 

the experimental data, performance saturates for the FLD and declines for the SCC readout 

beyond a certain number of decoded units (Fig 7A), since some of the units do not provide 

a reliable signals of familiarity. Including them hurts performance of the SCC decoder, but 

since the FLD readout weight for these units is close to zero, they do not alter its familiarity 

detection performance.

The unreliable units occur in HebbFF due to suboptimal training. In the IT cortex they are 

possibly due to performing an unrelated task. We explicitly consider the latter scenario by 

training our network to perform binary classification in parallel with familiarity detection, 

reading out both signals from the same set of hidden units (STAR Methods). As a result, 

two sub-populations of hidden units emerge – one for classification and one for familiarity 

detection (Fig S5E), the classification units degrading the SCC readout as expected. All 

other results in this section remain unchanged (Fig S5A–D).

Comparing the experimental and model distributions of readout activity shows a 

qualitatively similar pattern for outputs to novel and familiar stimuli (Fig 7B). Both 

distributions shift toward smaller values as R increases and familiar stimuli begin to 

appear novel. The fact that the distribution of outputs becomes narrower for HebbFF as 

R decreases, unlike in the data, may be due to repetition suppression causing hidden units 
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to have near-zero responses for highly familiar (low R) stimuli, thus causing the readout 

distribution to cluster around its minimal value. On the other hand, biological neurons that 

exhibit repetition suppression may never be fully silenced – for example if it takes multiple 

repetitions to achieve maximal familiarity or if neurons are multiplexed with another task 

that requires a baseline level of activity. Furthermore, as in the data, the distribution of 

readout weights is biased towards negative values (Fig 7C).

Finally, using a similar “strength theory” analysis as in the experimental results (Meyer and 

Rust, 2018; Murdock, 1985), which suggests that reaction times are inversely proportional 

to the distance of the readout from the threshold, we can qualitatively reproduce the x-

shaped reaction time curves seen experimentally. We used the same proportionality constant 

determined experimentally to compute network “reaction times” (Fig 7D).

Familiarity detection of images

To validate the HebbFF model in a more realistic scenario, we evaluate its performance 

on images. As a stand-in for the processing done by the visual stream, we use a pre-

trained convolutional neural network and downsample its output, either by subsampling 

and binarizing (Fig 8A,B) or by introducing a trainable intermediate layer (Fig S6A). 

These two downsampling approaches change the statistics of the inputs to HebbFF, 

either by introducing correlations (Fig 8C) or having them be real-valued vectors (Fig 

S6B). Interestingly, in the latter case, the network learns an uncorrelated representation 

automatically (Fig S6C) which further supports storing uncorrelated stimuli.

These networks have similar features to those trained on uncorrelated binary vectors. For 

binarized inputs, the W1 matrix has a similar structure (Fig 4F, 8D), the hidden layer 

activity is sparse (Fig 4C, 8E), and the hidden unit input current distributions have similar 

shapes (Fig 4I,J,M, 7B, 8F–I), but there is a slight drop in performance due to correlations 

(Fig 8J). For real-valued inputs, although its structure is different, the W1 matrix still acts 

as a addressing function to select a unique neuron in the hidden layer (Fig S6E) that is 

then suppressed for a familiar stimulus through the A(t) matrix (Fig S6G–H). The network 

maintains its generalization performance (Fig S6J). See STAR Methods for details.

Discussion

In answer to the question of “how” memories are stored, we find that anti-Hebbian plasticity, 

in which neuronal co-activation causes synaptic depression (this may be also interpreted 

as potentiation of inhibitory synapses (Schulz et al., 2020)), is a better storage mechanism 

for familiarity detection than Hebbian. An anti-Hebbian rule generalizes better, has a larger 

capacity, and is discovered by meta-learning more frequently and reliably. Although this 

result is consistent with previous work (Bogacz and Brown, 2003), the underlying reasons 

are different. Bogacz and Brown showed that in a non-continual version of the familiarity 

detection task, an anti-Hebbian plasticity rule leads to a larger storage capacity, although 

this advantage only held in the case of correlated inputs. In their case, the anti-Hebbian rule 

automatically suppresses common input features, effectively storing only the uncorrelated 

components, leading to an increased capacity. In contrast, anti-Hebbian HebbFF shows an 

advantage even for uncorrelated inputs in the continual task. This is due to an effective 
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decrease in the number of plasticity events – a synaptic update is weak for a familiar 

stimulus because the postsynaptic activity is low, leading to smaller updates that are less 

disruptive to stored memories.

Equally important is the question of “where” memories are stored. HebbFF explicitly 

selects storage locations through an addressing function implemented by strong feedforward 

weights W1, independent of the previously stored memories A(t). By inducing hidden layer 

activity – typically a single active neuron – W1 selects only those afferents for storing a 

novel memory. This is in contrast to implicit addressing through recurrent inhibition in a 

previous anti-Hebbian model (Bogacz and Brown, 2003) which selects 50% of hidden layer 

neurons. Although much experimental and theoretical work has been devoted to elucidating 

the plasticity rules used in memory storage, our work highlights the equal importance of 

studying the addressing functions of neuronal circuits as well.

Critically, unlike classical models, these answers emerged from meta-learning. The 

architectural features were not due to decisions made by the modeler but rather discovered 

through optimization. Although our particular meta-learning algorithm, BPTT, does not 

easily map onto a biological mechanism, we can nevertheless interpret it as a stand-in for 

structural changes over long time scales – an addressing function developing in a newborn’s 

brain over the first years of her life, or a plasticity rule emerging within a species across 

generations. Evolutionary strategies for meta-learning (Confavreux et al., 2020; Jordan et al., 

2021; Najarro and Risi, 2021) imply the latter interpretation. In contrast, the plasticity rule 

itself is a biologically realistic mechanism for learning over short time scales – seconds or 

minutes to store a memory that may be retrieved throughout a lifetime.

Thus, the HebbFF model predicts that there should be two populations of synapses – a small 

set of slow-varying or fixed synapses for addressing the memory neurons (the hidden layer 

of HebbFF) and a larger set of highly plastic synapses for encoding memories.

We also make a more quantitative experimental prediction. Although is obvious that the true 

positive rate should decrease with longer delay intervals R, we also observe that the false 

positive rate slightly increases (Fig S7A). Neither the Hebbian mechanism nor the RNN 

trained on a single R show this behavior (Fig S7B,C). If biological networks implement 

familiarity detection through an anti-Hebbian plasticity mechanism, we expect to see the 

same effect. Note, however, that anti-Hebbian plasticity is merely sufficient, not necessary, 

for this result, so the converse may not be true (Fig S7D).

There are experimental results that the HebbFF model does not capture. For example, data 

from human subjects shows a very slow decrease in performance as a function of R that 

begins at relatively small value (Brady et al., 2008). In contrast, HebbFF has near-perfect 

performance for all R < Rmax, and then performance drops off quickly. However, it is likely 

that errors in the experiments do not reflect limitations on recognition memory but rather are 

due to factors such as fatigue and lack of attention that were not included in the model.

Finally, along with other recent applications of this technique, our work demonstrates the 

utility of meta-learning as a tool for neuroscience discovery. We used meta-learning to 

optimize a network architecture and plasticity rule that solves the continual familiarity 
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detection task, contrasted it with an alternative sub-optimal solution, and subsequently used 

analytic methods to understand its mechanism. A similar approach can be used for other 

networks, plasticity rules, datasets, and tasks.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests should be directed to and will be fulfilled 

by the lead contact, Danil Tyulmankov (dt2586@columbia.edu)

Materials availability—This study did not generate new unique materials.

Data and code availability—All original data in this work was programmatically 

generated. The code for data generation, as well as the network and analysis can be 

found at https://github.com/dtyulman/hebbff (doi:10.5281/zenodo.5659610). Any additional 

information required to reanalyze the data reported in this paper is available from the lead 

contact upon request.

METHOD DETAILS

Continual familiarity detection task—We consider a continual familiarity detection 

task (Fig 1A) in which a stream of stimuli is presented to a network. With probability 1 − 

p, the stimulus at time t is chosen as a randomly generated d-dimensional binary vector x(t), 
where each component is either +1 or −1 (note that for sufficiently large d, spurious chance 

repeats are extremely unlikely). With probability p, the stimulus is a copy of the stimulus 

presented R time steps ago, so that x(t) = x(t − R). However, we ensure that a stimulus is 

repeated at most once so, if x(t − R) is already a repeat, i.e. x(t − R) = x(t − 2R), a new x(t) is 

generated. As a result, the fraction of novel stimuli, which we call f, is not equal to 1 − p, but 

rather f = 1
1 + p . We use p = 1

2 , so f = 2
3 . The output of the network should be y(t) = 0 if x(t) 

is novel and y(t) = 1 if it is familiar, i.e. has appeared previously.

The accuracy of the network (Pcorrect, the probability of correctly responding to a stimulus) 

depends on two factors: the true positive rate (PTP, the probability of correctly reporting 

a repeated stimulus as “familiar”), and the false positive rate (PFP, the probability of 

incorrectly reporting a novel stimulus as “familiar”). These two factors are weighted by 

the fraction of novel stimuli f, so that Pcorrect = (1 − f)PTP + f(1 − PFP). Through our 

choice of loss function (next section), we are effectively training the networks to maximize 

accuracy, so the “chance” level performance is f (for  f > 1
2 ), which a network can achieve 

by reporting all stimuli as novel (PTP = PFP = 0).

In our paradigm, a given dataset has a single repeat interval R, which differs slightly from 

previously studied experimental paradigms (Brady et al., 2008; Meyer and Rust, 2018). 

However, we evaluate performance on multiple datasets with various values of R. For 

testing, this is analogous to evaluating a single dataset with multiple repeat intervals and 

computing accuracy for each interval separately. We use this approach because it allows us 

to test generalization by training on one value of R and testing on others. It also allows us 
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to train the network to its maximal capacity by gradually increasing R during “curriculum 

training”, and simplifies analytic calculations.

HebbFF and RNN training—To set the fixed HebbFF parameters W1, b1, W2, b2, λ, η, as 

well as the RNN weight and bias matrices, we use the PyTorch implementation of the Adam 

optimizer with the suggested default hyperparameters (Kingma and Ba, 2017). For a single 

trial, we use a dataset containing T stimuli, with familiar ones appearing at a repeat interval 

R. We present stimuli to the network sequentially, and compute the binary cross-entropy loss

ℒ = 1
T ∑

t = 1

T
y(t)logy(t) + (1 − y(t))log(1 − y(t))

Since this is a dynamic task (the state of the network at time t + 1 depends on the state 

at time t, either through recurrent activity in the RNN or through ongoing plasticity in 

HebbFF), backpropagation through time is used to compute the gradient of the loss with 

respect to the parameters.

For each trial, we either use the same pre-generated length-T dataset, or we generate a new 

length-T dataset using the same repeat interval R. We refer to the latter case as the “infinite 

data” training regime since the sample space is much larger than the network would explore 

during training. Note that in the infinite data regime, we do not consider a validation dataset, 

since the training set is new every time and the training accuracy is therefore the same as the 

validation accuracy. In both cases, one trial corresponds to one step of gradient descent. To 

train the HebbFF network, the plastic matrix A(t) is reset to a matrix of zeros at the start of 

each trial. Similarly, when training the RNN, hidden unit activity is reset to zero. In practice, 

the plastic matrix of HebbFF reaches its steady state distribution quickly and the transient 

does not contribute significantly to the gradient, so any reasonable initialization can be used.

Bogacz-Brown (Bogacz and Brown, 2003) model implementation—To validate it 

on the (non-continual) two-alternative-forced-choice (2AFC) familiarity detection task, we 

implement the anti-Hebbian model as described by Bogacz and Brown (Bogacz and Brown, 

2003), with the exception that the distribution of weights in the plastic weight matrix must 

be normalized such that its variance is equal to 1
N , rather than unit variance as stated in the 

paper. In the encoding phase, the network is presented a sequence of P random patterns. In 

the testing phase, it is shown the original P patterns, as well as P novel ones. Critically, there 

are no plastic updates in the testing phase. A stimulus is reported as “familiar” if the output 

unit activity is below the mean across all 2P test patterns and “novel” otherwise. We see that 

this model performs well on the 2AFC task with a range of plasticity rates η (Fig S2A), so 

we arbitrarily choose η = 0.7 to test its performance on the continual task.

The continual task, unlike the 2AFC task, does not have an equal proportion of novel and 

familiar stimuli since we ensure that a stimulus is repeated at most once. So, we set the 

readout threshold such that an item is considered novel if it is in the fth quantile of output 

unit activity for that trial, where f is the fraction of novel stimuli in the trial. This ensures 

that the fraction of stimuli reported as “novel” is equal to the true fraction of novel stimuli. 
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In the case of equal proportions of novel and familiar stimuli, this reduces to the threshold 

being equal to the mean of the output unit activity for that trial.

Finally, note that unlike in the 2AFC task (Fig S2A), the performance of this model does 

not go to chance levels for large dataset sizes T in the continual task (Fig 3D). Rather, the 

true positive rate goes to zero and the false positive rate is ≈ 0.5, so accuracy is ≈ 0.33. The 

reason for this difference is that the second presentation of a stimulus in the continual task 

causes an additional plasticity event, unlike the 2AFC task where the test phase is offline. As 

a result, for datasets much larger than the network capacity T ≫ P*, the output unit activity 

for familiar stimuli becomes larger than the activity for novel stimuli (Fig S2B).

Training FLD and SCC decoders—To construct the Fisher linear discriminant (FLD) 

and spike count classifier (SCC) decoders, we first generate a dataset of length T = 1000. 

To better match the experimental dataset (Meyer and Rust, 2018), we use multiple values 

of R in this single stream. For each familiar stimulus, the value of R is drawn uniformly 

at random from 34 unique values, log-spaced from 1 to 100 (in practice, the results are 

qualitatively the same regardless of the number of items, the range, or whether the spacing 

is linear or logarithmic). We evaluate the trained network on this dataset and use the firing 

rates of the hidden layer to perform analyses analogous to those reported in (Meyer and 

Rust, 2018).

We compute the readout weight and bias terms for the FLD decoder as

W 2
FLD = Σ−1 hnov − hfam , b2

FLD = − W 2
FLD ⋅ 1

2 hnov + hfam

where hnov and hfam are the average firing rates of the hidden layer for novel and familiar 

stimuli, respectively, and the mean covariance matrix is calculated as

Σ =
Σfam + Σnov

2

where Σfam and Σnov are the covariance matrices of the firing rates of the hidden layer for 

familiar and novel stimuli, respectively. The SCC decoder is a simple weighted average

W 2
SCC = 1

N hnov − hfam , b2
SCC = − W 2

SCC ⋅ 1
2 hnov + hfam

To get the ranking of the units for both decoders, we sort their readout weights and consider 

the most negative weights as the highest ranked. Note that for both decoders, the sign of the 

weights is flipped compared to (Meyer and Rust, 2018), and high-ranked units have the most 

negative weights rather than positive. This is due to the fact that we ask the network to label 

familiar stimuli as y(t) = 1, whereas (Meyer and Rust, 2018) readout a familiar stimulus as 

y(t) = 0. The two cases are symmetric and this does not change the results.
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Simultaneous classification and familiarity detection—IT cortex encodes object 

identity as well as familiarity (Lehky and Tanaka, 2016; Lueschow et al., 1994). To match 

this dual functionality, we augment familiarity detection with object classification. We first 

create a large pool of random vectors and randomly assign a binary label to each one. We 

then generate a familiarity detection dataset as before, except that each novel input is drawn 

from this pool (without replacement) rather than being generated anew. In addition to the 

scalar readout of familiarity, the network must now report the class of the stimulus through 

a second binary output. Critically, both outputs are read out from the same hidden layer 

activity.

To train the HebbFF network on the augmented familiarity detection/object classification 

task, we simply sum the cross-entropy losses from the classifier and familiarity output units:

ℒ = 1
2T ∑

t = 1

T
∑

a = 1

2
ya(t) log ya(t) + 1 − ya(t)  log  1 − ya(t)

For every trial, we draw a new dataset from the pre-generated pool of stimuli. The class 

of each stimulus remains the same across datasets, but the ordering and repeats are chosen 

randomly each time. Although the network will have seen all of the stimuli during training 

in order to learn their classes, we can test generalization performance on the familiarity 

subtask by varying R and generating previously unseen permutations of the stimuli.

The augmented task could be solved by having all the neurons multiplexed to encode both 

familiarity and object identity (Meyer and Rust, 2018). Alternatively, the neurons could split 

into two subpopulations, one of which detects familiarity and the other classifies objects 

(Rutishauser et al., 2015). We find that the HebbFF model converges to this second solution, 

an even split between familiarity and classifier units, as evident from inspecting the W1 

matrix (Fig 7E). Consistent with this, the capacity of the classifier-augmented HebbFF with 

50 hidden units (Rmax ≈ 13) is approximately the same as the original network with 25 

units (Rmax ≈ 14). In accord with this split, SCC decoder performance peaks in the split-task 

network when half of the top-ranked units are included (Fig S5D) because including units 

responsible for object identity but not familiarity degrades the familiarity readout. The 

other similarities to experimental results discussed in the previous section also hold for the 

task-augmented network (Fig S5).

Idealized model analytic capacity derivation—For notational simplicity, we only 

consider the nonzero submatrices of W1 and A(t), each of which acts on its corresponding 

subset of the input vector x(t). Thus, equivalently, input layer of the idealized network is 

a d-dimensional vector split into two parts x(t) = [xW(t), xA(t)], of dimension n and D 
respectively (d = n + D). The firing rate of the hidden layer is given by

h(t) = Θ W 1xW (t) + A(t)xA(t) + b1

for an N × n matrix W1, an N × D matrix A(t), and an N × 1 vector b1. In other words, the 

firing rate of the ith hidden unit is
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ℎi(t) = Θ ∑
j = 1

n
W ijxj(t) + ∑

k = 1

D
Aik(t)xn + k(t) + b (1)

for i = 1, …, N, where Θ(·) is the Heaviside step function, i.e. Θ(z) = 0 for z < 0 and 1 for z 
≥ 0. We fix the value of b to be the same for all i. As before, the elements of x(t) are +1 or 

−1 with equal probability. We would like to specify the network parameters such that exactly 

one hidden neuron is active for a novel stimulus and none for familiar, which will serve as 

the familiarity readout mechanism.

The N × n matrix W1 is designed such that the vector W1xW(t) has exactly one maximal 

entry given any such x(t). Importantly, this matrix must act like a hash function such that 

different values of xW(t) result in different entries of W1xW(t) attaining the maximum value. 

One such W1 is one whose rows enumerate all of the binary length-n strings consisting of 

entries +1 and −1. This sets the number of rows N to be equal to the total number of such 

strings, N = 2n. To set the overall scale of the input current (the term inside the nonlinearity), 

we scale this matrix by a factor K, to be determined later. For example, if n = 3,

W 1 = K

+1 +1 +1
+1 +1 −1
+1 −1 +1
+1 −1 −1
−1 +1 +1
−1 +1 −1
−1 −1 +1
−1 −1 −1

Thus, we have ∑j = 1
n W ijxj(t) = Kn for exactly one value of i, specifically the row where Wij 

= xj(t) for all j. This is the unique maximal value and will correspond to a different row for 

each instance of xW(t). Subsequently, ∑j = 1
n W ijxj(t) = K n − 2  for n values of i, specifically 

those where Wij ≠ xj(t) for exactly one j, and so on. This structure explains the multi-modal 

distribution of W1xW(t) + b1 in Fig 6D and by extension that of W1x(t) + b1 in Fig 4G–I.

Assuming that the vector A(t)xA(t) is zero-mean with sufficiently small variance (this will be 

made rigorous shortly), we can now choose the scalar offset b such that exactly one element 

of h(t) is equal to 1 and all others are zero.

The N × D matrix A(t) is updated at every timestep by A(t + 1) = λA(t) − ηh(t)xA(t)T, 

where the plasticity rate η is now restricted to be positive, corresponding to an anti-Hebbian 

learning rule. Considering one entry in this matrix and unrolling this recurrence, we find that

Aik(t + 1) = λAik(t) − ηℎi(t)xn + k(t)

= λt + 1Aik(0) − η ∑
t′ = 0

t
λt − t′ℎi t′ xn + k t′

≈ − η ∑
t′ = 0

t
λt − t′ℎi t′ xn + k t′
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where the last equality holds if we assume that the network is in steady-state, so t is large, 

i.e. t → ∞, and therefore λt+1Aik(0) → 0.

We can now consider the middle term of eq. 1, which we denote by εi(t). We consider it as a 

random variable and compute its mean and variance. By definition, we have

εi(t) = ∑
k = 1

D
Aik(t)xn + k(t)

= ∑
k = 1

D
−η ∑

t′ = 0

t − 1
λt − 1 − t′ℎi t′ xn + k t′ xn + k(t)

= − η ∑
t′ = 0

t − 1
λt − 1 − t′ℎi t′ ∑

k = 1

D
xn + k t′ xn + k(t)

(2)

In the case where x(t) is novel, xn+k(t′) and xn+k(t) are independent Bernoulli random 

variables that take on values ±1 with probability ½. Thus, Xk(t′) = xn+k(t′)xn+k(t) is also a 

Bernoulli random variable with the same distribution, zero mean and unit variance, so

εi(t) = − η ∑
t′ = 0

t − 1
λt − 1 − t′ℎi t′ ∑

k = 1

D
Xk t′

Since the entries of x(t) are independent by definition, the Xk(t′) are also independent across 

k, so summing over these indices, the variances add. Therefore, X t′ = ∑k = 1
D Xk t′  is a 

random variable with mean 0 and variance D, and

εi(t) = − η ∑
t′ = 0

t − 1
λt − 1 − t′ℎi t′ X t′

Next, we need the statistics of the term hi(t′). Since it is a function of the random variable 

x(t), we also consider it as a random variable. Let feff denote the fraction of stimuli reported 

as “novel” by the network. Note that there are two ways for a network to report a stimulus 

as “novel” – by correctly identifying a novel stimulus (“true negative”), or incorrectly 

identifying a familiar one (“false negative”) – so if we let f denote the true fraction of novel 

input stimuli, we have

feff = PTNf + PFN(1 − f) = 1 − PFP f + 1 − PTP (1 − f)

where PTN, PFN, PTP and PFP are the true negative, false negative, true positive, and false 

positive rates, respectively. Since by design there is exactly one hidden unit active for a 

novel stimulus, we have hi(t′) = 1 with probability 
feff
N , and hi(t′) = 0 with probability 

1 −
feff
N . So, hi(t′) is a Bernoulli random variable with mean 

feff
N  and variance 

feff
N 1 −

feff
N . 

Now, we let Hi(t′) = hi(t′)X(t′), so
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εi(t) = − η ∑
t′ = 0

t − 1
λt − 1 − t′Hi t′

Although hi(t′) is, in principle, a function of x(t′), we assume they are independent. 

Since X(t′) is zero-mean, the mean of Hi(t′) is also zero. Using the identity 

var(XY ) = var(X)var(Y ) + var(X)E2[Y ] + var(Y )E2[X], which holds for independent random 

variables X and Y, we have that the variance of Hi(t′) is 
feffD

N . Finally, for convenience 

we can rewrite this as

εi(t) = − η
feffD

N ∑
t′ = 0

t − 1
λt − 1 − t′ξi t′

where ξi(t′) is a zero-mean, unit-variance random variable. Furthermore, we now see that by 

the Central Limit Theorem εi(t) is a Gaussian random variable since we are considering the 

steady-state performance at large t, so we can take t → ∞.

We can now compute the mean and variance of εi(t). First, since xn+k(t) is zero-mean and 

independent of Aik(t),

E εi(t) = E ∑
k = 1

D
Aik(t)xn + k(t) = 0

To compute the variance,

var εi(t) = E εi2(t) − E2 εi(t) = E εi2(t)

= E −η
feffD

N ∑
t′ = 0

t − 1
λt − 1 − t′ξi t′

2

= E −η
feffD

N ∑
t′ = 0

t − 1
λt − 1 − t′ξi t′ −η

feffD
N ∑

t″ = 0

t − 1
λt − 1 − t″ξi t″

= η2feff D
N ∑

t′ = 0

t − 1
∑

t″ = 0

t − 1
λt − 1 − t′λt − 1 − t″E ξi t′ ξi t″

In general, we have E ξi t′ ξi t″ = 1 for t′ = t″ since ξi(t′) is a zero-mean, unit-variance 

random variable. For t′ ≠ t″, we again make a simplifying independence assumption. In 

principle, ξi(t″) is not independent of ξi(t′) since hi(t″) depends on hi(t′) for t″ > t′ through 

the memory stored in the A(t) matrix. This dependence, however, is sufficiently weak, so we 

let E ξi t′ ξi t″  for t′ ≠ t″. As a result, the double-sum collapses and we have
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var εi(t) = η2feffD
N ∑

t′ = 0

t − 1
λ2 t − 1 − t′

= η2feffD
N

1 − λ2t

1 − λ2

where the second equality comes from the standard geometric series. As before, since we are 

considering the steady-state with t → ∞, we have γ2t → 0, so

var εi(t) = η2feffD
N

1
1 − λ2

Thus, for a novel input x(t) we can write

εi(t) = ξiη
feffD

N 1 − λ2 (3)

for all i, where ξi is a zero-mean, unit-variance Gaussian random variable, since εi(t) is 

Gaussian.

For a familiar stimulus, where x(t) = x(t − R), clearly xn+k(t′) and xn+k(t) are no longer 

independent for t′ = t − R. Thus, we consider this term separately, rewriting the sum in eq. 2 

as

εi(t) = − ηλt − 1 − (t − R)ℎi(t − R) ∑
k = 1

D
xn + k(t − R)xn + k(t)

− η ∑
t′ = 0

t′ ≠ t − R

t − 1
λt − 1 − t′ℎi t′ ∑

k = 1

D
xn + k t′ xn + k(t)

Assuming no errors, by design, hi(t − R) = 1 for exactly one neuron i, since the stimulus at 

time t – R was guaranteed to be novel (we enforce that a stimulus is repeated at most once 

in this task). We consider the statistics of εi(t) for this particular neuron. In the first term, 

the sum ∑k = 1
D xn + k(t −  R) xn + k(t) = D since by assumption xn+k(t) = xn+k(t − R) for all k. 

The second term has the same distribution as the one for a novel input since we have only 

removed one term from the sum and t is large. Thus, for a familiar stimulus we can write

εi(t) = − ηλR − 1D + ξiη
feffD

N 1 − λ2

for exactly one value of i, where ξi is a zero-mean, unit-variance random variable as before. 

For all other values of i, eq. 3 holds.
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Having established the statistics of the hidden layer input currents for a novel and a familiar 

stimulus, we can now write down the conditions for the model to work, use them to find 

the optimal values of the parameters and calculate the true positive and false positive 

probabilities, and compute the capacity – the largest value of R for which the error is below 

a predetermined threshold. First, to ensure that exactly one unit is active for a novel stimulus 

(true negative), since we are using a step function nonlinearity, we must have the largest 

input current take on a positive value (since ξi is an identically distributed standard normal 

random variable for every neuron, for simplicity we suppress the index i),

Kn + ξη
feffD

N 1 − λ2 + b > 0

and second-largest to be below zero,

K(n − 2) + ξη
feffD

N 1 − λ2 + b < 0

Second, to ensure there are no units active for a familiar stimulus (true positive),

Kn − ηλR − 1D + ξη
feffD

N 1 − λ2 + b < 0

For sufficiently large R, i.e. if ηλR−1D < 2K, the third of these conditions implies the 

second. Since we are interested in maximizing R, we only consider the first and third 

conditions. Furthermore, note that these conditions are overparameterized. If we divide all 

three equations by η (e.g. let k = K
η , B = b

η ), we can eliminate this free parameter. In other 

words, for any value of η we can scale K and b proportionally to satisfy the conditions, 

so for simplicity we choose η = 1. Similarly, the term Kn + b can be replaced by a single 

parameter since for any choice of K we can rescale b to keep this sum constant. To ensure 

that the condition ηλR−1D < 2K holds for all R, we can choose K = D. For convenience, 

we also let b = βD and 
feffD

N 1 − λ2 = αλD, the subscript indicating explicit dependence on λ. 

Dividing both inequalities by D, the conditions simplify to

n + αλξ + β > 0, n + β + αλξ − λR − 1 < 0

The accuracy, i.e. probability of a correct response, is given by Pcorrect = (1 − f)PTP + fPTN. 

For convenience, we compute the false positive instead of the true negative rate, noting that 

PTN = 1 − PFP. The false positive and true positive rates are given by

PFP = ℙ ξ < − n + β
αλ

, PTP = ℙ ξ < − n + β − λR − 1
αλ
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Since ξ is a standard Normal random variable, ℙ[ξ < z] = 1
2erfc − z

2 , so

PFP = 1
2erfc n + β

αλ 2 , PTP = 1
2erfc n + β − λR − 1

αλ 2

We would now like to set the optimal values of λ and β which maximize R, given a desired 

true positive and false positive probability PFP* , PTP* . Note that fixing these probabilities also 

fixes feff = f* = 1 − PFP* f + 1 − PTP* (1 − f). Rearranging the previous equations, we get

n + β
αλ

= 2erfc−1 2PFP* , n + β − λR − 1
αλ

= 2erfc−1 2PTP*

The first equality sets the value for β. To determine λ, we substitute β into the second 

equality to get

2erfc−1 2PFP* − λR − 1
αλ

= 2erfc−1 2PTP*

For notational convenience, let E = 2 erfc−1 2PFP* − erfc−1 2PTP* . Using the definition of 

αλ and feff = f*, we have λ = 1 − f*
αλ

2ND
. Rearranging, we have

1 − f*
αλ

2ND

R − 1
2

= αλE

Assuming N and D are large (so λ is close to 1), we can use the first-order Taylor expansion 

exp(−z) ≈ 1 − z for the term in parentheses (this will be necessary to get a closed-form 

expression for the optimal λ) and solve for R

exp − f*
αλ

2ND
⋅ R − 1

2 = αλE R = 1 +
2NDαλ

2

f* ln 1
αλE

Setting dR
dλ = 0 and solving for λ gives the optimum

λ = 1 − eE2f*
ND

Thus, the capacity of the optimized network is

Rmax = 1 + ND
eE2f*
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where f* and E are constants that depend on PFP*  and PTP*  (f* also depends on the true 

fraction of novel stimuli f). For instance, if we impose that PFP* = 0.01 and PTP* = 0.99, with 

our value of f = 2
3 , we get

Rmax = 1 + ND
e ⋅ 2 ⋅ erfc−1 2PFP* − erfc−1 2PTP* 2 ⋅ 1 − PFP* f + 1 − PTP* (1 − f)

= 1 + ND
2e[1.645 − ( − 1.645)]2[0.98f + 0.01]

= 1 + 0.017ND
0.98f + 0.01

= 1 + 0.026ND

It is clear that that the capacity scales in proportion to the number of plastic synapses in 

the network. Furthermore, since d = n + D, i.e. D = d − log2(N), the capacity scales in 

proportion to the total number of synapses d, as long as D ≫ n.

Rmax = O(ND) = O(N(d − n)) = O(Nd − NlogN) = O(Nd)

Finally, note that the equations for PFP and PTP are a function of feff due to the αλ 
parameter, and therefore recursively depend on PFP and PTP. We cannot compute the closed-

form solution for these, but we can approximate the values with arbitrary accuracy by 

iterating through this recurrence until convergence to the fixed point. As the initial value for 

the recurrence, we use PFP and PTP computed using feff = f, i.e. assuming no errors.

CNN preprocessing for familiarity detection of images—We consider the dataset 

used by Brady et al. (2008) to study familiarity detection in humans. As a stand-in for the 

processing done by the visual stream before the inferotemporal or perirhinal cortices, we use 

a pre-trained convolutional neural network (CNN), and extract the activity in its penultimate 

layer (before the final classification step). We use the ResNet18 network (He et al., 2015), 

although any CNN could, in principle, be used (see also Kazanovich and Borisyuk, 2021). 

This activity is a 512-dimensional vector, which, if used as the HebbFF input dimension d, 

would lead to the capacity Rmax being prohibitively large for training purposes. To keep the 

performance in a reasonable range, we downsample to d = 50, either by partial sampling 

(Fig 8A) or by introducing an intermediate layer (Fig S6A). We use the uniform readout W2 

for simplicity of training and analysis, although the results are similar for the unconstrained 

readout.

As the first method of downsampling, we truncate the output of the CNN (Fig 8A). To 

keep the same input datatype as in previous sections, we also shift the inputs to zero mean 

and binarize them by taking the sign of each input component (Fig 8B). Unlike in previous 

sections, however, the inputs to HebbFF now have correlations that tend to be positive (Fig 

8C). Nevertheless, this network has qualitatively similar features as the networks trained on 

uncorrelated vectors. The W1 matrix has a similar structure (Fig 4F, 8D), the hidden layer 

activity is sparse (Fig 4C, 8E), and the hidden unit input current distributions have similar 

shapes (Fig 4I,J,M, 7B, 8F–I). Due to the added correlations, however, there is a decline in 
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performance compared to a network of the same size trained and evaluated on uncorrelated 

binary random vectors (Fig 8J).

As another way to downsample, we add a trainable linear layer that transforms the CNN 

output to a 50-dimensional real-valued vector (Fig S6A). After training, the resulting inputs 

to HebbFF are no longer binary, but they are zero-mean (Fig S6B) and have zero-mean 

correlations Fig S6C). Interestingly, the network learns to generate this representation 

automatically to optimize familiarity detection over long intervals, which further supports 

storing uncorrelated stimuli. Although the W1 matrix (Fig S6D) and the distribution of input 

currents from the fixed component of the synapses (Fig S6F) have a different structure 

compared to the original network, the operating principle remains the same: the W1 matrix 

acts as a addressing function to select a unique neuron in the hidden layer (Fig S6E) that is 

then suppressed for a familiar stimulus through the A(t) matrix (Fig S6G–H). The network 

maintains its generalization performance across repeat intervals R, and across permutations 

of the sequence of images (Fig S6J). However, it does not generalize well to images it has 

not been trained on. It is possible that this difficulty is due to the relatively small number of 

images used during training and may be addressed by using a much larger dataset such as 

ImageNet (Deng et al., 2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Meta-learning is used to discover network architectures and plasticity rules

• Anti-Hebbian plasticity emerges as the mechanism for encoding familiarity

• Strong feedforward synapses emerge as an addressing function for storage 

and retrieval

• Experimental features such as repetition suppression are reproduced
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Figure 1. Continual familiarity detection task and HebbFF model.
(A) The continual familiarity detection task. Given a continual stream of stimuli x(t), the 

desired output is y(t) = 1 if the stimulus has appeared previously and y(t) = 0 otherwise. For 

a given dataset, repeat stimuli always appear at an interval R after their first presentation. 

Although the task is continual, for the purposes of network training we use a finite-duration 

trial of length T ≫ R. (B) The HebbFF network architecture. A feedforward layer is 

endowed with ongoing Hebbian plasticity, the parameters of which are optimized using 

stochastic gradient descent. The hidden units are linearly read out to produce the network’s 

estimate of familiarity y(t).
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Figure 2. RNN performance on continual familiarity detection.
(A) Training an RNN (d = 100 input dimension, N = 100 recurrent units) on a single 

familiarity detection dataset (T = 500 stimulus presentations, repeat interval R = 3). 

Although the loss (top) approaches zero and accuracy (bottom) approaches 1 on training 

data (red), performance on a validation data (blue) with the same parameters fails to 

generalize, even when tested in-distribution with the same R. (B) RNN trained with “infinite 

data,” R = 3 (red) or R = 6 (blue). Accuracy (top) and true/false positive probabilities 

(bottom) shown as a function of the repeat interval on validation data. RNNs perform well 

in-distribution on datasets with the same repeat interval as used during training, but fail to 

generalize out-of-distribution to other repeat intervals. (C) RNN trained on “infinite data” 

with both intervals R = 3 and R = 6 interpolates between the intervals but fails to extrapolate.
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Figure 3. Hebbian vs. anti-Hebbian plasticity and continual operation.
(A) Training the HebbFF network (d = N = 100), as in Fig 2A. Both training and validation 

loss decrease, indicating in-distribution generalization. Over many iterations, overtraining 

occurs due to the use of a single dataset, increasing the final validation loss. (B) HebbFF, 

trained as in Fig 2B, shows not only in-distribution generalization to datasets with the same 

R, but also out-of-distribution to data with any smaller and slightly larger R. (C) HebbFF 

with a different initialization converges to an anti-Hebbian learning rule (see also Fig S8) 

with generalization over a longer R values than Hebbian. (D) Model from (Bogacz and 

Brown, 2003), evaluated on the continual familiarity detection task, varying the length T 
of the trial. Accuracy (top) is near-perfect regardless of the repeat interval R (blue vs. red 

curve) until the model reaches its capacity (P* ≈ 100 for network size d = N = 100) because 

the model reliably stores the first P* patterns. Accuracy rapidly drops below chance for T 
> P* as the model begins to report familiar stimuli as novel (see Fig S2B). (E) HebbFF 

network operates continuously. Accuracy is consistent with the generalization curve from 

(C), with near-perfect performance for Rtest = 5 and above 80% for Rtest = 20 for any 

trial length. True and false probabilities (bottom) are better representations as accuracy is 

artificially higher for small T due to the low proportion of familiar stimuli.
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Figure 4. Storage and readout mechanism.
(A-C) Hidden layer activity h(t) over 20 consecutive timesteps for networks with input 

dimension d = 25 and N = 25 hidden units, trained on datasets with R = 1, 7, or 14, 

respectively. Familiar stimuli (black rectangles) cause silencing i.e. repetition suppression 

of hidden layer activity. Activity for novel stimuli becomes sparser for networks trained 

with larger R. (D-F) Static weight matrix W1 of the networks from (A-C). The weight 

matrix becomes sparser (Fig S8) and individual weight magnitudes increase for networks 

trained with larger R, enabling sparser activity in the hidden layer for novel stimuli. (G-I) 

Distributions of hidden layer input current due to the static component of the synapses 

(W1, b1) for the networks from (A-C). For networks trained with larger R, the distribution 

becomes multi-modal, with the number of modes equal (approximately) to the number of 

high-magnitude values per row of W1, plus one. Due to the bias, only the rightmost mode 

has the potential to produce firing rates that are significantly above zero. (J-L) Distributions 
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of input current into the hidden layer due to the plastic component of the synapses A(t), for 

novel (red) and familiar (green) stimuli. We only consider the trained network from (C,F,I) 

and evaluate its behavior on test sets with R = 14, 40, or 100, corresponding to perfect, 

intermediate, and chance accuracy. The large central mode occurs due to stored stimuli 

uncorrelated with the input stimulus x(t). In the novel case, the input is uncorrelated with all 

the stored stimuli by definition, and thus there is only one mode. Similarly, in the familiar 

case with a long delay interval R = 100 the stored stimulus has decayed sufficiently that its 

signal is lost. In the case of familiar stimuli presented at shorter delay intervals, R = 14 or 

40, there is an additional mode due to the correlation between the input x(t) and its copy 

x(t − R) previously stored in the plastic matrix A(t). (M-O) Distributions of the total input 

current into the hidden layer on test sets with R = 14, 40, or 100. Only the values above 

zero cause high firing rates after applying the logistic sigmoid nonlinearity. Since all the 

input currents are low for familiar stimuli (green) for small values of R, there is repetition 

suppression. (P-R) Correlation between the input current into the hidden layer from static 

and plastic synapse components at each of 20 consecutive timepoints. Asterisks indicate 

output response errors. For sufficiently small R, the input currents are more anti-correlated 

for familiar stimuli (black circles) than for novel. Combined with the distributions of input 

currents, this indicates that the units receiving positive input current from the static synapses 

receive negative input current from the plastic synapses.
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Figure 5. Curriculum training and empirical capacity.
(A) The value of R used over the course of curriculum training for four different network 

sizes. (B) The final value of R after curriculum training (i.e. network capacity) as a function 

of the number of plastic synapses in the network, plotted on a log-log scale. The color 

corresponds to the number of input units as in (D). The least-squares fit (slope k, bias 

c) indicates that the empirical network capacity scales sub-linearly with the number of 

synapses. (C,D) Capacity plotted as a function of the input dimension d and hidden layer 

size N, resp., holding the other one constant. It primarily depends only on the number of 

synapses, rather than on the hidden or input layer sizes.
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Figure 6. Idealized model.
(A) The idealized HebbFF network architecture. The input x(t) is effectively split into 

two sections of size n and D = d − n that serve as inputs into separate static and plastic 

synaptic matrices W1 and A(t), resp. (STAR Methods). The hidden layer size is N = 2n and 

output is y(t) = 1 whenever any of the hidden units is active. (B) The analytic calculation of 

network performance (solid line) matches simulation results for the idealized network (x’s), 

shown for two different network sizes (red, blue). (C) A least-squares fit of the analytic 

performance curve of the idealized network to a trained HebbFF network of the same size 

for two network sizes. The idealized network has similar performance to the HebbFF model 

if its decay rate and bias are scaled appropriately: λ ≈ 0.986, b1 ≈ −4.771 (for all units) for d 
= 200, N = 32, and λ ≈ 0.993, b1 ≈ −4.771 for = 200, N = 32. (D-F) Same as Fig 4(L,J,M), 

but for the idealized network (D = 400, N = 32, R = 300).
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Figure 7. Comparison to IT cortex data.
(A) Left: neurons from the IT cortex used to predict the behavioral outputs of a monkey 

performing continual familiarity detection, decoded using the Fisher linear discriminant 

(FLD, blue) or spike count classifier (SCC, red). Right: units from the hidden layer of 

a trained HebbFF network (trained with unconstrained W2) used to decode familiarity 

with SCC or FLD. In both cases, the number of neurons/units available to the decoder 

was varied, added in order of increasing FLD weight. While the FLD decoder accuracy 

saturates, the SCC decoder accuracy peaks and declines as more neurons/units are included 

in the decoder. (B) Distribution the FLD decoder output for IT cortex neurons (left) and 

HebbFF hidden units (right) for familiar stimuli at varying delay intervals. In both cases, 

the distribution shifts towards lower values as delay interval increases. For HebbFF, the 

distribution gets narrower for shorter delay intervals due to saturation in the hidden layer 

units. (C) Distribution of the FLD decoder weights for decoding IT cortex data (left) or 
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HebbFF hidden unit activity (right). In both cases, the majority of output weights are 

negative. (D) Left: measured reaction time as a function of delay interval for correct and 

error trials (red, blue curves) in monkeys performing the continual familiarity detection task. 

Black lines indicate reaction times predicted using strength theory analysis. Right: HebbFF 

predicted reaction times using analogous strength theory analysis (STAR Methods). Both 

result in a qualitatively similar x-shaped pattern. Plots on the left side of (A-D) adapted from 

(Meyer and Rust, 2018).
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Figure 8. HebbFF performance on real-world images.
(A) Network architecture for familiarity detection of real-world images. The activity of the 

penultimate layer of a convolutional neural network (ResNet18, pre-trained on ImageNet) 

is downsampled and passed to the HebbFF network (d = 50, N = 16) for familiarity 

detection. Only the HebbFF portion of this network is trained, via curriculum training. (B) 

Distribution of inputs x(t) to HebbFF. After down-sampling by extracting the first 50 units 

of the CNN, the activity is centered at zero and binarized. (C) Histogram of the correlations 

between all pairs of input stimuli x(t). On average (vertical dashed line) the correlation is 

slightly positive. (D-H) Same plots as Fig 4(F,C,I,J,M), respectively (Rtrain = Rtest = 12). (J) 

Generalization performance, compared to a network of the same size trained on uncorrelated 

binary random vectors, is lower due to correlations in the input images.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python Python Software Foundation https://www.python.org/

PyTorch Facebook, Inc. https://www.pytorch.org

Custom code This paper https://github.com/dtyulman/hebbff (https://doi.org/10.5281/zenodo.5659610)
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